

Flutter®

Flutter®

by Barry Burd, PhD

Flutter® For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2020 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. Flutter is a registered trademark of Google, LLC. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020935615

ISBN: 978-1-119-61258-2; 978-1-119-61261-2 (ebk); 978-1-119-61262-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

www.EBooksWorld.ir

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction . 1

Part 1: Getting Ready . 7
CHAPTER 1: What Is Flutter? . 9
CHAPTER 2: Setting Up Your Computer for Mobile App Development 29

Part 2: Flutter: A Burd’s-Eye View . 67
CHAPTER 3: “Hello” from Flutter . 69
CHAPTER 4: Hello Again . 105
CHAPTER 5: Making Things Happen . 131
CHAPTER 6: Laying Things Out . 163

Part 3: Details, Details . 205
CHAPTER 7: Interacting with the User . 207
CHAPTER 8: Navigation, Lists, and Other Goodies . 247
CHAPTER 9:	 Moving	Right	Along	. . . 297

Part 4: The Part of Tens . 321
CHAPTER 10: Ten Ways to Avoid Mistakes . 323
CHAPTER 11: Ten Ways to Enhance Your App Development Career 327
CHAPTER 12: Ten Chapters about Flutter App Development . 331

Part 5: Appendices . 335
APPENDIX: Doris’s Dating App . 337

Index . 347

Flutter®

Table of Contents vii

Table of Contents
INTRODUCTION . 1

How to Use This Book .1
Conventions Used in This Book .2
What You Don’t Have to Read .2
Foolish Assumptions .3
How This Book Is Organized .4

Part 1, “Getting Ready” .4
Part 2, “Flutter: A Burd’s-Eye View” . 4
Part 3, “Details, Details” .4
Part 4, “The Part of Tens” .4
More on the web! .5

Icons Used in This Book .5
Beyond the Book .6
Where to Go from Here .6

PART 1: GETTING READY . 7

CHAPTER 1: What Is Flutter? . 9
Hardware and Software (Things You May Already Know) 10
Where Does Flutter Fit In? .15

Cross-platform development .15
A quick-and-easy development cycle .17
A great way to think about app development 25

Enough New Terminology! What’s Next? .28

CHAPTER 2: Setting Up Your Computer for
Mobile App Development . 29
The	Stuff	You	Need .30
What to Do .32

Getting	and	installing	the	stuff .32
For Mac users only .34
Configuring	Android	Studio .35
Running	your	first	app .36

Dealing with the Devil’s Details .43
On installing Android Studio .43
On	launching	Android	Studio	for	the	first	time 44
On installing Android Studio’s Flutter plugin 44
On adding virtual devices .46
On installing Flutter .50

viii Flutter For Dummies

Divisiveness Among Devices .52
Running apps on an Android device .52
Testing apps on a physical device .53

Using Android Studio .59
Starting up .59
The main window .60

Running This Book’s Sample Programs .63
Enjoying reruns .65
If	you’re	finicky65

Were These Setup Steps Fun or What? .66

PART 2: FLUTTER: A BURD’S-EYE VIEW . 67

CHAPTER 3: “Hello” from Flutter . 69
First Things First .69

What’s it all about? .72
A constructor’s parameters .75
A note about punctuation .76
Don’t	relent —	simply	indent .77

Classes, Objects, and Widgets .79
A brief treatise on “within-ness” .81
The documentation is your friend .82

Making Things Look Nicer .83
Creating	a	scaffold .86
Adding visual tweaks .88
Dart’s enum feature .89
Hello from sunny California! .89
Adding another widget .91
Centering	the	text	(Part 1) .94
Centering	the	text	(Part 2) .97
Displaying an image .100

Hey,	Wait	a	Minute104

CHAPTER 4: Hello Again . 105
Creating and Using a Function .106

The function declaration .107
A function call .108
Parameters and the return value .108

Programming	in	Dart:	The	Small	Stuff .112
Statements and declarations .112
Dart’s typing feature .113
Literals, variables, and expressions .114

Table of Contents ix

Two for the price of one .117
Dart’s var keyword .119
Built-in types .121
Types that aren’t built-in .123
Using import declarations .123

Variations on a Theme from Die Flutter Mouse 124
Type names in function declarations .127
Naming your parameters .128
What about the build function? .129

More Fun to Come! .130

CHAPTER 5: Making Things Happen . 131
Let’s All Press a Floating Action Button .132

Stateless widgets and stateful widgets .134
Widgets have methods .135
Pay no attention to the framework behind the curtain 139

Enhancing Your App .146
More parameters, please .148
The override annotation .151
What does <Widget> mean? .152
Anonymous functions .153
What belongs where .156
Names that start with an underscore .160

Whew! .162

CHAPTER 6: Laying Things Out . 163
The Big Picture .164

Creating bite-size pieces of code .167
Creating a parameter list .169
Living color .170
Adding padding .171
Your humble servant, the Column widget .173
The SizedBox widget .175
Your friend, the Container widget .176

Nesting Rows and Columns .181
More Levels of Nesting .183
Using the Expanded Widget .186

Expanded versus unexpanded .189
Expanded widget saves the day .192
Flexing some muscles .196

How Big Is My Device? .199

x Flutter For Dummies

PART 3: DETAILS, DETAILS . 205

CHAPTER 7: Interacting with the User . 207
A Simple Switch .208

Dart’s const keyword .211
Compatible or NOT? .213

Wait For It! .214
How Much Do You Love Flutter? .217
Dealing with Text Fields .220

Callouts 1 and 2 .223
Callout 3 .225
Callout 4 .226
Callout 5 .230

Creating Radio Buttons .230
Creating an enum .233
Building the radio group .233
Displaying the user’s choice .235

Creating a Dropdown Button . .239
Building the dropdown button .242
The little Reset button .244
Making a Map .245

Onward and Upward .246

CHAPTER 8: Navigation, Lists, and Other Goodies 247
Extending a Dart Class .248
From One Page to Another .251

An icon on a button .254
Pushing and popping .255

Passing Data from Source to Destination .256
Passing Data Back to the Source .261

Dart’s async and await keywords .264
Taking control of the app bar’s Back button 266

Passing Data in Both Directions .267
Creating Named Routes .272
Creating a List .276

The ListView widget .279
Creating list items one-by-one .285
Another new Dart language feature .288

Fetching Data from the Internet .290
Using a public API .293
Sending a URL to a server .295
Making sense of a JSON response .296

