


Fluent Python

SECOND EDITION

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Luciano Ramalho



Fluent Python

By Luciano Ramalho

Copyright © 2021 Luciano Gama de Sousa Ramalho. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn

Development Editor: Jeff Bleiel

Production Editor: Daniel Elfanbaum

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

August 2015: First Edition

September 2021: Second Edition

Revision History for the Early Release

2020-03-09: First release

2020-05-08: Second release

2020-06-10: Third release

http://oreilly.com/


2020-08-20: Fourth release

2020-11-05: Fifth release

2020-12-21: Sixth release

2021-02-01: Seventh release

2021-03-01: Eighth release

2021-04-05: Ninth release

2021-05-13: Tenth release

2021-06-22: Eleventh release

2021-07-27: Twelfth release

See http://oreilly.com/catalog/errata.csp?isbn=9781491946008 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Fluent
Python, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the
use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility
to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-05628-7

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491946008


Dedication

Para Marta, com todo o meu amor.



Preface

WARNING
The Preface has not been updated from the First Edition. This will be the last part of the
book to be updated for the Second Edition.

Here’s the plan: when someone uses a feature you don’t understand,
simply shoot them. This is easier than learning something new, and
before too long the only living coders will be writing in an easily
understood, tiny subset of Python 0.9.6 <wink>.

—Tim Peters, Legendary core developer and author of
The Zen of Python

“Python is an easy to learn, powerful programming language.” Those are
the first words of the official Python Tutorial. That is true, but there is a
catch: because the language is easy to learn and put to use, many practicing
Python programmers leverage only a fraction of its powerful features.

An experienced programmer may start writing useful Python code in a
matter of hours. As the first productive hours become weeks and months, a
lot of developers go on writing Python code with a very strong accent
carried from languages learned before. Even if Python is your first
language, often in academia and in introductory books it is presented while
carefully avoiding language-specific features.

As a teacher introducing Python to programmers experienced in other
languages, I see another problem that this book tries to address: we only
miss stuff we know about. Coming from another language, anyone may
guess that Python supports regular expressions, and look that up in the docs.
But if you’ve never seen tuple unpacking or descriptors before, you will
probably not search for them, and may end up not using those features just
because they are specific to Python.
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This book is not an A-to-Z exhaustive reference of Python. Its emphasis is
on the language features that are either unique to Python or not found in
many other popular languages. This is also mostly a book about the core
language and some of its libraries. I will rarely talk about packages that are
not in the standard library, even though the Python package index now lists
more than 60,000 libraries and many of them are incredibly useful.



Who This Book Is For
This book was written for practicing Python programmers who want to
become proficient in Python 3. If you know Python 2 but are willing to
migrate to Python 3.4 or later, you should be fine. At the time of this
writing, the majority of professional Python programmers are using Python
2, so I took special care to highlight Python 3 features that may be new to
that audience.

However, Fluent Python is about making the most of Python 3.4, and I do
not spell out the fixes needed to make the code work in earlier versions.
Most examples should run in Python 2.7 with little or no changes, but in
some cases, backporting would require significant rewriting.

Having said that, I believe this book may be useful even if you must stick
with Python 2.7, because the core concepts are still the same. Python 3 is
not a new language, and most differences can be learned in an afternoon.
What’s New in Python 3.0 is a good starting point. Of course, there have
been changes since Python 3.0 was released in 2009, but none as important
as those in 3.0.

If you are not sure whether you know enough Python to follow along,
review the topics of the official Python Tutorial. Topics covered in the
tutorial will not be explained here, except for some features that are new in
Python 3.

https://docs.python.org/3.0/whatsnew/3.0.html
https://docs.python.org/3/tutorial/


Who This Book Is Not For
If you are just learning Python, this book is going to be hard to follow. Not
only that, if you read it too early in your Python journey, it may give you
the impression that every Python script should leverage special methods
and metaprogramming tricks. Premature abstraction is as bad as premature
optimization.



How This Book Is Organized
The core audience for this book should not have trouble jumping directly to
any chapter in this book. However, each of the six parts forms a book
within the book. I conceived the chapters within each part to be read in
sequence.

I tried to emphasize using what is available before discussing how to build
your own. For example, in Part II, Chapter 2 covers sequence types that are
ready to use, including some that don’t get a lot of attention, like
collections.deque. Building user-defined sequences is only
addressed in Part IV, where we also see how to leverage the abstract base
classes (ABCs) from collections.abc. Creating your own ABCs is
discussed even later in Part IV, because I believe it’s important to be
comfortable using an ABC before writing your own.

This approach has a few advantages. First, knowing what is ready to use
can save you from reinventing the wheel. We use existing collection classes
more often than we implement our own, and we can give more attention to
the advanced usage of available tools by deferring the discussion on how to
create new ones. We are also more likely to inherit from existing ABCs than
to create a new ABC from scratch. And finally, I believe it is easier to
understand the abstractions after you’ve seen them in action.

The downside of this strategy are the forward references scattered
throughout the chapters. I hope these will be easier to tolerate now that you
know why I chose this path.

Here are the main topics in each part of the book:

Part I, Prologue

A single chapter about the Python Data Model explaining how the
special methods (e.g., __repr__) are the key to the consistent
behavior of objects of all types—in a language that is admired for its
consistency. Understanding various facets of the data model is the
subject of most of the rest of the book, but Chapter 1 provides a high-
level overview.



Part II, Data Structures

The chapters in this part cover the use of collection types: sequences,
mappings, and sets, as well as the str versus bytes split—the cause
of much celebration among Python 3 users and much pain for Python 2
users who have not yet migrated their codebases. The main goals are to
recall what is already available and to explain some behavior that is
sometimes surprising, like the reordering of dict keys when we are
not looking, or the caveats of locale-dependent Unicode string sorting.
To achieve these goals, the coverage is sometimes high level and wide
(e.g., when many variations of sequences and mappings are presented)
and sometimes deep (e.g., when we dive into the hash tables underneath
the dict and set types).

Part III, Functions as Objects

Here we talk about functions as first-class objects in the language: what
that means, how it affects some popular design patterns, and how to
implement function decorators by leveraging closures. Also covered
here is the general concept of callables in Python, function attributes,
introspection, parameter annotations, and the new nonlocal
declaration in Python 3.

Part IV, Classes and Protocols

Now the focus is on building classes. In Part II, the class declaration
appears in few examples; Part IV presents many classes. Like any
object-oriented (OO) language, Python has its particular set of features
that may or may not be present in the language in which you and I
learned class-based programming. The chapters explain how references
work, what mutability really means, the lifecycle of instances, how to
build your own collections and ABCs, how to cope with multiple
inheritance, and how to implement operator overloading—when that
makes sense.

[Link to Come]



Covered in this part are the language constructs and libraries that go
beyond sequential control flow with conditionals, loops, and
subroutines. We start with generators, then visit context managers and
coroutines, including the challenging but powerful new yield from
syntax. [Link to Come] closes with a high-level introduction to modern
concurrency in Python with collections.futures (using threads
and processes under the covers with the help of futures) and doing
event-oriented I/O with asyncio (leveraging futures on top of
coroutines and yield from).

[Link to Come]

This part starts with a review of techniques for building classes with
attributes created dynamically to handle semi-structured data such as
JSON datasets. Next, we cover the familiar properties mechanism,
before diving into how object attribute access works at a lower level in
Python using descriptors. The relationship between functions, methods,
and descriptors is explained. Throughout [Link to Come], the step-by-
step implementation of a field validation library uncovers subtle issues
that lead to the use of the advanced tools of the final chapter: class
decorators and metaclasses.

Hands-On Approach
Often we’ll use the interactive Python console to explore the language and
libraries. I feel it is important to emphasize the power of this learning tool,
particularly for those readers who’ve had more experience with static,
compiled languages that don’t provide a read-eval-print loop (REPL).

One of the standard Python testing packages, doctest, works by
simulating console sessions and verifying that the expressions evaluate to
the responses shown. I used doctest to check most of the code in this
book, including the console listings. You don’t need to use or even know
about doctest to follow along: the key feature of doctests is that they

https://docs.python.org/3/library/doctest.html


look like transcripts of interactive Python console sessions, so you can
easily try out the demonstrations yourself.

Sometimes I will explain what we want to accomplish by showing a doctest
before the code that makes it pass. Firmly establishing what is to be done
before thinking about how to do it helps focus our coding effort. Writing
tests first is the basis of test driven development (TDD) and I’ve also found
it helpful when teaching. If you are unfamiliar with doctest, take a look
at its documentation and this book’s source code repository. You’ll find that
you can verify the correctness of most of the code in the book by typing
python3 -m doctest example_script.py in the command shell
of your OS.

Hardware Used for Timings
The book has some simple benchmarks and timings. Those tests were
performed on one or the other laptop I used to write the book: a 2011
MacBook Pro 13″ with a 2.7 GHz Intel Core i7 CPU, 8GB of RAM, and a
spinning hard disk, and a 2014 MacBook Air 13″ with a 1.4 GHz Intel Core
i5 CPU, 4GB of RAM, and a solid-state disk. The MacBook Air has a
slower CPU and less RAM, but its RAM is faster (1600 versus 1333 MHz)
and the SSD is much faster than the HD. In daily usage, I can’t tell which
machine is faster.

Soapbox: My Personal Perspective
I have been using, teaching, and debating Python since 1998, and I enjoy
studying and comparing programming languages, their design, and the
theory behind them. At the end of some chapters, I have added “Soapbox”
sidebars with my own perspective about Python and other languages. Feel
free to skip these if you are not into such discussions. Their content is
completely optional.

https://docs.python.org/3/library/doctest.html
https://github.com/fluentpython/example-code


Python Jargon
I wanted this to be a book not only about Python but also about the culture
around it. Over more than 20 years of communications, the Python
community has developed its own particular lingo and acronyms. Here
you’ll see that some words—like “decorator”, “descriptor”, and
“protocol”—have special meaning among Pythonistas. You’ll also get
fluent with Python slang like “dunder”, “listcomp”, and “genexp”.

Python Version Covered
I tested all the code in the book using Python 3.4—that is, CPython 3.4, the
most popular Python implementation written in C. There is only one
exception: “Using @ as an infix operator” shows the @ operator, which is
only supported by Python 3.5.

Almost all code in the book should work with any Python 3.x–compatible
interpreter, including PyPy3 2.4.0, which is compatible with Python 3.2.5.
The notable exceptions are the examples using yield from and
asyncio, which are only available in Python 3.3 or later.

Most code should also work with Python 2.7 with minor changes, except
the Unicode-related examples in Chapter 4, and the exceptions already
noted for Python 3 versions earlier than 3.3.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width



Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Note that when a line break falls within a constant_width term, a
hyphen is not added—it could be misunderstood as part of the term.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Every script and most code snippets that appear in the book are available in
the Fluent Python code repository on GitHub.

https://github.com/fluentpython/example-code
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Part I. Prologue



Chapter 1. The Python Data
Model

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

Guido’s sense of the aesthetics of language design is amazing. I’ve met
many fine language designers who could build theoretically beautiful
languages that no one would ever use, but Guido is one of those rare
people who can build a language that is just slightly less theoretically
beautiful but thereby is a joy to write programs in.

—Jim Hugunin, Creator of Jython, cocreator of AspectJ,
architect of the .Net DLR

One of the best qualities of Python is its consistency. After working with
Python for a while, you are able to start making informed, correct guesses
about features that are new to you.

However, if you learned another object-oriented language before Python,
you may find it strange to use len(collection) instead of
collection.len(). This apparent oddity is the tip of an iceberg that,
when properly understood, is the key to everything we call Pythonic. The

1
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iceberg is called the Python Data Model, and it is the API that we use to
make our own objects play well with the most idiomatic language features.

You can think of the data model as a description of Python as a framework.
It formalizes the interfaces of the building blocks of the language itself,
such as sequences, functions, iterators, coroutines, classes, context
managers, and so on.

When using a framework, we spend a lot of time coding methods that are
called by the framework. The same happens when we leverage the Python
Data Model to build new classes. The Python interpreter invokes special
methods to perform basic object operations, often triggered by special
syntax. The special method names are always written with leading and
trailing double underscores. For example, the syntax obj[key] is
supported by the __getitem__ special method. In order to evaluate
my_collection[key], the interpreter calls
my_collection.__getitem__(key).

We implement special methods when we want our objects to support and
interact with fundamental language constructs such as:

Collections;

Attribute access;

Iteration (including asynchronous iteration using async for);

Operator overloading;

Function and method invocation;

String representation and formatting;

Asynchronous programing using await;

Object creation and destruction;

Managed contexts using the with or async with statements.



MAGIC AND DUNDER
The term magic method is slang for special method, but how do we talk about a specific
method like __getitem__? I learned to say “dunder-getitem” from author and teacher
Steve Holden. “Dunder” is a shortcut for “double underscore before and after”. That’s
why the special methods are also known as dunder methods. The Lexical Analysis
chapter of The Python Language Reference warns that "Any use of __*__ names, in any
context, that does not follow explicitly documented use, is subject to breakage without
warning.”

What’s new in this chapter
This chapter had few changes from the first edition because it is an
introduction to the Python Data Model, which is quite stable. The most
significant changes are:

Special methods supporting asynchronous programming and other
new features, added to the tables in “Overview of Special
Methods”.

Figure 1-2 showing the use of special methods in “Collection
API”, including the collections.abc.Collection abstract
base class introduced in Python 3.6.

Also, here and throughout this Second Edition I adopted the f-string syntax
introduced in Python 3.6, which is more readable and often more
convenient than the older string formatting notations: the str.format()
method and the % operator.

TIP
One reason to still use my_fmt.format() is when the definition of my_fmt must be
in a different place in the code than where the formatting operation needs to happen. For
instance, when my_fmt has multiple lines and is better defined in a constant, or when it
must come from a configuration file, or from the database. Those are real needs, but
don’t happen very often.

https://docs.python.org/3/reference/lexical_analysis.html#reserved-classes-of-identifiers


A Pythonic Card Deck
Example 1-1 is simple, but it demonstrates the power of implementing just
two special methods, __getitem__ and __len__.

Example 1-1. A deck as a sequence of playing cards
import collections 
 
Card = collections.namedtuple('Card', ['rank', 'suit']) 
 
class FrenchDeck: 
    ranks = [str(n) for n in range(2, 11)] + list('JQKA') 
    suits = 'spades diamonds clubs hearts'.split() 
 
    def __init__(self): 
        self._cards = [Card(rank, suit) for suit in self.suits 
                                        for rank in self.ranks] 
 
    def __len__(self): 
        return len(self._cards) 
 
    def __getitem__(self, position): 
        return self._cards[position]

The first thing to note is the use of collections.namedtuple to
construct a simple class to represent individual cards. We use
namedtuple to build classes of objects that are just bundles of attributes
with no custom methods, like a database record. In the example, we use it to
provide a nice representation for the cards in the deck, as shown in the
console session:

>>> beer_card = Card('7', 'diamonds') 
>>> beer_card 
Card(rank='7', suit='diamonds')

But the point of this example is the FrenchDeck class. It’s short, but it
packs a punch. First, like any standard Python collection, a deck responds to
the len() function by returning the number of cards in it:

>>> deck = FrenchDeck() 
>>> len(deck) 
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Reading specific cards from the deck—say, the first or the last—is easy,
thanks to the __getitem__ method:

>>> deck[0] 
Card(rank='2', suit='spades') 
>>> deck[-1] 
Card(rank='A', suit='hearts')

Should we create a method to pick a random card? No need. Python already
has a function to get a random item from a sequence: random.choice.
We can use it on a deck instance:

>>> from random import choice 
>>> choice(deck) 
Card(rank='3', suit='hearts') 
>>> choice(deck) 
Card(rank='K', suit='spades') 
>>> choice(deck) 
Card(rank='2', suit='clubs')

We’ve just seen two advantages of using special methods to leverage the
Python Data Model:

Users of your classes don’t have to memorize arbitrary method
names for standard operations (“How to get the number of items?
Is it .size(), .length(), or what?”).

It’s easier to benefit from the rich Python standard library and
avoid reinventing the wheel, like the random.choice function.

But it gets better.

Because our __getitem__ delegates to the [] operator of
self._cards, our deck automatically supports slicing. Here’s how we
look at the top three cards from a brand-new deck, and then pick just the
Aces by starting at index 12 and skipping 13 cards at a time:



>>> deck[:3] 
[Card(rank='2', suit='spades'), Card(rank='3', suit='spades'), 
Card(rank='4', suit='spades')] 
>>> deck[12::13] 
[Card(rank='A', suit='spades'), Card(rank='A', suit='diamonds'), 
Card(rank='A', suit='clubs'), Card(rank='A', suit='hearts')]

Just by implementing the __getitem__ special method, our deck is also
iterable:

>>> for card in deck:  # doctest: +ELLIPSIS 
...   print(card) 
Card(rank='2', suit='spades') 
Card(rank='3', suit='spades') 
Card(rank='4', suit='spades') 
...

We can also iterate over the deck in reverse:

>>> for card in reversed(deck):  # doctest: +ELLIPSIS 
...   print(card) 
Card(rank='A', suit='hearts') 
Card(rank='K', suit='hearts') 
Card(rank='Q', suit='hearts') 
...

ELLIPSIS IN DOCTESTS
Whenever possible, I extracted the Python console listings in this book from doctests to
ensure accuracy. When the output was too long, the elided part is marked by an ellipsis
(...) like in the last line in the preceding code. In such cases, I used the # doctest:
+ELLIPSIS directive to make the doctest pass. If you are trying these examples in the
interactive console, you may omit the doctest comments altogether.

Iteration is often implicit. If a collection has no __contains__ method,
the in operator does a sequential scan. Case in point: in works with our
FrenchDeck class because it is iterable. Check it out:

>>> Card('Q', 'hearts') in deck 
True 

https://docs.python.org/3/library/doctest.html


>>> Card('7', 'beasts') in deck 
False

How about sorting? A common system of ranking cards is by rank (with
aces being highest), then by suit in the order of spades (highest), hearts,
diamonds, and clubs (lowest). Here is a function that ranks cards by that
rule, returning 0 for the 2 of clubs and 51 for the ace of spades:

suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0) 
 
def spades_high(card): 
    rank_value = FrenchDeck.ranks.index(card.rank) 
    return rank_value * len(suit_values) + suit_values[card.suit]

Given spades_high, we can now list our deck in order of increasing
rank:

>>> for card in sorted(deck, key=spades_high):  # doctest: 
+ELLIPSIS 
...      print(card) 
Card(rank='2', suit='clubs') 
Card(rank='2', suit='diamonds') 
Card(rank='2', suit='hearts') 
... (46 cards omitted) 
Card(rank='A', suit='diamonds') 
Card(rank='A', suit='hearts') 
Card(rank='A', suit='spades')

Although FrenchDeck implicitly inherits from the object class, most
of its functionality is not inherited, but comes from leveraging the data
model and composition. By implementing the special methods __len__
and __getitem__, our FrenchDeck behaves like a standard Python
sequence, allowing it to benefit from core language features (e.g., iteration
and slicing) and from the standard library, as shown by the examples using
random.choice, reversed, and sorted. Thanks to composition, the
__len__ and __getitem__ implementations can delegate all the work
to a list object, self._cards.



HOW ABOUT SHUFFLING?
As implemented so far, a FrenchDeck cannot be shuffled, because it is immutable: the
cards, and their positions cannot be changed, except by violating encapsulation and
handling the _cards attribute directly. In Chapter 13, we will fix that by adding a one-
line __setitem__ method.

How Special Methods Are Used
The first thing to know about special methods is that they are meant to be
called by the Python interpreter, and not by you. You don’t write
my_object.__len__(). You write len(my_object) and, if
my_object is an instance of a user-defined class, then Python calls the
__len__ method you implemented.

But the interpreter takes a shortcut when dealing for built-in types like
list, str, bytearray, or extensions like the NumPy arrays. Python
variable-sized collections written in C include a struct  called
PyVarObject, which has an ob_size field holding the number of items
in the collection. So, if my_object is an instance of one of those built-ins,
then len(my_object) retrieves the value of the ob_size field, and
this is much faster than calling a method.

More often than not, the special method call is implicit. For example, the
statement for i in x: actually causes the invocation of iter(x),
which in turn may call x.__iter__() if that is available, or use
x.__getitem__()—as in the FrenchDeck example.

Normally, your code should not have many direct calls to special methods.
Unless you are doing a lot of metaprogramming, you should be
implementing special methods more often than invoking them explicitly.
The only special method that is frequently called by user code directly is
__init__, to invoke the initializer of the superclass in your own
__init__ implementation.
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If you need to invoke a special method, it is usually better to call the related
built-in function (e.g., len, iter, str, etc). These built-ins call the
corresponding special method, but often provide other services and—for
built-in types—are faster than method calls. See, for example, “A Closer
Look at the iter Function” in Chapter 17.

In the next sections, we’ll see some of the most important uses of special
methods:

Emulating numeric types;

String representation of objects;

Boolean value of an object;

Implementing collections.

Emulating Numeric Types
Several special methods allow user objects to respond to operators such as
+. We will cover that in more detail in Chapter 16, but here our goal is to
further illustrate the use of special methods through another simple
example.

We will implement a class to represent two-dimensional vectors—that is
Euclidean vectors like those used in math and physics (see Figure 1-1).



Figure 1-1. Example of two-dimensional vector addition; Vector(2, 4) + Vector(2, 1) results in
Vector(4, 5).



TIP
The built-in complex type can be used to represent two-dimensional vectors, but our
class can be extended to represent n-dimensional vectors. We will do that in Chapter 17.

We will start by designing the API for such a class by writing a simulated
console session that we can use later as a doctest. The following snippet
tests the vector addition pictured in Figure 1-1:

>>> v1 = Vector(2, 4) 
>>> v2 = Vector(2, 1) 
>>> v1 + v2 
Vector(4, 5)

Note how the + operator results in a new Vector, displayed in a friendly
format at the console.

The abs built-in function returns the absolute value of integers and floats,
and the magnitude of complex numbers, so to be consistent, our API also
uses abs to calculate the magnitude of a vector:

>>> v = Vector(3, 4) 
>>> abs(v) 
5.0

We can also implement the * operator to perform scalar multiplication (i.e.,
multiplying a vector by a number to make a new vector with the same
direction and a multiplied magnitude):

>>> v * 3 
Vector(9, 12) 
>>> abs(v * 3) 
15.0

Example 1-2 is a Vector class implementing the operations just described,
through the use of the special methods __repr__, __abs__, __add__
and __mul__.



Example 1-2. A simple two-dimensional vector class
""" 
vector2d.py: a simplistic class demonstrating some special methods 
 
It is simplistic for didactic reasons. It lacks proper error 
handling, 
especially in the ``__add__`` and ``__mul__`` methods. 
 
This example is greatly expanded later in the book. 
 
Addition:: 
 
    >>> v1 = Vector(2, 4) 
    >>> v2 = Vector(2, 1) 
    >>> v1 + v2 
    Vector(4, 5) 
 
Absolute value:: 
 
    >>> v = Vector(3, 4) 
    >>> abs(v) 
    5.0 
 
Scalar multiplication:: 
 
    >>> v * 3 
    Vector(9, 12) 
    >>> abs(v * 3) 
    15.0 
 
""" 
 
 
import math 
 
class Vector: 
 
    def __init__(self, x=0, y=0): 
        self.x = x 
        self.y = y 
 
    def __repr__(self): 
        return f'Vector({self.x!r}, {self.y!r})' 
 
    def __abs__(self): 
        return math.hypot(self.x, self.y) 
 



    def __bool__(self): 
        return bool(abs(self)) 
 
    def __add__(self, other): 
        x = self.x + other.x 
        y = self.y + other.y 
        return Vector(x, y) 
 
    def __mul__(self, scalar): 
        return Vector(self.x * scalar, self.y * scalar)

We implemented five special methods in addition to the familiar
__init__. Note that none of them is directly called within the class or in
the typical usage of the class illustrated by the doctests. As mentioned
before, the Python interpreter is the only frequent caller of most special
methods.

Example 1-2 implements two operators: + and *, to show basic usage of
__add__ and __mul__. In both cases, the methods create and return a
new instance of Vector, and do not modify either operand—self or
other are merely read. This is the expected behavior of infix operators: to
create new objects and not touch their operands. I will have a lot more to
say about that in Chapter 16.

WARNING
As implemented, Example 1-2 allows multiplying a Vector by a number, but not a
number by a Vector, which violates the commutative property of scalar multiplication.
We will fix that with the special method __rmul__ in Chapter 16.

In the following sections, we discuss the code for the other special methods
in Vector.

String Representation
The __repr__ special method is called by the repr built-in to get the
string representation of the object for inspection. Without a custom



__repr__, Python’s console would display a Vector instance <Vector
object at 0x10e100070>.

The interactive console and debugger call repr on the results of the
expressions evaluated, as does the %r placeholder in classic formatting with
the % operator, and the !r conversion field in the new Format String Syntax
used in f-strings the str.format method.

Note that the f-string in our __repr__, uses !r to get the standard
representation of the attributes to be displayed. This is good practice,
because it shows the crucial difference between Vector(1, 2) and
Vector('1', '2')—the latter would not work in the context of this
example, because the constructor’s arguments should be numbers, not str.

The string returned by __repr__ should be unambiguous and, if possible,
match the source code necessary to re-create the represented object. That is
why our Vector representation looks like calling the constructor of the
class (e.g., Vector(3, 4)).

In contrast, __str__ is called by the str() built-in and implicitly used
by the print function. It should return a string suitable for display to end
users.

Sometimes same string returned by __repr__ is user-friendly, and you
don’t need to code __str__ because the implementation inherited from
the object class calls __repr__ as a fallback. Example 5-2 is one of
several examples in this book with a custom __str__.

TIP
Programmers with prior experience in languages with a toString method tend to
implement __str__ and not __repr__. If you only implement one of these special
methods in Python, choose __repr__.

“Difference between __str__ and __repr__ in Python” is a Stack Overflow
question with excellent contributions from Pythonistas Alex Martelli and Martijn
Pieters.

http://bit.ly/1Vm7gD1
http://bit.ly/1Vm7j1N


Boolean Value of a Custom Type
Although Python has a bool type, it accepts any object in a boolean
context, such as the expression controlling an if or while statement, or as
operands to and, or, and not. To determine whether a value x is truthy or
falsy, Python applies bool(x), which returns either True or False.

By default, instances of user-defined classes are considered truthy, unless
either __bool__ or __len__ is implemented. Basically, bool(x) calls
x.__bool__() and uses the result. If __bool__ is not implemented,
Python tries to invoke x.__len__(), and if that returns zero, bool
returns False. Otherwise bool returns True.

Our implementation of __bool__ is conceptually simple: it returns
False if the magnitude of the vector is zero, True otherwise. We convert
the magnitude to a Boolean using bool(abs(self)) because
__bool__ is expected to return a boolean. Outside of __bool__
methods, it is rarely necessary to call bool() explicitly, because any
object can be used in a boolean context.

Note how the special method __bool__ allows your objects to follow the
truth value testing rules defined in the “Built-in Types” chapter of The
Python Standard Library documentation.

NOTE
A faster implementation of Vector.__bool__ is this:

    def __bool__(self): 
        return bool(self.x or self.y)

This is harder to read, but avoids the trip through abs, __abs__, the squares, and
square root. The explicit conversion to bool is needed because __bool__ must return
a boolean and or returns either operand as is: x or y evaluates to x if that is truthy,
otherwise the result is y, whatever that is.

Collection API

http://docs.python.org/3/library/stdtypes.html#truth


Figure 1-2 documents the interfaces of the essential collection types in the
language. All the classes in the diagram are ABCs—abstract base classes.
ABCs and the collections.abc module are covered in Chapter 13.
The goal of this brief section is to give a panoramic view of Python’s most
important collection interfaces, showing how they are built from special
methods.



Figure 1-2. UML class diagram with fundamental collection types. Method names in italic are
abstract, so they must be implemented by concrete subclasses such as list and dict. The
remaining methods have concrete implementations, therefore subclasses can inherit them.

Each of the top ABCs has a single special method. The Collection
ABC (new in Python 3.6) unifies the three essential interfaces that every
collection should implement:



Iterable to support for, unpacking, and other forms of
iteration;

Sized to support the len built-in function;

Contains to support the in operator.

Python does not require concrete classes to actually inherit from any of
these ABCs. Any class that implements __len__ satisfies the Sized
interface.

Three very important specializations of Collection are:

Sequence, formalizing the interface of built-ins like list and
str;

Mapping, implemented by dict,
collections.defaultdict, etc.;

Set: the interface of the set and frozenset built-in types.

Only Sequence is Reversible, because sequences support arbitrary
ordering of their contents, while mappings and sets do not.

NOTE
Since Python 3.7, the dict type is officially “ordered”, but that only means that the key
insertion order is preserved. You cannot rearrange the keys in a dict however you like.

All the special methods in the Set ABC implement infix operators. For
example, a & b computes the intersection of sets a and b, and is
implemented in the __and__ special method.

The next two chapters will cover standard library sequences, mappings, and
sets in detail.

Now let’s consider the major categories of special methods defined in the
Python Data Model.

https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists


Overview of Special Methods
The “Data Model” chapter of The Python Language Reference lists more
than 80 special method names. More than half of them implement
arithmetic, bitwise, and comparison operators. As an overview of what is
available, see following tables.

Table 1-1 shows special method names excluding those used to implement
infix operators or core math functions like abs. Most of these methods will
be covered throughout the book, including the most recent additions:
asynchronous special methods such as __anext__ (added in Python 3.5),
and the class customization hook, __init_subclass__ (from Python
3.6).

http://docs.python.org/3/reference/datamodel.html
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Category Method names

 

String/bytes 
representation

__repr__  __str__  __format__  __bytes__  __fspat
h__

Conversion to number __bool__  __complex__  __int__  __float__  __hash
__  __index__

Emulating collections __len__  __getitem__  __setitem__  __delitem__  _
_contains__

Iteration __iter__  __aiter__  __next__,  __anext__  __revers
ed__

Callable or coroutine 
execution

__call__  __await__

Context management __enter__  __exit__  __aexit__  __aenter__

Instance creation and 
destruction

__new__  __init__  __del__



Attribute management __getattr__  __getattribute__  __setattr__  __del
attr__  __dir__

Attribute descriptors __get__  __set__  __delete__  __set_name__

Abstract base classes __instancecheck__  __subclasscheck__

Class 
metaprogramming

__prepare__  __init_subclass__  __class_getitem__  
__mro_entries__

 

Infix and numerical operators are supported by the special methods in 1-2.
Here the most recent names are __matmul__, __rmatmul__, and
__imatmul__, added in Python 3.5 to support the use of @ as an infix
operator for matrix multiplication, as we’ll see in Chapter 16.
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Operator category Symbols Method names

 

Unary numeric -  +  abs() __neg__  __pos__  __abs__

Rich comparison <  \<=  ==  !=  
>  >=

__lt__  __le__  __eq__  __ne__  __g
t__  __ge__

Arithmetic +  -  *  /  //  
%  @  divmod()  
round()  **  pow
()

__add__  __sub__  __mul__  __truedi
v__  __floordiv__  __mod__  __matmu
l__  __divmod__  __round__  __pow__

Reversed 
arithmetic

(arithmetic operators 
with swapped operands)

__radd__  __rsub__  __rmul__  __rtr
uediv__  __rfloordiv__  __rmod__  _
_rmatmul__  __rdivmod__  __rpow__

Augmented 
assignment 
arithmetic

+=  -=  *=  /=  
//=  %=  @=  **=

__iadd__  __isub__  __imul__  __itr
uediv__  __ifloordiv__  __imod__  _
_imatmul__  __ipow__

Bitwise &  |  ^  <<  >>  
~

__and__  __or__  __xor__  __lshift_
_  __rshift__  __invert__



Reversed bitwise (bitwise operators with 
swapped operands)

__rand__  __ror__  __rxor__  __rlsh
ift__  __rrshift__

Augmented 
assignment bitwise

&=  |=  ^=  <<=  
>>=

__iand__  __ior__  __ixor__  __ilsh
ift__  __irshift__

 

NOTE
Python calls a reversed operator special method on the second operand when the
corresponding special method on the first operand cannot be used. Augmented
assignments are shortcuts combining an infix operator with variable assignment, e.g. a
+= b.

Chapter 16 explains reversed operators and augmented assignment in detail.

Why len Is Not a Method
I asked this question to core developer Raymond Hettinger in 2013 and the
key to his answer was a quote from The Zen of Python: “practicality beats
purity.” In “How Special Methods Are Used”, I described how len(x)
runs very fast when x is an instance of a built-in type. No method is called
for the built-in objects of CPython: the length is simply read from a field in
a C struct. Getting the number of items in a collection is a common
operation and must work efficiently for such basic and diverse types as
str, list, memoryview, and so on.

In other words, len is not called as a method because it gets special
treatment as part of the Python Data Model, just like abs. But thanks to the
special method __len__, you can also make len work with your own
custom objects. This is a fair compromise between the need for efficient
built-in objects and the consistency of the language. Also from The Zen of
Python: “Special cases aren’t special enough to break the rules.”

https://www.python.org/doc/humor/#the-zen-of-python


NOTE
If you think of abs and len as unary operators, you may be more inclined to forgive
their functional look-and-feel, as opposed to the method call syntax one might expect in
an OO language. In fact, the ABC language—a direct ancestor of Python that pioneered
many of its features—had an # operator that was the equivalent of len (you’d write
#s). When used as an infix operator, written x#s, it counted the occurrences of x in s,
which in Python you get as s.count(x), for any sequence s.



Chapter Summary
By implementing special methods, your objects can behave like the built-in
types, enabling the expressive coding style the community considers
Pythonic.

A basic requirement for a Python object is to provide usable string
representations of itself, one used for debugging and logging, another for
presentation to end users. That is why the special methods __repr__ and
__str__ exist in the data model.

Emulating sequences, as shown with the FrenchDeck example, is one of
the most common uses of the special methods. For example, database
libraries often return query results wrapped in sequence-like collections.
Making the most of existing sequence types is the subject of Chapter 2.
Implementing your own sequences will be covered in Chapter 12, when we
create a multidimensional extension of the Vector class.

Thanks to operator overloading, Python offers a rich selection of numeric
types, from the built-ins to decimal.Decimal and
fractions.Fraction, all supporting infix arithmetic operators. The
NumPy data science libraries support infix operators with matrices and
tensors. Implementing operators—including reversed operators and
augmented assignment—will be shown in Chapter 16 via enhancements of
the Vector example.

The use and implementation of the majority of the remaining special
methods of the Python Data Model are covered throughout this book.

Further Reading
The “Data Model” chapter of The Python Language Reference is the
canonical source for the subject of this chapter and much of this book.

Python in a Nutshell, 3rd Edition (O’Reilly) by Alex Martelli, Anna
Ravenscroft, and Steve Holden has excellent coverage of the data model.
Their description of the mechanics of attribute access is the most

http://docs.python.org/3/reference/datamodel.html
http://shop.oreilly.com/product/0636920012610.do


authoritative I’ve seen apart from the actual C source code of CPython.
Martelli is also a prolific contributor to Stack Overflow, with more than
6,200 answers posted. See his user profile at Stack Overflow.

David Beazley has two books covering the data model in detail in the
context of Python 3: Python Essential Reference, 4th Edition (Addison-
Wesley Professional), and Python Cookbook, 3rd Edition (O’Reilly),
coauthored with Brian K. Jones.

The Art of the Metaobject Protocol (AMOP, MIT Press) by Gregor
Kiczales, Jim des Rivieres, and Daniel G. Bobrow explains the concept of a
metaobject protocol, of which the Python Data Model is one example.

http://stackoverflow.com/users/95810/alex-martelli
http://bit.ly/Python-ckbk


SOAPBOX

Data Model or Object Model?

What the Python documentation calls the “Python Data Model,” most
authors would say is the “Python object model.” Martelli, Ravenscroft
& Holden’s Python in a Nutshell 3E, and David Beazley’s Python
Essential Reference 4E are the best books covering the “Python Data
Model,” but they refer to it as the “object model.” On Wikipedia, the
first definition of object model is “The properties of objects in general
in a specific computer programming language.” This is what the
“Python Data Model” is about. In this book, I will use “data model”
because the documentation favors that term when referring to the
Python object model, and because it is the title of the chapter of The
Python Language Reference most relevant to our discussions.

Muggle Methods

The The Original Hacker’s Dictionary defines magic as “as yet
unexplained, or too complicated to explain” or “a feature not generally
publicized which allows something otherwise impossible.”

The Ruby community calls their equivalent of the special methods
magic methods. Many in the Python community adopt that term as well.
I believe the special methods are the opposite of magic. Python and
Ruby empower their users with a rich metaobject protocol that is fully
documented, enabling muggles like you and I to emulate many of the
features available to core developers who write the interpreters for those
languages.

In contrast, consider Go. Some objects in that language have features
that are magic, in the sense that we cannot emulate them in our own
user-defined types. For example, Go arrays, strings, and maps support
the use brackets for item access, as in a[i]. But there’s no way to
make the [] notation work with a new collection type that you define.
Even worse, Go has no user-level concept of an iterable interface or an
iterator object, therefore its for/range syntax is limited to

http://en.wikipedia.org/wiki/Object_model
https://docs.python.org/3/reference/datamodel.html
https://www.dourish.com/goodies/jargon.html


supporting five “magic” built-in types, including arrays, strings and
maps.

Maybe in the future, the designers of Go will enhance its metaobject
protocol. But currently, it is much more limited than what we have in
Python or Ruby.

Metaobjects

The Art of the Metaobject Protocol (AMOP) is my favorite computer
book title. But I mention it because the term metaobject protocol is
useful to think about the Python Data Model and similar features in
other languages. The metaobject part refers to the objects that are the
building blocks of the language itself. In this context, protocol is a
synonym of interface. So a metaobject protocol is a fancy synonym for
object model: an API for core language constructs.

A rich metaobject protocol enables extending a language to support new
programming paradigms. Gregor Kiczales, the first author of the AMOP
book, later became a pioneer in aspect-oriented programming and the
initial author of AspectJ, an extension of Java implementing that
paradigm. Aspect-oriented programming is much easier to implement in
a dynamic language like Python, and some frameworks do it. The most
important example is zope.interface, part of the framework on which
the Plone content management system is build.

1  Story of Jython, written as a Foreword to Jython Essentials (O’Reilly, 2002), by Samuele
Pedroni and Noel Rappin.

2  A C struct is a record type with named fields.

https://zopeinterface.readthedocs.io/en/latest/
https://plone.org/
http://hugunin.net/story_of_jython.html
http://bit.ly/jython-essentials


Part II. Data Structures



Chapter 2. An Array of
Sequences

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

As you may have noticed, several of the operations mentioned work
equally for texts, lists and tables. Texts, lists and tables together are
called trains. […] The FOR command also works generically on trains.

—Geurts, Meertens, and Pemberton, ABC Programmer’s
Handbook

Before creating Python, Guido was a contributor to the ABC language—a
10-year research project to design a programming environment for
beginners. ABC introduced many ideas we now consider “Pythonic”:
generic operations on different types of sequences, built-in tuple and
mapping types, structure by indentation, strong typing without variable
declarations, and more. It’s no accident that Python is so user-friendly.

Python inherited from ABC the uniform handling of sequences. Strings,
lists, byte sequences, arrays, XML elements, and database results share a

1
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rich set of common operations including iteration, slicing, sorting, and
concatenation.

Understanding the variety of sequences available in Python saves us from
reinventing the wheel, and their common interface inspires us to create
APIs that properly support and leverage existing and future sequence types.

Most of the discussion in this chapter applies to sequences in general, from
the familiar list to the str and bytes types added in Python 3. Specific
topics on lists, tuples, arrays, and queues are also covered here, but the
specifics of Unicode strings and byte sequences appear in Chapter 4. Also,
the idea here is to cover sequence types that are ready to use. Creating your
own sequence types is the subject of Chapter 12.

These are the main topics this chapter will cover:

List comprehensions and the basics of generator expressions;

Using tuples as records, versus using tuples as immutable lists;

Sequence unpacking and sequence patterns;

Reading from slices and writing to slices;

Specialized sequence types, like arrays and queues.

What’s new in this chapter
The most important update in this chapter is “Pattern Matching with
Sequences”. That’s the first time the new pattern matching feature of
Python 3.10 appears in this Second Edition.

Other changes are not updates but improvements over the First Edition:

New diagram and description of the internals of sequences,
contrasting containers and flat sequences.

Brief comparison of the performance and storage characteristics of
list versus tuple.



Caveats of tuples with mutable elements, and how to detect them if
needed.

I moved coverage of named tuples to “Classic Named Tuples” in Chapter 5,
where they are compared to typing.NamedTuple and @dataclass.

NOTE
To make room for new content and keep the page count within reason, the section
Managing Ordered Sequences with Bisect from the First Edition is now a post in the
fluentpython.com companion Web site.

Overview of Built-In Sequences
The standard library offers a rich selection of sequence types implemented
in C:

Container sequences

Can hold items of different types, including nested containers. Some
examples: list, tuple, and collections.deque.

Flat sequences

Hold items of one simple type. Some examples: str, bytes, and
array.array.

A container sequence holds references to the objects it contains, which may
be of any type, while a flat sequence stores the value of its contents in its
own memory space, and not as distinct Python objects. See Figure 2-1.

https://www.fluentpython.com/extra/ordered-sequences-with-bisect/
https://www.fluentpython.com/




Figure 2-1. Simplified memory diagrams for a tuple and an array, each with 3 items. Gray cells
represent the in-memory header of each Python object—not drawn to proportion. The tuple has an
array of references to its items. Each item is a separate Python object, possibly holding references to
other Python objects, like that 2-item list. In contrast, the Python array is a single object, holding a

C language array of 3 doubles.

Thus, flat sequences are more compact, but they are limited to holding
primitive machine values like bytes, integers, and floats.

NOTE
Every Python object in memory has a header with metadata. The simplest Python
object, a float, has a value field and two metadata fields:

ob_refcnt: the object’s reference count;

ob_type: a pointer to the object’s type;

ob_fval: a C double holding the value of the float.

On a 64-bit Python build, each of those fields takes 8 bytes. That’s why an array of
floats is much more compact than a tuple of floats: the array is a single object holding
the raw values of the floats, while the tuple consists of several objects—the tuple itself
and each float object contained in it.

Another way of grouping sequence types is by mutability:

Mutable sequences

E.g. list, bytearray, array.array, and
collections.deque.

Immutable sequences

E.g. tuple, str, and bytes.

Figure 2-2 helps visualize how mutable sequences inherit all methods from
immutable sequences, and implement several additional methods. The built-
in concrete sequence types do not actually subclass the Sequence and
MutableSequence abstract base classes (ABCs), but they are virtual



subclasses registered with those ABCs—as we’ll see in Chapter 13. Being
virtual subclasses, tuple and list pass these tests:

>>> from collections import abc 
>>> issubclass(tuple, abc.Sequence) 
True 
>>> issubclass(list, abc.MutableSequence) 
True

Figure 2-2. Simplified UML class diagram for some classes from collections.abc (superclasses are on
the left; inheritance arrows point from subclasses to superclasses; names in italic are abstract

classes and abstract methods)



Keep in mind these common traits: mutable versus immutable; container
versus flat. They are helpful to extrapolate what you know about one
sequence type to others.

The most fundamental sequence type is the list: a mutable container. I
expect you are very familiar with lists, so we’ll jump right into list
comprehensions, a powerful way of building lists that is sometimes
underused because the syntax may look unusual at first. Mastering list
comprehensions opens the door to generator expressions, which—among
other uses—can produce elements to fill up sequences of any type. Both are
the subject of the next section.

List Comprehensions and Generator
Expressions
A quick way to build a sequence is using a list comprehension (if the target
is a list) or a generator expression (for other kinds of sequences). If you
are not using these syntactic forms on a daily basis, I bet you are missing
opportunities to write code that is more readable and often faster at the
same time.

If you doubt my claim that these constructs are “more readable,” read on.
I’ll try to convince you.

TIP
For brevity, many Python programmers refer to list comprehensions as listcomps, and
generator expressions as genexps. I will use these words as well.

List Comprehensions and Readability
Here is a test: which do you find easier to read, Example 2-1 or Example 2-
2?

Example 2-1. Build a list of Unicode codepoints from a string



>>> symbols = '$¢£¥€¤' 
>>> codes = [] 
>>> for symbol in symbols: 
...     codes.append(ord(symbol)) 
... 
>>> codes 
[36, 162, 163, 165, 8364, 164]

Example 2-2. Build a list of Unicode codepoints from a string, using a
listcomp
>>> symbols = '$¢£¥€¤' 
>>> codes = [ord(symbol) for symbol in symbols] 
>>> codes 
[36, 162, 163, 165, 8364, 164]

Anybody who knows a little bit of Python can read Example 2-1. However,
after learning about listcomps, I find Example 2-2 more readable because
its intent is explicit.

A for loop may be used to do lots of different things: scanning a sequence
to count or pick items, computing aggregates (sums, averages), or any
number of other tasks. The code in Example 2-1 is building up a list. In
contrast, a listcomp is more explicit. Its goal is always to build a new list.

Of course, it is possible to abuse list comprehensions to write truly
incomprehensible code. I’ve seen Python code with listcomps used just to
repeat a block of code for its side effects. If you are not doing something
with the produced list, you should not use that syntax. Also, try to keep it
short. If the list comprehension spans more than two lines, it is probably
best to break it apart or rewrite as a plain old for loop. Use your best
judgment: for Python as for English, there are no hard-and-fast rules for
clear writing.



SYNTAX TIP
In Python code, line breaks are ignored inside pairs of [], {}, or (). So you can build
multiline lists, listcomps, tuples, dictionaries etc. without using the \ line continuation
escape which doesn’t work if you accidentally type a space after it. Also, when those
delimiter pairs are used to define a literal with a comma-separated series of items, a
trailing comma will be ignored. So, for example, when coding a multi-line list literal, it
is thoughtful to put a comma after the last item, making it a little easier for the next
coder do add one more item to that list, and reducing noise when reading diffs.



LOCAL SCOPE WITHIN COMPREHENSIONS AND
GENERATOR EXPRESSIONS

In Python 3, list comprehensions, generator expressions, and their
siblings set and dict comprehensions have a local scope to hold the
variables assigned in the for clause.

However, variables assigned with the “Walrus operator” := remain
accessible after those comprehensions or expressions return—unlike
local variables in a function. PEP 572—Assignment Expressions defines
the scope of the target of := as the enclosing function, unless there is a
global or nonlocal declaration for that target.

>>> x = 'ABC' 
>>> codes = [ord(x) for x in x] 
>>> x   
'ABC' 
>>> codes 
[65, 66, 67] 
>>> codes = [last := ord(c) for c in x] 
>>> last  
67 
>>> c  
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
NameError: name 'c' is not defined

x was not clobbered: it’s still bound to 'ABC';

last remains;

c existed only inside the listcomp.

List comprehensions build lists from sequences or any other iterable type by
filtering and transforming items. The filter and map built-ins can be
composed to do the same, but readability suffers, as we will see next.
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Listcomps Versus map and filter
Listcomps do everything the map and filter functions do, without the
contortions of the functionally challenged Python lambda. Consider
Example 2-3.

Example 2-3. The same list built by a listcomp and a map/filter composition
>>> symbols = '$¢£¥€¤' 
>>> beyond_ascii = [ord(s) for s in symbols if ord(s) > 127] 
>>> beyond_ascii 
[162, 163, 165, 8364, 164] 
>>> beyond_ascii = list(filter(lambda c: c > 127, map(ord, 
symbols))) 
>>> beyond_ascii 
[162, 163, 165, 8364, 164]

I used to believe that map and filter were faster than the equivalent
listcomps, but Alex Martelli pointed out that’s not the case—at least not in
the preceding examples. The 02-array-seq/listcomp_speed.py script in the
Fluent Python code repository is a simple speed test comparing listcomp
with filter/map.

I’ll have more to say about map and filter in Chapter 7. Now we turn to
the use of listcomps to compute Cartesian products: a list containing tuples
built from all items from two or more lists.

Cartesian Products
Listcomps can build lists from the Cartesian product of two or more
iterables. The items that make up the Cartesian product are tuples made
from items from every input iterable. The resulting list has a length equal to
the lengths of the input iterables multiplied. See Figure 2-3.

For example, imagine you need to produce a list of T-shirts available in two
colors and three sizes. Example 2-4 shows how to produce that list using a
listcomp. The result has six items.

Example 2-4. Cartesian product using a list comprehension
>>> colors = ['black', 'white'] 
>>> sizes = ['S', 'M', 'L'] 

https://bit.ly/2UdBFwD
https://github.com/fluentpython/example-code-2e


>>> tshirts = [(color, size) for color in colors for size in sizes]  
 

>>> tshirts 
[('black', 'S'), ('black', 'M'), ('black', 'L'), ('white', 'S'), 
 ('white', 'M'), ('white', 'L')] 
>>> for color in colors:   
...     for size in sizes: 
...         print((color, size)) 
... 
('black', 'S') 
('black', 'M') 
('black', 'L') 
('white', 'S') 
('white', 'M') 
('white', 'L') 
>>> tshirts = [(color, size) for size in sizes       
...                          for color in colors] 
>>> tshirts 
[('black', 'S'), ('white', 'S'), ('black', 'M'), ('white', 'M'), 
 ('black', 'L'), ('white', 'L')]

This generates a list of tuples arranged by color, then size.

Note how the resulting list is arranged as if the for loops were nested
in the same order as they appear in the listcomp.

To get items arranged by size, then color, just rearrange the for
clauses; adding a line break to the listcomp makes it easier to see how
the result will be ordered.



Figure 2-3. The Cartesian product of three card ranks and four suits is a sequence of twelve pairings



In Example 1-1 (Chapter 1), I used the following expression to initialize a
card deck with a list made of 52 cards from all 13 ranks of each of the 4
suits, sorted by suit then rank:

        self._cards = [Card(rank, suit) for suit in self.suits 
                                        for rank in self.ranks]

Listcomps are a one-trick pony: they build lists. To generate data for other
sequence types, a genexp is the way to go. The next section is a brief look at
genexps in the context of building sequences that are not lists.

Generator Expressions
To initialize tuples, arrays, and other types of sequences, you could also
start from a listcomp, but a genexp saves memory because it yields items
one by one using the iterator protocol instead of building a whole list just to
feed another constructor.

Genexps use the same syntax as listcomps, but are enclosed in parentheses
rather than brackets.

Example 2-5 shows basic usage of genexps to build a tuple and an array.

Example 2-5. Initializing a tuple and an array from a generator expression
>>> symbols = '$¢£¥€¤' 
>>> tuple(ord(symbol) for symbol in symbols)   
(36, 162, 163, 165, 8364, 164) 
>>> import array 
>>> array.array('I', (ord(symbol) for symbol in symbols))   
array('I', [36, 162, 163, 165, 8364, 164])

If the generator expression is the single argument in a function call,
there is no need to duplicate the enclosing parentheses.

The array constructor takes two arguments, so the parentheses around
the generator expression are mandatory. The first argument of the
array constructor defines the storage type used for the numbers in the
array, as we’ll see in “Arrays”.



Example 2-6 uses a genexp with a Cartesian product to print out a roster of
T-shirts of two colors in three sizes. In contrast with Example 2-4, here the
six-item list of T-shirts is never built in memory: the generator expression
feeds the for loop producing one item at a time. If the two lists used in the
Cartesian product had 1,000 items each, using a generator expression would
save the cost of building a list with a million items just to feed the for
loop.

Example 2-6. Cartesian product in a generator expression
>>> colors = ['black', 'white'] 
>>> sizes = ['S', 'M', 'L'] 
>>> for tshirt in (f'{c} {s}' for c in colors for s in sizes):   
...     print(tshirt) 
... 
black S 
black M 
black L 
white S 
white M 
white L

The generator expression yields items one by one; a list with all six T-
shirt variations is never produced in this example.

NOTE
Chapter 17 is explains how generators work in detail. Here the idea was just to show the
use of generator expressions to initialize sequences other than lists, or to produce output
that you don’t need to keep in memory.

Now we move on to the other fundamental sequence type in Python: the
tuple.

Tuples Are Not Just Immutable Lists
Some introductory texts about Python present tuples as “immutable lists,”
but that is short selling them. Tuples do double duty: they can be used as



immutable lists and also as records with no field names. This use is
sometimes overlooked, so we will start with that.

Tuples as Records
Tuples hold records: each item in the tuple holds the data for one field and
the position of the item gives its meaning.

If you think of a tuple just as an immutable list, the quantity and the order
of the items may or may not be important, depending on the context. But
when using a tuple as a collection of fields, the number of items is usually
fixed and their order is always important.

Example 2-7 shows tuples used as records. Note that in every expression,
sorting the tuple would destroy the information because the meaning of
each field is given by its position in the tuple.

Example 2-7. Tuples used as records
>>> lax_coordinates = (33.9425, -118.408056)   
>>> city, year, pop, chg, area = ('Tokyo', 2003, 32_450, 0.66, 
8014)   
>>> traveler_ids = [('USA', '31195855'), ('BRA', 'CE342567'),   
...     ('ESP', 'XDA205856')] 
>>> for passport in sorted(traveler_ids):   
...     print('%s/%s' % passport)    
... 
BRA/CE342567 
ESP/XDA205856 
USA/31195855 
>>> for country, _ in traveler_ids:   
...     print(country) 
... 
USA 
BRA 
ESP

Latitude and longitude of the Los Angeles International Airport.

Data about Tokyo: name, year, population (thousands), population
change (%), area (km²).



A list of tuples of the form (country_code,
passport_number).

As we iterate over the list, passport is bound to each tuple.

The % formatting operator understands tuples and treats each item as a
separate field.

The for loop knows how to retrieve the items of a tuple separately—
this is called “unpacking.” Here we are not interested in the second
item, so we assign it to _, a dummy variable.

TIP
In general, using _ as a dummy variable is just a convention. It’s just a strange but valid
variable name. However, there are two contexts where _ is special:

1. In the Python console, the result of executing a line is assigned to _—unless
the result is None.

2. In a match/case statement, _ is a wildcard that matches any value but is
never assigned a value. See “Pattern Matching with Sequences”.

We often think of records as data structures with named fields. Chapter 5
presents two ways of creating tuples with named fields.

But often, there’s no need to go through the trouble of creating a class just
to name the fields, especially if you leverage unpacking and avoid using
indexes to access the fields. In Example 2-7, we assigned ('Tokyo',
2003, 32_450, 0.66, 8014) to city, year, pop, chg,
area in a single statement. Then, the % operator assigned each item in the
passport tuple to the corresponding slot in the format string in the
print argument. Those are two examples of tuple unpacking.



NOTE
The term tuple unpacking is widely used by Pythonistas, but iterable unpacking is
gaining traction, as in the title of PEP 3132 — Extended Iterable Unpacking.

“Unpacking sequences and iterables” presents a lot more about unpacking not only
tuples, but sequences and iterables in general.

Now let’s consider the tuple class as an immutable variant of the list
class.

Tuples as Immutable Lists
The Python interpreter and standard library make extensive use of tuples as
immutable lists, and so should you. This brings two key benefits:

1. Clarity: when you see a tuple in code, you know its length will
never change.

2. Performance: a tuple uses less memory than a list of the same
length, and they allow Python to do some optimizations.

However, be aware that the immutability of a tuple only applies to the
references contained in it. References in a tuple cannot be deleted or
replaced. But if one of those references points to a mutable object, and that
object is changed, then the value of the tuple changes. The next snippet
illustrate this point by creating two tuples—a and b—which are initially
equal. Figure 2-4 represents the initial layout of the b tuple in memory.

When the last item in b is changed, b and a become different:

>>> a = (10, 'alpha', [1, 2]) 
>>> b = (10, 'alpha', [1, 2]) 
>>> a == b 
True 
>>> b[-1].append(99) 
>>> a == b 
False 

http://python.org/dev/peps/pep-3132/


>>> b 
(10, 'alpha', [1, 2, 99])





Figure 2-4. The content of the tuple itself is immutable, but that only means the references held by the
tuple will always point to the same objects. However, if one of the referenced objects is mutable—like

a list—its content may change.

Tuples with mutable items can be a source of bugs. As we’ll see in “What is
Hashable”, an object is only hashable if its value cannot ever change. An
unhashable tuple cannot be inserted as a dict key, or a set element.

If you want to determine explicitly if a tuple (or any object) has a fixed
value, you can use the hash built-in to create a fixed function like this:

>>> def fixed(o): 
...     try: 
...         hash(o) 
...     except TypeError: 
...         return False 
...     return True 
... 
>>> tf = (10, 'alpha', (1, 2)) 
>>> tm = (10, 'alpha', [1, 2]) 
>>> fixed(tf) 
True 
>>> fixed(tm) 
False

We explore this issue further in “The Relative Immutability of Tuples”.

Despite this caveat, tuples are widely used as immutable lists. They offer
some performance advantages explained by Python core developer
Raymond Hettinger in a StackOverflow answer to the question Are tuples
more efficient than lists in Python? To summarize, Hettinger wrote:

To evaluate a tuple literal, the Python compiler generates bytecode
for a tuple constant in one operation, but for a list literal, the
generated bytecode pushes each element as a separate constant to
the data stack, and then builds the list.

Given a tuple t, tuple(t) simply returns a reference to the same
t. There’s no need to copy. In contrast, given a list l, the
list(l) constructor must create a new copy of l.

https://stackoverflow.com/questions/68630/are-tuples-more-efficient-than-lists-in-python/22140115#22140115


Because of its fixed length, a tuple instance is allocated the exact
memory space in needs. Instances of list, on the other hand, are
allocated with room to spare, to amortize the cost of future
appends.

The references to the items in a tuple are stored in an array in the
tuple struct, while a list holds a pointer to an array of references
stored elsewhere. The indirection is necessary because when a list
grows beyond the space currently allocated, Python needs to
realocate the array of references to make room. The extra
indirection makes CPU caches less effective.

Comparing Tuple and List Methods
When using a tuple as an immutable variation of list, it is good to know
how similar their APIs are. As you can see in Table 2-1, tuple supports all
list methods that do not involve adding or removing items, with one
exception—tuple lacks the __reversed__ method. However, that is just
for optimization; reversed(my_tuple) works without it.
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list tuple  

 

s.__add__(s2) ● ● s + s2—concatenation

s.__iadd__(s2) ● s += s2—in-place 
concatenation

s.append(e) ● Append one element after last

s.clear() ● Delete all items



s.__contains__
(e)

● ● e in s

s.copy() ● Shallow copy of the list

s.count(e) ● ● Count occurrences of an 
element

s.__delitem__
(p)

● Remove item at position p

s.extend(it) ● Append items from iterable it

s.__getitem__
(p)

● ● s[p]—get item at position

s.__getnewargs_
_()

● Support for optimized 
serialization with pickle

s.index(e) ● ● Find position of first occurrence 
of e

s.insert(p, e) ● Insert element e before the item 
at position p

s.__iter__() ● ● Get iterator

s.__len__() ● ● len(s)—number of items

s.__mul__(n) ● ● s * n—repeated 
concatenation

s.__imul__(n) ● s *= n—in-place repeated 
concatenation

s.__rmul__(n) ● ● n * s—reversed repeated 
concatenation

s.pop([p]) ● Remove and return last item or 
item at optional position p

s.remove(e) ● Remove first occurrence of 
element e by value

a



s.reverse() ● Reverse the order of the items in 
place

s.__reversed__
()

● Get iterator to scan items from 
last to first

s.__setitem__
(p, e)

● s[p] = e—put e in position 
p, overwriting existing item

s.sort([key], 
[reverse])

● Sort items in place with optional 
keyword arguments key and r
everse

 

a  Reversed operators are explained in Chapter 16.

b  Also used to overwrite a subsequence. See “Assigning to Slices”.

Now let’s switch to an important subject for idiomatic Python
programming: tuple, list and iterable unpacking.

Unpacking sequences and iterables
Unpacking is important because it avoids unnecessary and error-prone use
of indexes to extract elements from sequences. Also, unpacking works with
any iterable object as the data source—including iterators which don’t
support index notation []. The only requirement is that the iterable yields
exactly one item per variable in the receiving end, unless you use a star (*)
to capture excess items as explained in “Using * to grab excess items”.

The most visible form of unpacking is parallel assignment; that is,
assigning items from an iterable to a tuple of variables, as you can see in
this example:

>>> lax_coordinates = (33.9425, -118.408056) 
>>> latitude, longitude = lax_coordinates  # unpacking 
>>> latitude 
33.9425 
>>> longitude 
-118.408056

b



An elegant application of unpacking is swapping the values of variables
without using a temporary variable:

>>> b, a = a, b

Another example of unpacking is prefixing an argument with * when
calling a function:

>>> divmod(20, 8) 
(2, 4) 
>>> t = (20, 8) 
>>> divmod(*t) 
(2, 4) 
>>> quotient, remainder = divmod(*t) 
>>> quotient, remainder 
(2, 4)

The preceding code shows another use of unpacking: allowing functions to
return multiple values in a way that is convenient to the caller. As another
example, the os.path.split() function builds a tuple (path,
last_part) from a filesystem path:

>>> import os 
>>> _, filename = os.path.split('/home/luciano/.ssh/id_rsa.pub') 
>>> filename 
'id_rsa.pub'

Another way of using just some of the items when unpacking is to use the *
syntax, as we’ll see right away.

Using * to grab excess items
Defining function parameters with *args to grab arbitrary excess
arguments is a classic Python feature.

In Python 3, this idea was extended to apply to parallel assignment as well:

>>> a, b, *rest = range(5) 
>>> a, b, rest 



(0, 1, [2, 3, 4]) 
>>> a, b, *rest = range(3) 
>>> a, b, rest 
(0, 1, [2]) 
>>> a, b, *rest = range(2) 
>>> a, b, rest 
(0, 1, [])

In the context of parallel assignment, the * prefix can be applied to exactly
one variable, but it can appear in any position:

>>> a, *body, c, d = range(5) 
>>> a, body, c, d 
(0, [1, 2], 3, 4) 
>>> *head, b, c, d = range(5) 
>>> head, b, c, d 
([0, 1], 2, 3, 4)

Unpacking with * in function calls and sequence literals
PEP 448—Additional Unpacking Generalizations introduced more flexible
syntax for iterable unpacking, best summarized in What’s New In Python
3.5.

In function calls, we can use * multiple times:

>>> def fun(a, b, c, d, *rest): 
...     return a, b, c, d, rest 
... 
>>> fun(*[1, 2], 3, *range(4, 7)) 
(1, 2, 3, 4, (5, 6))

The * can also be used when defining list, tuple, or set literals, as
shown these examples from What’s New In Python 3.5:

>>> *range(4), 4 
(0, 1, 2, 3, 4) 
>>> [*range(4), 4] 
[0, 1, 2, 3, 4] 
>>> {*range(4), 4, *(5, 6, 7)} 
{0, 1, 2, 3, 4, 5, 6, 7}

https://www.python.org/dev/peps/pep-0448/
https://docs.python.org/3/whatsnew/3.5.html#pep-448-additional-unpacking-generalizations
https://docs.python.org/3/whatsnew/3.5.html#pep-448-additional-unpacking-generalizations


PEP 448 introduced similar new syntax for **, which we’ll see in
“Unpacking Mappings”.

Finally, a powerful feature of tuple unpacking is that it works with nested
structures.

Nested Unpacking
The target of an unpacking can use nesting, e.g. (a, b, (c, d)).
Python will do the right thing if the value has the same nesting structure.
Example 2-8 shows nested unpacking in action.

Example 2-8. Unpacking nested tuples to access the longitude
metro_areas = [ 
    ('Tokyo', 'JP', 36.933, (35.689722, 139.691667)),   
    ('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)), 
    ('Mexico City', 'MX', 20.142, (19.433333, -99.133333)), 
    ('New York-Newark', 'US', 20.104, (40.808611, -74.020386)), 
    ('São Paulo', 'BR', 19.649, (-23.547778, -46.635833)), 
] 
 
def main(): 
    print(f'{"":15} | {"latitude":>9} | {"longitude":>9}') 
    for name, _, _, (lat, lon) in metro_areas:   
        if lon <= 0:   
            print(f'{name:15} | {lat:9.4f} | {lon:9.4f}') 
 
if __name__ == '__main__': 
    main()

Each tuple holds a record with four fields, the last of which is a
coordinate pair.

By assigning the last field to a nested tuple, we unpack the coordinates.

The lon <= 0: test selects only cities in the Western hemisphere.

The output of Example 2-8 is:

                |   lat.    |   lon. 
Mexico City     |   19.4333 |  -99.1333 



New York-Newark |   40.8086 |  -74.0204 
São Paulo       |  -23.5478 |  -46.6358

The target of an unpacking assignment can also be a list, but good use cases
are rare. Here is the only one I know: if you have a database query that
returns a single record (e.g. the SQL code has a LIMIT 1 clause), then you
can unpack and at the same time make sure there’s only one result with this
code:

>>> [record] = query_returning_single_row()

If the record has only one field, you can get it directly like this:

>>> [[field]] = query_returning_single_row_with_single_field()

Both of these could be written with tuples, but don’t forget the syntax quirk
that single-item tuples must be written with a trailing comma. So the first
target would be (record,) and the second ((field,),). In both
cases you get a silent bug if you forget a comma.

Now let’s study pattern matching, which supports even more powerful ways
to unpack sequences.

Pattern Matching with Sequences
The most visible new feature in Python 3.10 is pattern matching with the
match/case statement proposed in PEP 634—Structural Pattern
Matching: Specification.

NOTE
Python core developer Carol Willing wrote an excellent quick introducion to pattern
matching in the Structural Pattern Matching section of What’s New In Python 3.10. I
will assume you’ve read Willing’s intro, and give a brief overview focusing on
match/case with sequence subjects and patterns.
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https://www.python.org/dev/peps/pep-0634/
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On the surface, match/case may look like a the switch/case
statement from the C language—but that’s only half the story.  One key
improvement of match over switch is destructuring—a more advanced
form of unpacking. Destructuring is a new word in the Python vocabulary,
but it is commonly used in the documentation of languages that support
pattern matching—like Scala and Elixir.

As a first example of destructuring, Example 2-9 shows part of Example 2-
8 rewritten with match/case.

Example 2-9. Destructuring nested tuples—requires Python ≥ 3.10.
metro_areas = [ 
    ('Tokyo', 'JP', 36.933, (35.689722, 139.691667)), 
    ('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)), 
    ('Mexico City', 'MX', 20.142, (19.433333, -99.133333)), 
    ('New York-Newark', 'US', 20.104, (40.808611, -74.020386)), 
    ('São Paulo', 'BR', 19.649, (-23.547778, -46.635833)), 
] 
 
def main(): 
    print(f'{"":15} | {"latitude":>9} | {"longitude":>9}') 
    for record in metro_areas: 
        match record:   
            case [name, _, _, (lat, lon)] if lon <= 0:   
                print(f'{name:15} | {lat:9.4f} | {lon:9.4f}')

The subject of this match is record— i.e. each of the tuples in
metro_areas.

A case clause has two parts: a pattern and an optional guard with the
if keyword.

In general, a sequence pattern matches the subject if:

1. the subject is a sequence and;

2. the subject and the pattern have the same number of items and;

3. each corresponding item matches, including nested items.
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For example, the pattern [name, _, _, (lat, lon)] in Example 2-
9 matches a sequence with 4 items, and the last item must be a two-item
sequence.

Sequence patterns may be written as tuples or lists or any combination of
nested tuples and lists, but it makes no difference which syntax you use: in
a pattern, tuples and lists match any sequence. I wrote the pattern as a list
with a nested 2-tuple just to avoid repeating brackets or parentheses in
Example 2-9.

A sequence pattern can match instances of any actual or virtual subclass of
collections.abc.Sequence`footnote:[A virtual
`Sequence subclass is any class registered by calling the
Sequence.register() class method, as detailed in “A Virtual
Subclass of an ABC”. Types implemented via Python/C API are eligible if
they set a specific marker bit. See Py_TPFLAGS_SEQUENCE.] except for
str, bytes, bytearray which are excluded for practical reasons. In the
standard library, these types are compatible with sequence patterns:

list     memoryview    array.array 
tuple    range         collections.deque

Unlike unpacking, patterns don’t destructure iterables that are not
sequences.

The _ symbol is special in patterns: it matches any single item in that
position, but it is never bound to the value of the matched item. Also, the _
is the only variable that can appear more than once in pattern—unless the
pattern is a combination of patterns joined by the | operator (which also has
special meaning in a case clause).

A sequence pattern can be more strict using type information. For example,
the following pattern matches the same nested sequence structure as the one
in Example 2-9, but the first item must be an instance of str, and both
items in the 2-tuple must be instances of float.

        case [str(name), _, _, (float(lat), float(lon))]:

https://docs.python.org/3.10/c-api/typeobj.html#Py_TPFLAGS_SEQUENCE


On the other hand, if we want to match any subject sequence starting with a
str, and ending with a nested sequence of two floats, we can write:

        case [str(name), *_, (float(lat), float(lon))]:

The *_ matches any number of items, without binding them to a variable.
Using *extra instead of *_ would bind the items to extra as a list
with 0 or more items.

The optional guard clause starting with if is evaluated only if the pattern
matches, and can reference variables bound in the pattern, as in Example 2-
9:

        match record: 
            case [name, _, _, (lat, lon)] if lon <= 0: 
                print(f'{name:15} | {lat:9.4f} | {lon:9.4f}')

The nested block with the print statement runs only if the pattern
matches and the guard expression is truthy.

TIP
Desctructuring with patterns is so expressive that sometimes a match with a single
case can make code simpler. Guido van Rossum has a collection of case/match
examples, including one that he titled A very deep iterable and type match with
extraction.

Example 2-9 is not an improvement over Example 2-8. It’s just an example
to contrast two ways of doing the same thing. The next example shows how
pattern matching can make some code safer, shorter, and easier to read.

Pattern Matching Sequences in an Interpreter
Peter Norvig of Stanford University wrote lis.py: an interpreter for a subset
of the Scheme dialect of Lisp in 132 lines of beautiful and readable Python
code. I took Norvig’s MIT-licensed code and updated it to Python 3.10 to

https://bit.ly/3jamf6N
https://github.com/fluentpython/lispy/blob/main/original/norvig/lis.py


showcase pattern matching. In this section, I contrast parts of Norvig’s
code, using if/elif and unpacking, with a rewrite using match/case.

The two main functions of lis.py are parse and evaluate.  The parser
takes Scheme parenthesized expressions and returns Python lists. For
example:

>>> parse('(gcd 18 44)') 
['gcd', 18, 44] 
>>> parse('(define double (lambda (n) (* n 2)))') 
['define', 'double', ['lambda', ['n'], ['*', 'n', 2]]]

The evaluator takes lists like those and executes them.

Our focus here is destructuring, so I will not explain the evaluator actions.
See “Pattern Matching: a Case Study” to learn more about how lis.py
works.

Here is Norvig’s evaluator with minor changes, abbreviated to show only
the sequence patterns:

Example 2-10. Matching patterns without match/case.
def evaluate(x, env): 
    "Evaluate an expression in an environment." 
    if ...:  # several lines omitted 
        ... 
    elif x[0] == 'quote':          # (quote exp) 
        (_, exp) = x 
        return exp 
    elif x[0] == 'if':             # (if test conseq alt) 
        (_, test, conseq, alt) = x 
        exp = (conseq if evaluate(test, env) else alt) 
        return evaluate(exp, env) 
    elif x[0] == 'define':         # (define var exp) 
        (_, var, exp) = x 
        env[var] = evaluate(exp, env) 
    elif x[0] == 'lambda':         # (lambda (var...) body...) 
        (_, parms, *body) = x 
        return Procedure(parms, body, env) 
    # more lines omitted

Note how the elif blocks check the first item of the list, and then unpack
the list, ignoring the first item. The extensive use of unpacking suggests that

5



that Norvig is a fan of pattern matching, but he wrote that code originally
for Python 2 (though it now works with any Python 3).

Using Python 3.10, we can refactor evaluate like this:

Example 2-11. Pattern matching with match/case—requires Python ≥
3.10.
def evaluate(exp, env): 
    "Evaluate an expression in an environment." 
    match exp: 
        case ...:  # several lines omitted 
            ... 
        case ['quote', exp]:   
            return exp 
        case ['if', test, conseq, alt]:   
            exp = (conseq if evaluate(test, env) else alt) 
            return evaluate(exp, env) 
        case ['define', Symbol(var), exp]:   
            env[var] = evaluate(exp, env) 
        case ['lambda', parms, *body] if len(body) >= 1:   
            return Procedure(parms, body, env) 
        # more lines omitted 
        case _: 
            raise SyntaxError(repr(exp))  

Match if subject is a 2-item sequence starting with 'quote'.

Match if subject is a 4-item sequence starting with 'if'.

Match if subject is a 3-item sequence starting with 'define',
followed by an instance of Symbol.

Match if subject is a sequence of 3 or more items starting with
'lambda'. The guard ensures that *body captures at least one item.

When there are multiple case clauses, it is good practice to have a
catch-all case. In this example, if the exp doesn’t match any of the
patterns, the expression is malformed, and I raise SyntaxError.



Without a catch-all, the whole match statement does nothing when a
subject doesnt’t match any case—and this can be a silent failure.

Norvig deliberately avoided error checking in lis.py, to keep the code easy
to understand. With pattern matching, we can add more checks and still
keep it readable. For example: in the 'define' pattern, the original code
does not ensure that var is an instance of Symbol—that would require an
if block, an isinstance call, and more code. Example 2-11 is shorter
and safer than Example 2-10.

We can make the 'lambda' pattern safer using a nested sequence pattern.
This is the syntax of lambda in Scheme:

(lambda (parms...) body1 body2...)

The nested list after the lambda keyword is where the names of the formal
parameters for the function are declared, and it must be a list, even if it has
only one element. It may also be an empty list, if the function has no
parameters—like Python’s random.random().

However, as written in Example 2-11, the case for 'lambda' matches
any value in the parms position, including the first 'x' in this invalid
subject:

['lambda', 'x', ['*', 'x', 2]]

To enforce the rule that parms must be a nested list, we can rewrite that
case like this:

        case ['lambda', [*parms], *body] if len(body) >= 1: 
            return Procedure(parms, body, env)

In a sequence pattern, * can appear only once per sequence. Here we have
two sequences: the outer and the inner.

We only added the characters [*] to the case, made it look more like the
Scheme syntax it handles, and implemented a new structural safety check.



Pattern matching supports declarative programming: the code describes
“what” you want to match, instead of “how” to match it. The shape of the
code follows the shape of the data.
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Scheme syntax Pattern

 

(quote exp) ['quote', exp]

(if test conseq alt) ['if', test, conseq, alt]

(define var exp) ['define', Symbol(var), exp]

(lambda (parms…) body1 bod ['lambda', [*parms], *body] if len(bod



y2…) y) >= 1

 

I hope this refactoring of Norvig’s evaluate with pattern matching
convinced you that match/case can make some code more readable and
safer. Recall that this was a quick overview focusing on sequence patterns.
We’ll cover other pattern forms in later chapters. Carol Willing’s
introduction to pattern matching offers more motivation, explanations and
examples.

NOTE
If you are intrigued and want to learn more about Norvig’s lis.py, read his wonderful
post (How to Write a (Lisp) Interpreter (in Python)). For more on refactoring lis.py with
pattern matching, see “Pattern Matching: a Case Study”.

This concludes our brief tour of unpacking, destructuring, and pattern
matching with sequences.

Every Python programmer knows that sequences can be sliced using the
s[a:b] syntax. We now turn to some less well-known facts about slicing.

Slicing
A common feature of list, tuple, str, and all sequence types in
Python is the support of slicing operations, which are more powerful than
most people realize.

In this section, we describe the use of these advanced forms of slicing.
Their implementation in a user-defined class will be covered in Chapter 12,
in keeping with our philosophy of covering ready-to-use classes in this part
of the book, and creating new classes in Part IV.

Why Slices and Range Exclude the Last Item

https://docs.python.org/3.10/whatsnew/3.10.html#pep-634-structural-pattern-matching
https://norvig.com/lispy.html


The Pythonic convention of excluding the last item in slices and ranges
works well with the zero-based indexing used in Python, C, and many other
languages. Some convenient features of the convention are:

It’s easy to see the length of a slice or range when only the stop
position is given: range(3) and my_list[:3] both produce
three items.

It’s easy to compute the length of a slice or range when start and
stop are given: just subtract stop - start.

It’s easy to split a sequence in two parts at any index x, without
overlapping: simply get my_list[:x] and my_list[x:]. For
example:

>>> l = [10, 20, 30, 40, 50, 60] 
>>> l[:2]  # split at 2 
[10, 20] 
>>> l[2:] 
[30, 40, 50, 60] 
>>> l[:3]  # split at 3 
[10, 20, 30] 
>>> l[3:] 
[40, 50, 60]

The best arguments for this convention were written by the Dutch computer
scientist Edsger W. Dijkstra (see the last reference in “Further Reading”).

Now let’s take a close look at how Python interprets slice notation.

Slice Objects
This is no secret, but worth repeating just in case: s[a:b:c] can be used
to specify a stride or step c, causing the resulting slice to skip items. The
stride can also be negative, returning items in reverse. Three examples
make this clear:

>>> s = 'bicycle' 
>>> s[::3] 



'bye' 
>>> s[::-1] 
'elcycib' 
>>> s[::-2] 
'eccb'

Another example was shown in Chapter 1 when we used deck[12::13]
to get all the aces in the unshuffled deck:

>>> deck[12::13] 
[Card(rank='A', suit='spades'), Card(rank='A', suit='diamonds'), 
Card(rank='A', suit='clubs'), Card(rank='A', suit='hearts')]

The notation a:b:c is only valid within [] when used as the indexing or
subscript operator, and it produces a slice object: slice(a, b, c). As
we will see in “How Slicing Works”, to evaluate the expression
seq[start:stop:step], Python calls
seq.__getitem__(slice(start, stop, step)). Even if you
are not implementing your own sequence types, knowing about slice objects
is useful because it lets you assign names to slices, just like spreadsheets
allow naming of cell ranges.

Suppose you need to parse flat-file data like the invoice shown in
Example 2-12. Instead of filling your code with hardcoded slices, you can
name them. See how readable this makes the for loop at the end of the
example.

Example 2-12. Line items from a flat-file invoice
>>> invoice = """ 
... 
0.....6.................................40........52...55........ 
... 1909  Pimoroni PiBrella                     $17.50    3    
$52.50 
... 1489  6mm Tactile Switch x20                 $4.95    2     
$9.90 
... 1510  Panavise Jr. - PV-201                 $28.00    1    
$28.00 
... 1601  PiTFT Mini Kit 320x240                $34.95    1    
$34.95 
... """ 
>>> SKU = slice(0, 6) 



>>> DESCRIPTION = slice(6, 40) 
>>> UNIT_PRICE = slice(40, 52) 
>>> QUANTITY =  slice(52, 55) 
>>> ITEM_TOTAL = slice(55, None) 
>>> line_items = invoice.split('\n')[2:] 
>>> for item in line_items: 
...     print(item[UNIT_PRICE], item[DESCRIPTION]) 
... 
    $17.50   Pimoroni PiBrella 
     $4.95   6mm Tactile Switch x20 
    $28.00   Panavise Jr. - PV-201 
    $34.95   PiTFT Mini Kit 320x240

We’ll come back to slice objects when we discuss creating your own
collections in “Vector Take #2: A Sliceable Sequence”. Meanwhile, from a
user perspective, slicing includes additional features such as
multidimensional slices and ellipsis (...) notation. Read on.

Multidimensional Slicing and Ellipsis
The [] operator can also take multiple indexes or slices separated by
commas. The __getitem__ and __setitem__ special methods that
handle the [] operator simply receive the indices in a[i, j] as a tuple.
In other words, to evaluate a[i, j], Python calls
a.__getitem__((i, j)).

This is used, for instance, in the external NumPy package, where items of a
two-dimensional numpy.ndarray can be fetched using the syntax a[i,
j] and a two-dimensional slice obtained with an expression like a[m:n,
k:l]. Example 2-21 later in this chapter shows the use of this notation.

Except for memoryview, the built-in sequence types in Python are one-
dimensional, so they support only one index or slice, and not a tuple of
them.

The ellipsis—written with three full stops (...) and not … (Unicode
U+2026)—is recognized as a token by the Python parser. It is an alias to the
Ellipsis object, the single instance of the ellipsis class.  As such, it
can be passed as an argument to functions and as part of a slice

6

7



specification, as in f(a, ..., z) or a[i:...]. NumPy uses ... as a
shortcut when slicing arrays of many dimensions; for example, if x is a
four-dimensional array, x[i, ...] is a shortcut for x[i, :, :, :,].
See the Tentative NumPy Tutorial to learn more about this.

At the time of this writing, I am unaware of uses of Ellipsis or
multidimensional indexes and slices in the Python standard library. If you
spot one, let me know. These syntactic features exist to support user-defined
types and extensions such as NumPy.

Slices are not just useful to extract information from sequences; they can
also be used to change mutable sequences in place—that is, without
rebuilding them from scratch.

Assigning to Slices
Mutable sequences can be grafted, excised, and otherwise modified in place
using slice notation on the left-hand side of an assignment statement or as
the target of a del statement. The next few examples give an idea of the
power of this notation:

>>> l = list(range(10)) 
>>> l 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
>>> l[2:5] = [20, 30] 
>>> l 
[0, 1, 20, 30, 5, 6, 7, 8, 9] 
>>> del l[5:7] 
>>> l 
[0, 1, 20, 30, 5, 8, 9] 
>>> l[3::2] = [11, 22] 
>>> l 
[0, 1, 20, 11, 5, 22, 9] 
>>> l[2:5] = 100   
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: can only assign an iterable 
>>> l[2:5] = [100] 
>>> l 
[0, 1, 100, 22, 9]

http://wiki.scipy.org/Tentative_NumPy_Tutorial


When the target of the assignment is a slice, the right-hand side must be
an iterable object, even if it has just one item.

Every coder knows that concatenation is a common operation with
sequences. Introductory Python tutorials explain the use of + and * for that
purpose, but there are some subtle details on how they work, which we
cover next.

Using + and * with Sequences
Python programmers expect that sequences support + and *. Usually both
operands of + must be of the same sequence type, and neither of them is
modified but a new sequence of that same type is created as result of the
concatenation.

To concatenate multiple copies of the same sequence, multiply it by an
integer. Again, a new sequence is created:

>>> l = [1, 2, 3] 
>>> l * 5 
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3] 
>>> 5 * 'abcd' 
'abcdabcdabcdabcdabcd'

Both + and * always create a new object, and never change their operands.

WARNING
Beware of expressions like a * n when a is a sequence containing mutable items
because the result may surprise you. For example, trying to initialize a list of lists as
my_list = [[]] * 3 will result in a list with three references to the same inner
list, which is probably not what you want.

The next section covers the pitfalls of trying to use * to initialize a list of
lists.



Building Lists of Lists
Sometimes we need to initialize a list with a certain number of nested lists
—for example, to distribute students in a list of teams or to represent
squares on a game board. The best way of doing so is with a list
comprehension, as in Example 2-13.

Example 2-13. A list with three lists of length 3 can represent a tic-tac-toe
board
>>> board = [['_'] * 3 for i in range(3)]   
>>> board 
[['_', '_', '_'], ['_', '_', '_'], ['_', '_', '_']] 
>>> board[1][2] = 'X'   
>>> board 
[['_', '_', '_'], ['_', '_', 'X'], ['_', '_', '_']]

Create a list of three lists of three items each. Inspect the structure.

Place a mark in row 1, column 2, and check the result.

A tempting but wrong shortcut is doing it like Example 2-14.

Example 2-14. A list with three references to the same list is useless
>>> weird_board = [['_'] * 3] * 3   
>>> weird_board 
[['_', '_', '_'], ['_', '_', '_'], ['_', '_', '_']] 
>>> weird_board[1][2] = 'O'  
>>> weird_board 
[['_', '_', 'O'], ['_', '_', 'O'], ['_', '_', 'O']]

The outer list is made of three references to the same inner list. While it
is unchanged, all seems right.

Placing a mark in row 1, column 2, reveals that all rows are aliases
referring to the same object.

The problem with Example 2-14 is that, in essence, it behaves like this
code:



row = ['_'] * 3 
board = [] 
for i in range(3): 
    board.append(row)  

The same row is appended three times to board.

On the other hand, the list comprehension from Example 2-13 is equivalent
to this code:

>>> board = [] 
>>> for i in range(3): 
...     row = ['_'] * 3   
...     board.append(row) 
... 
>>> board 
[['_', '_', '_'], ['_', '_', '_'], ['_', '_', '_']] 
>>> board[2][0] = 'X' 
>>> board   
[['_', '_', '_'], ['_', '_', '_'], ['X', '_', '_']]

Each iteration builds a new row and appends it to board.

Only row 2 is changed, as expected.

TIP
If either the problem or the solution in this section are not clear to you, relax. Chapter 6
was written to clarify the mechanics and pitfalls of references and mutable objects.

So far we have discussed the use of the plain + and * operators with
sequences, but there are also the += and *= operators, which produce very
different results depending on the mutability of the target sequence. The
following section explains how that works.

Augmented Assignment with Sequences



The augmented assignment operators += and *= behave quite differently
depending on the first operand. To simplify the discussion, we will focus on
augmented addition first (+=), but the concepts also apply to *= and to
other augmented assignment operators.

The special method that makes += work is __iadd__ (for “in-place
addition”). However, if __iadd__ is not implemented, Python falls back
to calling __add__. Consider this simple expression:

>>> a += b

If a implements __iadd__, that will be called. In the case of mutable
sequences (e.g., list, bytearray, array.array), a will be changed
in place (i.e., the effect will be similar to a.extend(b)). However, when
a does not implement __iadd__, the expression a += b has the same
effect as a = a + b: the expression a + b is evaluated first, producing
a new object, which is then bound to a. In other words, the identity of the
object bound to a may or may not change, depending on the availability of
__iadd__.

In general, for mutable sequences, it is a good bet that __iadd__ is
implemented and that += happens in place. For immutable sequences,
clearly there is no way for that to happen.

What I just wrote about += also applies to *=, which is implemented via
__imul__. The __iadd__ and __imul__ special methods are
discussed in Chapter 16.

Here is a demonstration of *= with a mutable sequence and then an
immutable one:

>>> l = [1, 2, 3] 
>>> id(l) 
4311953800   
>>> l *= 2 
>>> l 
[1, 2, 3, 1, 2, 3] 
>>> id(l) 



4311953800   
>>> t = (1, 2, 3) 
>>> id(t) 
4312681568   
>>> t *= 2 
>>> id(t) 
4301348296  

ID of the initial list

After multiplication, the list is the same object, with new items
appended

ID of the initial tuple

After multiplication, a new tuple was created

Repeated concatenation of immutable sequences is inefficient, because
instead of just appending new items, the interpreter has to copy the whole
target sequence to create a new one with the new items concatenated.

We’ve seen common use cases for +=. The next section shows an intriguing
corner case that highlights what “immutable” really means in the context of
tuples.

A += Assignment Puzzler
Try to answer without using the console: what is the result of evaluating the
two expressions in Example 2-15?

Example 2-15. A riddle
>>> t = (1, 2, [30, 40]) 
>>> t[2] += [50, 60]

What happens next? Choose the best answer:

1. t becomes (1, 2, [30, 40, 50, 60]).
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2. TypeError is raised with the message 'tuple' object
does not support item assignment.

3. Neither.

4. Both A and B.

When I saw this, I was pretty sure the answer was B, but it’s actually D,
“Both A and B”! Example 2-16 is the actual output from a Python 3.9
console.

Example 2-16. The unexpected result: item t2 is changed and an exception
is raised
>>> t = (1, 2, [30, 40]) 
>>> t[2] += [50, 60] 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: 'tuple' object does not support item assignment 
>>> t 
(1, 2, [30, 40, 50, 60])

Online Python Tutor is an awesome online tool to visualize how Python
works in detail. Figure 2-5 is a composite of two screenshots showing the
initial and final states of the tuple t from Example 2-16.

10

http://www.pythontutor.com/


Figure 2-5. Initial and final state of the tuple assignment puzzler (diagram generated by Online
Python Tutor)

If you look at the bytecode Python generates for the expression s[a] +=
b (Example 2-17), it becomes clear how that happens.

Example 2-17. Bytecode for the expression s[a] += b
>>> dis.dis('s[a] += b') 
  1           0 LOAD_NAME                0 (s) 
              3 LOAD_NAME                1 (a) 
              6 DUP_TOP_TWO 
              7 BINARY_SUBSCR                       
              8 LOAD_NAME                2 (b) 
             11 INPLACE_ADD                         
             12 ROT_THREE 
             13 STORE_SUBSCR                        
             14 LOAD_CONST               0 (None) 
             17 RETURN_VALUE

Put the value of s[a] on TOS (Top Of Stack).



Perform TOS += b. This succeeds if TOS refers to a mutable object
(it’s a list, in Example 2-16).

Assign s[a] = TOS. This fails if s is immutable (the t tuple in
Example 2-16).

This example is quite a corner case—in 20 years using Python, I have never
seen this strange behavior actually bite somebody.

I take three lessons from this:

Avoid putting mutable items in tuples.

Augmented assignment is not an atomic operation—we just saw it
throwing an exception after doing part of its job.

Inspecting Python bytecode is not too difficult, and can be helpful
to see what is going on under the hood.

After witnessing the subtleties of using + and * for concatenation, we can
change the subject to another essential operation with sequences: sorting.

list.sort versus the sorted Built-In
The list.sort method sorts a list in-place—that is, without making a
copy. It returns None to remind us that it changes the receiver  and does
not create a new list. This is an important Python API convention: functions
or methods that change an object in-place should return None to make it
clear to the caller that the receiver was changed, and no new object was
created. Similar behavior can be seen, for example, in the
random.shuffle(s) function, which shuffles the mutable sequence s
in-place, and returns None.
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NOTE
The convention of returning None to signal in-place changes has a drawback: we
cannot cascade calls to those methods. In contrast, methods that return new objects (e.g.,
all str methods) can be cascaded in the fluent interface style. See Wikipedia’s “Fluent
interface” entry for further description of this topic.

In contrast, the built-in function sorted creates a new list and returns it. It
accepts any iterable object as an argument, including immutable sequences
and generators (see Chapter 17). Regardless of the type of iterable given to
sorted, it always returns a newly created list.

Both list.sort and sorted take two optional, keyword-only
arguments:

reverse

If True, the items are returned in descending order (i.e., by reversing
the comparison of the items). The default is False.

key

A one-argument function that will be applied to each item to produce its
sorting key. For example, when sorting a list of strings,
key=str.lower can be used to perform a case-insensitive sort, and
key=len will sort the strings by character length. The default is the
identity function (i.e., the items themselves are compared).

TIP
You can also use the optional keyword parameter key with the min() and max()
built-ins and with other functions from the standard library (e.g.,
itertools.groupby() and heapq.nlargest()).

Here are a few examples to clarify the use of these functions and keyword
arguments. The examples also demonstrate that Python’s sorting algorithm

http://en.wikipedia.org/wiki/Fluent_interface


is stable (i.e., it preserves the relative ordering of items that compare
equal):

>>> fruits = ['grape', 'raspberry', 'apple', 'banana'] 
>>> sorted(fruits) 
['apple', 'banana', 'grape', 'raspberry']   
>>> fruits 
['grape', 'raspberry', 'apple', 'banana']   
>>> sorted(fruits, reverse=True) 
['raspberry', 'grape', 'banana', 'apple']   
>>> sorted(fruits, key=len) 
['grape', 'apple', 'banana', 'raspberry']   
>>> sorted(fruits, key=len, reverse=True) 
['raspberry', 'banana', 'grape', 'apple']   
>>> fruits 
['grape', 'raspberry', 'apple', 'banana']   
>>> fruits.sort()                           
>>> fruits 
['apple', 'banana', 'grape', 'raspberry']  

This produces a new list of strings sorted alphabetically.

Inspecting the original list, we see it is unchanged.

This is the previous “alphabetical” ordering, reversed.

A new list of strings, now sorted by length. Because the sorting
algorithm is stable, “grape” and “apple,” both of length 5, are in the
original order.

These are the strings sorted by length in descending order. It is not the
reverse of the previous result because the sorting is stable, so again
“grape” appears before “apple.”

So far, the ordering of the original fruits list has not changed.

This sorts the list in place, and returns None (which the console omits).

Now fruits is sorted.

12

13



WARNING
By default, Python sorts strings lexicographically by character code. That means ASCII
uppercase letters will come before lowercase letters, and non-ASCII characters are
unlikely to be sorted in a sensible way. “Sorting Unicode Text” covers proper ways of
sorting text as humans would expect.

Once your sequences are sorted, they can be very efficiently searched. A
binary search algorithm is already provided in the bisect module of the
Python standard library. That module also includes the bisect.insort
function, which you can use to make sure that your sorted sequences stay
sorted. You’ll find an illustrated introduction to the bisect module in
Managing Ordered Sequences with Bisect post in the fluentpython.com
companion Web site.

Much of what we have seen so far in this chapter applies to sequences in
general, not just lists or tuples. Python programmers sometimes overuse the
list type because it is so handy—I know I’ve done it. For example, if you
are processing large lists of numbers, you should consider using arrays
instead. The remainder of the chapter is devoted to alternatives to lists and
tuples.

When a List Is Not the Answer
The list type is flexible and easy to use, but depending on specific
requirements, there are better options. For example, an array saves a lot
of memory when you need to handle millions of floating-point values. On
the other hand, if you are constantly adding and removing items from
opposite ends of a list, it’s good to know that a deque (double-ended
queue) is a more efficient FIFO  data structure.14

https://www.fluentpython.com/extra/ordered-sequences-with-bisect/
https://www.fluentpython.com/


TIP
If your code frequently checks whether an item is present in a collection (e.g., item
in my_collection), consider using a set for my_collection, especially if it
holds a large number of items. Sets are optimized for fast membership checking. They
are also iterable, but they are not sequences because the ordering of set items is
unspecified.. We cover them in Chapter 3.

For the remainder of this chapter, we discuss mutable sequence types that
can replace lists in many cases, starting with arrays.

Arrays
If a list only contains numbers, an array.array is a more efficient
replacement. Arrays support all mutable sequence operations (including
.pop, .insert, and .extend), as well as additional methods for fast
loading and saving such as .frombytes and .tofile.

A Python array is as lean as a C array. As shown in Figure 2-1, an array
of float values does not hold full-fledged float instances, but only the
packed bytes representing their machine values—similar to an array of
double in the C language. When creating an array, you provide a
typecode, a letter to determine the underlying C type used to store each item
in the array. For example, b is the typecode for what C calls a signed
char, an integer ranging from –128 to 127. If you create an
array('b'), then each item will be stored in a single byte and
interpreted as an integer. For large sequences of numbers, this saves a lot of
memory. And Python will not let you put any number that does not match
the type for the array.

Example 2-18 shows creating, saving, and loading an array of 10 million
floating-point random numbers.

Example 2-18. Creating, saving, and loading a large array of floats
>>> from array import array   
>>> from random import random 
>>> floats = array('d', (random() for i in range(10**7)))   



>>> floats[-1]   
0.07802343889111107 
>>> fp = open('floats.bin', 'wb') 
>>> floats.tofile(fp)   
>>> fp.close() 
>>> floats2 = array('d')   
>>> fp = open('floats.bin', 'rb') 
>>> floats2.fromfile(fp, 10**7)   
>>> fp.close() 
>>> floats2[-1]   
0.07802343889111107 
>>> floats2 == floats   
True

Import the array type.

Create an array of double-precision floats (typecode 'd') from any
iterable object—in this case, a generator expression.

Inspect the last number in the array.

Save the array to a binary file.

Create an empty array of doubles.

Read 10 million numbers from the binary file.

Inspect the last number in the array.

Verify that the contents of the arrays match.

As you can see, array.tofile and array.fromfile are easy to use.
If you try the example, you’ll notice they are also very fast. A quick
experiment shows that it takes about 0.1s for array.fromfile to load
10 million double-precision floats from a binary file created with
array.tofile. That is nearly 60 times faster than reading the numbers
from a text file, which also involves parsing each line with the float
built-in. Saving with array.tofile is about 7 times faster than writing
one float per line in a text file. In addition, the size of the binary file with 10



million doubles is 80,000,000 bytes (8 bytes per double, zero overhead),
while the text file has 181,515,739 bytes, for the same data.

For the specific case of numeric arrays representing binary data, such as
raster images, Python has the bytes and bytearray types discussed in
Chapter 4.

We wrap up this section on arrays with Table 2-3, comparing the features of
list and array.array.
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list array  

 

s.__add__(s2) ● ● s + s2—concatenation

s.__iadd__(s2) ● ● s += s2—in-place 
concatenation

s.append(e) ● ● Append one element after last

s.byteswap() ● Swap bytes of all items in array 
for endianness conversion

s.clear() ● Delete all items

s.__contains__
(e)

● ● e in s

s.copy() ● Shallow copy of the list

s.__copy__() ● Support for copy.copy



s.count(e) ● ● Count occurrences of an 
element

s.__deepcopy__
()

● Optimized support for copy.d
eepcopy

s.__delitem__
(p)

● ● Remove item at position p

s.extend(it) ● ● Append items from iterable it

s.frombytes(b) ● Append items from byte 
sequence interpreted as packed 
machine values

s.fromfile(f, 
n)

● Append n items from binary file 
f interpreted as packed machine 
values

s.fromlist(l) ● Append items from list; if one 
causes TypeError, none are 
appended

s.__getitem__
(p)

● ● s[p]—get item or slice at 
position

s.index(e) ● ● Find position of first occurrence 
of e

s.insert(p, e) ● ● Insert element e before the item 
at position p

s.itemsize ● Length in bytes of each array 
item

s.__iter__() ● ● Get iterator

s.__len__() ● ● len(s)—number of items

s.__mul__(n) ● ● s * n—repeated 
concatenation

s.__imul__(n) ● ● s *= n—in-place repeated 
concatenation



s.__rmul__(n) ● ● n * s—reversed repeated 
concatenation

s.pop([p]) ● ● Remove and return item at 
position p (default: last)

s.remove(e) ● ● Remove first occurrence of 
element e by value

s.reverse() ● ● Reverse the order of the items in 
place

s.__reversed__
()

● Get iterator to scan items from 
last to first

s.__setitem__
(p, e)

● ● s[p] = e—put e in position 
p, overwriting existing item or 
slice.

s.sort([key], 
[reverse])

● Sort items in place with optional 
keyword arguments key and r
everse

s.tobytes() ● Return items as packed machine 
values in a bytes object

s.tofile(f) ● Save items as packed machine 
values to binary file f

s.tolist() ● Return items as numeric objects 
in a list

s.typecode ● One-character string identifying 
the C type of the items

 

a  Reversed operators are explained in Chapter 16.

a



TIP
As of Python 3.10, the array type does not have an in-place sort method like
list.sort(). If you need to sort an array, use the built-in sorted function to
rebuild the array:

a = array.array(a.typecode, sorted(a))

To keep a sorted array sorted while adding items to it, use the bisect.insort
function.

If you do a lot of work with arrays and don’t know about memoryview,
you’re missing out. See the next topic.

Memory Views
The built-in memoryview class is a shared-memory sequence type that
lets you handle slices of arrays without copying bytes. It was inspired by
the NumPy library (which we’ll discuss shortly in “NumPy”). Travis
Oliphant, lead author of NumPy, answers When should a memoryview be
used? like this:

A memoryview is essentially a generalized NumPy array structure in
Python itself (without the math). It allows you to share memory between
data-structures (things like PIL images, SQLite databases, NumPy
arrays, etc.) without first copying. This is very important for large data
sets.

Using notation similar to the array module, the memoryview.cast
method lets you change the way multiple bytes are read or written as units
without moving bits around. memoryview.cast returns yet another
memoryview object, always sharing the same memory.

Example 2-19 shows how to create alternate views on the same array of 6
bytes, to operate on it as 2×3 matrix or a 3×2 matrix:

Example 2-19. Handling 6 bytes memory of as 1×6, 2×3, and 3×2 views

https://docs.python.org/3/library/bisect.html#bisect.insort
http://bit.ly/1Vm6C8B


>>> from array import array 
>>> octets = array('B', range(6))   
>>> m1 = memoryview(octets)   
>>> m1.tolist() 
[0, 1, 2, 3, 4, 5] 
>>> m2 = m1.cast('B', [2, 3])   
>>> m2.tolist() 
[[0, 1, 2], [3, 4, 5]] 
>>> m3 = m1.cast('B', [3, 2])   
>>> m3.tolist() 
[[0, 1], [2, 3], [4, 5]] 
>>> m2[1,1] = 22   
>>> m3[1,1] = 33   
>>> octets   
array('B', [0, 1, 2, 33, 22, 5])

Build array of 6 bytes (typecode 'B').

Build memoryview from that array, then export it as list.

Build new memoryview from that previous one, but with 2 rows and 3
columns.

Yet another memoryview, now with 3 rows and 2 columns.

Overwrite byte in m2 at row 1, column 1 with 22.

Overwrite byte in m3 at row 1, column 1 with 33.

Display original array, proving that the memory was shared among
octets, m1, m2, and m3.

The awesome power of memoryview can also be used to corrupt.
Example 2-20 shows how to change a single byte of an item in an array of
16-bit integers.

Example 2-20. Changing the value of an 16-bit integer array item by poking
one of its bytes
>>> numbers = array.array('h', [-2, -1, 0, 1, 2]) 
>>> memv = memoryview(numbers)   



>>> len(memv) 
5 
>>> memv[0]   
-2 
>>> memv_oct = memv.cast('B')   
>>> memv_oct.tolist()   
[254, 255, 255, 255, 0, 0, 1, 0, 2, 0] 
>>> memv_oct[5] = 4   
>>> numbers 
array('h', [-2, -1, 1024, 1, 2])  

Build memoryview from array of 5 16-bit signed integers (typecode
'h').

memv sees the same 5 items in the array.

Create memv_oct by casting the elements of memv to bytes (typecode
'B').

Export elements of memv_oct as a list of 10 bytes, for inspection.

Assign value 4 to byte offset 5.

Note the change to numbers: a 4 in the most significant byte of a 2-
byte unsigned integer is 1024.

NOTE
You’ll find an example of inspecting memoryview with the struct package at
fluentpython.com: Parsing binary records with struct.

Meanwhile, if you are doing advanced numeric processing in arrays, you
should be using the NumPy libraries. We’ll take a brief look at them right
away.

NumPy

https://www.fluentpython.com/
https://www.fluentpython.com/extra/parsing-binary-struct/


Throughout this book, I make a point of highlighting what is already in the
Python standard library so you can make the most of it. But NumPy is so
awesome that a detour is warranted.

For advanced array and matrix operations, NumPy is the reason why
Python became mainstream in scientific computing applications. NumPy
implements multi-dimensional, homogeneous arrays and matrix types that
hold not only numbers but also user-defined records, and provides efficient
elementwise operations.

SciPy is a library, written on top of NumPy, offering many scientific
computing algorithms from linear algebra, numerical calculus, and
statistics. SciPy is fast and reliable because it leverages the widely used C
and Fortran codebase from the Netlib Repository. In other words, SciPy
gives scientists the best of both worlds: an interactive prompt and high-level
Python APIs, together with industrial-strength number-crunching functions
optimized in C and Fortran.

As a very brief NumPy demo, Example 2-21 shows some basic operations
with two-dimensional arrays.

Example 2-21. Basic operations with rows and columns in a numpy.ndarray
>>> import numpy as np  
>>> a = np.arange(12)   
>>> a 
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11]) 
>>> type(a) 
<class 'numpy.ndarray'> 
>>> a.shape   
(12,) 
>>> a.shape = 3, 4   
>>> a 
array([[ 0,  1,  2,  3], 
       [ 4,  5,  6,  7], 
       [ 8,  9, 10, 11]]) 
>>> a[2]   
array([ 8,  9, 10, 11]) 
>>> a[2, 1]   
9 
>>> a[:, 1]   
array([1, 5, 9]) 
>>> a.transpose()   

http://www.netlib.org/


array([[ 0,  4,  8], 
       [ 1,  5,  9], 
       [ 2,  6, 10], 
       [ 3,  7, 11]])

Import NumPy, after installing (it’s not in the Python standard library).
Conventionally, numpy is imported as np.

Build and inspect a numpy.ndarray with integers 0 to 11.

Inspect the dimensions of the array: this is a one-dimensional, 12-
element array.

Change the shape of the array, adding one dimension, then inspecting
the result.

Get row at index 2.

Get element at index 2, 1.

Get column at index 1.

Create a new array by transposing (swapping columns with rows).

NumPy also supports high-level operations for loading, saving, and
operating on all elements of a numpy.ndarray:

>>> import numpy 
>>> floats = numpy.loadtxt('floats-10M-lines.txt')   
>>> floats[-3:]   
array([ 3016362.69195522,   535281.10514262,  4566560.44373946]) 
>>> floats *= .5   
>>> floats[-3:] 
array([ 1508181.34597761,   267640.55257131,  2283280.22186973]) 
>>> from time import perf_counter as pc  
>>> t0 = pc(); floats /= 3; pc() - t0  
0.03690556302899495 
>>> numpy.save('floats-10M', floats)   
>>> floats2 = numpy.load('floats-10M.npy', 'r+')   
>>> floats2 *= 6 



>>> floats2[-3:]   
memmap([ 3016362.69195522,   535281.10514262,  4566560.44373946])

Load 10 million floating-point numbers from a text file.

Use sequence slicing notation to inspect the last three numbers.

Multiply every element in the floats array by .5 and inspect the last
three elements again.

Import the high-resolution performance measurement timer (available
since Python 3.3).

Divide every element by 3; the elapsed time for 10 million floats is less
than 40 milliseconds.

Save the array in a .npy binary file.

Load the data as a memory-mapped file into another array; this allows
efficient processing of slices of the array even if it does not fit entirely
in memory.

Inspect the last three elements after multiplying every element by 6.

This was just an appetizer.

NumPy and SciPy are formidable libraries, and are the foundation of other
awesome tools such as the Pandas—which implements efficient array types
that can hold nonnumeric data and provides import/export functions for
many different formats like .csv, .xls, SQL dumps, HDF5, etc.—and Scikit-
learn—currently the most widely used Machine Learning toolset. Most
NumPy and SciPy functions are implemented in C or C++, and can
leverage all CPU cores because they release Python’s GIL (Global
Interpreter Lock). The Dask project supports parallelizing NumPy, Pandas,
and Scikit-Learn processing across clusters of machines. These packages
deserve entire books about them. This is not one of those books. But no

http://pandas.pydata.org/
https://scikit-learn.org/stable/
https://dask.org/


overview of Python sequences would be complete without at least a quick
look at NumPy arrays.

Having looked at flat sequences—standard arrays and NumPy arrays—we
now turn to a completely different set of replacements for the plain old
list: queues.

Deques and Other Queues
The .append and .pop methods make a list usable as a stack or a
queue (if you use .append and .pop(0), you get FIFO behavior). But
inserting and removing from the head of a list (the 0-index end) is costly
because the entire list must be shifted in memory.

The class collections.deque is a thread-safe double-ended queue
designed for fast inserting and removing from both ends. It is also the way
to go if you need to keep a list of “last seen items” or something of that
nature, because a deque can be bounded—i.e., created with a fixed
maximum length. If a bounded deque is full, when you add a new item it
discards an item from the opposite end. Example 2-22 shows some typical
operations performed on a deque.

Example 2-22. Working with a deque
>>> from collections import deque 
>>> dq = deque(range(10), maxlen=10)   
>>> dq 
deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10) 
>>> dq.rotate(3)   
>>> dq 
deque([7, 8, 9, 0, 1, 2, 3, 4, 5, 6], maxlen=10) 
>>> dq.rotate(-4) 
>>> dq 
deque([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], maxlen=10) 
>>> dq.appendleft(-1)   
>>> dq 
deque([-1, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10) 
>>> dq.extend([11, 22, 33])   
>>> dq 
deque([3, 4, 5, 6, 7, 8, 9, 11, 22, 33], maxlen=10) 
>>> dq.extendleft([10, 20, 30, 40])   



>>> dq 
deque([40, 30, 20, 10, 3, 4, 5, 6, 7, 8], maxlen=10)

The optional maxlen argument sets the maximum number of items
allowed in this instance of deque; this sets a read-only maxlen
instance attribute.

Rotating with n > 0 takes items from the right end and prepends them
to the left; when n < 0 items are taken from left and appended to the
right.

Appending to a deque that is full (len(d) == d.maxlen) discards
items from the other end; note in the next line that the 0 is dropped.

Adding three items to the right pushes out the leftmost -1, 1, and 2.

Note that extendleft(iter) works by appending each successive
item of the iter argument to the left of the deque, therefore the final
position of the items is reversed.

Table 2-4 compares the methods that are specific to list and deque
(removing those that also appear in object).

Note that deque implements most of the list methods, and adds a few
that are specific to its design, like popleft and rotate. But there is a
hidden cost: removing items from the middle of a deque is not as fast. It is
really optimized for appending and popping from the ends.

The append and popleft operations are atomic, so deque is safe to use
as a FIFO queue in multithreaded applications without the need for locks.
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list deque  

 

s.__add__(s2) ● s + s2—concatenation

s.__iadd__(s2) ● ● s += s2—in-place 
concatenation

s.append(e) ● ● Append one element to the right 
(after last)

s.appendleft(e) ● Append one element to the left 
(before first)

s.clear() ● ● Delete all items

s.__contains__
(e)

● e in s

s.copy() ● Shallow copy of the list

s.__copy__() ● Support for copy.copy 
(shallow copy)

s.count(e) ● ● Count occurrences of an 
element

s.__delitem__
(p)

● ● Remove item at position p

s.extend(i) ● ● Append items from iterable i to 
the right

s.extendleft(i) ● Append items from iterable i to 
the left

s.__getitem__
(p)

● ● s[p]—get item or slice at 
position



s.index(e) ● Find position of first occurrence 
of e

s.insert(p, e) ● Insert element e before the item 
at position p

s.__iter__() ● ● Get iterator

s.__len__() ● ● len(s)—number of items

s.__mul__(n) ● s * n—repeated 
concatenation

s.__imul__(n) ● s *= n—in-place repeated 
concatenation

s.__rmul__(n) ● n * s—reversed repeated 
concatenation

s.pop() ● ● Remove and return last item

s.popleft() ● Remove and return first item

s.remove(e) ● ● Remove first occurrence of 
element e by value

s.reverse() ● ● Reverse the order of the items in 
place

s.__reversed__
()

● ● Get iterator to scan items from 
last to first

s.rotate(n) ● Move n items from one end to 
the other

s.__setitem__
(p, e)

● ● s[p] = e—put e in position 
p, overwriting existing item or 
slice.

s.sort([key], 
[reverse])

● Sort items in place with optional 
keyword arguments key and r
everse

 

a

b



a  Reversed operators are explained in Chapter 16.

b  a_list.pop(p) allows removing from position p but deque does not support that option.

Besides deque, other Python standard library packages implement queues:

queue

This provides the synchronized (i.e., thread-safe) classes
SimpleQueue, Queue, LifoQueue, and PriorityQueue. These
can be used for safe communication between threads. All except
SimpleQueue can be bounded by providing a maxsize argument
greater than 0 to the constructor. However, they don’t discard items to
make room as deque does. Instead, when the queue is full the insertion
of a new item blocks—i.e., it waits until some other thread makes room
by taking an item from the queue, which is useful to throttle the number
of live threads.

multiprocessing

Implements its own unbounded SimpleQueue and bounded Queue,
very similar to those in the queue package, but designed for
interprocess communication. A specialized
multiprocessing.JoinableQueue is provided for task
management.

asyncio

Provides Queue, LifoQueue, PriorityQueue, and
JoinableQueue with APIs inspired by the classes in the queue and
multiprocessing modules, but adapted for managing tasks in
asynchronous programming.

heapq

In contrast to the previous three modules, heapq does not implement a
queue class, but provides functions like heappush and heappop that
let you use a mutable sequence as a heap queue or priority queue.



This ends our overview of alternatives to the list type, and also our
exploration of sequence types in general—except for the particulars of str
and binary sequences, which have their own chapter (Chapter 4).



Chapter Summary
Mastering the standard library sequence types is a prerequisite for writing
concise, effective, and idiomatic Python code.

Python sequences are often categorized as mutable or immutable, but it is
also useful to consider a different axis: flat sequences and container
sequences. The former are more compact, faster, and easier to use, but are
limited to storing atomic data such as numbers, characters, and bytes.
Container sequences are more flexible, but may surprise you when they
hold mutable objects, so you need to be careful to use them correctly with
nested data structures.

Unfortunately, Python has no foolproof immutable container sequence type:
even “immutable” tuples can have their values changed, when they contain
mutable items like lists or user-defined objects.

List comprehensions and generator expressions are powerful notations to
build and initialize sequences. If you are not yet comfortable with them,
take the time to master their basic usage. It is not hard, and soon you will be
hooked.

Tuples in Python play two roles: as records with unnamed fields and as
immutable lists. When using a tuple as an immutable list, remember that a
tuple value is only guaranteed to be fixed if all the items in it are also
immutable. Calling hash(t) on a tuple is a quick way to assert that its
value is fixed. A TypeError will be raised if t contains mutable items.

When a tuple is used as a record, tuple unpacking is the safest, most
readable way of extracting the the fields of the tuple. Beyond tuples, *
works with lists and iterables in many contexts, and some of its use cases
appeared in Python 3.5 with PEP 448—Additional Unpacking
Generalizations. Python 3.10 introduced pattern matching with
match/case, supporting more powerful unpacking, known as
destructuring.

Sequence slicing is a favorite Python syntax feature, and it is even more
powerful than many realize. Multidimensional slicing and ellipsis (...)

https://www.python.org/dev/peps/pep-0448/


notation, as used in NumPy, may also be supported by user-defined
sequences. Assigning to slices is a very expressive way of editing mutable
sequences.

Repeated concatenation as in seq * n is convenient and, with care, can
be used to initialize lists of lists containing immutable items. Augmented
assignment with += and *= behaves differently for mutable and immutable
sequences. In the latter case, these operators necessarily build new
sequences. But if the target sequence is mutable, it is usually changed in
place—but not always, depending on how the sequence is implemented.

The sort method and the sorted built-in function are easy to use and
flexible, thanks to the optional key argument: a function to calculate the
ordering criterion. By the way, key can also be used with the min and max
built-in functions.

Beyond lists and tuples, the Python standard library provides
array.array. Although NumPy and SciPy are not part of the standard
library, if you do any kind of numerical processing on large sets of data,
studying even a small part of these libraries can take you a long way.

We closed by visiting the versatile and thread-safe
collections.deque, comparing its API with that of list in Table 2-
4 and mentioning other queue implementations in the standard library.

Further Reading
Chapter 1, “Data Structures” of Python Cookbook, 3rd Edition (O’Reilly)
by David Beazley and Brian K. Jones has many recipes focusing on
sequences, including “Recipe 1.11. Naming a Slice,” from which I learned
the trick of assigning slices to variables to improve readability, illustrated in
our Example 2-12.

The second edition of Python Cookbook was written for Python 2.4, but
much of its code works with Python 3, and a lot of the recipes in Chapters 5
and 6 deal with sequences. The book was edited by Alex Martelli, Anna

http://bit.ly/Python-ckbk


Martelli Ravenscroft, and David Ascher, and it includes contributions by
dozens of Pythonistas. The third edition was rewritten from scratch, and
focuses more on the semantics of the language—particularly what has
changed in Python 3—while the older volume emphasizes pragmatics (i.e.,
how to apply the language to real-world problems). Even though some of
the second edition solutions are no longer the best approach, I honestly
think it is worthwhile to have both editions of Python Cookbook on hand.

The official Python Sorting HOW TO has several examples of advanced
tricks for using sorted and list.sort.

PEP 3132 — Extended Iterable Unpacking is the canonical source to read
about the new use of *extra syntax on the left hand of parallel
assignments. If you’d like a glimpse of Python evolving, Missing *-
unpacking generalizations is a bug tracker issue proposing enhancements to
the iterable unpacking notation. PEP 448 — Additional Unpacking
Generalizations resulted from the discussions in that issue.

As I mentioned in “Pattern Matching with Sequences”, Carol Willing’s
Structural Pattern Matching section of What’s New In Python 3.10 is a
great introduction to this major new feature in about 1400 words (that’s less
than 5 pages when Firefox makes a PDF from the HTML). PEP 636—
Structural Pattern Matching: Tutorial is also good, but longer. The same
PEP 636 includes Appendix A—Quick Intro. It is shorter than Willing’s
intro because it omits high level considerations about why pattern matching
is good for you. If you need more arguments to convince yourself or others
that pattern matching is good for Python, read the 22-page PEP 635—
Structural Pattern Matching: Motivation and Rationale.

Eli Bendersky’s blog post “Less Copies in Python with the Buffer Protocol
and memoryviews includes a short tutorial on memoryview.

There are numerous books covering NumPy in the market, and many don’t
mention “NumPy” in the title. Two examples are the open access Python
Data Science Handbook by Jake VanderPlas, and Wes McKinney’s Python
for Data Analysis, 2e.

http://docs.python.org/3/howto/sorting.html
http://python.org/dev/peps/pep-3132/
http://bugs.python.org/issue2292
https://www.python.org/dev/peps/pep-0448/
https://docs.python.org/3.10/whatsnew/3.10.html#pep-634-structural-pattern-matching
https://docs.python.org/3.10/whatsnew/3.10.html
https://www.python.org/dev/peps/pep-0636/
https://www.python.org/dev/peps/pep-0636/#appendix-a-quick-intro
https://www.python.org/dev/peps/pep-0635/
http://bit.ly/1Vm6K7Y
https://jakevdp.github.io/PythonDataScienceHandbook/
http://shop.oreilly.com/product/0636920050896.do


“NumPy is all about vectorization”. That is the opening sentence of Nicolas
P. Rougier’s open access book From Python to NumPy. Vectorized
operations apply mathematical functions to all elements of an array without
an explicit loop written in Python. They can operate in parallel, using
special vector instructions in modern CPUs, leveraging multiple cores or
delegating to the GPU, depending on the library. The first example in
Rougier’s book shows a speedup of 500 times after refactoring a nice
Pythonic class using a generator method, into a lean and mean function
calling a couple of NumPy vector functions.

To learn how to use deque (and other collections) see the examples and
practical recipes in 8.3. collections — Container datatypes in the Python
documentation.

The best defense of the Python convention of excluding the last item in
ranges and slices was written by Edsger W. Dijkstra himself, in a short
memo titled “Why Numbering Should Start at Zero”. The subject of the
memo is mathematical notation, but it’s relevant to Python because Dijkstra
explains with rigor and humor why a sequence like 2, 3, …, 12 should
always be expressed as 2 ≤ i < 13. All other reasonable conventions are
refuted, as is the idea of letting each user choose a convention. The title
refers to zero-based indexing, but the memo is really about why it is
desirable that 'ABCDE'[1:3] means 'BC' and not 'BCD' and why it
makes perfect sense to write range(2, 13) to produce 2, 3, 4, …, 12.
By the way, the memo is a handwritten note, but it’s beautiful and totally
readable. Dijkstra’s handwriting is so clear that someone created a font out
of his notes.

https://www.labri.fr/perso/nrougier/from-python-to-numpy/
https://docs.python.org/3/library/collections.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
http://www.fonts101.com/fonts/view/Uncategorized/34398/Dijkstra


SOAPBOX

The Nature of Tuples

In 2012, I presented a poster about the ABC language at PyCon US.
Before creating Python, Guido van Rossum had worked on the ABC
interpreter, so he came to see my poster. Among other things, we talked
about the ABC compounds, which are clearly the predecessors of
Python tuples. Compounds also support parallel assignment and are
used as composite keys in dictionaries (or tables, in ABC parlance).
However, compounds are not sequences. They are not iterable and you
cannot retrieve a field by index, much less slice them. You either handle
the compound as whole or extract the individual fields using parallel
assignment, that’s all.

I told Guido that these limitations make the main purpose of
compounds very clear: they are just records without field names. His
response: “Making tuples behave as sequences was a hack.”

This illustrates the pragmatic approach that made Python more practical
and more successful than ABC. From a language implementer
perspective, making tuples behave as sequences costs little. As a result,
the main use case for tuples as records is not so obvious, but we gained
immutable lists—even if their type is not as clearly named as
frozenlist.

Flat Versus Container Sequences

To highlight the different memory models of the sequence types, I used
the terms container sequence and flat sequence. The “container” word
is from the Data Model documentation:

Some objects contain references to other objects; these are called
containers.

I used the term “container sequence” to be specific, because there are
containers in Python that are not sequences, like dict and set.

https://docs.python.org/3/reference/datamodel.html#objects-values-and-types


Container sequences can be nested because they may contain objects of
any type, including their own type.

On the other hand, flat sequences are sequence types that cannot be
nested because they only hold simple atomic types like integers, floats,
or characters.

I adopted the term flat sequence because I needed something to contrast
with “container sequence.”

Update: despite the previous use of the word “containers” in the
official documentation, there is an abstract class in
collections.abc called Container. That ABC has just one
method, __contains__—the special method behind the in operator.
This means that strings and arrays, which are not containers in the
traditional sense, are virtual subclasses of Container because they
implement __contains__. This is just one more example of humans
using a word to mean different things. In this book I’ll write “container”
with lowercase letters to mean “an object that contains references to
other objects” and Container with capitalized initial in a single-
spaced font to refer to collections.abc.Container.

Mixed Bag Lists

Introductory Python texts emphasize that lists can contain objects of
mixed types, but in practice that feature is not very useful: we put items
in a list to process them later, which implies that all items should
support at least some operation in common (i.e., they should all
“quack” whether or not they are genetically 100% ducks). For example,
you can’t sort a list in Python 3 unless the items in it are comparable:

>>> l = [28, 14, '28', 5, '9', '1', 0, 6, '23', 19] 
>>> sorted(l) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unorderable types: str() < int()



Unlike lists, tuples often hold items of different types. That’s natural: if
each item in a tuple is a field, then each field may have a different type.

Key Is Brilliant

The optional key argument of list.sort, sorted, max, and min
is a great idea. Other languages force you to provide a two-argument
comparison function like the deprecated cmp(a, b) function in
Python 2. Using key is both simpler and more efficient. It’s simpler
because you just define a one-argument function that retrieves or
calculates whatever criterion you want to use to sort your objects; this is
easier than writing a two-argument function to return –1, 0, 1. It is also
more efficient because the key function is invoked only once per item,
while the two-argument comparison is called every time the sorting
algorithm needs to compare two items. Of course, Python also has to
compare the keys while sorting, but that comparison is done in
optimized C code and not in a Python function that you wrote.

By the way, using key we can sort a mixed bag of numbers and
number-like strings. We just need to decide whether we want to treat all
items as integers or strings:

>>> l = [28, 14, '28', 5, '9', '1', 0, 6, '23', 19] 
>>> sorted(l, key=int) 
[0, '1', 5, 6, '9', 14, 19, '23', 28, '28'] 
>>> sorted(l, key=str) 
[0, '1', 14, 19, '23', 28, '28', 5, 6, '9']

Oracle, Google, and the Timbot Conspiracy

The sorting algorithm used in sorted and list.sort is Timsort, an
adaptive algorithm that switches from insertion sort to merge sort
strategies, depending on how ordered the data is. This is efficient
because real-world data tends to have runs of sorted items. There is a
Wikipedia article about it.

Timsort was first deployed in CPython, in 2002. Since 2009, Timsort is
also used to sort arrays in both standard Java and Android, a fact that

http://en.wikipedia.org/wiki/Timsort


became widely known when Oracle used some of the code related to
Timsort as evidence of Google infringement of Sun’s intellectual
property. See Oracle v. Google - Day 14 Filings.

Timsort was invented by Tim Peters, a Python core developer so
prolific that he is believed to be an AI, the Timbot. You can read about
that conspiracy theory in Python Humor. Tim also wrote The Zen of
Python: import this.

1  Leo Geurts, Lambert Meertens, and Steven Pemberton, ABC Programmer’s Handbook, p. 8.

2  Thanks to reader Tina Lapine for pointing this out.

3  Thanks to tech reviewer Leonardo Rochael for this example.

4  In my view, a sequence of if/elif/elif/.../else blocks is a fine replacement for
switch/case. It doesn’t suffer from the fallthrough and dangling else problems that some
language designers irrationally copied from C—decades after they were widely known as the
cause of countless bugs.

5  The latter is named eval in Norvig’s code; I renamed it to avoid confusion with Python’s
eval built-in.

6  In “Memory Views” we show that especially constructed memory views can have more than
one dimension.

7  No, I did not get this backwards: the ellipsis class name is really all lowercase and the
instance is a built-in named Ellipsis, just like bool is lowercase but its instances are
True and False.

8  str is an exception to this description. Because string building with += in loops is so
common in real codebases, CPython is optimized for this use case. Instances str are allocated
in memory with extra room, so that concatenation does not require copying the whole string
every time.

9  Thanks to Leonardo Rochael and Cesar Kawakami for sharing this riddle at the 2013
PythonBrasil Conference.

10  Readers suggested that the operation in the example can be done with
t[2].extend([50,60]), without errors. I am aware of that, but my intent is to show the
strange behavior of the += operator in this case.

11  Receiver is the target of a method call, the object bound to self in the method body.

12  Python’s main sorting algorithm is named Timsort after its creator, Tim Peters. For a bit of
Timsort trivia, see the “Soapbox”.

http://bit.ly/1Vm6Ool
https://www.python.org/doc/humor/#id9
https://en.wikipedia.org/wiki/Switch_statement#Fallthrough
https://en.wikipedia.org/wiki/Dangling_else


13  The words in this example are sorted alphabetically because they are 100% made of
lowercase ASCII characters. See warning after the example.

14  First in, first out—the default behavior of queues.



Chapter 3. Dictionaries and Sets

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this chapter,
please reach out to the author at fluentpython2e@ramalho.org.

Python is basically dicts wrapped in loads of syntactic sugar.
—Lalo Martins, early digital nomad and Pythonista.

We use dictionaties in all our Python programs. If not directly in our code, then
indirectly because the dict type is a fundamental part of Python’s
implementation. Class and instance attributes, module namespaces, and
function keyword arguments are some of the core Python constructs
represented by dictionaries in memory. The __builtins__.__dict__
stores all built-in types, objects, and functions.

Because of their crucial role, Python dicts are highly optimized—and continue
to get improvements. Hash tables are the engines behind Python’s high-
performance dicts.

Other built-in types based on hash tables are set and frozenset. These
offer richer APIs and operators than the sets you may have encountered in
other popular languages. In particular, Python sets implement all the
fundamental operations from set theory, like union, intersection, subset tests
etc. With them, we can express algorithms in a more declarative way, avoiding
lots of nested loops and conditionals.

mailto:fluentpython2e@ramalho.org


Here is a brief outline of this chapter:

Modern syntax to build and handle dicts and mappings, including
enhanced unpacking and pattern matching.

Common methods of mapping types.

Special handling for missing keys.

Variations of dict in the standard library.

The set and frozenset types.

Implications of hash tables in the behavior of sets and dictionaries.

What’s new in this chapter
Most changes in this Second Edition cover new features related to mapping
types:

“Modern dict Syntax” covers enhanced unpacking syntax and
different ways of merging mappings—including the | and |=
operators supported by dicts since Python 3.9.

“Pattern Matching with Mappings” illustrates handling mappings with
match/case, since Python 3.10.

Section “collections.OrderedDict” now focuses on the small
but still relevant differences between dict and OrderedDict—
considering that dict keeps the key insertion order since Python 3.6.

New sections on the view objects returned by dict.keys,
dict.items, and dict.values: “Dictionary views” and “Set
operations on dict views”.

The underlying implementation of dict and set still relies on hash tables,
but the dict code has two important optimizations which save memory and
preserve the insertion order of the keys in dict. The “Practical Consequences
of How dict Works” and “Practical Consequences of How Sets Work”
summarize what you need to know to use them well.



NOTE
After adding more than 200 pages in this Second Edition, I moved the optional section
Internals of sets and dicts to the fluentpython.com companion Web site. The updated and
expanded 18-page post includes explanations and diagrams about:

The hash table algorithm and data structures, starting with its use in set, which is
simpler to understand.

The memory optimization that preserves key insertion order in dict instances
(since Python 3.6).

The key-sharing layout for dictionaries holding instance attributes—the
__dict__ of user-defined objects (optimization implemented in Python 3.3).

Modern dict Syntax
The next sections decribes advanced syntax features to build, unpack, and
process mappings. Some of these features are not new in the language, but but
may be new to you. Others require Python 3.9 (like the | operator) or Python
3.10 (like match/case). Let’s start with one of the best and oldest of these
features.

dict Comprehensions
Since Python 2.7, the syntax of listcomps and genexps was adapted to dict
comprehensions (and set comprehensions as well, which we’ll soon visit). A
dictcomp builds a dict instance by taking key:value pairs from any
iterable. Example 3-1 shows the use of dict comprehensions to build two
dictionaries from the same list of tuples.

Example 3-1. Examples of dict comprehensions
>>> dial_codes = [                                                   
...     (880, 'Bangladesh'), 
...     (55,  'Brazil'), 
...     (86,  'China'), 
...     (91,  'India'), 
...     (62,  'Indonesia'), 
...     (81,  'Japan'), 
...     (234, 'Nigeria'), 
...     (92,  'Pakistan'), 

https://www.fluentpython.com/extra/internals-of-sets-and-dicts/
https://www.fluentpython.com/
https://www.fluentpython.com/extra/internals-of-sets-and-dicts/


...     (7,   'Russia'), 

...     (1,   'United States'), 

... ] 
>>> country_dial = {country: code for code, country in dial_codes}   
>>> country_dial 
{'Bangladesh': 880, 'Brazil': 55, 'China': 86, 'India': 91, 
'Indonesia': 62, 
'Japan': 81, 'Nigeria': 234, 'Pakistan': 92, 'Russia': 7, 'United 
States': 1} 
>>> {code: country.upper()                                           
...     for country, code in sorted(country_dial.items()) 
...     if code < 70} 
{55: 'BRAZIL', 62: 'INDONESIA', 7: 'RUSSIA', 1: 'UNITED STATES'}

An iterable of key-value pairs like dial_codes can be passed directly to
the dict constructor, but…

…here we swap the pairs: country is the key, and code is the value.

Sorting country_dial by name, reversing the pairs again, uppercasing
values, and filtering items with code < 70.

If you’re used to listcomps, dictcomps are a natural next step. If you aren’t, the
spread of the comprehension syntax means it’s now more profitable than ever
to become fluent in it.

Unpacking Mappings
PEP 448—Additional Unpacking Generalizations enhanced the support of
mapping unpackings in two ways, since Python 3.5.

First, we can apply ** to more than one argument in a function call. This
works when keys are all strings and unique accross all arguments (because
duplicate keyword arguments are forbidden).

>>> def dump(**kwargs): 
...     return kwargs 
... 
>>> dump(**{'x': 1}, y=2, **{'z': 3}) 
{'x': 1, 'y': 2, 'z': 3}

https://www.python.org/dev/peps/pep-0448/


Second, ** can be used inside a dict literal—also multiple times.

>>> {'a': 0, **{'x': 1}, 'y': 2, **{'z': 3, 'x': 4}} 
{'a': 0, 'x': 4, 'y': 2, 'z': 3}

In this case, duplicate keys are allowed. Later occurrences overwrite previous
ones—see the value mapped to x in the example.

This syntax can also be used to merge mappings, but there are other ways.
Please read on.

Merging Mappings with |
Python 3.9 supports using | and |= to merge mappings. This makes sense,
since these are also the set union operators.

The | operator creates a new mapping:

>>> d1 = {'a': 1, 'b': 3} 
>>> d2 = {'a': 2, 'b': 4, 'c': 6} 
>>> d1 | d2 
{'a': 2, 'b': 4, 'c': 6}

Usually the type of the new mapping will be the same as the type of the left
operand—d1 in the example—but it can be the type of the second operand if
user-defined types are involved, according the operator overloading rules we
explore in Chapter 16.

To update an existing mapping in-place, use |=. Continuing from the previous
example, d1 was not changed, but now it is:

>>> d1 
{'a': 1, 'b': 3} 
>>> d1 |= d2 
>>> d1 
{'a': 2, 'b': 4, 'c': 6}



TIP
If you need to maintain code to run on Python 3.8 or earlier, the Motivation section of PEP
584—Add Union Operators To dict provides a good summary of other ways to merge
mappings.

Now let’s see how pattern matching applies to mappings.

Pattern Matching with Mappings
The match/case statement supports subjects that are mapping objects.
Patterns for mappings look like dict literals, but they can match instances of
any actual or virtual subclass of collections.abc.Mapping.

In Chapter 2 we focused on sequence patterns only, but different types of
patterns can be combined and nested. Thanks to destructuring, pattern matching
is a powerful tool to process records structured like nested mappings and
sequences, which we often need to read from JSON APIs and databases with
semi-structured schemas, like MongoDB, EdgeDB, or PostgreSQL.
Example 3-2 demonstrates that. The simple type hints in get_creators
make it clear that it takes a dict and returns a list.

Example 3-2. creator.py: get_creators() extracts names of creators from media
records.
def get_creators(record: dict) -> list: 
    match record: 
        case {'type': 'book', 'api': 2, 'authors': [*names]}:   
            return names 
        case {'type': 'book', 'api': 1, 'author': name}:   
            return [name] 
        case {'type': 'book'}:   
            raise ValueError(f"Invalid 'book' record: {record!r}") 
        case {'type': 'movie', 'director': name}:   
            return [name] 
        case _:   
            raise ValueError(f'Invalid record: {record!r}')

Match any mapping with 'type': 'book', 'api' :2 and an
'authors' key mapped to a sequence. Return the items in the sequence,
as a new list.

1

https://www.python.org/dev/peps/pep-0584/#motivation
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Match any mapping with 'type': 'book', 'api' :1 and an
'author' key mapped to any object. Return the object inside a list.

Any other mapping with 'type': 'book' is invalid, raise
ValueError.

Match any mapping with 'type': 'movie' and a 'director' key
mapped to a single object. Return the object inside a list.

Any other subject is invalid, raise ValueError.

Example 3-2 shows some useful practices for handling semi-structured data
such as JSON records:

include a field describing the kind of record (e.g. 'type':
'movie');

include a field identifying the schema version (e.g. 'api': 2') to
allow for future evolution of public APIs;

have case clauses to handle invalid records of a specific type (e.g.
'book'), as well as a catch-all.

Now let’s see how get_creators handles some concrete doctests:

>>> b1 = dict(api=1, author='Douglas Hofstadter', 
...         type='book', title='Gödel, Escher, Bach') 
>>> get_creators(b1) 
['Douglas Hofstadter'] 
>>> from collections import OrderedDict 
>>> b2 = OrderedDict(api=2, type='book', 
...         title='Python in a Nutshell', 
...         authors='Martelli Ravenscroft Holden'.split()) 
>>> get_creators(b2) 
['Martelli', 'Ravenscroft', 'Holden'] 
>>> get_creators({'type': 'book', 'pages': 770}) 
Traceback (most recent call last): 
    ... 
ValueError: Invalid 'book' record: {'type': 'book', 'pages': 770} 
>>> get_creators('Spam, spam, spam') 
Traceback (most recent call last): 



    ... 
ValueError: Invalid record: 'Spam, spam, spam'

Note that the order of the keys in the patterns is irrelevant, even if the subject is
an OrderedDict as b2.

In contrast with sequence patterns, mapping patterns succeed on partial
matches. In the doctests, the b1 and b2 subjects include a 'title' key that
does not appear in any 'book' pattern, yet they match.

There is no need to use **extra to match extra key-value pairs, but if you
want to capture them as a dict, you can prefix one variable with **. It must
be the last in the pattern, and **_ is forbidden because it would be redundant.
A simple example:

>>> food = dict(category='ice cream', flavor='vanilla', cost=199) 
>>> match food: 
...     case {'category': 'ice cream', **details}: 
...         print(f'Ice cream details: {details}') 
... 
Ice cream details: {'flavor': 'vanilla', 'cost': 199}

In “Automatic Handling of Missing Keys” we’ll study defaultdict and
other mappings where key lookups via __getitem__ (i.e. d[key]) succeed
because missing items are created on the fly. In the context of pattern matching,
a match succeeds only if the subject already has the required keys at the top of
the match statement.

TIP
The automatic handling of missing keys is not triggered because pattern matching always
uses the d.get(key, sentinel) method—where the default sentinel is a special
marker value that cannot occur in user data.

Moving on from syntax and structure, let’s study the API of mappings.

Standard API of Mapping Types



The collections.abc module provides the Mapping and
MutableMapping ABCs describing the interfaces of dict and similar
types. See Figure 3-1.

Figure 3-1. Simplified UML class diagram for the MutableMapping and its superclasses from
collections.abc (inheritance arrows point from subclasses to superclasses; names in italic are abstract

classes and abstract methods)

The main value of the ABCs is documenting and formalizing the standard
interfaces for mappings, and serving as criteria for isinstance tests in code
that needs to support mappings in a broad sense:

>>> my_dict = {} 
>>> isinstance(my_dict, abc.Mapping) 
True 
>>> isinstance(my_dict, abc.MutableMapping) 
True



TIP
Using isinstance with an ABC is often better than checking whether a function
argument is of the concrete dict type, because then alternative mapping types can be used.
We’ll discuss this in detail in Chapter 13.

To implement a custom mapping, it’s easier to extend
collections.UserDict, or to wrap a dict by composition, instead of
subclassing these ABCs. The collections.UserDict class and all
concrete mapping classes in the standard library encapsulate the basic dict in
their implementation, which in turn is built on a hash table. Therefore, they all
share the limitation that the keys must be hashable (the values need not be
hashable, only the keys). If you need a refresher, the next section explains.

What is Hashable
Here is part of the definition of hashable adapted from the Python Glossary:

An object is hashable if it has a hash code which never changes during its
lifetime (it needs a __hash__() method), and can be compared to other
objects (it needs an __eq__() method). Hashable objects which compare
equal must have the same hash code.

Numeric types and flat immutable types str and bytes are all hashable.
Container types are hashable if they are immutable and all contained objects
are also hashable. A frozenset is always hashable, because every element it
contains must be hashable by definition. A tuple is hashable only if all its
items are hashable. See tuples tt, tl, and tf:

>>> tt = (1, 2, (30, 40)) 
>>> hash(tt) 
8027212646858338501 
>>> tl = (1, 2, [30, 40]) 
>>> hash(tl) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unhashable type: 'list' 
>>> tf = (1, 2, frozenset([30, 40])) 
>>> hash(tf) 
-4118419923444501110

2
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The hash code of an object may be different depending on the version of
Python, the machine architecture, and because of a salt added to the hash
computation for security reasons.  The hash code of a correctly implemented
object is guaranteed to be constant only within one Python process.

User-defined types are hashable by default because their hash code is their
id() and the __eq__() method inherited from the object class simply
compares the object ids. If an object implements a custom __eq__() which
takes into account its internal state, it will be hashable only if its
__hash__() always returns the same hash code. In practice, this requires
that __eq__() and __hash__() only take into account instance attributes
that never change during the life of the object.

Now let’s review the API of the most commonly used mapping types in
Python: dict, defaultdict and OrderedDict.

Overview of Common Mapping Methods
The basic API for mappings is quite rich. Table 3-1 shows the methods
implemented by dict and two popular variations: defaultdict and
OrderedDict, both defined in the collections module.
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d.clear() ● ● ● Remove all items

d.__contains_
_(k)

● ● ● k in d

d.copy() ● ● ● Shallow copy



d.__copy__() ● Support for copy.
copy(d)

d.default_fac
tory

● Callable invoked 
by __missing__ 
to set missing 
values

d.__delitem__
(k)

● ● ● del d[k]—
remove item with 
key k

d.fromkeys(i
t, [initial])

● ● ● New mapping from 
keys in iterable, 
with optional initial 
value (defaults to N
one)

d.get(k, [def
ault])

● ● ● Get item with key 
k, return default 
or None if missing

d.__getitem__
(k)

● ● ● d[k]—get item 
with key k

d.items() ● ● ● Get view over items
—(key, valu
e) pairs

d.__iter__() ● ● ● Get iterator over 
keys

d.keys() ● ● ● Get view over keys

d.__len__() ● ● ● len(d)—number 
of items

d.__missing__
(k)

● Called when __ge
titem__ cannot 
find the key

d.move_to_end
(k, [last])

● Move k first or last 
position (last is T
rue by default)

d.__or__(othe
r)

● ● ● Support for d1 | 
d2 to create new d

a



ict merging d1 
and d2 (Python ≥ 
3.9)

d.__ior__(oth
er)

● ● ● Support for d1 |= 
d2 to update d1 
with d2 (Python ≥ 
3.9)

d.pop(k, [def
ault])

● ● ● Remove and return 
value at k, or defa
ult or None if 
missing

d.popitem() ● ● ● Remove and return 
the last inserted 
item as (key, va
lue) 

d.__reversed_
_()

● ● ● Support for rever
se(d)—returns 
iterator for keys 
from last to first 
inserted.

d.__ror__(oth
er)

● ● ● Support for other 
| dd—reversed 
union operator 
(Python ≥ 3.9)

d.setdefault
(k, [defaul
t])

● ● ● If k in d, return 
d[k]; else set d
[k] = default 
and return it

d.__setitem__
(k, v)

● ● ● d[k] = v—put v 
at k

d.update(m, 
[**kwargs])

● ● ● Update d with 
items from 
mapping or iterable 
of (key, valu
e) pairs

d.values() ● ● ● Get view over 
values

b
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a  default_factory is not a method, but a callable attribute set by the end user when a defaultdict 
is instantiated.

b  OrderedDict.popitem(last=False) removes the first item inserted (FIFO). The last keyword 
argument is not supported in dict or defaultdict as recently as Python 3.10b3.

c  Reversed operators are explained in Chapter 16.

The way d.update(m) handles its first argument m is a prime example of
duck typing: it first checks whether m has a keys method and, if it does,
assumes it is a mapping. Otherwise, update() falls back to iterating over m,
assuming its items are (key, value) pairs. The constructor for most
Python mappings uses the logic of update() internally, which means they
can be initialized from other mappings or from any iterable object producing
(key, value) pairs.

A subtle mapping method is setdefault(). It avoids redundant key
lookups when we need to update the value of an item in-place. The next section
shows how to use it.

Inserting or Updating Mutable Values
In line with Python’s fail-fast philosophy, dict access with d[k] raises an
error when k is not an existing key. Pythonistas know that d.get(k,
default) is an alternative to d[k] whenever a default value is more
convenient than handling KeyError. However, when you retrieve a mutable
value and want to update it, there is better way.

Consider a script to index text, producing a mapping where each key is a word
and the value is a list of positions where that word occurs, as shown in
Example 3-3.

Example 3-3. Partial output from Example 3-4 processing the Zen of Python;
each line shows a word and a list of occurrences coded as pairs: (line_number,
column_number)
$ python3 index0.py zen.txt 
a [(19, 48), (20, 53)] 
Although [(11, 1), (16, 1), (18, 1)] 
ambiguity [(14, 16)] 



and [(15, 23)] 
are [(21, 12)] 
aren [(10, 15)] 
at [(16, 38)] 
bad [(19, 50)] 
be [(15, 14), (16, 27), (20, 50)] 
beats [(11, 23)] 
Beautiful [(3, 1)] 
better [(3, 14), (4, 13), (5, 11), (6, 12), (7, 9), (8, 11), (17, 8), 
(18, 25)] 
...

Example 3-4, a suboptimal script written to show one case where dict.get
is not the best way to handle a missing key. I adapted it from an example by
Alex Martelli.

Example 3-4. index0.py uses dict.get to fetch and update a list of word
occurrences from the index (a better solution is in Example 3-5)
"""Build an index mapping word -> list of occurrences""" 
 
import re 
import sys 
 
WORD_RE = re.compile(r'\w+') 
 
index = {} 
with open(sys.argv[1], encoding='utf-8') as fp: 
    for line_no, line in enumerate(fp, 1): 
        for match in WORD_RE.finditer(line): 
            word = match.group() 
            column_no = match.start() + 1 
            location = (line_no, column_no) 
            # this is ugly; coded like this to make a point 
            occurrences = index.get(word, [])   
            occurrences.append(location)        
            index[word] = occurrences           
 
# display in alphabetical order 
for word in sorted(index, key=str.upper):   
    print(word, index[word])

Get the list of occurrences for word, or [] if not found.

Append new location to occurrences.
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Put changed occurrences into index dict; this entails a second search
through the index.

In the key= argument of sorted I am not calling str.upper, just
passing a reference to that method so the sorted function can use it to
normalize the words for sorting.

The three lines dealing with occurrences in Example 3-4 can be replaced
by a single line using dict.setdefault. Example 3-5 is closer to Alex
Martelli’s code.

Example 3-5. index.py uses dict.setdefault to fetch and update a list of word
occurrences from the index in a single line; contrast with Example 3-4
"""Build an index mapping word -> list of occurrences""" 
 
import re 
import sys 
 
WORD_RE = re.compile(r'\w+') 
 
index = {} 
with open(sys.argv[1], encoding='utf-8') as fp: 
    for line_no, line in enumerate(fp, 1): 
        for match in WORD_RE.finditer(line): 
            word = match.group() 
            column_no = match.start() + 1 
            location = (line_no, column_no) 
            index.setdefault(word, []).append(location)   
 
# display in alphabetical order 
for word in sorted(index, key=str.upper): 
    print(word, index[word])

Get the list of occurrences for word, or set it to [] if not found;
setdefault returns the value, so it can be updated without requiring a
second search.

In other words, the end result of this line…

my_dict.setdefault(key, []).append(new_value)
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…is the same as running…

if key not in my_dict: 
    my_dict[key] = [] 
my_dict[key].append(new_value)

…except that the latter code performs at least two searches for key—three if
it’s not found—while setdefault does it all with a single lookup.

A related issue, handling missing keys on any lookup (and not only when
inserting), is the subject of the next section.

Automatic Handling of Missing Keys
Sometimes it is convenient to have mappings that return some made-up value
when a missing key is searched. There are two main approaches to this: one is
to use a defaultdict instead of a plain dict. The other is to subclass
dict or any other mapping type and add a __missing__ method. Both
solutions are covered next.

defaultdict: Another Take on Missing Keys
A collections.defaultdict instance creates items with a default value
on demand whenever a missing key is searched using d[k] syntax.
Example 3-6 uses defaultdict to provide another elegant solution to the
word index task from Example 3-5.

Here is how it works: when instantiating a defaultdict, you provide a
callable to produce a default value whenever __getitem__ is passed a
nonexistent key argument.

For example, given a defaultdict created as dd =
defaultdict(list), if 'new-key' is not in dd, the expression
dd['new-key'] does the following steps:

1. Calls list() to create a new list.

2. Inserts the list into dd using 'new-key' as key.



3. Returns a reference to that list.

The callable that produces the default values is held in an instance attribute
named default_factory.

Example 3-6. index_default.py: using defaultdict instead of the
setdefault method
"""Build an index mapping word -> list of occurrences""" 
 
import collections 
import re 
import sys 
 
WORD_RE = re.compile(r'\w+') 
 
index = collections.defaultdict(list)      
with open(sys.argv[1], encoding='utf-8') as fp: 
    for line_no, line in enumerate(fp, 1): 
        for match in WORD_RE.finditer(line): 
            word = match.group() 
            column_no = match.start() + 1 
            location = (line_no, column_no) 
            index[word].append(location)   
 
# display in alphabetical order 
for word in sorted(index, key=str.upper): 
    print(word, index[word])

Create a defaultdict with the list constructor as
default_factory.

If word is not initially in the index, the default_factory is called to
produce the missing value, which in this case is an empty list that is then
assigned to index[word] and returned, so the .append(location)
operation always succeeds.

If no default_factory is provided, the usual KeyError is raised for
missing keys.



WARNING
The default_factory of a defaultdict is only invoked to provide default values
for __getitem__ calls, and not for the other methods. For example, if dd is a
defaultdict, and k is a missing key, dd[k] will call the default_factory to
create a default value, but dd.get(k) still returns None, and k in dd is False.

The mechanism that makes defaultdict work by calling
default_factory is the __missing__ special method, a feature that we
discuss next.

The __missing__ Method
Underlying the way mappings deal with missing keys is the aptly named
__missing__ method. This method is not defined in the base dict class,
but dict is aware of it: if you subclass dict and provide a __missing__
method, the standard dict.__getitem__ will call it whenever a key is not
found, instead of raising KeyError.

WARNING
The __missing__ method is only called by __getitem__ (i.e., for the d[k] operator).
The presence of a __missing__ method has no effect on the behavior of other methods
that look up keys, such as get or __contains__ (which implements the in operator).
This is why the default_factory of defaultdict works only with __getitem__,
as noted in the warning at the end of the previous section.

Suppose you’d like a mapping where keys are converted to str when looked
up. A concrete use case is a device library for IoT , where a programmable
board with general purpose I/O pins (e.g., a Raspberry Pi or an Arduino) is
represented by a Board class with a my_board.pins attribute, which is a
mapping of physical pin identifiers to pin software objects. The physical pin
identifier may be just a number or a string like "A0" or "P9_12". For
consistency, it is desirable that all keys in board.pins are strings, but it is
also convenient that looking up a pin by number, as in
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my_arduino.pin[13], so that beginners are not tripped when they want to
blink the LED on pin 13 of their Arduinos. Example 3-7 shows how such a
mapping would work.

Example 3-7. When searching for a nonstring key, StrKeyDict0 converts it to
str when it is not found
Tests for item retrieval using `d[key]` notation:: 
 
    >>> d = StrKeyDict0([('2', 'two'), ('4', 'four')]) 
    >>> d['2'] 
    'two' 
    >>> d[4] 
    'four' 
    >>> d[1] 
    Traceback (most recent call last): 
      ... 
    KeyError: '1' 
 
Tests for item retrieval using `d.get(key)` notation:: 
 
    >>> d.get('2') 
    'two' 
    >>> d.get(4) 
    'four' 
    >>> d.get(1, 'N/A') 
    'N/A' 
 
 
Tests for the `in` operator:: 
 
    >>> 2 in d 
    True 
    >>> 1 in d 
    False

Example 3-8 implements a class StrKeyDict0 that passes the preceding
doctests.

TIP
A better way to create a user-defined mapping type is to subclass
collections.UserDict instead of dict (as we’ll do in Example 3-9). Here we
subclass dict just to show that __missing__ is supported by the built-in
dict.__getitem__ method.



Example 3-8. StrKeyDict0 converts nonstring keys to str on lookup (see tests in
Example 3-7)
class StrKeyDict0(dict):   
 
    def __missing__(self, key): 
        if isinstance(key, str):   
            raise KeyError(key) 
        return self[str(key)]   
 
    def get(self, key, default=None): 
        try: 
            return self[key]   
        except KeyError: 
            return default   
 
    def __contains__(self, key): 
        return key in self.keys() or str(key) in self.keys()  

StrKeyDict0 inherits from dict.

Check whether key is already a str. If it is, and it’s missing, raise
KeyError.

Build str from key and look it up.

The get method delegates to __getitem__ by using the self[key]
notation; that gives the opportunity for our __missing__ to act.

If a KeyError was raised, __missing__ already failed, so we return
the default.

Search for unmodified key (the instance may contain non-str keys), then
for a str built from the key.

Take a moment to consider why the test isinstance(key, str) is
necessary in the __missing__ implementation.

Without that test, our __missing__ method would work OK for any key k
—str or not str—whenever str(k) produced an existing key. But if
str(k) is not an existing key, we’d have an infinite recursion. In the last line



of __missing__, self[str(key)] would call __getitem__ passing
that str key, which in turn would call __missing__ again.

The __contains__ method is also needed for consistent behavior in this
example, because the operation k in d calls it, but the method inherited from
dict does not fall back to invoking __missing__. There is a subtle detail
in our implementation of __contains__: we do not check for the key in the
usual Pythonic way—k in my_dict—because str(key) in self would
recursively call __contains__. We avoid this by explicitly looking up the
key in self.keys().

NOTE
A search like k in my_dict.keys() is efficient in Python 3 even for very large
mappings because dict.keys() returns a view, which is similar to a set, as we’ll see in
“Set operations on dict views”. However, remember that k in my_dict does the same
job, and is faster because it avoids the attribute lookup to find the .keys method. I had a
specific reason to use self.keys() in the __contains__ method in Example 3-8.

The check for the unmodified key—key in self.keys()—is necessary
for correctness because StrKeyDict0 does not enforce that all keys in the
dictionary must be of type str. Our only goal with this simple example is to
make searching “friendlier” and not enforce types.

So far we have covered the dict and defaultdict mapping types, but the
standard library comes with other mapping implementations, which we discuss
next.

Variations of dict
In this section is an overview of mapping types included in the standard library,
besides defaultdict, already covered in “defaultdict: Another Take
on Missing Keys”.

collections.OrderedDict



Now that the built-in dict also keeps the keys ordered since Python 3.6, the
most common reason to use OrderedDict is writing code that is backward-
compatible with earlier Python versions. Having said that, Python’s
documentation lists some remaining differences between dict and
OrderedDict, which I quote here—only reordering the items for relevance
in daily use:

The equality operation for OrderedDict checks for matching order.

The popitem() method of OrderedDict has a different
signature. It accepts an optional argument to specify which item is
popped.

OrderedDict has a move_to_end() method to efficiently
reposition an element to an endpoint.

The regular dict was designed to be very good at mapping
operations. Tracking insertion order was secondary.

OrderedDict was designed to be good at reordering operations.
Space efficiency, iteration speed, and the performance of update
operations were secondary.

Algorithmically, OrderedDict can handle frequent reordering
operations better than dict. This makes it suitable for tracking recent
accesses (for example in an LRU cache).

collections.ChainMap

A ChainMap instance holds a list of mappings that can be searched as one.
The lookup is performed on each input mapping in the order they appear in the
constructor call, and succeeds as soon as the key is found in one of those
mappings. For example:

>>> d1 = dict(a=1, b=3) 
>>> d2 = dict(a=2, b=4, c=6) 
>>> from collections import ChainMap 
>>> chain = ChainMap(d1, d2) 
>>> chain['a'] 
1 



>>> chain['c'] 
6

The ChainMap instance does not copy the input mappings, but holds
references to them. A later update to a key in the ChainMap will update the
first input mapping where that key appears. Continuing the previous example:

>>> chain['b'] = -1 
>>> d1 
{'a': 1, 'b': -1} 
>>> d2 
{'a': 2, 'b': 4, 'c': 6}

ChainMap is useful to implement interpreters for languages with nested
scopes, where each mapping represents a scope context, from the innermost
enclosing scope to the outermost scope. The “ChainMap objects” section of the
collections docs has several examples of ChainMap usage, including
this snippet inspired by the basic rules of variable lookup in Python:

import builtins 
pylookup = ChainMap(locals(), globals(), vars(builtins))

collections.Counter

A mapping that holds an integer count for each key. Updating an existing key
adds to its count. This can be used to count instances of hashable objects or as a
multiset (see below). Counter implements the + and - operators to combine
tallies, and other useful methods such as most_common([n]), which
returns an ordered list of tuples with the n most common items and their
counts; see the documentation. Here is Counter used to count letters in
words:

>>> ct = collections.Counter('abracadabra') 
>>> ct 
Counter({'a': 5, 'b': 2, 'r': 2, 'c': 1, 'd': 1}) 
>>> ct.update('aaaaazzz') 
>>> ct 
Counter({'a': 10, 'z': 3, 'b': 2, 'r': 2, 'c': 1, 'd': 1}) 
>>> ct.most_common(3) 
[('a', 10), ('z', 3), ('b', 2)]

http://bit.ly/1Vm7I4c:
http://bit.ly/1JHVi2E


Note that the 'b' and 'r' keys are tied in third place, but
ct.most_common(3) shows only three counts.

To use collections.Counter as a multiset, pretend each key is an
element in the set, and the count is the number of occurrences of that element
in the set.

shelve.Shelf

The shelve module in the standard library provides persistent storage for a
mapping of string keys to Python objects serialized in the pickle binary
format. The curious name of shelve makes sense when you realize that
pickle jars are stored in shelves.

The shelve.open module-level function returns a shelve.Shelf
instance—a simple key-value DBM database backed by the dbm module, with
these characteristics:

shelve.Shelf subclasses abc.MutableMapping, so it
provides the essential methods we expect of a mapping type.

In addition, shelve.Shelf provides a few other I/O management
methods, like sync and close.

a Shelf instance is a context manager, so you can use a with block
to make sure it is closed after use.

Keys and values are saved whenever a new value is assigned to a key.

The keys must be strings.

The values must be objects that the pickle module can serialize.

The documentation for the shelve, dbm, and pickle modules provide more
details and some caveats.

https://docs.python.org/3/library/shelve.html
https://docs.python.org/3/library/dbm.html
https://docs.python.org/3/library/pickle.html


WARNING
Python’s pickle is easy to use in the simplest cases, but has several drawbacks. Read Ned
Batchelder’s Pickle’s nine flaws before adopting any solution involving pickle. In his
post, Ned mentions other serialization formats to consider.

OrderedDict, ChainMap, Counter, and Shelf are ready to use but can
also be customized by subclassing. In contrast, UserDict is intended only as
a base class to be extended.

Subclassing UserDict Instead of dict
It’s better to create a new mapping type by extending
collections.UserDict rather than dict. We realize that when we try to
extend our StrKeyDict0 from Example 3-8 to make sure that any keys
added to the mapping are stored as str.

The main reason why it’s better to subclass UserDict rather than dict is
that the built-in has some implementation shortcuts that end up forcing us to
override methods that we can just inherit from UserDict with no problems.

Note that UserDict does not inherit from dict, but uses composition: it has
an internal dict instance, called data, which holds the actual items. This
avoids undesired recursion when coding special methods like __setitem__,
and simplifies the coding of __contains__, compared to Example 3-8.

Thanks to UserDict, StrKeyDict (Example 3-9) is actually shorter than
StrKeyDict0 (Example 3-8), but it does more: it stores all keys as str,
avoiding unpleasant surprises if the instance is built or updated with data
containing nonstring keys.

Example 3-9. StrKeyDict always converts non-string keys to str—on insertion,
update, and lookup
import collections 
 
 
class StrKeyDict(collections.UserDict):   
 
    def __missing__(self, key):   
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        if isinstance(key, str): 
            raise KeyError(key) 
        return self[str(key)] 
 
    def __contains__(self, key): 
        return str(key) in self.data   
 
    def __setitem__(self, key, item): 
        self.data[str(key)] = item   

StrKeyDict extends UserDict.

__missing__ is exactly as in Example 3-8.

__contains__ is simpler: we can assume all stored keys are str and
we can check on self.data instead of invoking self.keys() as we
did in StrKeyDict0.

__setitem__ converts any key to a str. This method is easier to
overwrite when we can delegate to the self.data attribute.

Because UserDict extends abc.MutableMapping, the remaining
methods that make StrKeyDict a full-fledged mapping are inherited from
UserDict, MutableMapping, or Mapping. The latter have several useful
concrete methods, in spite of being abstract base classes (ABCs). The
following methods are worth noting:

MutableMapping.update

This powerful method can be called directly but is also used by __init__
to load the instance from other mappings, from iterables of (key,
value) pairs, and keyword arguments. Because it uses self[key] =
value to add items, it ends up calling our implementation of
__setitem__.

Mapping.get

In StrKeyDict0 (Example 3-8), we had to code our own get to return
the same results as __getitem__, but in Example 3-9 we inherited



Mapping.get, which is implemented exactly like StrKeyDict0.get
(see Python source code).

TIP
Antoine Pitrou authored PEP 455 — Adding a key-transforming dictionary to collections and
a patch to enhance the collections module with a TransformDict, that is more
general than StrKeyDict and preserves the keys as they are provided, before tha
transformation is applied. PEP 455 was rejected in May 2015—see Raymond Hettinger’s
rejection message. To experiment with TransformDict, I extracted Pitrou’s patch from
issue18986 into a standalone module (03-dict-set/transformdict.py in the Fluent Python
Second Edition code repository).

We know there are immutable sequence types, but how about an immutable
mapping? Well, there isn’t a real one in the standard library, but a stand-in is
available. That’s next.

Immutable Mappings
The mapping types provided by the standard library are all mutable, but you
may need to prevent users from changing a mapping by accident. A concrete
use case can be found, again, in a hardware programming library like Pingo,
mentioned in “The __missing__ Method”: the board.pins mapping
represents the physical GPIO pins on the device. As such, it’s useful to prevent
inadvertent updates to board.pins because the hardware can’t be changed
via software, so any change in the mapping would make it inconsistent with the
physical reality of the device.

The types module provides a wrapper class called MappingProxyType,
which, given a mapping, returns a mappingproxy instance that is a read-
only but dynamic proxy for the original mapping. This means that updates to
the original mapping can be seen in the mappingproxy, but changes cannot
be made through it. See Example 3-10 for a brief demonstration.

Example 3-10. MappingProxyType builds a read-only mappingproxy instance
from a dict

http://bit.ly/1FEOPPB
https://www.python.org/dev/peps/pep-0455/
https://mail.python.org/pipermail/python-dev/2015-May/140003.html
http://bugs.python.org/issue18986
https://github.com/fluentpython/example-code-2e/blob/master/03-dict-set/transformdict.py
https://github.com/fluentpython/example-code-2e


>>> from types import MappingProxyType 
>>> d = {1: 'A'} 
>>> d_proxy = MappingProxyType(d) 
>>> d_proxy 
mappingproxy({1: 'A'}) 
>>> d_proxy[1]   
'A' 
>>> d_proxy[2] = 'x'   
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: 'mappingproxy' object does not support item assignment 
>>> d[2] = 'B' 
>>> d_proxy   
mappingproxy({1: 'A', 2: 'B'}) 
>>> d_proxy[2] 
'B' 
>>>

Items in d can be seen through d_proxy.

Changes cannot be made through d_proxy.

d_proxy is dynamic: any change in d is reflected.

Here is how this could be used in practice in the hardware programming
scenario: the constructor in a concrete Board subclass would fill a private
mapping with the pin objects, and expose it to clients of the API via a public
.pins attribute implemented as a mappingproxy. That way the clients
would not be able to add, remove, or change pins by accident.

Next, we’ll cover views—which allow high-performance oparations on a
dict, without unnecessary copying of data.

Dictionary views
The dict instance methods .keys(), .values(), and .items() return
instances of classes called dict_keys, dict_values, and dict_items,
respectively. These dictionary views are read-only projections of the internal
data structures used in the dict implementation. They avoid the memory
overhead of the equivalent Python 2 methods that returned lists duplicating



data already in the target dict, and they also replace the old methods that
returned iterators.

Example 3-11 shows some basic operations supported by all dictionary views.

Example 3-11. The .values() method returns a view of the values in a
dict.
>>> d = dict(a=10, b=20, c=30) 
>>> values = d.values() 
>>> values 
dict_values([10, 20, 30])   
>>> len(values)   
3 
>>> list(values)   
[10, 20, 30] 
>>> reversed(values)   
<dict_reversevalueiterator object at 0x10e9e7310> 
>>> values[0]  
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: 'dict_values' object is not subscriptable

The repr of a view object shows its content.

We can query the len of a view.

Views are iterable, so it’s easy to create lists from them.

Views implement __reversed__, returning a custom iterator.

We can’t use [] to get individual items from a view.

A view object is a dynamic proxy. If the source dict is updated, you can
immediately see the changes through an existing view. Continuing from
Example 3-11:

>>> d['z'] = 99 
>>> d 
{'a': 10, 'b': 20, 'c': 30, 'z': 99} 
>>> values 
dict_values([10, 20, 30, 99])



The classes dict_keys, dict_values, and dict_items are internal:
they are not available via __builtins__ or any standard library module,
and even if you get a reference to one of them, you can’t use it to create a view
from scratch in Python code:

>>> values_class = type({}.values()) 
>>> v = values_class() 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: cannot create 'dict_values' instances

The dict_values class is the simplest dictionary view—it implements only
the __len__, __iter__, and __reversed__ special methods. In addition
to these methods, dict_keys and dict_items implement several set
methods, almost as many as the frozenset class. After we cover sets, we’ll
have more to say about dict_keys and dict_items in “Set operations on
dict views”.

Now let’s see some rules and tips informed by the way dict is implemented
under the hood.

Practical Consequences of How dict Works
The hash table implementation of Python’s dict is very efficient, but it’s
important to understand the practical effects of this design.

Keys must be hashable objects. They must implement proper
__hash__ and __eq__ methods as described in “What is
Hashable”.

Item access by key is very fast. A dict may have millions of keys,
but Python can locate a key directly by computing the hash code of the
key and deriving an index offset into the hash table, with the possible
overhead of a small number of tries to find a matching entry.

Key ordering is preserved as a side-effect of a more compact memory
layout for dict in CPython 3.6, which became an official language
feature in 3.7.



Despite its new compact layout, dicts inevitably have a significant
memory overhead. The most compact internal data structure for a
container would be an array of pointers to the items.  Compared to
that, a hash table needs to store more data per entry, and Python needs
to keep at least ⅓ of the hash table rows empty to remain efficient.

To save memory, avoid creating instance attributes outside of the
__init__ method.

That tip about instance attributes comes from the fact that Python’s default
behavior is to store instance attributes in a special __dict__ attribute which
is a dict attached to each instance.  Since PEP 412—Key-Sharing Dictionary
was implemented in Python 3.3, instances of a class can share a common hash
table, stored with the class. That common hash table is shared by the
__dict__ of each new instance that has the same attributes names as the first
instance of that class when __init__ returns. Each instance __dict__ can
then hold only its own attribute values as a simple array of pointers. Adding an
instance attribute after __init__ forces Python to create a new hash table
just for the __dict__ of that one instance (which was the default behavior for
all instances before Python 3.3). According to PEP 412, this optimization
reduces memory use by 10% to 20% for object-oriented programs.

The details of the compact layout and key-sharing optimizations are rather
complex. For more, please read Internals of sets and dicts at fluentpython.com.

Now let’s dive into sets.

Set Theory
Sets are not new in Python, but are still somewhat underused. The set type
and its immutable sibling frozenset first appeared as modules in the Python
2.3 standard library, and were promoted to built-ins in Python 2.6.

NOTE
In this book, I use the word “set” to refer both to set and frozenset. When talking
specifically about the set class, I use constant width font: set.
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https://www.python.org/dev/peps/pep-0412/
https://www.fluentpython.com/extra/internals-of-sets-and-dicts/
https://www.fluentpython.com/


A set is a collection of unique objects. A basic use case is removing
duplication:

>>> l = ['spam', 'spam', 'eggs', 'spam', 'bacon', 'eggs'] 
>>> set(l) 
{'eggs', 'spam', 'bacon'} 
>>> list(set(l)) 
['eggs', 'spam', 'bacon']

TIP
If you want to remove duplicates but also preserve the order of the first occurrence of each
item, you can now use a plain dict to do it, like this:

>>> dict.fromkeys(l).keys() 
dict_keys(['spam', 'eggs', 'bacon']) 
>>> list(dict.fromkeys(l).keys()) 
['spam', 'eggs', 'bacon']

Set elements must be hashable. The set type is not hashable, so you can’t
build a set with nested set instances. But frozenset is hashable, so you
can have frozenset elements inside a set.

In addition to enforcing uniqueness, the set types implement many set
operations as infix operators, so, given two sets a and b, a | b returns their
union, a & b computes the intersection, a - b the difference, and a ^ b
the symmetric difference. Smart use of set operations can reduce both the line
count and the execution time of Python programs, at the same time making
code easier to read and reason about—by removing loops and conditional logic.

For example, imagine you have a large set of email addresses (the haystack)
and a smaller set of addresses (the needles) and you need to count how
many needles occur in the haystack. Thanks to set intersection (the &
operator) you can code that in a simple line (see Example 3-12).

Example 3-12. Count occurrences of needles in a haystack, both of type set
found = len(needles & haystack)



Without the intersection operator, you’d have write Example 3-13 to
accomplish the same task as Example 3-12.

Example 3-13. Count occurrences of needles in a haystack (same end result as
Example 3-12)
found = 0 
for n in needles: 
    if n in haystack: 
        found += 1

Example 3-12 runs slightly faster than Example 3-13. On the other hand,
Example 3-13 works for any iterable objects needles and haystack, while
Example 3-12 requires that both be sets. But, if you don’t have sets on hand,
you can always build them on the fly, as shown in Example 3-14.

Example 3-14. Count occurrences of needles in a haystack; these lines work for
any iterable types
found = len(set(needles) & set(haystack)) 
 
# another way: 
found = len(set(needles).intersection(haystack))

Of course, there is an extra cost involved in building the sets in Example 3-14,
but if either the needles or the haystack is already a set, the alternatives
in Example 3-14 may be cheaper than Example 3-13.

Any one of the preceding examples are capable of searching 1,000 elements in
a haystack of 10,000,000 items in about 0.3 milliseconds—that’s close to
0.3 microseconds per element.

Besides the extremely fast membership test (thanks to the underlying hash
table), the set and frozenset built-in types provide a rich API to create
new sets or, in the case of set, to change existing ones. We will discuss the
operations shortly, but first a note about syntax.

Set Literals
The syntax of set literals—{1}, {1, 2}, etc.—looks exactly like the math
notation, with one important exception: there’s no literal notation for the empty
set, so we must remember to write set().



SYNTAX QUIRK
Don’t forget: to create an empty set, you should use the constructor without an argument:
set(). If you write {}, you’re creating an empty dict—this hasn’t changed in Python 3.

In Python 3, the standard string representation of sets always uses the {…}
notation, except for the empty set:

>>> s = {1} 
>>> type(s) 
<class 'set'> 
>>> s 
{1} 
>>> s.pop() 
1 
>>> s 
set()

Literal set syntax like {1, 2, 3} is both faster and more readable than
calling the constructor (e.g., set([1, 2, 3])). The latter form is slower
because, to evaluate it, Python has to look up the set name to fetch the
constructor, then build a list, and finally pass it to the constructor. In contrast,
to process a literal like {1, 2, 3}, Python runs a specialized BUILD_SET
bytecode .

There is no special syntax to represent frozenset literals—they must be
created by calling the constructor. The standard string representation in Python
3 looks like a frozenset constructor call. Note the output in the console
session:

>>> frozenset(range(10)) 
frozenset({0, 1, 2, 3, 4, 5, 6, 7, 8, 9})

Speaking of syntax, the idea of listcomps was adapted to build sets as well.

Set Comprehensions
Set comprehensions (setcomps) were added way back in Python 2.7, together
with the dictcomps that we saw in “dict Comprehensions”. Example 3-15
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shows how.

Example 3-15. Build a set of Latin-1 characters that have the word “SIGN” in
their Unicode names
>>> from unicodedata import name   
>>> {chr(i) for i in range(32, 256) if 'SIGN' in name(chr(i),'')}   
{'§', '=', '¢', '#', '¤', '<', '¥', 'µ', '×', '$', '¶', '£', '©', 
'°', '+', '÷', '±', '>', '¬', '®', '%'}

Import name function from unicodedata to obtain character names.

Build set of characters with codes from 32 to 255 that have the word
'SIGN' in their names.

The order of the output changes for each Python process, because of the salted
hash mentioned in “What is Hashable”.

Syntax matters aside, let’s now consider the behavior of sets.

Practical Consequences of How Sets Work
The set and frozenset types are both implemented with a hash table. This
has these effects:

Set elements must be hashable objects. They must implement proper
__hash__ and __eq__ methods as described in “What is
Hashable”.

Membership testing is very efficient. A set may have millions of
elements, but an element can be located directly by computing its hash
code and deriving an index offset, with the possible overhead of a
small number of tries to find a matching element or exhaust the search.

Sets have a significant memory overhead, compared to a low-level
array a pointers to its elements—which would be more compact but
also much slower to search beyond a handful of elements.

Element ordering depends on insertion order, but not in a useful or
reliable way. If two elements are different but have the same hash



code, their position depends on which element is added first.

Adding elements to a set may change the order of existing elements.
That’s because the algorithm becomes less efficient if the hash table is
more than ⅔ full, so Python may need to move and resize the table as
it grows. When this happens, elements are reinserted and and their
relative ordering may change.

See Internals of sets and dicts at fluentpython.com for details.

Let’s now review the rich assortment of operations provided by sets.

Set Operations
Figure 3-2 gives an overview of the methods you can use on mutable and
immutable sets. Many of them are special methods that overload operators such
as & and >=. Table 3-2 shows the math set operators that have corresponding
operators or methods in Python. Note that some operators and methods perform
in-place changes on the target set (e.g., &=, difference_update, etc.).
Such operations make no sense in the ideal world of mathematical sets, and are
not implemented in frozenset.

TIP
The infix operators in Table 3-2 require that both operands be sets, but all other methods take
one or more iterable arguments. For example, to produce the union of four collections, a, b,
c, and d, you can call a.union(b, c, d), where a must be a set, but b, c, and d can
be iterables of any type that produces hashable items. If you need to create a new set with the
union of for iterables, instead of updating an existing set, you can write {*a, *b, *c,
*d} since Python 3.5 thanks to PEP 448—Additional Unpacking Generalizations.

https://www.fluentpython.com/extra/internals-of-sets-and-dicts/
https://www.fluentpython.com/
https://www.python.org/dev/peps/pep-0448/


Figure 3-2. Simplified UML class diagram for MutableSet and its superclasses from
collections.abc (names in italic are abstract classes and abstract methods; reverse operator

methods omitted for brevity)
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Math symbol Python operator Method Description



 

S ∩ Z s & z s.__and__(z) Intersection of s and z

z & s s.__rand__(z) Reversed & operator

s.intersection
(it, …)

Intersection of s and all sets built 
from iterables it, etc.

s &= z s.__iand__(z) s updated with intersection of s and 
z

s.intersection_
update(it, …)

s updated with intersection of s and 
all sets built from iterables it, etc.

S ∪ Z s | z s.__or__(z) Union of s and z

z | s s.__ror__(z) Reversed |

s.union(it, …) Union of s and all sets built from 
iterables it, etc.

s |= z s.__ior__(z) s updated with union of s and z

s.update(it, …) s updated with union of s and all 
sets built from iterables it, etc.

S \ Z s - z s.__sub__(z) Relative complement or difference 
between s and z

z - s s.__rsub__(z) Reversed - operator

s.difference(i
t, …)

Difference between s and all sets 
built from iterables it, etc.

s -= z s.__isub__(z) s updated with difference between 
s and z

s.difference_up
date(it, …)

s updated with difference between 
s and all sets built from iterables i
t, etc.

S ∆ Z s ^ z s.__xor__(z) Symmetric difference (the 
complement of the intersection s & 



z)

z ^ s s.__rxor__(z) Reversed ^ operator

s.symmetric_dif
ference(it)

Complement of s & set(it)

s ^= z s.__ixor__(z) s updated with symmetric 
difference of s and z

s.symmetric_dif
ference_update
(it, …)

s updated with symmetric 
difference of s and all sets built 
from iterables it, etc.

 

Table 3-3 lists set predicates: operators and methods that return True or
False.
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Math symbol Python operator Method Description

 

S ∩ Z = ∅ s.isdisjoint
(z)

s and z are disjoint (no elements in 
common)

e ∈ S e in s s.__contains_
_(e)

Element e is a member of s

S ⊆ Z s <= z s.__le__(z) s is a subset of the z set

s.issubset(i
t)

s is a subset of the set built from the 
iterable it

S ⊂ Z s < z s.__lt__(z) s is a proper subset of the z set

S ⊇ Z s >= z s.__ge__(z) s is a superset of the z set



s.issuperset
(it)

s is a superset of the set built from the 
iterable it

S ⊃ Z s > z s.__gt__(z) s is a proper superset of the z set

 

In addition to the operators and methods derived from math set theory, the set
types implement other methods of practical use, summarized in Table 3-4.
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set frozenset  

 

s.add(e) ● Add element e to s



s.clear() ● Remove all elements of s

s.copy() ● ● Shallow copy of s

s.discard(e) ● Remove element e from s if it is 
present

s.__iter__() ● ● Get iterator over s

s.__len__() ● ● len(s)

s.pop() ● Remove and return an element from s, 
raising KeyError if s is empty

s.remove(e) ● Remove element e from s, raising Key
Error if e not in s

 

This completes our overview of the features of sets. As promised in
“Dictionary views”, we’ll now see how two of the dictionary view types
behave very much like a frozenset.

Set operations on dict views
Table 3-5 shows that the view objects returned by the dict methods
.keys() and .items() are remarkably similar to frozenset.
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frozenset dict_keys dict_items Description

 

s.__and__(z) ● ● ● s & z 
(intersection of s 
and z)

s.__rand__(z) ● ● ● Reversed & 
operator

s.__contains_
_()

● ● ● e in s



s.copy() ● Shallow copy of s

s.difference
(it, …)

● Difference between 
s and iterables it, 
etc.

s.intersectio
n(it, …)

● Intersection of s 
and iterables it, 
etc.

s.isdisjoint
(z)

● ● ● s and z are disjoint 
(no elements in 
common)

s.issubset(i
t)

● s is a subset of 
iterable it

s.issuperset
(it)

● s is a superset of 
iterable it

s.__iter__() ● ● ● Get iterator over s

s.__len__() ● ● ● len(s)

s.__or__(z) ● ● ● s | z (union of s 
and z)

s.__ror__() ● ● ● Reversed | 
operator

s.__reversed_
_()

● ● Get iterator over s 
in reverse order

s.__rsub__(z) ● ● ● Reversed - 
operator

s.__sub__(z) ● ● ● s - z (difference 
between s and z)

s.symmetric_d
ifference(it)

● Complement of s 
& set(it)

s.union(it, 
…)

● Union of s and 
iterables it, etc.



s.__xor__() ● ● ● s ^ z (symmetric 
difference of s and 
z)

s.__rxor__() ● ● ● Reversed ^ 
operator

 

In particular, dict_keys and dict_items implement the special methods
to support the powerful set operators & (intersection), | (union), - (difference)
and ^ (symmetric difference).

For example, using & is easy to get the keys that appear in two dictionaries:

>>> d1 = dict(a=1, b=2, c=3, d=4) 
>>> d2 = dict(b=20, d=40, e=50) 
>>> d1.keys() & d2.keys() 
{'b', 'd'}

Note that the return value of & is a set. Even better: the set operators in
dictionary views are compatible with set instances. Check this out:

>>> s = {'a', 'e', 'i'} 
>>> d1.keys() & s 
{'a'} 
>>> d1.keys() | s 
{'a', 'c', 'b', 'd', 'i', 'e'}

WARNING
A dict_items view only works as a set if all values in the dict are hashable. Attempting
set operations on a dict_items view with an unhashable value raises TypeError:
unhashable type 'T', with T as the type of the offending value.

On the other hand, a dict_keys view can always be used as a set, because every key is
hashable—by definition.

Using set operators with views will save a lot of loops and ifs when inspecting
the contents of dictionaries in your code. Let Python’s efficient implementation
in C work for you!



With this, we can wrap up this chapter.



Chapter Summary
Dictionaries are a keystone of Python. Over the years, the familiar {k1: v1,
k2: v2} literal syntax was enhanced to support unpacking with **, pattern
matching—as well as dict comprehensions.

Beyond the basic dict, the standard library offers handy, ready-to-use
specialized mappings like defaultdict, ChainMap, and Counter, all
defined in the collections module. With the new dict implementation,
OrderedDict is not as useful as before, but should remain in the standard
library for backward compatibility—and has specific characterstics that dict
doesn’t have—such as taking into account key ordering in == comparisons.
Also in the collections module is the UserDict, an easy to use base
class to create custom mappings.

Two powerful methods available in most mappings are setdefault and
update. The setdefault method can update items holding mutable values
—for example, in a dict of list values—avoiding a second search for the
same key. The update method allows bulk insertion or overwriting of items
from any other mapping, from iterables providing (key, value) pairs and
from keyword arguments. Mapping constructors also use update internally,
allowing instances to be initialized from mappings, iterables, or keyword
arguments. Since Python 3.9 we can also use the |= operator to update a
mapping, and the | operator to create a new one from the union of two
mappings.

A clever hook in the mapping API is the __missing__ method, which lets
you customize what happens when a key is not found when using the d[k]
syntax which invokes __getitem__.

The collections.abc module provides the Mapping and
MutableMapping abstract base classes as standard interfaces, useful for
run-time type checking. The MappingProxyType from the types module
creates an immutable façade for a mapping you want to protect from accidental
change. There are also ABCs for Set and MutableSet.

Dictionary views were great addition in Python 3, eliminating the memory
overhead of the Python 2 .keys(), .values() and .items() methods



that built lists duplicating data in the target dict instance. In addition, the
dict_keys and dict_items classes support the most useful operators and
methods of frozenset.

Further Reading
In The Python Standard Library documentation, 8.3. collections — Container
datatypes includes examples and practical recipes with several mapping types.
The Python source code for the module Lib/collections/__init__.py is a great
reference for anyone who wants to create a new mapping type or grok the logic
of the existing ones. Chapter 1 of Python Cookbook, Third edition (O’Reilly)
by David Beazley and Brian K. Jones has 20 handy and insightful recipes with
data structures—the majority using dict in clever ways.

Greg Gandenberger advocates for the continued use of
collections.OrderedDict, on the grounds that “explicit is better than
implicit”, backward compatibility, and the fact that some tools and libraries
assume the ordering of dict keys is irrelevant—his post: Python Dictionaries
Are Now Ordered. Keep Using OrderedDict..

PEP 3106 — Revamping dict.keys(), .values() and .items() is where Guido van
Rossum presented the dictionary views feature for Python 3. In the abstract, he
wrote the idea came from the Java Collections Framework.

PyPy was the first Python interpreter to implement Raymond Hettinger’s
proposal of compact dicts, and they blogged about it in Faster, more memory
efficient and more ordered dictionaries on PyPy, acknowledging that a similar
layout was adopted in PHP 7, described in PHP’s new hashtable
implementation. It’s always great when creators cite prior art.

At PyCon 2017, Brandon Rhodes presented The Dictionary Even Mightier, a
sequel to his classic animated presentation The Mighty Dictionary—including
animated hash collisions! Another up-to-date, but more in-depth video on the
internals of Python’s dict is Modern Dictionaries by Raymond Hettinger,
where he tells that after initially failing to sell compact dicts to the CPython
core devs, he lobbied the PyPy team, they adopted it, the idea gained traction,
and was finally contributed to CPython 3.6 by INADA Naoki. For all details,

https://docs.python.org/3/library/collections.html
http://shop.oreilly.com/product/0636920027072.do
http://gandenberger.org/2018/03/10/ordered-dicts-vs-ordereddict/
https://www.python.org/dev/peps/pep-3106/
https://www.pypy.org/
https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html
https://nikic.github.io/2014/12/22/PHPs-new-hashtable-implementation.html
https://www.youtube.com/watch?v=66P5FMkWoVU
http://bit.ly/1JzEjiR
https://www.youtube.com/watch?v=p33CVV29OG8
https://docs.python.org/3/whatsnew/3.6.html#new-dict-implementation


check out the extensive comments in the CPython code for Objects/dictobject.c
and Objects/dict-common.h, as well as the design document
Objects/dictnotes.txt.

The rationale for adding sets to Python is documented in PEP 218 — Adding a
Built-In Set Object Type. When PEP 218 was approved, no special literal
syntax was adopted for sets. The set literals were created for Python 3 and
backported to Python 2.7, along with dict and set comprehensions. At
PyCon 2019, I presented Set Practice: learning from Python’s set types (slides),
describing use cases of sets in real programs, covering their API design, and
the implementation of uintset, a set class for integer elements using a bit
vector instead of a hash table, inspired by an example in chapter 6 of the
excellent The Go Programming Language, by Donovan & Kernighan.

IEEE’s Spectrum magazine has a story about Hans Peter Luhn, a prolific
inventor who patented a punched card deck to select cocktail recipes depending
on ingredients available, among other diverse inventions including… hash
tables! See Hans Peter Luhn and the Birth of the Hashing Algorithm.

https://github.com/python/cpython/blob/master/Objects/dictobject.c
https://github.com/python/cpython/blob/master/Objects/dict-common.h
https://github.com/python/cpython/blob/master/Objects/dictnotes.txt
https://www.python.org/dev/peps/pep-0218/
https://www.youtube.com/watch?v=tGAngdU_8D8
https://speakerdeck.com/ramalho/python-set-practice-at-pycon
https://github.com/standupdev/uintset
https://spectrum.ieee.org/tech-history/silicon-revolution/hans-peter-luhn-and-the-birth-of-the-hashing-algorithm


SOAPBOX

Syntactic sugar

My friend Geraldo Cohen once remarked that Python is “simple and
correct.”

Programming language purists like to dismiss syntax as unimportant.

Syntactic sugar causes cancer of the semicolon.
—Alan Perlis

Syntax is the user interface of a programming language, so it does matter in
practice.

Before finding Python, I did some Web programming using Perl and PHP.
The syntax for mappings in these languages is very useful, and I badly miss
it whenever I have to use Java or C.

A good literal syntax for mappings is very convenient for configuration,
table-driven implementations, and to hold data for prototyping and testing.
That’s one lesson the designers of Go learned from dynamic languages.
The lack of a good way to express structured data in code pushed the Java
community to adopt the verbose and overly complex XML as a data
format.

JSON was proposed as “The Fat-Free Alternative to XML” and became a
huge success, replacing XML in many contexts. A concise syntax for lists
and dictionaries makes an excellent data interchange format.

PHP and Ruby imitated the hash syntax from Perl, using => to link keys to
values. JavaScript uses : like Python. Why use two characters when one is
readable enough?

JSON came from JavaScript, but it also happens to be an almost exact
subset of Python syntax. JSON is compatible with Python except for the
spelling of the values true, false, and null.

Armin Ronacher tweeted that he likes to hack Python’s global namespace
to add JSON-compatible aliases for Python’s True, False, and None so
he can paste JSON directly in the console. The basic idea:
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http://www.json.org/fatfree.html
https://twitter.com/mitsuhiko/status/1229385843585974272


>>> true, false, null = True, False, None 
>>> fruit = { 
...     "type": "banana", 
...     "avg_weight": 123.2, 
...     "edible_peel": false, 
...     "species": ["acuminata", "balbisiana", "paradisiaca"], 
...     "issues": null, 
... } 
>>> fruit 
{'type': 'banana', 'avg_weight': 123.2, 'edible_peel': False, 
'species': ['acuminata', 'balbisiana', 'paradisiaca'], 'issues': 
None}

The syntax everybody now uses for exchanging data is Python’s dict and
list syntax. Now we have the nice syntax with the convenience of
preserved insertion order.

Simple and correct.

1  A virtual subclass is any class registered by calling the .register() method of an ABC, as
explained in “A Virtual Subclass of an ABC”. A type implemented via Python/C API is also
eligible if a specific marker bit is set. See Py_TPFLAGS_MAPPING.

2  The Python Glossary entry for “hashable” uses the term “hash value” instead of hash code. I prefer
hash code because that is a concept often discussed in the context of mappings, where items are
made of keys and values, so it may be confusing to mention the hash code as a value. In this book, I
only use hash code.

3  See PEP 456—Secure and interchangeable hash algorithm to learn about the security implications
and solutions adopted.

4  The original script appears in slide 41 of Martelli’s “Re-learning Python” presentation. His script
is actually a demonstration of dict.setdefault, as shown in our Example 3-5.

5  This is an example of using a method as a first-class function, the subject of Chapter 7.

6  One such library is Pingo.io, no longer under active development.

7  The exact problem with subclassing dict and other built-ins is covered in “Subclassing Built-In
Types Is Tricky”.

8  That’s how tuples are stored.

9  Unless the class has a __slots__ attribute, as explained in “Saving Memory with
__slots__”.

10  This may be interesting, but is not super important. The speed up will happen only when a set
literal is evaluated, and that happens at most once per Python process—when a module is initially
compiled. If you’re curious, import the dis function from the dis module and use it to

https://docs.python.org/3.10/c-api/typeobj.html#Py_TPFLAGS_MAPPING
http://bit.ly/1K4qjwE
https://www.python.org/dev/peps/pep-0456/
http://bit.ly/1QmmPFj
https://github.com/pingo-io/pingo-py


disassemble the bytecodes for a set literal—e.g. dis('{1}')—and a set call—
dis('set([1])')

11  It’s possible that Brendan Eich studied Python before he created JavaScript. I’ve heard a rumor
that Netscape reached out to Guido van Rossum to embed Python in their browser, before Eich
spent 10 days creating a language almost completely unlike Java, except for the C-like syntax and
the same set of reserved words. In the tale I heard, Guido told Netscape that Python was not
suitable. Maybe it’s just an urban legend.

https://thenewstack.io/brendan-eich-on-creating-javascript-in-10-days-and-what-hed-do-differently-today/


Chapter 4. Text Versus Bytes

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 4th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

Humans use text. Computers speak bytes.
—Esther Nam and Travis Fischer, Character Encoding and

Unicode in Python

Python 3 introduced a sharp distinction between strings of human text and
sequences of raw bytes. Implicit conversion of byte sequences to Unicode
text is a thing of the past. This chapter deals with Unicode strings, binary
sequences, and the encodings used to convert between them.

Depending on the kind of work you do with Python, you may think that
understanding Unicode is not important. That’s unlikely, but anyway there
is no escaping the str versus byte divide. As a bonus, you’ll find that the
specialized binary sequence types provide features that the “all-purpose”
Python 2 str type did not have.

In this chapter, we will visit the following topics:

Characters, code points, and byte representations
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Unique features of binary sequences: bytes, bytearray, and
memoryview

Encodings for full Unicode and legacy character sets

Avoiding and dealing with encoding errors

Best practices when handling text files

The default encoding trap and standard I/O issues

Safe Unicode text comparisons with normalization

Utility functions for normalization, case folding, and brute-force
diacritic removal

Proper sorting of Unicode text with locale and the PyUCA
library

Character metadata in the Unicode database

Dual-mode APIs that handle str and bytes

What’s new in this chapter
Support for Unicode in Python 3 has been comprehensive and stable, so the
most notable addition is is “Finding characters by name”, describing a
utility for searching the Unicode database—a great way to find circled
digits and smiling cats from the command-line.

One minor change worth mentioning is the Unicode support on Windows,
which is better and simpler since Python 3.6, as we’ll see in “Beware of
Encoding Defaults”.

Let’s start with the not-so-new, but fundamental concepts of characters,
code points, and bytes.



NOTE
For the Second Edition, I expanded the section about the struct module and
published it online at Parsing binary records with struct, in the fluentpython.com
companion Website.

There you will also find Building Multi-character Emojis, describing how to make
country flags, rainbow flags, people with different skin tones, and diverse family icons
by combining Unicode characters.

Character Issues
The concept of “string” is simple enough: a string is a sequence of
characters. The problem lies in the definition of “character.”