What’s Next? .296

Table of Contents xi

CHAPTER 9:	 Moving	Right	Along	. . . 297
Setting the Stage for Flutter Animation .297
Moving Along a Straight Line .303
Bouncing Around .308
Animating Size and Color Changes .310
Moving Along a Curve .312
Dragging Things Around .314
Where To Go From Here .319

PART 4: THE PART OF TENS . 321

CHAPTER 10: Ten Ways to Avoid Mistakes . 323
Put Capital Letters Where They Belong .323
Use Parentheses When (and Only When) They’re Appropriate 323
Limit Access to Variables .324
Call setState .324
Make Adjustments for Indices Starting at Zero 324
Use the Expanded Widget .325
Add itemCount to Your ListView .builder .325
Add Imports When They’re Required .325
Declare Assets and Dependencies in pubspec .yaml 325
Indent Your Code According to Dart Language Guidelines 326

CHAPTER 11: Ten Ways to Enhance Your App
Development Career . 327
Practice! Practice! .327
Critique Your Own Code .328
Have Others Review Your Code .328
Find Out Which Technologies Your Nearby Companies Use 328
Attend User Group Meetings .328
Ask Questions .329
Ask Yourself Whether You Truly Understand .329
Learn Things That You May Never Need to Know 329
Do What You Love to Do .330
Get Plenty of Sleep .330

CHAPTER 12: Ten Chapters about Flutter App Development 331
Introduction .331
What Is Flutter? .331
Setting Up Your Computer for Mobile App Development 332
‘Hello’ from Flutter .332
Hello Again .332
Making Things Happen .332

xii Flutter For Dummies

Laying Things Out .332
Interacting with the User .332
Navigation, Lists, and Other Goodies .333
Moving Right Along333

PART 5: APPENDICES . 335

APPENDIX: Doris’s Dating App . 337

INDEX . 347

Introduction 1

Introduction

On December 5, 2018, at an annual developers’ event in London, Google
announced the release of Flutter 1.0. Between December 5 and the end of
December, the number of page visits to the official flutter.io website

jumped from 2.3 million to 4.7 million. In the following year, the number of posts
about Flutter on the Stack Overflow developers’ website increased by 70 percent,
exceeding the count of posts about React Native — the most popular alternative to
Flutter.

Companies such as Capital One, Alibaba, Groupon, and Philips Hue use Flutter to
develop mobile apps. The official app for the musical Hamilton is written using
Flutter. Google’s next mobile operating system, code-named Fuchsia, is based on
Flutter. An estimated 200 million users run apps written in Flutter. More than
250,000 developers write Flutter code, and the Google Play Store has over 3,000
Flutter apps.

Are you interested in developing Flutter apps? If so, you’re in good company.

How to Use This Book
You can attack this book in either of two ways: Go from cover to cover or poke
around from one chapter to another. You can even do both. Start at the beginning
and then jump to a section that particularly interests you. This book was designed
so that the basic topics come first, and the more-involved topics follow them. But
you may already be comfortable with some basics, or you may have specific goals
that don’t require you to know about certain topics.

In general, my advice is this:

 » If you already know something, don’t bother reading about it.

 » If you’re curious, don’t be afraid to skip ahead. You can always sneak a peek at
an earlier chapter, if you need to do so.

2 Flutter For Dummies

Conventions Used in This Book
Almost every technically themed book starts with a little typeface legend, and
Flutter For Dummies is no exception. What follows is a brief explanation of the
typefaces used in this book:

 » New terms are set in italics.

 » If you need to type something that’s mixed in with the regular text, the characters
you type appear in bold. For example: “Type MyNewProject in the text field.”

 » You also see this computerese font. I use computerese for Flutter code,
filenames, onscreen messages, and other such text. Also, if something you need
to type is really long, it appears in computerese font on its own line (or lines).

 » You may need to change certain characters when you type them on your own
computer keyboard. For instance, I may ask you to type

final String anyname;

which means that you type final String, and then a name that you make up
on your own, and then a semicolon. Words you need to replace with your own
words are set in italicized computerese.

What You Don’t Have to Read
Pick the first chapter or section that has material you don’t already know, and
start reading there. Of course, you may hate making decisions as much as I do. If
so, here are some guidelines you can follow:

 » If you already know what kind of an animal Flutter is and you don’t care
what happens behind the scenes when a Flutter app runs: Skip Chapter 1
and go straight to Chapter 2. Believe me — I won’t mind.

 » If you already know how to get a Flutter app running: Skip Part 1 and start
with Part 2.

 » If you’ve already tinkered with some simple Flutter apps: Skim over
Chapter 1, and then go to Part 3. Chapter 1 pulls together the bits and pieces
that you’ve read about Flutter, and Part 3 takes you beyond the very basics.

 » If you have experience writing Flutter apps: Come to my house and help
me write Flutter For Dummies, 2nd Edition.

If you want to skip the sidebars and the paragraphs with Technical Stuff icons,
please do. In fact, if you want to skip anything at all, feel free.

Introduction 3

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are incor-
rect . . . well, buy the book anyway:

 » I assume that you have access to a computer. Access to a smartphone is
helpful but not absolutely necessary. All the software you need in order to test
Flutter apps on a laptop or desktop computer is freely available. You simply
download, install, and get going.

 » I assume that you can navigate your computer’s common menus and
dialog boxes. You don’t have to be a Windows or Macintosh power user,
but you should be able to start a program, find a file, put a file into a certain
directory — that sort of thing. Much of the time, when you follow the instruc-
tions in this book, you’re typing code on the keyboard, not pointing-and-clicking
the mouse.

On those occasions when you need to drag-and-drop, cut-and-paste, or
plug-and-play, I guide you carefully through the steps. But your computer may
be configured in any of several billion ways, and my instructions may not quite
fit your special situation. When you reach one of these platform-specific tasks,
try following the steps in this book. If the steps don’t quite fit, consult a book
with instructions tailored to your system. If you can’t find such a book, send
me an email. (My address appears later in the introduction.)

 » I assume that you can think logically. That’s all there is to application
development — thinking logically. If you can think logically, you’ve got it made.
If you don’t believe that you can think logically, read on. You may be pleasantly
surprised.

 » I make very few assumptions about your computer programming
experience (or your lack of such experience). In writing this book, I’ve tried
to do the impossible: make the book interesting for experienced program-
mers yet accessible to people with little or no programming experience. This
means that I don’t assume any particular programming background on your
part. If you’ve never written any code, that’s okay.

On the other hand, if you’ve done some coding (maybe in Java, Python, or
C++), you’ll discover some interesting plot twists in Dart — the language that’s
used to develop Flutter apps. The creators of Dart took the best ideas from
object-oriented programming and functional programming, streamlined
them, reworked them, and reorganized them into a simple yet powerful way
of thinking about problems. You’ll enjoy programming in Dart.

4 Flutter For Dummies

How This Book Is Organized
This book is divided into subsections, which are grouped into sections, which
come together to make chapters, which are lumped, finally, into four parts (like
one of those Russian matryoshka dolls). The parts of the book are described here.

Part 1, “Getting Ready”
Part 1 covers all the nuts-and-bolts. It introduces you to the major ideas behind
mobile app development and walks you through the installation of the necessary
software products.

The instructions in these chapters cover both Windows and Macintosh computers.
They cover many computer configurations with all kinds of software already
installed. But adding new software is always tricky, and you might have a few
hurdles to overcome. If you do, check the end of this chapter for ways to reach me
(the author) and get some quick advice. (Yes, I answer emails, tweets, Facebook
posts, and notes sent by carrier pigeons.)

Part 2, “Flutter: A Burd’s-Eye View”
Chapters 3 and 4 cover Flutter’s basic building blocks. These chapters describe some
simple Flutter apps and introduce Dart programming language fundamentals.

If you’ve created apps specifically for Android or iOS, some of the material in
Part 2 may be familiar to you. If so, you can skip sections or read this stuff quickly.
But don’t read too quickly. Flutter is different from most other development
frameworks, and Flutter’s differences are worth noting.

Part 3, “Details, Details”
If you’ve tasted some Flutter and want more, you can find what you need in Part 3
of this book. This part’s chapters cover the building blocks of a solid, useful app —
tasks like responding to user input, laying out your app’s components, navigating
from page to page, getting data from the Internet, and more.

Part 4, “The Part of Tens”
In The Part of Tens, which is a little Flutter candy store, you can find lists — lists
of tips for avoiding mistakes, tracking down resources, and finding all kinds of
interesting goodies.

Introduction 5

More on the web!
You’ve read the Flutter For Dummies book, seen the Flutter For Dummies movie, worn
the Flutter For Dummies T-shirt, and eaten the Flutter For Dummies candy. What
more is there to do?

That’s easy. Just visit this book’s website: www.allmycode.com/Flutter. There,
you can find updates, comments, additional information, and answers to com-
monly asked questions from readers. You can also find a small chat application for
sending me quick questions when I’m online. (When I’m not online, you can con-
tact me in other ways. See the end of this chapter for more info.)

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer, talk-
ing to myself. I say each sentence in my head. Most of the sentences I mutter sev-
eral times. When I have an extra thought, a side comment, or something else that
doesn’t belong in the regular stream, I twist my head a little bit. That way, who-
ever’s listening to me (usually, nobody) knows that I’m off on a momentary
tangent.

Of course, in print, you can’t see me twisting my head. I need some other way to
set a side thought in a corner by itself. I do it with icons. When you see a Tip icon
or a Remember icon, you know that I’m taking a quick detour.

Here’s a list of icons that I use in this book:

A tip is an extra piece of information — helpful advice that the other books may
forget to tell you.

Everyone makes mistakes. Heaven knows that I’ve made a few in my time. Any-
way, when I think people are especially prone to make a mistake, I mark the text
with a Warning icon.

You can think of the word Remember in two different contexts. One context is,
“Remember to do this good thing in your code, and remember not to do that bad
thing in your code.” Another context is, “When you find yourself not doing this
good thing or doing that bad thing, remember that you can read about it in the
section containing this icon.” Personally, I prefer the latter context because it
recognizes that everyone forgets stuff. When you forget something, simply go
back and look it up.

https://www.allmycode.com/Flutter

6 Flutter For Dummies

“If you don’t remember what such-and-such means, see blah-blah-blah,” or
“For more information, read blahbity-blah-blah.”

This icon calls attention to useful material that you can find online. (You don’t
have to wait long to see one of these icons. I use one at the end of this
introduction!)

Occasionally, I run across a technical tidbit. The tidbit may help you understand
what the people behind the scenes (the people who created Java) were thinking.
You don’t have to read it, but you may find it useful. You may also find the tidbit
helpful if you plan to read other (geekier) books about Flutter.

Beyond the Book
In addition to what you’re reading right now, this book comes with a free access-
anywhere Cheat Sheet containing code that you can copy-and-paste into your
own Flutter program. To get this Cheat Sheet, simply go to www.dummies.com and
type Flutter For Dummies Cheat Sheet in the Search box.

Where to Go from Here
If you’ve gotten this far, you’re ready to start reading about Flutter app develop-
ment. Think of me (the author) as your guide, your host, your personal assistant.
I do everything I can to keep things interesting and, most importantly, to help you
understand.

If you like what you read, send me a note. My email address, which I created just
for comments and questions about this book, is flutter@allmycode.com. If email
and chat aren’t your favorites, you can reach me instead on Twitter (@allmycode)
and on Facebook (/allmycode). And don’t forget — for the latest updates, visit
this book’s website. The site’s direct address is www.allmycode.com/flutter.
Alternatively, you can visit www.allmycode.com and find links to all my books’
web pages.

Enough with the introduction! Onward to Flutter. . . .

http://www.dummies.com/
mailto:flutter@allmycode.com
https://www.twitter.com/allmycode
https://www.facebook.com/allmycode
https://www.allmycode.com/flutter
https://www.allmycode.com/

1Getting Ready

IN THIS PART . . .

Working through the nuts-and-bolts of mobile app
development

Prepping your development computer

Running sample programs

CHAPTER 1 What Is Flutter? 9

Chapter 1
What Is Flutter?

Several years ago, I won a smartphone in a raffle at an app developer conference.
What a joy it was to win something! The experience made me feel that the
entire cosmos favored me. Every time I used that phone, I felt like a big shot.

Eventually, the phone’s battery became so weak that I had to charge it every hour.
I didn’t realize that the phone was still under warranty, so I tried to replace the
phone’s battery myself. I bought a new battery from an online vendor. The
instructions told me how to take the case apart, unhook the circuit connections,
and remove the old battery from its cradle.

Everything went nicely until the part about removing the old battery. The instruc-
tions said to pull on a little tab, but I couldn’t find a tab. So, I tried for several
minutes to get a grip on the battery.