In 2021, the best definition of “character” we have is a Unicode character.
Accordingly, the items we get out of a Python 3 str are Unicode
characters, just like the items of a unicode object in Python 2—and not
the raw bytes we got from a Python 2 str.

The Unicode standard explicitly separates the identity of characters from
specific byte representations:

The identity of a character—its code point—is a number from 0 to
1,114,111 (base 10), shown in the Unicode standard as 4 to 6 hex
digits with a “U+” prefix, from U+0000 to U+10FFFF. For
example, the code point for the letter A is U+0041, the Euro sign is
U+20AC, and the musical symbol G clef is assigned to code point
U+1D11E. About 13% of the valid code points have characters
assigned to them in Unicode 13.0.0, the standard used in Python
3.10.0b4.

The actual bytes that represent a character depend on the encoding
in use. An encoding is an algorithm that converts code points to
byte sequences and vice versa. The code point for the letter A
(U+0041) is encoded as the single byte \x41 in the UTF-8
encoding, or as the bytes \x41\x00 in UTF-16LE encoding. As

https://www.fluentpython.com/extra/parsing-binary-struct/
https://www.fluentpython.com/
https://www.fluentpython.com/extra/multi-character-emojis/


another example, UTF-8 requires three bytes—\xe2\x82\xac
—to encode the Euro sign (U+20AC) but in UTF-16LE the same
code point is encoded as two bytes: \xac\x20.

Converting from code points to bytes is encoding; converting from bytes to
code points is decoding. See Example 4-1.

Example 4-1. Encoding and decoding
>>> s = 'café' 
>>> len(s)   
4 
>>> b = s.encode('utf8')   
>>> b 
b'caf\xc3\xa9'   
>>> len(b)   
5 
>>> b.decode('utf8')   
'café'

The str 'café' has four Unicode characters.

Encode str to bytes using UTF-8 encoding.

bytes literals have a b prefix.

bytes b has five bytes (the code point for “é” is encoded as two bytes
in UTF-8).

Decode bytes to str using UTF-8 encoding.

TIP
If you need a memory aid to help distinguish .decode() from .encode(),
convince yourself that byte sequences can be cryptic machine core dumps while
Unicode str objects are “human” text. Therefore, it makes sense that we decode
bytes to str to get human-readable text, and we encode str to bytes for storage or
transmission.



Although the Python 3 str is pretty much the Python 2 unicode type
with a new name, the Python 3 bytes is not simply the old str renamed,
and there is also the closely related bytearray type. So it is worthwhile
to take a look at the binary sequence types before advancing to
encoding/decoding issues.

Byte Essentials
The new binary sequence types are unlike the Python 2 str in many
regards. The first thing to know is that there are two basic built-in types for
binary sequences: the immutable bytes type introduced in Python 3 and
the mutable bytearray, added way back in Python 2.6.  The Python
documentation sometimes uses the generic term “byte string” to refer to
both bytes and bytearray. I avoid that confusing term.

Each item in bytes or bytearray is an integer from 0 to 255, and not a
one-character string like in the Python 2 str. However, a slice of a binary
sequence always produces a binary sequence of the same type—including
slices of length 1. See Example 4-2.

Example 4-2. A five-byte sequence as bytes and as bytearray
>>> cafe = bytes('café', encoding='utf_8')   
>>> cafe 
b'caf\xc3\xa9' 
>>> cafe[0]   
99 
>>> cafe[:1]   
b'c' 
>>> cafe_arr = bytearray(cafe) 
>>> cafe_arr   
bytearray(b'caf\xc3\xa9') 
>>> cafe_arr[-1:]   
bytearray(b'\xa9')

bytes can be built from a str, given an encoding.

Each item is an integer in range(256).
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Slices of bytes are also bytes—even slices of a single byte.

There is no literal syntax for bytearray: they are shown as
bytearray() with a bytes literal as argument.

A slice of bytearray is also a bytearray.

WARNING
The fact that my_bytes[0] retrieves an int but my_bytes[:1] returns a bytes
sequence of length 1 is only surprising because we are used to Python’s str type,
where s[0] == s[:1]. For all other sequence types in Python, 1 item is not the
same as a slice of length 1.

Although binary sequences are really sequences of integers, their literal
notation reflects the fact that ASCII text is often embedded in them.
Therefore, four different displays are used, depending on each byte value:

1. For bytes with decimal codes 32 to 126—from space to ~ (tilde)—
the ASCII character itself is used.

2. For bytes corresponding to tab, newline, carriage return, and \, the
escape sequences \t, \n, \r, and \\ are used.

3. If both string delimiters ' and " appear in the byte sequence, the
whole sequence is delimited by ' and any ' inside are escaped as
\'.

4. For other byte values, a hexadecimal escape sequence is used (e.g.,
\x00 is the null byte).

That is why in Example 4-2 you see b'caf\xc3\xa9': the first three
bytes b'caf' are in the printable ASCII range, the last two are not.

Both bytes and bytearray support every str method except those that
do formatting (format, format_map) and a those that depend on

3



Unicode data, including casefold, isdecimal, isidentifier,
isnumeric, isprintable, and encode. This means that you can use
familiar string methods like endswith, replace, strip, translate,
upper, and dozens of others with binary sequences—only using bytes
and not str arguments. In addition, the regular expression functions in the
re module also work on binary sequences, if the regex is compiled from a
binary sequence instead of a str. Since Python 3.5, the % operator works
with binary sequences again.

Binary sequences have a class method that str doesn’t have, called
fromhex, which builds a binary sequence by parsing pairs of hex digits
optionally separated by spaces:

>>> bytes.fromhex('31 4B CE A9') 
b'1K\xce\xa9'

The other ways of building bytes or bytearray instances are calling
their constructors with:

A str and an encoding keyword argument.

An iterable providing items with values from 0 to 255.

An object that implements the buffer protocol (e.g., bytes,
bytearray, memoryview, array.array); this copies the
bytes from the source object to the newly created binary sequence.

WARNING
Until Python 3.5, it was also possible to call bytes or bytearray with a single
integer to create a binary sequence of that size initialized with null bytes. This signature
was deprecated in Python 3.5 and removed in Python 3.6. See PEP 467 — Minor API
improvements for binary sequences.)

Building a binary sequence from a buffer-like object is a low-level
operation that may involve type casting. See a demonstration in Example 4-

4
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3.

Example 4-3. Initializing bytes from the raw data of an array
>>> import array 
>>> numbers = array.array('h', [-2, -1, 0, 1, 2])   
>>> octets = bytes(numbers)   
>>> octets 
b'\xfe\xff\xff\xff\x00\x00\x01\x00\x02\x00'  

Typecode 'h' creates an array of short integers (16 bits).

octets holds a copy of the bytes that make up numbers.

These are the 10 bytes that represent the five short integers.

Creating a bytes or bytearray object from any buffer-like source will
always copy the bytes. In contrast, memoryview objects let you share
memory between binary data structures, as we saw in “Memory Views”.

After this basic exploration of binary sequence types in Python, let’s see
how they are converted to/from strings.

Basic Encoders/Decoders
The Python distribution bundles more than 100 codecs (encoder/decoder)
for text to byte conversion and vice versa. Each codec has a name, like
'utf_8', and often aliases, such as 'utf8', 'utf-8', and 'U8',
which you can use as the encoding argument in functions like open(),
str.encode(), bytes.decode(), and so on. Example 4-4 shows the
same text encoded as three different byte sequences.

Example 4-4. The string “El Niño” encoded with three codecs producing
very different byte sequences
>>> for codec in ['latin_1', 'utf_8', 'utf_16']: 
...     print(codec, 'El Niño'.encode(codec), sep='\t') 
... 
latin_1 b'El Ni\xf1o' 



utf_8   b'El Ni\xc3\xb1o' 
utf_16  b'\xff\xfeE\x00l\x00 \x00N\x00i\x00\xf1\x00o\x00'

Figure 4-1 demonstrates a variety of codecs generating bytes from
characters like the letter “A” through the G-clef musical symbol. Note that
the last three encodings are variable-length, multibyte encodings.



Figure 4-1. Twelve characters, their code points, and their byte representation (in hex) in seven
different encodings (asterisks indicate that the character cannot be represented in that encoding)

All those asterisks in Figure 4-1 make clear that some encodings, like
ASCII and even the multibyte GB2312, cannot represent every Unicode



character. The UTF encodings, however, are designed to handle every
Unicode code point.

The encodings shown in Figure 4-1 were chosen as a representative sample:

latin1 a.k.a. iso8859_1

Important because it is the basis for other encodings, such as cp1252
and Unicode itself (note how the latin1 byte values appear in the
cp1252 bytes and even in the code points).

cp1252

A useful latin1 superset created by Microsoft, adding useful symbols
like curly quotes and the € (euro); some Windows apps call it “ANSI,”
but it was never a real ANSI standard.

cp437

The original character set of the IBM PC, with box drawing characters.
Incompatible with latin1, which appeared later.

gb2312

Legacy standard to encode the simplified Chinese ideographs used in
mainland China; one of several widely deployed multibyte encodings
for Asian languages.

utf-8

The most common 8-bit encoding on the Web, by far; as of July 2021,
W3Techs: Usage of Character Encodings for Websites claims that 97%
of sites use UTF-8, up from 81.4% when I wrote this paragraph in the
First Edition in September 2014.

utf-16le

One form of the UTF 16-bit encoding scheme; all UTF-16 encodings
support code points beyond U+FFFF through escape sequences called

https://w3techs.com/technologies/overview/character_encoding


“surrogate pairs.”

WARNING
UTF-16 superseded the original 16-bit Unicode 1.0 encoding—UCS-2—way back in
1996. UCS-2 is still used in many systems despite being deprecated since the last
century because it only supports code points up to U+FFFF. As of 2021, more than 57%
of the allocated code points are above U+FFFF, including the all-important emojis.

With this overview of common encodings now complete, we move to
handling issues in encoding and decoding operations.

Understanding Encode/Decode Problems
Although there is a generic UnicodeError exception, the error reported
by Python is usually more specific: either a UnicodeEncodeError
(when converting str to binary sequences) or a UnicodeDecodeError
(when reading binary sequences into str). Loading Python modules may
also raise SyntaxError when the source encoding is unexpected. We’ll
show how to handle all of these errors in the next sections.

TIP
The first thing to note when you get a Unicode error is the exact type of the exception.
Is it a UnicodeEncodeError, a UnicodeDecodeError, or some other error
(e.g., SyntaxError) that mentions an encoding problem? To solve the problem, you
have to understand it first.

Coping with UnicodeEncodeError
Most non-UTF codecs handle only a small subset of the Unicode
characters. When converting text to bytes, if a character is not defined in the
target encoding, UnicodeEncodeError will be raised, unless special
handling is provided by passing an errors argument to the encoding



method or function. The behavior of the error handlers is shown in
Example 4-5.

Example 4-5. Encoding to bytes: success and error handling
>>> city = 'São Paulo' 
>>> city.encode('utf_8')   
b'S\xc3\xa3o Paulo' 
>>> city.encode('utf_16') 
b'\xff\xfeS\x00\xe3\x00o\x00 \x00P\x00a\x00u\x00l\x00o\x00' 
>>> city.encode('iso8859_1')   
b'S\xe3o Paulo' 
>>> city.encode('cp437')   
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File "/.../lib/python3.4/encodings/cp437.py", line 12, in encode 
    return codecs.charmap_encode(input,errors,encoding_map) 
UnicodeEncodeError: 'charmap' codec can't encode character '\xe3' 
in 
position 1: character maps to <undefined> 
>>> city.encode('cp437', errors='ignore')   
b'So Paulo' 
>>> city.encode('cp437', errors='replace')   
b'S?o Paulo' 
>>> city.encode('cp437', errors='xmlcharrefreplace')   
b'S&#227;o Paulo'

The UTF encodings handle any str.

iso8859_1 also works for the 'São Paulo' string.

cp437 can’t encode the 'ã' (“a” with tilde). The default error handler
—'strict'—raises UnicodeEncodeError.

The error='ignore' handler skips characters that cannot be
encoded; this is usually a very bad idea, leading to silent data loss.

When encoding, error='replace' substitutes unencodable
characters with '?'; data is also lost, but users will get a clue that
something is amiss.



'xmlcharrefreplace' replaces unencodable characters with an
XML entity. If you can’t use UTF, and you can’t affort to lose data, this
is the only option.

NOTE
The codecs error handling is extensible. You may register extra strings for the
errors argument by passing a name and an error handling function to the
codecs.register_error function. See the codecs.register_error
documentation.

ASCII is a common subset to all the encodings that I know about, therefore
encoding should always work if the text is made exclusively of ASCII
characters. Python 3.7 added a new boolean method str.isascii() to
check whether your Unicode text is 100% pure ASCII. If it is, you should
be able to encode it to bytes in any encoding without raising
UnicodeEncodeError.

Coping with UnicodeDecodeError
Not every byte holds a valid ASCII character, and not every byte sequence
is valid UTF-8 or UTF-16; therefore, when you assume one of these
encodings while converting a binary sequence to text, you will get a
UnicodeDecodeError if unexpected bytes are found.

On the other hand, many legacy 8-bit encodings like 'cp1252',
'iso8859_1', and 'koi8_r' are able to decode any stream of bytes,
including random noise, without reporting errors. Therefore, if your
program assumes the wrong 8-bit encoding, it will silently decode garbage.

TIP
Garbled characters are known as gremlins or mojibake (文字化け—Japanese for
“transformed text”).

http://bit.ly/1Vm83DZ
https://docs.python.org/3/library/stdtypes.html#str.isascii


Example 4-6 illustrates how using the wrong codec may produce gremlins
or a UnicodeDecodeError.

Example 4-6. Decoding from str to bytes: success and error handling
>>> octets = b'Montr\xe9al'   
>>> octets.decode('cp1252')   
'Montréal' 
>>> octets.decode('iso8859_7')   
'Montrιal' 
>>> octets.decode('koi8_r')   
'MontrИal' 
>>> octets.decode('utf_8')   
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe9 in 
position 5: 
invalid continuation byte 
>>> octets.decode('utf_8', errors='replace')   
'Montr�al'

The word “Montréal” encoded as latin1; '\xe9' is the byte for “é”.

Decoding with Windows 1252 works because it is a superset of
latin1.

ISO-8859-7 is intended for Greek, so the '\xe9' byte is
misinterpreted, and no error is issued.

KOI8-R is for Russian. Now '\xe9' stands for the Cyrillic letter “И”.

The 'utf_8' codec detects that octets is not valid UTF-8, and
raises UnicodeDecodeError.

Using 'replace' error handling, the \xe9 is replaced by “�” (code
point U+FFFD), the official Unicode REPLACEMENT CHARACTER
intended to represent unknown characters.

SyntaxError When Loading Modules with Unexpected
Encoding



UTF-8 is the default source encoding for Python 3, just as ASCII was the
default for Python 2. If you load a .py module containing non-UTF-8 data
and no encoding declaration, you get a message like this:

SyntaxError: Non-UTF-8 code starting with '\xe1' in file ola.py 
on line 
  1, but no encoding declared; see 
https://python.org/dev/peps/pep-0263/ 
  for details

Because UTF-8 is widely deployed in GNU/Linux and MacOS systems, a
likely scenario is opening a .py file created on Windows with cp1252.
Note that this error happens even in Python for Windows, because the
default encoding for Python 3 source is UTF-8 across all platforms.

To fix this problem, add a magic coding comment at the top of the file, as
shown in Example 4-7.

Example 4-7. ola.py: “Hello, World!” in Portuguese
# coding: cp1252 
 
print('Olá, Mundo!')

TIP
Now that Python 3 source code is no longer limited to ASCII and defaults to the
excellent UTF-8 encoding, the best “fix” for source code in legacy encodings like
'cp1252' is to convert them to UTF-8 already, and not bother with the coding
comments. If your editor does not support UTF-8, it’s time to switch.

Suppose you have a text file, be it source code or poetry, but you don’t
know its encoding. How do you detect the actual encoding? Answers in the
next section.

How to Discover the Encoding of a Byte Sequence
How do you find the encoding of a byte sequence? Short answer: you can’t.
You must be told.



Some communication protocols and file formats, like HTTP and XML,
contain headers that explicitly tell us how the content is encoded. You can
be sure that some byte streams are not ASCII because they contain byte
values over 127, and the way UTF-8 and UTF-16 are built also limits the
possible byte sequences.

LEO’S HACK FOR GUESSING UTF-8 DECODING

(The next paragraphs come from a note left by tech reviewer Leonardo
Rochael in the draft of this book.)

The way UTF-8 was designed, it’s almost impossible for a random
sequence of bytes, or even a non-random sequence of bytes coming
from a non-UTF-8 encoding, to be decoded accidentally as garbage in
UTF-8, instead of raising UnicodeDecodeError.

The reasons for this are that UTF-8 escape sequences never use ASCII
characters, and these escape sequences have bit patterns that make it
very hard for random data to be valid UTF-8 by accident.

So if you can decode some bytes containing codes > 127 as UTF-8, it’s
probably UTF-8.

In dealing with Brazillian online services, some of which were attached
to legacy backends, I’ve had, on occasion, to implement a decoding
strategy of trying to decode via UTF-8 and treat a
UnicodeDecodeError by decoding via cp1252. It was ugly but
effective.

However, considering that human languages also have their rules and
restrictions, once you assume that a stream of bytes is human plain text it
may be possible to sniff out its encoding using heuristics and statistics. For
example, if b'\x00' bytes are common, it is probably a 16- or 32-bit
encoding, and not an 8-bit scheme, because null characters in plain text are
bugs. When the byte sequence b'\x20\x00' appears often, it is more



likely to be the space character (U+0020) in a UTF-16LE encoding, rather
than the obscure U+2000 EN QUAD character—whatever that is.

That is how the package Chardet — The Universal Character Encoding
Detector works to guess one of more than 30 supported encodings. Chardet
is a Python library that you can use in your programs, but also includes a
command-line utility, chardetect. Here is what it reports on the source
file for this chapter:

$ chardetect 04-text-byte.asciidoc 
04-text-byte.asciidoc: utf-8 with confidence 0.99

Although binary sequences of encoded text usually don’t carry explicit hints
of their encoding, the UTF formats may prepend a byte order mark to the
textual content. That is explained next.

BOM: A Useful Gremlin
In Example 4-4, you may have noticed a couple of extra bytes at the
beginning of a UTF-16 encoded sequence. Here they are again:

>>> u16 = 'El Niño'.encode('utf_16') 
>>> u16 
b'\xff\xfeE\x00l\x00 \x00N\x00i\x00\xf1\x00o\x00'

The bytes are b'\xff\xfe'. That is a BOM—byte-order mark—
denoting the “little-endian” byte ordering of the Intel CPU where the
encoding was performed.

On a little-endian machine, for each code point the least significant byte
comes first: the letter 'E', code point U+0045 (decimal 69), is encoded in
byte offsets 2 and 3 as 69 and 0:

>>> list(u16) 
[255, 254, 69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111, 0]

https://pypi.python.org/pypi/chardet


On a big-endian CPU, the encoding would be reversed; 'E' would be
encoded as 0 and 69.

To avoid confusion, the UTF-16 encoding prepends the text to be encoded
with the special invisible character ZERO WIDTH NO-BREAK SPACE
(U+FEFF). On a little-endian system, that is encoded as b'\xff\xfe'
(decimal 255, 254). Because, by design, there is no U+FFFE character in
Unicode, the byte sequence b'\xff\xfe' must mean the ZERO WIDTH
NO-BREAK SPACE on a little-endian encoding, so the codec knows which
byte ordering to use.

There is a variant of UTF-16—UTF-16LE—that is explicitly little-endian,
and another one explicitly big-endian, UTF-16BE. If you use them, a BOM
is not generated:

>>> u16le = 'El Niño'.encode('utf_16le') 
>>> list(u16le) 
[69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111, 0] 
>>> u16be = 'El Niño'.encode('utf_16be') 
>>> list(u16be) 
[0, 69, 0, 108, 0, 32, 0, 78, 0, 105, 0, 241, 0, 111]

If present, the BOM is supposed to be filtered by the UTF-16 codec, so that
you only get the actual text contents of the file without the leading ZERO
WIDTH NO-BREAK SPACE. The Unicode standard says that if a file is
UTF-16 and has no BOM, it should be assumed to be UTF-16BE (big-
endian). However, the Intel x86 architecture is little-endian, so there is
plenty of little-endian UTF-16 with no BOM in the wild.

This whole issue of endianness only affects encodings that use words of
more than one byte, like UTF-16 and UTF-32. One big advantage of UTF-8
is that it produces the same byte sequence regardless of machine
endianness, so no BOM is needed. Nevertheless, some Windows
applications (notably Notepad) add the BOM to UTF-8 files anyway—and
Excel depends on the BOM to detect a UTF-8 file, otherwise it assumes the
content is encoded with a Windows code page. This UTF-8 encoding with
BOM is called UTF-8-SIG in Python’s codec registry. The character



U+FEFF encoded in UTF-8-SIG is the three-byte sequence
b'\xef\xbb\xbf'. So if a file starts with those three bytes, it is likely
to be a UTF-8 file with a BOM.

CALEB’S TIP ABOUT UTF-8-SIG
Caleb Hattingh—one of the tech reviewers—suggests always using the UTF-8-SIG
codec when reading UTF-8 files. This is harmless because UTF-8-SIG reads files with
or without a BOM correctly, and does not return the BOM itself. When writing, I
recommend using UTF-8 for general interoperability. For example, Python scripts can
be made executable in Unix systems if they start with the comment:
#!/usr/bin/env python3. The first two bytes of the file must be b'#!' for that
to work, but the BOM breaks that convention. If you have a specific requirement to
export data to apps that need the BOM, use UTF-8-SIG but be aware that Python’s
codecs documentation says: “In UTF-8, the use of the BOM is discouraged and should
generally be avoided.”

We now move on to handling text files in Python 3.

Handling Text Files
The best practice for handling text I/O is the “Unicode sandwich”
(Figure 4-2).  This means that bytes should be decoded to str as early as
possible on input (e.g., when opening a file for reading). The “filling” of the
sandwich is the business logic of your program, where text handling is done
exclusively on str objects. You should never be encoding or decoding in
the middle of other processing. On output, the str are encoded to bytes
as late as possible. Most web frameworks work like that, and we rarely
touch bytes when using them. In Django, for example, your views should
output Unicode str; Django itself takes care of encoding the response to
bytes, using UTF-8 by default.
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Figure 4-2. Unicode sandwich: current best practice for text processing

Python 3 makes it easier to follow the advice of the Unicode sandwich,
because the open() built-in does the necessary decoding when reading
and encoding when writing files in text mode, so all you get from
my_file.read() and pass to my_file.write(text) are str
objects.

Therefore, using text files is apparently simple. But if you rely on default
encodings you will get bitten.

Consider the console session in Example 4-8. Can you spot the bug?



Example 4-8. A platform encoding issue (if you try this on your machine,
you may or may not see the problem)
>>> open('cafe.txt', 'w', encoding='utf_8').write('café') 
4 
>>> open('cafe.txt').read() 
'cafÃ©'

The bug: I specified UTF-8 encoding when writing the file but failed to do
so when reading it, so Python assumed Windows default file encoding—
code page 1252—and the trailing bytes in the file were decoded as
characters 'Ã©' instead of 'é'.

I ran Example 4-8 on Python 3.8.1, 64 bits, on Windows 10 (build 18363).
The same statements running on recent GNU/Linux or MacOS work
perfectly well because their default encoding is UTF-8, giving the false
impression that everything is fine. If the encoding argument was omitted
when opening the file to write, the locale default encoding would be used,
and we’d read the file correctly using the same encoding. But then this
script would generate files with different byte contents depending on the
platform or even depending on locale settings in the same platform, creating
compatibility problems.

TIP
Code that has to run on multiple machines or on multiple occasions should never depend
on encoding defaults. Always pass an explicit encoding= argument when opening
text files, because the default may change from one machine to the next, or from one
day to the next.

A curious detail in Example 4-8 is that the write function in the first
statement reports that four characters were written, but in the next line five
characters are read. Example 4-9 is an extended version of Example 4-8,
explaining that and other details.

Example 4-9. Closer inspection of Example 4-8 running on Windows
reveals the bug and how to fix it



>>> fp = open('cafe.txt', 'w', encoding='utf_8') 
>>> fp   
<_io.TextIOWrapper name='cafe.txt' mode='w' encoding='utf_8'> 
>>> fp.write('café')   
4 
>>> fp.close() 
>>> import os 
>>> os.stat('cafe.txt').st_size   
5 
>>> fp2 = open('cafe.txt') 
>>> fp2   
<_io.TextIOWrapper name='cafe.txt' mode='r' encoding='cp1252'> 
>>> fp2.encoding   
'cp1252' 
>>> fp2.read()  
'cafÃ©' 
>>> fp3 = open('cafe.txt', encoding='utf_8')   
>>> fp3 
<_io.TextIOWrapper name='cafe.txt' mode='r' encoding='utf_8'> 
>>> fp3.read()  
'café' 
>>> fp4 = open('cafe.txt', 'rb')   
>>> fp4                            
<_io.BufferedReader name='cafe.txt'> 
>>> fp4.read()   
b'caf\xc3\xa9'

By default, open uses text mode and returns a TextIOWrapper
object with a specific encoding.

The write method on a TextIOWrapper returns the number of
Unicode characters written.

os.stat says the file has 5 bytes; UTF-8 encodes 'é' as 2 bytes,
0xc3 and 0xa9.

Opening a text file with no explicit encoding returns a
TextIOWrapper with the encoding set to a default from the locale.

A TextIOWrapper object has an encoding attribute that you can
inspect: cp1252 in this case.



In the Windows cp1252 encoding, the byte 0xc3 is an “Ã” (A with
tilde) and 0xa9 is the copyright sign.

Opening the same file with the correct encoding.

The expected result: the same four Unicode characters for 'café'.

The 'rb' flag opens a file for reading in binary mode.

The returned object is a BufferedReader and not a
TextIOWrapper.

Reading that returns bytes, as expected.

TIP
Do not open text files in binary mode unless you need to analyze the file contents to
determine the encoding—even then, you should be using Chardet instead of reinventing
the wheel (see “How to Discover the Encoding of a Byte Sequence”). Ordinary code
should only use binary mode to open binary files, like raster images.

The problem in Example 4-9 has to do with relying on a default setting
while opening a text file. There are several sources for such defaults, as the
next section shows.

Beware of Encoding Defaults
Several settings affect the encoding defaults for I/O in Python. See the
default_encodings.py script in Example 4-10.

Example 4-10. Exploring encoding defaults
import locale 
import sys 
 
expressions = """ 
        locale.getpreferredencoding() 
        type(my_file) 

file:///tmp/calibre_4.99.4_tmp_kffi9hqx/euo795rh_pdf_out/OEBPS/Images/#discover_encoding


        my_file.encoding 
        sys.stdout.isatty() 
        sys.stdout.encoding 
        sys.stdin.isatty() 
        sys.stdin.encoding 
        sys.stderr.isatty() 
        sys.stderr.encoding 
        sys.getdefaultencoding() 
        sys.getfilesystemencoding() 
    """ 
 
my_file = open('dummy', 'w') 
 
for expression in expressions.split(): 
    value = eval(expression) 
    print(f'{expression:>30} -> {value!r}')

The output of Example 4-10 on GNU/Linux (Ubuntu 14.04 to 19.10) and
MacOS (10.9 to 10.14) is identical, showing that UTF-8 is used
everywhere in these systems:

$ python3 default_encodings.py 
 locale.getpreferredencoding() -> 'UTF-8' 
                 type(my_file) -> <class '_io.TextIOWrapper'> 
              my_file.encoding -> 'UTF-8' 
           sys.stdout.isatty() -> True 
           sys.stdout.encoding -> 'utf-8' 
            sys.stdin.isatty() -> True 
            sys.stdin.encoding -> 'utf-8' 
           sys.stderr.isatty() -> True 
           sys.stderr.encoding -> 'utf-8' 
      sys.getdefaultencoding() -> 'utf-8' 
   sys.getfilesystemencoding() -> 'utf-8'

On Windows, however, the output is Example 4-11.

Example 4-11. Default encodings on Windows 10 PowerShell (output is the
same on cmd.exe)
> chcp   
Active code page: 437 
> python default_encodings.py   
 locale.getpreferredencoding() -> 'cp1252'   
                 type(my_file) -> <class '_io.TextIOWrapper'> 
              my_file.encoding -> 'cp1252'   
           sys.stdout.isatty() -> True       



           sys.stdout.encoding -> 'utf-8'    
            sys.stdin.isatty() -> True 
            sys.stdin.encoding -> 'utf-8' 
           sys.stderr.isatty() -> True 
           sys.stderr.encoding -> 'utf-8' 
      sys.getdefaultencoding() -> 'utf-8' 
   sys.getfilesystemencoding() -> 'utf-8'

chcp shows the active code page for the console: 437.

Running default_encodings.py with output to console.

locale.getpreferredencoding() is the most important
setting.

Text files use locale.getpreferredencoding() by default.

The output is going to the console, so sys.stdout.isatty() is
True.

Now, sys.stdout.encoding is not the same as the console code
page reported by chcp!

Unicode support in Windows itself, and in Python for Windows, got better
since I wrote the First Edition. Example 4-11 used to report four different
encodings in Python 3.4 on Windows 7. The encodings for stdout,
stdin, and stderr used to be the same as the active code page reported
by the chcp command, but now they’re all utf-8 thanks to PEP 528:
Change Windows console encoding to UTF-8 implemented in Python 3.6,
and Unicode support in PowerShell in cmd.exe (since Windows 1809 from
October 2018).  It’s weird that chcp and sys.stdout.encoding say
different things when stdout is writing to the console, but it’s great that
now we can print Unicode strings without encoding errors on Windows—
unless the user redirects output to a file, as we’ll soon see. That does not
mean all your favorite emojis will appear in the console: that also depends
on the font the console is using.
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Another change was PEP 529: Change Windows filesystem encoding to
UTF-8, also implemented in Python 3.6, which changed the file system
encoding (used to represent names of directories and files) from Microsoft’s
proprietary MBCS to UTF-8.

However, if the output of Example 4-10 is redirected to a file, like this:

Z:\>python default_encodings.py > encodings.log

Then, the value of sys.stdout.isatty() becomes False, and
sys.stdout.encoding is set by
locale.getpreferredencoding(), 'cp1252' in that machine—
but sys.stdin.encoding and sys.stderr.encoding remain
utf-8.

TIP
In Example 4-12 I use the '\N{}' escape for Unicode literals, where we write the
official name of the character inside the \N{}. It’s rather verbose, but explicit and safe:
Python raises SyntaxError if the name doesn’t exist—much better than writing an
hex number that could be wrong but you’ll only find out much later. You’d probably
want to write a comment explaining the character codes anyway, so the verbosity of
\N{} is easy to accept.

This means that a script like Example 4-12 works when printing to the
console, but may break when output is redirected to a file.

Example 4-12. stdout_check.py
import sys 
from unicodedata import name 
 
print(sys.version) 
print() 
print('sys.stdout.isatty():', sys.stdout.isatty()) 
print('sys.stdout.encoding:', sys.stdout.encoding) 
print() 
 
test_chars = [ 
    '\N{HORIZONTAL ELLIPSIS}',       # exists in cp1252, not in 

https://www.python.org/dev/peps/pep-0529/


cp437 
    '\N{INFINITY}',                  # exists in cp437, not in 
cp1252 
    '\N{CIRCLED NUMBER FORTY TWO}',  # not in cp437 or in cp1252 
] 
 
for char in test_chars: 
    print(f'Trying to output {name(char)}:') 
    print(char)

Example 4-12 displays the result of sys.stdout.isatty(), the value
of sys.stdout.encoding, and these three characters:

'…' HORIZONTAL ELLIPSIS—exists in CP 1252 but not in CP
437;

'∞' INFINITY—exists in CP 437 but not in CP 1252;

'�' CIRCLED NUMBER FORTY TWO —doesn’t exist in CP
1252 or CP 437.

When I run stdout_check.py on PowerShell or cmd.exe, it works as
captured in Figure 4-3.
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Figure 4-3. Running stdout_check.py on PowerShell.

Despite chcp reporting the active code as 437,
sys.stdout.encoding is UTF-8, so the HORIZONTAL ELLIPSIS
and INFINITY both output correctly. The CIRCLED NUMBER FORTY
TWO is replaced by a rectangle, but no error is raised. Presumably it is
recognized as a valid character, but the console font doesn’t have the glyph
to display it.

However, when I redirect the output of stdout_check.py to a file, I get
Figure 4-4.



Figure 4-4. Running stdout_check.py on PowerShell, redirecting output.

The first problem demonstrated by Figure 4-4 is the
UnicodeEncodeError mentioning character '\u221e', because
sys.stdout.encoding is 'cp1252'—a code page that doesn’t have
the INFINITY character.

Reading out.txt with the type command—or a Windows editor like
VS Code or Sublime Text—shows that instead of HORIZONTAL
ELLIPSIS, I got 'à' (LATIN SMALL LETTER A WITH GRAVE). As it
turns out, the byte value 0x85 in CP 1252 means '…', but in CP 437 the
same byte value represents 'à'. So it seems the active code page does



matter, not in a sensible or useful way, but as partial explanation of a bad
Unicode experience.

NOTE
I used a laptop configured for the US market, running Windows 10 OEM to run these
experiments. Windows versions localized for other countries may have different
encoding configurations. For example, in Brazil the Windows console uses code page
850 by default—not 437.

To wrap up this maddening issue of default encodings, let’s give a final look
at the different encodings in Example 4-11:

If you omit the encoding argument when opening a file, the
default is given by locale.getpreferredencoding()
('cp1252' in Example 4-11).

The encoding of sys.stdout|stdin|stderr used to be set
by the PYTHONIOENCODING environment variable before Python
3.6—now that variable is ignored, unless
PYTHONLEGACYWINDOWSSTDIO is set to a non-empty string.
Otherwise, the encoding for standard I/O is UTF-8 for interactive
I/O, or defined by locale.getpreferredencoding() if
the output/input is redirected to/from a file.

sys.getdefaultencoding() is used internally by Python in
implicit conversions of binary data to/from str; this happens less
often in Python 3, but still happens.  Changing this setting is not
supported.

sys.getfilesystemencoding() is used to encode/decode
filenames (not file contents). It is used when open() gets a str
argument for the filename; if the filename is given as a bytes
argument, it is passed unchanged to the OS API.
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NOTE
On GNU/Linux and MacOS all of these encodings are set to UTF-8 by default, and have
been for several years, so I/O handles all Unicode characters. On Windows, not only are
different encodings used in the same system, but they are usually code pages like
'cp850' or 'cp1252' that support only ASCII with 127 additional characters that
are not the same from one encoding to the other. Therefore, Windows users are far more
likely to face encoding errors unless they are extra careful.

To summarize, the most important encoding setting is that returned by
locale.getpreferredencoding(): it is the default for opening
text files and for sys.stdout/stdin/stderr when they are
redirected to files. However, the documentation reads (in part):

locale.getpreferredencoding(do_setlocale=True)

Return the encoding used for text data, according to user preferences.
User preferences are expressed differently on different systems, and
might not be available programmatically on some systems, so this
function only returns a guess. […]

Therefore, the best advice about encoding defaults is: do not rely on them.

You will avoid a lot of pain if you follow the advice of the Unicode
sandwich and always are explicit about the encodings in your programs.
Unfortunately, Unicode is painful even if you get your bytes correctly
converted to str. The next two sections cover subjects that are simple in
ASCII-land, but get quite complex on planet Unicode: text normalization
(i.e., converting text to a uniform representation for comparisons) and
sorting.

Normalizing Unicode for Reliable
Comparisons

http://bit.ly/1IqvYLp


String comparisons are complicated by the fact that Unicode has combining
characters: diacritics and other marks that attach to the preceding character,
appearing as one when printed.

For example, the word “café” may be composed in two ways, using four or
five code points, but the result looks exactly the same:

>>> s1 = 'café' 
>>> s2 = 'cafe\N{COMBINING ACUTE ACCENT}' 
>>> s1, s2 
('café', 'café') 
>>> len(s1), len(s2) 
(4, 5) 
>>> s1 == s2 
False

Placing COMBINING ACUTE ACCENT (U+0301) after “e” renders “é”. In
the Unicode standard, sequences like 'é' and 'e\u0301' are called
“canonical equivalents,” and applications are supposed to treat them as the
same. But Python sees two different sequences of code points, and
considers them not equal.

The solution is unicodedata.normalize(). The first argument to
that function is one of four strings: 'NFC', 'NFD', 'NFKC', and
'NFKD'. Let’s start with the first two.

Normalization Form C (NFC) composes the code points to produce the
shortest equivalent string, while NFD decomposes, expanding composed
characters into base characters and separate combining characters. Both of
these normalizations make comparisons work as expected, as the next
example shows.

>>> from unicodedata import normalize 
>>> s1 = 'café' 
>>> s2 = 'cafe\N{COMBINING ACUTE ACCENT}' 
>>> len(s1), len(s2) 
(4, 5) 
>>> len(normalize('NFC', s1)), len(normalize('NFC', s2)) 
(4, 4) 
>>> len(normalize('NFD', s1)), len(normalize('NFD', s2)) 



(5, 5) 
>>> normalize('NFC', s1) == normalize('NFC', s2) 
True 
>>> normalize('NFD', s1) == normalize('NFD', s2) 
True

Keyboard drivers usually generate composed characters, so text typed by
users will be in NFC by default. However, to be safe, it may be good to
normalize strings with normalize('NFC', user_text) before
saving. NFC is also the normalization form recommended by the W3C in
Character Model for the World Wide Web: String Matching and Searching.

Some single characters are normalized by NFC into another single
character. The symbol for the ohm (Ω) unit of electrical resistance is
normalized to the Greek uppercase omega. They are visually identical, but
they compare unequal so it is essential to normalize to avoid surprises:

>>> from unicodedata import normalize, name 
>>> ohm = '\u2126' 
>>> name(ohm) 
'OHM SIGN' 
>>> ohm_c = normalize('NFC', ohm) 
>>> name(ohm_c) 
'GREEK CAPITAL LETTER OMEGA' 
>>> ohm == ohm_c 
False 
>>> normalize('NFC', ohm) == normalize('NFC', ohm_c) 
True

The other two normalization forms are NFKC and NFKD, where the letter
K stands for “compatibility.” These are stronger forms of normalization,
affecting the so-called “compatibility characters.” Although one goal of
Unicode is to have a single “canonical” code point for each character, some
characters appear more than once for compatibility with preexisting
standards. For example, the MICRO SIGN, µ (U+00B5), was added to
Unicode to support round-trip conversion to latin1 which includes it,
even though the same character is part of the Greek alphabet with code
point U+03BC (GREEK SMALL LETTER MU). So, the micro sign is
considered a “compatibility character.”

http://www.w3.org/TR/charmod-norm/


In the NFKC and NFKD forms, each compatibility character is replaced by
a “compatibility decomposition” of one or more characters that are
considered a “preferred” representation, even if there is some formatting
loss—ideally, the formatting should be the responsibility of external
markup, not part of Unicode. To exemplify, the compatibility
decomposition of the one half fraction '½' (U+00BD) is the sequence of
three characters '1/2', and the compatibility decomposition of the micro
sign 'µ' (U+00B5) is the lowercase mu 'μ' (U+03BC).

Here is how the NFKC works in practice:

>>> from unicodedata import normalize, name 
>>> half = '\N{VULGAR FRACTION ONE HALF}' 
>>> print(half) 
½ 
>>> normalize('NFKC', half) 
'1⁄2' 
>>> for char in normalize('NFKC', half): 
...     print(char, name(char), sep='\t') 
... 
1 DIGIT ONE 
⁄ FRACTION SLASH 
2 DIGIT TWO 
>>> four_squared = '4²' 
>>> normalize('NFKC', four_squared) 
'42' 
>>> micro = 'µ' 
>>> micro_kc = normalize('NFKC', micro) 
>>> micro, micro_kc 
('µ', 'μ') 
>>> ord(micro), ord(micro_kc) 
(181, 956) 
>>> name(micro), name(micro_kc) 
('MICRO SIGN', 'GREEK SMALL LETTER MU')

Although '1⁄2' is a reasonable substitute for '½', and the micro sign is
really a lowercase Greek mu, converting '4²' to '42' changes the
meaning. An application could store '4²' as '4<sup>2</sup>', but
the normalize function knows nothing about formatting. Therefore,
NFKC or NFKD may lose or distort information, but they can produce
convenient intermediate representations for searching and indexing.
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Unfortunately, with Unicode everything is always more complicated than it
first seems. For the VULGAR FRACTION ONE HALF, the NFKC
normalization produced 1 and 2 joined by FRACTION SLASH, instead of
SOLIDUS, a.k.a. “slash”—the familiar character with ASCII code decimal
47. Therefore, searching for the 3-character ASCII sequence '1/2' would
not find the normalized Unicode sequence.

WARNING
NFKC and NFKD normalization cause data loss and should be applied only in special
cases like search and indexing, and not for permanent storage of text.

When preparing text for searching or indexing, another operation is useful:
case folding, our next subject.

Case Folding
Case folding is essentially converting all text to lowercase, with some
additional transformations. It is supported by the str.casefold()
method.

For any string s containing only latin1 characters, s.casefold()
produces the same result as s.lower(), with only two exceptions—the
micro sign 'µ' is changed to the Greek lowercase mu (which looks the
same in most fonts) and the German Eszett or “sharp s” (ß) becomes “ss”:

>>> micro = 'µ' 
>>> name(micro) 
'MICRO SIGN' 
>>> micro_cf = micro.casefold() 
>>> name(micro_cf) 
'GREEK SMALL LETTER MU' 
>>> micro, micro_cf 
('µ', 'μ') 
>>> eszett = 'ß' 
>>> name(eszett) 
'LATIN SMALL LETTER SHARP S' 
>>> eszett_cf = eszett.casefold() 



>>> eszett, eszett_cf 
('ß', 'ss')

There are nearly 300 code points for which str.casefold() and
str.lower() return different results.

As usual with anything related to Unicode, case folding is a hard issue with
plenty of linguistic special cases, but the Python core team made an effort to
provide a solution that hopefully works for most users.

In the next couple of sections, we’ll put our normalization knowledge to use
developing utility functions.

Utility Functions for Normalized Text Matching
As we’ve seen, NFC and NFD are safe to use and allow sensible
comparisons between Unicode strings. NFC is the best normalized form for
most applications. str.casefold() is the way to go for case-insensitive
comparisons.

If you work with text in many languages, a pair of functions like
nfc_equal and fold_equal in Example 4-13 are useful additions to
your toolbox.

Example 4-13. normeq.py: normalized Unicode string comparison
""" 
Utility functions for normalized Unicode string comparison. 
 
Using Normal Form C, case sensitive: 
 
    >>> s1 = 'café' 
    >>> s2 = 'cafe\u0301' 
    >>> s1 == s2 
    False 
    >>> nfc_equal(s1, s2) 
    True 
    >>> nfc_equal('A', 'a') 
    False 
 
Using Normal Form C with case folding: 
 
    >>> s3 = 'Straße' 



    >>> s4 = 'strasse' 
    >>> s3 == s4 
    False 
    >>> nfc_equal(s3, s4) 
    False 
    >>> fold_equal(s3, s4) 
    True 
    >>> fold_equal(s1, s2) 
    True 
    >>> fold_equal('A', 'a') 
    True 
 
""" 
 
from unicodedata import normalize 
 
def nfc_equal(str1, str2): 
    return normalize('NFC', str1) == normalize('NFC', str2) 
 
def fold_equal(str1, str2): 
    return (normalize('NFC', str1).casefold() == 
            normalize('NFC', str2).casefold())

Beyond Unicode normalization and case folding—which are both part of
the Unicode standard—sometimes it makes sense to apply deeper
transformations, like changing 'café' into 'cafe'. We’ll see when and
how in the next section.

Extreme “Normalization”: Taking Out Diacritics
The Google Search secret sauce involves many tricks, but one of them
apparently is ignoring diacritics (e.g., accents, cedillas, etc.), at least in
some contexts. Removing diacritics is not a proper form of normalization
because it often changes the meaning of words and may produce false
positives when searching. But it helps coping with some facts of life: people
sometimes are lazy or ignorant about the correct use of diacritics, and
spelling rules change over time, meaning that accents come and go in living
languages.

Outside of searching, getting rid of diacritics also makes for more readable
URLs, at least in Latin-based languages. Take a look at the URL for the
Wikipedia article about the city of São Paulo:



https://en.wikipedia.org/wiki/S%C3%A3o_Paulo

The %C3%A3 part is the URL-escaped, UTF-8 rendering of the single letter
“ã” (“a” with tilde). The following is much easier to recognize, even if it is
not the right spelling:

https://en.wikipedia.org/wiki/Sao_Paulo

To remove all diacritics from a str, you can use a function like Example 4-
14.

Example 4-14. simplify.py: Function to remove all combining marks.
import unicodedata 
import string 
 
 
def shave_marks(txt): 
    """Remove all diacritic marks""" 
    norm_txt = unicodedata.normalize('NFD', txt)   
    shaved = ''.join(c for c in norm_txt 
                     if not unicodedata.combining(c))   
    return unicodedata.normalize('NFC', shaved)  

Decompose all characters into base characters and combining marks.

Filter out all combining marks.

Recompose all characters.

Example 4-15 shows a couple of uses of shave_marks.

Example 4-15. Two examples using shave_marks from Example 4-14
>>> order = '“Herr Voß: • ½ cup of Œtker™ caffè latte • bowl of 
açaí.”' 
>>> shave_marks(order) 
'“Herr Voß: • ½ cup of Œtker™ caffe latte • bowl of acai.”'   
>>> Greek = 'Ζέφυρος, Zéfiro' 
>>> shave_marks(Greek) 
'Ζεφυρος, Zefiro'  



Only the letters “è”, “ç”, and “í” were replaced.

Both “έ” and “é” were replaced.

The function shave_marks from Example 4-14 works all right, but
maybe it goes too far. Often the reason to remove diacritics is to change
Latin text to pure ASCII, but shave_marks also changes non-Latin
characters—like Greek letters—which will never become ASCII just by
losing their accents. So it makes sense to analyze each base character and to
remove attached marks only if the base character is a letter from the Latin
alphabet. This is what Example 4-16 does.

Example 4-16. Function to remove combining marks from Latin characters
(import statements are omitted as this is part of the simplify.py module from
Example 4-14)
def shave_marks_latin(txt): 
    """Remove all diacritic marks from Latin base characters""" 
    norm_txt = unicodedata.normalize('NFD', txt)   
    latin_base = False 
    preserve = [] 
    for c in norm_txt: 
        if unicodedata.combining(c) and latin_base:    
            continue  # ignore diacritic on Latin base char 
        preserve.append(c)                             
        # if it isn't a combining char, it's a new base char 
        if not unicodedata.combining(c):               
            latin_base = c in string.ascii_letters 
    shaved = ''.join(preserve) 
    return unicodedata.normalize('NFC', shaved)   

Decompose all characters into base characters and combining marks.

Skip over combining marks when base character is Latin.

Otherwise, keep current character.

Detect new base character and determine if it’s Latin.

Recompose all characters.



An even more radical step would be to replace common symbols in Western
texts (e.g., curly quotes, em dashes, bullets, etc.) into ASCII equivalents.
This is what the function asciize does in Example 4-17.

Example 4-17. Transform some Western typographical symbols into ASCII
(this snippet is also part of simplify.py from Example 4-14)
single_map = str.maketrans("""‚ƒ„ˆ‹‘’“”•–—˜›""",   
                           """'f"^<''""---~>""") 
 
multi_map = str.maketrans({   
    '€': 'EUR', 
    '…': '...', 
    'Æ': 'AE', 
    'æ': 'ae', 
    'Œ': 'OE', 
    'œ': 'oe', 
    '™': '(TM)', 
    '‰': '<per mille>', 
    '†': '**', 
    '‡': '***', 
}) 
 
multi_map.update(single_map)   
 
 
def dewinize(txt): 
    """Replace Win1252 symbols with ASCII chars or sequences""" 
    return txt.translate(multi_map)   
 
 
def asciize(txt): 
    no_marks = shave_marks_latin(dewinize(txt))      
    no_marks = no_marks.replace('ß', 'ss')           
    return unicodedata.normalize('NFKC', no_marks)  

Build mapping table for char-to-char replacement.

Build mapping table for char-to-string replacement.

Merge mapping tables.

dewinize does not affect ASCII or latin1 text, only the Microsoft
additions in to latin1 in cp1252.



Apply dewinize and remove diacritical marks.

Replace the Eszett with “ss” (we are not using case fold here because
we want to preserve the case).

Apply NFKC normalization to compose characters with their
compatibility code points.

Example 4-18 shows asciize in use.

Example 4-18. Two examples using asciize from Example 4-17
>>> order = '“Herr Voß: • ½ cup of Œtker™ caffè latte • bowl of 
açaí.”' 
>>> dewinize(order) 
'"Herr Voß: - ½ cup of OEtker(TM) caffè latte - bowl of açaí."'   
>>> asciize(order) 
'"Herr Voss: - 1⁄2 cup of OEtker(TM) caffe latte - bowl of acai."'  

dewinize replaces curly quotes, bullets, and ™ (trademark symbol).

asciize applies dewinize, drops diacritics, and replaces the 'ß'.

WARNING
Different languages have their own rules for removing diacritics. For example, Germans
change the 'ü' into 'ue'. Our asciize function is not as refined, so it may or not be
suitable for your language. It works acceptably for Portuguese, though.

To summarize, the functions in simplify.py go way beyond standard
normalization and perform deep surgery on the text, with a good chance of
changing its meaning. Only you can decide whether to go so far, knowing
the target language, your users, and how the transformed text will be used.

This wraps up our discussion of normalizing Unicode text.

Now let’s sort out Unicode sorting.



Sorting Unicode Text
Python sorts sequences of any type by comparing the items in each
sequence one by one. For strings, this means comparing the code points.
Unfortunately, this produces unacceptable results for anyone who uses non-
ASCII characters.

Consider sorting a list of fruits grown in Brazil:

>>> fruits = ['caju', 'atemoia', 'cajá', 'açaí', 'acerola'] 
>>> sorted(fruits) 
['acerola', 'atemoia', 'açaí', 'caju', 'cajá']

Sorting rules vary for different locales, but in Portuguese and many
languages that use the Latin alphabet, accents and cedillas rarely make a
difference when sorting.  So “cajá” is sorted as “caja,” and must come
before “caju.”

The sorted fruits list should be:

['açaí', 'acerola', 'atemoia', 'cajá', 'caju']

The standard way to sort non-ASCII text in Python is to use the
locale.strxfrm function which, according to the locale module
docs, “transforms a string to one that can be used in locale-aware
comparisons.”

To enable locale.strxfrm, you must first set a suitable locale for your
application, and pray that the OS supports it. The sequence of commands in
Example 4-19 may work for you.

Example 4-19. locale_sort.py: using the locale.strxfrm function as
sort key
import locale 
my_locale = locale.setlocale(locale.LC_COLLATE, 'pt_BR.UTF-8') 
print(my_locale) 
fruits = ['caju', 'atemoia', 'cajá', 'açaí', 'acerola'] 
sorted_fruits = sorted(fruits, key=locale.strxfrm) 
print(sorted_fruits)
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Running Example 4-19 on GNU/Linux (Ubuntu 19.10) with the
pt_BR.UTF-8 locale installed, I get the correct result:

'pt_BR.UTF-8' 
['açaí', 'acerola', 'atemoia', 'cajá', 'caju']

So you need to call setlocale(LC_COLLATE, «your_locale»)
before using locale.strxfrm as the key when sorting.

There are some caveats, though:

Because locale settings are global, calling setlocale in a library
is not recommended. Your application or framework should set the
locale when the process starts, and should not change it afterwards.

The locale must be installed on the OS, otherwise setlocale
raises a locale.Error: unsupported locale
setting exception.

You must know how to spell the locale name.

The locale must be correctly implemented by the makers of the
OS. I was successful on Ubuntu 19.10, but not on MacOS 10.14.
On MacOS, the call setlocale(LC_COLLATE,
'pt_BR.UTF-8') returns the string 'pt_BR.UTF-8' with no
complaints. But sorted(fruits, key=locale.strxfrm)
produced the same incorrect result as sorted(fruits) did. I
also tried the fr_FR, es_ES, and de_DE locales on MacOS, but
locale.strxfrm never did its job.

So the standard library solution to internationalized sorting works, but
seems to be well supported only on GNU/Linux (perhaps also on Windows,
if you are an expert). Even then, it depends on locale settings, creating
deployment headaches.

Fortunately, there is a simpler solution: the PyUCA library, available on
PyPI.

12



Sorting with the Unicode Collation Algorithm
James Tauber, prolific Django contributor, must have felt the pain and
created _PyUCA_, a pure-Python implementation of the Unicode Collation
Algorithm (UCA). Example 4-20 shows how easy it is to use.

Example 4-20. Using the pyuca.Collator.sort_key method
>>> import pyuca 
>>> coll = pyuca.Collator() 
>>> fruits = ['caju', 'atemoia', 'cajá', 'açaí', 'acerola'] 
>>> sorted_fruits = sorted(fruits, key=coll.sort_key) 
>>> sorted_fruits 
['açaí', 'acerola', 'atemoia', 'cajá', 'caju']

This is simple and works on GNU/Linux, MacOS, and Windows, at least
with my small sample.

PyUCA does not take the locale into account. If you need to customize the
sorting, you can provide the path to a custom collation table to the
Collator() constructor. Out of the box, it uses allkeys.txt, which
is bundled with the project. That’s just a copy of the Default Unicode
Collation Element Table from Unicode.org.

PYICU: MIRO’S RECOMMENDATION FOR UNICODE
SORTING

(Tech reviewer Miroslav Šedivý is a polyglot and an expert on Unicode. This is what he
wrote about PyUCA.)

PyUCA has one sorting algorithm that does not respect the sorting order in individual
languages. For instance, Ä in German is between A and B, while in Swedish it comes
after Z. Have a look at PyICU that works like locale without changing the locale of the
process. It is also needed if you want to change the case of iİ/ıI in Turkish. PyICU
includes an extension that must be compiled, so it may be harder to install in some
systems than PyUCA, which is just Python.

By the way, that collation table is one of the many data files that comprise
the Unicode database, our next subject.

https://pypi.python.org/pypi/pyuca/
https://github.com/jtauber/pyuca
http://bit.ly/1IqAk54
https://pypi.org/project/PyICU/


The Unicode Database
The Unicode standard provides an entire database—in the form of several
structured text files—that includes not only the table mapping code points
to character names, but also metadata about the individual characters and
how they are related. For example, the Unicode database records whether a
character is printable, is a letter, is a decimal digit, or is some other numeric
symbol. That’s how the str methods isalpha, isprintable,
isdecimal, and isnumeric work. str.casefold also uses
information from a Unicode table.

NOTE
The unicodedata.category(char) function returns the two-letter category of
char from the Unicode database. The higher level str methods are easier to use. For
example, label.isalpha() returns True if every character in label belongs to
one of these categories: Lm, Lt, Lu, Ll, or Lo. To learn what those codes mean, see
General Category in the English Wikipedia’s Unicode character property article.

Finding characters by name
The unicodedata module has functions to retrieve character metadata,
including unicodedata.name(), which returns a character’s official
name in the standard. Figure 4-5 demonstrates that function.13

https://docs.python.org/3.9/library/stdtypes.html#str.isalpha
https://en.wikipedia.org/wiki/Unicode_character_property#General_Category
https://en.wikipedia.org/wiki/Unicode_character_property


Figure 4-5. Exploring unicodedata.name() in the Python console

You can use the name() function to build apps that let users search for
characters by name. Figure 4-6 demonstrates the cf.py command-line
script that takes one or more words as arguments, and lists the characters
that have those words in their official Unicode names. The full source code
for cf.py is in Example 4-21.



Figure 4-6. Using cf.py to find smiling cats.

WARNING
Emoji support varies widely across operating systems and apps. In recent years the
MacOS terminal offers the best support for emojis, followed by modern GNU/Linux
graphic terminals. Windows cmd.exe and PowerShell now support Unicode output, but
as I write this section in January 2020, they still don’t display emojis—at least not “out
of the box”. Tech reviewer Leonardo Rochael told me about a new, Open Source
Windows Terminal by Microsoft, which may have better Unicode support than the older
Microsoft consoles. I did not have time to try it.

In Example 4-21, note the if statement in the find function using the
.issubset() method to quickly test whether all the words in the query
set appear in the list of words built from the character’s name. Thanks to
Python’s rich set API, we don’t need a nested for loop and another if to
implement this check.

Example 4-21. cf.py: the character finder utility
#!/usr/bin/env python3 
import sys 
import unicodedata 
 
START, END = ord(' '), sys.maxunicode + 1            
 
def find(*query_words, start=START, end=END):        
    query = {w.upper() for w in query_words}         
    for code in range(start, end): 
        char = chr(code)                             

https://github.com/microsoft/terminal


        name = unicodedata.name(char, None)          
        if name and query.issubset(name.split()):    
            print(f'U+{code:04X}\t{char}\t{name}')   
 
def main(words): 
    if words: 
        find(*words) 
    else: 
        print('Please provide words to find.') 
 
if __name__ == '__main__': 
    main(sys.argv[1:])

Set defaults for the range of code points to search.

find accepts query_words and optional keyword-only arguments to
limit the range of the search, to facilitate testing.

Convert query_words into a set of uppercased strings.

Get Unicode character for code.

Get name of character, or None if the code point is unassigned.

If there is a name, split it into a list words, then check the query set is
a subset of that list.

Print out line with code point in U+9999 format, the character and its
name.

The unicodedata module has other interesting functions. Next we’ll see
a few that are related to getting information from characters that have
numeric meaning.

Numeric meaning of characters
The unicodedata module includes functions to check whether a
Unicode character represents a number and, if so, its numeric value for



humans—as opposed to its code point number. Example 4-22 shows the use
of unicodedata.name() and unicodedata.numeric() along
with the .isdecimal() and .isnumeric() methods of str.

Example 4-22. Demo of Unicode database numerical character metadata
(callouts describe each column in the output)
import unicodedata 
import re 
 
re_digit = re.compile(r'\d') 
 
sample = '1\xbc\xb2\u0969\u136b\u216b\u2466\u2480\u3285' 
 
for char in sample: 
    print(f'U+{ord(char):04x}',                        
          char.center(6),                              
          're_dig' if re_digit.match(char) else '-',   
          'isdig' if char.isdigit() else '-',          
          'isnum' if char.isnumeric() else '-',        
          f'{unicodedata.numeric(char):5.2f}',         
          unicodedata.name(char),                      
          sep='\t')

Code point in U+0000 format.

Character centralized in a str of length 6.

Show re_dig if character matches the r'\d' regex.

Show isdig if char.isdigit() is True.

Show isnum if char.isnumeric() is True.

Numeric value formatted with width 5 and 2 decimal places.

Unicode character name.

Running Example 4-22 gives you Figure 4-7, if your terminal font has all
those glyphs.



Figure 4-7. MacOS terminal showing numeric characters and metadata about them; re_dig means
the character matches the regular expression r’\d’

The sixth column of Figure 4-7 is the result of calling
unicodedata.numeric(char) on the character. It shows that
Unicode knows the numeric value of symbols that represent numbers. So if
you want to create a spreadsheet application that supports Tamil digits or
Roman numerals, go for it!

Figure 4-7 shows that the regular expression r'\d' matches the digit “1”
and the Devanagari digit 3, but not some other characters that are
considered digits by the isdigit function. The re module is not as savvy



about Unicode as it could be. The new regex module available on PyPI
was designed to eventually replace re and provides better Unicode
support.  We’ll come back to the re module in the next section.

Throughout this chapter we’ve used several unicodedata functions, but
there are many more we did not cover. See the standard library
documentation for the unicodedata module.

Next we’ll take a quick look at dual-mode APIs offering functions that
accept str or bytes arguments with special handling depending on the
type.

Dual-Mode str and bytes APIs
Python’s standard library has functions that accept str or bytes
arguments and behave differently depending on the type. Some examples
are in the re and os modules.

str Versus bytes in Regular Expressions
If you build a regular expression with bytes, patterns such as \d and \w
only match ASCII characters; in contrast, if these patterns are given as str,
they match Unicode digits or letters beyond ASCII. Example 4-23 and
Figure 4-8 compare how letters, ASCII digits, superscripts, and Tamil digits
are matched by str and bytes patterns.

Example 4-23. ramanujan.py: compare behavior of simple str and bytes
regular expressions
import re 
 
re_numbers_str = re.compile(r'\d+')      
re_words_str = re.compile(r'\w+') 
re_numbers_bytes = re.compile(rb'\d+')   
re_words_bytes = re.compile(rb'\w+') 
 
text_str = ("Ramanujan saw \u0be7\u0bed\u0be8\u0bef"   
            " as 1729 = 1³ + 12³ = 9³ + 10³.")         
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text_bytes = text_str.encode('utf_8')   
 
print(f'Text\n  {text_str!r}') 
print('Numbers') 
print('  str  :', re_numbers_str.findall(text_str))       
print('  bytes:', re_numbers_bytes.findall(text_bytes))   
print('Words') 
print('  str  :', re_words_str.findall(text_str))         
print('  bytes:', re_words_bytes.findall(text_bytes))    

The first two regular expressions are of the str type.

The last two are of the bytes type.

Unicode text to search, containing the Tamil digits for 1729 (the logical
line continues until the right parenthesis token).

This string is joined to the previous one at compile time (see “2.4.2.
String literal concatenation” in The Python Language Reference).

A bytes string is needed to search with the bytes regular
expressions.

The str pattern r'\d+' matches the Tamil and ASCII digits.

The bytes pattern rb'\d+' matches only the ASCII bytes for digits.

The str pattern r'\w+' matches the letters, superscripts, Tamil, and
ASCII digits.

The bytes pattern rb'\w+' matches only the ASCII bytes for letters
and digits.

http://bit.ly/1IqE2vH


Figure 4-8. Screenshot of running ramanujan.py from Example 4-23

Example 4-23 is a trivial example to make one point: you can use regular
expressions on str and bytes, but in the second case bytes outside the
ASCII range are treated as nondigits and nonword characters.

For str regular expressions, there is a re.ASCII flag that makes \w, \W,
\b, \B, \d, \D, \s, and \S perform ASCII-only matching. See the
documentation of the re module for full details.

Another important dual-mode module is os.

str Versus bytes in os Functions

https://docs.python.org/3/library/re.html


The GNU/Linux kernel is not Unicode savvy, so in the real world you may
find filenames made of byte sequences that are not valid in any sensible
encoding scheme, and cannot be decoded to str. File servers with clients
using a variety of OSes are particularly prone to this problem.

In order to work around this issue, all os module functions that accept
filenames or pathnames take arguments as str or bytes. If one such
function is called with a str argument, the argument will be automatically
converted using the codec named by
sys.getfilesystemencoding(), and the OS response will be
decoded with the same codec. This is almost always what you want, in
keeping with the Unicode sandwich best practice.

But if you must deal with (and perhaps fix) filenames that cannot be
handled in that way, you can pass bytes arguments to the os functions to
get bytes return values. This feature lets you deal with any file or
pathname, no matter how many gremlins you may find. See Example 4-24.

Example 4-24. listdir with str and bytes arguments and results
>>> os.listdir('.')   
['abc.txt', 'digits-of-π.txt'] 
>>> os.listdir(b'.')   
[b'abc.txt', b'digits-of-\xcf\x80.txt']

The second filename is “digits-of-π.txt” (with the Greek letter pi).

Given a byte argument, listdir returns filenames as bytes:
b'\xcf\x80' is the UTF-8 encoding of the Greek letter pi).

To help with manual handling of str or bytes sequences that are file or
path names, the os module provides special encoding and decoding
functions os.fsencode(name_or_path) and
os.fsdecode(name_or_path). Both of these functions accept an
argument of type str, bytes, or-an object implementing the
os.PathLike interface since Python 3.6.



Unicode is a deep rabbit hole. Time to wrap up our exploration of str and
bytes.



Chapter Summary
We started the chapter by dismissing the notion that 1 character ==
1 byte. As the world adopts Unicode, we need to keep the concept of text
strings separated from the binary sequences that represent them in files, and
Python 3 enforces this separation.

After a brief overview of the binary sequence data types—bytes,
bytearray, and memoryview—we jumped into encoding and
decoding, with a sampling of important codecs, followed by approaches to
prevent or deal with the infamous UnicodeEncodeError,
UnicodeDecodeError, and the SyntaxError caused by wrong
encoding in Python source files.

We then considered the theory and practice of encoding detection in the
absence of metadata: in theory, it can’t be done, but in practice the Chardet
package pulls it off pretty well for a number of popular encodings. Byte
order marks were then presented as the only encoding hint commonly found
in UTF-16 and UTF-32 files—sometimes in UTF-8 files as well.

In the next section, we demonstrated opening text files, an easy task except
for one pitfall: the encoding= keyword argument is not mandatory when
you open a text file, but it should be. If you fail to specify the encoding, you
end up with a program that manages to generate “plain text” that is
incompatible across platforms, due to conflicting default encodings. We
then exposed the different encoding settings that Python uses as defaults
and how to detect them. A sad realization for Windows users is that these
settings often have distinct values within the same machine, and the values
are mutually incompatible; GNU/Linux and MacOS users, in contrast, live
in a happier place where UTF-8 is the default pretty much everywhere.

Unicode provides multiple ways of representing some characters, so
normalizing is a prerequisite for text matching. In addition to explaining
normalization and case folding, we presented some utility functions that
you may adapt to your needs, including drastic transformations like
removing all accents. We then saw how to sort Unicode text correctly by



leveraging the standard locale module—with some caveats—and an
alternative that does not depend on tricky locale configurations: the external
PyUCA package.

We leveraged the Unicode database to program a command-line utility to
search for characters by name–in 28 lines of code, thanks to the power of
Python. We glanced at other Unicode metadata, and had a brief overview of
dual-mode APIs where some functions can be called with str or bytes
arguments, producing different results.

Further Reading
Ned Batchelder’s 2012 PyCon US talk “Pragmatic Unicode–or–How Do I
Stop the Pain?” was outstanding. Ned is so professional that he provides a
full transcript of the talk along with the slides and video.

“Character encoding and Unicode in Python: How to (╯°□°)╯︵ ┻━┻ with
dignity” (slides, video) was the excellent PyCon 2014 talk by Esther Nam
and Travis Fischer where I found this chapter’s pithy epigraph: “Humans
use text. Computers speak bytes.”

Lennart Regebro—one of the technical reviewers for the First Edition--
shares his “Useful Mental Model of Unicode (UMMU)” in the short post
“Unconfusing Unicode: What Is Unicode?”. Unicode is a complex standard,
so Lennart’s UMMU is a really useful starting point.

The official Unicode HOWTO in the Python docs approaches the subject
from several different angles, from a good historic intro to syntax details,
codecs, regular expressions, filenames, and best practices for Unicode-
aware I/O (i.e., the Unicode sandwich), with plenty of additional reference
links from each section. Chapter 4, “Strings”, of Mark Pilgrim’s awesome
book Dive into Python 3 also provides a very good intro to Unicode support
in Python 3. In the same book, Chapter 15 describes how the Chardet
library was ported from Python 2 to Python 3, a valuable case study given
that the switch from the old str to the new bytes is the cause of most

http://nedbatchelder.com/text/unipain.html
http://bit.ly/1JzF1MY
http://bit.ly/1JzF37P
https://regebro.wordpress.com/2011/03/23/unconfusing-unicode-what-is-unicode/
https://docs.python.org/3/howto/unicode.html
http://www.diveintopython3.net/strings.html
http://www.diveintopython3.net/
http://bit.ly/1IqJ63d


migration pains, and that is a central concern in a library designed to detect
encodings.

If you know Python 2 but are new to Python 3, Guido van Rossum’s What’s
New in Python 3.0 has 15 bullet points that summarize what changed, with
lots of links. Guido starts with the blunt statement: “Everything you thought
you knew about binary data and Unicode has changed.” Armin Ronacher’s
blog post “The Updated Guide to Unicode on Python” is deep and
highlights some of the pitfalls of Unicode in Python 3 (Armin is not a big
fan of Python 3).

Chapter 2, “Strings and Text,” of the Python Cookbook, Third Edition
(O’Reilly), by David Beazley and Brian K. Jones, has several recipes
dealing with Unicode normalization, sanitizing text, and performing text-
oriented operations on byte sequences. Chapter 5 covers files and I/O, and it
includes “Recipe 5.17. Writing Bytes to a Text File,” showing that
underlying any text file there is always a binary stream that may be
accessed directly when needed. Later in the cookbook, the struct module
is put to use in “Recipe 6.11. Reading and Writing Binary Arrays of
Structures.”

Nick Coghlan’s Python Notes blog has two posts very relevant to this
chapter: “Python 3 and ASCII Compatible Binary Protocols” and
“Processing Text Files in Python 3”. Highly recommended.

A list of encodings supported by Python is available at Standard Encodings
in the codecs module documentation. If you need to get that list
programmatically, see how it’s done in the /Tools/unicode/listcodecs.py
script that comes with the CPython source code.

The books Unicode Explained by Jukka K. Korpela (O’Reilly) and Unicode
Demystified by Richard Gillam (Addison-Wesley) are not Python-specific
but were very helpful as I studied Unicode concepts. Programming with
Unicode by Victor Stinner is a free, self-published book (Creative
Commons BY-SA) covering Unicode in general as well as tools and APIs in
the context of the main operating systems and a few programming
languages, including Python.

http://bit.ly/1IqJ8YH
http://bit.ly/1IqJcrD
http://shop.oreilly.com/product/0636920027072.do
http://bit.ly/1dYuNJa
http://bit.ly/1dYuRbS
https://docs.python.org/3/library/codecs.html#standard-encodings
http://bit.ly/1IqKrqD
http://shop.oreilly.com/product/9780596101213.do
http://bit.ly/1dYveDl
http://unicodebook.readthedocs.org/index.html


The W3C pages Case Folding: An Introduction and Character Model for the
World Wide Web: String Matching and Searching cover normalization
concepts, with the former being a gentle introduction and the latter a
working group note written in dry standard-speak—the same tone of the
Unicode Standard Annex #15 — Unicode Normalization Forms. The
Frequently Asked Questions / Normalization from Unicode.org is more
readable, as is the NFC FAQ by Mark Davis—author of several Unicode
algorithms and president of the Unicode Consortium at the time of this
writing.

In 2016, the Museum of Modern Art (MoMA) in New York added to its
collection The Original Emoji, the 176 emojis designed by Shigetaka Kurita
in 1999 for NTT DOCOMO—the Japanese mobile carrier. Going further
back in history, Emojipedia published Correcting the Record on the First
Emoji Set, crediting Japan’s SoftBank for the earliest known emoji set,
deployed in cell phones in 1997. SoftBank’s set is the source of 90 emojis
now in Unicode, including U+1F4A9 (PILE OF POO). Matthew
Rothenberg’s emojitracker.com is a live dashboard showing counts of emoji
usage on Twitter, updated in real time. As I write this, FACE WITH TEARS
OF JOY (U+1F602) is the most popular emoji on Twitter, with more than
3,313,667,315 recorded occurrences.

http://www.w3.org/International/wiki/Case_folding
http://www.w3.org/TR/charmod-norm/
http://unicode.org/reports/tr15/
http://www.unicode.org/faq/normalization.html
http://www.unicode.org/
http://www.macchiato.com/unicode/nfc-faq
https://stories.moma.org/the-original-emoji-set-has-been-added-to-the-museum-of-modern-arts-collection-c6060e141f61
https://emojipedia.org/
https://blog.emojipedia.org/correcting-the-record-on-the-first-emoji-set/
http://emojitracker.com/


SOAPBOX

Non-ASCII Names in Source Code: Should You Use Them?

Python 3 allows non-ASCII identifiers in source code:

>>> ação = 'PBR'  # ação = stock 
>>> ε = 10**-6    # ε = epsilon

Some people dislike the idea. The most common argument to stick with
ASCII identifiers is to make it easy for everyone to read and edit code.
That argument misses the point: you want your source code to be
readable and editable by its intended audience, and that may not be
“everyone.” If the code belongs to a multinational corporation or is
open source and you want contributors from around the world, the
identifiers should be in English, and then all you need is ASCII.

But if you are a teacher in Brazil, your students will find it easier to
read code that uses Portuguese variable and function names, correctly
spelled. And they will have no difficulty typing the cedillas and
accented vowels on their localized keyboards.

Now that Python can parse Unicode names and UTF-8 is the default
source encoding, I see no point in coding identifiers in Portuguese
without accents, as we used to do in Python 2 out of necessity—unless
you need the code to run on Python 2 also. If the names are in
Portuguese, leaving out the accents won’t make the code more readable
to anyone.

This is my point of view as a Portuguese-speaking Brazilian, but I
believe it applies across borders and cultures: choose the human
language that makes the code easier to read by the team, then use the
characters needed for correct spelling.

What Is “Plain Text”?

For anyone who deals with non-English text on a daily basis, “plain
text” does not imply “ASCII.” The Unicode Glossary defines plain text

http://www.unicode.org/glossary/#plain_text


like this:

Computer-encoded text that consists only of a sequence of code
points from a given standard, with no other formatting or structural
information.

That definition starts very well, but I don’t agree with the part after the
comma. HTML is a great example of a plain-text format that carries
formatting and structural information. But it’s still plain text because
every byte in such a file is there to represent a text character, usually
using UTF-8. There are no bytes with nontext meaning, as you can find
in a .png or .xls document where most bytes represent packed binary
values like RGB values and floating-point numbers. In plain text,
numbers are represented as sequences of digit characters.

I am writing this book in a plain-text format called—ironically—
AsciiDoc, which is part of the toolchain of O’Reilly’s excellent Atlas
book publishing platform. AsciiDoc source files are plain text, but they
are UTF-8, not ASCII. Otherwise, writing this chapter would have been
really painful. Despite the name, AsciiDoc is just great.

The world of Unicode is constantly expanding and, at the edges, tool
support is not always there. Not all characters I wanted to show were
available in the fonts used to render the book. That’s why I had to use
images instead of listings in several examples in this chapter. On the
other hand, the Ubuntu and MacOS terminals display most Unicode text
very well—including the Japanese characters for the word “mojibake”:
文字化け.

How Are str Represented in RAM?

The official Python docs avoid the issue of how the code points of a
str are stored in memory. It is really an implementation detail. In
theory, it doesn’t matter: whatever the internal representation, every
str must be encoded to bytes on output.

In memory, Python 3 stores each str as a sequence of code points
using a fixed number of bytes per code point, to allow efficient direct

http://www.methods.co.nz/asciidoc/
https://atlas.oreilly.com/


access to any character or slice.

Since Python 3.3, when creating a new str object, the interpreter
checks the characters in it and chooses the most economic memory
layout that is suitable for that particular str: if there are only
characters in the latin1 range, that str will use just one byte per
code point. Otherwise, 2 or 4 bytes per code point may be used,
depending on the str. This is a simplification; for the full details, look
up PEP 393 — Flexible String Representation.

The flexible string representation is similar to the way the int type
works in Python 3: if the integer fits in a machine word, it is stored in
one machine word. Otherwise, the interpreter switches to a variable-
length representation like that of the Python 2 long type. It is nice to
see the spread of good ideas.

However, we can always count on Armin Ronacher to find problems in
Python 3. He explained to me why that was not such as great idea in
practice: it takes a single RAT (U+1F400) to inflate an otherwise all-
ASCII text into a memory-hogging array using 4 bytes per character,
when one 1 byte would suffice for each character except the RAT. In
addition, because of all the ways Unicode characters combine, the
ability to quickly retrieve an arbitrary character by position is overrated
—and extracting arbitrary slices from Unicode text is naïve at best, and
often wrong, producing mojibake. As emojis become more popular,
these problems will only get worse.

1  Slide 12 of PyCon 2014 talk “Character Encoding and Unicode in Python” (slides, video).

2  Python 2.6 and 2.7 also had bytes, but it was just an alias to the str type.

3  Trivia: the ASCII “single quote” character that Python uses by default as the string delimiter
is actually named APOSTROPHE in the Unicode standard. The real single quotes are
asymmetric: left is U+2018 and right is U+2019

4  It did not work in Python 3.0 to 3.4, causing much pain to developers dealing with binary
data. The reversal is documented in PEP 461 — Adding % formatting to bytes and bytearray.

https://www.python.org/dev/peps/pep-0393/
http://bit.ly/1JzF1MY
http://bit.ly/1JzF37P
https://www.python.org/dev/peps/pep-0461/


5  I first saw the term “Unicode sandwich” in Ned Batchelder’s excellent “Pragmatic Unicode”
talk at US PyCon 2012.

6  Source: Windows Command-Line: Unicode and UTF-8 Output Text Buffer.

7  The CIRCLED NUMBER FORTY TWO character is not rendering correctly in the PDF
generated by O’Reilly’s toolchain as of July, 2021. Its pictograph is a black circular outline
with the number 42 inside.

8  While researching this subject, I did not find a list of situations when Python 3 internally
converts bytes to str. Python core developer Antoine Pitrou says on the
comp.python.devel list that CPython internal functions that depend on such conversions
“don’t get a lot of use in py3k.”

9  The Python 2 sys.setdefaultencoding function was misused and is no longer
documented in Python 3. It was intended for use by the core developers when the internal
default encoding of Python was still undecided. In the same comp.python.devel thread,
Marc-André Lemburg states that the sys.setdefaultencoding must never be called by
user code and the only values supported by CPython are 'ascii' in Python 2 and 'utf-8'
in Python 3.

10  Curiously, the micro sign is considered a “compatibility character” but the ohm symbol is not.
The end result is that NFC doesn’t touch the micro sign but changes the ohm symbol to capital
omega, while NFKC and NFKD change both the ohm and the micro into Greek characters.

11  Diacritics affect sorting only in the rare case when they are the only difference between two
words—in that case, the word with a diacritic is sorted after the plain word.

12  Again, I could not find a solution, but did find other people reporting the same problem. Alex
Martelli, one of the tech reviewers, had no problem using setlocale and
locale.strxfrm on his Mac with MacOS 10.9. In summary: your mileage may vary.

13  That’s an image—not a code listing—because emojis are not well supported by O’Reilly’s
digital publishing toolchain as I write this.

14  Although it was not better than re at identifying digits in this particular sample.

http://nedbatchelder.com/text/unipain/unipain.html
https://devblogs.microsoft.com/commandline/windows-command-line-unicode-and-utf-8-output-text-buffer/
http://bit.ly/1IqvSU2
http://bit.ly/1IqvN2J


Chapter 5. Data Class Builders

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 5th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

Data classes are like children. They are okay as a starting point, but to
participate as a grownup object, they need to take some responsibility.

—Martin Fowler and Kent Beck

Python offers a few ways to build a simple class that is just a collection of
fields, with little or no extra functionality. That pattern is known as a “data
class”—and dataclasses is one of the packages that supports this
pattern. This chapter covers three different class builders that you may use
as shortcuts to write data classes:

collections.namedtuple: the simplest way—available
since Python 2.6;

typing.NamedTuple: an alternative that requires type hints on
the fields—since Python 3.5, with class syntax added in 3.6;

@dataclasses.dataclass: a class decorator that allows
more customization than previous alternatives, adding lots of

1
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options and potential complexity—since Python 3.7.

After covering those class builders, we will discuss why Data Class is also
the name of a code smell: a coding pattern that may be a symptom of poor
object-oriented design.

NOTE
typing.TypedDict may seem like another data class builder. It uses similar syntax
and is described right after typing.NamedTuple in the typing module
documentation for Python 3.9.

However, TypedDict does not build concrete classes that you can instantiate. It’s just
syntax to write type hints for function parameters and variables that will accept mapping
values used as records, with keys as field names. We’ll see them in Chapter 15,
“TypedDict”.

What’s new in this chapter
This chapter is new in Fluent Python Second Edition. The section “Classic
Named Tuples” appeared in chapter 2 of the First Edition, but the rest of
the chapter is completely new.

We begin with a high level overview of the three class builders.

Overview of data class builders
Consider a simple class to represent a geographic coordinate pair:

Example 5-1. class/coordinates.py
class Coordinate: 
 
    def __init__(self, lat, lon): 
        self.lat = lat 
        self.lon = lon

That Coordinate class does the job of holding latitude and longitude
attributes. Writing the __init__ boilerplate becomes old real fast,

https://docs.python.org/3/library/typing.html#typing.TypedDict


especially if your class has more than a couple of attributes: each of them is
mentioned three times! And that boilerplate doesn’t buy us basic features
we’d expect from a Python object:

>>> from coordinates import Coordinate 
>>> moscow = Coordinate(55.76, 37.62) 
>>> moscow 
<coordinates.Coordinate object at 0x107142f10>   
>>> location = Coordinate(55.76, 37.62) 
>>> location == moscow   
False 
>>> (location.lat, location.lon) == (moscow.lat, moscow.lon)   
True

__repr__ inherited from object is not very helpful.

Meaningless ==; the __eq__ method inherited from object
compares object ids.

Comparing two coordinates requires explicit comparison of each
attribute.

The data class builders covered in this chapter provide the necessary
__init__, __repr__, and __eq__ methods automatically, as well as
other useful features.

NOTE
None of the class builders discussed here depend on inheritance to do their work. Both
collections.namedtuple and typing.NamedTuple build classes that are
tuple subclasses. @dataclass is a class decorator that does not affect the class
hierarchy in any way. Each of them uses different metaprogramming techniques to inject
methods and data attributes into the class under construction.

Here is a Coordinate class built with namedtuple—a factory function
that builds a subclass of tuple with the name and fields you specify:



>>> from collections import namedtuple 
>>> Coordinate = namedtuple('Coordinate', 'lat lon') 
>>> issubclass(Coordinate, tuple) 
True 
>>> moscow = Coordinate(55.756, 37.617) 
>>> moscow 
Coordinate(lat=55.756, lon=37.617)   
>>> moscow == Coordinate(lat=55.756, lon=37.617)   
True

Useful __repr__.

Meaningful __eq__.

The newer typing.NamedTuple provides the same functionality,
adding a type annotation to each field:

>>> import typing 
>>> Coordinate = typing.NamedTuple('Coordinate', [('lat', float), 
('lon', float)]) 
>>> issubclass(Coordinate, tuple) 
True 
>>> typing.get_type_hints(Coordinate) 
{'lat': <class 'float'>, 'lon': <class 'float'>}

TIP
A typed named tuple can also be constructed with the fields given as keyword
arguments, like this:

Coordinate = typing.NamedTuple('Coordinate', lat=float, 
lon=float)

This is more readable, and also lets you provide the mapping of fields and types as
**fields_and_types.

Since Python 3.6, typing.NamedTuple can also be used in a class
statement, with type annotations written as described in PEP 526—Syntax
for Variable Annotations. This is much more readable, and makes it easy to

https://www.python.org/dev/peps/pep-0526/


override methods or add new ones. Example 5-2 is the same Coordinate
class, with a pair of float attributes and a custom __str__ to display a
coordinate formatted like 55.8°N, 37.6°E:

Example 5-2. typing_namedtuple/coordinates.py
from typing import NamedTuple 
 
class Coordinate(NamedTuple): 
    lat: float 
    lon: float 
 
    def __str__(self): 
        ns = 'N' if self.lat >= 0 else 'S' 
        we = 'E' if self.lon >= 0 else 'W' 
        return f'{abs(self.lat):.1f}°{ns}, {abs(self.lon):.1f}°
{we}'

WARNING
Although NamedTuple appears in the class statement as a superclass, it’s actually
not. typing.NamedTuple uses the advanced functionality of a metaclass  to
customize the creation of the user’s class. Check this out:

>>> issubclass(Coordinate, typing.NamedTuple) 
False 
>>> issubclass(Coordinate, tuple) 
True

In the __init__ method generated by typing.NamedTuple, the
fields appear as parameters in the same order they appear in the class
statement.

Like typing.NamedTuple, the dataclass decorator supports PEP
526 syntax to declare instance attributes. The decorator reads the variable
annotations and automatically generates methods for your class. For
comparison, check out the equivalent Coordinate class written with the
help of the dataclass decorator:

Example 5-3. dataclass/coordinates.py

2
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from dataclasses import dataclass 
 
@dataclass(frozen=True) 
class Coordinate: 
    lat: float 
    lon: float 
 
    def __str__(self): 
        ns = 'N' if self.lat >= 0 else 'S' 
        we = 'E' if self.lon >= 0 else 'W' 
        return f'{abs(self.lat):.1f}°{ns}, {abs(self.lon):.1f}°
{we}'

Note that the body of the classes in Example 5-2 and Example 5-3 are
identical—the difference is in the class statement itself. The
@dataclass decorator does not depend on inheritance or a metaclass, so
it should not interfere with your own use of these mechanisms.  The
Coordinate class in Example 5-3 is a subclass of object.

Main features
The different data class builders have a lot in common. Table 5-1
summarizes.
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namedtuple NamedTuple dataclass

 

mutable instances NO NO YES

class statement syntax NO YES YES

construct dict x._asdict() x._asdict() dataclasses.asdict(x)

get field names x._fields x._fields [f.name for f in 
dataclasses.fields(x)]

get defaults x._field_defaults x._field_defaults [f.default for f in 
dataclasses.fields(x)]

get field types N/A x.__annotations__ x.__annotations__

new instance with 
changes

x._replace(…) x._replace(…) dataclasses.replace(x, …)

new class at runtime namedtuple(…) NamedTuple(…) dataclasses.make_dataclass(…
)

 

WARNING
The classes built by typing.NamedTuple and @dataclass have an
__annotations__ attribute holding the type hints for the fields. However, the best
practice is not to read from __annotations__ directly, but use
typing.get_type_hints(my_data_class) to obtain that information. That’s
because get_type_hints provides extra services, like resolving forward references
in type hints. We get back to this issue much later in the book, in “Problems with
Annotations at Runtime”.

Now let’s discuss those main features.



Mutable instances

A key difference between these class builders is that
collections.namedtuple and typing.NamedTuple build
tuple subclasses, therefore the instances are immutable. By default,
@dataclass produces mutable classes. But the decorator accepts a
keyword argument frozen—shown in Example 5-3. When
frozen=True, the class will raise an exception if you try to assign a
value to a field after the instance is initialized.

Class statement syntax

Only typing.NamedTuple and dataclass support the regular
class statement syntax, making it easier to add methods and docstrings to
the class you are creating.

Construct dict

Both named tuple variants provide an instance method (._asdict) to
construct a dict object from the fields in a data class instance. The
dataclasses module provides a function to do it:
dataclasses.asdict.

Get field names and default values

All three class builders let you get the field names and default values that
may be configured for them. In named tuple classes, that metadata is in the
._fields and ._fields_defaults class attributes. You can get the
same metadata from a dataclass decorated class using the fields
function from the dataclasses module. It returns a tuple of Field
objects which have several attributes, including name and default.

Get field types

Classes defined with the help of typing.NamedTuple and
@dataclass have a mapping of field names to type annotations the
__annotations__ class attribute. As mentioned, use the



typing.get_type_hints function instead of readint
__annotations__ directly.

New instance with changes

Given a named tuple instance x, the call x._replace(**kwargs)
returns a new instance with some attribute values replaced according to the
keyword arguments given. The dataclasses.replace(x,
**kwargs) module-level function does the same for an instance of a
dataclass decorated class.

New class at runtime

Although the class statement syntax is more readable, it is hard-coded. A
framework may need to build data classes on the fly, at runtime. For that,
you can use the default function call syntax of
collections.namedtuple, which is likewise supported by
typing.NamedTuple. The dataclasses module provides a
make_dataclass function for the same purpose.

After this overview of the main features of the data class builders, let’s
focus on each of them in turn, starting with the simplest.

Classic Named Tuples
The collections.namedtuple function is a factory that builds
subclasses of tuple enhanced with field names, a class name, and an
informative __repr__. Classes built with namedtuple can be used
anywhere where tuples are needed, and in fact many functions of the
Python standard library that used to return tuples now return named tuples
for convenience, without affecting user’s code at all.



TIP
Each instance of a class built by namedtuple takes exactly the same amount of
memory as a tuple because the field names are stored in the class.

Example 5-4 shows how we could define a named tuple to hold information
about a city.

Example 5-4. Defining and using a named tuple type
>>> from collections import namedtuple 
>>> City = namedtuple('City', 'name country population 
coordinates')   
>>> tokyo = City('Tokyo', 'JP', 36.933, (35.689722, 139.691667))   
>>> tokyo 
City(name='Tokyo', country='JP', population=36.933, coordinates=
(35.689722, 
139.691667)) 
>>> tokyo.population   
36.933 
>>> tokyo.coordinates 
(35.689722, 139.691667) 
>>> tokyo[1] 
'JP'

Two parameters are required to create a named tuple: a class name and a
list of field names, which can be given as an iterable of strings or as a
single space-delimited string.

Field values must be passed as separate positional arguments to the
constructor (in contrast, the tuple constructor takes a single iterable).

You can access the fields by name or position.

As a tuple subclass, City inherits useful methods such as __eq__ and
the special methods for comparison operators—including __lt__ which
allows sorting lists of City instances.

A named tuple offers a few attributes and methods in addition to those
inherited from tuple. Example 5-5 shows the most useful: the _fields



class attribute, the class method _make(iterable), and the
_asdict() instance method.

Example 5-5. Named tuple attributes and methods (continued from the
previous example)
>>> City._fields   
('name', 'country', 'population', 'location') 
>>> Coordinate = namedtuple('Coordinate', 'lat lon') 
>>> delhi_data = ('Delhi NCR', 'IN', 21.935, Coordinate(28.613889, 
77.208889)) 
>>> delhi = City._make(delhi_data)   
>>> delhi._asdict()   
{'name': 'Delhi NCR', 'country': 'IN', 'population': 21.935, 
'location': Coordinate(lat=28.613889, lon=77.208889)} 
>>> import json 
>>> json.dumps(delhi._asdict())   
'{"name": "Delhi NCR", "country": "IN", "population": 21.935, 
"location": [28.613889, 77.208889]}'

._fields is a tuple with the field names of the class.

._make() builds City from an iterable; City(*delhi_data)
would do the same.

._asdict() returns a dict built from the named tuple instance.

._asdict() is useful to serialize the data in JSON format, for
example.

WARNING
The _asdict method returned an OrderedDict until Python 3.7. Since Python 3.8,
it returns a simple dict—which is OK now that we can rely on key insertion order. If
you must have an OrderedDict, the _asdict documentation recommends building
one from the result: OrderedDict(x._asdict()).

Since Python 3.7, namedtuple accepts the defaults keyword-only
argument providing an iterable of N default values for each of the N

https://docs.python.org/3.8/library/collections.html#collections.somenamedtuple._asdict


rightmost fields of the class. Example 5-6 shows how to define a
Coordinate named tuple with a default value for a reference field:

Example 5-6. Named tuple attributes and methods, continued from
Example 5-5.
>>> Coordinate = namedtuple('Coordinate', 'lat lon reference', 
defaults=['WGS84']) 
>>> Coordinate(0, 0) 
Coordinate(lat=0, lon=0, reference='WGS84') 
>>> Coordinate._field_defaults 
{'reference': 'WGS84'}

In “Class statement syntax” I mentioned it’s easier to code methods with the
class syntax supported by typing.NamedTuple and @dataclass.
You can also add methods to a namedtuple, but it’s a hack. Skip the
following box if you’re not interested in hacks.



HACKING A NAMEDTUPLE TO INJECT A METHOD

Recall how we built the Card class in Example 1-1 in Chapter 1:

Card = collections.namedtuple('Card', ['rank', 'suit'])

Later in Chapter 1 I wrote a spades_high function for sorting. It
would be nice if that logic was encapsulated in a method of Card, but
adding spades_high to Card without the benefit of a class
statement requires a quick hack: define the function and then assign it to
a class attribute. Example 5-7 shows how.

Example 5-7. frenchdeck.doctest: Adding a class
attribute and a method to Card, the namedtuple from “A
Pythonic Card Deck”
>>> Card.suit_values = dict(spades=3, hearts=2, diamonds=1, 
clubs=0)   
>>> def spades_high(card):                                         
 

...     rank_value = FrenchDeck.ranks.index(card.rank) 

...     suit_value = card.suit_values[card.suit] 

...     return rank_value * len(card.suit_values) + suit_value 

... 
>>> Card.overall_rank = spades_high                                
 

>>> lowest_card = Card('2', 'clubs') 
>>> highest_card = Card('A', 'spades') 
>>> lowest_card.overall_rank()                                     
 

0 
>>> highest_card.overall_rank() 
51

Attach a class attribute with values for each suit.

spades_high will become a method; the first argument doesn’t
need to be named self. Anyway, it will get the receiver when
called as a method.



Attach the function to the Cards class as a method named
overall_rank.

It works!

For readability and future maintenance, it’s much better to code
methods inside a class statement. But it’s good to know this hack is
possible, because it may come in handy.

This was a small detour to showcase the power of a dynamic language.

Now let’s check out the typing.NamedTuple variation.

Typed Named Tuples
The Coordinate class with a default field from Example 5-6 can be
written like this using typing.NamedTuple:

Example 5-8. typing_namedtuple/coordinates2.py
from typing import NamedTuple 
 
class Coordinate(NamedTuple): 
    lat: float                 
    lon: float 
    reference: str = 'WGS84'  

Every instance field must be annotated with a type.

The reference instance field is annotated with a type and a default
value

Classes built by typing.NamedTuple don’t have any methods beyond
those that collections.namedtuple also generates—and those that
are inherited from tuple. The only difference is the presence of the
__annotations__ class attribute—which Python completely ignores at
runtime.
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Given that the main feature of typing.NamedTuple are the type
annotations, we’ll take a brief look at them before resuming our exploration
of data class builders.

Type hints 101
Type hints—a.k.a. type annotations—are ways to declare the expected type
of function arguments, return values, variables, and attributes.

NOTE
This is a very brief introduction to type hints, just enough to make sense of the syntax
and meaning of the annotations used typing.NamedTuple and @dataclass
declarations. We will cover type hints for function signatures in Chapter 8 and more
advanced annotations in Chapter 15. Here we’ll mostly see hints with simple built-in
types, such as str, int, and float, which are probably the most common types used
to annotate fields of data classes.

The first thing you need to know about type hints is that they are not
enforced at all by the Python bytecode compiler and interpreter.

No runtime effect
A good way to understand Python type hints is to think of them as
“documentation that can be verified by IDEs and type checkers.”

That’s because type hints have no impact on the runtime behavior of Python
programs. Check this out:

Example 5-9. Python does not enforce type hints at runtime.
>>> import typing 
>>> class Coordinate(typing.NamedTuple): 
...     lat: float 
...     lon: float 
... 
>>> trash = Coordinate('Ni!', None) 
>>> print(trash) 
Coordinate(lat='Ni!', lon=None)    



I told you: no type checking at runtime!

If you type the code of Example 5-9 in a Python module, it will run and
display a meaningless Coordinate, with no error or warning:

$ python3 nocheck_demo.py 
Coordinate(lat='Ni!', lon=None)

The type hints are intended primarily to support third-party type checkers,
like Mypy or the PyCharm IDE built-in type checker. These are static
analysis tools: they check Python source code “at rest”, not running code.

To see the effect of type hints, you must run one of those tools on your code
—like a linter. For instance, here is what Mypy has to say about the
previous example:

$ mypy nocheck_demo.py 
nocheck_demo.py:8: error: Argument 1 to "Coordinate" has 
incompatible type "str"; expected "float" 
nocheck_demo.py:8: error: Argument 2 to "Coordinate" has 
incompatible type "None"; expected "float"

As you can see, given the definition of Coordinate, Mypy knows that
both arguments to create an instance must be of type float, but the
assignment to trash uses a str and None.

Now let’s talk about the syntax and meaning of type hints.

Variable annotation syntax
Both typing.NamedTuple and @dataclass use the syntax of
variable annotations defined in PEP 526. This is a quick introduction to that
syntax in the context defining attributes in class statements.

The basic syntax of variable annotation is:

var_name: some_type

5
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Section Acceptable type hints in PEP 484 explains what are acceptable
types, but in the context of defining a data class, these types are more likely
to be useful:

a concrete class, for example str or FrenchDeck;

a parameterized collection type, like list[int], tuple[str,
float] etc.

typing.Optional, for example Optional[str]—to
declare a field that can be a str or None.

You can also initialize the variable with a value. In a
typing.NamedTuple or @dataclass declaration, that value will
become the default for that attribute, if the corresponding argument is
omitted in the constructor call.

var_name: some_type = a_value

The meaning of variable annotations
We saw in “No runtime effect” that type hints have no effect at runtime. But
at import time—when a module is loaded—Python does read them to build
the __annotations__ dictionary that typing.NamedTuple and
@dataclass then use to enhance the class.

We’ll start this exploration with a simple class, so that we can later see what
extra features are added by typing.NamedTuple and @dataclass.

Example 5-10. meaning/demo_plain.py: a plain class with type hints
class DemoPlainClass: 
    a: int            
    b: float = 1.1    
    c = 'spam'       

a becomes an entry in __annotations__, but is otherwise
discarded: no attribute named a is created in the class.

https://www.python.org/dev/peps/pep-0484/#acceptable-type-hints


b is saved as an annotation, and also becomes a class attribute with
value 1.1.

c is just a plain old class attribute, not an annotation.

We can verify that in the console, first reading the __annotations__ of
the DemoPlainClass, then trying to get its attributes named a, b, and c:

>>> from demo_plain import DemoPlainClass 
>>> DemoPlainClass.__annotations__ 
{'a': <class 'int'>, 'b': <class 'float'>} 
>>> DemoPlainClass.a 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
AttributeError: type object 'DemoPlainClass' has no attribute 'a' 
>>> DemoPlainClass.b 
1.1 
>>> DemoPlainClass.c 
'spam'

Note that the __annotations__ special attribute is created by the
interpreter to record the type hints that appear in the source code—even in a
plain class.

The a survives only as an annotation. It doesn’t become a class attribute
because no value is bound to it.  The b and c are stored as class attributes
because they are bound to values.

None of those three attributes will be in a new instance of
DemoPlainClass. If you create an object o = DemoPlainClass(),
o.a will raise AttributeError, while o.b and o.c will retrieve the
class attributes with values 1.1 and 'spam'—that’s just normal Python
object behavior.

Inspecting a typing.NamedTuple

Now let’s examine a class built with typing.NamedTuple, using the
same attributes and annotations as DemoPlainClass from Example 5-

6



10.

Example 5-11. meaning/demo_nt.py: a class built with
typing.NamedTuple.
import typing 
 
class DemoNTClass(typing.NamedTuple): 
    a: int            
    b: float = 1.1    
    c = 'spam'       

a becomes an annotation and also an instance attribute.

b is another annotation, and also becomes an instance attribute with
default value 1.1.

c is just a plain old class attribute; no annotation will refer to it.

Inspecting the DemoNTClass, we get:

>>> from demo_nt import DemoNTClass 
>>> DemoNTClass.__annotations__ 
{'a': <class 'int'>, 'b': <class 'float'>} 
>>> DemoNTClass.a 
<_collections._tuplegetter object at 0x101f0f940> 
>>> DemoNTClass.b 
<_collections._tuplegetter object at 0x101f0f8b0> 
>>> DemoNTClass.c 
'spam'

Here we have the same annotations for a and b as we saw in Example 5-10.
But typing.NamedTuple creates a and b class attributes. The c
attribute is just a plain class attribute with the value 'spam'.

The a and b class attributes are descriptors—an advanced feature covered
in Chapter 24. For now, think of them as similar to property getters:
methods that don’t require the explicit call operator () to retrieve an
instance attribute. In practice, this means a and b will work as read-only



instance attributes—which makes sense when we recall that
DemoNTClass instances are just fancy tuples, and tuples are immutable.

DemoNTClass also gets a custom docstring:

>>> DemoNTClass.__doc__ 
'DemoNTClass(a, b)'

Let’s inspect an instance of DemoNTClass:

>>> nt = DemoNTClass(8) 
>>> nt.a 
8 
>>> nt.b 
1.1 
>>> nt.c 
'spam'

To construct nt, we need to give at least the a argument to
DemoNTClass. The constructor also takes a b argument, but it has a
default value of 1.1, so it’s optional. The nt object has the a and b
attributes as expected; it doesn’t have a c attribute, but Python retrieves it
from the class, as usual.

If you try to assign values to nt.a, nt.b, nt.c or even nt.z you’ll get
AttributeError exceptions, with subtly different error messages. Try
that and reflect on the messages.

Inspecting a class decorated with dataclass

Now we’ll examine Example 5-12:

Example 5-12. meaning/demo_dc.py: a class decorated with @dataclass
from dataclasses import dataclass 
 
@dataclass 
class DemoDataClass: 
    a: int            
    b: float = 1.1    
    c = 'spam'       



a becomes an annotation and also an instance attribute controlled by a
descriptor.

b is another annotation, and also becomes an instance attribute with a
descriptor and a default value 1.1.

c is just a plain old class attribute; no annotation will refer to it.

Now let’s check out __annotations__, __doc__, and the a, b, c
attributes on DemoDataClass:

>>> from demo_dc import DemoDataClass 
>>> DemoDataClass.__annotations__ 
{'a': <class 'int'>, 'b': <class 'float'>} 
>>> DemoDataClass.__doc__ 
'DemoDataClass(a: int, b: float = 1.1)' 
>>> DemoDataClass.a 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
AttributeError: type object 'DemoDataClass' has no attribute 'a' 
>>> DemoDataClass.b 
1.1 
>>> DemoDataClass.c 
'spam'

The __annotations__ and __doc__ are not surprising. However,
there is no attribute named a in DemoDataClass—in contrast with
DemoNTClass from Example 5-11, which has a descriptor to get a from
the instances as read-only attributes (that mysterious
<_collections._tuplegetter>). That’s because the a attribute
will only exist in instances of DemoDataClass. It will be a public
attribute that we can get and set, unless the class is frozen. But b and c exist
as class attributes, with b holding the default value for the b instance
attribute, while c is just a class attribute that will not be bound to the
instances.

Now let’s see how a DemoDataClass instance looks like:



>>> dc = DemoDataClass(9) 
>>> dc.a 
9 
>>> dc.b 
1.1 
>>> dc.c 
'spam'

Again, a and b are instance attributes, and c is a class attribute we get via
the instance.

As mentioned, DemoDataClass instances are mutable—and no type
checking is done at runtime:

>>> dc.a = 10 
>>> dc.b = 'oops'

We can do even sillier assignments:

>>> dc.c = 'whatever' 
>>> dc.z = 'secret stash'

Now the dc instance has a c attribute—but that does not change the c class
attribute. And we can add a new z attribute. This is normal Python
behavior: regular instances can have their own attributes that don’t appear
in the class.

More about @dataclass
We’ve only seen simple examples of @dataclass use so far. The
decorator accepts several keyword arguments. This is its signature:

@dataclass(*, init=True, repr=True, eq=True, order=False, 
              unsafe_hash=False, frozen=False)

The * in the first position means the remaining parameters are keyword-
only. Table 5-2 describes them.
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option meaning default notes

 

init generate __init_
_

True Ignored if __init__ is 
implemented by user.

repr generate __repr_
_

True Ignored if __repr__ is 
implemented by user.



eq generate __eq__ True Ignored if __eq__ is implemented 
by user.

order generate __lt__, 
__le__, __gt__, 
__ge__

False If True, raises exceptions if eq=F
alse, or if any of the comparison 
methods that would be generated 
are defined or inherited.

unsafe_hash generate __hash_
_

False Complex semantics and several 
caveats—see: dataclass 
documentation.

frozen make instances 
“immutable”

False instances will be reasonably safe 
from accidental change, but not 
really immutable.

 

a  @dataclass emulates immutability by generating __setattr__ and __delattr__ which raise 
dataclass.FrozenInstanceError—a subclass of AttributeError—when the user attempts 
to set or delete a field.

The defaults are really the most useful settings for common use cases. The
options you are more likely to change from the defaults are:

frozen=True: to protect against accidental changes to the class
instances;

order=True: to allow sorting of instances of the data class.

Given the dynamic nature of Python objects, it’s not too hard for a nosy
programmer to go around the protection afforded by frozen=True. But
the necessary tricks should be easy to spot on a code review.

If the eq and frozen arguments are both True, @dataclass produces
a suitable __hash__ method, so the instances will be hashable. The
generated __hash__ will use data from all fields that are not individually
excluded using a field option we’ll see in “Field options”. If
frozen=False (the default), @dataclass will set __hash__ to
None, signalling that the instances are unhashable, therefore overriding
__hash__ from any superclass.

a

https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass


PEP 557—Data Classes has this to say about unsafe_hash:

Although not recommended, you can force Data Classes to create a
__hash__ method with unsafe_hash=True. This might be the case
if your class is logically immutable but can nonetheless be mutated. This
is a specialized use case and should be considered carefully.

I will leave unsafe_hash at that. If you feel you must use that option,
check the dataclasses.dataclass documentation.

Further customization of the generated data class can be done at a field
level.

Field options
We’ve already seen the most basic field option: providing or not a default
value with the type hint. The instance fields you declare will become
parameters in the generated __init__. Python does not allow parameters
without defaults after parameters with defaults, therefore after you declare a
field with a default value, all remaining fields must also have default
values.

Mutable default values are a common source of bugs for beginning Python
developers. In function definitions, a mutable default value is easily
corrupted when one invocation of the function mutates the default,
changing the behavior of further invocations—an issue we’ll explore in
“Mutable Types as Parameter Defaults: Bad Idea” (Chapter 6). Class
attributes are often used as default attribute values for instances, including
in data classes. And @dataclass uses the default values in the type hints
to generate parameters with defaults for __init__. To prevent bugs,
@dataclass rejects the class definition in Example 5-13.

Example 5-13. dataclass/club_wrong.py: this class raises
ValueError
@dataclass 
class ClubMember: 
    name: str 
    guests: list = []

https://www.python.org/dev/peps/pep-0557/
https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass


If you load the module with that ClubMember class, this is what you get:

$ python3 club_wrong.py 
Traceback (most recent call last): 
  File "club_wrong.py", line 4, in <module> 
    class ClubMember: 
  ...several lines ommitted... 
ValueError: mutable default <class 'list'> for field guests is 
not allowed: 
use default_factory

The ValueError message explains the problem and suggests a solution:
use default_factory. This is how to correct ClubMember:

Example 5-14. dataclass/club.py: this ClubMember definition
works.
from dataclasses import dataclass, field 
 
 
@dataclass 
class ClubMember: 
    name: str 
    guests: list = field(default_factory=list)

In the guests field of Example 5-14, instead of a literal list, the default
value is set by calling the dataclasses.field function with
default_factory=list.

The default_factory parameter lets you provide a function, class, or
any other callable, which will be invoked with zero arguments to build a
default value each time an instance of the data class is created. This way,
each instance of ClubMember will have its own list—instead of all
instances sharing the same list from the class, which is rarely what we
want and is often a bug.



WARNING
It’s good that @dataclass rejects class definitions with a list default value in a
field. However, be aware that it is a partial solution that only applies to list, dict
and set. Other mutable values used as defaults will not be flagged by @dataclass.
It’s up to you to understand the problem and remember to use a default factory to set
mutable default values.

If you browse the dataclasses module documentation, you’ll see a
list field defined with a novel syntax, as in Example 5-15.

Example 5-15. dataclass/club_generic.py: this ClubMember
definition is more precise
from dataclasses import dataclass, field 
 
@dataclass 
class ClubMember: 
    name: str 
    guests: list[str] = field(default_factory=list)  

list[str] means “a list of str”.

The new syntax list[str] is a parameterized generic type: since Python
3.9, the list built-in accepts that bracket notation to specify the type of
the list items.

WARNING
Prior to Python 3.9, the built-in collections did not support generic type notation. As a
temporary workaround, there are corresponding collection types in the typing
module. If you need a parameterized list type hint in Python 3.8 or earlier, you must
import the List type from typing and use it: List[str]. For more about this
issue, see “Legacy Support and Deprecated Collection Types”.

We’ll cover generics in Chapter 8. For now, note that both Example 5-14
and Example 5-15 are correct, and the Mypy type checker does not

https://docs.python.org/3/library/dataclasses.html


complain about either of those class definitions.

The difference is that guests: list means that guests can be a
list of objects of any kind, while guests: list[str] says that
guests must be a list in which every item is a str. This will allow the
type checker to find (some) bugs in code that puts invalid items in the list,
or that read items from it.

The default_factory is likely to be the most common option of the
field function, but there are several others, listed in Table 5-3.
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option meaning default

 

default default value for field _MISSING_TYPE

default_factory 0-parameter function used to produce a default _MISSING_TYPE

init include field in parameters to __init__ True

repr include field in __repr__ True

compare use field in comparison methods __eq__, __lt__ etc. True

hash include field in __hash__ calculation None

metadata mapping with user-defined data; ignored by the @datac
lass

None

a

b



 

a  dataclass._MISSING_TYPE is a sentinel value indicating the option was not provided. It 
exists so we can set None as an actual default value, a common use case.

b  The option hash=None means the field will be used in __hash__ only if compare=True.

The default option exists because the field call takes the place of the
default value in the field annotation. If you want to create an athlete
field with default value of False, and also omit that field from the
__repr__ method, you’d write this:

@dataclass 
class ClubMember: 
    name: str 
    guests: list = field(default_factory=list) 
    athlete: bool = field(default=False, repr=False)

Post-init processing
The __init__ method generated by @dataclass only takes the
arguments passed and assigns them—or their default values, if missing—to
the instance attributes that are instance fields. But you may need to do more
than that to initialize the instance. If that’s the case, you can provide a
__post_init__ method. When that method exists, @dataclass will
add code to the generated __init__ to call __post_init__ as the last
step.

Common use cases for __post_init__ are validation and computing
field values based on other fields. We’ll study a simple example that uses
__post_init__ for both of these reasons.

First, let’s look at the expected behavior of a ClubMember subclass
named HackerClubMember, as described by doctests in Example 5-16.

Example 5-16. dataclass/hackerclub.py: doctests for
HackerClubMember
""" 
``HackerClubMember`` objects accept an optional ``handle`` 



argument:: 
 
    >>> anna = HackerClubMember('Anna Ravenscroft', 
handle='AnnaRaven') 
    >>> anna 
    HackerClubMember(name='Anna Ravenscroft', guests=[], 
handle='AnnaRaven') 
 
If ``handle`` is ommitted, it's set to the first part of the 
member's name:: 
 
    >>> leo = HackerClubMember('Leo Rochael') 
    >>> leo 
    HackerClubMember(name='Leo Rochael', guests=[], handle='Leo') 
 
Members must have a unique handle. The following ``leo2`` will not 
be created, 
because its ``handle`` would be 'Leo', which was taken by ``leo``:: 
 
    >>> leo2 = HackerClubMember('Leo DaVinci') 
    Traceback (most recent call last): 
      ... 
    ValueError: handle 'Leo' already exists. 
 
To fix, ``leo2`` must be created with an explicit ``handle``:: 
 
    >>> leo2 = HackerClubMember('Leo DaVinci', handle='Neo') 
    >>> leo2 
    HackerClubMember(name='Leo DaVinci', guests=[], handle='Neo') 
"""

Note that we must provide handle as a keyword argument, because
HackerClubMember inherits name and guests from ClubMember,
and adds the handle field. The generated docstring for
HackerClubMember shows the order of the fields in the constructor call:

>>> HackerClubMember.__doc__ 
"HackerClubMember(name: str, guests: list = <factory>, handle: 
str = '')"

Here, <factory> is a short way of saying that some callable will produce
the default value for guests (in our case, the factory is the list class).



The point is: to provide a handle but no guests, we must pass handle
as a keyword argument.

The Inheritance section of the dataclasses module documentation
explains how the order of the fields is computed when there are several
levels of inheritance.

NOTE
In Chapter 14 we’ll talk about misusing inheritance, particularly when the superclasses
are not abstract. Creating a hierarchy of data classes is usually a bad idea, but it served
us well here to make Example 5-17 shorter, focusing on the handle field declaration
and __post_init__ validation.

Example 5-17 is the implementation:

Example 5-17. dataclass/hackerclub.py: code for
HackerClubMember.
from dataclasses import dataclass 
from club import ClubMember 
 
@dataclass 
class HackerClubMember(ClubMember):                          
    all_handles = set()                                      
    handle: str = ''                                         
 
    def __post_init__(self): 
        cls = self.__class__                                 
        if self.handle == '':                                
            self.handle = self.name.split()[0] 
        if self.handle in cls.all_handles:                   
            msg = f'handle {self.handle!r} already exists.' 
            raise ValueError(msg) 
        cls.all_handles.add(self.handle)                    

HackerClubMember extends ClubMember.

all_handles is a class attribute.

https://docs.python.org/3/library/dataclasses.html#inheritance


handle is an instance field of type str with empty string as its
default value; this makes it optional.

Get the class of the instance.

If self.handle is the empty string, set it to the first part of name.

If self.handle is in cls.all_handles, raise ValueError.

Add the new handle to cls.all_handles.

Example 5-17 works as intended, but is not satisfactory to a static type
checker. Next, we’ll see why, and how to fix it.

Typed class attributes
If we typecheck Example 5-17 with Mypy, we are reprimanded:

$ mypy hackerclub.py 
hackerclub.py:37: error: Need type annotation for "all_handles" 
(hint: "all_handles: Set[<type>] = ...") 
Found 1 error in 1 file (checked 1 source file)

Unfortunately, the hint provided by Mypy (version 0.910 as I review this) is
not helpful in the context of @dataclass usage. First, it suggests using
Set, but I am using Python 3.9 so I can use set—and avoid importing
Set from typing. More importantly, if we add a type hint like set[…]
to all_handles, @dataclass will find that annotation and make
all_handles an instance field. We saw this happening in “Inspecting a
class decorated with dataclass”.

The workaround defined in PEP 526—Syntax for Variable Annotations is
ugly. To code a class variable with a type hint`, we need to use a pseudo-
type named typing.ClassVar, which leverages the generics []
notation to set the type of the variable and also declare it a class attribute.

https://www.python.org/dev/peps/pep-0526/#class-and-instance-variable-annotations


To make the type checker and @dataclass happy, this is how we are
supposed to declare all_handles in Example 5-17:

    all_handles: ClassVar[set[str]] = set()

That type hint is saying:

all_handles is a class attribute of type set-of-str, with an empty
set as its default value.

To code that annotation, we must import ClassVar from the typing
module.

The @dataclass decorator doesn’t care about the types in the
annotations, except in two cases, and this is one of them: if the type is
ClassVar, an instance field will not be generated for that attribute.

The other case where the type of the field is relevant to @dataclass is
when declaring init-only variables, our next topic.

Initialization variables that are not fields
Sometimes you may need to pass arguments to __init__ that are not
instance fields. Such arguments are called init-only variables by the
dataclasses documentation. To declare an argument like that,
dataclasses module provides the pseudo-type InitVar, which uses
the same syntax of typing.ClassVar. The example given in the
documentation is a data class that has a field initialized from a database,
and the database object must be passed to the constructor.

This is the code that illustrates the Init-only variables section:

Example 5-18. Example from the dataclasses module documentation.
@dataclass 
class C: 
    i: int 
    j: int = None 
    database: InitVar[DatabaseType] = None 
 

https://docs.python.org/3/library/dataclasses.html#init-only-variables
https://docs.python.org/3/library/dataclasses.html#init-only-variables
https://docs.python.org/3/library/dataclasses.html#init-only-variables


    def __post_init__(self, database): 
        if self.j is None and database is not None: 
            self.j = database.lookup('j') 
 
c = C(10, database=my_database)

Note how the database attribute is declared. InitVar will prevent
@dataclass from treating database as a regular field. It will not be set
as an instance attribute, and the dataclasses.fields function will not
list it. However, database will be one of the arguments that the generated
__init__ will accept, and it will be also passed to __post_init__—
if you write that method, you must add a corresponding argument to the
method signature, as shown in Example 5-18

This rather long overview of @dataclass covered the most useful
features—some of them appeared in previous sections, like “Main features”
where we covered all three data class builders in parallel. The
dataclasses documentation and PEP 526 — Syntax for Variable
Annotations have all details.

In the next section, I present a longer example with @dataclass.

@dataclass Example: Dublin Core Resource Record
Often, classes built with @dataclass will have more fields than the very
short examples presented so far. Dublin Core provides the foundation for a
more typical @dataclass example.

The Dublin Core Schema is a small set of vocabulary terms that can be
used to describe digital resources (video, images, web pages, etc.), as
well as physical resources such as books or CDs, and objects like
artworks.

—Dublin Core on Wikipedia

The standard defines 15 optional fields, the Resource class in Example 5-
19 uses 8 of them.

Example 5-19. dataclass/resource.py: code for Resource, a
class based on Dublin Core terms.

8
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from dataclasses import dataclass, field 
from typing import Optional 
from enum import Enum, auto 
from datetime import date 
 
 
class ResourceType(Enum):   
    BOOK = auto() 
    EBOOK = auto() 
    VIDEO = auto() 
 
 
@dataclass 
class Resource: 
    """Media resource description.""" 
    identifier: str                                     
    title: str = '<untitled>'                           
    creators: list[str] = field(default_factory=list) 
    date: Optional[date] = None                         
    type: ResourceType = ResourceType.BOOK              
    description: str = '' 
    language: str = '' 
    subjects: list[str] = field(default_factory=list)

This Enum will provide type-safe values for the Resource.type
field.

identifier is the only required field.

title is the first field with a default. This forces all fields below to
provide defaults.

The value of date can be a datetime.date instance, or None.

The type field default is ResourceType.BOOK.

Example 5-20 is a doctest to demonstrate how a Resource record appears
in code:

Example 5-20. dataclass/resource.py: code for Resource, a
class based on Dublin Core terms.



    >>> description = 'Improving the design of existing code' 
    >>> book = Resource('978-0-13-475759-9', 'Refactoring, 2nd 
Edition', 
    ...     ['Martin Fowler', 'Kent Beck'], date(2018, 11, 19), 
    ...     ResourceType.BOOK, description, 'EN', 
    ...     ['computer programming', 'OOP']) 
    >>> book  # doctest: +NORMALIZE_WHITESPACE 
    Resource(identifier='978-0-13-475759-9', title='Refactoring, 
2nd Edition', 
    creators=['Martin Fowler', 'Kent Beck'], 
date=datetime.date(2018, 11, 19), 
    type=<ResourceType.BOOK: 1>, description='Improving the design 
of existing code', 
    language='EN', subjects=['computer programming', 'OOP'])

The __repr__ generated by @dataclass is OK, but we can make it
more readable. This is the format we want from repr(book):

    >>> book  # doctest: +NORMALIZE_WHITESPACE 
    Resource( 
        identifier = '978-0-13-475759-9', 
        title = 'Refactoring, 2nd Edition', 
        creators = ['Martin Fowler', 'Kent Beck'], 
        date = datetime.date(2018, 11, 19), 
        type = <ResourceType.BOOK: 1>, 
        description = 'Improving the design of existing code', 
        language = 'EN', 
        subjects = ['computer programming', 'OOP'], 
    )

Example 5-21 is the code of __repr__ to produce the format above. This
example uses dataclass.fields to get the names of the data class
fields.

Example 5-21. dataclass/resource_repr.py: code for
__repr__ method implemented in the Resource class from Example 5-
19.
    def __repr__(self): 
        cls = self.__class__ 
        cls_name = cls.__name__ 
        indent = ' ' * 4 
        res = [f'{cls_name}(']                             
        for f in fields(cls):                              
            value = getattr(self, f.name)                  



            res.append(f'{indent}{f.name} = {value!r},')   
 
        res.append(')')                                    
        return '\n'.join(res)                             

Start the res list to build the output string with the class name and open
parenthesis.

For each field f in the class…

Get the named attribute from the instance.

Append an indented line with the name of the field and repr(value)
—that’s what the !r does.

Append closing parenthesis.

Build multiline string from res and return it.

With this example inspired by the soul of Dublin, Ohio, we conclude our
tour of Python’s data class builders.

Data classes are handy, but your project may suffer if you overuse them.
The next section explains.

Data class as a code smell
Whether you implement a data class writing all the code yourself or
leveraging one of the class builders described in this chapter, be aware that
it may signal a problem in your design.

In Refactoring, Second Edition, Martin Fowler and Kent Beck present a
catalog of “code smells”—patterns in code that may indicate the need for
refactoring. The entry titled Data Class starts like this:



These are classes that have fields, getting and setting methods for fields,
and nothing else. Such classes are dumb data holders and are often being
manipulated in far too much detail by other classes.

In Fowler’s personal Web site there’s an illuminating post titled Code
Smell. The post is very relevant to our discussion because he uses data
class as one example of a code smell and suggests how to deal with it. Here
is the post, reproduced in full.9
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CODE SMELL

By Martin Fowler

A code smell is a surface indication that usually corresponds to a deeper
problem in the system. The term was first coined by Kent Beck while
helping me with my Refactoring book.

The quick definition above contains a couple of subtle points. Firstly a
smell is by definition something that’s quick to spot—or sniffable as
I’ve recently put it. A long method is a good example of this—just
looking at the code and my nose twitches if I see more than a dozen
lines of Java.

The second is that smells don’t always indicate a problem. Some long
methods are just fine. You have to look deeper to see if there is an
underlying problem there—smells aren’t inherently bad on their own—
they are often an indicator of a problem rather than the problem
themselves.

The best smells are something that’s easy to spot and most of time lead
you to really interesting problems. Data classes (classes with all data
and no behavior) are good examples of this. You look at them and ask
yourself what behavior should be in this class. Then you start
refactoring to move that behavior in there. Often simple questions and
initial refactorings can be the vital step in turning anemic objects into
something that really has class.

One of the nice things about smells is that it’s easy for inexperienced
people to spot them, even if they don’t know enough to evaluate if
there’s a real problem or to correct them. I’ve heard of lead developers
who will pick a “smell of the week” and ask people to look for the
smell and bring it up with the senior members of the team. Doing it one
smell at a time is a good way of gradually teaching people on the team
to be better programmers.

https://martinfowler.com/books/refactoring.html


The main idea of Object Oriented Programming is to place behavior and
data together in the same code unit: a class. If a class is widely used but has
no significant behavior of its own, it’s possible that code dealing with its
instances is scattered (and even duplicated) in methods and functions
throughout the system—a recipe for maintenance headaches. That’s why
Fowler’s refactorings to deal with a data class involve bringing
responsibilities back into it.

Taking that into account, there are a couple of common scenarios where it
makes sense to have a data class with little or no behavior.

Data class as scaffolding
In this scenario, the data class is an initial, simplistic implementation of a
class to jump start a new project or module. With time, the class should get
its own methods, instead of relying on methods of other classes to operate
on its instances. Scaffolding is temporary; eventually your custom class
may become fully independent from the builder you used to start it.

Python is also used for quick problem solving and experimentation, and
then it’s OK to leave the scaffolding in place.

Data class as intermediate representation
A data class can be useful to build records about to be exported to JSON or
some other interchange format, or to hold data that was just imported,
crossing some system boundary. Python’s data class builders all provide a
method or function to convert an instance to a plain dict, and you can
always invoke the constructor with a dict used as keyword arguments
expanded with **. Such a dict is very close to a JSON record.

In this scenario, the data class instances should be handled as immutable
objects—even if the fields are mutable, you should not change them while
they are in this intermediate form. If you do, you’re losing the key benefit
of having data and behavior close together. When importing/exporting



requires changing values, you should implement your own builder methods
instead of using the given “as dict” methods or standard constructors.

Now we change the subject to see how to write patterns that match
instances of arbitrary classes, and not just the sequences and mappings
we’ve seen in the pattern matching sections of Chapter 2 and Chapter 3.

Pattern Matching Class Instances
Class patterns are designed to match class instances by type and—
optionally—by attributes. The subject of a class pattern can be any class
instance, not only instances of data classes.

There are three variations of class patterns: simple, keyword, and positional.
We’ll study them in that order.

Simple Class Patterns
We’ve already seen an example with simple class patterns used as
subpatterns in “Pattern Matching with Sequences”:

        case [str(name), _, _, (float(lat), float(lon))]:

That pattern matches a 4-item sequence where the first item must be an
instance of str, and the last item must be a 2-tuple with two instances of
float.

The syntax for class patterns looks like a constructor invocation. Below is a
class pattern which matches float values, without binding a variable (the
case body can refer to x directly if needed):

    match x: 
        case float(): 
            do_something_with(x)

But this is likely to be a bug in your code:
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    match x: 
        case float:  # DANGER!!! 
            do_something_with(x)

In the example above, case float: matches any subject, because
Python sees float as a variable, which is then bound to the subject.

The simple pattern syntax of float() or float(x) is a special case that
applies only to nine blessed built-in types, listed at the end of the Class
patterns section of PEP 634—Structural Pattern Matching: Specification:

bytes   dict   float   frozenset   int   list   set   str   tuple

In those classes, the variable that looks like a constructor argument—e.g. x
in float(x)—is bound to the whole subject instance or the part of the
subject that matches a subpattern, as exemplified by str(name) in the
sequence pattern we saw earlier:

        case [str(name), _, _, (float(lat), float(lon))]:

If the class is not one of those nine blessed built-ins, then the argument-like
variables or constants represent different attributes of the class, as if they
were keyword arguments or positional arguments.

Keyword Class Patterns
To understand how to use keyword class patterns, consider the following
City class and five instances:

Example 5-22. City class and a few instances.
import typing 
 
class City(typing.NamedTuple): 
    continent: str 
    name: str 
    country: str 
 
 
cities = [ 

https://www.python.org/dev/peps/pep-0634/#class-patterns
https://www.python.org/dev/peps/pep-0634/


    City('Asia', 'Tokyo', 'JP'), 
    City('Asia', 'Delhi', 'IN'), 
    City('North America', 'Mexico City', 'MX'), 
    City('North America', 'New York', 'US'), 
    City('South America', 'São Paulo', 'BR'), 
]

Given those definitions the following function would return a list of Asian
cities:

def match_asian_cities(): 
    results = [] 
    for city in cities: 
        match city: 
            case City(continent='Asia'): 
                results.append(city) 
    return results

The pattern City(continent='Asia') matches any City instance
where the continent attribute value is equal to 'Asia', regardless of
the values of the other attributes.

If you want to collect the value of the country attribute, you could write:

def match_asian_countries(): 
    results = [] 
    for city in cities: 
        match city: 
            case City(continent='Asia', country=cc): 
                results.append(cc) 
    return results

The pattern City(continent='Asia', country=cc) matches the
same Asian cities as before, but now the cc variable is bound to the
country attribute of the instance. This also works if the pattern variable is
called country as well:

        match city: 
            case City(continent='Asia', country=country): 
                results.append(country)



Keyword class patterns are very readable, and work with any class that has
public instance attributes, but they are somewhat verbose.

Positional class patterns are more convenient in some cases, but they
require explicit support by the class of the subject, as we’ll see next.

Positional Class Patterns
Given the definitions from Example 5-22, the following function would
return a list of Asian cities, using a positional class pattern:

def match_asian_cities_pos(): 
    results = [] 
    for city in cities: 
        match city: 
            case City('Asia'): 
                results.append(city) 
    return results

The pattern City('Asia') matches any City instance where the first
attribute value is 'Asia', regardless of the values of the other attributes.

If you want to collect the value of the country attribute, you could write:

def match_asian_countries_pos(): 
    results = [] 
    for city in cities: 
        match city: 
            case City('Asia', _, country): 
                results.append(country) 
    return results

The pattern City('Asia', _, country) matches the same cities as
before, but now the country variable is bound to the third attribute of the
instance.

I’ve mentioned “first” or “third” attribute, but what does that really mean?

What makes City or any class work with positional patterns is the
presence of a special class attribute named __match_args__, which the



class builders in this chapter automatically create. This is value of
__match_args__ in the City class:

>>> City.__match_args__ 
('continent', 'name', 'country')

As you can see, __match_args__ declares the names of the attributes in
the order they will be used in positional patterns.

In Chapter 11 we’ll write code to define __match_args__ for a class
we’ll create without the help of a class builder.

TIP
You can combine keyword and positional arguments in a pattern. Some but not all of the
instance attributes available for matching may be listed in __match_args__.
Therefore, sometimes you may need to use keyword arguments in addition to positional
arguments in a pattern.

Time for a chapter summary.



Chapter Summary
The main topic of this chapter were the data class builders
collections.namedtuple, typing.NamedTuple and
dataclasses.dataclass. We saw that each of them generate data
classes from descriptions provided as arguments to a factory function or
from class statements with type hints—in the case of the latter two. In
particular, both named tuple variants produce tuple subclasses, adding
only the ability to access fields by name, and providing a _fields class
attribute listing the field names as a tuple of strings.

Next we studied the main features of the three class builders side by side,
including how to extract instance data as a dict, how to get the names and
default values of fields, and how to make a new instance from an existing
one.

This prompted our first look into type hints, particularly those used to
annotate attributes in a class statement, using the notation introduced in
Python 3.6 with PEP 526—Syntax for Variable Annotations. Probably the
most surprising aspect of type hints in general is the fact that they have no
effect at all at runtime. Python remains a dynamic language. External tools,
like Mypy, are needed to take advantage of typing information to detect
errors via static analysis of the source code. After a basic overview of the
syntax from PEP 526, we studied the effect of annotations in a plain class
and in classes built by typing.NamedTuple and @dataclass.

Next we covered the most commonly used features provided by
@dataclass and the default_factory option of the
dataclasses.field function. We also looked into the special pseudo-
type hints typing.ClassVar and dataclasses.InitVar that are
important in the context of data classes. This main topic concluded with an
example based on the Dublin Core Schema, which illustrated how to use
dataclasses.fields to iterate over the attributes of a Resource
instance in a custom __repr__.

https://www.python.org/dev/peps/pep-0526/


“Data class as a code smell” came after that, warning against possible abuse
of data classes defeating a basic principle of Object Oriented Programming:
data and the functions that touch it should be together in the same class.
Classes with no logic may be a sign of misplaced logic.

In the last section, we saw how pattern matching works with subjects that
are instances of any class—not just classes built with the tools presented in
this chapter.

Further Reading
Python’s standard documentation for the data class builders we covered is
very good, and has quite a few small examples.

For @dataclass in particular, most of PEP 557—Data Classes was
copied into the dataclasses module documentation. But PEP 557 has a
few very informative sections that were not copied, including Why not just
use namedtuple?, Why not just use typing.NamedTuple? and the Rationale
section which concludes with this Q&A:

Where is it not appropriate to use Data Classes?

API compatibility with tuples or dicts is required. Type validation beyond
that provided by PEPs 484 and 526 is required, or value validation or
conversion is required.

—Eric V. Smith, PEP 557 Rationale

Over at RealPython.com, Geir Arne Hjelle wrote a very complete Ultimate
Guide to Data Classes in Python 3.7.

At PyCon US 2018, Raymond Hettinger presented Dataclasses: The code
generator to end all code generators (video).

For more features and advanced functionality, including validation, the attrs
project led by Hynek Schlawack appeared years before dataclasses,
and offers more features, promising to “bring back the joy of writing classes
by relieving you from the drudgery of implementing object protocols (aka

https://www.python.org/dev/peps/pep-0557/
https://docs.python.org/3/library/dataclasses.html
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0557/#id47
https://www.python.org/dev/peps/pep-0557/#id48
https://www.python.org/dev/peps/pep-0557/#id33
https://realpython.com/
https://realpython.com/python-data-classes/
https://www.youtube.com/watch?v=T-TwcmT6Rcw
https://www.attrs.org/en/stable/


dunder methods).” The influence of attrs on @dataclass is
acknowledged by Eric V. Smith in PEP 557. This probably includes Smith’s
most important API decision: the use of a class decorator instead of a base
class and/or a metaclass to do the job.

Glyph—founder of the Twisted project—wrote an excellent introduction to
attrs in The One Python Library Everyone Needs. The attrs documentation
includes a discussion of alternatives.

Book author, instructor, and mad computer scientist Dave Beazley wrote
cluegen, yet another data class generator. If you’ve seen any of Dave’s
talks, you know he is a master of metaprograming Python from first
principles. So, I found it inspiring to learn from the cluegen README.md
file the concrete use case that motivated him to write an alternative to
Python’s @dataclass, and his philosophy of presenting an approach to
solve the problem, in contrast to providing a tool: the tool may be quicker to
use at first, but the approach is more flexible and can take you as far as you
want to go.

Regarding Data Class as a code smell, the best source I found was Martin
Fowler’s book Refactoring, Second Edition. This newest version is missing
the quote from the epigraph of this chapter, “Data classes are like
children…”, but otherwise it’s the best edition of Fowler’s most famous
book, particularly for Pythonistas because the examples are in modern
JavaScript, which is closer to Python than Java—the language of the first
edition.

The Web site Refactoring Guru also has a description of the Data Class
code smell.

https://glyph.twistedmatrix.com/2016/08/attrs.html
https://attrs.readthedocs.io/en/stable/why.html
https://github.com/dabeaz/cluegen
https://refactoring.guru/
https://refactoring.guru/smells/data-class


SOAPBOX

The entry for “Guido” in the Jargon file is about Guido van Rossum. It
says, among other things:

Mythically, Guido’s most important attribute besides Python itself is
Guido’s time machine, a device he is reputed to possess because of
the unnerving frequency with which user requests for new features
have been met with the response “I just implemented that last
night…”

For the longest time, one of the missing pieces in Python’s syntax has
been a quick, standard way to declare instance attributes in a class.
Many Object-Oriented languages have that. Here is part of a Point
class definition in Smalltalk:

Object subclass: #Point 
    instanceVariableNames: 'x y' 
    classVariableNames: '' 
    package: 'Kernel-BasicObjects'

The second line lists the names of the instance attributes x and y. If
there were class attributes, they would be in the third line.

Python has always offered an easy way to declare class attributes, if
they have an initial value. But instance attributes are much more
common, and Python coders have been forced to look into the
__init__ method to find them, always afraid that there may be
instance attributes created elsewhere in the class—or even created by
external functions or methods of other classes.

Now we have @dataclass, yay!

But they bring their own problems.

First: when you use @dataclass, type hints are not optional. We’ve
been promised for the last 7 years since PEP 484—Type Hints that they
would always be optional. Now we have a major new language feature

https://web.archive.org/web/20190204130328/http://catb.org/esr/jargon/html/G/Guido.html
https://www.python.org/dev/peps/pep-0484/


that requires them. If you don’t like the whole static typing trend, you
may want to use attrs instead.

Second: the PEP 526 syntax for annotating instance and class attributes
reverses the established convention of class statements: everything
declared at the top-level of a class block was a class attribute
(methods are class attributes too). With PEP 526 and @dataclass,
any attribute declared at the top level with a type hint becomes an
instance attribute:

    @dataclass 
    class Spam: 
        repeat: int  # instance attribute

Below, repeat is also an instance attribute:

    @dataclass 
    class Spam: 
        repeat: int = 99  # instance attribute

But if there are no type hints, suddenly you are back in the good old
times when declarations at the top-level of the class belong to the class
only:

    @dataclass 
    class Spam: 
        repeat = 99  # class attribute!

Finally, if you want to annotate that class attribute with a type, you
can’t use regular types because then it will become an instance attribute.
You must resort to that pseudo-type ClassVar annotation:

    @dataclass 
    class Spam: 
        repeat: ClassVar[int] = 99  # aargh!

Here we are talking about the exception to the exception to the rule.
This seems rather unpythonic to me.

https://www.attrs.org/en/stable/
https://www.python.org/dev/peps/pep-0526/


I did not take part in the discussions leading to PEP 526 or PEP 557—
Data Classes, but here is an alternative syntax that I’d like to see:

@dataclass 
class HackerClubMember: 
    .name: str                                    
    .guests: list = field(default_factory=list) 
    .handle: str = '' 
 
    all_handles = set()                          

Instance attributes must be declared with a . prefix.

Any attribute name that doesn’t have a . prefix is a class attribute
(as they always have been).

The language grammar would have to change to accept that. I find this
quite readable, and it avoids the exception-to-the-exception issue.

I wish I could borrow Guido’s time machine to go back to 2017 and sell
this idea to the core team.

1  From Refactoring, First Edition, chapter 3, Bad Smells in Code, Data Class section, page 87.

2  Metaclasses are one of the subjects covered in Chapter 25—Class Metaprogramming.

3  Class decorators are covered in Chapter 25—Class Metaprogramming, along with
metaclasses. Both are ways of customizing class behavior beyond what is possible with
inheritance.

4  If you know Ruby, you know that injecting methods is a well-known but controversial
technique among Rubyists. In Python, it’s not as common, because it doesn’t work with any
built-in type—str, list, etc. I consider this limitation of Python a blessing.

5  In the context of type hints, None is not the NoneType singleton, but an alias for
NoneType itself. This is strange when we stop to think about it, but appeals to our intuition
and makes function return annotations easier to read in the common case of functions that
return None.

6  Python has no concept of undefined, one of the silliest mistakes in the design of JavaScript.
Thank Guido!

https://www.python.org/dev/peps/pep-0557/


7  However, almost always when I see this in real code it’s a bad idea. I once spent hours
chasing a bug that was caused by attributes sneakily stashed in instances, like contraband
across module borders. Also, setting an attribute after __init__ defeats the __dict__ key-
sharing memory optimization mentioned in “Practical Consequences of How dict Works”.

8  Source: Dublin Core article in the English Wikipedia.

9  I am fortunate to have Martin Fowler as a colleague at Thoughtworks, so it took just 20
minutes to get his permission.

10  I put this content here because it is the earliest chapter focusing on user-defined classes, and I
thought pattern matching with classes was too important to wait until part III of the book. My
philosophy: it’s more important to know how to use classes than to define classes.

https://en.wikipedia.org/wiki/Dublin_Core


Chapter 6. Object References,
Mutability, and Recycling

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 6th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

‘You are sad,’ the Knight said in an anxious tone: ‘let me sing you a song
to comfort you. […] The name of the song is called “HADDOCKS’
EYES”.’

‘Oh, that’s the name of the song, is it?’ Alice said, trying to feel
interested.

‘No, you don’t understand,’ the Knight said, looking a little vexed. ‘That’s
what the name is CALLED. The name really IS “THE AGED AGED
MAN."’ (adapted from Chapter VIII. ‘It’s my own Invention’).

—Lewis Carroll, Through the Looking-Glass, and What
Alice Found There

Alice and the Knight set the tone of what we will see in this chapter. The
theme is the distinction between objects and their names. A name is not the
object; a name is a separate thing.

mailto:fluentpython2e@ramalho.org


We start the chapter by presenting a metaphor for variables in Python:
variables are labels, not boxes. If reference variables are old news to you,
the analogy may still be handy if you need to explain aliasing issues to
others.

We then discuss the concepts of object identity, value, and aliasing. A
surprising trait of tuples is revealed: they are immutable but their values
may change. This leads to a discussion of shallow and deep copies.
References and function parameters are our next theme: the problem with
mutable parameter defaults and the safe handling of mutable arguments
passed by clients of our functions.

The last sections of the chapter cover garbage collection, the del
command, and a selection of tricks that Python plays with immutable
objects.

This is a rather dry chapter, but its topics lie at the heart of many subtle
bugs in real Python programs.

What’s new in this chapter
The topics covered here are very fundamental and stable. There were no
changes worth mentioning in this Second Edition.

I added an example of using is to test for a sentinel object, and a warning
about misuses of the is operator at the end of “Choosing Between == and
is”.

This chapter used to be in Part IV, but I decided to bring it up earlier
because it works better as an ending to Part II—Data Structures—than an
opening to Object-Oriented Idioms.

NOTE
The section on Weak References from the First Edition is now a post at
fluentpython.com.

https://www.fluentpython.com/extra/weak-references/
https://www.fluentpython.com/extra/weak-references/


Let’s start by unlearning that a variable is like a box where you store data.

Variables Are Not Boxes
In 1997, I took a summer course on Java at MIT. The professor, Lynn Stein
made the point that the usual “variables as boxes” metaphor actually
hinders the understanding of reference variables in OO languages. Python
variables are like reference variables in Java, a better metaphor is to think
of variables as labels with names attached to objects. The next example and
figure will help you understand why.

Example 6-1 is a simple interaction that the “variables as boxes” idea
cannot explain. Figure 6-1 illustrates why the box metaphor is wrong for
Python, while sticky notes provide a helpful picture of how variables
actually work.

Example 6-1. Variables a and b hold references to the same list, not copies
of the list
>>> a = [1, 2, 3]   
>>> b = a           
>>> a.append(4)     
>>> b               
[1, 2, 3, 4]

Create a list [1, 2, 3] and bind the variable a to it

Bind the variable b to the same value that a is referencing.

Modify the list referenced by a, by appending another item.

You can see the effect via the b variable. If we think of b as box that
stored a copy of the [1, 2, 3] from the a box, this behavior is
makes no sense.

1



Figure 6-1. If you imagine variables are like boxes, you can’t make sense of assignment in Python;
instead, think of variables as sticky notes—Example 6-1 then becomes easy to explain

Therefore, the b = a statement does not copy the contents of box a into
box b. It attaches the label b to the object that already has the label a.

Prof. Stein also spoke about assignment in a very deliberate way. For
example, when talking about a seesaw object in a simulation, she would
say: “Variable s is assigned to the seesaw,” but never “The seesaw is
assigned to variable s.” With reference variables, it makes much more sense
to say that the variable is assigned to an object, and not the other way
around. After all, the object is created before the assignment. Example 6-2
proves that the right-hand side of an assignment happens first.

Since the verb “to assign” is used in contradictory ways, a useful alternative
is “to bind”: Python’s assignment statement x = … binds the x name to the



object created or referenced on the right-hand side. And the object must
exist before a name can be bound to it, as Example 6-2 proves.

Example 6-2. Variables are bound to objects only after the objects are
created.
>>> class Gizmo: 
...    def __init__(self): 
...         print(f'Gizmo id: {id(self)}') 
... 
>>> x = Gizmo() 
Gizmo id: 4301489152   
>>> y = Gizmo() * 10   
Gizmo id: 4301489432   
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unsupported operand type(s) for *: 'Gizmo' and 'int' 
>>> 
>>> dir()   
['Gizmo', '__builtins__', '__doc__', '__loader__', '__name__', 
'__package__', '__spec__', 'x']

The output Gizmo id: … is a side effect of creating a Gizmo
instance.

Multiplying a Gizmo instance will raise an exception.

Here is proof that a second Gizmo was actually instantiated before the
multiplication was attempted.

But variable y was never created, because the exception happened while
the right-hand side of the assignment was being evaluated.

TIP
To understand an assignment in Python, read the right-hand side first: that’s where the
object is created or retrieved. After that, the variable on the left is bound to the object,
like a label stuck to it. Just forget about the boxes.



Because variables are mere labels, nothing prevents an object from having
several labels assigned to it. When that happens, you have aliasing, our next
topic.

Identity, Equality, and Aliases
Lewis Carroll is the pen name of Prof. Charles Lutwidge Dodgson. Mr.
Carroll is not only equal to Prof. Dodgson: they are one and the same.
Example 6-3 expresses this idea in Python.

Example 6-3. charles and lewis refer to the same object
>>> charles = {'name': 'Charles L. Dodgson', 'born': 1832} 
>>> lewis = charles   
>>> lewis is charles 
True 
>>> id(charles), id(lewis)   
(4300473992, 4300473992) 
>>> lewis['balance'] = 950   
>>> charles 
{'name': 'Charles L. Dodgson', 'born': 1832, 'balance': 950}

lewis is an alias for charles.

The is operator and the id function confirm it.

Adding an item to lewis is the same as adding an item to charles.

However, suppose an impostor—let’s call him Dr. Alexander Pedachenko—
claims he is Charles L. Dodgson, born in 1832. His credentials may be the
same, but Dr. Pedachenko is not Prof. Dodgson. Figure 6-2 illustrates this
scenario.



Figure 6-2. charles and lewis are bound to the same object; alex is bound to a separate object of
equal value.

Example 6-4 implements and tests the alex object depicted in Figure 6-2.

Example 6-4. alex and charles compare equal, but alex is not charles
>>> alex = {'name': 'Charles L. Dodgson', 'born': 1832, 'balance': 
950}   
>>> alex == charles   
True 
>>> alex is not charles   
True

alex refers to an object that is a replica of the object assigned to
charles.

The objects compare equal, because of the __eq__ implementation in
the dict class.



But they are distinct objects. This is the Pythonic way of writing the
negative identity comparison: a is not b.

Example 6-3 is an example of aliasing. In that code, lewis and charles
are aliases: two variables bound to the same object. On the other hand,
alex is not an alias for charles: these variables are bound to distinct
objects. The objects bound to alex and charles have the same value—
that’s what == compares—but they have different identities.

In The Python Language Reference, “3.1. Objects, values and types” states:

An object’s identity never changes once it has been created; you may
think of it as the object’s address in memory. The is operator compares
the identity of two objects; the id() function returns an integer
representing its identity.

The real meaning of an object’s ID is implementation-dependent. In
CPython, id() returns the memory address of the object, but it may be
something else in another Python interpreter. The key point is that the ID is
guaranteed to be a unique integer label, and it will never change during the
life of the object.

In practice, we rarely use the id() function while programming. Identity
checks are most often done with the is operator, which compares the
object IDs, so our code doesn’t need to call id() explicitly. Next, we’ll
talk about is versus ==.

TIP
For tech reviewer Leonardo Rochael, the most frequent use for id() is while
debugging, when the repr() of two objects look alike, but you need to understand
whether two references are aliases or point to separate objects. If the references are in
different contexts—such as different stack frames—using the is operator may not be
viable.

http://bit.ly/1Vm9gv4


Choosing Between == and is
The == operator compares the values of objects (the data they hold), while
is compares their identities.

While programming, we often care more about values and than object
identities, so == appears more frequently than is in Python code.

However, if you are comparing a variable to a singleton, then it makes sense
to use is. By far, the most common case is checking whether a variable is
bound to None. This is the recommended way to do it:

x is None

And the proper way to write its negation is:

x is not None

None is the most common singleton we test with is. Sentinel objects are
another example of singletons we test with is. Here is one way to create
and test a sentinel object:

END_OF_DATA = object() 
# ... many lines 
def traverse(...): 
    # ... more lines 
    if node is END_OF_DATA: 
        return 
    # etc.

The is operator is faster than ==, because it cannot be overloaded, so
Python does not have to find and invoke special methods to evaluate it, and
computing is as simple as comparing two integer IDs. In contrast, a == b
is syntactic sugar for a.__eq__(b). The __eq__ method inherited from
object compares object IDs, so it produces the same result as is. But
most built-in types override __eq__ with more meaningful
implementations that actually take into account the values of the object



attributes. Equality may involve a lot of processing—for example, when
comparing large collections or deeply nested structures.

WARNING
Usually we are more interested in object equality than identity. Checking for None is
the only common use case for the is operator. Most other uses I see while reviewing
code are wrong. If you are not sure, use ==. It’s usually what you want, and also works
with None—albeit not as fast.

To wrap up this discussion of identity versus equality, we’ll see that the
famously immutable tuple is not as unchanging as you may expect.

The Relative Immutability of Tuples
Tuples, like most Python collections—lists, dicts, sets, etc.—are containers:
they hold references to objects.  If the referenced items are mutable, they
may change even if the tuple itself does not. In other words, the
immutability of tuples really refers to the physical contents of the tuple
data structure (i.e., the references it holds), and does not extend to the
referenced objects.

Example 6-5 illustrates the situation in which the value of a tuple changes
as result of changes to a mutable object referenced in it. What can never
change in a tuple is the identity of the items it contains.

Example 6-5. t1 and t2 initially compare equal, but changing a mutable
item inside tuple t1 makes it different
>>> t1 = (1, 2, [30, 40])   
>>> t2 = (1, 2, [30, 40])   
>>> t1 == t2   
True 
>>> id(t1[-1])   
4302515784 
>>> t1[-1].append(99)   
>>> t1 
(1, 2, [30, 40, 99]) 
>>> id(t1[-1])   

2



4302515784 
>>> t1 == t2   
False

t1 is immutable, but t1[-1] is mutable.

Build a tuple t2 whose items are equal to those of t1.

Although distinct objects, t1 and t2 compare equal, as expected.

Inspect the identity of the list at t1[-1].

Modify the t1[-1] list in place.

The identity of t1[-1] has not changed, only its value.

t1 and t2 are now different.

This relative immutability of tuples is behind the riddle “A += Assignment
Puzzler”. It’s also the reason why some tuples are unhashable, as we’ve
seen in “What is Hashable”.

The distinction between equality and identity has further implications when
you need to copy an object. A copy is an equal object with a different ID.
But if an object contains other objects, should the copy also duplicate the
inner objects, or is it OK to share them? There’s no single answer. Read on
for a discussion.

Copies Are Shallow by Default
The easiest way to copy a list (or most built-in mutable collections) is to use
the built-in constructor for the type itself. For example:

>>> l1 = [3, [55, 44], (7, 8, 9)] 
>>> l2 = list(l1)   
>>> l2 
[3, [55, 44], (7, 8, 9)] 



>>> l2 == l1   
True 
>>> l2 is l1   
False

list(l1) creates a copy of l1.

The copies are equal.

But refer to two different objects.

For lists and other mutable sequences, the shortcut l2 = l1[:] also
makes a copy.

However, using the constructor or [:] produces a shallow copy (i.e., the
outermost container is duplicated, but the copy is filled with references to
the same items held by the original container). This saves memory and
causes no problems if all the items are immutable. But if there are mutable
items, this may lead to unpleasant surprises.

In Example 6-6, we create a shallow copy of a list containing another list
and a tuple, and then make changes to see how they affect the referenced
objects.

TIP
If you have a connected computer on hand, I highly recommend watching the interactive
animation for Example 6-6 at the Online Python Tutor. As I write this, direct linking to
a prepared example at pythontutor.com is not working reliably, but the tool is awesome,
so taking the time to copy and paste the code is worthwhile.

http://www.pythontutor.com/


Figure 6-3. Program state immediately after the assignment l2 = list(l1) in Example 6-6. l1 and l2
refer to distinct lists, but the lists share references to the same inner list object [66, 55, 44] and tuple

(7, 8, 9). (Diagram generated by the Online Python Tutor.)

Example 6-6. Making a shallow copy of a list containing another list; copy
and paste this code to see it animated at the Online Python Tutor
l1 = [3, [66, 55, 44], (7, 8, 9)] 
l2 = list(l1)       
l1.append(100)      
l1[1].remove(55)    
print('l1:', l1) 
print('l2:', l2) 
l2[1] += [33, 22]   
l2[2] += (10, 11)   
print('l1:', l1) 
print('l2:', l2)

l2 is a shallow copy of l1. This state is depicted in Figure 6-3.

Appending 100 to l1 has no effect on l2.

Here we remove 55 from the inner list l1[1]. This affects l2 because
l2[1] is bound to the same list as l1[1].



For a mutable object like the list referred by l2[1], the operator +=
changes the list in place. This change is visible at l1[1], which is an
alias for l2[1].

+= on a tuple creates a new tuple and rebinds the variable l2[2] here.
This is the same as doing l2[2] = l2[2] + (10, 11). Now the
tuples in the last position of l1 and l2 are no longer the same object.
See Figure 6-4.

The output of Example 6-6 is Example 6-7, and the final state of the objects
is depicted in Figure 6-4.

Example 6-7. Output of Example 6-6
l1: [3, [66, 44], (7, 8, 9), 100] 
l2: [3, [66, 44], (7, 8, 9)] 
l1: [3, [66, 44, 33, 22], (7, 8, 9), 100] 
l2: [3, [66, 44, 33, 22], (7, 8, 9, 10, 11)]

Figure 6-4. Final state of l1 and l2: they still share references to the same list object, now containing
[66, 44, 33, 22], but the operation l2[2] += (10, 11) created a new tuple with content (7, 8, 9, 10,
11), unrelated to the tuple (7, 8, 9) referenced by l1[2]. (Diagram generated by the Online Python

Tutor.)



It should be clear now that shallow copies are easy to make, but they may
or may not be what you want. How to make deep copies is our next topic.

Deep and Shallow Copies of Arbitrary Objects
Working with shallow copies is not always a problem, but sometimes you
need to make deep copies (i.e., duplicates that do not share references of
embedded objects). The copy module provides the deepcopy and copy
functions that return deep and shallow copies of arbitrary objects.

To illustrate the use of copy() and deepcopy(), Example 6-8 defines a
simple class, Bus, representing a school bus that is loaded with passengers
and then picks up or drops off passengers on its route.

Example 6-8. Bus picks up and drops off passengers
class Bus: 
 
    def __init__(self, passengers=None): 
        if passengers is None: 
            self.passengers = [] 
        else: 
            self.passengers = list(passengers) 
 
    def pick(self, name): 
        self.passengers.append(name) 
 
    def drop(self, name): 
        self.passengers.remove(name)

Now in the interactive Example 6-9 we will create a bus object (bus1)
and two clones—a shallow copy (bus2) and a deep copy (bus3)—to
observe what happens as bus1 drops off a student.

Example 6-9. Effects of using copy versus deepcopy
>>> import copy 
>>> bus1 = Bus(['Alice', 'Bill', 'Claire', 'David']) 
>>> bus2 = copy.copy(bus1) 
>>> bus3 = copy.deepcopy(bus1) 
>>> id(bus1), id(bus2), id(bus3) 
(4301498296, 4301499416, 4301499752)   
>>> bus1.drop('Bill') 
>>> bus2.passengers 



['Alice', 'Claire', 'David']           
>>> id(bus1.passengers), id(bus2.passengers), id(bus3.passengers) 
(4302658568, 4302658568, 4302657800)   
>>> bus3.passengers 
['Alice', 'Bill', 'Claire', 'David']  

Using copy and deepcopy, we create three distinct Bus instances.

After bus1 drops 'Bill', he is also missing from bus2.

Inspection of the passengers attributes shows that bus1 and bus2
share the same list object, because bus2 is a shallow copy of bus1.

bus3 is a deep copy of bus1, so its passengers attribute refers to
another list.

Note that making deep copies is not a simple matter in the general case.
Objects may have cyclic references that would cause a naïve algorithm to
enter an infinite loop. The deepcopy function remembers the objects
already copied to handle cyclic references gracefully. This is demonstrated
in Example 6-10.

Example 6-10. Cyclic references: b refers to a, and then is appended to a;
deepcopy still manages to copy a
>>> a = [10, 20] 
>>> b = [a, 30] 
>>> a.append(b) 
>>> a 
[10, 20, [[...], 30]] 
>>> from copy import deepcopy 
>>> c = deepcopy(a) 
>>> c 
[10, 20, [[...], 30]]

Also, a deep copy may be too deep in some cases. For example, objects
may refer to external resources or singletons that should not be copied. You
can control the behavior of both copy and deepcopy by implementing
the __copy__() and __deepcopy__() special methods as described
in the copy module documentation.

http://docs.python.org/3/library/copy.html


The sharing of objects through aliases also explains how parameter passing
works in Python, and the problem of using mutable types as parameter
defaults. These issues will be covered next.

Function Parameters as References
The only mode of parameter passing in Python is call by sharing. That is
the same mode used in most object oriented languages, including
JavaScript, Ruby, and Java (this applies to Java reference types; primitive
types use call by value). Call by sharing means that each formal parameter
of the function gets a copy of each reference in the arguments. In other
words, the parameters inside the function become aliases of the actual
arguments.

The result of this scheme is that a function may change any mutable object
passed as a parameter, but it cannot change the identity of those objects
(i.e., it cannot altogether replace an object with another). Example 6-11
shows a simple function using += on one of its parameters. As we pass
numbers, lists, and tuples to the function, the actual arguments passed are
affected in different ways. The next example demonstrates:

Example 6-11. A function may change any mutable object it receives
>>> def f(a, b): 
...     a += b 
...     return a 
... 
>>> x = 1 
>>> y = 2 
>>> f(x, y) 
3 
>>> x, y   
(1, 2) 
>>> a = [1, 2] 
>>> b = [3, 4] 
>>> f(a, b) 
[1, 2, 3, 4] 
>>> a, b   
([1, 2, 3, 4], [3, 4]) 
>>> t = (10, 20) 
>>> u = (30, 40) 



>>> f(t, u)   
(10, 20, 30, 40) 
>>> t, u 
((10, 20), (30, 40))

The number x is unchanged.

The list a is changed.

The tuple t is unchanged.

Another issue related to function parameters is the use of mutable values for
defaults, as discussed next.

Mutable Types as Parameter Defaults: Bad Idea
Optional parameters with default values are a great feature of Python
function definitions, allowing our APIs to evolve while remaining
backward-compatible. However, you should avoid mutable objects as
default values for parameters.

To illustrate this point, in Example 6-12, we take the Bus class from
Example 6-8 and change its __init__ method to create HauntedBus.
Here we tried to be clever and instead of having a default value of
passengers=None, we have passengers=[], thus avoiding the if
in the previous __init__. This “cleverness” gets us into trouble.

Example 6-12. A simple class to illustrate the danger of a mutable default
class HauntedBus: 
    """A bus model haunted by ghost passengers""" 
 
    def __init__(self, passengers=[]):   
        self.passengers = passengers   
 
    def pick(self, name): 
        self.passengers.append(name)   
 
    def drop(self, name): 
        self.passengers.remove(name)



When the passengers argument is not passed, this parameter is
bound to the default list object, which is initially empty.

This assignment makes self.passengers an alias for
passengers, which is itself an alias for the default list, when no
passengers argument is given.

When the methods .remove() and .append() are used with
self.passengers we are actually mutating the default list, which is
an attribute of the function object.

Example 6-13 shows the eerie behavior of the HauntedBus.

Example 6-13. Buses haunted by ghost passengers
>>> bus1 = HauntedBus(['Alice', 'Bill'])   
>>> bus1.passengers 
['Alice', 'Bill'] 
>>> bus1.pick('Charlie') 
>>> bus1.drop('Alice') 
>>> bus1.passengers   
['Bill', 'Charlie'] 
>>> bus2 = HauntedBus()   
>>> bus2.pick('Carrie') 
>>> bus2.passengers 
['Carrie'] 
>>> bus3 = HauntedBus()   
>>> bus3.passengers   
['Carrie'] 
>>> bus3.pick('Dave') 
>>> bus2.passengers   
['Carrie', 'Dave'] 
>>> bus2.passengers is bus3.passengers   
True 
>>> bus1.passengers   
['Bill', 'Charlie']

bus1 starts with a two-passenger list.

So far, so good: no surprises with bus1.



bus2 starts empty, so the default empty list is assigned to
self.passengers.

bus3 also starts empty, again the default list is assigned.

The default is no longer empty!

Now Dave, picked by bus3, appears in bus2.

The problem: bus2.passengers and bus3.passengers refer to
the same list.

But bus1.passengers is a distinct list.

The problem is that HauntedBus instances that don’t get an initial
passenger list end up sharing the same passenger list among themselves.

Such bugs may be subtle. As Example 6-13 demonstrates, when a
HauntedBus is instantiated with passengers, it works as expected.
Strange things happen only when a HauntedBus starts empty, because
then self.passengers becomes an alias for the default value of the
passengers parameter. The problem is that each default value is
evaluated when the function is defined—i.e., usually when the module is
loaded—and the default values become attributes of the function object. So
if a default value is a mutable object, and you change it, the change will
affect every future call of the function.

After running the lines in Example 6-13, you can inspect the
HauntedBus.__init__ object and see the ghost students haunting its
__defaults__ attribute:

>>> dir(HauntedBus.__init__)  # doctest: +ELLIPSIS 
['__annotations__', '__call__', ..., '__defaults__', ...] 
>>> HauntedBus.__init__.__defaults__ 
(['Carrie', 'Dave'],)



Finally, we can verify that bus2.passengers is an alias bound to the
first element of the HauntedBus.__init__.__defaults__
attribute:

>>> HauntedBus.__init__.__defaults__[0] is bus2.passengers 
True

The issue with mutable defaults explains why None is commonly used as
the default value for parameters that may receive mutable values. In
Example 6-8, __init__ checks whether the passengers argument is
None. If it is, self.passengers is bound to a new empty list. If
passengers is not None, the correct implementation binds a copy of that
argument to self.passengers. The next section explains why copying
the argument is a good practice.

Defensive Programming with Mutable Parameters
When you are coding a function that receives a mutable parameter, you
should carefully consider whether the caller expects the argument passed to
be changed.

For example, if your function receives a dict and needs to modify it while
processing it, should this side effect be visible outside of the function or
not? Actually it depends on the context. It’s really a matter of aligning the
expectation of the coder of the function and that of the caller.

The last bus example in this chapter shows how a TwilightBus breaks
expectations by sharing its passenger list with its clients. Before studying
the implementation, see in Example 6-14 how the TwilightBus class
works from the perspective of a client of the class.

Example 6-14. Passengers disappear when dropped by a TwilightBus
>>> basketball_team = ['Sue', 'Tina', 'Maya', 'Diana', 'Pat']   
>>> bus = TwilightBus(basketball_team)   
>>> bus.drop('Tina')   
>>> bus.drop('Pat') 
>>> basketball_team   
['Sue', 'Maya', 'Diana']



basketball_team holds five student names.

A TwilightBus is loaded with the team.

The bus drops one student, then another.

The dropped passengers vanished from the basketball team!

TwilightBus violates the “Principle of least astonishment,” a best
practice of interface design.  It surely is astonishing that when the bus
drops a student, her name is removed from the basketball team roster.

Example 6-15 is the implementation TwilightBus and an explanation of
the problem.

Example 6-15. A simple class to show the perils of mutating received
arguments
class TwilightBus: 
    """A bus model that makes passengers vanish""" 
 
    def __init__(self, passengers=None): 
        if passengers is None: 
            self.passengers = []   
        else: 
            self.passengers = passengers   
 
    def pick(self, name): 
        self.passengers.append(name) 
 
    def drop(self, name): 
        self.passengers.remove(name)  

Here we are careful to create a new empty list when passengers is
None.

However, this assignment makes self.passengers an alias for
passengers, which is itself an alias for the actual argument passed to
__init__ (i.e.,basketball_team in Example 6-14).
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When the methods .remove() and .append() are used with
self.passengers, we are actually mutating the original list
received as argument to the constructor.

The problem here is that the bus is aliasing the list that is passed to the
constructor. Instead, it should keep its own passenger list. The fix is simple:
in __init__, when the passengers parameter is provided,
self.passengers should be initialized with a copy of it, as we did
correctly in Example 6-8:

    def __init__(self, passengers=None): 
        if passengers is None: 
            self.passengers = [] 
        else: 
            self.passengers = list(passengers) 

Make a copy of the passengers list, or convert it to a list if it’s
not one.

Now our internal handling of the passenger list will not affect the argument
used to initialize the bus. As a bonus, this solution is more flexible: now the
argument passed to the passengers parameter may be a tuple or any
other iterable, like a set or even database results, because the list
constructor accepts any iterable. As we create our own list to manage, we
ensure that it supports the necessary .remove() and .append()
operations we use in the .pick() and .drop() methods.

TIP
Unless a method is explicitly intended to mutate an object received as argument, you
should think twice before aliasing the argument object by simply assigning it to an
instance variable in your class. If in doubt, make a copy. Your clients will be happier. Of
course, making a copy is not free: there is a cost in CPU and memory. However, an API
that causes subtle bugs is usually a bigger problem than one that is a little slower or uses
more resources.



Now let’s talk about one of the most misunderstood of Python’s statements:
del.

del and Garbage Collection
Objects are never explicitly destroyed; however, when they become
unreachable they may be garbage-collected.

—Data Model, chapter of The Python Language Reference

The first strange fact about del is that it’s not a function: it’s a statement.
We write del x, and not del(x)—although the latter also works, but
only because the expressions x and (x) usually mean the same thing in
Python.

The second surprising fact is that del deletes references, not objects.
Python’s garbage collector may discard an object from memory as an
indirect result of del, if the deleted variable was the last reference to the
object. Rebinding a variable may also cause the number of references to an
object to reach zero, causing its destruction.

>>> a = [1, 2]   
>>> b = a        
>>> del a        
>>> b            
[1, 2] 
>>> b = [3]     

Create object [1, 2] and bind a to it.

Bind b to the same [1, 2] object.

Delete reference a.

[1, 2] was not affected, because b still points to it.



Rebinding b to a different object removes the last remaining reference
to [1, 2]. Now the garbage collector can discard that object.

WARNING
There is a __del__ special method, but it does not cause the disposal of the instance,
and should not be called by your code. __del__ is invoked by the Python interpreter
when the instance is about to be destroyed to give it a chance to release external
resources. You will seldom need to implement __del__ in your own code, yet some
Python programmers spend time coding it for no good reason. The proper use of
__del__ is rather tricky. See the __del__ special method documentation in the
“Data Model” chapter of The Python Language Reference.

In CPython, the primary algorithm for garbage collection is reference
counting. Essentially, each object keeps count of how many references
point to it. As soon as that refcount reaches zero, the object is immediately
destroyed: CPython calls the __del__ method on the object (if defined)
and then frees the memory allocated to the object. In CPython 2.0, a
generational garbage collection algorithm was added to detect groups of
objects involved in reference cycles—which may be unreachable even with
outstanding references to them, when all the mutual references are
contained within the group. Other implementations of Python have more
sophisticated garbage collectors that do not rely on reference counting,
which means the __del__ method may not be called immediately when
there are no more references to the object. See “PyPy, Garbage Collection,
and a Deadlock” by A. Jesse Jiryu Davis for discussion of improper and
proper use of __del__.

To demonstrate the end of an object’s life, Example 6-16 uses
weakref.finalize to register a callback function to be called when an
object is destroyed.

Example 6-16. Watching the end of an object when no more references point
to it.
>>> import weakref 
>>> s1 = {1, 2, 3} 

http://bit.ly/1GsWPac
http://bit.ly/1GsWTa7


>>> s2 = s1          
>>> def bye():       
...     print('...like tears in the rain.') 
... 
>>> ender = weakref.finalize(s1, bye)   
>>> ender.alive   
True 
>>> del s1 
>>> ender.alive   
True 
>>> s2 = 'spam'   
...like tears in the rain. 
>>> ender.alive 
False

s1 and s2 are aliases referring to the same set, {1, 2, 3}.

This function must not be a bound method of the object about to be
destroyed or otherwise hold a reference to it.

Register the bye callback on the object referred by s1.

The .alive attribute is True before the finalize object is called.

As discussed, del did not delete the object, just the s1 reference to it.

Rebinding the last reference, s2, makes {1, 2, 3} unreachable. It is
destroyed, the bye callback is invoked, and ender.alive becomes
False.

The point of Example 6-16 is to make explicit that del does not delete
objects, but objects may be deleted as a consequence of being unreachable
after del is used.

You may be wondering why the {1, 2, 3} object was destroyed in
Example 6-16. After all, the s1 reference was passed to the finalize
function, which must have held on to it in order to monitor the object and
invoke the callback. This works because finalize holds a weak
reference to {1, 2, 3}. Weak references to an object do not increase its



reference count. Therefore, a weak reference does not prevent the target
object from being garbage collected. Weak references are useful in caching
applications because you don’t want the cached objects to be kept alive just
because they are referenced by the cache.

NOTE
Weak references is a very specialized topic. That’s why I chose to skip it in this Second
Edition. Instead, I published Weak References on fluentpython.com.

Tricks Python Plays with Immutables

NOTE
This optional section discusses some Python details that are not really important for
users of Python, and that may not apply to other Python implementations or even future
versions of CPython. Nevertheless, I’ve seen people stumble upon these corner cases
and then start using the is operator incorrectly, so I felt they were worth mentioning.

I was surprised to learn that, for a tuple t, t[:] does not make a copy, but
returns a reference to the same object. You also get a reference to the same
tuple if you write tuple(t).  Example 6-17 proves it.

Example 6-17. A tuple built from another is actually the same exact tuple
>>> t1 = (1, 2, 3) 
>>> t2 = tuple(t1) 
>>> t2 is t1   
True 
>>> t3 = t1[:] 
>>> t3 is t1   
True

t1 and t2 are bound to the same object.

And so is t3.

4

https://www.fluentpython.com/extra/weak-references/
https://www.fluentpython.com/


The same behavior can be observed with instances of str, bytes, and
frozenset. Note that a frozenset is not a sequence, so fs[:] does
not work if fs is a frozenset. But fs.copy() has the same effect: it
cheats and returns a reference to the same object, and not a copy at all, as
Example 6-18 shows.

Example 6-18. String literals may create shared objects
>>> t1 = (1, 2, 3) 
>>> t3 = (1, 2, 3)   
>>> t3 is t1   
False 
>>> s1 = 'ABC' 
>>> s2 = 'ABC'   
>>> s2 is s1  
True

Creating a new tuple from scratch.

t1 and t3 are equal, but not the same object.

Creating a second str from scratch.

Surprise: a and b refer to the same str!

The sharing of string literals is an optimization technique called interning.
CPython uses a similar technique with small integers to avoid unnecessary
duplication of numbers that appear frequently in programs like 0, 1, –1, etc.
Note that CPython does not intern all strings or integers, and the criteria it
uses to do so is an undocumented implementation detail.

WARNING
Never depend on str or int interning! Always use == instead of is to compare
strings or integers for equality. Interning is an optimization for internal use of the Python
interpreter.
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The tricks discussed in this section, including the behavior of
frozenset.copy(), are harmless “lies” that save memory and make
the interpreter faster. Do not worry about them, they should not give you
any trouble because they only apply to immutable types. Probably the best
use of these bits of trivia is to win bets with fellow Pythonistas.6



Chapter Summary
Every Python object has an identity, a type, and a value. Only the value of
an object may change over time.

If two variables refer to immutable objects that have equal values (a == b
is True), in practice it rarely matters if they refer to copies or are aliases
referring to the same object because the value of an immutable object does
not change, with one exception. The exception being immutable collections
such as tuples: if an immutable collection holds references to mutable
items, then its value may actually change when the value of a mutable item
changes. In practice, this scenario is not so common. What never changes in
an immutable collection are the identities of the objects within. The
frozenset class is does not suffer from this problem because it can only
hold hashable elements, and the value of hashable objects cannot ever
change, by definition.

The fact that variables hold references has many practical consequences in
Python programming:

Simple assignment does not create copies.

Augmented assignment with += or *= creates new objects if the
left-hand variable is bound to an immutable object, but may
modify a mutable object in place.

Assigning a new value to an existing variable does not change the
object previously bound to it. This is called a rebinding: the
variable is now bound to a different object. If that variable was the
last reference to the previous object, that object will be garbage
collected.

Function parameters are passed as aliases, which means the
function may change any mutable object received as an argument.
There is no way to prevent this, except making local copies or
using immutable objects (e.g., passing a tuple instead of a list).
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Using mutable objects as default values for function parameters is
dangerous because if the parameters are changed in place, then the
default is changed, affecting every future call that relies on the
default.

In CPython, objects are discarded as soon as the number of references to
them reaches zero. They may also be discarded if they form groups with
cyclic references but no outside references.

In some situations, it may be useful to hold a reference to an object that will
not—by itself—keep an object alive. One example is a class that wants to
keep track of all its current instances. This can be done with weak
references, a low-level mechanism underlying the more useful collections
WeakValueDictionary, WeakKeyDictionary, WeakSet, and the
finalize function from the weakref module. For more on this, please
see Weak References at fluentpython.com.

Further Reading
The “Data Model” chapter of The Python Language Reference starts with a
clear explanation of object identities and values.

Wesley Chun, author of the Core Python series of books, made a great
presentation about many of the topics covered in this chapter during
OSCON 2013. You can download the slides from the “Python 103: Memory
Model & Best Practices” talk page. There is also a YouTube video of a
longer presentation Wesley gave at EuroPython 2011, covering not only the
theme of this chapter but also the use of special methods.

Doug Hellmann wrote a long series of excellent blog posts titled Python
Module of the Week, which became a book, The Python Standard Library
by Example. His posts “copy – Duplicate Objects” and “weakref – Garbage-
Collectable References to Objects” cover some of the topics we just
discussed.

https://www.fluentpython.com/extra/weak-references/
https://www.fluentpython.com/
http://bit.ly/1GsZwss
http://bit.ly/1GsZvEO
http://bit.ly/1HGCayS
http://pymotw.com/
http://bit.ly/py-libex
http://pymotw.com/2/copy/
http://pymotw.com/2/weakref/


More information on the CPython generational garbage collector can be
found in the gc module documentation, which starts with the sentence “This
module provides an interface to the optional garbage collector.” The
“optional” qualifier here may be surprising, but the “Data Model” chapter
also states:

An implementation is allowed to postpone garbage collection or omit it
altogether—it is a matter of implementation quality how garbage
collection is implemented, as long as no objects are collected that are
still reachable.

Pablo Galindo wrote more in-depth treatment of Python’s GC in Design of
CPython’s Garbage Collector at the Python Developer’s Guide, aimed at
new and experienced contributors to the CPython implementation.

The CPython 3.4 garbage collector improved handling of objects with a
__del__ method, as described in PEP 442 — Safe object finalization.

Wikipedia has an article about string interning, mentioning the use of this
technique in several languages, including Python.

http://bit.ly/1HGCbmj
http://bit.ly/1GsZwss
https://devguide.python.org/garbage_collector/
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SOAPBOX

Equal Treatment to All Objects

I learned Java before I discovered Python. The == operator in Java
never felt right for me. It is much more common for programmers to
care about equality than identity, but for objects (not primitive types)
the Java == compares references, and not object values. Even for
something as basic as comparing strings, Java forces you to use the
.equals method. Even then, there is another catch: if you write
a.equals(b) and a is null, you get a null pointer exception. The
Java designers felt the need to overload + for strings, so why not go
ahead and overload == as well?

Python gets this right. The == operator compares object values; is
compares references. And because Python has operator overloading, ==
works sensibly with all objects in the standard library, including None,
which is a proper object, unlike Java’s null.

And of course, you can define __eq__ in your own classes to decide
what == means for your instances. If you don’t override __eq__, the
method inherited from object compares object IDs, so the fallback is
that every instance of a user-defined class is considered different.

These are some of the things that made me switch from Java to Python
as soon as I finished reading the Python Tutorial one afternoon in
September 1998.

Mutability

This chapter would not be necessary if all Python objects were
immutable. When you are dealing with unchanging objects, it makes no
difference whether variables hold the actual objects or references to
shared objects. If a == b is true, and neither object can change, they
might as well be the same. That’s why string interning is safe. Object
identity becomes important only when objects are mutable.



In “pure” functional programming, all data is immutable: appending to
a collection actually creates a new collection. Elixir is one easy to learn,
practical functional language in which all built-in types are immutable,
including lists.

Python, however, is not a functional language, much less a pure one.
Instances of user-defined classes are mutable by default in Python—as
in most object-oriented languages. When creating your own objects,
you have to be extra careful to make them immutable, if that is a
requirement. Every attribute of the object must also be immutable,
otherwise you end up with something like the tuple: immutable as far
as object IDs go, but the value of a tuple may change if it holds a
mutable object.

Mutable objects are also the main reason why programming with
threads is so hard to get right: threads mutating objects without proper
synchronization produce corrupted data. Excessive synchronization, on
the other hand, causes deadlocks. The Erlang language and platform—
which includes Elixir—was designed to maximize uptime in highly-
concurrent, distributed applications such as telecommunications
switches. Naturally, they chose immutable data by default.

Object Destruction and Garbage Collection

There is no mechanism in Python to directly destroy an object, and this
omission is actually a great feature: if you could destroy an object at
any time, what would happen to existing strong references pointing to
it?

Garbage collection in CPython is done primarily by reference counting,
which is easy to implement, but is prone to memory leaking when there
are reference cycles, so with version 2.0 (October 2000) a generational
garbage collector was implemented, and it is able to dispose of
unreachable objects kept alive by reference cycles.

But the reference counting is still there as a baseline, and it causes the
immediate disposal of objects with zero references. This means that, in
CPython—at least for now—it’s safe to write this:



open('test.txt', 'wt', encoding='utf-8').write('1, 2, 3')

That code is safe because the reference count of the file object will be
zero after the write method returns, and Python will immediately
close the file before destroying the object representing it in memory.
However, the same line is not safe in Jython or IronPython that use the
garbage collector of their host runtimes (the Java VM and the .NET
CLR), which are more sophisticated but do not rely on reference
counting and may take longer to destroy the object and close the file. In
all cases, including CPython, the best practice is to explicitly close the
file, and the most reliable way of doing it is using the with statement,
which guarantees that the file will be closed even if exceptions are
raised while it is open. Using with, the previous snippet becomes:

with open('test.txt', 'wt', encoding='utf-8') as fp: 
    fp.write('1, 2, 3')

If you are into the subject of garbage collectors, you may want to read
Thomas Perl’s paper “Python Garbage Collector Implementations:
CPython, PyPy and GaS”, from which I learned the bit about the safety
of the open().write() in CPython.

Parameter Passing: Call by Sharing

A popular way of explaining how parameter passing works in Python is
the phrase: “Parameters are passed by value, but the values are
references.” This is not wrong, but causes confusion because the most
common parameter passing modes in older languages are call by value
(the function gets a copy of the argument) and call by reference (the
function gets a pointer to the argument). In Python, the function gets a
copy of the arguments, but the arguments are always references. So the
value of the referenced objects may be changed, if they are mutable, but
their identity cannot. Also, because the function gets a copy of the
reference in an argument, rebinding it in the function body has no effect
outside of the function. I adopted the term call by sharing after reading
up on the subject in Programming Language Pragmatics, Third Edition

http://bit.ly/1Gt0HrJ


by Michael L. Scott (Morgan Kaufmann), section “8.3.1: Parameter
Modes.”

1  Lynn Andrea Stein is award-winning computer science educator who currently teaches at Olin
College of Engineering

2  In contrast, flat sequences like str, bytes, and array.array don’t contain references
but directly hold their contents—characters, bytes, and numbers—in contiguous memory.

3  See Principle of least astonishment in the English Wikipedia

4  This is clearly documented. Type help(tuple) in the Python console to read: “If the
argument is a tuple, the return value is the same object.” I thought I knew everything about
tuples before writing this book.

5  The harmless lie of having the copy method not copying anything is justified by interface
compatibility: it makes frozenset more compatible with set. Anyway, it makes no
difference to the end user whether two identical immutable objects are the same or are copies.

6  A terrible use for this information would be to ask about it when interviewing candidates or
authoring questions for “certification” exams. There are countless more important and useful
facts to check for Python knowledge.

7  Actually the type of an object may be changed by merely assigning a different class to its
__class__ attribute, but that is pure evil and I regret writing this footnote.

https://www.olin.edu/faculty/profile/lynn-andrea-stein/
https://en.wikipedia.org/wiki/Principle_of_least_astonishment


Part III. Functions as Objects



Chapter 7. Functions as First-
Class Objects

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 7th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

I have never considered Python to be heavily influenced by functional
languages, no matter what people say or think. I was much more familiar
with imperative languages such as C and Algol 68 and although I had
made functions first-class objects, I didn’t view Python as a functional
programming language.

—Guido van Rossum, Python BDFL

Functions in Python are first-class objects. Programming language
researchers define a “first-class object” as a program entity that can be:

created at runtime;

assigned to a variable or element in a data structure;

passed as an argument to a function;

returned as the result of a function.
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Integers, strings, and dictionaries are other examples of first-class objects in
Python—nothing fancy here. Having functions as first-class objects is an
essential feature of functional languages, such as Clojure, Elixir, and
Haskell. However, first-class functions are so useful that they’ve been
adopted by popular languages like JavaScript, Go, and Java (since JDK 8),
none of which claim to be “functional languages.”

This chapter and most of Part III explore the practical applications of
treating functions as objects.

TIP
The term “first-class functions” is widely used as shorthand for “functions as first-class
objects.” It’s not ideal because it implies an “elite” among functions. In Python, all
functions are first-class.

What’s new in this chapter
Section “The Nine Flavors of Callable Objects” was titled “The Seven
Flavors of Callable Objects” in the First Edition. The new callables are
native coroutines and asynchronous generators, introduced in Python 3.5
and 3.6, respectively. Both are covered in Chapter 22, but they are
mentioned here along with the other callables for completeness.

“Positional-only parameters” is a new section, covering a feature added in
Python 3.8.

I moved coverage of runtime access to function annotations to “Reading
Type Hints at Runtime”. When I wrote the First Edition, PEP 484—Type
Hints—was still under consideration, and people used annotations in
different ways. Since Python 3.5, annotations should conform to PEP 484.
Therefore, the best place to cover them is when discussing type hints.

https://www.python.org/dev/peps/pep-0484/


NOTE
The First Edition had sections about the introspection of function objects that were too
low-level and distracted from the main subject of this chapter. I merged those sections
into a post titled Introspection of Function Parameters at fluentpython.com.

Now let’s see why Python functions are full-fledged objects.

Treating a Function Like an Object
The console session in Example 7-1 shows that Python functions are
objects. Here we create a function, call it, read its __doc__ attribute, and
check that the function object itself is an instance of the function class.

Example 7-1. Create and test a function, then read its __doc__ and check
its type
>>> def factorial(n):   
...     """returns n!""" 
...     return 1 if n < 2 else n * factorial(n - 1) 
... 
>>> factorial(42) 
1405006117752879898543142606244511569936384000000000 
>>> factorial.__doc__   
'returns n!' 
>>> type(factorial)   
<class 'function'>

This is a console session, so we’re creating a function at “runtime.”

__doc__ is one of several attributes of function objects.

factorial is an instance of the function class.

The __doc__ attribute is used to generate the help text of an object. In the
Python console, the command help(factorial) will display a screen
like Figure 7-1.

https://www.fluentpython.com/extra/function-introspection/
https://www.fluentpython.com/


Figure 7-1. Help screen for factorial; the text is built from the __doc__ attribute of the function.

Example 7-2 shows the “first class” nature of a function object. We can
assign it a variable fact and call it through that name. We can also pass
factorial as an argument to the map function. Calling
map(function, iterable) returns an iterable where each item is the
result of calling the first argument (a function) to successive elements of the
second argument (an iterable), range(10) in this example.

Example 7-2. Use function through a different name, and pass function as
argument
>>> fact = factorial 
>>> fact 
<function factorial at 0x...> 
>>> fact(5) 
120 
>>> map(factorial, range(11)) 
<map object at 0x...> 
>>> list(map(factorial, range(11))) 
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]

Having first-class functions enables programming in a functional style. One
of the hallmarks of functional programming is the use of higher-order
functions, our next topic.

Higher-Order Functions
A function that takes a function as argument or returns a function as the
result is a higher-order function. One example is map, shown in Example 7-

https://docs.python.org/3/library/functions.html#map
https://en.wikipedia.org/wiki/Functional_programming


2. Another is the built-in function sorted: the optional key argument lets
you provide a function to be applied to each item for sorting, as we saw in
“list.sort versus the sorted Built-In”. For example, to sort a list of words by
length, pass the len function as the key, as in Example 7-3.

Example 7-3. Sorting a list of words by length
>>> fruits = ['strawberry', 'fig', 'apple', 'cherry', 'raspberry', 
'banana'] 
>>> sorted(fruits, key=len) 
['fig', 'apple', 'cherry', 'banana', 'raspberry', 'strawberry'] 
>>>

Any one-argument function can be used as the key. For example, to create a
rhyme dictionary it might be useful to sort each word spelled backward. In
Example 7-4, note that the words in the list are not changed at all; only their
reversed spelling is used as the sort criterion, so that the berries appear
together.

Example 7-4. Sorting a list of words by their reversed spelling
>>> def reverse(word): 
...     return word[::-1] 
>>> reverse('testing') 
'gnitset' 
>>> sorted(fruits, key=reverse) 
['banana', 'apple', 'fig', 'raspberry', 'strawberry', 'cherry'] 
>>>

In the functional programming paradigm, some of the best known higher-
order functions are map, filter, reduce, and apply. The apply
function was deprecated in Python 2.3 and removed in Python 3 because it’s
no longer necessary. If you need to call a function with a dynamic set of
arguments, you can write fn(*args, **kwargs) instead of
apply(fn, args, kwargs).

The map, filter, and reduce higher-order functions are still around,
but better alternatives are available for most of their use cases, as the next
section shows.

Modern Replacements for map, filter, and reduce



Functional languages commonly offer the map, filter, and reduce
higher-order functions (sometimes with different names). The map and
filter functions are still built-ins in Python 3, but since the introduction
of list comprehensions and generator expressions, they are not as important.
A listcomp or a genexp does the job of map and filter combined, but is
more readable. Consider Example 7-5.

Example 7-5. Lists of factorials produced with map and filter compared to
alternatives coded as list comprehensions
>>> list(map(factorial, range(6)))   
[1, 1, 2, 6, 24, 120] 
>>> [factorial(n) for n in range(6)]   
[1, 1, 2, 6, 24, 120] 
>>> list(map(factorial, filter(lambda n: n % 2, range(6))))   
[1, 6, 120] 
>>> [factorial(n) for n in range(6) if n % 2]   
[1, 6, 120] 
>>>

Build a list of factorials from 0! to 5!.

Same operation, with a list comprehension.

List of factorials of odd numbers up to 5!, using both map and
filter.

List comprehension does the same job, replacing map and filter,
and making lambda unnecessary.

In Python 3, map and filter return generators—a form of iterator—so
their direct substitute is now a generator expression (in Python 2, these
functions returned lists, therefore their closest alternative is a listcomp).

The reduce function was demoted from a built-in in Python 2 to the
functools module in Python 3. Its most common use case, summation,
is better served by the sum built-in available since Python 2.3 was released
in 2003. This is a big win in terms of readability and performance (see
Example 7-6).



Example 7-6. Sum of integers up to 99 performed with reduce and sum
>>> from functools import reduce   
>>> from operator import add   
>>> reduce(add, range(100))   
4950 
>>> sum(range(100))   
4950 
>>>

Starting with Python 3.0, reduce is no longer a built-in.

Import add to avoid creating a function just to add two numbers.

Sum integers up to 99.

Same task with sum—no need to import and call reduce and add.

NOTE
The common idea of sum and reduce is to apply some operation to successive items
in a sequence, accumulating previous results, thus reducing a sequence of values to a
single value.

Other reducing built-ins are all and any:

all(iterable)

Returns True if there are no falsy elements in the iterable; all([])
returns True.

any(iterable)

Returns True if any element of the iterable is truthy; any([])
returns False.

I give a fuller explanation of reduce in “Vector Take #4: Hashing and a
Faster ==” where an ongoing example provides a meaningful context for



the use of this function. The reducing functions are summarized later in the
book when iterables are in focus, in “Iterable Reducing Functions”.

To use a higher-order function, sometimes it is convenient to create a small,
one-off function. That is why anonymous functions exist. We’ll cover them
next.

Anonymous Functions
The lambda keyword creates an anonymous function within a Python
expression.

However, the simple syntax of Python limits the body of lambda functions
to be pure expressions. In other words, the body cannot contain other
Python statements such as while, try, etc. Assignment with = is also a
statement, so it cannot occur in a lambda. The new assignment expression
syntax using := can be used—but if you need it, your lambda is probably
too complicated and hard to read, and it should be refactored into a regular
function using def.

The best use of anonymous functions is in the context of an argument list
for a higher-order function. For example, Example 7-7 is the rhyme index
example from Example 7-4 rewritten with lambda, without defining a
reverse function.

Example 7-7. Sorting a list of words by their reversed spelling using lambda
>>> fruits = ['strawberry', 'fig', 'apple', 'cherry', 'raspberry', 
'banana'] 
>>> sorted(fruits, key=lambda word: word[::-1]) 
['banana', 'apple', 'fig', 'raspberry', 'strawberry', 'cherry'] 
>>>

Outside the limited context of arguments to higher-order functions,
anonymous functions are rarely useful in Python. The syntactic restrictions
tend to make nontrivial lambdas either unreadable or unworkable. If a
lambda is hard to read, I strongly advise you follow Fredrik Lundh’s
refactoring advice.



FREDRIK LUNDH’S LAMBDA REFACTORING RECIPE

If you find a piece of code hard to understand because of a lambda,
Fredrik Lundh suggests this refactoring procedure:

1. Write a comment explaining what the heck that lambda does.

2. Study the comment for a while, and think of a name that
captures the essence of the comment.

3. Convert the lambda to a def statement, using that name.

4. Remove the comment.

These steps are quoted from the Functional Programming HOWTO, a
must read.

The lambda syntax is just syntactic sugar: a lambda expression creates a
function object just like the def statement. That is just one of several kinds
of callable objects in Python. The following section reviews all of them.

The Nine Flavors of Callable Objects
The call operator () may be applied to other objects beyond user-defined
functions and lambdas. To determine whether an object is callable, use the
callable() built-in function. As of Python 3.9, the Data Model
documentation lists nine callable types:

User-defined functions

Created with def statements or lambda expressions.

Built-in functions

A function implemented in C (for CPython), like len or
time.strftime.

Built-in methods

http://docs.python.org/3/howto/functional.html
https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy


Methods implemented in C, like dict.get.

Methods

Functions defined in the body of a class.

Classes

When invoked, a class runs its __new__ method to create an instance,
then __init__ to initialize it, and finally the instance is returned to
the caller. Because there is no new operator in Python, calling a class is
like calling a function.

Class instances

If a class defines a __call__ method, then its instances may be
invoked as functions—that’s the subject of the next section.

Generator functions

Functions or methods that use the yield keyword in their body. When
called, they return a generator object.

Native coroutine functions

Functions or methods defined with async def. When called, they
return a coroutine object. Added in Python 3.5.

Asynchronous generator functions

Functions or methods defined with async def that have yield in
their body. When called, they return an asynchronous generator for use
with async for. Added in Python 3.6.

Generators, native coroutines, and asynchronous generator functions are
unlike other callables in that their return values are never application data,
but objects that require further processing to yield application data or
perform useful work. Generator functions return iterators. Both are covered
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in Chapter 17. Native coroutine functions and asynchronous generator
functions return objects that only work with the help of an asynchronous
programming framework, such as asyncio. They are the subject of
Chapter 22.

TIP
Given the variety of existing callable types in Python, the safest way to determine
whether an object is callable is to use the callable() built-in:

>>> abs, str, 'Ni!' 
(<built-in function abs>, <class 'str'>, 'Ni!') 
>>> [callable(obj) for obj in (abs, str, 'Ni!')] 
[True, True, False]

We now move on to building class instances that work as callable objects.

User-Defined Callable Types
Not only are Python functions real objects, but arbitrary Python objects may
also be made to behave like functions. Implementing a __call__ instance
method is all it takes.

Example 7-8 implements a BingoCage class. An instance is built from
any iterable, and stores an internal list of items, in random order. Calling
the instance pops an item.