The battery wasn’t budging, so I found a little screwdriver and tried to pry the
battery from its tight surroundings. That’s when I heard a pop, smelled smoke,
and realized that the phone’s battery had caught fire.

Fast-forward to the next afternoon. I was wandering past an electronics shop, so
I went in and asked whether the shopkeeper might be able to fix my phone. “Yes,”
he said. “Bring it in the next time you’re in the neighborhood. I can fix any phone.”

IN THIS CHAPTER

 » What makes Flutter great

 » Alternatives to Flutter

 » Some boring terminology :-(

10 PART 1 Getting Ready

You should have seen the look on the shopkeeper’s face when, later that day,
I brought in the charred, bent-up, barely recognizable phone. I would have
included a picture in this book but, alas, I couldn’t take a picture. I had no phone.

I still remember this phone battery story from beginning to end. I remember the
joy of winning a free phone, the shock of seeing it go up in flames, and the look of
horror on the shopkeeper’s face. But my most powerful memory comes from the
moment I opened the phone’s case: Inside that little case, I saw enough circuitry
to make me dizzy. Having done some electrical work in my own home, I’d handled
thick 10-gauge wires and hefty 220-volt connectors. I had replaced desktop
computers’ sound cards, laptop computers’ hard drives, and the SSD inside a
tightly packed MacBook Air. But this smartphone was amazing. The circuit board
looked like a microchip in its own right. The connectors were so tiny that I won-
dered how signals could reliably squeeze through them.

No doubt about it: Mobile phones are complicated beasts. So how do they work?
What makes them tick? What’s going on inside each of those remarkable gadgets?

Hardware and Software (Things
You May Already Know)

A mobile phone is really a small computer. And, like any computer, a mobile phone
operates on several layers. Figure 1-1 shows you a few of those layers.

Hardware is the stuff you can touch. It’s the bottom layer of the diagram in
Figure 1-1. Hardware consists of items like circuitry, memory, and the battery.

Electrical signals that travel along the hardware’s circuits make the hardware do
what you want it to do. These signals encode instructions. Taken as a whole, these
instructions are called software.

When people create software, they don’t describe each electrical signal that
travels through the hardware’s circuitry. Instead, people write source code —
instructions that look something like English-language instructions. One source
code instruction can be shorthand for hundreds or thousands of electrical signals.

A collection of source code instructions that perform a particular task (word
processing, web browsing, managing a smart thermostat, or whatever) is called a
program. A person who writes these instructions is a programmer or — a
fancier-sounding term — a developer. The person who runs a program on their
own device is a user.

CHAPTER 1 What Is Flutter? 11

Just as people communicate using many spoken languages, programmers write
source code using many programming languages. If you create iPhone apps, you
probably write code in either the Swift language or the Objective-C language. If
you create Android apps, you’re likely to write code in either Kotlin or Java.

When you create a Flutter app, you write code in the Dart programming language.
Here’s a complete Dart language program:

main() => print('Hello');

This program displays the word Hello on the screen. It’s not very useful, but please
be patient. This is only Chapter 1!

Figure 1-1 distinguishes between two kinds of software:

 » Operating system (OS) software runs whenever the device is turned on.

OS software manages the device and provides ways for the user to interact
with the device. Devices made by Apple, such as iPhones and iPads, run the
iOS operating system. Android phones and tablets run the Android operating
system (of course).

FIGURE 1-1:
A conceptual
view of your

mobile phone.

12 PART 1 Getting Ready

 » Application programs do the work that users want done.

Apps to make phone calls, apps to read email, calendar apps, web browsers,
and games are examples of application programs. As a Flutter developer, your
job is to create application programs.

By one estimate, the popular operating system named Linux consists of nearly 28
million instructions. No one can deal with that much code, so operating systems
are divided into layers of their own. Figure 1-1 shows only four of a typical operat-
ing system’s many layers:

 » A kernel performs the operating system’s most fundamental tasks.

The kernel schedules apps to be run, manages a device’s memory and files,
provides access to input and output, and does many other essential tasks.

 » A runtime is a bunch of code that does extra work in the background
while your application program runs.

Runtimes come in many shapes and sizes. A runtime for the C programming
language consists of a relatively small amount of code. In contrast, a Java
language runtime (a Java Virtual Machine, or JVM) is a big piece of software with
lots of moving parts.

When you run an iOS app, the app uses the Objective-C runtime. When you run
an Android app, that app uses the Android runtime, also known as ART.

 » An application programming interface (API) is a bunch of code that app
developers use over and over again.

For example, Android’s API has something named toUpperCase. If you apply
toUpperCase to "Flutter For Dummies", you get "FLUTTER FOR
DUMMIES". You don’t have to write your own code to change each of the
letters. Android’s API provides this functionality for you. All you have to do is
tell Android’s API to apply its toUpperCase feature, and then you’re all set.

Here’s some useful terminology: Rather than tell an API to “apply its
toUpperCase feature,” you call toUpperCase. This use of the word call
dates back to the FORTRAN programming language of the 1950s.

Operating systems haven’t cornered the market on APIs. All kinds of software
come with APIs. Flutter and Dart have their own APIs.

Dart’s API has general-purpose things, like toUpperCase, isAtSameMomentAs,
and a bunch of others. Flutter’s API has features that apply to visually oriented
apps. For example, when you want to display a box where the user can type
text, you don’t have to describe every aspect of the box’s appearance and
behavior. Instead, you can call the API’s TextField constructor and have
Flutter do the hard work for you.

CHAPTER 1 What Is Flutter? 13

I sometimes refer to an API as a library. You borrow books from a public
library, and you borrow existing code from the Dart and Flutter APIs.

In the Dart programming terminology, the word library has a slightly different
meaning. You don’t have to worry about that yet.

Throughout most of this book, I describe pieces of the Dart and Flutter APIs
and then the way you use those pieces to create Flutter programs.

A typical API has thousands of pieces. No one memorizes all of them. When
you want to add an image to your app, you open Flutter’s documentation and
search for the word Image. The documentation’s Image page tells you how to
display an image, how to size an image, how to tile an image, and how to do
all kinds of other good stuff.

 » The OS user interface is the area that includes the home screen, the
launch icons, a file explorer, and any other stuff users see when they’re
not working with a particular application program.

On your laptop computer, you probably have a desktop instead of a home
screen. One way or another, the OS presents options to help users launch
application programs and perform other maintenance tasks. These options
are part of the OS user interface.

Each layer in Figure 1-1 contains a collection of related components. This helps
programmers focus on the components that concern them the most — for
example:

 » The API has code to help developers write application programs.