Example 7-8. bingocall.py: A BingoCage does one thing: picks items from a
shuffled list
import random 
 
class BingoCage: 
 
    def __init__(self, items): 
        self._items = list(items)   
        random.shuffle(self._items)   
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    def pick(self):   
        try: 
            return self._items.pop() 
        except IndexError: 
            raise LookupError('pick from empty BingoCage')   
 
    def __call__(self):   
        return self.pick()

__init__ accepts any iterable; building a local copy prevents
unexpected side effects on any list passed as an argument.

shuffle is guaranteed to work because self._items is a list.

The main method.

Raise exception with custom message if self._items is empty.

Shortcut to bingo.pick(): bingo().

Here is a simple demo of Example 7-8. Note how a bingo instance can be
invoked as a function, and the callable() built-in recognizes it as a
callable object:

>>> bingo = BingoCage(range(3)) 
>>> bingo.pick() 
1 
>>> bingo() 
0 
>>> callable(bingo) 
True

A class implementing __call__ is an easy way to create function-like
objects that have some internal state that must be kept across invocations,
like the remaining items in the BingoCage. Another good use case for
__call__ is implementing decorators. Decorators must be callable, and it
is sometimes convenient to “remember” something between calls of the
decorator (e.g., for memoization—caching the results of expensive



computations for later use) or to split a complex implementation into
separate methods.

The functional approach to creating functions with internal state is to use
closures. Closures, as well as decorators, are the subject of Chapter 9.

Now let’s explore the powerful syntax Python offers to declare function
parameters and pass arguments into them.

From Positional to Keyword-Only
Parameters
One of the best features of Python functions is the extremely flexible
parameter handling mechanism. Closely related are the use of * and ** to
unpack iterables and mappings into separate arguments when we call a
function. To see these features in action, see the code for Example 7-9 and
tests showing its use in Example 7-10.

Example 7-9. tag generates HTML elements; a keyword-only argument
class_ is used to pass “class” attributes as a workaround because
class is a keyword in Python
def tag(name, *content, class_=None, **attrs): 
    """Generate one or more HTML tags""" 
    if class_ is not None: 
        attrs['class'] = class_ 
    attr_pairs = (f' {attr}="{value}"' for attr, value 
                    in sorted(attrs.items())) 
    attr_str = ''.join(attr_pairs) 
    if content: 
        elements = (f'<{name}{attr_str}>{c}</{name}>' 
                    for c in content) 
        return '\n'.join(elements) 
    else: 
        return f'<{name}{attr_str} />'

The tag function can be invoked in many ways, as Example 7-10 shows.

Example 7-10. Some of the many ways of calling the tag function from
Example 7-9



>>> tag('br')   
'<br />' 
>>> tag('p', 'hello')   
'<p>hello</p>' 
>>> print(tag('p', 'hello', 'world')) 
<p>hello</p> 
<p>world</p> 
>>> tag('p', 'hello', id=33)   
'<p id="33">hello</p>' 
>>> print(tag('p', 'hello', 'world', class_='sidebar'))   
<p class="sidebar">hello</p> 
<p class="sidebar">world</p> 
>>> tag(content='testing', name="img")   
'<img content="testing" />' 
>>> my_tag = {'name': 'img', 'title': 'Sunset Boulevard', 
...           'src': 'sunset.jpg', 'class': 'framed'} 
>>> tag(**my_tag)   
'<img class="framed" src="sunset.jpg" title="Sunset Boulevard" />'

A single positional argument produces an empty tag with that name.

Any number of arguments after the first are captured by *content as
a tuple.

Keyword arguments not explicitly named in the tag signature are
captured by **attrs as a dict.

The class_ parameter can only be passed as a keyword argument.

The first positional argument can also be passed as a keyword.

Prefixing the my_tag dict with ** passes all its items as separate
arguments, which are then bound to the named parameters, with the
remaining caught by **attrs. In this case we can have a 'class'
key in the arguments dict, because it is a string, and does not clash
with the class reserved word.

Keyword-only arguments are a feature of Python 3. In Example 7-9, the
class_ parameter can only be given as a keyword argument—it will
never capture unnamed positional arguments. To specify keyword-only



arguments when defining a function, name them after the argument prefixed
with *. If you don’t want to support variable positional arguments but still
want keyword-only arguments, put a * by itself in the signature, like this:

>>> def f(a, *, b): 
...     return a, b 
... 
>>> f(1, b=2) 
(1, 2) 
>>> f(1, 2) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: f() takes 1 positional argument but 2 were given

Note that keyword-only arguments do not need to have a default value: they
can be mandatory, like b in the preceding example.

Positional-only parameters
Since Python 3.8, user-defined function signatures may specify positional-
only parameters. This feature always existed for built-in functions, such as
divmod(a, b), which can only be called with positional parameters, and
not as divmod(a=10, b=4).

To define a function requiring positional-only parameters, use / in the
parameter list.

This example from What’s New In Python 3.8 shows how to emulate the
divmod built-in function:

def divmod(a, b, /): 
    return (a // b, a % b)

All arguments to the left of the / are positional-only. After the /, you may
specify other arguments, which work as usual.

https://docs.python.org/3/whatsnew/3.8.html#positional-only-parameters


WARNING
The / in the parameter list is a syntax error in Python 3.7 or earlier.

For example, consider the tag function from Example 7-9. If we want the
name parameter to be positional only, we can add a / after it in the
function signature, like this:

def tag(name, /, *content, class_=None, **attrs): 
    ...

You can find other examples of positional-only parameters in What’s New
In Python 3.8 and in PEP 570.

After diving into Python’s flexible argument declaration features, the
remainder of this chapter covers the most useful packages in the standard
library for programming in a functional style.

Packages for Functional Programming
Although Guido makes it clear that he did not design Python to be a
functional programming language, a functional coding style can be used to
good extent, thanks to first-class functions, pattern matching, and the
support of packages like operator and functools, which we cover in
the next two sections.

The operator Module
Often in functional programming it is convenient to use an arithmetic
operator as a function. For example, suppose you want to multiply a
sequence of numbers to calculate factorials without using recursion. To
perform summation, you can use sum, but there is no equivalent function
for multiplication. You could use reduce—as we saw in “Modern
Replacements for map, filter, and reduce”—but this requires a function to

https://docs.python.org/3/whatsnew/3.8.html#positional-only-parameters
https://www.python.org/dev/peps/pep-0570/


multiply two items of the sequence. Example 7-11 shows how to solve this
using lambda.

Example 7-11. Factorial implemented with reduce and an anonymous
function
from functools import reduce 
 
def factorial(n): 
    return reduce(lambda a, b: a*b, range(1, n+1))

The operator module provides function equivalents for dozens of
operators so you don’t have to code trivial functions like lambda a, b:
a*b. With it, we can rewrite Example 7-11 as Example 7-12.

Example 7-12. Factorial implemented with reduce and operator.mul
from functools import reduce 
from operator import mul 
 
def factorial(n): 
    return reduce(mul, range(1, n+1))

Another group of one-trick lambdas that operator replaces are functions
to pick items from sequences or read attributes from objects: itemgetter
and attrgetter are factories that build custom functions to do that.

Example 7-13 shows a common use of itemgetter: sorting a list of
tuples by the value of one field. In the example, the cities are printed sorted
by country code (field 1). Essentially, itemgetter(1) creates a function
that, given a collection, returns the item at index 1. That’s easier to write
and read than lambda fields: fields[1], which does the same:

Example 7-13. Demo of itemgetter to sort a list of tuples (data from
Example 2-8)
>>> metro_data = [ 
...     ('Tokyo', 'JP', 36.933, (35.689722, 139.691667)), 
...     ('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)), 
...     ('Mexico City', 'MX', 20.142, (19.433333, -99.133333)), 
...     ('New York-Newark', 'US', 20.104, (40.808611, -74.020386)), 
...     ('São Paulo', 'BR', 19.649, (-23.547778, -46.635833)), 
... ] 
>>> 



>>> from operator import itemgetter 
>>> for city in sorted(metro_data, key=itemgetter(1)): 
...     print(city) 
... 
('São Paulo', 'BR', 19.649, (-23.547778, -46.635833)) 
('Delhi NCR', 'IN', 21.935, (28.613889, 77.208889)) 
('Tokyo', 'JP', 36.933, (35.689722, 139.691667)) 
('Mexico City', 'MX', 20.142, (19.433333, -99.133333)) 
('New York-Newark', 'US', 20.104, (40.808611, -74.020386))

If you pass multiple index arguments to itemgetter, the function it
builds will return tuples with the extracted values, which is useful for
sorting on multiple keys:

>>> cc_name = itemgetter(1, 0) 
>>> for city in metro_data: 
...     print(cc_name(city)) 
... 
('JP', 'Tokyo') 
('IN', 'Delhi NCR') 
('MX', 'Mexico City') 
('US', 'New York-Newark') 
('BR', 'São Paulo') 
>>>

Because itemgetter uses the [] operator, it supports not only
sequences but also mappings and any class that implements
__getitem__.

A sibling of itemgetter is attrgetter, which creates functions to
extract object attributes by name. If you pass attrgetter several
attribute names as arguments, it also returns a tuple of values. In addition, if
any argument name contains a . (dot), attrgetter navigates through
nested objects to retrieve the attribute. These behaviors are shown in
Example 7-14. This is not the shortest console session because we need to
build a nested structure to showcase the handling of dotted attributes by
attrgetter.

Example 7-14. Demo of attrgetter to process a previously defined list of
namedtuple called metro_data (the same list that appears in Example 7-13)



>>> from collections import namedtuple 
>>> LatLon = namedtuple('LatLon', 'lat lon')   
>>> Metropolis = namedtuple('Metropolis', 'name cc pop coord')   
>>> metro_areas = [Metropolis(name, cc, pop, LatLon(lat, lon))   
...     for name, cc, pop, (lat, lon) in metro_data] 
>>> metro_areas[0] 
Metropolis(name='Tokyo', cc='JP', pop=36.933, 
coord=LatLon(lat=35.689722, 
lon=139.691667)) 
>>> metro_areas[0].coord.lat   
35.689722 
>>> from operator import attrgetter 
>>> name_lat = attrgetter('name', 'coord.lat')   
>>> 
>>> for city in sorted(metro_areas, key=attrgetter('coord.lat')):  
 

...     print(name_lat(city))   

... 
('São Paulo', -23.547778) 
('Mexico City', 19.433333) 
('Delhi NCR', 28.613889) 
('Tokyo', 35.689722) 
('New York-Newark', 40.808611)

Use namedtuple to define LatLon.

Also define Metropolis.

Build metro_areas list with Metropolis instances; note the
nested tuple unpacking to extract (lat, lon) and use them to build
the LatLon for the coord attribute of Metropolis.

Reach into element metro_areas[0] to get its latitude.

Define an attrgetter to retrieve the name and the coord.lat
nested attribute.

Use attrgetter again to sort list of cities by latitude.

Use the attrgetter defined in  to show only city name and
latitude.



Here is a partial list of functions defined in operator (names starting
with _ are omitted, because they are mostly implementation details):

>>> [name for name in dir(operator) if not name.startswith('_')] 
['abs', 'add', 'and_', 'attrgetter', 'concat', 'contains', 
'countOf', 'delitem', 'eq', 'floordiv', 'ge', 'getitem', 'gt', 
'iadd', 'iand', 'iconcat', 'ifloordiv', 'ilshift', 'imatmul', 
'imod', 'imul', 'index', 'indexOf', 'inv', 'invert', 'ior', 
'ipow', 'irshift', 'is_', 'is_not', 'isub', 'itemgetter', 
'itruediv', 'ixor', 'le', 'length_hint', 'lshift', 'lt', 
'matmul', 
'methodcaller', 'mod', 'mul', 'ne', 'neg', 'not_', 'or_', 'pos', 
'pow', 'rshift', 'setitem', 'sub', 'truediv', 'truth', 'xor']

Most of the 54 names listed are self-evident. The group of names prefixed
with i and the name of another operator—e.g., iadd, iand, etc.—
correspond to the augmented assignment operators—e.g., +=, &=, etc.
These change their first argument in place, if it is mutable; if not, the
function works like the one without the i prefix: it simply returns the result
of the operation.

Of the remaining operator functions, methodcaller is the last we
will cover. It is somewhat similar to attrgetter and itemgetter in
that it creates a function on the fly. The function it creates calls a method by
name on the object given as argument, as shown in Example 7-15.

Example 7-15. Demo of methodcaller: second test shows the binding of
extra arguments
>>> from operator import methodcaller 
>>> s = 'The time has come' 
>>> upcase = methodcaller('upper') 
>>> upcase(s) 
'THE TIME HAS COME' 
>>> hyphenate = methodcaller('replace', ' ', '-') 
>>> hyphenate(s) 
'The-time-has-come'

The first test in Example 7-15 is there just to show methodcaller at
work, but if you need to use the str.upper as a function, you can just
call it on the str class and pass a string as argument, like this:



>>> str.upper(s) 
'THE TIME HAS COME'

The second test in Example 7-15 shows that methodcaller can also do a
partial application to freeze some arguments, like the
functools.partial function does. That is our next subject.

Freezing Arguments with functools.partial
The functools module provides several higher-order functions. We saw
reduce in “Modern Replacements for map, filter, and reduce”. Another is
partial: given a callable, it produces a new callable with some of the
arguments of the original callable bound to pre-determined values. This is
useful to adapt a function that takes one or more arguments to an API that
requires a callback with fewer arguments. Example 7-16 is a trivial
demonstration.

Example 7-16. Using partial to use a two-argument function where a one-
argument callable is required
>>> from operator import mul 
>>> from functools import partial 
>>> triple = partial(mul, 3)   
>>> triple(7)   
21 
>>> list(map(triple, range(1, 10)))   
[3, 6, 9, 12, 15, 18, 21, 24, 27]

Create new triple function from mul, binding first positional
argument to 3.

Test it.

Use triple with map; mul would not work with map in this
example.

A more useful example involves the unicode.normalize function that
we saw in “Normalizing Unicode for Reliable Comparisons”. If you work



with text from many languages, you may want to apply
unicode.normalize('NFC', s) to any string s before comparing
or storing it. If you do that often, it’s handy to have an nfc function to do
so, as in Example 7-17.

Example 7-17. Building a convenient Unicode normalizing function with
partial
>>> import unicodedata, functools 
>>> nfc = functools.partial(unicodedata.normalize, 'NFC') 
>>> s1 = 'café' 
>>> s2 = 'cafe\u0301' 
>>> s1, s2 
('café', 'café') 
>>> s1 == s2 
False 
>>> nfc(s1) == nfc(s2) 
True

partial takes a callable as first argument, followed by an arbitrary
number of positional and keyword arguments to bind.

Example 7-18 shows the use of partial with the tag function from
Example 7-9, to freeze one positional argument and one keyword argument.

Example 7-18. Demo of partial applied to the function tag from
Example 7-9
>>> from tagger import tag 
>>> tag 
<function tag at 0x10206d1e0>   
>>> from functools import partial 
>>> picture = partial(tag, 'img', class_='pic-frame')   
>>> picture(src='wumpus.jpeg') 
'<img class="pic-frame" src="wumpus.jpeg" />'   
>>> picture 
functools.partial(<function tag at 0x10206d1e0>, 'img', 
class_='pic-frame')   
>>> picture.func   
<function tag at 0x10206d1e0> 
>>> picture.args 
('img',) 
>>> picture.keywords 
{'class_': 'pic-frame'}



Import tag from Example 7-9 and show its ID.

Create picture function from tag by fixing the first positional
argument with 'img' and the class_ keyword argument with
'pic-frame'.

picture works as expected.

partial() returns a functools.partial object.

A functools.partial object has attributes providing access to the
original function and the fixed arguments.

The functools.partialmethod function does the same job as
partial, but is designed to work with methods.

The functools module also include higher-order functions designed to
be used as function decorators, such as cache and singledispatch,
among others. Those functions are the covered in Chapter 9, which also
explains how to implement custom decorators.
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Chapter Summary
The goal of this chapter was to explore the first-class nature of functions in
Python. The main ideas are that you can assign functions to variables, pass
them to other functions, store them in data structures, and access function
attributes, allowing frameworks and tools to act on that information.

Higher-order functions, a staple of functional programming, are common in
Python. The sorted, min, and max built-ins, and
functools.partial are examples of commonly used higher-order
functions in the language. Using map, filter, and reduce is not as
common as it used to be—thanks to list comprehensions (and similar
constructs like generator expressions) and the addition of reducing built-ins
like sum, all, and any.

Callables come in nine different flavors since Python 3.6, from the simple
functions created with lambda to instances of classes implementing
__call__. Generators and coroutines are also callable, although their
behavior is very different from other callables. All callables can be detected
by the callable() built-in. Callables offer rich syntax for declaring
formal parameters, including keyword-only parameters, positional-only
paramenters, and annotations.

Lastly, we covered some functions from the operator module and
functools.partial, which facilitate functional programming by
minimizing the need for the functionally challenged lambda syntax.

Further Reading
The next chapters continue our exploration of programming with function
objects. Chapter 8 is devoted to type hints in function parameters and return
values. Chapter 9 dives into function decorators—a special kind of higher-
order function—and the closure mechanism that makes them work.
Chapter 10 shows how first-class functions can simplify some classic
object-oriented design patterns.



In The Python Language Reference, “3.2. The standard type hierarchy”
presents the nine callable types, along with all the other built-in types.

Chapter 7 of the Python Cookbook, Third Edition (O’Reilly), by David
Beazley and Brian K. Jones, is an excellent complement to the current
chapter as well as Chapter 9 of this book, covering mostly the same
concepts with a different approach.

See PEP 3102 — Keyword-Only Arguments if you are interested in the
rationale and use cases for that feature.

A great introduction to functional programming in Python is A. M.
Kuchling’s Python Functional Programming HOWTO. The main focus of
that text, however, is the use of iterators and generators, which are the
subject of Chapter 17.

The StackOverflow question “Python: Why is functools.partial necessary?”
has a highly informative (and funny) reply by Alex Martelli, co-author of
the classic Python in a Nutshell.

Reflecting on the question “Is Python a functional language?”, I created one
of my favorite talks: Beyond Paradigms, which I presented at PyCaribbean,
PyBay and PyConDE. See the slides and video from the Berlin presentation
—where I met Miroslav Šedivý and Jürgen Gmach, two of the technical
reviewers of this book.

http://bit.ly/1Vm8dv2
http://shop.oreilly.com/product/0636920027072.do
https://www.python.org/dev/peps/pep-3102/
http://docs.python.org/3/howto/functional.html
http://bit.ly/1FHiTdh
https://speakerdeck.com/ramalho/beyond-paradigms-berlin-edition
https://www.youtube.com/watch?v=bF3a2VYXxa0


SOAPBOX

Is Python a Functional Language?

Sometime in the year 2000 I attended a Zope workshop at Zope
Corporation in the United States when Guido van Rossum dropped by
the classroom (he was not the instructor). In the Q&A that followed,
somebody asked him which features of Python were borrowed from
other languages. Guido’s answer: “Everything that is good in Python
was stolen from other languages.”

Shriram Krishnamurthi, professor of Computer Science at Brown
University, starts his “Teaching Programming Languages in a Post-
Linnaean Age” paper with this:

Programming language “paradigms” are a moribund and tedious
legacy of a bygone age. Modern language designers pay them no
respect, so why do our courses slavishly adhere to them?

In that paper, Python is mentioned by name in this passage:

What else to make of a language like Python, Ruby, or Perl? Their
designers have no patience for the niceties of these Linnaean
hierarchies; they borrow features as they wish, creating melanges
that utterly defy characterization.

Krishnamurthi argues that instead of trying to classify languages in
some taxonomy, it’s more useful to consider them as aggregations of
features. His ideas inspired my talk Beyond Paradigms, mentioned at
the end of “Further Reading”.

Even if it was not Guido’s goal, endowing Python with first-class
functions opened the door to functional programming. In his post
“Origins of Python’s Functional Features”, he says that map, filter,
and reduce were the motivation for adding lambda to Python in the
first place. All of these features were contributed together by Amrit
Prem for Python 1.0 in 1994 (according to Misc/HISTORY in the
CPython source code).

http://bit.ly/1FHj4p2
http://bit.ly/1FHfhIo
http://hg.python.org/cpython/file/default/Misc/HISTORY


Functions like map, filter, and reduce first appeared in Lisp, the
original functional language. However, Lisp does not limit what can be
done inside a lambda, because everything in Lisp is an expression.
Python uses a statement-oriented syntax in which expressions cannot
contain statements, and many language constructs are statements—
including try/catch, which is what I miss most often when writing
lambdas. This is the price to pay for Python’s highly readable
syntax.  Lisp has many strengths, but readability is not one of them.

Ironically, stealing the list comprehension syntax from another
functional language—Haskell—significantly diminished the need for
map and filter, and also for lambda.

Besides the limited anonymous function syntax, the biggest obstacle to
wider adoption of functional programming idioms in Python is the lack
of tail-call elimination, an optimization that allows memory-efficient
computation of a function that makes a recursive call at the “tail” of its
body. In another blog post, “Tail Recursion Elimination”, Guido gives
several reasons why such optimization is not a good fit for Python. That
post is a great read for the technical arguments, but even more so
because the first three and most important reasons given are usability
issues. It is no accident that Python is a pleasure to use, learn, and
teach. Guido made it so.

So there you have it: Python is not, by design, a functional language—
whatever that means. Python just borrows a few good ideas from
functional languages.

The Problem with Anonymous Functions

Beyond the Python-specific syntax constraints, anonymous functions
have a serious drawback in any language: they have no name.

I am only half joking here. Stack traces are easier to read when
functions have names. Anonymous functions are a handy shortcut,
people have fun coding with them, but sometimes they get carried away
—especially if the language and environment encourage deep nesting of
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anonymous functions, like JavaScript on Node.js do. Lots of nested
anonymous functions make debugging and error handling hard.
Asynchronous programming in Python is more structured, perhaps
because the limited lambda syntax prevents its abuse and forces a
more explicit approach. Promises, futures, and deferreds are concepts
used in modern asynchronous APIs. Along with coroutines, they
provide an escape from the so-called “callback hell.” I promise to write
more about asynchronous programming in the future, but this subject
must be deferred to Chapter 22.

1  “Origins of Python’s Functional Features”, from Guido’s The History of Python blog.

2  Calling a class usually creates an instance of that same class, but other behaviors are possible
by overriding __new__. We’ll see an example of this in “Flexible Object Creation with
__new__”.

3  Why build a BingoCage when we already have random.choice? The choice function
may return the same item multiple times, because the picked item is not removed from the
collection given. Calling BingoCage never returns duplicate results—as long as the instance
is filled with unique values.

4  The source code for functools.py reveals that the functools.partial class is
implemented in C and is used by default. If that is not available, a pure-Python implementation
of partial is available since Python 3.4.

5  There is also the problem of lost indentation when pasting code to Web forums, but I digress.

http://bit.ly/1FHfhIo
http://bit.ly/1Vm8cqQ


Chapter 8. Type Hints in
Functions

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 8th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

It should also be emphasized that Python will remain a dynamically
typed language, and the authors have no desire to ever make type hints
mandatory, even by convention.

—Guido van Rossum, Jukka Lehtosalo, and Łukasz
Langa, PEP 484—Type Hints

Type hints are the biggest change in the history of Python since the
unification of types and classes in Python 2.2, released in 2001. However,
type hints do not benefit all Python users equally. That’s why they should
always be optional.

PEP 484—Type Hints introduced syntax and semantics for explicit type
declarations in function arguments, return values, and variables. The goal is
to help developer tools find bugs in Python codebases via static analysis,
i.e. without actually running the code through tests.
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The main beneficiaries are professional software engineers using IDEs
(Integrated Development Environments) and CI (Continuous Integration).
The cost-benefit analysis that makes type hints attractive to that group does
not apply to all users of Python.

Python’s user base is much wider than that. It includes scientists, traders,
journalists, artists, makers, analysts and students in many fields—among
others. For most of them, the cost of learning type hints is higher—unless
they already know a language with static types, subtyping, and generics.
The cost is likely to be higher and the benefits will be lower for many of
those users, given how they interact with Python, and the smaller size of
their code bases and teams—often, “teams” of one. Python’s default
dynamic typing is simpler and more expressive when writing code for
exploring data and ideas, as in data science, creative computing, and
learning,

This chapter focuses on Python’s type hints in function signatures.
Chapter 15 explores type hints in the context of classes, and other typing
module features.

The major topics in this chapter are:

A hands-on introduction to gradual typing with Mypy.

The complementary perspectives of duck typing and nominal
typing.

Overview of the main categories of types that can appear in
annotations—this is about 60% of the chapter.

Type hinting variadic parameters (*args, **kwargs).

Limitations and downsides of type hints and static typing.

What’s new in this chapter
This chapter is completely new. Type hints appeared in Python 3.5 after I
wrapped up the first edition of Fluent Python.



Given the limitations of a static type system, the best idea of PEP 484 was
to propose a gratual type system. Let’s begin by defining what that means.

About gradual typing
PEP 484 introduced a gradual type system to Python. Other languages with
gradual type systems are Microsoft’s TypeScript, Dart (the language of the
Flutter SDK, created by Google), and Hack (a dialect of PHP supported by
Facebook’s HHVM virtual machine). The Mypy type checker itself started
as a language: a gradually typed dialect of Python with its own interpreter.
Guido van Rossum convinced the creator of Mypy, Jukka Lehtosalo, to
make it a tool for checking annotated Python code.

A gradual type system:

Is optional.

By default, the type checker should not emit warnings for code that has
no type hints. Instead, the type checker assumes the Any type when it
cannot determine the type of an object. The Any type is considered
compatible with all other types.

Does not catch type errors at runtime.

Type hints are used by static type checkers, linters, and IDEs to raise
warnings. They do not prevent inconsistent values to be passed to
functions or assigned to variables at runtime.

Does not enhance performance.

Type annotations provide data that could, in theory, allow optimizations
in the generated byte code, but such optimizations are not implemented
in any Python runtime that I am aware in July 2021.

The best usability feature of gradual typing is that annotations are always
optional.
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With static type systems, most type constraints are easy to express, many
are cumbersome, some are hard, and a few are impossible.  You may very
well write an excellent piece of Python code, with good test coverage and
passing tests, but still be unable to add type hints that satisfy a type checker.
That’s ok, just leave out the problematic type hints and ship it!

Type hints are optional at all levels: you can have entire packages with no
type hints, you can silence the type checker when you import one of those
packages into a module where you use type hints, and you can add special
comments to make the type checker ignore specific lines in your code.

TIP
Seeking 100% coverage of type hints is likely to stimulate type hinting without proper
thought, only to satisfy the metric. It will also prevent teams from making the most of
the power and flexibility of Python. Code without type hints should naturally be
accepted when annotations would make an API less user-friendly, or unduly complicate
its implementation.

Gradual typing in practice
Let’s see how gradual typing works in practice, starting with a simple
function and gradually adding type hints to it, guided by Mypy.

NOTE
There are several Python type checkers compatible with PEP 484, including Google’s
pytype, Microsoft’s Pyright, Facebook’s Pyre—in addition to type checkers embedded
in IDEs such as PyCharm. I picked Mypy for the examples because it’s the best known.
However, one of the others may be a better fit for some projects or teams. Pytype, for
example, is designed to handle codebases with no type hints and still provide useful
advice. It is more lenient than Mypy, and can also generate annotations for your code.

We will annotate a show_count function that returns a string with a count
and a singular or plural word, depending on the count:
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>>> show_count(99, 'bird') 
'99 birds' 
>>> show_count(1, 'bird') 
'1 bird' 
>>> show_count(0, 'bird') 
'no birds'

Example 8-1 shows the source code of show_count, without annotations.

Example 8-1. show_count from messages.py without type hints.
def show_count(count, word): 
    if count == 1: 
        return f'1 {word}' 
    count_str = str(count) if count else 'no' 
    return f'{count_str} {word}s'

Starting with Mypy
To begin type checking, I run the mypy command on the messages.py
module:

…/no_hints/ $ pip install mypy 
[lots of messages omitted...] 
…/no_hints/ $ mypy messages.py 
Success: no issues found in 1 source file

Mypy with default settings finds no problem with Example 8-2:

WARNING
I am using Mypy 0.910, the most recent release as I review this in July 2021. The Mypy
Introduction warns it “is officially beta software. There will be occasional changes that
break backward compatibility.” Mypy is giving me at least one report that is not the
same I got when I wrote this chapter in April 2020. By the time you read this, you may
get different results than shown here.

If a function signature has no annotations, Mypy ignores it by default.
That’s the spirit of gradual typing.

https://mypy.readthedocs.io/en/stable/introduction.html


For this example, I also have pytest unit tests. This is the code in
messages_test.py.

Example 8-2. messages_test.py without type hints.
from pytest import mark 
 
from messages import show_count 
 
@mark.parametrize('qty, expected', [ 
    (1, '1 part'), 
    (2, '2 parts'), 
]) 
def test_show_count(qty, expected): 
    got = show_count(qty, 'part') 
    assert got == expected 
 
def test_show_count_zero(): 
    got = show_count(0, 'part') 
    assert got == 'no parts'

Now let’s add type hints, guided by Mypy.

Making Mypy More Strict
The command-line option --disallow-untyped-defs makes Mypy
flag any function definition that does not have type hints for all its
parameters and for its return value.

Using --disallow-untyped-defs on the test file produces three
errors and a note:

…/no_hints/ $ mypy --disallow-untyped-defs messages_test.py 
messages.py:14: error: Function is missing a type annotation 
messages_test.py:10: error: Function is missing a type annotation 
messages_test.py:15: error: Function is missing a return type 
annotation 
messages_test.py:15: note: Use "-> None" if function does not 
return a value 
Found 3 errors in 2 files (checked 1 source file)

For the first steps with gradual typing, I prefer to use another option: --
disallow-incomplete-defs. Initially, it tells me nothing:



…/no_hints/ $ mypy --disallow-incomplete-defs messages_test.py 
Success: no issues found in 1 source file

Now I can add just the return type to show_count in messages.py:

def show_count(count, word) -> str:

This is enough to make Mypy look at it. Using the same command line as
before to check messages_test.py, will lead Mypy to look at
messages.py again:

…/no_hints/ $ mypy --disallow-incomplete-defs messages_test.py 
messages.py:14: error: Function is missing a type annotation for 
one or more arguments 
Found 1 error in 1 file (checked 1 source file)

Now I can gradually add type hints function by function, without getting
warnings about functions that I haven’t annotated. This is a fully annotated
signature that satisfies Mypy:

def show_count(count: int, word: str) -> str:

TIP
Instead of typing command line options like --disallow-incomplete-defs,
you can save your favorite as described in the Mypy configuration file documentation.
You can have global settings and per-module settings. Here is a simple mypy.ini to
get started:

[mypy] 
python_version = 3.9 
warn_unused_configs = True 
disallow_incomplete_defs = True

A Default Parameter Value

https://mypy.readthedocs.io/en/stable/config_file.html


The show_count function in Example 8-2 only works with regular nouns.
If the plural can’t be spelled by appending an 's', we should let the user
provide the plural form, like this:

>>> show_count(3, 'mouse', 'mice') 
'3 mice'

Let’s do a little “type driven development.” First we add a test that uses that
third argument. Don’t forget to add the return type hint to the test function,
otherwise Mypy will not check it.

def test_irregular() -> None: 
    got = show_count(2, 'child', 'children') 
    assert got == '2 children'

Mypy detects the error:

…/hints_2/ $ mypy messages_test.py 
messages_test.py:22: error: Too many arguments for "show_count" 
Found 1 error in 1 file (checked 1 source file)

Now I edit show_count, adding the optional plural parameter:

Example 8-3. showcount from hints_2/messages.py with an
optional parameter.
def show_count(count: int, singular: str, plural: str = '') -> str: 
    if count == 1: 
        return f'1 {singular}' 
    count_str = str(count) if count else 'no' 
    if not plural: 
        plural = singular + 's' 
    return f'{count_str} {plural}'

Now Mypy reports “Success.”



WARNING
Here is one typing mistake that Python does not catch. Can you spot it?

def hex2rgb(color=str) -> tuple[int, int, int]:

Mypy’s error report is not very helpful:

colors.py:24: error: Function is missing a type 
    annotation for one or more arguments

The type hint for the color argument should be color: str. I wrote color=str,
which is not an annotation: it sets the default value of color to str.

In my experience, it’s a common mistake and easy to overlook, especially in
complicated type hints.

The following details are considered good style for type hints:

There should be no space between the parameter name and the :,
and one space after the :.

There should be spaces on both sides of the = that precedes a
default parameter value.

On the other hand, PEP 8 says there should be no spaces around the = if
there is no type hint for that particular parameter.



CODE STYLE: USE FLAKE8 AND BLUE

Instead of memorizing such silly rules, use tools like flake8 and blue.
flake8 reports on code styling, among many other issues, and blue
rewrites source code according to (most) rules embeded in the black
code formatting tool.

Given the goal of enforcing a “standard” coding style, blue is better
than black because it follows Python’s own style of using single quotes
by default, double quotes as an alternative:

>>> "I prefer single quotes" 
'I prefer single quotes'

The preference for single quotes is embedded in repr(), among other
places in CPython. The doctest module depends on repr() using
single quotes by default.

If you you must use black, use the black -S option. Then it will
leave your quotes as they are.

NOTE
One of the authors of blue is Barry Warsaw, co-author of PEP 8, Python core
developer since 1994, and member of Python’s Steering Council from 2019 to
present (July, 2021). We are in very good company when we choose single quotes
by default.

Using None as a default
In Example 8-3 the parameter plural is annotated as str, and the default
value is '', so there is no type conflict.

I like that solution, but in other contexts None is a better default. If the
optional parameter expects a mutable type, then None is the only sensible
default—as we saw in “Mutable Types as Parameter Defaults: Bad Idea”.

https://pypi.org/project/flake8/
https://pypi.org/project/blue/
https://pypi.org/project/black/
https://docs.python.org/3/library/doctest.html
https://wefearchange.org/2020/11/steeringcouncil.rst.html


To have None as the default for the plural parameter, here is how the
signature would look like:

from typing import Optional 
 
def show_count(count: int, singular: str, plural: Optional[str] = 
None) -> str:

Let’s unpack that:

Optional[str] means plural may be a str or None.

You must explicitly provide the default value = None.

If you don’t assign a default value to plural, the Python runtime will treat
it as a required parameter. Remember: at runtime, type hints are ignored.

Note that we need to import Optional from the typing module. When
importing types, it’s good practice to use the syntax from typing
import X, to reduce the length of the function signatures.

WARNING
Optional is not a great name, because that annotation does not make the parameter
optional. What makes it optional is assigning a default value to the parameter.
Optional[str] just means: the type of this parameter may be str or NoneType.
In the Haskell and Elm languages, a similar type is named Maybe.

Now that we’ve had a first practical view of gradual typing, let’s consider
what the concept of type means in practice.

Types are defined by supported operations



There are many definitions of the concept of type in the literature. Here
we assume that type is a set of values and a set of functions that one can
apply to these values.

—PEP 483: The Theory of Type Hints

In practice, it’s more useful to consider the set of supported operations as
the defining characteristic of a type.

For example, from the point of view of applicable operations, what are the
valid types for x in the following function?

def double(x): 
    return x * 2

The x parameter type may be numeric (int, complex, Fraction,
numpy.uint32 etc.) but it may also be a sequence (str, tuple, list,
array), an N-dimensional numpy.array or any other type that
implements or inherits a __mul__ method that accepts an int argument.

However, consider this annotated double. Please ignore the missing return
type for now, let’s focus on the parameter type:

from collections import abc 
 
def double(x: abc.Sequence): 
    return x * 2

A type checker will reject that code. If you tell Mypy that x is of type
abc.Sequence, it will flag x * 2 as an error because the Sequence
ABC does not implement or inherit the __mul__ method. At runtime, that
code will work with concrete sequences such as str, tuple, list,
array etc.—as well as numbers, because at runtime the type hints are
ignored. But the type checker only cares about what is explicitly declared,
and abc.Sequence has no __mul__.

That’s why the title of this section is “Types are defined by supported
operations”. The Python runtime accepts any object as the x argument for
both versions of the double function. The computation x * 2 may work,
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or it may raise TypeError if the operation is not supported by x. In
contrast, Mypy will declare x * 2 as wrong while analyzing the annotated
double source code, because it’s an unsupported operation for the
declared type: x: abc.Sequence.

In a gradual type system, we have the interplay of two different views of
types:

Duck typing

The view adopted by Smalltalk—the pioneering OO language—as well
as Python, JavaScript, and Ruby. Objects have types, but variables
(including parameters) are untyped. In practice, it doesn’t matter what is
the declared type of the object, only what operations it actually
supports. If I can invoke birdie.quack(), then birdie is a duck
in this context. By definition, duck typing is only enforced at runtime,
when operations on objects are attempted. This is more flexible than
nominal typing, at the cost of allowing more errors at runtime.

Nominal typing

The view adopted by C++, Java, and C#, supported by annotated
Python. Objects and variables have types. But objects only exist at
runtime, and the type checker only cares about the source code where
variables (including parameters) are annotated with type hints. If Duck
is a subclass of Bird, you can assign a Duck instance to a parameter
annotated as birdie: Bird. But in the body of the function, the type
checker considers the call birdie.quack() illegal, because
birdie is nominally a Bird, and that class does not provide the
.quack() method. It doesn’t matter if the actual argument at runtime
is a Duck, because nominal typing is enforced statically. The type
checker doesn’t run any part of the program, it only reads the source
code. This is more rigid than duck typing, with the advantage of
catching some bugs earlier in a build pipeline, or even as the code is
typed in an IDE.
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Here is a silly example that contrasts duck typing and nominal typing, as
well as static type checking and runtime behavior :

Example 8-4. birds.py
class Bird: 
    pass 
 
class Duck(Bird):   
    def quack(self): 
        print('Quack!') 
 
def alert(birdie):   
    birdie.quack() 
 
def alert_duck(birdie: Duck) -> None:   
    birdie.quack() 
 
def alert_bird(birdie: Bird) -> None:   
    birdie.quack()

Duck is a subclass of Bird.

alert has no type hints, so the type checker ignores it.

alert_duck takes one argument of type Duck.

alert_bird takes one argument of type Bird.

Type checking birds.py with Mypy, we see a problem:

…/birds/ $ mypy birds.py 
birds.py:16: error: "Bird" has no attribute "quack" 
Found 1 error in 1 file (checked 1 source file)

Just by analyzing the source code, Mypy sees that alert_bird is
problematic: the type hint declares the birdie parameter with type Bird,
but the body of the function calls birdie.quack()—and the Bird
class has no such method.

Now let’s try to use the birds module in daffy.py:

6



Example 8-5. daffy.py
from birds import * 
 
daffy = Duck() 
alert(daffy)        
alert_duck(daffy)   
alert_bird(daffy)  

Valid call, because alert has no type hints.

Valid call, because alert_duck takes a Duck argument, and daffy
is a Duck.

Valid call, because alert_bird takes a Bird argument, and daffy
is a also a Bird—the superclass of Duck.

Running Mypy on daffy.py raises the same error about the quack call
in the alert_bird function defined in birds.py:

…/birds/ $ mypy daffy.py 
birds.py:16: error: "Bird" has no attribute "quack" 
Found 1 error in 1 file (checked 1 source file)

But Mypy sees no problem with daffy.py itself: the three function calls
are OK.

Now, if you run daffy.py, this is what you get:

…/birds/ $ python3 daffy.py 
Quack! 
Quack! 
Quack!

Everything works! Duck typing FTW!

At runtime, Python doesn’t care about declared types. It uses duck typing
only. Mypy flagged an error in alert_bird, but calling it with daffy
works fine at runtime. This may surprise many Pythonistas at first: a static



type checker will sometimes find errors in programs that we know will
execute.

However, if months from now you are tasked with extending the silly bird
example, you may be grateful for Mypy. Consider this woody.py module
which also uses birds:

Example 8-6. woody.py
from birds import * 
 
woody = Bird() 
alert(woody) 
alert_duck(woody) 
alert_bird(woody)

Mypy finds two errors while checking woody.py:

…/birds/ $ mypy woody.py 
birds.py:16: error: "Bird" has no attribute "quack" 
woody.py:5: error: Argument 1 to "alert_duck" has incompatible 
type "Bird"; expected "Duck" 
Found 2 errors in 2 files (checked 1 source file)

The first error is in birds.py: the birdie.quack() call in
alert_bird, which we’ve seen before. The second error is in
woody.py: woody is an instance of Bird, so the call
alert_duck(woody) is invalid because that function requires a Duck.
Every Duck is a Bird, but not every Bird is a Duck.

At runtime, none of the calls in woody.py succeed. The succession of
failures is best illustrated in a console session with callouts:

Example 8-7. Runtime errors and how Mypy could have helped.
>>> from birds import * 
>>> woody = Bird() 
>>> alert(woody)   
Traceback (most recent call last): 
  ... 
AttributeError: 'Bird' object has no attribute 'quack' 
>>> 
>>> alert_duck(woody)  
Traceback (most recent call last): 



  ... 
AttributeError: 'Bird' object has no attribute 'quack' 
>>> 
>>> alert_bird(woody)   
Traceback (most recent call last): 
  ... 
AttributeError: 'Bird' object has no attribute 'quack'

Mypy could not detect this error because there are no type hints in
alert.

Mypy reported the problem: Argument 1 to "alert_duck"
has incompatible type "Bird"; expected "Duck".

Mypy has been telling us since Example 8-4 that the body of the
alert_bird function is wrong: "Bird" has no attribute
"quack".

This little experiment shows that duck typing is easier to get started and is
more flexible, but allows unsupported operations to cause errors at runtime.
Nominal typing detects errors before runtime, but sometimes can reject
code that actually runs—such as the call alert_bird(daffy) in
Example 8-5. Even if it sometimes works, the alert_bird function is
misnamed: its body does require an object that supports the .quack()
method, which Bird doesn’t have.

In this silly example, the functions are one-liners. But in real code they
could be longer, they could pass the birdie argument to more functions,
and the origin of the birdie argument could be many function calls away,
making it hard to pinpoint the cause of a runtime error. The type checker
prevents many such errors from ever happening at runtime.



NOTE
The value of type hints is questionable in the tiny examples that fit in a book. The
benefits grow with the size of the codebase. That’s why companies with millions of lines
of Python code—like Dropbox, Google, and Facebook—invested in teams and tools to
support the company-wide adoption of type hints, and have significant and increasing
portions of their Python codebases type checked in their CI pipelines.

In this section we explored the relationship of types and operations in duck
typing and nominal typing, starting with the simple double() function—
which we left without proper type hints. Now we will tour the most
important types used for annotating functions. We’ll see a good way to add
type hints to double() when we reach “Static Protocols”. But before we
get to that, there are more fundamental types to know.

Types usable in annotations
Pretty much any Python type can be used in type hints, but there are
restrictions and recommendations. In addition, the typing module
introduced special constructs with semantics that are sometimes surprising.

This section covers all the major types you can use with annotations:

typing.Any;

Simple types and classes;

typing.Optional and typing.Union;

Generic collections, including tuples and mappings;

Abstract Base Classes;

Generic iterables;

Parameterized generics and TypeVar;

typing.Protocols—the key to static duck typing;



typing.Callable;

typing.NoReturn—a good way to end this list.

We’ll cover each of these in turn, starting with a type that is strange,
apparently useless, but crucially important.

The Any type
The keystone of any gradual type system is the Any type, also known as the
dynamic type. When a type checker sees an untyped function like this:

def double(x): 
    return x * 2

It assumes this:

def double(x: Any) -> Any: 
    return x * 2

That means the x argument and the return value can be of any type,
including different types. Any is assumed to support every possible
operation.

Contrast Any with object. Consider this signature:

def double(x: object) -> object:

This function also accepts arguments of every type, because every type is a
subtype-of object.

However, a type checker will reject this function:

def double(x: object) -> object: 
    return x * 2

The problem is that object does not support the __mul__ operation.
This is what Mypy reports:



…/birds/ $ mypy double_object.py 
double_object.py:2: error: Unsupported operand types for * 
("object" and "int") 
Found 1 error in 1 file (checked 1 source file)

More general types have narrower interfaces, i.e. they support less
operations. The object class implements fewer operations than
abc.Sequence, which implements fewer operations than
abc.MutableSequence, which implements fewer operations than
list.

But Any is a magic type that sits at the top and the bottom of the type
hierarchy. It’s simultaneously the most general type—so that an argument
n: Any accepts values of every type—and the most specialized type,
supporting every possible operation. At least, that’s how the type checker
understands Any.

Of course, no type can support every possible operation, so using Any
prevents the type checker from fulfilling its core mission: detecting
potentially illegal operations before your program crashes with a runtime
exception.

Subtype-of versus Consistent-with

Traditional object-oriented nominal type systems rely on the is subtype-of
relationship. Given a class T1 and a subclass T2, then T2 is subtype-of T1.

Consider this code:

class T1: 
    ... 
 
class T2(T1): 
    ... 
 
def f1(p: T1) -> None: 
    ... 
 
o2 = T2() 
 
f1(o2)  # OK



The call f1(o2) is an application of the Liskov Substitution Principle—
LSP. Barbara Liskov  actually defined is-sub-type-of in terms of supported
operations: if an object of type T2 substitutes an object of type T1 and the
program still behaves correctly, then T2 is subtype-of T1.

Continuing from the previous code, this shows a violation of the LSP:

def f2(p: T2) -> None: 
    ... 
 
o1 = T1() 
 
f2(o1)  # type error

From the point of view of supported operations, this makes perfect sense: as
a subclass, T2 inherits and must support all operations that T1 does. So an
instance of T2 can be used anywhere a instance of T1 is expected. But the
reverse is not necessarily true: T2 may implement additional methods, so an
instance of T1 may not be used everywhere an instance of T2 is expected.
This focus on supported operations is reflected in the name behavioral
subtyping, also used to refer to the LSP.

In a gradual type system, there is another relationship: consistent-with,
which applies wherever subtype-of applies, with special provisions for type
Any.

The rules for consistent-with are:

1. Given T1 and a subtype T2, then T2 is consistent-with T1 (Liskov
substitution).

2. Every type is consistent-with Any: you can pass objects of every
type to an argument declared of type Any.

3. Any is consistent-with every type: you can always pass an object
of type Any where an argument of another type is expected.

Considering the previous definitions of the objects o1 and o2, here are
examples of valid code, illustrating rules #2 and #3:
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def f3(p: Any) -> None: 
    ... 
 
o0 = object() 
o1 = T1() 
o2 = T2() 
 
f3(o0)  # 
f3(o1)  #  all OK: rule #2 
f3(o2)  # 
 
def f4():  # implicit return type: `Any` 
    ... 
 
o4 = f4()  # inferred type: `Any` 
 
f1(o4)  # 
f2(o4)  #  all OK: rule #3 
f3(o4)  #

Every gradual type system needs a wildcard type like Any.

TIP
The verb “to infer” is a fancy synomym for “to guess”, used in the context of type
analysis. Modern type checkers in Python and other languages don’t require type
annotations everywhere because they can infer the type of many expressions. For
example, if I write x = len(s) * 10, the type checker doesn’t need an explicit
local declaration to know that x is an int, as long as it can find type hints for the len
built-in.

Now we can explore the rest of the types used in annotations.

Simple types and classes
Simple types like int, float, str, bytes may be used directly in type
hints. Concrete classes from the standard library, external packages, or user
defined—FrenchDeck, Vector2d, and Duck—may also be used in
type hints.



Abstract Base Classes are also useful in type hints. We’ll get back to them
as we study collection types, and in “Abstract Base Classes”.

Among classes, is consistent-with is defined like is subtype-of: a subclass is
consistent-with all its superclasses.

However, “practicality beats purity” so there is an important exception:

INT IS CONSISTENT-WITH COMPLEX
There is no nominal subtype relationship between the built-in types int, float and
complex: they are direct subclasses of object. But PEP 484 declares that int is
consistent-with float, and float is consistent-with complex. It makes sense in
practice: int implements all operations that float does, and int implements
additional ones as well—bitwise operations like &, |, << etc. The end result is: int is
consistent-with complex. For i = 3, i.real is 3, and i.imag is 0.

Optional and Union types
We saw the Optional special type in “Using None as a default”. It solves
the problem of having None as a default, as in this example from that
section:

from typing import Optional 
 
def show_count(count: int, singular: str, plural: Optional[str] = 
None) -> str:

The construct Optional[str] is actually a shortcut for Union[str,
None] which means the type of plural may be str or None.

The ord built-in function’s signature is a simple example of Union—it
accepts str or bytes, and returns an int:

def ord(c: Union[str, bytes]) -> int: ...
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TIP
In “Dual-Mode str and bytes APIs” we saw functions that accept either str or bytes
arguments but return str if the argument was str or bytes if the arguments was
bytes. In those cases, the return type is determined by the input type, so Union is not
an accurate solution. To properly annotate such functions, we need a type variable—
presented in “Parameterized generics and TypeVar”—or overloading, which we’ll see
in “Overloaded signatures”.

Here is an example of a function that takes a str, but may return a str or
a float:

from typing import Union 
 
def parse_token(token: str) -> Union[str, float]: 
    try: 
        return float(token) 
    except ValueError: 
        return token

If possible, avoid creating functions that return Union types, as they put an
extra burden on the user—forcing them to check the type of the returned
value at runtime to know what to do with it. But the parse_token above
is a reasonable use case in the context of a simple expression evaluator.

Union[] requires at least two types. Nested Union types have the same
effect as a flattened Union. So this type hint:

Union[A, B, Union[C, D, E]]

is the same as:

Union[A, B, C, D, E]

Union is more useful with types that are not consistent among themselves.
For example: Union[int, float] is redundant because int is



consistent-with float. If you just use float to annotate the parameter, it
will accept int values as well.

BETTER SYNTAX FOR UNION IN PYTHON 3.10
In Python 3.10 we can write str | float instead of Union[str, float]. It’s
shorter, more readable, and doesn’t require importing typing.Union. For more, see
PEP 604—Complementary syntax for Union[].

Generic collections
Most Python collections are heterogeneous. For example, you can put any
mixture of different types in a list. However, in practice that’s not very
useful: if you put objects in a collection, you are likely to want to operate
on them later, and usually this means they must share at least one common
method.

Generic types can be declared with type parameters to specify the type of
the items they can handle.

For example, a list can be parameterized to constrain the type of the
elements in it:

Example 8-8. tokenize with type hints for Python ≥ 3.9
def tokenize(text: str) -> list[str]: 
    return text.upper().split()

In Python ≥ 3.9, that means tokenize returns a list where every item
is of type str.

The annotations stuff: list and stuff: list[Any] mean the
same thing: stuff is a list of objects of any type.
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TIP
If you are using Python 3.8 or earlier the concept is the same, but you need more code to
make it work—as explained the optional box “Legacy Support and Deprecated
Collection Types”.

PEP 585—Type Hinting Generics In Standard Collections lists collections
from the standard library accepting generic type hints. The following list
shows only those collections that use the simplest form of generic type hint:
container[item].

list        collections.deque        abc.Sequence   
abc.MutableSequence 
set         abc.Container            abc.Set        
abc.MutableSet 
frozenset   abc.Collection

The tuple and mapping types support more complex type hints, as we’ll
see in their respective sections.

As of Python 3.10, there is no good way to annotate array.array taking
into account the typecode constructor argument which determines
whether integers or floats are stored in the array. An even harder problem is
how to typecheck integer ranges to prevent OverflowError at runtime
when adding elements to arrays. For example, an array with
typecode='B' can only hold int values from 0 to 255. Currently,
Python’s static type system is not up to this challenge.

https://www.python.org/dev/peps/pep-0585/#implementation


LEGACY SUPPORT AND DEPRECATED COLLECTION
TYPES

(You may skip this box if you only use Python 3.9 or later.)

For Python 3.7 and 3.8, you need a __future__ import to make the
[] notation work with built-in collections such as list:

Example 8-9. tokenize with type hints for Python ≥ 3.7
from __future__ import annotations 
 
def tokenize(text: str) -> list[str]: 
    return text.upper().split()

That __future__ import does not work with Python 3.6 or earlier.
This is how to annotate tokenize in a way that works with Python ≥
3.5:

Example 8-10. tokenize with type hints for Python ≥ 3.5
from typing import List 
 
def tokenize(text: str) -> List[str]: 
    return text.upper().split()

To provide the initial support for generic type hints, the authors of PEP
484 created dozens of generic types in the typing module. Table 8-1
shows some of them. For the full list, visit the typing documentation.

https://docs.python.org/3/library/typing.html
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collection type hint equivalent

 

list typing.List

set typing.Set

frozenset typing.FrozenSet

collections.deque typing.Deque

collections.abc.MutableSequence typing.MutableSequence

collections.abc.Sequence typing.Sequence

collections.abc.Set typing.AbstractSet



collections.abc.MutableSet typing.MutableSet

 

PEP 585—Type Hinting Generics In Standard Collections started a
multi-year process to improve the usability of generic type hits. We can
summarize that process in 4 steps:

1. Introduce from __future__ import annotations
in Python 3.7 to enable the use of standard library classes as
generics with list[str] notation.

2. Make that behavior the default in Python 3.9: list[str]
now works without the future import.

3. Deprecate all the redundant generic types from the typing
module.  Deprecation warnings will not be issued by the
Python interpreter because type checkers should flag the
deprecated types when the checked program targets Python 3.9
or newer.

4. Remove those redundant generic types in the first version of
Python released 5 years after Python 3.9. At the current
cadence, that could be Python 3.14, a.k.a as Python Pi.

Now let’s see how to annotate generic tuples.

Tuple types
There are three ways to annotate tuple types:

1. tuples as records;

2. tuples as records with named fields;

3. tuples as immutable sequences.
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Tuples as records

If you’re using a tuple as a record, use the tuple built-in and declare the
types of the fields within [].

For example, the type hint would be tuple[str, float, str] to
accept a tuple with city name, population and country: ('Shanghai',
24.28, 'China').

Consider a function that takes a pair of geographic coordinates and returns a
Geohash, used like this:

>>> shanghai = 31.2304, 121.4737 
>>> geohash(shanghai) 
'wtw3sjq6q'

This is how geohash is defined, using the geolib package from PyPI:

Example 8-11. coordinates.py with the geohash function.
from geolib import geohash as gh  # type: ignore   
 
PRECISION = 9 
 
def geohash(lat_lon: tuple[float, float]) -> str:   
    return gh.encode(*lat_lon, PRECISION)

This comment stops Mypy from reporting that the geolib package
doesn’t have type hints.

lat_lon parameter annotated as a tuple with two float fields.

TIP
For Python < 3.9, import and use typing.Tuple in type hints. It is deprecated but
will remain in the standard library at least until 2024.

Tuples as records with named fields

https://en.wikipedia.org/wiki/Geohash


To annotate a tuple with many fields, or specific types of tuple your code
uses in many places, I highly recommend using typing.NamedTuple—
as seen in Chapter 5. Here is a variation of Example 8-11 with
NamedTuple:

Example 8-12. coordinates_named.py with the NamedTuple
Coordinates and the geohash function.
from typing import NamedTuple 
 
from geolib import geohash as gh  # type: ignore 
 
PRECISION = 9 
 
class Coordinate(NamedTuple): 
    lat: float 
    lon: float 
 
def geohash(lat_lon: Coordinate) -> str: 
    return gh.encode(*lat_lon, PRECISION)

As explained in “Overview of data class builders”,
typing.NamedTuple is a factory for tuple subclasses, so
Coordinate is consistent-with tuple[float, float] but the
reverse is not true—after all, Coordinate has extra methods added by
NamedTuple, like ._asdict(), and could also have user-defined
methods.

In practice, this means that it is typesafe to pass a Coordinate instance
to the display function defined below.

def display(lat_lon: tuple[float, float]) -> str: 
    lat, lon = lat_lon 
    ns = 'N' if lat >= 0 else 'S' 
    ew = 'E' if lon >= 0 else 'W' 
    return f'{abs(lat):0.1f}°{ns}, {abs(lon):0.1f}°{ew}'

Tuples as immutable sequences

To annotate tuples of unspecified length that are used as immutable lists you
must specify a single type, followed by a comma and ... (that’s Python’s



ellipsis token, made of three periods, not Unicode U+2026—
HORIZONTAL ELLIPSIS).

For example, tuple[int, ...] is a tuple with int items.

The ellipsis indicates that any number of elements >= 1 is acceptable. There
is no way to specify fields of different types for tuples of arbitrary length.

The annotations stuff: tuple[Any, ...] and stuff: tuple
mean the same thing: stuff is a tuple of unspecified length with objects of
any type.

Here is a columnize function that transforms a sequence into a table of
rows and cells in the form of list of tuples with unspecified lengths. This is
useful to display items in columns, like this:

>>> animals = 'drake fawn heron ibex koala lynx tahr xerus yak 
zapus'.split() 
>>> table = columnize(animals) 
>>> table 
[('drake', 'koala', 'yak'), ('fawn', 'lynx', 'zapus'), ('heron', 
'tahr'), 
 ('ibex', 'xerus')] 
>>> for row in table: 
...     print(''.join(f'{word:10}' for word in row)) 
... 
drake     koala     yak 
fawn      lynx      zapus 
heron     tahr 
ibex      xerus

Example 8-13 shows the implementation of columnize. Note the return
type:

`list[tuple[str, ...]]`.

Example 8-13. columnize.py returns a list of tuples of strings.
from collections.abc import Sequence 
 
def columnize(sequence: Sequence[str], num_columns: int = 0) -> 
list[tuple[str, ...]]: 
    if num_columns == 0: 



        num_columns = round(len(sequence) ** .5) 
    num_rows, reminder = divmod(len(sequence), num_columns) 
    num_rows += bool(reminder) 
    return [tuple(sequence[i::num_rows]) for i in range(num_rows)]

Generic mappings
Generic mapping types are annotated as MappingType[KeyType,
ValueType]. The built-in dict and the mapping types in
collections and collections.abc accept that notation in Python
≥ 3.9. For earlier versions, you must use typing.Dict and other
mapping types from the typing module, as described in “Legacy Support
and Deprecated Collection Types”.

Example 8-14 shows a practical use of a function returning an inverted
index to search Unicode characters by name—a variation of Example 4-21
more suitable for server-side code that we’ll study in Chapter 22.

Given starting and ending Unicode character codes, name_index returns
a dict[str, set[str]] which is an inverted index mapping each
word to a set of characters that have that word in their names. For example,
after indexing ASCII characters from 32 to 64, here are the sets of
characters mapped to the words 'SIGN' and 'DIGIT', and how to find
the character named 'DIGIT EIGHT':

>>> index = name_index(32, 65) 
>>> index['SIGN'] 
{'$', '>', '=', '+', '<', '%', '#'} 
>>> index['DIGIT'] 
{'8', '5', '6', '2', '3', '0', '1', '4', '7', '9'} 
>>> index['DIGIT'] & index['EIGHT'] 
{'8'}

Below is the source code for charindex.py with the name_index
function. Besides a dict[] type hint, this example has three features
appearing for the first time in the book.

Example 8-14. charindex.py

https://en.wikipedia.org/wiki/Inverted_index


import sys 
import re 
import unicodedata 
from collections.abc import Iterator 
 
RE_WORD = re.compile(r'\w+') 
STOP_CODE = sys.maxunicode + 1 
 
def tokenize(text: str) -> Iterator[str]:   
    """return iterable of uppercased words""" 
    for match in RE_WORD.finditer(text): 
        yield match.group().upper() 
 
def name_index(start: int = 32, end: int = STOP_CODE) -> dict[str, 
set[str]]: 
    index: dict[str, set[str]] = {}   
    for char in (chr(i) for i in range(start, end)): 
        if name := unicodedata.name(char, ''):   
            for word in tokenize(name): 
                index.setdefault(word, set()).add(char) 
    return index

tokenize is a generator function. Chapter 17 is about generators.

The local variable index is annotated. Without the hint, Mypy says:
Need type annotation for 'index' (hint: "index:
dict[<type>, <type>] = ...").

I used the walrus operator := in the if condition. It assigns the result
of the unicodedata.name() call to name, and the whole
expression evaluates to that result. When the result is '', that’s falsy
and the index is not updated.

NOTE
When using a dict as a record, it is common to have all keys of the str type, with
values of different types depending on the keys. That is covered in “TypedDict”,
Chapter 15.

Abstract Base Classes
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Be conservative in what you send, be liberal in what you accept.
—Postel’s law, a.k.a. the Robustness Principle

Table 8-1 list several abstract classes from collections.abc. Ideally, a
function should accept arguments of those abstract types—or their typing
equivalents before Python 3.9—and not concrete types. This gives more
flexibility to the caller.

Consider this function signature:

from collections.abc import Mapping 
 
def name2hex(name: str, color_map: Mapping[str, int]) -> str:

Using abc.Mapping allows the caller to provide an instance of dict,
defaultdict, ChainMap, a UserDict subclass or any other type that
is a subtype-of Mapping.

In contrast, consider this signature:

def name2hex(name: str, color_map: dict[str, int]) -> str:

Now color_map must be a dict or one of its subtypes such as
defaultDict or OrderedDict. In particular, a subclass of
collections.UserDict would not pass the type check for
color_map, despite being the recommended way to create user-defined
mappings, as we saw in “Subclassing UserDict Instead of dict”. Mypy
would reject a UserDict or an instance of a class derived from it, because
UserDict is not a subclass of dict; they are siblings. Both are
subclasses of abc.MutableMapping.

Therefore, in general it’s better to use abc.Mapping or
abc.MutableMapping in parameter type hints, instead of dict (or
typing.Dict in legacy code). If the name2hex function doesn’t need
to mutate the given color_map, the most accurate type hint for
color_map is abc.Mapping. That way, the caller doesn’t need to
provide an object that implements methods like setdefault, pop and
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update which are part of the MutableMapping interface, but not of
Mapping. This has to do with the second part of Postel’s law: “be liberal
in what you accept.”

Postel’s law also tells us to be conservative in what we send. The return
value of a function is always a concrete object, so the return type hint
should be a concrete type, as in the example from “Generic collections”—
which uses list[str].

def tokenize(text: str) -> list[str]: 
    return text.upper().split()

Under the entry of typing.List, the Python documentation says:

Generic version of list. Useful for annotating return types. To annotate
arguments it is preferred to use an abstract collection type such as
Sequence or Iterable.

A similar comment appears in the entries for typing.Dict and
typing.Set.

Remember that most ABCs from collections.abc and other concrete
classes from collections, as well as built-in collections, support
generic type hint notation like collections.deque[str] starting
with Python 3.9. The corresponding typing collections are only needed to
support code written in Python 3.8 or earlier. The full list of classes that
became generic appears in section Implementation of PEP 585—Type
Hinting Generics In Standard Collections.

To wrap up our discussion of ABCs in type hints, we need to talk about the
numbers ABCs.

The Fall of the Numeric Tower

Since Python 2.6, the numbers module defines a hierarchy of ABCs with
Number at the top, then Complex, Real, Rational, and Integral.
Those ABCs allow isinstance checks independent of concrete numeric
types. For example, isinstance(x, numbers.Real) is True for x

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Set
https://www.python.org/dev/peps/pep-0585/#implementation
https://www.python.org/dev/peps/pep-0585/
https://docs.python.org/3/library/numbers.html


of type float, but also for NumPy types like float32, longdouble
etc.

Those ABCs work perfectly well for runtime type checking, but not for
static type checking, for one main reason: the Number ABC defines no
method, therefore a typechecker would not let your code do anything with a
value declared or inferred to be of the Number type, which makes it
useless. As of July 2021, Mypy does not support the use of the numbers
ABCs in type hints. See Mypy issue int is not a Number?.

Section The Numeric Tower of PEP 484 rejects the numbers ABCs and
dictates that the built-in types complex, float, and int should be
treated as special cases, as explained in “int is consistent-with complex”.

TIP
To annotate numeric parameters without hard coding concrete types, use numeric
protocol types, covered in “Runtime checkable static protocols”. “Static Protocols” is a
pre-requisite for that section.

Iterable
The typing.List documentation I just quoted recommends Sequence
and Iterable for function parameter type hints.

One example of Iterable argument appears the math.fsum function
from the standard library:

def fsum(__seq: Iterable[float]) -> float:

https://github.com/python/mypy/issues/3186
https://www.python.org/dev/peps/pep-0484/#the-numeric-tower
https://docs.python.org/3/library/typing.html#typing.List


STUB FILES AND THE TYPESHED PROJECT.
As of Python 3.10, the standard library has no annotations but Mypy, PyCharm etc. can
find the necessary type hints in the Typeshed project, in the form of stub files: special
source files with a .pyi extension that have annotated function and method signatures,
without the implementation—much like header files in C.

The signature for math.fsum is in /stdlib/2and3/math.pyi. The leading
underscores in __seq are a PEP 484 convention for positional-only parameters,
explained in “Annotating positional-only and variadic parameters”.

Example 8-15 is another example using an Iterable parameter that
produces items that are tuple[str, str]. Here is how the function is
used:

>>> l33t = [('a', '4'), ('e', '3'), ('i', '1'), ('o', '0')] 
>>> text = 'mad skilled noob powned leet' 
>>> from replacer import zip_replace 
>>> zip_replace(text, l33t) 
'm4d sk1ll3d n00b p0wn3d l33t'

And here is how it’s implemented:

Example 8-15. replacer.py
from collections.abc import Iterable 
 
FromTo = tuple[str, str]   
 
def zip_replace(text: str, changes: Iterable[FromTo]) -> str:   
    for from_, to in changes: 
        text = text.replace(from_, to) 
    return text

FromTo is a type alias: I assigned tuple[str, str] to FromTo,
to make the signature of zip_replace more readable.

changes needs to be an Iterable[FromTo]; that’s the same as
Iterable[tuple[str, str]], but shorter and easier to read.

https://github.com/python/typeshed
https://tinyurl.com/y8x6b74s


EXPLICIT TYPEALIAS IN PYTHON 3.10
PEP 613—Explicit Type Aliases introduced a special type, TypeAlias, to make the
assignments that create type aliases more visible and easier to typecheck. Starting with
Python 3.10, this is the preferred way to create type aliases:

from typing import TypeAlias 
 
FromTo: TypeAlias = tuple[str, str]

abc.Iterable versus abc.Sequence

Both math.fsum and replacer.zip_replace must iterate over the
entire Iterable arguments to return a result. Given an endless iterable
such as the itertools.cycle generator as input, these functions would
consume all memory and crash the Python process. Despite this potential
danger, it is fairly common in modern Python to offer functions that accept
an Iterable input even if they must process it completely to return a
result. That gives the caller the option of providing input data as a generator
instead of a pre-built sequence, potentially saving a lot of memory if the
number of input items is large.

On the other hand, the columnize function from Example 8-13 needs a
Sequence parameter, and not an Iterable, because it must get the
len() of the input to compute the number of rows up front.

Like Sequence, Iterable is best used as a parameter type. It’s too
vague as a return type. A function should be more precise about the
concrete type it returns.

Closely related to Iterable is the Iterator type, used as a return type
in Example 8-14. We’ll get back to it in Chapter 17 which is about
generators and classic iterators.

Parameterized generics and TypeVar

https://www.python.org/dev/peps/pep-0613/


A parameterized generic is a generic type, written as list[T] where T is
a type variable that will be bound to a specific type with each usage. This
allows a parameter type to be reflected on the result type.

Example 8-16 defines sample, a function that takes two arguments: a
Sequence of elements of type T, and an int. It returns a list of
elements of the same type T, picked at random from the first argument.

This is the implementation:

Example 8-16. sample.py
from collections.abc import Sequence 
from random import shuffle 
from typing import TypeVar 
 
T = TypeVar('T') 
 
def sample(population: Sequence[T], size: int) -> list[T]: 
    if size < 1: 
        raise ValueError('size must be >= 1') 
    result = list(population) 
    shuffle(result) 
    return result[:size]

Here are two examples why I used a type variable in sample:

1. If called with a tuple of type tuple[int, ...]—which is
consistent-with Sequence[int]—then the type parameter is
int, so the return type is list[int];

2. If called with a str—which is consistent-with Sequence[str]
—then the type parameter is str, so the return type is
list[str].



WHY IS TYPEVAR NEEDED?
The authors of PEP 484 wanted to introduce type hints by adding the typing module
and not changing anything else in the language. With clever metaprogramming they
could make the [] operator work on classes like Sequence[T]. But the name of the
T variable inside the brackets must be defined somewhere—otherwise the Python
interpreter would need deep changes to support generic type notation as special use of
[]. That’s why the typing.TypeVar constructor is needed: to introduce the variable
name in the current namespace. Languages such as Java, C#, and TypeScript don’t
require the name of type variable to be declared beforehand, so they have no equivalent
of Python’s TypeVar class.

Another example is the statistics.mode function from the standard
library, which returns the most common data point from a series.

Here is one usage example from the documentation:

>>> mode([1, 1, 2, 3, 3, 3, 3, 4]) 
3

Without using a TypeVar, mode could have this signature:

Example 8-17. mode_float.py: mode that operates on float and
subtypes.
from collections import Counter 
from collections.abc import Iterable 
 
def mode(data: Iterable[float]) -> float: 
    pairs = Counter(data).most_common(1) 
    if len(pairs) == 0: 
        raise ValueError('no mode for empty data') 
    return pairs[0][0]

Many uses of mode involve int or float values, but Python has other
numerical types, and it is desirable that the return type follows the element
type of the given Iterable. We can improve that signature using
TypeVar. Let’s start with a simple but wrong parameterized signature:

from collections.abc import Iterable 
from typing import TypeVar 
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T = TypeVar('T') 
 
def mode(data: Iterable[T]) -> T:

When it first appears in the signature, the type parameter T can be any type.
The second time it appears, it will mean the same type as the first.

Therefore, every iterable is consistent-with Iterable[T], including
iterables of unhashable types that collections.Counter cannot
handle. We need to restrict the possible types assigned to T. We’ll see two
ways of doing that in the next two sections.

Restricted TypeVar

TypeVar accepts extra positional arguments to restrict the type parameter.
We can improve the signature of mode to accept specific number types like
this:

from collections.abc import Iterable 
from decimal import Decimal 
from fractions import Fraction 
from typing import TypeVar 
 
NumberT = TypeVar('NumberT', float, Decimal, Fraction) 
 
def mode(data: Iterable[NumberT]) -> NumberT:

That’s better than before, and it was the signature for mode in the
statistics.pyi stub file on typeshed on May 25, 2020.

However, the statistics.mode documentation includes this example:

>>> mode(["red", "blue", "blue", "red", "green", "red", "red"]) 
'red'

In a hurry, we could just add str to the NumberT definition:

NumberT = TypeVar('NumberT', float, Decimal, Fraction, str)

https://github.com/python/typeshed/blob/e1e99245bb46223928eba68d4fc74962240ba5b4/stdlib/3/statistics.pyi
https://docs.python.org/3/library/statistics.html#statistics.mode


That certainly works, but NumberT is badly misnamed if it accepts str.
More importantly, we can’t keep listing types forever as we realize mode
can deal with them. We can do better with another feature of TypeVar,
introduced next.

Bounded TypeVar

Looking at the body of mode in Example 8-17, we see that the Counter
class is used for ranking. Counter is based on dict, therefore the element
type of the data iterable must be hashable.

At first, this signature may seem to work:

from collections.abc import Iterable, Hashable 
 
def mode(data: Iterable[Hashable]) -> Hashable:

Now the problem is that the type of the returned item is Hashable: an
ABC that implements only the __hash__ method. So the type checker
will not let us do anything with the return value except call hash() on it.
Not very useful.

The solution is another optional parameter of TypeVar: the bound
keyword parameter. It sets an upper boundary for the acceptable types. In
Example 8-18, we have bound=Hashable, which means the type
parameter may be Hashable or any subtype-of it.

Example 8-18. mode_hashable.py: same as Example 8-17, with a more
flexible signature.
from collections import Counter 
from collections.abc import Iterable, Hashable 
from typing import TypeVar 
 
HashableT = TypeVar('HashableT', bound=Hashable) 
 
def mode(data: Iterable[HashableT]) -> HashableT: 
    pairs = Counter(data).most_common(1) 
    if len(pairs) == 0: 
        raise ValueError('no mode for empty data') 
    return pairs[0][0]
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To summarize:

A restricted type variable will be set to one of the types named in
the TypeVar declaration.

A bounded type variable will be set to the inferred type of the
expression—as long as the inferred type is consistent-with the
boundary declared in the bound= keyword argument of
TypeVar.

NOTE
It is unfortunate that the keyword argument to declare a bounded TypeVar is named
bound=, because the verb “to bind” is commonly used to mean setting the value of a
variable, which in the reference semantics of Python is best described as binding a name
to the value. It would have been less confusing if the keyword argument was named
boundary=.

The typing.TypeVar constructor has other optional parameters—
covariant and contravariant—that we’ll cover in Chapter 15,
“Variance”.

Let’s conclude this introduction to TypeVar with AnyStr.

The AnyStr predefined type variable

The typing module includes a predefined TypeVar named AnyStr. It’s
defined like this:

AnyStr = TypeVar('AnyStr', bytes, str)

AnyStr is used in many functions that accept either bytes or str, and
return values of the given type.

Now, on to typing.Protocol, a new feature of Python 3.8 that can
support more Pythonic use of type hints.



Static Protocols

NOTE
In Object-Oriented programming, the concept of a “protocol” as an informal interface is
as old as Smalltalk, and is an essential part of Python from the beginning. However, in
the context of type hints, a protocol is a typing.Protocol subclass defining an
interface that a type checker can verify. Both kinds of protocols are covered in
Chapter 13. This is just a brief introduction in the context of function annotations.

The Protocol type as presented in PEP 544—Protocols: Structural
subtyping (static duck typing) is similar to interfaces in Go: a protocol type
is defined by specifying one or more methods, and the type checker verifies
that those methods are implemented where that protocol type is required.

In Python, a protocol definition is written as a typing.Protocol
subclass. However, classes that implement a protocol don’t need to inherit,
register or declare any relationship with the class that defines the protocol.
It’s up to the type checker to find the available protocol types and enforce
their usage.

Here is a problem that can be solved with the help of Protocol and
TypeVar. Suppose you want to create a function top(it, n) that
returns the largest n elements of the iterable it:

>>> top([4, 1, 5, 2, 6, 7, 3], 3) 
[7, 6, 5] 
>>> l = 'mango pear apple kiwi banana'.split() 
>>> top(l, 3) 
['pear', 'mango', 'kiwi'] 
>>> 
>>> l2 = [(len(s), s) for s in l] 
>>> l2 
[(5, 'mango'), (4, 'pear'), (5, 'apple'), (4, 'kiwi'), (6, 
'banana')] 
>>> top(l2, 3) 
[(6, 'banana'), (5, 'mango'), (5, 'apple')]

A parameterized generic top would look like this:

https://www.python.org/dev/peps/pep-0544/


Example 8-19. top function with an undefined T type parameter.
def top(series: Iterable[T], length: int) -> list[T]: 
    ordered = sorted(series, reverse=True) 
    return ordered[:length]

The problem is how to constrain T? It cannot be Any or object, because
the series must work with sorted. The sorted built-in actually
accepts Iterable[Any], but that’s because the optional parameter key
takes a function that computes an arbitrary sort key from each element.
What happens if you give sorted a list of plain objects but don’t provide
a key argument? Let’s try that:

>>> l = [object() for _ in range(4)] 
>>> l 
[<object object at 0x10fc2fca0>, <object object at 0x10fc2fbb0>, 
<object object at 0x10fc2fbc0>, <object object at 0x10fc2fbd0>] 
>>> sorted(l) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: '<' not supported between instances of 'object' and 
'object'

The error message shows that sorted uses the < operator on the elements
of the iterable. Is this all it takes? Let’s do another quick experiment:

>>> class Spam: 
...     def __init__(self, n): self.n = n 
...     def __lt__(self, other): return self.n < other.n 
...     def __repr__(self): return f'Spam({self.n})' 
... 
>>> l = [Spam(n) for n in range(5, 0, -1)] 
>>> l 
[Spam(5), Spam(4), Spam(3), Spam(2), Spam(1)] 
>>> sorted(l) 
[Spam(1), Spam(2), Spam(3), Spam(4), Spam(5)]

That confirms it: I can sort a list of Spam because Spam implements
__lt__—the special method that supports the < operator.

So the T type parameter in Example 8-19 should be limited to types that
implement __lt__. In Example 8-18 we needed a type parameter that
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implemented __hash__, so we were able to use typing.Hashable as
the upper bound for the type parameter. But now there is no suitable type in
typing or abc to use, so we need to create it.

Here is the new SupportsLessThan type, a Protocol:

Example 8-20. comparable.py: definition of a SupportsLessThan
Protocol type:
from typing import Protocol, Any 
 
class SupportsLessThan(Protocol):   
    def __lt__(self, other: Any) -> bool: ...  

A protocol is a subclass of typing.Protocol.

The body of the protocol has one or more method definitions, with ...
in their bodies.

A type T is consistent-with a protocol P if T implements all the methods
defined in P, with matching type signatures.

Given SupportsLessThan, we can now define this working version of
top:

Example 8-21. top.py: definition of the top function using a TypeVar
with bound=SupportsLessThan:
from collections.abc import Iterable 
from typing import TypeVar 
 
from comparable import SupportsLessThan 
 
LT = TypeVar('LT', bound=SupportsLessThan) 
 
def top(series: Iterable[LT], length: int) -> list[LT]: 
    ordered = sorted(series, reverse=True) 
    return ordered[:length]

Let’s test-drive top. Example 8-22 shows part of a test suite for use with
pytest. It tries calling top first with a generator expression that yields



tuple[int, str], and then with a list of object. With the list of
object, we expect to get a TypeError exception.

Example 8-22. top_test.py: partial listing of the test suite for top
from collections.abc import Iterator 
from typing import TYPE_CHECKING   
 
import pytest 
 
from top import top 
 
# several lines omitted 
 
def test_top_tuples() -> None: 
    fruit = 'mango pear apple kiwi banana'.split() 
    series: Iterator[tuple[int, str]] = (   
        (len(s), s) for s in fruit) 
    length = 3 
    expected = [(6, 'banana'), (5, 'mango'), (5, 'apple')] 
    result = top(series, length) 
    if TYPE_CHECKING:   
        reveal_type(series)   
        reveal_type(expected) 
        reveal_type(result) 
    assert result == expected 
 
# intentional type error 
def test_top_objects_error() -> None: 
    series = [object() for _ in range(4)] 
    if TYPE_CHECKING: 
        reveal_type(series) 
    with pytest.raises(TypeError) as excinfo: 
        top(series, 3)   
    assert "'<' not supported" in str(excinfo.value)

The typing.TYPE_CHECKING constant is always False at
runtime, but type checkers pretend it is True when they are type
checking.

Explicit type declaration for the series variable, to make the Mypy
output easier to read. ], as we’ll see in “Generic Iterable Types”.]

This if prevents the next three lines from executing when the test runs.
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reveal_type() cannot be called at runtime, because it is not a
regular function but a Mypy debugging facility—that’s why there is no
import for it. Mypy will output one debugging message for each
reveal_type() pseudo function call, showing the inferred type of
the argument.

This line will be flagged as an error by Mypy.

The above tests pass—but they would pass anyway, with or without type
hints in top.py. More to the point, if I check that test file with Mypy, I see
that the TypeVar is working as intended. See the mypy command output
in Example 8-23.

WARNING
As of Mypy 0.910 (July 2021), the output of reveal_type does not show precisely
the types I declared in some cases, but compatible types instead. For example, I did not
use typing.Iterator but abc.Iterator. Please ignore this detail. The Mypy
output is still useful. I will pretend this issue of Mypy is fixed when discussing the
output.

Example 8-23. Output of mypy top_test.py (lines split for
readability)
…/comparable/ $ mypy top_test.py 
top_test.py:32: note: 
    Revealed type is "typing.Iterator[Tuple[builtins.int, 
builtins.str]]"  
top_test.py:33: note: 
    Revealed type is "builtins.list[Tuple[builtins.int, 
builtins.str]]" 
top_test.py:34: note: 
    Revealed type is "builtins.list[Tuple[builtins.int, 
builtins.str]]"  
top_test.py:41: note: 
    Revealed type is "builtins.list[builtins.object*]"  
top_test.py:43: error: 
    Value of type variable "LT" of "top" cannot be "object"   
Found 1 error in 1 file (checked 1 source file)



In test_top_tuples, reveal_type(series) shows it is an
Iterator[tuple[int, str]]—which I explicitly declared.

reveal_type(result) confirms that the type returned by the top
call is what I wanted: given the type of series, the result is
list[tuple[int, str]].

In test_top_objects_error, reveal_type(series) shows
it is list[object*]. Mypy puts a * after any type that was inferred:
I did not annotate the type of series in this test.

Mypy flags the error that this test intentionally triggers: the element
type of the Iterable series cannot be object (it must be of type
SupportsLessThan).

A key advantage of a protocol type over ABCs is that a type doesn’t need
any special declaration to consistent-with a protocol type. This allows a
protocol to be created leveraging pre-existing types, or types implemented
in code that we do not control. I don’t need to derive or register str,
tuple, float, set, etc. with SupportsLessThan to use them where
a SupportsLessThan parameter is expected. They only need to
implement __lt__. And the type checker will still be able do its job,
because SupportsLessThan is explicitly defined as a Protocol—in
contrast with the implicit protocols that are common with duck typing,
which are invisible to the type checker.

The special Protocol class was introduced in PEP 544—Protocols:
Structural subtyping (static duck typing). Example 8-21 demonstrates why
this feature is known as static duck typing: the solution to annotate the
series parameter of top was to say “The nominal type of series
doesn’t matter, as long as it implements the __lt__ method”. Python’s
duck typing always allowed us to say that implicitly, leaving static type
checkers clueless. A type checker can’t read CPython’s source code in C, or

https://www.python.org/dev/peps/pep-0544/


perform console experiments to find out that sorted only requires that the
elements support <.

Now we can make duck typing explicit for static type checkers. That’s why
it makes sense to say that typing.Protocol gives us static duck
typing.

There’s more to see about typing.Protocol. We’ll come back to it in
Part IV, where Chapter 13 contrasts structural typing, duck typing, and
ABCs—another approach to formalizing protocols. In addition,
“Overloaded signatures” (Chapter 15) explains how to declare overloaded
function signatures with @typing.overload, and includes an extensive
example using typing.Protocol and a bounded TypeVar.

NOTE
typing.Protocol makes it possible to annotate the double function presented in
“Types are defined by supported operations” without losing functionality. The key is to
define a protocol class with the __mul__ method. I invite you to do that as an exercise.
The solution appears in “The typed double function” (Chapter 13).

Callable
To annotate callback parameters or function objects returned by higher-
order functions, the typing module provides the Callable type, which
is parameterized like this:

Callable[[ParamType1, ParamType2], ReturnType]

The parameter list—[ParamType1, ParamType2]—can have 0 or
more types.

Here is an example in context:

def repl(input_fn: Callable[[Any], str] = input) -> None:

The repl function is part of a simple interactive interpreter.
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During normal usage, the repl function uses Python’s input built-in to
read expressions from the user. However, for automated testing or for
integration with other input sources, repl accepts an optional input_fn
parameter: a Callable with the same parameter and return types as
input.

The built-in input() has this signature on typeshed:

def input(__prompt: Any = ...) -> str: ...

That function is consistent-with this Callable type hint:

Callable[[Any], str]

As another example, in Chapter 10, the Order.__init__ method in
Example 10-3 uses this signature:

class Order: 
 
    def __init__( 
        self,   
        customer: Customer, 
        cart: Sequence[LineItem], 
        promotion: Optional[Callable[['Order'], float]] = None,  
 

    ) -> None:  

self rarely needs a type hint. .

promotion may be None, or Callable[[Order], float]: a
function that takes an Order and returns float.

__init__ always returns None, but I recommend adding the return
type hint for it anyway.

Note that the Order type appears as the string 'Order' in the
Callable type hint, otherwise Python would raise NameError: name
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'Order' is not defined—because the Order class is not defined
until Python reads the whole body of the class—an issue we’ll discuss in
Chapter 25: Class Metaprogramming.

TIP
PEP 563—Postponed Evaluation of Annotations was implemented in Python 3.7 to
support forward references in annotations, avoiding the need to write Order as string in
the previous example. However, that feature is only enabled when from
__future__ import annotations is used at the top of the module, to avoid
breaking code that depend on reading annotations at runtime, like the pydantic and
FastAPI packages—to name just two examples. The PEP 563 behavior was planned to
become default in Python 3.10 but this has been postponed—pun intended—while a
compromise is reached between those who care about using annotations at runtime and
those who don’t. See this message from Python’s Steering Council for more: PEP 563
and Python 3.10.

There is no syntax to annotate optional or keyword arguments in
Callable[]. The documentation says “such function types are rarely
used as callback types”. If you need a type hint to match a function with a
dynamic signature, replace the whole parameter list with ..., like this:
Callable[..., ReturnType].

NoReturn

This is a special type used only to annotate the return type of functions that
never return. Usually, they exist to raise exceptions. There are dozens of
such functions in the standard library.

For example: sys.exit() raises SystemExit, to terminate the Python
process.

Its signature in typeshed is:

def exit(__status: object = ...) -> NoReturn: ...

https://www.python.org/dev/peps/pep-0563/
https://mail.python.org/archives/list/python-dev@python.org/thread/CLVXXPQ2T2LQ5MP2Y53VVQFCXYWQJHKZ/
https://docs.python.org/3/library/typing.html#typing.Callable


The __status parameter is positional-only, and it has a default value.
Stub files don’t spell out the default values: they use ... instead. The type
of __status is object which means it may also be None, therefore it
would be redundant to mark it Optional[object].

In Chapter 25, Example 25-6 uses NoReturn in the
__flag_unknown_attrs, a method designed to produce a user friendly
and comprehensive error message, and then raise AttributeError.

The last section in this epic chapter is about positional and variadic
parameters.

Annotating positional-only and variadic
parameters
Recall the tag function from Example 7-9. The last time we saw its
signature was in section “Positional-only parameters”:

def tag(name, /, *content, class_=None, **attrs):

Here is tag, fully annotated, written in several lines—a common
convention for long signatures, with line breaks the way the blue formatter
would do it:

from typing import Optional 
 
def tag( 
    name: str, 
    /, 
    *content: str, 
    class_: Optional[str] = None, 
    **attrs: str, 
) -> str:

Note the type hint *content: str for the arbitrary positional
parameters: this means all those arguments must be of type str. The type

https://pypi.org/project/blue/


of the content local variable in the function body will be tuple[str,
...].

The type hint for the arbitrary keyword arguments is **attrs: str in
this example, therefore the type of attrs inside the function will be
dict[str, str]. For a type hint like **attrs: float, the type of
attrs in the functin would be dict[str, float].

If the attrs parameter must accept values of different types, you’ll need
to use a Union[] or Any: **attrs: Any.

The / notation for positional-only parameters is only available in Python ≥
3.8. In Python 3.7 or earlier, that’s a syntax error. The PEP 484 convention
is to prefix each positional-only parameter name with two underscores.
Here is the tag signature again, now in two lines, using the PEP 484
convention:

from typing import Optional 
 
def tag(__name: str, *content: str, class_: Optional[str] = None, 
        **attrs: str) -> str:

Mypy understands and enforces both ways of declaring positional-only
parameters.

To close this chapter, let’s briefly consider the limits of type hints and the
static type system they support.

Flawed Typing and Strong Testing
Maintainers of large corporate codebases report that many bugs are found
by static type checkers and fixed more cheaply than if the bugs were
discovered only after the code is running in production.

However, it’s essential to note that automated testing was standard practice
and widely adopted long before static typing was introduced in the
companies that I know about.

https://www.python.org/dev/peps/pep-0484/#id38


Even in the contexts where they are most beneficial, static typing cannot be
trusted as the ultimate arbiter of correctness. It’s not hard to discover:

False positives: tools report type errors on code that is correct.

False negatives: tools don’t report type errors on code that is
incorrect.

Also, if we are forced to type check everything, we lose some of the
expressive power of Python:

Some handy features can’t be statically checked. For example:
argument unpacking like config(**settings).

Advanced features like properties, descriptors, metaclasses, and
metaprogramming in general are poorly supported or beyond
comprehension for type checkers.

Type checkers lag behind Python releases, rejecting or even
crashing while analysing code with new language features—for
more than a year in some cases.

Common data constraints cannot be expressed in the type system—even
simple ones. For example: type hints are unable to ensure “quantity must be
an integer > 0” or “label must be a string with 6 to 12 ASCII letters.” In
general, type hints are not helpful to catch errors in business logic.

Given those caveats, type hints cannot be the mainstay of software quality,
and making them mandatory without exception would amplify its
downsides.

Consider a static type checker as one of the tools in a modern CI pipeline,
along with test runners, linters, etc. The point of a CI pipeline is to reduce
sofware failures, and automated tests catch many bugs that are beyond the
reach of type hints. Any code you can write in Python, you can test in
Python—with or without type hints.



NOTE
The title and conclusion of this section were inspired by Bruce Eckel’s article Strong
Typing vs. Strong Testing, also published in the anthology The Best Software Writing I
edited by Joel Spolky. Bruce is a fan of Python and author of books about C++, Java,
Scala, and Kotlin. In that post, he tells how he was a static typing advocate until he
learned Python and concluded: “If a Python program has adequate unit tests, it can be as
robust as a C++, Java, or C# program with adequate unit tests (although the tests in
Python will be faster to write).”

This wraps up our coverage of Python’s type hints for now. They are also
the main focus of Chapter 15, which covers generic classes, variance,
overloaded signatures, type casting, and more. Meanwhile, type hints will
make guest appearances in several examples throughout the book.

https://docs.google.com/document/d/1aXs1tpwzPjW9MdsG5dI7clNFyYayFBkcXwRDo-qvbIk/preview
https://learning.oreilly.com/library/view/the-best-software/9781590595008/


Chapter summary
We started with a brief introduction to the concept of gradual typing and
then switched to a hands-on approach. It’s hard to see how gradual typing
works without a tool that actually reads the type hints, so we developed an
annotated function guided by Mypy error reports. That section ended with
another practical matter: how to annotate code that must run under Python
2.7 and 3.x.

Back to the idea of gradual typing, we explored how it is a hybrid of
Python’s traditional duck typing and the nominal typing more familiar to
users of Java, C++ and other statically typed languages.

Most of the chapter was devoted to presenting the major groups of types
used in annotations. Many of the types we covered are related to familiar
Python object types, such as collections, tuples, and callables—extended to
support generic notation like Sequence[float]. Many of those types
are temporary surrogates implemented in the typing module before the
standard types were changed to support generics in Python 3.9.

Some of the types are special entities. Any, Optional, Union, and
NoReturn have nothing to do with actual objects in memory, but exist
only in the abstract domain of the type system.

We studied parameterized generics and type variables, which bring more
flexibility to type hints without sacrificing type safety.

Parameterized generics become even more expressive with the use of
Protocol. Because it appeared only in Python 3.8, Protocol is not
widely used yet—but it is hugely important. Protocol enables static duck
typing: the essential bridge between Python’s duck typed core and the
nominal typing that allows static type checkers to catch bugs.

While covering some of these types we experimented with Mypy to see
type checking errors and inferred types with the help of Mypy’s magic
reveal_type() function.



The final section covered how to annotate positional-only and variadic
parameters.

Type hints are a complex and evolving topic. Fortunately, they are an
optional feature. Let us keep Python accessible to the widest user base and
stop preaching that all Python code should have type hints—as I’ve seen in
public sermons by typing evangelists.

Our BDFL emeritus led this push towards type hints in Python, so it’s only
fair that this chapter starts and ends with his words:

I wouldn’t like a version of Python where I was morally obligated to add
type hints all the time. I really do think that type hints have their place
but there are also plenty of times that it’s not worth it, and it’s so
wonderful that you can choose to use them.

—Guido van Rossum

Further Reading
Bernát Gábor wrote in his excellent post The state of type hints in Python:

Type hints should be used whenever unit tests are worth writing.

I am a big fan of testing, but I also do a lot exploratory coding. When I am
exploring, tests and type hints are not helpful. They are a drag.

Gábor’s post is one of the best introductions to Python’s type hints that I
found, along with Geir Arne Hjelle’s Python Type Checking (Guide).
Hypermodern Python Chapter 4: Typing by Claudio Jolowicz is a shorter
introduction that also covers runtime type checking validation.

For deeper coverage, the Mypy documentation is the best source. It is
valuable regardless of the type checker you are using, because it has tutorial
and reference pages about Python typing in general—not just about the
Mypy tool itself. There you will also find a handy cheat sheets and a very
useful page about Common issues and solutions.
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The typing module documentation is a good quick reference, but it
doesn’t go into much detail. The ultimate references are the PEP documents
related to typing. There are more than 20 of them already. The intended
audience of PEPs are Python core developers and Python’s Steering
Council, so they assume a lot of prior knowledge and are certainly not light
reading.

As mentioned, Chapter 15 covers more typing topics, and “Further
Reading” provides additional references, including Table 15-1, listing
typing PEPs approved or under discussion as of March 2021.

Awesome Python Typing is a valuable collection of links to tools and
references.

https://docs.python.org/3/library/typing.html
https://github.com/typeddjango/awesome-python-typing


SOAPBOX

Just ride

Forget the ultralight, uncomfortable bikes, flashy jerseys, clunky
shoes that clip onto tiny pedals, the grinding out of endless miles.
Instead, ride like you did when you were a kid—just get on your bike
and discover the pure joy of riding it.

—Grant Petersen, Just Ride: A Radically Practical
Guide to Riding Your Bike

If coding is not your whole profession, but a useful tool in you
profession, or something you do to learn, tinker and enjoy, you probably
don’t need type hints anymore than most bikers need shoes with stiff
soles and metal cleats.

Just code.

The cognitive effect of typing

I worry about the effect type hints will have on Python coding style.

I agree that users of most APIs benefit from type hints. But Python
attracted me—among other reasons—because it provides functions that
are so powerful that they replace entire APIs, and we can write
similarly powerful functions ourselves. Consider the max() built-in.
It’s powerful yet easy to understand. But I will show in “Max
Overload” that it takes 14 lines of type hints to properly annotate it—
not counting a typing.Protocol and a few TypeVar definitions
to support those type hints.

I am concerned that strict enforcement of type hints in libraries will
discourage programmers from even considering writing such functions
in the future.

According to the English Wikipedia, Linguistic Relativity—a.k.a. the
Sapir–Whorf hypothesis— is a “principle claiming that the structure of

https://docs.python.org/3/library/functions.html#max
https://en.wikipedia.org/wiki/Linguistic_relativity


a language affects its speakers’ world view or cognition. Wikipedia
further explains:

The strong version says that language determines thought and
that linguistic categories limit and determine cognitive
categories.

The weak version says that linguistic categories and usage only
influence thought and decisions.

Linguists generally agree the strong version is false, but there is
empirical evidence supporting the weak version.

I am not aware of specific studies with programming languages, but in
my experience they’ve had a big impact on how I approach problems.
The first programming language I used professionally was Applesoft
BASIC in the age of 8-bit computers. Recursion was not directly
supported by BASIC—you had to roll your own call stack to use it. So I
never considered using recursive algorithms or data structures. I knew
at some conceptual level such things existed, but they weren’t part of
my problem-solving toolbox.

Decades later when I started with Elixir, I enjoyed solving problems
with recursion and overused it—until I discovered that many of my
solutions would be simpler if I used existing functions from the Elixir
Enum and Stream modules. I learned that idiomatic Elixir
application-level code rarely has explicit recursive calls, but use enums
and streams that implement recursion under the hood.

Linguistic Relativity could explain the widespread idea (also unproven)
that learning different programming languages makes you a better
programmer, particularly when the languages support different
programming paradigms. Practicing Elixir made me more likely to
apply functional patterns when I write Python or Go code.

Now, back to Earth.



The requests package would probably have a very different API if
Kenneth Reitz was determined (or told by his boss) to annotate all its
functions. His goal was to write an API that was easy to use, flexible,
and powerful. He succeeded, given the amazing popularity of
requests—in May 2020, it’s #4 on PyPI Stats, with 2.6 million
downloads a day. #1 is urllib3, a dependency of requests.

In 2017, the requests maintainers decided not to spend their time
writing type hints. One of the maintainers, Cory Benfield, had written
an e-mail stating:

I think that libraries with Pythonic APIs are the least likely to take up
this typing system because it will provide the least value to them.

In that message, Benfield gave this extreme example of a tentative type
definition for the files keyword argument of
requests.request():

Optional[ 
  Union[ 
    Mapping[ 
      basestring, 
      Union[ 
        Tuple[basestring, Optional[Union[basestring, file]]], 
        Tuple[basestring, Optional[Union[basestring, file]], 
              Optional[basestring]], 
        Tuple[basestring, Optional[Union[basestring, file]], 
              Optional[basestring], Optional[Headers]] 
      ] 
    ], 
    Iterable[ 
      Tuple[ 
        basestring, 
        Union[ 
          Tuple[basestring, Optional[Union[basestring, 
file]]], 
          Tuple[basestring, Optional[Union[basestring, file]], 
                Optional[basestring]], 
          Tuple[basestring, Optional[Union[basestring, file]], 
                Optional[basestring], Optional[Headers]] 
      ] 
    ] 

https://pypistats.org/top
https://github.com/psf/requests/issues/3855
https://lwn.net/Articles/643399/
https://requests.readthedocs.io/en/master/api/#requests.request


  ] 
]

And that assumes this definition:

Headers = Union[ 
  Mapping[basestring, basestring], 
  Iterable[Tuple[basestring, basestring]], 
]

Do you think requests would be the way it is if the maintainers
insisted on 100% type hint coverage? SQLAlchemy is another
important package that doesn’t play well with type hints.

What makes these libraries great is embracing the dynamic nature of
Python.

While there are benefits to type hints, there is also a price to pay.

First, there is the significant investment of understanding how the type
system works. That’s a one-time cost.

But there is also a recurring cost, forever.

We lose some of the expressive power of Python if we insist on type
checking everything. Beautiful features like argument unpacking—e.g.
config(**settings)—are beyond comprehension for type
checkers.

If you want to have a call like config(**settings) type checked,
you must spell every argument out. That brings me memories of Turbo
Pascal code I wrote 35 years ago.

Libraries that use metaprogramming are hard or impossible to annotate.
Surely metaprogramming can be abused, but it’s also what makes many
Python packages a joy to use.

If type hints are mandated top down without exceptions in large
companies, I bet soon we’ll see people using code generation to reduce



boilerplate in Python source-code—a common practice with less
dynamic languages.

For some projects and contexts, type hints just don’t make sense. Even
in contexts where they mostly make sense, they don’t make sense all
the time. Any reasonable policy about the use of type hints must have
exceptions.

Alan Kay—the Turing Award laureate who pioneered Object Oriented
Programming—once said:

Some people are completely religious about type systems and as a
mathematician I love the idea of type systems, but nobody has ever
come up with one that has enough scope.

Thank Guido for optional typing. Let’s use it as intended, and not aim
to annotate everything into strict conformity to a coding style that looks
like Java 1.5.

Duck typing FTW

Duck typing fits my brain, and static duck typing is a good compromise
allowing static type checking without losing a lot of flexibility that
some nominal type systems only provide with a lot of complexity—if
ever.

Before PEP 544, this whole idea of type hints seemed utterly
unpythonic to me. I was very glad to see typing.Protocol land in
Python. It brings balance to the force.

Generics or specifics?

From a Python perspective, the typing usage of the term “generic” is
backwards. Common meanings of “generic” are “applicable to an entire
class or group” or “without a brand name.”

Consider list versus list[str]. The first is generic: it accepts any
object. The second is specific: it only accepts str.
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The term makes sense in Java, though. Before Java 1.5, all Java
collections (except the magic array) were “specific”: they could only
hold Object references, so we had to cast the items that came out of a
collection to use them. With Java 1.5, collections got type parameters,
and became “generic.”

1  PEP 484—Type Hints, section Rationale and Goals; bold emphasis retained from the original.

2  A just-in-time compiler like the one in PyPy has much better data than type hints: it monitors
the Python program as it runs, detects the concrete types in use, and generates optimized
machine code for those concrete types.

3  For example, recursive types are not supported as of July 2021—see typing module issue
#182 Define a JSON type and Mypy issue #731 Support recursive types

4  Python doesn’t provide syntax to control the set of possible values for a type—except in
Enum types. For example, using type hints you can’t define Quantity as an integer between
1 and 1000, or AirportCode as a 3-letter combination. NumPy offers uint8, int16 and
other machine-oriented numeric types, but in the Python standard library we only have types
with very small sets of values (NoneType, bool) or extremely large sets (float, int,
str, all possible tuples etc.).

5  Duck typing is a weaker form of structural typing, which Python ≥ 3.8 also supports with the
introduction of typing.Protocol. This is covered later in this chapter—in “Static
Protocols”—with more details in Chapter 13.

6  Inheritance is often overused and hard to justify in examples that are realistic yet simple, so
please accept this animal example as a quick illustration of subtyping.

7  MIT Professor, programming language designer, and Turing Award recipient. Wikipedia:
Barbara Liskov.

8  To be more precise, ord only accepts str or bytes with len(s) == 1. But the type
system currently can’t express this constraint.

9  In ABC—the language that most influenced the initial design of Python—each list was
constrained to accept values of a single type: the type of the first item you put into it.

10  One of my contributions to the typing module documentation was to add dozens of
deprecation warnings as I reorganized the entries below Module Contents into subsections,
under the supervision of Guido van Rossum.

11  I use := when it makes sense in a few examples, but I don’t cover it in the book. Please see
PEP 572—Assignment Expressions for all the gory details.

https://www.python.org/dev/peps/pep-0484/#non-goals
https://github.com/python/typing/issues/182
https://github.com/python/mypy/issues/731
https://en.wikipedia.org/wiki/Barbara_Liskov
https://docs.python.org/3/library/typing.html#module-contents
https://www.python.org/dev/peps/pep-0572/


12  Actually, dict is a virtual subclass of abc.MutableMapping. The concept of a virtual
subclass is explained in Chapter 13. For now, know that issubclass(dict,
abc.MutableMapping) is True, despite the fact that dict is implemented in C and does
not inherit anything from abc.MutableMapping, but only from object.

13  The implementation here is simpler than the one in the Python standard library statistics
module.

14  I contributed this solution to typeshed, and that’s how mode is annotated on
statistics.pyi as of May 26, 2020.

15  How wonderful it is to open an interactive console and rely on duck typing to explore
language features like I just did. I badly miss this kind of exploration when I use languages that
don’t support it.

16  Without this type hint, Mypy would infer the type of series as
Generator[Tuple[builtins.int, builtins.str*], None, None], which is
verbose but consistent-with Iterator[tuple[int, str

17  I don’t know who invented the term static duck typing, but it became more popular with the
success of the Go language, which has interface semantics that are more like Python’s
protocols than the nominal interfaces of Java.

18  REPL stands for read-eval-print-loop, the common code pattern in interactive interpreters.

19  We’ll see cases where self is annotated in Chapter 15, “Implementing a generic class”

20  As special case for __init__, if at least one parameter has a type hint, Mypy does not
complain about the missing return type, by default. But if you forget this rule, and __init__
is completely untyped, then it will not be type checked.

21  From YouTube video of Type Hints by Guido van Rossum (March 2015). Quote starts at
13’40”. I did some light editing for clarity.

22  Source: A Conversation with Alan Kay.

https://github.com/python/cpython/blob/822efa5695b5ba6c2316c1400e4e9ec2546f7ea5/Lib/statistics.py#L534
https://github.com/python/typeshed/blob/a8834fcd46339e17fc8add82b5803a1ce53d3d60/stdlib/3/statistics.pyi#L32
https://www.youtube.com/watch?v=YFexUDjHO6w
https://www.youtube.com/watch?v=YFexUDjHO6w&t=13m40s
https://queue.acm.org/detail.cfm?id=1039523


Chapter 9. Decorators and
Closures

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 9th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

There’s been a number of complaints about the choice of the name
“decorator” for this feature. The major one is that the name is not
consistent with its use in the GoF book.  The name decorator probably
owes more to its use in the compiler area—a syntax tree is walked and
annotated.

—PEP 318 — Decorators for Functions and Methods

Function decorators let us “mark” functions in the source code to enhance
their behavior in some way. This is powerful stuff, but mastering it requires
understanding closures—which is what happens when functions capture
variables defined outside of their bodies.

The most obscure reserved keyword in Python is nonlocal, introduced in
Python 3.0. You can have a profitable life as a Python programmer without
ever using it if you adhere to a strict regimen of class-centered object
orientation. However, if you want to implement your own function

1
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decorators, you must understand closures, and then the need for nonlocal
becomes obvious.

Aside from their application in decorators, closures are also essential for
any type of programming using callbacks, and for coding in a functional
style when it makes sense.

The end goal of this chapter is to explain exactly how function decorators
work, from the simplest registration decorators to the rather more
complicated parameterized ones. However, before we reach that goal we
need to cover:

How Python evaluates decorator syntax

How Python decides whether a variable is local

Why closures exist and how they work

What problem is solved by nonlocal

With this grounding, we can tackle further decorator topics:

Implementing a well-behaved decorator

Powerful decorators in the standard library: @cache,
@lru_cache, and @singledispatch

Implementing a parameterized decorator

What’s new in this chapter
The caching decorator functools.cache—new in Python 3.9—is
simpler than the traditional functools.lru_cache, so I present it first.
The latter is covered in “Using lru_cache”, including the simplified form
added in Python 3.8.

Section “Single Dispatch Generic Functions” was expanded and now uses
type hints, the preferred way to use functools.singledispatch
since Python 3.7.



“Parameterized Decorators” now includes a class-based example,
Example 9-27.

I moved Chapter 10—Design Patterns with First-Class Functions—to the
end of part III to improve the flow of the book. Section “Decorator-
Enhanced Strategy Pattern” is now in that chapter, along with other
variations of the Strategy design pattern using callables.

We start with a very gentle introduction to decorators, and then proceed
with the rest of the items listed in the chapter opening.

Decorators 101
A decorator is a callable that takes another function as argument (the
decorated function).

A decorator may perform some processing with the decorated function, and
returns it or replaces it with another function or callable object.

In other words, assuming an existing decorator named decorate, this
code:

@decorate 
def target(): 
    print('running target()')

Has the same effect as writing this:

def target(): 
    print('running target()') 
 
target = decorate(target)

The end result is the same: at the end of either of these snippets, the
target name is bound to whatever function is returned by
decorate(target)—which may be the function initially named
target, or may be a different function.
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To confirm that the decorated function is replaced, see the console session
in Example 9-1.

Example 9-1. A decorator usually replaces a function with a different one
>>> def deco(func): 
...     def inner(): 
...         print('running inner()') 
...     return inner   
... 
>>> @deco 
... def target():   
...     print('running target()') 
... 
>>> target()   
running inner() 
>>> target   
<function deco.<locals>.inner at 0x10063b598>

deco returns its inner function object.

target is decorated by deco.

Invoking the decorated target actually runs inner.

Inspection reveals that target is a now a reference to inner.

Strictly speaking, decorators are just syntactic sugar. As we just saw, you
can always simply call a decorator like any regular callable, passing another
function. Sometimes that is actually convenient, especially when doing
metaprogramming—changing program behavior at runtime.

Three essential facts make a good summary of decorators:

1. A decorator is a function or another callable.

2. A decorator may replace the decorated function with a different
one.

3. Decorators are executed immediately when a module is loaded.

Now let’s focus on the third point.



When Python Executes Decorators
A key feature of decorators is that they run right after the decorated
function is defined. That is usually at import time (i.e., when a module is
loaded by Python). Consider registration.py in Example 9-2.

Example 9-2. The registration.py module
registry = []   
 
def register(func):   
    print(f'running register({func})')   
    registry.append(func)   
    return func   
 
@register   
def f1(): 
    print('running f1()') 
 
@register 
def f2(): 
    print('running f2()') 
 
def f3():   
    print('running f3()') 
 
def main():   
    print('running main()') 
    print('registry ->', registry) 
    f1() 
    f2() 
    f3() 
 
if __name__ == '__main__': 
    main()  

registry will hold references to functions decorated by
@register.

register takes a function as argument.

Display what function is being decorated, for demonstration.

Include func in registry.



Return func: we must return a function; here we return the same
received as argument.

f1 and f2 are decorated by @register.

f3 is not decorated.

main displays the registry, then calls f1(), f2(), and f3().

main() is only invoked if registration.py runs as a script.

The output of running registration.py as a script looks like this:

$ python3 registration.py 
running register(<function f1 at 0x100631bf8>) 
running register(<function f2 at 0x100631c80>) 
running main() 
registry -> [<function f1 at 0x100631bf8>, <function f2 at 
0x100631c80>] 
running f1() 
running f2() 
running f3()

Note that register runs (twice) before any other function in the module.
When register is called, it receives the decorated function object as an
argument—for example, <function f1 at 0x100631bf8>.

After the module is loaded, the registry list holds references to the two
decorated functions: f1 and f2. These functions, as well as f3, are only
executed when explicitly called by main.

If registration.py is imported (and not run as a script), the output is this:

>>> import registration 
running register(<function f1 at 0x10063b1e0>) 
running register(<function f2 at 0x10063b268>)

At this time, if you inspect registry, this is what you see:



>>> registration.registry 
[<function f1 at 0x10063b1e0>, <function f2 at 0x10063b268>]

The main point of Example 9-2 is to emphasize that function decorators are
executed as soon as the module is imported, but the decorated functions
only run when they are explicitly invoked. This highlights the difference
between what Pythonistas call import time and runtime.

Registration decorators
Considering how decorators are commonly employed in real code,
Example 9-2 is unusual in two ways:

The decorator function is defined in the same module as the
decorated functions. A real decorator is usually defined in one
module and applied to functions in other modules.

The register decorator returns the same function passed as
argument. In practice, most decorators define an inner function and
return it.

Even though the register decorator in Example 9-2 returns the
decorated function unchanged, that technique is not useless. Similar
decorators are used in many Python frameworks to add functions to some
central registry—for example, a registry mapping URL patterns to functions
that generate HTTP responses. Such registration decorators may or may not
change the decorated function.

We will see a registration decorator applied in “Decorator-Enhanced
Strategy Pattern” (Chapter 10).

Most decorators do change the decorated function. They usually do it by
defining an inner function and returning it to replace the decorated function.
Code that uses inner functions almost always depends on closures to
operate correctly. To understand closures, we need to take a step back and
review how variable scopes work in Python.



Variable Scope Rules
In Example 9-3, we define and test a function that reads two variables: a
local variable a—defined as function parameter—and variable b that is not
defined anywhere in the function.

Example 9-3. Function reading a local and a global variable
>>> def f1(a): 
...     print(a) 
...     print(b) 
... 
>>> f1(3) 
3 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File "<stdin>", line 3, in f1 
NameError: global name 'b' is not defined

The error we got is not surprising. Continuing from Example 9-3, if we
assign a value to a global b and then call f1, it works:

>>> b = 6 
>>> f1(3) 
3 
6

Now, let’s see an example that may surprise you.

Take a look at the f2 function in Example 9-4. Its first two lines are the
same as f1 in Example 9-3, then it makes an assignment to b. But it fails at
the second print, before the assignment is made.

Example 9-4. Variable b is local, because it is assigned a value in the body
of the function
>>> b = 6 
>>> def f2(a): 
...     print(a) 
...     print(b) 
...     b = 9 
... 
>>> f2(3) 
3 



Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File "<stdin>", line 3, in f2 
UnboundLocalError: local variable 'b' referenced before assignment

Note that the output starts with 3, which proves that the print(a)
statement was executed. But the second one, print(b), never runs. When
I first saw this I was surprised, thinking that 6 should be printed, because
there is a global variable b and the assignment to the local b is made after
print(b).

But the fact is, when Python compiles the body of the function, it decides
that b is a local variable because it is assigned within the function. The
generated bytecode reflects this decision and will try to fetch b from the
local scope. Later, when the call f2(3) is made, the body of f2 fetches
and prints the value of the local variable a, but when trying to fetch the
value of local variable b it discovers that b is unbound.

This is not a bug, but a design choice: Python does not require you to
declare variables, but assumes that a variable assigned in the body of a
function is local. This is much better than the behavior of JavaScript, which
does not require variable declarations either, but if you do forget to declare
that a variable is local (with var), you may clobber a global variable
without knowing.

If we want the interpreter to treat b as a global variable and still assign a
new value to it within the function, we use the global declaration:

>>> b = 6 
>>> def f3(a): 
...     global b 
...     print(a) 
...     print(b) 
...     b = 9 
... 
>>> f3(3) 
3 
6 
>>> b 
9



In the examples above we can see two scopes in action:

1. A module global scope, made of names assigned to values outside
of any class or function block.

2. Function local scopes, made of names assigned to values as
parameters, or directly in the body of the function.

There is one other scope where variables can come from, which we call
nonlocal and is fundamental for closres; we’ll see it in a bit.

After this closer look at how variable scopes work in Python, we can tackle
closures in the next section, “Closures”. If you are curious about the
bytecode differences between the functions in Examples 9-3 and 9-4, see
the following sidebar.



COMPARING BYTECODES

The dis module provides an easy way to disassemble the bytecode of
Python functions. Read Examples 9-5 and 9-6 to see the bytecodes for
f1 and f2 from Examples 9-3 and 9-4.

Example 9-5. Disassembly of the f1 function from Example 9-3
>>> from dis import dis 
>>> dis(f1) 
  2           0 LOAD_GLOBAL              0 (print)   
              3 LOAD_FAST                0 (a)   
              6 CALL_FUNCTION            1 (1 positional, 0 
keyword pair) 
              9 POP_TOP 
 
  3          10 LOAD_GLOBAL              0 (print) 
             13 LOAD_GLOBAL              1 (b)   
             16 CALL_FUNCTION            1 (1 positional, 0 
keyword pair) 
             19 POP_TOP 
             20 LOAD_CONST               0 (None) 
             23 RETURN_VALUE

Load global name print.

Load local name a.

Load global name b.

Contrast the bytecode for f1 shown in Example 9-5 with the bytecode
for f2 in Example 9-6.

Example 9-6. Disassembly of the f2 function from Example 9-4
>>> dis(f2) 
  2           0 LOAD_GLOBAL              0 (print) 
              3 LOAD_FAST                0 (a) 
              6 CALL_FUNCTION            1 (1 positional, 0 
keyword pair) 
              9 POP_TOP 
 
  3          10 LOAD_GLOBAL              0 (print) 



             13 LOAD_FAST                1 (b)   
             16 CALL_FUNCTION            1 (1 positional, 0 
keyword pair) 
             19 POP_TOP 
 
  4          20 LOAD_CONST               1 (9) 
             23 STORE_FAST               1 (b) 
             26 LOAD_CONST               0 (None) 
             29 RETURN_VALUE

Load local name b. This shows that the compiler considers b a local
variable, even if the assignment to b occurs later, because the nature
of the variable—whether it is local or not—cannot change in the
body of the function.

The CPython VM that runs the bytecode is a stack machine, so LOAD
and POP operations refer to the stack. It is beyond the scope of this
book to further describe the Python opcodes, but they are documented
along with the dis module in dis — Disassembler for Python
bytecode.

Closures
In the blogosphere, closures are sometimes confused with anonymous
functions. Many confuse them because of the parallel history of those
features: defining functions inside functions is not so common or
convenient, until you have anonymous functions. And closures only matter
when you have nested functions. So a lot of people learn both concepts at
the same time.

Actually, a closure is a function—let’s call it f—with an extended scope
that encompasses variables referenced in the body of f that are not global
variables nor local variables of f. Such variables must come from the local
scope of an outer function which encompasses f.

http://docs.python.org/3/library/dis.html


It does not matter whether the function is anonymous or not; what matters is
that it can access nonglobal variables that are defined outside of its body.

This is a challenging concept to grasp, and is better approached through an
example.

Consider an avg function to compute the mean of an ever-growing series
of values; for example, the average closing price of a commodity over its
entire history. Every day a new price is added, and the average is computed
taking into account all prices so far.

Starting with a clean slate, this is how avg could be used:

>>> avg(10) 
10.0 
>>> avg(11) 
10.5 
>>> avg(12) 
11.0

Where does avg come from, and where does it keep the history of previous
values?

For starters, Example 9-7 is a class-based implementation.

Example 9-7. average_oo.py: A class to calculate a running average
class Averager(): 
 
    def __init__(self): 
        self.series = [] 
 
    def __call__(self, new_value): 
        self.series.append(new_value) 
        total = sum(self.series) 
        return total / len(self.series)

The Averager class creates instances that are callable:

>>> avg = Averager() 
>>> avg(10) 
10.0 
>>> avg(11) 
10.5 



>>> avg(12) 
11.0

Now, Example 9-8 is a functional implementation, using the higher-order
function make_averager.

Example 9-8. average.py: A higher-order function to calculate a running
average
def make_averager(): 
    series = [] 
 
    def averager(new_value): 
        series.append(new_value) 
        total = sum(series) 
        return total / len(series) 
 
    return averager

When invoked, make_averager returns an averager function object.
Each time an averager is called, it appends the passed argument to the
series, and computes the current average, as shown in Example 9-9.

Example 9-9. Testing Example 9-8
>>> avg = make_averager() 
>>> avg(10) 
10.0 
>>> avg(11) 
10.5 
>>> avg(12) 
11.0

Note the similarities of the examples: we call Averager() or
make_averager() to get a callable object avg that will update the
historical series and calculate the current mean. In Example 9-7, avg is an
instance of Averager, and in Example 9-8 it is the inner function,
averager. Either way, we just call avg(n) to include n in the series and
get the updated mean.

It’s obvious where the avg of the Averager class keeps the history: the
self.series instance attribute. But where does the avg function in the
second example find the series?



Note that series is a local variable of make_averager because the
assignment series = [] happens in the body of that function. But when
avg(10) is called, make_averager has already returned, and its local
scope is long gone.

Within averager, series is a free variable. This is a technical term
meaning a variable that is not bound in the local scope. See Figure 9-1.

Figure 9-1. The closure for averager extends the scope of that function to include the binding for the
free variable series.

Inspecting the returned averager object shows how Python keeps the
names of local and free variables in the __code__ attribute that represents
the compiled body of the function. Example 9-10 demonstrates.

Example 9-10. Inspecting the function created by make_averager in
Example 9-8



>>> avg.__code__.co_varnames 
('new_value', 'total') 
>>> avg.__code__.co_freevars 
('series',)

The value for series is kept in the __closure__ attribute of the
returned function avg. Each item in avg.__closure__ corresponds to
a name in avg.__code__.co_freevars. These items are cells, and
they have an attribute called cell_contents where the actual value can
be found. Example 9-11 shows these attributes.

Example 9-11. Continuing from Example 9-9
>>> avg.__code__.co_freevars 
('series',) 
>>> avg.__closure__ 
(<cell at 0x107a44f78: list object at 0x107a91a48>,) 
>>> avg.__closure__[0].cell_contents 
[10, 11, 12]

To summarize: a closure is a function that retains the bindings of the free
variables that exist when the function is defined, so that they can be used
later when the function is invoked and the defining scope is no longer
available.

Note that the only situation in which a function may need to deal with
external variables that are nonglobal is when it is nested in another function
and those variables are part of the local scope of the outer function.

The nonlocal Declaration
Our previous implementation of make_averager was not efficient. In
Example 9-8, we stored all the values in the historical series and computed
their sum every time averager was called. A better implementation
would only store the total and the number of items so far, and compute the
mean from these two numbers.

Example 9-12 is a broken implementation, just to make a point. Can you
see where it breaks?



Example 9-12. A broken higher-order function to calculate a running
average without keeping all history
def make_averager(): 
    count = 0 
    total = 0 
 
    def averager(new_value): 
        count += 1 
        total += new_value 
        return total / count 
 
    return averager

If you try Example 9-12, here is what you get:

>>> avg = make_averager() 
>>> avg(10) 
Traceback (most recent call last): 
  ... 
UnboundLocalError: local variable 'count' referenced before 
assignment 
>>>

The problem is that the statement count += 1 actually means the same
as count = count + 1, when count is a number or any immutable
type. So we are actually assigning to count in the body of averager,
and that makes it a local variable. The same problem affects the total
variable.

We did not have this problem in Example 9-8 because we never assigned to
the series name; we only called series.append and invoked sum
and len on it. So we took advantage of the fact that lists are mutable.

But with immutable types like numbers, strings, tuples, etc., all you can do
is read, never update. If you try to rebind them, as in count = count +
1, then you are implicitly creating a local variable count. It is no longer a
free variable, and therefore it is not saved in the closure.

To work around this, the nonlocal keyword was introduced in Python 3.
It lets you declare a variable as a free variable even when it is assigned



within the function. If a new value is assigned to a nonlocal variable, the
binding stored in the closure is changed. A correct implementation of our
newest make_averager looks like Example 9-13.

Example 9-13. Calculate a running average without keeping all history
(fixed with the use of nonlocal)
def make_averager(): 
    count = 0 
    total = 0 
 
    def averager(new_value): 
        nonlocal count, total 
        count += 1 
        total += new_value 
        return total / count 
 
    return averager

After studing the use of nonlocal, let’s summarize how Python’s variable
lookup works.

The Python bytecode compiler determines when the function is defined
how to fetch a variable x that appears in it, based on these rules:

If there is a global x declaration, x comes from and is assigned
to the x global variable the module.

If there is a nonlocal x declaration, x comes from and is
assigned to the x local variable of the nearest surrounding function
where x is defined.

If x is a parameter or is assigned a value in the function body, then
x is local variable.

If x is referenced but is not assigned and is not a parameter:

x will be looked up in the local scopes of the surrounding function
bodies (nonlocal scopes);

If not found in sorrounding scopes, it will be read from the module
global scope;

3
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If not found in the global scope, it will be read from
__builtins__.__dict__.

Now that we have Python closures covered, we can effectively implement
decorators with nested functions.

Implementing a Simple Decorator
Example 9-14 is a decorator that clocks every invocation of the decorated
function and displays the elapsed time, the arguments passed, and the result
of the call.

Example 9-14. clockdeco0.py: simple decorator to show the running
time of functions
import time 
 
 
def clock(func): 
    def clocked(*args):   
        t0 = time.perf_counter() 
        result = func(*args)   
        elapsed = time.perf_counter() - t0 
        name = func.__name__ 
        arg_str = ', '.join(repr(arg) for arg in args) 
        print(f'[{elapsed:0.8f}s] {name}({arg_str}) -> {result!r}') 
        return result 
    return clocked  

Define inner function clocked to accept any number of positional
arguments.

This line only works because the closure for clocked encompasses
the func free variable.

Return the inner function to replace the decorated function.

Example 9-15 demonstrates the use of the clock decorator.

Example 9-15. Using the clock decorator



import time 
from clockdeco0 import clock 
 
@clock 
def snooze(seconds): 
    time.sleep(seconds) 
 
@clock 
def factorial(n): 
    return 1 if n < 2 else n*factorial(n-1) 
 
if __name__ == '__main__': 
    print('*' * 40, 'Calling snooze(.123)') 
    snooze(.123) 
    print('*' * 40, 'Calling factorial(6)') 
    print('6! =', factorial(6))

The output of running Example 9-15 looks like this:

$ python3 clockdeco_demo.py 
**************************************** Calling snooze(.123) 
[0.12363791s] snooze(0.123) -> None 
**************************************** Calling factorial(6) 
[0.00000095s] factorial(1) -> 1 
[0.00002408s] factorial(2) -> 2 
[0.00003934s] factorial(3) -> 6 
[0.00005221s] factorial(4) -> 24 
[0.00006390s] factorial(5) -> 120 
[0.00008297s] factorial(6) -> 720 
6! = 720

How It Works
Remember that this code:

@clock 
def factorial(n): 
    return 1 if n < 2 else n*factorial(n-1)

Actually does this:

def factorial(n): 
    return 1 if n < 2 else n*factorial(n-1) 



 
factorial = clock(factorial)

So, in both examples, clock gets the factorial function as its func
argument (see Example 9-14). It then creates and returns the clocked
function, which the Python interpreter assigns to factorial (behind the
scenes, in the first example). In fact, if you import the clockdeco_demo
module and check the __name__ of factorial, this is what you get:

>>> import clockdeco_demo 
>>> clockdeco_demo.factorial.__name__ 
'clocked' 
>>>

So factorial now actually holds a reference to the clocked function.
From now on, each time factorial(n) is called, clocked(n) gets
executed. In essence, clocked does the following:

1. Records the initial time t0.

2. Calls the original factorial function, saving the result.

3. Computes the elapsed time.

4. Formats and displays the collected data.

5. Returns the result saved in step 2.

This is the typical behavior of a decorator: it replaces the decorated function
with a new function that accepts the same arguments and (usually) returns
whatever the decorated function was supposed to return, while also doing
some extra processing.



TIP
In Design Patterns by Gamma et al., the short description of the Decorator pattern starts
with: “Attach additional responsibilities to an object dynamically.” Function decorators
fit that description. But at the implementation level, Python decorators bear little
resemblance to the classic Decorator described in the original Design Patterns work.
“Soapbox” has more on this subject.

The clock decorator implemented in Example 9-14 has a few
shortcomings: it does not support keyword arguments, and it masks the
__name__ and __doc__ of the decorated function. Example 9-16 uses
the functools.wraps decorator to copy the relevant attributes from
func to clocked. Also, in this new version, keyword arguments are
correctly handled.

Example 9-16. clockdeco.py: an improved clock decorator
import time 
import functools 
 
 
def clock(func): 
    @functools.wraps(func) 
    def clocked(*args, **kwargs): 
        t0 = time.perf_counter() 
        result = func(*args, **kwargs) 
        elapsed = time.perf_counter() - t0 
        name = func.__name__ 
        arg_lst = [repr(arg) for arg in args] 
        arg_lst.extend(f'{k}={v!r}' for k, v in kwargs.items()) 
        arg_str = ', '.join(arg_lst) 
        print(f'[{elapsed:0.8f}s] {name}({arg_str}) -> {result!r}') 
        return result 
    return clocked

functools.wraps is just one of the ready-to-use decorators in the
standard library. In the next section, we’ll meet the most impressive
decorator that functools provides: cache.

Decorators in the Standard Library



Python has three built-in functions that are designed to decorate methods:
property, classmethod, and staticmethod. We will discuss
property in “Using a Property for Attribute Validation” and the others in
“classmethod Versus staticmethod”.

In Example 9-16 we saw another important decorator:
functools.wraps, a helper for building well-behaved decorators. Some
of the most interesting decorators in the standard library are cache,
lru_cache, and singledispatch—all from the functools
module. We’ll cover them next.

Memoization with functools.cache
The functools.cache decorator implements memoization:  an
optimization technique that works by saving the results of previous
invocations of an expensive function, avoiding repeat computations on
previously used arguments.

TIP
functools.cache was added in Python 3.9. If you need to run these examples in
Python 3.8, replace @cache with @lru_cache. For prior versions of Python, you
must invoke the decorator, writing @lru_cache(), as explained in “Using lru_cache”

A good demonstration is to apply @cache to the painfully slow recursive
function to generate the nth number in the Fibonacci sequence, as shown in
Example 9-17.

Example 9-17. The very costly recursive way to compute the nth number in
the Fibonacci series
from clockdeco import clock 
 
 
@clock 
def fibonacci(n): 
    if n < 2: 
        return n 
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    return fibonacci(n - 2) + fibonacci(n - 1) 
 
 
if __name__ == '__main__': 
    print(fibonacci(6))

Here is the result of running fibo_demo.py. Except for the last line, all
output is generated by the clock decorator:

$ python3 fibo_demo.py 
[0.00000042s] fibonacci(0) -> 0 
[0.00000049s] fibonacci(1) -> 1 
[0.00006115s] fibonacci(2) -> 1 
[0.00000031s] fibonacci(1) -> 1 
[0.00000035s] fibonacci(0) -> 0 
[0.00000030s] fibonacci(1) -> 1 
[0.00001084s] fibonacci(2) -> 1 
[0.00002074s] fibonacci(3) -> 2 
[0.00009189s] fibonacci(4) -> 3 
[0.00000029s] fibonacci(1) -> 1 
[0.00000027s] fibonacci(0) -> 0 
[0.00000029s] fibonacci(1) -> 1 
[0.00000959s] fibonacci(2) -> 1 
[0.00001905s] fibonacci(3) -> 2 
[0.00000026s] fibonacci(0) -> 0 
[0.00000029s] fibonacci(1) -> 1 
[0.00000997s] fibonacci(2) -> 1 
[0.00000028s] fibonacci(1) -> 1 
[0.00000030s] fibonacci(0) -> 0 
[0.00000031s] fibonacci(1) -> 1 
[0.00001019s] fibonacci(2) -> 1 
[0.00001967s] fibonacci(3) -> 2 
[0.00003876s] fibonacci(4) -> 3 
[0.00006670s] fibonacci(5) -> 5 
[0.00016852s] fibonacci(6) -> 8 
8

The waste is obvious: fibonacci(1) is called eight times,
fibonacci(2) five times, etc. But adding just two lines to use cache,
performance is much improved. See Example 9-18.

Example 9-18. Faster implementation using caching
import functools 
 
from clockdeco import clock 



 
 
@functools.cache   
@clock   
def fibonacci(n): 
    if n < 2: 
        return n 
    return fibonacci(n - 2) + fibonacci(n - 1) 
 
 
if __name__ == '__main__': 
    print(fibonacci(6))

This line works with Python 3.9 or later. See “Using lru_cache” for
alternatives supporting earlier versions of Python.

This is an example of stacked decorators: @cache is applied on the
function returned by @clock.

STACKED DECORATORS
To make sense of stacked decorators, recall that the @ is syntax sugar for applying the
decorator function to the function below it. If there’s more than one decorator, they
behave like nested function calls. This:

@alpha 
@beta 
def my_fn(): 
    ...

Is the same as this:

my_fn = alpha(beta(my_fn))

In other words, the beta decorator is applied first, and the function it returns is then
passed to alpha.

Using cache in Example 9-18, the fibonacci function is called only
once for each value of n:



$ python3 fibo_demo_lru.py 
[0.00000043s] fibonacci(0) -> 0 
[0.00000054s] fibonacci(1) -> 1 
[0.00006179s] fibonacci(2) -> 1 
[0.00000070s] fibonacci(3) -> 2 
[0.00007366s] fibonacci(4) -> 3 
[0.00000057s] fibonacci(5) -> 5 
[0.00008479s] fibonacci(6) -> 8 
8

In another test, to compute fibonacci(30), Example 9-18 made the 31
calls needed in 0.00017s—total time–while the uncached Example 9-17
took 12.09s on an Intel Core i7 notebook, because it called
fibonacci(1) 832,040 times, in a total of 2,692,537 calls.

All the arguments taken by the decorated function must be hashable,
because the underlying lru_cache uses a dict to store the results, and
the keys are made from the positional and keyword arguments used in the
calls.

Besides making silly recursive algorithms viable, @cache really shines in
applications that need to fetch information from remote APIs.

WARNING
functools.cache can consume all available memory if there is a very large number
of cache entries. I consider it more suitable for use in short lived command-line scripts.
In long running processes, I recommend using functools.lru_cache with a
suitable maxsize parameter, as explained in the next section.

Using lru_cache
The functools.cache decorator is actually a simple wrapper around
the older functools.lru_cache function, which is more flexible and
compatible with Python 3.8 and earlier versions.

The main advantage of @lru_cache is that its memory usage is bounded
by the maxsize parameter, which has a rather conservative default value



of 128—which means the cache will hold at most 128 entries at any time.

The acronym LRU stands for Least Recently Used, meaning that older
entries that have not been read for a while are discarded to make room for
new ones.

Since Python 3.8 lru_cache can be applied in two ways. This is how to
use it in the simplest way:

@lru_cache 
def costly_function(a, b): 
    ...

The other way—available since Python 3.2—is to invoke it as a function—
with ():

@lru_cache() 
def costly_function(a, b): 
    ...

In both cases above, the default parameters would be used. They are:

maxsize=128

Sets the maximum number of entries to be stored. After the cache is full,
the least recently used entry is discarded to make room for each new
entry. For optimal performance, maxsize should be a power of 2. If
you pass maxsize=None the LRU logic is disabled, so the cache
works faster but entries are never discarded, which may consume too
much memory. That’s what @functools.cache does.

typed=False

Determines whether results of different argument types are stored
separately. For example, in the default setting, float and integer
arguments that are considered equal are stored only once, so there
would be a single entry for the calls f(1) and f(1.0). If
typed=True, those arguments would produce different entries,
possibly storing distinct results.



Here is an example invoking @lru_cache with non-default parameters:

@lru_cache(maxsize=2**20, typed=True) 
def costly_function(a, b): 
    ...

Now let’s study another powerful decorator:
functools.singledispatch.

Single Dispatch Generic Functions
Imagine we are creating a tool to debug web applications. We want to
generate HTML displays for different types of Python objects.

We could start with a function like this:

import html 
 
def htmlize(obj): 
    content = html.escape(repr(obj)) 
    return f'<pre>{content}</pre>'

That will work for any Python type, but now we want to extend it to
generate custom displays for some types. Some examples:

str: replace embedded newline characters with '<br/>\n' and
use <p> tags instead of <pre>.

int: show the number in decimal and hexadecimal (with a special
case for bool).

list: output an HTML list, formatting each item according to its
type.

float and Decimal: output the value as usual, but also in the
form of a fraction (why not?).

The behavior we want is shown in Example 9-19.



Example 9-19. htmlize() generates HTML tailored to different object
types
>>> htmlize({1, 2, 3})   
'<pre>{1, 2, 3}</pre>' 
>>> htmlize(abs) 
'<pre>&lt;built-in function abs&gt;</pre>' 
>>> htmlize('Heimlich & Co.\n- a game')   
'<p>Heimlich &amp; Co.<br/>\n- a game</p>' 
>>> htmlize(42)   
'<pre>42 (0x2a)</pre>' 
>>> print(htmlize(['alpha', 66, {3, 2, 1}]))   
<ul> 
<li><p>alpha</p></li> 
<li><pre>66 (0x42)</pre></li> 
<li><pre>{1, 2, 3}</pre></li> 
</ul> 
>>> htmlize(True)   
'<pre>True</pre>' 
>>> htmlize(fractions.Fraction(2, 3))   
'<pre>2/3</pre>' 
>>> htmlize(2/3)    
'<pre>0.6666666666666666 (2/3)</pre>' 
>>> htmlize(decimal.Decimal('0.02380952')) 
'<pre>0.02380952 (1/42)</pre>'

The original function is registered for object, so it serves as a catch-
all to handle argument types that don’t match the other
implementations.

str objects are also HTML-escaped but wrapped in <p></p> with
<br/> line breaks inserted before each '\n'.

An int is shown in decimal and hexadecimal, inside <pre></pre>.

Each list item is formatted according to its type, and the whole sequence
rendered as an HTML list.

Although bool is an int subtype, it gets special treatment.

Show Fraction as a fraction.



Show float and Decimal with an approximate fractional equivalent.

Function singledispatch

Because we don’t have Java-style method overloading in Python, we can’t
simply create variations of htmlize with different signatures for each data
type we want to handle differently. A possible solution in Python would be
to turn htmlize into a dispatch function, with a chain of if/elif/… or
match/case/… calling specialized functions like htmlize_str,
htmlize_int, etc. This is not extensible by users of our module, and is
unwieldy: over time, the htmlize dispatcher would become too big, and
the coupling between it and the specialized functions would be very tight.

The functools.singledispatch decorator allows different modules
to contribute to the overall solution, and lets you easily provide a
specialized functions even for types that belong to third party packages that
you can’t edit. If you decorate a plain function with @singledispatch,
it becomes the entry point for a generic function: a group of functions to
perform the same operation in different ways, depending on the type of the
first argument. This is what is meant by the term single-dispatch. If more
arguments were used to select the specific functions, we’d have multiple-
dispatch. Example 9-20 shows how.

WARNING
functools.singledispatch exists since Python 3.4, but it only supports type
hints since Python 3.7. The last two functions in Example 9-20 illustrate the syntax that
works in all versions of Python since 3.4.

Example 9-20. @singledispatch creates a custom
@htmlize.register to bundle several functions into a generic
function
from functools import singledispatch 
from collections import abc 
import fractions 



import decimal 
import html 
import numbers 
 
@singledispatch   
def htmlize(obj: object) -> str: 
    content = html.escape(repr(obj)) 
    return f'<pre>{content}</pre>' 
 
@htmlize.register   
def _(text: str) -> str:   
    content = html.escape(text).replace('\n', '<br/>\n') 
    return f'<p>{content}</p>' 
 
@htmlize.register   
def _(seq: abc.Sequence) -> str: 
    inner = '</li>\n<li>'.join(htmlize(item) for item in seq) 
    return '<ul>\n<li>' + inner + '</li>\n</ul>' 
 
@htmlize.register   
def _(n: numbers.Integral) -> str: 
    return f'<pre>{n} (0x{n:x})</pre>' 
 
@htmlize.register   
def _(n: bool) -> str: 
    return f'<pre>{n}</pre>' 
 
@htmlize.register(fractions.Fraction)   
def _(x) -> str: 
    frac = fractions.Fraction(x) 
    return f'<pre>{frac.numerator}/{frac.denominator}</pre>' 
 
@htmlize.register(decimal.Decimal)   
@htmlize.register(float) 
def _(x) -> str: 
    frac = fractions.Fraction(x).limit_denominator() 
    return f'<pre>{x} ({frac.numerator}/{frac.denominator})</pre>'

@singledispatch marks the base function that handles the
object type.

Each specialized function is decorated with @«base».register

The type of the first argument given at runtime determines when this
particular function definition will be used. The name of the specialized



functions is irrelevant; _ is a good choice to make this clear.

For each additional type to get special treatment, register a new function
with a matching type hint in the first parameter.

The numbers ABCs are useful for use with singledispatch.

bool is a subtype-of numbers.Integral, but the
singledispatch logic seeks the implementation with the most
specific matching type, regardless of the order they appear in the code.

If you don’t want to, or cannot, add type hints to the decorated function,
you can pass a type to the @«base».register decorator. This
syntax works in Python 3.4 or later.

The @«base».register decorator returns the undecorated function,
so it’s possible to stack them to register two or more types on the same
implementation.

When possible, register the specialized functions to handle ABCs (abstract
classes) such as numbers.Integral and abc.MutableSequence
instead of concrete implementations like int and list. This allows your
code to support a greater variety of compatible types. For example, a
Python extension can provide alternatives to the int type with fixed bit
lengths as subclasses of numbers.Integral.

TIP
Using ABCs or typing.Protocol with @singledispatch allows your code to
support existing or future classes that are actual or virtual subclasses of those ABCs, or
that implement those protocols. The use of ABCs and the concept of a virtual subclass
are subjects of Chapter 13.
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A notable quality of the singledispatch mechanism is that you can
register specialized functions anywhere in the system, in any module. If you
later add a module with a new user-defined type, you can easily provide a
new custom function to handle that type. And you can write custom
functions for classes that you did not write and can’t change.

singledispatch is a well-thought-out addition to the standard library,
and it offers more features than I can describe here. PEP 443 — Single-
dispatch generic functions is a good reference—but it doesn’t mention the
use of type hints, which were added later. The functools module
documentation has improved and more up-to-date coverage with several
examples in its singledispatch entry.

NOTE
@singledispatch is not designed to bring Java-style method overloading to
Python. A single class with many overloaded variations of a method is better than a
single function with a lengthy stretch of if/elif/elif/elif blocks. But both
solutions are flawed because they concentrate too much responsibility in a single code
unit—the class or the function. The advantage of @singledispatch is supporting
modular extension: each module can register a specialized function for each type it
supports. In a realistic use case, you would not have all the implementations of generic
function in the same module as in Example 9-20.

We’ve seen some decorators that take arguments, for example,
@lru_cache() and htmlize.register(float) created by
@singledispatch in Example 9-20. The next section shows how to
build decorators that accept parameters.

Parameterized Decorators
When parsing a decorator in source code, Python takes the decorated
function and passes it as the first argument to the decorator function. So
how do you make a decorator accept other arguments? The answer is: make
a decorator factory that takes those arguments and returns a decorator,

https://www.python.org/dev/peps/pep-0443/
https://docs.python.org/3/library/functools.html#functools.singledispatch


which is then applied to the function to be decorated. Confusing? Sure.
Let’s start with an example based on the simplest decorator we’ve seen:
register in Example 9-21.

Example 9-21. Abridged registration.py module from Example 9-2, repeated
here for convenience
registry = [] 
 
def register(func): 
    print(f'running register({func})') 
    registry.append(func) 
    return func 
 
@register 
def f1(): 
    print('running f1()') 
 
print('running main()') 
print('registry ->', registry) 
f1()

A Parameterized Registration Decorator
In order to make it easy to enable or disable the function registration
performed by register, we’ll make it accept an optional active
parameter which, if False, skips registering the decorated function.
Example 9-22 shows how. Conceptually, the new register function is
not a decorator but a decorator factory. When called, it returns the actual
decorator that will be applied to the target function.

Example 9-22. To accept parameters, the new register decorator must be
called as a function
registry = set()   
 
def register(active=True):   
    def decorate(func):   
        print('running register' 
              f'(active={active})->decorate({func})') 
        if active:    
            registry.add(func) 
        else: 
            registry.discard(func)   



 
        return func   
    return decorate   
 
@register(active=False)   
def f1(): 
    print('running f1()') 
 
@register()   
def f2(): 
    print('running f2()') 
 
def f3(): 
    print('running f3()')

registry is now a set, so adding and removing functions is faster.

register takes an optional keyword argument.

The decorate inner function is the actual decorator; note how it takes
a function as argument.

Register func only if the active argument (retrieved from the
closure) is True.

If not active and func in registry, remove it.

Because decorate is a decorator, it must return a function.

register is our decorator factory, so it returns decorate.

The @register factory must be invoked as a function, with the
desired parameters.

If no parameters are passed, register must still be called as a
function—@register()—i.e., to return the actual decorator,
decorate.



The main point is that register() returns decorate, which is then
applied to the decorated function.

The code in Example 9-22 is in a registration_param.py module. If we
import it, this is what we get:

>>> import registration_param 
running register(active=False)->decorate(<function f1 at 
0x10063c1e0>) 
running register(active=True)->decorate(<function f2 at 
0x10063c268>) 
>>> registration_param.registry 
[<function f2 at 0x10063c268>]

Note how only the f2 function appears in the registry; f1 does not
appear because active=False was passed to the register decorator
factory, so the decorate that was applied to f1 did not add it to the
registry.

If, instead of using the @ syntax, we used register as a regular function,
the syntax needed to decorate a function f would be register()(f) to
add f to the registry, or register(active=False)(f) to not
add it (or remove it). See Example 9-23 for a demo of adding and removing
functions to the registry.

Example 9-23. Using the registration_param module listed in Example 9-22
>>> from registration_param import * 
running register(active=False)->decorate(<function f1 at 
0x10073c1e0>) 
running register(active=True)->decorate(<function f2 at 
0x10073c268>) 
>>> registry   
{<function f2 at 0x10073c268>} 
>>> register()(f3)   
running register(active=True)->decorate(<function f3 at 
0x10073c158>) 
<function f3 at 0x10073c158> 
>>> registry   
{<function f3 at 0x10073c158>, <function f2 at 0x10073c268>} 
>>> register(active=False)(f2)   
running register(active=False)->decorate(<function f2 at 
0x10073c268>) 



<function f2 at 0x10073c268> 
>>> registry   
{<function f3 at 0x10073c158>}

When the module is imported, f2 is in the registry.

The register() expression returns decorate, which is then
applied to f3.

The previous line added f3 to the registry.

This call removes f2 from the registry.

Confirm that only f3 remains in the registry.

The workings of parameterized decorators are fairly involved, and the one
we’ve just discussed is simpler than most. Parameterized decorators usually
replace the decorated function, and their construction requires yet another
level of nesting. Now we will explore the architecture of one such function
pyramid.

The Parameterized Clock Decorator
In this section, we’ll revisit the clock decorator, adding a feature: users
may pass a format string to control the output of the clocked function
report. See Example 9-24.

NOTE
For simplicity, Example 9-24 is based on the initial clock implementation from
Example 9-14, and not the improved one from Example 9-16 that uses
@functools.wraps, adding yet another function layer.

Example 9-24. Module clockdeco_param.py: the parameterized clock
decorator



import time 
 
DEFAULT_FMT = '[{elapsed:0.8f}s] {name}({args}) -> {result}' 
 
def clock(fmt=DEFAULT_FMT):   
    def decorate(func):       
        def clocked(*_args):  
            t0 = time.perf_counter() 
            _result = func(*_args)   
            elapsed = time.perf_counter() - t0 
            name = func.__name__ 
            args = ', '.join(repr(arg) for arg in _args)   
            result = repr(_result)   
            print(fmt.format(**locals()))   
            return _result   
        return clocked   
    return decorate   
 
if __name__ == '__main__': 
 
    @clock()   
    def snooze(seconds): 
        time.sleep(seconds) 
 
    for i in range(3): 
        snooze(.123)

clock is our parameterized decorator factory.

decorate is the actual decorator.

clocked wraps the decorated function.

_result is the actual result of the decorated function.

_args holds the actual arguments of clocked, while args is str
used for display.

result is the str representation of _result, for display.

Using **locals() here allows any local variable of clocked to be
referenced in the fmt.10



clocked will replace the decorated function, so it should return
whatever that function returns.

decorate returns clocked.

clock returns decorate.

In this self test, clock() is called without arguments, so the decorator
applied will use the default format str.

If you run Example 9-24 from the shell, this is what you get:

$ python3 clockdeco_param.py 
[0.12412500s] snooze(0.123) -> None 
[0.12411904s] snooze(0.123) -> None 
[0.12410498s] snooze(0.123) -> None

To exercise the new functionality, let’s have a look at Examples 9-25 and 9-
26, which are two other modules using clockdeco_param, and the
outputs they generate.

Example 9-25. clockdeco_param_demo1.py
import time 
from clockdeco_param import clock 
 
@clock('{name}: {elapsed}s') 
def snooze(seconds): 
    time.sleep(seconds) 
 
for i in range(3): 
    snooze(.123)

Output of Example 9-25:

$ python3 clockdeco_param_demo1.py 
snooze: 0.12414693832397461s 
snooze: 0.1241159439086914s 
snooze: 0.12412118911743164s



Example 9-26. clockdeco_param_demo2.py
import time 
from clockdeco_param import clock 
 
@clock('{name}({args}) dt={elapsed:0.3f}s') 
def snooze(seconds): 
    time.sleep(seconds) 
 
for i in range(3): 
    snooze(.123)

Output of Example 9-26:

$ python3 clockdeco_param_demo2.py 
snooze(0.123) dt=0.124s 
snooze(0.123) dt=0.124s 
snooze(0.123) dt=0.124s

NOTE
Graham Dumpleton and Lennart Regebro—technical reviewer of the First Edition—
argue that decorators are best coded as classes implementing __call__, and not as
functions like the examples in this chapter. I agree that approach is better for non-trivial
decorators, but to explain the basic idea of this language feature, functions are easier to
understand. See “Further Reading”, in particular Graham Dumpleton’s blog and wrapt
module for industrial-strength techniques when building decorators.

The next section shows an example in the style recommended by
Dumpleton and Regebro.

A class-based clock decorator
As a final example, Example 9-27 lists the implementation of a
parameterized clock decorator implemented as a class with __call__.
Contrast Example 9-24 with Example 9-27. Which one do you prefer?

Example 9-27. Module clockdeco_cls.py: parameterized clock decorator
implemented as class
import time 
 



DEFAULT_FMT = '[{elapsed:0.8f}s] {name}({args}) -> {result}' 
 
class clock:   
 
    def __init__(self, fmt=DEFAULT_FMT):   
        self.fmt = fmt 
 
    def __call__(self, func):   
        def clocked(*_args): 
            t0 = time.perf_counter() 
            _result = func(*_args)   
            elapsed = time.perf_counter() - t0 
            name = func.__name__ 
            args = ', '.join(repr(arg) for arg in _args) 
            result = repr(_result) 
            print(self.fmt.format(**locals())) 
            return _result 
        return clocked

Instead of a clock outer function, the clock class is our
parameterized decorator factory. I named it with a lowercase c to make
clear that this implementation is a drop-in replacement for the one in
Example 9-24.

The argument passed in the clock(my_format) is assigned to the
fmt parameter here. The class constructor returns an instance of
clock, with my_format stored in self.fmt.

__call__ makes the clock instance callable. When invoked, the
instance replaces the decorated function with clocked

clocked wraps the decorated function.

This ends our exploration of function decorators. We’ll see class decorators
in Chapter 25.



Chapter Summary
We covered some difficult terrain in this chapter. I tried to make the journey
as smooth as possible, but we definitely entered the realm of
metaprogramming.

We started with a simple @register decorator without an inner function,
and finished with a parameterized @clock() involving two levels of
nested functions.

Registration decorators, though simple in essence, have real applications in
Python frameworks. We will apply the registration idea in one
implementation of the Strategy design pattern in Chapter 10.

Understanding how decorators actually work required covering the
difference between import time and runtime, then diving into variable
scoping, closures, and the new nonlocal declaration. Mastering closures
and nonlocal is valuable not only to build decorators, but also to code
event-oriented programs for GUIs or asynchronous I/O with callbacks, and
to adopt a functional style when it makes sense.

Parameterized decorators almost always involve at least two nested
functions, maybe more if you want to use @functools.wraps to
produce a decorator that provides better support for more advanced
techniques. One such technique is stacked decorators, which we saw in
Example 9-18. For more sophisticated decorators, a class-based
implementation may be easier to read and maintain.

As examples of parametrized decorators in the standard library, we visited
the powerful @cache and @singledispatch from the functools
module.

Further Reading
Item #26 of Brett Slatkin’s Effective Python, Second Edition (Addison-
Wesley, 2019) covers best practices for function decorators and

http://www.effectivepython.com/


recommends always using functools.wraps—which we saw in
Example 9-16.

Graham Dumpleton has a series of in-depth blog posts about techniques for
implementing well-behaved decorators, starting with “How You
Implemented Your Python Decorator is Wrong”. His deep expertise in this
matter is also nicely packaged in the wrapt module he wrote to simplify the
implementation of decorators and dynamic function wrappers, which
support introspection and behave correctly when further decorated, when
applied to methods and when used as attribute descriptors. Chapter 24 in
Part VI is about descriptors.

Chapter 9, Metaprogramming of the Python Cookbook, Third Edition by
David Beazley and Brian K. Jones (O’Reilly), has several recipes from
elementary decorators to very sophisticated ones, including one that can be
called as a regular decorator or as a decorator factory, e.g., @clock or
@clock(). That’s “Recipe 9.6. Defining a Decorator That Takes an
Optional Argument” in that cookbook.

Michele Simionato authored a package aiming to “simplify the usage of
decorators for the average programmer, and to popularize decorators by
showing various non-trivial examples,” according to the docs. It’s available
on PyPI as the decorator package.

Created when decorators were still a new feature in Python, the Python
Decorator Library wiki page has dozens of examples. Because that page
started years ago, some of the techniques shown have been superseded, but
the page is still an excellent source of inspiration.

“Closures in Python” is a short blog post by Fredrik Lundh that explains the
terminology of closures.

PEP 3104 — Access to Names in Outer Scopes describes the introduction
of the nonlocal declaration to allow rebinding of names that are neither
local nor global. It also includes an excellent overview of how this issue is
resolved in other dynamic languages (Perl, Ruby, JavaScript, etc.) and the
pros and cons of the design options available to Python.
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http://bit.ly/1DePPcl
http://bit.ly/1DePVRi
http://wrapt.readthedocs.org/en/latest/
https://learning.oreilly.com/library/view/python-cookbook-3rd/9781449357337/ch09.html
https://pypi.python.org/pypi/decorator
https://wiki.python.org/moin/PythonDecoratorLibrary
http://web.archive.org/web/20201109032203/http://effbot.org/zone/closure.htm
http://www.python.org/dev/peps/pep-3104/


On a more theoretical level, PEP 227 — Statically Nested Scopes
documents the introduction of lexical scoping as an option in Python 2.1
and as a standard in Python 2.2, explaining the rationale and design choices
for the implementation of closures in Python.

PEP 443 provides the rationale and a detailed description of the single-
dispatch generic functions’ facility. An old (March 2005) blog post by
Guido van Rossum, “Five-Minute Multimethods in Python”, walks through
an implementation of generic functions (a.k.a. multimethods) using
decorators. His code supports multiple-dispatch (i.e., dispatch based on
more than one positional argument). Guido’s multimethods code is
interesting, but it’s a didactic example. For a modern, production-ready
implementation of multiple-dispatch generic functions, check out Reg by
Martijn Faassen—author of the model-driven and REST-savvy Morepath
web framework.

http://www.python.org/dev/peps/pep-0227/
http://www.python.org/dev/peps/pep-0443/
http://www.artima.com/weblogs/viewpost.jsp?thread=101605
http://reg.readthedocs.org/en/latest/
http://morepath.readthedocs.org/en/latest/


SOAPBOX

The designer of any language with first-class functions faces this issue:
being first-class objects, functions are defined in a certain scope but
may be invoked in other scopes. The question is: how to evaluate the
free variables? The first and simplest answer is “dynamic scope.” This
means that free variables are evaluated by looking into the environment
where the function is invoked.

If Python had dynamic scope and no closures, we could improvise avg
—similar to Example 9-8—like this:

>>> ### this is not a real Python console session! ### 
>>> avg = make_averager() 
>>> series = []   
>>> avg(10) 
10.0 
>>> avg(11)   
10.5 
>>> avg(12) 
11.0 
>>> series = [1]   
>>> avg(5) 
3.0

Before using avg, we have to define series = [] ourselves, so
we must know that averager (inside make_averager) refers
to a list named series.

Behind the scenes, series accumulates the values to be averaged.

When series = [1] is executed, the previous list is lost. This
could happen by accident, when handling two independent running
averages at the same time.

Functions should be black boxes, with their implementation hidden
from users. But with dynamic scope, if a function uses free variables,



the programmer has to know its internals to set up an environment
where it works correctly. After years of struggling with the LaTeX
document preparation language, the excellent Practical LaTeX book by
George Grätzer taught me that LaTeX variables use dynamic scope.
That’s why they were so confusing to me!

Emacs Lisp also uses dynamic scope, at least by default. See Dynamic
Binding in the Emacs Lisp manual for a short explanation.

Dynamic scope is easier to implement, which is probably why it was
the path taken by John McCarthy when he created Lisp, the first
language to have first-class functions. Paul Graham’s article “The Roots
of Lisp” is an accessible explanation of John McCarthy’s original paper
about the Lisp language: “Recursive Functions of Symbolic
Expressions and Their Computation by Machine, Part I”. McCarthy’s
paper is a masterpiece as great as Beethoven’s 9th Symphony. Paul
Graham translated it for the rest of us, from mathematics to English and
running code.

Paul Graham’s commentary explains how tricky dynamic scoping is.
Quoting from “The Roots of Lisp”:

It’s an eloquent testimony to the dangers of dynamic scope that even
the very first example of higher-order Lisp functions was broken
because of it. It may be that McCarthy was not fully aware of the
implications of dynamic scope in 1960. Dynamic scope remained in
Lisp implementations for a surprisingly long time—until Sussman
and Steele developed Scheme in 1975. Lexical scope does not
complicate the definition of eval very much, but it may make
compilers harder to write.

Today, lexical scope is the norm: free variables are evaluated
considering the environment where the function is defined. Lexical
scope complicates the implementation of languages with first-class
functions, because it requires the support of closures. On the other
hand, lexical scope makes source code easier to read. Most languages
invented since Algol have lexical scope.

https://www.gnu.org/software/emacs/manual/html_node/elisp/Dynamic-Binding.html
http://www.paulgraham.com/rootsoflisp.html
http://bit.ly/mccarthy_recursive


For many years, Python lambdas did not provide closures,
contributing to the bad name of this feature among functional-
programming geeks in the blogosphere. This was fixed in Python 2.2
(December 2001), but the blogosphere has a long memory. Since then,
lambda is embarrassing only because of its limited syntax.

Python Decorators and the Decorator Design Pattern

Python function decorators fit the general description of Decorator
given by Gamma et al. in Design Patterns: “Attach additional
responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality.”

At the implementation level, Python decorators do not resemble the
classic Decorator design pattern, but an analogy can be made.

In the design pattern, Decorator and Component are abstract
classes. An instance of a concrete decorator wraps an instance of a
concrete component in order to add behaviors to it. Quoting from
Design Patterns:

The decorator conforms to the interface of the component it
decorates so that its presence is transparent to the component’s
clients. The decorator forwards requests to the component and may
perform additional actions (such as drawing a border) before or after
forwarding. Transparency lets you nest decorators recursively,
thereby allowing an unlimited number of added responsibilities.” (p.
175)

In Python, the decorator function plays the role of a concrete
Decorator subclass, and the inner function it returns is a decorator
instance. The returned function wraps the function to be decorated,
which is analogous to the component in the design pattern. The returned
function is transparent because it conforms to the interface of the
component by accepting the same arguments. It forwards calls to the
component and may perform additional actions either before or after it.
Borrowing from the previous citation, we can adapt the last sentence to



say that “Transparency lets you stack decorators, thereby allowing an
unlimited number of added behaviors.”

Note that I am not suggesting that function decorators should be used to
implement the Decorator pattern in Python programs. Although this can
be done in specific situations, in general the Decorator pattern is best
implemented with classes to represent the Decorator and the
components it will wrap.

1  That’s the 1995 Design Patterns book by the so-called Gang of Four.

2  If you replace “function” with “class” in the previous sentence, you have a brief description of
what a class decorator does. Class decorators are covered in Chapter 25.

3  Thanks to tech reviewer Leonardo Rochael suggesting this summary.

4  Python does not have a program global scope, only module global scopes.

5  To clarify, this is not a typo: “memoization” is a computer science term vaguely related to
“memorization”, but not the same.

6  Unfortunately, Mypy 0.770 complains when it sees multiple functions with the same name…

7  Despite the warning in “The Fall of the Numeric Tower”, the number ABC are not
deprecated and you find them in Python 3 code.

8  Maybe one day you’ll also be able to express this with single unparameterized
@htmlize.register and type hint using Union, but when I tried, Python raised a
TypeError with a message saying that Union is not a class. So, although PEP 484 syntax is
supported by @singledispatch, the semantics are not there yet.

9  NumPy, for example, implements several machine-oriented integer and floating-point types.

10  Tech reviewer Miroslav Šedivý noted: “It also means that code linters will complain about
unused variables since they tend to ignore uses of locals().” Yes, that’s yet another
example of how static checking tools discourage the use of the dynamic features that attracted
me and countless programmers to Python in the first place. To make the linter happy, I could
spell out each local variable twice in the call: .format(elapsed=elapsed,
name=name, args=args, result=result). I’d rather not. If you use static checking
tools, it’s very important to know when to ignore them.

11  I wanted to make the code as simple as possible, so I did not follow Slatkin’s excellent advice
in all examples.

https://en.wikipedia.org/wiki/Memoization
https://numpy.org/doc/stable/user/basics.types.html


Chapter 10. Design Patterns
with First-Class Functions

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 10th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

Conformity to patterns is not a measure of goodness.
—Ralph Johnson, Coauthor of the Design Patterns classic

In software engineering, a design pattern is a general recipe for solving a
common design problem. You don’t need to know design patterns to follow
this chapter. I will explain the patterns used in the examples.

The use of design patterns in programming was popularized by the
landmark book Design Patterns: Elements of Reusable Object-Oriented
Software (Addison-Wesley, 1995) by Erich Gamma, Richard Helm, Ralph
Johnson & John Vlissides—a.k.a. “the Gang of Four.” The book is a catalog
of 23 patterns consisting of arrangements of classes exemplified with code
in C++, but assumed to be useful in other Object-Oriented languages as
well.

1

mailto:fluentpython2e@ramalho.org
https://en.wikipedia.org/wiki/Software_design_pattern


Although design patterns are language-independent, that does not mean
every pattern applies to every language. For example, Chapter 17 will show
that it doesn’t make sense to emulate the recipe of the Iterator pattern in
Python, because the pattern is embedded in the language and ready to use in
in the form of generators—which don’t need classes to work, and require
less code than the classic recipe.

The authors of Design Patterns acknowledge in their Introduction that the
implementation language determines which patterns are relevant:

The choice of programming language is important because it influences
one’s point of view. Our patterns assume Smalltalk/C++-level language
features, and that choice determines what can and cannot be
implemented easily. If we assumed procedural languages, we might have
included design patterns called “Inheritance,” “Encapsulation,” and
“Polymorphism.” Similarly, some of our patterns are supported directly
by the less common object-oriented languages. CLOS has multi-methods,
for example, which lessen the need for a pattern such as Visitor.

In his 1996 presentation, “Design Patterns in Dynamic Languages”, Peter
Norvig states that 16 out of the 23 patterns in the original Design Patterns
book become either “invisible or simpler” in a dynamic language (slide 9).
He was talking about the Lisp and Dylan languages, but many of the
relevant dynamic features are also present in Python. In particular, in the
context of languages with first-class functions, Norvig suggests rethinking
the classic patterns known as Strategy, Command, Template Method, and
Visitor.

The goal of this chapter is to show how—in some cases—functions can do
the same work as classes, with code that is shorter and easier to read. We
will refactor an implementation of Strategy using functions as objects,
removing a lot of boilerplate code. We’ll also discuss a similar approach to
simplifying the Command pattern.

What’s new in this chapter
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I moved this chapter to the end of Part III so I could apply a registration
decorator in “Decorator-Enhanced Strategy Pattern” and also use type hints
in the examples. Most type hints used in this chapter are not complicated,
and they do help with readability.

Case Study: Refactoring Strategy
Strategy is a good example of a design pattern that can be simpler in Python
if you leverage functions as first-class objects. In the following section, we
describe and implement Strategy using the “classic” structure described in
Design Patterns. If you are familiar with the classic pattern, you can skip to
“Function-Oriented Strategy” where we refactor the code using functions,
significantly reducing the line count.

Classic Strategy
The UML class diagram in Figure 10-1 depicts an arrangement of classes
that exemplifies the Strategy pattern.





Figure 10-1. UML class diagram for order discount processing implemented with the Strategy design
pattern

The Strategy pattern is summarized like this in Design Patterns:

Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

A clear example of Strategy applied in the ecommerce domain is computing
discounts to orders according to the attributes of the customer or inspection
of the ordered items.

Consider an online store with these discount rules:

Customers with 1,000 or more fidelity points get a global 5%
discount per order.

A 10% discount is applied to each line item with 20 or more units
in the same order.

Orders with at least 10 distinct items get a 7% global discount.

For brevity, let’s assume that only one discount may be applied to an order.

The UML class diagram for the Strategy pattern is depicted in Figure 10-1.
Its participants are:

Context

Provides a service by delegating some computation to interchangeable
components that implement alternative algorithms. In the ecommerce
example, the context is an Order, which is configured to apply a
promotional discount according to one of several algorithms.

Strategy

The interface common to the components that implement the different
algorithms. In our example, this role is played by an abstract class
called Promotion.



Concrete Strategy

One of the concrete subclasses of Strategy. FidelityPromo,
BulkPromo, and LargeOrderPromo are the three concrete
strategies implemented.

The code in Example 10-1 follows the blueprint in Figure 10-1. As
described in Design Patterns, the concrete strategy is chosen by the client
of the context class. In our example, before instantiating an order, the
system would somehow select a promotional discount strategy and pass it to
the Order constructor. The selection of the strategy is outside the scope of
the pattern.

Example 10-1. Implementation of the Order class with pluggable discount
strategies.
from abc import ABC, abstractmethod 
from collections.abc import Sequence 
from decimal import Decimal 
from typing import NamedTuple, Optional 
 
 
class Customer(NamedTuple): 
    name: str 
    fidelity: int 
 
 
class LineItem(NamedTuple): 
    product: str 
    quantity: int 
    price: Decimal 
 
    def total(self) -> Decimal: 
        return self.price * self.quantity 
 
 
class Order(NamedTuple):  # the Context 
    customer: Customer 
    cart: Sequence[LineItem] 
    promotion: Optional['Promotion'] = None 
 
    def total(self) -> Decimal: 
        totals = (item.total() for item in self.cart) 



        return sum(totals, start=Decimal(0)) 
 
    def due(self) -> Decimal: 
        if self.promotion is None: 
            discount = Decimal(0) 
        else: 
            discount = self.promotion.discount(self) 
        return self.total() - discount 
 
    def __repr__(self): 
        return f'<Order total: {self.total():.2f} due: 
{self.due():.2f}>' 
 
 
class Promotion(ABC):  # the Strategy: an abstract base class 
    @abstractmethod 
    def discount(self, order: Order) -> Decimal: 
        """Return discount as a positive dollar amount""" 
 
 
class FidelityPromo(Promotion):  # first Concrete Strategy 
    """5% discount for customers with 1000 or more fidelity 
points""" 
 
    def discount(self, order: Order) -> Decimal: 
        rate = Decimal('0.05') 
        if order.customer.fidelity >= 1000: 
            return order.total() * rate 
        return Decimal(0) 
 
 
class BulkItemPromo(Promotion):  # second Concrete Strategy 
    """10% discount for each LineItem with 20 or more units""" 
 
    def discount(self, order: Order) -> Decimal: 
        discount = Decimal(0) 
        for item in order.cart: 
            if item.quantity >= 20: 
                discount += item.total() * Decimal('0.1') 
        return discount 
 
 
class LargeOrderPromo(Promotion):  # third Concrete Strategy 
    """7% discount for orders with 10 or more distinct items""" 
 
    def discount(self, order: Order) -> Decimal: 
        distinct_items = {item.product for item in order.cart} 
        if len(distinct_items) >= 10: 



            return order.total() * Decimal('0.07') 
        return Decimal(0)

Note that in Example 10-1, I coded Promotion as an abstract base class
(ABC), to use the @abstractmethod decorator and make the pattern
more explicit.

Example 10-2 shows doctests used to demonstrate and verify the operation
of a module implementing the rules described earlier.

Example 10-2. Sample usage of Order class with different promotions
applied.
    >>> joe = Customer('John Doe', 0)   
    >>> ann = Customer('Ann Smith', 1100) 
    >>> cart = (LineItem('banana', 4, Decimal('.5')),   
    ...         LineItem('apple', 10, Decimal('1.5')), 
    ...         LineItem('watermelon', 5, Decimal(5))) 
    >>> Order(joe, cart, FidelityPromo())   
    <Order total: 42.00 due: 42.00> 
    >>> Order(ann, cart, FidelityPromo())   
    <Order total: 42.00 due: 39.90> 
    >>> banana_cart = (LineItem('banana', 30, Decimal('.5')),   
    ...                LineItem('apple', 10, Decimal('1.5'))) 
    >>> Order(joe, banana_cart, BulkItemPromo())   
    <Order total: 30.00 due: 28.50> 
    >>> long_cart = tuple(LineItem(str(sku), 1, Decimal(1))  
    ...                  for sku in range(10)) 
    >>> Order(joe, long_cart, LargeOrderPromo())   
    <Order total: 10.00 due: 9.30> 
    >>> Order(joe, cart, LargeOrderPromo()) 
    <Order total: 42.00 due: 42.00>

Two customers: joe has 0 fidelity points, ann has 1,100.

One shopping cart with three line items.

The FidelityPromo promotion gives no discount to joe.

ann gets a 5% discount because she has at least 1,000 points.

The banana_cart has 30 units of the "banana" product and 10
apples.



Thanks to the BulkItemPromo, joe gets a $1.50 discount on the
bananas.

long_cart has 10 different items at $1.00 each.

joe gets a 7% discount on the whole order because of
LargerOrderPromo.

Example 10-1 works perfectly well, but the same functionality can be
implemented with less code in Python by using functions as objects. The
next section shows how.

Function-Oriented Strategy
Each concrete strategy in Example 10-1 is a class with a single method,
discount. Furthermore, the strategy instances have no state (no instance
attributes). You could say they look a lot like plain functions, and you
would be right. Example 10-3 is a refactoring of Example 10-1, replacing
the concrete strategies with simple functions and removing the Promo
abstract class. Only small adjustments are needed in the Order class.

Example 10-3. Order class with discount strategies implemented as
functions.
from collections.abc import Sequence 
from dataclasses import dataclass 
from decimal import Decimal 
from typing import Optional, Callable, NamedTuple 
 
 
class Customer(NamedTuple): 
    name: str 
    fidelity: int 
 
 
class LineItem(NamedTuple): 
    product: str 
    quantity: int 
    price: Decimal 
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    def total(self): 
        return self.price * self.quantity 
 
@dataclass(frozen=True) 
class Order:  # the Context 
    customer: Customer 
    cart: Sequence[LineItem] 
    promotion: Optional[Callable[['Order'], Decimal]] = None   
 
    def total(self) -> Decimal: 
        totals = (item.total() for item in self.cart) 
        return sum(totals, start=Decimal(0)) 
 
    def due(self) -> Decimal: 
        if self.promotion is None: 
            discount = Decimal(0) 
        else: 
            discount = self.promotion(self)   
        return self.total() - discount 
 
    def __repr__(self): 
        return f'<Order total: {self.total():.2f} due: 
{self.due():.2f}>' 
 
 
 

 
 
def fidelity_promo(order: Order) -> Decimal:   
    """5% discount for customers with 1000 or more fidelity 
points""" 
    if order.customer.fidelity >= 1000: 
        return order.total() * Decimal('0.05') 
    return Decimal(0) 
 
 
def bulk_item_promo(order: Order) -> Decimal: 
    """10% discount for each LineItem with 20 or more units""" 
    discount = Decimal(0) 
    for item in order.cart: 
        if item.quantity >= 20: 
            discount += item.total() * Decimal('0.1') 
    return discount 
 
 
def large_order_promo(order: Order) -> Decimal: 
    """7% discount for orders with 10 or more distinct items""" 
    distinct_items = {item.product for item in order.cart} 



    if len(distinct_items) >= 10: 
        return order.total() * Decimal('0.07') 
    return Decimal(0)

This type hint says: promotion may be None, or it may be a callable
that takes an Order argument and returns a Decimal.

To compute a discount, call the self.promotion callable, passing
self as an argument. See below for the reason.

No abstract class.

Each strategy is a function.

WHY SELF.PROMOTION(SELF)
In the Order class, promotion is not a method. It’s an instance attribute that happens
to be callable. So the first part of the expression, self.promotion, retrieves that
callable. To invoke it, we must provide an instance of Order, which in this case is
self. That’s why self appears twice in that expression.

“Methods Are Descriptors” will explain the mechanism that binds methods to instances
automatically. It does not apply to promotion because it is not a method.

The code in Example 10-3 is shorter than Example 10-1. Using the new
Order is also a bit simpler, as shown in the Example 10-4 doctests.

Example 10-4. Sample usage of Order class with promotions as functions
    >>> joe = Customer('John Doe', 0)   
    >>> ann = Customer('Ann Smith', 1100) 
    >>> cart = [LineItem('banana', 4, Decimal('.5')), 
    ...         LineItem('apple', 10, Decimal('1.5')), 
    ...         LineItem('watermelon', 5, Decimal(5))] 
    >>> Order(joe, cart, fidelity_promo)   
    <Order total: 42.00 due: 42.00> 
    >>> Order(ann, cart, fidelity_promo) 
    <Order total: 42.00 due: 39.90> 
    >>> banana_cart = [LineItem('banana', 30, Decimal('.5')), 
    ...                LineItem('apple', 10, Decimal('1.5'))] 
    >>> Order(joe, banana_cart, bulk_item_promo)   



    <Order total: 30.00 due: 28.50> 
    >>> long_cart = [LineItem(str(item_code), 1, Decimal(1)) 
    ...               for item_code in range(10)] 
    >>> Order(joe, long_cart, large_order_promo) 
    <Order total: 10.00 due: 9.30> 
    >>> Order(joe, cart, large_order_promo) 
    <Order total: 42.00 due: 42.00>

Same test fixtures as Example 10-1.

To apply a discount strategy to an Order, just pass the promotion
function as an argument.

A different promotion function is used here and in the next test.

Note the callouts in Example 10-4: there is no need to instantiate a new
promotion object with each new order: the functions are ready to use.

It is interesting to note that in Design Patterns the authors suggest:
“Strategy objects often make good flyweights.”  A definition of the
Flyweight in another part of that work states: “A flyweight is a shared
object that can be used in multiple contexts simultaneously.”  The sharing
is recommended to reduce the cost of creating a new concrete strategy
object when the same strategy is applied over and over again with every
new context—with every new Order instance, in our example. So, to
overcome a drawback of the Strategy pattern—its runtime cost—the authors
recommend applying yet another pattern. Meanwhile, the line count and
maintenance cost of your code are piling up.

A thornier use case, with complex concrete strategies holding internal state,
may require all the pieces of the Strategy and Flyweight design patterns
combined. But often concrete strategies have no internal state; they only
deal with data from the context. If that is the case, then by all means use
plain old functions instead of coding single-method classes implementing a
single-method interface declared in yet another class. A function is more
lightweight than an instance of a user-defined class, and there is no need for
Flyweight because each strategy function is created just once per Python
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process when it loads the module. A plain function is also “a shared object
that can be used in multiple contexts simultaneously.”

Now that we have implemented the Strategy pattern with functions, other
possibilities emerge. Suppose you want to create a “meta-strategy” that
selects the best available discount for a given Order. In the following
sections we study additional refactorings that implement this requirement
using a variety of approaches that leverage functions and modules as
objects.

Choosing the Best Strategy: Simple Approach
Given the same customers and shopping carts from the tests in Example 10-
4, we now add three additional tests in Example 10-5.

Example 10-5. The best_promo function applies all discounts and returns
the largest
    >>> Order(joe, long_cart, best_promo)   
    <Order total: 10.00 due: 9.30> 
    >>> Order(joe, banana_cart, best_promo)   
    <Order total: 30.00 due: 28.50> 
    >>> Order(ann, cart, best_promo)   
    <Order total: 42.00 due: 39.90>

best_promo selected the larger_order_promo for customer
joe.

Here joe got the discount from bulk_item_promo for ordering lots
of bananas.

Checking out with a simple cart, best_promo gave loyal customer
ann the discount for the fidelity_promo.

The implementation of best_promo is very simple. See Example 10-6.

Example 10-6. best_promo finds the maximum discount iterating over a list
of functions



promos = [fidelity_promo, bulk_item_promo, large_order_promo]   
 
 
def best_promo(order: Order) -> Decimal:   
    """Compute the best discount available""" 
    return max(promo(order) for promo in promos)  

promos: list of the strategies implemented as functions.

best_promo takes an instance of Order as argument, as do the other
*_promo functions.

Using a generator expression, we apply each of the functions from
promos to the order, and return the maximum discount computed.

Example 10-6 is straightforward: promos is a list of functions. Once
you get used to the idea that functions are first-class objects, it naturally
follows that building data structures holding functions often makes sense.

Although Example 10-6 works and is easy to read, there is some duplication
that could lead to a subtle bug: to add a new promotion strategy, we need to
code the function and remember to add it to the promos list, or else the
new promotion will work when explicitly passed as an argument to Order,
but will not be considered by best_promotion.

Read on for a couple of solutions to this issue.

Finding Strategies in a Module
Modules in Python are also first-class objects, and the standard library
provides several functions to handle them. The built-in globals is
described as follows in the Python docs:

globals()

Return a dictionary representing the current global symbol table. This is
always the dictionary of the current module (inside a function or



method, this is the module where it is defined, not the module from
which it is called).

Example 10-7 is a somewhat hackish way of using globals to help
best_promo automatically find the other available *_promo functions.

Example 10-7. The promos list is built by introspection of the module
global namespace
from decimal import Decimal 
from strategy import Order 
from strategy import ( 
    fidelity_promo, bulk_item_promo, large_order_promo   
) 
 
promos = [promo for name, promo in globals().items()   
                if name.endswith('_promo') and         
                   name != 'best_promo'                
] 
 
 
def best_promo(order: Order) -> Decimal:               
    """Compute the best discount available""" 
    return max(promo(order) for promo in promos)

Import the promotion functions so they are available in the global
namespace.

Iterate over each item in the dict returned by globals().

Select only values where the name ends with the _promo suffix and…

Filter out best_promo itself, to avoid an infinite recursion when
best_promo is called.

No changes in best_promo.

Another way of collecting the available promotions would be to create a
module and put all the strategy functions there, except for best_promo.
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In Example 10-8, the only significant change is that the list of strategy
functions is built by introspection of a separate module called
promotions. Note that Example 10-8 depends on importing the
promotions module as well as inspect, which provides high-level
introspection functions.

Example 10-8. The promos list is built by introspection of a new promotions
module
from decimal import Decimal 
import inspect 
 
from strategy import Order 
import promotions 
 
 
promos = [func for _, func in inspect.getmembers(promotions, 
inspect.isfunction)] 
 
 
def best_promo(order: Order) -> Decimal: 
    """Compute the best discount available""" 
    return max(promo(order) for promo in promos)

The function inspect.getmembers returns the attributes of an object
—in this case, the promotions module—optionally filtered by a
predicate (a boolean function). We use inspect.isfunction to get
only the functions from the module.

Example 10-8 works regardless of the names given to the functions; all that
matters is that the promotions module contains only functions that
calculate discounts given orders. Of course, this is an implicit assumption of
the code. If someone were to create a function with a different signature in
the promotions module, then best_promo would break while trying
to apply it to an order.

We could add more stringent tests to filter the functions, by inspecting their
arguments for instance. The point of Example 10-8 is not to offer a
complete solution, but to highlight one possible use of module
introspection.



A more explicit alternative to dynamically collecting promotional discount
functions would be to use a simple decorator. That’s next.

Decorator-Enhanced Strategy Pattern
Recall that our main issue with Example 10-6 is the repetition of the
function names in their definitions and then in the promos list used by the
best_promo function to determine the highest discount applicable. The
repetition is problematic because someone may add a new promotional
strategy function and forget to manually add it to the promos list—in
which case, best_promo will silently ignore the new strategy,
introducing a subtle bug in the system. Example 10-9 solves this problem
with the technique covered in “Registration decorators”.

Example 10-9. The promos list is filled by the promotion decorator
Promotion = Callable[[Order], Decimal] 
 
promos: list[Promotion] = []   
 
 
def promotion(promo: Promotion) -> Promotion:   
    promos.append(promo) 
    return promo 
 
 
def best_promo(order: Order) -> Decimal: 
    """Compute the best discount available""" 
    return max(promo(order) for promo in promos)   
 
 
@promotion   
def fidelity(order: Order) -> Decimal: 
    """5% discount for customers with 1000 or more fidelity 
points""" 
    if order.customer.fidelity >= 1000: 
        return order.total() * Decimal('0.05') 
    return Decimal(0) 
 
 
@promotion 
def bulk_item(order: Order) -> Decimal: 
    """10% discount for each LineItem with 20 or more units""" 



    discount = Decimal(0) 
    for item in order.cart: 
        if item.quantity >= 20: 
            discount += item.total() * Decimal('0.1') 
    return discount 
 
 
@promotion 
def large_order(order: Order) -> Decimal: 
    """7% discount for orders with 10 or more distinct items""" 
    distinct_items = {item.product for item in order.cart} 
    if len(distinct_items) >= 10: 
        return order.total() * Decimal('0.07') 
    return Decimal(0)

The promos list is a module global, and starts empty.

promotion is a registration decorator: it returns the promo function
unchanged, after appending it to the promos list.

No changes needed to best_promo, because it relies on the promos
list.

Any function decorated by @promotion will be added to promos.

This solution has several advantages over the others presented before:

The promotion strategy functions don’t have to use special names
—no need for the _promo suffix.

The @promotion decorator highlights the purpose of the
decorated function, and also makes it easy to temporarily disable a
promotion: just comment out the decorator.

Promotional discount strategies may be defined in other modules,
anywhere in the system, as long as the @promotion decorator is
applied to them.

In the next section, we discuss Command—another design pattern that is
sometimes implemented via single-method classes when plain functions



would do.

The Command Pattern
Command is another design pattern that can be simplified by the use of
functions passed as arguments. Figure 10-2 shows the arrangement of
classes in the Command pattern.





Figure 10-2. UML class diagram for menu-driven text editor implemented with the Command design
pattern. Each command may have a different receiver: the object that implements the action. For

PasteCommand, the receiver is the Document. For OpenCommand, the receiver is the application.

The goal of Command is to decouple an object that invokes an operation
(the Invoker) from the provider object that implements it (the Receiver). In
the example from Design Patterns, each invoker is a menu item in a
graphical application, and the receivers are the document being edited or
the application itself.

The idea is to put a Command object between the two, implementing an
interface with a single method, execute, which calls some method in the
Receiver to perform the desired operation. That way the Invoker does not
need to know the interface of the Receiver, and different receivers can be
adapted through different Command subclasses. The Invoker is configured
with a concrete command and calls its execute method to operate it. Note
in Figure 10-2 that MacroCommand may store a sequence of commands;
its execute() method calls the same method in each command stored.

Quoting from Gamma et al., “Commands are an object-oriented
replacement for callbacks.” The question is: do we need an object-oriented
replacement for callbacks? Sometimes yes, but not always.

Instead of giving the Invoker a Command instance, we can simply give it a
function. Instead of calling command.execute(), the Invoker can just
call command(). The MacroCommand can be implemented with a class
implementing __call__. Instances of MacroCommand would be
callables, each holding a list of functions for future invocation, as
implemented in Example 10-10.

Example 10-10. Each instance of MacroCommand has an internal list of
commands
class MacroCommand: 
    """A command that executes a list of commands""" 
 
    def __init__(self, commands): 
        self.commands = list(commands)   
 
    def __call__(self): 



        for command in self.commands:   
            command()

Building a list from the commands arguments ensures that it is iterable
and keeps a local copy of the command references in each
MacroCommand instance.

When an instance of MacroCommand is invoked, each command in
self.commands is called in sequence.

More advanced uses of the Command pattern—to support undo, for
example—may require more than a simple callback function. Even then,
Python provides a couple of alternatives that deserve consideration:

A callable instance like MacroCommand in Example 10-10 can
keep whatever state is necessary, and provide extra methods in
addition to __call__.

A closure can be used to hold the internal state of a function
between calls.

This concludes our rethinking of the Command pattern with first-class
functions. At a high level, the approach here was similar to the one we
applied to Strategy: replacing with callables the instances of a participant
class that implemented a single-method interface. After all, every Python
callable implements a single-method interface and that method is named
__call__.



Chapter Summary
As Peter Norvig pointed out a couple of years after the classic Design
Patterns book appeared, “16 of 23 patterns have qualitatively simpler
implementation in Lisp or Dylan than in C++ for at least some uses of each
pattern” (slide 9 of Norvig’s “Design Patterns in Dynamic Languages”
presentation). Python shares some of the dynamic features of the Lisp and
Dylan languages, in particular first-class functions, our focus in this part of
the book.

From the same talk quoted at the start of this chapter, in reflecting on the
20th anniversary of Design Patterns: Elements of Reusable Object-Oriented
Software, Ralph Johnson has stated that one of the failings of the book is
“Too much emphasis on patterns as end-points instead of steps in the design
process.”  In this chapter, we used the Strategy pattern as a starting point: a
working solution that we could simplify using first-class functions.

In many cases, functions or callable objects provide a more natural way of
implementing callbacks in Python than mimicking the Strategy or the
Command patterns as described by Gamma, Helm, Johnson & Vlissides.
The refactoring of Strategy and the discussion of Command in this chapter
are examples of a more general insight: sometimes you may encounter a
design pattern or an API that requires that components implement an
interface with a single method, and that method has a generic-sounding
name such as “execute”, “run”, or “do_it”. Such patterns or APIs often can
be implemented with less boilerplate code in Python using functions as
first-class objects.

Further Reading
“Recipe 8.21. Implementing the Visitor Pattern,” in the Python Cookbook,
Third Edition (O’Reilly), by David Beazley and Brian K. Jones, presents an
elegant implementation of the Visitor pattern in which a NodeVisitor
class handles methods as first-class objects.
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On the general topic of design patterns, the choice of readings for the
Python programmer is not as broad as what is available to other language
communities.

Learning Python Design Patterns, by Gennadiy Zlobin (Packt), is the only
book that I have seen entirely devoted to patterns in Python. But Zlobin’s
work is quite short (100 pages) and covers eight of the original 23 design
patterns.

Expert Python Programming by Tarek Ziadé (Packt) is one of the best
intermediate-level Python books in the market, and its final chapter, “Useful
Design Patterns,” presents several of the classic patterns from a Pythonic
perspective.

Alex Martelli has given several talks about Python Design Patterns. There
is a video of his EuroPython 2011 presentation and a set of slides on his
personal website. I’ve found different slide decks and videos over the years,
of varying lengths, so it is worthwhile to do a thorough search for his name
with the words “Python Design Patterns.” A publisher told me Martelli is
working on a book about this subject. I will certainly get it when it comes
out.

There are many books about design patterns in the context of Java, but
among them the one I like most is Head First Design Patterns, Second
Edition by Eric Freeman & Elisabeth Robson (O’Reilly). It explains 16 of
the 23 classic patterns. If you like the wacky style of the Head First series
and need an introduction to this topic, you will love that work. It is Java-
centric, but the Second Edition was uptaded to reflect the addition of first-
class functions in Java, making some of the examples closer to code we’d
write in Python.

For a fresh look at patterns from the point of view of a dynamic language
with duck typing and first-class functions, Design Patterns in Ruby by Russ
Olsen (Addison-Wesley) has many insights that are also applicable to
Python. In spite of their many syntactic differences, at the semantic level
Python and Ruby are closer to each other than to Java or C++.

http://bit.ly/1HGBXvx
http://www.aleax.it/gdd_pydp.pdf


In Design Patterns in Dynamic Languages (slides), Peter Norvig shows how
first-class functions (and other dynamic features) make several of the
original design patterns either simpler or unnecessary.

The Introduction of the original Design Patterns book by Gamma et al. is
worth the price of the book—more than the catalog of 23 patterns which
includes recipes ranging from very important to rarely useful. The widely
quoted design principles “Program to an interface, not an implementation”
and “Favor object composition over class inheritance” both come from that
Introduction.

The application of patterns to design originated with the architect
Christopher Alexander, presented in the book A Pattern Language ( Oxford
University Press, 1977). Alexander’s idea is to create a standard vocabulary
allowing teams to share common design decisions while designing
buildings. M. J. Dominus wrote “Design Patterns” Aren’t: an intriguing
slide deck and postscript text arguing that Alexander’s original vision of
patterns is more profound, more human, and also applicable to software
engineering.

http://norvig.com/design-patterns/
https://perl.plover.com/yak/design/


SOAPBOX

Python has first-class functions and first-class types, features that
Norvig claims affect 10 of the 23 patterns (slide 10 of Design Patterns
in Dynamic Languages). In the Chapter 9, we saw that Python also has
generic functions (“Single Dispatch Generic Functions”), a limited form
of the CLOS multimethods that Gamma et al. suggest as a simpler way
to implement the classic Visitor pattern. Norvig, on the other hand, says
that multimethods simplify the Builder pattern (slide 10). Matching
design patterns to language features is not an exact science.

In classrooms around the world, design patterns are frequently taught
using Java examples. I’ve heard more than one student claim that they
were led to believe that the original design patterns are useful in any
implementation language. It turns out that the “classic” 23 patterns from
the Gamma et al. book apply to “classic” Java very well in spite of
being originally presented mostly in the context of C++—a few have
Smalltalk examples in the book. But that does not mean every one of
those patterns applies equally well in any language. The authors are
explicit right at the beginning of their book that “some of our patterns
are supported directly by the less common object-oriented languages”
(recall full quote on first page of this chapter).

The Python bibliography about design patterns is very thin, compared
to that of Java, C++, or Ruby. In “Further Reading” I mentioned
Learning Python Design Patterns by Gennadiy Zlobin, which was
published as recently as November 2013. In contrast, Russ Olsen’s
Design Patterns in Ruby was published in 2007 and has 384 pages—
284 more than Zlobin’s work.

Now that Python is becoming increasingly popular in academia, let’s
hope more will be written about design patterns in the context of this
language. Also, Java 8 introduced method references and anonymous
functions, and those highly anticipated features are likely to prompt
fresh approaches to patterns in Java—recognizing that as languages

http://norvig.com/design-patterns/


evolve, so must our understanding of how to apply the classic design
patterns.

The __call__ of the wild

As we collaborated to put the final touches to this book, tech reviewer
Leonardo Rochael wondered…

If functions have a __call__ method, and methods are also callable,
do __call__ methods also have a __call__ method?

I don’t know if his discovery is useful, but it is a fun fact:

>>> def turtle(): 
...     return 'eggs' 
... 
>>> turtle() 
'eggs' 
>>> turtle.__call__() 
'eggs' 
>>> turtle.__call__.__call__() 
'eggs' 
>>> turtle.__call__.__call__.__call__() 
'eggs' 
>>> turtle.__call__.__call__.__call__.__call__() 
'eggs' 
>>> turtle.__call__.__call__.__call__.__call__.__call__() 
'eggs' 
>>> 
turtle.__call__.__call__.__call__.__call__.__call__.__call__() 
'eggs' 
>>> 
turtle.__call__.__call__.__call__.__call__.__call__.__call__._
_call__() 
'eggs'

Turtles all the way down!

1  From a slide in the talk “Root Cause Analysis of Some Faults in Design Patterns,” presented
by Ralph Johnson at IME/CCSL, Universidade de São Paulo, Nov. 15, 2014.

2  Quoted from page 4 of Design Patterns (Addison-Wesley, 1995).

https://en.wikipedia.org/wiki/Turtles_all_the_way_down


3  I had to reimplement Order with @dataclass due to a bug in Mypy. You may ignore this
detail, because this class works with NamedTuple as well, just like in Example 10-1. If
Order is a NamedTuple, Mypy 0.910 crashes when checking the type hint for
promotion. I tried adding # type ignore to that specific line, but Mypy crashed
anyway. Mypy handles the same type hint correctly if Order is built with @dataclass.
Issue #9397 is unresolved as of July 19, 2021. Hopefully it will be fixed by the time you read
this.

4  See page 323 of Design Patterns.

5  idem, p. 196

6  flake8 and VS Code both complain that these names are imported but not used. By definition,
static analysis tools cannot understand the dynamic nature of Python. If we heed every advice
from such tools, we’ll soon be writing grim and verbose Java-like code with Python syntax.

7  “Root Cause Analysis of Some Faults in Design Patterns”, presented by Johnson at IME-USP,
November 15, 2014.

https://github.com/python/mypy/issues/9397


Part IV. Classes and Protocols



Chapter 11. A Pythonic Object

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 11th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

For a library or framework to be Pythonic is to make it as easy and
natural as possible for a Python programmer to pick up how to perform a
task. .

—Martijn Faassen, creator of Python and JavaScript
frameworks

Thanks to the Python Data Model, your user-defined types can behave as
naturally as the built-in types. And this can be accomplished without
inheritance, in the spirit of duck typing: you just implement the methods
needed for your objects to behave as expected.