A developer who’s creating an online purchasing app looks for components in
the API.

 » The Runtime layer has code to run programs efficiently.

To make everyone’s code run faster, engineers at Apple make improvements
to the iOS Runtime layer.

In addition to separating parts of the code from one another, the layers form
organized paths of communication among parts of the system. In general, a lay-
er’s code communicates only with the layers immediately above and below it. For
example, a user taps a button belonging to a weather app. The app responds by
calling on functionality provided by the API. Communication works its way down
the diagram in Figure 1-1 until it reaches the hardware, which responds by chang-
ing the pixels on the device’s screen. A user never communicates directly with the
API, and application programs have no direct access to the operating system’s
kernel.

14 PART 1 Getting Ready

CODE YOU CAN USE
During the early 1980s, my cousin-in-law Chris worked for a computer software firm.
The firm wrote code for word processing machines. (At the time, if you wanted to com-
pose documents without a typewriter, you bought a “computer” that did nothing but
word processing.) Chris complained about being asked to write the same old code over
and over again. “First, I write a search-and-replace program. Then I write a spell checker.
Then I write another search-and-replace program. Then a different kind of spell checker.
And then a better search-and-replace program.”

How did Chris manage to stay interested in his work? And how did Chris’s employer
manage to stay in business? Every few months, Chris had to reinvent the wheel — toss
out the old search-and-replace program and write a new program from scratch. That’s
inefficient. What’s worse, it’s boring.

For years, computer professionals were seeking the holy grail — a way to write software
so that it’s easy to reuse. Don’t write and rewrite your search-and-replace code. Just break
the task into tiny pieces. One piece of code searches for a single character, another piece
looks for blank spaces, and a third piece substitutes one letter for another. When you
have all the pieces, just assemble these pieces to form a search-and-replace program.
Later on, when you think of a new feature for your word processing software, you reas-
semble the pieces in a slightly different way. It’s sensible, it’s cost-efficient, and it’s much
more fun.

The late 1980s saw several advances in software development, and by the early 1990s,
many large programming projects were being written from prefabricated components.
For a particular project or a particular programming language, these prefab compo-
nents formed a library of reusable code. This was the birth of the modern API.

When you create a Flutter app, you use the Dart programming language. Dart and
Flutter have separate APIs:

• Dart’s API deals with the tasks that every programming language should be
able to do, no matter what programmers want to do with that language.

For example, Dart’s API helps programmers round a number, trim a string of
characters, describe a time interval, reverse a list, and so on.

• Flutter’s API deals with the presentation of components and images on a
device’s screen.

One part of Flutter’s API deals with buttons, text fields, check boxes, and the like.
Another part handles a user’s gestures. Yet another covers animation.

CHAPTER 1 What Is Flutter? 15

Where Does Flutter Fit In?
The heart of Flutter is an API for creating apps. Most Flutter apps run on mobile
devices, but Flutter apps can run on laptop and desktop computers, too. Flutter
certainly wasn’t the first API for mobile devices, so why should anyone consider
using Flutter to create apps?

Cross-platform development
My favorite burger joint advertised a new mobile ordering app. I needed the app
so that I could quickly hop off a commuter train, grab a burger, and run to a
nearby tech meeting. I did this several times each month. But I had a problem: The
app ran only on iPhones, and I had an Android phone.

Behind the scenes, the burger joint’s app developers were hard at work converting
their iPhone app to an Android app. This was no minor task, because Android’s
API doesn’t recognize the same commands as iPhone’s API. Going from one API to
the other isn’t straightforward. It’s not a matter of making routine code changes.
To convert from one kind of phone to another, developers rewrite thousands (and
maybe even millions) of lines of code. The process is time-consuming and
expensive.

So I waited and waited for the restaurant to have an Android app. I was so desper-
ate for a delicious cheeseburger that I finally broke down and bought a second
phone. But that turned out to be a bad idea. As soon as my new iPhone arrived, the
burger place released its shiny, new Android app.

Every Dart program, even the simplest one, calls on code in the Dart API, and every
Flutter app calls on both the Dart and Flutter APIs. These APIs are both useful and formi-
dable. They’re useful because of all the things you can do with the API code. They’re for-
midable because both APIs are extensive. No one memorizes all the features made
available by the Dart and Flutter APIs. Programmers remember the features that they
use often and look up the features that they need in a pinch. They look up these fea-
tures on a website called the Flutter API reference documentation.

The API documentation (see https://.api.flutter.dev) describes the features in
both the Dart and Flutter APIs. As a Flutter developer, you consult this API documenta-
tion on a daily basis. You can bookmark the website and revisit the site whenever you
need to look up something.

https://www.api.flutter.dev

16 PART 1 Getting Ready

The whole story comes down to things called platforms. People throw around the
word platform as if the word means everything and nothing. But to my mind, a
platform is a particular operating system along with the hardware the OS runs on.

What makes the Android platform different from its iOS counterpart? To create
radio buttons in Android’s API, you write code of the following kind:

<RadioGroup>

 <RadioButton

 android:id="@+id/radioButton1"
 android:text="Red"

 android:onClick="onRadioButtonClicked"/>

 <RadioButton

 android:id="@+id/radioButton2"
 android:text="Yellow"

 android:onClick="onRadioButtonClicked"/>

 <RadioButton

 android:id="@+id/radioButton3"
 android:text="Green"

 android:onClick="onRadioButtonClicked"/>

</RadioGroup>

Try converting that code to work on an iPhone. The iOS API doesn’t have radio
buttons, so, to adapt an Android app with radio buttons for iOS, you write code to
make things that look like radio buttons. You also code rules for the radio buttons
to follow — rules like “only one button at a time can be selected.” If you don’t
want to create radio buttons from scratch, you can replace Android’s radio buttons
with an iOS picker component, a thing that looks like an old automobile odometer.
One way or another, replacing an app’s components takes time and costs money.

Some companies give up and create apps for only one platform — iPhone or
Android. Other companies hire two teams of programmers — one for iPhone
development and another for Android development. Still other companies have
one team of programmers that work on both versions of the code. For the compa-
nies’ managers, the problem is exasperating. Why spend nearly twice the money
and create two apps that do almost the same things?

The developer community has names for this ugly situation:

 » Software written for one platform isn’t compatible with other platforms.

CHAPTER 1 What Is Flutter? 17

 » The mobile phone arena suffers from fragmentation: The market is divided
between two different operating systems, and the Android half is divided
among many vendors’ phones.