In previous chapters, we studied the behavior of many built-in objects. We
will now build user-defined classes that behave as real Python objects. Your
application classes probably don’t need and should not implement as many
special methods as the examples in this chapter. But if you are writing a
library or a framework, the programmers who will use your classes may
expect them to behave like the classes that Python provides. Fulfilling that
expectation is one way of being “Pythonic.”
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This chapter starts where Chapter 1 ended, by showing how to implement
several special methods that are commonly seen in Python objects of many
different types.

In this chapter, we will see how to:

Support the built-in functions that convert objects to other types
(e.g., repr(), bytes(), complex(), etc).

Implement an alternative constructor as a class method.

Extend the format mini-language used by f-strings, the format()
built-in, and the str.format() method.

Provide read-only access to attributes.

Make an object hashable for use in sets and as dict keys.

Save memory with the use of __slots__.

We’ll do all that as we develop a simple two-dimensional Euclidean vector
type, Vector2d. This code will be the foundation of an N-dimensional
vector class in Chapter 12.

The evolution of the example will be paused to discuss two conceptual
topics:

How and when to use the @classmethod and
@staticmethod decorators.

Private and protected attributes in Python: usage, conventions, and
limitations.

What’s new in this chapter
I added a new epigraph and a few words in the second paragraph of the
chapter to address the concept of “Pythonic”—which was only discussed at
the very end in the first edition.



“Formatted Displays” was updated to mention f-strings, introduced in
Python 3.6. It’s a small change because f-strings support the same
formatting mini-language as the format() built-in and the
str.format() method, so any previously implemented __format__
methods simply work with f-strings.

The rest of the chapter barely changed—the special methods are mostly the
same since Python 3.0, and the core ideas appeared in Python 2.2.

Let’s get started with the object representation methods.

Object Representations
Every object-oriented language has at least one standard way of getting a
string representation from any object. Python has two:

repr()

Return a string representing the object as the developer wants to see it.
It’s what you get when the Python console or a debugger shows an
object.

str()

Return a string representing the object as the user wants to see it. It’s
what you get when you print() an object.

The special methods __repr__ and __str__ support repr() and
str(), as we saw in Chapter 1.

There are two additional special methods to support alternative
representations of objects: __bytes__ and __format__. The
__bytes__ method is analogous to __str__: it’s called by bytes() to
get the object represented as a byte sequence. Regarding __format__, it
is used by f-strings, by the built-in function format(), and by the
str.format() method. They call
obj.__format__(format_spec) to get string displays of objects



using special formatting codes. We’ll cover __bytes__ in the next
example, and __format__ after that.

WARNING
If you’re coming from Python 2, remember that in Python 3 __repr__, __str__,
and __format__ must always return Unicode strings (type str). Only __bytes__
is supposed to return a byte sequence (type bytes).

Vector Class Redux
In order to demonstrate the many methods used to generate object
representations, we’ll use a Vector2d class similar to the one we saw in
Chapter 1. We will build on it in this and future sections. Example 11-1
illustrates the basic behavior we expect from a Vector2d instance.

Example 11-1. Vector2d instances have several representations
    >>> v1 = Vector2d(3, 4) 
    >>> print(v1.x, v1.y)   
    3.0 4.0 
    >>> x, y = v1   
    >>> x, y 
    (3.0, 4.0) 
    >>> v1   
    Vector2d(3.0, 4.0) 
    >>> v1_clone = eval(repr(v1))   
    >>> v1 == v1_clone   
    True 
    >>> print(v1)   
    (3.0, 4.0) 
    >>> octets = bytes(v1)   
    >>> octets 
    
b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x
00\\x10@' 
    >>> abs(v1)   
    5.0 
    >>> bool(v1), bool(Vector2d(0, 0))   
    (True, False)



The components of a Vector2d can be accessed directly as attributes
(no getter method calls).

A Vector2d can be unpacked to a tuple of variables.

The repr of a Vector2d emulates the source code for constructing
the instance.

Using eval here shows that the repr of a Vector2d is a faithful
representation of its constructor call.

Vector2d supports comparison with ==; this is useful for testing.

print calls str, which for Vector2d produces an ordered pair
display.

bytes uses the __bytes__ method to produce a binary
representation.

abs uses the __abs__ method to return the magnitude of the
Vector2d.

bool uses the __bool__ method to return False for a Vector2d
of zero magnitude or True otherwise.

Vector2d from Example 11-1 is implemented in vector2d_v0.py
(Example 11-2). The code is based on Example 1-2, except for the methods
for the + and * operations, which we’ll see later in Chapter 16. We’ll add
the method for == since it’s useful for testing. At this point, Vector2d
uses several special methods to provide operations that a Pythonista expects
in a well-designed object.

Example 11-2. vector2d_v0.py: methods so far are all special methods
from array import array 
import math 
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class Vector2d: 
    typecode = 'd'   
 
    def __init__(self, x, y): 
        self.x = float(x)     
        self.y = float(y) 
 
    def __iter__(self): 
        return (i for i in (self.x, self.y))   
 
    def __repr__(self): 
        class_name = type(self).__name__ 
        return '{}({!r}, {!r})'.format(class_name, *self)   
 
    def __str__(self): 
        return str(tuple(self))   
 
    def __bytes__(self): 
        return (bytes([ord(self.typecode)]) +   
                bytes(array(self.typecode, self)))   
 
    def __eq__(self, other): 
        return tuple(self) == tuple(other)   
 
    def __abs__(self): 
        return math.hypot(self.x, self.y)   
 
    def __bool__(self): 
        return bool(abs(self))  

typecode is a class attribute we’ll use when converting Vector2d
instances to/from bytes.

Converting x and y to float in __init__ catches errors early,
which is helpful in case Vector2d is called with unsuitable
arguments.

__iter__ makes a Vector2d iterable; this is what makes unpacking
work (e.g, x, y = my_vector). We implement it simply by using a
generator expression to yield the components one after the other.3



__repr__ builds a string by interpolating the components with {!r}
to get their repr; because Vector2d is iterable, *self feeds the x
and y components to format.

From an iterable Vector2d, it’s easy to build a tuple for display as
an ordered pair.

To generate bytes, we convert the typecode to bytes and
concatenate…

…bytes converted from an array built by iterating over the instance.

To quickly compare all components, build tuples out of the operands.
This works for operands that are instances of Vector2d, but has
issues. See the following warning.

The magnitude is the length of the hypotenuse of the right triangle
formed by the x and y components.

__bool__ uses abs(self) to compute the magnitude, then converts
it to bool, so 0.0 becomes False, nonzero is True.

WARNING
Method __eq__ in Example 11-2 works for Vector2d operands but also returns
True when comparing Vector2d instances to other iterables holding the same
numeric values (e.g., Vector(3, 4) == [3, 4]). This may be considered a
feature or a bug. Further discussion needs to wait until Chapter 16, when we cover
operator overloading.

We have a fairly complete set of basic methods, but we still need a way to
rebuild a Vector2d from the binary representation produced by
bytes().



An Alternative Constructor
Since we can export a Vector2d as bytes, naturally we need a method
that imports a Vector2d from a binary sequence. Looking at the standard
library for inspiration, we find that array.array has a class method
named .frombytes that suits our purpose—we saw it in “Arrays”. We
adopt its name and use its functionality in a class method for Vector2d in
vector2d_v1.py (Example 11-3).

Example 11-3. Part of vector2d_v1.py: this snippet shows only the
frombytes class method, added to the Vector2d definition in vector2d_v0.py
(Example 11-2)
    @classmethod   
    def frombytes(cls, octets):   
        typecode = chr(octets[0])   
        memv = memoryview(octets[1:]).cast(typecode)   
        return cls(*memv)  

The classmethod decorator modifies a method so it can be called
directly on a class.

No self argument; instead, the class itself is passed as the first
argument—conventionally named cls.

Read the typecode from the first byte.

Create a memoryview from the octets binary sequence and use the
typecode to cast it.

Unpack the memoryview resulting from the cast into the pair of
arguments needed for the constructor.

I just used a classmethod decorator and it is very Python-specific, so
let’s have a word about it.
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classmethod Versus staticmethod
The classmethod decorator is not mentioned in the Python tutorial, and
neither is staticmethod. Anyone who has learned OO in Java may
wonder why Python has both of these decorators and not just one of them.

Let’s start with classmethod. Example 11-3 shows its use: to define a
method that operates on the class and not on instances. classmethod
changes the way the method is called, so it receives the class itself as the
first argument, instead of an instance. Its most common use is for
alternative constructors, like frombytes in Example 11-3. Note how the
last line of frombytes actually uses the cls argument by invoking it to
build a new instance: cls(*memv).

In contrast, the staticmethod decorator changes a method so that it
receives no special first argument. In essence, a static method is just like a
plain function that happens to live in a class body, instead of being defined
at the module level. Example 11-4 contrasts the operation of
classmethod and staticmethod.

Example 11-4. Comparing behaviors of classmethod and staticmethod
>>> class Demo: 
...     @classmethod 
...     def klassmeth(*args): 
...         return args   
...     @staticmethod 
...     def statmeth(*args): 
...         return args   
... 
>>> Demo.klassmeth()   
(<class '__main__.Demo'>,) 
>>> Demo.klassmeth('spam') 
(<class '__main__.Demo'>, 'spam') 
>>> Demo.statmeth()    
() 
>>> Demo.statmeth('spam') 
('spam',)

klassmeth just returns all positional arguments.



statmeth does the same.

No matter how you invoke it, Demo.klassmeth receives the Demo
class as the first argument.

Demo.statmeth behaves just like a plain old function.

NOTE
The classmethod decorator is clearly useful, but I’ve never seen a compelling use
case for staticmethod. If you want to define a function that does not interact with
the class, just define it in the module. Maybe the function is closely related even if it
never touches the class, so you may want to place it nearby in the code. Even so,
defining the function right before or after the class in the same module is close enough
for all practical purposes.

Now that we’ve seen what classmethod is good for (and that
staticmethod is not very useful), let’s go back to the issue of object
representation and see how to support formatted output.

Formatted Displays
The f-strings, the format() built-in function, and the str.format()
method delegate the actual formatting to each type by calling their
.__format__(format_spec) method. The format_spec is a
formatting specifier, which is either:

The second argument in format(my_obj, format_spec),
or

Whatever appears after the colon in a replacement field delimited
with {} inside an f-string or the fmt in fmt.str.format()

For example:
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>>> brl = 1 / 4.82  # BRL to USD currency conversion rate 
>>> brl 
0.20746887966804978 
>>> format(brl, '0.4f')   
'0.2075' 
>>> '1 BRL = {rate:0.2f} USD'.format(rate=brl)   
'1 BRL = 0.21 USD' 
>>> f'1 USD = {1 / brl:0.2f} BRL'   
'1 USD = 4.82 BRL'

Formatting specifier is '0.4f'.

Formatting specifier is '0.2f'. The rate part in the replacement
field is not part of the formatting specifier. It determines which keyword
argument of .format() goes into that replacement field.

Again, the formatting specifier is '0.2f'. The 1 / brl expression
is not part of it.

The second and third callouts make an important point: a format string such
as '{0.mass:5.3e}' actually uses two separate notations. The
'0.mass' to the left of the colon is the field_name part of the
replacement field syntax, and it can be an arbitrary expression in an f-string.
The '5.3e' after the colon is the formatting specifier. The notation used
in the formatting specifier is called the Format Specification Mini-
Language.

TIP
If f-strings, format() and str.format() are new to you, classroom experience
tells me it’s best to study the format() built-in function first, which uses just the

Format Specification Mini-Language. After you get the gist of that, read Formatted
string literals and Format String Syntax to learn about the {:} replacement field
notation, used in f-strings and str.format() method (including the !s, !r, and !a
conversion flags). F-strings don’t make str.format() obsolete: most of the time f-
strings solve the problem, but sometimes it’s better to specify the formatting string
elsewhere, and not where it will be rendered.

http://bit.ly/1Gt4vJF
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/library/string.html#format-string-syntax


A few built-in types have their own presentation codes in the Format
Specification Mini-Language. For example—among several other codes—
the int type supports b and x for base 2 and base 16 output, respectively,
while float implements f for a fixed-point display and % for a percentage
display:

>>> format(42, 'b') 
'101010' 
>>> format(2 / 3, '.1%') 
'66.7%'

The Format Specification Mini-Language is extensible because each class
gets to interpret the format_spec argument as it likes. For instance, the
classes in the datetime module use the same format codes in the
strftime() functions and in their __format__ methods. Here are a
couple examples using the format() built-in and the str.format()
method:

>>> from datetime import datetime 
>>> now = datetime.now() 
>>> format(now, '%H:%M:%S') 
'18:49:05' 
>>> "It's now {:%I:%M %p}".format(now) 
"It's now 06:49 PM"

If a class has no __format__, the method inherited from object returns
str(my_object). Because Vector2d has a __str__, this works:

>>> v1 = Vector2d(3, 4) 
>>> format(v1) 
'(3.0, 4.0)'

However, if you pass a format specifier, object.__format__ raises
TypeError:

>>> format(v1, '.3f') 
Traceback (most recent call last): 



  ... 
TypeError: non-empty format string passed to object.__format__

We will fix that by implementing our own format mini-language. The first
step will be to assume the format specifier provided by the user is intended
to format each float component of the vector. This is the result we want:

>>> v1 = Vector2d(3, 4) 
>>> format(v1) 
'(3.0, 4.0)' 
>>> format(v1, '.2f') 
'(3.00, 4.00)' 
>>> format(v1, '.3e') 
'(3.000e+00, 4.000e+00)'

Example 11-5 implements __format__ to produce the displays just
shown.

Example 11-5. Vector2d.format method, take #1
    # inside the Vector2d class 
 
    def __format__(self, fmt_spec=''): 
        components = (format(c, fmt_spec) for c in self)   
        return '({}, {})'.format(*components)  

Use the format built-in to apply the fmt_spec to each vector
component, building an iterable of formatted strings.

Plug the formatted strings in the formula '(x, y)'.

Now let’s add a custom formatting code to our mini-language: if the format
specifier ends with a 'p', we’ll display the vector in polar coordinates:
<r, θ>, where r is the magnitude and θ (theta) is the angle in radians.
The rest of the format specifier (whatever comes before the 'p') will be
used as before.



TIP
When choosing the letter for the custom format code I avoided overlapping with codes
used by other types. In Format Specification Mini-Language we see that integers use the
codes 'bcdoxXn', floats use 'eEfFgGn%', and strings use 's'. So I picked 'p' for
polar coordinates. Because each class interprets these codes independently, reusing a
code letter in a custom format for a new type is not an error, but may be confusing to
users.

To generate polar coordinates we already have the __abs__ method for
the magnitude, and we’ll code a simple angle method using the
math.atan2() function to get the angle. This is the code:

    # inside the Vector2d class 
 
    def angle(self): 
        return math.atan2(self.y, self.x)

With that, we can enhance our __format__ to produce polar coordinates.
See Example 11-6.

Example 11-6. Vector2d.format method, take #2, now with polar
coordinates
    def __format__(self, fmt_spec=''): 
        if fmt_spec.endswith('p'):   
            fmt_spec = fmt_spec[:-1]   
            coords = (abs(self), self.angle())   
            outer_fmt = '<{}, {}>'   
        else: 
            coords = self   
            outer_fmt = '({}, {})'   
        components = (format(c, fmt_spec) for c in coords)   
        return outer_fmt.format(*components)  

Format ends with 'p': use polar coordinates.

Remove 'p' suffix from fmt_spec.

Build tuple of polar coordinates: (magnitude, angle).

http://bit.ly/1Gt4vJF


Configure outer format with angle brackets.

Otherwise, use x, y components of self for rectangular coordinates.

Configure outer format with parentheses.

Generate iterable with components as formatted strings.

Plug formatted strings into outer format.

With Example 11-6, we get results similar to these:

>>> format(Vector2d(1, 1), 'p') 
'<1.4142135623730951, 0.7853981633974483>' 
>>> format(Vector2d(1, 1), '.3ep') 
'<1.414e+00, 7.854e-01>' 
>>> format(Vector2d(1, 1), '0.5fp') 
'<1.41421, 0.78540>'

As this section shows, it’s not hard to extend the format specification mini-
language to support user-defined types.

Now let’s move to a subject that’s not just about appearances: we will make
our Vector2d hashable, so we can build sets of vectors, or use them as
dict keys.

A Hashable Vector2d
As defined, so far our Vector2d instances are unhashable, so we can’t put
them in a set:

>>> v1 = Vector2d(3, 4) 
>>> hash(v1) 
Traceback (most recent call last): 
  ... 
TypeError: unhashable type: 'Vector2d' 
>>> set([v1]) 
Traceback (most recent call last): 



  ... 
TypeError: unhashable type: 'Vector2d'

To make a Vector2d hashable, we must implement __hash__
(__eq__ is also required, and we already have it). We also need to make
vector instances immutable, as we’ve seen in “What is Hashable”.

Right now, anyone can do v1.x = 7 and there is nothing in the code to
suggest that changing a Vector2d is forbidden. This is the behavior we
want:

>>> v1.x, v1.y 
(3.0, 4.0) 
>>> v1.x = 7 
Traceback (most recent call last): 
  ... 
AttributeError: can't set attribute

We’ll do that by making the x and y components read-only properties in
Example 11-7.

Example 11-7. vector2d_v3.py: only the changes needed to make Vector2d
immutable are shown here; see full listing in Example 11-11
class Vector2d: 
    typecode = 'd' 
 
    def __init__(self, x, y): 
        self.__x = float(x)   
        self.__y = float(y) 
 
    @property   
    def x(self):   
        return self.__x   
 
    @property   
    def y(self): 
        return self.__y 
 
    def __iter__(self): 
        return (i for i in (self.x, self.y))   
 
    # remaining methods: same as previous Vector2d



Use exactly two leading underscores (with zero or one trailing
underscore) to make an attribute private.

The @property decorator marks the getter method of a property.

The getter method is named after the public property it exposes: x.

Just return self.__x.

Repeat same formula for y property.

Every method that just reads the x, y components can stay as they were,
reading the public properties via self.x and self.y instead of the
private attribute, so this listing omits the rest of the code for the class.

NOTE
Vector.x and Vector.y are examples of read-only properties. Read/write
properties will be covered in Chapter 23, where we dive deeper into @property.

Now that our vectors are reasonably safe from accidental mutation, we can
implement the __hash__ method. It should return an int and ideally
take into account the hashes of the object attributes that are also used in the
__eq__ method, because objects that compare equal should have the same
hash. The __hash__ special method documentation suggests using the
bitwise XOR operator (^) to mix the hashes of the components, so that’s
what we do. The code for our Vector2d.__hash__ method is really
simple, as shown in Example 11-8.

Example 11-8. vector2d_v3.py: implementation of hash
    # inside class Vector2d: 
 
    def __hash__(self): 
        return hash(self.x) ^ hash(self.y)
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With the addition of the __hash__ method, we now have hashable
vectors:

>>> v1 = Vector2d(3, 4) 
>>> v2 = Vector2d(3.1, 4.2) 
>>> hash(v1), hash(v2) 
(7, 384307168202284039) 
>>> set([v1, v2]) 
{Vector2d(3.1, 4.2), Vector2d(3.0, 4.0)}

TIP
It’s not strictly necessary to implement properties or otherwise protect the instance
attributes to create a hashable type. Implementing __hash__ and __eq__ correctly is
all it takes. But the value of a hashable object is never supposed to change, so this
provided an excellent opportunity to talk about read-only properties.

If you are creating a type that has a sensible scalar numeric value, you may
also implement the __int__ and __float__ methods, invoked by the
int() and float() constructors—which are used for type coercion in
some contexts. There’s also a __complex__ method to support the
complex() built-in constructor. Perhaps Vector2d should provide
__complex__, but I’ll leave that as an exercise for you.

Supporting Positional Patterns
So far, Vector2d instances are compatible with keyword class patterns—
covered in “Keyword Class Patterns”.

For example, all of these keyword patterns work as expected:

Example 11-9. Keyword patterns for Vector2d subjects—requires Python
3.10.
def keyword_pattern_demo(v: Vector2d) -> None: 
    match v: 
        case Vector2d(x=0, y=0): 
            print(f'{v!r} is null') 
        case Vector2d(x=0): 



            print(f'{v!r} is vertical') 
        case Vector2d(y=0): 
            print(f'{v!r} is horizontal') 
        case Vector2d(x=x, y=y) if x==y: 
            print(f'{v!r} is diagonal') 
        case _: 
            print(f'{v!r} is awesome')

However, if you try to use a positional pattern like this:

        case Vector2d(_, 0): 
            print(f'{v!r} is horizontal')

You get:

TypeError: Vector2d() accepts 0 positional sub-patterns (1 given)

To make Vector2d work with positional patterns, we need to add a class
attribute named __match_args__ , listing the instance attributes in the
order they will be used for positional pattern matching:

class Vector2d: 
    __match_args__ = ('x', 'y') 
 
    # etc...

Now we can save a few keystrokes when writing patterns to match
Vector2d subjects:

Example 11-10. Positional patterns for Vector2d subjects—requires
Python 3.10.
def positional_pattern_demo(v: Vector2d) -> None: 
    match v: 
        case Vector2d(0, 0): 
            print(f'{v!r} is null') 
        case Vector2d(0): 
            print(f'{v!r} is vertical') 
        case Vector2d(_, 0): 
            print(f'{v!r} is horizontal') 
        case Vector2d(x, y) if x==y: 
            print(f'{v!r} is diagonal') 



        case _: 
            print(f'{v!r} is awesome')

The __match_args__ class attribute does not need to include all public
instance attributes. In particular, if the class __init__ has required and
optional arguments that are assigned to instance attributes, it may be
reasonable to name the required arguments in __match_args__, but not
the optional ones.

Let’s step back and review what we’ve coded so far in Vector2d.

Complete Listing of Vector2d, version 3
We have been working on Vector2d for a while, showing just snippets,
so Example 11-11 is a consolidated, full listing of vector2d_v3.py, including
the doctests I used when developing it.

Example 11-11. vector2d_v3.py: the full monty
""" 
A two-dimensional vector class 
 
    >>> v1 = Vector2d(3, 4) 
    >>> print(v1.x, v1.y) 
    3.0 4.0 
    >>> x, y = v1 
    >>> x, y 
    (3.0, 4.0) 
    >>> v1 
    Vector2d(3.0, 4.0) 
    >>> v1_clone = eval(repr(v1)) 
    >>> v1 == v1_clone 
    True 
    >>> print(v1) 
    (3.0, 4.0) 
    >>> octets = bytes(v1) 
    >>> octets 
    
b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x
00\\x10@' 
    >>> abs(v1) 
    5.0 
    >>> bool(v1), bool(Vector2d(0, 0)) 



    (True, False) 
 
 
Test of ``.frombytes()`` class method: 
 
    >>> v1_clone = Vector2d.frombytes(bytes(v1)) 
    >>> v1_clone 
    Vector2d(3.0, 4.0) 
    >>> v1 == v1_clone 
    True 
 
 
Tests of ``format()`` with Cartesian coordinates: 
 
    >>> format(v1) 
    '(3.0, 4.0)' 
    >>> format(v1, '.2f') 
    '(3.00, 4.00)' 
    >>> format(v1, '.3e') 
    '(3.000e+00, 4.000e+00)' 
 
 
Tests of the ``angle`` method:: 
 
    >>> Vector2d(0, 0).angle() 
    0.0 
    >>> Vector2d(1, 0).angle() 
    0.0 
    >>> epsilon = 10**-8 
    >>> abs(Vector2d(0, 1).angle() - math.pi/2) < epsilon 
    True 
    >>> abs(Vector2d(1, 1).angle() - math.pi/4) < epsilon 
    True 
 
 
Tests of ``format()`` with polar coordinates: 
 
    >>> format(Vector2d(1, 1), 'p')  # doctest:+ELLIPSIS 
    '<1.414213..., 0.785398...>' 
    >>> format(Vector2d(1, 1), '.3ep') 
    '<1.414e+00, 7.854e-01>' 
    >>> format(Vector2d(1, 1), '0.5fp') 
    '<1.41421, 0.78540>' 
 
 
Tests of `x` and `y` read-only properties: 
 
    >>> v1.x, v1.y 



    (3.0, 4.0) 
    >>> v1.x = 123 
    Traceback (most recent call last): 
      ... 
    AttributeError: can't set attribute 'x' 
 
 
Tests of hashing: 
 
    >>> v1 = Vector2d(3, 4) 
    >>> v2 = Vector2d(3.1, 4.2) 
    >>> hash(v1), hash(v2) 
    (7, 384307168202284039) 
    >>> len({v1, v2}) 
    2 
 
""" 
 
from array import array 
import math 
 
class Vector2d: 
    __match_args__ = ('x', 'y') 
 
    typecode = 'd' 
 
    def __init__(self, x, y): 
        self.__x = float(x) 
        self.__y = float(y) 
 
    @property 
    def x(self): 
        return self.__x 
 
    @property 
    def y(self): 
        return self.__y 
 
    def __iter__(self): 
        return (i for i in (self.x, self.y)) 
 
    def __repr__(self): 
        class_name = type(self).__name__ 
        return '{}({!r}, {!r})'.format(class_name, *self) 
 
    def __str__(self): 
        return str(tuple(self)) 
 



    def __bytes__(self): 
        return (bytes([ord(self.typecode)]) + 
                bytes(array(self.typecode, self))) 
 
    def __eq__(self, other): 
        return tuple(self) == tuple(other) 
 
    def __hash__(self): 
        return hash(self.x) ^ hash(self.y) 
 
    def __abs__(self): 
        return math.hypot(self.x, self.y) 
 
    def __bool__(self): 
        return bool(abs(self)) 
 
    def angle(self): 
        return math.atan2(self.y, self.x) 
 
    def __format__(self, fmt_spec=''): 
        if fmt_spec.endswith('p'): 
            fmt_spec = fmt_spec[:-1] 
            coords = (abs(self), self.angle()) 
            outer_fmt = '<{}, {}>' 
        else: 
            coords = self 
            outer_fmt = '({}, {})' 
        components = (format(c, fmt_spec) for c in coords) 
        return outer_fmt.format(*components) 
 
    @classmethod 
    def frombytes(cls, octets): 
        typecode = chr(octets[0]) 
        memv = memoryview(octets[1:]).cast(typecode) 
        return cls(*memv)

To recap, in this and the previous sections, we saw some essential special
methods that you may want to implement to have a full-fledged object.



NOTE
You should only implement these special methods if your application needs them. End
users don’t care if the objects that make up the application are “Pythonic” or not.

On the other hand, if your classes are part of a library for other Python programmers to
use, you can’t really guess what they will do with your objects, and they may expect
more of the “Pythonic” behaviors we are describing.

As coded in Example 11-11, Vector2d is a didactic example with a
laundry list of special methods related to object representation, not a
template for every user-defined class.

In the next section, we’ll take a break from Vector2d to discuss the
design and drawbacks of the private attribute mechanism in Python—the
double-underscore prefix in self.__x.

Private and “Protected” Attributes in Python
In Python, there is no way to create private variables like there is with the
private modifier in Java. What we have in Python is a simple
mechanism to prevent accidental overwriting of a “private” attribute in a
subclass.

Consider this scenario: someone wrote a class named Dog that uses a mood
instance attribute internally, without exposing it. You need to subclass Dog
as Beagle. If you create your own mood instance attribute without being
aware of the name clash, you will clobber the mood attribute used by the
methods inherited from Dog. This would be a pain to debug.

To prevent this, if you name an instance attribute in the form __mood (two
leading underscores and zero or at most one trailing underscore), Python
stores the name in the instance __dict__ prefixed with a leading
underscore and the class name, so in the Dog class, __mood becomes
_Dog__mood, and in Beagle it’s _Beagle__mood. This language
feature goes by the lovely name of name mangling.



Example 11-12 shows the result in the Vector2d class from Example 11-
7.

Example 11-12. Private attribute names are “mangled” by prefixing the _
and the class name
>>> v1 = Vector2d(3, 4) 
>>> v1.__dict__ 
{'_Vector2d__y': 4.0, '_Vector2d__x': 3.0} 
>>> v1._Vector2d__x 
3.0

Name mangling is about safety, not security: it’s designed to prevent
accidental access and not malicious prying. Figure 11-1 illustrates another
safety device.



Figure 11-1. A cover on a switch is a safety device, not a security one: it prevents accidents, not
sabotage.

Anyone who knows how private names are mangled can read the private
attribute directly, as the last line of Example 11-12 shows—that’s actually
useful for debugging and serialization. They can also directly assign a value
to a private component of a Vector2d by writing v1._Vector2d__x



= 7. But if you are doing that in production code, you can’t complain if
something blows up.

The name mangling functionality is not loved by all Pythonistas, and
neither is the skewed look of names written as self.__x. Some prefer to
avoid this syntax and use just one underscore prefix to “protect” attributes
by convention (e.g., self._x). Critics of the automatic double-underscore
mangling suggest that concerns about accidental attribute clobbering should
be addressed by naming conventions. Ian Bicking—creator of pip,
virtualenv, and other projects—wrote:

Never, ever use two leading underscores. This is annoyingly private. If
name clashes are a concern, use explicit name mangling instead (e.g.,
_MyThing_blahblah). This is essentially the same thing as double-
underscore, only it’s transparent where double underscore obscures.

The single underscore prefix has no special meaning to the Python
interpreter when used in attribute names, but it’s a very strong convention
among Python programmers that you should not access such attributes from
outside the class.  It’s easy to respect the privacy of an object that marks its
attributes with a single _, just as it’s easy respect the convention that
variables in ALL_CAPS should be treated as constants.

Attributes with a single _ prefix are called “protected” in some corners of
the Python documentation.  The practice of “protecting” attributes by
convention with the form self._x is widespread, but calling that a
“protected” attribute is not so common. Some even call that a “private”
attribute.

To conclude: the Vector2d components are “private” and our Vector2d
instances are “immutable”—with scare quotes—because there is no way to
make them really private and immutable.

We’ll now come back to our Vector2d class. In the next section, we
cover a special attribute (not a method) that affects the internal storage of an
object, with potentially huge impact on the use of memory but little effect
on its public interface: __slots__.
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Saving Memory with __slots__
By default, Python stores the attributes of each instance in a dict named
__dict__. As we saw in “Practical Consequences of How dict Works”, a
dict has a signficant memory overhead—even with the optimizations
mentioned in that section. But if you define a class attribute named
__slots__ holding sequence of attribute names, Python uses an
alternative storage model for the instance attributes: the attributes named in
__slots__ are stored in a hidden array or references that uses less
memory than a dict. Let’s see how that works through simple examples.

Example 11-13. The Pixel class uses `slots.
>>> class Pixel: 
...     __slots__ = ('x', 'y')   
... 
>>> p = Pixel()   
>>> p.__dict__   
Traceback (most recent call last): 
  ... 
AttributeError: 'Pixel' object has no attribute '__dict__' 
>>> p.x = 10   
>>> p.y = 20 
>>> p.color = 'red'   
Traceback (most recent call last): 
  ... 
AttributeError: 'Pixel' object has no attribute 'color'

__slots__ must be present when the class is created; adding or
changing it later has no effect. The attribute names may be in a tuple
or list, but I prefer a tuple to make it clear there’s no point in
changing it.

Create an instance of Pixel, because we see the effects of
__slots__ on the instances.

First effect: instances of Pixel have no __dict__.

Set the p.x and p.y attributes normally.



Second effect: trying to set an attribute not listed in __slots__ raises
AttributeError.

So far, so good. Now let’s create a subclass of Pixel to see the
counterintuitive side of __slots__:

Example 11-14. The OpenPixel is a subclass of Pixel.
>>> class OpenPixel(Pixel):   
...     pass 
... 
>>> op = OpenPixel() 
>>> op.__dict__   
{} 
>>> op.x = 8   
>>> op.__dict__   
{} 
>>> op.x   
8 
>>> op.color = 'green'   
>>> op.__dict__   
{'color': 'green'}

OpenPixel declares no attributes of its own.

Surprise: instances of OpenPixel have a __dict__.

If you set attribute x (named in the __slots__ of the base class
Pixel)…

…it is not stored in the instance __dict__…

…but it is stored in the hidden array of references in the instance.

If you set an attribute not named in the __slots__…

…it is stored in the instance __dict__.



Example 11-14 shows that the effect of __slots__ is only partially
inherited by a subclass. To make sure that instances of a subclass have no
__dict__, you must declare __slots__ again in the subclass.

If you declare __slots__ = () (an empty tuple), then the instances of
the subclass will have no __dict__ and will only accept the attributes
named in the __slots__ of the base class.

If you want a subclass to have additional attributes, name them in
__slots__:

Example 11-15. The ColorPixel, another subclass of Pixel.
>>> class ColorPixel(Pixel): 
...    __slots__ = ('color',)   
>>> cp = ColorPixel() 
>>> cp.__dict__   
Traceback (most recent call last): 
  ... 
AttributeError: 'ColorPixel' object has no attribute '__dict__' 
>>> cp.x = 2 
>>> cp.color = 'blue'   
>>> cp.flavor = 'banana' 
Traceback (most recent call last): 
  ... 
AttributeError: 'ColorPixel' object has no attribute 'flavor'

Essentially, __slots__ of the superclasses are added to the
__slots__ of the current class. Don’t forget that single item tuples
must have a trailing comma.

ColorPixel instances have no __dict__.

You can set the attributes declared in the __slots__ of this class and
superclasses, but no other.

It’s possible to “save memory and eat it too”: if you add the '__dict__'
name to the __slots__ list, your instances will keep attributes named in
__slots__ in the per-instance array of references, but will also support
dynamically created attributes, which will be stored in the usual



__dict__. This is necessary if you want to use the
@cached_property decorator, (covered in “Step 5: Caching Properties
with functools”).

Of course, having '__dict__' in __slots__ may entirely defeat its
purpose, depending on the number of static and dynamic attributes in each
instance and how they are used. Careless optimization is worse than
premature optimization: you add complexity but may not get any benefit.

Another special per-instance attribute that you may want to keep is
__weakref__, necessary for an object to support weak references
(mentioned briefly in “del and Garbage Collection”). That attribute exists
by default in instances of user-defined classes. However, if the class defines
__slots__, and you need the instances to be targets of weak references,
then you need to include '__weakref__' among the attributes named in
__slots__.

Now let’s see the effect of adding __slots__ to Vector2d.

Simple Measure of __slot__ Savings
Example 11-16 shows the implementation of __slots__ in
`Vector2d.

Example 11-16. vector2d_v3_slots.py: the slots attribute is the only addition
to Vector2d
class Vector2d: 
    __match_args__ = ('x', 'y')   
    __slots__ = ('__x', '__y')   
 
    typecode = 'd' 
    # methods are the same as previous version

__match_args__ lists the public attribute names for positional
pattern matching.

In contrast, __slots__ lists the names of the instance attributes,
which in this case are private attributes.



To measure the memory savings, I wrote the mem_test.py script. It takes the
name of a module with a Vector2d class variant as command-line
argument, and uses a list comprehension to build a list with 10,000,000
instances of Vector2d. In the first run shown in Example 11-17, I use
vector2d_v3.Vector2d (from Example 11-7); in the second run, I
used the version with __slots__ from Example 11-16.

Example 11-17. mem_test.py creates 10 million Vector2d instances using
the class defined in the named module.
$ time python3 mem_test.py vector2d_v3 
Selected Vector2d type: vector2d_v3.Vector2d 
Creating 10,000,000 Vector2d instances 
Initial RAM usage:      6,983,680 
  Final RAM usage:  1,666,535,424 
 
real 0m11.990s 
user 0m10.861s 
sys 0m0.978s 
(.py310b4) TW-LR-MBP:11-pythonic-obj luciano$ time python3 
mem_test.py vector2d_v3_slots 
Selected Vector2d type: vector2d_v3_slots.Vector2d 
Creating 10,000,000 Vector2d instances 
Initial RAM usage:      6,995,968 
  Final RAM usage:    577,839,104 
 
real 0m8.381s 
user 0m8.006s 
sys 0m0.352s

As Example 11-17 reveals, the RAM footprint of the script grows to 1.55
GiB when instance __dict__ is used in each of the 10 million
Vector2d instances, but that is reduced to 551 MiB when Vector2d has
a __slots__ attribute. The __slots__ version is also faster. The
mem_test.py script in this test basically deals with loading a module,
checking memory usage, and formatting results. You can find its source
code in the fluentpython/example-code-2e repository.

https://github.com/fluentpython/example-code-2e/blob/master/11-pythonic-obj/mem_test.py


TIP
If you are handling millions of objects with numeric data, you should really be using
NumPy arrays (see “NumPy”), which are not only memory-efficient but have highly
optimized functions for numeric processing, many of which operate on the entire array
at once. I designed the Vector2d class just to provide context when discussing special
methods, because I try to avoid vague foo and bar examples when I can.

Summarizing The Issues with __slots__
The __slots__ class attribute may provide significant memory savings if
properly used, but there are a few caveats:

You must remember to redeclare __slots__ in each subclass to
prevent their instances to have __dict__.

Instances will only be able to have the attributes listed in
__slots__, unless you include '__dict__' in __slots__
(but doing so may negate the memory savings).

Classes using __slots__ cannot use the @cached_property
decorator, unless they explicitly name '__dict__' in
__slots__.

Instances cannot be targets of weak references unless you add
'__weakref__' in __slots__.

The last topic in this chapter has to do with overriding a class attribute in
instances and subclasses.

Overriding Class Attributes
A distinctive feature of Python is how class attributes can be used as default
values for instance attributes. In Vector2d there is the typecode class
attribute. It’s used twice in the __bytes__ method, but we read it as
self.typecode by design. Because Vector2d instances are created



without a typecode attribute of their own, self.typecode will get
the Vector2d.typecode class attribute by default.

But if you write to an instance attribute that does not exist, you create a new
instance attribute—e.g., a typecode instance attribute—and the class
attribute by the same name is untouched. However, from then on, whenever
the code handling that instance reads self.typecode, the instance
typecode will be retrieved, effectively shadowing the class attribute by
the same name. This opens the possibility of customizing an individual
instance with a different typecode.

The default Vector2d.typecode is 'd', meaning each vector
component will be represented as an 8-byte double precision float when
exporting to bytes. If we set the typecode of a Vector2d instance to
'f' prior to exporting, each component will be exported as a 4-byte single
precision float. Example 11-18 demonstrates.

NOTE
We are discussing adding a custom instance attribute, therefore Example 11-18 uses the
Vector2d implementation without __slots__ as listed in Example 11-11.

Example 11-18. Customizing an instance by setting the typecode attribute
that was formerly inherited from the class
>>> from vector2d_v3 import Vector2d 
>>> v1 = Vector2d(1.1, 2.2) 
>>> dumpd = bytes(v1) 
>>> dumpd 
b'd\x9a\x99\x99\x99\x99\x99\xf1?\x9a\x99\x99\x99\x99\x99\x01@' 
>>> len(dumpd)   
17 
>>> v1.typecode = 'f'   
>>> dumpf = bytes(v1) 
>>> dumpf 
b'f\xcd\xcc\x8c?\xcd\xcc\x0c@' 
>>> len(dumpf)   
9 



>>> Vector2d.typecode   
'd'

Default bytes representation is 17 bytes long.

Set typecode to 'f' in the v1 instance.

Now the bytes dump is 9 bytes long.

Vector2d.typecode is unchanged; only the v1 instance uses
typecode 'f'.

Now it should be clear why the bytes export of a Vector2d is prefixed
by the typecode: we wanted to support different export formats.

If you want to change a class attribute you must set it on the class directly,
not through an instance. You could change the default typecode for all
instances (that don’t have their own typecode) by doing this:

>>> Vector2d.typecode = 'f'

However, there is an idiomatic Python way of achieving a more permanent
effect, and being more explicit about the change. Because class attributes
are public, they are inherited by subclasses, so it’s common practice to
subclass just to customize a class data attribute. The Django class-based
views use this technique extensively. Example 11-19 shows how.

Example 11-19. The ShortVector2d is a subclass of Vector2d, which only
overwrites the default typecode
>>> from vector2d_v3 import Vector2d 
>>> class ShortVector2d(Vector2d):   
...     typecode = 'f' 
... 
>>> sv = ShortVector2d(1/11, 1/27)   
>>> sv 
ShortVector2d(0.09090909090909091, 0.037037037037037035)   
>>> len(bytes(sv))   
9



Create ShortVector2d as a Vector2d subclass just to overwrite
the typecode class attribute.

Build ShortVector2d instance sv for demonstration.

Inspect the repr of sv.

Check that the length of the exported bytes is 9, not 17 as before.

This example also explains why I did not hardcode the class_name in
Vector2d.__repr__, but instead got it from
type(self).__name__, like this:

    # inside class Vector2d: 
 
    def __repr__(self): 
        class_name = type(self).__name__ 
        return '{}({!r}, {!r})'.format(class_name, *self)

If I had hardcoded the class_name, subclasses of Vector2d like
ShortVector2d would have to overwrite __repr__ just to change the
class_name. By reading the name from the type of the instance, I made
__repr__ safer to inherit.

This ends our coverage of building a simple class that leverages the data
model to play well with the rest of Python—offering different object
representations, providing a custom formatting code, exposing read-only
attributes, and supporting hash() to integrate with sets and mappings.



Chapter Summary
The aim of this chapter was to demonstrate the use of special methods and
conventions in the construction of a well-behaved Pythonic class.

Is vector2d_v3.py (Example 11-11) more Pythonic than vector2d_v0.py
(Example 11-2)? The Vector2d class in vector2d_v3.py certainly exhibits
more Python features. But whether the first or the last Vector2d
implementation is suitable depends on the context where it would be used.
Tim Peter’s Zen of Python says:

Simple is better than complex.

An object should be as simple as the requirements dictate—and not a
parade of language features. If the code is for an application, then it should
focus on what is needed to support the end users, not more. If the code is
for a library for other programmers to use, then it’s reasonable to implement
special methods supporting behaviors that Pythonistas expect. For example,
__eq__ may not be necessary to support a business requirement, but it
makes it makes the class easier to test.

My goal in expanding the Vector2d code was to provide context for
discussing Python special methods and coding conventions. The examples
in this chapter have demonstrated several of the special methods we first
saw in Table 1-1 (Chapter 1):

String/bytes representation methods: __repr__, __str__,
__format__, and __bytes__.

Methods for reducing an object to a number: __abs__,
__bool__, __hash__.

The __eq__ operator, to support testing and hashing (along with
__hash__).

While supporting conversion to bytes we also implemented an alternative
constructor, Vector2d.frombytes(), which provided the context for
discussing the decorators @classmethod (very handy) and



@staticmethod (not so useful, module-level functions are simpler). The
frombytes method was inspired by its namesake in the array.array
class.

We saw that the Format Specification Mini-Language is extensible by
implementing a __format__ method that parses a format_spec
provided to the format(obj, format_spec) built-in or within
replacement fields '{:«format_spec»}' in f-strings or strings used
with the str.format() method.

In preparation to make Vector2d instances hashable, we made an effort
to make them immutable, at least preventing accidental changes by coding
the x and y attributes as private, and exposing them as read-only properties.
We then implemented __hash__ using the recommended technique of
xor-ing the hashes of the instance attributes.

We then discussed the memory savings and the caveats of declaring a
__slots__ attribute in Vector2d. Because using __slots__ has side
effects, it really makes sense only when handling a very large number of
instances—think millions of instances, not just thousands. In many such
cases, using pandas may be the best option.

The last topic we covered was the overriding of a class attribute accessed
via the instances (e.g., self.typecode). We did that first by creating an
instance attribute, and then by subclassing and overwriting at the class
level.

Throughout the chapter, I mentioned how design choices in the examples
were informed by studying the API of standard Python objects. If this
chapter can be summarized in one sentence, this is it:

To build Pythonic objects, observe how real Python objects behave.
—Ancient Chinese proverb

Further Reading

https://docs.python.org/3/library/string.html#formatspec
https://pandas.pydata.org/


This chapter covered several special methods of the data model, so
naturally the primary references are the same as the ones provided in
Chapter 1, which gave a high-level view of the same topic. For
convenience, I’ll repeat those four earlier recommendations here, and add a
few other ones:

“Data Model” chapter of The Python Language Reference

Most of the methods we used in this chapter are documented in “3.3.1.
Basic customization”.

Python in a Nutshell, 3rd Edition by Alex Martelli, Anna Ravenscroft, and
Steve Holden covers the special methods in depth.

Python Cookbook, 3rd Edition, by David Beazley and Brian K. Jones

Modern Python practices demonstrated through recipes. Chapter 8,
“Classes and Objects” in particular has several solutions related to
discussions in this chapter.

Python Essential Reference, 4th Edition, by David Beazley

Covers the data model in detail. Even if only Python 2.6 and 3.0 is
covered (in the fourth edition). The fundamental concepts are all the
same and most of the Data Model APIs haven’t changed at all since
Python 2.2, when built-in types and user-defined classes were unified.

In 2015—the year when I finished Fluent Python, First Edition—Hynek
Schlawack started the attrs package. From the attrs documentation:

attrs is the Python package that will bring back the joy of writing
classes by relieving you from the drudgery of implementing object
protocols (aka dunder methods).

I mentioned attrs as a more powerful alternative to @dataclass in
“Further Reading”. The data class builders from Chapter 5 as well as
attrs automatically equip your classes with several special methods. But
knowing how to code those special methods yourself is still essential to

http://bit.ly/1GsZwss
http://bit.ly/1Vma6b2
http://shop.oreilly.com/product/0636920012610.do
http://shop.oreilly.com/product/0636920027072.do


understand what those packages do, to decide whether you really need
them, and to override the methods they generate—when necessary.

In this chapter, we saw every special method related to object
representation, except __index__ and __fspath__. We’ll discuss
__index__ in Chapter 12, “A Slice-Aware __getitem__”. I will not cover
__fspath__. To learn about it, see PEP 519—Adding a file system path
protocol.

An early realization of the need for distinct string representations for
objects appeared in Smalltalk. The 1996 article “How to Display an Object
as a String: printString and displayString” by Bobby Woolf discusses the
implementation of the printString and displayString methods in
that language. From that article, I borrowed the pithy descriptions “the way
the developer wants to see it” and “the way the user wants to see it” when
defining repr() and str() in “Object Representations”.

https://www.python.org/dev/peps/pep-0519/
http://bit.ly/1IIKX6t


SOAPBOX

Properties Help Reduce Upfront Costs

In the initial versions of Vector2d, the x and y attributes were public,
as are all Python instance and class attributes by default. Naturally,
users of vectors need to access its components. Although our vectors
are iterable and can be unpacked into a pair of variables, it’s also
desirable to write my_vector.x and my_vector.y to get each
component.

When we felt the need to avoid accidental updates to the x and y
attributes, we implemented properties, but nothing changed elsewhere
in the code and in the public interface of Vector2d, as verified by the
doctests. We are still able to access my_vector.x and
my_vector.y.

This shows that we can always start our classes in the simplest possible
way, with public attributes, because when (or if) we later need to
impose more control with getters and setters, these can be implemented
through properties without changing any of the code that already
interacts with our objects through the names (e.g., x and y) that were
initially simple public attributes.

This approach is the opposite of that encouraged by the Java language:
a Java programmer cannot start with simple public attributes and only
later, if needed, implement properties, because they don’t exist in the
language. Therefore, writing getters and setters is the norm in Java—
even when those methods do nothing useful—because the API cannot
evolve from simple public attributes to getters and setters without
breaking all code that uses those attributes.

In addition, as Martelli, Ravenscroft & Holden point out in Python in a
Nutshell, 3rd Edition, typing getter/setter calls everywhere is goofy.
You have to write stuff like:

>>> my_object.set_foo(my_object.get_foo() + 1)

http://shop.oreilly.com/product/0636920012610.do


Just to do this:

>>> my_object.foo += 1

Ward Cunningham, inventor of the wiki and an Extreme Programming
pioneer, recommends asking “What’s the simplest thing that could
possibly work?” The idea is to focus on the goal.  Implementing
setters and getters up front is a distraction from the goal. In Python, we
can simply use public attributes knowing we can change them to
properties later, if the need arises.

Safety Versus Security in Private Attributes

Perl doesn’t have an infatuation with enforced privacy. It would
prefer that you stayed out of its living room because you weren’t
invited, not because it has a shotgun.

—Larry Wall, Creator of Perl

Python and Perl are polar opposites in many regards, but Guido and
Larry seem to agree on object privacy.

Having taught Python to many Java programmers over the years, I’ve
found a lot of them put too much faith in the privacy guarantees that
Java offers. As it turns out, the Java private and protected
modifiers normally provide protection against accidents only (i.e.,
safety). They only offer security against malicious intent if the
application is specially configured and deployed on top of a Java
SecurityManager, and that seldom happens in practice, even in security
conscious corporate settings.

To prove my point, I like to show this Java class (Example 11-20).

Example 11-20. Confidential.java: a Java class with a private
field named secret
public class Confidential { 
 
    private String secret = ""; 
 
    public Confidential(String text) { 
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        this.secret = text.toUpperCase(); 
    } 
}

In Example 11-20, I store the text in the secret field after
converting it to uppercase, just to make it obvious that whatever is in
that field will be in all caps.

The actual demonstration consists of running expose.py with Jython.
That script uses introspection (“reflection” in Java parlance) to get the
value of a private field. The code is in Example 11-21.

Example 11-21. expose.py: Jython code to read the content of a
private field in another class
#!/usr/bin/env jython 
# NOTE: Jython is still Python 2.7 in late2020 
 
import Confidential 
 
message = Confidential('top secret text') 
secret_field = Confidential.getDeclaredField('secret') 
secret_field.setAccessible(True)  # break the lock! 
print 'message.secret =', secret_field.get(message)

If you run Example 11-21, this is what you get:

$ jython expose.py 
message.secret = TOP SECRET TEXT

The string 'TOP SECRET TEXT' was read from the secret private
field of the Confidential class.

There is no black magic here: expose.py uses the Java reflection API to
get a reference to the private field named 'secret', and then calls
'secret_field.setAccessible(True)' to make it readable.
The same thing can be done with Java code, of course (but it takes more
than three times as many lines to do it; see the file Expose.java in
the Fluent Python, Second Edition code repository).

The crucial call .setAccessible(True) will fail only if the
Jython script or the Java main program (e.g., Expose.class) is

https://github.com/fluentpython/example-code-2e/blob/master/11-pythonic-obj/private/Expose.java
https://github.com/fluentpython/example-code-2e


running under the supervision of a SecurityManager. But in the real
world, Java applications are rarely deployed with a SecurityManager—
except for Java applets when they were still supported by browsers.

My point is: in Java too, access control modifiers are mostly about
safety and not security, at least in practice. So relax and enjoy the power
Python gives you. Use it responsibly.

1  From Faassen’s blog post What is Pythonic?

2  I used eval to clone the object here just to make a point about repr; to clone an instance,
the copy.copy function is safer and faster.

3  This line could also be written as yield self.x; yield.self.y. I have a lot more to
say about the __iter__ special method, generator expressions, and the yield keyword in
Chapter 17.

4  We had a brief introduction to memoryview, explaining its .cast method in “Memory
Views”.

5  Leonardo Rochael, one of the technical reviewers of this book disagrees with my low opinion
of staticmethod, and recommends the blog post “The Definitive Guide on How to Use
Static, Class or Abstract Methods in Python” by Julien Danjou as a counter-argument.
Danjou’s post is very good; I do recommend it. But it wasn’t enough to change my mind about
staticmethod. You’ll have to decide for yourself.

6  The pros and cons of private attributes are the subject of the upcoming “Private and
“Protected” Attributes in Python”.

7  From the Paste Style Guide.

8  In modules, a single _ in front of a top-level name does have an effect: if you write from
mymod import * the names with a _ prefix are not imported from mymod. However, you
can still write from mymod import _privatefunc. This is explained in the Python
Tutorial, section 6.1. More on Modules.

9  One example is in the gettext module docs.

10  If this state of affairs depresses you, and makes you wish Python was more like Java in this
regard, don’t read my discussion of the relative strength of the Java private modifier in
“Soapbox”.

11  See “Simplest Thing that Could Possibly Work: A Conversation with Ward Cunningham, Part
V”.

http://bit.ly/1IIMdqd
https://blog.startifact.com/posts/older/what-is-pythonic.html
http://bit.ly/1FSFTW6
http://pythonpaste.org/StyleGuide.html
http://bit.ly/1Gt95rp
http://bit.ly/1Gt9cDg
http://www.artima.com/intv/simplest3.html


Chapter 12. Writing Special
Methods for Sequences

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 12th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

Don’t check whether it is-a duck: check whether it quacks-like-a duck,
walks-like-a duck, etc, etc, depending on exactly what subset of duck-like
behavior you need to play your language-games with.
(comp.lang.python, Jul. 26, 2000)

—Alex Martelli

In this chapter, we will create a class to represent a multidimensional
Vector class—a significant step up from the two-dimensional Vector2d
of Chapter 11. Vector will behave like a standard Python immutable flat
sequence. Its elements will be floats, and it will support the following by
the end of this chapter:

Basic sequence protocol: __len__ and __getitem__.

Safe representation of instances with many items.

mailto:fluentpython2e@ramalho.org


Proper slicing support, producing new Vector instances.

Aggregate hashing taking into account every contained element
value.

Custom formatting language extension.

We’ll also implement dynamic attribute access with __getattr__ as a
way of replacing the read-only properties we used in Vector2d—
although this is not typical of sequence types.

The code-intensive presentation will be interrupted by a conceptual
discussion about the idea of protocols as an informal interface. We’ll talk
about how protocols and duck typing are related, and its practical
implications when you create your own types.

What’s new in this chapter
There are no major changes in this chapter. There is a new, brief discussion
of the typing.Protocol in a tip box near the end of “Protocols and
Duck Typing”.

In “A Slice-Aware __getitem__”, the implementation of __getitem__ in
Example 12-6 is shorter and more robust than the example in the first
edition, thanks to duck typing and operator.index. This change
carried over to later implementations of Vector in this chapter and in
Chapter 16.

Let’s get started.

Vector: A User-Defined Sequence Type
Our strategy to implement Vector will be to use composition, not
inheritance. We’ll store the components in an array of floats, and will
implement the methods needed for our Vector to behave like an
immutable flat sequence.



But before we implement the sequence methods, let’s make sure we have a
baseline implementation of Vector that is compatible with our earlier
Vector2d class—except where such compatibility would not make sense.

VECTOR APPLICATIONS BEYOND THREE DIMENSIONS

Who needs a vector with 1,000 dimensions? N-dimensional vectors
(with large values of N) are widely used in information retrieval, where
documents and text queries are represented as vectors, with one
dimension per word. This is called the Vector space model. In this
model, a key relevance metric is the cosine similarity (i.e., the cosine of
the angle between a the vector representing the query and the vector
representing the document). As the angle decreases, the cosine
approaches the maximum value of 1, and so does the relevance of the
document to the query.

Having said that, the Vector class in this chapter is a didactic example
and we’ll not do much math here. Our goal is just to demonstrate some
Python special methods in the context of a sequence type.

NumPy and SciPy are the tools you need for real-world vector math.
The PyPI package gensim, by Radim Řehůřek, implements vector space
modeling for natural language processing and information retrieval,
using NumPy and SciPy.

Vector Take #1: Vector2d Compatible
The first version of Vector should be as compatible as possible with our
earlier Vector2d class.

However, by design, the Vector constructor is not compatible with the
Vector2d constructor. We could make Vector(3, 4) and
Vector(3, 4, 5) work, by taking arbitrary arguments with *args in
__init__, but the best practice for a sequence constructor is to take the
data as an iterable argument in the constructor, like all built-in sequence

http://en.wikipedia.org/wiki/Vector_space_model
https://pypi.python.org/pypi/gensim


types do. Example 12-1 shows some ways of instantiating our new
Vector objects.

Example 12-1. Tests of Vector.__init__ and Vector.__repr__
>>> Vector([3.1, 4.2]) 
Vector([3.1, 4.2]) 
>>> Vector((3, 4, 5)) 
Vector([3.0, 4.0, 5.0]) 
>>> Vector(range(10)) 
Vector([0.0, 1.0, 2.0, 3.0, 4.0, ...])

Apart from new constructor signature, I made sure every test I did with
Vector2d (e.g., Vector2d(3, 4)) passed and produced the same
result with a two-component Vector([3, 4]).

WARNING
When a Vector has more than six components, the string produced by repr() is
abbreviated with ... as seen in the last line of Example 12-1. This is crucial in any
collection type that may contain a large number of items, because repr is used for
debugging—and you don’t want a single large object to span thousands of lines in your
console or log. Use the reprlib module to produce limited-length representations, as
in Example 12-2. The reprlib module was named repr in Python 2.7.

Example 12-2 lists the implementation of our first version of Vector (this
example builds on the code shown in Examples 11-2 and 11-3).

Example 12-2. vector_v1.py: derived from vector2d_v1.py
from array import array 
import reprlib 
import math 
 
 
class Vector: 
    typecode = 'd' 
 
    def __init__(self, components): 
        self._components = array(self.typecode, components)   
 
    def __iter__(self): 
        return iter(self._components)   



 
    def __repr__(self): 
        components = reprlib.repr(self._components)   
        components = components[components.find('['):-1]   
        return f'Vector({components})' 
 
    def __str__(self): 
        return str(tuple(self)) 
 
    def __bytes__(self): 
        return (bytes([ord(self.typecode)]) + 
                bytes(self._components))   
 
    def __eq__(self, other): 
        return tuple(self) == tuple(other) 
 
    def __abs__(self): 
        return math.hypot(*self)   
 
    def __bool__(self): 
        return bool(abs(self)) 
 
    @classmethod 
    def frombytes(cls, octets): 
        typecode = chr(octets[0]) 
        memv = memoryview(octets[1:]).cast(typecode) 
        return cls(memv)  

The self._components instance “protected” attribute will hold an
array with the Vector components.

To allow iteration, we return an iterator over self._components.

Use reprlib.repr() to get a limited-length representation of
self._components (e.g., array('d', [0.0, 1.0, 2.0,
3.0, 4.0, ...])).

Remove the array('d', prefix and the trailing ) before plugging the
string into a Vector constructor call.

Build a bytes object directly from self._components.
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Since Python 3.8, math.hypot accepts n-dimensional points. I used
this expression before: math.sqrt(sum(x * x for x in
self)).

The only change needed from the earlier frombytes is in the last line:
we pass the memoryview directly to the constructor, without
unpacking with * as we did before.

The way I used reprlib.repr deserves some elaboration. That function
produces safe representations of large or recursive structures by limiting the
length of the output string and marking the cut with '...'. I wanted the
repr of a Vector to look like Vector([3.0, 4.0, 5.0]) and not
Vector(array('d', [3.0, 4.0, 5.0])), because the fact that
there is an array inside a Vector is an implementation detail. Because
these constructor calls build identical Vector objects, I prefer the simpler
syntax using a list argument.

When coding __repr__, I could have produced the simplified
components display with this expression:
reprlib.repr(list(self._components)). However, this would
be wasteful, as I’d be copying every item from self._components to a
list just to use the list repr. Instead, I decided to apply
reprlib.repr to the self._components array directly, and then
chop off the characters outside of the []. That’s what the second line of
__repr__ does in Example 12-2.

TIP
Because of its role in debugging, calling repr() on an object should never raise an
exception. If something goes wrong inside your implementation of __repr__, you
must deal with the issue and do your best to produce some serviceable output that gives
the user a chance of identifying the target object.



Note that the __str__, __eq__, and __bool__ methods are unchanged
from Vector2d, and only one character was changed in frombytes (a *
was removed in the last line). This is one of the benefits of making the
original Vector2d iterable.

By the way, we could have subclassed Vector from Vector2d, but I
chose not to do it for two reasons. First, the incompatible constructors really
make subclassing not advisable. I could work around that with some clever
parameter handling in __init__, but the second reason is more
important: I want Vector to be a standalone example of a class
implementing the sequence protocol. That’s what we’ll do next, after a
discussion of the term protocol.

Protocols and Duck Typing
As early as Chapter 1, we saw that you don’t need to inherit from any
special class to create a fully functional sequence type in Python; you just
need to implement the methods that fulfill the sequence protocol. But what
kind of protocol are we talking about?

In the context of Object-Oriented programming, a protocol is an informal
interface, defined only in documentation and not in code. For example, the
sequence protocol in Python entails just the __len__ and __getitem__
methods. Any class Spam that implements those methods with the standard
signature and semantics can be used anywhere a sequence is expected.
Whether Spam is a subclass of this or that is irrelevant; all that matters is
that it provides the necessary methods. We saw that in Example 1-1,
reproduced here in Example 12-3.

Example 12-3. Code from Example 1-1, reproduced here for convenience
import collections 
 
Card = collections.namedtuple('Card', ['rank', 'suit']) 
 
class FrenchDeck: 
    ranks = [str(n) for n in range(2, 11)] + list('JQKA') 
    suits = 'spades diamonds clubs hearts'.split() 



 
    def __init__(self): 
        self._cards = [Card(rank, suit) for suit in self.suits 
                                        for rank in self.ranks] 
 
    def __len__(self): 
        return len(self._cards) 
 
    def __getitem__(self, position): 
        return self._cards[position]

The FrenchDeck class in Example 12-3 takes advantage of many Python
facilities because it implements the sequence protocol, even if that is not
declared anywhere in the code. An experienced Python coder will look at it
and understand that it is a sequence, even if it subclasses object. We say
it is a sequence because it behaves like one, and that is what matters.

This became known as duck typing, after Alex Martelli’s post quoted at the
beginning of this chapter.

Because protocols are informal and unenforced, you can often get away
with implementing just part of a protocol, if you know the specific context
where a class will be used. For example, to support iteration, only
__getitem__ is required; there is no need to provide __len__.

TIP
With PEP 544—Protocols: Structural subtyping (static duck typing), Python 3.8
supports protocol classes: typing constructs which we studied in “Static Protocols”.
This new use of the word protocol in Python has a related but different meaning. When I
need to differentiate them, I write static protocol to refer to the protocols formalized in
protocol classes, and dynamic protocol for the traditional sense. One key difference is
that static protocol implementations must provide all methods defined in the protocol
class. “Two kinds of protocols” in Chapter 13 has more details.

We’ll now implement the sequence protocol in Vector, initially without
proper support for slicing, but later adding that.

https://www.python.org/dev/peps/pep-0544/


Vector Take #2: A Sliceable Sequence
As we saw with the FrenchDeck example, supporting the sequence
protocol is really easy if you can delegate to a sequence attribute in your
object, like our self._components array. These __len__ and
__getitem__ one-liners are a good start:

class Vector: 
    # many lines omitted 
    # ... 
 
    def __len__(self): 
        return len(self._components) 
 
    def __getitem__(self, index): 
        return self._components[index]

With these additions, all of these operations now work:

>>> v1 = Vector([3, 4, 5]) 
>>> len(v1) 
3 
>>> v1[0], v1[-1] 
(3.0, 5.0) 
>>> v7 = Vector(range(7)) 
>>> v7[1:4] 
array('d', [1.0, 2.0, 3.0])

As you can see, even slicing is supported—but not very well. It would be
better if a slice of a Vector was also a Vector instance and not an
array. The old FrenchDeck class has a similar problem: when you slice
it, you get a list. In the case of Vector, a lot of functionality is lost
when slicing produces plain arrays.

Consider the built-in sequence types: every one of them, when sliced,
produces a new instance of its own type, and not of some other type.

To make Vector produce slices as Vector instances, we can’t just
delegate the slicing to array. We need to analyze the arguments we get in
__getitem__ and do the right thing.



Now, let’s see how Python turns the syntax my_seq[1:3] into arguments
for my_seq.__getitem__(...).

How Slicing Works
A demo is worth a thousand words, so take a look at Example 12-4.

Example 12-4. Checking out the behavior of __getitem__ and slices
>>> class MySeq: 
...     def __getitem__(self, index): 
...         return index   
... 
>>> s = MySeq() 
>>> s[1]   
1 
>>> s[1:4]   
slice(1, 4, None) 
>>> s[1:4:2]   
slice(1, 4, 2) 
>>> s[1:4:2, 9]   
(slice(1, 4, 2), 9) 
>>> s[1:4:2, 7:9]   
(slice(1, 4, 2), slice(7, 9, None))

For this demonstration, __getitem__ merely returns whatever is
passed to it.

A single index, nothing new.

The notation 1:4 becomes slice(1, 4, None).

slice(1, 4, 2) means start at 1, stop at 4, step by 2.

Surprise: the presence of commas inside the [] means __getitem__
receives a tuple.

The tuple may even hold several slice objects.

Now let’s take a closer look at slice itself in Example 12-5.



Example 12-5. Inspecting the attributes of the slice class
>>> slice   
<class 'slice'> 
>>> dir(slice)  
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', 
 '__format__', '__ge__', '__getattribute__', '__gt__', 
 '__hash__', '__init__', '__le__', '__lt__', '__ne__', 
 '__new__', '__reduce__', '__reduce_ex__', '__repr__', 
 '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 
 'indices', 'start', 'step', 'stop']

slice is a built-in type (we saw it first in “Slice Objects”).

Inspecting a slice we find the data attributes start, stop, and
step, and an indices method.

In Example 12-5, calling dir(slice) reveals an indices attribute,
which turns out to be a very interesting but little-known method. Here is
what help(slice.indices) reveals:

S.indices(len) -> (start, stop, stride)

Assuming a sequence of length len, calculate the start and stop
indices, and the stride length of the extended slice described by S.
Out of bounds indices are clipped just like they are in a normal slice.

In other words, indices exposes the tricky logic that’s implemented in
the built-in sequences to gracefully handle missing or negative indices and
slices that are longer than the original sequence. This method produces
“normalized” tuples of nonnegative start, stop, and stride integers
tailored to sequence of the given length.

Here are a couple of examples, considering a sequence of len == 5, e.g.,
'ABCDE':

>>> slice(None, 10, 2).indices(5)   
(0, 5, 2) 
>>> slice(-3, None, None).indices(5)   
(2, 5, 1)



'ABCDE'[:10:2] is the same as 'ABCDE'[0:5:2]

'ABCDE'[-3:] is the same as 'ABCDE'[2:5:1]

In our Vector code, we’ll not need the slice.indices() method
because when we get a slice argument we’ll delegate its handling to the
_components array. But if you can’t count on the services of an
underlying sequence, this method can be a huge time saver.

Now that we know how to handle slices, let’s take a look at the improved
Vector.__getitem__ implementation.

A Slice-Aware __getitem__
Example 12-6 lists the two methods needed to make Vector behave as a
sequence: __len__ and __getitem__ (the latter now implemented to
handle slicing correctly).

Example 12-6. Part of vector_v2.py: __len__ and __getitem__ methods
added to Vector class from vector_v1.py (see Example 12-2)
    def __len__(self): 
        return len(self._components) 
 
    def __getitem__(self, key): 
        if isinstance(key, slice):   
            cls = type(self)   
            return cls(self._components[key])   
        index = operator.index(key)   
        return self._components[index]  

If the key argument is a slice…

…get the class of the instance (i.e., Vector) and…

…invoke the class to build another Vector instance from a slice of the
_components array.

If we can get an index from key…



…return the specific item from _components.

The operator.index() function calls the __index__ special
method. The function and the special method were defined in PEP 357—
Allowing Any Object to be Used for Slicing, proposed by Travis Oliphant
to allow any of the numerous types of integers in NumPy to be used as
indexes and slice arguments. The key difference between
operator.index() and int() is that the former is intended for this
specific purpose. For example, int(3.14) returns 3, but
operator.index(3.14) raises TypeError because a float should
not be used as an index.

NOTE
Excessive use of isinstance may be a sign of bad OO design, but handling slices in
__getitem__ is a justified use case. In the first edition, I also used an isinstance
test on key to test if it was an integer. Using operator.index avoids this test, and
raises TypeError with a very informative message if we can’t get the index from
key. See the last error message from Example 12-7 below.

Once the code in Example 12-6 is added to the Vector class, we have
proper slicing behavior, as Example 12-7 demonstrates.

Example 12-7. Tests of enhanced Vector.getitem from Example 12-6
    >>> v7 = Vector(range(7)) 
    >>> v7[-1]   
    6.0 
    >>> v7[1:4]   
    Vector([1.0, 2.0, 3.0]) 
    >>> v7[-1:]   
    Vector([6.0]) 
    >>> v7[1,2]   
    Traceback (most recent call last): 
      ... 
    TypeError: 'tuple' object cannot be interpreted as an integer

An integer index retrieves just one component value as a float.

https://www.python.org/dev/peps/pep-0357/


A slice index creates a new Vector.

A slice of len == 1 also creates a Vector.

Vector does not support multidimensional indexing, so a tuple of
indices or slices raises an error.

Vector Take #3: Dynamic Attribute Access
In the evolution from Vector2d to Vector, we lost the ability to access
vector components by name (e.g., v.x, v.y). We are now dealing with
vectors that may have a large number of components. Still, it may be
convenient to access the first few components with shortcut letters such as
x, y, z instead of v[0], v[1] and v[2].

Here is the alternative syntax we want to provide for reading the first four
components of a vector:

>>> v = Vector(range(10)) 
>>> v.x 
0.0 
>>> v.y, v.z, v.t 
(1.0, 2.0, 3.0)

In Vector2d, we provided read-only access to x and y using the
@property decorator (Example 11-7). We could write four properties in
Vector, but it would be tedious. The __getattr__ special method
provides a better way.

The __getattr__ method is invoked by the interpreter when attribute
lookup fails. In simple terms, given the expression my_obj.x, Python
checks if the my_obj instance has an attribute named x; if not, the search
goes to the class (my_obj.__class__), and then up the inheritance
graph.  If the x attribute is not found, then the __getattr__ method
defined in the class of my_obj is called with self and the name of the
attribute as a string (e.g., 'x').
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Example 12-8 lists our __getattr__ method. Essentially it checks
whether the attribute being sought is one of the letters xyzt and if so,
returns the corresponding vector component.

Example 12-8. Part of vector_v3.py: __getattr__ method added to Vector
class.
    __match_args__ = ('x', 'y', 'z', 't')   
 
    def __getattr__(self, name): 
        cls = type(self)   
        try: 
            pos = cls.__match_args__.index(name)   
        except ValueError:   
            pos = -1 
        if 0 <= pos < len(self._components):   
            return self._components[pos] 
        msg = f'{cls.__name__!r} object has no attribute {name!r}'  
 

        raise AttributeError(msg)

Set __match_args__ to allow pattern matching on the dynamic
attributes supported by __getattr__.

Get the Vector class for later use.

Try to get the position of name in __match_args__.

.index(name) raises ValueError when name is not found; set
pos to -1 (I’d rather use a method like str.find here, but tuple
doesn’t implement it.)

If the pos is within range of the available components, return the
component.

If we get this far, raise AttributeError with a standard message
text.
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It’s not hard to implement __getattr__, but in this case it’s not enough.
Consider the bizarre interaction in Example 12-9.

Example 12-9. Inappropriate behavior: assigning to v.x raises no error, but
introduces an inconsistency
>>> v = Vector(range(5)) 
>>> v 
Vector([0.0, 1.0, 2.0, 3.0, 4.0]) 
>>> v.x   
0.0 
>>> v.x = 10   
>>> v.x   
10 
>>> v 
Vector([0.0, 1.0, 2.0, 3.0, 4.0])  

Access element v[0] as v.x.

Assign new value to v.x. This should raise an exception.

Reading v.x shows the new value, 10.

However, the vector components did not change.

Can you explain what is happening? In particular, why the second time v.x
returns 10 if that value is not in the vector components array? If you don’t
know right off the bat, study the explanation of __getattr__ given right
before Example 12-8. It’s a bit subtle, but a very important foundation to
understand a lot of what comes later in the book.

After you’ve given it some thought, proceed and we’ll explain exactly what
happened.

The inconsistency in Example 12-9 was introduced because of the way
__getattr__ works: Python only calls that method as a fall back, when
the object does not have the named attribute. However, after we assign v.x
= 10, the v object now has an x attribute, so __getattr__ will no
longer be called to retrieve v.x: the interpreter will just return the value 10



that is bound to v.x. On the other hand, our implementation of
__getattr__ pays no attention to instance attributes other than
self._components, from where it retrieves the values of the “virtual
attributes” listed in __match_args__.

We need to customize the logic for setting attributes in our Vector class in
order to avoid this inconsistency.

Recall that in the latest Vector2d examples from Chapter 11, trying to
assign to the .x or .y instance attributes raised AttributeError. In
Vector we want the same exception with any attempt at assigning to all
single-letter lowercase attribute names, just to avoid confusion. To do that,
we’ll implement __setattr__ as listed in Example 12-10.

Example 12-10. Part of vector_v3.py: __setattr__ method in Vector class
    def __setattr__(self, name, value): 
        cls = type(self) 
        if len(name) == 1:   
            if name in cls.__match_args__:   
                error = 'readonly attribute {attr_name!r}' 
            elif name.islower():   
                error = "can't set attributes 'a' to 'z' in 
{cls_name!r}" 
            else: 
                error = ''   
            if error:   
                msg = error.format(cls_name=cls.__name__, 
attr_name=name) 
                raise AttributeError(msg) 
        super().__setattr__(name, value)  

Special handling for single-character attribute names.

If name is one of __match_args__, set specific error message.

If name is lowercase, set error message about all single-letter names.

Otherwise, set blank error message.

If there is a nonblank error message, raise AttributeError.



Default case: call __setattr__ on superclass for standard behavior.

TIP
The super() function provides a way to access methods of superclasses dynamically,
a necessity in a dynamic language supporting multiple inheritance like Python. It’s used
to delegate some task from a method in a subclass to a suitable method in a superclass,
as seen in Example 12-10. There is more about super in “Multiple Inheritance and
Method Resolution Order”.

While choosing the error message to display with AttributeError, my
first check was the behavior of the built-in complex type, because they are
immutable and have a pair of data attributes real and imag. Trying to
change either of those in a complex instance raises AttributeError
with the message "can't set attribute". On the other hand, trying
to set a read-only attribute protected by a property as we did in “A Hashable
Vector2d” produces the message "read-only attribute". I drew
inspiration from both wordings to set the error string in __setitem__,
but was more explicit about the forbidden attributes.

Note that we are not disallowing setting all attributes, only single-letter,
lowercase ones, to avoid confusion with the supported read-only attributes
x, y, z, and t.

WARNING
Knowing that declaring __slots__ at the class level prevents setting new instance
attributes, it’s tempting to use that feature instead of implementing __setattr__ as
we did. However, because of all the caveats discussed in “Summarizing The Issues with
__slots__”, using __slots__ just to prevent instance attribute creation is not
recommended. __slots__ should be used only to save memory, and only if that is a
real issue.



Even without supporting writing to the Vector components, here is an
important takeaway from this example: very often when you implement
__getattr__ you need to code __setattr__ as well, to avoid
inconsistent behavior in your objects.

If we wanted to allow changing components, we could implement
__setitem__ to enable v[0] = 1.1 and/or __setattr__ to make
v.x = 1.1 work. But Vector will remain immutable because we want
to make it hashable in the coming section.

Vector Take #4: Hashing and a Faster ==
Once more we get to implement a __hash__ method. Together with the
existing __eq__, this will make Vector instances hashable.

The __hash__ in Example 11-8 simply computed hash(self.x) ^
hash(self.y). We now would like to apply the ^ (xor) operator to the
hashes of every component, in succession, like this: v[0] ^ v[1] ^
v[2]…. That is what the functools.reduce function is for.
Previously I said that reduce is not as popular as before,  but computing
the hash of all vector components is a perfect job for it. Figure 12-1 depicts
the general idea of the reduce function.
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Figure 12-1. Reducing functions—reduce, sum, any, all—produce a single aggregate result from a
sequence or from any finite iterable object.

So far we’ve seen that functools.reduce() can be replaced by
sum(), but now let’s properly explain how it works. The key idea is to
reduce a series of values to a single value. The first argument to
reduce() is a two-argument function, and the second argument is an
iterable. Let’s say we have a two-argument function fn and a list lst.
When you call reduce(fn, lst), fn will be applied to the first pair of
elements—fn(lst[0], lst[1])—producing a first result, r1. Then
fn is applied to r1 and the next element—fn(r1, lst[2])—
producing a second result, r2. Now fn(r2, lst[3]) is called to
produce r3 … and so on until the last element, when a single result, rN, is
returned.

Here is how you could use reduce to compute 5! (the factorial of 5):

>>> 2 * 3 * 4 * 5  # the result we want: 5! == 120 
120 
>>> import functools 
>>> functools.reduce(lambda a,b: a*b, range(1, 6)) 
120



Back to our hashing problem, Example 12-11 shows the idea of computing
the aggregate xor by doing it in three ways: with a for loop and two
reduce calls.

Example 12-11. Three ways of calculating the accumulated xor of integers
from 0 to 5
>>> n = 0 
>>> for i in range(1, 6):   
...     n ^= i 
... 
>>> n 
1 
>>> import functools 
>>> functools.reduce(lambda a, b: a^b, range(6))   
1 
>>> import operator 
>>> functools.reduce(operator.xor, range(6))   
1

Aggregate xor with a for loop and an accumulator variable.

functools.reduce using an anonymous function.

functools.reduce replacing custom lambda with
operator.xor.

From the alternatives in Example 12-11, the last one is my favorite, and the
for loop comes second. What is your preference?

As seen in “The operator Module”, operator provides the functionality
of all Python infix operators in function form, lessening the need for
lambda.

To code Vector.__hash__ in my preferred style, we need to import the
functools and operator modules. Example 12-12 shows the relevant
changes.

Example 12-12. Part of vector_v4.py: two imports and __hash__ method
added to Vector class from vector_v3.py



from array import array 
import reprlib 
import math 
import functools   
import operator   
 
 
class Vector: 
    typecode = 'd' 
 
    # many lines omitted in book listing... 
 
    def __eq__(self, other):   
        return tuple(self) == tuple(other) 
 
    def __hash__(self): 
        hashes = (hash(x) for x in self._components)   
        return functools.reduce(operator.xor, hashes, 0)   
 
    # more lines omitted...

Import functools to use reduce.

Import operator to use xor.

No change to __eq__; I listed it here because it’s good practice to keep
__eq__ and __hash__ close in source code, because they need to
work together.

Create a generator expression to lazily compute the hash of each
component.

Feed hashes to reduce with the xor function to compute the
aggregate hash code; the third argument, 0, is the initializer (see next
warning).



WARNING
When using reduce, it’s good practice to provide the third argument,
reduce(function, iterable, initializer), to prevent this exception:
TypeError: reduce() of empty sequence with no initial value
(excellent message: explains the problem and how to fix it). The initializer is the
value returned if the sequence is empty and is used as the first argument in the reducing
loop, so it should be the identity value of the operation. As examples, for +, |, ^ the
initializer should be 0, but for *, & it should be 1.

As implemented, the __hash__ method in Example 12-12 is a perfect
example of a map-reduce computation (Figure 12-2).



Figure 12-2. Map-reduce: apply function to each item to generate a new series (map), then compute
aggregate (reduce)

The mapping step produces one hash for each component, and the reduce
step aggregates all hashes with the xor operator. Using map instead of a
genexp makes the mapping step even more visible:

    def __hash__(self): 
        hashes = map(hash, self._components) 
        return functools.reduce(operator.xor, hashes)



TIP
The solution with map would be less efficient in Python 2, where the map function
builds a new list with the results. But in Python 3, map is lazy: it creates a generator
that yields the results on demand, thus saving memory—just like the generator
expression we used in the __hash__ method of Example 12-8.

While we are on the topic of reducing functions, we can replace our quick
implementation of __eq__ with another one that will be cheaper in terms
of processing and memory, at least for large vectors. As introduced in
Example 11-2, we have this very concise implementation of __eq__:

    def __eq__(self, other): 
        return tuple(self) == tuple(other)

This works for Vector2d and for Vector—it even considers
Vector([1, 2]) equal to (1, 2), which may be a problem, but we’ll
overlook that for now.  But for Vector instances that may have thousands
of components, it’s very inefficient. It builds two tuples copying the entire
contents of the operands just to use the __eq__ of the tuple type. For
Vector2d (with only two components), it’s a good shortcut, but not for
the large multidimensional vectors. A better way of comparing one
Vector to another Vector or iterable would be Example 12-13.

Example 12-13. The Vector.__eq__ implementation using zip in a
for loop for more efficient comparison
    def __eq__(self, other): 
        if len(self) != len(other):   
            return False 
        for a, b in zip(self, other):   
            if a != b:   
                return False 
        return True  

If the len of the objects are different, they are not equal.
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zip produces a generator of tuples made from the items in each iterable
argument. See “The Awesome zip” if zip is new to you. The len
comparison above is needed because zip stops producing values
without warning as soon as one of the inputs is exhausted.

As soon as two components are different, exit returning False.

Otherwise, the objects are equal.

TIP
The zip function is named after the zipper fastener because the physical device works
by interlocking pairs of teeth taken from both zipper sides, a good visual analogy for
what zip(left, right) does. No relation with compressed files.

Example 12-13 is efficient, but the all function can produce the same
aggregate computation of the for loop in one line: if all comparisons
between corresponding components in the operands are True, the result is
True. As soon as one comparison is False, all returns False.
Example 12-14 shows how __eq__ looks using all.

Example 12-14. The Vector.__eq__ implementation using zip and
all: same logic as Example 12-13
    def __eq__(self, other): 
        return len(self) == len(other) and all(a == b for a, b in 
zip(self, other))

Note that we first check that the operands have equal length, because zip
will stop at the shortest operand.

Example 12-14 is the implementation we choose for __eq__ in
vector_v4.py.



THE AWESOME ZIP

Having a for loop that iterates over items without fiddling with index
variables is great and prevents lots of bugs, but demands some special
utility functions. One of them is the zip built-in, which makes it easy
to iterate in parallel over two or more iterables by returning tuples that
you can unpack into variables, one for each item in the parallel inputs.
See Example 12-15.

Example 12-15. The zip built-in at work
>>> zip(range(3), 'ABC')   
<zip object at 0x10063ae48> 
>>> list(zip(range(3), 'ABC'))   
[(0, 'A'), (1, 'B'), (2, 'C')] 
>>> list(zip(range(3), 'ABC', [0.0, 1.1, 2.2, 3.3]))   
[(0, 'A', 0.0), (1, 'B', 1.1), (2, 'C', 2.2)] 
>>> from itertools import zip_longest   
>>> list(zip_longest(range(3), 'ABC', [0.0, 1.1, 2.2, 3.3], 
fillvalue=-1)) 
[(0, 'A', 0.0), (1, 'B', 1.1), (2, 'C', 2.2), (-1, -1, 3.3)]

zip returns a generator that produces tuples on demand.

Build a list just for display; usually we iterate over the generator.

zip stops without warning when one of the iterables is exhausted.

The itertools.zip_longest function behaves differently: it
uses an optional fillvalue (None by default) to complete
missing values so it can generate tuples until the last iterable is
exhausted.



NEW ZIP() OPTION IN PYTHON 3.10.
I wrote in the First Edition that zip silently stopping at the shortest iterable was
surprising—not a good trait for an API. Silently ignoring part of the input can
cause subtle bugs. Instead, zip should raise ValueError if the iterables are
not all of the same length, which is what happens when unpacking an iterable to a
tuple of variables of different length—in line with Python’s fail fast policy. PEP
618—Add Optional Length-Checking To zip added an optional strict
argument to zip to make it behave in that way. It is implemented in Python 3.10.

The zip function can also be used to transpose a matrix represented as
nested iterables. For example:

>>> a = [(1, 2, 3), 
...      (4, 5, 6)] 
>>> list(zip(*a)) 
[(1, 4), (2, 5), (3, 6)] 
>>> b = [(1, 2), 
...      (3, 4), 
...      (5, 6)] 
>>> list(zip(*b)) 
[(1, 3, 5), (2, 4, 6)]

If you want to grok zip, spend some time figuring out how these
examples work.

The enumerate built-in is another generator function often used in
for loops to avoid direct handling of index variables. If you are not
familiar with enumerate, you should definitely check it out in the
“Built-in functions” documentation. The zip and enumerate built-
ins, along with several other generator functions in the standard library,
are covered in “Generator Functions in the Standard Library”.

We wrap up this chapter by bringing back the __format__ method from
Vector2d to Vector.

Vector Take #5: Formatting

https://www.python.org/dev/peps/pep-0618/
http://bit.ly/1QOtsk8


The __format__ method of Vector will resemble that of Vector2d,
but instead of providing a custom display in polar coordinates, Vector
will use spherical coordinates—also known as “hyperspherical”
coordinates, because now we support n dimensions, and spheres are
“hyperspheres” in 4D and beyond.  Accordingly, we’ll change the custom
format suffix from 'p' to 'h'.

TIP
As we saw in “Formatted Displays”, when extending the Format Specification Mini-
Language it’s best to avoid reusing format codes supported by built-in types. In
particular, our extended mini-language also uses the float formatting codes
'eEfFgGn%' in their original meaning, so we definitely must avoid these. Integers use
'bcdoxXn' and strings use 's'. I picked 'p' for Vector2d polar coordinates.
Code 'h' for hyperspherical coordinates is a good choice.

For example, given a Vector object in 4D space (len(v) == 4), the
'h' code will produce a display like <r, Φ₁, Φ₂, Φ₃> where r is the
magnitude (abs(v)) and the remaining numbers are the angular
components Φ₁, Φ₂, Φ₃.

Here are some samples of the spherical coordinate format in 4D, taken from
the doctests of vector_v5.py (see Example 12-16):

>>> format(Vector([-1, -1, -1, -1]), 'h') 
'<2.0, 2.0943951023931957, 2.186276035465284, 
3.9269908169872414>' 
>>> format(Vector([2, 2, 2, 2]), '.3eh') 
'<4.000e+00, 1.047e+00, 9.553e-01, 7.854e-01>' 
>>> format(Vector([0, 1, 0, 0]), '0.5fh') 
'<1.00000, 1.57080, 0.00000, 0.00000>'

Before we can implement the minor changes required in __format__, we
need to code a pair of support methods: angle(n) to compute one of the
angular coordinates (e.g., Φ₁), and angles() to return an iterable of all
angular coordinates. I will not describe the math here; if you’re curious,
Wikipedia’s "n-sphere” entry has the formulas I used to calculate the
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spherical coordinates from the Cartesian coordinates in the Vector
components array.

Example 12-16 is a full listing of vector_v5.py consolidating all we’ve
implemented since “Vector Take #1: Vector2d Compatible” and introducing
custom formatting.

Example 12-16. vector_v5.py: doctests and all code for final Vector class;
callouts highlight additions needed to support __format__
""" 
A multidimensional ``Vector`` class, take 5 
 
A ``Vector`` is built from an iterable of numbers:: 
 
    >>> Vector([3.1, 4.2]) 
    Vector([3.1, 4.2]) 
    >>> Vector((3, 4, 5)) 
    Vector([3.0, 4.0, 5.0]) 
    >>> Vector(range(10)) 
    Vector([0.0, 1.0, 2.0, 3.0, 4.0, ...]) 
 
 
Tests with two dimensions (same results as ``vector2d_v1.py``):: 
 
    >>> v1 = Vector([3, 4]) 
    >>> x, y = v1 
    >>> x, y 
    (3.0, 4.0) 
    >>> v1 
    Vector([3.0, 4.0]) 
    >>> v1_clone = eval(repr(v1)) 
    >>> v1 == v1_clone 
    True 
    >>> print(v1) 
    (3.0, 4.0) 
    >>> octets = bytes(v1) 
    >>> octets 
    
b'd\\x00\\x00\\x00\\x00\\x00\\x00\\x08@\\x00\\x00\\x00\\x00\\x00\\x
00\\x10@' 
    >>> abs(v1) 
    5.0 
    >>> bool(v1), bool(Vector([0, 0])) 
    (True, False) 
 



 
Test of ``.frombytes()`` class method: 
 
    >>> v1_clone = Vector.frombytes(bytes(v1)) 
    >>> v1_clone 
    Vector([3.0, 4.0]) 
    >>> v1 == v1_clone 
    True 
 
 
Tests with three dimensions:: 
 
    >>> v1 = Vector([3, 4, 5]) 
    >>> x, y, z = v1 
    >>> x, y, z 
    (3.0, 4.0, 5.0) 
    >>> v1 
    Vector([3.0, 4.0, 5.0]) 
    >>> v1_clone = eval(repr(v1)) 
    >>> v1 == v1_clone 
    True 
    >>> print(v1) 
    (3.0, 4.0, 5.0) 
    >>> abs(v1)  # doctest:+ELLIPSIS 
    7.071067811... 
    >>> bool(v1), bool(Vector([0, 0, 0])) 
    (True, False) 
 
 
Tests with many dimensions:: 
 
    >>> v7 = Vector(range(7)) 
    >>> v7 
    Vector([0.0, 1.0, 2.0, 3.0, 4.0, ...]) 
    >>> abs(v7)  # doctest:+ELLIPSIS 
    9.53939201... 
 
 
Test of ``.__bytes__`` and ``.frombytes()`` methods:: 
 
    >>> v1 = Vector([3, 4, 5]) 
    >>> v1_clone = Vector.frombytes(bytes(v1)) 
    >>> v1_clone 
    Vector([3.0, 4.0, 5.0]) 
    >>> v1 == v1_clone 
    True 
 
 



Tests of sequence behavior:: 
 
    >>> v1 = Vector([3, 4, 5]) 
    >>> len(v1) 
    3 
    >>> v1[0], v1[len(v1)-1], v1[-1] 
    (3.0, 5.0, 5.0) 
 
 
Test of slicing:: 
 
    >>> v7 = Vector(range(7)) 
    >>> v7[-1] 
    6.0 
    >>> v7[1:4] 
    Vector([1.0, 2.0, 3.0]) 
    >>> v7[-1:] 
    Vector([6.0]) 
    >>> v7[1,2] 
    Traceback (most recent call last): 
      ... 
    TypeError: 'tuple' object cannot be interpreted as an integer 
 
 
Tests of dynamic attribute access:: 
 
    >>> v7 = Vector(range(10)) 
    >>> v7.x 
    0.0 
    >>> v7.y, v7.z, v7.t 
    (1.0, 2.0, 3.0) 
 
Dynamic attribute lookup failures:: 
 
    >>> v7.k 
    Traceback (most recent call last): 
      ... 
    AttributeError: 'Vector' object has no attribute 'k' 
    >>> v3 = Vector(range(3)) 
    >>> v3.t 
    Traceback (most recent call last): 
      ... 
    AttributeError: 'Vector' object has no attribute 't' 
    >>> v3.spam 
    Traceback (most recent call last): 
      ... 
    AttributeError: 'Vector' object has no attribute 'spam' 
 



 
Tests of hashing:: 
 
    >>> v1 = Vector([3, 4]) 
    >>> v2 = Vector([3.1, 4.2]) 
    >>> v3 = Vector([3, 4, 5]) 
    >>> v6 = Vector(range(6)) 
    >>> hash(v1), hash(v3), hash(v6) 
    (7, 2, 1) 
 
 
Most hash codes of non-integers vary from a 32-bit to 64-bit 
CPython build:: 
 
    >>> import sys 
    >>> hash(v2) == (384307168202284039 if sys.maxsize > 2**32 else 
357915986) 
    True 
 
 
Tests of ``format()`` with Cartesian coordinates in 2D:: 
 
    >>> v1 = Vector([3, 4]) 
    >>> format(v1) 
    '(3.0, 4.0)' 
    >>> format(v1, '.2f') 
    '(3.00, 4.00)' 
    >>> format(v1, '.3e') 
    '(3.000e+00, 4.000e+00)' 
 
 
Tests of ``format()`` with Cartesian coordinates in 3D and 7D:: 
 
    >>> v3 = Vector([3, 4, 5]) 
    >>> format(v3) 
    '(3.0, 4.0, 5.0)' 
    >>> format(Vector(range(7))) 
    '(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0)' 
 
 
Tests of ``format()`` with spherical coordinates in 2D, 3D and 4D:: 
 
    >>> format(Vector([1, 1]), 'h')  # doctest:+ELLIPSIS 
    '<1.414213..., 0.785398...>' 
    >>> format(Vector([1, 1]), '.3eh') 
    '<1.414e+00, 7.854e-01>' 
    >>> format(Vector([1, 1]), '0.5fh') 
    '<1.41421, 0.78540>' 



    >>> format(Vector([1, 1, 1]), 'h')  # doctest:+ELLIPSIS 
    '<1.73205..., 0.95531..., 0.78539...>' 
    >>> format(Vector([2, 2, 2]), '.3eh') 
    '<3.464e+00, 9.553e-01, 7.854e-01>' 
    >>> format(Vector([0, 0, 0]), '0.5fh') 
    '<0.00000, 0.00000, 0.00000>' 
    >>> format(Vector([-1, -1, -1, -1]), 'h')  # doctest:+ELLIPSIS 
    '<2.0, 2.09439..., 2.18627..., 3.92699...>' 
    >>> format(Vector([2, 2, 2, 2]), '.3eh') 
    '<4.000e+00, 1.047e+00, 9.553e-01, 7.854e-01>' 
    >>> format(Vector([0, 1, 0, 0]), '0.5fh') 
    '<1.00000, 1.57080, 0.00000, 0.00000>' 
""" 
 
from array import array 
import reprlib 
import math 
import functools 
import operator 
import itertools   
 
 
class Vector: 
    typecode = 'd' 
 
    def __init__(self, components): 
        self._components = array(self.typecode, components) 
 
    def __iter__(self): 
        return iter(self._components) 
 
    def __repr__(self): 
        components = reprlib.repr(self._components) 
        components = components[components.find('['):-1] 
        return f'Vector({components})' 
 
    def __str__(self): 
        return str(tuple(self)) 
 
    def __bytes__(self): 
        return (bytes([ord(self.typecode)]) + 
                bytes(self._components)) 
 
    def __eq__(self, other): 
        return (len(self) == len(other) and 
                all(a == b for a, b in zip(self, other))) 
 
    def __hash__(self): 



        hashes = (hash(x) for x in self) 
        return functools.reduce(operator.xor, hashes, 0) 
 
    def __abs__(self): 
        return math.hypot(*self) 
 
    def __bool__(self): 
        return bool(abs(self)) 
 
    def __len__(self): 
        return len(self._components) 
 
    def __getitem__(self, key): 
        if isinstance(key, slice): 
            cls = type(self) 
            return cls(self._components[key]) 
        index = operator.index(key) 
        return self._components[index] 
 
    __match_args__ = ('x', 'y', 'z', 't') 
 
    def __getattr__(self, name): 
        cls = type(self) 
        try: 
            pos = cls.__match_args__.index(name) 
        except ValueError: 
            pos = -1 
        if 0 <= pos < len(self._components): 
            return self._components[pos] 
        msg = f'{cls.__name__!r} object has no attribute {name!r}' 
        raise AttributeError(msg) 
 
    def angle(self, n):   
        r = math.hypot(*self[n:]) 
        a = math.atan2(r, self[n-1]) 
        if (n == len(self) - 1) and (self[-1] < 0): 
            return math.pi * 2 - a 
        else: 
            return a 
 
    def angles(self):   
        return (self.angle(n) for n in range(1, len(self))) 
 
    def __format__(self, fmt_spec=''): 
        if fmt_spec.endswith('h'):  # hyperspherical coordinates 
            fmt_spec = fmt_spec[:-1] 
            coords = itertools.chain([abs(self)], 
                                     self.angles())   



            outer_fmt = '<{}>'   
        else: 
            coords = self 
            outer_fmt = '({})'   
        components = (format(c, fmt_spec) for c in coords)   
        return outer_fmt.format(', '.join(components))   
 
    @classmethod 
    def frombytes(cls, octets): 
        typecode = chr(octets[0]) 
        memv = memoryview(octets[1:]).cast(typecode) 
        return cls(memv)

Import itertools to use chain function in __format__.

Compute one of the angular coordinates, using formulas adapted from
the n-sphere article.

Create generator expression to compute all angular coordinates on
demand.

Use itertools.chain to produce genexp to iterate seamlessly over
the magnitude and the angular coordinates.

Configure spherical coordinate display with angular brackets.

Configure Cartesian coordinate display with parentheses.

Create generator expression to format each coordinate item on demand.

Plug formatted components separated by commas inside brackets or
parentheses.

http://en.wikipedia.org/wiki/N-sphere


NOTE
We are making heavy use of generator expressions in __format__, angle, and
angles but our focus here is in providing __format__ to bring Vector to the same
implementation level as Vector2d. When we cover generators in Chapter 17 we’ll use
some of the code in Vector as examples, and then the generator tricks will be
explained in detail.

This concludes our mission for this chapter. The Vector class will be
enhanced with infix operators in Chapter 16, but our goal here was to
explore techniques for coding special methods that are useful in a wide
variety of collection classes.



Chapter Summary
The Vector example in this chapter was designed to be compatible with
Vector2d, except for the use of a different constructor signature
accepting a single iterable argument, just like the built-in sequence types
do. The fact that Vector behaves as a sequence just by implementing
__getitem__ and __len__ prompted a discussion of protocols, the
informal interfaces used in duck-typed languages.

We then looked at how the my_seq[a:b:c] syntax works behind the
scenes, by creating a slice(a, b, c) object and handing it to
__getitem__. Armed with this knowledge, we made Vector respond
correctly to slicing, by returning new Vector instances, just like a
Pythonic sequence is expected to do.

The next step was to provide read-only access to the first few Vector
components using notation such as my_vec.x. We did it by implementing
__getattr__. Doing that opened the possibility of tempting the user to
assign to those special components by writing my_vec.x = 7, revealing
a potential bug. We fixed it by implementing __setattr__ as well, to
forbid assigning values to single-letter attributes. Very often, when you
code a __getattr__ you need to add __setattr__ too, in order to
avoid inconsistent behavior.

Implementing the __hash__ function provided the perfect context for
using functools.reduce, because we needed to apply the xor operator
^ in succession to the hashes of all Vector components to produce an
aggregate hash code for the whole Vector. After applying reduce in
__hash__, we used the all reducing built-in to create a more efficient
__eq__ method.

The last enhancement to Vector was to reimplement the __format__
method from Vector2d by supporting spherical coordinates as an
alternative to the default Cartesian coordinates. We used quite a bit of math
and several generators to code __format__ and its auxiliary functions,
but these are implementation details—and we’ll come back to the



generators in Chapter 17. The goal of that last section was to support a
custom format, thus fulfilling the promise of a Vector that could do
everything a Vector2d did, and more.

As we did in Chapter 11, here we often looked at how standard Python
objects behave, to emulate them and provide a “Pythonic” look-and-feel to
Vector.

In Chapter 16, we will implement several infix operators on Vector. The
math will be much simpler than that in the angle() method here, but
exploring how infix operators work in Python is a great lesson in OO
design. But before we get to operator overloading, we’ll step back from
working on one class and look at organizing multiple classes with interfaces
and inheritance, the subjects of Chapters 13 and 14.

Further Reading
Most special methods covered in the Vector example also appear in the
Vector2d example from Chapter 11, so the references in “Further
Reading” are all relevant here.

The powerful reduce higher-order function is also known as fold,
accumulate, aggregate, compress, and inject. For more information, see
Wikipedia’s “Fold (higher-order function)” article, which presents
applications of that higher-order function with emphasis on functional
programming with recursive data structures. The article also includes a
table listing fold-like functions in dozens of programming languages.

What’s New in Python 2.5 has a short explanation of __index__,
designed to support __getitem__ methods, as we saw in “A Slice-Aware
__getitem__”. PEP 357—Allowing Any Object to be Used for Slicing
details the need for it from the perspective of an implementor of a C-
extension—Travis Oliphant, the primary creator of NumPy. Oliphant’s
many contributions to Python made it a leading scientific computing
language, which then positioned it to lead the way in machine learning
applications.

http://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://docs.python.org/2.5/whatsnew/pep-357.html
https://www.python.org/dev/peps/pep-0357/


SOAPBOX

Protocols as Informal Interfaces

Protocols are not an invention of Python. The Smalltalk team, who also
coined the expression “object oriented,” used “protocol” as a synonym
for what we now call interfaces. Some Smalltalk programming
environments allowed programmers to tag a group of methods as a
protocol, but that was merely a documentation and navigation aid, and
not enforced by the language. That’s why I believe “informal interface”
is a reasonable short explanation for “protocol” when I speak to an
audience that is more familiar with formal (and compiler enforced)
interfaces.

Established protocols naturally evolve in any language that uses
dynamic typing, that is, when type-checking is done at runtime because
there is no static type information in method signatures and variables.
Ruby is another important OO language that has dynamic typing and
uses protocols.

In the Python documentation, you can often tell when a protocol is
being discussed when you see language like “a file-like object.” This is
a quick way of saying “something that behaves sufficiently like a file,
by implementing the parts of the file interface that are relevant in the
context.”

You may think that implementing only part of a protocol is sloppy, but
it has the advantage of keeping things simple. Section 3.3 of the “Data
Model” chapter suggests:

When implementing a class that emulates any built-in type, it is
important that the emulation only be implemented to the degree that
it makes sense for the object being modeled. For example, some
sequences may work well with retrieval of individual elements, but
extracting a slice may not make sense.

When we don’t need to code nonsense methods just to fulfill some
over-designed interface contract and keep the compiler happy, it

http://bit.ly/pydocs-smn


becomes easier to follow the KISS principle.

On the other hand, if you want to use a type checker to verify your
protocol implementations, then a stricter definition of protocol is
required. That’s what typing.Protocol provides.

I’ll have more to say about protocols and interfaces in Chapter 13,
where they are the main focus.

Origins of Duck Typing

I believe the Ruby community, more than any other, helped popularize
the term “duck typing,” as they preached to the Java masses. But the
expression has been used in Python discussions before either Ruby or
Python were “popular.” According to Wikipedia, an early example of
the duck analogy in object-oriented programming is a message to the
Python-list by Alex Martelli from July 26, 2000: polymorphism (was
Re: Type checking in python?). That’s where the quote at the beginning
of this chapter came from. If you are curious about the literary origins
of the “duck typing” term, and the applications of this OO concept in
many languages, check out Wikipedia’s “Duck typing” entry.

A safe format, with Enhanced Usability

While implementing __format__, I did not take any precautions
regarding Vector instances with a very large number of components,
as we did in __repr__ using reprlib. The reasoning is that
repr() is for debugging and logging, so it must always generate some
serviceable output, while __format__ is used to display output to
end users who presumably want to see the entire Vector. If you think
this is dangerous, then it would be cool to implement a further
extension to the format specifier mini-language.

Here is how I’d do it: by default, any formatted Vector would display
a reasonable but limited number of components, say 30. If there are
more elements than that, the default behavior would be similar to what
the reprlib does: chop the excess and put ... in its place. However,
if the format specifier ended with the special * code, meaning “all,”

http://en.wikipedia.org/wiki/KISS_principle
http://bit.ly/1QOuTPx
http://en.wikipedia.org/wiki/Duck_typing


then the size limitation would be disabled. So a user who’s unaware of
the problem of very long displays will not be bitten by it by accident.
But if the default limitation becomes a nuisance, then the presence of
the ... could lead the user to search the documentation and discover
the * formatting code.

The Search for a Pythonic Sum

There’s no single answer to “What is Pythonic?” just as there’s no
single answer to “What is beautiful?” Saying, as I often do, that it
means using “idiomatic Python” is not 100% satisfactory, because what
may be “idiomatic” for you may not be for me. One thing I know:
“idiomatic” does not mean using the most obscure language features.

In the Python-list, there’s a thread from April 2003 titled “Pythonic
Way to Sum n-th List Element?”. It’s relevant to our discussion of
reduce in this chapter.

The original poster, Guy Middleton, asked for an improvement on this
solution, stating he did not like to use lambda:

>>> my_list = [[1, 2, 3], [40, 50, 60], [9, 8, 7]] 
>>> import functools 
>>> functools.reduce(lambda a, b: a+b, [sub[1] for sub in 
my_list]) 
60

That code uses lots of idioms: lambda, reduce, and a list
comprehension. It would probably come last in a popularity contest,
because it offends people who hate lambda and those who despise list
comprehensions—pretty much both sides of a divide.

If you’re going to use lambda, there’s probably no reason to use a list
comprehension—except for filtering, which is not the case here.

Here is a solution of my own that will please the lambda lovers:

>>> functools.reduce(lambda a, b: a + b[1], my_list, 0) 
60

7
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I did not take part in the original thread, and I wouldn’t use that in real
code, because I don’t like lambda too much myself, but I wanted to
show an example without a list comprehension.

The first answer came from Fernando Perez, creator of IPython,
highlighting that NumPy supports n-dimensional arrays and n-
dimensional slicing:

>>> import numpy as np 
>>> my_array = np.array(my_list) 
>>> np.sum(my_array[:, 1]) 
60

I think Perez’s solution is cool, but Guy Middleton praised this next
solution, by Paul Rubin and Skip Montanaro:

>>> import operator 
>>> functools.reduce(operator.add, [sub[1] for sub in 
my_list], 0) 
60

Then Evan Simpson asked, “What’s wrong with this?”:

>>> total = 0 
>>> for sub in my_list: 
...     total += sub[1] 
... 
>>> total 
60

Lots of people agreed that was quite Pythonic. Alex Martelli went as far
as saying that’s probably how Guido would code it.

I like Evan Simpson’s code but I also like David Eppstein’s comment
on it:



If you want the sum of a list of items, you should write it in a way that
looks like “the sum of a list of items”, not in a way that looks like
“loop over these items, maintain another variable t, perform a
sequence of additions”. Why do we have high level languages if not
to express our intentions at a higher level and let the language worry
about what low-level operations are needed to implement it?

Then Alex Martelli comes back to suggest:

“The sum” is so frequently needed that I wouldn’t mind at all if
Python singled it out as a built-in. But “reduce(operator.add, …” just
isn’t a great way to express it, in my opinion (and yet as an old
APL’er, and FP-liker, I should like it—but I don’t).

Alex goes on to suggest a sum() function, which he contributed. It
became a built-in in Python 2.3, released only three months after that
conversation took place. So Alex’s preferred syntax became the norm:

>>> sum([sub[1] for sub in my_list]) 
60

By the end of the next year (November 2004), Python 2.4 was launched
with generator expressions, providing what is now in my opinion the
most Pythonic answer to Guy Middleton’s original question:

>>> sum(sub[1] for sub in my_list) 
60

This is not only more readable than reduce but also avoids the trap of
the empty sequence: sum([]) is 0, simple as that.

In the same conversation, Alex Martelli suggests the reduce built-in
in Python 2 was more trouble than it was worth, because it encouraged
coding idioms that were hard to explain. He was most convincing: the
function was demoted to the functools module in Python 3.

Still, functools.reduce has its place. It solved the problem of our
Vector.__hash__ in a way that I would call Pythonic.



1  The iter() function is covered in Chapter 17, along with the __iter__ method.

2  Attribute lookup is more complicated than this; we’ll see the gory details in [Link to Come].
For now, this simplified explanation will do.

3  Although __match_args__ exists to support pattern matching in Python 3.10, setting this
attribute is harmless in previous versions of Python. In the First Edition, I named it
shortcut_names. With the new name it does double duty: it supports positional patterns in
case clauses, and it holds the names of the dynamic attributes supported by special logic in
__getattr__ and __setattr__.

4  The sum, any, and all cover the most common uses of reduce. See the discussion in
“Modern Replacements for map, filter, and reduce”.

5  We’ll seriously consider the matter of Vector([1, 2]) == (1, 2) in “Operator
Overloading 101”.

6  The Wolfram Mathworld site has an article on Hypersphere; on Wikipedia, “hypersphere”
redirects to the "n-sphere” entry.

7  I adapted the code for this presentation: in 2003, reduce was a built-in, but in Python 3 we
need to import it; also, I replaced the names x and y with my_list and sub, for sub-list.

http://mathworld.wolfram.com/Hypersphere.html
http://en.wikipedia.org/wiki/N-sphere


Chapter 13. Interfaces,
Protocols, and ABCs

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 13th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

Program to an interface, not an implementation.
—Gamma, Helm, Johnson, Vlissides, First Principle of

Object-Oriented Design

Object-oriented programming is all about interfaces. The best approach to
understanding a type in Python is knowing the methods it provides—its
interface—as discussed in “Types are defined by supported operations”
(Chapter 8).

Depending on the programming language, we have one or more ways of
defining and using interfaces. Since Python 3.8, we have four ways. They
are depicted in the Typing Map (Figure 13-1). We can summarize them like
this:

duck typing

1
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Python’s default approach to typing from the beginning. We’ve been
studying duck typing since Chapter 1.

goose typing

The approach supported by Abstract Base Classes (ABCs) since Python
2.6, which relies on runtime checks of objects against ABCs. Goose
typing is a major subject in this chapter.

static typing

Traditional approach of statically-typed languages like C and Java;
supported since Python 3.5 by the typing module, and enforced by
external type checkers compliant with PEP 484—Type Hints. This is
not the theme of this chapter. Most of Chapter 8 and the upcoming
Chapter 15 are about static typing.

static duck typing

An approach made popular by the Go language; supported by
subclasses of typing.Protocol—new in Python 3.8—also
enforced by external type checkers. We first saw this in “Static
Protocols” (Chapter 8).

The Typing Map

https://www.python.org/dev/peps/pep-0484/




Figure 13-1. The top half describes runtime type checking approaches using just the Python
interpreter; the bottom requires an external static type checker such as MyPy or an IDE like

PyCharm. The left quadrants cover typing based on the object’s structure— i.e. the methods provided
by the object, regardless of the name of its class or superclasses; the right quadrants depend on

objects having explicitly named types: the name of the object’s class, or the name of its superclasses.

These four typing approaches are complementary: they have different pros
and cons. It doesn’t make sense to dismiss any of them.

Each of these four approaches rely on interfaces to work, but static typing
can be done—poorly—using only concrete types instead of interface
abstractions like protocols and Abstract Base Classes. This chapter is about
duck typing, goose typing and static duck typing—typing disciplines that
revolve around interfaces.

This chapter is split in four top sections, addressing three of the four
quadrants in the Typing Map (Figure 13-1):

“Two kinds of protocols” compares the two forms of structural
typing with protocols—i.e. the left-hand side of the Typing Map.

“Programming ducks” dives deeper into Python’s usual duck
typing, including how to make it safer while preserving its major
strength: flexibility.

“Goose typing” explains the use of ABCs for stricter runtime type
checking. This is the longest section, not because it’s more
important, but because there are more sections about duck typing,
static duck typing, and static typing elsewhere in the book.

“Static protocols” covers usage, implementation and design of
typing.Protocol subclasses—useful for static and runtime
type checking.

What’s new in this chapter
This chapter was heavily edited and is about 24% longer than the
corresponding Chapter 11 in Fluent Python, First Edition. Although some



sections and many paragraphs are the same, there’s a lot of new content.
These are the highlights:

The chapter introduction and the Typing Map (Figure 13-1) are
new. That’s the key to most new content in this chapter—and all
other chapters related to typing in Python ≥ 3.8.

“Two kinds of protocols” explains the similarities and differences
between dynamic and static protocols.

“Defensive programming and “fail fast”” mostly reproduces
content from the First Edition, but was updated and now has a
section title to highlight its importance.

“Static protocols” is all new. It builds on the initial presentation in
“Static Protocols” (Chapter 8).

I updated the UML class diagrams of collections.abc in
Figure 13-2, Figure 13-3, and Figure 13-4 to include the
Collection ABC added in Python 3.6.

Fluent Python, First Edition had a section encouraging use of the
numbers ABCs for goose typing. In “The numbers ABCs and numeric
protocols”, I explain why you should use numeric static protocols from the
typing module instead, if you plan to use static type checkers as well as
runtime checks in the style of goose typing.

Two kinds of protocols
The word protocol has different meanings in computer science depending
on context. A network protocol such as HTTP specifies commands that a
client can send to a server, such as GET, PUT, and HEAD. We saw in
“Protocols and Duck Typing” that an object protocol specifies methods
which an object must provide to fulfill a role. The FrenchDeck example
in Chapter 1 was demonstrated one object protocol, the sequence protocol:
the methods that allow a Python object to behave as a sequence.



Implementing a full protocol may require several methods, but often it is
OK to implement only part of it. Consider this Vowels class:

Example 13-1. Partial sequence protocol implementation with __getitem__.
>>> class Vowels: 
...     def __getitem__(self, i): 
...         return 'AEIOU'[i] 
... 
>>> v = Vowels() 
>>> v[0] 
'A' 
>>> v[-1] 
'U' 
>>> for c in v: print(c) 
... 
A 
E 
I 
O 
U 
>>> 'E' in v 
True 
>>> 'Z' in v 
False

Implementing __getitem__ is enough to allow retrieving items by
index, and also to support iteration and the in operator. The
__getitem__ special method is really the key to the sequence protocol.
Take a look at this entry from the Python/C API Reference Manual, section
Sequence Protocol:

int PySequence_Check(PyObject *o)

Return 1 if the object provides sequence protocol, and 0 otherwise.
Note that it returns 1 for Python classes with a __getitem__()
method unless they are dict subclasses […]

We expect a sequence to also support len(), by implementing __len__.
Vowels has no __len__ method, but it still behaves as a sequence in
some contexts. And that may be enough for our purposes. That is why I like
to say that a protocol is an “informal interface”. That is also how protocols

https://docs.python.org/3/c-api/index.html
https://docs.python.org/3/c-api/sequence.html


are understood in Smalltalk, the first Object-Oriented programming
environment to use that term.

Except in pages about network programming, most uses of the word
“protocol” in the Python documentation refer to these informal interfaces.

Now, with the adoption of PEP 544—Protocols: Structural subtyping (static
duck typing) in Python 3.8, the word “protocol” has another meaning in
Python—closely related, but different. As we saw in “Static Protocols”
(Chapter 8), PEP 544 allows us to create subclasses of
typing.Protocol to define one or more methods that a class must
implement (or inherit) to satisfy a static type checker.

When I need to be specific, I will adopt these terms:

dynamic protocol

The informal protocols Python always had. Dynamic protocols are
implicit, defined by convention and described in the documentation.
Python’s most important dynamic protocols are supported by the
interpreter itself, and are documented in the “Data Model” chapter of
The Python Language Reference.

static protocol

A protocol as defined by PEP 544—Protocols: Structural subtyping
(static duck typing), since Python 3.8. A static protocol has an explicit
definition: a typing.Protocol subclass.

There are two key differences between them:

1. An object may implement only part of a dynamic protocol and still
be useful; but to fulfill a static protocol, the object must provide
every method declared in the protocol class, even if your program
doesn’t need them all.

2. Static protocols can be verified by static type checkers, but
dynamic protocols can’t.

https://www.python.org/dev/peps/pep-0544/
http://docs.python.org/3/reference/datamodel.html
https://www.python.org/dev/peps/pep-0544/


Both kinds of protocols share the essential characteristic that a class never
needs to declare that it supports a protocol by name, i.e. by inheritance.

In addition to static protocols, Python provides another way of defining an
explicit interface in code: an Abstract Base Class (ABC).

The rest of this chapter covers dynamic and static protocols, as well as
ABCs.

Programming ducks
Let’s start our discussion of dynamic protocols with two of the most
important in Python: the sequence and iterable protocols. The interpreter
goes out of its way to handle objects that provide even a minimal
implementation of those protocols, as the next section explains.

Python Digs Sequences
The philosophy of the Python Data Model is to cooperate with essential
dynamic protocols as much as possible. When it comes to sequences,
Python tries hard to work with even the simplest implementations.

Figure 13-2 shows how the Sequence interface is formalized as an ABC.
The Python interpreter and built-in sequences like list, str etc. do not
rely on that ABC at all. I am using it only to describe what a full-fledged
Sequence is expected to support.



Figure 13-2. UML class diagram for the Sequence ABC and related abstract classes from
collections.abc. Inheritance arrows point from subclass to its superclasses. Names in italic are

abstract methods. Before Python 3.6, there was no Collection ABC—Sequence was a direct
subclass of Container, Iterable, and Sized.

TIP
Most ABCs in the collections.abc module exist to formalize interfaces that are
implemented by built-in objects and are implicitly supported by the interpreter—both of
which predate the ABCs themselves. The ABCs are useful as starting points for new
classes, and to support explicit type checking at runtime (a.k.a. goose typing) as well as
type hints for static type checkers.

Studying Figure 13-2, we see that a correct subclass of Sequence must
implement __getitem__ and __len__ (from Sized). All the other



methods in Sequence are concrete, so subclasses can inherit their
implementations—or provide better ones.

Now, recall the Vowels class in Example 13-1. It does not inherit from
abc.Sequence and it only implements __getitem__.

There is no __iter__ method, yet Vowels instances are iterable because
—as a fallback—if Python finds a __getitem__ method, it tries to
iterate over the object by calling that method with integer indexes starting
with 0. Because Python is smart enough to iterate over Vowels instances,
it can also make the in operator work even when the __contains__
method is missing: it does a sequential scan to check if an item is present.

In summary, given the importance of sequence-like data structures, Python
manages to make iteration and the in operator work by invoking
__getitem__ when __iter__ and __contains__ are unavailable.

The original FrenchDeck from Chapter 1 does not subclass
abc.Sequence either, but it does implement both methods of the
sequence protocol: __getitem__ and __len__. See Example 13-2.

Example 13-2. A deck as a sequence of cards (same as Example 1-1)
import collections 
 
Card = collections.namedtuple('Card', ['rank', 'suit']) 
 
class FrenchDeck: 
    ranks = [str(n) for n in range(2, 11)] + list('JQKA') 
    suits = 'spades diamonds clubs hearts'.split() 
 
    def __init__(self): 
        self._cards = [Card(rank, suit) for suit in self.suits 
                                        for rank in self.ranks] 
 
    def __len__(self): 
        return len(self._cards) 
 
    def __getitem__(self, position): 
        return self._cards[position]

Several of the examples in Chapter 1 work because of the special treatment
Python gives to anything vaguely resembling a sequence. The iterable



protocol in Python represents an extreme form of duck typing: the
interpreter tries two different methods to iterate over objects.

To be clear: the behaviors I described in this section are implemented in the
interpreter itself, mostly in C. They do not depend on methods from the
Sequence ABC. For example, the concrete methods __iter__ and
__contains__ in the Sequence class emulate the built-in behaviors of
the Python interpreter. If you are curious, check source code of these
methods in Lib/_collections_abc.py.

Now let’s study another example emphasizing the dynamic nature of
protocols—and why static type checkers have no chance of dealing with
them.

Monkey-Patching: Implementing a Protocol at Runtime

NOTE
Monkey patching is dynamically changing a module, class, or function at runtime, to
add features or fix bugs.  Because it does not change the source code like a regular
patch, a monkey patch only affects the currently running instance of the program. The
gevent networking library monkey patches parts of Python’s standard library to allow
lightweight concurrency without threads or async/await. Be aware that monkey
patches depend on implementation details of the patched code, so they can easily break
when libraries are updated.

The FrenchDeck class from Example 13-2 is missing an essential
feature: it cannot be shuffled. Years ago when I first wrote the
FrenchDeck example I did implement a shuffle method. Later I had a
Pythonic insight: if a FrenchDeck acts like a sequence, then it doesn’t
need its own shuffle method because there is already
random.shuffle, documented as “Shuffle the sequence x in place.”

The standard random.shuffle function is used like this:

>>> from random import shuffle 
>>> l = list(range(10)) 
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>>> shuffle(l) 
>>> l 
[5, 2, 9, 7, 8, 3, 1, 4, 0, 6]

TIP
When you follow established protocols, you improve your chances of leveraging
existing standard library and third-party code, thanks to duck typing.

However, if we try to shuffle a FrenchDeck instance, we get an
exception, as in Example 13-3.

Example 13-3. random.shuffle cannot handle FrenchDeck
>>> from random import shuffle 
>>> from frenchdeck import FrenchDeck 
>>> deck = FrenchDeck() 
>>> shuffle(deck) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File ".../random.py", line 265, in shuffle 
    x[i], x[j] = x[j], x[i] 
TypeError: 'FrenchDeck' object does not support item assignment

The error message is clear: “'FrenchDeck' object does not support item
assignment.” The problem is that shuffle operates in place, by swapping
items inside the collection, and FrenchDeck only implements the
immutable sequence protocol. Mutable sequences must also provide a
__setitem__ method.

Because Python is dynamic, we can fix this at runtime, even at the
interactive console. Example 13-4 shows how to do it.

Example 13-4. Monkey patching FrenchDeck to make it mutable and
compatible with random.shuffle (continuing from Example 13-3)
>>> def set_card(deck, position, card):   
...     deck._cards[position] = card 
... 
>>> FrenchDeck.__setitem__ = set_card   
>>> shuffle(deck)   
>>> deck[:5] 
[Card(rank='3', suit='hearts'), Card(rank='4', suit='diamonds'), 



Card(rank='4', 
suit='clubs'), Card(rank='7', suit='hearts'), Card(rank='9', 
suit='spades')]

Create a function that takes deck, position, and card as
arguments.

Assign that function to an attribute named __setitem__ in the
FrenchDeck class.

deck can now be shuffled because I added the necessary method of the
mutable sequence protocol.

The signature of the __setitem__ special method is defined in The
Python Language Reference in “3.3.6. Emulating container types”. Here I
named the arguments deck, position, card—and not self,
key, value as in the language reference—to show that every Python
method starts life as a plain function, and naming the first argument self
is merely a convention. This is OK in a console session, but in a Python
source file it’s much better to use self, key, and value as documented.

The trick is that set_card knows that the deck object has an attribute
named _cards, and _cards must be a mutable sequence. The
set_card function is then attached to the FrenchDeck class as the
__setitem__ special method. This is an example of monkey patching:
changing a class or module at runtime, without touching the source code.
Monkey patching is powerful, but the code that does the actual patching is
very tightly coupled with the program to be patched, often handling private
and undocumented attributes.

Besides being an example of monkey patching, Example 13-4 highlights the
dynamic nature of protocols in dynamic duck typing: random.shuffle
doesn’t care about the class of the argument, it only needs the object to
implement methods from the mutable sequence protocol. It doesn’t even
matter if the object was “born” with the necessary methods or if they were
somehow acquired later.

http://bit.ly/1QOyDQY


Duck typing doesn’t need to be wildly unsafe or hard to debug. The next
section shows some useful code patterns to detect dynamic protocols
without resorting to explicit checks.

Defensive programming and “fail fast”
Defensive programming is like defensive driving: a set of practices to
enhance safety even when faced with careless programmers—or drivers.

Many bugs cannot be caught except at runtime—even in mainstream
statically typed languages.  In a dynamically typed language, “fail fast” is
excellent advice for safer and easier to maintain programs. Failing fast
means raising runtime errors as soon as possible, for example, rejecting
invalid arguments right a the beginning of a function body.

Here is one example: when you write code that accepts a sequence of items
to process internally as a list, don’t enforce a list argument by type
checking. Instead, take the argument and immediately build a list from it.
One example of this code pattern is the __init__ method in Example 13-
10, later in this chapter:

    def __init__(self, iterable): 
        self._balls = list(iterable)

That way you make your code more flexible, because the list()
constructor handles any iterable that fits in memory. If the argument is not
iterable, the call will fail fast with a very clear TypeError exception,
right when the object is initialized. If you want to be more explict, you can
wrap the list() call with try/except to customize the error message
—but I’d use that extra code only on an external API, because the problem
would be easy to see for maintainers of the codebase. Either way, the
offending call will appear near the end of the traceback, making it
straightforward to fix. If you don’t catch the invalid argument in the class
constructor, the program will blow up later, when some other method of the
class needs to operate on self._balls and it is not a list. Then the
root cause will be harder to find.
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Of course, calling list() on the argument would be bad if the data
shouldn’t be copied, either because it’s too large or because the function, by
design, needs to change it in place for the benefit of the caller, like
random.shuffle does. In that case, a runtime check like
isinstance(x, abc.MutableSequence) would be the way to go.

If you are afraid to get an infinite generator—not a common issue—you can
begin by calling len() on the argument. This would reject iterators, while
safely dealing with tuples, arrays, and other existing or future classes that
fully implement the Sequence interface. Calling len() is usually very
cheap and an invalid argument will raise an error immediately.

On the other hand, if any iterable is acceptable, then call iter(x) as soon
as possible to obtain an iterator, as we’ll see in “Why Sequences Are
Iterable: The iter Function”. Again, if x is not iterable this will fail fast
with an easy to debug exception.

In the cases I just described, a type hint could catch some problems earlier,
but not all problems. Recall that the type Any is consistent-with every other
type. Type inference may cause a variable to be tagged with the Any type.
When that happens, the type checker is in the dark. In addition, type hints
are not enforced at runtime. Fail fast is the last line of defense.

Defensive code leveraging duck types can also include logic to handle
different types without using isinstance() or hasattr() tests.

One example is how we might emulate the handling of the field_names
argument in collections.namedtuple: field_names accepts a
single string with identifiers separated by spaces or commas, or a sequence
of identifiers. Example 13-5 shows how I’d do it using duck typing.

Example 13-5. Duck typing to handle a string or an iterable of strings
    try:   
        field_names = field_names.replace(',', ' ').split()   
    except AttributeError:   
        pass   
    field_names = tuple(field_names)   
    if not all(s.isidentifier() for s in field_names):   

https://docs.python.org/3/library/collections.html#collections.namedtuple


        raise ValueError('field_names must all be valid 
identifiers')

Assume it’s a string (EAFP = it’s easier to ask forgiveness than
permission).

Convert commas to spaces and split the result into a list of names.

Sorry, field_names doesn’t quack like a str: it has no .replace,
or it returns something we can’t .split.

If AttributeError was raised, then field_names is not a str
and we assume it was already an iterable of names.

To make sure it’s an iterable and to keep our own copy, create a tuple
out of what we have. A tuple is more compact than list, and it also
prevents my code from changing the names by mistake.

Use str.isidentifier to ensure every name is a valid.

Example 13-5 shows one situation where duck typing is more expressive
than static type hints. There is no way to spell a type hint that says
"field_names must be a string of identifiers separated by spaces or
commas”. This is the relevant part of the namedtuple signature on
typeshed: (see full source at stdlib/3/collections/init.pyi):

    def namedtuple( 
        typename: str, 
        field_names: Union[str, Iterable[str]], 
        *, 
        # rest of signature omitted

As you can see, field_names is annotated as Union[str,
Iterable[str]] which is OK as far as it goes, but is not enough to
catch all possible problems.

https://bit.ly/3iDoafU


After reviewing dynamic protocols, we move to a more explicit form of
runtime type checking: goose typing.

Goose typing
An abstract class represents an interface.

—Bjarne Stroustrup, Creator of C++

Python doesn’t have an interface keyword. We use Abstract Base
Classes (ABCs) to define explicit interfaces.

The Python Glossary entry for abstract base class has a good explanation of
the value they bring to duck-typed languages:

abstract base class

Abstract base classes complement duck-typing by providing a way to
define interfaces when other techniques like hasattr() would be
clumsy or subtly wrong (for example with magic methods). ABCs
introduce virtual subclasses, which are classes that don’t inherit from a
class but are still recognized by isinstance() and
issubclass(); see the abc module documentation.

Goose typing is a runtime type checking approach that leverages ABCs. I
will let Alex Martelli explain in “Waterfowl and ABCs”.

NOTE
I am very grateful to my friends Alex Martelli and Anna Ravenscroft. I showed them the
first outline of Fluent Python at OSCON 2013 and they encouraged me to submit it for
publication with O’Reilly. Both later contributed with thorough tech reviews. Alex was
already the most cited person in this book, and then he offered to write this essay. Take
it away, Alex!
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WATERFOWL AND ABCS

By Alex Martelli

I’ve been credited on Wikipedia for helping spread the helpful meme
and sound-bite “duck typing” (i.e, ignoring an object’s actual type,
focusing instead on ensuring that the object implements the method
names, signatures, and semantics required for its intended use).

In Python, this mostly boils down to avoiding the use of isinstance
to check the object’s type (not to mention the even worse approach of
checking, for example, whether type(foo) is bar—which is
rightly anathema as it inhibits even the simplest forms of inheritance!).

The overall duck typing approach remains quite useful in many contexts
—and yet, in many others, an often preferable one has evolved over
time. And herein lies a tale…

In recent generations, the taxonomy of genus and species (including but
not limited to the family of waterfowl known as Anatidae) has mostly
been driven by phenetics—an approach focused on similarities of
morphology and behavior… chiefly, observable traits. The analogy to
“duck typing” was strong.

However, parallel evolution can often produce similar traits, both
morphological and behavioral ones, among species that are actually
unrelated, but just happened to evolve in similar, though separate,
ecological niches. Similar “accidental similarities” happen in
programming, too—for example, consider the classic OOP example:

class Artist: 
    def draw(self): ... 
 
class Gunslinger: 
    def draw(self): ... 
 
class Lottery: 
    def draw(self): ...

http://en.wikipedia.org/wiki/Duck_typing#History


Clearly, the mere existence of a method named draw, callable without
arguments, is far from sufficient to assure us that two objects x and y
such that x.draw() and y.draw() can be called are in any way
exchangeable or abstractly equivalent—nothing about the similarity of
the semantics resulting from such calls can be inferred. Rather, we need
a knowledgeable programmer to somehow positively assert that such an
equivalence holds at some level!

In biology (and other disciplines) this issue has led to the emergence
(and, on many facets, the dominance) of an approach that’s an
alternative to phenetics, known as cladistics—focusing taxonomical
choices on characteristics that are inherited from common ancestors,
rather than ones that are independently evolved. (Cheap and rapid DNA
sequencing can make cladistics highly practical in many more cases, in
recent years.)

For example, sheldgeese (once classified as being closer to other geese)
and shelducks (once classified as being closer to other ducks) are now
grouped together within the subfamily Tadornidae (implying they’re
closer to each other than to any other Anatidae, as they share a closer
common ancestor). Furthermore, DNA analysis has shown, in
particular, that the white-winged wood duck is not as close to the
Muscovy duck (the latter being a shelduck) as similarity in looks and
behavior had long suggested—so the wood duck was reclassified into
its own genus, and entirely out of the subfamily!

Does this matter? It depends on the context! For such purposes as
deciding how best to cook a waterfowl once you’ve bagged it, for
example, specific observable traits (not all of them—plumage, for
example, is de minimis in such a context), mostly texture and flavor
(old-fashioned phenetics!), may be far more relevant than cladistics.
But for other issues, such as susceptibility to different pathogens
(whether you’re trying to raise waterfowl in captivity, or preserve them
in the wild), DNA closeness can matter much more…



So, by very loose analogy with these taxonomic revolutions in the
world of waterfowls, I’m recommending supplementing (not entirely
replacing—in certain contexts it shall still serve) good old duck typing
with… goose typing!

What goose typing means is: isinstance(obj, cls) is now just
fine… as long as cls is an abstract base class—in other words, cls’s
metaclass is abc.ABCMeta.

You can find many useful existing abstract classes in
collections.abc (and additional ones in the numbers module of
The Python Standard Library).

Among the many conceptual advantages of ABCs over concrete classes
(e.g., Scott Meyer’s “all non-leaf classes should be abstract”—see Item
33 in his book, More Effective C++), Python’s ABCs add one major
practical advantage: the register class method, which lets end-user
code “declare” that a certain class becomes a “virtual” subclass of an
ABC (for this purpose the registered class must meet the ABC’s method
name and signature requirements, and more importantly the underlying
semantic contract—but it need not have been developed with any
awareness of the ABC, and in particular need not inherit from it!). This
goes a long way toward breaking the rigidity and strong coupling that
make inheritance something to use with much more caution than
typically practiced by most OOP programmers…

Sometimes you don’t even need to register a class for an ABC to
recognize it as a subclass!

That’s the case for the ABCs whose essence boils down to a few special
methods. For example:

>>> class Struggle: 
...     def __len__(self): return 23 
... 
>>> from collections import abc 
>>> isinstance(Struggle(), abc.Sized) 
True
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As you see, abc.Sized recognizes Struggle as “a subclass,” with
no need for registration, as implementing the special method named
__len__ is all it takes (it’s supposed to be implemented with the
proper syntax—callable without arguments—and semantics—returning
a nonnegative integer denoting an object’s “length”; any code that
implements a specially named method, such as __len__, with
arbitrary, non-compliant syntax and semantics has much worse
problems anyway).

So, here’s my valediction: whenever you’re implementing a class
embodying any of the concepts represented in the ABCs in numbers,
collections.abc, or other framework you may be using, be sure
(if needed) to subclass it from, or register it into, the corresponding
ABC. At the start of your programs using some library or framework
defining classes which have omitted to do that, perform the registrations
yourself; then, when you must check for (most typically) an argument
being, e.g, “a sequence,” check whether:

isinstance(the_arg, collections.abc.Sequence)

And, don’t define custom ABCs (or metaclasses) in production code…
if you feel the urge to do so, I’d bet it’s likely to be a case of “all
problems look like a nail”-syndrome for somebody who just got a shiny
new hammer—you (and future maintainers of your code) will be much
happier sticking with straightforward and simple code, eschewing such
depths. Valē!

To summarize, goose typing entails:

Subclassing from ABCs to make it explict that you are
implementing a previously defined interface.

Runtime type checking using ABCs instead of concrete classes as
the second argument for isinstance and issubclass.



Alex makes the point that inheriting from an ABC is more than
implementing the required methods: it’s also a clear declaration of intent by
the developer. That intent can also be made explicit through registering a
virtual subclass.

NOTE
Details of using register are covered in “A Virtual Subclass of an ABC”, later in this
chapter. For now, here is a brief example: given the FrenchDeck class, if I want it to
pass a check like issubclass(FrenchDeck, Sequence), I can make it a virtual
subclass of the Sequence ABC with these lines:

from collections.abc import Sequence 
Sequence.register(FrenchDeck)

The use of isinstance and issubclass becomes more acceptable if
you are checking against ABCs instead of concrete classes. If used with
concrete classes, type checks limit polymorphism—an essential feature of
object oriented programming. But with ABCs these tests are more flexible.
After all, if a component does not implement an ABC by subclassing—but
does implement the required methods— it can always be registered after the
fact so it passes those explicit type checks.

However, even with ABCs, you should beware that excessive use of
isinstance checks may be a code smell—a symptom of bad OO design.

It’s usually not OK to have a chain of if/elif/elif with
isinstance checks performing different actions depending on the type
of an object: you should be using polymorphism for that—i.e., design your
classes so that the interpreter dispatches calls to the proper methods, instead
of you hardcoding the dispatch logic in if/elif/elif blocks.

On the other hand, it’s OK to perform an isinstance check against an
ABC if you must enforce an API contract: “Dude, you have to implement
this if you want to call me,” as technical reviewer Lennart Regebro put it.



That’s particularly useful in systems that have a plug-in architecture.
Outside of frameworks, duck typing is often simpler and more flexible than
type checks.

Finally, in his essay, Alex reinforces more than once the need for restraint in
the creation of ABCs. Excessive use of ABCs would impose ceremony in a
language that became popular because it is practical and pragmatic. During
the Fluent Python review process, Alex wrote in an e-mail:

ABCs are meant to encapsulate very general concepts, abstractions,
introduced by a framework—things like “a sequence” and “an exact
number.” [Readers] most likely don’t need to write any new ABCs, just
use existing ones correctly, to get 99.9% of the benefits without serious
risk of misdesign.

Now let’s see goose typing in practice.

Subclassing an ABC
Following Martelli’s advice, we’ll leverage an existing ABC,
collections.MutableSequence, before daring to invent our own.
In Example 13-6, FrenchDeck2 is explicitly declared a subclass of
collections.MutableSequence.

Example 13-6. frenchdeck2.py: FrenchDeck2, a subclass of
collections.MutableSequence
import collections 
from collections.abc import MutableSequence 
 
Card = collections.namedtuple('Card', ['rank', 'suit']) 
 
class FrenchDeck2(MutableSequence): 
    ranks = [str(n) for n in range(2, 11)] + list('JQKA') 
    suits = 'spades diamonds clubs hearts'.split() 
 
    def __init__(self): 
        self._cards = [Card(rank, suit) for suit in self.suits 
                                        for rank in self.ranks] 
 
    def __len__(self): 
        return len(self._cards) 



 
    def __getitem__(self, position): 
        return self._cards[position] 
 
    def __setitem__(self, position, value):   
        self._cards[position] = value 
 
    def __delitem__(self, position):   
        del self._cards[position] 
 
    def insert(self, position, value):   
        self._cards.insert(position, value)

__setitem__ is all we need to enable shuffling…

But subclassing MutableSequence forces us to implement
__delitem__, an abstract method of that ABC.

We are also required to implement insert, the third abstract method
of MutableSequence.

Python does not check for the implementation of the abstract methods at
import time (when the frenchdeck2.py module is loaded and compiled), but
only at runtime when we actually try to instantiate FrenchDeck2. Then,
if we fail to implement any of the abstract methods, we get a TypeError
exception with a message such as "Can't instantiate abstract
class FrenchDeck2 with abstract methods
__delitem__, insert". That’s why we must implement
__delitem__ and insert, even if our FrenchDeck2 examples do
not need those behaviors: the MutableSequence ABC demands them.

As Figure 13-3 shows, not all methods of the Sequence and
MutableSequence ABCs are abstract.



Figure 13-3. UML class diagram for the MutableSequence ABC and its superclasses from
collections.abc (inheritance arrows point from subclasses to ancestors; names in italic are abstract

classes and abstract methods)

To write FrenchDeck2 as a subclass of MutableSequence, I had to
pay the price of implementing __delitem__ and insert, which my
examples did not require. In return, FrenchDeck2 inherits five concrete
methods from Sequence: __contains__, __iter__,
__reversed__, index, and count. From MutableSequence, it
gets another six methods: append, reverse, extend, pop, remove,



and __iadd__—which supports the += operator for in-place
concatenation.

The concrete methods in each collections.abc ABC are implemented
in terms of the public interface of the class, so they work without any
knowledge of the internal structure of instances.

TIP
As the coder of a concrete subclass, you may be able to override methods inherited from
ABCs with more efficient implementations. For example, __contains__ works by
doing a sequential scan of the sequence, but if your concrete sequence keeps its items
sorted, you can write a faster __contains__ that does a binary search using bisect
function (see [Link to Come]).

To use ABCs well, you need to know what’s available. We’ll review the
collections ABCs next.

ABCs in the Standard Library
Since Python 2.6, the standard library provides several ABCs. Most are
defined in the collections.abc module, but there are others. You can
find ABCs in the io and numbers packages, for example. But the most
widely used are in collections.abc.

TIP
There are two modules named abc in the standard library. Here we are talking about
collections.abc. To reduce loading time, since Python 3.4 that module is
implemented outside of the collections package—in Lib/_collections_abc.py—so
it’s imported separately from collections. The other abc module is just abc (i.e.,
Lib/abc.py) where the abc.ABC class is defined. Every ABC depends on the abc
module, but we don’t need to import it ourselves except to create a brand-new ABC.

https://bit.ly/3ivVeXi
https://github.com/python/cpython/blob/master/Lib/abc.py


Figure 13-4 is a summary UML class diagram (without attribute names) of
17 ABCs defined in collections.abc. The documentation of
collections.abc has a nice table summarizing the ABCs, their
relationships, and their abstract and concrete methods (called “mixin
methods”). There is plenty of multiple inheritance going on in Figure 13-4.
We’ll devote most of Chapter 14 to multiple inheritance, but for now it’s
enough to say that it is usually not a problem when ABCs are concerned.7

http://bit.ly/1QOA9T8




Figure 13-4. UML class diagram for ABCs in collections.abc

Let’s review the clusters in Figure 13-4:

Iterable, Container, Sized

Every collection should either inherit from these ABCs or implement
compatible protocols. Iterable supports iteration with __iter__,
Container supports the in operator with __contains__, and
Sized supports len() with __len__.

Collection

This ABC has no methods of its own, but was added in Python 3.6 to
make it easier to subclass from Iterable, Container, and Sized.

Sequence, Mapping, Set

These are the main immutable collection types, and each has a mutable
subclass. A detailed diagram for MutableSequence is in Figure 13-
3; for MutableMapping and MutableSet, there are diagrams in
Chapter 3 (Figures 3-1 and 3-2).

MappingView

In Python 3, the objects returned from the mapping methods
.items(), .keys(), and .values() implement the interfaces
defined in ItemsView, KeysView, and ValuesView, respectively.
The first two also implement the rich interface of Set, with all the
operators we saw in “Set Operations”.

Iterator

Note that iterator subclasses Iterable. We discuss this further in
Chapter 17.

After looking at some existing ABCs, let’s practice goose typing by
implementing an ABC from scratch and putting it to use. The goal here is



not to encourage everyone to start creating ABCs left and right, but to learn
how to read the source code of the ABCs you’ll find in the standard library
and other packages.

Callable, Hashable

These are not collections, but collections.abc was the first
package to define ABCs in the standard library, and these two were
deemed important enough to be included. They support type checking
objects that must be callable or hashable.

For callable detection, the callable(obj) built-in function is more
convenient than insinstance(obj, Callable).

If insinstance(obj, Hashable) returns False, you can be
certain that obj is not hashable. But if the return is True, it may be a false
positive. The next box explains.



ISINSTANCE WITH HASHABLE AND ITERABLE CAN BE
MISLEADING

It’s easy to misinterpret the results of the isinstance and
issubclass tests against the Hashable and Iterable ABCs.

If isinstance(obj, Hashable) returns True, that only means
that the class of obj implements or inherits __hash__. But if obj is
a tuple containing unhashable items, then obj is not hashable,
despite the positive result of the isinstance check. Tech reviewer
Jürgen Gmach pointed out that duck typing provides the most accurate
way to determine if an instance is hashable: call hash(obj). That call
will raise TypeError if obj is not hashable.

On the other hand, even when isinstance(obj, Iterable)
returns False, Python may still be able to iterate over obj using
__getitem__ with 0-based indices, as we saw in Chapter 1 and
“Python Digs Sequences”. The documentation for
collections.abc.Iterable states:

The only reliable way to determine whether an object is iterable is to
call iter(obj).

Defining and Using an ABC

TIP
This warning appeared in the Interfaces chapter of Fluent Python, First Edition:

ABCs, like descriptors and metaclasses, are tools for building frameworks.
Therefore, only a small minority of Python developers can create ABCs without
imposing unreasonable limitations and needless work on fellow programmers.

Now ABCs have more potential use cases in type hints to support static typing. As
discussed in “Abstract Base Classes”, using ABCs instead of concrete types in function
argument type hints gives more flexibility to the caller.

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable


To justify creating an ABC, we need to come up with a context for using it
as an extension point in a framework. So here is our context: imagine you
need to display advertisements on a website or a mobile app in random
order, but without repeating an ad before the full inventory of ads is shown.
Now let’s assume we are building an ad management framework called
ADAM. One of its requirements is to support user-provided non-repeating
random-picking classes.  To make it clear to ADAM users what is expected
of a “non-repeating random-picking” component, we’ll define an ABC.

In the literature about data structures, “stack” and “queue” describe abstract
interfaces in terms of physical arrangements of objects. I will follow suit
and use a real-world metaphor to name our ABC: bingo cages and lottery
blowers are machines designed to pick items at random from a finite set,
without repeating, until the set is exhausted.

The ABC will be named Tombola, after the Italian name of bingo and the
tumbling container that mixes the numbers.

The Tombola ABC has four methods. The two abstract methods are:

.load(…)

put items into the container.

.pick()

remove one item at random from the container, returning it.

The concrete methods are:

.loaded()

return True if there is at least one item in the container.

.inspect()

return a tuple built from the items currently in the container, without
changing its contents (the internal ordering is not preserved).
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Figure 13-5 shows the Tombola ABC and three concrete implementations.





Figure 13-5. UML diagram for an ABC and three subclasses. The name of the Tombola ABC and its
abstract methods are written in italics, per UML conventions. The dashed arrow is used for interface

implementation—here I am using it to show that TomboList not only implements the Tombola
interface, but is also registered as virtual subclass of Tombola—as we will see later in this chapter.

Example 13-7 shows the definition of the Tombola ABC.

Example 13-7. tombola.py: Tombola is an ABC with two abstract methods
and two concrete methods
import abc 
 
class Tombola(abc.ABC):   
 
    @abc.abstractmethod 
    def load(self, iterable):   
        """Add items from an iterable.""" 
 
    @abc.abstractmethod 
    def pick(self):   
        """Remove item at random, returning it. 
 
        This method should raise `LookupError` when the instance is 
empty. 
        """ 
 
    def loaded(self):   
        """Return `True` if there's at least 1 item, `False` 
otherwise.""" 
        return bool(self.inspect())   
 
    def inspect(self): 
        """Return a sorted tuple with the items currently 
inside.""" 
        items = [] 
        while True:   
            try: 
                items.append(self.pick()) 
            except LookupError: 
                break 
        self.load(items)   
        return tuple(items)

To define an ABC, subclass abc.ABC.
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An abstract method is marked with the @abstractmethod decorator,
and often its body is empty except for a docstring.

The docstring instructs implementers to raise LookupError if there
are no items to pick.

An ABC may include concrete methods.

Concrete methods in an ABC must rely only on the interface defined by
the ABC (i.e., other concrete or abstract methods or properties of the
ABC).

We can’t know how concrete subclasses will store the items, but we can
build the inspect result by emptying the Tombola with successive
calls to .pick()…

…then use .load(…) to put everything back.

TIP
An abstract method can actually have an implementation. Even if it does, subclasses
will still be forced to override it, but they will be able to invoke the abstract method with
super(), adding functionality to it instead of implementing from scratch. See the abc
module documentation for details on @abstractmethod usage.

The code for the .inspect() method in Example 13-7 is silly but it
shows that we can rely on .pick() and .load(…) to inspect what’s
inside the Tombola by picking all items and loading them back—without
knowing how the items are actually stored. The point of this example is to
highlight that it’s OK to provide concrete methods in ABCs, as long as they
only depend on other methods in the interface. Being aware of their internal
data structures, concrete subclasses of Tombola may always override
.inspect() with a smarter implementation, but they don’t have to.

10
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The .loaded() method in Example 13-7 has one line, but it’s expensive:
it calls .inspect() to build the tuple just to apply bool() on it. This
works, but a concrete subclass can do much better, as we’ll see.

Note that our roundabout implementation of .inspect() requires that
we catch a LookupError thrown by self.pick(). The fact that
self.pick() may raise LookupError is also part of its interface, but
there is no way to make this explicit in Python, except in the documentation
(see the docstring for the abstract pick method in Example 13-7.)

I chose the LookupError exception because of its place in the Python
hierarchy of exceptions in relation to IndexError and KeyError, the
most likely exceptions to be raised by the data structures used to implement
a concrete Tombola. Therefore, implementations can raise
LookupError, IndexError, KeyError, or a custom subclass of
LookupError to comply. See Figure 13-6.





Figure 13-6. Part of the Exception class hierarchy.

➊ LookupError is the exception we handle in Tombola.inspect;

➋ IndexError is the LookupError subclass raised when we try to get
an item from a sequence with an index beyond the last position;

➌ KeyError is raised when we use a nonexistent key to get an item from
a mapping.

We now have our very own Tombola ABC. To witness the interface
checking performed by an ABC, let’s try to fool Tombola with a defective
implementation in Example 13-8.

Example 13-8. A fake Tombola doesn’t go undetected
>>> from tombola import Tombola 
>>> class Fake(Tombola):   
...     def pick(self): 
...         return 13 
... 
>>> Fake   
<class '__main__.Fake'> 
>>> f = Fake()   
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: Can't instantiate abstract class Fake with abstract 
method load

Declare Fake as a subclass of Tombola.

The class was created, no errors so far.

TypeError is raised when we try to instantiate Fake. The message is
very clear: Fake is considered abstract because it failed to implement
load, one of the abstract methods declared in the Tombola ABC.

So we have our first ABC defined, and we put it to work validating a class.
We’ll soon subclass the Tombola ABC, but first we must cover some ABC
coding rules.
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ABC Syntax Details
The best way to declare an ABC is to subclass abc.ABC or any other
ABC. abc.ABC is actually an instance of abc.ABCMeta—a special class
factory, a.k.a. a “metaclass”. We’ll explain metaclasses in Chapter 25. For
now, let’s accept that metaclasses are used to build classes that are special in
some way, and agree that an ABC is a special kind of class. For example,
“regular” classes don’t verify their subclasses for compliance to its
interface, so this is a special behavior of ABCs.

Besides the @abstractmethod, the abc module defines the
@abstractclassmethod, @abstractstaticmethod, and
@abstractproperty decorators. However, these last three were
deprecated in Python 3.3, when it became possible to stack decorators on
top of @abstractmethod, making the others redundant. For example,
the preferred way to declare an abstract class method is:

class MyABC(abc.ABC): 
    @classmethod 
    @abc.abstractmethod 
    def an_abstract_classmethod(cls, ...): 
        pass

WARNING
The order of stacked function decorators matters, and in the case of
@abstractmethod, the documentation is explicit:

When abstractmethod() is applied in combination with other method descriptors, it
should be applied as the innermost decorator, …

In other words, no other decorator may appear between @abstractmethod and the
def statement.

Now that we got these ABC syntax issues covered, let’s put Tombola to
use by implementing two concrete descendants of it.

Subclassing an ABC
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Given the Tombola ABC, we’ll now develop two concrete subclasses that
satisfy its interface. These classes were pictured in Figure 13-5, along with
the virtual subclass to be discussed in the next section.

The BingoCage class in Example 13-9 is a variation of Example 7-8
using a better randomizer. This BingoCage implements the required
abstract methods load and pick.

Example 13-9. bingo.py: BingoCage is a concrete subclass of Tombola
import random 
 
from tombola import Tombola 
 
 
class BingoCage(Tombola):   
 
    def __init__(self, items): 
        self._randomizer = random.SystemRandom()   
        self._items = [] 
        self.load(items)   
 
    def load(self, items): 
        self._items.extend(items) 
        self._randomizer.shuffle(self._items)   
 
    def pick(self):   
        try: 
            return self._items.pop() 
        except IndexError: 
            raise LookupError('pick from empty BingoCage') 
 
    def __call__(self):   
        self.pick()

This BingoCage class explicitly extends Tombola.

Pretend we’ll use this for online gaming. random.SystemRandom
implements the random API on top of the os.urandom(…)
function, which provides random bytes “suitable for cryptographic use”
according to the os module docs.

Delegate initial loading to the .load(…) method.

http://docs.python.org/3/library/os.html#os.urandom


Instead of the plain random.shuffle() function, we use the
.shuffle() method of our SystemRandom instance.

pick is implemented as in Example 7-8.

__call__ is also from Example 7-8. It’s not needed to satisfy the
Tombola interface, but there’s no harm in adding extra methods.

BingoCage inherits the expensive loaded and the silly inspect
methods from Tombola. Both could be overridden with much faster one-
liners, as in Example 13-10. The point is: we can be lazy and just inherit the
suboptimal concrete methods from an ABC. The methods inherited from
Tombola are not as fast as they could be for BingoCage, but they do
provide correct results for any Tombola subclass that correctly
implements pick and load.

Example 13-10 shows a very different but equally valid implementation of
the Tombola interface. Instead of shuffling the “balls” and popping the
last, LottoBlower pops from a random position.

Example 13-10. lotto.py: LottoBlower is a concrete subclass that overrides
the inspect and loaded methods from Tombola
import random 
 
from tombola import Tombola 
 
 
class LottoBlower(Tombola): 
 
    def __init__(self, iterable): 
        self._balls = list(iterable)   
 
    def load(self, iterable): 
        self._balls.extend(iterable) 
 
    def pick(self): 
        try: 
            position = random.randrange(len(self._balls))   
        except ValueError: 



            raise LookupError('pick from empty LottoBlower') 
        return self._balls.pop(position)   
 
    def loaded(self):   
        return bool(self._balls) 
 
    def inspect(self):   
        return tuple(self._balls)

The initializer accepts any iterable: the argument is used to build a list.

The random.randrange(…) function raises ValueError if the
range is empty, so we catch that and throw LookupError instead, to
be compatible with Tombola.

Otherwise the randomly selected item is popped from self._balls.

Override loaded to avoid calling inspect (as Tombola.loaded
does in Example 13-7). We can make it faster by working with
self._balls directly—no need to build a whole new tuple.

Override inspect with one-liner.

Example 13-10 illustrates an idiom worth mentioning: in __init__,
self._balls stores list(iterable) and not just a reference to
iterable (i.e., we did not merely assign self._balls =
iterable, aliasing the argument). As mentioned in “Defensive
programming and “fail fast””, this makes our LottoBlower flexible
because the iterable argument may be any iterable type. At the same
time, we make sure to store its items in a list so we can pop items. And
even if we always get lists as the iterable argument,
list(iterable) produces a copy of the argument, which is a good
practice considering we will be removing items from it and the client might
not expect that the provided list will be changed.

We now come to the crucial dynamic feature of goose typing: declaring
virtual subclasses with the register method.
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A Virtual Subclass of an ABC
An essential characteristic of goose typing—and one reason why it deserves
a waterfowl name—is the ability to register a class as a virtual subclass of
an ABC, even if it does not inherit from it. When doing so, we promise that
the class faithfully implements the interface defined in the ABC—and
Python will believe us without checking. If we lie, we’ll be caught by the
usual runtime exceptions.

This is done by calling a register class method on the ABC. The
registered class then becomes a virtual subclass of the ABC, and will be
recognized as such by issubclass, but it does not inherit any methods or
attributes from the ABC.

WARNING
Virtual subclasses do not inherit from their registered ABCs, and are not checked for
conformance to the ABC interface at any time, not even when they are instantiated.
Also, static type checkers can’t handle virtual subclasses at this time. For details, see
Mypy issue 2922—ABCMeta.register support.

The register method is usually invoked as a plain function (see “Usage
of register in Practice”), but it can also be used as a decorator. In
Example 13-11, we use the decorator syntax and implement TomboList, a
virtual subclass of Tombola depicted in Figure 13-7.

https://github.com/python/mypy/issues/2922




Figure 13-7. UML class diagram for the TomboList, a real subclass of list and a virtual subclass of
Tombola

Example 13-11. tombolist.py: class TomboList is a virtual subclass of
Tombola
from random import randrange 
 
from tombola import Tombola 
 
@Tombola.register   
class TomboList(list):   
 
    def pick(self): 
        if self:   
            position = randrange(len(self)) 
            return self.pop(position)   
        else: 
            raise LookupError('pop from empty TomboList') 
 
    load = list.extend   
 
    def loaded(self): 
        return bool(self)   
 
    def inspect(self): 
        return tuple(self) 
 
# Tombola.register(TomboList)  

Tombolist is registered as a virtual subclass of Tombola.

Tombolist extends list.

Tombolist inherits its boolean behavior from list, and that returns
True if the list is not empty.

Our pick calls self.pop, inherited from list, passing a random
item index.

Tombolist.load is the same as list.extend.

loaded delegates to bool.14



It’s always possible to call register in this way, and it’s useful to do
so when you need to register a class that you do not maintain, but which
does fulfill the interface.

Note that because of the registration, the functions issubclass and
isinstance act as if TomboList is a subclass of Tombola:

>>> from tombola import Tombola 
>>> from tombolist import TomboList 
>>> issubclass(TomboList, Tombola) 
True 
>>> t = TomboList(range(100)) 
>>> isinstance(t, Tombola) 
True

However, inheritance is guided by a special class attribute named
__mro__—the Method Resolution Order. It basically lists the class and its
superclasses in the order Python uses to search for methods.  If you
inspect the __mro__ of TomboList, you’ll see that it lists only the “real”
superclasses—list and object:

>>> TomboList.__mro__ 
(<class 'tombolist.TomboList'>, <class 'list'>, <class 'object'>)

Tombola is not in Tombolist.__mro__, so Tombolist does not
inherit any methods from Tombola.

This concludes our Tombola ABC case study. In the next section, we’ll
address how the register ABC function is used in the wild.

Usage of register in Practice
In Example 13-11, we used Tombola.register as a class decorator.
Prior to Python 3.3, register could not be used like that—it had to be
called as a plain function after the class definition, as suggested by the
comment at the end of Example 13-11. However, even now, it’s more
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widely deployed as a function to register classes defined elsewhere. For
example, in the source code for the collections.abc module, the
built-in types tuple, str, range, and memoryview are registered as
virtual subclasses of Sequence like this:

Sequence.register(tuple) 
Sequence.register(str) 
Sequence.register(range) 
Sequence.register(memoryview)

Several other built-in types are registered to ABCs in _collections_abc.py.
Those registrations happen only when that module is imported, which is
OK because you’ll have to import it anyway to get the ABCs. For example,
you need to import MutableMapping from collections.abc to
perform a check like isinstance(my_dict, MutableMapping).

Subclassing an ABC or registering with an ABC are both explicit ways of
making our classes pass issubclass checks—as well as isinstance
checks, which also rely on issubclass. But some ABCs support
structural typing as well. The next section explains.

Structural typing with ABCs
ABCs are mostly used with nominal typing. When a class Sub explicitly
inherits from AnABC, or is registered with AnABC, the name of AnABC is
linked to the Sub class—and that’s how at runtime,
issubclass(AnABC, Sub) returns True.

In contrast, structural typing is about looking at the structure of an object’s
public interface to determine its type: an object is consistent-with a type if it
implements the methods defined in the type.  Dynamic and static duck
typing are two approaches to structural typing.

It turns out that some ABCs also support structural typing. In his
“Waterfowl and ABCs” essay, Alex shows that a class can be recognized as
a subclass of an ABC even without registration. Here is his example again,
with an added test using issubclass:
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>>> class Struggle: 
...     def __len__(self): return 23 
... 
>>> from collections import abc 
>>> isinstance(Struggle(), abc.Sized) 
True 
>>> issubclass(Struggle, abc.Sized) 
True

Class Struggle is considered a subclass of abc.Sized by the
issubclass function (and, consequently, by isinstance as well)
because abc.Sized implements a special class method named
__subclasshook__.

The __subclasshook__ for Sized checks whether the class argument
has an attribute named __len__. If it does, then it is considered a virtual
subclass of Sized. See Example 13-12.

Example 13-12. Definition of Sized from the source code of
Lib/_collections_abc.py.
class Sized(metaclass=ABCMeta): 
 
    __slots__ = () 
 
    @abstractmethod 
    def __len__(self): 
        return 0 
 
    @classmethod 
    def __subclasshook__(cls, C): 
        if cls is Sized: 
            if any("__len__" in B.__dict__ for B in C.__mro__):   
                return True   
        return NotImplemented  

If there is an attribute named __len__ in the __dict__ of any class
listed in C.__mro__ (i.e., C and its superclasses)…

…return True, signaling that C is a virtual subclass of Sized.

Otherwise return NotImplemented to let the subclass check proceed.

https://bit.ly/2T3cJE5


NOTE
If you are interested in the details of the subclass check, see the source code for the
ABCMeta.__subclasscheck__ method in Python 3.6: Lib/abc.py. Beware: it has
lots of ifs and two recursive calls. In Python 3.7, Ivan Levkivskyi and INADA Naoki
rewrote in C most of the logic for the abc module, for better performance. See Python
issue #31333. The current implementation of ABCMeta.__subclasscheck__
simply calls _abc_subclasscheck. The relevant C source code is in
cpython/Modules/_abc.c#L605.

That’s how __subclasshook__ allows ABCs to support structural
typing. You can formalize an interface with an ABC, you can make
isinstance checks against that ABC, and still have a completely
unrelated class pass an issubclass check because it implements a
certain method (or because it does whatever it takes to convince a
__subclasshook__ to vouch for it).

Is it a good idea to implement __subclasshook__ in our own ABCs?
Probably not. All the implementations of __subclasshook__ I’ve seen
in the Python source code are in ABCs like Sized that declare just one
special method, and they simply check for that special method name. Given
their “special” status, you can be pretty sure that any method named
__len__ does what you expect. But even in the realm of special methods
and fundamental ABCs, it can be risky to make such assumptions. For
example, mappings implement __len__, __getitem__, and
__iter__, but they are rightly not considered subtypes of Sequence,
because you can’t retrieve items using integer offsets or slices. That’s why
the abc.Sequence class does not implement __subclasshook__.

For ABCs that you and I may write, a __subclasshook__ would be
even less dependable. I am not ready to believe that any class named Spam
that implements or inherits load, pick, inspect, and loaded is
guaranteed to behave as a Tombola. It’s better to let the programmer
affirm it by subclassing Spam from Tombola, or registering it with
Tombola.register(Spam). Of course, your __subclasshook__

https://github.com/python/cpython/blob/c0a9afe2ac1820409e6173bd1893ebee2cf50270/Lib/abc.py#L196
https://bugs.python.org/issue31333
https://bit.ly/3dzuW5A
https://bit.ly/355nM5q


could also check method signatures and other features, but I just don’t think
it’s worthwhile.

Static protocols

NOTE
Static protocols were introduced in “Static Protocols” (Chapter 8). I considered delaying
all coverage of protocols until the present Chapter 13, but decided that the initial
presentation of type hints in functions had to include protocols because duck typing is
an essential part of Python, and static type checking without protocols doesn’t handle
Pythonic APIs very well.

We will wrap up this chapter illustrating static protocols with two simple
examples, and a discussion of numeric ABCs and protocols. Let’s start by
showing how a static protocol makes it possible to annotate and type check
the double() function we first saw in “Types are defined by supported
operations”.

The typed double function
When introducing Python to programmers more used to statically typed
languages, one of my favorite examples is this simple double function.

>>> def double(x): 
...     return x * 2 
... 
>>> double(1.5) 
3.0 
>>> double('A') 
'AA' 
>>> double([10, 20, 30]) 
[10, 20, 30, 10, 20, 30] 
>>> from fractions import Fraction 
>>> double(Fraction(2, 5)) 
Fraction(4, 5)



Before static protocols were introduced, there was no practical way to add
type hints to double without limiting its possible uses.

Thanks to duck typing, double works even with types from the future,
such as the enhanced Vector class that we’ll see in “Overloading * for
Scalar Multiplication” (Chapter 16).

>>> from vector_v7 import Vector 
>>> double(Vector([11.0, 12.0, 13.0])) 
Vector([22.0, 24.0, 26.0])

The initial implementation of type hints in Python was a nominal type
system: the name of a type in an annotation had to match the name of the
type of the actual arguments—or the name of one of its superclasses. Since
it’s impossible to name all types that implement a protocol by supporting
the required operations, duck typing could not be described by type hints
before Python 3.8.

Now, with typing.Protocol we can tell Mypy that double takes an
argument x that supports x * 2. Here is how:

Example 13-13. double_protocol.py: definition of double using a
Protocol.
from typing import TypeVar, Protocol 
 
T = TypeVar('T')   
 
class Repeatable(Protocol): 
    def __mul__(self: T, repeat_count: int) -> T: ...   
 
RT = TypeVar('RT', bound=Repeatable)   
 
def double(x: RT) -> RT:   
    return x * 2

We’ll use this T in the __mul__ signature.

__mul__ is the essence of the Repeatable protocol. The self
parameter is usually not annotated—its type is assumed to be the class.
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Here we use T to make sure the result type is the same as the type of
self. Also, note that repeat_count is limited to int in this
protocol.

The RT type variable is bounded by the Repeatable protocol: the
type checker will require that the actual type implements
Repeatable.

Now the type checker is able to verify that the x parameter is an object
that can be multiplied by an integer, and the return value has the same
type as x.

This example shows why PEP 544 is titled “Protocols: Structural subtyping
(static duck typing)”. The nominal type of the actual argument x given to
double is irrelevant as long as it quacks—that is, as long as it implements
__mul__.

Runtime checkable static protocols
In the Typing Map (Figure 13-1), typing.Protocol appears in the
static checking area—the bottom half of the diagram. However, when
defining a typing.Protocol subclass, you can use the
@runtime_checkable decorator to make that protocol support
isinstance/issubclass checks at runtime. This works because
typing.Protocol is an ABC, therefore it supports the
__subclasshook__ we saw in “Structural typing with ABCs”.

As of Python 3.9, the typing module includes seven ready-to-use
protocols that are runtime checkable. Here are two of them, quoted directly
from the typing documentation:

class typing.SupportsComplex

An ABC with one abstract method __complex__.

class typing.SupportsFloat

https://www.python.org/dev/peps/pep-0544/
https://docs.python.org/3/library/typing.html#protocols


An ABC with one abstract method __float__.

These protocols are designed to check numeric types for “convertibility”: if
an object o implements __complex__, then you should be able to get a
complex by invoking complex(o)—because the __complex__
special method exists to support the complex() built-in function.

This is the source code for the typing.SupportsComplex protocol:

Example 13-14.
@runtime_checkable 
class SupportsComplex(Protocol): 
    """An ABC with one abstract method __complex__.""" 
    __slots__ = () 
 
    @abstractmethod 
    def __complex__(self) -> complex: 
        pass

The key is the __complex__ abstract method.  During static type
checking, an object will be considered consistent-with the
SupportsComplex protocol if it implements a __complex__ method
that takes only self and returns a complex.

Thanks to the @runtime_checkable class decorator applied to
SupportsComplex, that protocol can also be used with isinstance
checks:

Example 13-15. Using SupportsComplex at runtime.
>>> from typing import SupportsComplex 
>>> import numpy as np 
>>> c64 = np.complex64(3+4j)   
>>> isinstance(c64, complex)    
False 
>>> isinstance(c64, SupportsComplex)   
True 
>>> c = complex(c64)   
>>> c 
(3+4j) 
>>> isinstance(c, SupportsComplex)  
False 
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>>> complex(c) 
(3+4j)

complex64 is one of five complex number types provided by NumPy.

None of the NumPy complex types subclass the built-in complex.

But NumPy’s complex types implement __complex__ so they
comply with the SupportsComplex protocol.

Therefore, you can create built-in complex objects from them.

Sadly, the complex built-in type does not implement __complex__
although complex(c) works fine if c is a complex.

As a result of that last point, if you want to test whether an object c is a
complex or SupportsComplex you can provide a tuple of types as the
second argument to isinstance, like this:

isinstance(c, (complex, SupportsComplex))

An alternative would be to use the Complex ABC, defined in the
numbers module. The built-in complex type and the NumPy
complex64 and complex128 types are all registered as virtual
subclasses of numbers.Complex, therefore this works:

>>> import numbers 
>>> isinstance(c, numbers.Complex) 
True 
>>> isinstance(c64, numbers.Complex) 
True

I recommended using the numbers ABCs in Fluent Python, First Edition
but now that’s no longer good advice, because those ABCs are not
recognized by the static type checkers, as we’ll see in “The numbers ABCs
and numeric protocols”.



In this section I wanted to demonstrate that a runtime checkable protocol
works with isinstance, but it turns out this is example not a particularly
good use case of isinstance, as the sidebar “Duck typing is your
friend” explains.

TIP
If you’re using an external type checker, there is one advantage of explict
isinstance checks: when you write an if statement where the condition is
isinstance(o, MyType), then Mypy can infer that inside the if block the type
of the o object is consistent-with MyType.



DUCK TYPING IS YOUR FRIEND

Very often at runtime, duck typing is the best approach for type
checking: instead of calling isinstance or hasattr, just try the
operations you need to do on the object, and handle exceptions as
needed. Here is a concrete example.

Continuing the previous discussion—given an object o that I need to
use as a complex number, this would be one approach:

if isinstance(o, (complex, SupportsComplex)): 
    # do something that requires `o` to be convertible to 
complex 
else: 
    raise TypeError('o must be convertible to complex')

The goose typing approach would be to use the numbers.Complex
ABC:

if isinstance(o, numbers.Complex): 
    # do something with `o`, an instance of `Complex` 
else: 
    raise TypeError('o must be an instance of Complex')

However, I prefer to leverage duck typing and do this, using the EAFP
principle—it’s easier to ask forgiveness than permission:

try: 
    c = complex(o) 
except TypeError as exc: 
    raise TypeError('o must be convertible to complex') from 
exc

And, if all you’re going to do is raise a TypeError anyway, then I’d
omit the try/except/raise statements and just write this:

c = complex(o)



In this last case, if o is not an acceptable type, Python will raise an
exception with a very clear message: For example, this is what I get if o
is a tuple:

TypeError: complex() first argument must be a string or a 
number, not 'tuple'

I find the duck typing approach much better in this case.

Now that we’ve seen how to use static protocols at runtime with preexisting
types like complex and numpy.complex64, let’s see how to use them
with a user-defined class.

Supporting a static protocol
Recall the Vector2d class we built in Chapter 11. Given that a complex
number and a Vector2d instance both consist of a pair of floats, it makes
sense to support conversion from Vector2d to complex.

Example 13-16 shows the implementation of the __complex__ method
to enhance the last version of Vector2d we saw in Example 11-11. For
completeness, we can support the inverse operation with a fromcomplex
class method to build a Vector2d from a complex.

Example 13-16. vector2d_v4.py: methods for converting to and from
complex.
    def __complex__(self): 
        return complex(self.x, self.y) 
 
    @classmethod 
    def fromcomplex(cls, datum): 
        return cls(datum.real, datum.imag)  

This assumes that datum has .real and .imag attributes. We’ll see a
better implementation in Example 13-17.



Given the code above, and the __abs__ method the Vector2d already
had in Example 11-11, we get these features:

>>> from typing import SupportsComplex, SupportsAbs 
>>> from vector2d_v4 import Vector2d 
>>> v = Vector2d(3, 4) 
>>> isinstance(v, SupportsComplex) 
True 
>>> isinstance(v, SupportsAbs) 
True 
>>> complex(v) 
(3+4j) 
>>> abs(v) 
5.0 
>>> Vector2d.fromcomplex(3+4j) 
Vector2d(3.0, 4.0)

For runtime type checking, Example 13-16 is fine, but for better static
coverage and error reporting with Mypy, the __abs__, __complex__
and fromcomplex methods should get type hints as shown in
Example 13-17.

Example 13-17. vector2d_v5.py: adding annotations to the methods
under study.
    def __abs__(self) -> float:   
        return math.hypot(self.x, self.y) 
 
    def __complex__(self) -> complex:   
        return complex(self.x, self.y) 
 
    @classmethod 
    def fromcomplex(cls, datum: SupportsComplex) -> Vector2d:   
        c = complex(datum)   
        return cls(c.real, c.imag)

The float return annotation is needed, otherwise Mypy infers Any,
and doesn’t check the body of the method.

Even without the annotation, Mypy was able to infer that this returns a
complex. The annotation prevents a warning, depending on your
Mypy configuration.



Here SupportsComplex ensures the datum is convertible.

This explicit conversion is necessary, because the
SupportsComplex type does not declare .real and .imag
attributes, used in the next line. For example, Vector2d doesn’t have
those attributes, but implements __complex__.

The return type of fromcomplex can be Vector2d if from
__future__ import annotations appears at the top of the
module. That import causes type hints to be stored as strings, without being
evaluated at import time—when functions definitions are evaluated.
Without the __future__ import of annotations, Vector2d is an
invalid reference at this point (the class is not fully defined yet) and should
be written as a string: 'Vector2d'—as if it were a forward reference.
This __future__ import was introduced by PEP 563—Postponed
Evaluation of Annotations, implemented in Python 3.7. That behavior was
scheduled to become default in 3.10, but the change was delayed to a later
version.  When that happens, the import will be redundant but harmless.19
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TYPE HINTS ARE IGNORED AT RUNTIME
Type hints are ignored at runtime, including for isinstance or issubclass
checks against static protocols. For example, this means that any class with a
__float__ method is considered—at runtime—a virtual subclass of
SupportsFloat, even if the __float__ method exists only to raise a clearly
worded exception :

>>> from typing import SupportsFloat 
>>> c = 3+4j 
>>> isinstance(c, SupportsFloat) 
True 
>>> c.__float__ 
<method-wrapper '__float__' of complex object at 
0x1065dc370> 
>>> float(c) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: can't convert complex to float

Next, let’s see how to create—and later, extend—a new static protocol.

Designing a static protocol
While studying goose typing, we saw the Tombola ABC in “Defining and
Using an ABC”. Here we’ll see how to define a similar interface using a
static protocol.

The Tombola ABC specifies two methods: pick and load. We could
define a static protocol with these two methods as well, but I learned from
the Go community that single-method protocols make static duck typing
more useful and flexible. The Go standard library has several interfaces like
Reader—an interface for I/O that requires just a read method. After a
while, if you realize a more complete protocol is required, you can combine
two or more protocols to define a new one.

Using a container that picks items at random may or may not require
reloading the container, but it certainly needs a method to do the actual
pick, so that’s the method I will choose for the minimal RandomPicker
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protocol. The code for that protocol is in Example 13-18 and its use is
demonstrated by tests in Example 13-19.

Example 13-18. randompick.py: definition of RandomPicker.
from typing import Protocol, runtime_checkable, Any 
 
@runtime_checkable 
class RandomPicker(Protocol): 
    def pick(self) -> Any: ...

NOTE
The pick method returns Any. In “Implementing a generic static protocol” we will see
how to make RandomPicker a generic type with a parameter to let users of the
protocol to specify the return type of the pick method.

Example 13-19. randompick_test.py: RandomPicker in use.
import random 
from typing import Any, Iterable, TYPE_CHECKING 
 
from randompick import RandomPicker   
 
class SimplePicker:   
    def __init__(self, items: Iterable) -> None: 
        self._items = list(items) 
        random.shuffle(self._items) 
 
    def pick(self) -> Any:   
        return self._items.pop() 
 
def test_isinstance() -> None:   
    popper: RandomPicker = SimplePicker([1])   
    assert isinstance(popper, RandomPicker)   
 
def test_item_type() -> None:   
    items = [1, 2] 
    popper = SimplePicker(items) 
    item = popper.pick() 
    assert item in items 
    if TYPE_CHECKING: 
        reveal_type(item)   
    assert isinstance(item, int)



It’s not necessary to import the static protocol to define a class that
implements it. Here I imported RandomPicker only to use it
test_isintance below.

SimplePicker implements RandomPicker—but it does not
subclass it. This is static duck typing in action.

Any is the default return type, so this annotation is not strictly
necessary, but it does make it more clear that we are implementing the
RandomPicker protocol as defined in Example 13-18.

Don’t forget to add -> None hints to your tests, if you want Mypy to
look at them.

I added a type hint for the popper variable to show that Mypy
understands that SimplePicker is consistent-with.

This test proves that an instance of SimplePicker is also an instance
of RandomPicker. This works because of the
@runtime_checkable decorator applied to RandomPicker, and
because SimplePicker has a pick method as required.

This test invokes the pick method from a SimplePicker, verifies
that it returns one of the items given to SimplePicker, and then does
static and runtime checks on the returned item.

This line generates a note in the output of Mypy.

As we saw in Example 8-22, reveal_type is a “magic” function
recognized by Mypy—that’s why it is not imported and we can only call it
inside if blocks protected by typing.TYPE_CHECKING which is only
True in the eyes of a static type checker, but is False at runtime.

Both tests in Example 13-19 pass. Mypy does not see any errors in that
code either, and shows the result of the reveal_type on the item



returned by pick:

$ mypy randompick_test.py 
randompick_test.py:24: note: Revealed type is 'Any'

Next, we’ll see how to extend a protocol, adding a method.

Extending a protocol
As I mentioned at the start of the previous section, Go developers advocate
to err on the side of minimalism when defining interfaces—their name for
static protocols. Many of the most widely used Go interfaces have a single
method.

When practice reveals that a protocol with more methods is useful, instead
of adding methods to the original protocol it’s better to derive a new
protocol from it. Extending a static protocol in Python has a few caveats, as
Example 13-20 shows.

Example 13-20. randompickload.py: extending RandomPicker.
from typing import Protocol, runtime_checkable 
from randompick import RandomPicker 
 
@runtime_checkable   
class LoadableRandomPicker(RandomPicker, Protocol):   
    def load(self, Iterable) -> None: ...  

If you want the derived protocol to be runtime checkable, you must
apply the decorator again—its behavior is not inherited.

Every protocol must explicitly name typing.Protocol as one of its
base classes—in addition to the protocol we are extending. This is
different from the way inheritance works in Python.

Back to “regular” OOP: we only need to declare the method that is new
in this derived protocol. The pick method declaration is inherited from
RandomPicker.
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This concludes the final example of defining and using a static protocol in
this chapter. Naming is considered one of the hardest things in computer
science, so let’s talk about naming conventions for static protocols.

Protocol naming conventions
The page Contributing to typeshed recommends this naming convention for
static protocols:

Use plain names for protocols that represent a clear concept (e.g.
Iterator, Container).

Use SupportsX for protocols that provide callable methods (e.g.
SupportsInt, SupportsRead, SupportsReadSeek).

Use HasX for protocols that have readable and/or writable
attributes or getter/setter methods (e.g. HasItems, HasFileno).

The Go standard library has a naming convention that is also useful: for
single method protocols, if the method name is a verb, append “-er” or “-or”
to make it a noun. Examples: Formatter, Animator, Scanner. For
inspiration, see Go (Golang) Standard Library Interfaces (Selected) by
Asuka Kenji.

To close this chapter, we’ll go over numeric ABCs and their possible
replacement with numeric protocols.

The numbers ABCs and numeric protocols

WARNING
As I review this in July 2021, the numbers package is not supported by PEP 484 or the
Mypy type checker. Since 2017 there is an open issue in the Mypy project titled “int is
not a Number?”. This is not a Mypy bug; it reflects a shortcoming of the numbers
package, which I explain below.

https://martinfowler.com/bliki/TwoHardThings.html
https://github.com/python/typeshed/blob/master/CONTRIBUTING.md
https://gist.github.com/asukakenji/ac8a05644a2e98f1d5ea8c299541fce9
https://github.com/python/mypy/issues/3186


The numbers package defines the so-called numeric tower described in
PEP 3141—A Type Hierarchy for Numbers. The tower is linear hierarchy
of ABCs, where Number is the topmost ABC, Complex is its immediate
subclass, and so on, down to Integral:

Number

Complex

Real

Rational

Integral

So if you need to check for an integer, you can use isinstance(x,
numbers.Integral) to accept int, bool (which subclasses int) or
other integer types that are provided by external libraries that register their
types as virtual subclasses of the numbers ABCs. For example, NumPy
has 21 integer types—as well as several variations of floating point types
registered as numbers.Real, and complex numbers with various bit
widths registered as numbers.Complex.

TIP
Somewhat surprisingly, decimal.Decimal is not registered as a virtual subclass of
numbers.Real. The reason is that, if you need the precision of Decimal in your
program, then you want to be protected from accidental mixing of decimals with other
less precise numeric types, particularly floating point numbers.

Sadly, the numeric tower was not designed for static type checking. The
root ABC—numbers.Number—has no methods, so if you declare x:
Number then type checkers will not let you do arithmetic or call any
methods on x.

To be frank, we don’t often need to implement type safe functions that can
handle various types of floating point numbers, or integers of varying bit

https://docs.python.org/3/library/numbers.html
https://www.python.org/dev/peps/pep-3141/
https://numpy.org/devdocs/user/basics.types.html


widths. When needed, a possible workaround is to use the numeric
protocols provided by the typing module, which we discussed in
“Runtime checkable static protocols”.

Unfortunately, at runtime, the numeric protocols may let you down. As
mentioned in “Type Hints Are Ignored at Runtime”, Python’s complex
type implements __float__, but the method exists only to raise
TypeError with an explicit message: “can’t convert complex to float.” It
implements __int__ as well, for the same reason. The presence of those
methods make isinstance return misleading results. However,
NumPy’s complex types implement __float__ and __int__ methods
that work, only issuing a warning when each of them is used for the first
time:

>>> import numpy as np 
>>> cd = np.cdouble(3+4j) 
>>> cd 
(3+4j) 
>>> float(cd) 
<stdin>:1: ComplexWarning: Casting complex values to real 
discards the imaginary part 
3.0

The opposite problem also happens: built-ins complex, float and int,
and also numpy.float16, numpy.uint8 don’t have a __complex__
method, so isinstance(x, SupportsComplex) returns False for
them. . The NumPy complex types, such as np.complex64 do
implement __complex__ to convert to a built-in complex.

However, in practice, the complex() built-in constructor handles
instances of all these types with no errors or warnings:

>>> import numpy as np 
>>> from typing import SupportsComplex 
>>> sample = [1+0j, np.complex64(1+0j), 1.0, np.float16(1.0), 1, 
np.uint8(1)] 
>>> [isinstance(x, SupportsComplex) for x in sample] 
[False, True, False, False, False, False] 
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>>> [complex(x) for x in sample] 
[(1+0j), (1+0j), (1+0j), (1+0j), (1+0j), (1+0j)]

This shows that isinstance checks against SupportsComplex
suggest those conversions to complex would fail, but they all succeed. In
the typing-sig mailing list, Guido pointed out that the built-in complex
accepts a single argument, and that’s why those conversions work.

On the other hand, Mypy accepts arguments of all those six types in a call
to a to_complex() function defined like this:

def to_complex(n: SupportsComplex) -> complex: 
    return complex(n)

As I write this, NumPy has no type hints, so its number types are all Any.
On the other hand, Mypy is somehow “aware” that the built-in int and
float can be converted to complex, even though on typeshed only the
built-in complex class has a __complex__ method.

In conclusion, although numeric types should not be hard to type check, the
current situation is this: the type hints PEP-484 eschews the numeric tower
and implicitly recommends that type checkers hard code the subtype
relationships between built-in complex, float and int. Mypy does
that, and also pragmatically accepts that int and float are consistent-
with SupportsComplex, even though they don’t implement
__complex__.

TIP
I only found unexpected results when using isinstance checks with numeric
Supports* protocols while experimenting with conversions to or from complex. If
you don’t use complex numbers, you can rely on those protocols instead of the
numbers ABCs.

The main takeaways for this section are:
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The numbers ABCs are fine for goose typing, but unsuitable for
static typing.

The numeric static protocols SupportsComplex,
SupportsFloat, etc. work well for static typing, but are
unreliable for goose typing when complex numbers are involved.

We are now ready for a quick review of what we saw in this chapter.



Chapter Summary
The Typing Map (Figure 13-1) is the key to making sense of this chapter.
After a brief introduction to the four approaches to typing, we contrasted
dynamic and static protocols, which respectively support duck typing and
static duck typing. Both kinds of protocols share the essential characteristic
that a class is never required to explicitly declare support for any specific
protocol. A class supports a protocol simply by implementing the necessary
methods.

The next major section was “Programming ducks”, where we explored the
lengths to which the Python interpreter goes to make the sequence and
iterable dynamic protocols work, including partial implementations of both.
We then saw how a class can be made to implement a protocol at runtime
through the addition of extra methods via monkey-patching. The duck
typing section ended with hints for defensive programming, including
detection of structural types without explicit isinstance or hasattr
checks using try/except and failing fast.

After Alex Martelli introduced goose typing in “Waterfowl and ABCs”, we
saw how to subclass existing ABCs, surveyed important ABCs in the
standard library, and created an ABC from scratch, which we then
implemented by traditional subclassing and by registration. To close this
section, we saw how the __subclasshook__ special method enables
ABCs to support structural typing by recognizing unrelated classes that
provide methods fulfilling the interface defined in the ABC.

The last major section was “Static protocols”, where we resumed coverage
of static duck typing which started in Chapter 8, section “Static Protocols”.
We saw how the @runtime_checkable decorator also leverages
__subclasshook__ to support structural typing at runtime—even
though the best use of static protocols is with static type checkers which can
take into account type hints to make structural typing more reliable. Next
we talked about the design and coding of a static protocol and how to
extend it. The chapter ended with “The numbers ABCs and numeric
protocols” which tells the sad story of the derelict state of the numeric



tower and a few existing shortcomings of the proposed alternative: the
numeric static protocols such as SupportsFloat and others added to the
typing module in Python 3.8.

The main message of this chapter is that we have four complementary ways
of programming with interfaces in modern Python, each with different
advantages and drawbacks. You are likely to find suitable use cases for each
typing scheme in any modern Python codebase of significant size. Rejecting
any one of these approaches will make your work as a Python programmer
harder than it needs to be.

Having said that, Python achieved widespread popularity while supporting
only duck typing. Other popular languages such as JavaScript, PHP, and
Ruby, as well as Lisp, Smalltalk, Erlang, and Clojure—not popular but very
influential—are all languages that had and still have tremendous impact by
leveraging the power and simplicity of duck typing.

Further Reading
Great books about Python have—almost by definition—great coverage of
duck typing. Two of my favorite Python books had updates released after
Fluent Python, First Edition: The Quick Python Book 3rd Edition
(Manning, 2018), by Naomi Ceder; and Python in a Nutshell, 3rd Edition
(O’Reilly, 2017) by Alex Martelli, Anna Ravenscroft, and Steve Holden.

For a discussion of the pros and cons of dynamic typing, see Guido van
Rossum’s interview to Bill Venners in “Contracts in Python: A
Conversation with Guido van Rossum, Part IV”.

The Mypy documentation is often the best source of information for
anything related to static typing in Python, including static duck typing,
addressed in their Protocols and structural subtyping chapter.

The remaining references are all about goose typing. Beazley and Jones’s
Python Cookbook, 3rd Edition (O’Reilly) has a section about defining an
ABC (Recipe 8.12). The book was written before Python 3.4, so they don’t
use the now preferred syntax of declaring ABCs by subclassing from

http://shop.oreilly.com/product/0636920012610.do
http://www.artima.com/intv/pycontract.html
https://mypy.readthedocs.io/en/stable/protocols.html
http://shop.oreilly.com/product/0636920027072.do


abc.ABC (instead, they use the metaclass keyword, which we’ll only
really need in Chapter 25). Apart from this small detail, the recipe covers
the major ABC features very well.

The Python Standard Library by Example by Doug Hellmann (Addison-
Wesley), has a chapter about the abc module. It’s also available on the Web
in Doug’s excellent PyMOTW—Python Module of the Week. Hellmann
also uses the old style of ABC declaration:
PluginBase(metaclass=abc.ABCMeta) instead of the simpler
PluginBase(abc.ABC) available since Python 3.4.

When using ABCs, multiple inheritance is not only common but practically
inevitable, because each of the fundamental collection ABCs—Sequence,
Mapping, and Set—extends Collection, which in turn extends
multiple ABCs (see Figure 13-4). Therefore, Chapter 14 is an important
follow-up to this one.

PEP 3119 — Introducing Abstract Base Classes gives the rationale for
ABCs. PEP 3141 - A Type Hierarchy for Numbers presents the ABCs of
the numbers module, but the discussion in the Mypy issue #3186—int is
not a Number? includes some arguments about why the numeric tower is
unsuitable for static type checking.

https://pymotw.com/3/abc/index.html
https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-3141
https://docs.python.org/3/library/numbers.html
https://github.com/python/mypy/issues/3186


SOAPBOX

The MVP Journey of Python Static Typing

I work for Thoughtworks, a worldwide leader in agile software
development. At Thoughtworks, we often recommend that our clients
should aim to create and deploy MVPs: minimal viable products— “a
simple version of a product that is given to users in order to validate the
key business assumptions” as defined by my colleague Paulo Caroli in
Lean Inception, a post in Martin Fowler’s collective blog.

Guido van Rossum and the other core developers who designed and
implemented static typing have followed an MVP strategy since 2006.
First, PEP 3107—Function Annotations was implemented in Python 3.0
with very limited semantics: just syntax to attach annotations to
function arguments and returns. This was done explicitly to allow for
experimentation and collect feedback—key benefits of an MVP.

Eight years later, PEP 484—Type Hints was proposed and approved. Its
implementation in Python 3.5 required no changes in the language or
standard library—except the addition of the typing module, on which
no other part of the standard library depended. PEP 484 supported only
nominal types with generics—similar to Java—but with the actual static
checking done by external tools. Important features—like variable
annotations, generic built-in types, and static protocols—were missing.
Despite those limitations, this typing MVP was valuable enough to
attract investment and adoption by companies with very large Python
codebases, like Dropbox, Google, and Facebook—as well as support
from professional IDEs like PyCharm, Wing, and VS Code.

PEP 526—Syntax for Variable Annotations was the first evolutionary
step that required changes to the interpreter, in Python 3.6. Further
changes to the interpreter were made in Python 3.7 to support PEP 563
—Postponed Evaluation of Annotations and PEP 560—Core support
for typing module and generic types—which in turn allowed built-in
and standard library collections to accept generic type hints out of the

https://martinfowler.com/articles/lean-inception/
https://martinfowler.com/
https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-0484/
https://www.jetbrains.com/pycharm/
https://wingware.com/
https://code.visualstudio.com/
https://www.python.org/dev/peps/pep-0526/
https://www.python.org/dev/peps/pep-0563/
https://www.python.org/dev/peps/pep-0560/


box in Python 3.9, thanks to PEP 585—Type Hinting Generics In
Standard Collections.

During those years, some Python users—including me—were
underwhelmed by the typing support. After I learned Go, the lack of
static duck typing in Python’s type hints was incomprehensible, in a
language where duck typing had always been a core strength.

But that is the nature of MVPs: they may not satisfy all potential users,
but they can be implemented with less effort, and guide further
development with feedback from actual usage in the field.

If there is one thing we all learned from Python 3, is that incremental
progress is safer than big-bang releases. I am glad we did not have to
wait for Python 4—if it ever comes—to make Python more attractive to
large enterprises, where the benefits of static typing outweigh the added
complexity.

Typing Approaches in Popular Languages

https://www.python.org/dev/peps/pep-0585/




Figure 13-8. Four approaches to type checking and languages that support them.

Figure 13-8 is a variation of the Typing Map (Figure 13-1) with the
names of a few popular languages that support each of the typing
approaches.

TypeScript and Python ≥ 3.8 are the only languages in my small and
arbitrary sample that support all four approaches.

Go is clearly a statically typed language in the Pascal tradition, but it
pioneered static duck typing—at least among languages that are widely
used today. I also put Go in the goose typing quadrant because of its
type assertions, which allow checking and adapting to different types at
runtime.

If I had to draw a similar diagram in the year 2000, only the duck typing
and the static typing quadrants would have languages in them. I am not
aware of languages that supported static duck typing or goose typing 20
years ago. The fact that each of the four quadrants have at least three
popular languages suggests that a lot of people see value in each of the
four approaches to typing.

Monkey Patching

Monkey patching has a bad reputation. If abused, it can lead to systems
that are hard to understand and maintain. The patch is usually tightly
coupled with its target, making it brittle. Another problem is that two
libraries that apply monkey-patches may step on each other’s toes, with
the second library to run destroying patches of the first.

But monkey patching can also be useful, for example, to make a class
implement a protocol at runtime. The adapter design pattern solves the
same problem by implementing a whole new class.

It’s easy to monkey-patch Python code, but there are limitations. Unlike
Ruby and JavaScript, Python does not let you monkey-patch the built-in
types. I actually consider this an advantage, because you can be certain
that a str object will always have those same methods. This limitation
reduces the chance that external libraries apply conflicting patches.



Metaphors and Idioms in Interfaces

A metaphor fosters understanding by making constraints and
affordances clear. That’s the value of the words “stack” and “queue” in
describing those fundamental data structures: they make clear which
operations ara allowed, i.e. how items can be added or removed. On the
other hand, Alan Cooper writes in About Face, 4E (Wiley):

Strict adherence to metaphors ties interfaces unnecessarily tightly to
the workings of the physical world.

He’s referring to user interfaces, but the admonition applies to APIs as
well. But Cooper does grant that when a “truly appropriate” metaphor
“falls on our lap,” we can use it (he writes “falls on our lap” because it’s
so hard to find fitting metaphors that you should not spend time actively
looking for them). I believe the bingo machine imagery I used in this
chapter is appropriate and I stand by it.

About Face is by far the best book about UI design I’ve read—and I’ve
read a few. Letting go of metaphors as a design paradigm, and replacing
it with “idiomatic interfaces” was the most valuable thing I learned
from Cooper’s work.

In About Face, Cooper does not deal with APIs, but the more I think
about his ideas, the more I see how they apply to Python. The
fundamental protocols of the language are what Cooper calls “idioms.”
Once we learn what a “sequence” is we can apply that knowledge in
different contexts. This is a main theme of Fluent Python: highlighting
the fundamental idioms of the language, so your code is concise,
effective, and readable—for a fluent Pythonista.

1  Design Patterns: Elements of Reusable Object-Oriented Software, Introduction, p. 18.

2  The Monkey patch article on Wikipedia has a funny example in Python.

3  That’s why automated testing is necessary.

4  Bjarne Stroustrup, The Design and Evolution of C++ (Addison-Wesley, 1994), p. 278.

https://en.wikipedia.org/wiki/Monkey_patch


5  Retrieved October 18, 2020.

6  You can also, of course, define your own ABCs—but I would discourage all but the most
advanced Pythonistas from going that route, just as I would discourage them from defining
their own custom metaclasses… and even for said “most advanced Pythonistas,” those of us
sporting deep mastery of every fold and crease in the language, these are not tools for frequent
use: such “deep metaprogramming,” if ever appropriate, is intended for authors of broad
frameworks meant to be independently extended by vast numbers of separate development
teams… less than 1% of “most advanced Pythonistas” may ever need that! — A.M.

7  Multiple inheritance was considered harmful and excluded from Java, except for interfaces:
Java interfaces can extend multiple interfaces, and Java classes can implement multiple
interfaces.

8  Perhaps the client needs to audit the randomizer; or the agency wants to provide a rigged one.
You never know…

9  «registered» and «virtual subclass» are not standard UML terms. I am using them to represent
a class relationship that is specific to Python.

10  Before ABCs existed, abstract methods would raise NotImplementedError to signal that
subclasses were responsible for their implementation. In Smalltalk-80, abstract method bodies
would invoke subclassResponsibility, a method inherited from object that would
produce an error with the message “My subclass should have overridden one of my messages.”

11  The complete tree appears in section “5.4. Exception hierarchy” of The Python Standard
Library documentation.

12  @abc.abstractmethod entry in the abc module documentation.

13  “Defensive Programming with Mutable Parameters” in Chapter 6 was devoted to the aliasing
issue we just avoided here.

14  The same trick I used with load() doesn’t work with loaded(), because the list type
does not implement __bool__, the method I’d have to bind to loaded. The bool() built-
in doesn’t need __bool__ to work because it can also use __len__. See “4.1. Truth Value
Testing” in the “Built-in Types” chapter of the Python documentation.

15  There is a whole section explaining the __mro__ class attribute in “Multiple Inheritance and
Method Resolution Order”. Right now, this quick explanation will do.

16  The concept of type consistency was explained in “Subtype-of versus Consistent-with”.

17  OK, double() is not very useful, except as an example. But the Python standard library has
many functions that could not be properly annotated before static protocols were added in
Python 3.8. I helped fixing a couple of bugs in typeshed by adding type hints using protocols.
For example, the pull request that fixed Should Mypy warn about potential invalid arguments
to max? leveraged a _SupportsLessThan protocol, which I used to enhance the
annotations for max, min, sorted, and list.sort.

18  The __slots__ attribute is irrelevant to the current discussion—it’s an optimization we
covered in “Saving Memory with __slots__”.

http://bit.ly/1QOFpGB
https://docs.python.org/dev/library/abc.html
https://docs.python.org/3/library/stdtypes.html#truth
https://github.com/python/typeshed/issues/4051


19  Read the Python Steering Council decision on python-dev.

20  Thanks to Guido van Rossum for telling me the reason why the complex.__float__
method exists and to Ivan Levkivskyi for pointing out that inspecting type hints at runtime
would have an unacceptable performance cost. Type checking is not just a matter of checking
whether the type of x is T: it’s about determining that the type of x is consistent-with T, which
may be expensive.

21  For details and rationale, please see the section about @runtime_checkable in PEP 544—
Protocols: Structural subtyping (static duck typing)

22  Again, please read Merging and extending protocols in PEP 544 for details and rationale.

23  I did not test all the other float and integer variants NumPy offers

24  The NumPy number types are all registered against the appropriate numbers ABCs, but
Mypy ignores that fact.

25  That’s a well-meaning lie on the part of typeshed: as of Python 3.9, the built-in complex
type does not actually have a __complex__ method.

https://mail.python.org/archives/list/python-dev@python.org/thread/CLVXXPQ2T2LQ5MP2Y53VVQFCXYWQJHKZ/
https://www.python.org/dev/peps/pep-0544/#runtime-checkable-decorator-and-narrowing-types-by-isinstance
https://www.python.org/dev/peps/pep-0544/#merging-and-extending-protocols


Chapter 14. Inheritance: For
Good or For Worse

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 14th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

—Alan Kay, The Early History of Smalltalk

This chapter is about inheritance and subclassing, with emphasis on two
particulars that are very specific to Python:

The pitfalls of subclassing from built-in types

Multiple inheritance and the method resolution order

Many consider multiple inheritance more trouble than it’s worth. The lack
of it certainly did not hurt Java; it probably fueled its widespread adoption
after many were traumatized by the excessive use of multiple inheritance in
C++.

However, the amazing success and influence of Java means that a lot of
programmers come to Python without having seen multiple inheritance in
practice. This is why, instead of toy examples, our coverage of multiple

mailto:fluentpython2e@ramalho.org


inheritance will be illustrated by two important Python projects: the Tkinter
GUI toolkit and the Django Web framework.

What’s new in this chapter
This chapter has only minor changes. As the title suggests, the caveats of
inheritance have always been one of the main themes here. But more and
more software engineers consider it so problematic that I’ve added a couple
of paragraphs about avoiding inheritance altogether to the end of “Chapter
Summary” and “Further Reading”.

We’ll start with the issue of subclassing built-ins. The rest of the chapter
will cover multiple inheritance with our case studies and discuss good and
bad practices when building class hierarchies.

Subclassing Built-In Types Is Tricky
Before Python 2.2, it was not possible to subclass built-in types such as
list or dict. Since then, it can be done but there is a major caveat: the
code of the built-ins (written in C) does not call special methods overridden
by user-defined classes.

A good short description of the problem is in the documentation for PyPy,
in “Differences between PyPy and CPython”, section Subclasses of built-in
types:

Officially, CPython has no rule at all for when exactly overridden method
of subclasses of built-in types get implicitly called or not. As an
approximation, these methods are never called by other built-in methods
of the same object. For example, an overridden __getitem__() in a
subclass of dict will not be called by e.g. the built-in get() method.

Example 14-1 illustrates the problem.

Example 14-1. Our __setitem__ override is ignored by the __init__ and
__update__ methods of the built-in dict

http://bit.ly/1JHNmhX


>>> class DoppelDict(dict): 
...     def __setitem__(self, key, value): 
...         super().__setitem__(key, [value] * 2)   
... 
>>> dd = DoppelDict(one=1)   
>>> dd 
{'one': 1} 
>>> dd['two'] = 2   
>>> dd 
{'one': 1, 'two': [2, 2]} 
>>> dd.update(three=3)   
>>> dd 
{'three': 3, 'one': 1, 'two': [2, 2]}

DoppelDict.__setitem__ duplicates values when storing (for no
good reason, just to have a visible effect). It works by delegating to the
superclass.

The __init__ method inherited from dict clearly ignored that
__setitem__ was overridden: the value of 'one' is not duplicated.

The [] operator calls our __setitem__ and works as expected:
'two' maps to the duplicated value [2, 2].

The update method from dict does not use our version of
__setitem__ either: the value of 'three' was not duplicated.

This built-in behavior is a violation of a basic rule of object-oriented
programming: the search for methods should always start from the class of
the target instance (self), even when the call happens inside a method
implemented in a superclass. In this sad state of affairs, the __missing__
method—which we saw in “The __missing__ Method”—works as
documented only because it’s handled as a special case.

The problem is not limited to calls within an instance—whether
self.get() calls self.__getitem__())—but also happens with
overridden methods of other classes that should be called by the built-in



methods. Example 14-2 is an example adapted from the PyPy
documentation.

Example 14-2. The __getitem__ of AnswerDict is bypassed by dict.update
>>> class AnswerDict(dict): 
...     def __getitem__(self, key):   
...         return 42 
... 
>>> ad = AnswerDict(a='foo')   
>>> ad['a']   
42 
>>> d = {} 
>>> d.update(ad)   
>>> d['a']   
'foo' 
>>> d 
{'a': 'foo'}

AnswerDict.__getitem__ always returns 42, no matter what the
key.

ad is an AnswerDict loaded with the key-value pair ('a',
'foo').

ad['a'] returns 42, as expected.

d is an instance of plain dict, which we update with ad.

The dict.update method ignored our
AnswerDict.__getitem__.

WARNING
Subclassing built-in types like dict or list or str directly is error-prone because the
built-in methods mostly ignore user-defined overrides. Instead of subclassing the built-
ins, derive your classes from the collections module using UserDict,
UserList, and UserString, which are designed to be easily extended.

http://bit.ly/1JHNmhX
http://docs.python.org/3/library/collections.html


If you subclass collections.UserDict instead of dict, the issues
exposed in Examples 14-1 and 14-2 are both fixed. See Example 14-3.

Example 14-3. DoppelDict2 and AnswerDict2 work as expected because
they extend UserDict and not dict
>>> import collections 
>>> 
>>> class DoppelDict2(collections.UserDict): 
...     def __setitem__(self, key, value): 
...         super().__setitem__(key, [value] * 2) 
... 
>>> dd = DoppelDict2(one=1) 
>>> dd 
{'one': [1, 1]} 
>>> dd['two'] = 2 
>>> dd 
{'two': [2, 2], 'one': [1, 1]} 
>>> dd.update(three=3) 
>>> dd 
{'two': [2, 2], 'three': [3, 3], 'one': [1, 1]} 
>>> 
>>> class AnswerDict2(collections.UserDict): 
...     def __getitem__(self, key): 
...         return 42 
... 
>>> ad = AnswerDict2(a='foo') 
>>> ad['a'] 
42 
>>> d = {} 
>>> d.update(ad) 
>>> d['a'] 
42 
>>> d 
{'a': 42}

As an experiment to measure the extra work required to subclass a built-in,
I rewrote the StrKeyDict class from Example 3-9. The original version
inherited from collections.UserDict, and implemented just three
methods: __missing__, __contains__, and __setitem__. The
experimental StrKeyDict subclassed dict directly, and implemented
the same three methods with minor tweaks due to the way the data was
stored.



But in order to make it pass the same suite of tests, I had to implement
__init__, get, and update because the versions inherited from dict
refused to cooperate with the overridden __missing__,
__contains__, and __setitem__. The UserDict subclass from
Example 3-9 has 16 lines, while the experimental dict subclass ended up
with 37 lines.

To summarize: the problem described in this section applies only to method
delegation within the C language implementation of the built-in types, and
only affects user-defined classes derived directly from those types. If you
subclass from a class coded in Python, such as UserDict or
MutableMapping, you will not be troubled by this.

Another matter related to inheritance, particularly of multiple inheritance,
is: how does Python decide which attribute to use if superclasses from
parallel branches define attributes with the same name? The answer is next.

Multiple Inheritance and Method Resolution
Order

1
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Figure 14-1. Left: UML class diagram illustrating the “diamond problem.” Right: Dashed arrows
depict Python MRO (method resolution order) for Example 14-4.

Any language implementing multiple inheritance needs to deal with
potential naming conflicts when unrelated ancestor classes implement a
method by the same name. This is called the “diamond problem,” and is
illustrated in Figure 14-1 and Example 14-4.

Example 14-4. diamond.py: classes A, B, C, and D form the graph in
Figure 14-1
class A: 
    def ping(self): 
        print('ping:', self) 
 
 
class B(A): 
    def pong(self): 
        print('pong:', self) 
 
 
class C(A): 
    def pong(self): 
        print('PONG:', self) 
 
 
class D(B, C): 
 
    def ping(self): 
        super().ping() 
        print('post-ping:', self) 
 
    def pingpong(self): 
        self.ping() 
        super().ping() 
        self.pong() 
        super().pong() 
        C.pong(self)

Note that both classes B and C implement a pong method. The only
difference is that C.pong outputs the word PONG in uppercase.

If you call d.pong() on an instance of D, which pong method actually
runs? In C++, the programmer must qualify method calls with class names



to resolve this ambiguity. This can be done in Python as well. Take a look at
Example 14-5.

Example 14-5. Two ways of invoking method pong on an instance of class D
>>> from diamond import * 
>>> d = D() 
>>> d.pong()   
pong: <diamond.D object at 0x10066c278> 
>>> C.pong(d)   
PONG: <diamond.D object at 0x10066c278>

Simply calling d.pong() causes the B version to run.

You can always call a method on a superclass directly, passing the
instance as an explicit argument.

The ambiguity of a call like d.pong() is resolved because Python follows
a specific order when traversing the inheritance graph. That order is called
MRO: Method Resolution Order. Classes have an attribute called __mro__
holding a tuple of references to the superclasses in MRO order, from the
current class all the way to the object class. For the D class, this is the
__mro__ (see Figure 14-1):

>>> D.__mro__ 
(<class 'diamond.D'>, <class 'diamond.B'>, <class 'diamond.C'>, 
<class 'diamond.A'>, <class 'object'>)

The recommended way to delegate method calls to superclasses is the
super() built-in function, which became easier to use in Python 3, as
method pingpong of class D in Example 14-4 illustrates.  However, it’s
also possible, and sometimes convenient, to bypass the MRO and invoke a
method on a superclass directly. For example, the D.ping method could
be written as:

    def ping(self): 
        A.ping(self)  # instead of super().ping() 
        print('post-ping:', self)
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Note that when calling an instance method directly on a class, you must
pass self explicitly, because you are accessing an unbound method.

However, it’s safest and more future-proof to use super(), especially
when calling methods on a framework, or any class hierarchies you do not
control. Example 14-6 shows that super() follows the MRO when
invoking a method.

Example 14-6. Using super() to call ping (source code in Example 14-4)
>>> from diamond import D 
>>> d = D() 
>>> d.ping()   
ping: <diamond.D object at 0x10cc40630>   
post-ping: <diamond.D object at 0x10cc40630>  

The ping of D makes two calls.

The first call is super().ping(); the super delegates the ping
call to class A; A.ping outputs this line.

The second call is print('post-ping:', self), which outputs
this line.

Now let’s see what happens when pingpong is called on an instance of D.
See Example 14-7.

Example 14-7. The five calls made by pingpong (source code in
Example 14-4)
>>> from diamond import D 
>>> d = D() 
>>> d.pingpong() 
ping: <diamond.D object at 0x10bf235c0>   
post-ping: <diamond.D object at 0x10bf235c0> 
ping: <diamond.D object at 0x10bf235c0>   
pong: <diamond.D object at 0x10bf235c0>   
pong: <diamond.D object at 0x10bf235c0>   
PONG: <diamond.D object at 0x10bf235c0>  



Call #1 is self.ping(), which runs the ping method of D, which
outputs this line and the next one.

Call #2 is super().ping(), which bypasses the ping in D and
finds the ping method in A.

Call #3 is self.pong(), which finds the B implementation of pong,
according to the __mro__.

Call #4 is super().pong(), which finds the same B.pong
implementation, also following the __mro__.

Call #5 is C.pong(self), which finds the C.pong implementation,
ignoring the __mro__.

The MRO takes into account not only the inheritance graph but also the
order in which superclasses are listed in a subclass declaration. In other
words, if in diamond.py (Example 14-4) the D class was declared as class
D(C, B):, the __mro__ of class D would be different: C would be
searched before B.

I often check the __mro__ of classes interactively when I am studying
them. Example 14-8 has some examples using familiar classes.

Example 14-8. Inspecting the __mro__ attribute in several classes
>>> bool.__mro__   
(<class 'bool'>, <class 'int'>, <class 'object'>) 
>>> def print_mro(cls):   
...     print(', '.join(c.__name__ for c in cls.__mro__)) 
... 
>>> print_mro(bool) 
bool, int, object 
>>> from frenchdeck2 import FrenchDeck2 
>>> print_mro(FrenchDeck2)   
FrenchDeck2, MutableSequence, Sequence, Sized, Iterable, Container, 
object 
>>> import numbers 
>>> print_mro(numbers.Integral)   
Integral, Rational, Real, Complex, Number, object 



>>> import io   
>>> print_mro(io.BytesIO) 
BytesIO, _BufferedIOBase, _IOBase, object 
>>> print_mro(io.TextIOWrapper) 
TextIOWrapper, _TextIOBase, _IOBase, object

bool inherits methods and attributes from int and object.

print_mro produces more compact displays of the MRO.

The ancestors of FrenchDeck2 include several ABCs from the
collections.abc module.

These are the numeric ABCs provided by the numbers module.

The io module includes ABCs (those with the …Base suffix) and
concrete classes like BytesIO and TextIOWrapper, which are the
types of binary and text file objects returned by open(), depending on
the mode argument.

NOTE
The MRO is computed using an algorithm called C3. The canonical paper on the Python
MRO explaining C3 is Michele Simionato’s “The Python 2.3 Method Resolution
Order”. If you are interested in the subtleties of the MRO, “Further Reading” has other
pointers. But don’t fret too much about this, the algorithm is sensible; as Simionato
writes:

[…] unless you make strong use of multiple inheritance and you have non-trivial
hierarchies, you don’t need to understand the C3 algorithm, and you can easily skip
this paper.

To wrap up this discussion of the MRO, Figure 14-2 illustrates part of the
complex multiple inheritance graph of the Tkinter GUI toolkit from the
Python standard library. To study the picture, start at the Text class at the
bottom. The Text class implements a full featured, multiline editable text
widget. It has rich functionality of its own, but also inherits many methods

http://bit.ly/1OwVqBd


from other classes. The left-hand side shows a plain UML class diagram.
On the right, it’s decorated with arrows showing the MRO, as listed here
with the help of the print_mro convenience function defined in
Example 14-8:

>>> import tkinter 
>>> print_mro(tkinter.Text) 
Text, Widget, BaseWidget, Misc, Pack, Place, Grid, XView, YView, 
object

In the next section, we’ll discuss the pros and cons of multiple inheritance,
with examples from real frameworks that use it.





Figure 14-2. Left: UML class diagram of the Tkinter Text widget class and its superclasses. Right:
Dashed arrows depict Text.__mro__.

Multiple Inheritance in the Real World
It is possible to put multiple inheritance to good use. The Adapter pattern in
the Design Patterns book uses multiple inheritance, so it can’t be
completely wrong to do it (the remaining 22 patterns in the book use single
inheritance only, so multiple inheritance is clearly not a cure-all).

In the Python standard library, the most visible use of multiple inheritance
is the collections.abc package. That is not controversial: after all,
even Java supports multiple inheritance of interfaces, and ABCs are
interface declarations that may optionally provide concrete method
implementations.

An extreme example of multiple inheritance in the standard library is the
Tkinter GUI toolkit (module tkinter: Python interface to Tcl/Tk). I used
part of the Tkinter widget hierarchy to illustrate the MRO in Figure 14-2,
but Figure 14-3 shows all the widget classes in the tkinter base package
(there are more widgets in the tkinter.ttk sub-package).
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Figure 14-3. Summary UML diagram for the Tkinter GUI class hierarchy; classes tagged «mixin»
are designed to provide concrete methods to other classes via multiple inheritance

Tkinter is 20 years old as I write this, and is not an example of current best
practices. But it shows how multiple inheritance was used when coders did
not appreciate its drawbacks. And it will serve as a counter-example when
we cover some good practices in the next section.

Consider these classes from Figure 14-3:

➊ Toplevel: The class of a top-level window in a Tkinter application.

➋ Widget: The superclass of every visible object that can be placed on a
window.

➌ Button: A plain button widget.

➍ Entry: A single-line editable text field.

➎ Text: A multiline editable text field.

Here are the MROs of those classes, displayed by the print_mro
function from Example 14-8:

>>> import tkinter 
>>> print_mro(tkinter.Toplevel) 
Toplevel, BaseWidget, Misc, Wm, object 
>>> print_mro(tkinter.Widget) 
Widget, BaseWidget, Misc, Pack, Place, Grid, object 
>>> print_mro(tkinter.Button) 
Button, Widget, BaseWidget, Misc, Pack, Place, Grid, object 
>>> print_mro(tkinter.Entry) 
Entry, Widget, BaseWidget, Misc, Pack, Place, Grid, XView, object 
>>> print_mro(tkinter.Text) 
Text, Widget, BaseWidget, Misc, Pack, Place, Grid, XView, YView, 
object

Things to note about how these classes relate to others:

Toplevel is the only graphical class that does not inherit from
Widget, because it is the top-level window and does not behave
like a widget—for example, it cannot be attached to a window or



frame. Toplevel inherits from Wm, which provides direct access
functions of the host window manager, like setting the window title
and configuring its borders.

Widget inherits directly from BaseWidget and from Pack,
Place, and Grid. These last three classes are geometry
managers: they are responsible for arranging widgets inside a
window or frame. Each encapsulates a different layout strategy and
widget placement API.

Button, like most widgets, descends only from Widget, but
indirectly from Misc, which provides dozens of methods to every
widget.

Entry subclasses Widget and XView, the class that implements
horizontal scrolling.

Text subclasses from Widget, XView, and YView, which
provides vertical scrolling functionality.

We’ll now discuss some good practices of multiple inheritance and see
whether Tkinter goes along with them.

Coping with Multiple Inheritance
[…] we needed a better theory about inheritance entirely (and still do).
For example, inheritance and instancing (which is a kind of inheritance)
muddles both pragmatics (such as factoring code to save space) and
semantics (used for way too many tasks such as: specialization,
generalization, speciation, etc.).

—Alan Kay, The Early History of Smalltalk

As Alan Kay wrote, inheritance is used for different reasons, and multiple
inheritance adds alternatives and complexity. It’s easy to create
incomprehensible and brittle designs using multiple inheritance. Because



we don’t have a comprehensive theory, here are a few tips to avoid
spaghetti class graphs.

1. Distinguish Interface Inheritance from Implementation
Inheritance
When dealing with multiple inheritance, it’s useful to keep straight the
reasons why subclassing is done in the first place. The main reasons are:

Inheritance of interface creates a subtype, implying an “is-a”
relationship.

Inheritance of implementation avoids code duplication by reuse.

In practice, both uses are often simultaneous, but whenever you can make
the intent clear, do it. Inheritance for code reuse is an implementation detail,
and it can often be replaced by composition and delegation. On the other
hand, interface inheritance is the backbone of a framework.

2. Make Interfaces Explicit with ABCs
In modern Python, if a class is designed to define an interface, it should be
an explicit ABC. In Python ≥ 3.4, this means: subclass abc.ABC or
another ABC (see “ABC Syntax Details” if you need to support older
Python versions).

3. Use Mixins for Code Reuse
If a class is designed to provide method implementations for reuse by
multiple unrelated subclasses, without implying an “is-a” relationship, it
should be an explicit mixin class. Conceptually, a mixin does not define a
new type; it merely bundles methods for reuse. A mixin should never be
instantiated, and concrete classes should not inherit only from a mixin. Each
mixin should provide a single specific behavior, implementing few and very
closely related methods.



4. Make Mixins Explicit by Naming
There is no formal way in Python to state that a class is a mixin, so it is
highly recommended that they are named with a …Mixin suffix. Tkinter
does not follow this advice, but if it did, XView would be XViewMixin,
Pack would be PackMixin, and so on with all the classes where I put the
«mixin» tag in Figure 14-3.

5. An ABC May Also Be a Mixin; The Reverse Is Not True
Because an ABC can implement concrete methods, it works as a mixin as
well. An ABC also defines a type, which a mixin does not. And an ABC
can be the sole base class of any other class, while a mixin should never be
subclassed alone except by another, more specialized mixin—not a
common arrangement in real code.

One restriction applies to ABCs and not to mixins: the concrete methods
implemented in an ABC should only collaborate with methods of the same
ABC and its superclasses. This implies that concrete methods in an ABC
are always for convenience, because everything they do, a user of the class
can also do by calling other methods of the ABC.

6. Don’t Subclass from More Than One Concrete Class
Concrete classes should have zero or at most one concrete superclass.  In
other words, all but one of the superclasses of a concrete class should be
ABCs or mixins. For example, in the following code, if Alpha is a
concrete class, then Beta and Gamma must be ABCs or mixins:

class MyConcreteClass(Alpha, Beta, Gamma): 
    """This is a concrete class: it can be instantiated.""" 
    # ... more code ...

7. Provide Aggregate Classes to Users
If some combination of ABCs or mixins is particularly useful to client code,
provide a class that brings them together in a sensible way. Grady Booch
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calls this an aggregate class.

For example, here is the complete source code for tkinter.Widget:

class Widget(BaseWidget, Pack, Place, Grid): 
    """Internal class. 
 
    Base class for a widget which can be positioned with the 
    geometry managers Pack, Place or Grid.""" 
    pass

The body of Widget is empty, but the class provides a useful service: it
brings together four superclasses so that anyone who needs to create a new
widget does not need to remember all those mixins, or wonder if they need
to be declared in a certain order in a class statement. A better example of
this is the Django ListView class, which we’ll discuss shortly, in “A
Modern Example: Mixins in Django Generic Views”.

8. “Favor Object Composition Over Class Inheritance.”
The title of this section is the second principle of object-oriented design
from the Design Patterns book,  and is the best advice I can offer here.
Once you get comfortable with inheritance, it’s too easy to overuse it.
Placing objects in a neat hierarchy appeals to our sense of order;
programmers do it just for fun.

However, favoring composition leads to more flexible designs. For
example, in the case of the tkinter.Widget class, instead of inheriting
the methods from all geometry managers, widget instances could hold a
reference to a geometry manager, and invoke its methods. After all, a
Widget should not “be” a geometry manager, but could use the services of
one via delegation. Then you could add a new geometry manager without
touching the widget class hierarchy and without worrying about name
clashes. Even with single inheritance, this principle enhances flexibility,
because subclassing is a form of tight coupling, and tall inheritance trees
tend to be brittle.

6
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Composition and delegation can replace the use of mixins to make
behaviors available to different classes, but cannot replace the use of
interface inheritance to define a hierarchy of types.

We will now analyze Tkinter from the point of view of these
recommendations.

Tkinter: The Good, the Bad, and the Ugly

NOTE
Keep in mind that Tkinter has been part of the standard library since Python 1.1 was
released in 1994. Tkinter is a layer on top of the excellent Tk GUI toolkit of the Tcl
language. The Tcl/Tk combo is not originally object oriented, so the Tk API is basically
a vast catalog of functions. However, the toolkit is very object oriented in its concepts, if
not in its implementation.

Most advice in the previous section is not followed by Tkinter, with #7
being a notable exception. Even then, it’s not a great example, because
composition would probably work better for integrating the geometry
managers into Widget, as discussed in #8.

The docstring of tkinter.Widget starts with the words “Internal class.”
This suggests that Widget should probably be an ABC. Although
Widget has no methods of its own, it does define an interface. Its message
is: “You can count on every Tkinter widget providing basic widget methods
(__init__, destroy, and dozens of Tk API functions), in addition to
the methods of all three geometry managers.” We can agree that this is not a
great interface definition (it’s just too broad), but it is an interface, and
Widget “defines” it as the union of the interfaces of its superclasses.

The Tk class, which encapsulates the GUI application logic, inherits from
Wm and Misc, neither of which are abstract or mixin (Wm is not proper
mixin because TopLevel subclasses only from it). The name of the Misc
class is—by itself—a very strong code smell. Misc has more than 100
methods, and all widgets inherit from it. Why is it necessary that every



single widget has methods for clipboard handling, text selection, timer
management, and the like? You can’t really paste into a button or select text
from a scrollbar. Misc should be split into several specialized mixin
classes, and not all widgets should inherit from every one of those mixins.

To be fair, as a Tkinter user, you don’t need to know or use multiple
inheritance at all. It’s an implementation detail hidden behind the widget
classes that you will instantiate or subclass in your own code. But you will
suffer the consequences of excessive multiple inheritance when you type
dir(tkinter.Button) and try to find the method you need among the
214 attributes listed.

Despite the problems, Tkinter is stable, flexible, and not necessarily ugly.
The legacy (and default) Tk widgets are not themed to match modern user
interfaces, but the tkinter.ttk package provides pretty, native-looking
widgets, making professional GUI development viable since Python 3.1
(2009). Also, some of the legacy widgets, like Canvas and Text, are
incredibly powerful. With just a little coding, you can turn a Canvas
object into a simple drag-and-drop drawing application. Tkinter and Tcl/Tk
are definitely worth a look if you are interested in GUI programming.

However, our theme here is not GUI programming, but the practice of
multiple inheritance. A more up-to-date example with explicit mixin classes
can be found in Django.

A Modern Example: Mixins in Django
Generic Views

NOTE
You don’t need to know Django to follow this section. I am just using a small part of the
framework as a practical example of multiple inheritance, and I will try to give all the
necessary background, assuming you have some experience with server-side web
development in another language or framework.



In Django, a view is a callable object that takes, as argument, an object
representing an HTTP request and returns an object representing an HTTP
response. The different responses are what interests us in this discussion.
They can be as simple as a redirect response, with no content body, or as
complex as a catalog page in an online store, rendered from an HTML
template and listing multiple merchandise with buttons for buying and links
to detail pages.

Originally, Django provided a set of functions, called generic views, that
implemented some common use cases. For example, many sites need to
show search results that include information from numerous items, with the
listing spanning multiple pages, and for each item a link to a page with
detailed information about it. In Django, a list view and a detail view are
designed to work together to solve this problem: a list view renders search
results, and a detail view produces pages for individual items.

However, the original generic views were functions, so they were not
extensible. If you needed to do something similar but not exactly like a
generic list view, you’d have to start from scratch.

In Django 1.3, the concept of class-based views was introduced, along with
a set of generic view classes organized as base classes, mixins, and ready-
to-use concrete classes. The base classes and mixins are in the base
module of the django.views.generic package, pictured in
Figure 14-4. At the top of the diagram we see two classes that take care of
very distinct responsibilities: View and TemplateResponseMixin.

TIP
A great resource to study these classes is the Classy Class-Based Views website, where
you can easily navigate through them, see all methods in each class (inherited,
overridden, and added methods), view diagrams, browse their documentation, and jump
to their source code on GitHub.

View is the base class of all views (it could be an ABC), and it provides
core functionality like the dispatch method, which delegates to

http://ccbv.co.uk/
http://bit.ly/1JHSoe8


“handler” methods like get, head, post, etc., implemented by concrete
subclasses to handle the different HTTP verbs.  The RedirectView
class inherits only from View, and you can see that it implements get,
head, post, etc.

Concrete subclasses of View are supposed to implement the handler
methods, so why aren’t they part of the View interface? The reason:
subclasses are free to implement just the handlers they want to support. A
TemplateView is used only to display content, so it only implements
get. If an HTTP POST request is sent to a TemplateView, the inherited
View.dispatch method checks that there is no post handler, and
produces an HTTP 405 Method Not Allowed response.
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Figure 14-4. UML class diagram for the django.views.generic.base module

The TemplateResponseMixin provides functionality that is of interest
only to views that need to use a template. A RedirectView, for example,
has no content body, so it has no need of a template and it does not inherit
from this mixin. TemplateResponseMixin provides behaviors to
TemplateView and other template-rendering views, such as ListView,
DetailView, etc., defined in other modules of the
django.views.generic package. Figure 14-5 depicts the
django.views.generic.list module and part of the base module.





Figure 14-5. UML class diagram for the django.views.generic.list module. Here the three classes of
the base module are collapsed (see Figure 14-4). The ListView class has no methods or attributes: it’s

an aggregate class.

For Django users, the most important class in Figure 14-5 is ListView,
which is an aggregate class, with no code at all (its body is just a docstring).
When instantiated, a ListView has an object_list instance attribute
through which the template can iterate to show the page contents, usually
the result of a database query returning multiple objects. All the
functionality related to generating this iterable of objects comes from the
MultipleObjectMixin. That mixin also provides the complex
pagination logic—to display part of the results in one page and links to
more pages.

Suppose you want to create a view that will not render a template, but will
produce a list of objects in JSON format. That’s why the BaseListView
exists. It provides an easy-to-use extension point that brings together View
and MultipleObjectMixin functionality, without the overhead of the
template machinery.

The Django class-based views API is a better example of multiple
inheritance than Tkinter. In particular, it is easy to make sense of its mixin
classes: each has a well-defined purpose, and they are all named with the …
Mixin suffix.

Class-based views were not universally embraced by Django users. Many
do use them in a limited way, as black boxes, but when it’s necessary to
create something new, a lot of Django coders continue writing monolithic
view functions that take care of all those responsibilities, instead of trying
to reuse the base views and mixins.

It does take some time to learn how to leverage class-based views and how
to extend them to fulfill specific application needs, but I found that it was
worthwhile to study them: they eliminate a lot of boilerplate code, make it
easier to reuse solutions, and even improve team communication—for
example, by defining standard names to templates, and to the variables
passed to template contexts. Class-based views are Django views “on rails.”



This concludes our tour of multiple inheritance and mixin classes.



Chapter Summary
We started our coverage of inheritance explaining the problem with
subclassing built-in types: their native methods implemented in C do not
call overridden methods in subclasses, except in very few special cases.
That’s why, when we need a custom list, dict, or str type, it’s easier
to subclass UserList, UserDict, or UserString—all defined in the
collections module, which actually wraps the built-in types and
delegate operations to them—three examples of favoring composition over
inheritance in the standard library. If the desired behavior is very different
from what the built-ins offer, it may be easier to subclass the appropriate
ABC from collections.abc and write your own implementation.

The rest of the chapter was devoted to the double-edged sword of multiple
inheritance. First we saw how the method resolution order, encoded in the
__mro__ class attribute, addresses the problem of potential naming
conflicts in inherited methods. We also saw how the super() built-in
follows the __mro__ to call a method on a superclass. We then studied
how multiple inheritance is used in the Tkinter GUI toolkit that comes with
the Python standard library. Tkinter is not an example of current best
practices, so we discussed some ways of coping with multiple inheritance,
including careful use of mixin classes and avoiding multiple inheritance
altogether by using composition instead. After considering how multiple
inheritance is abused in Tkinter, we wrapped up by studying the core parts
of the Django class-based views hierarchy, which I consider a better
example of mixin usage.

Lennart Regebro—a very experienced Pythonista and one of first edition’s
technical reviewers—finds the design of Django’s mixin views hierarchy
confusing. But he also wrote:

The dangers and badness of multiple inheritance are greatly overblown.
I’ve actually never had a real big problem with it.

In the end, each of us may have different opinions about how to use
multiple inheritance, or whether to use it at all in our own projects.

https://docs.python.org/3/library/collections.html
https://docs.python.org/3/library/collections.abc.html


Meanwhile, rejecting inheritance—even single inheritance—is a growing
trend. One of the most successful languages created in the 21st century is
Go. It doesn’t have a construct called “class”, but you can build types that
are structs of encapsulated fields and you can attach methods to those
structs. Go allows the definition of interfaces that are checked by the
compiler using structural typing, a.k.a. static duck typing—very similar to
what we now have with protocol types since Python 3.8. Go has special
syntax for building types and interfaces by composition, but it does not
support inheritance—not even among interfaces.

So perhaps the best advice about inheritance is: avoid it if you can. But
often, we don’t have a choice: the frameworks we use impose their own
design choices.

Further Reading
When using ABCs, multiple inheritance is not only common but practically
inevitable, because each of the most fundamental collection ABCs
(Sequence, Mapping, and Set) extend multiple ABCs. The source code
for collections.abc (Lib/_collections_abc.py) is a good example of
multiple inheritance with ABCs—many of which are also mixin classes.

Raymond Hettinger’s post Python’s super() considered super! explains the
workings of super and multiple inheritance in Python from a positive
perspective. It was written in response to Python’s Super is nifty, but you
can’t use it (a.k.a. Python’s Super Considered Harmful) by James Knight.

Despite the titles of those posts, the problem is not really the super built-
in—which in Python 3 is not as ugly as it was in Python 2. The real issue is
multiple inheritance, which is inherently complicated and tricky. Michele
Simionato goes beyond criticizing and actually offers a solution in his
Setting Multiple Inheritance Straight: he implements traits, a constrained
form of mixins that originated in the Self language. Simionato has a long
series of illuminating blog posts about multiple inheritance in Python,
including The wonders of cooperative inheritance, or using super in Python

http://bit.ly/1QOA3Lt
http://bit.ly/1JHSZfW
https://fuhm.net/super-harmful/
http://bit.ly/1HGpYxV
http://bit.ly/1HGpXdj


3; Mixins considered harmful, part 1 and part 2; and Things to Know About
Python Super, part 1, part 2 and part 3. The oldest posts use the Python 2
super syntax, but are still relevant.

I read the first edition of Grady Booch’s Object-Oriented Analysis and
Design, 3E (Addison-Wesley, 2007), and highly recommend it as a general
primer on object-oriented thinking, independent of programming language.
It is a rare book that covers multiple inheritance without prejudice.

In 2021, it’s more fashionable than ever to avoid inheritance, so here are
two references about how to do that. Brandon Rhodes wrote The
Composition Over Inheritance Principle, part of his excellent Python
Design Patterns guide on the Web. Augie Fackler and Nathaniel Manista
presented The End Of Object Inheritance & The Beginning Of A New
Modularity at PyCon 2013—that was before I wrote the first edition, but I
only found it in 2019. Fackler and Manista talk about organizing systems
around interfaces and functions that handle objects implementing those
interfaces, avoiding the tight coupling and failure modes of classes and
inheritance. That reminds me a lot of the Go way, but they advocate it for
Python.

http://bit.ly/1HGpXdj
http://bit.ly/1HGpXtQ
http://bit.ly/1HGq0G9
http://bit.ly/1HGq1d4
http://bit.ly/1HGq1K7
http://bit.ly/1HGq48I
https://python-patterns.guide/gang-of-four/composition-over-inheritance/
https://python-patterns.guide/
https://www.youtube.com/watch?v=3MNVP9-hglc


SOAPBOX

Think About the Classes You Really Need

The vast majority of programmers write applications, not frameworks.
Even those who do write frameworks are likely to spend a lot (if not
most) of their time writing applications. When we write applications,
we normally don’t need to code class hierarchies. At most, we write
classes that subclass from ABCs or other classes provided by the
framework. As application developers, it’s very rare that we need to
write a class that will act as the superclass of another. The classes we
code are almost always leaf classes (i.e., leaves of the inheritance tree).

If, while working as an application developer, you find yourself
building multilevel class hierarchies, it’s likely that one or more of the
following applies:

You are reinventing the wheel. Go look for a framework or
library that provides components you can reuse in your
application.

You are using a badly designed framework. Go look for an
alternative.

You are overengineering. Remember the KISS principle.

You became bored coding applications and decided to start a
new framework. Congratulations and good luck!

It’s also possible that all of the above apply to your situation: you
became bored and decided to reinvent the wheel by building your own
overengineered and badly designed framework, which is forcing you to
code class after class to solve trivial problems. Hopefully you are
having fun, or at least getting paid for it.

Misbehaving Built-ins: Bug or Feature?

The built-in dict, list, and str types are essential building blocks
of Python itself, so they must be fast—any performance issues in them



would severely impact pretty much everything else. That’s why
CPython adopted the shortcuts that cause their built-in methods to
misbehave by not cooperating with methods overridden by subclasses.
A possible way out of this dilemma would be to offer two
implementations for each of those types: one “internal,” optimized for
use by the interpreter and an external, easily extensible one.

But wait, this is what we have: UserDict, UserList, and
UserString are not as fast as the built-ins but are easily extensible.
The pragmatic approach taken by CPython means we also get to use, in
our own applications, the highly optimized implementations that are
hard to subclass. Which makes sense, considering that it’s not so often
that we need a custom mapping, list, or string, but we use dict, list
and str every day. We just need to be aware of the trade-offs involved.

Inheritance Across Languages

Alan Kay coined the term “object oriented,” and Smalltalk had only
single inheritance, although there are forks with various forms of
multiple inheritance support, including the modern Squeak and Pharo
Smalltalk dialects that support traits—a language construct that fulfills
the role of a mixin class, while avoiding some of the issues with
multiple inheritance.

The first popular language to implement multiple inheritance was C++,
and the feature was abused enough that Java—intended as a C++
replacement—was designed without support for multiple inheritance of
implementation (i.e., no mixin classes). That is, until Java 8 introduced
default methods that make interfaces very similar to the abstract classes
used to define interfaces in C++ and in Python. Except that Java
interfaces cannot have state—a key distinction. After Java, probably the
most widely deployed JVM language is Scala, and it implements traits.
Other languages supporting traits are the latest stable versions of PHP
and Groovy, and the under-construction languages Rust and Perl 6—so
it’s fair to say that traits are trendy as I write this.



Ruby offers an original take on multiple inheritance: it does not support
it, but introduces mixins as a language feature. A Ruby class can
include a module in its body, so the methods defined in the module
become part of the class implementation. This is a “pure” form of
mixin, with no inheritance involved, and it’s clear that a Ruby mixin
has no influence on the type of the class where it’s used. This provides
the benefits of mixins, while avoiding many of its usual problems.

Two new object-oriented languages that are getting a lot of attention
severely limit inheritance: Go and Julia. Both are about programming
“objects”, but they avoid the term “class”. Go has no inheritance at all.
Julia has a type hierarchy but subtypes cannot inherit structure, only
behaviors, and only abstract types can be subtyped. In addition, Julia
methods are implemented using multiple dispatch—a more advanced
form of the mechanism we saw in “Single Dispatch Generic Functions”.

1  If you are curious, the experiment is in the strkeydict_dictsub.py file in the Fluent Python
code repository.

2  By the way, in this regard, PyPy behaves more “correctly” than CPython, at the expense of
introducing a minor incompatibility. See “Differences between PyPy and CPython” for details.

3  In Python 2, the second line of D.pingpong would be written as super(D,
self).ping() rather than super().ping().

4  As previously mentioned, Java 8 allows interfaces to provide method implementations as
well. The new feature is called Default Methods in the official Java Tutorial.

5  In “Waterfowl and ABCs”, Alex Martelli quotes Scott Meyer’s More Effective C++, which
goes even further: “all non-leaf classes should be abstract” (i.e., concrete classes should not
have concrete superclasses at all).

6  “A class that is constructed primarily by inheriting from mixins and does not add its own
structure or behavior is called an aggregate class.”, Grady Booch et al., Object Oriented
Analysis and Design, 3E (Addison-Wesley, 2007), p. 109.

7  Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Introduction, p. 20.

8  Django programmers know that the as_view class method is the most visible part of the
View interface, but it’s not relevant to us here.

https://github.com/fluentpython/example-code
http://bit.ly/1JHNmhX
http://bit.ly/1JHPsyk


9  If you are into design patterns, you’ll notice that the Django dispatch mechanism is a dynamic
variation of the Template Method pattern. It’s dynamic because the View class does not force
subclasses to implement all handlers, but dispatch checks at runtime if a concrete handler is
available for the specific request.

http://en.wikipedia.org/wiki/Template_method_pattern


Chapter 15. More About Type
Hints

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 15th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

I learned a painful lesson that for small programs, dynamic typing is
great. For large programs you need a more disciplined approach. And it
helps if the language gives you that discipline rather than telling you
“Well, you can do whatever you want”.

—Guido van Rossum, a fan of Monty Python

This chapter is a sequel to Chapter 8, covering more of Python’s gradual
type system. The main topics are:

Overloaded function signatures;

typing.TypedDict for type hinting dicts used as records;

Type casting;

Runtime access to type hints;
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Generic types:

Declaring a generic class;

Variance: invariant, covariant, and contravariant types;

Generic static protocols.

What’s new in this chapter
This chapter is new in Fluent Python, Second Edition.

Let’s start with a subject that really belonged in Chapter 8, but I moved it
here because that was already the longest chapter in the book.

Overloaded signatures
Some Python functions accept different combinations of arguments. The
@typing.overload allows annotating each different combination. This
is particularly important when the return type of the function depends on
the type of two or more parameters.

Consider the sum built-in function. This is the text of help(sum):

>>> help(sum) 
sum(iterable, /, start=0) 
    Return the sum of a 'start' value (default: 0) plus an 
iterable of numbers 
 
    When the iterable is empty, return the start value. 
    This function is intended specifically for use with numeric 
values and may 
    reject non-numeric types.

The sum built-in is written in C, but typeshed has overloaded type hints for
it, in builtins.pyi:

@overload 
def sum(__iterable: Iterable[_T]) -> Union[_T, int]: ... 

https://github.com/python/typeshed/blob/a8834fcd46339e17fc8add82b5803a1ce53d3d60/stdlib/2and3/builtins.pyi#L1434


@overload 
def sum(__iterable: Iterable[_T], start: _S) -> Union[_T, _S]: 
...

First let’s look at the overall syntax of overloads. On a stub file (.pyi),
that’s all there would be about sum—the implementation would be in a
different file.

The type checker tries to match the given arguments with each overloaded
signature, in order. The call sum(range(100), 1000) doesn’t match
the first overload, but matches the second.

You can also use @overload in a regular Python module, by writing the
overloaded signatures right before the function’s actual signature and
implementation. Example 15-1 shows how sum would appear annotated
and implemented in a Python module.

Example 15-1. mysum.py: definition of the sum function with overloaded
signatures:
import functools 
import operator 
from collections.abc import Iterable 
from typing import overload, Union, TypeVar 
 
T = TypeVar('T') 
S = TypeVar('S')   
 
@overload 
def sum(it: Iterable[T]) -> Union[T, int]: ...   
@overload 
def sum(it: Iterable[T], /, start: S) -> Union[T, S]: ...   
def sum(it, /, start=0):   
    return functools.reduce(operator.add, it, start)

We need this second TypeVar in the second overload.

This signature is for the simple case: sum(my_iterable). The result
type may be T—the type of the elements that my_iterable yields—
or it may be int if the iterable is empty, because the default value of
the start parameter is 0.



When start is given, it can be of any type S, so the result type is
Union[T, S]. This is why we need S. If we reused T then the type of
start would have to be the same type as the elements of
Iterable[T].

The signature of the actual function implementation has no type hints.

That’s a lot of lines to annotate a one-line function. Probably overkill, I
know. At least it wasn’t a foo function.

If you want to learn about @overload by reading code, typeshed has
hundreds of examples. On typeshed, the stub file for Python’s built-ins has
186 overloads as I write this—more than any other in the standard library.

TAKE ADVANTAGE OF GRADUAL TYPING
Aiming for 100% of annotated code may lead to type hints that add lots of noise but
little value. Refactoring to simplify type hinting can lead to cumbersome APIs.
Sometimes it’s better to be pragmatic and leave a piece of code without type hints.

The handy APIs we call Pythonic are often hard to annotate. In the next
section we’ll see example of this: six overloads are needed to properly
annotate the flexible max built-in function.

Max Overload
It is difficult to add type hints to functions that leverage the powerful
dynamic features of Python.

While studying typeshed, I found bug report (#4051): Mypy failed to warn
that it is illegal to pass None as one of the arguments to the built-in max()
function, or to pass an iterable that at some point yields None. In either
case, you get a runtime exception like this one:

https://github.com/python/typeshed/blob/master/stdlib/2and3/builtins.pyi
https://github.com/python/typeshed/issues/4051


TypeError: '>' not supported between instances of 'int' and 
'NoneType'

The documentation of max starts with this sentence:

Return the largest item in an iterable or the largest of two or more
arguments.

To me, that’s a very intuitive description.

But if I must annotate a function described in those terms, I have to ask:
which is it? An iterable or two or more arguments?

The reality is more complicated because max also takes two optional
keyword arguments: key and default.

I coded max in Python to make it easier to test (the original max is in C).

def max(first, *args, key=None, default=MISSING): 
    if args: 
        series = args 
        candidate = first 
    else: 
        series = iter(first) 
        try: 
            candidate = next(series) 
        except StopIteration: 
            if default is not MISSING: 
                return default 
            raise ValueError(EMPTY_MSG) from None 
    if key is None: 
        for current in series: 
            if candidate < current: 
                candidate = current 
    else: 
        candidate_key = key(candidate) 
        for current in series: 
            current_key = key(current) 
            if candidate_key < current_key: 
                candidate = current 
                candidate_key = current_key 
    return candidate

To fix issue #4051, I wrote the code in Example 15-2.2

https://github.com/python/typeshed/issues/4051


Example 15-2.
from typing import Protocol, Any, TypeVar, overload, Callable, 
Iterable, Union 
 
class SupportsLessThan(Protocol): 
    def __lt__(self, other: Any) -> bool: ... 
 
T = TypeVar('T') 
LT = TypeVar('LT', bound=SupportsLessThan) 
DT = TypeVar('DT') 
 
MISSING = object() 
EMPTY_MSG = 'max() arg is an empty sequence' 
 
@overload 
def max(__arg1: LT, __arg2: LT, *args: LT, key: None = ...) -> LT: 
    ... 
@overload 
def max(__arg1: T, __arg2: T, *args: T, key: Callable[[T], LT]) -> 
T: 
    ... 
@overload 
def max(__iterable: Iterable[LT], *, key: None = ...) -> LT: 
    ... 
@overload 
def max(__iterable: Iterable[T], *, key: Callable[[T], LT]) -> T: 
    ... 
@overload 
def max(__iterable: Iterable[LT], *, key: None = ..., 
        default: DT) -> Union[LT, DT]: 
    ... 
@overload 
def max(__iterable: Iterable[T], *, key: Callable[[T], LT], 
        default: DT) -> Union[T, DT]: 
    ...

My Python implementation of max is about the same length as all those
typing imports and declarations. Thanks to duck typing, my code has no
isinstance checks, and provides the same error checking as those type
hints—but only at runtime, of course.

The double underscore prefix in some arguments is a convention used on
typeshed for positional-only arguments. That means you can call max(10,
20), but not max(__arg1=10, __arg2=20).



A key benefit of @overload making the return type as precise as possible,
according to the types of the arguments given. Let’s study the overloads for
max in groups.

Inputs implementing SupportsLessThan, no default=

@overload 
def max(__arg1: LT, __arg2: LT, *_args: LT, key: None = ...) -> 
LT: 
    ... 
# ... lines omitted ... 
@overload 
def max(__iterable: Iterable[LT], *, key: None = ...) -> LT: 
    ...

In these cases the inputs are either separate arguments of type LT
implementing SupportsLessThan, or an Iterable of such items.
The return type of max is the same as the actual arguments or items, as
described in [Link to Come].

Sample calls that match these overloads:

max(1, 2, -3)  # returns 2 
max(['Go', 'Python', 'Rust'])  # returns 'Rust'

key= provided, no default=

@overload 
def max(__arg1: T, __arg2: T, *_args: T, key: Callable[[T], LT]) 
-> T: 
    ... 
# ... lines omitted ... 
@overload 
def max(__iterable: Iterable[T], *, key: Callable[[T], LT]) -> T: 
    ...

The inputs can be separate items of any type T or a single Iterable[T],
and key= must be a callable that takes an argument of the same type T, and



returns a value that implements SupportsLessThan. The return type of
max is the same as the actual arguments.

Sample calls that match these overloads:

max(1, 2, -3, key=abs)  # returns -3 
max(['Go', 'Python', 'Rust'], key=len)  # returns 'Python'

default= provided, no key=

@overload 
def max(__iterable: Iterable[LT], *, key: None = ..., 
        default: DT) -> Union[LT, DT]: 
    ...

The input is an iterable of items of type LT implementing
SupportsLessThan. The default= argument is the return value
when the Iterable is empty. Therefore the return type of max must be a
Union of type LT or the type of the default argument.

Sample calls that match these overloads:

max([1, 2, -3], default=0)  # returns 2 
max([], default=None)  # returns None

key= and default= provided

@overload 
def max(__iterable: Iterable[T], *, key: Callable[[T], LT], 
        default: DT) -> Union[T, DT]: 
    ...

The inputs are:

an Iterable of items of any type T;

callable that takes an argument of type T and returns a value of
type LT that implements SupportsLessThan;

a default value of any type DT.



The return type of max must be a Union of type T or the type of the
default argument.

max([1, 2, -3], key=abs, default=None)  # returns -3 
max([], key=abs, default=None)  # returns None

Takeaways from Overloading max
Type hints allow Mypy to flag a call like max([None, None]) with this
error message:

mymax_demo.py:109: error: Value of type variable "_LT" of "max" 
  cannot be "None"

On the other hand, having to write so many lines to support the type
checker may discourage people from writing convenient and flexible
functions like max. If I had to reinvent the min function as well, I could
refactor and reuse most of the implementation of max. But I’d have to copy
& paste all overloaded declarations—even though they would be identical
for min, except for the function name.

My friend João S. O. Bueno—one of the smartest Python devs I know—
tweeted this:

Although it is this hard to express the signature of max—it fits in one’s
mind quite easily. My understanding is that the expressiveness of
annotation markings is very limited, compared to that of Python.

Now let’s study the TypedDict typing construct. It is not as useful as I
imagined at first, but has its uses. Experimenting with TypedDict
demonstrates the limitations of static typing for handling dynamic structures
such as JSON data.

TypedDict

https://twitter.com/gwidion/status/1265384692464967680


WARNING
It’s tempting to use TypedDict to protect against errors while handling dynamic data
structures like JSON API responses. But the examples here make clear that correct
handling of JSON must be done at runtime, and not with static type checking. For
runtime checking of JSON-like structures using type hints, check out the pydantic
package on PyPI.

Python dictionaries are sometimes used as records, with the keys used as
field names and field values of different types.

For example, consider a record describing a book in JSON or Python:

{"isbn": "0134757599", 
 "title": "Refactoring, 2e", 
 "authors": ["Martin Fowler", "Kent Beck"], 
 "pagecount": 478}

Before Python 3.8, there was no good way to annotate a record like that,
because the mapping types we saw in “Generic mappings” limit all values
to have the same type.

Here are two lame attempts to annotate a record like the JSON object
above:

Dict[str, Any]

The values may be of any type.

Dict[str, Union[str, int, List[str]]]

Hard to read, and doesn’t preserve the relationship between field names
and their respective field types: title is supposed to be a str, it can’t
be an int or a List[str].

PEP 589—TypedDict: Type Hints for Dictionaries with a Fixed Set of Keys
addressed that problem. Here is a simple TypedDict:

Example 15-3. books.py: the BookDict definition.

https://pypi.org/project/pydantic/
https://www.python.org/dev/peps/pep-0589/


from typing import TypedDict 
import json 
 
class BookDict(TypedDict): 
    isbn: str 
    title: str 
    authors: list[str] 
    pagecount: int

At first glance, typing.TypedDict may seem like a data class builder,
similar to typing.NamedTuple—covered in Chapter 5.

The syntactic similarity is misleading. TypedDict is very different. It
exists only for the benefit of type checkers, and has no runtime effect.

TypedDict provides two things:

1. Class-like syntax to annotate a dict with type hints for the value
of each “field”.

2. A constructor that tells the type checker to expect a dict with the
keys and values as specified.

At runtime, a TypedDict constructor such as BookDict is placebo: it
has the same effect as calling the dict constructor with the same
arguments.

The fact that BookDict creates a plain dict also means that:

The “fields” in the pseudo-class definition don’t create instance
attributes.

You can’t write initializers with default values for the “fields”.

Method definitions are not allowed.

Let’s explore the behavior of a BookDict at runtime.

Example 15-4. Using a BookDict, but not quite as intended.
>>> from books import BookDict 
>>> pp = BookDict(title='Programming Pearls',   
...               authors='Jon Bentley',   
...               isbn='0201657880', 



...               pagecount=256) 
>>> pp   
{'title': 'Programming Pearls', 'authors': 'Jon Bentley', 'isbn': 
'0201657880', 
 'pagecount': 256} 
>>> type(pp) 
<class 'dict'> 
>>> pp.title   
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
AttributeError: 'dict' object has no attribute 'title' 
>>> pp['title'] 
'Programming Pearls' 
>>> BookDict.__annotations__   
{'isbn': <class 'str'>, 'title': <class 'str'>, 'authors': 
typing.List[str], 
 'pagecount': <class 'int'>}

You can call BookDict like a dict constructor with keyword
arguments, or passing a dict argument—including a dict literal.

Ooops… I forgot authors takes a list. But gradual typing means no
type checking at runtime.

The result of calling BookDict is a plain dict…

… therefore you can’t read the data using object.field notation.

The type hints are in BookDict.__annotations__, and not in
pp.

Without a type checker, TypedDict is as useful as comments: it may help
people read the code, but that’s it. In contrast, the class builders from
Chapter 5 are useful even if you don’t use a type checker because at runtime
they generate or enhance a custom class that you can instantiate. They also
provide several useful methods or functions listed in Table 5-1.

Example 15-5 builds a valid BookDict and tries some operations on it.
This shows how TypedDict enables Mypy to catch errors, shown in
Example 15-6.



Example 15-5. demo_books.py: legal and ilegal operations on a
BookDict.
from books import BookDict 
from typing import TYPE_CHECKING 
 
def demo() -> None:   
    book = BookDict(   
        isbn='0134757599', 
        title='Refactoring, 2e', 
        authors=['Martin Fowler', 'Kent Beck'], 
        pagecount=478 
    ) 
    authors = book['authors']  
    if TYPE_CHECKING:   
        reveal_type(authors)   
    authors = 'Bob'   
    book['weight'] = 4.2 
    del book['title'] 
 
 
if __name__ == '__main__': 
    demo()

Remember to add a return type, so that Mypy doesn’t ignore the
function.

This is a valid BookDict: all the keys are present, with values of the
correct types.

Mypy will infer the type of authors from the annotation for the
'authors' key in BookDict.

typing.TYPE_CHECKING is only True when the program is being
type checked. At runtime, it’s always false.

The previous if statement prevents reveal_type(authors) from
being called at runtime. reveal_type is not a runtime Python
function, but a debugging facility provided by Mypy. That’s why there
is no import for it. See its output in Example 15-6.



The last three lines of the demo function are illegal. They will cause
error messages in Example 15-6.

Type checking demo_books.py from Example 15-5, this is what we get:

Example 15-6. Type checking demo_books.py.
…/typeddict/ $ mypy demo_books.py 
demo_books.py:13: note: Revealed type is 'built-ins.list[built-
ins.str]'   
demo_books.py:14: error: Incompatible types in assignment 
                  (expression has type "str", variable has type 
"List[str]")   
demo_books.py:15: error: TypedDict "BookDict" has no key 'weight'  
 

demo_books.py:16: error: Key 'title' of TypedDict "BookDict" cannot 
be deleted   
Found 3 errors in 1 file (checked 1 source file)

This note is the result of reveal_type(authors).

The type of the authors variable was inferred from the type of the
book['authors'] expression that initialized it. You can’t assign a
str to a variable of type List[str]. Type checkers usually don’t
allow the type of a variable to change.

Cannot assign to a key that is not part of the BookDict definition.

Cannot delete a key that is part of the BookDict definition.

Now let’s see BookDict used in function signatures, to type check
function calls.

Imagine you need to generate XML from book records, similar to this:

<BOOK> 
  <ISBN>0134757599</ISBN> 
  <TITLE>Refactoring, 2e</TITLE> 
  <AUTHOR>Martin Fowler</AUTHOR> 
  <AUTHOR>Kent Beck</AUTHOR> 
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  <PAGECOUNT>478</PAGECOUNT> 
</BOOK>

If you were writing MicroPython code to embed in a tiny microcontroller,
you might write a function like this:

Example 15-7. books.py: to_xml function.
AUTHOR_EL = '<AUTHOR>{}</AUTHOR>' 
 
def to_xml(book: BookDict) -> str:   
    elements: list[str] = []   
    for key, value in book.items(): 
        if isinstance(value, list):   
            elements.extend( 
                AUTHOR_EL.format(n) for n in value)   
        else: 
            tag = key.upper() 
            elements.append(f'<{tag}>{value}</{tag}>') 
    xml = '\n\t'.join(elements) 
    return f'<BOOK>\n\t{xml}\n</BOOK>'

The whole point of the example: using BookDict in the function
signature.

It’s often necessary to annotate collections that start empty, otherwise
Mypy can’t infer the type of the elements.

Mypy understands isinstance checks, and treats value as a list
in this block.

When I used key == 'authors' as the condition for the if
guarding this block, Mypy found an error in this line: "object" has
no attribute "__iter__", because it inferred the type of
value returned from book.items() as object, which doesn’t
support the __iter__ method required by the generator expression.
With the isinstance check, this works because Mypy knows that
value is a list in this block.

Here is a function that parses a JSON str and returns a BookDict:
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Example 15-8. books_any.py: from_json function.
def from_json(data: str) -> BookDict: 
    whatever = json.loads(data)   
    return whatever  

The return type of json.loads() is Any.

I can return whatever—of type Any—because Any is consistent-with
every type, including the declared return type, BookDict.

The second point of Example 15-8 is very important to keep in mind: Mypy
will not flag any problem in this code, but at runtime the value in
whatever may not conform to the BookDict structure—in fact, it may
not be a dict at all!

If you run Mypy with --disallow-any-expr it will complain about
the two lines in the body of from_json:

…/typeddict/ $ mypy books_any.py --disallow-any-expr 
books_any.py:30: error: Expression has type "Any" 
books_any.py:31: error: Expression has type "Any" 
Found 2 errors in 1 file (checked 1 source file)

In this case, the type error can be silenced by adding a type hint to the
initialization of the whatever variable, as in Example 15-9:

Example 15-9. books.py: from_json function with variable
annotation.
def from_json(data: str) -> BookDict: 
    whatever: BookDict = json.loads(data)   
    return whatever  

--disallow-any-expr does not cause errors when an expression
of type Any is immediately assigned to a variable with a type hint.

Now whatever is of type BookDict, the declared return type.
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WARNING
Don’t be lulled into a false sense of type safety by Example 15-9! Looking at the code at
rest, the type checker cannot predict that json.loads() will return anything that
resembles a BookDict. Only runtime validation can guarantee that.

Static type checking is unable to prevent errors with code that is inherently
dynamic, such as json.loads(), which builds a Python objects of
different types at runtime. Example 15-10, Example 15-11, and
Example 15-12 demonstrate.

Example 15-10. demo_not_book.py: from_json returns an invalid
BookDict, and to_xml accepts it.
from books import to_xml, from_json 
from typing import TYPE_CHECKING 
 
def demo() -> None: 
    NOT_BOOK_JSON = """ 
        {"title": "Andromeda Strain", 
         "flavor": "pistachio", 
         "authors": true} 
    """ 
    not_book = from_json(NOT_BOOK_JSON)   
    if TYPE_CHECKING:   
        reveal_type(not_book) 
        reveal_type(not_book['authors']) 
 
    print(not_book)   
    print(not_book['flavor'])   
 
    xml = to_xml(not_book)   
    print(xml)   
 
 
if __name__ == '__main__': 
    demo()

This line does not produce a valid BookDict—see the content of
NOT_BOOK_JSON.

Let’s have Mypy reveal a couple of types.



This should not be a problem: print can handle object and every
other type.

BookDict has no 'flavor' key, but the JSON source does… what
will happen?

Remember the signature: def to_xml(book: BookDict) ->
str:

How will the XML output look like?

Checking demo_not_book.py with Mypy:

Example 15-11. Mypy report for demo_not_book.py, reformatted for
clarity.
…/typeddict/ $ mypy demo_not_book.py 
demo_not_book.py:12: note: Revealed type is 
   'TypedDict('books.BookDict', {'isbn': built-ins.str, 
                                 'title': built-ins.str, 
                                 'authors': built-ins.list[built-
ins.str], 
                                 'pagecount': built-ins.int})'   
demo_not_book.py:13: note: Revealed type is 'built-ins.list[built-
ins.str]'   
demo_not_book.py:16: error: TypedDict "BookDict" has no key 
'flavor'   
Found 1 error in 1 file (checked 1 source file)

The revealed type is the nominal type, not the runtime content of
not_book.

Again, this is the nominal type of not_book['authors'], as
defined in BookDict. Not the runtime type.

This error is for line print(not_book['flavor']): that key
does not exist in the nominal type.

Now let’s run demo_not_book.py.



Example 15-12. Output of running demo_not_book.py.
…/typeddict/ $ python3 demo_not_book.py 
{'title': 'Andromeda Strain', 'flavor': 'pistachio', 'authors': 
True}   
pistachio   
<BOOK>   
        <TITLE>Andromeda Strain</TITLE> 
        <FLAVOR>pistachio</FLAVOR> 
        <AUTHORS>True</AUTHORS> 
</BOOK>

This is not really a BookDict.

The value of not_book['flavor'].

to_xml takes a BookDict argument, but there is no runtime
checking: garbage in, garbage out.

Example 15-12 shows that demo_not_book.py outputs nonsense, but
has no runtime errors. Using a TypedDict while handling JSON data did
not provide much type safety.

If you look at the code for to_xml in Example 15-7 through the lens of
duck typing, the argument book must provide an .items() method that
returns an iterable of tuples like (key, value) where:

key must have an .upper() method;

value can be anything.

The point of this demonstration: when handling data with a dynamic
structure, such as JSON or XML, TypedDict is absolutely not a
replacement for data validation at runtime. For that, use pydantic.

TypedDict has more features, including support for optional keys, a
limited form of inheritance, and an alternative declaration syntax. If you
want to know more about it, please review PEP 589_TypedDict: Type Hints
for Dictionaries with a Fixed Set of Keys.

https://pypi.org/project/pydantic/
https://www.python.org/dev/peps/pep-0589/


Now let’s turn our attention to a function that is best avoided, but
sometimes is unavoidable: typing.cast.

Type Casting
No type system is perfect, and neither are the static type checkers, the type
hints in the typeshed project, or the type hints in the third-party packages
that have them.

The typing.cast() special function provides one way to handle type
checking malfunctions or incorrect type hints in code we can’t fix. The
Mypy documentation explains:

Casts are used to silence spurious type checker warnings and give the
type checker a little help when it can’t quite understand what is going on.

At runtime, typing.cast does absolutely nothing. This is its
implementation:

def cast(typ, val): 
    """Cast a value to a type. 
    This returns the value unchanged.  To the type checker this 
    signals that the return value has the designated type, but at 
    runtime we intentionally don't check anything (we want this 
    to be as fast as possible). 
    """ 
    return val

PEP 484 requires type checkers to “blindly believe” the type stated in the
cast. The Casts section of PEP 484 gives an example where the type
checker needs the guidance of cast::

from typing import cast 
 
def find_first_str(a: list[object]) -> str: 
    index = next(i for i, x in enumerate(a) if isinstance(x, 
str)) 
    # We only get here if there's at least one string in a 
    return cast(str, a[index])

https://mypy.readthedocs.io/en/stable/casts.html
https://github.com/python/cpython/blob/bee66d3cb98e740f9d8057eb7f503122052ca5d8/Lib/typing.py#L1340
https://www.python.org/dev/peps/pep-0484/#casts


The next() call on the generator expression will either return the index of
a str item or raise StopIteration. Therefore, find_first_str
will always return a str if no exception is raised, and str is the declared
return type.

But if the last line were just return a[index], Mypy would infer the
return type as object because the a argument is declared as
list[object]. So the cast() is required to guide Mypy.

Here is another example with cast, this time to correct an outdated type
hint for Python’s standard library. In Example 22-12, I create an asyncio
Server object and I want to get the address the server is listening to. I
coded this line:

addr = server.sockets[0].getsockname()

But Mypy reported this error:

Value of type "Optional[List[socket]]" is not indexable

The type hint for Server.sockets on typeshed in May 2021 is valid for
Python 3.6, where the sockets attribute could be None. But in Python
3.7 sockets became a property with a getter that always returns a list
—which may be empty if the server has no sockets. And since Python 3.8
the getter returns a tuple (used as an immutable sequence).

Since I can’t fix typeshed right now  I added a cast, like this:

from asyncio.trsock import TransportSocket 
from typing import cast 
 
# ... many lines omitted ... 
 
    socket_list = cast(tuple[TransportSocket, ...], 
server.sockets) 
    addr = socket_list[0].getsockname()
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Using cast in this case required a couple of hours to understand the
problem and read asyncio source code to find the correct type of the
sockets: the TransportSocket class from the undocumented
asyncio.trsock module. I also had to add two import statements and
another line of code for readability.  But the code is safer.

The careful reader may note that sockets[0] could raise IndexError
if sockets is empty. However, as far as I understand asyncio, that
cannot happen in Example 22-12 because the server is ready to accept
connections by the time I read its sockets attribute, therefore it will not
be empty. Anyway, IndexError is a runtime error. Mypy can’t spot the
problem even in a trivial case like print([][0]).

WARNING
Don’t get too comfortable using cast to silence Mypy, because Mypy is usually right
when it reports an error. If you are using cast very often, that’s a code smell. Your
team may be misusing type hints, or you may have low quality dependencies in your
codebase.

Despite the downsides, there are valid uses for cast. Here is something
Guido van Rossum wrote about it:

What’s wrong with the occasional cast() call or # type: ignore
comment?

It is unwise to completely ban the use of cast, especially because the other
workarounds are worse:

# type: ignore is less informative; .

Using Any is contagious: since Any is consistent-with all types,
abusing it may produce cascading effects through type inference,
undermining the type checker’s ability to detect errors in other
parts of the code.
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Of course, not all typing mishaps can be fixed with cast. Sometimes we
need # type: ignore, the occasional Any, or even leaving a function
without type hints.

Next, let’s talk about using annotations at runtime.

Reading Type Hints at Runtime
At import time, Python reads the type hints in functions, classes and
modules and stores them in attributes named __annotations__. For
example, Example 15-13 is an annotated signature of [Link to Come].

Example 15-13. Annotated clip function
def clip(text: str, max_len: int = 80) -> str:

The type hints are stored as a dict in the __annotations__ attribute
of the function:

>>> from clip_annot import clip 
>>> clip.__annotations__ 
{'text': <class 'str'>, 'max_len': <class 'int'>, 'return': 
<class 'str'>}

The 'return' key maps to the return type hint after the -> symbol in
Example 15-13.

Note that the annotations are evaluated by the interpreter. That’s why the
values in the annotations are the Python classes str and int, and not the
strings 'str' and 'int'. The import time evaluation of annotations is
the standard in Python 3.9 and even in Python 3.10 (unreleased as of May,
2021), and it is the behavior described in PEP 3107 when the syntax for
annotations was introduced way back in 2006.

Problems with Annotations at Runtime
The increased use of type hints raised two problems:

https://www.python.org/dev/peps/pep-3107/


Importing modules uses more CPU and memory when many type
hints are used.

Referring to types not yet defined requires using strings instead of
actual types.

Both issues are relevant. The first is self-explanatory at a high level. The
root causes at a lower level are beyond the scope of this book. Let’s focus
on the second issue.

The second issue is often described as the “forward reference” problem, but
one of its common manifestations in source code doesn’t look like a
forward reference at all: that’s when a method returns a new object of the
same class. Since the class object is not defined until Python completely
evaluates the class body, type hints must use the name of the class as a
string. Here is an example:

class Rectangle: 
    # ... lines omitted ... 
    def stretch(self, factor: float) -> 'Rectangle' 
        return Rectangle(width=self.width * factor)

Writing forward referencing type hints as strings is the standard and
required practice as of Python 3.10. Static type checkers were designed to
deal with that issue from the beginning.

But at runtime, if you write code to read the return annotation for
stretch, you will get a string 'Rectangle' instead of a reference to
the actual type, the Rectangle class. Now your code needs to figure out
what that string means.

The typing module includes three functions and a class categorized as
Introspection helpers, the most important being
typing.get_type_hints. Part of its documentation states:

get_type_hints(obj, globals=None, locals=None,
include_extras=False)

https://docs.python.org/3/library/typing.html#introspection-helpers


[…] This is often the same as obj.__annotations__. In addition,
forward references encoded as string literals are handled by evaluating
them in globals and locals namespaces. […]

That sounds great, but get_type_hints can’t handle all cases, as we’ll
see.

PEP 563—Postponed Evaluation of Annotations was approved to make it
unnecessary to write annotations as strings, and to reduce the runtime costs
of type hints. Its main idea is described in these two periods of the Abstract:

This PEP proposes changing function annotations and variable
annotations so that they are no longer evaluated at function definition
time. Instead, they are preserved in annotations in string form.

Beginning with Python 3.7, that’s how annotations are handled in any
module that starts with this import statement:

from __future__ import annotations

To demonstrate its effect, I put a copy of the same clip function
mentioned before in a clip_annot_post.py module with that __future__
import at the top.

At the console, here’s what I get when you import that module and read the
annotations from clip:

>>> from clip_annot_post import clip 
>>> clip.__annotations__ 
{'text': 'str', 'max_len': 'int', 'return': 'str'}

As you can see, all the type hints are now plain strings, despite the fact they
are not written as quoted strings in the definition of clip (Example 15-13).

The typing.get_type_hints function is able to resolve many type
hints, including those in clip:

https://www.python.org/dev/peps/pep-0563/
https://www.python.org/dev/peps/pep-0563/#abstract


>>> from clip_annot_post import clip 
>>> from typing import get_type_hints 
>>> get_type_hints(clip) 
{'text': <class 'str'>, 'max_len': <class 'int'>, 'return': 
<class 'str'>}

Calling get_type_hints gives us the real types—even in some cases
where the original type hint is written as a quoted string. That’s the
recommended way to read type hints at runtime.

The PEP 563 behavior was scheduled to become default in Python 3.10—
with no __future__ import needed. However, the maintainers of
FastAPI and pydantic raised the alarm that the change would break their
code which relies on type hints at runtime, and cannot use
get_type_hints reliably.

In the ensuing discussion on the python-dev mailing list, Łukasz Langa—
the author of PEP 563—described some limitations of that function:

[…] it turned out that typing.get_type_hints() has limits that
make its use in general costly at runtime, and more importantly
insufficient to resolve all types. The most common example deals with
non-global context in which types are generated (e.g. inner classes,
classes within functions, etc.). But one of the crown examples of forward
references: classes with methods accepting or returning objects of their
own type, also isn’t properly handled by
typing.get_type_hints() if a class generator is used. There’s
some trickery we can do to connect the dots but in general it’s not
great.

Python’s Steering Council decided to postpone making PEP 563 the default
behavior until Python 3.11 or later, giving more time to developers to come
up with a solution that addresses the issues PEP 563 tried to solve, without
breaking widespread uses of type hints at runtime. PEP 649—Deferred
Evaluation Of Annotations Using Descriptors is under consideration as a
possible solution, but a different compromise may be reached.
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To summarize: reading type hints at runtime is not 100% reliable as of
Python 3.10 and is likely to change in 2022.

Dealing with the Problem
Giving the present situation, I recommend:

1. Avoid reading __annotations__ directly; use
typing.get_type_hints instead.

2. Wrap any calls to typing.get_type_hints in a function of
your own, so that future changes that may be required are
localized.

To demonstrate the second point, here are the first lines of the Checked
class defined in Example 25-5, which we’ll study in Chapter 25.

class Checked: 
    @classmethod 
    def _fields(cls) -> dict[str, type]: 
        return get_type_hints(cls) 
    # ... more lines ...

The Checked._fields class method protects other parts of the module
from depending directly on typing.get_type_hints. If
get_type_hints changes in the future, I can add logic to
Checked._fields to work around eventual issues, hopefully avoiding
changes elsewhere in my code.

The remaining sections of this chapter cover generics, starting with how to
define a generic class that can be parameterized by its users.

Implementing a generic class
In Example 13-7 we defined the Tombola ABC: an interface for classes
that work like a bingo cage. The LottoBlower class from Example 13-10



is a concrete implementation. Now we’ll study a generic version of
LottoBlower used like this:

Example 15-14. generic_lotto_demo.py: using a generic lottery blower
class
from generic_lotto import LottoBlower 
 
machine = LottoBlower[int](range(1, 11))   
 
first = machine.pick()   
remain = machine.inspect()  

To instantiate a generic class we give it a actual type parameter, like
int here.

Mypy will correctly infer that first is an int…

… and that remain is a tuple of integers.

In addition, Mypy reports violations of the parameterized type with helpful
messages, such as these:

Example 15-15. generic_lotto_errors.py: errors reported by Mypy
from generic_lotto import LottoBlower 
 
machine = LottoBlower[int]([1, .2]) 
## error: List item 1 has incompatible type "float";   
##        expected "int" 
 
machine = LottoBlower[int](range(1, 11)) 
 
machine.load('ABC') 
## error: Argument 1 to "load" of "LottoBlower"   
##        has incompatible type "str"; 
##        expected "Iterable[int]" 
## note:  Following member(s) of "str" have conflicts: 
## note:      Expected: 
## note:          def __iter__(self) -> Iterator[int] 
## note:      Got: 
## note:          def __iter__(self) -> Iterator[str]



Upon instantiation of LottoBlower[int], Mypy flags the float.

When calling .load('ABC'), Mypy explains why a str won’t do:
str.__iter__ returns an Iterator[str], but
LottoBlower[int] requires an Iterator[int].

Example 15-16 is the implementation.

Example 15-16. generic_lotto.py: a generic lottery blower class
import random 
 
from collections.abc import Iterable 
from typing import TypeVar, Generic 
 
from tombola import Tombola 
 
T = TypeVar('T') 
 
class LottoBlower(Tombola, Generic[T]):   
 
    def __init__(self, items: Iterable[T]) -> None:   
        self._balls = list[T](items) 
 
    def load(self, items: Iterable[T]) -> None:   
        self._balls.extend(items) 
 
    def pick(self) -> T:   
        try: 
            position = random.randrange(len(self._balls)) 
        except ValueError: 
            raise LookupError('pick from empty LottoBlower') 
        return self._balls.pop(position) 
 
    def loaded(self) -> bool:   
        return bool(self._balls) 
 
    def inspect(self) -> tuple[T, ...]:   
        return tuple(self._balls)

Generic class declarations often use multiple inheritance, because we
need to subclass Generic to declare the formal type parameters—in
this case, T.



The items argument in __init__ is of type Iterable[T], which
becomes Iterable[int] when an instance is declared as
LottoBlower[int].

The load method is likewise constrained.

The return type of T now becomes int in a LottoBlower[int].

No type variable here.

Finally, T sets the type of the items in the returned tuple.

TIP
The User-defined generic types section of the typing module documentation is short,
presents good examples, and provides a few more details that I do not cover here.

Now that we’ve seen how to implement a generic class, let’s define the
terminology to talk about generics.

Basic Jargon for Generic Types
Here are a few definitions that I found useful when studying generics.

Generic type

A type declared with one or more type variables. 
Examples: LottoBlower[T], abc.Mapping[KT, VT].

Formal type parameter

The type variables that appear in a generic type declaration. 
Example: T, KT, and VT in the generic type examples above.

Parameterized type

13
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A type declared with actual type parameters. 
Examples: list[int], abc.Mapping[str, float].

Actual type parameter

The actual types given as parameters when a parameterized type is
declared. 
Example: the int in LottoBlower[int].

The next topic is about how to make generic types more flexible,
introducing the concepts of covariance, contravariance, and invariance.

Variance
The interaction of generics and a type hierarchy introduces a new typing
concept: variance. We will approach this abstract concept through an
analogy. Imagine that a school cafeteria has a rule that only juice dispensers
can be installed. General beverage dispensers are not allowed because they
may serve sodas, which are banned by the school board.

An Invariant Dispenser
Let’s try to model the cafeteria scenario with a generic
BeverageDispenser class that can be parameterized on the type of
beverage. See Example 15-17.

Example 15-17. invariant.py: type definitions and install function.
from typing import TypeVar, Generic 
 
class Beverage:   
    """Any beverage.""" 
 
class Juice(Beverage): 
    """Any fruit juice.""" 
 
class OrangeJuice(Juice): 
    """Delicious juice from Brazilian oranges.""" 
 

14



T = TypeVar('T')   
 
class BeverageDispenser(Generic[T]):   
    """A dispenser parameterized on the beverage type.""" 
    def __init__(self, beverage: T) -> None: 
        self.beverage = beverage 
 
    def dispense(self) -> T: 
        return self.beverage 
 
def install(dispenser: BeverageDispenser[Juice]) -> None:   
    """Install a fruit juice dispenser."""

Beverage, Juice and OrangeJuice form a type hierarchy.

Simple TypeVar declaration.

BeverageDispenser is parameterized on the type of beverage.

install is a module-global function. Its type hint enforces the rule
that only a juice dispenser is acceptable.

Given the definitions in Example 15-17, the following code is legal:

juice_dispenser = BeverageDispenser(Juice()) 
install(juice_dispenser)

However, this is not legal:

beverage_dispenser = BeverageDispenser(Beverage()) 
install(beverage_dispenser) 
## mypy: Argument 1 to "install" has 
## incompatible type "BeverageDispenser[Beverage]" 
##          expected "BeverageDispenser[Juice]"

A dispenser that serves any Beverage is not acceptable because the
cafeteria requires a dispenser that is specialized for Juice.

Somewhat surprisingly, this code is also illegal:



orange_juice_dispenser = BeverageDispenser(OrangeJuice()) 
install(orange_juice_dispenser) 
## mypy: Argument 1 to "install" has 
## incompatible type "BeverageDispenser[OrangeJuice]" 
##          expected "BeverageDispenser[Juice]"

A dispenser specialized for OrangeJuice is not allowed either. Only
BeverageDispenser[Juice] will do. In the typing jargon, this
means that the BeverageDispenser generic class is invariant.

Python mutable collection types—such as list and set—are invariant.
The LottoBlower class from Example 15-16 is also invariant.

A Covariant Dispenser
If we want to be more flexible and model dispensers as a generic class that
can accept some beverage type and also its subtypes, we must make it
covariant. This is how we’d declare BeverageDispenser:

Example 15-18. covariant.py: type definitions and install function.
T_co = TypeVar('T_co', covariant=True)   
 
 
class BeverageDispenser(Generic[T_co]):   
    def __init__(self, beverage: T_co) -> None: 
        self.beverage = beverage 
 
    def dispense(self) -> T_co: 
        return self.beverage 
 
def install(dispenser: BeverageDispenser[Juice]) -> None:   
    """Install a fruit juice dispenser."""

Set covariant=True when declaring the type variable; _co is a
conventional suffix for covariant type parameters on typeshed.

Use T_co to parameterize the Generic special class.

Type hints for install are the same as in Example 15-17.



The following code works because now both the Juice dispenser and the
OrangeJuice dispenser are valid in a covariant
BeverageDispenser.

juice_dispenser = BeverageDispenser(Juice()) 
install(juice_dispenser) 
 
orange_juice_dispenser = BeverageDispenser(OrangeJuice()) 
install(orange_juice_dispenser)

But a dispenser for any Beverage is not acceptable:

beverage_dispenser = BeverageDispenser(Beverage()) 
install(beverage_dispenser) 
## mypy: Argument 1 to "install" has 
## incompatible type "BeverageDispenser[Beverage]" 
##          expected "BeverageDispenser[Juice]"

That’s covariance: the subtype relationship of the parameterized dispensers
varies in the same direction of the subtype relationship of the type
parameters.

A Contravariant Trash Can
Now we’ll model the cafeteria rule for deploying a trash can. Let’s assume
food and drinks are served in biodegradable packages, and leftovers as well
as single-use utensils are also biodegradable. The trash cans must be
suitable for biodegradable refuse.

This code models the cafeteria trash can rule:

Example 15-19. contravariant.py: type definitions and install
function.
from typing import TypeVar, Generic 
 
class Refuse:   
    """Any refuse.""" 
 
class Biodegradable(Refuse): 
    """Biodegradable refuse.""" 



 
class Compostable(Biodegradable): 
    """Compostable refuse.""" 
 
T_contra = TypeVar('T_contra', contravariant=True)   
 
class TrashCan(Generic[T_contra]):   
    def put(self, refuse: T_contra) -> None: 
        """Store trash until dumped.""" 
 
def deploy(trash_can: TrashCan[Biodegradable]): 
    """Deploy a trash can for biodegradable refuse."""

A type hierarchy for refuse: Refuse is the most general type,
Compostable is the most specific.

T_contra is a conventional name for a contravariant type variable.

TrashCan is contravariant on the type of refuse.

Given those definitions, these types of trash cans are acceptable:

bio_can: TrashCan[Biodegradable] = TrashCan() 
deploy(bio_can) 
 
trash_can: TrashCan[Refuse] = TrashCan() 
deploy(trash_can)

The more general TrashCan[Refuse] is acceptable because it can take
any kind of refuse, including Biodegradable and Compostable.

However, a TrashCan[Compostable] won’t do, because it is cannot
take Biodegradable or general Trash:

compost_can: TrashCan[Compostable] = TrashCan() 
deploy(compost_can) 
## mypy: Argument 1 to "deploy" has 
## incompatible type "TrashCan[Compostable]" 
##          expected "TrashCan[Biodegradable]"

Let’s summarize the concepts we just saw.



Variance Review

Invariant Types

A generic type L is invariant when there is no supertype or subtype
relationship between two parameterized types, regardless of the relationship
that may exist between the actual parameters. In other words, if L is
invariant, then L[A] is not a supertype or a subtype of L[B]. They are
inconsistent in both ways.

As mentioned, Python’s mutable collections are invariant by default. The
list type is a good example: list[int] is not consistent-with
list[float] and vice-versa.

In general, if a formal type parameter appears in type hints of method
arguments and the same parameter appears in method return types, that
parameter must be invariant to ensure type safety when updating and
reading from the collection.

For example, here is part of the type hints for the list built-in on
typeshed:

class list(MutableSequence[_T], Generic[_T]): 
    @overload 
    def __init__(self) -> None: ... 
    @overload 
    def __init__(self, iterable: Iterable[_T]) -> None: ... 
    # ... lines omitted ... 
    def append(self, __object: _T) -> None: ... 
    def extend(self, __iterable: Iterable[_T]) -> None: ... 
    def pop(self, __index: int = ...) -> _T: ... 
    # etc...

Note that _T appears in the arguments of __init__, append, and
extend and as the return type of pop. There is no way to make such a
class type safe if it is covariant or contravariant in _T.

Covariant Types

https://github.com/python/typeshed/blob/bfc83c365a0b26ab16586beac77ff16729d0e473/stdlib/builtins.pyi#L743


Consider two types A and B where B is consistent-with A, and neither of
them is Any. Some authors use the <: and :> symbols to denote type
relationships like this:

A :> B

A is a supertype or the same as B.

B <: A

B is a subtype or the same as A.

Given A :> B, a generic type C is covariant when C[A] :> C[B].

Note the direction of the :> symbol is the same in both cases where A is to
the left of B. Covariant generic types follow the subtype relationship of the
actual type parameters.

Immutable containers can be covariant. For example, this how the
typing.FrozenSet class is documented as a covariant with a type
variable using the conventional name T_co:

class FrozenSet(frozenset, AbstractSet[T_co]):

Applying the :> notation to parameterized types, we have:

           float :> int 
frozenset[float] :> frozenset[int]

Iterators are another example of covariant generics: they are not read-only
collections like a frozenset, but they only produce output. Any code
expecting an abc.Iterator[float] yielding floats can safely use an
abc.Iterator[int] yielding integers.

Contravariant Types

Given A :> B, a generic type K is contravariant if K[A] <: K[B].

https://docs.python.org/3.9/library/typing.html#typing.FrozenSet


Contravariant generic types reverse the subtype relationship of the actual
type parameters.

The TrashCan class exemplifies this:

          Refuse :> Biodegradable 
TrashCan[Refuse] <: TrashCan[Biodegradable]

A contravariant container is usually a write-only data structure, also known
as a “sink”.

There are no examples of contravariant generics with a single formal type
parameter in the Python 3.9 standard library. But Generator,
Coroutine, and AsyncGenerator all have multiple formal type
parameters, and each of them has one contravariant formal parameter.

Those three generic types are all related to generator-like constructs used as
coroutines—as opposed to simple iterators. The Generator type appears
in Chapter 19; Coroutine and AsyncGenerator, in Chapter 22.

For the present discussion about variance, the main point is that the
contravariant formal parameter defines the type of the only argument used
to send data to the object, while a different covariant formal parameter
defines the type of outputs produced by the object—the yield type. The
precise meanings of “send” and “yield” are explained in Chapter 19.

We can derive useful guidelines from these observations of covariant
outputs and contravariant inputs.

Variance Rules of Thumb

1. If a formal type parameter defines a type for data that comes out of
the object, it can be covariant.

2. If a formal type parameter defines a type for data that goes into the
object after its initial construction, it can be contravariant.

3. If a formal type parameter defines a type for data that comes out of
the object and the same parameter defines a type for data that goes

https://docs.python.org/3.9/library/typing.html#typing.Generator
https://docs.python.org/3.9/library/typing.html#typing.Coroutine
https://docs.python.org/3.9/library/typing.html#typing.AsyncGenerator


into it, it must be invariant.

4. To err on the safe side, make formal parameters invariant.

By default, TypeVar creates formal parameters that are invariant, and
that’s how the mutable collections in the standard library are annotated.

The generic typing.Generator is a great example of rules #1 and #2,
as long as you understand how classic coroutines work—because that’s
what that type describes. After Chapter 19 covers classic coroutines in
depth, “Generic Type Hints for Classic Coroutines” continues the present
discussion about variance.

Next, let’s see how to define generic static protocols, applying the idea of
covariance to a couple of new examples.

Implementing a generic static protocol
The Python 3.9 standard library provides a couple of generic static
protocols. One of them is SupportsAbs, implemented like this in the
typing module:

@runtime_checkable 
class SupportsAbs(Protocol[T_co]): 
    """An ABC with one abstract method __abs__ that is covariant 
in its return type.""" 
    __slots__ = () 
 
    @abstractmethod 
    def __abs__(self) -> T_co: 
        pass

T_co is declared according to the naming convention:

T_co = TypeVar('T_co', covariant=True)

Thanks to SupportsAbs, Mypy recognizes this code as valid:

https://github.com/python/cpython/blob/46b16d0bdbb1722daed10389e27226a2370f1635/Lib/typing.py#L1786


Example 15-20. abs_demo.py: use of the generic SupportsAbs
protocol.
#!/usr/bin/env python3 
 
import math 
from typing import NamedTuple, SupportsAbs 
 
class Vector2d(NamedTuple): 
    x: float 
    y: float 
 
    def __abs__(self) -> float:   
        return math.hypot(self.x, self.y) 
 
def is_unit(v: SupportsAbs[float]) -> bool:   
    """'True' if the magnitude of 'v' is close to 1.""" 
    return math.isclose(abs(v), 1.0)   
 
assert issubclass(Vector2d, SupportsAbs)   
 
v0 = Vector2d(0, 1)   
sqrt2 = math.sqrt(2) 
v1 = Vector2d(sqrt2 / 2, sqrt2 / 2) 
v2 = Vector2d(1, 1) 
v3 = complex(.5, math.sqrt(3) / 2) 
v4 = 1   
 
assert is_unit(v0) 
assert is_unit(v1) 
assert not is_unit(v2) 
assert is_unit(v3) 
assert is_unit(v4) 
 
print('OK')

Defining __abs__ makes Vector2d consistent-with
SupportsAbs.

Parameterizing SupportsAbs with float ensures…

…that Mypy accepts abs(v) as the first argument for
math.isclose.



Thanks to @runtime_checkable in the definition of
SupportsAbs, this is a valid runtime assertion.

The remaining code all passes Mypy checks and runtime assertions.

The int type is also consistent-with SupportsAbs. According to
typeshed, int.__abs__ returns an int, which is consistent-with the
float type parameter declared in the is_unit type hint for the v
argument.

Similarly, we can write a generic version of the RandomPicker protocol
presented in Example 13-18, which was defined with a single method pick
returning Any.

Example 15-21 shows how to make a generic RandomPicker covariant
on the return type of pick.

Example 15-21. generic_randompick.py: definition of generic
RandomPicker.
from typing import Protocol, runtime_checkable, TypeVar 
 
T_co = TypeVar('T_co', covariant=True)   
 
@runtime_checkable 
class RandomPicker(Protocol[T_co]):   
    def pick(self) -> T_co: ...  

Declare T_co as covariant.

This makes RandomPicker generic with a covariant formal type
parameter.

Use T_co as the return type.

The generic RandomPicker protocol can be covariant because its only
formal parameter is used in a return type.

https://github.com/python/typeshed/blob/2a9f081abbf01134e4e04ced6a750107db904d70/stdlib/builtins.pyi#L239


With this, we can call it a chapter.



Chapter summary
The chapter started with a simple example of using @overload, followed
by much more complex example that we studied in detail: the overloaded
signatures required to correctly annotate the max built-in function.

The typing.TypedDict special construct came next. I chose to cover it
here, and not in Chapter 5 where we saw typing.NamedTuple, because
TypedDict is not a class builder: it’s merely a way to add type hints to
variable or argument that requires a dict with a specific set of string keys,
and specific types for each key—which happens when we use a dict as a
record, often in the context of handling with JSON data. That section was a
bit long because using TypedDict can give a false sense of security, and I
wanted to show how runtime checks and error handling are really inevitable
when trying to make statically structured records out of mappings that are
dynamic in nature.

Next we talked about typing.cast, a function designed to let us guide
work of the type checker. It’s important to carefully consider when to use
cast, because overusing it hinders the type checker.

Runtime access to type hints came next. The key point was to use
typing.get_type_hints instead of reading the
__annotations__ attribute directly. However, we also discussed how
that function may be unreliable with some annotations, and we saw that
Python core developers are still working on a way to make type hints usable
at runtime, while reducing their impact on CPU and memory usage.

The final sections were about generics, starting with the LottoBlower
generic class—which we later learn is an invariant generic class. That
example was followed by definitions of four basic terms: generic type,
formal type parameter, parameterized type, and actual type parameter.

The major topic of variance was presented next, using cafeteria beverage
dispensers and trash cans as “real life” examples of invariant, covariant and
contravariant generic types. Next we reviewed, formalized and further
applied those concepts to examples in Python’s standard library.



Lastly, we saw how a generic static protocol is defined, first considering the
typing.SupportsAbs protocol, and then applying the same idea to the
RandomPicker example making it more strict than the original protocol
from Chapter 13.

NOTE
Python’s type system is a huge and rapidly evolving subject. This chapter is not
comprehensive. I chose to focus on topics that are either widely applicable, particularly
challenging, or conceptually important.

Further Reading
Python’s static type system was complex as initially designed, and is getting
more complex with each passing year. Table 15-1 lists all the PEPs that I
am aware of as of May 2021. Python’s official documentation hardly keeps
up with all that, so Mypy’s documentation is an essential reference. Robust
Python by Patrick Viafore (O’Reilly, 2021) is the only book that I know
about focusing on Python’s static type system.

https://mypy.readthedocs.io/en/stable/
https://learning.oreilly.com/library/view/robust-python/9781098100650/
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PEP Title Python Year

 

3107 Function Annotations 3.0 2006

483* The Theory of Type Hints n/a 2014

484* Type Hints 3.5 2014

482 Literature Overview for Type Hints n/a 2015

526* Syntax for Variable Annotations 3.6 2016

544* Protocols: Structural subtyping 
(static duck typing)

3.8 2017

557 Data Classes 3.7 2017

560 Core support for typing module 
and generic types

3.7 2017

561 Distributing and Packaging Type 
Information

3.7 2017

563 Postponed Evaluation of 
Annotations

3.7 2017

586* Literal Types 3.8 2018

585 Type Hinting Generics In Standard 
Collections

3.9 2019

589* TypedDict: Type Hints for 
Dictionaries with a Fixed Set of 

3.8 2019

https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-0483/
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0482/
https://www.python.org/dev/peps/pep-0526/
https://www.python.org/dev/peps/pep-0544/
https://www.python.org/dev/peps/pep-0557/
https://www.python.org/dev/peps/pep-0560/
https://www.python.org/dev/peps/pep-0561/
https://www.python.org/dev/peps/pep-0563/
https://www.python.org/dev/peps/pep-0586/
https://www.python.org/dev/peps/pep-0585/
https://www.python.org/dev/peps/pep-0589/


Keys

591* Adding a final qualifier to typing 3.8 2019

593 Flexible function and variable 
annotations

? 2019

604 Allow writing union types as X | Y 3.10 2019

612 Parameter Specification Variables 3.10 2019

613 Explicit Type Aliases 3.10 2020

645 Allow writing optional types as x? ? 2020

646 Variadic Generics ? 2020

647 User-Defined Type Guards 3.10 2021

649 Deferred Evaluation Of 
Annotations Using Descriptors

? 2021

655 Marking individual TypedDict 
items as required or potentially-
missing

? 2021

 

The subtle topic of variance has its own section in PEP 484, and is also
covered in the Generics page of Mypy, as well as in their invaluable
Common Issues page.

PEP 362—Function Signature Object is worth reading if you intend to use
the inspect module that complements the
typing.get_type_hints function.

If you are interested in the history of Python, you may like to know that
Guido van Rossum posted Adding Optional Static Typing to Python on
December 23, 2004.

Python 3 types in the wild: a tale of two type systems is a research paper by
Ingkarat Rak-amnouykit and others from the Rensselaer Polytechnic
Institute and IBM TJ Watson Research Center. The paper surveys the use of

https://www.python.org/dev/peps/pep-0589/
https://www.python.org/dev/peps/pep-0591/
https://www.python.org/dev/peps/pep-0593/
https://www.python.org/dev/peps/pep-0604/
https://www.python.org/dev/peps/pep-0612/
https://www.python.org/dev/peps/pep-0613/
https://www.python.org/dev/peps/pep-0645/
https://www.python.org/dev/peps/pep-0646/
https://www.python.org/dev/peps/pep-0647/
https://www.python.org/dev/peps/pep-0649/
https://www.python.org/dev/peps/pep-0655/
https://www.python.org/dev/peps/pep-0484/#covariance-and-contravariance
https://mypy.readthedocs.io/en/stable/generics.html#variance-of-generic-types
https://mypy.readthedocs.io/en/latest/common_issues.html#variance
https://www.python.org/dev/peps/pep-0362/
https://www.artima.com/weblogs/viewpost.jsp?thread=85551
https://dl.acm.org/doi/10.1145/3426422.3426981


type hints in open source projects on GitHub, showing that most projects
don’t use them, and also that most projects that have type hints apparently
don’t use a type checker. I found most interesting the discussion of the
different semantics of Mypy and Google’s pytype, which they conclude are
“essentially two different type systems”.

Gilad Bracha’s seminal paper Pluggable Types, submits that one of the
advantages of gradual typing is to allow multiple type systems for the same
language:

Once our runtime is independent of the type system, we can choose to
treat type systems as plug-ins. We can have zero, one or many type
systems, suited to differing purposes, all at the same time. There are
static type systems that deal with aliasing, ownership, with information
flow, as well as traditional types systems. Indeed, a very wide range of
static analyses can be cast as type systems.

Another seminal paper about gradual typing is Static Typing Where
Possible, Dynamic Typing When Needed: The End of the Cold War Between
Programming Languages by Eric Meijer and Peter Drayton.

I learned a lot reading the relevant parts of a some books about other
languages that implement some of the same ideas:

Atomic Kotlin—Bruce Eckel and Svetlana Isakova (Leanpub,
2020)

Effective Java, 3rd Edition—Joshua Bloch (Addison-Wesley, 2017)

Programming with Types: TypeScript Examples—Vlad Riscutia
(Manning, 2019)

Programming TypeScript—Boris Cherny (O’Reilly, 2019)

The Dart Programming Language—Gilad Bracha (Addison-
Wesley, 2016).

For some critical views on type systems, I recommend Victor Youdaiken’s
posts Bad ideas in type theory and Types considered harmful II,
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http://bracha.org/pluggableTypesPosition.pdf
https://www.researchgate.net/publication/213886116_Static_Typing_Where_Possible_Dynamic_Typing_When_Needed_The_End_of_the_Cold_War_Between_Programming_Languages
https://www.atomickotlin.com/atomickotlin/
https://www.informit.com/store/effective-java-9780134685991
https://www.manning.com/books/programming-with-types
https://learning.oreilly.com/library/view/programming-typescript/9781492037644/
https://www.informit.com/store/dart-programming-language-9780321927705
https://www.yodaiken.com/2017/09/15/bad-ideas-in-type-theory/
https://www.yodaiken.com/2017/11/30/types-considered-harmful-ii/


Finally, I was surprised to find Generics Considered Harmful by Ken
Arnold, a core contributor to Java from the beginning, as well as co-author
of the first four editions of the officially branded The Java Programming
Language book—in collaboration with James Gosling, the lead designer of
Java.

Sadly, Arnold’s criticism of Java’s type system applies to Python’s as well.
While reading the many rules and special cases of the typing PEPs, I was
constantly reminded of this passage from Gosling’s post:

Which brings up the problem that I always cite for C++: I call it the “N
order exception to the exception rule.” It sounds like this: “You can do x,
except in case y, unless y does z, in which case you can if …”

Fortunately, Python has a key advantage over Java and C++: we have a
gradual type system. We can completely or partially omit type hints when
the complexity they add is not worthwhile.

th

https://web.archive.org/web/20071010002142/http://weblogs.java.net/blog/arnold/archive/2005/06/generics_consid_1.html


SOAPBOX

Typing Rabbit Holes

When using a type checker, we are sometimes forced to discover and
import classes we did not need to know about, and our code has no need
to reference—except to write type hints. Such classes are
undocumented, probably because they are considered implementation
details by the authors of the packages. Here are two examples from the
standard library.

To use cast() in the server.sockets example in “Type
Casting”, I had to scour the vast asyncio documentation and then
browse the source code of several modules in that package to discover
the undocumented TransportSocket class in the equally
undocumented asyncio.trsock module. Using socket.socket
instead of TransportSocket would be incorrect, because the latter
is explicitly not a subtype of the former, according to a docstring in the
source code.

I fell into a similar rabbit hole when I added type hints to Example 20-
13, a simple demonstration of multiprocessing. That example
uses SimpleQueue objects, which you get by calling
multiprocessing.SimpleQueue(). However, I could not use
that name in a type hint, because it turns out that
multiprocessing.SimpleQueue is not a class! It’s a bound
method of the undocumented multiprocessing.BaseContext
class, which builds and returns an instance of the SimpleQueue class
defined in the undocumented multiprocessing.queues module.

In each of those cases I had to spend a couple of hours to find the right
undocumented class to import, just to write a single type hint. This kind
of research is part of the job when writing a book. But when writing
application code, I’d probably avoid such scavenger hunts for a single
offending line and just write # type: ignore. Sometimes that’s the
only cost-effective solution.

https://github.com/python/cpython/blob/3e7ee02327db13e4337374597cdc4458ecb9e3ad/Lib/asyncio/trsock.py#L5


Variance notation in other languages

Variance is a difficult topic and Python’s type hints syntax is not as
good as it could be. This is evidenced by this direct quote from PEP
484:

Covariance or contravariance is not a property of a type variable,
but a property of a generic class defined using this variable.

If that is the case, why are covariance and contravariance declared with
TypeVar and not on the generic class?

The authors of PEP 484 worked under the severe self-imposed
constraint that type hints should be supported without making any
change to the interpreter. This required the introduction of TypeVar to
define type variables, and also the abuse of [] to provide Klass[T]
syntax for generics—instead of the Klass<T> notation used in other
popular languages, including C#, Java, Kotlin, and TypeScript. None of
these languages require type variables to be declared before use.

In addition, the syntax of Kotlin and C# makes it clear whether the type
parameter is covariant, contravariant or invariant exactly where it
makes sense: in the class or interface declaration.

In Kotlin, we could declare the BeverageDispenser like this:

class BeverageDispenser<out T> { 
    // etc... 
}

The out modifier in the formal type parameter means T is an “output”
type, therefore BeverageDispenser is covariant.

You can probably guess how TrashCan would be declared:

class TrashCan<in T> { 
    // etc... 
}
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Given T as an “input” formal type parameter, then TrashCan is
contravariant.

If neither in nor out appear, then the class is invariant on the
parameter.

It’s easy to recall the “Variance Rules of Thumb” when out and in are
used in the formal type parameters.

This suggests that a good naming convention for covariant and
contravariant type variables in Python would be:

T_out = TypeVar('T_out', covariant=True) 
T_in = TypeVar('T_in', contravariant=True)

Then we could define the classes like this:

class BeverageDispenser(Generic[T_out]): 
    ... 
 
class TrashCan(Generic[T_in]): 
    ...

Is it too late to change the naming convention established in PEP 484?

False Positives 147 × False Negatives 19

Many typeshed bugs are tagged false positive or false negative.

It’s a false positive when the type hints are too restrictive and make type
checkers report false errors. That was the case with the
statistics.mode type hints which accepted only numbers, while
the function can handle any hashable, as discussed in “Restricted
TypeVar”.

The max issue #4051 discussed before is a false negative: the type hints
were not strict enough, so type checkers were unable to catch some
invalid arguments.

On May 27, 2020, I counted 147 false positive issues (41 open) and 19
false negatives (8 open) on typeshed. That’s a ratio of 7.7 false positive

https://github.com/python/typeshed/issues/4051


for each false negative.

In the typeshed sample, type hints are strongly biased to raise false
alarms. I don’t know what causes this. It may be because it’s easier to
write type hints that are overly restrictive, either due to limitations in
Python’s type system or due to our collective experience with
traditional nominally typed languages that provide less flexible APIs
than Python allows.

The Python type hinting PEPs and tools were developed by teams
working on some of the largest Python-powered systems in the world.
So this false positive bias may be intentional: in large systems the cost
of detecting and fixing a bug in production may be very high, so it’s
better for them to err on the side of caution. I wonder if the bias is as
good for every Python user as it is for the Web-scale companies that
sponsored most of the work on typeshed and the static type checkers.

1  From YouTube video of A Language Creators’ Conversation: Guido van Rossum, James
Gosling, Larry Wall & Anders Hejlsberg, streamed live on April 2, 2019. Quote starts at
1:32:05, edited for brevity. Full transcript available at
https://github.com/fluentpython/language-creators.

2  I am grateful to Jelle Zijlstra—a typeshed maintainer—who taught me several things,
including how to reduce my original 9 overloads to 6.

3  As of May 2020, pytype allows it. But its FAQ says it will be disallowed in the future. See
question “Why didn’t pytype catch that I changed the type of an annotated variable?” in the
pytype FAQ.

4  I prefer to use the lxml package to generate and parse XML: it’s easy to get started, full-
featured, and fast. Unfortunately, lxml and Python’s own ElementTree don’t fit the limited
RAM of my hypothetical microcontroller.

5  The Mypy documentation discusses this in its Common issues and solutions page, section
Types of empty collections.

6  Brett Cannon, Guido van Rossum, and others have been discussing how to type hint
json.loads() since 2016 in Mypy issue #182: Define a JSON type.

7  The use of enumerate in the example is intended to confuse the type checker. A simpler
implementation yielding strings directly instead of going through the enumerate index is
correctly analysed by Mypy, and the cast() is not needed.

https://www.youtube.com/watch?v=csL8DLXGNlU&t=92m5s
https://github.com/fluentpython/language-creators
https://google.github.io/pytype/faq.html
https://google.github.io/pytype/faq.html
https://lxml.de/
https://docs.python.org/3/library/xml.etree.elementtree.html
https://mypy.readthedocs.io/en/stable/common_issues.html
https://mypy.readthedocs.io/en/stable/common_issues.html#types-of-empty-collections
https://github.com/python/typing/issues/182


8  I reported typeshed issue #5535 “Wrong type hint for asyncio.base_events.Server sockets
attribute.” and it was quickly fixed by Sebastian Rittau. However, I decided to keep the
example because it illustrates a common use case for cast, and the cast I wrote is harmless.

9  To be honest, I originally appended a # type: ignore comment to the line with
server.sockets[0] because after a little research I found similar lines the asyncio
documentation and in a test case, so I suspected the problem was not in my code.

10  19 May 2020 message to the typing-sig mailing list.

11  The syntax # type: ignore[code] allows you to specify which Mypy error code is
being silenced, but the codes are not always easy to interpret. See error codes in the Mypy
documentation

12  Message PEP 563 in light of PEP 649, posted April 16, 2021.

13  The terms are from Joshua Bloch’s classic book Effective Java, Third Edition (Addison
Wesley, 2017). The definitions and examples are mine.

14  I first saw the cafeteria analogy for variance in Erik Meijer’s Foreword in The Dart
Programming Language book by Gilad Bracha (Addison-Wesley, 2016).

15  As a reader of footnotes, so you may recall that I credited Erik Meijer for the cafeteria
analogy to explain variance.

16  That book was written for Dart 1. There are significant changes in Dart 2—including in the
type system. Nevertheless, Bracha is an important resarcher in the field of programming
language design, and I found the book valuable for his perspective on the design of Dart.

17  Last paragraph of section Covariance and Contravariance in PEP 484.

https://github.com/python/typeshed/issues/5535
https://docs.python.org/3/library/asyncio-stream.html#tcp-echo-server-using-streams
https://github.com/python/cpython/blob/b798ab06937f8bb24b444a49dd42e11fff15e654/Lib/test/test_asyncio/test_server.py#L55
https://mail.python.org/archives/list/typing-sig@python.org/message/5LCWMN2UY2UQNLC5Z47GHBZKSPZW4I63/
https://mypy.readthedocs.io/en/stable/error_codes.html#error-codes
https://mail.python.org/archives/list/python-dev@python.org/message/ZBJ7MD6CSGM6LZAOTET7GXAVBZB7O77O/
https://www.python.org/dev/peps/pep-0484/#covariance-and-contravariance


Chapter 16. Operator
Overloading: Doing It Right

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 16th chapter of the final book. Please note that the GitHub
repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this chapter,
please reach out to the author at fluentpython2e@ramalho.org.

There are some things that I kind of feel torn about, like operator
overloading. I left out operator overloading as a fairly personal choice
because I had seen too many people abuse it in C++.

—James Gosling, Creator of Java

Operator overloading allows user-defined objects to interoperate with infix
operators such as + and | or unary operators like - and ~. More generally,
function invocation (()), attribute access (.), and item access/slicing ([]) are
also operators in Python, but this chapter covers unary and infix operators.

In “Emulating Numeric Types” (Chapter 1) we saw some trivial
implementations of operators in a bare bones Vector class. The __add__
and __mul__ methods in Example 1-2 were written to show how special
methods support operator overloading, but there are subtle problems in their
implementations that we overlooked. Also, in Example 11-2, we noted that the
Vector2d.__eq__ method considers this to be True: Vector(3, 4)

1
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== [3, 4]—which may or not make sense. We will address those matters in
this chapter, as well as:

How an infix operator method should signal it cannot handle an
operand

Using duck typing or goose typing to deal with operands of various
types

The special behavior of the rich comparison operators (e.g., ==, >, <=,
etc.)

The default handling of augmented assignment operators such as +=,
and how to overload them

What’s new in this chapter
Goose typing is a key part of Python, but the numbers ABCs are not
supported in static typing, so I changed Example 16-11 to use duck typing
instead of an explicit isinstance check against numbers.Real.

I covered the @ matrix multiplication operator Fluent Python, First Edition as
an upcoming change when 3.5 was still in alpha. Accordingly, “Using @ as an
infix operator” is no longer a sidebar, but is integrated in the flow of the
chapter. I leveraged goose typing to make the implementation of
__matmul__ in that section safer than the one in the first edition, without
compromising on flexibility.

“Further Reading” now has a couple of new references—including a blog post
by Guido van Rossum. I also added mentions of two libraries that showcase
effective use of operator overloading outside the domain of mathematics:
pathlib and Scapy.

Operator Overloading 101
Operator overloading has a bad name in some circles. It is a language feature
that can be (and has been) abused, resulting in programmer confusion, bugs,
and unexpected performance bottlenecks. But if well used, it leads to
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pleasurable APIs and readable code. Python strikes a good balance between
flexibility, usability, and safety by imposing some limitations:

We cannot overload operators for the built-in types.

We cannot create new operators, only overload existing ones.

A few operators can’t be overloaded: is, and, or, not (but the
bitwise &, |, ~, can).

In Chapter 12, we already had one infix operator in Vector: ==, supported by
the __eq__ method. In this chapter, we’ll improve the implementation of
__eq__ to better handle operands of types other than Vector. However, the
rich comparison operators (==, !=, >, <, >=, <=) are special cases in operator
overloading, so we’ll start by overloading four arithmetic operators in
Vector: the unary - and +, followed by the infix + and *.

Let’s start with the easiest topic: unary operators.

Unary Operators
In The Python Language Reference, “6.5. Unary arithmetic and bitwise
operations” lists three unary operators, shown here with their associated special
methods:

- (__neg__)

Arithmetic unary negation. If x is -2 then -x == 2.

+ (__pos__)

Arithmetic unary plus. Usually x == +x, but there are a few cases when
that’s not true. See “When x and +x Are Not Equal” if you’re curious.

~ (__invert__)

Bitwise inverse of an integer, defined as ~x == -(x+1). If x is 2 then
~x == -3.

http://bit.ly/1JHV4bN


The Data Model” chapter of The Python Language Reference also lists the
abs(…) built-in function as a unary operator. The associated special method is
__abs__, as we’ve seen before, starting with “Emulating Numeric Types”.

It’s easy to support the unary operators. Simply implement the appropriate
special method, which will receive just one argument: self. Use whatever
logic makes sense in your class, but stick to the fundamental rule of operators:
always return a new object. In other words, do not modify self, but create
and return a new instance of a suitable type.

In the case of - and +, the result will probably be an instance of the same class
as self; for +, returning a copy of self is the best approach most of the
time. For abs(…), the result should be a scalar number. As for ~, it’s difficult
to say what would be a sensible result if you’re not dealing with bits in an
integer, but in an ORM it could make sense to return the negation of an SQL
WHERE clause, for example.

As promised before, we’ll implement several new operators on the Vector
class from Chapter 12. Example 16-1 shows the __abs__ method we already
had in Example 12-16, and the newly added __neg__ and __pos__ unary
operator method.

Example 16-1. vector_v6.py: unary operators - and + added to Example 12-16
    def __abs__(self): 
        return math.hypot(*self) 
 
    def __neg__(self): 
        return Vector(-x for x in self)   
 
    def __pos__(self): 
        return Vector(self)  

To compute -v, build a new Vector with every component of self
negated.

To compute +v, build a new Vector with every component of self.

Recall that Vector instances are iterable, and the Vector.__init__ takes
an iterable argument, so the implementations of __neg__ and __pos__ are

https://docs.python.org/3/reference/datamodel.html#object.__neg__


short and sweet.

We’ll not implement __invert__, so if the user tries ~v on a Vector
instance, Python will raise TypeError with a clear message: “bad operand
type for unary ~: 'Vector'.”

The following sidebar covers a curiosity that may help you win a bet about
unary + someday. The next important topic is “Overloading + for Vector
Addition”.



WHEN X AND +X ARE NOT EQUAL

Everybody expects that x == +x, and that is true almost all the time in
Python, but I found two cases in the standard library where x != +x.

The first case involves the decimal.Decimal class. You can have x
!= +x if x is a Decimal instance created in an arithmetic context and +x
is then evaluated in a context with different settings. For example, x is
calculated in a context with a certain precision, but the precision of the
context is changed and then +x is evaluated. See Example 16-2 for a
demonstration.

Example 16-2. A change in the arithmetic context precision may
cause x to differ from +x
>>> import decimal 
>>> ctx = decimal.getcontext()   
>>> ctx.prec = 40   
>>> one_third = decimal.Decimal('1') / decimal.Decimal('3')   
>>> one_third   
Decimal('0.3333333333333333333333333333333333333333') 
>>> one_third == +one_third   
True 
>>> ctx.prec = 28   
>>> one_third == +one_third   
False 
>>> +one_third   
Decimal('0.3333333333333333333333333333')

Get a reference to the current global arithmetic context.

Set the precision of the arithmetic context to 40.

Compute 1/3 using the current precision.

Inspect the result; there are 40 digits after the decimal point.

one_third == +one_third is True.

Lower precision to 28—the default for Decimal arithmetic in Python
3.4.



Now one_third == +one_third is False.

Inspect +one_third; there are 28 digits after the '.' here.

The fact is that each occurrence of the expression +one_third produces
a new Decimal instance from the value of one_third, but using the
precision of the current arithmetic context.

The second case where x != +x you can find in the
collections.Counter documentation. The Counter class
implements several arithmetic operators, including infix + to add the tallies
from two Counter instances. However, for practical reasons, Counter
addition discards from the result any item with a negative or zero count.
And the prefix + is a shortcut for adding an empty Counter, therefore it
produces a new Counter preserving only the tallies that are greater than
zero. See Example 16-3.

Example 16-3. Unary + produces a new Counter without zeroed or
negative tallies
>>> ct = Counter('abracadabra') 
>>> ct 
Counter({'a': 5, 'r': 2, 'b': 2, 'd': 1, 'c': 1}) 
>>> ct['r'] = -3 
>>> ct['d'] = 0 
>>> ct 
Counter({'a': 5, 'b': 2, 'c': 1, 'd': 0, 'r': -3}) 
>>> +ct 
Counter({'a': 5, 'b': 2, 'c': 1})

Now, back to our regularly scheduled programming.

Overloading + for Vector Addition

http://bit.ly/1JHVi2E


NOTE
The Vector class is a sequence type, and the section “3.3.6. Emulating container types” in
the “Data Model” chapter says sequences should support the + operator for concatenation
and * for repetition. However, here we will implement + and * as mathematical vector
operations, which are a bit harder but more meaningful for a Vector type.

Adding two Euclidean vectors results in a new vector in which the components
are the pairwise additions of the components of the addends. To illustrate:

>>> v1 = Vector([3, 4, 5]) 
>>> v2 = Vector([6, 7, 8]) 
>>> v1 + v2 
Vector([9.0, 11.0, 13.0]) 
>>> v1 + v2 == Vector([3 + 6, 4 + 7, 5 + 8]) 
True

What happens if we try to add two Vector instances of different lengths? We
could raise an error, but considering practical applications (such as information
retrieval), it’s better to fill out the shortest Vector with zeros. This is the
result we want:

>>> v1 = Vector([3, 4, 5, 6]) 
>>> v3 = Vector([1, 2]) 
>>> v1 + v3 
Vector([4.0, 6.0, 5.0, 6.0])

Given these basic requirements, the implementation of __add__ is short and
sweet, as shown in Example 16-4.

Example 16-4. Vector.add method, take #1
    # inside the Vector class 
 
    def __add__(self, other): 
        pairs = itertools.zip_longest(self, other, fillvalue=0.0)   
        return Vector(a + b for a, b in pairs)  

pairs is a generator that will produce tuples (a, b) where a is from
self, and b is from other. If self and other have different lengths,
fillvalue supplies the missing values for the shortest iterable.

http://bit.ly/1QOyDQY


A new Vector is built from a generator expression producing one sum for
each item in pairs.

Note how __add__ returns a new Vector instance, and does not affect
self or other.

WARNING
Special methods implementing unary or infix operators should never change their operands.
Expressions with such operators are expected to produce results by creating new objects.
Only augmented assignment operators may change the first operand (self), as discussed in
“Augmented Assignment Operators”.

Example 16-4 allows adding Vector to a Vector2d, and Vector to a tuple
or to any iterable that produces numbers, as Example 16-5 proves.

Example 16-5. Vector.__add__ take #1 supports non-Vector objects, too
>>> v1 = Vector([3, 4, 5]) 
>>> v1 + (10, 20, 30) 
Vector([13.0, 24.0, 35.0]) 
>>> from vector2d_v3 import Vector2d 
>>> v2d = Vector2d(1, 2) 
>>> v1 + v2d 
Vector([4.0, 6.0, 5.0])

Both additions in Example 16-5 work because __add__ uses
zip_longest(…), which can consume any iterable, and the generator
expression to build the new Vector merely performs a + b with the pairs
produced by zip_longest(…), so an iterable producing any number items
will do.

However, if we swap the operands (Example 16-6), the mixed-type additions
fail..

Example 16-6. Vector.__add__ take #1 fails with non-Vector left operands
>>> v1 = Vector([3, 4, 5]) 
>>> (10, 20, 30) + v1 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: can only concatenate tuple (not "Vector") to tuple 



>>> from vector2d_v3 import Vector2d 
>>> v2d = Vector2d(1, 2) 
>>> v2d + v1 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: unsupported operand type(s) for +: 'Vector2d' and 'Vector'

To support operations involving objects of different types, Python implements a
special dispatching mechanism for the infix operator special methods. Given an
expression a + b, the interpreter will perform these steps (also see Figure 16-
1):

1. If a has __add__, call a.__add__(b) and return result unless it’s
NotImplemented.

2. If a doesn’t have __add__, or calling it returns NotImplemented,
check if b has __radd__, then call b.__radd__(a) and return
result unless it’s NotImplemented.

3. If b doesn’t have __radd__, or calling it returns
NotImplemented, raise TypeError with an unsupported
operand types message.

The __radd__ method is called the “reflected” or “reversed” version of
__add__. I prefer to call them “reversed” special methods.  Three of this
book’s technical reviewers—Alex, Anna, and Leo—told me they like to think
of them as the “right” special methods, because they are called on the right-
hand operand. Whatever “r”-word you prefer, that’s what the “r” prefix stands
for in __radd__, __rsub__, and the like.
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Figure 16-1. Flowchart for computing a + b with __add__ and __radd__



Therefore, to make the mixed-type additions in Example 16-6 work, we need to
implement the Vector.__radd__ method, which Python will invoke as a
fall back if the left operand does not implement __add__ or if it does but
returns NotImplemented to signal that it doesn’t know how to handle the
right operand.

WARNING
Do not confuse NotImplemented with NotImplementedError. The first,
NotImplemented, is a special singleton value that an infix operator special method
should return to tell the interpreter it cannot handle a given operand. In contrast,
NotImplementedError is an exception that stub methods in abstract classes may
raise to warn that subclasses must implement them.

The simplest possible __radd__ that works is shown in Example 16-7.

Example 16-7. Vector.__add__ and __radd__ methods
    # inside the Vector class 
 
    def __add__(self, other):   
        pairs = itertools.zip_longest(self, other, fillvalue=0.0) 
        return Vector(a + b for a, b in pairs) 
 
    def __radd__(self, other):   
        return self + other

No changes to __add__ from Example 16-4; listed here because
__radd__ uses it.

__radd__ just delegates to __add__.

Often, __radd__ can be as simple as that: just invoke the proper operator,
therefore delegating to __add__ in this case. This applies to any commutative
operator; + is commutative when dealing with numbers or our vectors, but it’s
not commutative when concatenating sequences in Python.

The methods in Example 16-4 work with Vector objects, or any iterable with
numeric items, such as a Vector2d, a tuple of integers, or an array of



floats. But if provided with a noniterable object, __add__ fails with a
message that is not very helpful, as in Example 16-8.

Example 16-8. Vector.__add__ method needs an iterable operand
>>> v1 + 1 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File "vector_v6.py", line 328, in __add__ 
    pairs = itertools.zip_longest(self, other, fillvalue=0.0) 
TypeError: zip_longest argument #2 must support iteration

Another unhelpful message is given if an operand is iterable but its items
cannot be added to the float items in the Vector. See Example 16-9.

Example 16-9. Vector.__add__ method needs an iterable with numeric items
>>> v1 + 'ABC' 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File "vector_v6.py", line 329, in __add__ 
    return Vector(a + b for a, b in pairs) 
  File "vector_v6.py", line 243, in __init__ 
    self._components = array(self.typecode, components) 
  File "vector_v6.py", line 329, in <genexpr> 
    return Vector(a + b for a, b in pairs) 
TypeError: unsupported operand type(s) for +: 'float' and 'str'

The problems in Examples 16-8 and 16-9 actually go deeper than obscure error
messages: if an operator special method cannot return a valid result because of
type incompatibility, it should return NotImplemented and not raise
TypeError. By returning NotImplemented, you leave the door open for
the implementer of the other operand type to perform the operation when
Python tries the reversed method call.

In the spirit of duck typing, we will refrain from testing the type of the other
operand, or the type of its elements. We’ll catch the exceptions and return
NotImplemented. If the interpreter has not yet reversed the operands, it will
try that. If the reverse method call returns NotImplemented, then Python
will raise TypeError with a standard error message like “unsupported
operand type(s) for +: Vector and str.”

The final implementation of the special methods for Vector addition are in
Example 16-10.



Example 16-10. vector_v6.py: operator + methods added to vector_v5.py
(Example 12-16)
    def __add__(self, other): 
        try: 
            pairs = itertools.zip_longest(self, other, fillvalue=0.0) 
            return Vector(a + b for a, b in pairs) 
        except TypeError: 
            return NotImplemented 
 
    def __radd__(self, other): 
        return self + other

WARNING
If an infix operator method raises an exception, it aborts the operator dispatch algorithm. In
the particular case of TypeError, it is often better to catch it and return
NotImplemented. This allows the interpreter to try calling the reversed operator method,
which may correctly handle the computation with the swapped operands, if they are of
different types.

At this point, we have safely overloaded the + operator by writing __add__
and __radd__. We will now tackle another infix operator: *.

Overloading * for Scalar Multiplication
What does Vector([1, 2, 3]) * x mean? If x is a number, that would
be a scalar product, and the result would be a new Vector with each
component multiplied by x—also known as an elementwise multiplication:

>>> v1 = Vector([1, 2, 3]) 
>>> v1 * 10 
Vector([10.0, 20.0, 30.0]) 
>>> 11 * v1 
Vector([11.0, 22.0, 33.0])



NOTE
Another kind of product involving Vector operands would be the dot product of two
vectors—or matrix multiplication, if you take one vector as a 1 × N matrix and the other as
an N × 1 matrix. We will implement that operator in our Vector class in “Using @ as an
infix operator”.

Back to our scalar product, again we start with the simplest __mul__ and
__rmul__ methods that could possibly work:

    # inside the Vector class 
 
    def __mul__(self, scalar): 
        return Vector(n * scalar for n in self) 
 
    def __rmul__(self, scalar): 
        return self * scalar

Those methods do work, except when provided with incompatible operands.
The scalar argument has to be a number that when multiplied by a float
produces another float (because our Vector class uses an array of floats
internally). So a complex number will not do, but the scalar can be an int, a
bool (because bool is a subclass of int), or even a
fractions.Fraction instance. In Example 16-11, the __mul__ method
does not make an explicit type check on scalar, but instead converts it into a
float, and returns NotImplemented if that fails. Yet another example of
duck typing.

NOTE
In Fluent Python, First Edition, I used goose typing in Example 16-11: testing the second
operand with isinstance(scalar, numbers.Real). Currently I avoid using the
numbers ABCs because they are not supported by PEP 484, and using types at runtime that
cannot also be statically checked seems a bad idea to me. I hope one day those ABCs can be
fixed so we can use them with goose typing as well as static typing. On the other hand,
__matmul__ in Example 16-12 provides a good example of goose typing, new in this
edition.



Example 16-11. vector_v7.py: operator * methods added
class Vector: 
    typecode = 'd' 
 
    def __init__(self, components): 
        self._components = array(self.typecode, components) 
 
    # many methods omitted in book listing, see vector_v7.py 
    # in https://github.com/fluentpython/example-code-2e ... 
 
    def __mul__(self, scalar): 
        try: 
            factor = float(scalar) 
        except TypeError:   
            return NotImplemented   
        return Vector(n * factor for n in self) 
 
    def __rmul__(self, scalar): 
        return self * scalar  

If scalar cannot be converted to float…

…return NotImplemented, to let Python try __rmul__ on the
scalar operand.

In this example, __rmul__ works fine by just performing self *
scalar, delegating to the __mul__ method.

With Example 16-11, we can multiply Vectors by scalar values of the usual
and not so usual numeric types:

>>> v1 = Vector([1.0, 2.0, 3.0]) 
>>> 14 * v1 
Vector([14.0, 28.0, 42.0]) 
>>> v1 * True 
Vector([1.0, 2.0, 3.0]) 
>>> from fractions import Fraction 
>>> v1 * Fraction(1, 3) 
Vector([0.3333333333333333, 0.6666666666666666, 1.0])

Now that we can multiply Vector by scalars, let’s see how to implement
Vector by Vector products.



Using @ as an infix operator
The @ sign is well-known as the prefix of function decorators, but since 2015, it
can also be used as an infix operator. For years, the dot product was written as
numpy.dot(a, b) in NumPy. The function call notation makes longer
formulas harder to translate from mathematical notation to Python,  so the
numerical computing community lobbied for PEP 465—A dedicated infix
operator for matrix multiplication which was implemented in Python 3.5.
Today you can write a @ b to compute the dot product of two NumPy arrays.

The @ operator is supported by the special methods __matmul__,
__rmatmul__, and __imatmul__, named for “matrix multiplication.”
These methods are not used anywhere in the standard library at this time, but
are recognized by the interpreter since Python 3.5, so the NumPy team—and
the rest of us—can support the @ operator in user-defined types. The parser was
also changed to handle the new operator (a @ b was a syntax error in Python
3.4).

These simple tests show how @ should work with Vector instances:

>>> va = Vector([1, 2, 3]) 
>>> vz = Vector([5, 6, 7]) 
>>> va @ vz == 38.0  # 1*5 + 2*6 + 3*7 
True 
>>> [10, 20, 30] @ vz 
380.0 
>>> va @ 3 
Traceback (most recent call last): 
... 
TypeError: unsupported operand type(s) for @: 'Vector' and 'int'

Here is the code of the relevant special methods:

Example 16-12. vector_v7.py: operator @ methods
class Vector: 
    # many methods omitted in book listing 
 
    def __matmul__(self, other): 
        if (isinstance(other, abc.Sized) and  
            isinstance(other, abc.Iterable)): 
            if len(self) == len(other):  
                return sum(a * b for a, b in zip(self, other))  

4

https://www.python.org/dev/peps/pep-0465/


            else: 
                raise ValueError('@ requires vectors of equal 
length.') 
        else: 
            return NotImplemented 
 
    def __rmatmul__(self, other): 
        return self @ other

Both operands must implement __len__ and __iter__…

…and have the same length to allow…

…a beautiful application of sum, zip and generator expression.

Example 16-12 is a good example of goose typing in practice. If we tested the
other operand against Vector, we’d deny users the flexibility of using lists
or arrays as operands to @. As long as one operand is a Vector, our @
implementation supports other operands that are instances of abc.Sized and
abc.Iterable. Both of these ABCs implement the __subclasshook__,
therefore any object providing __len__ and __iter__ satisfies our test—
no need to actually subclass those ABCs, as explained in “Structural typing
with ABCs”. In particular, our Vector class does not subclass either
abc.Sized or abc.Iterable, but it does pass the isinstance checks
against those ABCs because it has the necessary methods.

Let’s review the arithmetic operators supported by Python, before diving into
the special category of “Rich Comparison Operators”.

Wrapping-up arithmetic operators
Implementing +, *, and @ we saw the most common patterns for coding infix
operators. The techniques we described are applicable to all operators listed in
Table 16-1 (the in-place operators will be covered in “Augmented Assignment
Operators”).
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Operator Forward Reverse In-place Description

 

+ __add__ __radd__ __iadd__ Addition or 
concatenation

- __sub__ __rsub__ __isub__ Subtraction

* __mul__ __rmul__ __imul__ Multiplication or 
repetition

/ __truediv__ __rtruediv__ __itruediv__ True division

// __floordiv__ __rfloordiv__ __ifloordiv__ Floor division

% __mod__ __rmod__ __imod__ Modulo



divmod() __divmod__ __rdivmod__ __idivmod__ Returns tuple of 
floor division 
quotient and 
modulo

**, pow() __pow__ __rpow__ __ipow__ Exponentiation

@ __matmul__ __rmatmul__ __imatmul__ Matrix 
multiplication

& __and__ __rand__ __iand__ Bitwise and

| __or__ __ror__ __ior__ Bitwise or

^ __xor__ __rxor__ __ixor__ Bitwise xor

<< __lshift__ __rlshift__ __ilshift__ Bitwise shift left

>> __rshift__ __rrshift__ __irshift__ Bitwise shift right

 

a  pow takes an optional third argument, modulo: pow(a, b, modulo), also supported by the special 
methods when invoked directly (e.g., a.__pow__(b, modulo)).

The rich comparison operators use a different set of rules. We cover them next.

Rich Comparison Operators
The handling of the rich comparison operators ==, !=, >, <, >=, <= by the
Python interpreter is similar to what we just saw, but differs in two important
aspects:

The same set of methods are used in forward and reverse operator
calls. The rules are summarized in Table 16-2. For example, in the
case of ==, both the forward and reverse calls invoke __eq__, only
swapping arguments; and a forward call to __gt__ is followed by a
reverse call to __lt__ with the swapped arguments.

In the case of == and !=, if the reverse call fails, Python compares the
object IDs instead of raising TypeError.

a
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Group Infix operator
Forward method 
call

Reverse method 
call Fall backGroup Infix operator

Forward method 
call

Reverse method 
call Fall back

 

Equality a == b a.__eq__(b) b.__eq__(a) Return id(a) == 
id(b)

a != b a.__ne__(b) b.__ne__(a) Return not (a =
= b)

Ordering a > b a.__gt__(b) b.__lt__(a) Raise TypeError

a < b a.__lt__(b) b.__gt__(a) Raise TypeError

a >= b a.__ge__(b) b.__le__(a) Raise TypeError

a <= b a.__le__(b) b.__ge__(a) Raise TypeError

 

NEW BEHAVIOR IN PYTHON 3
The fallback step for all comparison operators changed from Python 2. For __ne__, Python
3 now returns the negated result of __eq__. For the ordering comparison operators, Python
3 raises TypeError with a message like 'unorderable types: int() <
tuple()'. In Python 2, those comparisons produced weird results taking into account
object types and IDs in some arbitrary way. However, it really makes no sense to compare an
int to a tuple, for example, so raising TypeError in such cases is a real improvement
in the language.

Given these rules, let’s review and improve the behavior of the
Vector.__eq__ method, which was coded as follows in vector_v5.py
(Example 12-16):

class Vector: 
    # many lines omitted 
 
    def __eq__(self, other): 
        return (len(self) == len(other) and 
                all(a == b for a, b in zip(self, other)))

That method produces the results in Example 16-13.



Example 16-13. Comparing a Vector to a Vector, a Vector2d, and a tuple
>>> va = Vector([1.0, 2.0, 3.0]) 
>>> vb = Vector(range(1, 4)) 
>>> va == vb   
True 
>>> vc = Vector([1, 2]) 
>>> from vector2d_v3 import Vector2d 
>>> v2d = Vector2d(1, 2) 
>>> vc == v2d   
True 
>>> t3 = (1, 2, 3) 
>>> va == t3   
True

Two Vector instances with equal numeric components compare equal.

A Vector and a Vector2d are also equal if their components are equal.

A Vector is also considered equal to a tuple or any iterable with
numeric items of equal value.

The last one of the results in Example 16-13 is probably not desirable. Do we
really want a Vector to be considered equal to a tuple containing the same
numbers? I have no hard rule about this; it depends on the application context.
The Zen of Python says:

In the face of ambiguity, refuse the temptation to guess.

Excessive liberality in the evaluation of operands may lead to surprising
results, and programmers hate surprises.

Taking a clue from Python itself, we can see that [1,2] == (1, 2) is
False. Therefore, let’s be conservative and do some type checking. If the
second operand is a Vector instance (or an instance of a Vector subclass),
then use the same logic as the current __eq__. Otherwise, return
NotImplemented and let Python handle that. See Example 16-14.

Example 16-14. vector_v8.py: improved __eq__ in the Vector class
    def __eq__(self, other): 
        if isinstance(other, Vector):   
            return (len(self) == len(other) and 
                    all(a == b for a, b in zip(self, other))) 



        else: 
            return NotImplemented  

If the other operand is an instance of Vector (or of a Vector
subclass), perform the comparison as before.

Otherwise, return NotImplemented.

If you run the tests in Example 16-13 with the new Vector.__eq__ from
Example 16-14, what you get now is shown in Example 16-15.

Example 16-15. Same comparisons as Example 16-13: last result changed
>>> va = Vector([1.0, 2.0, 3.0]) 
>>> vb = Vector(range(1, 4)) 
>>> va == vb   
True 
>>> vc = Vector([1, 2]) 
>>> from vector2d_v3 import Vector2d 
>>> v2d = Vector2d(1, 2) 
>>> vc == v2d   
True 
>>> t3 = (1, 2, 3) 
>>> va == t3   
False

Same result as before, as expected.

Same result as before, but why? Explanation coming up.

Different result; this is what we wanted. But why does it work? Read on…

Among the three results in Example 16-15, the first one is no news, but the last
two were caused by __eq__ returning NotImplemented in Example 16-
14. Here is what happens in the example with a Vector and a Vector2d,
step by step:

1. To evaluate vc == v2d, Python calls Vector.__eq__(vc,
v2d).

2. Vector.__eq__(vc, v2d) verifies that v2d is not a Vector
and returns NotImplemented.



3. Python gets NotImplemented result, so it tries
Vector2d.__eq__(v2d, vc).

4. Vector2d.__eq__(v2d, vc) turns both operands into tuples an
compares them: the result is True (the code for
Vector2d.__eq__ is in Example 11-11).

As for the comparison between Vector and tuple in Example 16-15, the
actual steps are:

1. To evaluate va == t3, Python calls Vector.__eq__(va, t3).

2. Vector.__eq__(va, t3) verifies that t3 is not a Vector and
returns NotImplemented.

3. Python gets NotImplemented result, so it tries
tuple.__eq__(t3, va).

4. tuple.__eq__(t3, va) has no idea what a Vector is, so it
returns NotImplemented.

5. In the special case of ==, if the reversed call returns
NotImplemented, Python compares object IDs as a last resort.

How about !=? We don’t need to implement it because the fallback behavior of
the __ne__ inherited from object suits us: when __eq__ is defined and
does not return NotImplemented, __ne__ returns that result negated.

In other words, given the same objects we used in Example 16-15, the results
for != are consistent:

>>> va != vb 
False 
>>> vc != v2d 
False 
>>> va != (1, 2, 3) 
True

The __ne__ inherited from object works like the following code—except
that the original is written in C:5



    def __ne__(self, other): 
        eq_result = self == other 
        if eq_result is NotImplemented: 
            return NotImplemented 
        else: 
            return not eq_result

After covering the essentials of infix operator overloading, let’s turn to a
different class of operators: the augmented assignment operators.

Augmented Assignment Operators
Our Vector class already supports the augmented assignment operators +=
and *=. Example 16-16 shows them in action.

Example 16-16. Augmented assignment works with immutable targets by
creating new instances and rebinding
>>> v1 = Vector([1, 2, 3]) 
>>> v1_alias = v1   
>>> id(v1)   
4302860128 
>>> v1 += Vector([4, 5, 6])   
>>> v1   
Vector([5.0, 7.0, 9.0]) 
>>> id(v1)   
4302859904 
>>> v1_alias   
Vector([1.0, 2.0, 3.0]) 
>>> v1 *= 11   
>>> v1   
Vector([55.0, 77.0, 99.0]) 
>>> id(v1) 
4302858336

Create alias so we can inspect the Vector([1, 2, 3]) object later.

Remember the ID of the initial Vector bound to v1.

Perform augmented addition.

The expected result…



…but a new Vector was created.

Inspect v1_alias to confirm the original Vector was not altered.

Perform augmented multiplication.

Again, the expected result, but a new Vector was created.

If a class does not implement the in-place operators listed in Table 16-1, the
augmented assignment operators are just syntactic sugar: a += b is evaluated
exactly as a = a + b. That’s the expected behavior for immutable types, and
if you have __add__ then += will work with no additional code.

However, if you do implement an in-place operator method such as
__iadd__, that method is called to compute the result of a += b. As the
name says, those operators are expected to change the left-hand operand in
place, and not create a new object as the result.

WARNING
The in-place special methods should never be implemented for immutable types like our
Vector class. This is fairly obvious, but worth stating anyway.

To show the code of an in-place operator, we will extend the BingoCage
class from Example 13-9 to implement __add__ and __iadd__.

We’ll call the subclass AddableBingoCage. Example 16-17 is the behavior
we want for the + operator.

Example 16-17. A new AddableBingoCage instance can be created with 
    >>> vowels = 'AEIOU' 
    >>> globe = AddableBingoCage(vowels)   
    >>> globe.inspect() 
    ('A', 'E', 'I', 'O', 'U') 
    >>> globe.pick() in vowels   
    True 
    >>> len(globe.inspect())   
    4 
    >>> globe2 = AddableBingoCage('XYZ')   



    >>> globe3 = globe + globe2 
    >>> len(globe3.inspect())   
    7 
    >>> void = globe + [10, 20]   
    Traceback (most recent call last): 
      ... 
    TypeError: unsupported operand type(s) for +: 'AddableBingoCage' 
and 'list'

Create a globe instance with five items (each of the vowels).

Pop one of the items, and verify it is one the vowels.

Confirm that the globe is down to four items.

Create a second instance, with three items.

Create a third instance by adding the previous two. This instance has seven
items.

Attempting to add an AddableBingoCage to a list fails with
TypeError. That error message is produced by the Python interpreter
when our __add__ method returns NotImplemented.

Because an AddableBingoCage is mutable, Example 16-18 shows how it
will work when we implement __iadd__.

Example 16-18. An existing AddableBingoCage can be loaded with +=
(continuing from Example 16-17)
    >>> globe_orig = globe   
    >>> len(globe.inspect())   
    4 
    >>> globe += globe2   
    >>> len(globe.inspect()) 
    7 
    >>> globe += ['M', 'N']   
    >>> len(globe.inspect()) 
    9 
    >>> globe is globe_orig   
    True 
    >>> globe += 1   
    Traceback (most recent call last): 
      ... 



    TypeError: right operand in += must be 'AddableBingoCage' or an 
iterable

Create an alias so we can check the identity of the object later.

globe has four items here.

An AddableBingoCage instance can receive items from another
instance of the same class.

The right-hand operand of += can also be any iterable.

Throughout this example, globe has always referred to the globe_orig
object.

Trying to add a noniterable to an AddableBingoCage fails with a
proper error message.

Note that the += operator is more liberal than + with regard to the second
operand. With +, we want both operands to be of the same type
(AddableBingoCage, in this case), because if we accepted different types
this might cause confusion as to the type of the result. With the +=, the
situation is clearer: the left-hand object is updated in place, so there’s no doubt
about the type of the result.

TIP
I validated the contrasting behavior of + and += by observing how the list built-in type
works. Writing my_list + x, you can only concatenate one list to another list, but
if you write my_list += x, you can extend the left-hand list with items from any
iterable x on the right-hand side. This how the list.extend() method works: it accepts
any iterable argument.

Now that we are clear on the desired behavior for AddableBingoCage, we
can look at its implementation in Example 16-19.



Example 16-19. bingoaddable.py: AddableBingoCage extends BingoCage to
support + and +=
from tombola import Tombola 
from bingo import BingoCage 
 
 
class AddableBingoCage(BingoCage):   
 
    def __add__(self, other): 
        if isinstance(other, Tombola):   
            return AddableBingoCage(self.inspect() + other.inspect()) 
        else: 
            return NotImplemented 
 
    def __iadd__(self, other): 
        if isinstance(other, Tombola): 
            other_iterable = other.inspect()   
        else: 
            try: 
                other_iterable = iter(other)   
            except TypeError:   
                self_cls = type(self).__name__ 
                msg = "right operand in += must be {!r} or an 
iterable" 
                raise TypeError(msg.format(self_cls)) 
        self.load(other_iterable)   
        return self  

AddableBingoCage extends BingoCage.

Our __add__ will only work with an instance of Tombola as the second
operand.

Retrieve items from other, if it is an instance of Tombola.

Otherwise, try to obtain an iterator over other.

If that fails, raise an exception explaining what the user should do. When
possible, error messages should explicitly guide the user to the solution.

If we got this far, we can load the other_iterable into self.

Very important: augmented assignment special methods must return self.
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We can summarize the whole idea of in-place operators by contrasting the
return statements that produce results in __add__ and __iadd__ in
Example 16-19:

__add__

The result is produced by calling the constructor AddableBingoCage to
build a new instance.

__iadd__

The result is produced by returning self, after it has been modified.

To wrap up this example, a final observation on Example 16-19: by design, no
__radd__ was coded in AddableBingoCage, because there is no need for
it. The forward method __add__ will only deal with right-hand operands of
the same type, so if Python is trying to compute a + b where a is an
AddableBingoCage and b is not, we return NotImplemented—maybe
the class of b can make it work. But if the expression is b + a and b is not an
AddableBingoCage, and it returns NotImplemented, then it’s better to
let Python give up and raise TypeError because we cannot handle b.

TIP
In general, if a forward infix operator method (e.g., __mul__) is designed to work only
with operands of the same type as self, it’s useless to implement the corresponding reverse
method (e.g., __rmul__) because that, by definition, will only be invoked when dealing
with an operand of a different type.

This concludes our exploration of operator overloading in Python.



Chapter Summary
We started this chapter by reviewing some restrictions Python imposes on
operator overloading: no overloading of operators in built-in types, and
overloading limited to existing operators, except for a few ones (is, and, or,
not).

We got down to business with the unary operators, implementing __neg__
and __pos__. Next came the infix operators, starting with +, supported by the
__add__ method. We saw that unary and infix operators are supposed to
produce results by creating new objects, and should never change their
operands. To support operations with other types, we return the
NotImplemented special value—not an exception—allowing the interpreter
to try again by swapping the operands and calling the reverse special method
for that operator (e.g., __radd__). The algorithm Python uses to handle infix
operators is summarized in the flowchart in Figure 16-1.

Mixing operand types requires detecting operands we can’t handle. In this
chapter, we did this in two ways: in the duck typing way, we just went ahead
and tried the operation, catching a TypeError exception if it happened; later,
in __mul__ and __matmul__, we did it with an explicit isinstance test.
There are pros and cons to these approaches: duck typing is more flexible, but
explicit type checking is more predictable.

In general, libraries should leverage duck typing—opening the door for objects
regardless of their types, as long as they support the necessary operations.
However, Python’s operator dispatch algorithm may produce misleading error
messages or unexpected results when combined with duck typing. For this
reason, the discipline of type checking using isinstance calls against ABCs
is often useful when writing special methods for operator overloading. That’s
the technique dubbed goose typing by Alex Martelli—which we saw in “Goose
typing”. Goose typing is a good compromise between flexibility and safety,
because existing or future user-defined types can be declared as actual or
virtual subclasses of an ABC. In addition, if an ABC implements the
__subclasshook__, then objects pass isinstance checks against that
ABC by providing the required methods—no subclassing or registration
required.



The next topic we covered was the rich comparison operators. We implemented
== with __eq__ and discovered that Python provides a handy implementation
of != in the __ne__ inherited from the object base class. The way Python
evaluates these operators along with >, <, >=, and <= is slightly different, with
special logic for choosing the reverse method, and fallback handling for == and
!= which never generate errors because Python compares the object IDs as a
last resort.

In the last section, we focused on augmented assignment operators. We saw
that Python handles them by default as a combination of plain operator
followed by assignment, that is: a += b is evaluated exactly as a = a + b.
That always creates a new object, so it works for mutable or immutable types.
For mutable objects, we can implement in-place special methods such as
__iadd__ for +=, and alter the value of the left-hand operand. To show this
at work, we left behind the immutable Vector class and worked on
implementing a BingoCage subclass to support += for adding items to the
random pool, similar to the way the list built-in supports += as a shortcut for
the list.extend() method. While doing this, we discussed how + tends to
be stricter than += regarding the types it accepts. For sequence types, + usually
requires that both operands are of the same type, while += often accepts any
iterable as the right-hand operand.

Further Reading
Guido van Rossum wrote a good defense of operator overloading in Why
operators are useful. Trey Hunner blogged Tuple ordering and deep
comparisons in Python arguing that the rich comparisons operators in Python
are more flexible and powerful than programmers may realize when coming
from other languages.

Operator overloading is one area of Python programming where isinstance
tests are common. The best practice around such tests is goose typing, covered
in “Goose typing”. If you skipped that, make sure to read it.

The main reference for the operator special methods is the “Data Model”
chapter. Another relevant reading in the Python documentation is “9.1.2.2.

https://neopythonic.blogspot.com/2019/03/why-operators-are-useful.html
https://treyhunner.com/2019/03/python-deep-comparisons-and-code-readability/
https://docs.python.org/3/reference/datamodel.html
http://bit.ly/1JHWP8W


Implementing the arithmetic operations” in the numbers module of The
Python Standard Library.

A clever example of operator overloading appeared in the pathlib package,
added in Python 3.4. Its Path class overloads the / operator to build
filesystem paths from strings, as shown in this example from the
documentation:

>>> p = Path('/etc') 
>>> q = p / 'init.d' / 'reboot' 
>>> q 
PosixPath('/etc/init.d/reboot')

Another non-arithmetic example of operator overloading is in the Scapy
library, used to “send, sniff, dissect and forge network packets”. In Scapy, the /
operator builds packets by stacking fields from different network layers. See
Stacking layers for details.

If you are about to implement comparison operators, study
functools.total_ordering. That is class decorator that automatically
generates methods for all rich comparison operators in any class that defines at
least a couple of them. See the functools module docs.

If you are curious about operator method dispatching in languages with
dynamic typing, two seminal readings are “A Simple Technique for Handling
Multiple Polymorphism” by Dan Ingalls (member of the original Smalltalk
team) and “Arithmetic and Double Dispatching in Smalltalk-80” by Kurt J.
Hebel and Ralph Johnson (Johnson became famous as one of the authors of the
original Design Patterns book). Both papers provide deep insight into the
power of polymorphism in languages with dynamic typing, like Smalltalk,
Python, and Ruby. Python does not use double dispatching for handling
operators as described in those articles. The Python algorithm using forward
and reverse operators is easier for user-defined classes to support than double
dispatching, but requires special handling by the interpreter. In contrast, classic
double dispatching is a general technique you can use in Python or any OO
language beyond the specific context of infix operators, and in fact Ingalls,
Hebel, and Johnson use very different examples to describe it.

http://bit.ly/1JHWP8W
https://docs.python.org/3/library/pathlib.html
https://pypi.org/project/scapy/
https://scapy.readthedocs.io/en/latest/usage.html#stacking-layers
http://bit.ly/1C12IWF
http://bit.ly/1FVhejw
http://bit.ly/1QrnuuD


The article “The C Family of Languages: Interview with Dennis Ritchie,
Bjarne Stroustrup, and James Gosling” from which I quoted the epigraph in
this chapter appeared in Java Report, 5(7), July 2000 and C++ Report, 12(7),
July/August 2000, along with two other snippets I used in the Soapbox (next).
If you are into programming language design, do yourself a favor and read that
interview.

http://www.gotw.ca/publications/c_family_interview.htm


SOAPBOX

Operator Overloading: Pros and Cons

James Gosling, quoted at the start of this chapter, made the conscious
decision to leave operator overloading out when he designed Java. In that
same interview (“The C Family of Languages: Interview with Dennis
Ritchie, Bjarne Stroustrup, and James Gosling”) he says:

Probably about 20 to 30 percent of the population think of operator
overloading as the spawn of the devil; somebody has done something
with operator overloading that has just really ticked them off, because
they’ve used like + for list insertion and it makes life really, really
confusing. A lot of that problem stems from the fact that there are only
about half a dozen operators you can sensibly overload, and yet there
are thousands or millions of operators that people would like to define—
so you have to pick, and often the choices conflict with your sense of
intuition.

Guido van Rossum picked the middle way in supporting operator
overloading: he did not leave the door open for users creating new arbitrary
operators like <=> or :-), which prevents a Tower of Babel of custom
operators, and allows the Python parser to be simple. Python also does not
let you overload the operators of the built-in types, another limitation that
promotes readability and predictable performance.

Gosling goes on to say:

Then there’s a community of about 10 percent that have actually used
operator overloading appropriately and who really care about it, and for
whom it’s actually really important; this is almost exclusively people who
do numerical work, where the notation is very important to appealing to
people’s intuition, because they come into it with an intuition about what
the + means, and the ability to say “a + b” where a and b are complex
numbers or matrices or something really does make sense.

The notation side of the issue cannot be underestimated. Here is an
illustrative example from the realm of finances. In Python, you can
compute compound interest using a formula written like this:

http://bit.ly/1C12T4t


interest = principal * ((1 + rate) ** periods - 1)

That same notation works regardless of the numeric types involved. Thus,
if you are doing serious financial work, you can make sure that periods
is an int, while rate, interest, and principal are exact numbers
—instances of the Python decimal.Decimal class — and that formula
will work exactly as written.

But in Java, if you switch from float to BigDecimal to get arbitrary
precision, you can’t use infix operators anymore, because they only work
with the primitive types. This is the same formula coded to work with
BigDecimal numbers in Java:

BigDecimal interest = principal.multiply(BigDecimal.ONE.add(rate) 
                        .pow(periods).subtract(BigDecimal.ONE));

It’s clear that infix operators make formulas more readable, at least for
most of us.  And operator overloading is necessary to support non-
primitive types with infix operator notation. Having operator overloading
in a high-level, easy-to-use language was probably a key reason for the
amazing penetration of Python in scientific computing in recent years.

Of course, there are benefits to disallowing operator overloading in a
language. It is arguably a sound decision for lower-level systems languages
where performance and safety are paramount. The much newer Go
language followed the lead of Java in this regard and does not support
operator overloading.

But overloaded operators, when used sensibly, do make code easier to read
and write. It’s a great feature to have in a modern high-level language.

A Glimpse at Lazy Evaluation

If you look closely at the traceback in Example 16-9, you’ll see evidence of
the lazy evaluation of generator expressions. Example 16-20 is that same
traceback, now with callouts.

Example 16-20. Same as Example 16-9
>>> v1 + 'ABC' 
Traceback (most recent call last): 
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  File "<stdin>", line 1, in <module> 
  File "vector_v6.py", line 329, in __add__ 
    return Vector(a + b for a, b in pairs)   
  File "vector_v6.py", line 243, in __init__ 
    self._components = array(self.typecode, components)   
  File "vector_v6.py", line 329, in <genexpr> 
    return Vector(a + b for a, b in pairs)   
TypeError: unsupported operand type(s) for +: 'float' and 'str'

The Vector call gets a generator expression as its components
argument. No problem at this stage.

The components genexp is passed to the array constructor. Within
the array constructor, Python tries to iterate over the genexp, causing
the evaluation of the first item a + b. That’s when the TypeError
occurs.

The exception propagates to the Vector constructor call, where it is
reported.

This shows how the generator expression is evaluated at the latest possible
moment, and not where it is defined in the source code.

In contrast, if the Vector constructor was invoked as Vector([a + b
for a, b in pairs]), then the exception would happen right there,
because the list comprehension tried to build a list to be passed as the
argument to the Vector() call. The body of Vector.__init__
would not be reached at all.

Chapter 17 will cover generator expressions in detail, but I did not want to
let this accidental demonstration of their lazy nature go unnoticed.

1  Source: “The C Family of Languages: Interview with Dennis Ritchie, Bjarne Stroustrup, and
James Gosling”.

2  The remaining ABCs in Python’s standard library are still valuable for goose typing and static
typing. The issue with the numbers ABCs is explained in “The numbers ABCs and numeric
protocols”.

http://www.gotw.ca/publications/c_family_interview.htm


3  The Python documentation uses both terms. The “Data Model” chapter uses “reflected,” but
“9.1.2.2. Implementing the arithmetic operations” in the numbers module docs mention “forward”
and “reverse” methods, and I find this terminology better, because “forward” and “reversed” clearly
name each of the directions, while “reflected” doesn’t have an obvious opposite.

4  See “Soapbox” for an discussion of the problem.

5  The logic for object.__eq__ and object.__ne__ is in function object_richcompare
in Objects/typeobject.c in the CPython source code.

6  The iter built-in function will be covered in the next chapter. Here I could have used
tuple(other), and it would work, but at the cost of building a new tuple when all the
.load(…) method needs is to iterate over its argument.

7  My friend Mario Domenech Goulart, a core developer of the CHICKEN Scheme compiler, will
probably disagree with this.

https://docs.python.org/3/reference/datamodel.html
http://bit.ly/1JHWP8W
http://bit.ly/1C11uL7
http://www.call-cc.org/


Chapter 17. Iterables, Iterators,
and Generators

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 17th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

When I see patterns in my programs, I consider it a sign of trouble. The
shape of a program should reflect only the problem it needs to solve. Any
other regularity in the code is a sign, to me at least, that I’m using
abstractions that aren’t powerful enough—often that I’m generating by
hand the expansions of some macro that I need to write.

—Paul Graham, Lisp hacker and venture capitalist

Iteration is fundamental to data processing: programs mostly apply
computations to data series, from pixels to nucleotides. If the data doesn’t
fit in memory, we need to fetch the items lazily— one at a time and on
demand. That’s what an iterator does. This chapter shows how the Iterator
pattern is built into the Python language so you never need to code it by
hand.

Python does not have macros like Lisp (Paul Graham’s favorite language),
so abstracting away the Iterator pattern required changing the language: the
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yield keyword was added in Python 2.2 (2001).  The yield keyword
allows the construction of generator functions, which return iterators.

Python 3 uses generators in many places. Even the range() built-in now
returns a generator-like object instead of full-blown lists like before. If you
must build a list from range, you have to be explicit (e.g.,
list(range(100))).

Every collection in Python is iterable, and iterators are used internally to
support:

for loops

Collection types construction and extension

Looping over text files line by line

List, dict, and set comprehensions

Tuple unpacking

Unpacking actual parameters with * in function calls

This chapter covers the following topics:

How the iter(…) built-in function is used internally to handle
iterable objects

How to implement the classic Iterator pattern in Python

How a generator function works in detail, with line-by-line
descriptions

How the classic Iterator can be replaced by a generator function or
generator expression

Leveraging the general-purpose generator functions in the standard
library

Using the new yield from statement to combine generators
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A case study: using generator functions in a database conversion
utility designed to work with large datasets

Why generators and coroutines look alike but are actually very
different and should not be mixed

What’s new in this chapter
The one major change was the introductory section on yield from,
which grew from 1 to 6 pages. “Subgenerators with yield from” now
includes both simpler experiments demonstrating the behavior of generators
with yield from, and a practical application of that syntax to traverse a
tree data structure, developed step-by-step.

We’ll get started studying how the iter(…) built-in function makes
sequences iterable.

A Sequence of Words
We’ll start our exploration of iterables by implementing a Sentence
class: you give its constructor a string with some text, and then you can
iterate word by word. The first version will implement the sequence
protocol, and it’s iterable because all sequences are iterable—as we’ve seen
since Chapter 1. Now we’ll see exactly why.

Example 17-1 shows a Sentence class that extracts words from a text by
index.

Example 17-1. sentence.py: A Sentence as a sequence of words
import re 
import reprlib 
 
RE_WORD = re.compile(r'\w+') 
 
 
class Sentence: 
 
    def __init__(self, text): 



        self.text = text 
        self.words = RE_WORD.findall(text)   
 
    def __getitem__(self, index): 
        return self.words[index]   
 
    def __len__(self):   
        return len(self.words) 
 
    def __repr__(self): 
        return 'Sentence(%s)' % reprlib.repr(self.text)  

re.findall returns a list with all nonoverlapping matches of the
regular expression, as a list of strings.

self.words holds the result of .findall, so we simply return the
word at the given index.

To complete the sequence protocol, we implement __len__—but it is
not needed to make an iterable object.

reprlib.repr is a utility function to generate abbreviated string
representations of data structures that can be very large.

By default, reprlib.repr limits the generated string to 30 characters.
See the console session in Example 17-2 to see how Sentence is used.

Example 17-2. Testing iteration on a Sentence instance
>>> s = Sentence('"The time has come," the Walrus said,')   
>>> s 
Sentence('"The time ha... Walrus said,')   
>>> for word in s:   
...     print(word) 
The 
time 
has 
come 
the 
Walrus 
said 
>>> list(s)   
['The', 'time', 'has', 'come', 'the', 'Walrus', 'said']
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A sentence is created from a string.

Note the output of __repr__ using ... generated by
reprlib.repr.

Sentence instances are iterable; we’ll see why in a moment.

Being iterable, Sentence objects can be used as input to build lists
and other iterable types.

In the following pages, we’ll develop other Sentence classes that pass the
tests in Example 17-2. However, the implementation in Example 17-1 is
different from all the others because it’s also a sequence, so you can get
words by index:

>>> s[0] 
'The' 
>>> s[5] 
'Walrus' 
>>> s[-1] 
'said'

Every Python programmer knows that sequences are iterable. Now we’ll
see precisely why.

Why Sequences Are Iterable: The iter
Function
Whenever the interpreter needs to iterate over an object x, it automatically
calls iter(x).

The iter built-in function:

1. Checks whether the object implements __iter__, and calls that
to obtain an iterator.



2. If __iter__ is not implemented, but __getitem__ is
implemented, Python creates an iterator that attempts to fetch items
in order, starting from index 0 (zero).

3. If that fails, Python raises TypeError, usually saying “C object
is not iterable,” where C is the class of the target object.

That is why any Python sequence is iterable: they all implement
__getitem__. In fact, the standard sequences also implement
__iter__, and yours should too, because the special handling of
__getitem__ exists for backward compatibility reasons and may be
gone in the future (although it is not deprecated as I write this).

As mentioned in “Python Digs Sequences”, this is an extreme form of duck
typing: an object is considered iterable not only when it implements the
special method __iter__, but also when it implements __getitem__,
as long as __getitem__ accepts int keys starting from 0.

In the goose-typing approach, the definition for an iterable is simpler but
not as flexible: an object is considered iterable if it implements the
__iter__ method. No subclassing or registration is required, because
abc.Iterable implements the __subclasshook__, as seen in
“Structural typing with ABCs”. Here is a demonstration:

>>> class Foo: 
...     def __iter__(self): 
...         pass 
... 
>>> from collections import abc 
>>> issubclass(Foo, abc.Iterable) 
True 
>>> f = Foo() 
>>> isinstance(f, abc.Iterable) 
True

However, note that our initial Sentence class does not pass the
issubclass(Sentence, abc.Iterable) test, even though it is
iterable in practice.



TIP
As of Python 3.9, the most accurate way to check whether an object x is iterable is to
call iter(x) and handle a TypeError exception if it isn’t. This is more accurate
than using isinstance(x, abc.Iterable), because iter(x) also considers
the legacy __getitem__ method, while the Iterable ABC does not.

Explicitly checking whether an object is iterable may not be worthwhile if
right after the check you are going to iterate over the object. After all, when
the iteration is attempted on a noniterable, the exception Python raises is
clear enough: TypeError: 'C' object is not iterable . If
you can do better than just raising TypeError, then do so in a
try/except block instead of doing an explicit check. The explicit check
may make sense if you are holding on to the object to iterate over it later; in
this case, catching the error early may be useful.

The next section makes explicit the relationship between iterables and
iterators.

Iterables Versus Iterators
From the explanation in “Why Sequences Are Iterable: The iter
Function” we can extrapolate a definition:

iterable

Any object from which the iter built-in function can obtain an
iterator. Objects implementing an __iter__ method returning an
iterator are iterable. Sequences are always iterable; as are objects
implementing a __getitem__ method that takes 0-based indexes.

It’s important to be clear about the relationship between iterables and
iterators: Python obtains iterators from iterables.

Here is a simple for loop iterating over a str. The str 'ABC' is the
iterable here. You don’t see it, but there is an iterator behind the curtain:



>>> s = 'ABC' 
>>> for char in s: 
...     print(char) 
... 
A 
B 
C

If there was no for statement and we had to emulate the for machinery
by hand with a while loop, this is what we’d have to write:

>>> s = 'ABC' 
>>> it = iter(s)   
>>> while True: 
...     try: 
...         print(next(it))   
...     except StopIteration:   
...         del it   
...         break   
... 
A 
B 
C

Build an iterator it from the iterable.

Repeatedly call next on the iterator to obtain the next item.

The iterator raises StopIteration when there are no further items.

Release reference to it—the iterator object is discarded.

Exit the loop.

StopIteration signals that the iterator is exhausted. This exception is
handled internally in for loops and other iteration contexts like list
comprehensions, tuple unpacking, etc.

The standard interface for an iterator has two methods:



__next__

Returns the next available item, raising StopIteration when there
are no more items.

__iter__

Returns self; this allows iterators to be used where an iterable is
expected, for example, in a for loop.

This is formalized in the collections.abc.Iterator ABC, which
defines the __next__ abstract method, and subclasses Iterable—
where the abstract __iter__ method is defined. See Figure 17-1.



Figure 17-1. The Iterable and Iterator ABCs. Methods in italic are abstract. A concrete
Iterable.__iter__ should return a new Iterator instance. A concrete Iterator must implement

__next__. The Iterator.__iter__ method just returns the instance itself.

The Iterator ABC implements __iter__ by doing return self.
This allows an iterator to be used wherever an iterable is required. The
source code for abc.Iterator is in Example 17-3.

Example 17-3. abc.Iterator class; extracted from Lib/_collections_abc.py
class Iterator(Iterable): 
 
    __slots__ = () 
 
    @abstractmethod 
    def __next__(self): 
        'Return the next item from the iterator. When exhausted, 
raise StopIteration' 

http://bit.ly/1C14QOi


        raise StopIteration 
 
    def __iter__(self): 
        return self 
 
    @classmethod 
    def __subclasshook__(cls, C): 
        if cls is Iterator: 
            if (any("__next__" in B.__dict__ for B in C.__mro__) 
and 
                any("__iter__" in B.__dict__ for B in C.__mro__)): 
                return True 
        return NotImplemented

WARNING
The Iterator ABC abstract method is it.__next__() in Python 3 and
it.next() in Python 2. As usual, you should avoid calling special methods directly.
Just use the next(it): this built-in function does the right thing in Python 2 and 3.

The Lib/types.py module source code in Python 3.9 has a comment that
says:

# Iterators in Python aren't a matter of type but of protocol.  A 
large 
# and changing number of builtin types implement *some* flavor of 
# iterator.  Don't check the type!  Use hasattr to check for both 
# "__iter__" and "__next__" attributes instead.

In fact, that’s exactly what the __subclasshook__ method of the
abc.Iterator ABC does (see Example 17-3).

TIP
Taking into account the advice from Lib/types.py and the logic implemented in
Lib/_collections_abc.py, the best way to check if an object x is an iterator is to call
isinstance(x, abc.Iterator). Thanks to
Iterator.__subclasshook__, this test works even if the class of x is not a real
or virtual subclass of Iterator.

https://github.com/python/cpython/blob/master/Lib/types.py#L6


Back to our Sentence class from Example 17-1, you can clearly see how
the iterator is built by iter(…) and consumed by next(…) using the
Python console:

>>> s3 = Sentence('Pig and Pepper')   
>>> it = iter(s3)   
>>> it  # doctest: +ELLIPSIS 
<iterator object at 0x...> 
>>> next(it)   
'Pig' 
>>> next(it) 
'and' 
>>> next(it) 
'Pepper' 
>>> next(it)   
Traceback (most recent call last): 
  ... 
StopIteration 
>>> list(it)   
[] 
>>> list(iter(s3))   
['Pig', 'and', 'Pepper']

Create a sentence s3 with three words.

Obtain an iterator from s3.

next(it) fetches the next word.

There are no more words, so the iterator raises a StopIteration
exception.

Once exhausted, an iterator becomes useless.

To go over the sentence again, a new iterator must be built.

Because the only methods required of an iterator are __next__ and
__iter__, there is no way to check whether there are remaining items,
other than to call next() and catch StopIteration. Also, it’s not



possible to “reset” an iterator. If you need to start over, you need to call
iter(…) on the iterable that built the iterator in the first place. Calling
iter(…) on the iterator itself won’t help, because—as mentioned—
Iterator.__iter__ is implemented by returning self, so this will
not reset a depleted iterator.

To wrap up this section, here is a definition for iterator:

iterator

Any object that implements the __next__ no-argument method that
returns the next item in a series or raises StopIteration when there
are no more items. Python iterators also implement the __iter__
method so they are iterable as well.

The first version of Sentence from Example 17-1 was iterable thanks to
the special treatment the iter(…) built-in gives to sequences. Next, we
will implement Sentence variations that implement __iter__ to return
iterators.

Sentence classes with __iter__
The first variation of Sentence implements the standard iterable protocol.

Sentence Take #2: A Classic Iterator
The following Sentence class is built according to the classic Iterator
design pattern according to the blueprint in the GoF book. Note that this is
not idiomatic Python, as the next refactorings will make very clear. But it
serves to make explicit the relationship between the iterable collection and
the iterator object.

Example 17-4 shows an implementation of a Sentence that is iterable
because it implements the __iter__ special method, which builds and
returns a SentenceIterator. This is how the Iterator design pattern is
described in the original Design Patterns book.



We are doing it this way here just to make clear the crucial distinction
between an iterable and an iterator and how they are connected.

Example 17-4. sentence_iter.py: Sentence implemented using the Iterator
pattern
import re 
import reprlib 
 
RE_WORD = re.compile(r'\w+') 
 
 
class Sentence: 
 
    def __init__(self, text): 
        self.text = text 
        self.words = RE_WORD.findall(text) 
 
    def __repr__(self): 
        return f'Sentence({reprlib.repr(self.text)})' 
 
    def __iter__(self):   
        return SentenceIterator(self.words)   
 
 
class SentenceIterator: 
 
    def __init__(self, words): 
        self.words = words   
        self.index = 0   
 
    def __next__(self): 
        try: 
            word = self.words[self.index]   
        except IndexError: 
            raise StopIteration()   
        self.index += 1   
        return word   
 
    def __iter__(self):   
        return self

The __iter__ method is the only addition to the previous
Sentence implementation. This version has no __getitem__, to



make it clear that the class is iterable because it implements
__iter__.

__iter__ fulfills the iterable protocol by instantiating and returning
an iterator.

SentenceIterator holds a reference to the list of words.

self.index determines the next word to fetch.

Get the word at self.index.

If there is no word at self.index, raise StopIteration.

Increment self.index.

Return the word.

Implement self.__iter__.

The code in Example 17-4 passes the tests in Example 17-2.

Note that implementing __iter__ in SentenceIterator is not
actually needed for this example to work, but the it’s the right thing to do:
iterators are supposed to implement both __next__ and __iter__, and
doing so makes our iterator pass the
issubclass(SentenceIterator, abc.Iterator) test. If we
had subclassed SentenceIterator from abc.Iterator, we’d
inherit the concrete abc.Iterator.__iter__ method.

That is a lot of work (for us lazy Python programmers, anyway). Note how
most code in SentenceIterator deals with managing the internal state
of the iterator. Soon we’ll see how to make it shorter. But first, a brief
detour to address an implementation shortcut that may be tempting, but is
just wrong.



Don’t make the iterable an iterator for itself
A common cause of errors in building iterables and iterators is to confuse
the two. To be clear: iterables have an __iter__ method that instantiates
a new iterator every time. Iterators implement a __next__ method that
returns individual items, and an __iter__ method that returns self.

Therefore, iterators are also iterable, but iterables are not iterators.

It may be tempting to implement __next__ in addition to __iter__ in
the Sentence class, making each Sentence instance at the same time
an iterable and iterator over itself. But this is a terrible idea. It’s also a
common anti-pattern, according to Alex Martelli who has a lot of
experience with Python code reviews.

The “Applicability” section  of the Iterator design pattern in the GoF book
says:

Use the Iterator pattern

to access an aggregate object’s contents without exposing its
internal representation.

to support multiple traversals of aggregate objects.

to provide a uniform interface for traversing different aggregate
structures (that is, to support polymorphic iteration).

To “support multiple traversals” it must be possible to obtain multiple
independent iterators from the same iterable instance, and each iterator must
keep its own internal state, so a proper implementation of the pattern
requires each call to iter(my_iterable) to create a new, independent,
iterator. That is why we need the SentenceIterator class in this
example.
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WARNING
Avoid making an iterable act as an iterator over itself. In other words, iterables must
implement __iter__, but should not implement __next__.

On the other hand, iterators should always be iterable. An iterator’s __iter__ should
just return self.

Now that the classic Iterator pattern is properly demonstrated, we can let it
go. The next section presents a more idiomatic implementation of
Sentence.

Sentence Take #3: A Generator Function
A Pythonic implementation of the same functionality uses a generator,
avoiding all the work to implement the SentenceIterator class. A
proper explanation of the generator comes right after Example 17-5.

Example 17-5. sentence_gen.py: Sentence implemented using a generator
import re 
import reprlib 
 
RE_WORD = re.compile(r'\w+') 
 
 
class Sentence: 
 
    def __init__(self, text): 
        self.text = text 
        self.words = RE_WORD.findall(text) 
 
    def __repr__(self): 
        return 'Sentence(%s)' % reprlib.repr(self.text) 
 
    def __iter__(self): 
        for word in self.words:   
            yield word   
        return   
 
# done! 



Iterate over self.words.

Yield the current word.

This return is not needed; the function can just “fall-through” and
return automatically. Either way, a generator function doesn’t raise
StopIteration: it simply exits when it’s done producing values.

No need for a separate iterator class!

Here again we have a different implementation of Sentence that passes
the tests in Example 17-2.

Back in the Sentence code in Example 17-4, __iter__ called the
SentenceIterator constructor to build an iterator and return it. Now
the iterator in Example 17-5 is in fact a generator object, built automatically
when the __iter__ method is called, because __iter__ here is a
generator function.

A full explanation of generators follows.

How a Generator Works
Any Python function that has the yield keyword in its body is a generator
function: a function which, when called, returns a generator object. In other
words, a generator function is a generator factory.

TIP
The only syntax distinguishing a plain function from a generator function is the fact that
the latter has a yield keyword somewhere in its body. Some argued that a new
keyword like gen should be used for generator functions instead of def, but Guido did
not agree. His arguments are in PEP 255 — Simple Generators.
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Here is the simplest function useful to demonstrate the behavior of a
generator:

>>> def gen_123():   
...     yield 1   
...     yield 2 
...     yield 3 
... 
>>> gen_123  # doctest: +ELLIPSIS 
<function gen_123 at 0x...>   
>>> gen_123()   # doctest: +ELLIPSIS 
<generator object gen_123 at 0x...>   
>>> for i in gen_123():   
...     print(i) 
1 
2 
3 
>>> g = gen_123()   
>>> next(g)   
1 
>>> next(g) 
2 
>>> next(g) 
3 
>>> next(g)   
Traceback (most recent call last): 
  ... 
StopIteration

Any Python function that contains the yield keyword is a generator
function.

Usually the body of a generator function has loop, but not necessarily;
here I just repeat yield three times.

Looking closely, we see gen_123 is a function object.

But when invoked, gen_123() returns a generator object.

Generators are iterators that produce the values of the expressions
passed to yield.
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For closer inspection, we assign the generator object to g.

Because g is an iterator, calling next(g) fetches the next item
produced by yield.

When the body of the function completes, the generator object raises a
StopIteration.

A generator function builds a generator object that wraps the body of the
function. When we invoke next(…) on the generator object, execution
advances to the next yield in the function body, and the next(…) call
evaluates to the value yielded when the function body is suspended. Finally,
when the function body returns, the enclosing generator object raises
StopIteration, in accordance with the Iterator protocol.

TIP
I find it helpful to be strict when talking about the results obtained from a generator: I
say that a generator yields or produces values. But it’s confusing to say a generator
“returns” values. Functions return values. Calling a generator function returns a
generator. A generator yields or produces values. A generator doesn’t “return” values in
the usual way: the return statement in the body of a generator function causes
StopIteration to be raised by the generator object.

Example 17-6 makes the interaction between a for loop and the body of
the function more explicit.

Example 17-6. A generator function that prints messages when it runs
>>> def gen_AB():   
...     print('start') 
...     yield 'A'        
...     print('continue') 
...     yield 'B'        
...     print('end.')    
... 
>>> for c in gen_AB():   
...     print('-->', c)   
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... 
start     
--> A    
continue  
--> B    
end.      
>>>  

The generator function is defined like any function, but uses yield.

The first implicit call to next() in the for loop at  will print
'start' and stop at the first yield, producing the value 'A'.

The second implicit call to next() in the for loop will print
'continue' and stop at the second yield, producing the value
'B'.

The third call to next() will print 'end.' and fall through the end of
the function body, causing the generator object to raise
StopIteration.

To iterate, the for machinery does the equivalent of g =
iter(gen_AB()) to get a generator object, and then next(g) at
each iteration.

The loop block prints --> and the value returned by next(g). But
this output will be seen only after the output of the print calls inside
the generator function.

The string 'start' appears as a result of print('start') in the
generator function body.

yield 'A' in the generator function body produces the value A
consumed by the for loop, which gets assigned to the c variable and
results in the output --> A.



Iteration continues with a second call next(g), advancing the
generator function body from yield 'A' to yield 'B'. The text
continue is output because of the second print in the generator
function body.

yield 'B' produces the value B consumed by the for loop, which
gets assigned to the c loop variable, so the loop prints --> B.

Iteration continues with a third call next(it), advancing to the end of
the body of the function. The text end. appears in the output because
of the third print in the generator function body.

When the generator function body runs to the end, the generator object
raises StopIteration. The for loop machinery catches that
exception, and the loop terminates cleanly.

Now hopefully it’s clear how Sentence.__iter__ in Example 17-5
works: __iter__ is a generator function which, when called, builds a
generator object that implements the iterator interface, so the
SentenceIterator class is no longer needed.

This second version of Sentence is much shorter than the first, but it’s
not as lazy as it could be. Nowadays, laziness is considered a good trait, at
least in programming languages and APIs. A lazy implementation
postpones producing values to the last possible moment. This saves
memory and may avoid useless processing as well.

We’ll build lazy Sentence classes next.

Lazy sentences
The final variations of Sentence are lazy, taking advantage of a lazy
function from the re module.



Sentence Take #4: Lazy Generator
The Iterator interface is designed to be lazy: next(my_iterator)
produces one item at a time. The opposite of lazy is eager: lazy evaluation
and eager evaluation are actual technical terms in programming language
theory.

Our Sentence implementations so far have not been lazy because the
__init__ eagerly builds a list of all words in the text, binding it to the
self.words attribute. This will entail processing the entire text, and the
list may use as much memory as the text itself (probably more; it depends
on how many nonword characters are in the text). Most of this work will be
in vain if the user only iterates over the first couple words.

Whenever you are using Python 3 and start wondering “Is there a lazy way
of doing this?”, often the answer is “Yes.”

The re.finditer function is a lazy version of re.findall which,
instead of a list, returns a generator producing re.MatchObject
instances on demand. If there are many matches, re.finditer saves a
lot of memory. Using it, our third version of Sentence is now lazy: it
only produces the next word when it is needed. The code is in Example 17-
7.

Example 17-7. sentence_gen2.py: Sentence implemented using a generator
function calling the re.finditer generator function
import re 
import reprlib 
 
RE_WORD = re.compile(r'\w+') 
 
 
class Sentence: 
 
    def __init__(self, text): 
        self.text = text   
 
    def __repr__(self): 
        return f'Sentence({reprlib.repr(self.text)})' 
 
    def __iter__(self): 



        for match in RE_WORD.finditer(self.text):   
            yield match.group()  

No need to have a words list.

finditer builds an iterator over the matches of RE_WORD on
self.text, yielding MatchObject instances.

match.group() extracts the actual matched text from the
MatchObject instance.

Generators are an awesome shortcut, but the code can be made even shorter
with a generator expression.

Sentence Take #5: Lazy Generator Expression
Simple generator functions like the one in the previous Sentence class
(Example 17-7) can be replaced by a generator expression.

A generator expression can be understood as a lazy version of a list
comprehension: it does not eagerly build a list, but returns a generator that
will lazily produce the items on demand. In other words, if a list
comprehension is a factory of lists, a generator expression is a factory of
generators.

Example 17-8 is a quick demo of a generator expression, comparing it to a
list comprehension.

Example 17-8. The gen_AB generator function is used by a list
comprehension, then by a generator expression
>>> def gen_AB():   
...     print('start') 
...     yield 'A' 
...     print('continue') 
...     yield 'B' 
...     print('end.') 
... 
>>> res1 = [x*3 for x in gen_AB()]   
start 



continue 
end. 
>>> for i in res1:   
...     print('-->', i) 
... 
--> AAA 
--> BBB 
>>> res2 = (x*3 for x in gen_AB())   
>>> res2   
<generator object <genexpr> at 0x10063c240> 
>>> for i in res2:   
...     print('-->', i) 
... 
start 
--> AAA 
continue 
--> BBB 
end.

This is the same gen_AB function from Example 17-6.

The list comprehension eagerly iterates over the items yielded by the
generator object produced by calling gen_AB(): 'A' and 'B'. Note
the output in the next lines: start, continue, end.

This for loop is iterating over the res1 list produced by the list
comprehension.

The generator expression returns res2. The call to gen_AB() is
made, but that call returns a generator, which is not consumed here.

res2 is a generator object.

Only when the for loop iterates over res2, the body of gen_AB
actually executes. Each iteration of the for loop implicitly calls
next(res2), advancing gen_AB to the next yield. Note the output
of gen_AB with the output of the print in the for loop.



So, a generator expression produces a generator, and we can use it to further
reduce the code in the Sentence class. See Example 17-9.

Example 17-9. sentence_genexp.py: Sentence implemented using a
generator expression
import re 
import reprlib 
 
RE_WORD = re.compile(r'\w+') 
 
 
class Sentence: 
 
    def __init__(self, text): 
        self.text = text 
 
    def __repr__(self): 
        return f'Sentence({reprlib.repr(self.text)})' 
 
    def __iter__(self): 
        return (match.group() for match in 
RE_WORD.finditer(self.text))

The only difference from Example 17-7 is the __iter__ method, which
here is not a generator function (it has no yield) but uses a generator
expression to build a generator and then returns it. The end result is the
same: the caller of __iter__ gets a generator object.

Generator expressions are syntactic sugar: they can always be replaced by
generator functions, but sometimes are more convenient. The next section is
about generator expression usage.

Generator Expressions: When to Use Them
I used several generator expressions when implementing the Vector class
in Example 12-16. Each of the methods __eq__, __hash__, __abs__,
angle, angles, format, __add__, and __mul__ has a generator
expression. In all those methods, a list comprehension would also work, at
the cost of using more memory to store the intermediate list values.



In Example 17-9, we saw that a generator expression is a syntactic shortcut
to create a generator without defining and calling a function. On the other
hand, generator functions are much more flexible: you can code complex
logic with multiple statements, and can even use them as coroutines (see
Chapter 19).

For the simpler cases, a generator expression will do, and it’s easier to read
at a glance, as the Vector example shows.

My rule of thumb in choosing the syntax to use is simple: if the generator
expression spans more than a couple of lines, I prefer to code a generator
function for the sake of readability.

SYNTAX TIP
When a generator expression is passed as the single argument to a function or
constructor, you don’t need to write a set of parentheses for the function call and another
to enclose the generator expression. A single pair will do, like in the Vector call from
the __mul__ method in Example 12-16, reproduced here. However, if there are more
function arguments after the generator expression, you need to enclose it in parentheses
to avoid a SyntaxError:

def __mul__(self, scalar): 
    if isinstance(scalar, numbers.Real): 
        return Vector(n * scalar for n in self) 
    else: 
        return NotImplemented

The Sentence examples we’ve seen exemplify the use of generators
playing the role of classic iterators: retrieving items from a collection. But
generators can also be used to produce values independent of a data source.
The next section shows an example of that.

Another Example: Arithmetic Progression
Generator



The classic Iterator pattern is all about traversal: navigating some data
structure. But a standard interface based on a method to fetch the next item
in a series is also useful when the items are produced on the fly, instead of
retrieved from a collection. For example, the range built-in generates a
bounded arithmetic progression (AP) of integers, and the
itertools.count function generates a boundless AP.

We’ll cover itertools.count in the next section, but what if you need
to generate a bounded AP of numbers of any type?

Example 17-10 shows a few console tests of an
ArithmeticProgression class we will see in a moment. The
signature of the constructor in Example 17-10 is
ArithmeticProgression(begin, step[, end]). The
range() function is similar to the ArithmeticProgression here,
but its full signature is range(start, stop[, step]). I chose to
implement a different signature because for an arithmetic progression the
step is mandatory but end is optional. I also changed the argument names
from start/stop to begin/end to make it very clear that I opted for a
different signature. In each test in Example 17-10 I call list() on the
result to inspect the generated values.

Example 17-10. Demonstration of an ArithmeticProgression class
    >>> ap = ArithmeticProgression(0, 1, 3) 
    >>> list(ap) 
    [0, 1, 2] 
    >>> ap = ArithmeticProgression(1, .5, 3) 
    >>> list(ap) 
    [1.0, 1.5, 2.0, 2.5] 
    >>> ap = ArithmeticProgression(0, 1/3, 1) 
    >>> list(ap) 
    [0.0, 0.3333333333333333, 0.6666666666666666] 
    >>> from fractions import Fraction 
    >>> ap = ArithmeticProgression(0, Fraction(1, 3), 1) 
    >>> list(ap) 
    [Fraction(0, 1), Fraction(1, 3), Fraction(2, 3)] 
    >>> from decimal import Decimal 
    >>> ap = ArithmeticProgression(0, Decimal('.1'), .3) 
    >>> list(ap) 
    [Decimal('0.0'), Decimal('0.1'), Decimal('0.2')]



Note that type of the numbers in the resulting arithmetic progression
follows the type of begin or step, according to the numeric coercion
rules of Python arithmetic. In Example 17-10, you see lists of int, float,
Fraction, and Decimal numbers.

Example 17-11 lists the implementation of the
ArithmeticProgression class.

Example 17-11. The ArithmeticProgression class
class ArithmeticProgression: 
 
    def __init__(self, begin, step, end=None):        
        self.begin = begin 
        self.step = step 
        self.end = end  # None -> "infinite" series 
 
    def __iter__(self): 
        result_type = type(self.begin + self.step)    
        result = result_type(self.begin)              
        forever = self.end is None                    
        index = 0 
        while forever or result < self.end:           
            yield result                              
            index += 1 
            result = self.begin + self.step * index  

__init__ requires two arguments: begin and step. end is
optional, if it’s None, the series will be unbounded.

Get the type of adding self.begin and self.step. For example,
if one is int and the other is float, result_type will be float.

This line produces a result value equal to self.begin, but
coerced to the type of the subsequent additions.

For readability, the forever flag will be True if the self.end
attribute is None, resulting in an unbounded series.

This loop runs forever or until the result matches or exceeds
self.end. When this loop exits, so does the function.
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The current result is produced.

The next potential result is calculated. It may never be yielded, because
the while loop may terminate.

In the last line of Example 17-11, instead of simply incrementing the
result with self.step iteratively, I opted to use an index variable
and calculate each result by adding self.begin to self.step
multiplied by index to reduce the cumulative effect of errors when
working with floats.

The ArithmeticProgression class from Example 17-11 works as
intended, and is a clear example of the use of a generator function to
implement the __iter__ special method. However, if the whole point of
a class is to build a generator by implementing __iter__, the class can be
reduced to a generator function. A generator function is, after all, a
generator factory.

Example 17-12 shows a generator function called aritprog_gen that
does the same job as ArithmeticProgression but with less code.
The tests in Example 17-10 all pass if you just call aritprog_gen
instead of ArithmeticProgression.

Example 17-12. The aritprog_gen generator function
def aritprog_gen(begin, step, end=None): 
    result = type(begin + step)(begin) 
    forever = end is None 
    index = 0 
    while forever or result < end: 
        yield result 
        index += 1 
        result = begin + step * index

Example 17-12 is pretty cool, but always remember: there are plenty of
ready-to-use generators in the standard library, and the next section will
show an even cooler implementation using the itertools module.
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Arithmetic Progression with itertools
The itertools module in Python 3.9 has 19 generator functions that can
be combined in a variety of interesting ways.

For example, the itertools.count function returns a generator that
produces numbers. Without arguments, it produces a series of integers
starting with 0. But you can provide optional start and step values to
achieve a result very similar to our aritprog_gen functions:

>>> import itertools 
>>> gen = itertools.count(1, .5) 
>>> next(gen) 
1 
>>> next(gen) 
1.5 
>>> next(gen) 
2.0 
>>> next(gen) 
2.5

However, itertools.count never stops, so if you call
list(count()), Python will try to build a list larger than available
memory and your machine will be very grumpy long before the call fails.

On the other hand, there is the itertools.takewhile function: it
produces a generator that consumes another generator and stops when a
given predicate evaluates to False. So we can combine the two and write
this:

>>> gen = itertools.takewhile(lambda n: n < 3, itertools.count(1, 
.5)) 
>>> list(gen) 
[1, 1.5, 2.0, 2.5]

Leveraging takewhile and count, Example 17-13 is sweet and short.

Example 17-13. aritprog_v3.py: this works like the previous aritprog_gen
functions



import itertools 
 
 
def aritprog_gen(begin, step, end=None): 
    first = type(begin + step)(begin) 
    ap_gen = itertools.count(first, step) 
    if end is not None: 
        ap_gen = itertools.takewhile(lambda n: n < end, ap_gen) 
    return ap_gen

Note that aritprog_gen is not a generator function in Example 17-13: it
has no yield in its body. But it returns a generator, so it operates as a
generator factory, just as a generator function does.

The point of Example 17-13 is: when implementing generators, know what
is available in the standard library, otherwise there’s a good chance you’ll
reinvent the wheel. That’s why the next section covers several ready-to-use
generator functions.

Generator Functions in the Standard Library
The standard library provides many generators, from plain-text file objects
providing line-by-line iteration, to the awesome os.walk function, which
yields filenames while traversing a directory tree, making recursive
filesystem searches as simple as a for loop.

The os.walk generator function is impressive, but in this section I want to
focus on general-purpose functions that take arbitrary iterables as
arguments and return generators that produce selected, computed, or
rearranged items. In the following tables, I summarize two dozen of them,
from the built-in, itertools, and functools modules. For
convenience, I grouped them by high-level functionality, regardless of
where they are defined.

http://bit.ly/1HGqqwh


NOTE
Perhaps you know all the functions mentioned in this section, but some of them are
underused, so a quick overview may be good to recall what’s already available.