A program that makes direct use of either the Android or iOS API is called native
code, and native code written for Android can’t run on an iOS device. In the same
way, native code written for iOS is meaningless to an Android device. What’s a
developer to do?

A framework is a second-level API. What the heck does that mean? A framework is
an API that serves as an intermediary between the developer and some other
API. If direct use of the Android or iOS API is problematic, you switch to a frame-
work’s API. The framework’s API deals head-on with Android’s and iOS’s
problems.

Frameworks like Flutter offer an alternative to native app development. When you
write a Flutter program, you don’t write code specifically for Android or
iOS. Instead, you write code that can be translated into either system’s API calls.
Here’s how you create radio buttons in the Flutter framework:

Radio(

 value: TrafficLight.Red,

 groupValue: _trafficLightValue,

 onChanged: _updateTrafficLight,

),

Radio(

 value: TrafficLight.Yellow,

 groupValue: _trafficLightValue,

 onChanged: _updateTrafficLight,

),

Radio(

 value: TrafficLight.Green,

 groupValue: _trafficLightValue,

 onChanged: _updateTrafficLight,

)

Your computer translates code of this kind into either Android API calls or iOS API
calls — or both. That’s cool!

A quick-and-easy development cycle
You may have heard stories about the early days of computer programming.
I worked for a few summers at the University of Pennsylvania Physics depart-
ment. I wrote FORTRAN programs and typed them myself on a big deck of punch
cards. A 600-line program weighed about 1400 grams (roughly 3 pounds).

18 PART 1 Getting Ready

A BRIEF HISTORY
130,000 years ago: Humans first walk the earth.

10,000 years ago: Humans begin farming.

1752: Ben Franklin discovers electricity.

1760: The Industrial Revolution begins.

March 10, 1876: Alexander Graham Bell makes the first telephone call.

April 3, 1973: Martin Cooper makes the first mobile phone call.

August 16, 1994: BellSouth Cellular releases IBM Simon — the first smartphone.

June 29, 2007: Apple releases the first iPhone.

November 5, 2007: Google releases the first public beta of Android.

Both the iOS and Android are native development technologies. With native develop-
ment, the programmer makes calls directly to the system’s API.

December 2007: Articles and blog posts about fragmentation in mobile phone technol-
ogies start appearing in large numbers.

March 13, 2009: Nitobi Software introduces a framework that uses HTML, CSS, and
JavaScript to create mobile phone apps.

October 4, 2011: Adobe acquires Nitobi, rebrands its framework with the name
PhoneGap, and spins off an open-source version that eventually becomes Apache
Cordova.

Cordova and its cousins are hybrid app development frameworks. With hybrid app
development, an app runs in a window that’s essentially a web browser. Because web
browser technology is standard across all platforms, a hybrid app can run on both
Android and iOS devices, or even on a desktop computer.

What’s “hybrid” about hybrid apps? The code to display text and images in a web
browser doesn’t vary much from one environment to another, so a browser page on an
iPhone looks more or less like the same page on an Android phone. But communicating
with hardware devices, such as the GPS receiver and vibration motor, is another story
entirely.

CHAPTER 1 What Is Flutter? 19

Web pages aren’t designed to talk directly to a device’s hardware. In fact, you don’t want
to visit awfulwebsite.com and have the site’s code quietly take pictures with your lap-
top’s built-in camera. To make a hybrid app interact with hardware, you have to back-
pedal and make calls to the iPhone’s API, the Android API, or whatever other API you
can use. That’s why frameworks like Apache Cordova have plug-ins — additional pro-
grams whose code is specific to either iOS or Android. The bottom line is, a typical
hybrid app does some of its work in a web browser and the rest of its work with native
API calls.

What’s the downside with hybrid apps? Frameworks like Apache Cordova are like for-
eign language interpreters: While the app runs, the device must constantly translate
web browser instructions into native code instructions. When you talk through an inter-
preter, the conversation can become sluggish. Hybrid apps aren’t always as responsive
as native apps. In addition, hybrid apps can’t do all the things that native apps can do.
It’s the same when you talk through a foreign language interpreter. You can say most of
the things you want to say, but some ideas simply can’t be translated.

Returning to the history lesson . . .

Summer 2013: A hackathon for Facebook employees gives birth to React Native — a
cross-platform framework based on the React.js JavaScript framework.

February 24, 2016: Microsoft acquires Xamarin — a cross-platform mobile develop-
ment framework based indirectly on Microsoft’s own .NET framework.

With a cross-platform framework, a programmer writes one program that targets neither
iOS nor Android. When the programmer says, “Test this code,” the framework translates
the whole program into native code for either Android or iOS, whichever platform the
programmer chooses. When the program is ready for public distribution, the frame-
work translates it into two different native apps — one for iOS and the other for
Android.

But why stop there? If you can translate code into both iOS and Android apps, you can
translate the code into web pages and desktop apps. A developer can create one piece
of code and have it run on all kinds of phones, tablets, PCs, Macs, watches, toasters, or
whatever.

This brings me to the subject of my book:

December 4, 2018: Google announces Flutter 1.0 for cross-platform development.

(continued)

https://awfulwebsite.com/

20 PART 1 Getting Ready

I’d carry my program from the punch card machine to the computer operator’s
counter, where a permanently surly operator would tell me about the unusually
long job-turnaround time.

Four hours later, I’d get back an inch-thick pile of paper with an error message
somewhere in the middle of it. I’d go back to the punch card machine, make
another card with an added comma in the 23rd column, and do the whole business
again.

Flutter differs from Xamarin and React Native in some significant ways. First and fore-
most, Xamarin isn’t entirely free. Using Xamarin for professional projects costs between
$300 and $1900 a year, depending on the size and scope of the projects under
development.

In addition, Flutter’s way of displaying components is different from the React Native
and Xamarin way. When you run a React Native app on an iPhone, the app calls on the
iOS API to create iOS buttons, text fields, and other visual components. The same is true
for Android development. React Native gets the Android API to display Android-specific
components. Components created by the iOS and Android APIs don’t look alike. The
two APIs use different shapes, different color palettes, and different navigation
schemes. The differences can lead to unexpected results and can occasionally sabotage
the whole cross-platform development effort.

Flutter doesn’t call on the iOS or Android APIs to display an app’s components. Instead,
Flutter specifies all the tiny pixels required to draw a button or a text field and calls on
the iOS or Android API to paint those pixels. If you want an app to look the same on
both iOS and Android devices, Flutter is your natural choice.