The first group are filtering generator functions: they yield a subset of items
produced by the input iterable, without changing the items themselves. We
used itertools.takewhile previously in this chapter, in “Arithmetic
Progression with itertools”. Like takewhile, most functions listed in
Table 17-1 take a predicate, which is a one-argument Boolean function
that will be applied to each item in the input to determine whether the item
is included in the output.
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Module Function Description

 

itertools compress(it, sel
ector_it)

Consumes two iterables in parallel; yields items 
from it whenever the corresponding item in sele
ctor_it is truthy

itertools dropwhile(predic
ate, it)

Consumes it skipping items while predicate 
computes truthy, then yields every remaining item 
(no further checks are made)

(built-in) filter(predicat
e, it)

Applies predicate to each item of iterable, 
yielding the item if predicate(item) is truthy; 
if predicate is None, only truthy items are 
yielded

itertools filterfalse(pred
icate, it)

Same as filter, with the predicate logic 
negated: yields items whenever predicate 
computes falsy

itertools islice(it, stop) 
or islice(it, st
art, stop, step=
1)

Yields items from a slice of it, similar to s[:sto
p] or s[start:stop:step] except it can be 
any iterable, and the operation is lazy

itertools takewhile(predic
ate, it)

Yields items while predicate computes truthy, 
then stops and no further checks are made

 

The console listing in Example 17-14 shows the use of all functions in
Table 17-1.

Example 17-14. Filtering generator functions examples



>>> def vowel(c): 
...     return c.lower() in 'aeiou' 
... 
>>> list(filter(vowel, 'Aardvark')) 
['A', 'a', 'a'] 
>>> import itertools 
>>> list(itertools.filterfalse(vowel, 'Aardvark')) 
['r', 'd', 'v', 'r', 'k'] 
>>> list(itertools.dropwhile(vowel, 'Aardvark')) 
['r', 'd', 'v', 'a', 'r', 'k'] 
>>> list(itertools.takewhile(vowel, 'Aardvark')) 
['A', 'a'] 
>>> list(itertools.compress('Aardvark', (1,0,1,1,0,1))) 
['A', 'r', 'd', 'a'] 
>>> list(itertools.islice('Aardvark', 4)) 
['A', 'a', 'r', 'd'] 
>>> list(itertools.islice('Aardvark', 4, 7)) 
['v', 'a', 'r'] 
>>> list(itertools.islice('Aardvark', 1, 7, 2)) 
['a', 'd', 'a']

The next group are the mapping generators: they yield items computed from
each individual item in the input iterable—or iterables, in the case of map
and starmap.  The generators in Table 17-2 yield one result per item in
the input iterables. If the input comes from more than one iterable, the
output stops as soon as the first input iterable is exhausted.
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Module Function Description

 

itertools accumulate(i
t, [func])

Yields accumulated sums; if func is provided, yields 
the result of applying it to the first pair of items, then to 
the first result and next item, etc.

(built-in) enumerate(ite
rable, start=
0)

Yields 2-tuples of the form (index, item), where i
ndex is counted from start, and item is taken from 
the iterable

(built-in) map(func, it
1, [it2, …, i
tN])

Applies func to each item of it, yielding the result; if 
N iterables are given, func must take N arguments and 
the iterables will be consumed in parallel

itertools starmap(func, 
it)

Applies func to each item of it, yielding the result; 
the input iterable should yield iterable items iit, and f
unc is applied as func(*iit)

 

Example 17-15 demonstrates some uses of itertools.accumulate.

Example 17-15. itertools.accumulate generator function examples
>>> sample = [5, 4, 2, 8, 7, 6, 3, 0, 9, 1] 
>>> import itertools 
>>> list(itertools.accumulate(sample))   
[5, 9, 11, 19, 26, 32, 35, 35, 44, 45] 
>>> list(itertools.accumulate(sample, min))   
[5, 4, 2, 2, 2, 2, 2, 0, 0, 0] 
>>> list(itertools.accumulate(sample, max))   
[5, 5, 5, 8, 8, 8, 8, 8, 9, 9] 
>>> import operator 
>>> list(itertools.accumulate(sample, operator.mul))   
[5, 20, 40, 320, 2240, 13440, 40320, 0, 0, 0] 
>>> list(itertools.accumulate(range(1, 11), operator.mul)) 
[1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]  



Running sum.

Running minimum.

Running maximum.

Running product.

Factorials from 1! to 10!.

The remaining functions of Table 17-2 are shown in Example 17-16.

Example 17-16. Mapping generator function examples
>>> list(enumerate('albatroz', 1))   
[(1, 'a'), (2, 'l'), (3, 'b'), (4, 'a'), (5, 't'), (6, 'r'), (7, 
'o'), (8, 'z')] 
>>> import operator 
>>> list(map(operator.mul, range(11), range(11)))   
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 
>>> list(map(operator.mul, range(11), [2, 4, 8]))   
[0, 4, 16] 
>>> list(map(lambda a, b: (a, b), range(11), [2, 4, 8]))   
[(0, 2), (1, 4), (2, 8)] 
>>> import itertools 
>>> list(itertools.starmap(operator.mul, enumerate('albatroz', 1)))  
 

['a', 'll', 'bbb', 'aaaa', 'ttttt', 'rrrrrr', 'ooooooo', 
'zzzzzzzz'] 
>>> sample = [5, 4, 2, 8, 7, 6, 3, 0, 9, 1] 
>>> list(itertools.starmap(lambda a, b: b/a, 
...     enumerate(itertools.accumulate(sample), 1)))   
[5.0, 4.5, 3.6666666666666665, 4.75, 5.2, 5.333333333333333, 
5.0, 4.375, 4.888888888888889, 4.5]

Number the letters in the word, starting from 1.

Squares of integers from 0 to 10.

Multiplying numbers from two iterables in parallel: results stop when
the shortest iterable ends.



This is what the zip built-in function does.

Repeat each letter in the word according to its place in it, starting from
1.

Running average.

Next, we have the group of merging generators—all of these yield items
from multiple input iterables. chain and chain.from_iterable
consume the input iterables sequentially (one after the other), while
product, zip, and zip_longest consume the input iterables in
parallel. See Table 17-3.
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Module Function Description

 

itertools chain(it1, …, 
itN)

Yield all items from it1, then from it2 etc., 
seamlessly



itertools chain.from_it
erable(it)

Yield all items from each iterable produced by it, one 
after the other, seamlessly; it should yield iterable 
items, for example, a list of iterables

itertools product(it1, 
…, itN, repea
t=1)

Cartesian product: yields N-tuples made by combining 
items from each input iterable like nested for loops 
could produce; repeat allows the input iterables to be 
consumed more than once

(built-in) zip(it1, …, i
tN)

Yields N-tuples built from items taken from the iterables 
in parallel, silently stopping when the first iterable is 
exhausted

itertools zip_longest(i
t1, …, itN, f
illvalue=Non
e)

Yields N-tuples built from items taken from the iterables 
in parallel, stopping only when the last iterable is 
exhausted, filling the blanks with the fillvalue

 

Example 17-17 shows the use of the itertools.chain and zip
generator functions and their siblings. Recall that the zip function is
named after the zip fastener or zipper (no relation with compression). Both
zip and itertools.zip_longest were introduced in “The Awesome
zip”.

Example 17-17. Merging generator function examples
>>> list(itertools.chain('ABC', range(2)))   
['A', 'B', 'C', 0, 1] 
>>> list(itertools.chain(enumerate('ABC')))   
[(0, 'A'), (1, 'B'), (2, 'C')] 
>>> list(itertools.chain.from_iterable(enumerate('ABC')))   
[0, 'A', 1, 'B', 2, 'C'] 
>>> list(zip('ABC', range(5)))   
[('A', 0), ('B', 1), ('C', 2)] 
>>> list(zip('ABC', range(5), [10, 20, 30, 40]))   
[('A', 0, 10), ('B', 1, 20), ('C', 2, 30)] 
>>> list(itertools.zip_longest('ABC', range(5)))   
[('A', 0), ('B', 1), ('C', 2), (None, 3), (None, 4)] 
>>> list(itertools.zip_longest('ABC', range(5), fillvalue='?'))   
[('A', 0), ('B', 1), ('C', 2), ('?', 3), ('?', 4)]



chain is usually called with two or more iterables.

chain does nothing useful when called with a single iterable.

But chain.from_iterable takes each item from the iterable, and
chains them in sequence, as long as each item is itself iterable.

zip is commonly used to merge two iterables into a series of two-
tuples.

Any number of iterables can be consumed by zip in parallel, but the
generator stops as soon as the first iterable ends.

itertools.zip_longest works like zip, except it consumes all
input iterables to the end, padding output tuples with None as needed.

The fillvalue keyword argument specifies a custom padding value.

The itertools.product generator is a lazy way of computing
Cartesian products, which we built using list comprehensions with more
than one for clause in “Cartesian Products”. Generator expressions with
multiple for clauses can also be used to produce Cartesian products lazily.
Example 17-18 demonstrates itertools.product.

Example 17-18. itertools.product generator function examples
>>> list(itertools.product('ABC', range(2)))   
[('A', 0), ('A', 1), ('B', 0), ('B', 1), ('C', 0), ('C', 1)] 
>>> suits = 'spades hearts diamonds clubs'.split() 
>>> list(itertools.product('AK', suits))   
[('A', 'spades'), ('A', 'hearts'), ('A', 'diamonds'), ('A', 
'clubs'), 
('K', 'spades'), ('K', 'hearts'), ('K', 'diamonds'), ('K', 
'clubs')] 
>>> list(itertools.product('ABC'))   
[('A',), ('B',), ('C',)] 
>>> list(itertools.product('ABC', repeat=2))   
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'B'), 
('B', 'C'), ('C', 'A'), ('C', 'B'), ('C', 'C')] 
>>> list(itertools.product(range(2), repeat=3)) 



[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), 
(1, 0, 1), (1, 1, 0), (1, 1, 1)] 
>>> rows = itertools.product('AB', range(2), repeat=2) 
>>> for row in rows: print(row) 
... 
('A', 0, 'A', 0) 
('A', 0, 'A', 1) 
('A', 0, 'B', 0) 
('A', 0, 'B', 1) 
('A', 1, 'A', 0) 
('A', 1, 'A', 1) 
('A', 1, 'B', 0) 
('A', 1, 'B', 1) 
('B', 0, 'A', 0) 
('B', 0, 'A', 1) 
('B', 0, 'B', 0) 
('B', 0, 'B', 1) 
('B', 1, 'A', 0) 
('B', 1, 'A', 1) 
('B', 1, 'B', 0) 
('B', 1, 'B', 1)

The Cartesian product of a str with three characters and a range with
two integers yields six tuples (because 3 * 2 is 6).

The product of two card ranks ('AK'), and four suits is a series of eight
tuples.

Given a single iterable, product yields a series of one-tuples, not very
useful.

The repeat=N keyword argument tells product to consume each input
iterable N times.

Some generator functions expand the input by yielding more than one value
per input item. They are listed in Table 17-4.
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Module Function Description

 

itertools combinations(it, o
ut_len)

Yield combinations of out_len items from the 
items yielded by it

itertools combinations_with_
replacement(it, ou
t_len)

Yield combinations of out_len items from the 
items yielded by it, including combinations 
with repeated items

itertools count(start=0, ste
p=1)

Yields numbers starting at start, incremented 
by step, indefinitely

itertools cycle(it) Yields items from it storing a copy of each, then 
yields the entire sequence repeatedly, indefinitely

itertools permutations(it, o
ut_len=None)

Yield permutations of out_len items from the 
items yielded by it; by default, out_len is le
n(list(it))

itertools repeat(item, [time
s])

Yield the given item repeatedly, indefinitely 
unless a number of times is given

 

The count and repeat functions from itertools return generators
that conjure items out of nothing: neither of them takes an iterable as input.
We saw itertools.count in “Arithmetic Progression with itertools”.



The cycle generator makes a backup of the input iterable and yields its
items repeatedly. Example 17-19 illustrates the use of count, repeat,
and cycle.

Example 17-19. count, cycle, and repeat
>>> ct = itertools.count()   
>>> next(ct)   
0 
>>> next(ct), next(ct), next(ct)   
(1, 2, 3) 
>>> list(itertools.islice(itertools.count(1, .3), 3))   
[1, 1.3, 1.6] 
>>> cy = itertools.cycle('ABC')   
>>> next(cy) 
'A' 
>>> list(itertools.islice(cy, 7))   
['B', 'C', 'A', 'B', 'C', 'A', 'B'] 
>>> rp = itertools.repeat(7)   
>>> next(rp), next(rp) 
(7, 7) 
>>> list(itertools.repeat(8, 4))   
[8, 8, 8, 8] 
>>> list(map(operator.mul, range(11), itertools.repeat(5)))   
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]

Build a count generator ct.

Retrieve the first item from ct.

I can’t build a list from ct, because ct never stops, so I fetch the
next three items.

I can build a list from a count generator if it is limited by islice
or takewhile.

Build a cycle generator from 'ABC' and fetch its first item, 'A'.

A list can only be built if limited by islice; the next seven items
are retrieved here.

Build a repeat generator that will yield the number 7 forever.



A repeat generator can be limited by passing the times argument:
here the number 8 will be produced 4 times.

A common use of repeat: providing a fixed argument in map; here it
provides the 5 multiplier.

The combinations, combinations_with_replacement, and
permutations generator functions—together with product—are
called the combinatorics generators in the itertools documentation
page. There is a close relationship between itertools.product and
the remaining combinatoric functions as well, as Example 17-20 shows.

Example 17-20. Combinatoric generator functions yield multiple values per
input item
>>> list(itertools.combinations('ABC', 2))   
[('A', 'B'), ('A', 'C'), ('B', 'C')] 
>>> list(itertools.combinations_with_replacement('ABC', 2))   
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'B'), ('B', 'C'), ('C', 
'C')] 
>>> list(itertools.permutations('ABC', 2))   
[('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'C'), ('C', 'A'), ('C', 
'B')] 
>>> list(itertools.product('ABC', repeat=2))   
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'A'), ('B', 'B'), ('B', 
'C'), 
('C', 'A'), ('C', 'B'), ('C', 'C')]

All combinations of len()==2 from the items in 'ABC'; item
ordering in the generated tuples is irrelevant (they could be sets).

All combinations of len()==2 from the items in 'ABC', including
combinations with repeated items.

All permutations of len()==2 from the items in 'ABC'; item
ordering in the generated tuples is relevant.

Cartesian product from 'ABC' and 'ABC' (that’s the effect of
repeat=2).

http://bit.ly/py-itertools


The last group of generator functions we’ll cover in this section are
designed to yield all items in the input iterables, but rearranged in some
way. Here are two functions that return multiple generators:
itertools.groupby and itertools.tee. The other generator
function in this group, the reversed built-in, is the only one covered in
this section that does not accept any iterable as input, but only sequences.
This makes sense: because reversed will yield the items from last to
first, it only works with a sequence with a known length. But it avoids the
cost of making a reversed copy of the sequence by yielding each item as
needed. I put the itertools.product function together with the
merging generators in Table 17-3 because they all consume more than one
iterable, while the generators in Table 17-5 all accept at most one input
iterable.
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Module Function Description

 

itertools groupby(it, k
ey=None)

Yields 2-tuples of the form (key, group), where ke
y is the grouping criterion and group is a generator 
yielding the items in the group

(built-in) reversed(seq) Yields items from seq in reverse order, from last to 
first; seq must be a sequence or implement the __rev
ersed__ special method

itertools tee(it, n=2) Yields a tuple of n generators, each yielding the items of 
the input iterable independently

 

Example 17-21 demonstrates the use of itertools.groupby and the
reversed built-in. Note that itertools.groupby assumes that the
input iterable is sorted by the grouping criterion, or at least that the items
are clustered by that criterion—even if not sorted.

Example 17-21. itertools.groupby
>>> list(itertools.groupby('LLLLAAGGG'))   
[('L', <itertools._grouper object at 0x102227cc0>), 
('A', <itertools._grouper object at 0x102227b38>), 
('G', <itertools._grouper object at 0x102227b70>)] 
>>> for char, group in itertools.groupby('LLLLAAAGG'):   
...     print(char, '->', list(group)) 
... 
L -> ['L', 'L', 'L', 'L'] 
A -> ['A', 'A',] 



G -> ['G', 'G', 'G'] 
>>> animals = ['duck', 'eagle', 'rat', 'giraffe', 'bear', 
...            'bat', 'dolphin', 'shark', 'lion'] 
>>> animals.sort(key=len)   
>>> animals 
['rat', 'bat', 'duck', 'bear', 'lion', 'eagle', 'shark', 
'giraffe', 'dolphin'] 
>>> for length, group in itertools.groupby(animals, len):   
...     print(length, '->', list(group)) 
... 
3 -> ['rat', 'bat'] 
4 -> ['duck', 'bear', 'lion'] 
5 -> ['eagle', 'shark'] 
7 -> ['giraffe', 'dolphin'] 
>>> for length, group in itertools.groupby(reversed(animals), len): 
 

...     print(length, '->', list(group)) 

... 
7 -> ['dolphin', 'giraffe'] 
5 -> ['shark', 'eagle'] 
4 -> ['lion', 'bear', 'duck'] 
3 -> ['bat', 'rat'] 
>>>

groupby yields tuples of (key, group_generator).

Handling groupby generators involves nested iteration: in this case,
the outer for loop and the inner list constructor.

To use groupby, the input should be sorted; here the words are sorted
by length.

Again, loop over the key and group pair, to display the key and
expand the group into a list.

Here the reverse generator iterates over animals from right to left.

The last of the generator functions in this group is iterator.tee, which
has a unique behavior: it yields multiple generators from a single input
iterable, each yielding every item from the input. Those generators can be
consumed independently, as shown in Example 17-22.



Example 17-22. itertools.tee yields multiple generators, each yielding every
item of the input generator
>>> list(itertools.tee('ABC')) 
[<itertools._tee object at 0x10222abc8>, <itertools._tee object at 
0x10222ac08>] 
>>> g1, g2 = itertools.tee('ABC') 
>>> next(g1) 
'A' 
>>> next(g2) 
'A' 
>>> next(g2) 
'B' 
>>> list(g1) 
['B', 'C'] 
>>> list(g2) 
['C'] 
>>> list(zip(*itertools.tee('ABC'))) 
[('A', 'A'), ('B', 'B'), ('C', 'C')]

Note that several examples in this section used combinations of generator
functions. This is a great feature of these functions: because they take
generators as arguments and return generators, they can be combined in
many different ways.

The yield from syntax provides a new way of combining generators.
That’s next.

Subgenerators with yield from
The yield from expression syntax was introduced in Python 3.3 to
allow a generator to delegate work to a subgenerator.

Example 17-23 is a simple experiment with yield from:

Example 17-23. Test driving yield from.
>>> def sub_gen(): 
...     yield 1.1 
...     yield 1.2 
... 
>>> def gen(): 
...     yield 1 
...     yield from sub_gen() 



...     yield 2 

... 
>>> for x in gen(): 
...     print(x) 
... 
1 
1.1 
1.2 
2

In Example 17-23, the for loop is the client code, gen is the delegating
generator and sub_gen is the subgenerator. Note that yield from
pauses gen, then executes sub_gen. The values yielded by sub_gen
pass through gen directly to the client for loop. Meanwhile, gen is
suspended and cannot see the values passing through it. When sub_gen is
done, gen resumes.

When used in an expression, the value of yield from is the return value
of the subgenerator. Example 17-24 demonstrates.

Example 17-24. yield from gets the return value of the subgenerator.
>>> def sub_gen(): 
...     yield 1.1 
...     yield 1.2 
...     return 'Done!' 
... 
>>> def gen(): 
...     yield 1 
...     result = yield from sub_gen() 
...     print('<--', result) 
...     yield 2 
... 
>>> for x in gen(): 
...     print(x) 
... 
1 
1.1 
1.2 
<-- Done! 
2

Now that we’ve seen the basics of yield from, let’s study a couple of
simple but practical examples of its use.



Reinventing chain.
Before yield from was introduced, when a generator needed to yield
values produced from another generator, nested for loops were the only
way.

Here is an example: the itertools module of the Python standard library
has a chain generator that yields items from several iterables, iterating
over the first, then the second and so on up to the last.  This is a
homemade implementation of chain in Python, using nested for loops:

>>> def chain(*iterables): 
...     for it in iterables: 
...         for i in it: 
...             yield i 
... 
>>> s = 'ABC' 
>>> t = tuple(range(3)) 
>>> list(chain(s, t)) 
['A', 'B', 'C', 0, 1, 2]

The chain generator above is delegating to each iterable it in turn, by
driving each it in the inner for loop. That inner loop can be replaced with
a yield from expression, as shown in the next console listing:

>>> def chain(*iterables): 
...     for i in iterables: 
...         yield from i 
... 
>>> list(chain(s, t)) 
['A', 'B', 'C', 0, 1, 2]

The use of yield from in this example is correct, and the code reads
better, but it seems like mere syntactic sugar. Now let’s develop a more
interesting example.

Traversing a tree
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In this section we’ll use yield from in a script to traverse a tree
structure. We will build it in baby steps.

The tree structure for this example is Python’s exception hierarchy. But the
code can be easily adapted to show a directory tree or any other tree
structure.

Starting from BaseException at level zero, the exception hierarchy is 5
levels deep (as of Python 3.9). Our first baby step is to show level zero.

Given a root class, the tree generator in Example 17-25 yields its name
and stops:

Example 17-25. tree/step0/tree.py: yield the name of root class and stop.
def tree(cls): 
    yield cls.__name__ 
 
 
def display(cls): 
    for cls_name in tree(cls): 
        print(cls_name) 
 
 
if __name__ == '__main__': 
    display(BaseException)

The output of Example 17-25 is just one line:

BaseException

The next baby step takes us to level 1. The tree generator will yield the
name of the root class and the names of each direct subclass. The names of
the subclasses are indented to reveal the hierarchy. This is the output we
want:

$ python3 tree.py 
BaseException 
    Exception 
    GeneratorExit 
    SystemExit 
    KeyboardInterrupt

https://docs.python.org/3/library/exceptions.html#exception-hierarchy


Example 17-26 produces that output.

Example 17-26. tree/step1/tree.py: yield the name of root class and direct
subclasses.
def tree(cls): 
    yield cls.__name__, 0                         
    for sub_cls in cls.__subclasses__():          
        yield sub_cls.__name__, 1                 
 
 
def display(cls): 
    for cls_name, level in tree(cls): 
        indent = ' ' * 4 * level                  
        print(f'{indent}{cls_name}') 
 
 
if __name__ == '__main__': 
    display(BaseException)

To support the indented output, yield the name of the class and its level
in the hierarchy.

Use the __subclasses__ special method to get list of subclasses.

Yield name of subclass and level 1.

Build indentation string of 4 spaces times level. At level zero, this
will be an empty string.

In Example 17-27 we refactor to separate the special case of the root class
from the subclasses, which are now handled in the sub_tree generator.
At yield from, the tree generator is suspended and sub_tree takes
over yielding values.

Example 17-27. tree/step2/tree.py: tree yields root class name, then
delegates to sub_tree.
def tree(cls): 
    yield cls.__name__, 0 
    yield from sub_tree(cls)               
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def sub_tree(cls): 
    for sub_cls in cls.__subclasses__(): 
        yield sub_cls.__name__, 1          
 
 
def display(cls): 
    for cls_name, level in tree(cls): 
        indent = ' ' * 4 * level 
        print(f'{indent}{cls_name}') 
 
 
if __name__ == '__main__': 
    display(BaseException)

Delegate to sub_tree to yield the names of the subclasses.

Yield name of subclass and level 1, directly to the printing for loop
driving tree.

In keeping with our baby steps method, we’ll write the simplest code we
can imagine to reach level 2. For depth-first tree traversal, after yielding
each node in level 1, we want to yield the children of that node in level 2,
before resuming level 1. We can code this with a nested for loop, as in
Example 17-28.

Example 17-28. tree/step3/tree.py: sub_tree traverses levels 1 and 2
depth-first.
def tree(cls): 
    yield cls.__name__, 0 
    yield from sub_tree(cls) 
 
 
def sub_tree(cls): 
    for sub_cls in cls.__subclasses__(): 
        yield sub_cls.__name__, 1 
        for sub_sub_cls in sub_cls.__subclasses__(): 
            yield sub_sub_cls.__name__, 2 
 
 
def display(cls): 
    for cls_name, level in tree(cls): 



        indent = ' ' * 4 * level 
        print(f'{indent}{cls_name}') 
 
 
if __name__ == '__main__': 
    display(BaseException)

This is the result of running step3/tree.py from Example 17-28:

$ python3 tree.py 
BaseException 
    Exception 
        TypeError 
        StopAsyncIteration 
        StopIteration 
        ImportError 
        OSError 
        EOFError 
        RuntimeError 
        NameError 
        AttributeError 
        SyntaxError 
        LookupError 
        ValueError 
        AssertionError 
        ArithmeticError 
        SystemError 
        ReferenceError 
        MemoryError 
        BufferError 
        Warning 
    GeneratorExit 
    SystemExit 
    KeyboardInterrupt

You may already know where this is going, but I will stick to baby steps
one more time: let’s reach level 3 by adding yet another nested for loop.
The rest of the program is unchanged, so Example 17-29 shows only the
sub_tree generator.

Example 17-29. sub_tree generator from tree/step4/tree.py.
def sub_tree(cls): 
    for sub_cls in cls.__subclasses__(): 
        yield sub_cls.__name__, 1 



        for sub_sub_cls in sub_cls.__subclasses__(): 
            yield sub_sub_cls.__name__, 2 
            for sub_sub_sub_cls in sub_sub_cls.__subclasses__(): 
                yield sub_sub_sub_cls.__name__, 3

There is a clear pattern in Example 17-29. We do a for loop to get the
subclasses of level N. Each time around the loop we yield a subclass and
level N, then start another for loop to visit level N+1.

In “Reinventing chain.” we saw how we can replace a nested for loop
driving a generator with yield from on the same generator. We can
apply that idea here, if we make sub_tree accept a level parameter,
and yield from it recursively, passing the current subclass as the new
root class with the next level number. See Example 17-30.

Example 17-30. tree/step5/tree.py: recursive sub_tree goes as far as
memory allows.
def tree(cls): 
    yield cls.__name__, 0 
    yield from sub_tree(cls, 1) 
 
 
def sub_tree(cls, level): 
    for sub_cls in cls.__subclasses__(): 
        yield sub_cls.__name__, level 
        yield from sub_tree(sub_cls, level+1) 
 
 
def display(cls): 
    for cls_name, level in tree(cls): 
        indent = ' ' * 4 * level 
        print(f'{indent}{cls_name}') 
 
 
if __name__ == '__main__': 
    display(BaseException)

Example 17-30 can traverse trees of any depth, limited only by Python’s
recursion limit. The default limit allows 1000 pending functions.

Any good tutorial about recursion will stress the importance of a base case
to avoid infinite recursion. The body of a recursive function often has an if
with one branch that does not make a recursive call—that’s the base case. In



Example 17-30, sub_tree has no if, but there is an implicit conditional
in the for loop: if cls.__subclasses__() returns an empty list, the
body of the loop is not executed, therefore no recursive call happens. The
base case is when the current class has no subclasses. In that case,
sub_tree does yields nothing. It just returns.

Example 17-30 works as intended, but we can make it more elegant by
recalling the pattern we observed in when we reached level 3 (Example 17-
29): we yield a subclass with level N, then start a nested for loop to visit
level N+1. In Example 17-30 we replaced that nested loop with yield
from. Now we can merge tree and sub_tree into a single generator.
Example 17-31 is the last step for this example.

Example 17-31. tree/step6/tree.py: recursive calls of tree pass an
incremented level argument.
def tree(cls, level=0): 
    yield cls.__name__, level 
    for sub_cls in cls.__subclasses__(): 
        yield from tree(sub_cls, level+1) 
 
 
def display(cls): 
    for cls_name, level in tree(cls): 
        indent = ' ' * 4 * level 
        print(f'{indent}{cls_name}') 
 
 
if __name__ == '__main__': 
    display(BaseException)

At the start of “Subgenerators with yield from” we saw how yield from
connects the subgenerator directly to the client code, bypassing the
delegating generator. That connection becomes really important when
generators are used as coroutines and not only produce but also consume
values from the client code. Chapter 19 dives into coroutines, and has
several pages explaining why yield from is much more than syntactic
sugar.

After this first encounter with yield from, we’ll go back to our review
of iterable-savvy functions in the standard library.



Iterable Reducing Functions
The functions in Table 17-6 all take an iterable and return a single result.
They are known as “reducing,” “folding,” or “accumulating” functions.
Actually, every one of the built-ins listed here can be implemented with
functools.reduce, but they exist as built-ins because they address
some common use cases more easily. Also, in the case of all and any,
there is an important optimization that can’t be done with reduce: these
functions short-circuit (i.e., they stop consuming the iterator as soon as the
result is determined). See the last test with any in Example 17-32.
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Module Function Description

 

(built-in) all(it) Returns True if all items in it are truthy, otherwise Fa



lse; all([]) returns True

(built-in) any(it) Returns True if any item in it is truthy, otherwise Fal
se; any([]) returns False

(built-in) max(it, [key
=,] [default
=])

Returns the maximum value of the items in it;  key is 
an ordering function, as in sorted; default is 
returned if the iterable is empty

(built-in) min(it, [key
=,] [default
=])

Returns the minimum value of the items in it.  key is 
an ordering function, as in sorted; default is 
returned if the iterable is empty

functools reduce(func, 
it, [initia
l])

Returns the result of applying func to the first pair of 
items, then to that result and the third item and so on; if 
given, initial forms the initial pair with the first item

(built-in) sum(it, start
=0)

The sum of all items in it, with the optional start 
value added (use math.fsum for better precision when 
adding floats)

 

a  May also be called as max(arg1, arg2, …, [key=?]), in which case the maximum among 
the arguments is returned.

b  May also be called as min(arg1, arg2, …, [key=?]), in which case the minimum among 
the arguments is returned.

The operation of all and any is exemplified in Example 17-32.

Example 17-32. Results of all and any for some sequences
>>> all([1, 2, 3]) 
True 
>>> all([1, 0, 3]) 
False 
>>> all([]) 
True 
>>> any([1, 2, 3]) 
True 
>>> any([1, 0, 3]) 
True 
>>> any([0, 0.0]) 
False 
>>> any([]) 

a

b



False 
>>> g = (n for n in [0, 0.0, 7, 8]) 
>>> any(g) 
True 
>>> next(g) 
8

A longer explanation about functools.reduce appeared in “Vector
Take #4: Hashing and a Faster ==”.

Another built-in that takes an iterable and returns something else is
sorted. Unlike reversed, which is a generator function, sorted
builds and returns an actual list. After all, every single item of the input
iterable must be read so they can be sorted, and the sorting happens in a
list, therefore sorted just returns that list after it’s done. I mention
sorted here because it does consume an arbitrary iterable.

Of course, sorted and the reducing functions only work with iterables
that eventually stop. Otherwise, they will keep on collecting items and
never return a result.

We’ll now go back to the iter() built-in: it has a little-known feature that
we haven’t covered yet.

A Closer Look at the iter Function
As we’ve seen, Python calls iter(x) when it needs to iterate over an
object x.

But iter has another trick: it can be called with two arguments to create
an iterator from a regular function or any callable object. In this usage, the
first argument must be a callable to be invoked repeatedly (with no
arguments) to yield values, and the second argument is a sentinel: a marker
value which, when returned by the callable, causes the iterator to raise
StopIteration instead of yielding the sentinel.

The following example shows how to use iter to roll a six-sided dice until
a 1 is rolled:



>>> def d6(): 
...     return randint(1, 6) 
... 
>>> d6_iter = iter(d6, 1) 
>>> d6_iter 
<callable_iterator object at 0x00000000029BE6A0> 
>>> for roll in d6_iter: 
...     print(roll) 
... 
4 
3 
6 
3

Note that the iter function here returns a callable_iterator. The
for loop in the example may run for a very long time, but it will never
display 1, because that is the sentinel value. As usual with iterators, the
d6_iter object in the example becomes useless once exhausted. To start
over, you must rebuild the iterator by invoking iter(…) again.

A simple example used to be found in the iter built-in function
documentation: this snippet reads lines from a file until a blank line
terminated with \n is found.

with open('mydata.txt') as fp: 
    for line in iter(fp.readline, '\n'): 
        process_line(line)

However, that example is problematic in practice. If no blank line with a
single \n is present, the for loop will run forever because
fp.readline() returns an empty string '' when the end of file is
reached.

Since I wrote Fluent Python, First Edition, that example was replaced in the
iter entry with this new one, a block reader. The documentation explains:

One useful application of the second form of iter() is to build a block-
reader. For example, reading fixed-width blocks from a binary database
file until the end of file is reached:

http://bit.ly/1HGqw70
http://bit.ly/1HGqw70


from functools import partial 
 
with open('mydata.db', 'rb') as f: 
    read64 = partial(f.read, 64) 
    for block in iter(read64, b''): 
        process_block(block)

For clarity, I’ve added the read64 assignment, which is not in the current
example.

To close this chapter, I present a practical example of using generators to
handle a large volume of data efficiently.

Case Study: Generators in a Database
Conversion Utility
Years ago I worked at BIREME, a digital library run by PAHO/WHO (Pan-
American Health Organization/World Health Organization) in São Paulo,
Brazil. Among the bibliographic datasets created by BIREME are LILACS
(Latin American and Caribbean Health Sciences index) and SciELO
(Scientific Electronic Library Online), two comprehensive databases
indexing the scientific and technical literature produced in the region.

Since the late 1980s, the database system used to manage LILACS is
CDS/ISIS, a non-relational, document database created by UNESCO and
eventually rewritten in C by BIREME to run on GNU/Linux servers. One of
my jobs was to research alternatives for a possible migration of LILACS—
and eventually the much larger SciELO—to a modern, open source,
document database such as CouchDB or MongoDB.

As part of that research, I wrote a Python script, isis2json.py, that reads a
CDS/ISIS file and writes a JSON file suitable for importing to CouchDB or
MongoDB. Initially, the script read files in the ISO-2709 format exported
by CDS/ISIS. The reading and writing had to be done incrementally
because the full datasets were much bigger than main memory. That was
easy enough: each iteration of the main for loop read one record from the
.iso file, massaged it, and wrote it to the .json output.

http://bit.ly/1HGqw70


However, for operational reasons, it was deemed necessary that isis2json.py
supported another CDS/ISIS data format: the binary .mst files used in
production at BIREME—to avoid the costly export to ISO-2709.

Now I had a problem: the libraries used to read ISO-2709 and .mst files had
very different APIs. And the JSON writing loop was already complicated
because the script accepted a variety of command-line options to restructure
each output record. Reading data using two different APIs in the same for
loop where the JSON was produced would be unwieldy.

The solution was to isolate the reading logic into a pair of generator
functions: one for each supported input format. In the end, the isis2json.py
script was split into four functions. You can see the main Python 2 script in
[Link to Come], but the full source code with dependencies is in
fluentpython/isis2json on GitHub.

Here is a high-level overview of how the script is structured:

main

The main function uses argparse to read command-line options that
configure the structure of the output records. Based on the input
filename extension, a suitable generator function is selected to read the
data and yield the records, one by one.

iter_iso_records

This generator function reads .iso files (assumed to be in the ISO-2709
format). It takes two arguments: the filename and isis_json_type,
one of the options related to the record structure. Each iteration of its
for loop reads one record, creates an empty dict, populates it with
field data, and yields the dict.

iter_mst_records

This other generator functions reads .mst files.  If you look at the
source code for isis2json.py, you’ll see that it’s not as simple as
iter_iso_records, but its interface and overall structure is the
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same: it takes a filename and an isis_json_type argument and
enters a for loop, which builds and yields one dict per iteration,
representing a single record.

write_json

This function performs the actual writing of the JSON records, one at a
time. It takes numerous arguments, but the first one—input_gen—is
a reference to a generator function: either iter_iso_records or
iter_mst_records. The main for loop in write_json iterates
over the dictionaries yielded by the selected input_gen generator,
massages it in several ways as determined by the command-line options,
and appends the JSON record to the output file.

By leveraging generator functions, I was able to decouple the reading logic
from the writing logic. Of course, the simplest way to decouple them would
be to read all records to memory, then write them to disk. But that was not a
viable option because of the size of the datasets. Using generators, the
reading and writing is interleaved, so the script can process files of any size.

Now if isis2json.py needs to support an additional input format—say,
MARCXML, a DTD used by the U.S. Library of Congress to represent
ISO-2709 data—it will be easy to add a third generator function to
implement the reading logic, without changing anything in the complicated
write_json function.

This is not rocket science, but it’s a real example where generators provided
a flexible solution to processing databases as a stream of records, keeping
memory usage low regardless of the amount of data. Anyone who manages
large datasets finds many opportunities for using generators in practice.

The next section addresses an aspect of generators that we’ll actually skip
for now. Read on to understand why.

Generators as Coroutines



About five years after generator functions with the yield keyword were
introduced in Python 2.2, PEP 342 — Coroutines via Enhanced Generators
was implemented in Python 2.5. This proposal added extra methods and
functionality to generator objects, most notably the .send() method.

Like .__next__(), .send() causes the generator to advance to the
next yield, but it also allows the client using the generator to send data
into it: whatever argument is passed to .send() becomes the value of the
corresponding yield expression inside the generator function body. In
other words, .send() allows two-way data exchange between the client
code and the generator—in contrast with .__next__(), which only lets
the client receive data from the generator.

This is such a major “enhancement” that it actually changes the nature of
generators: when used in this way, they become coroutines. David Beazley
—probably the most prolific writer and speaker about coroutines in the
Python community—warned in a famous PyCon US 2009 tutorial:

Generators produce data for iteration

Coroutines are consumers of data

To keep your brain from exploding, you don’t mix the two
concepts together

Coroutines are not related to iteration

Note: There is a use of having yield produce a value in a
coroutine, but it’s not tied to iteration.

—David Beazley, A Curious Course on Coroutines and
Concurrency

I will follow Dave’s advice and close this chapter—which is really about
iteration techniques—without touching send and the other features that
make generators usable as coroutines. Coroutines will be covered in
Chapter 19.
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Generic Iterable Types
XXX

class typing.Iterable(Generic[T_co]): 
    ... 
class typing.Iterator(Iterable[T_co]): 
    ...



Chapter Summary
Iteration is so deeply embedded in the language that I like to say that
Python groks iterators.  The integration of the Iterator pattern in the
semantics of Python is a prime example of how design patterns are not
equally applicable in all programming languages. In Python, a classic
iterator implemented “by hand” as in Example 17-4 has no practical use,
except as a didactic example.

In this chapter, we built a few versions of a class to iterate over individual
words in text files that may be very long. Thanks to the use of generators,
the successive refactorings of the Sentence class become shorter and
easier to read—when you know how they work.

We then coded a generator of arithmetic progressions and showed how to
leverage the itertools module to make it simpler. An overview of 24
general-purpose generator functions in the standard library followed.

Following that, we looked at the iter built-in function: first, to see how it
returns an iterator when called as iter(o), and then to study how it builds
an iterator from any function when called as iter(func, sentinel).

For practical context, I described the implementation of a database
conversion utility using generator functions to decouple the reading to the
writing logic, enabling efficient handling of large datasets and making it
easy to support more than one data input format.

Also mentioned in this chapter were the yield from syntax, new in
Python 3.3, and coroutines. Both topics were just introduced here; they get
more coverage later in the book.

Further Reading
A detailed technical explanation of generators appears in The Python
Language Reference in 6.2.9. Yield expressions. The PEP where generator
functions were defined is PEP 255 — Simple Generators.
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The itertools module documentation is excellent because of all the
examples included. Although the functions in that module are implemented
in C, the documentation shows how many of them would be written in
Python, often by leveraging other functions in the module. The usage
examples are also great: for instance, there is a snippet showing how to use
the accumulate function to amortize a loan with interest, given a list of
payments over time. There is also an Itertools Recipes section with
additional high-performance functions that use the itertools functions
as building blocks.

Beyond Python’s standard library, I recommend the More Itertools package,
which follows the fine itertools tradition in providing powerful
generators with plenty of examples and some useful recipes.

Chapter 4, “Iterators and Generators,” of Python Cookbook, 3E (O’Reilly),
by David Beazley and Brian K. Jones, has 16 recipes covering this subject
from many different angles, focusing on practical applications. It includes
some illuminating recipes with yield from.

Sebastian Rittau—a top contributor of typeshed—explains why iterators
should be interable, as he noted in 2006 that Java: Iterators are not Iterable.

The yield from syntax is explained with examples in What’s New in
Python 3.3, section PEP 380: Syntax for Delegating to a Subgenerator.
We’ll also cover it in detail in “Using yield from” and “The Meaning of
yield from” in Chapter 19.

If you are interested in document databases and would like to learn more
about the context of “Case Study: Generators in a Database Conversion
Utility”, the Code4Lib Journal—which covers the intersection between
libraries and technology—published my paper “From ISIS to CouchDB:
Databases and Data Models for Bibliographic Records”. One section of the
paper describes the isis2json.py script. The rest of it explains why and how
the semi-structured data model implemented by document databases like
CouchDB and MongoDB are more suitable for cooperative bibliographic
data collection than the relational model.

https://docs.python.org/3/library/itertools.html
http://bit.ly/1MM5YvA
https://more-itertools.readthedocs.io/en/stable/index.html
https://rittau.org/2006/11/java-iterators-are-not-iterable/
http://bit.ly/1MM6d9R
http://journal.code4lib.org/articles/4893


SOAPBOX

Generator Function Syntax: More Sugar Would Be Nice

Designers need to ensure that controls and displays for different
purposes are significantly different from one another.

—Donald Norman, The Design of Everyday Things

Source code plays the role of “controls and displays” in programming
languages. I think Python is exceptionally well designed; its source
code is often as readable as pseudocode. But nothing is perfect. Guido
van Rossum should have followed Donald Norman’s advice (previously
quoted) and introduced another keyword for defining generator
expressions, instead of reusing def. The “BDFL Pronouncements”
section of PEP 255 — Simple Generators actually argues:

A “yield” statement buried in the body is not enough warning that
the semantics are so different.

But Guido avoids introducing new keywords, because they may break
existing code. The Python 3 breakage was a one-off event—I believe
that because I started using Python 1.5 and when Python 2 came along,
most programs did not break. Anyway, Guido did not find that
argument convincing, and I don’t anticipate major breaking changes in
future versions of Python, so we are stuck with def doing double-duty
for functions and generators.

Reusing the function syntax for generators has other bad consequences.
In the paper and experimental work “Python, the Full Monty: A Tested
Semantics for the Python Programming Language,” Politz  et al. show
this trivial example of a generator function (section 4.1 of the paper):

def f(): x=0 
    while True: 
        x += 1 
        yield x
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The authors then make the point that we can’t abstract the process of
yielding with a function call (Example 17-33).

Example 17-33. “[This] seems to perform a simple abstraction
over the process of yielding” (Politz et al.)
def f(): 
    def do_yield(n): 
        yield n 
    x = 0 
    while True: 
        x += 1 
        do_yield(x)

If we call f() in Example 17-33, we get an infinite loop, and not a
generator, because the yield keyword only makes the immediately
enclosing function a generator function. The call do_yield(x)
returns a generator object which is immediately discarded, and the body
of do_yield never runs.

Although generator functions look like functions, we cannot delegate to
another generator function with a simple function call. As a point of
comparison, the Lua language does not impose this limitation. A Lua
coroutine can call other functions and any of them can yield to the
original caller.

The new yield from syntax was introduced to allow a Python
generator or coroutine to delegate work to another, without requiring
the workaround of an inner for loop. Example 17-33 can be “fixed” by
prefixing the function call with yield from, as in Example 17-34.

Example 17-34. This actually abstracts over the process of
yielding
def f(): 
    def do_yield(n): 
        yield n 
    x = 0 
    while True: 
        x += 1 
        yield from do_yield(x)



Reusing def for declaring generators was a usability mistake, and the
problem was compounded in Python 2.5 with coroutines, which are also
coded as functions with yield. In the case of coroutines, the yield
just happens to appear—usually—on the right-hand side of an
assignment, because it receives the argument of the .send() call from
the client. As David Beazley says:

Despite some similarities, generators and coroutines are basically
two different concepts.

Fortunately, when Guido accepted PEP 492 by Yury Selivanov, the
async and await keywords were introduced to support coroutines,
which are now declared with async def. I celebrated that decision,
but it did cause breakage: when I wrote the first edition of Fluent
Python, the asyncio package had a very important function named
async. It was renamed to ensure_future, breaking many of the
asyncio examples in the book. The asyncio API was provisional at
the time, so I can’t blame them. And I really like the new keywords.
We’ll cover them in Chapter 19 and Chapter 22.

However, PEP 492 did not fix the issue of using a plain def to declare
generators. It can be argued that, because those features were made to
work with little additional syntax, extra syntax would be merely
“syntactic sugar.” I happen to like syntactic sugar when it makes
features that are different look different. The lack of syntactic sugar is
the main reason why Lisp code is hard to read: every language construct
in Lisp looks like a function call.

Terminology matters

Over the years, Python’s official documentation has been inconsistent
about the words “generator” and “iterator”, using them as near
synonyms in some places, but meaning different things in other places.
Sometime after I wrote the first edition of Fluent Python, Python’s
Glossary was updated with new, clearly distinct definitions for those
words and related terms. As I write this in February 2020, this is the
definition of generator from the Python Glossary:
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generator

A function which returns a generator iterator. It looks like a normal
function except that it contains yield expressions for producing a
series of values usable in a for loop or that can be retrieved one at
a time with the next() function.

Usually refers to a generator function, but may refer to a generator
iterator in some contexts. In cases where the intended meaning isn’t
clear, using the full terms avoids ambiguity.

—Python Glossary

I like that definition. The next Glossary entry is good as well:

generator iterator

An object created by a generator function.

Each yield temporarily suspends processing, remembering the
location execution state (including local variables and pending try-
statements). When the generator iterator resumes, it picks up where it
left off (in contrast to functions which start fresh on every
invocation).

—Python Glossary

Generator iterator would be a good term to describe the object returned
by a generator, but the Python runtime has not changed to adopt this
new term:

>>> def gen(): 
...     yield 1 
... 
>>> gen() 
<generator object gen at 0x10bb3d120>

As long as Python itself uses the term generator object in that way, I am
afraid generator iterator will not catch on, and the terminology will
remain inconsistent. I did not adopt generator iterator in this second
edition. I am sticking with generator object. But the Glossary has



encouraged me to use the unqualified word generator when writing
about generator functions.

After generator iterator, the next definition in the Glossary is for
generator expression. It says:

generator iterator

An expression that returns an iterator. It looks like a normal
expression followed by a for clause defining a loop variable, range,
and an optional if clause. The combined expression generates
values for an enclosing function:

>>> sum(i * i for i in range(10))  # sum of squares 0, 1, 
4, ... 81 
285

—Python Glossary

That definition uses the word iterator to describe the object returned by
a generator expression. I don’t see the point of naming such objects
differently from those returned by generator functions. Python agrees
with me: it also calls that a generator object.

>>> (i*i for i in range(10)) 
<generator object <genexpr> at 0x10bb3d190>

Finally, the definition for iterator in the Glossary starts with these
words:

iterator

An object representing a stream of data. Repeated calls to the
iterator’s __next__() method (or passing it to the built-in
function next()) return successive items in the stream. When no
more data are available a StopIteration exception is raised
instead. […]

—Python Glossary



The entry is longer than that, but that’s the most important part. I like it.
This definition encompasses classic iterators with a user-defined
__next__ method as well as generator objects returned by generator
functions or generator expressions. The main point is: generator objects
are iterators that Python builds for you.

The Minimalistic Iterator Interface in Python

In the “Implementation” section of the Iterator pattern,  the Gang of
Four wrote:

The minimal interface to Iterator consists of the operations First,
Next, IsDone, and CurrentItem.

However, that very sentence has a footnote which reads:

We can make this interface even smaller by merging Next, IsDone,
and CurrentItem into a single operation that advances to the next
object and returns it. If the traversal is finished, then this operation
returns a special value (0, for instance) that marks the end of the
iteration.

This is close to what we have in Python: the single method __next__
does the job. But instead of using a sentinel, which could be overlooked
by mistake, the StopIteration exception signals the end of the
iteration. Simple and correct: that’s the Python way.

1  From “Revenge of the Nerds”, a blog post.

2  Python 2.2 users could use yield with the directive from __future__ import
generators; yield became available by default in Python 2.3.

3  We first used reprlib in “Vector Take #1: Vector2d Compatible”.

4  Gamma et. al., Design Patterns: Elements of Reusable Object-Oriented Software, p. 259.

5  When reviewing this code, Alex Martelli suggested the body of this method could simply be
return iter(self.words). He is correct, of course: the result of calling __iter__
would also be an iterator, as it should be. However, I used a for loop with yield here to
introduce the syntax of a generator function, which will be covered in detail in the next section.
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6  Sometimes I add a gen prefix or suffix when naming generator functions, but this is not a
common practice. And you can’t do that if you’re implementing an iterable, of course: the
necessary special method must be named __iter__.

7  Thanks to David Kwast for suggesting this example.

8  Prior to Python 3.3, it was an error to provide a value with the return statement in a
generator function. Now that is legal, but the return still causes a StopIteration
exception to be raised. The caller can retrieve the return value from the exception object.
However, this is only relevant when using a generator function as a coroutine, as we’ll see in
“Returning a Value from a Coroutine”.

9  In Python 2, there was a coerce() built-in function but it’s gone in Python 3, deemed
unnecessary because the numeric coercion rules are implicit in the arithmetic operator
methods. So the best way I could think of to coerce the initial value to be of the same type as
the rest of the series was to perform the addition and use its type to convert the result. I asked
about this in the Python-list and got an excellent response from Steven D’Aprano.

10  The 14-it-generator/ directory in the Fluent Python code repository includes doctests and a
script, aritprog_runner.py, which runs the tests against all variations of the aritprog*.py scripts.

11  Here the term “mapping” is unrelated to dictionaries, but has to do with the map built-in.

12  The itertools.chain from the standard library is written in C.

13  We saw this method earlier in [Link to Come], Chapter 13.

14  The library used to read the complex .mst binary is actually written in Java, so this
functionality is only available when isis2json.py is executed with the Jython interpreter,
version 2.5 or newer. For further details, see the README.rst file in the repository. The
dependencies are imported inside the generator functions that need them, so the script can run
even if only one of the external libraries is available.

15  Slide 33, “Keeping It Straight,” in “A Curious Course on Coroutines and Concurrency”.

16  According to the Jargon file, to grok is not merely to learn something, but to absorb it so “it
becomes part of you, part of your identity.”

17  Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson,
Junsong Li, Anand Chitipothu, and Shriram Krishnamurthi, “Python: The Full Monty,”
SIGPLAN Not. 48, 10 (October 2013), 217-232.

18  Slide 31, “A Curious Course on Coroutines and Concurrency”.

19  Gamma et. al., Design Patterns: Elements of Reusable Object-Oriented Software, p. 261.
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Chapter 18. Context Managers
and else Blocks

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 18th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

Context managers may end up being almost as important as the
subroutine itself. We’ve only scratched the surface with them. […] Basic
has a with statement, there are with statements in lots of languages.
But they don’t do the same thing, they all do something very shallow, they
save you from repeated dotted [attribute] lookups, they don’t do setup
and tear down. Just because it’s the same name don’t think it’s the same
thing. The with statement is a very big deal.

—Raymond Hettinger, Eloquent Python evangelist

In this chapter, we will discuss control flow features that are not so common
in other languages, and for this reason tend to be overlooked or underused
in Python. They are:

The with statement and context managers.

The else clause in for, while, and try statements.
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Pattern matching with match/case.

The with statement sets up a temporary context and reliably tears it down,
under the control of a context manager object. This prevents errors and
reduces boilerplate code, making APIs at the same time safer and easier to
use. Python programmers are finding lots of uses for with blocks beyond
automatic file closing.

XXX

The else clause is completely unrelated to with. But this is [Link to
Come]—Control Flow. I couldn’t find another place for covering else,
and I wouldn’t have a one-page chapter about it, so here it is.

Pattern matching appeared in several previous chapters, but here you’ll see
a more extensive example in “Pattern Matching: a Case Study”.

What’s new in this chapter
The only updates are in “The contextlib Utilities”, mentioning features of
the contextlib module added since Python 3.5.

Let’s review the smaller topic to get to the real substance of this chapter.

Do This, Then That: else Blocks Beyond if
This is no secret, but it is an underappreciated language feature: the else
clause can be used not only in if statements but also in for, while, and
try statements.

The semantics of for/else, while/else, and try/else are closely
related, but very different from if/else. Initially the word else actually
hindered my understanding of these features, but eventually I got used to it.

Here are the rules:

for



The else block will run only if and when the for loop runs to
completion (i.e., not if the for is aborted with a break).

while

The else block will run only if and when the while loop exits
because the condition became falsy (i.e., not if the while is aborted
with a break).

try

The else block will only run if no exception is raised in the try
block. The official docs also state: “Exceptions in the else clause are
not handled by the preceding except clauses.”

In all cases, the else clause is also skipped if an exception or a return,
break, or continue statement causes control to jump out of the main
block of the compound statement.

NOTE
I think else is a very poor choice for the keyword in all cases except if. It implies an
excluding alternative, like “Run this loop, otherwise do that,” but the semantics for
else in loops is the opposite: “Run this loop, then do that.” This suggests then as a
better keyword—which would also make sense in the try context: “Try this, then do
that.” However, adding a new keyword is a breaking change to the language—not an
easy decision to make.

Using else with these statements often makes the code easier to read and
saves the trouble of setting up control flags or coding extra if statements.

The use of else in loops generally follows the pattern of this snippet:

for item in my_list: 
    if item.flavor == 'banana': 
        break 

http://bit.ly/1MMa1YB


else: 
    raise ValueError('No banana flavor found!')

In the case of try/except blocks, else may seem redundant at first.
After all, the after_call() in the following snippet will run only if the
dangerous_call() does not raise an exception, correct?

try: 
    dangerous_call() 
    after_call() 
except OSError: 
    log('OSError...')

However, doing so puts the after_call() inside the try block for no
good reason. For clarity and correctness, the body of a try block should
only have the statements that may generate the expected exceptions. This is
much better:

try: 
    dangerous_call() 
except OSError: 
    log('OSError...') 
else: 
    after_call()

Now it’s clear that the try block is guarding against possible errors in
dangerous_call() and not in after_call(). It’s also more
obvious that after_call() will only execute if no exceptions are raised
in the try block.

In Python, try/except is commonly used for control flow, and not just
for error handling. There’s even an acronym/slogan for that documented in
the official Python glossary:

https://docs.python.org/3/glossary.html#term-eafp


EAFP

Easier to ask for forgiveness than permission. This common Python
coding style assumes the existence of valid keys or attributes and
catches exceptions if the assumption proves false. This clean and fast
style is characterized by the presence of many try and except
statements. The technique contrasts with the LBYL style common to
many other languages such as C.

The glossary then defines LBYL:

LBYL

Look before you leap. This coding style explicitly tests for pre-
conditions before making calls or lookups. This style contrasts with
the EAFP approach and is characterized by the presence of many if
statements. In a multi-threaded environment, the LBYL approach can
risk introducing a race condition between “the looking” and “the
leaping”. For example, the code, if key in mapping: return
mapping[key] can fail if another thread removes key from mapping
after the test, but before the lookup. This issue can be solved with
locks or by using the EAFP approach.

Given the EAFP style, it makes even more sense to know and use well
else blocks in try/except statements.

Now let’s address the main topic of this chapter: the powerful with
statement.

Context Managers and with Blocks
Context manager objects exist to control a with statement, just like
iterators exist to control a for statement.

The with statement was designed to simplify the try/finally pattern,
which guarantees that some operation is performed after a block of code,



even if the block is aborted because of an exception, a return or
sys.exit() call. The code in the finally clause usually releases a
critical resource or restores some previous state that was temporarily
changed.

The context manager interface consists of the __enter__ and
__exit__ methods. At the start of the with, __enter__ is invoked on
the context manager object. The role of the finally clause is played by a
call to __exit__ on the context manager object at the end of the with
block.

The most common example is making sure a file object is closed. See
Example 18-1 for a detailed demonstration of using with to close a file.

Example 18-1. Demonstration of a file object as a context manager
>>> with open('mirror.py') as fp:   
...     src = fp.read(60)   
... 
>>> len(src) 
60 
>>> fp   
<_io.TextIOWrapper name='mirror.py' mode='r' encoding='UTF-8'> 
>>> fp.closed, fp.encoding   
(True, 'UTF-8') 
>>> fp.read(60)   
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
ValueError: I/O operation on closed file.

fp is bound to the opened file because the file’s __enter__ method
returns self.

Read some data from fp.

The fp variable is still available.

You can read the attributes of the fp object.

But you can’t perform I/O with fp because at the end of the with
block, the TextIOWrapper.__exit__ method is called and closes
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the file.

The first callout in Example 18-1 makes a subtle but crucial point: the
context manager object is the result of evaluating the expression after
with, but the value bound to the target variable (in the as clause) is the
result of calling __enter__ on the context manager object.

It just happens that in Example 18-1, the open() function returns an
instance of TextIOWrapper, and its __enter__ method returns self.
But the __enter__ method may also return some other object instead of
the context manager.

When control flow exits the with block in any way, the __exit__
method is invoked on the context manager object, not on whatever is
returned by __enter__.

The as clause of the with statement is optional. In the case of open,
you’ll always need it to get a reference to the file, but some context
managers return None because they have no useful object to give back to
the user.

Example 18-2 shows the operation of a perfectly frivolous context manager
designed to highlight the distinction between the context manager and the
object returned by its __enter__ method.

Example 18-2. Test driving the LookingGlass context manager class
    >>> from mirror import LookingGlass 
    >>> with LookingGlass() as what:   
    ...      print('Alice, Kitty and Snowdrop')   
    ...      print(what) 
    ... 
    pordwonS dna yttiK ,ecilA   
    YKCOWREBBAJ 
    >>> what   
    'JABBERWOCKY' 
    >>> print('Back to normal.')   
    Back to normal.



The context manager is an instance of LookingGlass; Python calls
__enter__ on the context manager and the result is bound to what.

Print a str, then the value of the target variable what.

The output of each print comes out backward.

Now the with block is over. We can see that the value returned by
__enter__, held in what, is the string 'JABBERWOCKY'.

Program output is no longer backward.

Example 18-3 shows the implementation of LookingGlass.

Example 18-3. mirror.py: code for the LookingGlass context manager class
class LookingGlass: 
 
    def __enter__(self):   
        import sys 
        self.original_write = sys.stdout.write   
        sys.stdout.write = self.reverse_write   
        return 'JABBERWOCKY'   
 
    def reverse_write(self, text):   
        self.original_write(text[::-1]) 
 
    def __exit__(self, exc_type, exc_value, traceback):   
        import sys   
        sys.stdout.write = self.original_write   
        if exc_type is ZeroDivisionError:   
            print('Please DO NOT divide by zero!') 
            return True   
        

Python invokes __enter__ with no arguments besides self.

Hold the original sys.stdout.write method in an instance
attribute for later use.



Monkey-patch sys.stdout.write, replacing it with our own
method.

Return the 'JABBERWOCKY' string just so we have something to put
in the target variable what.

Our replacement to sys.stdout.write reverses the text
argument and calls the original implementation.

Python calls __exit__ with None, None, None if all went well;
if an exception is raised, the three arguments get the exception data, as
described next.

It’s cheap to import modules again because Python caches them.

Restore the original method to sys.stdout.write.

If the exception is not None and its type is ZeroDivisionError,
print a message…

…and return True to tell the interpreter that the exception was handled.

If __exit__ returns None or anything but True, any exception
raised in the with block will be propagated.

TIP
When real applications take over standard output, they often want to replace
sys.stdout with another file-like object for a while, then switch back to the original.
The contextlib.redirect_stdout context manager does exactly that: just pass
it the file-like object that will stand in for sys.stdout.

The interpreter calls the __enter__ method with no arguments—beyond
the implicit self. The three arguments passed to __exit__ are:

exc_type

http://bit.ly/1MM7Sw6


The exception class (e.g., ZeroDivisionError).

exc_value

The exception instance. Sometimes, parameters passed to the exception
constructor—such as the error message—can be found in
exc_value.args.

traceback

A traceback object.

For a detailed look at how a context manager works, see Example 18-4,
where LookingGlass is used outside of a with block, so we can
manually call its __enter__ and __exit__ methods.

Example 18-4. Exercising LookingGlass without a with block
    >>> from mirror import LookingGlass 
    >>> manager = LookingGlass()   
    >>> manager 
    <mirror.LookingGlass object at 0x2a578ac> 
    >>> monster = manager.__enter__()   
    >>> monster == 'JABBERWOCKY'   
    eurT 
    >>> monster 
    'YKCOWREBBAJ' 
    >>> manager 
    >ca875a2x0 ta tcejbo ssalGgnikooL.rorrim< 
    >>> manager.__exit__(None, None, None)   
    >>> monster 
    'JABBERWOCKY'

Instantiate and inspect the manager instance.

Call the context manager __enter__() method and store result in
monster.

Monster is the string 'JABBERWOCKY'. The True identifier appears
reversed because all output via stdout goes through the write
method we patched in __enter__.
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Call manager.__exit__ to restore previous stdout.write.

Context managers are a fairly novel feature and slowly but surely the
Python community is finding new, creative uses for them. Some examples
from the standard library are:

Managing transactions in the sqlite3 module; see “12.6.7.3.
Using the connection as a context manager”.

Holding locks, conditions, and semaphores in threading code;
see “17.1.10. Using locks, conditions, and semaphores in the with
statement”.

Setting up environments for arithmetic operations with Decimal
objects; see the decimal.localcontext documentation.

Applying temporary patches to objects for testing; see the
unittest.mock.patch function.

The standard library also includes the contextlib utilities, covered next.

The contextlib Utilities
Before rolling your own context manager classes, take a look at
"contextlib — Utilities for with-statement contexts” in The Python
Standard Library. Maybe what you are about to build already exists, or
there is a class or some callable that will make your job easier.

Besides the redirect_stdout context manager mentioned in
Example 18-3, redirect_stderr was added in Python 3.5—it does the
same as the former, but for output directed to stderr.

The contextlib package also includes:

closing

http://bit.ly/1MM89PC
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A function to build context managers out of objects that provide a
close() method but don’t implement the __enter__/__exit__
interface.

suppress

A context manager to temporarily ignore exceptions given as
arguments.

nullcontext

A context manager wrapper that does nothing, to simplify conditional
logic around objects that may or may not implement a suitable context
manager (since Python 3.7).

The contextlib module provides classes and a decorator that are more
widely applicable than those above:

@contextmanager

A decorator that lets you build a context manager from a simple
generator function, instead of creating a class and implementing the
interface. See “Using @contextmanager”.

AbstractContextManager

An ABC that formalizes the context manager interface, and makes it a
bit easier to create context manager classes by subclassing (since
Python 3.6).

ContextDecorator

A base class for defining class-based context managers that can also be
used as function decorators, running the entire function within a
managed context.

ExitStack



A context manager that lets you enter a variable number of context
managers. When the with block ends, ExitStack calls the stacked
context managers’ __exit__ methods in LIFO order (last entered,
first exited). Use this class when you don’t know beforehand how many
context managers you need to enter in your with block; for example,
when opening all files from an arbitrary list of files at the same time.

With Python 3.7, contextlib added
AbstractAsyncContextManager, @asynccontextmanager,
and AsyncExitStack. They are similar to the equivalent utilities
without the async part of the name, but designed for use with the new
async with statement, covered in Chapter 22.

The most widely used of these utilities is surely the @contextmanager
decorator, so it deserves more attention. That decorator is also intriguing
because it shows a use for the yield statement unrelated to iteration. This
paves the way to the concept of a coroutine, the theme of the next chapter.

Using @contextmanager
The @contextmanager decorator reduces the boilerplate of creating a
context manager: instead of writing a whole class with
__enter__/__exit__ methods, you just implement a generator with a
single yield that should produce whatever you want the __enter__
method to return.

In a generator decorated with @contextmanager, yield splits the
body of the function in two parts: everything before the yield will be
executed at the beginning of the with block when the interpreter calls
__enter__; the code after yield will run when __exit__ is called at
the end of the block.

Here is an example. Example 18-5 replaces the LookingGlass class
from Example 18-3 with a generator function.



Example 18-5. mirror_gen.py: a context manager implemented with a
generator
import contextlib 
 
 
@contextlib.contextmanager   
def looking_glass(): 
    import sys 
    original_write = sys.stdout.write   
 
    def reverse_write(text):   
        original_write(text[::-1]) 
 
    sys.stdout.write = reverse_write   
    yield 'JABBERWOCKY'   
    sys.stdout.write = original_write  

Apply the contextmanager decorator.

Preserve original sys.stdout.write method.

Define custom reverse_write function; original_write will
be available in the closure.

Replace sys.stdout.write with reverse_write.

Yield the value that will be bound to the target variable in the as clause
of the with statement. This function pauses at this point while the body
of the with executes.

When control exits the with block in any way, execution continues
after the yield; here the original sys.stdout.write is restored.

Example 18-6 shows the looking_glass function in operation.

Example 18-6. Test driving the looking_glass context manager function
    >>> from mirror_gen import looking_glass 
    >>> with looking_glass() as what:   
    ...      print('Alice, Kitty and Snowdrop') 
    ...      print(what) 



    ... 
    pordwonS dna yttiK ,ecilA 
    YKCOWREBBAJ 
    >>> what 
    'JABBERWOCKY'

The only difference from Example 18-2 is the name of the context
manager: looking_glass instead of LookingGlass.

Essentially the contextlib.contextmanager decorator wraps the
function in a class that implements the __enter__ and __exit__
methods.

The __enter__ method of that class:

1. Invokes the generator function and holds on to the generator object
—let’s call it gen.

2. Calls next(gen) to make it run to the yield keyword.

3. Returns the value yielded by next(gen), so it can be bound to a
target variable in the with/as form.

When the with block terminates, the __exit__ method:

1. Checks an exception was passed as exc_type; if so,
gen.throw(exception) is invoked, causing the exception to
be raised in the yield line inside the generator function body.

2. Otherwise, next(gen) is called, resuming the execution of the
generator function body after the yield.

Example 18-5 has a serious flaw: if an exception is raised in the body of the
with block, the Python interpreter will catch it and raise it again in the
yield expression inside looking_glass. But there is no error handling
there, so the looking_glass function will abort without ever restoring
the original sys.stdout.write method, leaving the system in an
invalid state.
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Example 18-7 adds special handling of the ZeroDivisionError
exception, making it functionally equivalent to the class-based Example 18-
3.

Example 18-7. mirror_gen_exc.py: generator-based context manager
implementing exception handling—same external behavior as Example 18-
3
import contextlib 
 
 
@contextlib.contextmanager 
def looking_glass(): 
    import sys 
    original_write = sys.stdout.write 
 
    def reverse_write(text): 
        original_write(text[::-1]) 
 
    sys.stdout.write = reverse_write 
    msg = ''   
    try: 
        yield 'JABBERWOCKY' 
    except ZeroDivisionError:   
        msg = 'Please DO NOT divide by zero!' 
    finally: 
        sys.stdout.write = original_write   
        if msg: 
            print(msg)  

Create a variable for a possible error message; this is the first change in
relation to Example 18-5.

Handle ZeroDivisionError by setting an error message.

Undo monkey-patching of sys.stdout.write.

Display error message, if it was set.

Recall that the __exit__ method tells the interpreter that it has handled
the exception by returning True; in that case, the interpreter suppresses the
exception. On the other hand, if __exit__ does not explicitly return a



value, the interpreter gets the usual None, and propagates the exception.
With @contextmanager, the default behavior is inverted: the
__exit__ method provided by the decorator assumes any exception sent
into the generator is handled and should be suppressed.  You must
explicitly re-raise an exception in the decorated function if you don’t want
@contextmanager to suppress it.

TIP
Having a try/finally (or a with block) around the yield is an unavoidable price
of using @contextmanager, because you never know what the users of your context
manager are going to do inside their with block.

An interesting real-life example of @contextmanager outside of the
standard library is Martijn Pieters’ in-place file rewriting context manager.
Example 18-8 shows how it’s used.

Example 18-8. A context manager for rewriting files in place
import csv 
 
with inplace(csvfilename, 'r', newline='') as (infh, outfh): 
    reader = csv.reader(infh) 
    writer = csv.writer(outfh) 
 
    for row in reader: 
        row += ['new', 'columns'] 
        writer.writerow(row)

The inplace function is a context manager that gives you two handles—
infh and outfh in the example—to the same file, allowing your code to
read and write to it at the same time. It’s easier to use than the standard
library’s fileinput.input function (which also provides a context
manager, by the way).

If you want to study Martijn’s inplace source code (listed in the post),
find the yield keyword: everything before it deals with setting up the
context, which entails creating a backup file, then opening and yielding
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references to the readable and writable file handles that will be returned by
the __enter__ call. The __exit__ processing after the yield closes
the file handles and restores the file from the backup if something went
wrong.

Note that the use of yield in a generator used with the
@contextmanager decorator has nothing to do with iteration. In the
examples shown in this section, the generator function is operating more
like a coroutine: a procedure that runs up to a point, then suspends to let the
client code run until the client wants the coroutine to proceed with its job.
Chapter 19 is all about coroutines.

Pattern Matching: a Case Study
XXX missing introduction

Before looking at the Python code, let’s learn the bare minimum of Scheme
so you can make sense of this case study—in case you haven’t studied
Scheme or Lisp before.

Scheme Syntax
Everything in Scheme is an expression—there is no distinction between
expressions and statements, like we have in Python.

Scheme has no infix operators. Expressions with arithmetic and logic
operators all use prefix notation like (+ x 13). The same syntax is used
for function calls—e.g. (gcd x 13)—and special forms—e.g. (define
x 13), which we’d write as x = 13 in Python.

Here is a simple example in Scheme:

Example 18-9. Greatest common divisor in Scheme. The last result of this
code is 9, the GCD of 18 and 45.
(define (mod m n) 
    (- m (* n (// m n)))) 
 
(define (gcd m n) 
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    (if (= n 0) 
        m 
        (gcd n (mod m n)))) 
 
(gcd 18 45)

Example 18-9 shows two function definitions—mod and gcd—and a call
to gcd. Here is the same code in Python (quicker than an English
explanation):

Example 18-10. Same as Example 18-9, written in Python.
def mod(m, n): 
    return m - (m // n * n) 
 
def gcd(m, n): 
    if n == 0: 
        return m 
    else: 
        return gcd(m, mod(m, n)) 
 
gcd(18, 45)  # returns 9

At its core, Scheme has no iterative control flow forms like while or for.
Iteration is always implemented with recursion, as you saw in Example 18-
9. Scheme implementations are required to implement tail call optimization
(TCO) to make iteration through recursion efficient and practical. Norvig’s
lispy.py interpreter has TCO, but his simpler lis.py does not.

The Parser
The first part of Norvig’s code is a parser that reads a string of Scheme
source code, splits it into syntactic tokens, and returns a Python object
representing the code.

Here are some examples from a doctest:

Example 18-11. parse takes a string and returns numbers, symbols,
and/or lists.
>>> parse('1.5')   
1.5 
>>> parse('set!')   
'set!' 



>>> parse('(gcd 18 44)')   
['gcd', 18, 44] 
>>> parse('(- m (* n (// m n)))')   
['-', 'm', ['*', 'n', ['//', 'm', 'n']]]

A token that looks like a number is parsed as a number—float or
int.

Anything else that doesn’t start with '(' is parsed as a symbol—a str
to be used as an identifier.

Expressions inside '(' and ')' are parsed as lists of numbers or
symbols or…

…nested lists that may contain numbers, symbols, and more nested lists.

The simplest tokens—numbers and symbols—are called atoms. Using
Python terminology, the output of parse is an AST (Abstract Syntax
Tree): the nested lists form a tree-like structure, where the outermost list is
the trunk, the inner lists are the branches, and the atoms are the leaves.

An Expression Evaluator
Now we are ready to see the beauty of pattern matching applied to
interpreting Scheme expressions. The evaluate function in Example 18-
12 is the most important part of the interpreter.

Example 18-12. evaluate takes an expression from parse and
computes its value.
def evaluate(exp: Expression, env: Environment) -> Any: 
    "Evaluate an expression in an environment." 
    match exp: 
        case int(x) | float(x): 
            return x 
        case Symbol(var): 
            return env[var] 
        case []: 
            return [] 
        case ['quote', exp]: 



            return exp 
        case ['if', test, consequence, alternative]: 
            if evaluate(test, env): 
                return evaluate(consequence, env) 
            else: 
                return evaluate(alternative, env) 
        case ['define', Symbol(var), value_exp]: 
            env[var] = evaluate(value_exp, env) 
        case ['define', [Symbol(name), *parms], *body]: 
            env[name] = Procedure(parms, body, env) 
        case ['lambda', [*parms], *body]: 
            return Procedure(parms, body, env) 
        case [op, *args]: 
            proc = evaluate(op, env) 
            values = [evaluate(arg, env) for arg in args] 
            return proc(*values) 
        case _: 
            raise SyntaxError(repr(exp))

The two arguments of evaluate are:

exp

numbers, symbols or lists returned by parse;

env

an envirnoment—a mapping of names to values.

When the interpreter makes the initial call to evaluate, env gets a dict
with dozens of names mapped to Python functions. This is a small sample
of items in the initial environment:

{ 
    '+': op.add, 
    '-': op.sub, 
    'abs': abs, 
    'append': lambda *args: list(itertools.chain(*args)), 
    'length': len, 
    'number?': lambda x: isinstance(x, (int, float)), 
}



The body of evaluate is a single match statement with an expression
exp as the subject. The 10 case patterns express the syntax and semantics
of Scheme with amazing clarity.

Let’s study each case in turn. On top of each case, I added a sample of
Scheme code that would produce a subject exp matching that pattern, and a
Python object that could be the value of that expression.

        # 1.5 
        case int(x) | float(x):   
            return x

If subject is an int or float, just return it.

        # count 
        case Symbol(var):   
            return env[var]

If subject is a Symbol (a str used as an identifier), get its value from
env and return it.

Now, the sequence patterns:

        # () 
        case []:   
            return []

If subject is an empty list, return it.

        # (quote (1.1 is not 1)) 
        case ['quote', exp]:   
            return exp

If subject is a list starting with 'quote', followed by one exp, then
return exp without evaluating it. Given the Scheme code in the



comment, the Python object returned would be [1.1, 'is',
'not', 1].

        # (if (> n 0) n (- 0 n)) 
        case ['if', test, consequence, alternative]:   
            if evaluate(test, env): 
                return evaluate(consequence, env) 
            else: 
                return evaluate(alternative, env)

If subject is a list starting with 'if' followed by three expressions,
then evaluate test; if true, evaluate consequence and return it;
otherwise, evaluete alternative and return it.

        # (define half (/ 1 2)) 
        case ['define', Symbol(var), value_exp]:   
            env[var] = evaluate(value_exp, env)

If subject is a list starting with 'define', followed by a symbol var
and an expression, then evaluate the expression and add its value to
env, using the var as key.

The next case also matches a sequence starting with define, but with a
different structure.

        # (define (double x) (* x 2)) 
        case ['define', [Symbol(name), *parms], body]:   
            env[name] = Procedure(parms, body, env)

If subject is a list starting with 'define' and two other items, the first
being a list starting with a symbol name, followed by 0 or more
parameter names, the second being an expression body, then create a
new Procedure with those parameters, body, and the current
environment, and add it to the env using name as the key.



The previous case is a named function definition. The next is an anonymous
function definition.

        # (lambda (a b) (* (/ a b) 100)) 
        case ['lambda', [*parms], body]:   
            return Procedure(parms, body, env)

If subject is a list starting with 'lambda' and two other items, the first
being a list of parameter names, the second being an expression body,
then create a new Procedure with those parameters, body, and the
current environment, and return it.

Now we get to a function call.

        # (gcd 210 84) 
        case [op, *args]:   
            proc = evaluate(op, env) 
            values = [evaluate(arg, env) for arg in args] 
            return proc(*values)

If subject is a list with one or more items, then evaluate the first to
obtain a function proc, evaluate each of the remaining items to build a
list of argument values, then call proc with the values as separate
arguments.

        case _:   
            raise SyntaxError(repr(exp))

If subject did not match any previous pattern, it matches the wildcard _.
Raise SyntaxError.

To wrapt up the coverage of pattern matching in this chapter, let’s talk about
OR-patterns.

OR-patterns



NOTE
An OR-pattern can be built from any other patterns, not only class patterns.

In Example 2-11 we saw part of Peter Norvig’s lis.py evaluate function
refactored to use match/case. Here are the first case clauses of that
function, which I previously ommitted:

Example 18-13. Pattern matching with match/case—requires Python ≥
3.10.
def evaluate(exp, env): 
    "Evaluate an expression in an environment." 
    match exp: 
        case int(x) | float(x):   
            return x 
        case Symbol(var):   
            return env[var] 
        case ...:  # sequence patterns omitted 
            ... 
        case _: 
            raise SyntaxError(repr(exp))

Match if subject is an instance of int or float.

Match is subject is an instance of Symbol—which is an alias for str
in lis.py.

A series of patterns separated by | is an OR-pattern: it succeeds if any of
the subpatterns succeed. All subpatterns must use the same variables. This
restriction is necessary to ensure that the case body can rely on all the
variables if there is a match.

WARNING
In the context of a case clause, the | operator has a special meaning. It does not trigger
the __or__ special method which handles expressions like a | b in other contexts,
where it is overloaded to perform operations such as set union or integer bitwise-or.

https://www.python.org/dev/peps/pep-0634/#or-patterns


Example 18-13 illustrates the simplest form of class pattern, exemplified by
int(x), which matches if isinstance(x, int) returns True.

XXX



Chapter Summary
This chapter started easily enough with discussion of else blocks in for,
while, and try statements. Once you get used to the peculiar meaning of
the else clause in these statements, I believe else can clarify your
intentions.

We then covered context managers and the meaning of the with statement,
quickly moving beyond its common use to automatically close opened files.
We implemented a custom context manager: the LookingGlass class
with the __enter__/__exit__ methods, and saw how to handle
exceptions in the __exit__ method. A key point that Raymond Hettinger
made in his PyCon US 2013 keynote is that with is not just for resource
management, but it’s a tool for factoring out common setup and teardown
code, or any pair of operations that need to be done before and after another
procedure (slide 21, What Makes Python Awesome?).

Finally, we reviewed functions in the contextlib standard library
module. One of them, the @contextmanager decorator, makes it
possible to implement a context manager using a simple generator with one
yield—a leaner solution than coding a class with at least two methods.
We reimplemented the LookingGlass as a looking_glass generator
function, and discussed how to do exception handling when using
@contextmanager.

The @contextmanager decorator is an elegant and practical tool that
brings together three distinctive Python features: a function decorator, a
generator, and the with statement.

Further Reading
Chapter 8, “Compound Statements,” in The Python Language Reference
says pretty much everything there is to say about else clauses in if, for,
while, and try statements. Regarding Pythonic usage of try/except,
with or without else, Raymond Hettinger has a brilliant answer to the

http://bit.ly/1MM9pCm
http://bit.ly/1MMa1YB


question “Is it a good practice to use try-except-else in Python?” in
StackOverflow. Alex Martelli’s Python in a Nutshell, 2E (O’Reilly), has a
chapter about exceptions with an excellent discussion of the EAFP style,
crediting computing pioneer Grace Hopper for coining the phrase “It’s
easier to ask forgiveness than permission.”

The Python Standard Library, Chapter 4, “Built-in Types,” has a section
devoted to Context Manager Types. The __enter__/__exit__ special
methods are also documented in The Python Language Reference in “3.3.8.
With Statement Context Managers”. Context managers were introduced in
PEP 343 — The “with” Statement. This PEP is not easy reading because it
spends a lot of time covering corner cases and arguing against alternative
proposals. That’s the nature of PEPs.

Raymond Hettinger highlighted the with statement as a “winning language
feature” in his PyCon US 2013 keynote. He also showed some interesting
applications of context managers in his talk “Transforming Code into
Beautiful, Idiomatic Python” at the same conference.

Jeff Preshing’ blog post “The Python with Statement by Example” is
interesting for the examples using context managers with the pycairo
graphics library.

Beazley and Jones devised context managers for very different purposes in
their Python Cookbook, 3E (O’Reilly). “Recipe 8.3. Making Objects
Support the Context-Management Protocol” implements a
LazyConnection class whose instances are context managers that open
and close network connections automatically in with blocks. “Recipe 9.22.
Defining Context Managers the Easy Way” introduces a context manager
for timing code, and another for making transactional changes to a list
object: within the with block, a working copy of the list instance is
made, and all changes are applied to that working copy. Only when the
with block completes without an exception, the working copy replaces the
original list. Simple and ingenious.

http://bit.ly/1MMa2Mp
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SOAPBOX

Factoring Out the Bread

In his PyCon US 2013 keynote, “What Makes Python Awesome,”
Raymond Hettinger says when he first saw the with statement
proposal he thought it was “a little bit arcane.” Initially, I had a similar
reaction. PEPs are often hard to read, and PEP 343 is typical in that
regard.

Then—Hettinger told us—he had an insight: subroutines are the most
important invention in the history of computer languages. If you have
sequences of operations like A;B;C and P;B;Q, you can factor out B in
a subroutine. It’s like factoring out the filling in a sandwich: using tuna
with different breads. But what if you want to factor out the bread, to
make sandwiches with wheat bread, using a different filling each time?
That’s what the with statement offers. It’s the complement of the
subroutine. Hettinger went on to say:

The with statement is a very big deal. I encourage you to go out and
take this tip of the iceberg and drill deeper. You can probably do
profound things with the with statement. The best uses of it have not
been discovered yet. I expect that if you make good use of it, it will be
copied into other languages and all future languages will have it. You
can be part of discovering something almost as profound as the
invention of the subroutine itself.

Hettinger admits he is overselling the with statement. Nevertheless, it
is a very useful feature. When he used the sandwich analogy to explain
how with is the complement to the subroutine, many possibilities
opened up in my mind.

If you need to convince anyone that Python is awesome, you should
watch Hettinger’s keynote. The bit about context managers is from
23:00 to 26:15. But the entire keynote is excellent.

http://pyvideo.org/video/1669/keynote-3


1  PyCon US 2013 keynote: “What Makes Python Awesome”; the part about with starts at
23:00 and ends at 26:15.

2  with blocks don’t define a new scope, as functions and modules do.

3  The three arguments received by self are exactly what you get if you call
sys.exc_info() in the finally block of a try/finally statement. This makes
sense, considering that the with statement is meant to replace most uses of try/finally,
and calling sys.exc_info() was often necessary to determine what clean-up action would
be required.

4  The actual class is named _GeneratorContextManager. If you want to see exactly how
it works, read its source code in Lib/contextlib.py in the Python 3.4 distribution.

5  The exception is sent into the generator using the throw method, covered in “Coroutine
Termination and Exception Handling”.

6  This convention was adopted because when context managers were created, generators could
not return values, only yield. They now can, as explained in “Returning a Value from a
Coroutine”. As you’ll see, returning a value from a generator does involve an exception.

7  This tip is quoted literally from a comment by Leonardo Rochael, one of the tech reviewers
for this book. Nicely said, Leo!

8  People complain about the overuse of parenthesis, but the main readability problem of Lisp
and its dialects is using the same (foo ...) syntax for function calls and special forms like
(define ...), (if ...), and macros that don’t behave at all like function calls.

http://pyvideo.org/video/1669/keynote-3
http://bit.ly/1MM82Uc
http://bit.ly/1MM8AJJ


Chapter 19. Classic Coroutines

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 19th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

There are many implementations of coroutines; even in Python there are
several. […] Starting in Python 3.5, coroutines are a native feature of the
language itself; however, understanding coroutines as they were first
implemented in Python 3.4, using pre-existing language facilities, is the
foundation to tackle Python 3.5’s native coroutines.

—A. Jesse Jiryu Davis and Guido van Rossum, A Web
Crawler With asyncio Coroutines

We find two main senses for the verb “to yield” in dictionaries: to produce
or to give way. Both senses apply in Python when we use the yield
keyword in a generator. A line such as yield item produces a value that
is received by the caller of next(…), and it also gives way, suspending the
execution of the generator so that the caller may proceed until it’s ready to
consume another value by invoking next() again. The caller pulls values
from the generator.

A Python coroutine is essentially a generator driven by calls to its
.send(…) method. In a coroutine, the essential meaning of “to yield” is to
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give way—to hand control to some other part of the program, and wait until
notified to resume. The caller invokes my_coroutine.send(datum)
to push data into the coroutine. The coroutine then resumes and gets datum
as the value of the yield expression where it was suspended. In normal
usage, a caller repeatedly pushes data into the coroutine in that way. In
contrast with generators, coroutines are usually data consumers, not
producers.

Regardless of the flow of data, yield is a control flow device that can be
used to implement cooperative multitasking: each coroutine yields control
to a central scheduler so that other coroutines can be activated.

Since version 3.5, Python has three kinds of coroutines:

classic coroutines

A generator function that consumes data sent to it via
my_coro.send(data) calls, and reads that data by using yield in
an expression. Classic coroutines can delegate to other classic
coroutines using yield from.

generator-based coroutines

A generator function decorated with @types.coroutine, which
makes it compatible with the new await keyword, introduced in
Python 3.5.

native coroutines

A coroutine defined with async def. You can delegate from a native
coroutine to another native coroutine or to a generator-based coroutine
using the await keyword, similar to how classic coroutines use
yield from.

Native coroutines and generator-based coroutines are intended specifically
for asynchronous I/O programming. As such, we’ll get back to them in
Chapter 22—Basic Asyncio.



This chapter is about classic coroutines. Although native coroutines evolved
from classic coroutines, they don’t replace them completely. Classic
coroutines have some useful behaviors that native coroutines can’t emulate
—and vice-versa, native coroutines have features that are missing in classic
coroutines.

Classic coroutines are the product of a series of enhancements to the
simpler generator functions we’ve seen so far in the book. Following the
evolution of coroutines in Python helps understand their features in stages
of increasing functionality and complexity.

After a brief overview of how generators were enhanced to act as
coroutines, we jump to the core of the chapter. Then we’ll see:

The behavior and states of a generator operating as a coroutine.

Priming a coroutine automatically with a decorator.

How the caller can control a coroutine through the .close() and
.throw(…) methods of the generator object.

How coroutines can return values upon termination.

Usage and semantics of the new yield from syntax.

A use case: coroutines for managing concurrent activities in a
simulation.

NOTE
In this chapter I often use the word “coroutine” to refer to classic coroutines—a.k.a.
generator-based coroutines— except when I am contrasting them with native coroutines.

What’s new in this chapter
Since 2012 when yield from was implemented in Python 3.3, classic
coroutines did not undergo major changes. Native coroutines—created with



async def—are similar, but not a full replacement of classic coroutines.
They are covered in Chapter 22.

Therefore, this chapter has no significant changes except for the occasional
comparisons of classic versus native coroutines, as well as yield from
versus await.

How Coroutines Evolved from Generators
A classic coroutine is syntactically like a generator: just a function with the
yield keyword in its body. However, in a coroutine, yield usually
appears on the right-hand side of an expression (e.g., datum = yield),
and it may or may not produce a value—if there is no expression after the
yield keyword, the generator yields None. The coroutine may receive
data from the caller, which uses coro.send(datum) instead of
next(coro) to drive the coroutine. Usually, the caller pushes values into
the coroutine. It is even possible that no data goes in or out through the
yield keyword. When you start thinking of yield primarily in terms of
control flow, you have the mindset to understand why coroutines are useful
for concurrent programming.

The infrastructure for coroutines appeared in PEP 342 — Coroutines via
Enhanced Generators, implemented in Python 2.5 (2006): since then, the
yield keyword can be used in an expression, and the .send(value)
method was added to the generator API. This allows a generator to be used
as a coroutine: a procedure that collaborates with the caller, yielding and
receiving values from the caller.

In addition to .send(…), PEP 342 also added .throw(…) and
.close() methods that respectively allow the caller to throw an
exception to be handled inside the generator, and to terminate it. These
features are covered in the next section and in “Coroutine Termination and
Exception Handling”.

The latest evolutionary step for classic coroutines came with PEP 380 -
Syntax for Delegating to a Subgenerator, implemented in Python 3.3

https://www.python.org/dev/peps/pep-0342/
https://www.python.org/dev/peps/pep-0380/


(2012). PEP 380 made two syntax changes to generator functions, to make
them more useful as coroutines:

A generator can now return a value; previously, providing a
value to the return statement inside a generator raised a
SyntaxError.

The yield from syntax enables complex generators to be
refactored into smaller, nested generators while avoiding a lot of
boilerplate code previously required for a generator to delegate to
subgenerators.

These changes will be addressed in “Returning a Value from a Coroutine”
and “Using yield from”.

After PEP 380 there have been no major changes to classic coroutines. PEP
492 introduced native coroutines, but that’s a story for Chapter 22.

Let’s follow the established tradition of Fluent Python and start with some
very basic facts and examples, then move into increasingly mind-bending
features.

Basic Behavior of a Generator Used as a
Coroutine
Example 19-1 illustrates the behavior of a coroutine.

Example 19-1. Simplest possible demonstration of coroutine in action
>>> def simple_coroutine():   
...     print('-> coroutine started') 
...     x = yield   
...     print('-> coroutine received:', x) 
... 
>>> my_coro = simple_coroutine() 
>>> my_coro   
<generator object simple_coroutine at 0x100c2be10> 
>>> next(my_coro)   
-> coroutine started 
>>> my_coro.send(42)   
-> coroutine received: 42 



Traceback (most recent call last):   
  ... 
StopIteration

A coroutine is defined as a generator function: with yield in its body.

yield is used in an expression; when the coroutine is designed just to
receive data from the client it yields None—this is implicit because
there is no expression to the right of the yield keyword.

As usual with generators, you call the function to get a generator object
back.

The first call is next(…) because the generator hasn’t started so it’s
not waiting in a yield and we can’t send it any data initially.

This call makes the yield in the coroutine body evaluate to 42; now
the coroutine resumes and runs until the next yield or termination.

In this case, control flows off the end of the coroutine body, which
prompts the generator machinery to raise StopIteration, as usual.

A coroutine can be in one of four states. You can determine the current state
using the inspect.getgeneratorstate(…) function, which returns
one of these strings:

'GEN_CREATED'

Waiting to start execution.

'GEN_RUNNING'

Currently being executed by the interpreter.

'GEN_SUSPENDED'

Currently suspended at a yield expression.
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'GEN_CLOSED'

Execution has completed.

Because the argument to the send method will become the value of the
pending yield expression, it follows that you can only make a call like
my_coro.send(42) if the coroutine is currently suspended. But that’s
not the case if the coroutine has never been activated—when its state is
'GEN_CREATED'. That’s why the first activation of a coroutine is always
done with next(my_coro)—you can also call
my_coro.send(None), and the effect is the same.

If you create a coroutine object and immediately try to send it a value that is
not None, this is what happens:

>>> my_coro = simple_coroutine() 
>>> my_coro.send(1729) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
TypeError: can't send non-None value to a just-started generator

Note the error message: it’s quite clear.

The initial call next(my_coro) is often described as “priming” the
coroutine (i.e., advancing it to the first yield to make it ready for use as a
live coroutine).

To get a better feel for the behavior of a coroutine, an example that yields
more than once is useful. See Example 19-2.

Example 19-2. A coroutine that yields twice
>>> def simple_coro2(a): 
...     print('-> Started: a =', a) 
...     b = yield a 
...     print('-> Received: b =', b) 
...     c = yield a + b 
...     print('-> Received: c =', c) 
... 
>>> my_coro2 = simple_coro2(14) 
>>> from inspect import getgeneratorstate 



>>> getgeneratorstate(my_coro2)   
'GEN_CREATED' 
>>> next(my_coro2)   
-> Started: a = 14 
14 
>>> getgeneratorstate(my_coro2)   
'GEN_SUSPENDED' 
>>> my_coro2.send(28)   
-> Received: b = 28 
42 
>>> my_coro2.send(99)   
-> Received: c = 99 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
StopIteration 
>>> getgeneratorstate(my_coro2)   
'GEN_CLOSED'

inspect.getgeneratorstate reports GEN_CREATED (i.e., the
coroutine has not started).

Advance coroutine to first yield, printing -> Started: a = 14
message then yielding value of a and suspending to wait for value to be
assigned to b.

getgeneratorstate reports GEN_SUSPENDED (i.e., the coroutine
is paused at a yield expression).

Send number 28 to suspended coroutine; the yield expression
evaluates to 28 and that number is bound to b. The -> Received:
b = 28 message is displayed, the value of a + b is yielded (42), and
the coroutine is suspended waiting for the value to be assigned to c.

Send number 99 to suspended coroutine; the yield expression
evaluates to 99 the number is bound to c. The -> Received: c =
99 message is displayed, then the coroutine terminates, causing the
generator object to raise StopIteration.



getgeneratorstate reports GEN_CLOSED (i.e., the coroutine
execution has completed).

It’s crucial to understand that the execution of the coroutine is suspended
exactly at the yield keyword. As mentioned before, in an assignment
statement, the code to the right of the = is evaluated before the actual
assignment happens. This means that in a line like b = yield a, the
value of b will only be set when the coroutine is activated later by the client
code. It takes some effort to get used to this fact, but understanding it is
essential to make sense of the use of yield in asynchronous programming,
as we’ll see later.

Execution of the simple_coro2 coroutine can be split in three phases, as
shown in Figure 19-1:

1. next(my_coro2) prints first message and runs to yield a,
yielding number 14.

2. my_coro2.send(28) assigns 28 to b, prints second message,
and runs to yield a + b, yielding number 42.

3. my_coro2.send(99) assigns 99 to c, prints third message,
and the coroutine terminates.



Figure 19-1. Three phases in the execution of the simple_coro2 coroutine (note that each phase ends
in a yield expression, and the next phase starts in the very same line, when the value of the yield

expression is assigned to a variable)

Now let’s consider a slightly more involved coroutine example.

Example: Coroutine to Compute a Running
Average
While discussing closures in Chapter 9, we studied objects to compute a
running average: Example 9-7 shows a plain class and Example 9-13
presents a higher-order function producing a closure to keep the total and



count variables across invocations. Example 19-3 shows how to do the
same with a coroutine.

Example 19-3. coroaverager0.py: code for a running average coroutine
def averager(): 
    total = 0.0 
    count = 0 
    average = None 
    while True:   
        term = yield average   
        total += term 
        count += 1 
        average = total/count

This infinite loop means this coroutine will keep on accepting values
and producing results as long as the caller sends them. This coroutine
will only terminate when the caller calls .close() on it, or when it’s
garbage collected because there are no more references to it.

The yield statement here suspends the coroutine, produces a result to
the caller, and—later—gets a value sent by the caller to the coroutine,
which resumes its infinite loop.

The advantage of using a coroutine is that total and count can be
simple local variables: no instance attributes or closures are needed to keep
the context between calls. Example 19-4 are doctests to show the
averager coroutine in operation.

Example 19-4. coroaverager0.py: doctest for the running average coroutine
in Example 19-3
    >>> coro_avg = averager()   
    >>> next(coro_avg)   
    >>> coro_avg.send(10)   
    10.0 
    >>> coro_avg.send(30) 
    20.0 
    >>> coro_avg.send(5) 
    15.0
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Create the coroutine object.

Prime it by calling next.

Now we are in business: each call to .send(…) yields the current
average.

In the doctest (Example 19-4), the call next(coro_avg) makes the
coroutine advance to the yield, yielding the initial value for average,
which is None, so it does not appear on the console. At this point, the
coroutine is suspended at the yield, waiting for a value to be sent. The
line coro_avg.send(10) provides that value, causing the coroutine to
activate, assigning it to term, updating the total, count, and average
variables, and then starting another iteration in the while loop, which
yields the average and waits for another term.

The attentive reader may be anxious to know how the execution of an
averager instance (e.g., coro_avg) may be terminated, because its
body is an infinite loop. We’ll cover that in “Coroutine Termination and
Exception Handling”.

But before discussing coroutine termination, let’s talk about getting them
started. Priming a coroutine before use is a necessary but easy-to-forget
chore. To avoid it, a special decorator can be applied to the coroutine. One
such decorator is presented next.

Decorators for Coroutine Priming
You can’t do much with a coroutine without priming it: we must always
remember to call next(my_coro) before my_coro.send(x). To
make coroutine usage more convenient, a priming decorator is sometimes
used. The coroutine decorator in Example 19-5 is an example.

Example 19-5. coroutil.py: decorator for priming coroutine
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from functools import wraps 
 
def coroutine(func): 
    """Decorator: primes `func` by advancing to first `yield`""" 
    @wraps(func) 
    def primer(*args, **kwargs):   
        gen = func(*args, **kwargs)   
        next(gen)   
        return gen   
    return primer

The decorated generator function is replaced by this primer function
which, when invoked, returns the primed generator.

Call the decorated function to get a generator object.

Prime the generator.

Return it.

Example 19-6 shows the @coroutine decorator in use. Contrast with
Example 19-3.

Example 19-6. coroaverager1.py: doctest and code for a running average
coroutine using the @coroutine decorator from Example 19-5
""" 
A coroutine to compute a running average 
 
    >>> coro_avg = averager()   
    >>> from inspect import getgeneratorstate 
    >>> getgeneratorstate(coro_avg)   
    'GEN_SUSPENDED' 
    >>> coro_avg.send(10)   
    10.0 
    >>> coro_avg.send(30) 
    20.0 
    >>> coro_avg.send(5) 
    15.0 
 
""" 
 
from coroutil import coroutine   
 



@coroutine   
def averager():   
    total = 0.0 
    count = 0 
    average = None 
    while True: 
        term = yield average 
        total += term 
        count += 1 
        average = total/count

Call averager(), creating a generator object that is primed inside the
primer function of the coroutine decorator.

getgeneratorstate reports GEN_SUSPENDED, meaning that the
coroutine is ready to receive a value.

You can immediately start sending values to coro_avg: that’s the
point of the decorator.

Import the coroutine decorator.

Apply it to the averager function.

The body of the function is exactly the same as Example 19-3.

Several frameworks provide special decorators designed to work with
coroutines. Not all of them actually prime the coroutine—some provide
other services, such as hooking it to an event loop. One example from the
Tornado asynchronous networking library is the tornado.gen decorator.

The yield from syntax we’ll see in “Using yield from” automatically
primes the coroutine called by it, making it incompatible with decorators
such as @coroutine from Example 19-5. The asyncio.coroutine
decorator from the Python 3.4 standard library is designed to work with
yield from so it does not prime the coroutine. We’ll cover it in
Chapter 22.

http://bit.ly/1MMcGBF


We’ll now focus on essential features of coroutines: the methods used to
terminate and throw exceptions into them.

Coroutine Termination and Exception
Handling
An unhandled exception within a coroutine propagates to the caller of the
next or send that triggered it. Example 19-7 is an example using the
decorated averager coroutine from Example 19-6.

Example 19-7. How an unhandled exception kills a coroutine
>>> from coroaverager1 import averager 
>>> coro_avg = averager() 
>>> coro_avg.send(40)   
40.0 
>>> coro_avg.send(50) 
45.0 
>>> coro_avg.send('spam')   
Traceback (most recent call last): 
  ... 
TypeError: unsupported operand type(s) for +=: 'float' and 'str' 
>>> coro_avg.send(60)   
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
StopIteration

Using the @coroutine decorated averager we can immediately
start sending values.

Sending a nonnumeric value causes an exception inside the coroutine.

Because the exception was not handled in the coroutine, it terminated.
Any attempt to reactivate it will raise StopIteration.

The cause of the error was the sending of a value 'spam' that could not be
added to the total variable in the coroutine.



Example 19-7 suggests one way of terminating coroutines: you can use
send with some sentinel value that tells the coroutine to exit. Constant
built-in singletons like None and Ellipsis are convenient sentinel
values. Ellipsis has the advantage of being quite unusual in data
streams. Another sentinel value I’ve seen used is StopIteration—the
class itself, not an instance of it (and not raising it). In other words, using it
like: my_coro.send(StopIteration).

Since Python 2.5, generator objects have two methods that allow the client
to explicitly send exceptions into the coroutine—throw and close:

generator.throw(exc_type[, exc_value[,
traceback]])

Causes the yield expression where the generator was paused to raise
the exception given. If the exception is handled by the generator, flow
advances to the next yield, and the value yielded becomes the value
of the generator.throw call. If the exception is not handled by the
generator, it propagates to the context of the caller.

generator.close()

Causes the yield expression where the generator was paused to raise a
GeneratorExit exception. No error is reported to the caller if the
generator does not handle that exception or raises StopIteration—
usually by running to completion. When receiving a
GeneratorExit, the generator must not yield a value, otherwise a
RuntimeError is raised. If any other exception is raised by the
generator, it propagates to the caller.

TIP
The official documentation of the generator object methods is buried deep in The Python
Language Reference, (see Generator-iterator methods).

https://docs.python.org/3/reference/expressions.html#generator-iterator-methods


Let’s see how close and throw control a coroutine. Example 19-8 lists
the demo_exc_handling function used in the following examples.

Example 19-8. coro_exc_demo.py: test code for studying exception
handling in a coroutine
class DemoException(Exception): 
    """An exception type for the demonstration.""" 
 
def demo_exc_handling(): 
    print('-> coroutine started') 
    while True: 
        try: 
            x = yield 
        except DemoException:   
            print('*** DemoException handled. Continuing...') 
        else:   
            print(f'-> coroutine received: {x!r}') 
    raise RuntimeError('This line should never run.')  

Special handling for DemoException.

If no exception, display received value.

This line will never be executed.

The last line in Example 19-8 is unreachable because the infinite loop can
only be aborted with an unhandled exception, and that terminates the
coroutine immediately.

Normal operation of demo_exc_handling is shown in Example 19-9.

Example 19-9. Activating and closing demo_exc_handling without an
exception
    >>> exc_coro = demo_exc_handling() 
    >>> next(exc_coro) 
    -> coroutine started 
    >>> exc_coro.send(11) 
    -> coroutine received: 11 
    >>> exc_coro.send(22) 
    -> coroutine received: 22 
    >>> exc_coro.close() 
    >>> from inspect import getgeneratorstate 



    >>> getgeneratorstate(exc_coro) 
    'GEN_CLOSED'

If the DemoException is thrown into the coroutine, it’s handled and the
demo_exc_handling coroutine continues, as in Example 19-10.

Example 19-10. Throwing DemoException into demo_exc_handling does
not break it
    >>> exc_coro = demo_exc_handling() 
    >>> next(exc_coro) 
    -> coroutine started 
    >>> exc_coro.send(11) 
    -> coroutine received: 11 
    >>> exc_coro.throw(DemoException) 
    *** DemoException handled. Continuing... 
    >>> getgeneratorstate(exc_coro) 
    'GEN_SUSPENDED'

On the other hand, if an unhandled exception is thrown into the coroutine, it
stops—its state becomes 'GEN_CLOSED'. Example 19-11 demonstrates it.

Example 19-11. Coroutine terminates if it can’t handle an exception thrown
into it
    >>> exc_coro = demo_exc_handling() 
    >>> next(exc_coro) 
    -> coroutine started 
    >>> exc_coro.send(11) 
    -> coroutine received: 11 
    >>> exc_coro.throw(ZeroDivisionError) 
    Traceback (most recent call last): 
      ... 
    ZeroDivisionError 
    >>> getgeneratorstate(exc_coro) 
    'GEN_CLOSED'

If it’s necessary that some cleanup code is run no matter how the coroutine
ends, you need to wrap the relevant part of the coroutine body in a
try/finally block, as in Example 19-12.

Example 19-12. coro_finally_demo.py: use of try/finally to perform actions
on coroutine termination
class DemoException(Exception): 
    """An exception type for the demonstration.""" 



 
 
def demo_finally(): 
    print('-> coroutine started') 
    try: 
        while True: 
            try: 
                x = yield 
            except DemoException: 
                print('*** DemoException handled. Continuing...') 
            else: 
                print(f'-> coroutine received: {x!r}') 
    finally: 
        print('-> coroutine ending')

One of the main reasons why the yield from construct was added to
Python 3.3 has to do with throwing exceptions into nested coroutines. The
other reason was to enable coroutines to return values more conveniently.
Read on to see how.

Returning a Value from a Coroutine
Example 19-13 shows a variation of the averager coroutine that returns a
result. For didactic reasons, it does not yield the running average with each
activation. This is to emphasize that some coroutines do not yield anything
interesting, but are designed to return a value at the end, often the result of
some accumulation.

The result returned by averager in Example 19-13 is a namedtuple
with the number of terms averaged (count) and the average. I could
have returned just the average value, but returning a tuple exposes
another interesting piece of data that was accumulated: the count of terms.

Example 19-13. coroaverager2.py: code for an averager coroutine that
returns a result
from collections import namedtuple 
 
Result = namedtuple('Result', 'count average') 
 
 
def averager(): 



    total = 0.0 
    count = 0 
    average = None 
    while True: 
        term = yield 
        if term is None: 
            break   
        total += term 
        count += 1 
        average = total/count 
    return Result(count, average)  

In order to return a value, a coroutine must terminate normally; this is
why this version of averager has a condition to break out of its
accumulating loop.

Return a namedtuple with the count and average. Before Python
3.3, it was a syntax error to return a value in a generator function.

To see how this new averager works, we can drive it from the console,
as in Example 19-14.

Example 19-14. coroaverager2.py: doctest showing the behavior of
averager
    >>> coro_avg = averager() 
    >>> next(coro_avg) 
    >>> coro_avg.send(10)   
    >>> coro_avg.send(30) 
    >>> coro_avg.send(6.5) 
    >>> coro_avg.send(None)   
    Traceback (most recent call last): 
       ... 
    StopIteration: Result(count=3, average=15.5)

This version does not yield values.

Sending None terminates the loop, causing the coroutine to end by
returning the result. As usual, the generator object raises
StopIteration. The value attribute of the exception carries the
value returned.



Note that the value of the return expression is smuggled to the caller as
an attribute of the StopIteration exception. This is a bit of a hack, but
it preserves the existing behavior of generator objects: raising
StopIteration when exhausted.

Example 19-15 shows how to retrieve the value returned by the coroutine.

Example 19-15. Catching StopIteration lets us get the value returned by
averager
    >>> coro_avg = averager() 
    >>> next(coro_avg) 
    >>> coro_avg.send(10) 
    >>> coro_avg.send(30) 
    >>> coro_avg.send(6.5) 
    >>> try: 
    ...     coro_avg.send(None) 
    ... except StopIteration as exc: 
    ...     result = exc.value 
    ... 
    >>> result 
    Result(count=3, average=15.5)

This roundabout way of getting the return value from a coroutine makes
more sense when we realize it was defined as part of PEP 380, and the
yield from construct handles it automatically by catching
StopIteration internally. This is analogous to the use of
StopIteration in for loops: the exception is handled by the loop
machinery in a way that is transparent to the user. In the case of yield
from, the interpreter not only consumes the StopIteration, but its
value attribute becomes the value of the yield from expression itself.
Unfortunately we can’t test this interactively in the console, because it’s a
syntax error to use yield from—or yield, for that matter—outside of
a function.

The next section has an example where the averager coroutine is used
with yield from to produce a result, as intended in PEP 380. So let’s
tackle yield from.
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Using yield from
The first thing to know about yield from is that it is a completely new
language construct. It does a lot more than yield. The newer await
keyword is very similar to yield from, and its name conveys a crucial
point: when a generator gen calls yield from subgen(), the
subgen takes over and will yield values to the caller of gen; the caller
will in effect drive subgen directly. Meanwhile gen will be blocked,
waiting until subgen terminates.

However, await does not completely replace yield from. Each of
them has its own use cases, and await is more strict about its context and
target: await can only be used inside a native coroutine, and its target
must be an awaitable object, which we will cover in Chapter 22. In
contrast, yield from can be used in any function—which then becomes
a generator—and its target can be any iterable. This super simple yield
from example cannot be written with async/await syntax:

>>> def gen123(): 
...     yield from [1, 2, 3] 
... 
>>> tuple(gen123()) 
(1, 2, 3)

We’ve seen in Chapter 17 that yield from can be used as a shortcut to
yield in a for loop. For example, this:

>>> def gen(): 
...     for c in 'AB': 
...         yield c 
...     for i in range(1, 3): 
...         yield i 
... 
>>> list(gen()) 
['A', 'B', 1, 2]

Can be written as:



>>> def gen(): 
...     yield from 'AB' 
...     yield from range(1, 3) 
... 
>>> list(gen()) 
['A', 'B', 1, 2]

When we first mentioned yield from in “Subgenerators with yield
from”, the code from Example 19-16 demonstrates a practical use for it—
although the itertools module already provides an optimized chain
generator written in C.

Example 19-16. Chaining iterables with yield from
>>> def chain(*iterables): 
...     for it in iterables: 
...         yield from it 
... 
>>> s = 'ABC' 
>>> t = tuple(range(3)) 
>>> list(chain(s, t)) 
['A', 'B', 'C', 0, 1, 2]

Two slightly more complicated—but more useful—examples of yield
from are the code in “Traversing a tree”, and “Recipe 4.14. Flattening a
Nested Sequence” in Beazley and Jones’s Python Cookbook, 3E (source
code available on GitHub).

The first thing the yield from x expression does with the x object is to
call iter(x) to obtain an iterator from it. This means that x can be any
iterable.

However, if replacing nested for loops yielding values was the only
contribution of yield from, this language addition wouldn’t have had a
good chance of being accepted. The real nature of yield from cannot be
demonstrated with simple iterables; it requires the mind-expanding use of
nested generators. That’s why PEP 380, which introduced yield from,
is titled Syntax for Delegating to a Subgenerator.

The main feature of yield from is to open a bidirectional channel from
the outermost caller to the innermost subgenerator, so that values can be

http://shop.oreilly.com/product/0636920027072.do
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sent and yielded back and forth directly from them, and exceptions can be
thrown all the way in without adding a lot of exception handling boilerplate
code in the intermediate coroutines. This is what enables coroutine
delegation in a way that was not possible before.

The use of yield from requires a nontrivial arrangement of code. To talk
about the required moving parts, PEP 380 uses some terms in a very
specific way:

delegating generator

The generator function that contains the yield from <iterable>
expression.

subgenerator

The generator obtained from the <iterable> part of the yield
from expression. This is the “subgenerator” mentioned in the title of
PEP 380: “Syntax for Delegating to a Subgenerator.”

caller

PEP 380 uses the term “caller” to refer to the client code that calls the
delegating generator. Depending on context, I use “client” instead of
“caller,” to distinguish from the delegating generator, which is also a
“caller” (it calls the subgenerator).

TIP
PEP 380 often uses the word “iterator” to refer to the subgenerator. That’s confusing
because the delegating generator is also an iterator. So I prefer to use the term
subgenerator, in line with the title of the PEP—“Syntax for Delegating to a
Subgenerator.” However, the subgenerator can be a simple iterator implementing only
__next__, and yield from can handle that too, although it was created to support
generators implementing __next__, send, close, and throw.

Example 19-17 provides more context to see yield from at work, and
Figure 19-2 identifies the relevant parts of the example.6



Figure 19-2. While the delegating generator is suspended at yield from, the caller sends data directly
to the subgenerator, which yields data back to the caller. The delegating generator resumes when the

subgenerator returns and the interpreter raises StopIteration with the returned value attached.

The coroaverager3.py script reads a dict with weights and heights from
girls and boys in an imaginary seventh grade class. For example, the key
'boys;m' maps to the heights of 9 boys, in meters; 'girls;kg' are the
weights of 10 girls in kilograms. The script feeds the data for each group
into the averager coroutine we’ve seen before, and produces a report like
this one:

$ python3 coroaverager3.py 
 9 boys  averaging 40.42kg 
 9 boys  averaging 1.39m 
10 girls averaging 42.04kg 
10 girls averaging 1.43m



The code in Example 19-17 is certainly not the most straightforward
solution to the problem, but it serves to show yield from in action. This
example is inspired by the one given in What’s New in Python 3.3.

Example 19-17. coroaverager3.py: using yield from to drive averager and
report statistics
from collections import namedtuple 
 
Result = namedtuple('Result', 'count average') 
 
 
# the subgenerator 
def averager():   
    total = 0.0 
    count = 0 
    average = None 
    while True: 
        term = yield   
        if term is None:   
            break 
        total += term 
        count += 1 
        average = total/count 
    return Result(count, average)   
 
 
# the delegating generator 
def grouper(results, key):   
    while True:   
        results[key] = yield from averager()   
 
 
# the client code, a.k.a. the caller 
def main(data):   
    results = {} 
    for key, values in data.items(): 
        group = grouper(results, key)   
        next(group)   
        for value in values: 
            group.send(value)   
        group.send(None)  # important!  
 
    # print(results)  # uncomment to debug 
    report(results) 
 
 

http://bit.ly/1HGrnVq


# output report 
def report(results): 
    for key, result in sorted(results.items()): 
        group, unit = key.split(';') 
        print(f'{result.count:2} {group:5}', 
              f'averaging {result.average:.2f}{unit}') 
 
 
data = { 
    'girls;kg': 
        [40.9, 38.5, 44.3, 42.2, 45.2, 41.7, 44.5, 38.0, 40.6, 
44.5], 
    'girls;m': 
        [1.6, 1.51, 1.4, 1.3, 1.41, 1.39, 1.33, 1.46, 1.45, 1.43], 
    'boys;kg': 
        [39.0, 40.8, 43.2, 40.8, 43.1, 38.6, 41.4, 40.6, 36.3], 
    'boys;m': 
        [1.38, 1.5, 1.32, 1.25, 1.37, 1.48, 1.25, 1.49, 1.46], 
} 
 
 
if __name__ == '__main__': 
    main(data)

Same averager coroutine from Example 19-13. Here it is the
subgenerator.

Each value sent by the client code in main will be bound to term here.

The crucial terminating condition. Without it, a yield from calling
this coroutine will block forever.

The returned Result will be the value of the yield from
expression in grouper.

grouper is the delegating generator.

Each iteration in this loop creates a new instance of averager; each is
a generator object operating as a coroutine.



Whenever grouper is sent a value, it’s piped into the averager
instance by the yield from. grouper will be suspended here as
long as the averager instance is consuming values sent by the client.
When an averager instance runs to the end, the value it returns is
bound to results[key]. The while loop then proceeds to create
another averager instance to consume more values.

main is the client code, or “caller” in PEP 380 parlance. This is the
function that drives everything.

group is a generator object resulting from calling grouper with the
results dict to collect the results, and a particular key. It will
operate as a coroutine.

Prime the coroutine.

Send each value into the grouper. That value ends up in the term
= yield line of averager; grouper never has a chance to see it.

Sending None into grouper causes the current averager instance
to terminate, and allows grouper to run again, which creates another
averager for the next group of values.

The last callout in Example 19-17 with the comment "important!"
highlights a crucial line of code: group.send(None), which terminates
one averager and starts the next. If you comment out that line, the script
produces no output. Uncommenting the print(results) line near the
end of main reveals that the results dict ends up empty.

NOTE
If you want to figure out for yourself why no results are collected, it will be a great way
to exercise your understanding of how yield from works. The code for
coroaverager3.py is in the Fluent Python code repository. The explanation is next.

http://bit.ly/1JIofLL


Here is an overview of how Example 19-17 works, explaining what would
happen if we omitted the call group.send(None) marked “important!”
in main:

Each iteration of the outer for loop creates a new grouper
instance named group; this is the delegating generator.

The call next(group) primes the grouper delegating
generator, which enters its while True loop and suspends at the
yield from, after calling the subgenerator averager.

The inner for loop calls group.send(value); this feeds the
subgenerator averager directly. Meanwhile, the current group
instance of grouper is suspended at the yield from.

When the inner for loop ends, the group instance is still
suspended at the yield from, so the assignment to
results[key] in the body of grouper has not happened yet.

Without the last group.send(None) in the outer for loop, the
averager subgenerator never terminates, the delegating
generator group is never reactivated, and the assignment to
results[key] never happens.

When execution loops back to the top of the outer for loop, a new
grouper instance is created and bound to group. The previous
grouper instance is garbage collected (together with its own
unfinished averager subgenerator instance).

WARNING
The key takeaway from this experiment is: if a subgenerator never terminates, the
delegating generator will be suspended forever at the yield from. This will not
prevent your program from making progress because the yield from (like the simple
yield) transfers control to the client code (i.e., the caller of the delegating generator).
But it does mean that some task will be left unfinished.



Pipelines of coroutines
Example 19-17 demonstrates the simplest arrangement of yield from,
with only one delegating generator and one subgenerator. Because the
delegating generator works as a pipe, you can connect any number of them
in a pipeline: one delegating generator uses yield from to call a
subgenerator, which itself is a delegating generator calling another
subgenerator with yield from, and so on. Eventually this chain must
end in a simple generator that uses just yield, but it may also end in any
iterable object, as in Example 19-16.

Every yield from chain must be driven by a client that calls next(…)
or .send(…) on the outermost delegating generator. This call may be
implicit, such as a for loop.

Now let’s review the formal description of the yield from construct, as
presented in PEP 380.

The Meaning of yield from

NOTE
This is one of the most challenging sections in the book. You may wonder whether it is
worth your attention, given that most uses of yield from are in legacy asynchronous
programming code, where it is now preferable to use await instead. But if you really
want to understand how async/wait works under the hood, you need to understand
yield from. The underlying machinery is the same. PEP 492–Coroutines with async
and await syntax states that await “uses the yield from implementation with an
extra step of validating its argument”.  PEP 492 also assumes understanding of PEP
380, and does not go into the same level of detail about the behavior of yield from
or await.

While developing PEP 380, Greg Ewing—the PEP author—was questioned
about the complexity of the proposed semantics. One of his answers was
“For humans, almost all the important information is contained in one
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paragraph near the top.” He then quoted part of the draft of PEP 380 which
at the time read as follows:

“When the iterator is another generator, the effect is the same as if the
body of the subgenerator were inlined at the point of the yield from
expression. Furthermore, the subgenerator is allowed to execute a
return statement with a value, and that value becomes the value of the
yield from expression.”

Those soothing words are no longer part of the PEP—because they don’t
cover all the corner cases. But they are OK as a first approximation.

We will tackle our study of yield from in two steps: first, its basic
behavior, which covers many use cases. After that, we’ll see what happens
when the subgenerator is terminated before it runs to completion, as well as
other exceptional execution paths.

Basic behavior of yield from
The approved version of PEP 380 explains the behavior of yield from
in six points in the Proposal section. Here I reproduce them almost exactly,
except that I replaced every occurrence of the ambiguous word “iterator”
with “subgenerator” and added a few clarifications. Let’s start with the four
points that are illustrated by coroaverager3.py in Example 19-17:

Any values that the subgenerator yields are passed directly to the
caller of the delegating generator (i.e., the client code).

Any values sent to the delegating generator using send() are
passed directly to the subgenerator. If the sent value is None, the
subgenerator’s __next__() method is called. If the sent value is
not None, the subgenerator’s send() method is called. If the call
raises StopIteration, the delegating generator is resumed.
Any other exception is propagated to the delegating generator.

return expr in a generator (or subgenerator) causes
StopIteration(expr) to be raised upon exit from the
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generator.

The value of the yield from expression is the first argument to
the StopIteration exception raised by the subgenerator when
it terminates.

The other two points about yield from in PEP 380 have to do with
exceptions and termination. We’ll see them in “Exception handling in yield
from”. For now, let’s study on the behaviour of yield from under
“normal” operating conditions.

The detailed semantics of yield from are subtle. Greg Ewing did a great
job putting them to words in English in PEP 380.

Ewing also documented the behavior of yield from using pseudocode
(with Python syntax). I personally found it useful to spend some time
studying the pseudocode in PEP 380. However, the pseudocode is 40 lines
long and not easy to grasp at first.

A good way to approach that pseudocode is to simplify it to handle only the
most basic and common uses of yield from.

Consider that yield from appears in a delegating generator. The client
code drives the delegating generator, which drives the subgenerator. So, to
simplify the logic involved, let’s assume the client doesn’t ever call
.throw(…) or .close() on the delegating generator. Let’s also assume
the subgenerator never raises an exception until it terminates, when
StopIteration is raised by the interpreter.

The coroaverager3.py script in Example 19-17 is an example where
those simplifying assumptions hold. In fact, often the delegating generator
is expected to run to completion. So let’s see how yield from works in
this happier, simpler world.

Take a look at Example 19-18, which is an expansion of this single
statement, in the body of the delegating generator:

RESULT = yield from EXPR



Try to follow the logic in Example 19-18.

Example 19-18. Simplified pseudocode equivalent to the statement RESULT
= yield from EXPR in the delegating generator (this covers the simplest
case: .throw(…) and .close() are not supported; the only exception handled
is StopIteration)
_i = iter(EXPR)   
try: 
    _y = next(_i)   
except StopIteration as _e: 
    _r = _e.value   
else: 
    while 1:   
        _s = yield _y   
        try: 
            _y = _i.send(_s)   
        except StopIteration as _e:   
            _r = _e.value 
            break 
 
RESULT = _r  

The EXPR can be any iterable, because iter() is applied to get an
iterator _i (this is the subgenerator).

The subgenerator is primed; the result is stored to be the first yielded
value _y.

If StopIteration was raised, extract the value attribute from the
exception and assign it to _r: this is the RESULT in the simplest case.

While this loop is running, the delegating generator is blocked,
operating just as a channel between the caller and the subgenerator.

Yield the current item yielded from the subgenerator; wait for a value
_s sent by the caller. Note that this is the only yield in this listing.

Try to advance the subgenerator, forwarding the _s sent by the caller.



If the subgenerator raised StopIteration, get the value, assign to
_r, and exit the loop, resuming the delegating generator.

_r is the RESULT: the value of the whole yield from expression.

In this simplified pseudocode, I preserved the variable names used in the
pseudocode published in PEP 380. The variables are:

_i (iterator)

The subgenerator

_y (yielded)

A value yielded from the subgenerator

_r (result)

The eventual result (i.e., the value of the yield from expression
when the subgenerator ends)

_s (sent)

A value sent by the caller to the delegating generator, which is
forwarded to the subgenerator

_e (exception)

An exception (always an instance of StopIteration in this
simplified pseudocode)

Besides not handling .throw(…) and .close(), the simplified
pseudocode always uses .send(…) to forward next() or .send(…)
calls by the client to the subgenerator. Don’t worry about these fine
distinctions on a first reading. As mentioned, coroaverager3.py in
Example 19-17 would run perfectly well if the yield from did only
what is shown in the simplified pseudocode in Example 19-18.



The next section covers the behavior of yield from when the
subgenerator ends prematurely, either because the client cancels it, or an
unhandled exception is raised.

Exception handling in yield from
In “Basic behavior of yield from” we saw the first four points about yield
from behavior from PEP 380, and pseudo-code describing that behavior.
But the reality is more complicated, because of the need to handle
.throw(…) and .close() calls from the client, which must be passed
into the subgenerator. Here are the other points of the PEP 380 Proposal
section, slightly edited:

Exceptions other than GeneratorExit thrown into the
delegating generator are passed to the throw() method of the
subgenerator. If the call raises StopIteration, the delegating
generator is resumed. Any other exception is propagated to the
delegating generator.

If a GeneratorExit exception is thrown into the delegating
generator, or the close() method of the delegating generator is
called, then the close() method of the subgenerator is called if it
has one. If this call results in an exception, it is propagated to the
delegating generator. Otherwise, GeneratorExit is raised in
the delegating generator.

Also, the subgenerator may be a plain iterator that does not support
.throw(…) or .close(), so this must be handled by the yield from
logic. If the subgenerator does implement those methods, inside the
subgenerator both methods cause exceptions to be raised, which must be
handled by the yield from machinery as well. The subgenerator may
also throw exceptions of its own, unprovoked by the caller, and this must
also be dealt with in the yield from implementation. Finally, as an
optimization, if the caller calls next(…) or .send(None), both are
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forwarded as a next(…) call on the subgenerator; only if the caller sends a
non-None value, the .send(…) method of the subgenerator is used.

For your convenience, I present here the complete pseudocode of the
yield from expansion from PEP 380, with numbered annotations.
Example 19-19 was copied verbatim; I only added the callout numbers.

Most of the logic of the yield from pseudocode is implemented in six
try/except blocks nested up to four levels deep, so it’s a bit hard to
read. The only other control flow keywords used are one while, one if,
and one yield. Find the while, the yield, the next(…), and the
.send(…) calls: they will help you get an idea of how the whole structure
works.

Remember that all the code shown in Example 19-19 is an expansion of this
single statement, in the body of a delegating generator:

RESULT = yield from EXPR

Example 19-19. Pseudocode equivalent to the statement RESULT = yield
from EXPR in the delegating generator
_i = iter(EXPR)   
try: 
    _y = next(_i)   
except StopIteration as _e: 
    _r = _e.value   
else: 
    while 1:   
        try: 
            _s = yield _y   
        except GeneratorExit as _e:   
            try: 
                _m = _i.close 
            except AttributeError: 
                pass 
            else: 
                _m() 
            raise _e 
        except BaseException as _e:   
            _x = sys.exc_info() 
            try: 
                _m = _i.throw 



            except AttributeError: 
                raise _e 
            else:   
                try: 
                    _y = _m(*_x) 
                except StopIteration as _e: 
                    _r = _e.value 
                    break 
        else:   
            try:   
                if _s is None:   
                    _y = next(_i) 
                else: 
                    _y = _i.send(_s) 
            except StopIteration as _e:   
                _r = _e.value 
                break 
 
RESULT = _r  

The EXPR can be any iterable, because iter() is applied to get an
iterator _i (this is the subgenerator).

The subgenerator is primed; the result is stored to be the first yielded
value _y.

If StopIteration was raised, extract the value attribute from the
exception and assign it to _r: this is the RESULT in the simplest case.

While this loop is running, the delegating generator is blocked,
operating just as a channel between the caller and the subgenerator.

Yield the current item yielded from the subgenerator; wait for a value
_s sent by the caller. This is the only yield in this listing.

This deals with closing the delegating generator and the subgenerator.
Because the subgenerator can be any iterator, it may not have a close
method.



This deals with exceptions thrown in by the caller using .throw(…).
Again, the subgenerator may be an iterator with no throw method to
be called—in which case the exception is raised in the delegating
generator.

If the subgenerator has a throw method, call it with the exception
passed from the caller. The subgenerator may handle the exception (and
the loop continues); it may raise StopIteration (the _r result is
extracted from it, and the loop ends); or it may raise the same or another
exception, which is not handled here and propagates to the delegating
generator.

If no exception was received when yielding…

Try to advance the subgenerator…

Call next on the subgenerator if the last value received from the caller
was None, otherwise call send.

If the subgenerator raised StopIteration, get the value, assign to
_r, and exit the loop, resuming the delegating generator.

_r is the RESULT: the value of the whole yield from expression.

Right at the top of Example 19-19, one important detail revealed by the
pseudocode is that the subgenerator is primed (second callout in
Example 19-19).  This means that auto-priming decorators such as that in
“Decorators for Coroutine Priming” are incompatible with yield from.

In the same message I quoted in the opening of this section, Greg Ewing
has this to say about the pseudocode expansion of yield from:

You’re not meant to learn about it by reading the expansion—that’s only
there to pin down all the details for language lawyers.
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Focusing on the details of the pseudocode expansion may not be helpful—
depending on your learning style. Studying real code that uses yield
from is certainly more profitable than poring over the pseudocode of its
implementation. However, almost all the yield from examples I’ve seen
are tied to asynchronous programming with the asyncio module, so they
depend on an active event loop to work—and most such code now uses
await instead of yield from. There are a few links in “Further
Reading” to interesting code using yield from without an event loop.

We’ll now move on to a classic example of coroutine usage: programming
simulations. This example does not showcase yield from, but it does
reveal how coroutines are used to manage concurrent activities on a single
thread.

Use Case: Coroutines for Discrete Event
Simulation
Coroutines are a natural way of expressing many algorithms, such as
simulations, games, asynchronous I/O, and other forms of event-driven
programming or co-operative multitasking.

—Guido van Rossum and Phillip J. Eby, PEP 342—
Coroutines via Enhanced Generators

In this section, I will describe a very simple simulation implemented using
just coroutines and standard library objects. Simulation is a classic
application of coroutines in the computer science literature. Simula, the first
OO language, introduced the concept of coroutines precisely to support
simulations.
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NOTE
The motivation for the following simulation example is not academic. Coroutines are
the fundamental building block of the asyncio package. A simulation shows how to
implement concurrent activities using coroutines instead of threads—and this will
greatly help when we tackle asyncio in Chapter 22.

Before going into the example, a word about simulations.

About Discrete Event Simulations
A discrete event simulation (DES) is a type of simulation where a system is
modeled as a sequence of events. In a DES, the simulation “clock” does not
advance by fixed increments, but advances directly to the simulated time of
the next modeled event. For example, if we are simulating the operation of
a taxi cab from a high-level perspective, one event is picking up a
passenger, the next is dropping the passenger off. It doesn’t matter if a trip
takes 5 or 50 minutes: when the drop off event happens, the clock is
updated to the end time of the trip in a single operation. In a DES, we can
simulate a year of cab trips in less than a second. This is in contrast to a
continuous simulation where the clock advances continuously by a fixed—
and usually small—increment.

Intuitively, turn-based games are examples of discrete event simulations:
the state of the game only changes when a player moves, and while a player
is deciding the next move, the simulation clock is frozen. Real-time games,
on the other hand, are continuous simulations where the simulation clock is
running all the time, the state of the game is updated many times per
second, and slow players are at a real disadvantage.

Both types of simulations can be written with multiple threads or a single
thread using event-oriented programming techniques such as callbacks or
coroutines driven by an event loop. It’s arguably more natural to implement
a continuous simulation using threads to account for actions happening in
parallel in real time. On the other hand, coroutines offer exactly the right



abstraction for writing a DES. SimPy  is a DES package for Python that
uses one coroutine to represent each process in the simulation.

TIP
In the field of simulation, the term process refers to the activities of an entity in the
model, and not to an OS process. A simulation process may be implemented as an OS
process, but usually a thread or a coroutine is used for that purpose.

If you are interested in simulations, SimPy is well worth studying.
However, in this section, I will describe a very simple DES implemented
using only standard library features. My goal is to help you develop an
intuition about programming concurrent actions with coroutines.
Understanding the next section will require careful study, but the reward
will come as insights on how libraries such as asyncio, Twisted, and
Tornado can manage many concurrent activities using a single thread of
execution.

The Taxi Fleet Simulation
In our simulation program, taxi_sim.py, a number of taxi cabs are created.
Each will make a fixed number of trips and then go home. A taxi leaves the
garage and starts “prowling”—looking for a passenger. This lasts until a
passenger is picked up, and a trip starts. When the passenger is dropped off,
the taxi goes back to prowling.

The time elapsed during prowls and trips is generated using an exponential
distribution. For a cleaner display, times are in whole minutes, but the
simulation would work as well using float intervals.  Each change of
state in each cab is reported as an event. Figure 19-3 shows a sample run of
the program.

The most important thing to note in Figure 19-3 is the interleaving of the
trips by the three taxis. I manually added the arrows to make it easier to see
the taxi trips: each arrow starts when a passenger is picked up and ends
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when the passenger is dropped off. Intuitively, this demonstrates how
coroutines can be used for managing concurrent activities.

Other things to note about Figure 19-3:

Each taxi leaves the garage 5 minutes after the other.

It took 2 minutes for taxi 0 to pick up the first passenger at
time=2; 3 minutes for taxi 1 (time=8), and 5 minutes for taxi 2
(time=15).

The cabbie in taxi 0 only makes two trips (purple arrows): the first
starts at time=2 and ends at time=18; the second starts at
time=28 and ends at time=65—the longest trip in this
simulation run.

Taxi 1 makes four trips (green arrows) then goes home at
time=110.

Taxi 2 makes six trips (red arrows) then goes home at time=109.
His last trip lasts only one minute, starting at time=97.

While taxi 1 is making her first trip, starting at time=8, taxi 2
leaves the garage at time=10 and completes two trips (short red
arrows).

In this sample run, all scheduled events completed in the default
simulation time of 180 minutes; last event was at time=110.
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Figure 19-3. Sample run of taxi_sim.py with three taxis. The -s 3 argument sets the random generator
seed so program runs can be reproduced for debugging and demonstration. Colored arrows highlight

taxi trips.

The simulation may also end with pending events. When that happens, the
final message reads like this:

*** end of simulation time: 3 events pending ***

The full listing of taxi_sim.py is at [Link to Come]. In this chapter, we’ll
show only the parts that are relevant to our study of coroutines. The really
important functions are only two: taxi_process (a coroutine), and the
Simulator.run method where the main loop of the simulation is
executed.

Example 19-20 shows the code for taxi_process. This coroutine uses
two objects defined elsewhere: the compute_delay function, which
returns a time interval in minutes, and the Event class, a named tuple
defined like this:

Event = collections.namedtuple('Event', 'time proc action')

In an Event instance, time is the simulation time when the event will
occur, proc is the identifier of the taxi process instance, and action is a
string describing the activity.

Let’s review taxi_process play by play in Example 19-20.

Example 19-20. taxi_sim.py: taxi_process coroutine that implements the
activities of each taxi
def taxi_process(ident, trips, start_time=0):   
    """Yield to simulator issuing event at each state change""" 
    time = yield Event(start_time, ident, 'leave garage')   
    for i in range(trips):   
        time = yield Event(time, ident, 'pick up passenger')   
        time = yield Event(time, ident, 'drop off passenger')   
 
    yield Event(time, ident, 'going home')   
    # end of taxi process 



taxi_process will be called once per taxi, creating a generator
object to represent its operations. ident is the number of the taxi (e.g.,
0, 1, 2 in the sample run); trips is the number of trips this taxi will
make before going home; start_time is when the taxi leaves the
garage.

The first Event yielded is 'leave garage'. This suspends the
coroutine, and lets the simulation main loop proceed to the next
scheduled event. When it’s time to reactivate this process, the main loop
will send the current simulation time, which is assigned to time.

This block will be repeated once for each trip.

An Event signaling passenger pick up is yielded. The coroutine pauses
here. When the time comes to reactivate this coroutine, the main loop
will again send the current time.

An Event signaling passenger drop off is yielded. The coroutine is
suspended again, waiting for the main loop to send it the time of when
it’s reactivated.

The for loop ends after the given number of trips, and a final 'going
home' event is yielded. The coroutine will suspend for the last time.
When reactivated, it will be sent the time from the simulation main
loop, but here I don’t assign it to any variable because it will not be
used.

When the coroutine falls off the end, the generator object raises
StopIteration.

You can “drive” a taxi yourself by calling taxi_process in the Python
console.  Example 19-21 shows how.

Example 19-21. Driving the taxi_process coroutine
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>>> from taxi_sim import taxi_process 
>>> taxi = taxi_process(ident=13, trips=2, start_time=0)   
>>> next(taxi)   
Event(time=0, proc=13, action='leave garage') 
>>> taxi.send(_.time + 7)   
Event(time=7, proc=13, action='pick up passenger')   
>>> taxi.send(_.time + 23)   
Event(time=30, proc=13, action='drop off passenger') 
>>> taxi.send(_.time + 5)   
Event(time=35, proc=13, action='pick up passenger') 
>>> taxi.send(_.time + 48)   
Event(time=83, proc=13, action='drop off passenger') 
>>> taxi.send(_.time + 1) 
Event(time=84, proc=13, action='going home')   
>>> taxi.send(_.time + 10)   
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
StopIteration

Create a generator object to represent a taxi with ident=13 that will
make two trips and start working at t=0.

Prime the coroutine; it yields the initial event.

We can now send it the current time. In the console, the _ variable is
bound to the last result; here I add 7 to the time, which means the taxi
will spend 7 minutes searching for the first passenger.

This is yielded by the for loop at the start of the first trip.

Sending _.time + 23 means the trip with the first passenger will
last 23 minutes.

Then the taxi will prowl for 5 minutes.

The last trip will take 48 minutes.

After two complete trips, the loop ends and the 'going home' event
is yielded.



The next attempt to send to the coroutine causes it to fall through the
end. When it returns, the interpreter raises StopIteration.

Note that in Example 19-21 I am using the console to emulate the
simulation main loop. I get the .time attribute of an Event yielded by
the taxi coroutine, add an arbitrary number, and use the sum in the next
taxi.send call to reactivate it. In the simulation, the taxi coroutines are
driven by the main loop in the Simulator.run method. The simulation
“clock” is held in the sim_time variable, and is updated by the time of
each event yielded.

To instantiate the Simulator class, the main function of taxi_sim.py
builds a taxis dictionary like this:

    taxis = {i: taxi_process(i, (i + 1) * 2, i * 
DEPARTURE_INTERVAL) 
             for i in range(num_taxis)} 
    sim = Simulator(taxis)

DEPARTURE_INTERVAL is 5; if num_taxis is 3 as in the sample run,
the preceding lines will do the same as:

    taxis = {0: taxi_process(ident=0, trips=2, start_time=0), 
             1: taxi_process(ident=1, trips=4, start_time=5), 
             2: taxi_process(ident=2, trips=6, start_time=10)} 
    sim = Simulator(taxis)

Therefore, the values of the taxis dictionary will be three distinct
generator objects with different parameters. For instance, taxi 1 will make 4
trips and begin looking for passengers at start_time=5. This dict is
the only argument required to build a Simulator instance.

The Simulator.__init__ method is shown in Example 19-22. The
main data structures of Simulator are:

self.events



A PriorityQueue to hold Event instances. A PriorityQueue
lets you put items, then get them ordered by item[0]; i.e., the
time attribute in the case of our Event namedtuple objects.

self.procs

A dict mapping each process number to an active process in the
simulation—a generator object representing one taxi. This will be
bound to a copy of taxis dict shown earlier.

Example 19-22. taxi_sim.py: Simulator class initializer
class Simulator: 
 
    def __init__(self, procs_map): 
        self.events = queue.PriorityQueue()   
        self.procs = dict(procs_map)  

The PriorityQueue to hold the scheduled events, ordered by
increasing time.

We get the procs_map argument as a dict (or any mapping), but
build a dict from it, to have a local copy because when the simulation
runs, each taxi that goes home is removed from self.procs, and we
don’t want to change the object passed by the user.

Priority queues are a fundamental building block of discrete event
simulations: events are created in any order, placed in the queue, and later
retrieved in order according to the scheduled time of each one. For
example, the first two events placed in the queue may be:

Event(time=14, proc=0, action='pick up passenger') 
Event(time=11, proc=1, action='pick up passenger')

This means that taxi 0 will take 14 minutes to pick up the first passenger,
while taxi 1—starting at time=10—will take 1 minute and pick up a
passenger at time=11. If those two events are in the queue, the first event



the main loop gets from the priority queue will be Event(time=11,
proc=1, action='pick up passenger').

Now let’s study the main algorithm of the simulation, the
Simulator.run method. It’s invoked by the main function right after
the Simulator is instantiated, like this:

    sim = Simulator(taxis) 
    sim.run(end_time)

The listing with callouts for the Simulator class is in Example 19-23,
but here is a high-level view of the algorithm implemented in
Simulator.run:

1. Loop over processes representing taxis.

a. Prime the coroutine for each taxi by calling next() on it.
This will yield the first Event for each taxi.

b. Put each event in the self.events queue of the
Simulator.

2. Run the main loop of the simulation while sim_time <
end_time.

a. Check if self.events is empty; if so, break from the
loop.

b. Get the current_event from self.events. This
will be the Event object with the lowest time in the
PriorityQueue.

c. Display the Event.

d. Update the simulation time with the time attribute of the
current_event.



e. Send the time to the coroutine identified by the proc
attribute of the current_event. The coroutine will
yield the next_event.

f. Schedule next_event by adding it to the
self.events queue.

The complete Simulator class is Example 19-23.

Example 19-23. taxi_sim.py: Simulator, a bare-bones discrete event
simulation class; focus on the run method
class Simulator: 
 
    def __init__(self, procs_map): 
        self.events = queue.PriorityQueue() 
        self.procs = dict(procs_map) 
 
    def run(self, end_time):   
        """Schedule and display events until time is up""" 
        # schedule the first event for each cab 
        for _, proc in sorted(self.procs.items()):   
            first_event = next(proc)   
            self.events.put(first_event)   
 
        # main loop of the simulation 
        sim_time = 0   
        while sim_time < end_time:   
            if self.events.empty():   
                print('*** end of events ***') 
                break 
 
            current_event = self.events.get()   
            sim_time, proc_id, previous_action = current_event   
            print('taxi:', proc_id, proc_id * '   ', current_event)  
 

            active_proc = self.procs[proc_id]   
            next_time = sim_time + 
compute_duration(previous_action)   
            try: 
                next_event = active_proc.send(next_time)   
            except StopIteration: 
                del self.procs[proc_id]   
            else: 
                self.events.put(next_event)   
        else:   



            msg = '*** end of simulation time: {} events pending 
***' 
            print(msg.format(self.events.qsize()))

The simulation end_time is the only required argument for run.

Use sorted to retrieve the self.procs items ordered by the key;
we don’t care about the key, so assign it to _.

next(proc) primes each coroutine by advancing it to the first yield,
so it’s ready to be sent data. An Event is yielded.

Add each event to the self.events PriorityQueue. The first
event for each taxi is 'leave garage', as seen in the sample run
(Example 19-20).

Zero sim_time, the simulation clock.

Main loop of the simulation: run while sim_time is less than the
end_time.

The main loop may also exit if there are no pending events in the queue.

Get Event with the smallest time in the priority queue; this is the
current_event.

Unpack the Event data. This line updates the simulation clock,
sim_time, to reflect the time when the event happened.

Display the Event, identifying the taxi and adding indentation
according to the taxi ID.

Retrieve the coroutine for the active taxi from the self.procs
dictionary.
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Compute the next activation time by adding the sim_time and the
result of calling compute_duration(…) with the previous action
(e.g., 'pick up passenger', 'drop off passenger', etc.)

Send the time to the taxi coroutine. The coroutine will yield the
next_event or raise StopIteration when it’s finished.

If StopIteration is raised, delete the coroutine from the
self.procs dictionary.

Otherwise, put the next_event in the queue.

If the loop exits because the simulation time passed, display the number
of events pending (which may be zero by coincidence, sometimes).

Linking back to Chapter 18, note that the Simulator.run method in
Example 19-23 uses else blocks in two places that are not if statements:

The main while loop has an else statement to report that the
simulation ended because the end_time was reached—and not
because there were no more events to process.

The try statement at the bottom of the while loop tries to get a
next_event by sending the next_time to the current taxi
process, and if that is successful the else block puts the
next_event into the self.events queue.

I believe the code in Simulator.run would be a bit harder to read
without those else blocks.

The point of this example was to show a main loop processing events and
driving coroutines by sending data to them. This is the basic idea behind
asyncio, which we’ll study in Chapter 22.

Before closing the chapter, let’s discuss generic coroutine types.



NOTE
Feel free to skip the next section if coroutines, generic types and variance are too much
for you right now. I personally found the combination a bit hard to digest.

Generic Type Hints for Classic Coroutines
Back in “Contravariant Types”, I mentioned typing.Generator as one
of the few standard library types with a contravariant type parameter. Now
that we’ve studied classic coroutines, we are ready to make sense of this
generic type.

For generators that only yield values and are never sent any value other than
None, the recommended type for annotations is Iterator[T_co].

Despite its name, typing.Generator is really used to annotate classic
coroutines which not only yield values, but also accept values via
.send() and also return values through the StopIteration(value)
hack.

Here is how typing.Generator was declared in the typing.py module
of Python 3.6:

T_co = TypeVar('T_co', covariant=True) 
V_co = TypeVar('V_co', covariant=True) 
T_contra = TypeVar('T_contra', contravariant=True) 
 
# many lines omitted 
 
class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co], 
                extra=_G_base):

That generic type declaration means that a Generator type hint requires
three type parameters, as in this example:

my_coro : Generator[YieldType, SendType, ReturnType]
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From the type variables in the formal parameters, we see that YieldType
and ReturnType are covariant, but SendType is contravariant.

To understand why, consider that YieldType and ReturnType are
“output” types. Both describe data that comes out of the coroutine object—
i.e. the generator object when used as a coroutine object.

It makes sense that these are covariant, because any code expecting a
coroutine that yields floats can accept a coroutine that yields integers.
That’s why Generator is covariant on its YieldType parameter. The
same reasoning applies to the ReturnType parameter—also covariant.

Using the notation introduced in “Covariant Types”, the covariance of the
first and third parameters is expressed by the parallel :> symbols:

                       float :> int 
Generator[float, Any, float] :> Generator[int, Any, int]

YieldType and ReturnType are examples of the first rule of “Variance
Rules of Thumb”.

On the other hand, SendType is an “input” parameter: it is the type of the
argument for the send method of the coroutine object. Code that wants to
send floats to a coroutine cannot use a coroutine with int as the
SendType because int is not a supertype of float. In other words,
float is not consistent-with int. But it can use a coroutine with
complex as the SendType, because complex is a supertype of float,
therefore float is consistent-with complex.

The :> notation makes the contravariance of the second parameter visible:

                     float :> int 
Generator[Any, float, Any] <: Generator[Any, int, Any]

This is an example of the second Variance Rule of Thumb.

With this merry discussion of variance, we are ready to wrap this chapter—
one of the hardest in the book.



Chapter Summary
Guido van Rossum wrote there are three different styles of code you can
write using generators:

There’s the traditional “pull” style (iterators), “push” style (like the
averaging example), and then there are “tasks” (Have you read Dave
Beazley’s coroutines tutorial yet?…).

Chapter 17 was devoted to iterators; this chapter introduced classic
coroutines used in “push style” and also as very simple “tasks”—the taxi
processes in the simulation example. Chapter 22 will be about native
coroutines and asynchronous generators, which evolved from the generators
and classic coroutines as described here.

The running average example demonstrated a common use for a classic
coroutine: as an accumulator processing items sent to it. We saw how a
decorator can be applied to prime a coroutine, making it more convenient to
use in some cases. But keep in mind that priming decorators are not
compatible with some uses of coroutines. In particular, yield from
subgenerator() assumes the subgenerator is not primed, and
primes it automatically.

Accumulator coroutines can yield back partial results with each send
method call, but they become more useful when they can return values, a
feature that was added in Python 3.3 with PEP 380. We saw how the
statement return the_result in a generator now raises
StopIteration(the_result), allowing the caller to retrieve
the_result from the value attribute of the exception. This is a rather
cumbersome way to retrieve coroutine results, but it’s handled
automatically by the yield from syntax introduced in PEP 380.

The coverage of yield from started with trivial examples using simple
iterables, then moved to an example highlighting the three main
components of any significant use of yield from: the delegating
generator (defined by the use of yield from in its body), the
subgenerator activated by yield from, and the client code that actually
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drives the whole setup by sending values to the subgenerator through the
pass-through channel established by yield from in the delegating
generator. This section was wrapped up with a look at the formal definition
of yield from behavior as described in PEP 380 using English and
Python-like pseudocode.

We closed the chapter with the discrete event simulation example, showing
how generators can be used as an alternative to threads and callbacks to
support concurrency. Although simple, the taxi simulation gives a first
glimpse at how event-driven frameworks like Tornado and asyncio use a
main loop to drive coroutines executing concurrent activities with a single
thread of execution. In event-oriented programming with coroutines, each
concurrent activity is carried out by a coroutine that repeatedly yields
control back to the main loop, allowing other coroutines to be activated and
move forward. This is a form of cooperative multitasking: coroutines
voluntarily and explicitly yield control to the central scheduler. In contrast,
threads implement preemptive multitasking. The scheduler can suspend
threads at any time—even halfway through a statement—to give way to
other threads.

Further Reading
David Beazley is the ultimate authority on Python generators and
coroutines. The Python Cookbook, 3E (O’Reilly) he coauthored with Brian
Jones has numerous recipes with coroutines. Beazley’s PyCon tutorials on
the subject are famous for their depth and breadth. The first was at PyCon
US 2008: “Generator Tricks for Systems Programmers”. PyCon US 2009
saw the legendary “A Curious Course on Coroutines and Concurrency”
(hard-to-find video links for all three parts: part 1, part 2, part 3). His
tutorial from PyCon 2014 in Montréal was “Generators: The Final
Frontier,” in which he tackles more concurrency examples—so it’s really
more about topics in Chapter 22 of Fluent Python. Dave can’t resist making
brains explode in his classes, so in the last part of “The Final Frontier,”

http://shop.oreilly.com/product/0636920027072.do
http://www.dabeaz.com/generators/
http://www.dabeaz.com/coroutines/
http://pyvideo.org/video/213
http://pyvideo.org/video/215
http://pyvideo.org/video/214
http://www.dabeaz.com/finalgenerator/


coroutines replace the classic Visitor pattern in an arithmetic expression
evaluator.

Coroutines allow new ways of organizing code, and just as recursion or
polymorphism (dynamic dispatch), it takes some time getting used to their
possibilities. An interesting example of classic algorithm rewritten with
coroutines is in the post “Greedy algorithm with coroutines,” by James
Powell. You may also want to browse “Popular recipes tagged coroutine" in
the ActiveState Code recipes database.

Paul Sokolovsky implemented yield from in Damien George’s super
lean MicroPython interpreter designed to run on microcontrollers. As he
studied the feature, he created a great, detailed diagram to explain how
yield from works, and shared it in the python-tulip mailing list.
Sokolovsky was kind enough to allow me to copy the PDF to this book’s
site, where it has a more permanent URL.

As I write this, the vast majority of uses of yield from to be found are
in asyncio itself or code that uses it. I spent a lot of time looking for
examples of yield from that did not depend on asyncio. Greg Ewing
—who penned PEP 380 and implemented yield from in CPython—
published a few examples of its use: a BinaryTree class, a simple XML
parser, and a task scheduler.

Brett Slatkin’s Effective Python, First Edition (Addison-Wesley) has an
excellent short chapter titled “Consider Coroutines to Run Many Functions
Concurrently”. That chapter is not in Effective Python, Second Edition, but
fortunately it is still available online as a sample chapter. Slatkin presents
the best example of driving coroutines with yield from I’ve seen: an
implementation of John Conway’s Game of Life in which coroutines are
used to manage the state of each cell as the game runs. I refactored the code
for the Game of Life example—separating the functions and classes that
implement the game from the testing snippets used in Slatkin’s book
original code. I also rewrote the tests as doctests, so you can see the output
of the various coroutines and classes without running the script. The
refactored example is posted as a GitHub gist.

http://bit.ly/1HGsFQ0
http://bit.ly/1HGsFzA
https://code.activestate.com/recipes/
http://micropython.org/
http://bit.ly/1JIqGxW
http://fluentpython.com/resources/yield-from.pdf
http://bit.ly/1JIqJtu
http://www.effectivepython.com/
http://bit.ly/1JIqNcZ
http://bit.ly/1HGsKDw
http://bit.ly/1HGsO6j
http://bit.ly/coro_life


Other interesting examples of yield from without asyncio appear in a
message to the Python Tutor list, “Comparing two CSV files using Python”
by Peter Otten, and a Rock-Paper-Scissors game in Ian Ward’s “Iterables,
Iterators, and Generators” tutorial published as an iPython notebook.

Guido van Rossum sent a long message to the python-tulip Google Group
titled “The difference between yield and yield-from" that is worth
reading. Nick Coghlan posted a heavily commented version of the yield
from expansion to Python-Dev on March 21, 2009; in the same message,
he wrote:

Whether or not different people will find code using yield from
difficult to understand or not will have more to do with their grasp of the
concepts of cooperative multitasking in general more so than the
underlying trickery involved in allowing truly nested generators.

Experimenting with discrete event simulations is a great way to become
comfortable with cooperative multitasking. Wikipedia’s “Discrete event
simulation” article is a good place to start.  A short tutorial about writing
discrete event simulations by hand (no special libraries) is Ashish Gupta’s
“Writing a Discrete Event Simulation: Ten Easy Lessons.” The code is in
Java so it’s class-based and uses no coroutines, but can easily be ported to
Python. Regardless of the code, the tutorial is a good short introduction to
the terminology and components of a discrete event simulation. Converting
Gupta’s examples to Python classes and then to classes leveraging
coroutines is a good exercise.

For a ready-to-use library in Python, using coroutines, there is SimPy. Its
online documentation explains:

SimPy is a process-based discrete-event simulation framework based on
standard Python. Its event dispatcher is based on Python’s generators
and can also be used for asynchronous networking or to implement
multi-agent systems (with both simulated and real communication).

Coroutines are not so new in Python but they were pretty much tied to niche
application domains before asynchronous networking frameworks started
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http://bit.ly/1JIqQ8x
http://bit.ly/1JIqT44
http://bit.ly/1JIqRcv
http://bit.ly/1JIqXB1
http://bit.ly/1JIqWgz
https://simpy.readthedocs.org/en/latest/


supporting them, starting with Tornado. The addition of yield from in
Python 3.3 and asyncio in Python 3.4 raised awareness about classic
coroutines until their main use case—asynchronous programming—was
taken over by native coroutines in Python 3.5. Classic coroutines are not
obsolete, but they are now back to niche applications. Differences between
classic coroutines and native coroutines are the subject of Python native
coroutines and send() on StackOverflow.

I still believe classic coroutines and yield from are worth studying if
you want to understand how native coroutines and await actually support
concurrency under the hood. Also, if you want to develop asynchronous
libraries—as opposed to applications—you’ll discover that the functions
that do the actual work of I/O are generators and classic coroutines, even in
asyncio. Unfortunately, once you watch David Beazley’s tutorials and
read his cookbook examples on the subject, there isn’t a whole lot of
content out there that goes deep into programming with classic coroutines.

https://stackoverflow.com/questions/34469060/python-native-coroutines-and-send


SOAPBOX

Raise from lambda

In programming languages, keywords establish the basic rules of
control flow and expression evaluation.

A keyword in a language is like a piece in a board game. In the
language of Chess, the keywords are ♔, ♕, ♖, ♗, ♘, and ♙. In the
game of Go, it’s ●.

Chess players have six different types of pieces to implement their
plans, whereas Go players seem to have only one type of piece.
However, in the semantics of Go, adjacent pieces form larger, solid
pieces of many different shapes, with emerging properties. Some
arrangements of Go pieces are indestructible. Go is more expressive
than Chess. In Go there are 361 possible opening moves, and an
estimated 10<sup>172</sup> legal positions; for Chess, the numbers
are 20 opening moves and 10<sup>50</sup> positions.

Adding a new piece to Chess would be a radical change. Adding a new
keyword in a programming language is also a radical change. So it
makes sense for language designers to be wary of introducing
keywords.
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Keywords Language Comment

 

5 Smalltalk-80 Famous for its minimalist syntax.

25 Go The language, not the game.

32 C That’s ANSI C. C99 has 37 keywords, C11 has 44.

35 Python Python 2.7 had 31 keywords; Python 1.5 had 28.

41 Ruby Keywords may be used as identifiers (e.g., class 
is also a method name).

49 Java As in C, the names of the primitive types (char, f
loat, etc.) are reserved.

60 JavaScript Includes all keywords from Java 1.0, many of 
which are unused.

http://mzl.la/1JIr8fM


65 PHP Since PHP 5.3, seven keywords were introduced, 
including goto, trait, and yield.

85 C++ According to cppreference.com, C++11 added 10 
keywords to the existing 75.

555 COBOL I did not make this up. See this IBM ILE COBOL 
manual.

∞ Scheme Anyone can define new keywords.

 

Python 3.0 added nonlocal, promoted None, True, and False to
keyword status, and dropped print and exec. It’s very uncommon
for a language to drop keywords as it evolves. Table 19-1 lists some
languages, ordered by number of keywords.

Scheme inherited from Lisp a syntactic macro facility that allows
anyone to create special forms adding new control structures and
evaluation rules to the language. The user-defined identifiers of those
forms are called “syntactic keywords.” The Scheme R5RS standard
states “There are no reserved identifiers” (page 45 of the standard), but
a typical implementation such as MIT/GNU Scheme comes with 34
syntactic keywords predefined, such as if, lambda, and define-
syntax—the keyword that lets you conjure new keywords.

I now enjoy Elixir as much as I enjoy Python. Elixir has syntactic
macros, on top of a basic syntax that is more readable than the s-
expressions of Lisp and Scheme. Elixir frameworks and libraries such
as Phoenix and Ecto extend the language syntax to build domain-
specific languages. For example, this is a database query written in
Elixir using an Ecto macro:

query = from u in User, 
          where: u.age > 18 or is_nil(u.email), 
          select: u

http://php.net/manual/en/reserved.keywords.php
http://en.cppreference.com/w/cpp/keyword
http://ibm.co/1JIr7bJ
http://bit.ly/1JIrB1w
http://bit.ly/1JIrAL1


“The Value Of Syntax?” is an interesting discussion about extensible
syntax and programming language usability. The forum, Lambda the
Ultimate, is a watering hole for programming language geeks.

Python is like Chess. Scheme and Elixir are like Go (the game).

Now, back to Python syntax. Guido used to be rather conservative with
keywords. It’s nice to have a small set of them, and adding new
keywords potentially breaks a lot of code. But the use of else in loops
reveals a recurring problem: the overloading of existing keywords when
a new one would be a better choice. In the context of for, while, and
try, a new then keyword would be preferable to abusing else.

In Fluent Python, First Edition I wrote: “The introduction of yield
from is particularly worrying. Once again, I believe Python users
would be best served by a new keyword.” As I write this five years
later, I got so used to yield from that I don’t see any problem with it
any more. Now we have await too, which works in a similar way but
is used in different contexts.

I am glad Guido approved PEP 492 introducing not only await, but
also async combined to existing keywords to add three new
statements to the language: async def, async for and async
with—all of which we will see in Chapter 22. Using async def to
declare native coroutines interrupted the long history of overloading of
def: it’s still used to define functions, generators, and classic
coroutines—objects that are too different to share the same declaration
syntax. I highly recommended “What Color Is Your Function?” by Bob
Nystrom, a post related to this discussion in the context of JavaScript,
Python, and other languages.

Chaining existing keywords to create new syntax—instead of adding
sensible, descriptive keywords—avoids breaking code, but has its
downsides. I fear one day we may be poring over the meaning of
raise from lambda.

http://lambda-the-ultimate.org/node/4295
http://lambda-the-ultimate.org/
http://bit.ly/1JIrIdh


1  500 Lines or Less, edited by Michael DiBernardo, chapter A Web Crawler With asyncio
Coroutines by A. Jesse Jiryu Davis and Guido van Rossum.

2  You’ll only see this state in a multithreaded application—or if the generator object calls
getgeneratorstate on itself, which is not useful.

3  This example is inspired by a snippet from Jacob Holm in the Python-ideas list, message
titled “Yield-From: Finalization guarantees.” Some variations appear later in the thread, and
Holm further explains his thinking in message 003912.

4  There are several similar decorators published on the Web. This one is adapted from the
ActiveState recipe Pipeline made of coroutines by Chaobin Tang, who in turn credits David
Beazley.

5  There is an iPython extension called ipython-yf that enables evaluating yield from
directly in the iPython console. It’s used to test asynchronous code and works with asyncio.
It was submitted as a patch to Python 3.5 but was not accepted. See Issue #22412: Towards an
asyncio-enabled command line in the Python bug tracker.

6  The picture in Figure 19-2 was inspired by a diagram by Paul Sokolovsky.

7  From PEP 492, section Await Expression

8  Message to Python-Dev: “PEP 380 (yield from a subgenerator) comments” (March 21, 2009).

9  In a message to Python-ideas on April 5, 2009, Nick Coghlan questioned whether the implicit
priming done by yield from was a good idea.

10  Opening sentence of the “Motivation” section in PEP 342.

11  See the official documentation for SimPy—not to be confused with the well-known but
unrelated SymPy, a library for symbolic mathematics.

12  I am not an expert in taxi fleet operations, so don’t take my numbers seriously. Exponential
distributions are commonly used in DES. You’ll see some very short trips. Just pretend it’s a
rainy day and some passengers are taking cabs just to go around the block—in an ideal city
where there are cabs when it rains.

13  I was the passenger. I realized I forgot my wallet.

14  The verb “to drive” is commonly used to describe the operation of a coroutine: the client code
drives the coroutine by sending it values. In Example 19-21, the client code is what you type in
the console.

15  This is typical of a discrete event simulation: the simulation clock is not incremented by a
fixed amount on each loop, but advances according to the duration of each event completed.

16  Since Python 3.7, typing.Generator and other types that correspond to ABCs in
collections.abc were refactored with a wrapper around the corresponding ABC, so their
generic parameters aren’t visible in the typing.py source file. That’s why I refer to Python 3.6
source code here.

http://aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html#coroutines
http://bit.ly/1MMc9zy
http://bit.ly/1MMcano
http://bit.ly/1MMcuCx
https://github.com/tecki/ipython-yf
http://bugs.python.org/issue22412
http://fluentpython.com/resources/yield-from.pdf
https://www.python.org/dev/peps/pep-0492/#await-expression
http://bit.ly/1JIopTu
http://bit.ly/1JIoXJ1
https://www.python.org/dev/peps/pep-0342/
http://bit.ly/1HGs4Oz
http://bit.ly/1HGs3Kl


17  Message to thread “Yield-From: Finalization guarantees” in the Python-ideas mailing list. The
David Beazley tutorial Guido refers to is “A Curious Course on Coroutines and Concurrency”.

18  Nowadays even tenured professors agree that Wikipedia is a good place to start studying
pretty much any subject in computer science. Not true about other subjects, but for computer
science, Wikipedia rocks.

http://bit.ly/1JIqjn6
http://www.dabeaz.com/coroutines/


Chapter 20. Concurrency
Models in Python

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 20th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

Concurrency is about dealing with lots of things at once.

Parallelism is about doing lots of things at once.

Not the same, but related.

One is about structure, one is about execution.

Concurrency provides a way to structure a solution to solve a problem
that may (but not necessarily) be parallelizable.

—Rob Pike, Co-inventor of the Go language

This chapter is about how to make Python deal with “lots of things at once.”
This may involve concurrent or parallel programming—even academics
who are keen on jargon disagree on how to use those terms.  I will adopt
Rob Pike’s informal definitions quoted above, but note that I’ve found

1

2
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academic papers and books that claim to be about parallel computing but
mostly covered concurrency.

Parallelism is a special case of concurrency, in Pike’s view. All parallel
systems are concurrent, but not all concurrent systems are parallel. In the
early 2000’s we used single core machines that handled 100 processes
concurrently on GNU Linux. A modern laptop with 4 CPU cores is
routinely running more than 200 processes at any given time under normal,
casual use. To execute 200 tasks in parallel you’d need 200 cores. So, in
practice, most computing is concurrent and not parallel. The OS manages
hundreds of processes, making sure each has an opportunity to make
progress, even if the CPU itself can’t do more than 4 things at once. That’s
why Rob Pike titled that talk “Concurrency Is Not Parallelism (It’s Better).”

This chapter assumes no prior knowledge of concurrent or parallel
programming. After a brief conceptual introduction, we will study simple
examples to introduce and compare Python’s core packages for concurrent
programming: threading, multiprocessing, and asyncio.

The last 30% of the chapter is a high-level overview of third-party tools,
libraries, application servers, and distributed task queues—all of which can
enhance the performance and scalability of Python applications. These are
all important topics, but beyond the scope of a book focused on core Python
language features. Nevertheless, I felt it was important to address these
themes in this second edition of Fluent Python, because Python’s fitness for
concurrent and parallel computing is not limited to what the standard library
provides. That’s why YouTube, DropBox, Instagram, Reddit, and others
were able to achieve Web scale when they started, using Python as their
primary language.

What’s new in this chapter
This chapter is new in Fluent Python, Second Edition. The spinner
examples in “A Concurrent Hello World” previously were in the chapter
about asyncio. Here they are improved, and provide the first illustration



of Python’s three approaches to concurrency: threads, processes, and native
coroutines.

The remaining content is new—except for a few paragraphs that originally
appeared in the chapters on concurrent.futures and asyncio.

“The Big Picture” is different from the rest of the book: there are no code
examples. The goal is to mention important tools that you may want to
study to achieve high-performance concurrency and parallelism beyond
what’s possible with Python’s standard library.

A Bit of Jargon
Let’s make sure we are on the same page regarding some core concepts.
Here are some terms I will use for the rest of this chapter and the next two.

concurrency

The ability to handle multiple pending tasks, making progress one at a
time or in parallel (not necessarily) so that they all eventually succeed
or fail. A single-core CPU is capable of concurrency if it runs an OS
scheduler that interleaves the execution of the pending tasks. Also
known as multitasking.

parallelism

The ability to execute multiple computations at the same time. This
requires a multi-core CPU, a GPU, or multiple computers in cluster.

process

An instance of a computer program while it is running, using memory
and a slice of the CPU time. Modern operating systems are able to
manage multiple processes concurrently, with each process isolated in
its own private memory space. Processes communicate via pipes,
sockets, or memory mapped files—all of which can only carry raw
bytes, not live Python objects. A process can spawn sub-processes, each



called a child process. These are also isolated from each other and from
the parent.

thread

An execution path within a single process. When a process starts, it uses
a single thread: the main thread. Using operating system APIs, a process
can create more threads that operate concurrently thanks to the
operating system scheduler. Threads share the memory space of the
process, which holds live Python objects. This allows easy
communication between threads, but can also lead to corrupted data
when more than one thread updates the same object concurrently.

contention

Dispute over a limited asset. Resource contention happens when
multiple processes or threads try to access a shared resource—such as a
lock or storage. There’s also CPU contention, when compute-intensive
processes or threads must wait for their share of CPU time.

lock

An object that threads can use to coordinate and synchronize their
actions and avoid corrupting data. While updating a shared data
structure, a thread should hold an associated lock. This makes other
well-behaved threads wait until the lock is released before accessing the
same data structure. The simplest type of lock is also known as a mutex
(for mutual exclusion).

Now let’s use some of that jargon to understand concurrency support in
Python.

Processes, threads, and Python’s Infamous GIL
Here is how the concepts we just saw apply to Python programming, in ten
points.



1. Each instance of the Python interpreter is a process. You can start
additional Python processes using the multiprocessing or
concurrent.futures libraries. Python’s subprocess
library is designed to launch processes to run external programs,
regardless of the languages used to write them.

2. The Python interpreter uses a single thread to run the user’s
program and the memory garbage collector. You can start
additional Python threads using the threading or
concurrent.futures libraries.

3. Access to reference counts and other internal interpreter state is
controlled by a lock, the Global Interpreter Lock (GIL). Only one
Python thread can hold the GIL at any time. This means that only
one Python thread can execute at any time, regardless of the
number of CPU cores.

4. To prevent a Python thread from holding the GIL indefinitely,
Python’s bytecode interpreter pauses the current Python thread
every 5ms by default , releasing the GIL. The thread can then try
to reacquire the GIL, but if there are other threads waiting for it,
the OS scheduler may pick one of them to proceed.

5. When we write Python code, we have no control over the GIL. But
a built-in function or an extension written in C—or any language
that interfaces at the Python/C API level—can release the GIL
while running time-consuming tasks.

6. Every Python standard library function that makes a syscall
releases the GIL. This includes all functions that perform disk I/O,
network I/O, and time.sleep(). Many CPU-intensive
functions in the NumPy/SciPy libraries, as well as the
compressing/decompressing functions from the zlib and bz2
modules also release the GIL.

7. Extensions that integrate at the Python/C level can also launch
other non-Python threads that are not affected by the GIL. Such
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GIL-free threads generally cannot change Python objects, but they
can read from and write to the memory underlying
array.array or NumPy arrays, which support the buffer
protocol.

8. The effect of the GIL on network programming with Python
threads is relatively small, because the I/O functions release the
GIL, and reading or writing to the network always implies high
latency—compared to reading and writing to memory.
Consequently, each individual thread spends a lot of time waiting
anyway, so their execution can be interleaved without major
impact on the overall throughput. That’s why David Beazley says:
“Python threads are great at doing nothing.”

9. Contention over the GIL slows down compute-intensive Python
threads. Sequential, single-threaded code is simpler and faster for
such tasks.

10. To run CPU-intensive Python code on multiple cores, you must use
multiple Python processes.

Here is a good summary from the documentation of the threading
module:

CPython implementation detail: In CPython, due to the Global
Interpreter Lock, only one thread can execute Python code at once (even
though certain performance-oriented libraries might overcome this
limitation). If you want your application to make better use of the
computational resources of multi-core machines, you are advised to use
multiprocessing or concurrent.futures.ProcessPoolExecutor. However,
threading is still an appropriate model if you want to run multiple I/O-
bound tasks simultaneously.

The previous paragraph starts with “CPython implementation detail”
because the GIL is not part of the Python language definition. The Jython
implementation does not have a GIL. Unfortunately, Jython is lagging
behind—it’s still tracking Python 2.7. The highly performant PyPy

6

7

https://www.python.org/dev/peps/pep-3118/
https://www.pypy.org/


interpreter also has a GIL in its 2.7 and 3.7 versions—the latest as of June,
2021.

Enough concepts for now. Let’s see some code.

A Concurrent Hello World
During a discussion about threads and how to avoid the GIL, Python
contributor Michele Simionato posted an example that is like a concurrent
Hello World: the simplest program to demonstrate how Python can “walk
and chew gum.”

Simionato’s program uses multiprocessing, but I adapted it to
introduce threading and asyncio as well. Let’s start with the
threading version, which may look familiar if you’ve studied threads in
Java or C.

Spinner with threading
The idea of the next few examples is simple: start a function that blocks for
3 seconds while animating characters in the terminal to let the user know
that the program is “thinking” and not stalled.

An animated spinner is built by displaying each character in the string
"\|/-" in the same screen position.  When the slow computation finishes,
the line with the spinner is cleared and the result is shown: Answer: 42.

Figure 20-1 shows the output of two versions of the spinning example: first
with threads, then with coroutines. If you’re away from the computer,
imagine the \ in the last line is spinning.

8
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Figure 20-1. The scripts spinner_thread.py and spinner_async.py produce similar output: the repr of
a spinner object and the text “Answer: 42”. In the screenshot, spinner_async.py is still running, and

the animated message “/ thinking!” is shown; that line will be replaced by “Answer: 42” after 3
seconds.

Let’s review the spinner_thread.py script first. Example 20-1 lists the first
two functions in the script, and Example 20-2 shows the rest.

Example 20-1. spinner_thread.py: the spin and slow functions.
import itertools 
import time 
from threading import Thread, Event 
 
def spin(msg: str, done: Event) -> None:   
    for char in itertools.cycle(r'\|/-'):   
        status = f'\r{char} {msg}'   
        print(status, end='', flush=True) 
        if done.wait(.1):   
            break   
    blanks = ' ' * len(status) 
    print(f'\r{blanks}\r', end='')   
 
def slow() -> int: 
    time.sleep(3)   
    return 42



This function will run in a separate thread. The done argument is an
instance of threading.Event, a simple way to synchronize threads.

This is an infinite loop because itertools.cycle yields one
character at a time, cycling through the string forever.

The trick for text-mode animation: move the cursor back to the start of
the line with the carriage return ASCII control character ('\r').

The Event.wait(timeout=None) method returns True when the
event is set by another thread; if the timeout elapses, it returns
False. The .1s timeout sets the “frame rate” of the animation to
10FPS. If you want the spinner to go faster, use a smaller timeout.

Exit the infinite loop.

Clear the status line by overwriting with spaces and moving the cursor
back to the beginning.

slow() will be called by the main thread. Imagine this is a slow API
call over the network. Calling sleep blocks the main thread, but the
GIL is released so the spinner thread can proceed.

TIP
The first important insight of this example is that time.sleep() blocks the calling
thread but releases the GIL, allowing other Python threads to run.

The spin and slow functions will execute concurrently. The main thread
—the only thread when the program starts—will start a new thread to run
spin and then call slow. By design, there is no API for terminating a
thread in Python. You must send it a message to shut down.



The threading.Event class is Python’s simplest signalling mechanism
to coordinate threads. An Event instance has an internal boolean flag
which starts as False. Calling Event.set() sets the flag to True.
While the flag is false, if a thread calls Event.wait(), it is blocked until
another thread calls Event.set(), at which time Event.wait()
returns True. If a timeout in seconds is given to Event.wait(s), this
call returns False when the timeout elapses, or returns True as soon as
Event.set() is called by another thread.

The supervisor function, listed in Example 20-2, uses an Event to
signal the spin function to exit.

Example 20-2. spinner_thread.py: the supervisor and main functions.
def supervisor() -> int:   
    done = Event()   
    spinner = Thread(target=spin, args=('thinking!', done))   
    print(f'spinner object: {spinner}')   
    spinner.start()   
    result = slow()   
    done.set()   
    spinner.join()   
    return result 
 
def main() -> None: 
    result = supervisor()   
    print(f'Answer: {result}') 
 
if __name__ == '__main__': 
    main()

supervisor will return the result of slow.

The threading.Event instance is the key to coordinate the
activities of the main thread and the spinner thread, as explained below.

To create a new Thread, provide a function as the target keyword
argument, and positional arguments to the target as a tuple passed
via args.



Display the spinner object. The output is <Thread(Thread-1,
initial)>, where initial is the state of the thread—meaning it
has not started.

Start the spinner thread.

Call slow, which blocks the main thread. Meanwhile, the secondary
thread is running the spinner animation.

Set the Event flag to True; this will terminate the for loop inside the
spin function.

Wait until the spinner thread finishes.

Run the supervisor function. I wrote separate main and
supervisor functions to make this example look more like the
asyncio version in Example 20-4.

When the main thread sets the done event, the spinner thread will
eventually notice and exit cleanly.

Now let’s take a look at a similar example using the multiprocessing
package.

Spinner with multiprocessing
The multiprocessing package supports running concurrent tasks in
separate Python processes instead of threads. When you create a
multiprocessing.Process instance, a whole new Python interpreter
is started as a child process in the background. Since each Python process
has its own GIL, this allows your program to use all available CPU cores.
We’ll see practical effects in “A Homegrown Process Pool”, but for this
simple program it makes no real difference.

The point of this section is to introduce multiprocessing and show
that its API emulates the threading API, making it easy to convert



simple programs from threads to processes, as shown in spinner_proc.py
(Example 20-3).

Example 20-3. spinner_proc.py: only the changed parts are shown.
Everything else is the same as spinner_thread.py.
import itertools 
import time 
from multiprocessing import Process, Event   
from multiprocessing import synchronize      
 
def spin(msg: str, done: synchronize.Event) -> None:   
 
# [snip] the rest of spin and slow functions are unchanged from 
spinner_thread.py 
 
def supervisor() -> int: 
    done = Event() 
    spinner = Process(target=spin,                
                      args=('thinking!', done)) 
    print(f'spinner object: {spinner}')           
    spinner.start() 
    result = slow() 
    done.set() 
    spinner.join() 
    return result 
 
# [snip] main function is unchanged as well

The basic multiprocessing API imitates the threading API,
but type hints and mypy expose this difference:
multiprocessing.Event is a function (not a class like
threading.Event) which returns a synchronize.Event
instance…

…forcing us to import multiprocessing.synchronize…

…to write this type hint.

Basic usage of the Process class is similar to Thread.



The spinner object is displayed as <Process name='Process-
1' parent=14868 initial>, were 14868 is the process id of
the Python instance running spinner_proc.py.

The basic API of threading and multiprocessing are similar, but
their implementation is very different and multiprocessing has a
much larger API to handle the added complexity of multi-process
programming. For example, one challenge when converting from threads to
processes is how to communicate between processes that are isolated by the
operating system and can’t share Python objects. This means that objects
crossing process boundaries have to be serialized and deserialized, which
creates overhead. In Example 20-3 the only data that crosses the process
boundary is the Event state, which is implemented with a low-level OS
semaphore in the C code underlying the multiprocessing module.

NOTE
The semaphore is a fundamental building block that can be used to implement other
synchronization mechanisms. Python provides different semaphore classes for use with
threads, processes and coroutines. We’ll see asyncio.Semaphore in “Using
asyncio.as_completed and a semaphore” (Chapter 22).

Now let’s see how the same behavior can be achieved with coroutines
instead of threads or processes.

Spinner with asyncio

NOTE
Chapter 22 is entirely devoted to asynchronous programming with coroutines. This is
just a high-level introduction to contrast this approach with the traditional threading and
multiprocessing concurrency models. As such, we will overlook many details.



It is the job of OS schedulers to allocate CPU time to drive threads and
processes. In contrast, coroutines are driven by an application-level event
loop that manages a queue of pending coroutines, drives them one by one,
monitors events triggered by I/O operations initiated by coroutines, and
passes control back to the corresponding coroutine when each event
happens. The event loop and the library coroutines and the user coroutines
all execute in a single thread. Therefore, any time spent in a coroutine slows
down the event loop—and all other coroutines.

NOTE
In the taxi simulator of Example 19-23, the taxi_process classic coroutines were
driven by a main loop in the Simulator.run method. That main loop was an event
loop, except that it handled simulation events like “drop off passenger” instead of
system events triggered by I/O and timers. The event loop of asyncio is more
complex than that simulation loop, but the idea is the same. So if you want to
understand how concurrency with coroutines works, studying taxi_sim.py may be a
good starting point.

The coroutine version of the spinner program is easier to understand if we
start from the main function, then study the supervisor. That’s what
Example 20-4 shows.

Example 20-4. spinner_async.py: the main function and supervisor
coroutine
def main() -> None:   
    result = asyncio.run(supervisor())   
    print(f'Answer: {result}') 
 
async def supervisor() -> int:   
    spinner = asyncio.create_task(spin('thinking!'))   
    print(f'spinner object: {spinner}')   
    result = await slow()   
    spinner.cancel()   
    return result 
 
if __name__ == '__main__': 
    main()



main is the only regular function in this program—the others are
coroutines.

The asyncio.run function starts the event loop to drive the
coroutine that will eventually set the other coroutines in motion. The
main function will stay blocked until supervisor returns. The
return value of supervisor will be the return value of
asyncio.run.

Native coroutines are defined with async def.

asyncio.create_task schedules the eventual execution of spin,
immediately returning an instance of asyncio.Task.

The repr of the spinner object looks like <Task pending
name='Task-2' coro=<spin() running at
/path/to/spinner_async.py:11>>.

The await keyword calls slow, blocking supervisor until slow
returns. The return value of slow will be assigned to result.

The Task.cancel method raises a CancelledError exception
inside the spin coroutine, as we’ll see in Example 20-5.

Example 20-4 demonstrates the three main ways of running a coroutine:

asyncio.run(coro())

Called from a regular function to drive a coroutine object which usually
is the entry point for all the asynchronous code in the program, like the
supervisor in this example. This call blocks until the body of coro
returns. The return value of the run() call is whatever the body of
coro returns.

asyncio.create_task(coro())



Called from a coroutine to schedule another coroutine to execute
eventually. This call does not suspend the current coroutine. It returns a
Task instance, an object that wraps the coroutine object and provides
methods to control and query its state.

await coro()

Called from a coroutine to transfer control to the coroutine object
returned by coro(). This suspends the current coroutine until the body
of coro returns. The value of the await expression is whatever body of
coro returns.

NOTE
Remember: invoking a coroutine as coro() immediately returns a coroutine object,
but does not run the body of the coro function. Driving the body of coroutines is the
job of the event loop, which invokes the .send() method on the coroutine objects,
just like we drove classic coroutines built from generators in Chapter 19.

Now let’s study the spin and slow coroutines in Example 20-5.

Example 20-5. spinner_async.py: the spin and slow coroutines
import asyncio 
import itertools 
 
async def spin(msg: str) -> None:   
    for char in itertools.cycle(r'\|/-'): 
        status = f'\r{char} {msg}' 
        print(status, flush=True, end='') 
        try: 
            await asyncio.sleep(.1)   
        except asyncio.CancelledError:   
            break 
    blanks = ' ' * len(status) 
    print(f'\r{blanks}\r', end='') 
 
async def slow() -> int: 
    await asyncio.sleep(3)   
    return 42



We don’t need the Event argument that was used to signal that slow
had completed its job in spinner_thread.py (Example 20-1).

Use await asyncio.sleep(.1) instead of time.sleep(.1),
to pause without blocking other coroutines. See explanation after this
example.

asyncio.CancelledError is raised when the cancel method is
called on the Task controlling this coroutine. Time to exit the loop.

The slow coroutine also uses await asyncio.sleep instead of
time.sleep.

Experiment: Break the Spinner for an Insight

Here is an experiment I recommend to understand how spinner_async.py
works. Import the time module, then go to the slow coroutine and replace
the line await asyncio.sleep(3) with a call to time.sleep(3),
like this:

Example 20-6. spinner_async.py: replacing await
asyncio.sleep(3) with time.sleep(3)
async def slow() -> int: 
    time.sleep(3) 
    return 42

Watching the behavior is more memorable than reading about it. Go ahead,
I’ll wait.

When you run the experiment, this is what you see:

1. The spinner object is shown, similar to this: <Task pending
name='Task-2' coro=<spin() running at
/path/to/spinner_async.py:12>>.

2. The spinner never appears. The program hangs for 3 seconds.

3. "Answer: 42" is displayed and the program ends.



To understand what is happening, recall that Python code using asyncio
has only one flow of execution, unless you’ve explicitly started additional
threads or processes. That means only one coroutine executes at any point
in time. Concurrency is achieved by control passing from one coroutine to
another. Let’s focus on what happens in the supervisor and slow
coroutines during the proposed experiment:

Example 20-7. spinner_async_experiment.py: the supervisor and slow
coroutines
async def slow() -> int: 
    time.sleep(3)   
    return 42 
 
async def supervisor() -> int: 
    spinner = asyncio.create_task(spin('thinking!'))   
    print(f'spinner object: {spinner}')   
    result = await slow()   
    spinner.cancel()   
    return result

The spinner task is created, to eventually drive the execution of
spin.

The display shows the Task is “pending”.

The await expression transfers control to the slow coroutine.

time.sleep(3) blocks for 3 seconds; nothing else can happen in the
program, because the main thread is blocked—and it is the only thread.
The operating system will continue with other activities. After 3
seconds, sleep unblocks, and slow returns.

Right after slow returns, the spinner task is cancelled. The flow of
control never reached the body of the spin coroutine.

The spinner_async_experiment.py teaches an important lesson:



WARNING
Never use time.sleep(…) in asyncio coroutines unless you want to pause your
whole program. If a coroutine needs to spend some time doing nothing, it should
await asyncio.sleep(DELAY). This yields control back to the asyncio event
loop, which can drive other pending coroutines.

Supervisors Side-by-side
The line count of spinner_thread.py and spinner_async.py is nearly the
same. The supervisor functions are the heart of these examples. Let’s
compare them in detail. Example 20-8 lists only the supervisor from
Example 20-2.

Example 20-8. spinner_thread.py: the threaded supervisor function
def supervisor() -> int: 
    done = Event() 
    spinner = Thread(target=spin, 
                     args=('thinking!', done)) 
    print('spinner object:', spinner) 
    spinner.start() 
    result = slow() 
    done.set() 
    spinner.join() 
    return result

For comparison, Example 20-9 shows the supervisor coroutine from
Example 20-4.

Example 20-9. spinner_async.py: the asynchronous supervisor coroutine
async def supervisor() -> int: 
    spinner = asyncio.create_task(spin('thinking!')) 
    print('spinner object:', spinner) 
    result = await slow() 
    spinner.cancel() 
    return result

Here is a summary of the differences and similarities to note between the
two supervisor implementations:



An asyncio.Task is roughly the equivalent of a
threading.Thread.

A Task drives a coroutine object, and a Thread invokes a
callable.

A coroutine yields control explicitly with the await keyword.

You don’t instantiate Task objects yourself, you get them by
passing a coroutine to asyncio.create_task(…).

When asyncio.create_task(…) returns a Task object, it is
already scheduled to run, but a Thread instance must be
explicitly told to run by calling its start method.

In the threaded supervisor, slow is a plain function and is
directly invoked by the main thread. In the asynchronous
supervisor, slow is a coroutine driven by await.

There’s no API to terminate a thread from the outside; instead, you
must send a signal—like setting the done Event object. For
tasks, there is the Task.cancel() instance method, which
raises CancelledError at the await expression where the
coroutine body is currently suspended.

The supervisor coroutine must be started with asyncio.run
in the main function.

This comparison should help you understand how concurrent jobs are
orchestrated with asyncio, in contrast to how it’s done with the
Threading module which may be more familiar to you.

One final point related to threads versus coroutines: if you’ve done any
nontrivial programming with threads, you know how challenging it is to
reason about the program because the scheduler can interrupt a thread at
any time. You must remember to hold locks to protect the critical sections
of your program, to avoid getting interrupted in the middle of a multistep
operation—which could leave data in an invalid state.



With coroutines, your code is protected against interruption by default. You
must explicitly await to let the rest of the program run. Instead of holding
locks to synchronize the operations of multiple threads, coroutines are
“synchronized” by definition: only one of them is running at any time.
When you want to give up control, you use await to yield control back to
the scheduler. That’s why it is possible to safely cancel a coroutine: by
definition, a coroutine can only be cancelled when it’s suspended at an
await expression, so you can perform cleanup by handling the
CancelledError exception.

The time.sleep() call blocks but does nothing. Now we’ll experiment
with a CPU-intensive call to get a better understanding of the GIL, as well
as the effect of CPU-intensive functions in asynchronous code.

The Real Impact of the GIL
In the threading code (Example 20-1), you can replace the
time.sleep(3) call in the slow function with an HTTP client request
from your favorite library, and the spinner will keep spinning. That’s
because a well-designed network library will release the GIL while waiting
for the network.

You can also replace the asyncio.sleep(3) expression in the slow
coroutine to await for a response from a well-designed asynchronous
network library, because such libraries provide coroutines that yield control
back to the event loop while waiting for the network. Meanwhile, the
spinner will keep spinning.

With CPU intensive code, the story is different. Consider the function
is_prime in Example 20-10, which returns True if the argument is a
prime number, False if it’s not.

Example 20-10. primes.py: an easy to read primality check, from Python’s
ProcessPoolExecutor example.
def is_prime(n: int) -> bool: 
    if n < 2: 

https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor-example


        return False 
    if n == 2: 
        return True 
    if n % 2 == 0: 
        return False 
 
    root = math.isqrt(n) 
    for i in range(3, root + 1, 2): 
        if n % i == 0: 
            return False 
    return True

The call is_prime(5_000_111_000_222_021) takes about 3.3s on
the company laptop I am using now.

Quick Quiz
Given what we’ve seen so far, please take the time to consider the following
three-part question. One part of the answer is tricky (at least it was for me).

What would happen to the spinner animation if made the following
changes, assuming that n = 5_000_111_000_222_021—that
prime which my machine takes 3.3s to verify:

1. In spinner_proc.py, replace time.sleep(3) with a call to
is_prime(n)?

2. In spinner_thread.py, replace time.sleep(3) with a call to
is_prime(n)?

3. In spinner_async.py, replace await asyncio.sleep(3)
with a call to is_prime(n)?

Before you run the code or read on, I recommend figuring out the answers
on your own. Then, you may want to copy and modify the spinner*.py_
examples as suggested.

Now the answers, from easier to hardest.

1. Answer for multiprocessing
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The spinner is controlled by a child process, so it continues spinning while
the primality test is computed by the parent process.

2. Answer for threading

The spinner is controlled by a secondary thread, so it continues spinning
while the primality test is computed by the main thread.

I did not get this answer right at first: I was expecting the spinner to freeze
because I overestimated the impact of the GIL .

In this particular example the spinner keeps spinning because Python
suspends the running thread every 5ms (by default), making the GIL
available to other pending threads. Therefore, the main thread running
is_prime is interrupted every 5ms, allowing the secondary thread to
wake up and iterate once through the for loop, until it calls the wait
method of the done event, at which time it will release the GIL. The main
thread will then grab the GIL, and the is_prime computation will
proceed for another 5ms.

This does not have a visible impact on the running time of this specific
example because the spin function quickly iterates once and releases the
GIL as it waits for the done event, so there is not much contention for the
GIL. The main thread running is_prime will have the GIL most of the
time.

We got away with a compute intensive task using threading in this simple
experiment because there are only two threads: one hogging the CPU, and
the other waking up only 10 times per second to update the spinner.

But you if you have two ore more threads vying for a lot of CPU time, your
program will be slower than sequential code.

3. Answer for asyncio

If you call is_prime(5_000_111_000_222_021) in the slow
coroutine of the spinner_async.py example, the spinner will never appear.
The effect would be the same we had in Example 20-6, when we replaced
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await asyncio.sleep(3) with time.sleep(3): no spinning at
all. The flow of control will pass from supervisor to slow, and then to
is_prime. When is_prime returns, slow returns as well, and
supervisor resumes, cancelling the spinner task before it is executed
even once. The program appears frozen for about 3s, then shows the
answer.



POWER NAPPING WITH SLEEP(0)

One way to keep the spinner alive is to rewrite is_prime as a
coroutine, and periodically call asyncio.sleep(0) in an await
expression to yield control back to the event loop, like this:

Example 20-11. spinner_async_nap.py: is_prime is now a
coroutine
async def is_prime(n): 
    if n < 2: 
        return False 
    if n == 2: 
        return True 
    if n % 2 == 0: 
        return False 
 
    root = math.isqrt(n) 
    for i in range(3, root + 1, 2): 
        if n % i == 0: 
            return False 
        if i % 100_000 == 1:   
            await asyncio.sleep(0)  
    return True

Micro-optimization: bind sleep to asyncio.sleep to avoid
the attribute lookup inside the loop.

await sleep(0) once every 100,000 iterations.

Issue #284 in the asyncio repository has an informative discussion
about the use of asyncio.sleep(0).

However, be aware this will slow down is_prime, and—more
importantly—will still slow down the event loop and your whole
program with it. When I used await asyncio.sleep(0) every
100,000 iterations, the spinner was smooth but the program ran in 4.9s
on my machine, almost 50% longer than the original
primes.is_prime function by itself with the same argument
(5_000_111_000_222_021).

https://github.com/python/asyncio/issues/284


Using await asyncio.sleep(0) should be considered a stopgap
measure before you refactor your asynchronous code to delegate CPU-
intensive computations to another process. We’ll see one way of doing
that with asyncio.loop.run_in_executor, covered in
Chapter 22. Another option would be a task queue, which we’ll briefly
discuss in “Distributed task queues”.

So far, we’ve only experimented with a single call to a CPU-intensive
function. The next section presents concurrent execution of multiple CPU-
intensive calls.

A Homegrown Process Pool

WARNING
I wrote this section to demonstrate the effect of multiple processes for CPU intensive
tasks, and the common pattern of using queues to distribute tasks and collect results.
Chapter 21 will show a simpler way of distributing tasks to processes: a
ProcessPoolExecutor from the concurrent.futures package, which uses
queues internally.

In this section we’ll write programs to compute the primality of a sample of
20 integers, from 2 to 9,999,999,999,999,999—i.e. 10 -1, or more than
2 . The sample includes small and large primes, as well as composite
numbers with small and large prime factors.

The sequential.py program provides the performance baseline. Here is a
sample run:

$ python3 sequential.py 
               2  P  0.000001s 
 142702110479723  P  0.568328s 
 299593572317531  P  0.796773s 
3333333333333301  P  2.648625s 
3333333333333333     0.000007s 
3333335652092209     2.672323s 
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4444444444444423  P  3.052667s 
4444444444444444     0.000001s 
4444444488888889     3.061083s 
5555553133149889     3.451833s 
5555555555555503  P  3.556867s 
5555555555555555     0.000007s 
6666666666666666     0.000001s 
6666666666666719  P  3.781064s 
6666667141414921     3.778166s 
7777777536340681     4.120069s 
7777777777777753  P  4.141530s 
7777777777777777     0.000007s 
9999999999999917  P  4.678164s 
9999999999999999     0.000007s 
Total time: 40.31

The results are shown in three columns:

1. the number to be checked;

2. P if it’s a prime number, blank if not;

3. elapsed time for checking the primality for that specific number.

In this example, the total time is approximately the sum of the times for
each check—but it is computed separately, as you can see in Example 20-
12.

Example 20-12. sequential.py: sequential primality check for a small
dataset
#!/usr/bin/env python3 
 
""" 
sequential.py: baseline for comparing sequential, multiprocessing, 
and threading code for CPU-intensive work. 
""" 
 
from time import perf_counter 
from typing import NamedTuple 
 
from primes import is_prime, NUMBERS 
 
class Result(NamedTuple):   
    prime: bool 
    elapsed: float 



 
def check(n: int) -> Result:   
    t0 = perf_counter() 
    prime = is_prime(n) 
    return Result(prime, perf_counter() - t0) 
 
def main() -> None: 
    print(f'Checking {len(NUMBERS)} numbers sequentially:') 
    t0 = perf_counter() 
    for n in NUMBERS:   
        prime, elapsed = check(n) 
        label = 'P' if prime else ' ' 
        print(f'{n:16}  {label} {elapsed:9.6f}s') 
 
    elapsed = perf_counter() - t0   
    print(f'Total time: {elapsed:.2f}s') 
 
if __name__ == '__main__': 
    main()

The check function (below) returns a Result tuple with the boolean
value of the is_prime call and the elapsed time.

check(n) calls is_prime(n) and computes the elapsed time to
return a Result.

For each number in the sample, we call check and display the result.

Compute and display the total elapsed time.

Process-based Solution
The next example, procs.py, shows the use of multiple processes to
distribute the primality checks across multiple CPU cores. These are the
times I get with procs.py:

$ python3 procs.py 
Checking 20 numbers with 12 processes: 
               2  P  0.000002s 
3333333333333333     0.000021s 
4444444444444444     0.000002s 
5555555555555555     0.000018s 



6666666666666666     0.000002s 
 142702110479723  P  1.350982s 
7777777777777777     0.000009s 
 299593572317531  P  1.981411s 
9999999999999999     0.000008s 
3333333333333301  P  6.328173s 
3333335652092209     6.419249s 
4444444488888889     7.051267s 
4444444444444423  P  7.122004s 
5555553133149889     7.412735s 
5555555555555503  P  7.603327s 
6666666666666719  P  7.934670s 
6666667141414921     8.017599s 
7777777536340681     8.339623s 
7777777777777753  P  8.388859s 
9999999999999917  P  8.117313s 
Total time: 9.58s

The last line of the output shows that procs.py was 4.2 times faster than
sequential.py.

Understanding the Elapsed Times
Note that the elapsed time in the first column is for checking that specific
number. For example, is_prime(7777777777777753) took almost
8.4s to return True. Meanwhile, other processes were checking other
numbers in parallel.

There were 20 numbers to check. I wrote procs.py to start a number of
worker processes equal to the number of CPU cores, as determined by
multiprocessing.cpu_count().

The total time in this case is much less than sum of the elapsed time for the
individual checks. There is some overhead in spinning up processes and in
inter-process communication, so the end result is that the multiprocess
version is only about 4.2 times faster than the sequential. That’s good, but a
little disappointing considering the code launches 12 processes to use all
cores on this laptop.



NOTE
The multiprocessing.cpu_count() function returns 12 on the MacBook Pro
I’m using to write this chapter. It’s actually a 6-CPU Core-i7, but the OS reports 12
CPUs because of hyper-threading, an Intel technology which executes 2 threads per
core. However, hyper-threading works better when one of the threads is not working as
hard as the other thread in the same core—perhaps the first is stalled waiting for data
after a cache miss, and the other is crunching numbers. Anyway, there’s no free lunch:
this laptop performs like a 6-CPU machine for compute-intensive work that doesn’t use
a lot of memory—like that simple primality test. I’m not complaining, just saying.

Code for the Multi-core Prime Checker
When we delegate computing to threads or processes, our code does not call
the worker function directly, so we can’t simply get a return value. Instead,
the worker is driven by the thread or process library, and it eventually
produces a result which needs to be stored somewhere. Coordinating
workers and collecting results are common uses of queues in concurrent
programming (and also in distributed systems, by the way).

Queues are data structures that—usually—enforce FIFO ordering: first in,
first out. Queues need to be implemented according to the underlying
concurrency model: the queue package in Python’s standard library
provides queue classes to support threads, while the multiprocessing
and asyncio packages implement their own queue classes. The queue
and asyncio packages also include queues that are not FIFO:
LifoQueue and PriorityQueue.

Much of the new code in procs.py has to do with setting up and using
queues. The top of the file is in Example 20-13.

WARNING
SimpleQueue was added to multiprocessing in Python 3.9. If you’re using an
earlier version of Python, you can replace SimpleQueue with Queue in this example.



Example 20-13. procs.py: multiprocess primality check; imports, types and
functions
import sys 
from time import perf_counter 
from typing import NamedTuple 
from multiprocessing import Process, SimpleQueue, cpu_count   
from multiprocessing import queues   
 
from primes import is_prime, NUMBERS 
 
class PrimeResult(NamedTuple):   
    n: int 
    prime: bool 
    elapsed: float 
 
JobQueue = queues.SimpleQueue[int]   
ResultQueue = queues.SimpleQueue[PrimeResult]   
 
def check(n: int) -> PrimeResult:   
    t0 = perf_counter() 
    res = is_prime(n) 
    return PrimeResult(n, res, perf_counter() - t0) 
 
def worker(jobs: JobQueue, results: ResultQueue) -> None:   
    while n := jobs.get():   
        results.put(check(n))  

Trying to emulate threading, multiprocessing provides
multiprocessing.SimpleQueue, but this is a method bound to a
pre-defined instance of a lower-level BaseContext class. We must
call this SimpleQueue to build a queue, but it can’t be used in type
hints.

multiprocessing.queues includes the SimpleQueue class we
need for type hints.

PrimeResult includes the number checked for primality. Keeping n
together with the other result fields simplifies displaying results later.

We’ll use a SimpleQueue to send numbers to the processes that will
do the work.



A second SimpleQueue will collect the results. The values in the
queue will be tuples made of the number to be tested for primality, and a
Result tuple.

This is similar to sequential.py.

worker gets a queue with the numbers to be checked, and another to
put results.

In this code, I use the number 0 as a sentinel: a signal for the worker to
finish. If n is not 0, proceed with the loop.

Invoke the primality check and enqueue PrimeResult.

WHAT’S A GOOD POISON PILL?
The worker function in Example 20-13 follows a common pattern in concurrent
programming: looping indefinitely while taking items from a queue and processing each
with a function that does the actual work. The loop ends when the queue produces a
sentinel. In this pattern, the sentinel that kills the worker is sometimes called a “poison
pill”.

Besides None, calling object() is a common way to get a unique value to use as
sentinel. However, this does not work across processes, because when you
pickle.dump and pickle.load an instance of object, the unpickled instance is
distinct from the original and doesn’t compare equal. If None can occur in the stream, a
good alternative is ..., the Ellipsis built-in object, which survives serialization
without losing its identity.

Now let’s study the main function of procs.py in Example 20-14.

Example 20-14. procs.py: multiprocess primality check; main function
def main() -> None: 
    if len(sys.argv) < 2:   
        workers = cpu_count() 
    else: 
        workers = int(sys.argv[1]) 
 
    print(f'Checking {len(NUMBERS)} numbers with {workers} 

11

12



processes:') 
 
    jobs: JobQueue = SimpleQueue()  
    results: ResultQueue = SimpleQueue() 
    t0 = perf_counter() 
 
    for n in NUMBERS:   
        jobs.put(n) 
 
    for _ in range(workers): 
        proc = Process(target=worker, args=(jobs, results))   
        proc.start()   
        jobs.put(0)   
 
    while True: 
        n, prime, elapsed = results.get()   
        label = 'P' if prime else ' ' 
        print(f'{n:16}  {label} {elapsed:9.6f}s')   
        if jobs.empty():   
            break 
 
    elapsed = perf_counter() - t0 
    print(f'Total time: {elapsed:.2f}s') 
 
if __name__ == '__main__': 
    main()

If no command line argument is given, set the number of workers to the
number of CPU cores; otherwise, create as many workers as given in
the first argument.

jobs and results are the queues described in Example 20-13.

Enqueue the numbers to be checked in jobs.

Fork a child process for each worker. Each child will run the loop inside
its own instance of the worker function, until it fetches a 0 from the
jobs queue.

Start the child process.

Enqueue one 0 for each worker as a sentinel.



Get the checked number n and the Result. Calling .get() on a
queue blocks until there is an item in the queue. It’s also possible to
make this unblocking, or set a timeout. See the SimpleQueue.get
documentation for details.

The results will not come back in the same order we submitted the jobs,
so we needed to put n in each PrimeResult tuple to make this
print call. Otherwise, we’d have no way to know which result
belonged to each number.

Exit the loop when the jobs queue is empty.

In this example, it’s safe to exit the last loop when the jobs queue is empty
because the last item put in that queue is a sentinel. Therefore, when a
worker gets that sentinel, all the other workers got their sentinels as well,
and no more inter-process communication will happen. If the last item in
jobs were a big prime, it could happen that jobs is empty but a worker is
still running.

NOTE
If the main process exits before all workers are done, you may see confusing tracebacks
on FileNotFoundError exceptions caused by an internal lock in
multiprocessing. Debugging concurrent code is always hard, and debugging
multiprocessing is even harder, because of all the complexity behind the thread-
like façade. Fortunately, the ProcessPoolExecutor we’ll meet in Chapter 21 is
simpler and more robust than this example.

Experimenting with More or Less Workers

You may want try running procs.py passing arguments to set the number of
worker processes. For example, this command…

$ python3 procs.py 2

https://docs.python.org/3/library/queue.html#queue.SimpleQueue.get


…will launch two worker processes, producing results almost twice as fast
as sequential.py—if your machine has at least two cores and is not too busy
running other programs.

I ran procs.py 12 times with 1 to 20 processes, totalling 240 runs. Then I
computed the median time for all runs with the same number of processes,
and plotted Figure 20-2.

Figure 20-2. Median run times for each number of processes from 1 to 20. Highest median time was
40.81s, with 1 process. Lowest median was 10.39, with 6 processes, indicated by the dotted line.

In this 6-core laptop, the lowest median time was with 6 processes: 10.39s
—marked by the dotted line in Figure 20-2. I expected the run time to
increase after 6 processes due to CPU contention, and it reaches a local
maximum of 12.51s at 10 processes. I did not expect and I can’t explain
why the performance improves at 11 processes and stays almost flat from
13 to 20 processes, with median times only slightly higher than the lowest
median time at 6 processes.



Thread-based Non-solution
I also wrote threads.py, a version of procs.py using threading instead of
multiprocessing. The code is very similar—as is usually the case
when converting simple examples between these two APIs. . Due to the
GIL and the compute-intensive nature of is_prime, the threaded version
is slower than the sequential code, and it gets slower as the number of
threads increase, because of CPU contention and the cost of context
switching: to switch to a new thread, the OS needs to save CPU registers
and update the program counter and stack pointer—triggering expensive
side-effects like invalidating caches and swapping memory pages.

The next two chapters will cover more about concurrent programming in
Python, using the high-level concurrent.futures library to manage
threads and processes (Chapter 21) and the asyncio library for
asynchronous programming (Chapter 22).

The remaining sections in this chapter aim to answer the question:

Given the limitations discussed so far, how is Python thriving in a multi-
core world?

The Big Picture
Consider this citation from the widely quoted article The Free Lunch Is
Over by Herb Sutter:

The major processor manufacturers and architectures, from Intel and
AMD to Sparc and PowerPC, have run out of room with most of their
traditional approaches to boosting CPU performance. Instead of driving
clock speeds and straight-line instruction throughput ever higher, they
are instead turning en masse to hyperthreading and multicore
architectures.

What Sutter calls the “free lunch” was the trend of software getting faster
with no additional developer effort because CPUs were executing
sequential code faster, year after year. Since 2004, that is no longer true:
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clock speeds and execution optimizations reached a plateau, and now any
significant increase in performance must come from leveraging multiple
cores or hyper-threading, advances that only benefit code that is written for
concurrent execution.

Python’s story started in the early 1990’s, when CPUs were still getting
exponentially faster at sequential code execution. No talk about multi-core
CPUs except in supercomputers back then. At the time, the decision to have
a GIL was a no-brainer. The GIL makes the interpreter faster when running
on a single core, and its implementation simpler.  The GIL also makes it
easier to write simple extensions through the Python/C API.

NOTE
I just wrote “simple extensions” because an extension does not need to deal with the
GIL at all. A function written in C or Fortran may be hundreds of times faster than the
same in Python.  Therefore the added complexity of releasing the GIL to leverage
multi-core CPUs may not be needed in many cases. So we can thank the GIL for many
extensions available for Python—and that is certainly one of the key reasons why the
language is so popular today.

Despite the GIL, Python is thriving in applications that require concurrent
or parallel execution, thanks to libraries and software architectures that
work around the limitations of CPython.

Now let’s discuss how Python is used in system administration, data
science, and server-side application development in the multi-core,
distributed computing world of 2021.

System Administration
Python is widely used to manage large fleets of servers, routers, load
balancers, network-attached storage (NAS). It’s also a leading option in
software-defined networking (SDN) and ethical hacking. Major cloud
service providers support Python through libraries and tutorials authored by
the providers themselves or by their large communities of Python users.
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In this domain, Python scripts automate configuration tasks by issuing
commands to be carried out by the remote machines, so rarely there are
CPU-bound operations to be done. Threads or coroutines are well suited for
such jobs. In particular, the concurrent.futures package we’ll see in
Chapter 21 can be used to perform the same operations on many remote
machines at the same time without a lot of complexity.

There is also a growing number of libraries for system administration
supporting coroutines and asyncio. In 2016, Facebook’s Production
Engineering team reported: “We are increasingly relying on AsyncIO,
which was introduced in Python 3.4, and seeing huge performance gains as
we move codebases away from Python 2.”

Data Science
Data Science—including Artificial Intelligence—and scientific computing
are very well served by Python. Applications in these fields are compute-
intensive, but Python users benefit from a vast ecosystem of numeric
computing libraries written in C, C++, Fortran, Cython, etc.—many of
which are able to leverage multi-core machines, GPUs, and/or distributed
parallel computing in heterogeneous clusters.

As of 2021, Python’s data science ecosystem includes impressive tools such
as:

Project Jupyter

Two browser based interfaces—Jupyter Notebook and JupyterLab—that
allow users to run and document analytics code potentially running
across the network on remote machines. Both are hybrid
Python/JavaScript applications, supporting computing kernels written in
different languages, all integrated via ZeroMQ—an asynchronous
messaging library for distributed applications. The name Jupyter
actually comes from Julia, Python, and R, the first three languages
supported by the Notebook. The rich ecosystem built on top of the
Jupyter tools include Bokeh, a powerful interactive visualization library
that lets users navigate and interact with large datasets or continuously

https://engineering.fb.com/2016/05/27/production-engineering/python-in-production-engineering/
https://jupyter.org/
https://docs.bokeh.org/en/latest/index.html


updated streaming data, thanks to the performance of modern JavaScript
engines and browsers.

TensorFlow and PyTorch

These are the top two deep learning frameworks, according to O’Reilly
Media’s January 2021 report on usage of their learning resources during
2020. Both projects are written in C++, and are able to leverage
multiple cores, GPUs, and clusters. They support other languages as
well, but Python is their main focus and is used by the majority of their
users. TensorFlow was created and is used internally by Google;
PyTorch by Facebook.

Dask

A parallel computing library that can farm out work to local processes
or clusters of machines, “tested on some of the largest supercomputers
in the world”—as their home page states. Dask offers APIs that closely
emulate NumPy, Pandas, and Scikit-Learn—the most popular libraries
in data science and machine learning today. Dask can be used from
JupyterLab or Jupyter Notebook, and leverages Bokeh not only for data
visualization but also for an interactive dashboard showing the flow of
data and computations across the processes/machines in near real-time.
Dask is so impressive that I recommend watching a video such as this
15-minute demo in which Matthew Rocklin—a maintainer of the
project—shows Dask crunching data on 64 cores distributed in 8 EC2
machines on AWS.

These are only some examples to illustrate how the data science community
is creating solutions that leverage the best of Python and overcome the
limitations of the CPython runtime.

Server-side Web/Mobile Development
Python is widely used in Web applications and for the back-end APIs
supporting mobile applications. How is it that Google, YouTube, Dropbox,

https://www.tensorflow.org/
https://pytorch.org/
https://www.oreilly.com/radar/where-programming-ops-ai-and-the-cloud-are-headed-in-2021/
https://dask.org/
https://dask.org/
https://www.youtube.com/watch?v=ods97a5Pzw0


Instagram, Quora, and Reddit—among others—managed to build Python
server-side applications serving hundreds of millions of users 24x7? Again,
the answer goes way beyond what Python provides “out of the box.”

Before we discuss tools to support Python at scale, I must quote an
admonition from the Thoughtworks Technology Radar:

High performance envy/web scale envy

We see many teams run into trouble because they have chosen complex
tools, frameworks or architectures because they “might need to scale”.
Companies such as Twitter and Netflix need to support extreme loads and
so need these architectures, but they also have extremely skilled
development teams able to handle the complexity. Most situations do not
require these kinds of engineering feats; teams should keep their web
scale envy in check in favor of simpler solutions that still get the job
done.

At Web scale, the key is an architecture that allows horizontal scaling. At
that point, all systems are distributed systems, and no single programming
language is likely to be the right choice for every part of solution.

Distributed systems is a field of academic research, but fortunately some
practitioners have written accessible books anchored on solid research and
practical experience. One of them is Martin Kleppmann, the author of
Designing Data-Intensive Applications (O’Reilly, 2017).

Consider Figure 20-3, the first of many architecture diagrams in
Kleppmann’s book. Here are some components I’ve seen in Python
engagements that I worked on or have firsthand knowledge:

application caches : memcached, Varnish, Redis;

relational databases: PostgreSQL, MySQL;

document databases: Apache CouchDB, MongoDB;

full-text indexes: Elasticsearch, Apache Solr;

message queues: RabbitMQ, Redis.
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Figure 20-3. One possible architecture for a data system that combines several components.

There are other industrial-strength Open Source products in each of those
categories. Major cloud providers also offer their own proprietary
alternatives.

Kleppmann’s diagram is general and language-independent—as is his book.
For Python server-side applications, two specific components are often
deployed:

An application server to distribute the load among several
instances of the Python application. The application server would
appear near the top in Figure 20-3, handling client requests before
they reached the application code.

A task queue built around the message queue on the right-hand
side of Figure 20-3, providing a higher level, easier to use API to
distribute tasks to workers running on other machines.

The next two sections explore these components that are recommended best
practices in Python server-side deployments.

WSGI Application servers
WSGI—the Web Server Gateway Interface—is a standard API for a Python
framework or application to receive requests from a HTTP server and send
responses to it.  The WSGI API is implemented by application servers
manage one or more Python processes running your application,
maximizing the use of the available CPUs. Figure 20-4 illustrates a typical
deployment.
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Figure 20-4. Clients connect to a HTTP server that delivers static files and routes other requests to
the application server, which forks several Python processes to run the application code, maximizing

the use of the CPU cores.

The best known application servers in Python Web projects are:

mod_wsgi;

uWSGI;

gunicorn;

NGINX Unit.

For users Apache HTTP, mod_wsgi is the best option. It’s as old as WSGI
itself, but is actively maintained, and now provides a command-line
launcher called mod_wsgi-express that makes it easier to configure
and more suitable for use in Docker containers.

uWSGI and gunicorn are the top choices in recent projects I know about.
Both are often used with the NGINX HTTP server. uWSGI offers a lot of
extra functionality, including an application cache, a task queue, cron-like
periodic tasks, and many other features. On the flip side, uWSGI is much
harder to configure properly than gunicorn.

Released in 2018, NGINX Unit is a new product from the makers of the
well known NGINX HTTP server and reverse proxy.

mod_wsgi and gunicorn support Python Web apps only, while uWSGI and
NGINX Unit work with other languages as well. Please browse their docs to
learn more.

The main point: all of these application servers leverage all CPU cores on
the server by forking multiple Python processes to run traditional Web apps
written in good old sequential code in Django, Flask, Pyramid etc. This
explains why it’s been possible to earn a living as a Python Web developer
without ever studying the threading, multiprocessing, or
asyncio modules: the application server handles concurrency
transparently.
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ASGI—ASYNCHRONOUS SERVER GATEWAY
INTERFACE

WSGI is a synchronous API. It doesn’t support coroutines with async/await—the
most efficient way to implement WebSockets or HTTP long polling in Python. The
ASGI specification is a successor to WSGI designed for asynchronous Python Web
frameworks such as aiohttp, Sanic, FastAPI etc. as well as Django and Flask, which are
gradually adding asynchronous functionality.

Now let’s turn to another way of bypassing the GIL to achieve higher
performance with server-side Python applications.

Distributed task queues
When the application server delivers a request to one of the Python
processes running your code, your app needs to respond quickly: you want
the process to be available to handle the next request as soon as possible.
However, some requests demand actions that may take longer—for
example, sending e-mail or generating a PDF. That’s the problem that
distributed task queues are designed to solve.

Celery and RQ are the best known Open Source task queues with Python
APIs. Cloud providers also offer their own proprietary task queues.

These products wrap a message queue and offer a high-level API for
delegating tasks to workers, possibly running on different machines.

NOTE
In the context of task queues, the words producer and consumer are used instead of
traditional client/server terminology. For example, a Django view handler produces job
requests which are put in the queue to be consumed by one or more PDF rendering
processes.

Quoting directly from Celery’s FAQ, here are some typical use cases:

https://asgi.readthedocs.io/en/latest/index.html
https://docs.celeryproject.org/en/stable/getting-started/introduction.html
https://python-rq.org/
https://docs.celeryproject.org/en/stable/faq.html#what-kinds-of-things-should-i-use-celery-for


Running something in the background. For example, to finish
the web request as soon as possible, then update the users page
incrementally. This gives the user the impression of good
performance and “snappiness”, even though the real work
might actually take some time.

Running something after the web request has finished.

Making sure something is done, by executing it asynchronously
and using retries.

Scheduling periodic work.

Besides solving these immediate problems, task queues support horizontal
scalability. Producers and consumers are decoupled: a producer doesn’t call
a consumer, it puts a request in a queue. Consumers don’t need to know
anything about the producers (but the request may include information
about the producer, if an acknowledgement is required). Crucially, you can
easily add more workers to consume tasks as demand grows. That’s why
Celery and RQ are called distributed task queues.

Recall that our simple procs.py (Example 20-13) used two queues: one for
job requests, the other for collecting results. The distributed architecture of
Celery and RQ uses a similar pattern. Both support using the Redis NoSQL
database as a message queue and result storage. Celery also supports other
message queues like RabbitMQ or Amazon SQS, as well other databases for
result storage.

This wraps up our introduction to concurrency in Python. The next two
chapters will continue this theme, focusing on the
concurrent.futures and asyncio packages of the standard library.

https://redis.io/


Chapter Summary
After a bit of theory, this chapter presented the spinner scripts implemented
in each of Python’s three native concurrency programming models:

Threads, with the threading package;

Processes, with multiprocessing;

Asynchronous coroutines with asyncio.

We then explored the real impact of the GIL with an experiment: changing
the spinner examples to compute the primality of a large integer and
observe the resulting behavior. This demonstrated graphically that CPU-
intensive functions must be avoided in asyncio, as they block the event
loop. The threaded version of the experiment worked—despite the GIL—
because Python periodically interrupts threads, and the example used only
two threads: one doing compute-intensive work, and the other driving the
animation only 10 times per second. The multiprocessing variant
worked around the GIL, starting a new process just for the animation while
the main process did the primality check.

The next example, computing several primes, highlighted the difference
between multiprocessing and threading, proving that only
processes allow Python to benefit from multicore CPUs. Python’s GIL
makes threads worse than sequential code for heavy computations.

The GIL dominates discussions about concurrent and parallel computing in
Python, but we should not overestimate its impact. That was the point of
“The Big Picture”. For example, the GIL doesn’t affect many use cases of
Python in systems administration. On the other hand, the data science and
server-side development communities have worked around the GIL with
industrial-strength solutions tailored to their specific needs. The last two
sections mentioned two common elements to support Python server-side
applications at scale: WSGI application servers and distributed task queues.



Further Reading
This chapter has an extensive reading list, so I split it in subsections.

Concurrency with threads and processes
The concurrent.futures library covered in Chapter 21 uses threads,
processes, locks, and queues under the hood, but you won’t see individual
instances of them; they’re bundled and managed by the higher-level
abstractions of a ThreadPoolExecutor and a
ProcessPoolExecutor. If you want to learn more about the practice of
concurrent programming with those low-level objects, An Intro to
Threading in Python by Jim Anderson is a good first read. Doug Hellmann
has a chapter titled Concurrency with Processes, Threads, and Coroutines
in his site and book: Python 3 Standard Library by Example (Addison-
Wesley, 2017).

Brett Slatkin’s Effective Python, Second Edition (Addison-Wesley, 2019),
David Beazley’s Python Essential Reference, 4th Edition (Addison-Wesley
Professional, 2009), and Martelli, Ravenscroft & Holden’s Python in a
Nutshell, 3E (O’Reilly) are other general Python references with significant
coverage of threading and multiprocessing. The vast
multiprocessing official documentation includes useful advice in its
Programming guidelines section.

Jesse Noller and Richard Oudkerk contributed the multiprocessing
package, introduced in PEP 371 — Addition of the multiprocessing package
to the standard library. The official documentation for the package is a 93
KB .rst file—that’s about 63 pages—making it one of the longest chapters
in the Python standard library.

In High Performance Python, 2nd Edition (O’Reilly, 2020), authors Micha
Gorelick and Ian Ozsvald includes a chapter about multiprocessing
with an example about checking for primes with a different strategy than
our procs.py example: for each number, they split the range of possible
factors—from 2 to sqrt(n)—into sub-ranges, and make each worker

https://realpython.com/intro-to-python-threading/
https://pymotw.com/3/concurrency.html
https://www.pearson.com/us/higher-education/program/Hellmann-Python-3-Standard-Library-by-Example-The/PGM328871.html
http://www.effectivepython.com/
https://docs.python.org/3/library/multiprocessing.html#programming-guidelines
https://www.python.org/dev/peps/pep-0371/
http://bit.ly/multi-docs
https://learning.oreilly.com/library/view/high-performance-python/9781492055013/


iterate over one of the sub-ranges. Their divide-and-conquer approach is
typical of scientific computing applications where the data sets are huge,
and workstations (or clusters) have more CPU cores than users. On a
server-side system handling requests from many users, it is simpler and
more efficient to let each process work on one computation from start to
finish—reducing the overhead of communication and coordination among
processes. Besides multiprocessing, Gorelick & Ozsvald present
many other ways of developing and deploying high performance data
science applications leveraging multiple cores, GPUs, clusters, profilers,
and compilers like Cython and Numba. Their last chapter, Lessons from the
Field, is a valuable collection of short case studies contributed by other
practitioners of high-performance computing in Python.

In Advanced Python Development (Apress, 2020), author Matthew Wilkes
is a rare book that includes short examples to explain concepts, while also
showing how to build a realistic application ready for production: a data
aggregator, similar to DevOps monitoring systems or IoT data collectors for
distributed sensors. Two chapters in Advanced Python Development cover
concurrent programming with threading and asyncio.

Jan Palach’s Parallel Programming with Python (Packt, 2014), explains the
core concepts behind concurrency and parallelism, covering Python’s
standard library as well as Celery.

The Truth About Threads is the title of chapter 2 in Using Asyncio in Python
by Caleb Hattingh (O’Reilly, 2020).  The chapter covers the benefits and
drawbacks of threading—with compelling quotes from several authoritative
sources—making it clear that the fundamental challenges of threads have
nothing to do with Python or the GIL. Quoting verbatim from page 14 of
Using Asyncio in Python:

These themes repeat throughout:

Threading makes code hard to reason about.

Threading is an inefficient model for large-scale concurrency
(thousands of concurrent tasks).
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If you want to learn the hard way how difficult it is to reason about threads
and locks—without risking your job—try the exercises in Alen Downey’s
workbook The Little Book of Semaphores. The exercises in Downey’s book
range from easy to very hard to unsolvable, but even the easy ones are eye
opening.

The GIL
If you are intrigued about the GIL, start with the Python Library and
Extension FAQ (“Can’t we get rid of the Global Interpreter Lock?”). Also
worth reading are posts by Guido van Rossum and Jesse Noller (contributor
of the multiprocessing package): “It isn’t Easy to Remove the GIL”
and “Python Threads and the Global Interpreter Lock.”

CPython Internals by Anthony Shaw explains the implementation of the
CPython 3 interpreter at the C programming level. Shaw’s longest chapter
is Parallelism and Concurrency: a deep dive into Python’s native support
for threads and processes, including managing the GIL from extensions
using the C/Python API.

Finally, David Beazley has a detailed exploration on the inner workings of
the GIL: “Understanding the Python GIL.”  In slide #54 of the
presentation, Beazley reports some alarming results, including a 20×
increase in processing time for a particular benchmark with the new GIL
algorithm introduced in Python 3.2. However, Beazley apparently used an
empty while True: pass to simulate CPU-bound work, and that is not
realistic. The issue is not significant with real workloads, according to a
comment by Antoine Pitrou—who implemented the new GIL algorithm—
in the bug report submitted by Beazley.

Concurrency beyond the standard library
I’ve already mentioned two books that cover concurrency using Python’s
standard library, which also include significant coverage of third-party
libraries and tools: High Performance Python, 2nd Edition and Parallel
Programming with Python.
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Francesco Pierfederici’s Distributed Computing with Python (Packt, 2016),
which also addresses using cloud providers and HPC (High-Performance
Computing) clusters.

Python, Performance, and GPUs by Matthew Rocklin is “a status update for
using GPU accelerators from Python”, posted in June 2019.

“Instagram currently features the world’s largest deployment of the Django
web framework, which is written entirely in Python.” That’s the opening
sentence of the blog post Web Service Efficiency at Instagram with Python
written by Min Ni—a software engineer at Instagram. The post describes
metrics and tools Instagram uses to optimize the efficiency of their Python
codebase, as well as detect and diagnose performance regressions as they
deploy their back end “30-50 times a day.”

Architecture Patterns with Python: Enabling Test-Driven Development,
Domain-Driven Design, and Event-Driven Microservices by Harry Percival
& Bob Gregory (O’Reilly, 2020) presents architectural patterns for Python
server-side applications. The authors also made the book freely available
online at cosmicpython.com.

Two elegant and easy to use libraries for parallelizing tasks over processes
are lelo by João S. O. Bueno and python-parallelize by Nat Pryce. The lelo
package defines a @parallel decorator that you can apply to any
function to magically make it unblocking: when you call the decorated
function, its execution is started in another process. Nat Pryce’s python-
parallelize package provides a parallelize generator that distributes
the execution of a for loop over multiple CPUs. Both packages are built
on the multiprocessing library.

Python core developer Eric Snow maintains a Multi-core Python wiki, with
notes about his and other people’s efforts to improve Python’s support for
parallel execution. Snow is the author of PEP 554—Multiple Interpreters in
the Stdlib. If approved and implemented, PEP 554 lays the groundwork for
future enhancements that may eventually allow Python to use multiple
cores without the overheads of multiprocessing. One of the biggest

https://www.packtpub.com/product/distributed-computing-with-python/9781785889691
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https://pypi.python.org/pypi/lelo
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blockers is the complex interaction between multiple active subinterpreters
and extensions that assume a single interpreter.

Mark Shannon—also a Python maintainer—created a useful table
comparing concurrent models in Python
https://gist.github.com/markshannon/79cace3656b40e21b7021504daee950
c referenced in a discussion about subinterpreters between him, Eric Snow,
and other developers on the python-dev mailing list. In Shannon’s table, the
“Ideal CSP” column refers to the theoretical Communicating sequential
processes model proposed by Tony Hoare in 1978. Go also allows shared
objects, violating an essential constraint of CSP: execution units should
communicate through message passing through channels.

The actor model of concurrent programming underlies the highly scalable
Erlang and Elixir languages, as well as the Akka framework for Scala and
Java. If you want to try out the actor model in Python, check out the
Thespian and Pykka libraries.

My remaining recommendations have few or zero mentions of Python, but
are nevertheless relevant to readers interested in the theme of this chapter.

Concurrency and scalability beyond Python
RabbitMQ in Action by Alvaro Videla and Jason J. W. Williams (Manning,
2012) is a very well written introduction to RabbitMQ and the Advanced
Message Queuing Protocol (AMQP) standard, with examples in Python,
PHP, and Ruby. Regardless of the rest of your tech stack, and even if you
plan to use Celery with RabbitMQ under the hood, I recommend this book
for its coverage of concepts, motivation, and patterns for distributed
message queues, as well as operating and tuning RabbitMQ at scale.

I learned a lot reading Seven Concurrency Models in Seven Weeks, by Paul
Butcher (Pragmatic Bookshelf, 2014)—with the eloquent subtitle When
Threads Unravel. Chapter 1 of the book presents the core concepts and
challenges of programming with threads and locks in Java.  The remaining
six chapters the book are devoted to what the author considers better
alternatives for concurrent and parallel programming, as supported by
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different languages, tools and libraries. The examples use Java, Clojure,
Elixir, and C (for the chapter about parallel programming with the OpenCL
framework). The CSP model is exemplified with Clojure code, although the
Go language deserves credit for popularizing that approach. Elixir is the
language of the examples illustrating the actor model. A freely available,
alternative bonus chapter about actors uses Scala and the Akka framework.
Unless you already know Scala, Elixir is a more accessible language to
learn and experiment with the actor model and the Erlang/OTP distributed
systems platform.

Unmesh Joshi of Thoughtworks has contributed several pages documenting
Patterns of Distributed Systems to Martin Fowler’s blog. The opening page
is a great introduction the topic, with links to individual patterns. Joshi is
adding patterns incrementally, but what’s already there distills years of
hard-earned experience in mission-critical systems.

Martin Kleppmann’s Designing Data-Intensive Applications (O’Reilly,
2017) is a rare book written by a practitioner with deep industry experience
and advanced academic background. The author worked with large-scale
data infrastructure at LinkedIn and two startups, before becoming a
researcher of distributed systems at the University of Cambridge. Each
chapter in Kleppmann’s book ends with an extensive list of references
including recent research results. The book also includes numerous
illuminating diagrams and beautiful concept maps.

I was fortunate to be in the audience for Francesco Cesarini’s outstanding
workshop on the architecture of reliable distributed systems at OSCON
2016: Designing and architecting for scalability with Erlang/OTP (video at
the O’Reilly Learning Platform). Despite the title, 9:35 into the video
Cesarini explains:

Very little of what I am going to say will be Erlang-specific […]. The fact
remains that Erlang will remove a lot of accidental difficulties to making
systems which are resilient and which never fail, and are scalable. So it
will be much easier if you do use Erlang, or a language running on the
Erlang virtual machine.

https://en.wikipedia.org/wiki/OpenCL
https://media.pragprog.com/titles/pb7con/Bonus_Chapter.pdf
https://martinfowler.com/
https://martinfowler.com/articles/patterns-of-distributed-systems/
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That workshop was based on the last four chapters of Designing for
Scalability with Erlang/OTP by Francesco Cesarini and Steve Vinoski
(O’Reilly, 2016).

Programming distributed systems is challenging and exciting, but beware of
Web-scale envy. The KISS principle remains solid engineering advice.

Check out the paper Scalability! But at what COST? by Frank McSherry,
Michael Isard & Derek G. Murray. The authors identified parallel graph-
processing systems presented in academic symposia that require hundreds
of cores to outperform a “competent single-threaded implementation.” They
also found systems that “underperform one thread for all of their reported
configurations.”

Those findings remind me of a classic hacker quip:

My Perl script is faster than your Hadoop cluster.

https://learning.oreilly.com/library/view/designing-for-scalability/9781449361556/
https://www.thoughtworks.com/radar/techniques/high-performance-envy-web-scale-envy
https://en.wikipedia.org/wiki/KISS_principle
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry


SOAPBOX

Concurrency in the competition

MRI—the reference implementation of Ruby—also has a GIL, so its
threads are under the same limitations as Python’s. Meanwhile,
JavaScript interpreters don’t support user-level threads at all;
asynchronous programming is their only path to concurrency. I mention
this because Ruby and JavaScript are the closest direct competitors to
Python as general-purpose, dynamic programming languages.

Looking at languages born in the 21st century, Go and Elixir are
probably the ones best positioned to eat Python’s lunch when
concurrency matters. Both were designed from day 0 to allow highly
efficient and reliable concurrent programming. Elixir, Go, and Python
are my favorite languages today—in alphabetical order.

To manage complexity, we need constraints

I learned to program on a TI-58 calculator. Its “language” was similar to
assembly. At that level, all “variables” are globals, and you don’t have
the luxury of structured flow control statements. You have conditional
jumps: instructions that take the execution directly to an arbitrary
location—ahead or behind the current spot—depending on the value of
a CPU register or flag.

Basically you can do anything in assembly, and that’s the challenge:
there are very few constraints to keep you from making mistakes, and to
help maintainers understand the code when changes are needed.

The second language I learned the was the unstructured BASIC that
came with 8-bit computers—nothing like VisualBasic, which appeared
much later. There were FOR, GOSUB and RETURN statements, but still
no concept of local variables. GOSUB did not support parameter
passing: it was just a fancy GOTO that put a return line number in a
stack so that RETURN had a target to jump to. Subroutines could help
themselves to the global data, and put results there too. We had to



improvise other forms of flow control with combinations of IF and
GOTO—which, again, allowed you to jump to any line of the program.

After a few years of programming with jumps and global variables, I
remember the struggle to rewire my brain for “structured programming”
when I learned Pascal. Now I had to use flow control statements around
blocks of code that have a single entry point. I couldn’t jump to any
instruction I liked. Global variables were unavoidable in BASIC, but
now they were taboo. I needed to rethink the flow of data and explicitly
pass arguments to functions.

The next challenge for me was learning Object Oriented Programming.
At core, OOP is structured programming with more constraints and
polymorphism. Information hiding forces yet another rethink of where
data lives. I remember being frustrated more than once because I had to
refactor my code so that a method I was writing could get information
that was encapsulated in an object that my method could not reach.

Functional programming languages add other constraints, but
immutability is the hardest to swallow after decades of imperative
programming and OOP.

After we get used to these constraints, we see them as blessings. They
make reasoning about the code much easier.

Lack of constraints is the main problem with the threads-and-locks
model of concurrent programming.

When summarizing chapter 1 of Seven Concurrency Models in Seven
Weeks, Paul Butcher wrote:

The greatest weakness of the approach, however, is that threads-and-
locks programming is hard. It may be easy for a language designer to
add them to a language, but they provide us, the poor programmers,
with very little help.

Some examples of unconstrained behavior in that model:

Threads can share access to arbitrary mutable data structures.



The scheduler can interrupt a thread at almost any point,
including in the middle of a simple operation like a += 1.
Very few operations are atomic at the level of source code
expressions.

Locks are usually advisory. That’s a technical term meaning
that you must remember to explicitly hold a lock before
updating a shared data structure. If you forget to get the lock,
nothing prevents your code from messing up the data while
another thread dutifully holds the lock and is updating the
same data.

In contrast, consider some constraints enforced by the actor model,
where the unit of execution is called “actor” instead of thread.

An actor can have internal state, but cannot share state with
other actors.

Actors can only communicate by sending and receiving
messages.

Messages only hold copies of data, not references to mutable
data.

An actor only handles one message at a time. There is no
concurrent execution inside a single actor.

Of course, you can adopt an actor style of coding in any language, by
following these rules. You can also use OOP idioms in C, and even
structured programming patterns in assembly. But doing any of that
requires a lot of agreement and discipline among everyone who touches
the code.

Managing locks is unnecessary in the actor model, as implemented by
Erlang and Elixir, where all data types are immutable.

Threads-and-locks are not going away. I just don’t think dealing with
such low-level entities is a good use of my time as I write applications
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—as opposed to kernel modules or databases.

I reserve the right to change my mind, always. But right now, I am
convinced that the actor model is the most sensible, general purpose
concurrent programming model available. CSP (Communicating
Sequential Process) is also sensible, but its implementation in Go leaves
out some constraints.

Old habits die hard

Like the actor model, CSP also advocates a form of message passing.
The best practice is that goroutines—the unit of execution in Go—
communicate through channels which are essentially queues with
blocking puts and gets. Rob Pike—co-creator of Go—is known for his
“proverbs”, one of which says:

Don’t communicate by sharing memory, share memory by
communicating.

In the name of performance, I’ve seen Go developers advocate sharing
memory as standard practice, instead of an optimization technique to be
considered in extreme cases, mostly in libraries, and rarely in
application code. Go’s standard library provides locks, enabling a
coroutine-and-locks style that contradicts the essence of CSP.

In the name of performance, why don’t we go back to assembly?

We need constraints to keep our thinking straight and our systems
running.

1  Slide 5 of the talk “Concurrency Is Not Parallelism (It’s Better)”.

2  I studied and worked with Prof. Imre Simon who liked to say there are two major sins in
science: using different words to mean the same thing and using one word to mean different
things. Imre Simon (1943–2009) was a pioneer of computer science in Brazil who made
seminal contributions to Automata Theory and started the field of Tropical Mathematics. He
was also an advocate of free software and free culture.

3  You can see the configured interval by calling sys.getswitchinterval() and change
it via sys.setswitchinterval(s).

http://bit.ly/1OwVTUf
https://docs.python.org/3/library/sys.html#sys.getswitchinterval
https://docs.python.org/3/library/sys.html#sys.setswitchinterval


4  A syscall is a call from user code to a function of the operating system kernel. I/O, timers, and
locks are some of the kernel services available through syscalls. To learn more, read the
Wikipedia System call article.

5  The zlib and bz2 modules are specifically mentioned in a python-dev message by Antoine
Pitrou, who contributed the time-slicing GIL logic to Python 3.2.

6  Source: slide 106 of “Generators: The Final Frontier”.

7  Source: last paragraph of the Thread objects section

8  Unicode has lots of characters useful for simple animations, like the Braille patterns for
example. I used the ASCII "\|/-" to keep the examples simple.

9  It’s a 15″ MacBook Pro 2018 with a 6-core, 2.2 GHz Intel Core i7 CPU.

10  This is true today because you are probably using a modern OS with preemptive multi-
tasking. Windows before the NT era and MacOS before the OSX era were not “preemptive”,
therefore any process could take over 100% of the CPU and freeze the whole system. We are
not completely free of this kind of problem today but trust this gray beard: this troubled every
user in the 1990s, and a hard reset was the only cure.

11  In this example, 0 is a convenient sentinel. None is also commonly used for that. Using 0
keeps the type hints for PrimeResult and PrimeResult—and the code for worker—as
simple as possible.

12  Surviving serialization without losing our identity is a pretty good life goal.

13  Look for primes/threads.py the Fluent Python 2e code repository if you are curious.

14  To learn more, see Context switch in the English Wikipedia.

15  The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software—Dr. Dobb’s
Journal, March 2005. Available online.

16  These are probably the same reasons that prompted the creator of the Ruby language,
Yukihiro Matsumoto, to use a GIL in his interpreter as well.

17  As an exercise in college, I had to implemented the LZW compression algorithm in C. But
first I wrote it in Python, to check my understanding of the spec. The C version was about
900× faster.

18  Source: Thoughtworks Technology Advisory Board, Technology Radar—November 2015.

19  Contrast application caches—used directly by your application code—with HTTP caches,
which would be placed on the top edge of Figure 20-3 to serve static assets like images, CSS,
and JS files. Content Delivery Networks (CDN) offer another type of HTTP cache, deployed in
data centers closer to the end users of your application.

20  Diagram and caption from Figure 1-1 Designing Data-Intensive Applications (O’Reilly, 2017)

21  Some speakers spell out the WSGI acronym, while others pronounce it as one word rhyming
with “whisky”.

https://en.wikipedia.org/wiki/System_call
https://mail.python.org/pipermail/python-dev/2009-October/093356.html
http://www.dabeaz.com/finalgenerator/
https://docs.python.org/3/library/threading.html#thread-objects
https://en.wikipedia.org/wiki/Braille_Patterns
https://github.com/fluentpython/example-code-2e
https://en.wikipedia.org/wiki/Context_switch
http://www.gotw.ca/publications/concurrency-ddj.htm
https://www.thoughtworks.com/radar/techniques/high-performance-envy-web-scale-envy


22  uWSGI is spelled with a lowercase “u”, but that is pronounced as the Greek letter “µ”, so the
whole name sounds like “micro-whisky” with a “g” instead of the “k”.

23  Bloomberg engineers Peter Sperl and Ben Green wrote Configuring uWSGI for Production
Deployment, explaining how many of the default settings in uWSGI are not suitable for many
common deployment scenarios. Sperl presented a summary of their recommendations at
EuroPython 2019. Highly recommended for users of uWSGI.

24  Caleb is one of the tech reviewers of Fluent Python, Second Edition

25  Thanks to Lucas Brunialti for sending me a link to this talk.

26  Python’s threading and concurrent.futures APIs are heavily influenced by the
Java standard library.

27  The Erlang community uses the term “process” for actors. In Erlang, each process is a
function in its own loop, so they are very lightweight and it’s feasible to have millions of them
active at once in a single machine—no relation to the heavyweight OS processes we’ve been
talking about elsewhere in this chapter. So here we have examples of the two sins described by
Prof. Simon: using different words to mean the same thing, and using one word to mean
different things.

https://www.techatbloomberg.com/blog/configuring-uwsgi-production-deployment/
https://www.youtube.com/watch?v=p6R1h2Nn468


Chapter 21. Concurrency with
Futures

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 21st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

The people bashing threads are typically system programmers which
have in mind use cases that the typical application programmer will
never encounter in her life. […] In 99% of the use cases an application
programmer is likely to run into, the simple pattern of spawning a bunch
of independent threads and collecting the results in a queue is everything
one needs to know.

—Michele Simionato, Python deep thinker

This chapter focuses on the concurrent.futures library that
encapsulates the pattern of “spawning a bunch of independent threads and
collecting the results in a queue” described by Michele Simionato, making
it almost trivial to use. The package also supports processes, useful for
compute-intensive tasks.

Here I also introduce the concept of “futures”—objects representing the
asynchronous execution of an operation, similar to JavaScript promises.
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This primitive idea is the foundation not only of concurrent.futures
but also of the asyncio package, the subject of Chapter 22.

What’s new in this chapter
This chapter had few important changes from the first edition, because the
concurrent.futures API is stable, with minor changes since its
introduction in Python 3.2.

Example 21-3 (flags_threadpool.py) is a bit simpler after I removed some
code to set up the number of workers, now that the
ThreadPoolExecutor in Python 3.8 got smarter: it doesn’t start
unnecessary threads, and its logic for automatically setting the number of
workers was updated. I added a few paragraphs explaining the new logic at
the end of “Downloading with concurrent.futures”.

I was able to greatly simplify the setup for the experiments in “Downloads
with Progress Display and Error Handling” thanks to the multi-threaded
server added to the http.server package in Python 3.7. Previously, that
package offered only the single-threaded BaseHttpServer which was
no good for experimenting with concurrent clients, so I had to resort to
external tools in the First Edition.

In “Launching Processes with concurrent.futures”, I replaced the previous
examples using ProcessPoolExecutor with a new version of the
primality checker, showing how that class simplifies the code we saw in
“Code for the Multi-core Prime Checker”.

Finally, I moved some conceptual content to the new Chapter 20–
Concurrency Models in Python.

Concurrent Web Downloads
Concurrency is essential to efficient network I/O: instead of wasting CPU
cycles waiting for remote machines, the application should do something
else until a response comes back over the wire.

https://docs.python.org/3/library/http.server.html


To make this last point with code, I wrote three simple programs to
download images of 20 country flags from the Web. The first one, flags.py,
runs sequentially: it only requests the next image when the previous one is
downloaded and saved locally. The other two scripts make concurrent
downloads: they request several images practically at the same time, and
save them as they arrive. The flags_threadpool.py script uses the
concurrent.futures package, while flags_asyncio.py uses
asyncio.

Example 21-1 shows the result of running the three scripts, three times
each. I also posted a 73s video on YouTube so you can watch them running
while a MacOS Finder window displays the flags as they are saved. The
scripts are downloading images from fluentpython.com, which is behind a
CDN, so you may see slower results in the first runs. The results in
Example 21-1 were obtained after several runs, so the CDN cache was
warm.

Example 21-1. Three typical runs of the scripts flags.py,
flags_threadpool.py, and flags_asyncio.py
$ python3 flags.py 
BD BR CD CN DE EG ET FR ID IN IR JP MX NG PH PK RU TR US VN   
20 flags downloaded in 7.26s   
$ python3 flags.py 
BD BR CD CN DE EG ET FR ID IN IR JP MX NG PH PK RU TR US VN 
20 flags downloaded in 7.20s 
$ python3 flags.py 
BD BR CD CN DE EG ET FR ID IN IR JP MX NG PH PK RU TR US VN 
20 flags downloaded in 7.09s 
$ python3 flags_threadpool.py 
DE BD CN JP ID EG NG BR RU CD IR MX US PH FR PK VN IN ET TR 
20 flags downloaded in 1.37s   
$ python3 flags_threadpool.py 
EG BR FR IN BD JP DE RU PK PH CD MX ID US NG TR CN VN ET IR 
20 flags downloaded in 1.60s 
$ python3 flags_threadpool.py 
BD DE EG CN ID RU IN VN ET MX FR CD NG US JP TR PK BR IR PH 
20 flags downloaded in 1.22s 
$ python3 flags_asyncio.py   
BD BR IN ID TR DE CN US IR PK PH FR RU NG VN ET MX EG JP CD 
20 flags downloaded in 1.36s 
$ python3 flags_asyncio.py 

https://www.youtube.com/watch?v=A9e9Cy1UkME


RU CN BR IN FR BD TR EG VN IR PH CD ET ID NG DE JP PK MX US 
20 flags downloaded in 1.27s 
$ python3 flags_asyncio.py 
RU IN ID DE BR VN PK MX US IR ET EG NG BD FR CN JP PH CD TR   
20 flags downloaded in 1.42s

The output for each run starts with the country codes of the flags as they
are downloaded, and ends with a message stating the elapsed time.

It took flags.py an average 7.18s to download 20 images.

The average for flags_threadpool.py was 1.40s.

For flags_asyncio.py, 1.35 was the average time.

Note the order of the country codes: the downloads happened in a
different order every time with the concurrent scripts.

The difference in performance between the concurrent scripts is not
significant, but they are both more than five times faster than the sequential
script—and this is just for the small task of downloading 20 files of a few
kilobytes each. If you scale the task to hundreds of downloads, the
concurrent scripts can outpace the sequential code by a factor or 20 or
more.

WARNING
While testing concurrent HTTP clients against public Web servers you may
inadvertently launch a denial-of-service (DoS) attack, or be suspected of doing so. In the
case of Example 21-1, it’s OK to do it because those scripts are hardcoded to make only
20 requests. We’ll use Python’s http.server package to run tests later in this
chapter.

Now let’s study the implementations of two of the scripts tested in
Example 21-1: flags.py and flags_threadpool.py. I will leave the third



script, flags_asyncio.py, for Chapter 22, but I wanted to demonstrate all
three together to make two points:

1. Regardless of the concurrency constructs you use—threads or
coroutines—you’ll see vastly improved throughput over sequential
code in network I/O operations, if you code it properly.

2. For HTTP clients that can control how many requests they make,
there is no significant difference in performance between threads
and coroutines.

On to the code.

A Sequential Download Script
Example 21-2 is not very interesting, but we’ll reuse most of its code and
settings to implement the concurrent scripts, so it deserves some attention.

NOTE
For clarity, there is no error handling in Example 21-2. We will deal with exceptions
later, but here we want to focus on the basic structure of the code, to make it easier to
contrast this script with the concurrent ones.

Example 21-2. flags.py: sequential download script; some functions will be
reused by the other scripts
import time 
from pathlib import Path 
from typing import Callable 
 
import requests   
 
POP20_CC = ('CN IN US ID BR PK NG BD RU JP ' 
            'MX PH VN ET EG DE IR TR CD FR').split()   
 
BASE_URL = 'http://fluentpython.com/data/flags'        
DEST_DIR = Path('downloaded')                          
 
def save_flag(img: bytes, filename: str) -> None:      
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    (DEST_DIR / filename).write_bytes(img) 
 
def get_flag(cc: str) -> bytes:   
    url = f'{BASE_URL}/{cc}/{cc}.gif'.lower() 
    resp = requests.get(url) 
    return resp.content 
 
def download_many(cc_list: list[str]) -> int:   
    for cc in sorted(cc_list):                  
        image = get_flag(cc) 
        save_flag(image, f'{cc}.gif') 
        print(cc, end=' ', flush=True)          
    return len(cc_list) 
 
def main(downloader: Callable[[list[str]], int]) -> None:   
    t0 = time.perf_counter()                                
    count = downloader(POP20_CC) 
    elapsed = time.perf_counter() - t0 
    print(f'\n{count} downloads in {elapsed:.2f}s') 
 
if __name__ == '__main__': 
    main(download_many)     

Import the requests library; it’s not part of the standard library, so by
convention we import it after the standard library modules os, time,
and sys, and insert a blank line to separate them.

List of the ISO 3166 country codes for the 20 most populous countries
in order of decreasing population.

The directory with the flag images.

Local directory where the images are saved.

Save the img bytes to filename in the DEST_DIR.

Given a country code, build the URL and download the image using
requests, returning the binary contents of the response.

download_many is the key function to compare with the concurrent
implementations.
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Loop over the list of country codes in alphabetical order, to make it easy
to see that the ordering is preserved in the output; return the number of
country codes downloaded.

Display a country code and flush sys.stdout so we can see progress
as each download happens; flushing is needed because, otherwise,
Python waits for a line break to output the stdout buffer.

main must be called with the function that will make the downloads;
that way, we can use main as library function with other
implementations of download_many in the threadpool and
ascyncio examples.

main records and reports the elapsed time after running the
downloader function.

Call main with the download_many function.

TIP
The requests library is more powerful and easier to use than the urllib.request
module from the Python 3 standard library. In fact, requests is considered a model
Pythonic API.

There’s really nothing new to flags.py. It serves as a baseline for comparing
the other scripts and I used it as a library to avoid redundant code when
implementing them. Now let’s see a reimplementation using
concurrent.futures.

Downloading with concurrent.futures
The main features of the concurrent.futures package are the
ThreadPoolExecutor and ProcessPoolExecutor classes, which
implement an API for to submitting callables for execution in different

https://pypi.python.org/pypi/requests


threads or processes, respectively. The classes transparently manage a pool
of worker threads or processes, and queues to distribute jobs and collect
results. But the interface is very high level, and we don’t need to know
about any of those details for a simple use case like our flag downloads.

Example 21-3 shows the easiest way to implement the downloads
concurrently, using the ThreadPoolExecutor.map method.

Example 21-3. flags_threadpool.py: threaded download script using
futures.ThreadPoolExecutor
from concurrent import futures 
 
from flags import save_flag, get_flag, main   
 
def download_one(cc: str):   
    image = get_flag(cc) 
    save_flag(image, f'{cc}.gif') 
    print(cc, end=' ', flush=True) 
    return cc 
 
def download_many(cc_list: list[str]) -> int: 
    with futures.ThreadPoolExecutor() as executor:          
        res = executor.map(download_one, sorted(cc_list))   
 
    return len(list(res))                                   
 
if __name__ == '__main__': 
    main(download_many)  

Reuse some functions from the flags module (Example 21-2).

Function to download a single image; this is what each worker will
execute.

Instantiate the ThreadPoolExecutor as a context manager; the
executor.__exit__ method will call
executor.shutdown(wait=True), which will block until all
threads are done.



The map method is similar to the map built-in, except that the
download_one function will be called concurrently from multiple
threads; it returns a generator that you can iterate to retrieve the value
returned by each function call—in this case, each call to
download_one will return a country code.

Return the number of results obtained; if any of the threaded calls raises
an exception, that exception is raised here when the implicit next()
call inside the list constructor tries to retrieve the corresponding
return value from the iterator.

Call the main function from the flags module, passing the concurrent
version of download_many.

Note that the download_one function from Example 21-3 is essentially
the body of the for loop in the download_many function from
Example 21-2. This is a common refactoring when writing concurrent code:
turning the body of a sequential for loop into a function to be called
concurrently.

TIP
Example 21-3 is very short because I was able to reuse most functions from the
sequential _flags.py_ script. One of the best features of concurrent.futures
is to make it simple to add concurrent execution on top of legacy sequential code.

The ThreadPoolExecutor constructor takes several arguments not
shown, but the first and most important one is max_workers, setting the
maximum number of worker threads to be executed. Until Python 3.4,
max_workers was required. In 3.5, max_workers became optional,
with a default of None. When max_workers is None, the
ThreadPoolExecutor decides its value using the following expression
—since Python 3.8:



max_workers = min(32, os.cpu_count() + 4)

The rationale is well explained in the ThreadPoolExecutor
documentation:

This default value preserves at least 5 workers for I/O bound tasks. It
utilizes at most 32 CPU cores for CPU bound tasks which release the
GIL. And it avoids using very large resources implicitly on many-core
machines.

ThreadPoolExecutor now reuses idle worker threads before
starting max_workers worker threads too.

To conclude: the computed default for max_workers is sensible, and
ThreadPoolExecutor avoids starting new workers unnecessarily.
Understanding the logic behind max_workers may help you decide when
and how to set it yourself.

The library is called concurrency.futures yet there are no futures to
be seen in Example 21-3, so you may be wondering where they are. The
next section explains.

Where Are the Futures?
Futures are essential components in the internals of
concurrent.futures and of asyncio, but as users of these libraries
we sometimes don’t see them. Example 21-3 leverages futures behind the
scenes, but the code I wrote does not touch them directly. This section is an
overview of futures, with an example that shows them in action.

Since Python 3.4, there are two classes named Future in the standard
library: concurrent.futures.Future and asyncio.Future.
They serve the same purpose: an instance of either Future class
represents a deferred computation that may or may not have completed.
This is similar to the Deferred class in Twisted, the Future class in
Tornado, and Promise in modern JavaScript.

https://docs.python.org/3.9/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor


Futures encapsulate pending operations so that they can be put in queues,
their state of completion can be queried, and their results (or exceptions)
can be retrieved when available.

An important thing to know about futures is that you and I should not create
them: they are meant to be instantiated exclusively by the concurrency
framework, be it concurrent.futures or asyncio. Here is why: a
Future represents something that will eventually run, and the only way to
be sure that something will run is to schedule its execution. In particular,
concurrent.futures.Future instances are created only as the
result of scheduling a callable for execution with a
concurrent.futures.Executor subclass. For example, the
Executor.submit() method takes a callable, schedules it to run, and
returns a Future.

Client code is not supposed to change the state of a future: the concurrency
framework changes the state of a future when the computation it represents
is done, and we can’t control when that happens.

Both types of Future have a .done() method that is nonblocking and
returns a Boolean that tells you whether the callable wrapped that future has
executed or not. However, instead of repeatedly asking whether a future is
done, client code usually asks to be notified. That’s why both Future
classes have an .add_done_callback() method: you give it a
callable, and the callable will be invoked with the future as the single
argument when the future is done.

There is also a .result() method, which works the same in both classes
when the future is done: it returns the result of the callable, or re-raises
whatever exception might have been thrown when the callable was
executed. However, when the future is not done, the behavior of the
result method is very different between the two flavors of Future. In a
concurrency.futures.Future instance, invoking f.result()
will block the caller’s thread until the result is ready. An optional timeout
argument can be passed, and if the future is not done in the specified time,
the result method raises TimeoutError. In [Link to Come], we’ll see



that the asyncio.Future.result method does not support timeout,
and the preferred way to get the result of futures in that library is to use
await—which doesn’t work with concurrency.futures.Future
instances.

Several functions in both libraries return futures; others use them in their
implementation in a way that is transparent to the user. An example of the
latter is the Executor.map we saw in Example 21-3: it returns an iterator
in which __next__ calls the result method of each future, so we get
the results of the futures, and not the futures themselves.

To get a practical look at futures, we can rewrite Example 21-3 to use the
concurrent.futures.as_completed function, which takes an
iterable of futures and returns an iterator that yields futures as they are
done.

Using futures.as_completed requires changes to the
download_many function only. The higher-level executor.map call is
replaced by two for loops: one to create and schedule the futures, the other
to retrieve their results. While we are at it, we’ll add a few print calls to
display each future before and after it’s done Example 21-4 shows the code
for a new download_many function. The code for download_many
grew from 5 to 17 lines, but now we get to inspect the mysterious futures.
The remaining functions are the same as in Example 21-3.

Example 21-4. flags_threadpool_futures.py: replacing executor.map with
executor.submit and futures.as_completed in the download_many function
def download_many(cc_list: list[str]) -> int: 
    cc_list = cc_list[:5]   
    with futures.ThreadPoolExecutor(max_workers=3) as executor:   
        to_do: list[futures.Future] = [] 
        for cc in sorted(cc_list):   
            future = executor.submit(download_one, cc)   
            to_do.append(future)   
            print(f'Scheduled for {cc}: {future}')   
 
        for count, future in enumerate(futures.as_completed(to_do), 
1):   
            res: str = future.result()   
            print(f'{future} result: {res!r}')   

http://bit.ly/1JIsEOW


 
    return count

For this demonstration, use only the top five most populous countries.

Set max_workers to 3 so we can see pending futures in the output.

Iterate over country codes alphabetically, to make it clear that results
will arrive out of order.

executor.submit schedules the callable to be executed, and returns
a future representing this pending operation.

Store each future so we can later retrieve them with
as_completed.

Display a message with the country code and the respective future.

as_completed yields futures as they are completed.

Get the result of this future.

Display the future and its result.

Note that the future.result() call will never block in this example
because the future is coming out of as_completed. Example 21-5
shows the output of one run of Example 21-4.

Example 21-5. Output of flags_threadpool_futures.py
$ python3 flags_threadpool_futures.py 
Scheduled for BR: <Future at 0x100791518 state=running>   
Scheduled for CN: <Future at 0x100791710 state=running> 
Scheduled for ID: <Future at 0x100791a90 state=running> 
Scheduled for IN: <Future at 0x101807080 state=pending>   
Scheduled for US: <Future at 0x101807128 state=pending> 
CN <Future at 0x100791710 state=finished returned str> result: 'CN'  
 

BR ID <Future at 0x100791518 state=finished returned str> result: 
'BR'   



<Future at 0x100791a90 state=finished returned str> result: 'ID' 
IN <Future at 0x101807080 state=finished returned str> result: 'IN' 
US <Future at 0x101807128 state=finished returned str> result: 'US' 
 
5 downloads in 0.70s

The futures are scheduled in alphabetical order; the repr() of a future
shows its state: the first three are running, because there are three
worker threads.

The last two futures are pending, waiting for worker threads.

The first CN here is the output of download_one in a worker thread;
the rest of the line is the output of download_many.

Here two threads output codes before download_many in the main
thread can display the result of the first thread.

TIP
I recommend experimenting with flags_threadpool_futures.py. If you run it several
times, you’ll see the order of the results varying. Increasing max_workers to 5 will
increase the variation in the order of the results. Decreasing it to 1 will make this script
run sequentially, and the order of the results will always be the order of the submit
calls.

We saw two variants of the download script using
concurrent.futures: Example 21-3 with
ThreadPoolExecutor.map and Example 21-4 with
futures.as_completed. If you are curious about the code for
flags_asyncio.py, you may peek at Example 22-3 in Chapter 22, where it is
explained.

Now let’s take a brief look at a simple way to work around the GIL for
CPU-bound jobs using concurrent.futures.



Launching Processes with
concurrent.futures
The concurrent.futures documentation page is subtitled “Launching
parallel tasks”. The package enables parallel computation on multi-core
machines because it supports distributing work among multiple Python
processes using the ProcessPoolExecutor class.

Both ProcessPoolExecutor and ThreadPoolExecutor
implement the Executor interface, so it’s easy to switch from a thread-
based to a process-based solution using concurrent.futures.

There is no advantage in using a ProcessPoolExecutor for the flags
download example or any I/O-bound job. It’s easy to verify this; just change
these lines in Example 21-3:

def download_many(cc_list: list[str]) -> int: 
    with futures.ThreadPoolExecutor() as executor:

To this:

def download_many(cc_list: list[str]) -> int: 
    with futures.ProcessPoolExecutor() as executor:

The constructor for ProcessPoolExecutor also has a max_workers
parameter which defaults to None. In that case, the executor limits the
number of workers to the number returned by os.cpu_count().

Processes use more memory and take longer to start than threads, so the real
value of ProcessPoolExecutor is in CPU-intensive jobs. Let’s go
back to the primality test example of “A Homegrown Process Pool”,
rewriting it with concurrent.futures.

Multi-core Prime Checker Redux
In “Code for the Multi-core Prime Checker” we studied procs.py, a script
that checked the primality of some large numbers using

https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3.9/library/concurrent.futures.html#concurrent.futures.Executor


multiprocessing. In Example 21-6 we solve the same problem in the
proc_pool.py program using a ProcessPoolExecutor. From the first
import to the main() call at the end, procs.py has 43 non-blank lines of
code, and proc_pool.py has 31—28% shorter.

Example 21-6. proc_pool.py: procs.py rewritten with
ProcessPoolExecutor
import sys 
from concurrent import futures   
from time import perf_counter 
from typing import NamedTuple 
 
from primes import is_prime, NUMBERS 
 
class PrimeResult(NamedTuple):   
    n: int 
    flag: bool 
    elapsed: float 
 
def check(n: int) -> PrimeResult: 
    t0 = perf_counter() 
    res = is_prime(n) 
    return PrimeResult(n, res, perf_counter() - t0) 
 
def main() -> None: 
    if len(sys.argv) < 2: 
        workers = None       
    else: 
        workers = int(sys.argv[1]) 
 
    executor = futures.ProcessPoolExecutor(workers)   
    actual_workers = executor._max_workers  # type: ignore   
 
    print(f'Checking {len(NUMBERS)} numbers with {actual_workers} 
processes:') 
 
    t0 = perf_counter() 
 
    numbers = sorted(NUMBERS, reverse=True)   
    with executor:   
        for n, prime, elapsed in executor.map(check, numbers):   
            label = 'P' if prime else ' ' 
            print(f'{n:16}  {label} {elapsed:9.6f}s') 
 
    time = perf_counter() - t0 



    print(f'Total time: {time:.2f}s') 
 
if __name__ == '__main__': 
    main()

No need to import multiprocessing, SimpleQueue etc.;
concurrent.futures hides all that.

The PrimeResult tuple and the check function are the same we
saw in procs.py, but we don’t need the queues and the worker function
anymore.

Instead of deciding ourselves how many workers to use if no command-
line argument was given, we set workers to None and let the
ProcessPoolExecutor decide.

Here I build the ProcessPoolExecutor before the with block in
➐ so that I can display the actual number of workers in the next line.

_max_workers is an undocumented instance attribute of a
ProcessPoolExecutor. I decided to use it to show the number of
workers when the workers variable is None; mypy correctly
complains when I access it, so I put the type: ignore comment to
silence it.

Sort the numbers to be checked in descending order. This will expose a
difference in the behavior of proc_pool.py when compared with
procs.py. See below.

Use the executor as a context manager, as usual.

The executor.map call will return the PrimeResult instances
returned by check in the same order as the numbers arguments.

If you run Example 21-6, you’ll see the results appearing in strict
descending order, as shown in Example 21-7. In contrast, the ordering of



the output of procs.py (shown in “Process-based Solution”) is heavily
influenced by the difficulty in checking whether each number is a prime.
For example, procs.py shows the result for 7777777777777777 near the top,
because it has a low divisor, 7, so is_prime quickly determines it’s not a
prime. In contrast, 7777777536340681 is 88191709  so is_prime will
take much longer to determine that it’s a composite number, end even
longer to find out that 7777777777777753 is prime—therefore both of these
numbers appear near the end of the output of procs.py.

Running proc_pool.py you’ll observe not only the descending order of the
results, but also that the program will appear to be stuck after showing the
result for 9999999999999999.

Example 21-7. Output of proc_pool.py
$ ./proc_pool.py 
Checking 20 numbers with 12 processes: 
9999999999999999     0.000024s   
9999999999999917  P  9.500677s   
7777777777777777     0.000022s   
7777777777777753  P  8.976933s 
7777777536340681     8.896149s 
6666667141414921     8.537621s 
6666666666666719  P  8.548641s 
6666666666666666     0.000002s 
5555555555555555     0.000017s 
5555555555555503  P  8.214086s 
5555553133149889     8.067247s 
4444444488888889     7.546234s 
4444444444444444     0.000002s 
4444444444444423  P  7.622370s 
3333335652092209     6.724649s 
3333333333333333     0.000018s 
3333333333333301  P  6.655039s 
 299593572317531  P  2.072723s 
 142702110479723  P  1.461840s 
               2  P  0.000001s 
Total time: 9.65s

This line appears very quickly.

This line takes more than 9.5s to show up.
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All the remaining lines appear almost immediately.

Here is why proc_pool.py behaves in that way:

As mentioned before, executor.map(check, numbers)
returns the result in the same order as the numbers are given.

By default, proc_pool.py uses as many workers as there are CPUs
—it’s what ProcessPoolExecutor does when
max_workers is None. That’s 12 processes in this laptop.

Because we are submitting numbers in descending order, the first
is 9999999999999999, with 9 as a divisor it returns quickly.

The second number is 9999999999999917, the largest prime in the
sample. This will take longer than all the others to check.

Meanwhile, the remaining 11 processes will be checking other
numbers which are either primes or composites with large factors,
or composites with very small factors.

When the worker in charge of 9999999999999917 finally
determines that’s a prime, all the other processes have completed
their last jobs, so the results appear immediately after.

NOTE
Although the progress of proc_pool.py is not as visible as that of procs.py, the overall
execution time is practically the same as depicted in Figure 20-2, for the same number
of workers and CPU cores.

Understanding how concurrent programs behave is not straightforward, so
here’s is a second experiment that may help you visualize the operation of
Executor.map.



Experimenting with Executor.map
Let’s investigate Executor.map`, now using a ThreadPoolExecutor
with three workers running five callables that output timestamped
messages. The code is in Example 21-8, the out put in Example 21-9.

Example 21-8. demo_executor_map.py: Simple demonstration of the map
method of ThreadPoolExecutor
from time import sleep, strftime 
from concurrent import futures 
 
def display(*args):   
    print(strftime('[%H:%M:%S]'), end=' ') 
    print(*args) 
 
def loiter(n):   
    msg = '{}loiter({}): doing nothing for {}s...' 
    display(msg.format('\t'*n, n, n)) 
    sleep(n) 
    msg = '{}loiter({}): done.' 
    display(msg.format('\t'*n, n)) 
    return n * 10   
 
def main(): 
    display('Script starting.') 
    executor = futures.ThreadPoolExecutor(max_workers=3)   
    results = executor.map(loiter, range(5))   
    display('results:', results)   
    display('Waiting for individual results:') 
    for i, result in enumerate(results):   
        display(f'result {i}: {result}') 
 
if __name__ == '__main__': 
    main()

This function simply prints whatever arguments it gets, preceded by a
timestamp in the format [HH:MM:SS].

loiter does nothing except display a message when it starts, sleep for
n seconds, then display a message when it ends; tabs are used to indent
the messages according to the value of n.



loiter returns n * 10 so we can see how to collect results.

Create a ThreadPoolExecutor with three threads.

Submit five tasks to the executor. Since there are only three threads,
only three of those tasks will start immediately: the calls loiter(0),
loiter(1), and loiter(2)); this is a nonblocking call.

Immediately display the results of invoking executor.map: it’s a
generator, as the output in Example 21-9 shows.

The enumerate call in the for loop will implicitly invoke
next(results), which in turn will invoke _f.result() on the
(internal) _f future representing the first call, loiter(0). The
result method will block until the future is done, therefore each
iteration in this loop will have to wait for the next result to be ready.

I encourage you to run Example 21-8 and see the display being updated
incrementally. While you’re at it, play with the max_workers argument
for the ThreadPoolExecutor and with the range function that
produces the arguments for the executor.map call—or replace it with
lists of handpicked values to create different delays.

Example 21-9 shows a sample run of Example 21-8.

Example 21-9. Sample run of demo_executor_map.py from Example 21-8
$ python3 demo_executor_map.py 
[15:56:50] Script starting.   
[15:56:50] loiter(0): doing nothing for 0s...   
[15:56:50] loiter(0): done. 
[15:56:50]      loiter(1): doing nothing for 1s...   
[15:56:50]              loiter(2): doing nothing for 2s... 
[15:56:50] results: <generator object result_iterator at 
0x106517168>   
[15:56:50]                      loiter(3): doing nothing for 3s...  
 

[15:56:50] Waiting for individual results: 
[15:56:50] result 0: 0   



[15:56:51]      loiter(1): done.  
[15:56:51]                              loiter(4): doing nothing 
for 4s... 
[15:56:51] result 1: 10   
[15:56:52]              loiter(2): done.   
[15:56:52] result 2: 20 
[15:56:53]                      loiter(3): done. 
[15:56:53] result 3: 30 
[15:56:55]                              loiter(4): done.   
[15:56:55] result 4: 40

This run started at 15:56:50.

The first thread executes loiter(0), so it will sleep for 0s and return
even before the second thread has a chance to start, but YMMV.

loiter(1) and loiter(2) start immediately (because the thread
pool has three workers, it can run three functions concurrently).

This shows that the results returned by executor.map is a
generator; nothing so far would block, regardless of the number of tasks
and the max_workers setting.

Because loiter(0) is done, the first worker is now available to start
the fourth thread for loiter(3).

This is where execution may block, depending on the parameters given
to the loiter calls: the __next__ method of the results
generator must wait until the first future is complete. In this case, it
won’t block because the call to loiter(0) finished before this loop
started. Note that everything up to this point happened within the same
second: 15:56:50.

loiter(1) is done one second later, at 15:56:51. The thread is freed
to start loiter(4).

The result of loiter(1) is shown: 10. Now the for loop will block
waiting for the result of loiter(2).
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The pattern repeats: loiter(2) is done, its result is shown; same with
loiter(3).

There is a 2s delay until loiter(4) is done, because it started at
15:56:51 and did nothing for 4s.

The Executor.map function is easy to use, but often it’s preferable to get
the results as they are ready, regardless of the order they were submitted. To
do that, we need a combination of the Executor.submit method and
the futures.as_completed function, as we saw in Example 21-4.
We’ll come back to this technique in “Using futures.as_completed”.

TIP
The combination of executor.submit and futures.as_completed is more
flexible than executor.map because you can submit different callables and
arguments, while executor.map is designed to run the same callable on the different
arguments. In addition, the set of futures you pass to futures.as_completed may
come from more than one executor—perhaps some were created by a
ThreadPoolExecutor instance while others are from a
ProcessPoolExecutor.

In the next section, we will resume the flag download examples with new
requirements that will force us to iterate over the results of
futures.as_completed instead of using executor.map.

Downloads with Progress Display and Error
Handling
As mentioned, the scripts in “Concurrent Web Downloads” have no error
handling to make them easier to read and to contrast the structure of the
three approaches: sequential, threaded, and asynchronous.



In order to test the handling of a variety of error conditions, I created the
flags2 examples:

flags2_common.py

This module contains common functions and settings used by all
flags2 examples, including a main function, which takes care of
command-line parsing, timing, and reporting results. This is really
support code, not directly relevant to the subject of this chapter, so I will
not list the source code here, but you can find it the Fluent Python 2e
code repository.

flags2_sequential.py

A sequential HTTP client with proper error handling and progress bar
display. Its download_one function is also used by
flags2_threadpool.py.

flags2_threadpool.py

Concurrent HTTP client based on
futures.ThreadPoolExecutor to demonstrate error handling
and integration of the progress bar.

flags2_asyncio.py

Same functionality as previous example but implemented with
asyncio and aiohttp. This will be covered in “Enhancing the
asyncio downloader”, in Chapter 22.

https://github.com/fluentpython/example-code-2e


BE CAREFUL WHEN TESTING CONCURRENT
CLIENTS

When testing concurrent HTTP clients on public Web servers, you may generate many
requests per second, and that’s how denial-of-service (DoS) attacks are made. Carefully
throttle your clients when hitting public servers. For high-concurrency experiments, set
up a local HTTP server for testing. The ThreadingHTTPServer that comes with
Python is OK for testing , and it can serve files in the current directory if you run it
with:

python -m http.server

Append the -h option to the command above for more options.

The most visible feature of the flags2 examples is that they have an
animated, text-mode progress bar implemented with the TQDM package. I
posted a 108s video on YouTube to show the progress bar and contrast the
speed of the three flags2 scripts. In the video, I start with the sequential
download, but I interrupt it after 32s because it was going to take more than
5 minutes to hit on 676 URLs and get 194 flags; I then run the threaded and
asyncio scripts three times each, and every time they complete the job in
6s or less (i.e., more than 60 times faster). Figure 21-1 shows two
screenshots: during and after running flags2_threadpool.py.
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Figure 21-1. Top-left: flags2_threadpool.py running with live progress bar generated by tqdm;
bottom-right: same terminal window after the script is finished.

TQDM is very easy to use, the simplest example appears in an animated .gif
in the project’s README.md. If you type the following code in the Python
console after installing the tqdm package, you’ll see an animated progress
bar were the comment is:

>>> import time 
>>> from tqdm import tqdm 
>>> for i in tqdm(range(1000)): 
...     time.sleep(.01) 
... 
>>> # -> progress bar will appear here <-

https://github.com/noamraph/tqdm/blob/master/README.md


Besides the neat effect, the tqdm function is also interesting conceptually:
it consumes any iterable and produces an iterator which, while it’s
consumed, displays the progress bar and estimates the remaining time to
complete all iterations. To compute that estimate, tqdm needs to get an
iterable that has a len, or receive as a second argument the expected
number of items. Integrating TQDM with our flags2 examples provides
an opportunity to look deeper into how the concurrent scripts actually work,
by forcing us to use the futures.as_completed and the
asyncio.as_completed functions so that tqdm can display progress
as each future is completed.

The other feature of the flags2 example is a command-line interface. All
three scripts accept the same options, and you can see them by running any
of the scripts with the -h option. Example 21-10 shows the help text.

Example 21-10. Help screen for the scripts in the flags2 series
$ python3 flags2_threadpool.py -h 
usage: flags2_threadpool.py [-h] [-a] [-e] [-l N] [-m CONCURRENT] 
[-s LABEL] 
                            [-v] 
                            [CC [CC ...]] 
 
Download flags for country codes. Default: top 20 countries by 
population. 
 
positional arguments: 
  CC                    country code or 1st letter (eg. B for 
BA...BZ) 
 
optional arguments: 
  -h, --help            show this help message and exit 
  -a, --all             get all available flags (AD to ZW) 
  -e, --every           get flags for every possible code (AA...ZZ) 
  -l N, --limit N       limit to N first codes 
  -m CONCURRENT, --max_req CONCURRENT 
                        maximum concurrent requests (default=30) 
  -s LABEL, --server LABEL 
                        Server to hit; one of DELAY, ERROR, LOCAL, 
REMOTE 
                        (default=LOCAL) 
  -v, --verbose         output detailed progress info

http://bit.ly/1JIsEOW
http://bit.ly/1JIufV1


All arguments are optional. The most important arguments are discussed
next.

One option you can’t ignore is -s/--server: it lets you choose which
HTTP server and base URL will be used in the test. You can pass one of
four strings to determine where the script will look for the flags (the strings
are case insensitive):

LOCAL

Use http://localhost:8000/flags; this is the default. You
should configure a local HTTP server to answer at port 8000. See
“Setting up test servers” for instructions.

REMOTE

Use http://fluentpython.com/data/flags; that is a public
website owned by me, hosted on a shared server. Please do not pound it
with too many concurrent requests. The fluentpython.com domain
is handled by the Cloudflare CDN (Content Delivery Network) so you
may notice that the first downloads are slower, but they get faster when
the CDN cache warms up.

DELAY

Use http://localhost:8001/flags; a server delaying HTTP
responses should be listening to port 8001. I wrote slow_server.py to
make it easier to experiment. You’ll find it in the 21-futures/getflags/
directory of the Fluent Python 2e code repository. See “Setting up test
servers” for instructions.

ERROR

Use http://localhost:8002/flags; a server introducing
HTTP errors and delaying responses should be installed at port 8002.
Running slow_server.py is an easy way to do it. See “Setting up test
servers”.
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SETTING UP TEST SERVERS

If you don’t already have a local HTTP server for testing, here are the
steps for an easy way to do it:

1. Clone or download the Fluent Python 2e code repository.

2. Open your shell and go to the 21-futures/getflags/ directory of
your local copy of the repository.

3. Unzip the flags.zip file, creating a flags directory at 21-
futures/getflags/flags/.

4. Open a second shell, go to the 21-futures/getflags/ directory
and run python3 -m http.server. This will start a
ThreadingHTTPServer listening to port 8000, serving the
local files. If you open the URL http://localhost:8000/flags/
with your browser, you’ll see a long list of directories named
with two-letter country codes from ad/ to zw/.

5. Now you can go back to the first shell and run the flags2*.py
examples with the default --server LOCAL option.

6. To test with the --server DELAY option, go to 21-
futures/getflags/ and run python3 slow_server.py
8001. This will add a .5s delay before each response.

7. To test with the --server ERROR option, go to 21-
futures/getflags/ and run python3 slow_server.py
8002 --error-rate .25. Each request will have a 25%
probability of getting a 418 I’m a teapot response, and all
responses will be delayed .5s.

I wrote slow_server.py reusing code from Python’s http.server
standard library module, which “is not recommended for production”—
according to the documentation. To set up a more reliable testing

https://github.com/fluentpython/example-code-2e
http://localhost:8000/flags/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/418
https://github.com/python/cpython/blob/917eca700aa341f8544ace43b75d41b477e98b72/Lib/http/server.py
https://docs.python.org/3/library/http.server.html


environment, I recommend configuring Nginx and toxiproxy with
equivalent parameters.

By default, each flags2*.py script will fetch the flags of the 20 most
populous countries from the LOCAL server
(http://localhost:8000/flags) using a default number of
concurrent connections, which varies from script to script. Example 21-11
shows a sample run of the flags2_sequential.py script using all defaults.

Example 21-11. Running flags2_sequential.py with all defaults: LOCAL
site, top-20 flags, 1 concurrent connection
$ python3 flags2_sequential.py 
LOCAL site: http://localhost:8000/flags 
Searching for 20 flags: from BD to VN 
1 concurrent connection will be used. 
-------------------- 
20 flags downloaded. 
Elapsed time: 0.10s

You can select which flags will be downloaded in several ways.
Example 21-12 shows how to download all flags with country codes
starting with the letters A, B, or C.

Example 21-12. Run flags2_threadpool.py to fetch all flags with country
codes prefixes A, B, or C from DELAY server
$ python3 flags2_threadpool.py -s DELAY a b c 
DELAY site: http://localhost:8001/flags 
Searching for 78 flags: from AA to CZ 
30 concurrent connections will be used. 
-------------------- 
43 flags downloaded. 
35 not found. 
Elapsed time: 1.72s

Regardless of how the country codes are selected, the number of flags to
fetch can be limited with the -l/--limit option. Example 21-13
demonstrates how to run exactly 100 requests, combining the -a option to
get all flags with -l 100.

https://www.nginx.com/
https://github.com/shopify/toxiproxy


Example 21-13. Run flags2_asyncio.py to get 100 flags (-al 100) from the
ERROR server, using 100 concurrent requests (-m 100)
$ python3 flags2_asyncio.py -s ERROR -al 100 -m 100 
ERROR site: http://localhost:8002/flags 
Searching for 100 flags: from AD to LK 
100 concurrent connections will be used. 
-------------------- 
73 flags downloaded. 
27 errors. 
Elapsed time: 0.64s

That’s the user interface of the flags2 examples. Let’s see how they are
implemented.

Error Handling in the flags2 Examples
The common strategy in all three examples to deal with HTTP errors is that
404 errors (not found) are handled by the function in charge of downloading
a single file (download_one). Any other exception propagates to be
handled by the download_many function or the supervisor coroutine
—in the asyncio example.

Once more, we’ll start by studying the sequential code, which is easier to
follow—and mostly reused by the thread pool script. Example 21-14 shows
the functions that perform the actual downloads in the flags2_sequential.py
and flags2_threadpool.py scripts.

Example 21-14. flags2_sequential.py: basic functions in charge of
downloading; both are reused in flags2_threadpool.py
def get_flag(base_url: str, cc: str) -> bytes: 
    url = f'{base_url}/{cc}/{cc}.gif'.lower() 
    resp = requests.get(url) 
    if resp.status_code != 200:   
        resp.raise_for_status() 
    return resp.content 
 
def download_one(cc: str, base_url: str, verbose: bool = False): 
    try: 
        image = get_flag(base_url, cc) 
    except requests.exceptions.HTTPError as exc:   
        res = exc.response 



        if res.status_code == 404: 
            status = HTTPStatus.not_found   
            msg = 'not found' 
        else:   
            raise 
    else: 
        save_flag(image, f'{cc}.gif') 
        status = HTTPStatus.ok 
        msg = 'OK' 
 
    if verbose:   
        print(cc, msg) 
 
    return Result(status, cc)  

get_flag uses requests.Response.raise_for_status to
raise an exception for any HTTP code other than 200.

download_one catches requests.exceptions.HTTPError
to handle HTTP code 404 specifically…

…by setting its local status to HTTPStatus.not_found;
HTTPStatus is an Enum imported from flags2_common.py.

Any other HTTPError exception is re-raised; other exceptions will
just propagate to the caller.

If the -v/--verbose command-line option is set, the country code
and status message will be displayed; this how you’ll see progress in the
verbose mode.

The Result tuple returned by download_one will have a status
field with a value of HTTPStatus.not_found or
HTTPStatus.ok.

Example 21-15 lists the sequential version of the download_many
function. This code is straightforward, but its worth studying to contrast



with the concurrent versions coming up. Focus on how it reports progress,
handles errors, and tallies downloads.

Example 21-15. flags2_sequential.py: the sequential implementation of
download_many
def download_many(cc_list: list[str], 
                  base_url: str, 
                  verbose: bool, 
                  _unused_concur_req: int) -> Counter[int]: 
    counter: Counter[int] = Counter()   
    cc_iter = sorted(cc_list)   
    if not verbose: 
        cc_iter = tqdm.tqdm(cc_iter)   
    for cc in cc_iter:   
        try: 
            res = download_one(cc, base_url, verbose)   
        except requests.exceptions.HTTPError as exc:   
            error_msg = 'HTTP error {res.status_code} - 
{res.reason}' 
            error_msg = error_msg.format(res=exc.response) 
        except requests.exceptions.ConnectionError:   
            error_msg = 'Connection error' 
        else:   
            error_msg = '' 
            status = res.status 
 
        if error_msg: 
            status = HTTPStatus.error   
        counter[status] += 1            
        if verbose and error_msg:       
            print(f'*** Error for {cc}: {error_msg}') 
 
    return counter  

This Counter will tally the different download outcomes:
HTTPStatus.ok, HTTPStatus.not_found, or
HTTPStatus.error.

cc_iter holds the list of the country codes received as arguments,
ordered alphabetically.

If not running in verbose mode, cc_iter is passed to the tqdm
function, which will return an iterator that yields the items in cc_iter



while also displaying the animated progress bar.

This for loop iterates over cc_iter and…

…performs the download by successive calls to download_one.

HTTP-related exceptions raised by get_flag and not handled by
download_one are handled here.

Other network-related exceptions are handled here. Any other exception
will abort the script, because the flags2_common.main function
that calls download_many has no try/except.

If no exception escaped download_one, then the status is
retrieved from the HTTPStatus namedtuple returned by
download_one.

If there was an error, set the local status accordingly.

Increment the counter by using the value of the HTTPStatus Enum as
key.

If running in verbose mode, display the error message for the current
country code, if any.

Return the counter so that the main function can display the
numbers in its final report.

We’ll now study the refactored thread pool example, flags2_threadpool.py.

Using futures.as_completed
In order to integrate the TQDM progress bar and handle errors on each
request, the flags2_threadpool.py script uses
futures.ThreadPoolExecutor with the



futures.as_completed function we’ve already seen. Example 21-16
is the full listing of flags2_threadpool.py. Only the download_many
function is implemented; the other functions are reused from
flags2_common.py and flags2_sequential.py.

Example 21-16. flags2_threadpool.py: full listing
from collections import Counter 
from concurrent import futures 
 
import requests 
import tqdm  # type: ignore   
 
from flags2_common import main, HTTPStatus   
from flags2_sequential import download_one   
 
DEFAULT_CONCUR_REQ = 30   
MAX_CONCUR_REQ = 1000   
 
 
def download_many(cc_list: list[str], 
                  base_url: str, 
                  verbose: bool, 
                  concur_req: int) -> Counter[int]: 
    counter: Counter[int] = Counter() 
    with futures.ThreadPoolExecutor(max_workers=concur_req) as 
executor:   
        to_do_map = {}   
        for cc in sorted(cc_list):   
            future = executor.submit(download_one, cc, 
                                     base_url, verbose)   
            to_do_map[future] = cc   
        done_iter = futures.as_completed(to_do_map)   
        if not verbose: 
            done_iter = tqdm.tqdm(done_iter, total=len(cc_list))   
        for future in done_iter:   
            try: 
                res = future.result()   
            except requests.exceptions.HTTPError as exc:   
                error_fmt = 'HTTP {res.status_code} - {res.reason}' 
                error_msg = error_fmt.format(res=exc.response) 
            except requests.exceptions.ConnectionError: 
                error_msg = 'Connection error' 
            else: 
                error_msg = '' 
                status = res.status 
 



            if error_msg: 
                status = HTTPStatus.error 
            counter[status] += 1 
            if verbose and error_msg: 
                cc = to_do_map[future]   
                print(f'*** Error for {cc}: {error_msg}') 
 
    return counter 
 
 
if __name__ == '__main__': 
    main(download_many, DEFAULT_CONCUR_REQ, MAX_CONCUR_REQ)

Import the progress-bar display library, and tell mypy to skip checking
it.

Import one function and one Enum from the flags2_common
module.

Reuse the download_one from flags2_sequential
(Example 21-14).

If the -m/--max_req command-line option is not given, this will be
the maximum number of concurrent requests, implemented as the size
of the thread pool; the actual number may be smaller, if the number of
flags to download is smaller.

MAX_CONCUR_REQ caps the maximum number of concurrent requests
regardless of the number of flags to download or the -m/--max_req
command-line option; it’s a safety precaution.

Create the executor with max_workers set to concur_req,
computed by the main function as the smaller of: MAX_CONCUR_REQ,
the length of cc_list, and the value of the -m/--max_req
command-line option. This avoids creating more threads than necessary.

This dict will map each Future instance—representing one
download—with the respective country code for error reporting.



Iterate over the list of country codes in alphabetical order. The order of
the results will depend on the timing of the HTTP responses more than
anything, but if the size of the thread pool (given by concur_req) is
much smaller than len(cc_list), you may notice the downloads
batched alphabetically.

Each call to executor.submit schedules the execution of one
callable and returns a Future instance. The first argument is the
callable, the rest are the arguments it will receive.

Store the future and the country code in the dict.

futures.as_completed returns an iterator that yields futures as
they are done.

If not in verbose mode, wrap the result of as_completed with the
tqdm function to display the progress bar; because done_iter has no
len, we must tell tqdm what is the expected number of items as the
total= argument, so tqdm can estimate the work remaining.

Iterate over the futures as they are completed.

Calling the result method on a future either returns the value
returned by the callable, or raises whatever exception was caught when
the callable was executed. This method may block waiting for a
resolution, but not in this example because as_completed only
returns futures that are done.

Handle the potential exceptions; the rest of this function is identical to
the sequential version of download_many (Example 21-15), except
for the next callout.

To provide context for the error message, retrieve the country code from
the to_do_map using the current future as key. This was not
necessary in the sequential version because we were iterating over the



list of country codes, so we had the current cc; here we are iterating
over the futures.

TIP
Example 21-16 uses an idiom that’s very useful with futures.as_completed:
building a dict to map each future to other data that may be useful when the future is
completed. Here the to_do_map maps each future to the country code assigned to it.
This makes it easy to do follow-up processing with the result of the futures, despite the
fact that they are produced out of order.

Python threads are well suited for I/O-intensive applications, and the
concurrent.futures package makes them trivially simple to use for
certain use cases. With ProcessPoolExecutor, you can also solve
CPU-intensive problems on multiple cores—if the computations are
“embarrassingly parallel”. This concludes our basic introduction to
concurrent.futures.

http://bit.ly/1HGtGaR


Chapter Summary
We started the chapter by comparing two concurrent HTTP clients with a
sequential one, demonstrating significant performance gains over the
sequential script.

After studying the first example based on concurrent.futures, we
took a closer look at future objects, either instances of
concurrent.futures.Future, or asyncio.Future,
emphasizing what these classes have in common (their differences will be
emphasized in Chapter 22). We saw how to create futures by calling
Executor.submit, and iterate over completed futures with
concurrent.futures.as_completed.

We then discussed the use of multiple processes with the
concurrent.futures.ProcessPoolExecutor class, to go
around the GIL and use multiple CPU cores to simplify the multicore prime
checker we first saw in Chapter 20.

In the following section, we took a close look at how the
concurrent.futures.ThreadPoolExecutor works, with a
didactic example launching tasks that did nothing for a few seconds, except
displaying their status with a timestamp.

Next we went back to the flag downloading examples. Enhancing them
with a progress bar and proper error handling prompted further exploration
of the future.as_completed generator function showing a common
pattern: storing futures in a dict to link further information to them when
submitting, so that we can use that information when the future comes out
of the as_completed iterator.

Further Reading
The concurrent.futures package was contributed by Brian Quinlan,
who presented it in a great talk titled “The Future Is Soon!” at PyCon
Australia 2010. Quinlan’s talk has no slides; he shows what the library does

http://bit.ly/1JIuZJy


by typing code directly in the Python console. As a motivating example, the
presentation features a short video with XKCD cartoonist/programmer
Randall Munroe making an unintended DOS attack on Google Maps to
build a colored map of driving times around his city. The formal
introduction to the library is PEP 3148 - futures - execute computations
asynchronously. In the PEP, Quinlan wrote that the
concurrent.futures library was “heavily influenced by the Java
java.util.concurrent package.”

For additional resources covering concurrent.futures, please see
“Further Reading” (Chapter 20). All the references that cover Python’s
threading and multiprocessing in “Concurrency with threads and
processes” also cover concurrent.futures.

https://www.python.org/dev/peps/pep-3148/


SOAPBOX

Thread avoidance

Concurrency: one of the most difficult topics in computer science
(usually best avoided).

—David Beazley, Python coach and mad scientist

I agree with the apparently contradictory quotes by David Beazley,
above, and Michele Simionato at the start of this chapter.

I attended a course about concurrency at the university. All we did was
POSIX threads programming. What I learned: I don’t want to manage
threads and locks myself, for the same reason that I don’t want to
manage memory allocation and deallocation. Those jobs are best carried
out by the systems programmers who have the know-how, the
inclination, and the time to get them right—hopefully. I am paid to
develop applications, not operating systems. I don’t need all the fine
grained control of threads, locks, malloc, and free—see C dynamic
memory allocation.

That’s why I think the concurrent.futures package is
interesting: it treats threads, processes, and queues as infrastructure at
your service, not something you have to deal with directly. Of course,
it’s designed with simple jobs in mind, the so-called embarrassingly
parallel problems. But that’s a large slice of the concurrency problems
we face when writing applications—as opposed to operating systems or
database servers, as Simionato points out in that quote.

For “nonembarrassing” concurrency problems, threads and locks are
not the answer either. Threads will never disappear at the OS level, but
every programming language I’ve found exciting in the last several
years provides higher-level, concurrency abstractions that are easier to
use correctly, as the Seven Concurrency Models in Seven Weeks book
demonstrates. Go, Elixir, and Clojure are among them. Erlang—the
implementation language of Elixir—is a prime example of a language
designed from the ground up with concurrency in mind. It doesn’t
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excite me for a simple reason: I find its syntax ugly. Python spoiled me
that way.

José Valim, previously a Ruby on Rails core contributor, designed
Elixir with a pleasant, modern syntax. Like Lisp and Clojure, Elixir
implements syntactic macros. That’s a double-edged sword. Syntactic
macros enable powerful DSLs, but the proliferation of sublanguages
can lead to incompatible codebases and community fragmentation. Lisp
drowned in a flood of macros, with each Lisp shop using its own arcane
dialect. Standardizing around Common Lisp resulted in a bloated
language. I hope José Valim can inspire the Elixir community to avoid a
similar outcome. So far, it’s looking good. The Ecto database wrapper
and query generator is a joy to use: a great example of using macros to
create a flexible yet user-friendly DSL—Domain Specific Language—
for interacting with relational and non-relational databases.

Like Elixir, Go is a modern language with fresh ideas. But, in some
regards, it’s a conservative language, compared to Elixir. Go doesn’t
have macros, and its syntax is simpler than Python’s. Go doesn’t
support inheritance or operator overloading, and it offers fewer
opportunities for metaprogramming than Python. These limitations are
considered features. They lead to more predictable behavior and
performance. That’s a big plus in the highly concurrent, mission-critical
settings where Go aims to replace C++, Java, and Python.

While Elixir and Go are direct competitors in the high-concurrency
space, their design philosophies appeal to different crowds. Both are
likely to thrive. But in the history of programming languages, the
conservative ones tend to attract more coders. After I finish writing this
book, I will devote more time to become fluent in Go, Elixir, and the
Erlang/OTP platform.

1  From Michele Simionato’s post Threads, processes and concurrency in Python: some
thoughts, subtitled “Removing the hype around the multicore (non) revolution and some
(hopefully) sensible comment about threads and other forms of concurrency.”

https://hexdocs.pm/ecto/getting-started.html
http://bit.ly/1JIrYZQ


2  For servers which may be hit by many clients, there is a difference: coroutines scale better
because they use much less memory than threads, and also reduce the cost of context
switching, which I mentioned in “Thread-based Non-solution”.

3  The images are originally from the CIA World Factbook, a public-domain, U.S. government
publication. I copied them to my site to avoid the risk of launching a DOS attack on CIA.gov.

4  Your mileage may vary: with threads, you never know the exact sequencing of events that
should happen practically at the same time; it’s possible that, in another machine, you see
loiter(1) starting before loiter(0) finishes, particularly because sleep always
releases the GIL so Python may switch to another thread even if you sleep for 0s.

5  In my testing, about 1% of the requests I make to ThreadingHTTPServer fail. The docs
warn that it’s not intended for production, and for testing purposes it’s good that not all
requests work.

6  Before configuring Cloudflare, I got HTTP 503 errors—Service Temporarily Unavailable—
when testing the scripts with a few dozen concurrent requests on my inexpensive shared host
account. Now those errors are gone.

7  Slide #9 from “A Curious Course on Coroutines and Concurrency,” tutorial presented at
PyCon 2009.

http://1.usa.gov/1JIsmHJ
http://www.dabeaz.com/coroutines/


Chapter 22. Asynchronous
Programming

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 22nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

The problem with normal approaches to asynchronous programming as
that they’re all-or-nothing propositions. You rewrite all your code so
none of it blocks or you’re just wasting your time.

—Alvaro Videla & Jason J. W. Williams, RabbitMQ in
Action

This chapter addresses three major topics that are closely related:

Python’s async def, await, async with, and async for
constructs;

Objects supporting those constructs: native coroutines and
asynchronous variants of context managers, iterables, generators,
and comprehensions;

asyncio and other asynchronous libraries.
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That’s a lot, so we’ll only scratch the surface asyncio and the other
libraries. The other topics build on ideas we’ve seen before: iterables and
generators (Chapter 17), context managers (Chapter 18), and coroutines
(Chapter 19).

Also covered here:

How to avoid blocking the event loop by delegating slow
operations to a thread or process pool;

Simple network programs using asyncio, aiohttp, FastAPI,
and Curio;

Advantages and pitfalls of asynchronous programming.

TIP
The asyncio documentation is much better after Yuri Selivanov  reorganized it,
separating the few functions useful to application developers from the low-level API for
creators of packages like Web frameworks and database drivers.

For book-length coverage of asyncio, I recommend Using Asyncio in Python by
Caleb Hattingh (O’Reilly, 2020). Full disclosure: he is one of the tech reviewers of this
book.

What’s New in this Chapter
When I wrote Fluent Python, First Edition, the asyncio library was
provisional and the async/await keywords did not exist. Therefore, I
had to update all examples in this chapter. I also created new examples:
domain probing scripts, a FastAPI Web service, and experiments with
Python’s new asynchronous console mode.

New sections cover language features that did not exist at the time, such as
native coroutines, async with, async for and the objects that support
those constructs.
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The ideas in “How Async Works and How It Doesn’t” reflect hard earned
lessons that I consider essential reading for anyone using asynchronous
programming. They may save you a lot of trouble—whether you’re using
Python or Node.js.

Finally, I removed several paragraphs about asyncio.Futures, which
is now considered part of the low-level asyncio APIs.

A few definitions
At the start of Chapter 19, we saw that Python 3.5 and later offer three
kinds of coroutines:

native coroutines

A coroutine defined with async def. You can delegate from a native
coroutine to another native coroutine using the await keyword, similar
to how classic coroutines use yield from. The async def
statement always defines a native coroutine, even if the await
keyword is not used in its body. The await keyword cannot be used
outside of a native coroutine.

classic coroutines

A generator function that consumes data sent to it via
my_coro.send(data) calls, and reads that data by using yield in
an expression. Classic coroutines can delegate to other classic
coroutines using yield from. Classic coroutines cannot be driven by
await, and are no longer supported by asyncio.

generator-based coroutines

A generator function decorated with @types.coroutine—
introduced in Python 3.5. That decorator makes the generator
compatible with the new await keyword.
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In this chapter, we focus on native coroutines.

@ASYNCIO.COROUTINE HAS NO FUTURE
The @asyncio.coroutine decorator for classic coroutines and generator-based
coroutines was deprecated in Python 3.8 and is scheduled for removal in Python 3.11,
according to issue43216. In contrast, @types.coroutine should remain, per
issue36921. It is no longer supported by asyncio, but is used in low-level code in the
Curio and Trio asynchronous frameworks.

Example: Probing Domains
Imagine you are about to start a new blog on Python, and you plan to
register a domain using a Python keyword and the .DEV suffix—for
example: AWAIT.DEV. Example 22-1 is a script using asyncio to check
several domains concurrently. This is the output it produces:

$ python3 blogdom.py 
  with.dev 
+ elif.dev 
+ def.dev 
  from.dev 
  else.dev 
  or.dev 
  if.dev 
  del.dev 
+ as.dev 
  none.dev 
  pass.dev 
  true.dev 
+ in.dev 
+ for.dev 
+ is.dev 
+ and.dev 
+ try.dev 
+ not.dev

Note that the domains appear unordered. If you run the script, you’ll see
them displayed one after the other, with varying delays. The + sign
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indicates your machine was able to resolve the domain via DNS. Otherwise,
the domain did not resolve and may be available.

In blogdom.py, the DNS probing is done via native coroutine objects.
Because the asynchronous operations are interleaved, the time needed to
check the 18 domains is much less than checking them sequentially. In fact,
the total time is practically the same as the time for the single slowest DNS
response, instead of the sum of the times of all responses.

Here is the code for blogdom.py:

Example 22-1. blogdom.py: search for domains for a Python blog
#!/usr/bin/env python3 
import asyncio 
import socket 
from keyword import kwlist 
 
MAX_KEYWORD_LEN = 4   
 
 
async def probe(domain: str) -> tuple[str, bool]:   
    loop = asyncio.get_running_loop()   
    try: 
        await loop.getaddrinfo(domain, None)   
    except socket.gaierror: 
        return (domain, False) 
    return (domain, True) 
 
 
async def main() -> None:   
    names = (kw for kw in kwlist if len(kw) <= MAX_KEYWORD_LEN)   
    domains = (f'{name}.dev'.lower() for name in names)   
    coros = [probe(domain) for domain in domains]   
    for coro in asyncio.as_completed(coros):   
        domain, found = await coro   
        mark = '+' if found else ' ' 
        print(f'{mark} {domain}') 
 
 
if __name__ == '__main__': 
    asyncio.run(main())  

Set maximum length of keyword for domains, because shorter is better.
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probe returns a tuple with the domain name and a boolean; True
means the domain resolved. Returning the domain name will make it
easier to display the results.

Get a reference to the asyncio event loop, so we can use it next.

The loop.getaddrinfo(…) coroutine-method returns a five-part
tuple of parameters to connect to the given address using a socket. In
this example, we don’t need the result. If we got it, the domain resolves;
otherwise, it doesn’t.

main must be a coroutine, so that we can use await in it.

Generator to yield Python keywords with length up to
MAX_KEYWORD_LEN.

Generator to yield domain names with the .dev suffix.

Build a list of coroutine objects by invoking the probe coroutine with
each domain argument.

asyncio.as_completed is a generator that yields the coroutines in
the order they are completed—not the order they were submitted. It’s
similar to futures.as_completed, which we saw in Chapter 21,
Example 21-4.

At this point, we know the coroutine is done because that’s how
as_completed works. Therefore, the await expression will not
block but we need it to get the result from coro. If coro raised an
unhandled exception, it would be re-raised here.

This is a common pattern for scripts that use asyncio: implement
main as a coroutine, and drive it here with asyncio.run.

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.getaddrinfo
https://docs.python.org/3/library/socket.html#socket.getaddrinfo


TIP
The asyncio.get_running_loop function was added in Python 3.7 for use inside
coroutines as shown in probe. Its implementation is simpler and faster than
asyncio.get_event_loop (which may start an event loop if necessary). If there’s
no running loop, asyncio.get_running_loop raises RuntimeError.

Guido’s trick to read asynchronous code
There are a lot of new concepts to grasp in asyncio but the overall logic
of Example 22-1 is easy to follow if you employ a trick suggested by Guido
van Rossum himself: squint and pretend the async and await keywords
are not there. If you do that, you’ll realize that coroutines read like plain old
sequential functions.

For example, imagine that the body of this coroutine…

async def probe(domain: str) -> tuple[str, bool]: 
    loop = asyncio.get_running_loop() 
    try: 
        await loop.getaddrinfo(domain, None) 
    except socket.gaierror: 
        return (domain, False) 
    return (domain, True)

…works like the following function, except that it magically never blocks:

def probe(domain: str) -> tuple[str, bool]:  # no async 
    loop = asyncio.get_running_loop() 
    try: 
        loop.getaddrinfo(domain, None)  # no await 
    except socket.gaierror: 
        return (domain, False) 
    return (domain, True)

Using the syntax await loop.getaddrinfo(…) avoids blocking
because await suspends the current coroutine object—for example,
probe('if.dev'). A new coroutine object is created,
getaddrinfo('if.dev', None), it starts the low-level addrinfo



query and yields control back to the event loop, which can drive other
pending coroutine objects, such as probe('or.dev'). When the event
loop gets a response for the getaddrinfo('if.dev', None) query,
that specific coroutine object resumes and returns control back to the
probe('if.dev')—which was suspended at await—and can now
handle a possible exception and return the result tuple.

So far, we’ve only seen asyncio.as_completed and await applied
to coroutines. But they handle any awaitable object. That concept is
explained next.

New concept: awaitable
The for keyword works with iterables. The await keyword works with
awaitables.

As an end user of asyncio, these are the awaitables you will see on a
daily basis:

A native coroutine object, which you get by calling a native
coroutine function.

An asyncio.Task, which usually you get by passing a
coroutine object to asyncio.create_task().

However, end-user code does not always need to await on a Task. We
use asyncio.create_task(one_coro()) to schedule one_coro
for concurrent execution, without waiting for its return. That’s what we did
with the spinner coroutine in spinner_async.py (Example 20-4). If you
don’t expect to cancel the task or wait for it, there is no need to keep the
Task object returned from create_task. Creating the task is enough to
schedule the coroutine to run.

In contrast, we use await other_coro() to run other_coro right
now and wait for its completion because we need its result before we can



proceed. In spinner_async.py, the supervisor coroutine did res =
await slow() to execute slow and get its result.

When implementing asynchronous libraries or contributing to asyncio
itself, you may also deal with these lower-level awaitables:

An object with an __await__ method that returns an iterator; for
example, an asyncio.Future instance (asyncio.Task is a
subclass of asyncio.Future).

Objects written in other languages using the Python/C API with a
tp_as_async.am_await function, returning an iterator
(similar to __await__ method).

Existing codebases may also have one additional kind of awaitable:
generator-based coroutine objects—which are in the process of being
deprecated.

NOTE
PEP 492 states that the await expression “uses the yield from implementation
with an extra step of validating its argument” and "await only accepts an awaitable.”
The PEP does not explain that implementation in detail, but refers to PEP 380, which
introduced yield from. In this book there is a detailed explanation in “The Meaning
of yield from”.

Now let’s study the asyncio version of a script that downloads a fixed set
of flag images.

Downloading with asyncio and aiohttp
The flags_asyncio.py script downloads a fixed set of 20 flags from
fluentpython.com. We first mentioned it “Concurrent Web Downloads”, but
now we’ll study it in detail, applying the concepts we just saw.

https://www.python.org/dev/peps/pep-0492/#await-expression
https://www.python.org/dev/peps/pep-0380/


As of Python 3.9, asyncio only supports TCP and UDP directly, and
there are no asynchronous HTTP client or server packages in the standard
library. I am using aiohttp 3.7.4 in the HTTP client examples.

We’ll explore flags_asyncio.py from the bottom up—that is, looking first at
the functions that set up the action in Example 22-2.

WARNING
To make the code easier to read, flags_asyncio.py has no error handling. As we
introduce async/await, it’s useful to focus on the “happy path” initially, to
understand how regular functions and coroutines are arranged in a program.

Starting with “Enhancing the asyncio downloader”, the examples include error handling
and more features.

Example 22-2. flags_asyncio.py: startup functions
def download_many(cc_list: list[str]) -> int:      
    return asyncio.run(supervisor(cc_list))        
 
async def supervisor(cc_list: list[str]) -> int: 
    async with ClientSession() as session:         
        to_do = [download_one(session, cc)         
                 for cc in sorted(cc_list)] 
        res = await asyncio.gather(*to_do)         
 
    return len(res)                                
 
if __name__ == '__main__': 
    main(download_many)

This needs to be a plain function—not a coroutine—so it can be passed
to and called by the main function from the flags.py module
(Example 21-2).

Execute the event loop driving the supervisor(cc_list)
coroutine object until it returns. This will block while the event loop
runs. The result of this line is whatever supervisor returns.

https://docs.aiohttp.org/en/stable/


HTTP client operations in aiohttp are methods of
ClientSession, which is also an asynchronous context manager: a
context manager with asynchronous set-up and tear-down methods
(more about this in “Asynchronous Context Managers”). All HTTP
requests in aiohttp must execute in the context of an active
ClientSession.

Build a list of coroutine objects by calling the download_one
coroutine once for each flag to be retrieved.

Wait for the asynctio.gather coroutine, which accepts one or
more awaitable arguments and waits for all of them to complete,
returning a list of results for the given awaitables in the order they were
submitted.

supervisor returns the length the list returned by
asyncio.gather.

Now let’s review the top of flags_asyncio.py. I reorganized the coroutines
so we can read them in the order they are started by the event loop.

Example 22-3. flags_asyncio.py: imports and download functions
import asyncio 
 
from aiohttp import ClientSession   
 
from flags import BASE_URL, save_flag, main   
 
async def download_one(session: ClientSession, cc: str):   
    image = await get_flag(session, cc) 
    save_flag(image, f'{cc}.gif') 
    print(cc, end=' ', flush=True) 
    return cc 
 
async def get_flag(session: ClientSession, cc: str) -> bytes:   
    url = f'{BASE_URL}/{cc}/{cc}.gif'.lower() 
    async with session.get(url) as resp:   
        return await resp.read()          



aiohttp must be installed—it’s not in the standard library.

Reuse code from flags.py (Example 21-2).

download_one must be a native coroutine, so it can await on
get_flag—which does the HTTP request. Then it displays the code
of the downloaded flag, and saves the image.

get_flag needs to receive the ClientSession to make the
request.

The get method of an aiohttp.ClientSession instance returns
a ClientResponse object which is also an asynchronous context
manager.

Network I/O operations are implemented as coroutine-methods, so they
are driven asynchronously by the asyncio event loop.

NOTE
For better performance, the save_flag call inside get_flag should be
asynchronous, but asyncio does not provide an asynchronous filesystem API at this
time—as Node.js does. If profiling reveals that is a bottleneck in your application, you
can use the loop.run_in_executor function to run save_flag in a thread pool.
Example 22-8 will show how.

Your code delegates to the aiohttp coroutines explicitly through await
or implicitly through the special methods of the asynchronous context
managers, such as ClientSession and ClientResponse—as we’ll
see in “Asynchronous Context Managers”.

The Secret of Native Coroutines: Humble Generators
A key difference between the classic coroutine examples we saw in
Chapter 19 and flags_asyncio.py is that there are no visible .send() calls

http://bit.ly/1HGtQzc


or yield expressions in the latter. Your code sits between the asyncio
library and the asynchronous libraries you are using, such as aiohttp.
This is illustrated in Figure 22-1.





Figure 22-1. In an asynchronous program, a user’s function starts the event loop, scheduling an
initial coroutine with asyncio.run. Each user’s coroutine drives the next with an await

expression, forming a channel that enables communication between a library such as aiohttp and
the event loop. Compare this with Figure 19-2.

Under the hood, the asyncio event loop makes the .send calls that drive
your coroutines, and your coroutines await on other coroutines, including
library coroutines. As mentioned, await borrows most of its
implementation from yield from, which also makes .send calls to
drive coroutines.

The await chain eventually reaches a low-level awaitable, which returns a
plain generator that the event loop can drive in response to events such as
timers or network I/O. The low-level awaitables and generators at the end
of these await chains are implemented deep into the libraries, are not part
of their APIs, and may be written in C.

Using functions like asyncio.gather and asyncio.create_task,
you can start multiple concurrent await channels, enabling concurrent
execution of multiple I/O operations driven by a single event loop, in a
single thread.

The all-or-nothing problem
Note that in Example 22-3 I could not reuse the get_flag function from
flags.py (Example 21-2) because it uses the requests library, which
performs blocking I/O: it would block the event loop. To leverage
asyncio, we must replace every function that hits the network with an
asynchronous version that is activated with await or
asyncio.create_task, so that control is given back
to the event loop. Using `await in get_flag means that it
must be driven as a coroutine.

If you can’t rewrite a blocking function as a native coroutine, you should
run it in a separate thread or process, as we’ll see in “Using an Executor to
Avoid Blocking the Event Loop”.



This is why I chose the epigraph for this chapter, which says: “You rewrite
all your code so none of it blocks or you’re just wasting your time.”

For the same reason, I could not reuse the download_one function from
flags_threadpool.py (Example 21-3) either. The code in Example 22-3
drives get_flag with await, so download_one must also be a
coroutine. For each request, a download_one coroutine object is created
in supervisor, and they are all driven by the asyncio.gather
coroutine.

Now let’s study the async with statement that appeared in
supervisor (Example 22-2) and get_flag (Example 22-3).

Asynchronous Context Managers
In “Context Managers and with Blocks” we saw how an object can be used
to run code before and after the body of a with block, if its class provides
the __enter__ and __exit__ methods.

Now, consider this Example 22-4, from the asyncpg asyncio-compatible
PostgreSQL driver documentation on transactions:

Example 22-4. Sample code from the documentation of the asyncpg
PostgreSQL driver.
tr = connection.transaction() 
await tr.start() 
try: 
    await connection.execute("INSERT INTO mytable VALUES (1, 2, 
3)") 
except: 
    await tr.rollback() 
    raise 
else: 
    await tr.commit()

A database transaction is a natural fit for the context manager protocol: the
transaction has to be started, data is changed with
connection.execute, and then a rollback or commit must happen,
depending on the outcome of the changes.

https://magicstack.github.io/asyncpg/current/
https://magicstack.github.io/asyncpg/current/api/index.html#transactions


In an asynchronous driver like asyncpg, the set up and wrap up need to be
coroutines—so that other operations can happen concurrently. However, the
implementation of the classic with statement doesn’t support coroutines
doing the work of __enter__ or __exit__.

That’s why PEP 492—Coroutines with async and await syntax introduced
the async with statement, which works with asynchronous context
managers: objects implementing the __aenter__ and __aexit__
methods as coroutines.

With async with, Example 22-4 can be written like this other snippet
from the asyncpg documentation:

async with connection.transaction(): 
    await connection.execute("INSERT INTO mytable VALUES (1, 2, 
3)")

In the asyncpg Transaction class, the __aenter__ coroutine method
does await self.start() and the __aexit__ coroutine awaits on
private __rollback or __commit coroutine methods, depending on
whether an exception occurred or not. The use of coroutines to implement
Transaction as an asynchronous context manager allows asyncpg to
handle many transactions concurrently.

Back to flags_asyncio.py, the ClientSession and ClientResponse
classes of aiohttp are both asynchronous context managers to be able to
use awaitables their __aenter__ and __aexit__ special coroutine
methods. The aiohttp documentation has a high-level explanation about
these asynchronous context managers titled Why is aiohttp client API that
way?

https://www.python.org/dev/peps/pep-0492/
https://magicstack.github.io/asyncpg/current/api/index.html#transactions
https://magicstack.github.io/asyncpg/current/_modules/asyncpg/transaction.html
https://docs.aiohttp.org/en/stable/http_request_lifecycle.html#why-is-aiohttp-client-api-that-way


NOTE
“Asynchronous Generators as Context Managers” shows how to use Python’s
contextlib to create an asynchronous context manager without having to write a
class. That explanation comes later in this chapter because of a pre-requisite topic:
“Asynchronous Generator Functions”.

We’ll now enhance the asyncio flag download example with a progress
bar, which will lead us to explore a bit more of the asyncio API.

Enhancing the asyncio downloader
Recall from “Downloads with Progress Display and Error Handling” that
the flags2 set of examples share the same command-line interface, and they
display a progress bar while the downloads are happening. They also
include error handling.

TIP
I encourage you to play with the flags2 examples to develop an intuition of how
concurrent HTTP clients perform. Use the -h option to see the help screen in
Example 21-10. Use the -a, -e, and -l command-line options to control the number of
downloads, and the -m option to set the number of concurrent downloads. Run tests
against the LOCAL, REMOTE, DELAY, and ERROR servers. Discover the optimum
number of concurrent downloads to maximize throughput against each server. Tweak
the options for the test servers as described in “Setting up test servers”.

For instance, Example 22-5 shows how to get 100 flags (-al 100) from
the ERROR server, using 100 concurrent requests (-m 100).

Example 22-5. Running flags2_asyncio.py
$ python3 flags2_asyncio.py -s ERROR -al 100 -m 100 
ERROR site: http://localhost:8002/flags 
Searching for 100 flags: from AD to LK 
100 concurrent connections will be used. 
-------------------- 
73 flags downloaded. 



27 errors. 
Elapsed time: 0.64s

ACT RESPONSIBLY WHEN TESTING
CONCURRENT CLIENTS

Even if the overall download time is not much different between the threaded and
asyncio HTTP clients, asyncio can send requests faster, so it’s more likely that the
server will suspect a DOS attack. To really exercise these concurrent clients at full
throttle, please set up local HTTP servers for testing as explained in “Setting up test
servers”.

Now let’s see how flags2_asyncio.py is implemented.

Using asyncio.as_completed and a semaphore
In Example 22-3, we passed several coroutines to asyncio.gather,
which returns a list with results of the coroutines in the order they were
submitted. This means that asyncio.gather can only return when all
the awaitables are done. However, to update a progress bar we need to get
results as they are done.

Fortunately, there is an asyncio equivalent of the as_completed
generator function we used in the thread pool example with the progress bar
(Example 21-16).

Example 22-6 shows the top of the flags2_asyncio.py script where the
get_flag and download_one coroutines are defined. Example 22-7
lists the rest of the source, with supervisor and download_many.
This script is longer than flags_asyncio.py because of error handling.

Example 22-6. flags2_asyncio.py: Top portion of the script; remaining code
is in Example 22-7
import asyncio 
from collections import Counter 
 
import aiohttp 
import tqdm  # type: ignore 
 



from flags2_common import main, HTTPStatus, Result, save_flag 
 
# default set low to avoid errors from remote site, such as 
# 503 - Service Temporarily Unavailable 
DEFAULT_CONCUR_REQ = 5 
MAX_CONCUR_REQ = 1000 
 
 
class FetchError(Exception):   
    def __init__(self, country_code: str): 
        self.country_code = country_code 
 
 
async def get_flag(session: aiohttp.ClientSession,   
                   base_url: str, 
                   cc: str) -> bytes: 
    url = f'{base_url}/{cc}/{cc}.gif'.lower() 
    async with session.get(url) as resp: 
        if resp.status == 200: 
            return await resp.read() 
        else: 
            resp.raise_for_status()   
            return bytes() 
 
async def download_one(session: aiohttp.ClientSession,   
                       cc: str, 
                       base_url: str, 
                       semaphore: asyncio.Semaphore, 
                       verbose: bool) -> Result: 
    try: 
        async with semaphore:   
            image = await get_flag(session, base_url, cc) 
    except aiohttp.ClientResponseError as exc: 
        if exc.status == 404:                
            status = HTTPStatus.not_found 
            msg = 'not found' 
        else: 
            raise FetchError(cc) from exc   
    else: 
        save_flag(image, f'{cc}.gif') 
        status = HTTPStatus.ok 
        msg = 'OK' 
    if verbose and msg: 
        print(cc, msg) 
    return Result(status, cc)



We’ll use this custom exception to wrap other HTTP or network
exceptions and carry the country_code for error reporting.

get_flag will either return the bytes of the image downloaded, raise
web.HTTPNotFound if the HTTP response status is 404, or raise an
aiohttp.HttpProcessingError for other HTTP status codes.

This raises an exception for codes >= 400. If that’s not the case, return 0
bytes in the next line.

The semaphore argument is an instance of asyncio.Semaphore,
a synchronization device that limits the number of concurrent requests.

The semaphore is used as an asynchronous context manager so that
the system as whole is not blocked: only this coroutine is suspended
when the semaphore counter is zero. More about this in “About
Semaphores”.

If the HTTP status was 404—not found—save it to add to the Result
to be returned, and set an appropriate message for verbose mode
reporting.

Wrap any other aiohttp.ClientResponseError as a
FetchError with the country code and the original exception chained
using the raise X from Y syntax introduced in PEP 3134 — 
Exception Chaining and Embedded Tracebacks.

Network client code of the sort we are studying should always use some
throttling mechanism to avoid pounding the server with too many
concurrent requests. In flags2_threadpool.py (Example 21-16), the
throttling was done by instantiating the ThreadPoolExecutor with the
required max_workers argument set to concur_req in the
download_many function. In flags2_asyncio.py I used an
asyncio.Semaphore created by the supervisor function (shown

http://bit.ly/1f6Csp8
https://www.python.org/dev/peps/pep-3134/


next, in Example 22-7) and passed as the semaphore argument to
download_one in Example 22-6.



ABOUT SEMAPHORES

The semaphore is a simple but flexible synchronization primitive
invented by computer scientist Edsger W. Dijkstra in the early 1960’s.
Other synchronization objects—such as locks and barriers—can be
built on top of semaphores.

There are three Semaphore classes in Python’s standard library: one
in threading, another in multiprocessing, and a third one in
asyncio. Here we’ll discuss the latter.

An asyncio.Semaphore has an internal counter that is
decremented whenever we drive the .acquire() coroutine method,
and incremented when we call the .release() method—which is
not a coroutine because it never blocks.

The initial value of the counter is set when the Semaphore is
instantiated, as in this line of supervisor:

    semaphore = asyncio.Semaphore(concur_req)

Calling .acquire() does not block when the counter is greater than
zero, but if the counter is zero, .acquire() will suspend the calling
coroutine until some other coroutine calls .release() on the same
Semaphore, thus incrementing the counter. In Example 22-6, I don’t
use .acquire() or .release() directly, but use the semaphore
as an asynchronous context manager in this block of code inside
download_one:

        async with semaphore: 
            image = await get_flag(session, base_url, cc)

The Semaphore.__aenter__ coroutine method awaits for
.acquire(), and its __aexit__ coroutine method calls
.release().



That snippet guarantees that no more than concur_req instances of
get_flags coroutines will be active at any time.

Each of the Semaphore classes in the standard library has a
BoundedSemaphore subclass that enforces an additional constraint:
the internal counter can never become larger than the initial value when
there are more .release() than .acquire() operations.

Now let’s take a look at the rest of the script in Example 22-7.

Example 22-7. flags2_asyncio.py: Script continued from Example 22-6
async def supervisor(cc_list: list[str], 
                     base_url: str, 
                     verbose: bool, 
                     concur_req: int) -> Counter[HTTPStatus]:   
    counter: Counter[HTTPStatus] = Counter() 
    semaphore = asyncio.Semaphore(concur_req)   
    async with aiohttp.ClientSession() as session: 
        to_do = [download_one(session, cc, base_url, semaphore, 
verbose) 
                 for cc in sorted(cc_list)]   
        to_do_iter = asyncio.as_completed(to_do)   
        if not verbose: 
            to_do_iter = tqdm.tqdm(to_do_iter, total=len(cc_list))  
 

        for coro in to_do_iter:   
            try: 
                res = await coro   
            except FetchError as exc:   
                country_code = exc.country_code   
                try: 
                    error_msg = exc.__cause__.message  # type: 
ignore   
                except AttributeError: 
                    error_msg = 'Unknown cause'   
                if verbose and error_msg: 
                    print(f'*** Error for {country_code}: 
{error_msg}') 
                status = HTTPStatus.error 
            else: 
                status = res.status 
            counter[status] += 1   
    return counter   
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def download_many(cc_list: list[str], 
                  base_url: str, 
                  verbose: bool, 
                  concur_req: int) -> Counter[HTTPStatus]: 
    coro = supervisor(cc_list, base_url, verbose, concur_req) 
    counts = asyncio.run(coro)   
 
    return counts 
 
if __name__ == '__main__': 
    main(download_many, DEFAULT_CONCUR_REQ, MAX_CONCUR_REQ)

supervisor takes the same arguments as the download_many
function, but it cannot be invoked directly from main precisely because
it’s a coroutine and not a plain function like download_many.

Create an asyncio.Semaphore that will allow at most
concur_req active coroutines among those using this semaphore.
The value of concur_req is computed by the main function from
flags2_common.py, based on command-line options and constants set in
each example.

Create a list of coroutine objects, one per call to the download_one
coroutine.

Get an iterator that will return coroutine objects as they are done. I did
not place this call to as_completed directly in the for loop below
because I may need to wrap it with the tqdm iterator for the progress
bar, depending on the user’s choice for verbosity.

Wrap the as_completed iterator with the tqdm generator function to
display progress.

Iterate over the completed coroutine objects; this loop is similar to the
one in download_many in Example 21-16; most changes have to do
with exception handling because of differences in the HTTP libraries
(requests versus aiohttp).



await on the coroutine to get its result. This will not block because
as_completed only produces coroutines that are done.

Every exception in download_one is wrapped in a FetchError
with the original exception chained.

Get the country code where the error occurred from the FetchError
exception.

Try to retrieve the error message from the original exception. Despite
being protected by try/except AttributeError, Mypy reports
two missing attribute errors in this line. Fortunately, we can silence it.
Thank Guido for optional typing.

If the error message cannot be found in the original exception, use the
name of the chained exception class as the error message.

Tally outcomes.

Return the counter, as in the other scripts.

download_many instantiates the supervisor coroutine object and
passes it to the event loop with asyncio.run.

In Example 22-7, we could not use the mapping of futures to country codes
we saw in Example 21-16 because the awaitables returned by
asyncio.as_completed are not necessarily the same awaitables we
pass into the as_completed call. Internally, the asyncio machinery
may replace the awaitables we provide with others that will, in the end,
produce the same results.

Because I could not use the awaitables as keys to retrieve the country code
from a dict in case of failure, I implemented the custom FetchError
exception (shown in Example 22-6). FetchError wraps a network
exception and holds the country code associated with it, so the country code
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can be reported with the error in verbose mode. If there is no error, the
country code is available as the result of the await coro expression at
the top of the for loop.

This wraps up the discussion of an asyncio example functionally
equivalent to the flags2_threadpool.py we saw earlier.

While discussing Example 22-3, I noted that save_flag performs file I/O
and should be executed asynchronously for better performance. The
following section shows how.

Using an Executor to Avoid Blocking the Event Loop
In the Python community, we tend to overlook the fact that local filesystem
access is blocking, rationalizing that it doesn’t suffer from the higher
latency of network access—which is also dangerously unpredictable. In
contrast, Node.js programmers are constantly reminded that all filesystem
functions are blocking because their signatures require a callback. Each
time event loop is blocked because of any I/O, you are wasting millions of
CPU cycles. This may have a significant impact on the overall performance
of the application.

In Example 22-6, the blocking function is save_flag. In the threaded
version of the script (Example 21-16), save_flag blocks the thread that’s
running the download_one function, but that’s only one of several
worker threads. Behind the scenes, the blocking I/O call releases the GIL,
so another thread can proceed. But in flags2_asyncio.py, save_flag
blocks the single thread our code shares with the asyncio event loop,
therefore the whole application freezes while the file is being saved. The
solution to this problem is the run_in_executor method of the event
loop object.

The asyncio event loop provides a thread pool executor, and you can
send callables to be executed by it with loop.run_in_executor. This
allows potentially blocking code to run in other threads, without blocking
the event loop in the main thread or our program. Of course, the main



thread and the thread pool will still share the same GIL, but that should not
be a problem if the thread pool is used for I/O.

To use this feature in our example, we only need to change a few lines in
the download_one coroutine, as shown in Example 22-8.

Example 22-8. flags2_asyncio_executor.py: Using the default thread pool
executor to run save_flag
async def download_one(session: aiohttp.ClientSession, 
                       cc: str, 
                       base_url: str, 
                       semaphore: asyncio.Semaphore, 
                       verbose: bool) -> Result: 
    try: 
        async with semaphore: 
            image = await get_flag(session, base_url, cc) 
    except aiohttp.ClientResponseError as exc: 
        if exc.status == 404: 
            status = HTTPStatus.not_found 
            msg = 'not found' 
        else: 
            raise FetchError(cc) from exc 
    else: 
        loop = asyncio.get_running_loop()    
        loop.run_in_executor(None,           
            save_flag, image, f'{cc}.gif')   
        status = HTTPStatus.ok 
        msg = 'OK' 
    if verbose and msg: 
        print(cc, msg) 
    return Result(status, cc)

Get a reference to the event loop object.

The first argument to run_in_executor is an
concurrent.futures.Executor instance; if None, the default
thread pool executor provided by the event loop is used.

The remaining arguments are the callable and its positional arguments.

When I tested Example 22-8, there was no noticeable change in
performance for using run_in_executor to save the flag images



because they are small (13 KB each, on average). But you’ll see an effect if
you edit the save_flag function in flags2_common.py to save 10 times
as many bytes on each file—just by coding fp.write(img * 10)
instead of fp.write(img). With an average download size of 130 KB,
the advantage of using run_in_executor becomes clear. If you’re
downloading megapixel images, the speedup will be significant.

The implementation of asyncio itself uses run_in_executor under
the hood in a few places. For example the, loop.getaddrinfo(…)
coroutine we saw in Example 22-1 is implemented by calling the
getaddrinfo function from the socket module—which is a blocking
function that may take seconds to return, as it depends on DNS resolution.

TIP
A common pattern in asynchronous APIs is to wrap blocking calls that are
implementation details in coroutines using run_in_executor internally. That way,
you provide a consistent interface of coroutines to be driven with await, and hide the
threads you need to use for pragmatic reasons. The Motor asynchronous driver for
MongoDB has an API compatible with async/await that is really a façade around a
threaded core which talks to the database server. A. Jesse Jiryu Davis, the lead developer
of Motor, explains his reasoning in Response to “Asynchronous Python and
Databases”.

The main reason to pass an explict Executor to
loop.run_in_executor is to employ a ProcessPoolExecutor if
the function to execute is CPU intensive, so that it runs in a different Python
process, avoiding contention for the GIL. Because of the high start-up cost,
it would be better to start the ProcessPoolExecutor in the
supervisor, and pass it to the coroutines that need to use it.

The next example demonstrates the simple pattern of executing one
asynchronous task after the other using coroutines. This deserves our
attention because anyone with previous experience with JavaScript knows
that running one asynchronous function after the other was the reason for
the nested coding pattern known as pyramids of doom. The await

https://motor.readthedocs.io/en/stable/
https://emptysqua.re/blog/response-to-asynchronous-python-and-databases/
https://web.archive.org/web/20151209151711/http://tritarget.org/blog/2012/11/28/the-pyramid-of-doom-a-javascript-style-trap


keyword makes that curse go away. That’s why we now have it in Python
and JavaScript.

Making Multiple Requests for Each Download
Suppose you want to save each country flag with the name of the country
and the country code, instead of just the country code. Now you need to
make two HTTP requests per flag: one to get the flag image itself, the other
to get the metadata.json file in the same directory as the image: that’s where
the name of the country is recorded.

Articulating multiple requests in the same task is easy in the threaded script:
just make one request then the other, blocking the thread twice, and keeping
both pieces of data (country code and name) in local variables, ready to use
when saving the files. If you needed to do the same in an asynchronous
script with callbacks, you needed nested functions so that the country code
and name were available in their closures until you could save the file
because each callback runs in a different local scope. The await keyword
provides relief from that, allowing you to drive the asynchronous requests
one after the other from the local scope of a coroutine.

The third variation of the asyncio flag downloading script has a couple of
changes:

get_country

This new coroutine fetches the metadata.json file for the country code,
and gets the name of the country from it.

download_one

This coroutine now uses await to delegate to get_flag and the new
get_country coroutine, using the result of the latter to build the
name of the file to save.

Let’s start with the code for get_country. Note that it is very similar to
get_flag from Example 22-6.



Example 22-9. flags3_asyncio.py: get_country coroutine
async def get_country(session: aiohttp.ClientSession,   
                      base_url: str, 
                      cc: str) -> str: 
    url = f'{base_url}/{cc}/metadata.json' 
    async with session.get(url) as resp: 
        if resp.status == 200: 
            metadata = await resp.json()   
            return metadata.get('country', 'no name')   
        else: 
            resp.raise_for_status() 
            return ''

This coroutine returns a string with the country name—if all goes well.

metadata will get a Python dict built from the JSON contents of the
response.

Get the country name or 'no name' if it is missing.

Now the modified download_one, which has only a few lines changed
from the same coroutine in Example 22-6

Example 22-10. flags3_asyncio.py: download_one coroutine
async def download_one(session: aiohttp.ClientSession, 
                       cc: str, 
                       base_url: str, 
                       semaphore: asyncio.Semaphore, 
                       verbose: bool) -> Result: 
    try: 
        async with semaphore: 
            image = await get_flag(session, base_url, cc)   
        async with semaphore: 
            country = await get_country(session, base_url, cc)   
    except aiohttp.ClientResponseError as exc: 
        if exc.status == 404: 
            status = HTTPStatus.not_found 
            msg = 'not found' 
        else: 
            raise FetchError(cc) from exc 
    else: 
        filename = country.replace(' ', '_')   
        filename = f'{filename}.gif' 



        loop = asyncio.get_running_loop() 
        loop.run_in_executor(None, 
                             save_flag, image, filename) 
        status = HTTPStatus.ok 
        msg = 'OK' 
    if verbose and msg: 
        print(cc, msg) 
    return Result(status, cc)

Get the flag image…

…then the country name.

Use the country name to create a filename. As a command-line user, I
don’t like to see spaces in filenames.

Much better than nested callbacks!

I could schedule both get_flag and get_country in parallel using
asyncio.gather, but if get_flag raises an exception there is no
image to save, so it’s pointless to run get_country. But there are cases
where it makes sense to use asyncio.gather to hit several APIs at the
same time instead of waiting for one response before making the next
request.

I put the calls to get_flag and get_country in separate with blocks
controlled by the semaphore because it’s good practice to hold
semaphores and locks for the shortest possible time.

In flags3_asyncio.py, the await syntax appears six times, and async
with five times. Hopefully, you should be getting the hang of
asynchronous programming in Python. One challenge is to know when you
have to use await and when you can’t use it. The answer in principle is
easy, you await coroutines and other awaitables, such as
asyncio.Task instances. But some APIs are tricky, mixing coroutines
and plain functions in seemingly arbitrary ways, like the StreamWriter
class we’ll use in Example 22-14.



Example 22-10 wraps up the flags set of examples. We’ll now go from
client scripts to writing servers with asyncio.

Writing asyncio Servers
The classic toy example of a TCP server is an echo server. We’ll build
slightly more interesting toys: server-side Unicode character search utilities,
first using HTTP with FastAPI, then using plain TCP with asyncio only.

These servers let users query for Unicode characters based on words in their
standard names from the unicodedata module we discussed in “The
Unicode Database”. Figure 22-2 shows a session with the
web_mojifinder.py server.

Figure 22-2. Browser window displaying search results for “mountain” from the web_mojifinder.py
service.

The Unicode search logic in these examples is in the InvertedIndex
class in the charindex.py module in the Fluent Python 2e code repository.
There’s nothing concurrent in that small module, so I’ll only give a brief

https://docs.python.org/3/library/asyncio-stream.html#tcp-echo-server-using-streams
https://github.com/fluentpython/example-code-2e


overview in the optional box below. You can skip to the HTTP server
implementation in “A FastAPI Web Service”.



WHAT IS AN INVERTED INDEX

An inverted index usually maps words to documents in which they
occur. In the mojifinder examples, the “documents” are characters. The
charindex.InvertedIndex class indexes each word that appears
in each character name in the Unicode database, and creates an inverted
index stored in a defaultdict. For example, to index character
U+0037—DIGIT SEVEN—the InvertedIndex initializer appends
the character '7' to the entries under the keys 'DIGIT' and
'SEVEN'. After indexing the Unicode 13.0.0 data bundled with Python
3.9.1, 'DIGIT' maps to 868 characters, and 'SEVEN' maps to 143,
including U+1F556—CLOCK FACE SEVEN OCLOCK and U+2790
—DINGBAT NEGATIVE CIRCLED SANS-SERIF DIGIT SEVEN
(which appears in many code listings in this book).

See Figure 22-3 for a demonstration using the entries for 'CAT' and
'FACE'.

Figure 22-3. Python console exploring InvertedIndex attribute entries and search
method.

The InvertedIndex.search method breaks the query into words,
and returns the intersection of the entries for each word. That’s why



searching for “face” finds 171 results, “cat” finds 14, but “cat face”
only 10.

That’s the beautiful idea behind an inverted index: a fundamental
building block in information retrieval—the theory behind search
engines. See the English Wikipedia article Inverted Index to learn more.

A FastAPI Web Service
I wrote the next example—web_mojifinder.py—using FastAPI: one of the
Python ASGI Web frameworks mentioned in “ASGI—Asynchronous
Server Gateway Interface”. Figure 22-2 is a screenshot of the front-end. It’s
a super simple SPA (Single Page Application): after the initial HTML
download, the UI is updated by client-side JavaScript communicating with
the server.

FastAPI is designed to implement back-ends for SPA and mobile apps,
which mostly consist of Web API end points returning JSON responses
instead of server-rendered HTML. FastAPI leverages decorators, type hints,
and code introspection to eliminate a lot of the boilerplate code for Web
APIs, and also automatically publishes interactive OpenAPI—a.k.a.
Swagger—documentation for the APIs we create. Figure 22-4 shows the
auto-generated /docs page for web_mojifinder.py.

https://en.wikipedia.org/wiki/Inverted_index
https://fastapi.tiangolo.com/
https://swagger.io/specification/


Figure 22-4. Auto-generated OpenAPI schema for the /search endpoint.

Example 22-11 is the code for web_mojifinder.py, but that’s just the back-
end code. When you hit the root URL /, the server sends the form.html file



which has 81 lines of code, including 54 lines of JavaScript to communicate
with the server and fill a table with the results. If you’re interested in
reading plain framework-less JavaScript, please find 22-
async/mojifinder/static/form.html in the Fluent Python 2e code repository

To run web_mojifinder.py, you need to install two packages and their
dependencies: FastAPI and uvicorn. .

This is the command to run Example 22-11 with uvicorn in development
mode:

$ uvicorn web_mojifinder:app --reload

The parameters are:

web_mojifinder:app

The package name, a colon, and the name of the ASGI application
defined in it—app is the conventional name.

--reload

Make uvicorn monitor changes to application source files and
automatically reload them. Useful only during development.

Now let’s study the source code for web_mojifinder.py.

Example 22-11. web_mojifinder.py: complete source
from pathlib import Path 
from unicodedata import name 
 
from fastapi import FastAPI 
from fastapi.responses import HTMLResponse 
from pydantic import BaseModel 
 
from charindex import InvertedIndex 
 
app = FastAPI(   
    title='Mojifinder Web', 
    description='Search for Unicode characters by name.', 
) 
 

8
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class CharName(BaseModel):   
    char: str 
    name: str 
 
def init(app):   
    app.state.index = InvertedIndex() 
    static = Path(__file__).parent.absolute() / 'static'   
    app.state.form = (static / 'form.html').read_text() 
 
init(app)   
 
@app.get('/search', response_model=list[CharName])   
async def search(q: str):   
    chars = app.state.index.search(q) 
    return ({'char': c, 'name': name(c)} for c in chars)   
 
@app.get('/', response_class=HTMLResponse, include_in_schema=False) 
def form():   
    return app.state.form 
 
# no main funcion  

This line defines the ASGI app. It could be as simple as app =
FastAPI(). The parameters shown are metadata for the auto-
generated documentation.

A pydantic schema for a JSON response with char and name fields.

Build the index and load the static HTML form, attaching both to the
app.state for later use.

Unrelated to the theme of this chapter, but worth noting: the elegant use
of the overloaded / operator by pathlib.

Run init when this module is loaded by the ASGI server.

Route for the /search endpoint; response_model uses that
CharName pydantic model to describe the response format.

FastAPI assumes that any arguments that appear in the function or
coroutine signature that are not in the route path will be passed in the

9
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HTTP query string, e.g. /search?q=cat. Since q has no default,
FastAPI will return a 422 (Unprocessable Entity) status if q is missing
from the query string.

Returning an iterable of dicts compatible with the
response_model schema allows FastAPI to build the JSON
response according to the response_model in the @app.get
decorator.

Regular functions can also be used to produce responses.

This module has no main function. It is loaded and driven by the ASGI
server—uvicorn in this example.

Example 22-11 has no direct calls to asyncio. FastAPI is built on the
Starlette ASGI toolkit, which in turn uses asyncio.

Also note that the body of search doesn’t use await, async with or
async for, therefore it could be a plain function. I defined search as a
coroutine just to show that FastAPI knows how to handle it. In a real app,
most endpoints will query databases or hit other remote servers, so it is a
critical advantage of FastAPI—and ASGI frameworks in general—to
support coroutines that can take advantage of asynchronous libraries for
network I/O.

TIP
The init and form functions I wrote to load and serve the static HTML form are a
hack to make the example short and easy to run. The recommended best practice is to
have a proxy/load-balancer in front of the ASGI server to handle all static assets, and
also use a CDN (Content Delivery Network) when possible. One such proxy/load-
balancer is Traefik, a self-described “edge router” that “receives requests on behalf of
your system and finds out which components are responsible for handling them.”
FastAPI has project generation scripts that prepare your code to do that.

https://doc.traefik.io/traefik/
https://fastapi.tiangolo.com/project-generation/


The typing enthusiast may have noticed that there are no return type hints in
search and form. Instead, FastAPI relies on the response_model=
keyword argument in the route decorators. The Response Model page in the
FastAPI documentation explains:

The response model is declared in this parameter instead of as a function
return type annotation, because the path function may not actually return
that response model but rather return a dict, database object or some
other model, and then use the response_model to perform the field
limiting and serialization.

For example, in search I returned a generator of dict items, not a list of
CharName objects, but that’s good enough for FastAPI and pydantic to
validate my data and build the appropriate JSON response compatible with
response_model=list[CharName].

We’ll now focus on the tcp_mojifinder.py script that is answering the
queries in Figure 22-5.

An asyncio TCP Server
The tcp_mojifinder.py program uses plain TCP to communicate with a
client like Telnet or Netcat, so I could write it using asyncio without
external dependencies—and without reinventing HTTP. Figure 22-5 shows
text-based UI.

https://fastapi.tiangolo.com/tutorial/response-model/


Figure 22-5. Telnet session with the tcp_mojifinder.py server: querying for “cat face” then “fire”.



This program is twice as long as web_mojifinder.py, so I split the
presentation into three parts: Example 22-12, Example 22-14, and
Example 22-15. The top of tcp_mojifinder.py—including the import
statements—is in Example 22-14, but I will start describing the
supervisor coroutine and the main function that drives the program.

Example 22-12. tcp_mojifinder.py: a simple TCP server; continues in
Example 22-14.
async def supervisor(index: InvertedIndex, host: str, port: int): 
    server = await asyncio.start_server(     
        functools.partial(finder, index),    
        host, port)                          
 
    socket_list = cast(tuple[TransportSocket, ...], server.sockets)  
 

    addr = socket_list[0].getsockname() 
    print(f'Serving on {addr}. Hit CTRL-C to stop.')   
    await server.serve_forever()   
 
def main(host: str = '127.0.0.1', port_arg: str = '2323'): 
    port = int(port_arg) 
    print('Building index.') 
    index = InvertedIndex()                          
    try: 
        asyncio.run(supervisor(index, host, port))   
    except KeyboardInterrupt:                        
        print('\nServer shut down.') 
 
if __name__ == '__main__': 
    main(*sys.argv[1:])

This await quickly gets an instance of asyncio.Server, a TCP
socket server. By default, start_server creates and starts the
server, so it’s ready to receive connections.

The first argument to start_server is client_connected_cb,
a callback to run when a new client connection starts. The callback can
be a function or a coroutine, but it must accept exactly two arguments:
an asyncio.StreamReader and an asyncio.StreamWriter.
However, my finder coroutine also needs to get an index, so I used
functools.partial to bind that parameter and obtain a callable



which takes the reader and writer. Adapting user functions to callback
APIs is the most common use case for functools.partial.

host and port are the second and third arguments to
start_server. See the full signature in the asyncio
documentation.

This cast is needed because typeshed has an outdated type hint for the
sockets property of the Server class—as of May 2021. See issue
#5535 on typeshed.

Display address and port of the first socket of the server.

Although start_server already started the server as a concurrent
task, I need to await on the server_forever method so that my
supervisor is suspended here. Without this line, supervisor
would return immediately, ending the loop started with
asyncio.run(supervisor(…)), and exiting the program. The
documentation for Server.serve_forever says: “This method
can be called if the server is already accepting connections.”

Build the inverted index.

Start the event loop running supervisor.

Catch the KeyboardInterrupt to avoid a distracting traceback
when I stop the server with CTRL-C on the terminal running it.

You may find it easier to understand how control flows in tcp_mojifinder.py
if you study the output it generates on the server console, listed in
Example 22-13.

Example 22-13. tcp_mojifinder.py: this is the server side of the session
depicted in Figure 22-5
$ python3 tcp_mojifinder.py 
Building index.   
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Serving on ('127.0.0.1', 2323). Hit CTRL-C to stop.   
 From ('127.0.0.1', 58192): 'cat face'    
   To ('127.0.0.1', 58192): 10 results. 
 From ('127.0.0.1', 58192): 'fire'        
   To ('127.0.0.1', 58192): 11 results. 
 From ('127.0.0.1', 58192): '\x00'        
Close ('127.0.0.1', 58192).               
^C   
Server shut down.   
$

Output by main. Before the next line appears, I see a 0.6s delay on my
machine while the index is built.

Output by supervisor.

First iteration of a while loop in finder. The TCP/IP stack assigned
port 58192 to my Telnet client. If you connect several clients to the
server, you’ll see their various ports in the output.

Second iteration of the while loop in finder.

I hit CTRL-C on the client terminal; the while loop in finder exits.

The finder coroutine displays this message then exits. Meanwhile the
server is still running, ready to service another client.

I hit CTRL-C on the server terminal; server.serve_forever is
cancelled, ending supervisor and the event loop.

Output by main.

After main builds the index and starts the event loop, supervisor
quickly displays the Serving on… message and is suspended at the
await server.serve_forever() line. At that point, control flows
into the event loop and stays there, occasionally coming back to the
finder coroutine, which yields control back to the event loop whenever it
needs to wait for the network to send or receive data.



While the event loop is alive, a new instance of the finder coroutine will
be started for each client that connects to the server. In this way, many
clients can be handled concurrently by this simple server. This continues
until a KeyboardInterrupt occurs on the server or its process is killed
by the OS.

Now let’s see the top of tcp_mojifinder.py, with the finder coroutine.

Example 22-14. tcp_mojifinder.py: continued from Example 22-12.
import asyncio 
import functools 
import sys 
from asyncio.trsock import TransportSocket 
from typing import cast 
 
from charindex import InvertedIndex, format_results   
 
CRLF = b'\r\n' 
PROMPT = b'?> ' 
 
async def finder(index: InvertedIndex,           
                 reader: asyncio.StreamReader, 
                 writer: asyncio.StreamWriter): 
    client = writer.get_extra_info('peername')   
    while True:   
        writer.write(PROMPT)  # can't await!   
        await writer.drain()  # must await!   
        data = await reader.readline()   
        try: 
            query = data.decode().strip()   
        except UnicodeDecodeError:   
            query = '\x00' 
        print(f' From {client}: {query!r}')   
        if query: 
            if ord(query[:1]) < 32:   
                break 
            results = await search(query, index, writer)   
            print(f'   To {client}: {results} results.')   
 
    writer.close()   
    await writer.wait_closed()   
    print(f'Close {client}.')  



format_results is useful to display the results of
InvertedIndex.search in a text-based UI such as the command
line or a Telnet session.

To pass finder to asyncio.start_server I wrapped it with
functools.partial, because the server expects a coroutine or
function that takes only the reader and writer arguments.

Get the remote client address to which the socket is connected.

This loop handles a dialog that lasts until a control character is received
from the client.

The StreamWriter.write method is not a coroutine, just a plain
function; this line sends the ?> prompt.

StreamWriter.drain flushes the writer buffer; it is a coroutine,
so it must be driven with await.

StreamWriter.readline is a coroutine that returns bytes.

Decode the bytes to str, using the default UTF-8 encoding.

A UnicodeDecodeError may happen when the user hits CTRL-C
and the Telnet client sends control bytes; if that happens, replace the
query with a null character, for simplicity.

Log the query to the server console.

Exit the loop if a control or null character was received.

Do the actual search; code presented next.

Log the response to the server console.

Close the StreamWriter.



Wait for the StreamWriter to close. This is recommended in the
.close() method documentation.

Log the end of this client’s session to the server console.

The last piece of this example is the search coroutine:

Example 22-15. tcp_mojifinder.py: search coroutine.
async def search(query: str,   
                 index: InvertedIndex, 
                 writer: asyncio.StreamWriter) -> int: 
    chars = index.search(query)   
    lines = (line.encode() + CRLF for line   
                in format_results(chars)) 
    writer.writelines(lines)   
    await writer.drain()       
    status_line = f'{"─" * 66} {len(chars)} found'   
    writer.write(status_line.encode() + CRLF) 
    await writer.drain() 
    return len(chars)

search must be a coroutine because it writes to a StreamWriter
and must use its .drain() coroutine method.

Query the inverted index.

This generator expression will yield byte strings encoded in UTF-8 with
the Unicode codepoint, the actual character, its name and a CRLF
sequence—e.g. b'U+0039\t9\tDIGIT NINE\r\n').

Send the lines. Surprisingly, writer.writelines is not a
coroutine.

But writer.drain() is a coroutine. Don’t forget the await!

Build a status line, then send it.

https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter.close


Note that all network I/O in tcp_mojifinder.py is in bytes: we need to
decode the bytes received from the network, and encode strings before
sending them out. In Python 3, the default encoding is UTF-8, and that’s
what I used implicitly in all encode and decode calls in this example.

WARNING
Note that some of the I/O methods are coroutines and must be driven with await,
while others are simple functions. For example, StreamWriter.write is a plain
function, because it writes to a buffer. On the other hand, StreamWriter.drain—
which flushes the buffer and performs the network I/O—is a coroutine, as is
StreamReader.readline—but not StreamWriter.writelines! While I
was writing the first edition of this book, the asyncio API docs were improved with
clear labeling of coroutines as such.

The tcp_mojifinder.py code leverages the high-level asyncio Streams API
that provides a ready-to-use server so you only need to implement a handler
function, which can be a plain callback or a coroutine. There is also a
lower-level Transports and Protocols API, inspired by the transport and
protocols abstractions in the Twisted framework. Refer to the asyncio
documentation for more information, including TCP and UDP echo servers
and clients implemented with that lower-level API.

Our next topic is async for and the objects that make it work.

Asynchronous iteration and asynchronous
iterables
We saw in “Asynchronous Context Managers” how async with works
with objects implementing the __aenter__ and __aexit__ methods
returning awaitables—usually in the form of coroutine objects.

Similarly, async for works with asynchronous iterables: objects that
implement __aiter__. However, __aiter__ must be a regular method
—not a coroutine-method—and it must return an asynchronous iterator.

https://docs.python.org/3/library/asyncio-stream.html#streamwriter
https://docs.python.org/3/library/asyncio-stream.html
https://docs.python.org/3/library/asyncio-protocol.html
https://docs.python.org/3/library/asyncio-protocol.html#tcp-echo-server


An asynchronous iterator provides an __anext__ coroutine-method that
returns an awaitable—often a coroutine object. They are also expected to
implement __aiter__, which usually returns self. This mirrors the
important distinction of iterables and iterators we discussed in “Don’t make
the iterable an iterator for itself”.

The aiopg asynchronous PostgreSQL driver documentation has an example
that illustrates the use of async for to iterate over the rows of a database
cursor:

async def go(): 
    pool = await aiopg.create_pool(dsn) 
    async with pool.acquire() as conn: 
        async with conn.cursor() as cur: 
            await cur.execute("SELECT 1") 
            ret = [] 
            async for row in cur: 
                ret.append(row) 
            assert ret == [(1,)]

In this example the query will return a single row, but in a realistic scenario
you may have thousands of rows in response to a SELECT query. For large
responses, the cursor will not be loaded with all the rows in a single batch.
Therefore it is important that async for row in cur: does not block
the event loop while the cursor may be waiting for additional rows. By
implementing the cursor as an asynchronous iterator, aiopg may yield to the
event loop at each __anext__ call, and resume later when more rows
arrive from PostgreSQL.

Asynchronous Generator Functions
You can implement an asynchronous iterator by writing a class with
__anext__ and __aiter__, but there is a simpler way: write a function
declared with async def and use yield in its body. This parallels how
generator functions simplify the classic iterator pattern.

Let’s study a simple example using async for and implementing an
asynchronous generator. In Example 22-1 we saw blogdom.py, a script that

https://github.com/aio-libs/aiopg


probed domain names. Now suppose we find other uses for the probe
coroutine we defined there, and decide to put it into a new module—
domainlib.py—together with a new multi_probe asynchronous
generator that takes a list of domain names and yields results as they are
probed.

We’ll look at the implementation of domainlib.py soon, but first let’s see
how it is used with Python’s new asynchronous console.

Experimenting with Python’s Async Console

Since Python 3.8 you can run the interpreter with the -m asyncio
command-line option to get an “async REPL”: a Python console that
imports asyncio, provides a running event loop, and accepts await,
async for and async with at the top level prompt—which otherwise
are syntax errors when used outside of native coroutines.

To experiment with domainlib.py, go to the 22-async/domains/asyncio/
directory in your local copy of the Fluent Python 2e code repository. Then
run:

$ python -m asyncio

You’ll see the console start, similar to this:

asyncio REPL 3.9.1 (v3.9.1:1e5d33e9b9, Dec  7 2020, 12:10:52) 
[Clang 6.0 (clang-600.0.57)] on darwin 
Use "await" directly instead of "asyncio.run()". 
Type "help", "copyright", "credits" or "license" for more 
information. 
>>> import asyncio 
>>>

Note how it says you can use await instead of asyncio.run()—to
drive coroutines and other awaitables. The asyncio module is
automatically imported.

Now let’s import domainlib.py and play with its two coroutines: probe
and multi_probe.
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Example 22-16. Experimenting with domainlib.py after running python3
-m asyncio.
>>> await asyncio.sleep(3, 'Rise and shine!')   
'Rise and shine!' 
>>> from domainlib import * 
>>> await probe('python.org')   
Result(domain='python.org', found=True)   
>>> names = 'python.org rust-lang.org golang.org 
n05uch1an9.org'.split()   
>>> async for result in multi_probe(names):   
...      print(*result, sep='\t') 
... 
golang.org      True     
n05uch1an9.org  False 
python.org      True 
rust-lang.org   True 
>>>

Try a simple await to see the asynchronous console in action. Fun
fact: asyncio.sleep() takes an optional second argument that is
returned when you await it.

Drive the probe coroutine.

The domainlib version of probe returns a Result named tuple.

Make a list of domains.

Iterate with async for over the multi_probe asynchronous
generator to display the results.

Note that the results are not in the order the domains were given to
multiprobe. They appear as each DNS response comes back.

Example 22-16 shows that multi_probe is an asynchronous generator
because it is compatible with async for. Now let’s do a few more
experiments, continuing from that example.

Example 22-17. More experiments, continuing from Example 22-16.



>>> probe('python.org')   
<coroutine object probe at 0x10e313740> 
>>> multi_probe(names)   
<async_generator object multi_probe at 0x10e246b80> 
>>> for r in multi_probe(names):   
...    print(r) 
... 
Traceback (most recent call last): 
   ... 
TypeError: 'async_generator' object is not iterable

Calling a native coroutine gives you a coroutine object.

Calling an asynchronous generator gives you an async_generator
object.

We can’t use a regular for loop with asynchronous generators because
they implement __aiter__ instead of __iter__.

Asynchronous generators are driven by async for, which can be a block
statement (as seen in Example 22-16), and it also appears in asynchronous
comprehensions, which we’ll cover soon.

Implementing an Asynchronous Generator

Now let’s study the code for domainlib.py, with the multi_probe
asynchronous generator.

Example 22-18. domainlib.py: functions for probing domains
import asyncio 
import socket 
from collections.abc import Iterable, AsyncIterator 
from typing import NamedTuple, Optional 
 
 
class Result(NamedTuple):   
    domain: str 
    found: bool 
 
 
OptionalLoop = Optional[asyncio.AbstractEventLoop]   
 



 
async def probe(domain: str, loop: OptionalLoop = None) -> Result:  
 

    if loop is None: 
        loop = asyncio.get_running_loop() 
    try: 
        await loop.getaddrinfo(domain, None) 
    except socket.gaierror: 
        return Result(domain, False) 
    return Result(domain, True) 
 
 
async def multi_probe(domains: Iterable[str]) -> 
AsyncIterator[Result]:   
    loop = asyncio.get_running_loop() 
    coros = [probe(domain, loop) for domain in domains]   
    for coro in asyncio.as_completed(coros):   
        result = await coro   
        yield result  

NamedTuple makes the result from probe easier to read and debug.

This type alias is to avoid making the next line too long for a book
listing.

probe now gets an optional loop argument, to save repeated calls to
get_running_loop when this coroutine is driven by
multi_probe.

An asynchronous generator function produces an asynchronous
generator object, which can be annotated as
AsyncIterator[SomeType].

Build list of probe coroutine objects, each with a different domain
but all with the same loop.

Note that this is not async for because
asyncio.as_completed is a classic generator.

Await on the coroutine object to retrieve the result.



Yield result. This is the line that makes multi_probe an
asynchronous generator.

NOTE
The for loop in Example 22-18 could be shorter:

    for coro in asyncio.as_completed(coros): 
        yield await coro

Python parses that as yield (await coro), so it works. But I thought it could be
confusing to use that shortcut in the first asynchronous generator example in the book,
so I split it in two lines.

Given domainlib.py, we can demonstrate the use of the multi_probe
asynchronous generator in domaincheck.py: a script that takes a domain
suffix and searches for domais made from short Python keywords. Here is a
sample output of domaincheck.py:

$ ./domaincheck.py net 
FOUND           NOT FOUND 
=====           ========= 
in.net 
del.net 
true.net 
for.net 
is.net 
                none.net 
try.net 
                from.net 
and.net 
or.net 
else.net 
with.net 
if.net 
as.net 
                elif.net 
                pass.net 
                not.net 
                def.net



Thanks to domainlib, the code for domaincheck.py is straightforward.

Example 22-19. domaincheck.py: utility for probing domains using
domainlib
#!/usr/bin/env python3 
import asyncio 
import sys 
from keyword import kwlist 
 
from domainlib import multi_probe 
 
 
async def main(tld: str) -> None: 
    tld = tld.strip('.') 
    names = (kw for kw in kwlist if len(kw) <= 4)   
    domains = (f'{name}.{tld}'.lower() for name in names)   
    print('FOUND\t\tNOT FOUND')   
    print('=====\t\t=========') 
    async for domain, found in multi_probe(domains):   
        indent = '' if found else '\t\t'   
        print(f'{indent}{domain}') 
 
 
if __name__ == '__main__': 
    if len(sys.argv) == 2: 
        asyncio.run(main(sys.argv[1]))   
    else: 
        print('Please provide a TLD.', f'Example: {sys.argv[0]} 
COM.BR')

Generate keywords with length up to 4.

Generate domain names with the given suffix as TLD.

Format a header for the tabular output.

Asynchronously iterate over multi_probe(domains).

Set indent to zero or two tabs to put the result in the proper column.

Run the main coroutine with the given command-line argument.



Generators have one extra use unrelated to iteration: they can be made into
context managers. This also applies to asynchronous generators.

Asynchronous Generators as Context Managers

Writing our own asynchronous context managers is not a frequent
programming task, but if you need to write one, consider using the
@asynccontextmanager decorator added to the contextlib
module in Python 3.7. That’s very similar to the @contextmanager
decorator we studied in “Using @contextmanager”.

An interesting example combining @asynccontextmanager with
loop.run_in_executor appears in Caleb Hattingh’s book Using
Asyncio in Python. Example 22-20 is Caleb’s code—with a single change
and added callouts.

Example 22-20. Example using @asynccontextmanager and
loop.run_in_executor
from contextlib import asynccontextmanager 
 
@asynccontextmanager 
async def web_page(url):   
    loop = asyncio.get_running_loop()    
    data = await loop.run_in_executor(   
        None, download_webpage, url) 
    yield data                           
    await loop.run_in_executor(None, update_stats, url)   
 
async with web_page('google.com') as data:   
    process(data)

The decorated function must be an asynchronous generator.

Minor update to Caleb’s code: use the lightweight
get_running_loop instead of get_event_loop.

Suppose download_webpage is a blocking function using the
requests library; we run it in a separate thread to avoid blocking the
event loop.

https://docs.python.org/3/library/contextlib.html#contextlib.asynccontextmanager
https://learning.oreilly.com/library/view/using-asyncio-in/9781492075325/


All lines before this yield expression will become the __aenter__
coroutine-method of the asynchronous context manager built by the
decorator. The value of data will be bound to the data variable after
the as clause in the async with statement below.

Lines after the yield will become the __aexit__ coroutine-method.
Here another blocking call is delegated to the thread executor.

Use web_page with async with.

This is very similar to the sequential @contextmanager decorator.
Please see “Using @contextmanager” for more details, including error
handling at the yield line. For another example of
@asynccontextmanager, see the contextlib documentation.

Now let’s wrap up our coverage of asynchronous generator functions by
contrasting them with native coroutines.

Asynchronous Generators Versus Native Coroutines

Here are some key similarities and differences between a native coroutine
and an asynchronous generator functions:

Both are declared with async def.

An asynchronous generator always has a yield expression in its
body—that’s what makes it a generator. A native coroutine never
has yield.

A native coroutine may return some value other than None. An
asynchronous generator can only use empty return statements.

Native coroutines are awaitable: they can be driven by await
expressions or passed to one of the many asyncio functions that
take awaitable arguments, such as create_task. Asynchronous

https://docs.python.org/3/library/contextlib.html#contextlib.asynccontextmanager


generators are not awaitable. They are asynchronous iterables,
driven by async for or by asynchronous comprehensions.

Time to talk about asynchronous comprehensions.

Async Comprehensions and Async Generator
Expressions
PEP 530—Asynchronous Comprehensions introduced the use of async
for and await in the syntax of comprehensions and generator
expressions, starting with Python 3.6.

The only construct defined by PEP 530 that can appear outside an async
def body is an asynchronous generator expression.

Defining and Using an Asynchronous Generator Expression

Given the multi_probe asynchronous generator from Example 22-18,
we could write another asynchronous generator returning only the names of
the domains found. Here is how—again using the asynchronous console
launched with -m asyncio:

Example 22-21. domaincheck.py: utility for probing domains using
domainlib
>>> import asyncio 
>>> from domainlib import multi_probe 
>>> names = 'python.org rust-lang.org golang.org 
n05uch1an9.org'.split() 
>>> gen_found = (domain async for domain, found in 
multi_probe(names) if found)   
>>> gen_found 
<async_generator object <genexpr> at 0x10a8f9700>   
>>> async for name in gen_found:   
...     print(name) 
... 
golang.org 
python.org 
rust-lang.org

https://www.python.org/dev/peps/pep-0530/


The use of async for makes this an asynchronous generator
expression. It can be defined anywhere in a Python module.

The asynchronous generator expression builds an async_generator
object—exactly the same type of object returned by an asynchronous
generator function like multi_probe.

The asynchronous generator object is driven by the async for
statement—which in turn can only appear inside an async def body
—or in the magic asynchronous console I used in this example.

To summarize: an asynchronous generator expression can be defined
anywhere in your program, but it can only be used inside a native coroutine
or asynchronous generator function.

The remaining constructs introduced by PEP 530 can only be defined and
used inside native coroutines or asynchronous generator functions.

Asynchronous Comprehensions

Yuri Selivanov—the author of PEP 530—justifies the need for
asynchronous comprehensions with three short code snippets reproduced
next.

We can all agree that we should be able to rewrite this code:

result = [] 
async for i in aiter(): 
    if i % 2: 
        result.append(i)

Like this:

result = [i async for i in aiter() if i % 2]

In addition, given a native coroutine fun, we should be able to write this:

result = [await fun() for fun in funcs]



Using await in a list comprehension does the same job as
asyncio.gather. Back to the magic asynchronous console:

>>> names = 'python.org rust-lang.org golang.org 
n05uch1an9.org'.split() 
>>> names = sorted(names) 
>>> coros = [probe(name) for name in names] 
>>> await asyncio.gather(*coros) 
[Result(domain='golang.org', found=True), 
Result(domain='n05uch1an9.org', found=False), 
Result(domain='python.org', found=True), Result(domain='rust-
lang.org', found=True)] 
>>> [await probe(name) for name in names] 
[Result(domain='golang.org', found=True), 
Result(domain='n05uch1an9.org', found=False), 
Result(domain='python.org', found=True), Result(domain='rust-
lang.org', found=True)] 
>>>

Note that I sorted the list of names to show that the results come out in the
order they were submitted, in both cases.

PEP 530 allows the use of async for and await in list comprehensions
as well as in dict and set comprehensions. For example, here is a dict
comprehension to store the results of multi_probe—in the
asynchronous console:

>>> {name: found async for name, found in multi_probe(names)} 
{'golang.org': True, 'python.org': True, 'n05uch1an9.org': False, 
'rust-lang.org': True}

We can use the await keyword in the expression before the for or
async for clause, and also in the expression after the if clause. Here is
a set comprehension in the asynchronous console, collecting only the
domains that were found:

>>> {name for name in names if (await probe(name)).found} 
{'rust-lang.org', 'python.org', 'golang.org'}



I had to put extra parenthesis around the await expression due to the
higher precedence of the __getattr__ operator . (dot).

Again, all of these comprehensions can only appear inside an async def
body or in the enchanted asynchronous console.

Now let’s briefly discuss type hints for asynchronous types.

Generic Asynchronous Types
The following types were introduced in Python 3.5 and 3.6 to annotate
asynchronous objects:

class typing.AsyncContextManager(Generic[T_co]): 
    ... 
class typing.AsyncIterable(Generic[T_co]): 
    ... 
class typing.AsyncIterator(AsyncIterable[T_co]): 
    ... 
class typing.AsyncGenerator(AsyncIterator[T_co], Generic[T_co, 
T_contra]): 
    ... 
class typing.Awaitable(Generic[T_co]): 
    ... 
class typing.Coroutine(Awaitable[V_co], Generic[T_co, T_contra, 
V_co]): 
    ...

With Python 3.9, we should use the collections.abc equivalents of
the above.

I want to highlight three aspects of those generic types.

First: they are all covariant on the first type parameter, which is the type of
the items yielded from these objects. Recall rule #1 of “Variance Rules of
Thumb”:

If a formal type parameter defines a type for data that comes out of the
object, it can be covariant.



Second: AsyncGenerator and Coroutine are contravariant on the
second to last parameter. That’s the type of the argument of the low-level
.send() method that the event loop calls to drive asynchronous
generators and coroutines. As such, it is an “input” type. Therefore, it can
be contravariant, per Variance Rule of Thumb #2:

If a formal type parameter defines a type for data that goes into the
object after its initial construction, it can be contravariant.

Third: AsyncGenerator has no return type, in contrast with
typing.Generator which we saw in “Generic Type Hints for Classic
Coroutines”. Returning a value by raising StopIteration(value)
was one of the hacks that enabled generators to operate as coroutines and
support yield from, as we saw in Chapter 19. There is no such overlap
among the asynchronous objects: AsyncGenerators objects don’t
return values, and are completely separate from native coroutine objects,
which are annotated with typing.Coroutine.

Now let’s talk about a very important feature of the async statements,
async expressions, and the objects they create: they are often used with
asyncio but, they are actually library-independent.

Async beyond asyncio: Curio
Python’s async/await language constructs are not tied to any specific
event loop or library.  Thanks to the hackable API provided by special
methods, anyone sufficiently motivated can write their own asynchronous
runtime environment and framework to drive native coroutines,
asynchronous generators etc.

That’s what David Beazley did in his Curio project. He was interested in
rethinking how these new language features could be used in a framework
built from scratch. Recall that asyncio was released in Python 3.4, and it
used yield from instead of await, so its API could not leverage
asynchronous context managers, asynchronous iterators, and everything
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else that the async/await keywords made possible. As a result, Curio
has a cleaner API and a simpler implementation, compared to asyncio.

Example 22-22 shows the blogdom.py script (Example 22-1) rewritten to
use Curio.

Example 22-22. blogdom.py: Example 22-1, now using Curio.
#!/usr/bin/env python3 
from curio import run, TaskGroup 
import curio.socket as socket 
from keyword import kwlist 
 
MAX_KEYWORD_LEN = 4 
 
 
async def probe(domain: str) -> tuple[str, bool]:   
    try: 
        await socket.getaddrinfo(domain, None)   
    except socket.gaierror: 
        return (domain, False) 
    return (domain, True) 
 
async def main() -> None: 
    names = (kw for kw in kwlist if len(kw) <= MAX_KEYWORD_LEN) 
    domains = (f'{name}.dev'.lower() for name in names) 
    async with TaskGroup() as group:   
        for domain in domains: 
            await group.spawn(probe, domain)   
        async for task in group:   
            domain, found = task.result 
            mark = '+' if found else ' ' 
            print(f'{mark} {domain}') 
 
if __name__ == '__main__': 
    run(main())  

probe doesn’t need to get the event loop, because…

getaddrinfo is a top-level function of curio.socket, not a
method of a loop object—as it is in asyncio.

A TaskGroup is a core concept in Curio, to monitor and control
several coroutines, and to make sure they are all executed and cleaned



up.

TaskGroup.spawn is how you start a coroutine, managed by a
specific TaskGroup instance. The coroutine is wrapped by a Task.

Iterating with async for over a TaskGroup yields Task instances
as each is completed. This corresponds to the line in Example 22-1
using for … as_completed(…):.

Curio pioneered this sensible way to start an asynchronous program in
Python.

To expand on the last point: if you look at the asyncio code examples for
Fluent Python, First Edition you’ll see lines like these, repeated over and
over:

    loop = asyncio.get_event_loop() 
    loop.run_until_complete(main()) 
    loop.close()

A Curio TaskGroup is an asynchronous context manager that replaces
several ad-hoc APIs and coding patterns in asyncio. We just saw how
iterating over a TaskGroup makes the asyncio.as_completed(…)
function unnecessary. Another example: instead of a special gather
function, this snippet from the Task Groups docs collects the results of all
tasks in the group:

async with TaskGroup(wait=all) as g: 
    await g.spawn(coro1) 
    await g.spawn(coro2) 
    await g.spawn(coro3) 
print('Results:', g.results)

Task groups support structured concurrency: a form of concurrent
programming that constrains all the activity of a group of asynchronous
tasks to a single entry and exit point. This is analogous to structured

https://curio.readthedocs.io/en/latest/reference.html#task-groups
https://en.wikipedia.org/wiki/Structured_concurrency


programming, which eschewed the GOTO command and introduced block
statements to limit the entry and exit points of loops and subroutines. When
used as an asynchronous context manager, a TaskGroup ensures that all
tasks spawned inside are completed or cancelled, and any exceptions raised,
upon exiting the enclosed block.

NOTE
Structured concurrency will probably be adopted by asyncio in upcoming Python
releases. A strong indication appears in PEP 654–Exception Groups and except*, which
is under consideration for Python 3.10—as of March 2021. The Motivation section
mentions Trio’s “nurseries”, their name for task groups: “Implementing a better task
spawning API in asyncio, inspired by Trio nurseries, was the main motivation for this
PEP.”

Another important feature of Curio is better support for programming with
coroutines and threads in the same codebase—a necessity in most non-
trivial asynchronous programs. Starting a thread with await
spawn_thread(func, …) returns an AsyncThread object with a
Task-like interface. Threads can call coroutines thanks to a special
AWAIT(coro) function—named in all-caps because await is now a
keyword.

Curio also provides a UniversalQueue that can be used to coordinate
the work among threads, Curio coroutines, and asyncio coroutines.
That’s right, Curio has features that allow it to run in a thread along with
asyncio in another thread, in the same process, communicating via
UniversalQueue and UniversalEvent. The API for these
“universal” classes is the same inside and outside of coroutines, but in a
coroutine you need to prefix calls with await.

As I write this in March 2021, there are no asynchronous HTTP or database
libraries compatible with Curio, so its usage “out of the box” is limited to
low-level network programming. In the Curio repository there is an
impressive set network programming examples, including one using

https://www.python.org/dev/peps/pep-0654/
https://www.python.org/dev/peps/pep-0654/#motivation
https://curio.readthedocs.io/en/latest/reference.html#AWAIT
https://github.com/dabeaz/curio/tree/78bca8a6ad677ef51e1568ac7b3e51441ab49c42/examples


WebSocket, and another implementing the RFC 8305—Happy Eyeballs
concurrent algorithm for connecting to IPv6 endpoints with fast fallback to
IPv4 if needed.

The design of Curio has been influential. The Trio framework started by
Nathaniel J. Smith was heavily inspired by Curio. Curio may also have
prompted Python contributors to improve the usability of the asyncio
API. For example, in its earliest releases, asyncio users very often had to
get and pass around a loop object because some essential functions were
either loop methods or required a loop argument. As of Python 3.9,
direct access to the loop is not needed as often, and in fact several functions
that accepted an optional loop are now deprecating that argument.

Now let’s talk about the advantages and challenges of asynchronous
programming.

How Async Works and How It Doesn’t
The sections closing this chapter discuss high-level ideas around
asynchronous programming, regardless of the language or library you are
using.

Let’s begin by explaining the #1 reason why asynchronous programming is
appealing, followed by a popular myth, and how to deal with it.

Running Circles Around Blocking Calls
Ryan Dahl, the inventor of Node.js, introduces the philosophy of his project
by saying “We’re doing I/O completely wrong. " He defines a blocking
function as one that does file or network I/O, and argues that we can’t treat
them as we treat nonblocking functions. To explain why, he presents the
numbers in the second column of Table 22-1.

14

https://tools.ietf.org/html/rfc8305
https://trio.readthedocs.io/en/stable/
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Device CPU cycles Proportional “human” scale

 

L1 cache 3 3 seconds

L2 cache 14 14 seconds

RAM 250 250 seconds

disk 41,000,000 1.3 years

network 240,000,000 7.6 years

 

To make sense of Table 22-1, bear in mind that modern CPUs with GHz
clocks run billions of cycles per second. Let’s say that a CPU runs exactly 1
billion cycles per second. That CPU can make more than 333 million L1
cache reads in one second, or 4 (four!) network reads in the same time. The
third column of Table 22-1 puts those numbers in perspective by
multiplying the second column by a constant factor. So, in an alternate
universe, if one read from L1 cache took 3 seconds, then a network read
would take 7.6 years!

Table 22-1 explains why a disciplined approach to asynchronous
programming can lead to high performance servers. The challenge is
achieving that discipline. The first step is to recognize that “I/O bound
system” is a fantasy.

The Myth of I/O Bound Systems
A commonly repeated meme is that asynchronous programming is good for
“I/O bound systems”. I learned the hard way that there are no “I/O bound
systems”. You may have I/O bound functions. Perhaps the vast majority of
the functions in your system are I/O bound, i.e. they spend more time
waiting for I/O than crunching data. While waiting, they cede control to the
event loop which can then drive some other pending task. But inevitably,



any non-trivial system will have some parts that are CPU-bound. Even
trivial systems reveal that, under stress. In “Soapbox” I tell the story of two
asynchronous programs that struggled with CPU-bound functions slowing
down the event loop with severe impact on performance.

Given that any non-trivial system will have CPU-bound functions, dealing
with them is the key to success in asynchronous programming.

Avoiding CPU-bound Traps
If you’re using Python at scale, you should have some automated tests
designed specifically to detect performance regressions as soon as they
appear. This is critically important with asynchronous code, but also
relevant to threaded Python code—because of the GIL. If you wait until the
slowdown starts bothering the development team, it’s too late. The fix will
probably require some major make over.

Here are some options for when you identify a CPU-hogging bottleneck:

delegate the task to a Python process pool;

delegate the task to an external task queue;

rewrite the relevant code in Cython, C, Rust or some other
language that compiles to machine code and interfaces with the
Python/C API, preferably releasing the GIL;

decide that you can afford the performance hit and do nothing—but
record the decision to make it easier to revert it later.

The external task queue should be chosen and integrated as soon as possible
at the start of the project, so that nobody in the team hesitates to use it when
needed.

The last option—do nothing—falls in the category of technical debt.

Concurrent programming is a fascinating topic, and I would like to write a
lot more about it. But it is not the main focus of the book, and this is already
one of the longest chapters, so let’s wrap it up.

https://en.wikipedia.org/wiki/Technical_debt


Chapter Summary
The problem with normal approaches to asynchronous programming as
that they’re all-or-nothing propositions. You rewrite all your code so
none of it blocks or you’re just wasting your time.

—Alvaro Videla & Jason J. W. Williams, RabbitMQ in
Action

I chose that epigraph for this chapter for two reasons. At a high level, it
reminds us to avoid blocking the event loop by delegating slow tasks to a
different processing unit, from a simple thread all the way to a distributed
task queue. At a lower level, it is also a warning: once you write your first
async def, your program is inevitably going to have more and more
async def, await, async with and async for. And using non-
asynchronous libraries suddenly becomes a challenge.

After the simple spinner examples in Chapter 20, here we really focused on
asynchronous programing with native coroutines, starting with the
blogdom.py DNS probing example, followed by the concept of awaitables.
While reading the source code of flags_asyncio.py, we found the first
example of an asynchronous context manager.

The more advanced variations of the flag downloading program introduced
two powerful functions: the asyncio.as_completed generator and the
loop.run_in_executor coroutine. We also saw the concept and
application of a semaphore to limit the number of concurrent downloads—
as expected from well-behaved HTTP clients.

Server-side asynchronous programming was presented through the
mojifinder examples: a FastAPI Web service and tcp_mojifinder.py—the
latter using just asyncio and the TCP protocol.

Asynchronous iteration and asynchronous iterables were the next major
topic, with sections on async for, Python’s async console, asynchronous
generators, asynchronous generator expressions, and asynchronous
comprehensions.



The last example in the chapter was blogdom.py rewritten with the Curio
framework, to demonstrate how Python’s asynchronous features are not tied
to the asyncio package. Curio also showcases the concept of structured
concurrency which may have an industry-wide impact, bringing more
clarity to concurrent code.

Finally, the sections under “How Async Works and How It Doesn’t” discuss
the main appeal of asynchronous programming, the misconception of “I/O
bound systems”, and dealing with the inevitable CPU-bound parts of your
program.

Further Reading
David Beazley’s PyOhio 2016 keynote Fear and Awaiting in Async is a
fantastic, live coded introduction to the potential of the language features
made possible by Yuri Selivanov’s contribution of the async/await
keywords in Python 3.5. At one point, Beazley complains that await can’t
be used in list comprehensions, but that was fixed by Selivanov in PEP 530
—Asynchronous Comprehensions, implemented in Python 3.6 later in that
same year. Apart from that, everything else in Beazley’s keynote is timeless,
as he demonstrates how the asynchronous objects we saw in this chapter
work, without the help of any framework—just a simple run function
using .send(None) to drive coroutines. Only at the very end Beazley
shows Curio, which he started that year as an experiment to see how far can
you go doing asynchronous programming without a foundation of callbacks
or futures, just coroutines. As it turns out, you can go very far—as
demonstrated by the evolution of Curio and the later creation of Trio by
Nathaniel J. Smith. Curio’s documentation has links to more talks by
Beazley on the subject.

Besides starting Trio, Nathaniel J. Smith wrote two deep blog posts that I
highly recommend: Some thoughts on asynchronous API design in a post-
async/await world—contrasting the design of Curio with that of asyncio—
and Notes on structured concurrency, or: Go statement considered harmful
—about structured concurrency. Smith also gave a long and informative

https://www.youtube.com/watch?v=E-1Y4kSsAFc
https://www.python.org/dev/peps/pep-0530/
https://github.com/dabeaz/curio
https://trio.readthedocs.io/en/stable/
https://curio.readthedocs.io/en/latest/#curio-university
https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/


answer to the question What is the core difference between asyncio and
trio? on StackOverflow.

To learn more about the asyncio package, I’ve mentioned the best written
resources I know at the start of this chapter: the official documentation after
the outstanding overhaul started by Yuri Selivanov in 2018, and Caleb
Hattingh’s book Using Asyncio in Python (O’Reilly, 2020). In the official
documentation, make sure to read Developing with asyncio: documenting
the asyncio debug mode, and also discussing “common mistakes and traps”
and “how to avoid them”.

For a very accessible, 30-minute introduction to asynchronous
programming in general and also asyncio, watch Miguel Grinberg’s
Asynchronous Python for the Complete Beginner, presented at PyCon 2017.
Another great introduction is Demystifying Python’s Async and Await
Keywords presented by Michael Kennedy—where among other things I
learned about the unsync library that provides a decorator to delegate the
execution of coroutines, I/O bound functions and CPU-bound functions to
asyncio, threading or multiprocessing as needed.

At EuroPython 2019, Lynn Root—a global leader of PyLadies—presented
the excellent Advanced asyncio: Solving Real-world Production Problems,
informed by her experience using Python as a Staff Engineer at Spotify.

In 2020, Łukasz Langa recorded a series of great videos about asyncio,
starting with Learn Python’s AsyncIO #1 - The Async Ecosystem. Langa
also made the super cool video AsyncIO + Music for PyCon 2020 that not
only shows asyncio applied in a very concrete of event-oriented domain,
but also explains it from the ground up.

Another area dominated by event-oriented programming is embedded
systems. That’s why Damien George added support for async/await in
his MicroPython interpreter for microcontrollers. At PyCon Australia 2018,
Matt Trentini demonstrated the uasyncio library, a subset of asyncio that is
part of MicroPython’s standard library.

For higher level thinking about async programming in Python, read the blog
post Python async frameworks—Beyond developer tribalism by Tom

https://stackoverflow.com/questions/49482969/what-is-the-core-difference-between-asyncio-and-trio
https://docs.python.org/3/library/asyncio.html
https://bugs.python.org/issue33649
https://learning.oreilly.com/library/view/using-asyncio-in/9781492075325/
https://docs.python.org/3/library/asyncio-dev.html
https://www.youtube.com/watch?v=iG6fr81xHKA
https://www.youtube.com/watch?v=F19R_M4Nay4
https://asherman.io/projects/unsync.html
https://pyladies.com/
https://www.youtube.com/watch?v=sW76-pRkZk8
https://www.youtube.com/watch?v=Xbl7XjFYsN4
https://www.youtube.com/watch?v=02CLD-42VdI
https://micropython.org/
https://docs.micropython.org/en/latest/library/uasyncio.html
https://www.encode.io/articles/python-async-frameworks-beyond-developer-tribalism


Christie.

Finally, I highly recommend What Color Is Your Function? by Bob
Nystrom, discussing the incompatible execution models of plain functions
versus async functions—a.k.a. coroutines—in JavaScript, Python, C#, and
other languages. Spoiler alert—Nystrom’s conclusion is: the language that
got this right is Go, where all functions are the same color. I like that about
Go. But I also think Nathaniel J. Smith has a point when he wrote Go
statement considered harmful. Nothing is perfect, and concurrent
programming is always complicated.

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/


SOAPBOX

How a Slow Function Almost Spoiled The uvloop Benchmarks

In 2016, Yuri Selivanov released uvloop, “a fast, drop-in replacement of
the built-in asyncio event loop”. The benchmarks presented in
Selivanov’s blog post announcing the library in 2016 are very
impressive. He wrote: “it is at least 2x faster than nodejs, gevent, as
well as any other Python asynchronous framework. The performance of
uvloop-based asyncio is close to that of Go programs.”

However, the post reveals that uvloop is able to match the performance
of Go under two conditions:

1. Go is configured to use a single thread. That makes the Go
runtime behave similarly to asyncio: concurrency is
achieved via multiple coroutines driven by an event loop, all in
a single thread.

2. The Python 3.5 code uses httptools in addition to uvloop itself.

Selivanov explains that he wrote httptools after benchmarking uvloop
with aiohttp—one of the first full-featured HTTP libraries built on
asyncio:

However, the performance bottleneck in aiohttp turned out to be its
HTTP parser, which is so slow, that it matters very little how fast the
underlying I/O library is. To make things more interesting, we
created a Python binding for http-parser (nodejs HTTP parser C
library, originally developed for Nginx). The library is called
httptools, and is available on Github and PyPI.

Now think about that: Selivanov’s HTTP performance tests consisted of
a simple echo server written in the different languages/libraries,
pounded by the wrk benchmarking tool. Most developers would
consider a simple echo server an “I/O bound system”, right? But it
turned out that parsing HTTP headers is CPU-bound, and it had a slow
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https://github.com/MagicStack/uvloop
http://magic.io/blog/uvloop-blazing-fast-python-networking/
https://github.com/MagicStack/httptools
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https://github.com/wg/wrk


Python implementation in aiohttp in when Selivanov did the
benchmarks in 2016.  Whenever a Python function was parsing
headers in Python, the event loop was blocked. The impact was so
significant that Selivanov went to the extra trouble of writing httptools.
Without optimizing the CPU-bound code, the performance gains of a
faster event loop were lost.

Death by a Thousand Cuts

Instead of a simple echo server, imagine a complex and evolving
Python system with tens of thousands of lines of asynchronous code,
interfacing with many external libraries. Years ago I was asked to help
diagnose performance problems in a system like that. It was written in
Python 2.7 with the Twisted framework—a solid library and in many
ways a precursor to asyncio itself.

Python was used to build a façade for the Web UI, integrating
functionality provided by pre-existing libraries and command-line tools
written in other languages—but not designed for concurrent execution.

The project was ambitious, it had been in development for more than a
year already, but it was not in production yet.  Over time, the
developers noticed that the performance of the whole system was
decreasing, and they were having a hard time finding the bottlenecks.

What was happening: with each added feature, more CPU-bound code
was slowing down Twisted’s event loop. Python’s role as a glue
language meant there was a lot of data parsing and conversion between
data formats. There wasn’t a single bottleneck: the problem was spread
over countless little functions added over months of development.
Fixing that would require rethinking the architecture of the system,
rewriting a lot of code, probably leveraging a task queue, perhaps using
microservices or custom libraries written in languages better suited for
CPU-intensive concurrent processing. The stakeholders were not
prepared to make that additional investment, and the project was
cancelled shortly afterwards.
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When I told this story to Glyph Lefkowitz—founder the Twisted project
—he said that one of his priorities at the start of an asynchronous
programming project is to decide which tools he will use to farm-out
the CPU-intensive tasks. This conversation with Glyph was the
inspiration for “Avoiding CPU-bound Traps”.

Smarter Clients for Better Concurrency

Dealing with slow clients is a major challenge for server-side
programmers. Asynchronous programming is a good general strategy to
deal with slow clients precisely because it is much cheaper to have a
coroutine than a thread waiting for each client, therefore you can handle
many more slow clients.

But you can also help your server-side system handle more clients if
they are smarter. For example, in web_mojifinder.py, there is no
pagination. If you search for “CJK”, you’ll get more than 90,000
Chinese, Japanese, and Korean characters (that’s what CJK stands for).
Nobody will read more than a few dozen lines, so it is a waste of
computing power and bandwidth to send so many results. Implementing
pagination or “infinite scroll” can drastically reduce this waste, but it
does require more code on the client and the server.