What if you want your app to have that special, iPhone look when it runs on iOS
devices? Can you do that with Flutter? Of course, you can. (I wouldn’t pose the question
if the answer were “No.”) The Flutter framework has two special libraries — one for
Android and another for iOS. Flutter’s Material Design library draws things that look like
Android components, and Flutter’s Cupertino library makes objects look like iOS compo-
nents. This book emphasizes the Material library, but almost everything in it has a
Cupertino counterpart.

I end this sidebar with one more historical nougat:

May 10, 2239: Technology historian Alice Touge publishes a paper on the origin of the
word phone, which is Latin for “sound.” She explains that 23rd century phones came
from devices whose original purpose was solely to transmit sound. This surprising fact
goes viral on all the direct-to-mind streaming outlets.

(continued)

CHAPTER 1 What Is Flutter? 21

There’s no doubt about it — a long and arduous development cycle hinders pro-
ductivity. These days, shaving a few seconds off the turnaround time can make a
huge difference.

Here’s what happens when you create an app for mobile devices:

1. You write some code, or you modify some existing code.

You don’t write Android or iOS code on a phone of any kind. Phones aren’t
powerful enough for all the editing and other stuff you need to do. Instead, you
create an app’s code on a laptop or desktop computer. This laptop or desktop
computer is called your development computer.

2. You issue a command for your development computer to build the code.

Building the code takes place in several stages, one of which is called compiling.
Compiling means automatically translating your program from the source code
you wrote to detailed object code instructions. Think of object code as a bunch
of zeros and ones. It’s very detailed and extremely unintuitive. Humans hardly
ever read or write object code but, at the heart of things, processors respond
only to object code instructions.

For a detailed look at compiling code, see this section’s “What is a compiler?”
sidebar.

In addition to the translation step, the build process connects the program you
wrote with additional code that your program needs in order to run. For
example, if your program accesses the Internet, the build process integrates
your code with existing network code.

What happens next?

3. The development computer deploys your code to a target device.

This so-called “device” may be a real phone connected to your computer or a
picture of a phone on your computer’s screen. One way or another, your
program starts running.

4. You press buttons, type text, and otherwise test your app to find out whether
it’s doing the things you want it to do.

Of course, it’s not doing all those things. So you return to Step 1 and keep
trying.

Steps 2 and 3 can be painfully slow. For some simple iPhone and Android apps,
I’ve watched for several minutes as my computer prepares code for the program’s
next run. This sluggishness reduces my productivity considerably.

22 PART 1 Getting Ready

But along with Flutter comes some good news. Flutter uses the Dart programming
language, and Dart comes with these two (count ’em — two) compilers:

 » Ahead-of-time (AOT) compiler

With an AOT compiler, your development computer translates an entire
program and makes the translated code available for devices to run. No
further translation takes place when the devices run your program. Each
target device devotes its processing power to the efficient running of your
code.

An app running on AOT-compiled code runs smoothly and efficiently.

 » Just-in-time (JIT) compiler

With a JIT compiler, your development computer translates enough code to
start the app running. It feeds this code to a test device and continues
translating while the test device runs the app. If the developer presses a
button on the test device’s screen, the JIT compiler hurries to translate that
button’s code.

An app running on a JIT compiler may appear to be sluggish because the
compiler translates code while the app runs. But using a JIT compiler is a great
way to test an app.

Here’s what happens when you develop a Flutter app:

1. You write some code.

2. You issue a command for your development computer to build the code.

The first time around, building code can take some time.

3. The development computer deploys your code to a target device.

Again, you face a noticeable time lag.

4. In testing your code, you find out that it’s not doing all the things you want it
to do.

5. You modify your existing code, and then . . .

6. You issue a command for your development computer to rebuild the code.

Here’s where Flutter’s magic happens. Dart’s JIT compiler recompiles only the
part of the app that you’ve modified and sends the change straight to the
target device. The modified code starts running in a fraction of a second. You
save hours of time every day because you’re not waiting for code changes to
take effect.

CHAPTER 1 What Is Flutter? 23

WHAT IS A COMPILER?
You’re a human being. (Sure, every rule has exceptions. But if you’re reading this book,
you’re probably human.) Anyway, humans can write and comprehend the following
Flutter source code:

import 'package:flutter/widgets.dart';

main() => runApp(SizedBox`());

When you paraphrase the source code in English, here’s what you get:

Get some code (code from the Flutter API) named widgets.dart.

Run an application whose only component is a box widget.

If you don’t see the similarities between the Flutter code and its English equivalent, don’t
worry. You’re reading Flutter For Dummies, and, like most human beings, you can learn
to read and write the Flutter code. In case you’re wondering, this source code contains
the world’s simplest and most useless Flutter app. When the app runs, you see a com-
pletely black screen. It’s not what you’d call a “killer app.”

Source code is nice, but source code isn’t for everyone and everything. The processors
in computers and mobile devices aren’t human beings. Processors don’t follow source
code instructions. Instead, they follow cryptic instructions of the following kind:

1100100 1100101 1111000 00001010 00110000 00110011 00110101 00000000 10000100

These zeros and ones are, in fact, the first few words in an Android phone’s version of
the Black Screen app’s code. Here’s the Black Screen app after a processor interprets
the zeros and ones:

.class public com/allmycode/dexperiment/MainActivity

.super io/flutter/embedding/android/FlutterActivity

.source MainActivity.java

.method public <init>()V

.limit registers 1

; this: v0 (Lcom/allmycode/dexperiment/MainActivity;)

.line 8

 invoke-direct {v0},io/flutter/embedding/android/FlutterActivity/<init>

 ; <init>()V

 return-void

.end method

(continued)

24 PART 1 Getting Ready

Flutter gives you two ways to apply changes to a running app:

 » With hot restart, the app begins its run anew, removing any data that you’ve
entered during the most recent test, displaying the app as if you’re running it
for the first time.

.method public configureFlutterEngine(Lio/flutter/embedding/engine/

FlutterEngine;)V

.limit registers 2

; this: v0 (Lcom/allmycode/dexperiment/MainActivity;)

; parameter[0] : v1 (Lio/flutter/embedding/engine/FlutterEngine;)

.line 11

 invoke-static {v1},io/flutter/plugins/GeneratedPluginRegistrant/

registerWith

 ; registerWith(Lio/flutter/embedding/engine/FlutterEngine;)V

.line 12

 return-void

.end method

What a mess! Humans don’t want to read or write instructions of this kind. These
instructions aren’t Dart source code instructions. They’re Dalvik bytecode instructions.
When you write a Flutter program, you write Dart source code instructions. If you test
your program on an Android device, your development computer translates the source
code into bytecode. If you test your program on an iPhone, the computer translates
your source code into something that’s even more obscure than bytecode.