Pagination is just one example. The main point is: consider how to split
the task of the server in smaller chunks, so that it can handle more
clients at one time. If you’re used to the full-page-at-time style of Web
development, this requires a new mindset, a lot more front-end code,
and—sometimes—the use of new technology such as WebSockets,
which an asynchronous server-side framework is better prepared to
handle. That’s the reason why the ASGI specification was started by
Django developers, and they are adding asynchronous features with
every new release since Django 3.0.

1  Videla & Williams, RabbitMQ in Action (Manning, 2012), Chapter 4, Solving Problems with
Rabbit: coding and patterns, p. 61



2  Selivanov implemented async/await in Python, and wrote the related PEPs 492, 525, and
530.

3  There is one exception to this rule: if you run Python with the -m asyncio option you can
use await directly at the >>> prompt to drive a native coroutine. This is explained in
“Experimenting with Python’s Async Console”.

4  Sorry, I could not resist it.

5  true.dev is available for USD 360/year as I write this. I see that for.dev is registered,
but has no DNS configured.

6  Thanks to Guto Maia who noted that the concept of a semaphore was not explained when he
read the first edition draft for this chapter.

7  A detailed discussion about this can be found in a thread I started in the python-tulip group,
titled “Which other futures my come out of asyncio.as_completed?”. Guido responds, and
gives insight on the implementation of as_completed as well as the close relationship
between futures and coroutines in asyncio.

8  Instead of uvicorn, you may use another ASGI server, such as hypercorn or Daphne. See the
official ASGI documentation page about implementations for more

9  As mentioned in Chapter 8, pydantic enforces type hints at runtime, for data validation.

10  Thanks for tech reviewer Miroslav Šedivý for highlighting good places to use pathlib in
code examples.

11  Tech reviewer Leonardo Rochael pointed out that building the index could be delegated to
another thread using loop.run_with_executor() in the supervisor coroutine, so
the server would be ready to take requests immediately while the index is built. That’s true, but
querying the index is the only thing this server does, so it would not be a big win in this
example.

12  This is great for experimentation, like the Node.js console. Thanks Yuri Selivanov for yet
another excellent contribution to asynchronous Python.

13  That’s in contrast with JavaScript, where async/await is hardwired to the built-in event
loop and runtime environment, i.e. a browser, Node.js, or Deno.

14  Video: Introduction to Node.js at 4:55.

15  Using a single thread was the default setting until Go 1.5 was released. Years before, Go had
already earned a well deserved reputation for enabling highly concurrent networked systems.
One more evidence that concurrency doesn’t require multiple threads or CPU cores.

16  Maybe that part of aiohttp has been optimized since then; I haven’t checked.

17  Regardless of technical choices, this was probably the biggest mistake in this project: the
stakeholders did not go for an MVP approach—delivering a Minimum Viable Product as soon
as possible, and then adding features at a steady pace.

https://www.python.org/dev/peps/pep-0492/
https://www.python.org/dev/peps/pep-0525/
https://www.python.org/dev/peps/pep-0530/
http://bit.ly/1f6CBZx
https://asgi.readthedocs.io/en/latest/implementations.html
https://pydantic-docs.helpmanual.io/
https://www.youtube.com/watch?v=M-sc73Y-zQA


Chapter 23. Dynamic Attributes
and Properties

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 23rd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

The crucial importance of properties is that their existence makes it
perfectly safe and indeed advisable for you to expose public data
attributes as part of your class’s public interface.

—Martelli, Ravenscroft & Holden, Why properties are
important

Data attributes and methods are collectively known as attributes in Python.
A method is an attribute that is callable. Besides data attributes and
methods, we can also create properties, which replace a public data attribute
with accessor methods (i.e., getter/setter), without changing the class
interface. This follows Bertrand Meyer’s Uniform access principle:

All services offered by a module should be available through a uniform
notation, which does not betray whether they are implemented through
storage or through computation.

1
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Besides the property decorator, Python provides a rich API for
controlling attribute access and implementing dynamic attributes. The
interpreter calls the __getattr__ and __setattr__ special methods
to handle attribute access or assignment using dot notation (e.g.,
obj.attr) or via the built-in functions getattr and setattr. A user-
defined class implementing __getattr__ can implement “virtual
attributes” by computing values on the fly whenever somebody tries to read
a nonexistent attribute like obj.no_such_attr.

Coding dynamic attributes is the kind of metaprogramming that framework
authors do. However, in Python the basic techniques are straightforward, so
we can use them in everyday data wrangling tasks. That’s how we’ll start
this chapter.

What’s new in this chapter
Most updates to this chapter were motivated by a discussion of
@functools.cached_property (introduced in Python 3.8), as well
as the combined use @property with @functools.cache (new in
3.9). This affected the code for the Record and Event classes that appear
in “Computed Properties”. I also added a refactoring to leverage the PEP
412—Key-Sharing Dictionary optimization.

To highlight more relevant features while keeping the examples readable, I
removed some nonessential code—merging the old DbRecord class into
Record, replacing shelve.Shelve with a dict, and deleting the logic
to download the OSCON dataset—which the examples now read from a
local file included in the Fluent Python, Second Edition code repository.

Data Wrangling with Dynamic Attributes
In the next few examples, we’ll leverage dynamic attributes to work with a
JSON dataset published by O’Reilly for the OSCON 2014 conference.
Example 23-1 shows four records from that dataset.3

https://www.python.org/dev/peps/pep-0412/
https://github.com/fluentpython/example-code-2e


Example 23-1. Sample records from osconfeed.json; some field contents
abbreviated
{ "Schedule": 
  { "conferences": [{"serial": 115 }], 
    "events": [ 
      { "serial": 34505, 
        "name": "Why Schools Don´t Use Open Source to Teach 
Programming", 
        "event_type": "40-minute conference session", 
        "time_start": "2014-07-23 11:30:00", 
        "time_stop": "2014-07-23 12:10:00", 
        "venue_serial": 1462, 
        "description": "Aside from the fact that high school 
programming...", 
        "website_url": 
"http://oscon.com/oscon2014/public/schedule/detail/34505", 
        "speakers": [157509], 
        "categories": ["Education"] } 
    ], 
    "speakers": [ 
      { "serial": 157509, 
        "name": "Robert Lefkowitz", 
        "photo": null, 
        "url": "http://sharewave.com/", 
        "position": "CTO", 
        "affiliation": "Sharewave", 
        "twitter": "sharewaveteam", 
        "bio": "Robert ´r0ml´ Lefkowitz is the CTO at Sharewave, a 
startup..." } 
    ], 
    "venues": [ 
      { "serial": 1462, 
        "name": "F151", 
        "category": "Conference Venues" } 
    ] 
  } 
}

Example 23-1 shows 4 of the 895 records in the JSON file. The entire
dataset is a single JSON object with the key "Schedule", and its value is
another mapping with four keys: "conferences", "events",
"speakers", and "venues". Each of those four keys maps to a list of
records. In the full dataset the "events", "speakers", and "venues"
lists have dozens or hundreds of records, while "conferences" has only



that one record shown in Example 23-1. Every record has a "serial"
field, which is a unique identifier for the record within the list.

I used Python’s console to explore the dataset, as shown in Example 23-2.

Example 23-2. Interactive exploration of osconfeed.json
>>> import json 
>>> with open('data/osconfeed.json') as fp: 
...     feed = json.load(fp)   
>>> sorted(feed['Schedule'].keys())   
['conferences', 'events', 'speakers', 'venues'] 
>>> for key, value in sorted(feed['Schedule'].items()): 
...     print(f'{len(value):3} {key}')   
... 
  1 conferences 
484 events 
357 speakers 
 53 venues 
>>> feed['Schedule']['speakers'][-1]['name']   
'Carina C. Zona' 
>>> feed['Schedule']['speakers'][-1]['serial']   
141590 
>>> feed['Schedule']['events'][40]['name'] 
'There *Will* Be Bugs' 
>>> feed['Schedule']['events'][40]['speakers']   
[3471, 5199]

feed is a dict holding nested dicts and lists, with string and integer
values.

List the four record collections inside "Schedule".

Display record counts for each collection.

Navigate through the nested dicts and lists to get the name of the last
speaker.

Get serial number of that same speaker.

Each event has a 'speakers' list with zero or more speaker serial
numbers.



Exploring JSON-Like Data with Dynamic Attributes
Example 23-2 is simple enough, but the syntax feed['Schedule']
['events'][40]['name'] is cumbersome. In JavaScript, you can get
the same value by writing feed.Schedule.events[40].name. It’s
easy to implement a dict-like class that does the same in Python—there
are plenty of implementations on the Web.  I wrote FrozenJSON, which
is simpler than most recipes because it supports reading only: it’s just for
exploring the data. FrozenJSON is also recursive, dealing automatically
with nested mappings and lists.

Example 23-3 is a demonstration of FrozenJSON and the source code is
in Example 23-4.

Example 23-3. FrozenJSON from Example 23-4 allows reading attributes
like name and calling methods like .keys() and .items()
    >>> import json 
    >>> raw_feed = json.load(open('data/osconfeed.json')) 
    >>> feed = FrozenJSON(raw_feed)   
    >>> len(feed.Schedule.speakers)   
    357 
    >>> feed.keys() 
    dict_keys(['Schedule']) 
    >>> sorted(feed.Schedule.keys())   
    ['conferences', 'events', 'speakers', 'venues'] 
    >>> for key, value in sorted(feed.Schedule.items()):  
    ...     print(f'{len(value):3} {key}') 
    ... 
      1 conferences 
    484 events 
    357 speakers 
     53 venues 
    >>> feed.Schedule.speakers[-1].name   
    'Carina C. Zona' 
    >>> talk = feed.Schedule.events[40] 
    >>> type(talk)   
    <class 'explore0.FrozenJSON'> 
    >>> talk.name 
    'There *Will* Be Bugs' 
    >>> talk.speakers   
    [3471, 5199] 
    >>> talk.flavor   
    Traceback (most recent call last): 
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      ... 
    KeyError: 'flavor'

Build a FrozenJSON instance from the raw_feed made of nested
dicts and lists.

FrozenJSON allows traversing nested dicts by using attribute
notation; here we show the length of the list of speakers.

Methods of the underlying dicts can also be accessed, like .keys(), to
retrieve the record collection names.

Using items(), we can retrieve the record collection names and their
contents, to display the len() of each of them.

A list, such as feed.Schedule.speakers, remains a list, but
the items inside are converted to FrozenJSON if they are mappings.

Item 40 in the events list was a JSON object; now it’s a
FrozenJSON instance.

Event records have a speakers list with speaker serial numbers.

Trying to read a missing attribute raises KeyError, instead of the
usual AttributeError.

The keystone of the FrozenJSON class is the __getattr__ method,
which we already used in the Vector example in “Vector Take #3:
Dynamic Attribute Access”, to retrieve Vector components by letter—
v.x, v.y, v.z, etc. It’s essential to recall that the __getattr__ special
method is only invoked by the interpreter when the usual process fails to
retrieve an attribute (i.e., when the named attribute cannot be found in the
instance, nor in the class or in its superclasses).

The last line of Example 23-3 exposes a minor issue with my code: trying
to read a missing attribute should raise AttributeError, and not



KeyError as shown. When I implemented the error handling to do that,
the __getattr__ method became twice as long, distracting from the
most important logic I wanted to show. Given that users would know that a
FrozenJSON is built from mappings and lists, I think the KeyError is
not too confusing.

As shown in Example 23-4, the FrozenJSON class has only two methods
(__init__, __getattr__) and a __data instance attribute, so
attempts to retrieve an attribute by any other name will trigger
__getattr__. This method will first look if the self.__data dict
has an attribute (not a key!) by that name; this allows FrozenJSON
instances to handle any dict method such as items, by delegating to
self.__data.items(). If self.___data doesn’t have an attribute
with the given name, __getattr__ uses name as a key to retrieve an
item from self.__dict, and passes that item to FrozenJSON.build.
This allows navigating through nested structures in the JSON data, as each
nested mapping is converted to another FrozenJSON instance by the
build class method.

Example 23-4. explore0.py: turn a JSON dataset into a FrozenJSON
holding nested FrozenJSON objects, lists, and simple types
from collections import abc 
 
 
class FrozenJSON: 
    """A read-only façade for navigating a JSON-like object 
       using attribute notation 
    """ 
 
    def __init__(self, mapping): 
        self.__data = dict(mapping)   
 
    def __getattr__(self, name):   
        try: 
            return getattr(self.__data, name)   
        except AttributeError: 
            return FrozenJSON.build(self.__data[name])   
 
    @classmethod 
    def build(cls, obj):   



        if isinstance(obj, abc.Mapping):   
            return cls(obj) 
        elif isinstance(obj, abc.MutableSequence):   
            return [cls.build(item) for item in obj] 
        else:   
            return obj

Build a dict from the mapping argument. This ensures we got a
mapping or something that can be converted to one.

__getattr__ is called only when there’s no attribute with that name.

If name matches an attribute of the instance __data, return that. This
is how calls like feed.keys() are handled: the keys method is an
attribute of the __data dict.

Otherwise, fetch the item with the key name from self.__data, and
return the result of calling FrozenJSON.build() on that.

This is an alternate constructor, a common use for the @classmethod
decorator.

If obj is a mapping, build a FrozenJSON with it. This is an example
of goose typing.

If it is a MutableSequence, it must be a list,  so we build a list
by passing each item in obj recursively to .build().

If it’s not a dict or a list, return the item as it is. It should be a str
or an int, given the contents of the JSON file.

Note that no caching or transformation of the original dataset is done. As
the dataset is traversed, the nested data structures are converted again and
again into FrozenJSON. That’s OK for a dataset of this size, and for a
script that will only be used to explore or convert the data.

5
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Any script that generates or emulates dynamic attribute names from
arbitrary sources must deal with one issue: the keys in the original data may
not be suitable attribute names. The next section addresses this.

The Invalid Attribute Name Problem
The FrozenJSON code doesn’t handle attribute names that are Python
keywords. For example, if you build an object like this:

>>> student = FrozenJSON({'name': 'Jim Bo', 'class': 1982})

You won’t be able to read student.class because class is a reserved
keyword in Python:

>>> student.class 
  File "<stdin>", line 1 
    student.class 
         ^ 
SyntaxError: invalid syntax

You can always do this, of course:

>>> getattr(student, 'class') 
1982

But the idea of FrozenJSON is to provide convenient access to the data,
so a better solution is checking whether a key in the mapping given to
FrozenJSON.__init__ is a keyword, and if so, append an _ to it, so
the attribute can be read like this:

>>> student.class_ 
1982

This can be achieved by replacing the one-liner __init__ from
Example 23-4 with the version in Example 23-5.

Example 23-5. explore1.py: append a _ to attribute names that are Python
keywords



    def __init__(self, mapping): 
        self.__data = {} 
        for key, value in mapping.items(): 
            if keyword.iskeyword(key):   
                key += '_' 
            self.__data[key] = value

The keyword.iskeyword(…) function is exactly what we need; to
use it, the keyword module must be imported, which is not shown in
this snippet.

A similar problem may arise if a key in the JSON is not a valid Python
identifier:

>>> x = FrozenJSON({'2be':'or not'}) 
>>> x.2be 
  File "<stdin>", line 1 
    x.2be 
      ^ 
SyntaxError: invalid syntax

Such problematic keys are easy to detect in Python 3 because the str class
provides the s.isidentifier() method, which tells you whether s is
a valid Python identifier according to the language grammar. But turning a
key that is not a valid identifier into valid attribute name is not trivial. Two
simple solutions would be raising an exception or replacing the invalid keys
with generic names like attr_0, attr_1, and so on. For the sake of
simplicity, I will not worry about this issue.

After giving some thought to the dynamic attribute names, let’s turn to
another essential feature of FrozenJSON: the logic of the build class
method, which is used by __getattr__ to return a different type of
object depending on the value of the attribute being accessed, so that nested
structures are converted to FrozenJSON instances or lists of
FrozenJSON instances.

Instead of a class method, the same logic could be implemented as the
__new__ special method, as we’ll see next.



Flexible Object Creation with __new__
We often refer to __init__ as the constructor method, but that’s because
we adopted jargon from other languages. In Python, __init__ gets self
as the first argument, therefore the object already exists when __init__
is called by the interpreter. Also, __init__ cannot return anything. So it’s
really an initializer, not a constructor.

The special method that Python calls to construct an instance is __new__:
it’s a class method, but gets special treatment, so the @classmethod
decorator is not used. Python takes the instance returned by __new__ and
passes it as the first argument self of __init__. We rarely need to code
__new__, because the implementation inherited from object suffices for
the vast majority of use cases.

If necessary, the __new__ method can also return an instance of a different
class. When that happens, the interpreter does not call __init__. In other
words, Python’s logic for building an object is similar to this pseudocode:

# pseudo-code for object construction 
def make(the_class, some_arg): 
    new_object = the_class.__new__(some_arg) 
    if isinstance(new_object, the_class): 
        the_class.__init__(new_object, some_arg) 
    return new_object 
 
# the following statements are roughly equivalent 
x = Foo('bar') 
x = make(Foo, 'bar')

Example 23-6 shows a variation of FrozenJSON where the logic of the
former build class method was moved to __new__.

Example 23-6. explore2.py: using new instead of build to construct new
objects that may or may not be instances of FrozenJSON
from collections import abc 
import keyword 
 
class FrozenJSON: 
    """A read-only façade for navigating a JSON-like object 



       using attribute notation 
    """ 
 
    def __new__(cls, arg):   
        if isinstance(arg, abc.Mapping): 
            return super().__new__(cls)   
        elif isinstance(arg, abc.MutableSequence):   
            return [cls(item) for item in arg] 
        else: 
            return arg 
 
    def __init__(self, mapping): 
        self.__data = {} 
        for key, value in mapping.items(): 
            if keyword.iskeyword(key): 
                key += '_' 
            self.__data[key] = value 
 
    def __getattr__(self, name): 
        if hasattr(self.__data, name): 
            return getattr(self.__data, name) 
        else: 
            return FrozenJSON(self.__data[name])  

As a class method, the first argument __new__ gets is the class itself,
and the remaining arguments are the same that __init__ gets, except
for self.

The default behavior is to delegate to the __new__ of a super class. In
this case, we are calling __new__ from the object base class,
passing FrozenJSON as the only argument.

The remaining lines of __new__ are exactly as in the old build
method.

This was where FrozenJSON.build was called before; now we just
call the FrozenJSON class, which Python handles by calling
FrozenJSON.__new__.



The __new__ method gets the class as the first argument because, usually,
the created object will be an instance of that class. So, in
FrozenJSON.__new__, when the expression
super().__new__(cls) effectively calls
object.__new__(FrozenJSON), the instance built by the object
class is actually an instance of FrozenJSON—i.e., the __class__
attribute of the new instance will hold a reference to FrozenJSON—even
though the actual construction is performed by object.__new__,
implemented in C, in the guts of the interpreter.

The OSCON JSON dataset is structured in a way that is not helpful. For
example, the event at index 40, titled 'There *Will* Be Bugs' has
two speakers, 3471 and 5199. Finding the names of the speakers is
awkward, because those are serial numbers and the
Schedule.speakers list is not indexed by them. To get each speaker,
we must iterate over that list until we find a record with a matching serial
number. Our next task is restructuring the data, to prepare for automatic
retrieval of linked records.

Computed Properties

NOTE
We first saw the @property decorator in Chapter 11, section “A Hashable Vector2d”.
In Example 11-7, I used two properties in Vector2d just to make the x and y
attributes read-only. Here we will see properties that compute values, leading to a
discussion of how to cache such values.

The records in the 'events' list of the OSCON JSON data contain
integer serial numbers pointing to records in the 'speakers' and
'venues' lists. For example, this is the record for a conference talk (with
an elided description):



{ "serial": 33950, 
  "name": "There *Will* Be Bugs", 
  "event_type": "40-minute conference session", 
  "time_start": "2014-07-23 14:30:00", 
  "time_stop": "2014-07-23 15:10:00", 
  "venue_serial": 1449, 
  "description": "If you're pushing the envelope of 
programming...", 
  "website_url": 
"http://oscon.com/oscon2014/public/schedule/detail/33950", 
  "speakers": [3471, 5199], 
  "categories": ["Python"] }

We will implement an Event class with venue and speakers
properties to return the linked data automatically—in other words,
“dereferencing” the serial number. Given an Event instance, this is the
desired behavior:

Example 23-7.
    >>> event   
    <Event 'There *Will* Be Bugs'> 
    >>> event.venue   
    <Record serial=1449> 
    >>> event.venue.name   
    'Portland 251' 
    >>> for spkr in event.speakers:   
    ...     print(f'{spkr.serial}: {spkr.name}') 
    ... 
    3471: Anna Martelli Ravenscroft 
    5199: Alex Martelli

Given an Event instance…

…reading event.venue returns a Record object instead of a serial
number.

Now it’s easy to get the name of the venue.

The event.speakers property returns a list of Record instances.



As usual, we will build the code step-by-step, starting with the Record
class and a function to read the JSON data and return a dict with Record
instances.

Step 1: Data-driven Attribute Creation
Here is the doctest to guide this first step:

Example 23-8. Test driving schedule_v1.py (Example 23-9)
    >>> records = load(JSON_PATH)   
    >>> speaker = records['speaker.3471']   
    >>> speaker   
    <Record serial=3471> 
    >>> speaker.name, speaker.twitter   
    ('Anna Martelli Ravenscroft', 'annaraven')

load a dict with the JSON data.

The keys in records are strings built from the record type and serial.

speaker is an instance of the Record class defined in Example 23-9.

Fields from the original JSON can be retrieved as Record instance
attributes.

The code for schedule_v1.py is in Example 23-9.

Example 23-9. schedule_v1.py: reorganizing the OSCON schedule data
import json 
 
JSON_PATH = 'data/osconfeed.json' 
 
class Record: 
    def __init__(self, **kwargs): 
        self.__dict__.update(kwargs)   
 
    def __repr__(self): 
        cls_name = self.__class__.__name__ 
        return f'<{cls_name} serial={self.serial!r}>'   
 
def load(path=JSON_PATH): 



    records = {}   
    with open(path) as fp: 
        raw_data = json.load(fp)   
    for collection, raw_records in raw_data['Schedule'].items():   
        record_type = collection[:-1]   
        for raw_record in raw_records: 
            key = f'{record_type}.{raw_record["serial"]}'  
            records[key] = Record(**raw_record)   
    return records

This is a common shortcut to build an instance with attributes created
from keyword arguments (detailed explanation follows).

Use the serial field to build the custom Record representation
shown in Example 23-8.

load will ultimately return a dict of Record instances.

Parse the JSON, returning native Python objects: lists, dicts, strings,
numbers etc.

Iterate over the four top-level lists named 'conferences',
'events', 'speakers', and 'venues'.

record_type is the list name without the last character, so
speakers becomes speaker.

Build the key in the format 'speaker.3471'.

Create a Record instance and save it in records with the key

The Record.__init__ method illustrates an old Python hack. Recall
that the __dict__ of an object is where its attributes are kept—unless
__slots__ is declared in the class, as we saw in “Saving Memory with
__slots__”. So, updating an instance __dict__ with a mapping is a
quick way to create a bunch of attributes in that instance.7



NOTE
Depending on the application, the Record class may need to deal with keys that are not
valid attribute names, as we saw in “The Invalid Attribute Name Problem”. Dealing
with that issue would distract from the key idea of this example, and is not a problem in
the data set we are reading.

The definition of Record in Example 23-9 is so simple that you may be
wondering why I did not use it before, instead of the more complicated
FrozenJSON. There are two reasons. First, FrozenJSON works by
recursively converting the nested mappings and lists; Record doesn’t need
that because our converted dataset doesn’t have mappings nested in
mappings or lists. The records contain only strings, integers, lists of strings,
and lists of integers. Second reason: FrozenJSON provides access to the
embedded __data dict attributes—which we used to invoke methods
like .keys()—and now we don’t need that functionality either.

NOTE
The Python standard library provides at least two classes similar to Record, where
each instance has an arbitrary set of attributes built from keyword arguments given to
__init__: multiprocessing.Namespace and argparse.Namespace. I
wrote the simpler Record class to highlight the essential idea: __init__ updating
the instance __dict__.

After reorganizing the schedule dataset, we can enhance the Record class
to automatically retrieve venue and speaker records referenced in an
event record. We’ll use properties to do that in the next examples.

Step 2: Property to Retrieve a Linked Record
The goal of this next version is: given an event record, reading its venue
property will return a Record. This is similar to what the Django ORM

http://bit.ly/1cPLZzd
http://bit.ly/1cPM1qG


does when you access a ForeignKey field: instead of the key, you get the
linked model object.

We’ll start with the venue property. See the partial interaction in
Example 23-10 as an example.

Example 23-10. Extract from the doctests of schedule_v2.py
    >>> event = Record.fetch('event.33950')   
    >>> event   
    <Event 'There *Will* Be Bugs'> 
    >>> event.venue   
    <Record serial=1449> 
    >>> event.venue.name   
    'Portland 251' 
    >>> event.venue_serial   
    1449

The Record.fetch static method gets a Record or an Event from
the dataset.

Note that event is an instance of the Event class.

Accessing event.venue returns a Record instance.

Now it’s easy to find out the name of an event.venue.

The Event instance also has a venue_serial attribute, from the
JSON data.

Event is a subclass of Record adding a venue to retrieve linked
records, and a specialized __repr__ method.

The code for this section is in the schedule_v2.py module in the Fluent
Python 2e code repository. The example has nearly 60 lines, so I’ll present
it in parts, starting with the enhanced Record class.

Example 23-11. schedule_v2.py: Record class with a new fetch method.
import inspect   
import json 
 

https://github.com/fluentpython/example-code-2e


JSON_PATH = 'data/osconfeed.json' 
 
class Record: 
 
    __index = None   
 
    def __init__(self, **kwargs): 
        self.__dict__.update(kwargs) 
 
    def __repr__(self): 
        cls_name = self.__class__.__name__ 
        return f'<{cls_name} serial={self.serial!r}>' 
 
    @staticmethod   
    def fetch(key): 
        if Record.__index is None:   
            Record.__index = load() 
        return Record.__index[key]  

inspect will be used in load, listed in Example 23-13.

The __index private class attribute will eventually hold a reference to
the dict returned by load.

fetch is a staticmethod to make it explicit that its effect is always
exactly the same, no matter how it’s called.

Populate the Record.__index if needed.

Use it to retrieve the record with the given key.

TIP
This is one example where the use of staticmethod makes sense. The fetch
method always acts on the Record.__index class attribute, even if invoked as
Event.fetch(). It would be misleading to code it as a class method because the
cls first argument would not be used.



Now we get to the use of a property in the Event class, listed in
Example 23-12.

Example 23-12. schedule_v2.py: the Event class
class Event(Record):   
 
    def __repr__(self): 
        if hasattr(self, 'name'):   
            cls_name = self.__class__.__name__ 
            return f'<{cls_name} {self.name!r}>' 
        else: 
            return super().__repr__() 
 
    @property 
    def venue(self): 
        key = f'venue.{self.venue_serial}' 
        return self.__class__.fetch(key)  

Event extends Record.

If the instance has a name attribute, it is used to produce a custom
representation. Otherwise, delegate to the __repr__ from Record.

The venue property builds a key from the venue_serial attribute,
and passes it to the fetch class method, inherited from Record (the
reason for using self.__class__ is explained shortly).

The second line of the venue method of Example 23-12, returns
self.__class__.fetch(key). Why not simply call
self.fetch(key)? The simpler form works with the specific OSCON
dataset because there is no event record with a 'fetch' key. But, if an
event record had a key named 'fetch', then within that specific Event
instance, the reference self.fetch would retrieve the value of that field,
instead of the fetch class method that Event inherits from Record.
This is a subtle bug, and it could easily sneak through testing because it
depends on the dataset.



WARNING
When creating instance attribute names from data, there is always the risk of bugs due to
shadowing of class attributes—such as methods—or data loss through accidental
overwriting of existing instance attributes. These problems may explain why Python
dicts are not like JavaScript objects in the first place.

If the Record class behaved more like a mapping, implementing a
dynamic __getitem__ instead of a dynamic __getattr__, there
would be no risk of bugs from overwriting or shadowing. A custom
mapping is probably the Pythonic way to implement Record. But if I took
that road, we’d not be studying the tricks and traps of dynamic attribute
programming.

The final piece of this example is the revised load function in
Example 23-13.

Example 23-13. schedule_v2.py: the load function
def load(path=JSON_PATH): 
    records = {} 
    with open(path) as fp: 
        raw_data = json.load(fp) 
    for collection, raw_records in raw_data['Schedule'].items(): 
        record_type = collection[:-1]   
        cls_name = record_type.capitalize()   
        cls = globals().get(cls_name, Record)   
        if inspect.isclass(cls) and issubclass(cls, Record):   
            factory = cls   
        else: 
            factory = Record   
        for raw_record in raw_records:   
            key = f'{record_type}.{raw_record["serial"]}' 
            records[key] = factory(**raw_record)   
    return records

So far, no changes from the load in schedule_v1.py (Example 23-9).

Capitalize the record_type to get a possible class name; e.g.,
'event' becomes 'Event'.



Get an object by that name from the module global scope; get the
Record class if there’s no such object.

If the object just retrieved is a class, and is a subclass of Record…

…bind the factory name to it. This means factory may be any
subclass of Record, depending on the record_type.

Otherwise, bind the factory name to Record.

The for loop that creates the key and saves the records is the same as
before, except that…

…the object stored in records is constructed by factory, which
may be Record or a subclass like Event selected according to the
record_type.

Note that the only record_type that has a custom class is Event, but if
classes named Speaker or Venue are coded, load will automatically
use those classes when building and saving records, instead of the default
Record class.

We’ll now apply the same idea to a new speakers property in the
Events class.

Step 3: Property Overriding an Existing Attribute
The name of the venue property in Example 23-12 does not match a field
name in the Event records. Its data comes from a venue_serial
attribute. In contrast, each Event instance has speaker attribute with a
list of serial numbers, and we want to expose that information as a
speaker property returning a list of Record instances. This name clash
requires some special attention, as Example 23-14 reveals.

Example 23-14. schedule_v3.py: the speakers property



    @property 
    def speakers(self): 
        spkr_serials = self.__dict__['speakers']   
        fetch = self.__class__.fetch 
        return [fetch(f'speaker.{key}') 
                for key in spkr_serials]  

The data we want is in a speakers attribute, but we must retrieve it
directly from the instance __dict__ to avoid a recursive call to the
speakers property.

Return a list of all records with keys corresponding to the numbers in
spkr_serials.

Inside the speakers method, trying to read self.speakers will
invoke the property itself, quickly raising a RecursionError. However
if we read the same data via the self.__dict__['speakers'],
Python’s usual algorithm for retrieving attributes is bypassed, the property
is not called, and the recursion is avoided. For this reason, reading or
writing data directly to an object’s __dict__ is a common Python
metaprogramming trick.

WARNING
The interpreter evaluates obj.my_attr by first looking at the class of obj. If the
class has a property with the my_attr name, that property shadows an instance
attribute by the same name. Examples in “Properties Override Instance Attributes” will
demonstrate this, and Chapter 24 will reveal that a property is implemented as a
descriptor—a more powerful and general abstraction.

As I coded the list comprehension in Example 23-14, my programmer’s
lizard brain thought “This may be expensive.” Not really, because events in
the OSCON dataset have few speakers, so coding anything more
complicated would be premature optimization. However, caching a property
is a common need—and there are caveats. So let’s see how to do that in the
next examples.



Step 4: Bespoke Property Cache
Caching properties is a common need because there is an expectation that
an expression like event.venue should be inexpensive.  Some form of
caching could become necessary if the Record.fetch method behind
the Event properties needed to query a database or a Web API.

In Fluent Python, First Edition, I coded the custom caching logic for the
speakers method as shown in Example 23-15.

Example 23-15. Custom caching logic using hasattr disables key-sharing
optimization.
    @property 
    def speakers(self): 
        if not hasattr(self, '__speaker_objs'):   
            spkr_serials = self.__dict__['speakers'] 
            fetch = self.__class__.fetch 
            self.__speaker_objs = [fetch(f'speaker.{key}') 
                    for key in spkr_serials] 
        return self.__speaker_objs  

If the instance doesn’t have an attribute named __speaker_objs,
fetch the speaker objects and store them there.

Return self.__speaker_objs.

The handmade caching in Example 23-15 is straightforward, but creating an
attribute after the instance is initialized defeats the PEP 412—Key-Sharing
Dictionary optimization, as explained in [Link to Come]. Depending on the
size of the dataset, the difference in memory usage may be important.

A similar hand-rolled solution that works well with the key-sharing
optimization requires coding an __init__ for the Event class, to create
the necessary __speaker_objs initialized to None, and then checking
for that in the speakers method. See Example 23-16.

Example 23-16. Storage defined in __init__ to leverage key-sharing
optimization.
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class Event(Record): 
 
    def __init__(self, **kwargs): 
        self.__speaker_objs = None 
        super().__init__(**kwargs) 
 
# 15 lines omitted... 
    @property 
    def speakers(self): 
        if self.__speaker_objs is None: 
            spkr_serials = self.__dict__['speakers'] 
            fetch = self.__class__.fetch 
            self.__speaker_objs = [fetch(f'speaker.{key}') 
                    for key in spkr_serials] 
        return self.__speaker_objs

Example 23-15 and Example 23-16 illustrate simple caching techniques that
are fairly common in legacy Python codebases. However, in multi-threaded
programs handmade caches like those introduce race conditions that may
lead to corrupted data. If two threads are reading a property that was not
previously cached, the first thread will need to compute the data for the
cache attribute (__speaker_objs in the examples) and the second
thread may read a cached value that is not yet complete.

Fortunately, Python 3.8 introduced @functools.cached_property
decorator which is thread-safe. Unfortunately, it comes with a couple of
caveats, explained next.

Step 5: Caching Properties with functools
The functools module provides three decorators for caching. We saw
@cache and @lru_cache in “Memoization with functools.cache”
(Chapter 9). Python 3.8 introduced @cached_property.

The functools.cached_property decorator caches the result of the
method in an instance attribute with the same name. For example, in
Example 23-17, the value computed by the venue method is stored in a
venue attribute in self. After that, when client code tries to read venue,
the newly created venue instance attribute is used instead of the method.



Example 23-17. Simple use of a @cached_property.
    @cached_property 
    def venue(self): 
        key = f'venue.{self.venue_serial}' 
        return self.__class__.fetch(key)

In “Step 3: Property Overriding an Existing Attribute”, we saw that a
property shadows an instance attribute by the same name. If that is true,
how can @cached_property work? If the property overrides the
instance attribute, the venue attribute will be ignored and the venue
method will always be called, computing the key and running fetch
every time!

The answer is a bit sad: cached_property is a misnomer. The
@cached_property decorator does not create a full-fledged property.
While @property creates an overriding descriptor,
@cached_property creates a non-overriding descriptor. We will study
both kinds of descriptors in Chapter 24.

For now, let us set aside the underlying implementation and focus on the
differences between cached_property and property from a user
point of view. Raymond Hettinger explains them very well in the Python
Docs:

The mechanics of cached_property() are somewhat different from
property(). A regular property blocks attribute writes unless a setter
is defined. In contrast, a cached_property allows writes.

The cached_property decorator only runs on lookups and only
when an attribute of the same name doesn’t exist. When it does run, the
cached_property writes to the attribute with the same name.
Subsequent attribute reads and writes take precedence over the
cached_property method and it works like a normal attribute.

The cached value can be cleared by deleting the attribute. This allows the
cached_property method to run again.9

https://docs.python.org/3/library/functools.html#functools.cached_property


Back to our Event class: the specific behavior of @cached_property
makes it unsuitable to decorate speakers, because that method relies on
an existing attribute also named speakers, containing the serial numbers
of the event speakers.

WARNING
@cached_property has some important limitations:

It cannot be used as a drop-in replacement to @property if the decorated
method already depends on an instance attribute with the same name;

It cannot be used in a class that defines __slots__;

It defeats the key-sharing optimization of the instance __dict__, because it
creates an instance attribute after __init__.

Despite these limitations, @cached_property addresses a common
need in a simple way, and it is thread-safe. Its Python code is an example of
using a reentrant lock.

The @cached_property documentation recommends an alternative
solution that we can use with speakers: stacking @property and
@cache decorators, as shown in Example 23-18

Example 23-18. Stacking @property on @cache.
    @property   
    @cache   
    def speakers(self): 
        spkr_serials = self.__dict__['speakers'] 
        fetch = self.__class__.fetch 
        return [fetch(f'speaker.{key}') 
                for key in spkr_serials]

The order here is important, @property goes on top…

…of @cache.

https://github.com/python/cpython/blob/e6d0107e13ed957109e79b796984d3d026a8660d/Lib/functools.py#L926
https://docs.python.org/3/library/threading.html#threading.RLock
https://docs.python.org/3/library/functools.html#functools.cached_property


Recall from “Stacked decorators” the meaning of that syntax. The top three
lines of Example 23-18 are similar to:

speakers = property(cache(speakers))

The @cache is applied to speakers, returning a new function. That
function then is decorated by @property, which replaces it with a newly
constructed property.

This wraps up our discussion of read-only properties and caching
decorators. In the next section, we will create a read/write property.

Using a Property for Attribute Validation
Besides computing attribute values, properties are also used to enforce
business rules by changing a public attribute into an attribute protected by a
getter and setter without affecting client code. Let’s work through an
extended example.

LineItem Take #1: Class for an Item in an Order
Imagine an app for a store that sells organic food in bulk, where customers
can order nuts, dried fruit, or cereals by weight. In that system, each order
would hold a sequence of line items, and each line item could be
represented by a class as in Example 23-19.

Example 23-19. bulkfood_v1.py: the simplest LineItem class
class LineItem: 
 
    def __init__(self, description, weight, price): 
        self.description = description 
        self.weight = weight 
        self.price = price 
 
    def subtotal(self): 
        return self.weight * self.price



That’s nice and simple. Perhaps too simple. Example 23-20 shows a
problem.

Example 23-20. A negative weight results in a negative subtotal
    >>> raisins = LineItem('Golden raisins', 10, 6.95) 
    >>> raisins.subtotal() 
    69.5 
    >>> raisins.weight = -20  # garbage in... 
    >>> raisins.subtotal()    # garbage out... 
    -139.0

This is a toy example, but not as fanciful as you may think. Here is a true
story from the early days of Amazon.com:

We found that customers could order a negative quantity of books! And
we would credit their credit card with the price and, I assume, wait
around for them to ship the books.

—Jeff Bezos, Founder and CEO of Amazon.com

How do we fix this? We could change the interface of LineItem to use a
getter and a setter for the weight attribute. That would be the Java way,
and it’s not wrong.

On the other hand, it’s natural to be able set the weight of an item by just
assigning to it; and perhaps the system is in production with other parts
already accessing item.weight directly. In this case, the Python way
would be to replace the data attribute with a property.

LineItem Take #2: A Validating Property
Implementing a property will allow us to use a getter and a setter, but the
interface of LineItem will not change (i.e., setting the weight of a
LineItem will still be written as raisins.weight = 12).

Example 23-21 lists the code for a read/write weight property.

Example 23-21. bulkfood_v2.py: a LineItem with a weight property
class LineItem: 
 
    def __init__(self, description, weight, price): 
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        self.description = description 
        self.weight = weight   
        self.price = price 
 
    def subtotal(self): 
        return self.weight * self.price 
 
    @property   
    def weight(self):   
        return self.__weight   
 
    @weight.setter   
    def weight(self, value): 
        if value > 0: 
            self.__weight = value   
        else: 
            raise ValueError('value must be > 0')  

Here the property setter is already in use, making sure that no instances
with negative weight can be created.

@property decorates the getter method.

The methods that implement a property all have the name of the public
attribute: weight.

The actual value is stored in a private attribute __weight.

The decorated getter has a .setter attribute, which is also a
decorator; this ties the getter and setter together.

If the value is greater than zero, we set the private __weight.

Otherwise, ValueError is raised.

Note how a LineItem with an invalid weight cannot be created now:

>>> walnuts = LineItem('walnuts', 0, 10.00) 
Traceback (most recent call last): 
    ... 
ValueError: value must be > 0



Now we have protected weight from users providing negative values.
Although buyers usually can’t set the price of an item, a clerical error or a
bug may create a LineItem with a negative price. To prevent that, we
could also turn price into a property, but this would entail some repetition
in our code.

Remember the Paul Graham quote from Chapter 17: “When I see patterns
in my programs, I consider it a sign of trouble.” The cure for repetition is
abstraction. There are two ways to abstract away property definitions: using
a property factory or a descriptor class. The descriptor class approach is
more flexible, and we’ll devote Chapter 24 to a full discussion of it.
Properties are in fact implemented as descriptor classes themselves. But
here we will continue our exploration of properties by implementing a
property factory as a function.

But before we can implement a property factory, we need to have a deeper
understanding of properties.

A Proper Look at Properties
Although often used as a decorator, the property built-in is actually a
class. In Python, functions and classes are often interchangeable, because
both are callable and there is no new operator for object instantiation, so
invoking a constructor is no different than invoking a factory function. And
both can be used as decorators, as long as they return a new callable that is
a suitable replacement of the decorated function.

This is the full signature of the property constructor:

property(fget=None, fset=None, fdel=None, doc=None)

All arguments are optional, and if a function is not provided for one of
them, the corresponding operation is not allowed by the resulting property
object.



The property type was added in Python 2.2, but the @ decorator syntax
appeared only in Python 2.4, so for a few years, properties were defined by
passing the accessor functions as the first two arguments.

The “classic” syntax for defining properties without decorators is illustrated
in Example 23-22.

Example 23-22. bulkfood_v2b.py: same as Example 23-21 but without using
decorators
class LineItem: 
 
    def __init__(self, description, weight, price): 
        self.description = description 
        self.weight = weight 
        self.price = price 
 
    def subtotal(self): 
        return self.weight * self.price 
 
    def get_weight(self):   
        return self.__weight 
 
    def set_weight(self, value):   
        if value > 0: 
            self.__weight = value 
        else: 
            raise ValueError('value must be > 0') 
 
    weight = property(get_weight, set_weight)  

A plain getter.

A plain setter.

Build the property and assign it to a public class attribute.

The classic form is better than the decorator syntax in some situations; the
code of the property factory we’ll discuss shortly is one example. On the
other hand, in a class body with many methods, the decorators make it
explicit which are the getters and setters, without depending on the
convention of using get and set prefixes in their names.



The presence of a property in a class affects how attributes in instances of
that class can be found in a way that may be surprising at first. The next
section explains.

Properties Override Instance Attributes
Properties are always class attributes, but they actually manage attribute
access in the instances of the class.

In “Overriding Class Attributes” we saw that when an instance and its class
both have a data attribute by the same name, the instance attribute
overrides, or shadows, the class attribute—at least when read through that
instance. Example 23-23 illustrates this point.

Example 23-23. Instance attribute shadows class data attribute
>>> class Class:   
...     data = 'the class data attr' 
...     @property 
...     def prop(self): 
...         return 'the prop value' 
... 
>>> obj = Class() 
>>> vars(obj)   
{} 
>>> obj.data   
'the class data attr' 
>>> obj.data = 'bar'  
>>> vars(obj)   
{'data': 'bar'} 
>>> obj.data   
'bar' 
>>> Class.data   
'the class data attr'

Define Class with two class attributes: the data data attribute and the
prop property.

vars returns the __dict__ of obj, showing it has no instance
attributes.

Reading from obj.data retrieves the value of Class.data.



Writing to obj.data creates an instance attribute.

Inspect the instance to see the instance attribute.

Now reading from obj.data retrieves the value of the instance
attribute. When read from the obj instance, the instance data shadows
the class data.

The Class.data attribute is intact.

Now, let’s try to override the prop attribute on the obj instance.
Resuming the previous console session, we have Example 23-24.

Example 23-24. Instance attribute does not shadow class property
(continued from Example 23-23)
>>> Class.prop   
<property object at 0x1072b7408> 
>>> obj.prop   
'the prop value' 
>>> obj.prop = 'foo'   
Traceback (most recent call last): 
  ... 
AttributeError: can't set attribute 
>>> obj.__dict__['prop'] = 'foo'   
>>> vars(obj)   
{'data': 'bar', 'prop': 'foo'} 
>>> obj.prop   
'the prop value' 
>>> Class.prop = 'baz'   
>>> obj.prop   
'foo'

Reading prop directly from Class retrieves the property object itself,
without running its getter method.

Reading obj.prop executes the property getter.

Trying to set an instance prop attribute fails.



Putting 'prop' directly in the obj.__dict__ works.

We can see that obj now has two instance attributes: data and prop.

However, reading obj.prop still runs the property getter. The
property is not shadowed by an instance attribute.

Overwriting Class.prop destroys the property object.

Now obj.prop retrieves the instance attribute. Class.prop is not a
property anymore, so it no longer overrides obj.prop.

As a final demonstration, we’ll add a new property to Class, and see it
overriding an instance attribute. Example 23-25 picks up where
Example 23-24 left off.

Example 23-25. New class property shadows existing instance attribute
(continued from Example 23-24)
>>> obj.data   
'bar' 
>>> Class.data   
'the class data attr' 
>>> Class.data = property(lambda self: 'the "data" prop value')   
>>> obj.data   
'the "data" prop value' 
>>> del Class.data   
>>> obj.data   
'bar'

obj.data retrieves the instance data attribute.

Class.data retrieves the class data attribute.

Overwrite Class.data with a new property.

obj.data is now shadowed by the Class.data property.

Delete the property.



obj.data now reads the instance data attribute again.

The main point of this section is that an expression like obj.data does
not start the search for data in obj. The search actually starts at
obj.__class__, and only if there is no property named data in the
class, Python looks in the obj instance itself. This applies to overriding
descriptors in general, of which properties are just one example. Further
treatment of descriptors must wait for Chapter 24.

Now back to properties. Every Python code unit—modules, functions,
classes, methods—can have a docstring. The next topic is how to attach
documentation to properties.

Property Documentation
When tools such as the console help() function or IDEs need to display
the documentation of a property, they extract the information from the
__doc__ attribute of the property.

If used with the classic call syntax, property can get the documentation
string as the doc argument:

    weight = property(get_weight, set_weight, doc='weight in 
kilograms')

When property is deployed as a decorator, the docstring of the getter
method—the one with the @property decorator itself—is used as the
documentation of the property as a whole. Figure 23-1 shows the help
screens generated from the code in Example 23-26.



Figure 23-1. Screenshots of the Python console when issuing the commands help(Foo.bar) and
help(Foo). Source code in Example 23-26.

Example 23-26. Documentation for a property
class Foo: 
 
    @property 
    def bar(self): 
        '''The bar attribute''' 
        return self.__dict__['bar'] 
 



    @bar.setter 
    def bar(self, value): 
        self.__dict__['bar'] = value

Now that we have these property essentials covered, let’s go back to the
issue of protecting both the weight and price attributes of LineItem
so they only accept values greater than zero—but without implementing
two nearly identical pairs of getters/setters by hand.

Coding a Property Factory
We’ll create a factory to create quantity properties—so named because
the managed attributes represent quantities that can’t be negative or zero in
the application. Example 23-27 shows the clean look of the LineItem
class using two instances of quantity properties: one for managing the
weight attribute, the other for price.

Example 23-27. bulkfood_v2prop.py: the quantity property factory in use
class LineItem: 
    weight = quantity('weight')   
    price = quantity('price')   
 
    def __init__(self, description, weight, price): 
        self.description = description 
        self.weight = weight   
        self.price = price 
 
    def subtotal(self): 
        return self.weight * self.price  

Use the factory to define the first custom property, weight, as a class
attribute.

This second call builds another custom property, price.

Here the property is already active, making sure a negative or 0
weight is rejected.



The properties are also in use here, retrieving the values stored in the
instance.

Recall that properties are class attributes. When building each quantity
property, we need to pass the name of the LineItem attribute that will be
managed by that specific property. Having to type the word weight twice
in this line is unfortunate:

    weight = quantity('weight')

But avoiding that repetition is complicated because the property has no way
of knowing which class attribute name will be bound to it. Remember: the
right-hand side of an assignment is evaluated first, so when quantity()
is invoked, the weight class attribute doesn’t even exist.

NOTE
Improving the quantity property so that the user doesn’t need to retype the attribute
name is a nontrivial metaprogramming problem. We’ll see a workaround in Chapter 24,
but real solutions will have to wait until Chapter 25, because they require either a class
decorator or a metaclass.

Example 23-28 lists the implementation of the quantity property
factory.

Example 23-28. bulkfood_v2prop.py: the quantity property factory
def quantity(storage_name):   
 
    def qty_getter(instance):   
        return instance.__dict__[storage_name]   
 
    def qty_setter(instance, value):   
        if value > 0: 
            instance.__dict__[storage_name] = value   
        else: 
            raise ValueError('value must be > 0') 
 
    return property(qty_getter, qty_setter)  
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The storage_name argument determines where the data for each
property is stored; for the weight, the storage name will be
'weight'.

The first argument of the qty_getter could be named self, but that
would be strange because this is not a class body; instance refers to
the LineItem instance where the attribute will be stored.

qty_getter references storage_name, so it will be preserved in
the closure of this function; the value is retrieved directly from the
instance.__dict__ to bypass the property and avoid an infinite
recursion.

qty_setter is defined, also taking instance as first argument.

The value is stored directly in the instance.__dict__, again
bypassing the property.

Build a custom property object and return it.

The bits of Example 23-28 that deserve careful study revolve around the
storage_name variable. When you code each property in the traditional
way, the name of the attribute where you will store a value is hardcoded in
the getter and setter methods. But here, the qty_getter and
qty_setter functions are generic, and they depend on the
storage_name variable to know where to get/set the managed attribute
in the instance __dict__. Each time the quantity factory is called to
build a property, the storage_name must be set to a unique value.

The functions qty_getter and qty_setter will be wrapped by the
property object created in the last line of the factory function. Later
when called to perform their duties, these functions will read the
storage_name from their closures, to determine where to retrieve/store
the managed attribute values.



In Example 23-29, I create and inspect a LineItem instance, exposing the
storage attributes.

Example 23-29. bulkfood_v2prop.py: the quantity property factory
    >>> nutmeg = LineItem('Moluccan nutmeg', 8, 13.95) 
    >>> nutmeg.weight, nutmeg.price   
    (8, 13.95) 
    >>> sorted(vars(nutmeg).items())   
    [('description', 'Moluccan nutmeg'), ('price', 13.95), 
('weight', 8)]

Reading the weight and price through the properties shadowing the
namesake instance attributes.

Using vars to inspect the nutmeg instance: here we see the actual
instance attributes used to store the values.

Note how the properties built by our factory leverage the behavior
described in “Properties Override Instance Attributes”: the weight
property overrides the weight instance attribute so that every reference to
self.weight or nutmeg.weight is handled by the property
functions, and the only way to bypass the property logic is to access the
instance __dict__ directly.

The code in Example 23-29 may be a bit tricky, but it’s concise: it’s
identical in length to the decorated getter/setter pair defining just the
weight property in Example 23-21. The LineItem definition in
Example 23-27 looks much better without the noise of the getter/setters.

In a real system, that same kind of validation may appear in many fields,
across several classes, and the quantity factory would be placed in a
utility module to be used over and over again. Eventually that simple
factory could be refactored into a more extensible descriptor class, with
specialized subclasses performing different validations. We’ll do that in
Chapter 24.

Now let us wrap up the discussion of properties with the issue of attribute
deletion.



Handling Attribute Deletion
Recall from the Python tutorial that object attributes can be deleted using
the del statement:

del my_object.an_attribute

In practice, deleting attributes is not something we do every day in Python,
and the requirement to handle it with a property is even more unusual. But
it is supported, and I can think of a silly example to demonstrate it.

In a property definition, the @my_property.deleter decorator wraps
the method in charge of deleting the attribute managed by the property. As
promised, Example 23-30 is a silly example showing how to code a
property deleter.

Example 23-30. blackknight.py: inspired by the Black Knight character of
“Monty Python and the Holy Grail”
class BlackKnight: 
 
    def __init__(self): 
        self.phrases = [ 
            ('an arm', "'Tis but a scratch."), 
            ('another arm', "It's just a flesh wound."), 
            ('a leg', "I'm invincible!"), 
            ('another leg', "All right, we'll call it a draw.") 
        ] 
 
    @property 
    def member(self): 
        print('next member is:') 
        return self.phrases[0][0] 
 
    @member.deleter 
    def member(self): 
        member, text = self.phrases.pop(0) 
        print(f'BLACK KNIGHT (loses {member}) -- {text}')

The doctests in blackknight.py are in Example 23-31.

Example 23-31. blackknight.py: doctests for Example 23-30 (the Black
Knight never concedes defeat)



    >>> knight = BlackKnight() 
    >>> knight.member 
    next member is: 
    'an arm' 
    >>> del knight.member 
    BLACK KNIGHT (loses an arm) -- 'Tis but a scratch. 
    >>> del knight.member 
    BLACK KNIGHT (loses another arm) -- It's just a flesh wound. 
    >>> del knight.member 
    BLACK KNIGHT (loses a leg) -- I'm invincible! 
    >>> del knight.member 
    BLACK KNIGHT (loses another leg) -- All right, we'll call it a 
draw.

Using the classic call syntax instead of decorators, the fdel argument
configures the deleter function. For example, the member property would
be coded like this in the body of the BlackKnight class:

    member = property(member_getter, fdel=member_deleter)

If you are not using a property, attribute deletion can also be handled by
implementing the lower-level __delattr__ special method, presented in
“Special Methods for Attribute Handling”. Coding a silly class with
__delattr__ is left as an exercise to the procrastinating reader.

Properties are a powerful feature, but sometimes simpler or lower-level
alternatives are preferable. In the final section of this chapter, we’ll review
some of the core APIs that Python offers for dynamic attribute
programming.

Essential Attributes and Functions for
Attribute Handling
Throughout this chapter, and even before in the book, we’ve used some of
the built-in functions and special methods Python provides for dealing with
dynamic attributes. This section gives an overview of them in one place,
because their documentation is scattered in the official docs.



Special Attributes that Affect Attribute Handling
The behavior of many of the functions and special methods listed in the
following sections depend on three special attributes:

__class__

A reference to the object’s class (i.e., obj.__class__ is the same as
type(obj)). Python looks for special methods such as
__getattr__ only in an object’s class, and not in the instances
themselves.

__dict__

A mapping that stores the writable attributes of an object or class. An
object that has a __dict__ can have arbitrary new attributes set at any
time. If a class has a __slots__ attribute, then its instances may not
have a __dict__. See __slots__ (next).

__slots__

An attribute that may be defined in a class to limit the attributes its
instances can have. __slots__ is a tuple of strings naming the
allowed attributes.  If the '__dict__' name is not in __slots__,
then the instances of that class will not have a __dict__ of their own,
and only the named attributes will be allowed in them.

Built-In Functions for Attribute Handling
These five built-in functions perform object attribute reading, writing, and
introspection:

dir([object])

Lists most attributes of the object. The official docs say dir is intended
for interactive use so it does not provide a comprehensive list of
attributes, but an “interesting” set of names. dir can inspect objects
implemented with or without a __dict__. The __dict__ attribute

12

http://bit.ly/1HGvLDV


itself is not listed by dir, but the __dict__ keys are listed. Several
special attributes of classes, such as __mro__, __bases__, and
__name__ are not listed by dir either. If the optional object
argument is not given, dir lists the names in the current scope.

getattr(object, name[, default])

Gets the attribute identified by the name string from the object. This
may fetch an attribute from the object’s class or from a superclass. If no
such attribute exists, getattr raises AttributeError or returns
the default value, if given.

hasattr(object, name)

Returns True if the named attribute exists in the object, or can be
somehow fetched through it (by inheritance, for example). The
documentation explains: “This is implemented by calling getattr(object,
name) and seeing whether it raises an AttributeError or not.”

setattr(object, name, value)

Assigns the value to the named attribute of object, if the object
allows it. This may create a new attribute or overwrite an existing one.

vars([object])

Returns the __dict__ of object; vars can’t deal with instances of
classes that define __slots__ and don’t have a __dict__ (contrast
with dir, which handles such instances). Without an argument,
vars() does the same as locals(): returns a dict representing the
local scope.

Special Methods for Attribute Handling
When implemented in a user-defined class, the special methods listed here
handle attribute retrieval, setting, deletion, and listing.

https://docs.python.org/3/library/functions.html#hasattr


Attribute access using either dot notation or the built-in functions
getattr, hasattr, and setattr trigger the appropriate special
methods listed here. Reading and writing attributes directly in the instance
__dict__ does not trigger these special methods—and that’s the usual
way to bypass them if needed.

“Section 3.3.9. Special method lookup” of the “Data model” chapter warns:

For custom classes, implicit invocations of special methods are only
guaranteed to work correctly if defined on an object’s type, not in the
object’s instance dictionary.

In other words, assume that the special methods will be retrieved on the
class itself, even when the target of the action is an instance. For this
reason, special methods are not shadowed by instance attributes with the
same name.

In the following examples, assume there is a class named Class, obj is
an instance of Class, and attr is an attribute of obj.

For every one of these special methods, it doesn’t matter if the attribute
access is done using dot notation or one of the built-in functions listed in
“Built-In Functions for Attribute Handling”. For example, both obj.attr
and getattr(obj, 'attr', 42) trigger
Class.__getattribute__(obj, 'attr').

__delattr__(self, name)

Always called when there is an attempt to delete an attribute using the
del statement; e.g., del obj.attr triggers
Class.__delattr__(obj, 'attr').

__dir__(self)

Called when dir is invoked on the object, to provide a listing of
attributes; e.g., dir(obj) triggers Class.__dir__(obj).

__getattr__(self, name)

http://bit.ly/1cPO3qP


Called only when an attempt to retrieve the named attribute fails, after
the obj, Class, and its superclasses are searched. The expressions
obj.no_such_attr, getattr(obj, 'no_such_attr'), and
hasattr(obj, 'no_such_attr') may trigger
Class.__getattr__(obj, 'no_such_attr'), but only if an
attribute by that name cannot be found in obj or in Class and its
superclasses.

__getattribute__(self, name)

Always called when there is an attempt to retrieve the named attribute,
except when the attribute sought is a special attribute or method. Dot
notation and the getattr and hasattr built-ins trigger this method.
__getattr__ is only invoked after __getattribute__, and only
when __getattribute__ raises AttributeError. To retrieve
attributes of the instance obj without triggering an infinite recursion,
implementations of __getattribute__ should use
super().__getattribute__(obj, name).

__setattr__(self, name, value)

Always called when there is an attempt to set the named attribute. Dot
notation and the setattr built-in trigger this method; e.g., both
obj.attr = 42 and setattr(obj, 'attr', 42) trigger
Class.__setattr__(obj, 'attr', 42).

TIP
In practice, because they are unconditionally called and affect practically every attribute
access, the __getattribute__ and __setattr__ special methods are harder to
use correctly than __getattr__—which only handles nonexisting attribute names.
Using properties or descriptors is less error prone than defining these special methods.

This concludes our dive into properties, special methods, and other
techniques for coding dynamic attributes.



Chapter Summary
We started our coverage of dynamic attributes by showing practical
examples of simple classes to make it easier to deal with a JSON dataset.
The first example was the FrozenJSON class that converted nested dicts
and lists into nested FrozenJSON instances and lists of them. The
FrozenJSON code demonstrated the use of the __getattr__ special
method to convert data structures on the fly, whenever their attributes were
read. The last version of FrozenJSON showcased the use of the
__new__ constructor method to transform a class into a flexible factory of
objects, not limited to instances of itself.

We then converted the JSON dataset to a dict storing instances of a
Record class. The first rendition of Record was a few lines long and
introduced the “bunch” idiom: using
self.__dict__.update(**kwargs) to build arbitrary attributes
from keyword arguments passed to __init__. The second iteration added
the Event class implementing automatic retrieval of linked records
through properties. Computed property values sometimes require caching,
and we covered a few ways of doing that. After realizing that
@functools.cached_property does not implement the basic
behavior expected of methods decorated with the @property built-in, we
finally settled on the use of @cached_property in one method, and
@functools.cache decorated with @property in the other method.

Coverage of properties continued with the LineItem class, where a
property was deployed to protect a weight attribute from negative or zero
values that make no business sense. After a deeper look at property syntax
and semantics, we created a property factory to enforce the same validation
on weight and price, without coding multiple getters and setters. The
property factory leveraged subtle concepts—such as closures and the
instance attribute overriding by properties—to provide an elegant generic
solution using the same number of lines as a single hand-coded property
definition.



Finally, we had a brief look at handling attribute deletion with properties,
followed by an overview of the key special attributes, built-in functions,
and special methods that support attribute metaprogramming in the core
Python language.

Further Reading
The official documentation for the attribute handling and introspection
built-in functions is Chapter 2, “Built-in Functions” of The Python Standard
Library. The related special methods and the __slots__ special attribute
are documented in The Python Language Reference in “3.3.2. Customizing
attribute access”. The semantics of how special methods are invoked
bypassing instances is explained in “3.3.9. Special method lookup”. In
Chapter 4, “Built-in Types,” of the Python Standard Library, “4.13. Special
Attributes” covers __class__ and __dict__ attributes.

Python Cookbook, 3E by David Beazley and Brian K. Jones (O’Reilly) has
several recipes covering the topics of this chapter, but I will highlight three
that are outstanding: “Recipe 8.8. Extending a Property in a Subclass”
addresses the thorny issue of overriding the methods inside a property
inherited from a superclass; “Recipe 8.15. Delegating Attribute Access”
implements a proxy class showcasing most special methods from “Special
Methods for Attribute Handling” in this book; and the awesome “Recipe
9.21. Avoiding Repetitive Property Methods,” which was the basis for the
property factory function presented in Example 23-28.

Python in a Nutshell, 3E (O’Reilly), by Alex Martelli, Anna Ravenscroft,
and Steve Holden is rigorous and objective. They devote only three pages to
properties, but that’s because the book follows an axiomatic presentation
style: the preceding 15 pages or so provide a thorough description of the
semantics of Python classes from the ground up, including descriptors,
which are how properties are actually implemented under the hood. So by
the time Martelli et.al. get to properties, they can pack a lot of insights in
those three pages—including that which I selected to open this chapter.

http://bit.ly/1cPOrpc
http://bit.ly/1cPOlxV
http://bit.ly/1cPO3qP
http://bit.ly/1cPOodb
http://shop.oreilly.com/product/0636920027072.do
https://www.oreilly.com/library/view/python-in-a/9781491913833/


Bertrand Meyer—quoted in the Uniform Access Principle definition in this
chapter opening—pioneered the Design by Contract methodology, designed
the Eiffel language, and wrote the excellent Object-Oriented Software
Construction, 2E (Prentice-Hall). The book is more than 1,250 pages long,
and I confess I did not read it all, but the first six chapters provide one of
the best conceptual introductions to OO analysis and design I’ve seen.
Chapter 11 presents Design by Contract, and Chapter 35 offers his
assessments of some influential OO languages: Simula, Smalltalk, CLOS
(the Common Lisp Object System), Objective-C, C++, and Java, with brief
comments on some others. Only in the last page of the book he reveals that
the highly readable “notation” he uses as pseudocode is Eiffel.



SOAPBOX

Meyer’s Uniform Access Principle is aesthetically appealing. As a
programmer using an API, I shouldn’t have to care whether
product.price simply fetches a data attribute or performs a
computation. As a consumer and a citizen, I do care: in e-commerce
today the value of product.price often depends on who is asking,
so it’s certainly not a mere data attribute. In fact, it’s common practice
that the price is lower if the query comes from outside the store—say,
from a price-comparison engine. This effectively punishes loyal
customers who like to browse within a particular store. But I digress.

The previous digression does raise a relevant point for programming:
although the Uniform Access Principle makes perfect sense in an ideal
world, in reality users of an API may need to know whether reading
product.price is potentially too expensive or time-consuming.
That’s a problem with programming abstractions in general: they make
it hard to reason about the runtime cost of evaluating an expression. On
the other hand, abstractions let users accomplish more with less code.
It’s a trade-off. As usual in matters of software engineering, Ward
Cunningham’s original Wiki hosts insightful arguments about the merits
of the Uniform Access Principle.

In object-oriented programming languages, application or violations of
the Uniform Access Principle usually revolve around the syntax of
reading public data attributes versus invoking getter/setter methods.

Smalltalk and Ruby address this issue in a simple and elegant way: they
don’t support public data attributes at all. Every instance attribute in
these languages is private, so every access to them must be through
methods. But their syntax makes this painless: in Ruby,
product.price invokes the price getter; in Smalltalk, it’s simply
product price.

At the other end of the spectrum, the Java language allows the
programmer to choose among four access level modifiers.13

http://bit.ly/1HGvZuA
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The general practice does not agree with the syntax established by the
Java designers, though. Everybody in Java-land agrees that attributes
should be private, and you must spell it out every time, because it’s
not the default. When all attributes are private, all access to them from
outside the class must go through accessors. Java IDEs include
shortcuts for generating accessor methods automatically. Unfortunately,
the IDE is not so helpful when you must read the code six months later.
It’s up to you to wade through a sea of do-nothing accessors to find
those that add value by implementing some business logic.

Alex Martelli speaks for the majority of the Python community when he
calls accessors “goofy idioms” and then provides these examples that
look very different but do the same thing:

someInstance.widgetCounter += 1 
# rather than... 
someInstance.setWidgetCounter(someInstance.getWidgetCounter() 
+ 1)

Sometimes when designing APIs, I’ve wondered whether every method
that does not take an argument (besides self), returns a value (other
than None), and is a pure function (i.e., has no side effects) should be
replaced by a read-only property. In this chapter, the
LineItem.subtotal method (as in Example 23-27) would be a
good candidate to become a read-only property. Of course, this excludes
methods that are designed to change the object, such as
my_list.clear(). It would be a terrible idea to turn that into a
property, so that merely accessing my_list.clear would delete the
contents of the list!

In the Pingo.io GPIO library (mentioned in “The __missing__
Method”), much of the user-level API is based on properties. For
example, to read the current value of an analog pin, the user writes
pin.value, and setting a digital pin mode is written as pin.mode
= OUT. Behind the scenes, reading an analog pin value or setting a
digital pin mode may involve a lot of code, depending on the specific
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board driver. We decided to use properties in Pingo because we want
the API to be comfortable to use even in interactive environments like
iPython Notebook, and we feel pin.mode = OUT is easier on the
eyes and on the fingers than pin.set_mode(OUT).

Although I find the Smalltalk and Ruby solution cleaner, I think the
Python approach makes more sense than the Java one. We are allowed
to start simple, coding data members as public attributes, because we
know they can always be wrapped by properties (or descriptors, which
we’ll talk about in the next chapter).

__new__ Is Better Than new

Another example of the Uniform Access Principle (or a variation of it)
is the fact that function calls and object instantiation use the same
syntax in Python: my_obj = foo(), where foo may be a class or
any other callable.

Other languages influenced by C++ syntax have a new operator that
makes instantiation look different than a call. Most of the time, the user
of an API doesn’t care whether foo is a function or a class. Until
recently, I was under the impression that property was a function. In
normal usage, it makes no difference.

There are many good reasons for replacing constructors with
factories.  A popular motive is limiting the number of instances, by
returning previously built ones (as in the Singleton pattern). A related
use is caching expensive object construction. Also, sometimes it’s
convenient to return objects of different types depending on the
arguments given.

Coding a constructor is simpler; providing a factory adds flexibility at
the expense of more code. In languages that have a new operator, the
designer of an API must decide in advance whether to stick with a
simple constructor or invest in factory. If the initial choice is wrong, the
correction may be costly—all because new is an operator.
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Sometimes it may also be convenient to go the other way, and replace a
simple function with a class.

In Python, classes and functions are interchangeable in many situations.
Not only because there’s no new operator, but also because there is the
__new__ special method, which can turn a class into a factory
producing objects of different kinds (as we saw in “Flexible Object
Creation with __new__”) or returning prebuilt instances instead of
creating a new one every time.

This function-class duality would be easier to leverage if PEP 8 — Style
Guide for Python Code did not recommend CamelCase for class
names. On the other hand, dozens of classes in the standard library have
lowercase names (e.g., property, str, defaultdict, etc.). So
maybe the use of lowercase class names is a feature, and not a bug. But
however we look at it, the inconsistent capitalization of classes in the
Python standard library poses a usability problem.

Although calling a function is not different than calling a class, it’s
good to know which is which because of another thing we can do with a
class: subclassing. So I personally use CamelCase in every class that I
code, and I wish all classes in the Python standard library used the same
convention. I am looking at you, collections.OrderedDict and
collections.defaultdict.

1  Alex Martelli, Anna Ravenscroft & Steve Holden, Python in a Nutshell, 3rd Edition
(O’Reilly), p. 123.

2  Bertrand Meyer, Object-Oriented Software Construction, 2E, p. 57.

3  The OSCON conferences were a permanent casualty of the COVID-19 pandemic. The
original 744KB JSON file I used for these examples is still online as of December 19, 2020. A
copy named osconfeed.json can be found in the 23-dyn-attr-prop/oscon/data directory in the
example code repository

4  Two examples are AttrDict and addict.

5  The expression self.__data[name] is where a KeyError exception may occur.
Ideally, it should be handled and an AttributeError raised instead, because that’s what is

http://bit.ly/1HGvYH7
https://www.oreilly.com/library/view/python-in-a/9781491913833/
http://www.oreilly.com/pub/sc/osconfeed
https://github.com/fluentpython/example-code-2e
https://pypi.python.org/pypi/attrdict
https://pypi.python.org/pypi/addict


expected from __getattr__. The diligent reader is invited to code the error handling as an
exercise.

6  The source of the data is JSON, and the only collection types in JSON data are dict and
list.

7  By the way, Bunch is the name of the class used by Alex Martelli to share this tip in a recipe
from 2001 titled “The simple but handy collector of a bunch of named stuff class”. The
comments on Alex’s recipe suggest interesting enhancements.

8  This is actually a downside of Meyer’s Uniform Access Principle, which I mentioned in the
opening of this chapter. Read the optional “Soapbox” if you’re interested in this discussion.

9  Source: @functools.cached_property documentation. I know Raymond Hettinger authored
this explanation because he wrote it as a response to an issue I filed: bpo42781—
functools.cached_property docs should explain that it is non-overriding. Hettinger is a major
contributor to the official Python docs and standard library. He also wrote the excellent
Descriptor HowTo Guide, a key resource for Chapter 24.

10  Direct quote by Jeff Bezos in the Wall Street Journal story “Birth of a Salesman” (October 15,
2011).

11  This code is adapted from “Recipe 9.21. Avoiding Repetitive Property Methods” from Python
Cookbook, 3E by David Beazley and Brian K. Jones (O’Reilly).

12  Alex Martelli points out that, although __slots__ can be coded as a list, it’s better to be
explicit and always use a tuple, because changing the list in the __slots__ after the class
body is processed has no effect, so it would be misleading to use a mutable sequence there.

13  Including the no-name default that the Java Tutorial calls “package-private.”

14  Alex Martelli, Python in a Nutshell, 2E (O’Reilly), p. 101.

15  The reasons I am about to mention are given in the Dr. Dobbs Journal article titled “Java’s
new Considered Harmful”, by Jonathan Amsterdam and in “Consider static factory methods
instead of constructors”, which is Item 1 of the award-winning book Effective Java (Addison-
Wesley) by Joshua Bloch.

http://bit.ly/1cPM8T3
https://docs.python.org/3/library/functools.html#functools.cached_property
https://bugs.python.org/issue42781
http://bit.ly/1HGwlS3
http://on.wsj.com/1ECl8Dl
http://shop.oreilly.com/product/0636920027072.do
http://bit.ly/1cPOMIE
http://ubm.io/1cPP4PN


Chapter 24. Attribute
Descriptors

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 24th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

Learning about descriptors not only provides access to a larger toolset, it
creates a deeper understanding of how Python works and an
appreciation for the elegance of its design.

—Raymond Hettinger, Python core developer and guru

Descriptors are a way of reusing the same access logic in multiple
attributes. For example, field types in ORMs such as the Django ORM and
SQL Alchemy are descriptors, managing the flow of data from the fields in
a database record to Python object attributes and vice versa.

A descriptor is a class that implements a dynamic protocol consisting of the
__get__, __set__, and __delete__ methods. The property class
implements the full descriptor protocol. As usual with dynamic protocols,
partial implementations are OK. In fact, most descriptors we see in real
code implement only __get__ and __set__, and many implement only
one of these methods.
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Descriptors are a distinguishing feature of Python, deployed not only at the
application level but also in the language infrastructure. Besides properties,
other Python features that leverage descriptors are methods and the
classmethod and staticmethod decorators. Understanding
descriptors is key to Python mastery. This is what this chapter is about.

What’s new in this chapter
The Quantity descriptor example in “LineItem Take #4: Automatic
Storage Attribute Names” was dramatically simplified thanks to the
__set_name__ special method added to the descriptor protocol in
Python 3.6.

I removed the property factory example formerly in “LineItem Take #4:
Automatic Storage Attribute Names” because it became irrelevant: the point
was to show an alternative way of solving the Quantity problem, but
with the addition of __set_name__ the descriptor solution becomes
much simpler.

The AutoStorage class that used to appear in “LineItem Take #5: A
New Descriptor Type” is also gone because __set_name__ made it
obsolete.

Descriptor Example: Attribute Validation
As we saw in “Coding a Property Factory”, a property factory is a way to
avoid repetitive coding of getters and setters by applying functional
programming patterns. A property factory is a higher-order function that
creates a parameterized set of accessor functions and builds a custom
property instance from them, with closures to hold settings like the
storage_name. The object-oriented way of solving the same problem is
a descriptor class.

We’ll continue the series of LineItem examples where we left it, in
“Coding a Property Factory”, by refactoring the quantity property



factory into a Quantity descriptor class.

LineItem Take #3: A Simple Descriptor
A class implementing a __get__, a __set__, or a __delete__
method is a descriptor. You use a descriptor by declaring instances of it as
class attributes of another class.

We’ll create a Quantity descriptor and the LineItem class will use two
instances of Quantity: one for managing the weight attribute, the other
for price. A diagram helps, so take a look at Figure 24-1.



Figure 24-1. UML class diagram for LineItem using a descriptor class named Quantity. Underlined
attributes in UML are class attributes. Note that weight and price are instances of Quantity attached
to the LineItem class, but LineItem instances also have their own weight and price attributes where

those values are stored.

Note that the word weight appears twice in Figure 24-1, because there are
really two distinct attributes named weight: one is a class attribute of
LineItem, the other is an instance attribute that will exist in each
LineItem object. This also applies to price.

From now on, I will use the following definitions:

Descriptor class



A class implementing the descriptor protocol. That’s Quantity in
Figure 24-1.

Managed class

The class where the descriptor instances are declared as class attributes
—LineItem in Figure 24-1.

Descriptor instance

Each instance of a descriptor class, declared as a class attribute of the
managed class. In Figure 24-1, each descriptor instance is represented
by a composition arrow with an underlined name (the underline means
class attribute in UML). The black diamonds touch the LineItem
class, which contains the descriptor instances.

Managed instance

One instance of the managed class. In this example, LineItem
instances will be the managed instances (they are not shown in the class
diagram).

Storage attribute

An attribute of the managed instance that will hold the value of a
managed attribute for that particular instance. In Figure 24-1, the
LineItem instance attributes weight and price will be the storage
attributes. They are distinct from the descriptor instances, which are
always class attributes.

Managed attribute

A public attribute in the managed class that will be handled by a
descriptor instance, with values stored in storage attributes. In other
words, a descriptor instance and a storage attribute provide the
infrastructure for a managed attribute.



It’s important to realize that Quantity instances are class attributes of
LineItem. This crucial point is highlighted by the mills and gizmos in
Figure 24-2.

Figure 24-2. UML class diagram annotated with MGN (Mills & Gizmos Notation): classes are mills
that produce gizmos—the instances. The Quantity mill produces two gizmos with round heads, which
are attached to the LineItem mill: weight and price. The LineItem mill produces rectangular gizmos

that have their own weight and price attributes where those values are stored.



INTRODUCING MILLS & GIZMOS NOTATION

After explaining descriptors many times, I realized UML is not very
good at showing relationships involving classes and instances, like the
relationship between a managed class and the descriptor instances.  So
I invented my own “language,” the Mills & Gizmos Notation (MGN),
which I use to annotate UML diagrams.

MGN is designed to make very clear the distinction between classes
and instances. See Figure 24-3. In MGN, a class is drawn as a “mill,” a
complicated machine that produces gizmos. Classes/mills are always
machines with levers and dials. The gizmos are the instances, and they
look much simpler. When this book is rendered in color, gizmos have
the same color as the mill that made it.

Figure 24-3. MGN sketch showing the LineItem class making three instances, and Quantity
making two. One instance of Quantity is retrieving a value stored in a LineItem instance.

2



For this example, I drew LineItem instances as rows in a tabular
invoice, with three cells representing the three attributes
(description, weight, and price). Because Quantity
instances are descriptors, they have a magnifying glass to __get__
values and a claw to __set__ values. When we get to metaclasses,
you’ll thank me for these doodles.

Enough doodling for now. Here is the code: Example 24-1 shows the
Quantity descriptor class, and Example 24-2 lists a new LineItem
class using two instances of Quantity.

Example 24-1. bulkfood_v3.py: Quantity descriptors manage attributes in
LineItem
class Quantity:   
 
    def __init__(self, storage_name): 
        self.storage_name = storage_name   
 
    def __set__(self, instance, value):   
        if value > 0: 
            instance.__dict__[self.storage_name] = value   
        else: 
            msg = f'{self.storage_name} must be > 0' 
            raise ValueError(msg) 
 
    def __get__(self, instance, owner):   
        return instance.__dict__[self.storage_name]

Descriptor is a protocol-based feature; no subclassing is needed to
implement one.

Each Quantity instance will have a storage_name attribute: that’s
the name of the storage attribute to hold the value in the managed
instances.

__set__ is called when there is an attempt to assign to the managed
attribute. Here, self is the descriptor instance (i.e.,
LineItem.weight or LineItem.price), instance is the



managed instance (a LineItem instance), and value is the value
being assigned.

We must store attribute value directly into __dict__; calling
setattr(self, self.storage_name) would trigger the
__set__ method again, leading to infinite recursion.

We need to implement __get__ because the name of the managed
attribute may not the same as the storage_name. The owner
argument will be explained shortly.

Implementing __get__ is necessary because a user could write something
like this:

class House: 
    rooms = Quantity('number_of_rooms')

In the House class, the managed attribute is rooms, but the storage
attribute is number_of_rooms.

Note that __get__ receives three arguments: self, instance, and
owner. The owner argument is a reference to the managed class (e.g.,
LineItem), and it’s useful if you want the descriptor to support retrieving
a class attribute—perhaps to emulate Python’s default behavior of retrieving
a class attribute when the name is not found in the instance.

If a managed attribute, such as weight, is retrieved via the class like
LineItem.weight, the descriptor __get__ method receives None as
the value for the instance argument.

To support introspection and other metaprogramming tricks by the user, it’s
a good practice to make __get__ return the descriptor instance when the
managed attribute is accessed through the class. To do that, we’d code
__get__ like this:

    def __get__(self, instance, owner): 
        if instance is None: 



            return self 
        else: 
            return instance.__dict__[self.storage_name]

Example 24-2 demonstrates the use of Quantity in LineItem.

Example 24-2. bulkfood_v3.py: Quantity descriptors manage attributes in
LineItem
class LineItem: 
    weight = Quantity('weight')   
    price = Quantity('price')   
 
    def __init__(self, description, weight, price):   
        self.description = description 
        self.weight = weight 
        self.price = price 
 
    def subtotal(self): 
        return self.weight * self.price

The first descriptor instance will manage the weight attribute.

The second descriptor instance will manage the weight attribute.

The rest of the class body is as simple and clean as the original code in
bulkfood_v1.py (Example 23-19).

The code in Example 24-2 works as intended, preventing the sale of truffles
for $0:

>>> truffle = LineItem('White truffle', 100, 0) 
Traceback (most recent call last): 
    ... 
ValueError: value must be > 0
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WARNING
When coding descriptor __get__ and __set__ methods, keep in mind what the
self and instance arguments mean: self is the descriptor instance, and
instance is the managed instance. Descriptors managing instance attributes should
store values in the managed instances. That’s why Python provides the instance
argument to the descriptor methods.

It may be tempting, but wrong, to store the value of each managed attribute
in the descriptor instance itself. In other words, in the __set__ method,
instead of coding:

    instance.__dict__[self.storage_name] = value

the tempting but bad alternative would be:

    self.__dict__[self.storage_name] = value

To understand why this would be wrong, think about the meaning of the
first two arguments to __set__: self and instance. Here, self is
the descriptor instance, which is actually a class attribute of the managed
class. You may have thousands of LineItem instances in memory at one
time, but you’ll only have two instances of the descriptors: the class
attributes LineItem.weight and LineItem.price. So anything you
store in the descriptor instances themselves is actually part of a LineItem
class attribute, and therefore is shared among all LineItem instances.

A drawback of Example 24-2 is the need to repeat the names of the
attributes when the descriptors are instantiated in the managed class body. It
would be nice if the LineItem class could be declared like this:

class LineItem: 
    weight = Quantity() 
    price = Quantity() 
 
    # remaining methods as before



As it stands, Example 24-2 requires naming each Quantity explicitly,
which is not only inconvenient but dangerous: if a programmer copy and
pasting code forgets to edit both names and writes something like price
= Quantity('weight'), the program will misbehave badly,
clobbering the value of weight whenever the price is set.

The problem is that—as we saw in Chapter 6—the right-hand side of an
assignment is executed before the variable exists. The expression
Quantity() is evaluated to create a descriptor instance, and there is no
way the code in the Quantity class can guess the name of the variable to
which the descriptor will be bound (e.g., weight or price).

Thankfully, the descriptor protocol now supports the aptly named
__set_name__ special method. We’ll see how to use it next.

NOTE
Automatic naming of a descriptor storage attribute used to be a thorny issue. In Fluent
Python, First Edition I devoted several pages and lines of code in this chapter and the
next to presenting different solutions, including the use of a class decorator and then a
metaclasses in Chapter 25. This was greatly simplified in Python 3.6.

LineItem Take #4: Automatic Storage Attribute Names
To avoid retyping the attribute name in the descriptor instances, we’ll
implement __set_name__ to create storage_name of each
Quantity instance. The __set_name__ special method was added to
the descriptor protocol in Python 3.6. The interpreter calls
__set_name__ on each descriptor it finds in a class body—if the
descriptor implements it.

In Example 24-3, the LineItem descriptor class doesn’t need an
__init__. Instead, __set_item__ saves the name of the storage
attribute.

Example 24-3. bulkfood_v4.py: __set_name__ sets the name for each
Quantity descriptor instance
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class Quantity: 
 
    def __set_name__(self, owner, name):   
        self.storage_name = name           
 
    def __set__(self, instance, value):    
        if value > 0: 
            instance.__dict__[self.storage_name] = value 
        else: 
            msg = f'{self.storage_name} must be > 0' 
            raise ValueError(msg) 
 
    # no __get__ needed   
 
class LineItem: 
    weight = Quantity()   
    price = Quantity() 
 
    def __init__(self, description, weight, price): 
        self.description = description 
        self.weight = weight 
        self.price = price 
 
    def subtotal(self): 
        return self.weight * self.price

self is the descriptor instance (not the managed instance); owner is
the managed class; and name is the name of the attribute of owner to
which this descriptor instance was assigned in the class body of owner.

This is what the __init__ did in Example 24-2.

The __set__ method here is exactly the same as in Example 24-2.

Implementing __get__ is not necessary because the name of the
storage attribute matches the name of the managed attribute. The
expression product.price gets the price attribute directly from
the LineItem instance.

Now we don’t need to pass the managed attribute name to the
Quantity constructor. That was the goal for this version.



Looking at Example 24-3, you may think that’s a lot of code just for
managing a couple of attributes, but it’s important to realize that the
descriptor logic is now abstracted into a separate code unit: the Quantity
class. Usually we do not define a descriptor in the same module where it’s
used, but in a separate utility module designed to be used across the
application—even in many applications, if you are developing a framework.

With this in mind, Example 24-4 better represents the typical usage of a
descriptor.

Example 24-4. bulkfood_v4c.py: LineItem definition uncluttered; the
Quantity descriptor class now resides in the imported model_v4c module
import model_v4c as model   
 
 
class LineItem: 
    weight = model.Quantity()   
    price = model.Quantity() 
 
    def __init__(self, description, weight, price): 
        self.description = description 
        self.weight = weight 
        self.price = price 
 
    def subtotal(self): 
        return self.weight * self.price

Import the model_v4c module where Quantity is implemented.

Put model.Quantity to use.

Django users will notice that Example 24-4 looks a lot like a model
definition. It’s no coincidence: Django model fields are descriptors.

Because descriptors are implemented as classes, we can leverage
inheritance to reuse some of the code we have for new descriptors. That’s
what we’ll do in the following section.

LineItem Take #5: A New Descriptor Type



The imaginary organic food store hits a snag: somehow a line item instance
was created with a blank description and the order could not be fulfilled. To
prevent that, we’ll create a new descriptor, NonBlank. As we design
NonBlank, we realize it will be very much like the Quantity descriptor,
except for the validation logic.

This prompts a refactoring, producing Validated, an abstract class that
overrides the __set__ method, calling a validate method that must be
implemented by subclasses.

We’ll then rewrite Quantity and implement NonBlank by inheriting
from Validated and just coding the validate methods.

The relationship between Validated, Quantity, and NonBlank is an
application of the Template Method as described in the Design Patterns
classic:

A template method defines an algorithm in terms of abstract operations
that subclasses override to provide concrete behavior.

In Example 24-5, Validated.__set__ is the template method and
self.validate is the abstract operation.

Example 24-5. model_v5.py: the Validated ABC
import abc 
 
class Validated(abc.ABC): 
 
    def __set_name__(self, owner, name): 
        self.storage_name = name 
 
    def __set__(self, instance, value): 
        value = self.validate(self.storage_name, value)   
        instance.__dict__[self.storage_name] = value   
 
    @abc.abstractmethod 
    def validate(self, name, value):   
        """return validated value or raise ValueError"""

__set__ delegates validation to the validate method…
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…then uses the returned value to update the stored value.

validate is an abstract method; this is the template method.

Alex Martelli prefers to call this design pattern Self-Delegation, and I agree
it’s a more descriptive name: the first line of __set__ self-delegates to
validate.

The concrete Validated subclasses in this example are Quantity and
NonBlank, shown in Example 24-6.

Example 24-6. model_v5.py: Quantity and NonBlank, concrete Validated
subclasses
class Quantity(Validated): 
    """a number greater than zero""" 
 
    def validate(self, name, value):   
        if value <= 0: 
            raise ValueError(f'{name} must be > 0') 
        return value 
 
 
class NonBlank(Validated): 
    """a string with at least one non-space character""" 
 
    def validate(self, name, value): 
        value = value.strip() 
        if len(value) == 0: 
            raise ValueError(f'{name} cannot be blank') 
        return value  

Users of model_v5.py don’t need to know all these details. What matters is
that they get to use Quantity and NonBlank to automate the validation
of instance attributes. See the latest LineItem class in Example 24-7.

Example 24-7. bulkfood_v5.py: LineItem using Quantity and NonBlank
descriptors
import model_v5 as model   
 
class LineItem: 
    description = model.NonBlank()   
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    weight = model.Quantity() 
    price = model.Quantity() 
 
    def __init__(self, description, weight, price): 
        self.description = description 
        self.weight = weight 
        self.price = price 
 
    def subtotal(self): 
        return self.weight * self.price

Import the model_v5 module, giving it a friendlier name.

Put model.NonBlank to use. The rest of the code is unchanged.

The LineItem examples we’ve seen in this chapter demonstrate a typical
use of descriptors to manage data attributes. Descriptors like Quantity
are called overriding descriptors because its __set__ method overrides
(i.e., intercepts and overrules) the setting of an instance attribute by the
same name in the managed instance. However, there are also non-
overriding descriptors. We’ll explore this distinction in detail in the next
section.

Overriding Versus Non-Overriding
Descriptors
Recall that there is an important asymmetry in the way Python handles
attributes. Reading an attribute through an instance normally returns the
attribute defined in the instance, but if there is no such attribute in the
instance, a class attribute will be retrieved. On the other hand, assigning to
an attribute in an instance normally creates the attribute in the instance,
without affecting the class at all.

This asymmetry also affects descriptors, in effect creating two broad
categories of descriptors depending on whether the __set__ method is
implemented. If __set__ is present, the class is an overriding descriptor;



otherwise, it is a non-overriding descriptor. These terms will make sense as
we study descriptor behaviors in the next examples.

Observing the different descriptor categories requires a few classes, so we’ll
use the code in Example 24-8 as our testbed for the following sections.

TIP
Every __get__ and __set__ method in Example 24-8 calls print_args so their
invocations are displayed in a readable way. Understanding print_args and the
auxiliary functions cls_name and display is not important, so don’t get distracted
by them.

Example 24-8. descriptorkinds.py: simple classes for studying descriptor
overriding behaviors
### auxiliary functions for display only ### 
 
def cls_name(obj_or_cls): 
    cls = type(obj_or_cls) 
    if cls is type: 
        cls = obj_or_cls 
    return cls.__name__.split('.')[-1] 
 
def display(obj): 
    cls = type(obj) 
    if cls is type: 
        return '<class {}>'.format(obj.__name__) 
    elif cls in [type(None), int]: 
        return repr(obj) 
    else: 
        return '<{} object>'.format(cls_name(obj)) 
 
def print_args(name, *args): 
    pseudo_args = ', '.join(display(x) for x in args) 
    print('-> {}.__{}__({})'.format(cls_name(args[0]), name, 
pseudo_args)) 
 
 
### essential classes for this example ### 
 
class Overriding:   
    """a.k.a. data descriptor or enforced descriptor""" 



 
    def __get__(self, instance, owner): 
        print_args('get', self, instance, owner)   
 
    def __set__(self, instance, value): 
        print_args('set', self, instance, value) 
 
 
class OverridingNoGet:   
    """an overriding descriptor without ``__get__``""" 
 
    def __set__(self, instance, value): 
        print_args('set', self, instance, value) 
 
 
class NonOverriding:   
    """a.k.a. non-data or shadowable descriptor""" 
 
    def __get__(self, instance, owner): 
        print_args('get', self, instance, owner) 
 
 
class Managed:   
    over = Overriding() 
    over_no_get = OverridingNoGet() 
    non_over = NonOverriding() 
 
    def spam(self):   
        print('-> Managed.spam({})'.format(display(self)))

An overriding descriptor class with __get__ and __set__.

The print_args function is called by every descriptor method in this
example.

An overriding descriptor without a __get__ method.

No __set__ method here, so this is a non-overriding descriptor.

The managed class, using one instance of each of the descriptor classes.

The spam method is here for comparison, because methods are also
descriptors.



In the following sections, we will examine the behavior of attribute reads
and writes on the Managed class and one instance of it, going through each
of the different descriptors defined.

Overriding Descriptors
A descriptor that implements the __set__ method is an overriding
descriptor, because although it is a class attribute, a descriptor
implementing __set__ will override attempts to assign to instance
attributes. This is how Example 24-3 was implemented. Properties are also
overriding descriptors: if you don’t provide a setter function, the default
__set__ from the property class will raise AttributeError to
signal that the attribute is read-only. Given the code in Example 24-8,
experiments with an overriding descriptor can be seen in Example 24-9.

WARNING
Python contributors and authors use different terms when discussing these concepts. I
adopted “overriding descriptor” from the book Python in a Nutshell. The official Python
documentation uses “data descriptor”, but “overriding descriptor” highlights the special
behavior. Overriding descriptors are also called “enforced descriptors”. Synonyms for
non-overriding descriptors include “non-data descriptors” or “shadowable descriptors”.

Example 24-9. Behavior of an overriding descriptor: obj.over is an instance
of Overriding (Example 24-8)
    >>> obj = Managed()   
    >>> obj.over   
    -> Overriding.__get__(<Overriding object>, <Managed object>, 
        <class Managed>) 
    >>> Managed.over   
    -> Overriding.__get__(<Overriding object>, None, <class 
Managed>) 
    >>> obj.over = 7   
    -> Overriding.__set__(<Overriding object>, <Managed object>, 7) 
    >>> obj.over   
    -> Overriding.__get__(<Overriding object>, <Managed object>, 
        <class Managed>) 
    >>> obj.__dict__['over'] = 8   



    >>> vars(obj)   
    {'over': 8} 
    >>> obj.over   
    -> Overriding.__get__(<Overriding object>, <Managed object>, 
        <class Managed>)

Create Managed object for testing.

obj.over triggers the descriptor __get__ method, passing the
managed instance obj as the second argument.

Managed.over triggers the descriptor __get__ method, passing
None as the second argument (instance).

Assigning to obj.over triggers the descriptor __set__ method,
passing the value 7 as the last argument.

Reading obj.over still invokes the descriptor __get__ method.

Bypassing the descriptor, setting a value directly to the
obj.__dict__.

Verify that the value is in the obj.__dict__, under the over key.

However, even with an instance attribute named over, the
Managed.over descriptor still overrides attempts to read
obj.over.

Overriding Descriptor Without __get__
Properties and other overriding descriptors such as Django model fields
implement both __set__ and __get__, but it’s also possible to
implement only __set__, as we saw in Example 24-2. In this case, only
writing is handled by the descriptor. Reading the descriptor through an
instance will return the descriptor object itself because there is no
__get__ to handle that access. If a namesake instance attribute is created
with a new value via direct access to the instance __dict__, the



__set__ method will still override further attempts to set that attribute,
but reading that attribute will simply return the new value from the instance,
instead of returning the descriptor object. In other words, the instance
attribute will shadow the descriptor, but only when reading. See
Example 24-10.

Example 24-10. Overriding descriptor without __get__: obj.over_no_get is
an instance of OverridingNoGet (Example 24-8)
    >>> obj.over_no_get   
    <__main__.OverridingNoGet object at 0x665bcc> 
    >>> Managed.over_no_get   
    <__main__.OverridingNoGet object at 0x665bcc> 
    >>> obj.over_no_get = 7   
    -> OverridingNoGet.__set__(<OverridingNoGet object>, <Managed 
object>, 7) 
    >>> obj.over_no_get   
    <__main__.OverridingNoGet object at 0x665bcc> 
    >>> obj.__dict__['over_no_get'] = 9   
    >>> obj.over_no_get   
    9 
    >>> obj.over_no_get = 7   
    -> OverridingNoGet.__set__(<OverridingNoGet object>, <Managed 
object>, 7) 
    >>> obj.over_no_get   
    9

This overriding descriptor doesn’t have a __get__ method, so reading
obj.over_no_get retrieves the descriptor instance from the class.

The same thing happens if we retrieve the descriptor instance directly
from the managed class.

Trying to set a value to obj.over_no_get invokes the __set__
descriptor method.

Because our __set__ doesn’t make changes, reading
obj.over_no_get again retrieves the descriptor instance from the
managed class.



Going through the instance __dict__ to set an instance attribute
named over_no_get.

Now that over_no_get instance attribute shadows the descriptor, but
only for reading.

Trying to assign a value to obj.over_no_get still goes through the
descriptor set.

But for reading, that descriptor is shadowed as long as there is a
namesake instance attribute.

Non-overriding Descriptor
A descriptor that does not implement __set__ is a non-overriding
descriptor. Setting an instance attribute with the same name will shadow the
descriptor, rendering it ineffective for handling that attribute in that specific
instance. Methods and @functools.cached_property are
implemented as non-overriding descriptors. Example 24-11 shows the
operation of a non-overriding descriptor.

Example 24-11. Behavior of a non-overriding descriptor: obj.non_over is
an instance of non-overriding (Example 24-8)
    >>> obj = Managed() 
    >>> obj.non_over   
    -> NonOverriding.__get__(<NonOverriding object>, <Managed 
object>, 
        <class Managed>) 
    >>> obj.non_over = 7   
    >>> obj.non_over   
    7 
    >>> Managed.non_over   
    -> NonOverriding.__get__(<NonOverriding object>, None, <class 
Managed>) 
    >>> del obj.non_over   
    >>> obj.non_over   
    -> NonOverriding.__get__(<NonOverriding object>, <Managed 
object>, 
        <class Managed>)



obj.non_over triggers the descriptor __get__ method, passing
obj as the second argument.

Managed.non_over is a non-overriding descriptor, so there is no
__set__ to interfere with this assignment.

The obj now has an instance attribute named non_over, which
shadows the namesake descriptor attribute in the Managed class.

The Managed.non_over descriptor is still there, and catches this
access via the class.

If the non_over instance attribute is deleted…

Then reading obj.non_over hits the __get__ method of the
descriptor in the class, but note that the second argument is the managed
instance.

In the previous examples, we saw several assignments to an instance
attribute with the same name as a descriptor, and different results according
to the presence of a __set__ method in the descriptor.

The setting of attributes in the class cannot be controlled by descriptors
attached to the same class. In particular, this means that the descriptor
attributes themselves can be clobbered by assigning to the class, as the next
section explains.

Overwriting a Descriptor in the Class
Regardless of whether a descriptor is overriding or not, it can be
overwritten by assignment to the class. This is a monkey-patching
technique, but in Example 24-12 the descriptors are replaced by integers,
which would effectively break any class that depended on the descriptors
for proper operation.

Example 24-12. Any descriptor can be overwritten on the class itself



    >>> obj = Managed()   
    >>> Managed.over = 1   
    >>> Managed.over_no_get = 2 
    >>> Managed.non_over = 3 
    >>> obj.over, obj.over_no_get, obj.non_over   
    (1, 2, 3)

Create a new instance for later testing.

Overwrite the descriptor attributes in the class.

The descriptors are really gone.

Example 24-12 reveals another asymmetry regarding reading and writing
attributes: although the reading of a class attribute can be controlled by a
descriptor with __get__ attached to the managed class, the writing of a
class attribute cannot be handled by a descriptor with __set__ attached to
the same class.

TIP
In order to control the setting of attributes in a class, you have to attach descriptors to
the class of the class—in other words, the metaclass. By default, the metaclass of user-
defined classes is type, and you cannot add attributes to type. But in Chapter 25,
we’ll create our own metaclasses.

Let’s now focus on how descriptors are used to implement methods in
Python.

Methods Are Descriptors
A function within a class becomes a bound method because all user-defined
functions have a __get__ method, therefore they operate as descriptors
when attached to a class. Example 24-13 demonstrates reading the spam
method from the Managed class introduced in Example 24-8.



Example 24-13. A method is a non-overriding descriptor
    >>> obj = Managed() 
    >>> obj.spam   
    <bound method Managed.spam of <descriptorkinds.Managed object 
at 0x74c80c>> 
    >>> Managed.spam   
    <function Managed.spam at 0x734734> 
    >>> obj.spam = 7   
    >>> obj.spam 
    7

Reading from obj.spam retrieves a bound method object.

But reading from Managed.spam retrieves a function.

Assigning a value to obj.spam shadows the class attribute, rendering
the spam method inaccessible from the obj instance.

Functions do not implement __set__, therefore they are non-overriding
descriptors, as the last line of Example 24-13 shows.

The other key takeaway from Example 24-13 is that obj.spam and
Managed.spam retrieve different objects. As usual with descriptors, the
__get__ of a function returns a reference to itself when the access
happens through the managed class. But when the access goes through an
instance, the __get__ of the function returns a bound method object: a
callable that wraps the function and binds the managed instance (e.g., obj)
to the first argument of the function (i.e., self), like the
functools.partial function does (as seen in “Freezing Arguments
with functools.partial”).

For a deeper understanding of this mechanism, take a look at Example 24-
14.

Example 24-14. method_is_descriptor.py: a Text class, derived from
UserString
import collections 
 
 



class Text(collections.UserString): 
 
    def __repr__(self): 
        return 'Text({!r})'.format(self.data) 
 
    def reverse(self): 
        return self[::-1]

Now let’s investigate the Text.reverse method. See Example 24-15.

Example 24-15. Experiments with a method
    >>> word = Text('forward') 
    >>> word   
    Text('forward') 
    >>> word.reverse()   
    Text('drawrof') 
    >>> Text.reverse(Text('backward'))   
    Text('drawkcab') 
    >>> type(Text.reverse), type(word.reverse)   
    (<class 'function'>, <class 'method'>) 
    >>> list(map(Text.reverse, ['repaid', (10, 20, 30), 
Text('stressed')]))   
    ['diaper', (30, 20, 10), Text('desserts')] 
    >>> Text.reverse.__get__(word)   
    <bound method Text.reverse of Text('forward')> 
    >>> Text.reverse.__get__(None, Text)   
    <function Text.reverse at 0x101244e18> 
    >>> word.reverse   
    <bound method Text.reverse of Text('forward')> 
    >>> word.reverse.__self__   
    Text('forward') 
    >>> word.reverse.__func__ is Text.reverse   
    True

The repr of a Text instance looks like a Text constructor call that
would make an equal instance.

The reverse method returns the text spelled backward.

A method called on the class works as a function.

Note the different types: a function and a method.



Text.reverse operates as a function, even working with objects that
are not instances of Text.

Any function is a non-overriding descriptor. Calling its __get__ with
an instance retrieves a method bound to that instance.

Calling the function’s __get__ with None as the instance
argument retrieves the function itself.

The expression word.reverse actually invokes
Text.reverse.__get__(word), returning the bound method.

The bound method object has a __self__ attribute holding a
reference to the instance on which the method was called.

The __func__ attribute of the bound method is a reference to the
original function attached to the managed class.

The bound method object also has a __call__ method, which handles the
actual invocation. This method calls the original function referenced in
__func__, passing the __self__ attribute of the method as the first
argument. That’s how the implicit binding of the conventional self
argument works.

The way functions are turned into bound methods is a prime example of
how descriptors are used as infrastructure in the language.

After this deep dive into how descriptors and methods work, let’s go
through some practical advice about their use.

Descriptor Usage Tips
The following list addresses some practical consequences of the descriptor
characteristics just described:

Use property to Keep It Simple



The property built-in creates overriding descriptors implementing
both __set__ and __get__, even if you do not define a setter
method. The default __set__ of a property raises
AttributeError: can't set attribute, so a property is
the easiest way to create a read-only attribute, avoiding the issue
described next.

Read-only descriptors require __set__

If you use a descriptor class to implement a read-only attribute, you
must remember to code both __get__ and __set__, otherwise
setting a namesake attribute on an instance will shadow the descriptor.
The __set__ method of a read-only attribute should just raise
AttributeError with a suitable message.

Validation descriptors can work with __set__ only

In a descriptor designed only for validation, the __set__ method
should check the value argument it gets, and if valid, set it directly in
the instance __dict__ using the descriptor instance name as key. That
way, reading the attribute with the same name from the instance will be
as fast as possible, because it will not require a __get__. See the code
for Example 24-2.

Caching can be done efficiently with __get__ only

If you code just the __get__ method, you have a non-overriding
descriptor. These are useful to make some expensive computation and
then cache the result by setting an attribute by the same name on the
instance. The namesake instance attribute will shadow the descriptor, so
subsequent access to that attribute will fetch it directly from the instance
__dict__ and not trigger the descriptor __get__ anymore. The
@functools.cached_property decorator actually produces a
non-overriding descriptor.

Non-special methods can be shadowed by instance attributes
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Because functions and methods only implement __get__, they are
non-overriding descriptors. A simple assignment like
my_obj.the_method = 7 means that further access to
the_method through that instance will retrieve the number 7—
without affecting the class or other instances. However, this issue does
not interfere with special methods. The interpreter only looks for special
methods in the class itself, in other words, repr(x) is executed as
x.__class__.__repr__(x), so a __repr__ attribute defined in
x has no effect on repr(x). For the same reason, the existence of an
attribute named __getattr__ in an instance will not subvert the
usual attribute access algorithm.

The fact that non-special methods can be overridden so easily in instances
may sound fragile and error-prone, but I personally have never been bitten
by this in more than 20 years of Python coding. On the other hand, if you
are doing a lot of dynamic attribute creation, where the attribute names
come from data you don’t control (as we did in the earlier parts of this
chapter), then you should be aware of this and perhaps implement some
filtering or escaping of the dynamic attribute names to preserve your sanity.

NOTE
The FrozenJSON class in Example 23-5 is safe from instance attribute shadowing
methods because its only methods are special methods and the build class method.
Class methods are safe as long as they are always accessed through the class, as I did
with FrozenJSON.build in Example 23-5—later replaced by __new__ in
Example 23-6. The Record and Event presented in “Computed Properties” are also
safe: they implement only special methods, static methods, and properties. Properties
are overriding descriptors, so they are not shadowed by instance attributes.

To close this chapter, we’ll cover two features we saw with properties that
we have not addressed in the context of descriptors: documentation and
handling attempts to delete a managed attribute.



Descriptor docstring and Overriding Deletion
The docstring of a descriptor class is used to document every instance of the
descriptor in the managed class. Figure 24-4 shows the help displays for the
LineItem class with the Quantity and NonBlank descriptors from
Examples 24-6 and 24-7.





Figure 24-4. Screenshots of the Python console when issuing the commands help(LineItem.weight)
and help(LineItem)

That is somewhat unsatisfactory. In the case of LineItem, it would be
good to add, for example, the information that weight must be in
kilograms. That would be trivial with properties, because each property
handles a specific managed attribute. But with descriptors, the same
Quantity descriptor class is used for weight and price.

The second detail we discussed with properties but have not addressed with
descriptors is handling attempts to delete a managed attribute. That can be
done by implementing a __delete__ method alongside or instead of the
usual __get__ and/or __set__ in the descriptor class. Coding a silly
descriptor class with __delete__ is left as an exercise to the leisurely
reader.
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Chapter Summary
The first example of this chapter was a continuation of the LineItem
examples from Chapter 23. In Example 24-2, we replaced properties with
descriptors. We saw that a descriptor is a class that provides instances that
are deployed as attributes in the managed class. Discussing this mechanism
required special terminology, introducing terms such as managed instance
and storage attribute.

In “LineItem Take #4: Automatic Storage Attribute Names”, we removed
the requirement that Quantity descriptors were declared with an explicit
storage_name, which was redundant and error-prone. The solution was
to implement the __set_name__ special method in Quantity, to save
the name of the managed property as self.storage_name.

“LineItem Take #5: A New Descriptor Type” showed how to subclass an
abstract descriptor class to share code while building specialized descriptors
with some common functionality.

We then looked at the different behavior of descriptors providing or
omitting the __set__ method, making the crucial distinction between
overriding and non-overriding descriptors, a.k.a. data and non-data
descriptors. Through detailed testing we uncovered when descriptors are in
control and when they are shadowed, bypassed, or overwritten.

Following that, we studied a particular category of non-overriding
descriptors: methods. Console experiments revealed how a function
attached to a class becomes a method when accessed through an instance,
by leveraging the descriptor protocol.

To conclude the chapter, “Descriptor Usage Tips” presented practical tips,
and “Descriptor docstring and Overriding Deletion” provided a brief look at
how descriptor deletion and documentation work.



NOTE
As noted in “What’s new in this chapter”, several examples in this chapter became much
simpler thanks to the __set_name__ special method of the descriptor protocol, added
in Python 3.6. That’s language evolution!

Further Reading
Besides the obligatory reference to the “Data Model” chapter, Raymond
Hettinger’s Descriptor HowTo Guide is a valuable resource—part of the
HowTo collection in the official Python documentation.

As usual with Python object model subjects, Martelli, Ravenscroft &
Holden’s Python in a Nutshell, 3E (O’Reilly) is authoritative and objective.
Martelli also has a presentation titled Python’s Object Model, which covers
properties and descriptors in depth (slides, video).

WARNING
Beware that any coverage of descriptors written or recorded before PEP 487 was
adopted in 2016 is likely to contain examples that are needlessly complicated today,
because __set_name__ was not supported in Python versions prior to 3.6.

For more practical examples, Python Cookbook, 3E by David Beazley and
Brian K. Jones (O’Reilly), has many recipes illustrating descriptors, of
which I want to highlight “6.12. Reading Nested and Variable-Sized Binary
Structures,” “8.10. Using Lazily Computed Properties,” “8.13.
Implementing a Data Model or Type System,” and “9.9. Defining
Decorators As Classes”—the latter of which addresses deep issues with the
interaction of function decorators, descriptors, and methods, explaining how
a function decorator implemented as a class with __call__ also needs to
implement __get__ if it wants to work with decorating methods as well
as functions.

http://bit.ly/1GsZwss
http://bit.ly/1HGwlS3
http://bit.ly/1HGwnsV
http://bit.ly/1HGwoxa
http://bit.ly/1HGwp46


PEP 487—Simpler customisation of class creation introduced the
__set_name__ special method, and it includes an example of a
validating descriptor.

https://www.python.org/dev/peps/pep-0487/
https://www.python.org/dev/peps/pep-0487/#trait-descriptors


SOAPBOX

The Design of self

“Worse is Better” is a design philosophy described by Richard P.
Gabriel in The Rise of Worse is Better. The first priority of this
philosophy is “Simplicity,” which Gabriel presents as:

The design must be simple, both in implementation and interface. It is
more important for the implementation to be simple than the
interface. Simplicity is the most important consideration in a design.

The requirement to explicitly declare self as a first argument in
methods is an application of “Worse is Better” in Python. The
implementation is simple—elegant even—at the expense of the user
interface: a method signature like def zfill(self, width):
doesn’t visually match the invocation pobox.zfill(8).

Modula-3 introduced that convention—and the use of the self
identifier—but there is a difference: in Modula-3, interfaces are
declared separately from their implementation, and in the interface
declaration the self argument is omitted, so from the user’s
perspective, a method appears in an interface declaration with the same
explicit arguments it takes.

One improvement in this regard has been the error messages: for a user-
defined method with one argument besides self, if the user invokes
obj.meth(), Python 2.7 raised TypeError: meth() takes
exactly 2 arguments (1 given). In Python 3 the message is
clearer: the confusing argument count is not mentioned, but the missing
argument is named: meth() missing 1 required
positional argument: 'x'.

Besides the use of self as an explicit argument, the requirement to
qualify all access to instance attributes with self is also criticized.  I
personally don’t mind typing the self qualifier: it’s good to
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distinguish local variables from attributes. My issue is with the use of
self in the def statement. But I got used to it.

Anyone who is unhappy about the explicit self in Python can feel a
lot better by considering the baffling semantics of the implicit this in
JavaScript. Guido had some good reasons to make self work as it
does, and he wrote about them in “Adding Support for User-Defined
Classes”, a post on his blog, The History of Python.

1  Raymond Hettinger, Descriptor HowTo Guide.

2  Classes and instances are drawn as rectangles in UML class diagrams. There are visual
differences, but instances are rarely shown in class diagrams, so developers may not recognize
them as such.

3  White truffles cost thousands of dollars per pound. Disallowing the sale of truffles for $0.01 is
left as an exercise for the enterprising reader. I know a person who actually bought an $1,800
encyclopedia of statistics for $18 because of an error in an online store (not Amazon.com in
this case).

4  More precisely, __set_name__ is called by type.__new__—the constructor of objects
representing classes. The type built-in is actually a metaclass: the default class of user-
defined classes. This is hard to grasp at first, but rest assured: Chapter 25 is devoted to the
dynamic configuration of classes, including the concept of metaclasses.

5  Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, p. 326.

6  Slide #50 of Alex Martelli’s Python Design Patterns talk. Highly recommended.

7  Python is not consistent in such messages. Trying to change the c.real attribute of a
complex number gets AttributeError: read-only attribute, but an attempt to
change c.conjugate (a method of complex), results in AttributeError:
'complex' object attribute 'conjugate' is read-only.

8  Customizing the help text for each descriptor instance is surprisingly hard. One solution
requires dynamically building a wrapper class for each descriptor instance.

9  See, for example, A. M. Kuchling’s famous Python Warts post (archived); Kuchling himself
is not so bothered by the self qualifier, but he mentions it—probably echoing opinions from
comp.lang.python.

http://bit.ly/1CAyiQY
https://docs.python.org/3/howto/descriptor.html
http://www.aleax.it/goo_pydp.pdf
http://bit.ly/1cPSaDh


Chapter 25. Class
Metaprogramming

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 25th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the author at fluentpython2e@ramalho.org.

Everyone knows that debugging is twice as hard as writing a program in
the first place. So if you’re as clever as you can be when you write it, how
will you ever debug it?

—Brian W. Kernighan and P. J. Plauger, The Elements of
Programming Style

Class metaprogramming is the art of creating or customizing classes at
runtime. Classes are first-class objects in Python, so a function can be used
to create a new class at any time, without using the class keyword. Class
decorators are also functions, but designed to inspect, change, and even
replace the decorated class with another class. Finally, metaclasses are the
most advanced tool for class metaprogramming: they let you create whole
new categories of classes with special traits, such as the abstract base
classes we’ve already seen.
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Metaclasses are powerful, but hard to justify and even harder to get right.
Class decorators solve many of the same problems and are easier to
understand. Furthermore, Python 3.6 implemented PEP 487—Simpler
customisation of class creation, providing special methods supporting tasks
that previously required metaclasses or class decorators.

This chapter presents the class metaprogramming techniques in ascending
order of complexity.

WARNING
This is an exciting topic, and it’s easy to get carried away. So I must offer this advice:

For the sake of readability and maintainability, you should probably avoid the
techniques described in this chapter in application code.

On the other hand, these are the tools of the trade if you want to write the next great
Python framework.

What’s new in this chapter
All the code in the Class Metaprogramming chapter of Fluent Python, First
Edition still runs correctly. However, some of the previous examples no
longer represent the simplest solutions, in light of new features added since
Python 3.6.

I replaced those examples with different ones, highlighting Python’s new
metaprogramming features or adding further requirements to justify the use
of the more advanced techniques. Some of the new examples leverage type
hints to provide class builders similar to the @dataclass decorator and
typing.NamedTuple.

“Metaclasses in the Real world” is a new section with some high level
considerations about the applicability of metaclasses.

2
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TIP
Some of the best refactorings are removing code made redundant by newer and simpler
ways of solving the same problems. This applies to production code as well as books.

We’ll get started by reviewing attributes and methods defined in the Python
Data Model for all classes.

Classes as Objects
Like most program entities in Python, classes are also objects. Every class
has a number of attributes defined in the Python Data Model, documented
in “4.13. Special Attributes” of the “Built-in Types” chapter in the Library
Reference. Three of those attributes appeared several times in the book
already: __class__, __name__, and __mro__. Other class standard
attributes are:

cls.__bases__

The tuple of base classes of the class.

cls.__qualname__

The qualified name of a class or function, which is a dotted path from
the global scope of the module to the class definition. This is relevant
when the class is defined inside another class. For example, in a Django
model class such as Ox, there is an inner class called Meta. The
__qualname__ of Meta is Ox.Meta, but its __name__ is just
Meta. The specification for this attribute is PEP-3155 — Qualified
name for classes and functions.

cls.__subclasses__()

This method returns a list of the immediate subclasses of the class. The
implementation uses weak references to avoid circular references
between the superclass and its subclasses—which hold a strong

http://bit.ly/1cPOodb
https://docs.djangoproject.com/en/3.2/topics/db/models/#meta-options
http://www.python.org/dev/peps/pep-3155


reference to the superclasses in their __bases__ attribute. The
method lists subclasses currently in memory.

cls.mro()

The interpreter calls this method when building a class to obtain the
tuple of superclasses that is stored in the __mro__ attribute of the
class. A metaclass can override this method to customize the method
resolution order of the class under construction.

TIP
None of the attributes mentioned in this section are listed by the dir(…) function.

Now, if a class is an object, what is the class of a class?

type: The Built-in Class Factory
We usually think of type as a function that returns the class of an object,
because that’s what type(my_object) does: it returns
my_object.__class__.

However, type is a class that creates a new class when invoked with three
arguments.

Consider this simple class:

class MyClass(MySuperClass, MyMixin): 
    x = 42 
 
    def x2(self): 
        return self.x * 2

Using the type constructor, you can create MyClass at runtime with this
code:



MyClass = type('MyClass', (MySuperClass, MyMixin), 
               {'x': 42, 'x2': lambda self: self.x * 2})

That type call is functionally equivalent to the previous class
MyClass… block statement.

When Python reads a class statement, it calls type to build the class
object with these parameters:

name

The identifier that appears after the class keyword; e.g.: MyClass.

bases

The tuple of superclasses given in parenthesis after the class identifier,
or (object,) if superclasses are not mentioned in the class
statement.

dict

A mapping of attribute names to values. Callables become methods;
other values become class attributes.

NOTE
The type constructor accepts optional keyword arguments. That’s an advanced feature
not covered in this book.

The type class is a metaclass: a class that builds classes. In other words,
instances of the type class are classes. The standard library provides a few
other metaclasses, but type is the default.

>>> type(7) 
<class 'int'> 
>>> type(int) 
<class 'type'> 
>>> type(OSError) 
<class 'type'> 



>>> class Whatever: 
...     pass 
... 
>>> type(Whatever) 
<class 'type'>

We’ll build custom metaclasses in “Metaclasses 101”.

Next, we’ll use the type built-in to make a function that builds classes.

A Class Factory Function
The standard library has a class factory function that appears several times
in this book: collections.namedtuple. In Chapter 5 we also saw
collections.NamedTuple and @dataclass. All of these class
builders leverage techniques covered in this chapter.

We’ll start with a super simple factory for classes of mutable objects—the
simplest possible replacement for @dataclass.

Suppose I’m writing a pet shop application and I want to store data for dogs
as simple records. But I don’t want to write boilerplate like this:

class Dog: 
    def __init__(self, name, weight, owner): 
        self.name = name 
        self.weight = weight 
        self.owner = owner

Boring… each field name appears three times, and that boilerplate doesn’t
even buy us a nice repr:

>>> rex = Dog('Rex', 30, 'Bob') 
>>> rex 
<__main__.Dog object at 0x2865bac>

Taking a hint from collections.namedtuple, let’s create a
record_factory that creates simple classes like Dog on the fly.
Example 25-1 shows how it should work.



Example 25-1. Testing record_factory, a simple class factory
    >>> Dog = record_factory('Dog', 'name weight owner')   
    >>> rex = Dog('Rex', 30, 'Bob') 
    >>> rex   
    Dog(name='Rex', weight=30, owner='Bob') 
    >>> name, weight, _ = rex   
    >>> name, weight 
    ('Rex', 30) 
    >>> "{2}'s dog weighs {1}kg".format(*rex)   
    "Bob's dog weighs 30kg" 
    >>> rex.weight = 32   
    >>> rex 
    Dog(name='Rex', weight=32, owner='Bob') 
    >>> Dog.__mro__   
    (<class 'factories.Dog'>, <class 'object'>)

Factory can be called like namedtuple: class name, followed by
attribute names separated by spaces in a single strings.

Nice repr.

Instances are iterable, so they can be conveniently unpacked on
assignment…

…or when passing to functions like format.

A record instance is mutable.

The newly created class inherits from object—no relationship to our
factory.

The code for record_factory is in Example 25-2.

Example 25-2. record_factory.py: a simple class factory
from typing import Union, Any 
from collections.abc import Iterable, Iterator 
 
FieldNames = Union[str, Iterable[str]]   
 
def record_factory(cls_name: str, field_names: FieldNames) -> 
type[tuple]:   
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    slots = parse_identifiers(field_names)   
 
    def __init__(self, *args, **kwargs) -> None:   
        attrs = dict(zip(self.__slots__, args)) 
        attrs.update(kwargs) 
        for name, value in attrs.items(): 
            setattr(self, name, value) 
 
    def __iter__(self) -> Iterator[Any]:   
        for name in self.__slots__: 
            yield getattr(self, name) 
 
    def __repr__(self):   
        values = ', '.join( 
            '{}={!r}'.format(*i) for i in zip(self.__slots__, self) 
        ) 
        cls_name = self.__class__.__name__ 
        return f'{cls_name}({values})' 
 
    cls_attrs = dict(   
        __slots__=slots, 
        __init__=__init__, 
        __iter__=__iter__, 
        __repr__=__repr__, 
    ) 
 
    return type(cls_name, (object,), cls_attrs)   
 
 
def parse_identifiers(names: FieldNames) -> tuple[str, ...]: 
    if isinstance(names, str): 
        names = names.replace(',', ' ').split()   
    if not all(s.isidentifier() for s in names): 
        raise ValueError('names must all be valid identifiers') 
    return tuple(names)

User can provide field names as a single string or an iterable of strings.

Accept arguments like the first two of collections.namedtuple;
return a type—i.e. a class—that behaves like a tuple.

Build a tuple of attribute names, this will be the __slots__ attribute
of the new class.



This function will become the __init__ method in the new class. It
accepts positional and/or keyword arguments. There’s no point in
adding type hints to __init__, because the actual types are Any.

Yield the field values in the order given by __slots__.

Produce the nice repr, iterating over __slots__ and self.

Assemble dictionary of class attributes.

Build and return the new class, calling the type constructor.

Convert names separated by spaces or commas to list of str.

In summary, the last line of record_factory in Example 25-2 builds a
class named by the value of cls_name, with object as its single
immediate base class and with a namespace loaded with __slots__,
__init__, __iter__, and __repr__, of which the last three are
instance methods.

We could have named the __slots__ class attribute anything else, but
then we’d have to implement __setattr__ to validate the names of
attributes being assigned, because for our record-like classes we want the
set of attributes to be always the same and in the same order. However,
recall that the main feature of __slots__ is saving memory when you are
dealing with millions of instances, and using __slots__ has some
drawbacks, discussed in “Saving Memory with __slots__”.

WARNING
Instances of classes created by record_factory are not serializable—that is, they
can’t be exported with the dump function from the pickle module. Solving this
problem is beyond the scope of this example, which aims to show the type class in
action in a simple use case. For the full solution, study the source code for
collections.namedtuple; search for the word “pickling.”

https://github.com/python/cpython/blob/3.9/Lib/collections/__init__.py


Now let’s see how to emulate more modern class builders like
typing.NamedTuple, which takes a user-defined class written as a
class statement, and automatically enhances it with more functionality.

Introducing __init_subclass__
Both __init_subclass__ and __set_name__ were proposed in
PEP 487—Simpler customisation of class creation. We saw the
__set_name__ special method for descriptors for the first time in
“LineItem Take #4: Automatic Storage Attribute Names”. Now let’s study
__init_subclass__.

In Chapter 5, we saw that typing.NamedTuple and @dataclass let
programmers use the class statement to specify attributes for a new class,
which is then enhanced by the class builder with the automatic addition of
essential methods like __init__, __repr__, __eq__ etc.

Both of these class builders read type hints in the user’s class statement
to enhance the class. Those type hints also allow static type checkers to
validate code that sets or gets those attributes. However, NamedTuple and
@dataclass do not take advantage of the type hints for attribute
validation at runtime. The Checked class in next example does.

NOTE
It is not possible to support every conceivable static type hint for runtime type checking,
which is probably why typing.NamedTuple and @dataclass don’t even try it.
However, some types that are also concrete classes can be used with Checked. This
includes simple types often used for field contents, such as str, int, float and
bool, as well as lists of those types.

Example 25-3 shows how to use Checked to build a Movie class.

Example 25-3. initsub/checkedlib.py: doctest for creating a Movie
subclass of Checked.

https://www.python.org/dev/peps/pep-0487/


    >>> class Movie(Checked):   
    ...     title: str   
    ...     year: int 
    ...     box_office: float 
    ... 
    >>> movie = Movie(title='The Godfather', year=1972, 
box_office=137)   
    >>> movie.title 
    'The Godfather' 
    >>> movie   
    Movie(title='The Godfather', year=1972, box_office=137.0)

Movie inherits from Checked—the subject of this section.

Each attribute is annotated with a constructor. Here I used built-in types.

Movie instances must be created using keyword arguments.

In return, you get a nice __repr__.

The constructors used as the attribute type hints may be any callable that
takes zero or one argument and returns a value suitable for the intended
field type, or rejects the argument by raising TypeError or
ValueError.

Using built-in types for the annotations in Example 25-3 means the values
must be acceptable by the constructor of the type. For int, this means any
x such that int(x) returns an int. For str, anything goes at runtime,
because str(x) works with any x in Python.

When called with no arguments, the constructor should return a default
value of its type.

This is standard behavior for Python’s built-in constructors:

>>> int(), float(), bool(), str(), list(), dict(), set() 
(0, 0.0, False, '', [], {}, set())

In a Checked subclass like Movie, missing parameters create instances
with default values returned by the field constructors. For example:
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    >>> Movie(title='Life of Brian') 
    Movie(title='Life of Brian', year=0, box_office=0.0)

The constructors are used for validation during instantiation and when an
attribute is set directly on an instance:

    >>> blockbuster = Movie(title='Avatar', year=2009, 
box_office='billions') 
    Traceback (most recent call last): 
      ... 
    TypeError: 'billions' is not compatible with box_office:float 
    >>> movie.year = 'MCMLXXII' 
    Traceback (most recent call last): 
      ... 
    TypeError: 'MCMLXXII' is not compatible with year:int

CHECKED SUBCLASSES AND STATIC TYPE
CHECKING

In a .py source file with a movie instance of Movie as defined in Example 25-3, Mypy
flags this assignment as a type error:

movie.year = 'MCMLXXII'

However, Mypy can’t detect type errors in this constructor call:

blockbuster = Movie(title='Avatar', year='MMIX')

That’s because Movie inherits Checked.__init__, and the signature of that
method must accept any keyword arguments, to support arbitrary user-defined classes.

On the other hand, if you declare a Checked subclass field with the type hint
list[float], Mypy can flag assignments of lists with incompatible contents, but
Checked will ignore the type parameter and treat that the same as list.

Now let’s look at the implementation of checkedlib.py. The first class
is the Field descriptor:

Example 25-4. initsub/checkedlib.py: the Field descriptor class.



from collections.abc import Callable   
from typing import Any, NoReturn, get_type_hints 
 
 
class Field: 
    def __init__(self, name: str, constructor: Callable) -> None:  
 

        if not callable(constructor) or constructor is type(None):  
 

            raise TypeError(f'{name!r} type hint must be callable') 
        self.name = name 
        self.constructor = constructor 
 
    def __set__(self, instance: Any, value: Any) -> None: 
        if value is ...:   
            value = self.constructor() 
        else: 
            try: 
                value = self.constructor(value)   
            except (TypeError, ValueError) as e:   
                type_name = self.constructor.__name__ 
                msg = f'{value!r} is not compatible with 
{self.name}:{type_name}' 
                raise TypeError(msg) from e 
        instance.__dict__[self.name] = value  

Recall that since Python 3.9, the Callable type for annotations is the
ABC in collections.abc, and not the deprecated
typing.Callable.

This is a minimal Callable type hint; the constructor parameter
type and return type are Any, so we can omit them.

For runtime checking, we use the callable built-in.  The test against
type(None) is necessary because Python reads None in a type as
NoneType, the class of None (therefore callable) but a useless
constructor that only returns None.

If Checked.__init__ sets the value as ... (the Ellipsis
built-in object), we call the constructor with no arguments.
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Otherwise, call the constructor with the given value.

If constructor raises either of these exceptions, we raise
TypeError with a helpful message including the names of the field
and constructor; e.g. 'MMIX' is not compatible with
year:int.

If no exceptions were raised, the value is stored in the
instance.__dict__.

In __set__ we need to catch TypeError and ValueError because
built-in constructors may raise either of them, depending on the argument.
For example: float(None) raises TypeError, but float('A')
raises ValueError. On the other hand, float('8') raises no error and
returns 8.0. I hereby declare that this is feature and not a bug of this toy
example.

TIP
In “LineItem Take #4: Automatic Storage Attribute Names” we saw the handy
__set_name__ special method for descriptors. We don’t need it in the Field class
because the descriptors are not instantiated in client source code; the user declares types
that are constructors, as we saw in the Movie class (Example 25-3). Instead, the
Field descriptor instances are created at runtime by the
Checked.__init_subclass__ method which we’ll see in Example 25-5.

Now let’s focus on the Checked class. I split it in two listing: Example 25-
5 shows the top of the class, which includes the most important methods in
this example. The remaining methods are in Example 25-6.

Example 25-5. initsub/checkedlib.py: the most important methods of the
Checked class.
class Checked: 
    @classmethod 
    def _fields(cls) -> dict[str, type]:   



        return get_type_hints(cls) 
 
    def __init_subclass__(subclass) -> None:   
        super().__init_subclass__()            
        for name, constructor in subclass._fields().items():    
            setattr(subclass, name, Field(name, constructor))   
 
    def __init__(self, **kwargs: Any) -> None: 
        for name in self._fields():              
            value = kwargs.pop(name, ...)        
            setattr(self, name, value)           
        if kwargs:                               
            self.__flag_unknown_attrs(*kwargs)  

I wrote this class method to hide the use of
typing.get_type_hints from the rest of the class. As explained
in “Problems with Annotations at Runtime”, that function doesn’t
always work—but it does handle the simple types the Checked and
Field classes are designed to handle.

__init_subclass__ is called when a subclass of the current
subclass is defined. It gets that new subclass as its first argument—
which is why I named the argument subclass instead of the usual
cls. For more on this, see “__init_subclass__ is not a typical
class method”.

super().__init_subclass__() should be invoked.

Iterate over each field name and constructor…

…creating an attribute on subclass with that name bound to a
Field descriptor parameterized with name and constructor.

For each name in the class fields…

Get the corresponding value from kwargs and remove it from
kwargs. Using ...—the Ellipsis object—as default allows us to



distinguish between arguments given the value None from arguments
that were not given.

This setattr call triggers Checked.__setattr__, shown in
Example 25-6.

If there are remaining items in kwargs, their names do not match any
of the declared fields, and __init__ will fail.

The error is reported by __flag_unknown_attrs, listed in
Example 25-6. It takes a *names argument with the unknown attribute
names. I used a single asterisk in *kwargs to pass its keys as a
sequence of arguments.

__INIT_SUBCLASS__ IS NOT A TYPICAL CLASS
METHOD

The @classmethod decorator is never used with
__init_subclass__, but that doesn’t mean much, because the
__new__ special method behaves as a class method even without
@classmethod. The first argument that Python passes to
__init_subclass__ is a class. However, it is never the class where
__init_subclass__ is implemented: it is a newly defined subclass
of that class. That’s unlike __new__ and every other class method that
I know about. Therefore, I think __init_subclass__ is not a class
method in the usual sense, and it is misleading to name the first
argument cls. The __init_suclass__ documentation names the
argument cls but explains: “…called whenever the containing class is
subclassed. cls is then the new subclass.”

Now let’s see the remaining methods of the Checked class, continuing
from Example 25-5. Note that I prepended _ to the _fields and
_asdict method names for the same reason the
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collections.namedtuple API does: to reduce the chance of name
clashes with user-defined field names.

Example 25-6. initsub/checkedlib.py: remaining methods of the Checked
class.
    def __setattr__(self, name: str, value: Any) -> None:   
        if name in self._fields():               
            cls = self.__class__ 
            descriptor = getattr(cls, name) 
            descriptor.__set__(self, value)      
        else:                                    
            self.__flag_unknown_attrs(name) 
 
    def __flag_unknown_attrs(self, *names: str) -> NoReturn:   
        plural = 's' if len(names) > 1 else '' 
        extra = ', '.join(f'{name!r}' for name in names) 
        cls_name = repr(self.__class__.__name__) 
        raise AttributeError(f'{cls_name} object has no 
attribute{plural} {extra}') 
 
    def _asdict(self) -> dict[str, Any]:   
        return { 
            name: getattr(self, name) 
            for name, attr in self.__class__.__dict__.items() 
            if isinstance(attr, Field) 
        } 
 
    def __repr__(self) -> str:   
        kwargs = ', '.join( 
            f'{key}={value!r}' for key, value in 
self._asdict().items() 
        ) 
        return f'{self.__class__.__name__}({kwargs})'

Intercept all attempts to set an instance attribute. This is needed to
prevent setting an unknown attribute.

If the attribute name is known, fetch the corresponding descriptor.

Usually we don’t need to call the descriptor __set__ explicitly; it was
necessary in this case because __setattr__ intercepts all attempts to



set an attribute on the instance, including in the presence of an
overriding descriptor such as Field.

Otherwise, the attribute name is unknown, and an exception will be
raised by __flag_unknown_attrs.

Build a helpful error message listing all unexpected arguments and raise
AttributeError. This is a rare example of the NoReturn special
type, covered in “NoReturn”.

Create a dict from the attributes of a Movie object. I’d call this
method _as_dict, but I followed the convention started by the
_asdict method in collections.namedtuple.

Implementing a nice __repr__ is the main reason for having
_asdict in this example.

The Checked example illustrates how to handle overriding descriptors
when implementing __setattr__ to block arbitrary attribute setting
after instantiation. It is debatable whether implementing __setattr__ is
worthwhile in this example. Without it, setting movie.director =
'Greta Gerwig' would succeed, but the director attribute would
not be checked in any away, and would not appear in the __repr__ nor be
included in the dict returned by _asdict—both defined in Example 25-
6.

In record_factory.py (Example 25-2) I solved this issue using the
__slots__ class attribute. However, this simpler solution is not viable in
this case, as explained next.

Why __init_subclass__ cannot configure __slots__
The __slots__ attribute is only effective if it is one of the entries in the
class namespace passed to type.__new__. Adding __slots__ to an
existing class has no effect. Python invokes __init_subclass__ only
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after the class is built—by then it’s too late to configure __slots__. A
class decorator can’t configure __slots__ either, because it is applied
even later than __init_subclass__. We’ll explore these timing issues
in “What Happens When: Import Time Versus Runtime”.

To configure __slots__ at runtime, your own code must build the class
namespace passed as the last argument of type.__new__. To do that,
you can write a class factory function, like _record_factory.py_, or
you take the nuclear option and implement a metaclass. We will see how to
dynamically configure __slots__ in “Metaclasses 101”.

Before PEP 487 simplified the customisation of class creation with
__init_subclass__ in Python 3.7, similar functionality had to be
implemented using a class decorator. That’s the focus of the next section.

Enhancing Classes with a Class Decorator
A class decorator is a callable that behaves similarly to a function
decorator: it gets the decorated class as an argument, and must return a class
which will replace the decorated class. Class decorators often return the
decorated class itself, after injecting more methods in it via attribute
assignment.

Probably the most common reason to chose a class decorator over the
simpler __init_subclass__ is to avoid interfering with other class
features such as inheritance and metaclasses.

In this section, we’ll study checkeddeco.py, which provides the same
service as checkedlib.py, but using a class decorator. As usual, we’ll start by
looking at an usage example, extracted from the doctests in checkeddeco.py.

Example 25-7. checkeddeco.py: creating a Movie class decorated with
@checked.
    >>> @checked 
    ... class Movie: 
    ...     title: str 
    ...     year: int 
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    ...     box_office: float 
    ... 
    >>> movie = Movie(title='The Godfather', year=1972, 
box_office=137) 
    >>> movie.title 
    'The Godfather' 
    >>> movie 
    Movie(title='The Godfather', year=1972, box_office=137.0)

The only difference between Example 25-7 and Example 25-3 is the way
the Movie class is declared: it is decorated with @checked instead of
subclassing Checked. Otherwise, the external behavior is the same,
including the type validation and default value assignments shown after
Example 25-3 in “Introducing __init_subclass__”.

Now let’s look at the implementation of checkeddeco.py. The imports and
Field class are the same as in checkedlib.py, listed in Example 25-4.
There is no other class, only functions in checkeddeco.py.

The logic previously implemented in __init_subclass__ is now part
of the checked function—the class decorator listed in Example 25-8.

Example 25-8. checkeddeco.py: the class decorator.
def checked(cls: type) -> type:   
    for name, constructor in _fields(cls).items():     
        setattr(cls, name, Field(name, constructor))   
 
    cls._fields = classmethod(_fields)  # type: ignore   
 
    instance_methods = (   
        __init__, 
        __repr__, 
        __setattr__, 
        _asdict, 
        __flag_unknown_attrs, 
    ) 
    for method in instance_methods:   
        setattr(cls, method.__name__, method) 
 
    return cls  

Recall that classes are instances of type. These type hints strongly
suggest this is a class decorator: it takes a class, and returns a class.



_fields is a module-level function defined later in the module (in
Example 25-9).

Replacing each attribute returned by _fields with a Field
descriptor instance is what __init_subclass__ did in Example 25-
5. Here there is more work to do…

Build a class method from _fields, and add it to the decorated class.
The type: ignore comment is needed because Mypy complains
that type has no _fields attribute.

Module-level functions that will become instance methods of the
decorated class.

Add each of the instance_methods to cls.

Return the decorated cls, fulfilling the essential contract of a class
decorator.

Every top-level function in checkeddeco.py is prefixed with an underscore,
except the checked decorator. This naming convention makes sense for a
couple of reasons:

1. checked is part of the public interface of the checkeddeco.py
module, but the other functions are not.

2. The functions in Example 25-9 will be injected in the decorated
class, and the leading _ reduces the chance of naming conflicts
with user-defined attributes and methods of the decorated class.

The rest of checkeddeco.py is listed in Example 25-9. Those module-level
functions have the same code as the corresponding methods of the
Checked class of checkedlib.py. They were explained in Example 25-5
and Example 25-6.



Note that the _fields function does double duty in checkeddeco.py. It is
used as a regular function in the first line of the checked decorator, and it
will also be injected as a class method of the decorated class.

Example 25-9. checkeddeco.py: the methods to be injected in the decorated
class.
def _fields(cls: type) -> dict[str, type]: 
    return get_type_hints(cls) 
 
def __init__(self: Any, **kwargs: Any) -> None: 
    for name in self._fields(): 
        value = kwargs.pop(name, ...) 
        setattr(self, name, value) 
    if kwargs: 
        self.__flag_unknown_attrs(*kwargs) 
 
def __setattr__(self: Any, name: str, value: Any) -> None: 
    if name in self._fields(): 
        cls = self.__class__ 
        descriptor = getattr(cls, name) 
        descriptor.__set__(self, value) 
    else: 
        self.__flag_unknown_attrs(name) 
 
def __flag_unknown_attrs(self: Any, *names: str) -> NoReturn: 
    plural = 's' if len(names) > 1 else '' 
    extra = ', '.join(f'{name!r}' for name in names) 
    cls_name = repr(self.__class__.__name__) 
    raise AttributeError(f'{cls_name} has no attribute{plural} 
{extra}') 
 
def _asdict(self: Any) -> dict[str, Any]: 
    return { 
        name: getattr(self, name) 
        for name, attr in self.__class__.__dict__.items() 
        if isinstance(attr, Field) 
    } 
 
def __repr__(self: Any) -> str: 
    kwargs = ', '.join( 
        f'{key}={value!r}' for key, value in self._asdict().items() 
    ) 
    return f'{self.__class__.__name__}({kwargs})'



The checkeddeco.py module implements a simple but usable class
decorator. Python’s @dataclass does a lot more. It supports many
configuration options, adds more methods to the decorated class, handles or
warns about conflicts with user-defined methods in the decorated class, and
even traverses the __mro__ to collect user-defined attributes declared in
the superclasses of the decorated class. The source code of the
dataclasses package in Python 3.9 is more than 1200 lines long.

For metaprogramming classes, we must be aware of when the Python
interpreter evaluates each block of code during the construction of a class.
This is covered next.

What Happens When: Import Time Versus
Runtime
Python programmers talk about “import time” versus “runtime” but the
terms are not strictly defined and there is a gray area between them.

At import time, the interpreter:

1. Parses the source code of a .py module in one pass from top to
bottom. This is when SyntaxError may occur.

2. Compiles the bytecode to be executed.

3. Executes the top-level code of the compiled module.

If there is an up-to-date .pyc file available in the local __pycache__,
parsing and compiling are skipped because the bytecode is ready to run.

Although parsing and compiling are definitely “import time” activities,
other things may happen at that time, because almost every statement in
Python is executable in the sense that they potentially run user code and
may change the state of the user program.

In particular, the import statement is not merely a declaration  but it
actually runs all the top-level code of a module when it is imported for the
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first time in the process—further imports of the same module will use a
cache, and then the only effect will be binding the imported objects to
names in the client module. That top-level code may do anything, including
actions typical of “runtime”, such as writing to a log or connecting to a
database.  That’s why the border between “import time” and “runtime” is
fuzzy: the import statement can trigger all sorts of “runtime” behavior.

This is all rather abstract and subtle, so let’s do some experiments to see
what happens when.

Evaluation Time Experiments
Consider an evaldemo.py script which uses a class decorator, a descriptor,
and a class builder based on __init_subclass__, all defined in a
builderlib.py module. The modules have several print calls to show what
happens under the covers. Otherwise, they don’t perform anything useful.
The goal of these experiments is to observe the order in which these print
calls happen.

WARNING
Applying a class decorator and a class builder with __init_subclass__ together in
single class is likely a sign of overengineering or desperation. This unusual combination
is useful in these experiments to show the timing of the changes that a class decorator
and __init_subclass__ can apply to a class.

Let’s start by checking out builderlib.py, split in two parts: Example 25-10
and Example 25-11.

Example 25-10. builderlib.py: top of the module
print('@ builderlib module start') 
 
class Builder:   
    print('@ Builder body') 
 
    def __init_subclass__(cls):   
        print(f'@ Builder.__init_subclass__({cls!r})') 
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        def inner_0(self):   
            print(f'@ SuperA.__init_subclass__:inner_0({self!r})') 
 
        cls.method_a = inner_0 
 
    def __init__(self): 
        super().__init__() 
        print(f'@ Builder.__init__({self!r})') 
 
 
def deco(cls):   
    print(f'@ deco({cls!r})') 
 
    def inner_1(self):   
        print(f'@ deco:inner_1({self!r})') 
 
    cls.method_b = inner_1 
    return cls  

This is a class builder to implement…

__init_subclass__.

Define a function to be added to the subclass in the assignment below.

A class decorator.

Function to be added to the decorated class.

Return the class received as argument.

Continuing with builderlib.py…

Example 25-11. builderlib.py: bottom of the module
class Descriptor:   
    print('@ Descriptor body') 
 
    def __init__(self):   
        print(f'@ Descriptor.__init__({self!r})') 
 
    def __set_name__(self, owner, name):   
        args = (self, owner, name) 



        print(f'@ Descriptor.__set_name__{args!r}') 
 
    def __set__(self, instance, value):   
        args = (self, instance, value) 
        print(f'@ Descriptor.__set__{args!r}') 
 
    def __repr__(self): 
        return '<Descriptor instance>' 
 
 
print('@ builderlib module end')

A descriptor class to demonstrate when…

…a descriptor instance is created, and when…

…__set_name__ will be invoked during the owner class
construction.

Like the other methods, this __set__ doesn’t do anything except
display its arguments.

If you import builderlib.py in the Python console, this is what you get:

>>> import builderlib 
@ builderlib module start 
@ Builder body 
@ Descriptor body 
@ builderlib module end

Note that the lines printed by builderlib.py are prefixed with @.

Now let’s turn to evaldemo.py, which will trigger special methods in
builderlib.

Example 25-12. evaldemo.py: script to experiment with builderlib.py.
#!/usr/bin/env python3 
 
from builderlib import Builder, deco, Descriptor 
 
print('# evaldemo module start') 
 



@deco   
class Klass(Builder):   
    print('# Klass body') 
 
    attr = Descriptor()   
 
    def __init__(self): 
        super().__init__() 
        print(f'# Klass.__init__({self!r})') 
 
    def __repr__(self): 
        return '<Klass instance>' 
 
 
def main():   
    obj = Klass() 
    obj.method_a() 
    obj.method_b() 
    obj.attr = 999 
 
if __name__ == '__main__': 
    main() 
 
print('# evaldemo module end')

Apply decorator.

Subclass Builder to trigger its __init_subclass__.

Instantiate descriptor.

This will only be called if the module is run as the main program.

The print calls in evaldemo.py show a # prefix. If you open the console
again and import evaldemo.py, this is the output:

Example 25-13. Console experiment with evaldemo.py.
>>> import evaldemo 
@ builderlib module start   
@ Builder body 
@ Descriptor body 
@ builderlib module end 
# evaldemo module start 



# Klass body   
@ Descriptor.__init__(<Descriptor instance>)   
@ Descriptor.__set_name__(<Descriptor instance>, 
      <class 'evaldemo.Klass'>, 'attr')                 
@ Builder.__init_subclass__(<class 'evaldemo.Klass'>)   
@ deco(<class 'evaldemo.Klass'>)   
# evaldemo module end

The top 4 lines are the result of from builderlib import… .
They will not appear if you didn’t close the console after the previous
experiment, because builderlib.py is already loaded.

This signals that Python started reading the body of Klass. At this
point, the class object does not exist yet.

The descriptor instance is created and bound to attr in the namespace
that Python will pass to the default class object constructor:
type.__new__.

At this point, Python’s built-in type.__new__ has created the
Klass object and calls __set_name__ on each descriptor instance
of descriptor classes that provide that method, passing Klass as the
owner argument.

type.__new__ then calls __init_subclass__ on the superclass
of Klass, passing Klass as the single argument.

When type.__new__ returns the class object, Python applies the
decorator. In this example, the class returned by deco is bound to
Klass in the module namespace.

The implementation of type.__new__ is written in C. The behavior I
just described is documented in the Creating the class object section of
Python’s Data Model reference.

Note that the main() function of evaldemo.py (Example 25-12) was not
executed in the console session (Example 25-13), therefore no instance of
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Klass was created. All the action we saw was triggered by “import time”
operations: importing builderlib and defining Klass.

If you run evaldemo.py as a script, you will see the same output as
Example 25-13 with extra lines right before the last. The extra lines are the
result of running main():

Example 25-14. Running evaldemo.py as a program.
$ ./evaldemo.py 
[... 9 lines omitted ...] 
@ deco(<class '__main__.Klass'>)   
@ Builder.__init__(<Klass instance>)   
# Klass.__init__(<Klass instance>) 
@ SuperA.__init_subclass__:inner_0(<Klass instance>)   
@ deco:inner_1(<Klass instance>)   
@ Descriptor.__set__(<Descriptor instance>, <Klass instance>, 999)  
 

# evaldemo module end

The top 10 lines—including this one—are the same shown in
Example 25-13.

Triggered by super().__init__() in Klass.__init__.

Triggered by obj.method_a() in main; method_a was injected
by SuperA.__init_subclass__.

Triggered by obj.method_b() in main; method_b was injected
by deco.

Triggered by obj.attr = 999 in main.

A base class with __init_subclass__ and a class decorator are
powerful tools, but they are limited to working with a class already built by
type.__new__ under the covers. In the rare occasions when you need to
adjust the arguments passed to type.__new__, you need a metaclass.
That’s the final destination of this chapter—and this book.



Metaclasses 101
[Metaclasses] are deeper magic than 99% of users should ever worry
about. If you wonder whether you need them, you don’t (the people who
actually need them know with certainty that they need them, and don’t
need an explanation about why).

—Tim Peters, Inventor of the timsort algorithm and
prolific Python contributor

A metaclass is a class factory. In contrast with record_factory from
Example 25-2, a metaclass is written as a class. In other words, a metaclass
is class whose instances are classes. Figure 25-1 depicts a metaclass using
the Mills & Gizmos Notation: a mill producing another mill.
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Figure 25-1. A metaclass is a class that builds classes

Consider the Python object model: classes are objects, therefore each class
must be an instance of some other class. By default, Python classes are
instances of type. In other words, type is the metaclass for most built-in
and user-defined classes:

>>> str.__class__ 
<class 'type'> 
>>> from bulkfood_v5 import LineItem 
>>> LineItem.__class__ 
<class 'type'> 
>>> type.__class__ 
<class 'type'>

To avoid infinite regress, the class of type is type, as the last line shows.



Note that I am not saying that str or LineItem are subclasses of type.
What I am saying is that str and LineItem are instances of type. They
all are subclasses of object. Figure 25-2 may help you confront this
strange reality.

Figure 25-2. Both diagrams are true. The left one emphasizes that str, type, and LineItem are
subclasses of object. The right one makes it clear that str, object, and LineItem are instances

type, because they are all classes.



NOTE
The classes object and type have a unique relationship: object is an instance of
type, and type is a subclass of object. This relationship is “magic”: it cannot be
expressed in Python because either class would have to exist before the other could be
defined. The fact that type is an instance of itself is also magical.

The next snippet shows that the class of collections.Iterable is
abc.ABCMeta. Note that Iterable is an abstract class, but ABCMeta
is a concrete class—after all, Iterable is an instance of ABCMeta:

>>> from collections.abc import Iterable 
>>> Iterable.__class__ 
<class 'abc.ABCMeta'> 
>>> import abc 
>>> from abc import ABCMeta 
>>> ABCMeta.__class__ 
<class 'type'>

Ultimately, the class of ABCMeta is also type. Every class is an instance
of type, directly or indirectly, but only metaclasses are also subclasses of
type. That’s the most important relationship to understand metaclasses: a
metaclass, such as ABCMeta, inherits from type the power to construct
classes. Figure 25-3 illustrates this crucial relationship.



Figure 25-3. Iterable is a subclass of object and an instance of ABCMeta. Both object and ABCMeta
are instances of type, but the key relationship here is that ABCMeta is also a subclass of type,

because ABCMeta is a metaclass. In this diagram, Iterable is the only abstract class.

The important takeaway here is that metaclasses are subclasses of type,
and that’s what makes them work as class factories. A metaclass can



customize its instances by implementing special methods, as the next
sections demonstrate.

How a Metaclass Customizes a Class
To use a metaclass, it’s critical to understand how __new__ works on any
class. This was discussed in “Flexible Object Creation with __new__”.

The same mechanics happen at a “meta” level when a metaclass is about to
create a new instance, which is a class. Consider this declaration:

class Klass(SuperKlass, metaclass=MetaKlass): 
    x = 42 
    def __init__(self, y): 
        self.y = y

To process that class statement Python calls MetaKlass.__new__
with these arguments:

meta_cls

the metaclass itself (MetaKlass), because __new__ works as class
method;

cls_name

the string Klass;

bases

the single-element tuple (SuperKlass,)—with more elements in
the case of multiple inheritance.

cls_dict

a mapping like {x: 42, `__init__: <function init at
0x1009c4040>}



When you implement MetaKlass.__new__, you can inspect and
change those arguments before passing them to super().__new__,
which will eventually call type.__new__ to create the new class object.

After super().__new__ returns, you can also apply further processing
to the newly created class before returning it to Python. Python then calls
SuperKlass.__init_subclass__, passing the class you created,
and then applies a class decorator to it, if one is present. Finally, Python
binds the class object to its name in the surrounding namespace—usually
the global namespace of a module, if the class statement was a top-level
statement.

The most common processing made in a metaclass __new__ is to add or
replace items in the cls_dict—the mapping that represents the
namespace of the class under construction. For instance, before calling
super().__new__, you can inject methods in the class under
construction by adding functions to cls_dict. However, note that adding
methods can also be done after the class is built, which is why we were able
to do it using __init_subclass__ or a class decorator.

One attribute that you must add to the cls_dict before type.__new__
runs is __slots__, as discussed in “Why __init_subclass__
cannot configure __slots__”. The __new__ method of a metaclass is
the ideal place to configure __slots__. The next section shows how to
do that.

A Nice Metaclass Example
The MetaBunch metaclass presented here is a variation of the last
example in chapter 4 of Python in a Nutshell, 3rd Edition, by Alex Martelli,
Anna Ravenscroft, and Steve Holden, written to run on Python 2.7 and
3.5.  Assuming Python 3.6 or later, I was able to further simplify the code.

First, let’s see what the Bunch base class provides:

    >>> class Point(Bunch): 
    ...     x = 0.0 
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    ...     y = 0.0 
    ...     color = 'gray' 
    ... 
    >>> Point(x=1.2, y=3, color='green') 
    Point(x=1.2, y=3, color='green') 
    >>> p = Point() 
    >>> p.x, p.y, p.color 
    (0.0, 0.0, 'gray') 
    >>> p 
    Point()

Instead of the type hints we use to name the fields in Checked subclasses,
Bunch subclasses assign values to class attributes, which then become the
default values of the instance attributes. The generated __repr__ omits
the arguments for attributes that are equal to the defaults.

MetaBunch—the metaclass of Bunch—generates __slots__ for the
new class from the class attributes declared in the user’s class. This blocks
the instantiation and later assignment of undeclared attributes:

    >>> Point(x=1, y=2, z=3) 
    Traceback (most recent call last): 
      ... 
    AttributeError: 'Point' object has no attribute 'z' 
    >>> p = Point(x=21) 
    >>> p.y = 42 
    >>> p 
    Point(x=21, y=42) 
    >>> p.flavor = 'banana' 
    Traceback (most recent call last): 
      ... 
    AttributeError: 'Point' object has no attribute 'flavor'

Now let’s dive into the elegant code of Metabunch:

Example 25-15. metabunch/from3.6/bunch.py: MetaBunch metaclass and
Bunch class.
class MetaBunch(type):   
    def __new__(meta_cls, cls_name, bases, cls_dict):   
 
        defaults = {}   
 
        def __init__(self, **kwargs):   



            for name, default in defaults.items():   
                setattr(self, name, kwargs.pop(name, default)) 
            if kwargs:   
                setattr(self, *kwargs.popitem()) 
 
        def __repr__(self):   
            rep = ', '.join(f'{name}={value!r}' 
                            for name, default in defaults.items() 
                            if (value := getattr(self, name)) != 
default) 
            return f'{cls_name}({rep})' 
 
        new_dict = dict(__slots__=[], __init__=__init__, 
__repr__=__repr__)   
 
        for name, value in cls_dict.items():   
            if name.startswith('__') and name.endswith('__'):   
                if name in new_dict: 
                    raise AttributeError(f"Can't set {name!r} in 
{cls_name!r}") 
                new_dict[name] = value 
            else:   
                new_dict['__slots__'].append(name) 
                defaults[name] = value 
        return super().__new__(meta_cls, cls_name, bases, new_dict)  
 

 
 
class Bunch(metaclass=MetaBunch):   
    pass

To create a new metaclass, inherit from type.

__new__ works as a class method, but the class is a metaclass, so I like
to name the first argument meta_cls (mcs is a common alternative).
The remaining three arguments are the same as the three-argument
signature for calling type() directly to create a class.

defaults will hold a mapping of attribute names and their default
values.

This will be injected into the new class.



Read the defaults and set the corresponding instance attribute with a
value popped from kwargs or a default.

If there is still any item in kwargs, it is unexpected. We believe in
failing fast as best practice, so we don’t want to silently ignore extra
items. A quick and effective solution is to pop one item from kwargs
and try to set it on the instance, triggering an AttributeError on
purpose.

__repr__ returns a string that looks like a constructor call—e.g.
Point(x=3), omitting the keyword arguments with default values.

Initialize namespace for the new class.

Iterate over namespace of user’s class…

If a dunder name is found, copy the item to the new class namespace,
unless it’s already there. This prevents users from overwriting
__init__, __repr__ and other attributes set by Python, such as
__qualname__ and __module__.

If not a dunder name, append to __slots__ and save its value in
defaults.

Build and return the new class.

Provide a base class, so users don’t need to see MetaBunch.

MetaBunch works because it is able to configure __slots__ before
calling super().__new__ to build the final class. As usual when
metaprogramming, understanding the sequence of actions is key. Let’s do
another evaluation time experiment, now with a metaclass.

Metaclass Evaluation Time Experiment



This is a variation of “Evaluation Time Experiments”, adding a metaclass to
the mix. The builderlib.py module is the same as before, but the main script
is now evaldemo_meta.py, listed in Example 25-16.

Example 25-16. evaldemo_meta.py: experimenting with a metaclass.
#!/usr/bin/env python3 
 
from builderlib import Builder, deco, Descriptor 
from metalib import MetaKlass   
 
print('# evaldemo_meta module start') 
 
@deco 
class Klass(Builder, metaclass=MetaKlass):   
    print('# Klass body') 
 
    attr = Descriptor() 
 
    def __init__(self): 
        super().__init__() 
        print(f'# Klass.__init__({self!r})') 
 
    def __repr__(self): 
        return '<Klass instance>' 
 
 
def main(): 
    obj = Klass() 
    obj.method_a() 
    obj.method_b() 
    obj.method_c()   
    obj.attr = 999 
 
 
if __name__ == '__main__': 
    main() 
 
print('# evaldemo_meta module end')

Import MetaKlass.

Declare Klass as subclass of Builder and instance of MetaKlass.

Method injected by MetaKlass.



WARNING
In the interest of science, Example 25-16 defies all reason and applies three different
metaprogramming techniques together on Klass: a decorator, a base class using
__init_subclass__, and a custom metaclass. If you do this in production code,
please don’t blame me. Again, the goal is to observe the order in which the three
techniques interfere in the class construction process.

As in the previous evaluation time experiment, this example does nothing
but print messages revealing the flow of execution. Next is the code for the
top part of metalib.py—the rest is in Example 25-18:

Example 25-17. metalib.py: the NosyDict class
print('% metalib module start') 
 
import collections 
 
class NosyDict(collections.UserDict): 
    def __setitem__(self, key, value): 
        args = (self, key, value) 
        print(f'% NosyDict.__setitem__{args!r}') 
        super().__setitem__(key, value) 
 
    def __repr__(self): 
        return '<NosyDict instance>'

I wrote the NosyDict class to override __setitem__ to display each
key and value as they are set. The metaclass will use a NosyDict
instance to hold the namespace of the class under construction, revealing
more of Python’s inner workings.

The main attraction of metalib.py is the metaclass in Example 25-18. It
implements the __prepare__ special method, a class method that Python
only invokes on metaclasses. The __prepare__ method provides the
earliest opportunity to influence the process of creating a new class.



TIP
When coding a metaclass, I find it useful to adopt this naming convention for special
method arguments:

Use cls instead of self for instance methods, because the instance is a class.

Use meta_cls instead of cls for class methods, because the class is a
metaclass. Recall that __new__ behaves as a class method even without
@classmethod.

Example 25-18. metalib.py: the MetaKlass
class MetaKlass(type): 
    print('% MetaKlass body') 
 
    @classmethod   
    def __prepare__(meta_cls, cls_name, bases):   
        args = (meta_cls, cls_name, bases) 
        print(f'% MetaKlass.__prepare__{args!r}') 
        return NosyDict()   
 
    def __new__(meta_cls, cls_name, bases, cls_dict):   
        args = (meta_cls, cls_name, bases, cls_dict) 
        print(f'% MetaKlass.__new__{args!r}') 
        def inner_2(self): 
            print(f'% MetaKlass.__new__:inner_2({self!r})') 
 
        cls = super().__new__(meta_cls, cls_name, bases, 
cls_dict.data)   
 
        cls.method_c = inner_2   
 
        return cls   
 
    def __repr__(cls):   
        cls_name = cls.__name__ 
        return f"<class {cls_name!r} built by MetaKlass>" 
 
print('% metalib module end')

__prepare__ should be declared as a class method. It is not an
instance method because the class under construction does not exist yet



when Python calls __prepare__.

Python calls __prepare__ on a metaclass to obtain a mapping to
hold the namespace of the class under construction.

Return NosyDict instance to be used as the namespace.

cls_dict is a NosyDict instance returned by __prepare__.

type.__new__ requires a real dict as the last argument, so I give it
the data attribute of NosyDict, inherited from UserDict.

Inject a method in the newly created class.

As usual, __new__ must return the object just created—in this case,
the new class.

Defining __repr__ on a metaclass allows customizing the repr()
of class objects.

The main use case for __prepare__ before Python 3.6 was to provide an
OrderedDict to hold the attributes of the class under construction, so
that the metaclass __new__ could process those attributes in the order in
which they appear in the source code of the user’s class definition. Now that
dict preserves the insertion order, __prepare__ is rarely needed. You
will see a creative use for it in “A Metaclass Hack with __prepare__”.

Importing metalib.py in the Python console is not very exciting. Note the
use of % to prefix the lines output by this module:

>>> import metalib 
% metalib module start 
% MetaKlass body 
% metalib module end

Lots of things happen if you import evaldemo_meta.py:



Example 25-19. Console experiment with evaldemo_meta.py.
>>> import evaldemo_meta 
@ builderlib module start 
@ Builder body 
@ Descriptor body 
@ builderlib module end 
% metalib module start 
% MetaKlass body 
% metalib module end 
# evaldemo_meta module start   
% MetaKlass.__prepare__(<class 'metalib.MetaKlass'>, 'Klass',   
                        (<class 'builderlib.Builder'>,)) 
% NosyDict.__setitem__(<NosyDict instance>, '__module__', 
'evaldemo_meta')   
% NosyDict.__setitem__(<NosyDict instance>, '__qualname__', 
'Klass') 
# Klass body 
@ Descriptor.__init__(<Descriptor instance>)   
% NosyDict.__setitem__(<NosyDict instance>, 'attr', <Descriptor 
instance>)   
% NosyDict.__setitem__(<NosyDict instance>, '__init__', 
                       <function Klass.__init__ at …>)   
% NosyDict.__setitem__(<NosyDict instance>, '__repr__', 
                       <function Klass.__repr__ at …>) 
% NosyDict.__setitem__(<NosyDict instance>, '__classcell__', <cell 
at …: empty>) 
% MetaKlass.__new__(<class 'metalib.MetaKlass'>, 'Klass', 
                    (<class 'builderlib.Builder'>,), <NosyDict 
instance>)   
@ Descriptor.__set_name__(<Descriptor instance>, 
                          <class 'Klass' built by MetaKlass>, 
'attr')   
@ Builder.__init_subclass__(<class 'Klass' built by MetaKlass>) 
@ deco(<class 'Klass' built by MetaKlass>) 
# evaldemo_meta module end

The lines before this are the result of importing builderlib.py and
metalib.py.

Python invokes __prepare__ to start processing a class statement.

Before parsing the class body, Python adds the __module__ and
__qualname__ entries to the namespace of the class under
construction.



The descriptor instance is created…

…and bound to attr in the class namespace.

__init__ and __repr__ methods are defined and added to the
namespace.

Once Python finished processing the class body, it calls
MetaKlass.__new__.

__set_name__, __init_subclass__, and the decorator are
invoked in this order, after the __new__ method of the metaclass
returns the newly constructed class.

If you run evaldemo_meta.py as script, main() is called, and a few more
things happen:

Example 25-20. Running evaldemo_meta.py as a program.
$ ./evaldemo_meta.py 
[... 20 lines omitted ...] 
@ deco(<class 'Klass' built by MetaKlass>)   
@ Builder.__init__(<Klass instance>) 
# Klass.__init__(<Klass instance>) 
@ SuperA.__init_subclass__:inner_0(<Klass instance>) 
@ deco:inner_1(<Klass instance>) 
% MetaKlass.__new__:inner_2(<Klass instance>)   
@ Descriptor.__set__(<Descriptor instance>, <Klass instance>, 999) 
# evaldemo_meta module end

The top 21 lines—including this one—are the same shown in
Example 25-19.

Triggered by obj.method_c() in main; method_c was injected
by MetaKlass.__new__.

Let’s now go back to the idea of the Checked class with the Field
descriptors implementing runtime type validation, and see how it can be



done with a metaclass.

A Metaclass solution for Checked
I don’t want to encourage premature optimization and overengineering, so
here is a make-believe scenario to justify rewriting checkedlib.py with
__slots__, which requires the application of a metaclass. Feel free to
skip it.

A BIT OF STORYTELLING

Our checkedlib.py using __init_subclass__ is a company-wide
success, and our production servers have millions of instances of
Checked subclasses in memory at any one time.

Profiling a proof-of-concept, we discover that using __slots__ will
reduce the cloud hosting bill for two reasons:

lower memory usage, as Checked instances don’t need their
own __dict__;

higher performance, by removing __setattr__ which was
created just to block unexpected attributes, but is triggered at
instantiation and for all attribute setting before
Field.__set__ is called to do its job.

The metaclass/checkedlib.py module we’ll study next is a drop-in
replacement for initsub/checkedlib.py. The doctests embedded in them are
identical, as well as the checkedlib_test.py files for pytest.

The complexity in checkedlib.py is abstracted away from the user. Here is
the source code of a script using the package:

from checkedlib import Checked 
 
class Movie(Checked): 



    title: str 
    year: int 
    box_office: float 
 
if __name__ == '__main__': 
    movie = Movie(title='The Godfather', year=1972, 
box_office=137) 
    print(movie) 
    print(movie.title)

That concise Movie class definition leverages three instances of Field
validating descriptors, a __slots__ configuration, five methods inherited
from Checked, and a metaclass to put it all together. The only visible part
of checkedlib is the Checked base class.

Consider Figure 25-4. The Mills & Gizmos Notation complements the
UML class diagram by making the relationship between classes and
instances more visible. For example, a Movie class using the new
checkedlib.py is an instance of CheckedMeta, and a subclass of
Checked. Also, the title, year and box_office class attributes of
Movie are three separate instances of Field. Each Movie instance has
its own _title,_year, and _box_office attributes, to store the values
of the corresponding fields.





Figure 25-4. UML class diagram annotated with MGN: the CheckedMeta meta-mill builds the
Movie mill. The Field mill builds the title, year, and box_office descriptors which are

class atttributes of Movie. The per-instance data for the fields is stored in the _title, _year and
_box_office instance attributes of Movie. Note the package boundary of checkedlib. The

developer of Movie doesn’t need to grok all the machinery inside checkedlib.py.

Now let’s study the code, starting with the Field class, shown in
Example 25-21.

The Field descriptor class is now a bit different. In the previous
examples, each Field descriptor instance stored its value in the managed
instance using an attribute of the same name. For example, in the Movie
class, the title descriptor stored the field value in a title attribute in
the managed instance. This made it unnecessary for Field to provide a
__get__ method.

However, when a class like Movie uses __slots__, it cannot have class
attributes and instance attributes with the same name. Each descriptor
instance is a class attribute, and now we need separate per-instance storage
attributes. The code uses the descriptor name prefixed with a single _.
Therefore Field instances have separate name and storage_name
attributes, and we implement Field.__get__.

Here is the source code for Field, with callouts describing only the
changes in this version:

Example 25-21. metaclass/checkedlib.py: the Field descriptor with
storage_name and __get__.
class Field: 
    def __init__(self, name: str, constructor: Callable) -> None: 
        if not callable(constructor) or constructor is type(None): 
            raise TypeError(f'{name!r} type hint must be callable') 
        self.name = name 
        self.storage_name = '_' + name   
        self.constructor = constructor 
 
    def __get__(self, instance, owner=None):   
        return getattr(instance, self.storage_name)   
 
    def __set__(self, instance: Any, value: Any) -> None: 



        if value is ...: 
            value = self.constructor() 
        else: 
            try: 
                value = self.constructor(value) 
            except (TypeError, ValueError) as e: 
                type_name = self.constructor.__name__ 
                msg = f'{value!r} is not compatible with 
{self.name}:{type_name}' 
                raise TypeError(msg) from e 
        setattr(instance, self.storage_name, value)  

Compute storage_name from the name argument.

Implement __get__…

Using getattr and the storage_name.

__set__ now uses setattr to set or update the managed attribute.

Next is the code for the metaclass that drives this example.

Example 25-22. metaclass/checkedlib.py: the CheckedMeta metaclass.
class CheckedMeta(type): 
 
    def __new__(meta_cls, cls_name, bases, cls_dict):   
        if '__slots__' not in cls_dict:   
            slots = [] 
            type_hints = cls_dict.get('__annotations__', {})   
            for name, constructor in type_hints.items():    
                field = Field(name, constructor)   
                cls_dict[name] = field   
                slots.append(field.storage_name)   
 
            cls_dict['__slots__'] = slots   
 
        return super().__new__( 
                meta_cls, cls_name, bases, cls_dict)  

__new__ is the only method implemented in CheckedMeta.



Only enhance the class if its cls_dict doesn’t include __slots__.
If __slots__ is already present, assume it is the Checked base class
and not a user-defined subclass, and build the class as is.

To get the type hints in prior examples we used
typing.get_type_hints, but that requires an existing class as the
first argument. At this point, the class we are configuring does not exist
yet, so we need to retrieve the __annotations__ directly from the
cls_dict—the namespace of the class under construction, which
Python passes as the last argument to the metaclass __new__.

iterate over type_hints to…

…build a Field for each annotated attribute…

…overwrite the corresponding entry in cls_dict with the Field
instance…

…and append the storage_name of the field in the list we’ll use to…

…populate the __slots__ entry in cls_dict—the namespace of
the class under construction.

Finally, we call super().__new__.

The last part of metaclass/checkedlib.py is the Checked base class that
users of this library will subclass to enhance their classes, like Movie.

The code for this version of Checked is the same as Checked in
initsub/checkedlib.py (listed in Example 25-5 and Example 25-6), with
three changes:

1. Added an empty __slots__ to signal to
CheckedMeta.__new__ that this class doesn’t require special
processing.



2. Removed __init_subclass__. Its job is now done by
CheckedMeta.__new__.

3. Removed __setattr__. It became redundant because adding
__slots__ to the user defined class prevents setting undeclared
attributes.

Example 25-23 is a complete listing of the final version of Checked.

Example 25-23. metaclass/checkedlib.py: the Checked base class.
class Checked(metaclass=CheckedMeta): 
    __slots__ = ()  # skip CheckedMeta.__new__ processing 
 
    @classmethod 
    def _fields(cls) -> dict[str, type]: 
        return get_type_hints(cls) 
 
    def __init__(self, **kwargs: Any) -> None: 
        for name in self._fields(): 
            value = kwargs.pop(name, ...) 
            setattr(self, name, value) 
        if kwargs: 
            self.__flag_unknown_attrs(*kwargs) 
 
    def __flag_unknown_attrs(self, *names: str) -> NoReturn: 
        plural = 's' if len(names) > 1 else '' 
        extra = ', '.join(f'{name!r}' for name in names) 
        cls_name = repr(self.__class__.__name__) 
        raise AttributeError(f'{cls_name} object has no 
attribute{plural} {extra}') 
 
    def _asdict(self) -> dict[str, Any]: 
        return { 
            name: getattr(self, name) 
            for name, attr in self.__class__.__dict__.items() 
            if isinstance(attr, Field) 
        } 
 
    def __repr__(self) -> str: 
        kwargs = ', '.join( 
            f'{key}={value!r}' for key, value in 
self._asdict().items() 
        ) 
        return f'{self.__class__.__name__}({kwargs})'



This concludes the third rendering of a class builder with validated
descriptors.

The next section covers some general issues related to metaclasses.

Metaclasses in the Real world
Metaclasses are powerful but tricky. Before deciding to implement a
metaclass, consider the following points.

Modern Features Simplify or Replace Metaclasses
Over time, several common use cases of metaclasses were made redundant
by new language features:

Class decorators

Simpler to understand than metaclasses, and less likely to cause
conflicts with base classes and metaclasses.

__set_name__

Avoids the need for custom metaclass logic to automatically set the
name of a descriptor.

__init_subclass__

Provides a way to customize class creation that is transparent to the end-
user and even simpler than a decorator—but may introduce conflicts in
a complex class hierarchy.

Built-in dict preserving key insertion order

Eliminated the #1 reason to use __prepare__: to provide an
OrderedDict to store the namespace of the class under construction.
Python only calls __prepare__ on metaclasses, so if you needed to
process the class namespace in the order it appears in the source code,
you had to use a metaclass before Python 3.6.
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As of 2021, every actively maintained version of CPython supports all the
features above.

I keep advocating these features because I see too much unnecessary
complexity in our profession, and metaclasses are a gateway to complexity.

Metaclasses are Stable Language Features
Metaclasses were introduced in Python 2.2 in 2002, together with so-called
“new-style classes”, descriptors, and properties.

It is remarkable that the MetaBunch example, first posted by Alex
Martelli in July 2002, still works in Python 3.9—the only change being the
way to specify the metaclass to use, which in Python 3 is done with the
syntax class Bunch(metaclass=MetaBunch):.

None of the additions I mentioned in “Modern Features Simplify or Replace
Metaclasses” broke existing code using metaclasses. But legacy code using
metaclasses can often be simplified by leveraging those features, especially
if you can drop support to Python versions before 3.6—which are no longer
maintained.

A Class Can Only Have One Metaclass
If your class declaration involves two or more metaclasses, you will see this
puzzling error message:

TypeError: metaclass conflict: the metaclass of a derived class 
must be a (non-strict) subclass of the metaclasses of all its 
bases

This may happen even without multiple inheritance. For example, a
declaration like this could trigger that TypeError:

class Record(abc.ABC, metaclass=PersistentMeta): 
    pass



We saw that abc.ABC is an instance of the abc.ABCMeta metaclass. If
that Persistent metaclass is not itself a subclass of abc.ABCMeta,
you get a metaclass conflict.

There are two ways of dealing with that error:

Find some other way of doing what you need to do, while avoiding
at least one of the metaclasses involved.

Write your own PersistentABCMeta metaclass as a subclass
of both abc.ABCMeta and PersistentMeta, using multiple
inheritance, and use that as the only metaclass for Record.

TIP
I can imagine the solution of the metaclass with two base metaclasses implemented to
meet a deadline. In my experience, metaclass programming always takes longer than
anticipated, which makes this approach risky before a hard deadline. If you do it and
make the deadline, the code may contain subtle bugs. Even in the absence of known
bugs, you should consider this approach as technical debt simply because it is hard to
understand and maintain.

Metaclasses Should be Implementation Details
Besides type, there are only six metaclasses in the entire Python 3.9
standard library. The better known are probably abc.ABCMeta,
typing.NamedTupleMeta, and enum.EnumMeta. None of them are
intended to appear explicitly in user code. We may consider them
implementation details.

Although you can do some really whacky metaprograming with
metaclasses, it’s best to heed the Principle of least astonishment so that
most users can indeed regard metaclasses as implementation details.

In recent years, some metaclasses in the Python standard library were
replaced by other mechanisms, without breaking the public API of their
packages. The simplest way future-proof such APIs is to offer a regular
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class that users subclass to access the functionality provided by the
metaclass, as we’ve done in our examples.

To wrap up our coverage of class metaprogramming, I will share with you
the coolest, small example of metaclass I found as I researched this chapter.

A Metaclass Hack with __prepare__
When I updated this chapter for the Second Edition, I needed to find simple
but illuminating examples to replace the bulkfood LineItem code that no
longer require metaclasses since Python 3.6.

The simplest and most interesting metaclass idea was given to me by João
S. O. Bueno—better known as JS in the Brazilian Python community. One
application of his idea is to create a class that auto-generates numeric
constants.

    >>> class Flavor(AutoConst): 
    ...     banana 
    ...     coconut 
    ...     vanilla 
    ... 
    >>> Flavor.vanilla 
    2 
    >>> Flavor.banana, Flavor.coconut 
    (0, 1)

Yes, that code works as shown! That’s actually a doctest in
autoconst_demo.py.

Here is the user-friendly AutoConst base class and the metaclass behind
it, implemented in autoconst.py:

class AutoConstMeta(type): 
    def __prepare__(name, bases, **kwargs): 
        return WilyDict() 
 
class AutoConst(metaclass=AutoConstMeta): 
    pass



That’s it.

Clearly the trick is in WilyDict.

When Python processes the namespace of the user’s class and reads
banana, it looks that name up in the mapping provided by
__prepare__: an instance of WilyDict. WilyDict implements
__missing__—covered in “The __missing__ Method”. The
WilyDict instance initially has no 'banana' key, so the
__missing__ method is triggered. It makes an item on the fly with the
key 'banana' and the value 0, returning that value. Python is happy with
that, then tries to retrieve 'coconut'. WilyDict promptly adds that
entry with the value 1, returning it. The same happens with 'vanilla',
which is then mapped to 2.

We’ve seen __prepare__ and __missing__ before. The real
innovation is how JS put them together.

Here is the source code for WilyDict, also from autoconst.py:

class WilyDict(dict): 
    def __init__(self, *args, **kwargs): 
        super().__init__(*args, **kwargs) 
        self.__next_value = 0 
 
    def __missing__(self, key): 
        if key.startswith('__') and key.endswith('__'): 
            raise KeyError(key) 
        self[key] = value = self.__next_value 
        self.__next_value += 1 
        return value

While experimenting, I found that Python looked up __name__ in the
namespace of the class under construction, causing WilyDict to add a
__name__ entry, and increment __next_value. So I added that if
statement in __missing__ to raise KeyError for keys that look like
dunder attributes.

The autoconst.py package both requires and illustrates mastery of Python’s
dynamic class building machinery.



I had a great time adding more functionality to AutoConstMeta and
AutoConst, but instead of sharing my experiments I will let you have fun
playing with JS’s ingenious hack.

Here are some ideas:

Make it possible to retrieve the constant name if you have the
value. For example, Flavor[2] could return 'vanilla'. You
can to this by implementing __getitem__ in
AutoConstMeta. Since Python 3.9, you can implement
__class_getitem__ in AutoConst itself.

Support iteration over the class, by implementing __iter__ on
the metaclass. I would make the __iter__ yield the constants as
(name, value) pairs.

Implement a new Enum variant. This would be a major
undertaking, because the enum package is full of tricks, including
the EnumMeta metaclass with hundreds of lines of code and a
non-trivial __prepare__ method.

Enjoy!

NOTE
The __class_getitem__ special method was added in Python 3.9 to support
generic types, as part of PEP 585—Type Hinting Generics In Standard Collections.
Thanks to __class_getitem__, Python’s core developers did not have to write a
new metaclass for the built-in types to implement __getitem__ so that we could
write generic type hints like list[int]. This is a narrow feature, but representative of
a wider use case for metaclasses: implementing operators and other special methods to
work at the class level, such as making the class itself iterable, just like Enum
subclasses.

Wrapping up

https://docs.python.org/3/reference/datamodel.html#object.__class_getitem__
https://www.python.org/dev/peps/pep-0585/


Metaclasses, as well as class decorators and __init_subclass__ are
useful for:

Subclass registration.

Subclass structural validation.

Applying decorators to many methods at once.

Object serialization.

Object-relational mapping.

Object-based persistence.

Implementing special methods at the class level.

Implementing class features found in other languages, such as
traits and aspect-oriented programming.

Class metaprogramming can also help with performance issues in some
cases, by performing tasks at import time that otherwise would execute
repeatedly at runtime.

To wrap up, let’s recall Alex Martelli’s final advice from his essay
“Waterfowl and ABCs”:

And, don’t define custom ABCs (or metaclasses) in production code… if
you feel the urge to do so, I’d bet it’s likely to be a case of “all problems
look like a nail”-syndrome for somebody who just got a shiny new
hammer—you (and future maintainers of your code) will be much
happier sticking with straightforward and simple code, eschewing such
depths.

I believe Martelli’s advice applies not only to ABCs and metaclasses, but
also to class hierarchies, operator overloading, function decorators,
descriptors, class decorators, and class builders using
__init_subclass__.

Those powerful tools exist primarily to support library and framework
development. Applications naturally should use those tools, as provided by

https://en.wikipedia.org/wiki/Trait_(computer_programming)
https://en.wikipedia.org/wiki/Aspect-oriented_programming


the Python standard library or external packages. But implementing them in
application code is often premature abstraction.

Good frameworks are extracted, not invented.
—David Heinemeier Hansson, creator of Ruby on Rails
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Chapter Summary
This chapter started with an overview of attributes found in class objects,
such as __qualname__ and the __subclasses__() method. Next we
saw how the type built-in can be used to construct classes at runtime.

The __init_subclass__ special method was introduced, with the first
iteration of a Checked base class designed to replace attribute type hints in
user-defined subclasses with Field instances that apply constructors to
enforce the type of those attributes at runtime.

The same idea was implemented with a @checked class decorator which
adds features to user-defined classes, similar to what
__init_subclass__ allows. We saw that neither
__init_subclass__ nor a class decorator can dynamically configure
__slots__, because they operate only after a class is created.

The concepts of “import time” and “runtime” were clarified with
experiments showing the order in which Python code in executed when
modules, descriptors, class decorators, and __init_subclass__ is
involved.

Our coverage of metaclasses began with an overall explanation of type as
a metaclass, and how user defined metaclasses can implement __new__ to
customize the classes it builds. We then saw our first custom metaclass, the
classic MetaBunch example using __slots__. Next, another evaluation
time experiment demonstrated how the __prepare__ and __new__
methods of a metaclass are invoked earlier than __init_subclass__
and class decorators, providing opportunities for deeper class
customization.

The third iteration of a Checked class builder with Field descriptors and
custom __slots__ configuration was presented, followed by some
general considerations about metaclass usage in practice.

Finally, we saw the AutoConst hack invented by João S. O. Bueno, based
on the cunning idea of a metaclass with __prepare__ returning a



mapping that implements __missing__. In less than 20 lines of code,
autoconst.py showcases the power of combining Python metaprograming
techniques

I haven’t yet found a language that manages to be easy for beginners,
practical for professionals, and exciting for hackers in the way that Python
is. Thanks, Guido van Rossum and everybody else who makes it so.

Further Reading
The essential references for this chapter in the Python documentation are
“3.3.3. Customizing class creation” in the “Data Model” chapter of The
Python Language Reference, which covers __init_subclass__ and
metaclasses. The type class documentation in the “Built-in Functions”
page, and “4.13. Special Attributes” of the “Built-in Types” chapter in the
Library Reference is also essential reading.

In the Library Reference, the types module documentation covers two
functions added in Python 3.3 that simplify class metaprogramming:
types.new_class and types.prepare_class.

Class decorators were formalized in PEP 3129—Class Decorators, written
by Collin Winter, with the reference implementation authored by Jack
Diederich. The PyCon 2009 talk “Class Decorators: Radically Simple”
(video), also by Jack Diederich, is a quick introduction to the feature.
Besides @dataclass, an interesting—and much simpler—example of a
class decorator in Python’s standard library is
functools.total_ordering that generates special methods for
object comparison.

For metaclasses, the main reference in Python’s documentation is PEP 3115
—Metaclasses in Python 3000, in which the __prepare__ special
method was introduced.

Python in a Nutshell, 3rd Edition by Alex Martelli, Anna Ravenscroft, and
Steve Holden is authoritative, but was written before PEP 487—Simpler

https://docs.python.org/3/reference/datamodel.html#customizing-class-creation
https://docs.python.org/3/library/functions.html#type
http://bit.ly/1cPOodb
http://bit.ly/1HGwF3b
http://bit.ly/1HGwIvW
http://bit.ly/1HGwJ2Y
https://docs.python.org/3/library/functools.html#functools.total_ordering
https://www.python.org/dev/peps/pep-3115/
https://learning.oreilly.com/library/view/python-in-a/9781491913833
https://www.python.org/dev/peps/pep-0487/


customization of class creation came out. The main metaclass example in
that book—MetaBunch—is still valid, because it can’t be written with
simpler mechanisms. Brett Slatkin’s Effective Python, Second Edition
(Addison-Wesley, 2019) has several up-to-date examples of class bulding
techniques, including metaclasses.

To learn about the origins of class metaprogramming in Python, I
recommend Guido van Rossum’s paper from 2003, Unifying types and
classes in Python 2.2. The text applies to modern Python as well, as it
covers what were then called the “new-style” class semantics—the default
semantics in in Python 3—including descriptors and metaclasses. One of
the references cited by Guido is Putting Metaclasses to Work: a New
Dimension in Object-Oriented Programming, by Ira R. Forman and Scott
H. Danforth (Addison-Wesley, 1998), a book to which he gave 5 stars on
Amazon.com, adding the following review:

This book contributed to the design for metaclasses in Python 2.2

Too bad this is out of print; I keep referring to it as the best tutorial I
know for the difficult subject of cooperative multiple inheritance,
supported by Python via the super() function.

If you are keen on metaprogramming, you may wish Python had the
ultimate metaprogramming feature: syntactic macros, as offered the Lisp
family of languages and—more recently—by Elixir and Rust. Syntactic
macros are more powerful and less error-prone than the primitive code
substitution macros in the C language. They are special functions that
rewrite source code using custom syntax into standard code before the
compilation step, enabling developers to introduce new language constructs
without changing the compiler. Like operator overloading, syntactic macros
can be abused. But as long as the community understands and manages the
downsides, they support powerful and user-friendly abstractions, like DSLs
(Domain-Specific Languages). In September 2020, Python core developer
Mark Shannon posted PEP 638—Syntactic Macros advocating just that.
Seven months after initially published, PEP 638 is still in draft and there are
no ongoing discussions about it. Clearly it’s not a top priority for the Python
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core developers. I would like to see PEP 638 further discussed and
eventually approved. Syntactic macros would allow the Python community
to experiment with controversial new features, such as the walrus operator
(PEP 572), pattern matching (PEP 634), and alternative rules for evaluating
type hints (PEPs 563 and 649) before making permanent changes to the
core language. Meanwhile, you can get a taste of syntactic macros with the
MacroPy package.

https://www.python.org/dev/peps/pep-0572/
https://www.python.org/dev/peps/pep-0634/
https://www.python.org/dev/peps/pep-0563/
https://www.python.org/dev/peps/pep-0649/
https://github.com/lihaoyi/macropy


SOAPBOX

I will start the last soapbox in the book with a long quote from Brian
Harvey and Matthew Wright, two computer science professors from the
University of California (Berkeley and Santa Barbara). In their book,
Simply Scheme, Harvey and Wright wrote:

There are two schools of thought about teaching computer science.
We might caricature the two views this way:

1. The conservative view: Computer programs have become
too large and complex to encompass in a human mind.
Therefore, the job of computer science education is to teach
people how to discipline their work in such a way that 500
mediocre programmers can join together and produce a
program that correctly meets its specification.

2. The radical view: Computer programs have become too
large and complex to encompass in a human mind.
Therefore, the job of computer science education is to teach
people how to expand their minds so that the programs can
fit, by learning to think in a vocabulary of larger, more
powerful, more flexible ideas than the obvious ones. Each
unit of programming thought must have a big payoff in the
capabilities of the program.

—Brian Harvey and Matthew Wright, Preface to
Simply Scheme

Harvey and Wright’s exaggerated descriptions are about teaching
computer science, but they also apply to programming language design.
By now, you should have guessed that I subscribe to the “radical” view,
and I believe Python was designed in that spirit.

The property idea is a great step forward compared to the accessors-
from-the-start approach practically demanded by Java and supported by
Java IDEs generating getters/setters with a keyboard shortcut. The main
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advantage of properties is to let us start our programs simply exposing
attributes as public—in the spirit of KISS—knowing a public attribute
can become a property at any time without much pain. But the
descriptor idea goes way beyond that, providing a framework for
abstracting away repetitive accessor logic. That framework is so
effective that essential Python constructs use it behind the scenes.

Another powerful idea is functions as first-class objects, paving the way
to higher-order functions. Turns out the combination of descriptors and
higher-order functions enable the unification of functions and methods.
A function’s __get__ produces a method object on the fly by binding
the instance to the self argument. This is elegant.

Finally, we have the idea of classes as first-class objects. It’s an
outstanding feat of design that a beginner-friendly language provides
powerful abstractions such as class builders, class decorators and full-
fledged, user-defined metaclasses. Best of all: the advanced features are
integrated in a way that does not complicate Python’s suitability for
casual programming (they actually help it, under the covers). The
convenience and success of frameworks such as Django and
SQLAlchemy owes much to metaclasses. Over the years, class
metaprogramming in Python is becoming simpler and simpler, at least
for common use cases. The best language features are those that benefit
everyone, even if some Python users are not aware of them. But they
can always learn and create the next great library.

I look forward to learning about your contributions to the Python
community and ecosystem!

1  Quote from chapter 2, Expression, page 10, of The Elements of Programming Style, Second
Edition.

2  That doesn’t mean PEP 487 broke code that used those features. It just means that some code
that used class decorators or metaclasses prior to Python 3.6 can now be refactored to use plain
classes, resulting in simpler and possibly more efficient code.

3  Thanks to my friend J. S. O. Bueno for contributing to this example.
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4  That’s true for any object, except when its class overrides the __str__ or __repr__
methods inherited from object with broken implementations.

5  This solution avoids using None as a default. Avoiding null values is a good idea. They are
hard to avoid in general, but easy in some cases. In Python as well as SQL, I prefer to represent
missing data in a text field with an empty string instead of None or NULL. Learning Go
reinforced this idea: variables and struct fields of primitive types in Go are initialized by
default with a “zero value”. See Zero values in the online Tour of Go if you are curious.

6  I believe that callable should be made suitable for type hinting. As of May 6, 2021, this is
an open issue.

7  As mentioned in “What’s a good poison pill?”, the Ellipsis object is a convenient and safe
sentinel value. It has been around for a long time, but recently people are finding more uses for
it, as we see in type hints and NumPy.

8  The subtle concept of an overriding descriptor was explained in “Overriding Descriptors”.

9  This rationale appears in the abstract of PEP 557–Data Classes to explain why it was
implemented as a class decorator.

10  Contrast with the import statement in Java, which is just a declaration to let the compiler
know that certain packages are required.

11  I’m not saying opening a database connection just because a module is imported is a good
idea, only pointing out it can be done.

12  Message to comp.lang.python, subject: “Acrimony in c.l.p.”. This is another part of the same
message from December 23, 2002, quoted in the Preface. The TimBot was inspired that day.

13  The authors kindly gave me permission to use their example. MetaBunch first appeared in a
message posted by Martelli in the comp.lang.python group on July 7, 2002, with the subject
line a nice metaclass example (was Re: structs in python), following a discussion about record-
like data structures in Python. Martelli’s original code for Python 2.2 still runs after a single
change: to use a metaclass in Python 3, you must use the metaclass keyword argument in the
class declaration, e.g. Bunch(metaclass=MetaBunch), instead of the older convention
of adding a __metaclass__ class-level attribute.

14  In Fluent Python, First Edition, the more advanced versions of the LineItem class used a
metaclass just to set the storage name of the attributes. See the code in the metaclasses of
bulkfood in the First Edition code repository

15  If you just got dizzy considering the implications of multiple inheritance with metaclasses,
good for you. I’d stay way from this solution as well.

16  I made a living writing Django code for a few years before I decided to study how Django’s
model fields were implemented. Only then I learned about descriptors and metaclasses.

17  The phrase is widely quoted. I found an early direct quote in a post in DHH’s blog from 2005.

18  I bought a used copy and found it a very challenging read.

https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions
https://tour.golang.org/basics/12
https://bugs.python.org/issue42102
https://www.python.org/dev/peps/pep-0557/#abstract
http://bit.ly/1e8iABS
https://mail.python.org/pipermail/python-list/2002-July/162558.html
https://github.com/fluentpython/example-code/tree/master/21-class-metaprog/bulkfood
https://dhh.dk/arc/000416.html


19  Brian Harvey and Matthew Wright, Simply Scheme (MIT Press, 1999), p. xvii. Full text
available at Berkeley.edu.

20  Machine Beauty by David Gelernter (Basic Books) opens with an intriguing discussion of
elegance and aesthetics in works of engineering, from bridges to software. The later chapters
are not great, but the opening is worth the price.

https://www.eecs.berkeley.edu/~bh/ss-toc2.html
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