The tool that performs the translation is a compiler. The compiler takes code that you
can write and understand and translates it into code that a processor has a fighting
chance of carrying out.

You might put your source code in a file named main.dart. To run your app on
Android devices, the compiler creates other files named MainActivity.dex and app.
apk. Normally, you don’t bother looking at these compiled files. You can’t even examine
.dex files or .apk files with an ordinary editor. If you try to open MainActivity.dex
with Notepad, TextEdit, or even Microsoft Word, you’ll see nothing but dots, squiggles,
and other gobbledygook.

No one (except for a few crazy programmers in some isolated labs in faraway places)
writes Dalvik bytecode or any other kind of code that processors actually understand.
When you ask your development computer to run your code, the computer uses its
own software (a compiler) to create processor-friendly instructions. The only reason to
look at the bytecode in this sidebar is to understand what a hard worker your develop-
ment computer is.

(continued)

CHAPTER 1 What Is Flutter? 25

 » With hot reload, the app takes up from where it left off, with the data you last
entered intact, if possible. The only changes are the ones dictated by your
modifications to the code.

Flutter’s hot restart and hot reload are both blazingly fast. They turn the app
development cycle into a pleasure rather than a chore.

Chapter 2 tells you more about building, testing, and rerunning apps.

A great way to think about app
development
The language you speak influences the way you think. If you don’t believe me,
look up the Sapir-Whorf hypothesis. You’re bound to find it on your favorite lin-
guistics website.

Spoken languages are neither good nor bad, but programming languages can have
good qualities and bad qualities. Most hybrid apps are written in the JavaScript
programming language. Yes, JavaScript is one of the world’s most widely used
languages. But, no, JavaScript doesn’t encourage good software design. It’s easy
to write confusing code in JavaScript because its rules are quite permissive. You
can write sloppy JavaScript code, and the code runs just fine. That is, it runs fine
until someone enters unexpected input. When that happens, you have trouble fig-
uring out how your code was working in the first place. Even when you’re not busy
fixing errors, adding new features to JavaScript code can be difficult and frustrat-
ing. JavaScript aficionados will argue with every word in this paragraph but, one
way or another, JavaScript has its downsides.

Apple’s iOS platform uses the Swift and Objective-C languages, whereas Android
uses Kotlin and Java. Objective-C dates back to the early 1980s and, like me, it’s
showing its age. The other three languages fare pretty well on the scale of good
language features, but none of them is as straightforward and intuitive as Dart.

On top of that, both iOS and Android divide an app’s code into two separate parts:

 » Layout: How the app looks.

 » Logic: The sequence of instructions that the app performs.

The Android radio button example in this chapter’s earlier section “Cross-
platform development” is neither Kotlin nor Java code. It’s XML code (a term that
I don’t bother to define here). It has a different format and lives in a different file
from the code that responds to radio button choices.

26 PART 1 Getting Ready

In my Android books, I argue that separating layout from logic is a good thing. It
puts distinct aspects of an app into different parts of the code. Developers can
maintain each part independently. For an Android developer, that’s a good thing.

But this isn’t an Android book. It’s a Flutter book. So, in this book, I claim that
separating layout from logic is not optimal. Here’s why:

You may have heard the all-encompassing mantra of Flutter app development:

In Flutter, almost everything is a widget.

And what is a widget? In a mobile app, every button is one of the app’s widgets.
Every text field is a widget. The app itself is a widget. The positioning of buttons
and text fields is a widget. The animating of objects from one part of the screen to
another is a widget. When you create a Flutter app, you put widgets inside of other
widgets, which in turn are inside even more widgets. Listing 1-1 has some fake
code that illustrates the point:

LISTING 1-1: Like a Wheel Within a Wheel

// Don't fall for my trickery. This isn't real Flutter code!

Application(

 Background(

 CenterWhateverIsInsideThis(

 Button(

 onPressed: print("I've been clicked."),

 Padding(

 Text(

 "Click Me"

),

),

),

),

),

)

Listing 1-1 has a Text widget inside of a Padding widget, which is inside of a
Button widget inside a CenterWhateverIsInsideThis widget. That Center
WhateverIsInsideThis widget is inside a Background widget, which is inside an
Application widget. When I created Listing 1-1, I modeled it after real Flutter
code. The real Flutter code creates the app shown in Figure 1-2. When the user
presses the Button in Figure 1-2, the words I’ve been clicked appear.

CHAPTER 1 What Is Flutter? 27

To see the real code that inspired this chapter’s fake code, visit www.allmycode.
com/flutter and look for the big download link. The real code is in a file named
app0101.

Compare Figures 1-2 and 1-3. Figure 1-2 shows the app as the user sees it.
Figure 1-3 shows the same app as the Flutter developer codes it.

FIGURE 1-2:
An app with a

button.

FIGURE 1-3:
Widgets within

widgets.

https://www.allmycode.com/flutter
https://www.allmycode.com/flutter

28 PART 1 Getting Ready

If you’re not already a Flutter developer, the word widget might suggest a visible
component, such as a button, a slider, an icon, or some other such thing. But
in Flutter, things that aren’t really visible are also widgets. For example, in
Listing 1-1, CenterWhateverIsInsideThis is a widget. Having layout features like
CenterWhateverIsInsideThis be widgets is a powerful idea. It means that Flutter
developers can focus their attention on one overarching task — stuffing widgets
inside other widgets. Flutter has a certain simplicity and elegance that other app
development frameworks don’t have.

Flutter has no built-in widget named CenterWhateverIsInsideThis. But don’t
be disappointed. Flutter’s Center widget does what my fictitious Center
WhateverIsInsideThis widget is supposed to do.

Enough New Terminology! What’s Next?
You may have read this chapter from start to finish but not one word in the
chapter prompted you to touch your computer keyboard. What a shame! If you’ll
read the next chapter, I can rectify that awful omission.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 29

Chapter 2
Setting Up Your
Computer for Mobile
App Development

Archimedes lived in ancient Greece during the second century BCE. His
work in the early development of mathematics was groundbreaking. In the
peace and quiet of his own bathtub, he chanced upon an important

 formula — a formula to describe the relationship between his weight and the
amount of water his body displaced. Upon making this discovery, he yelled
“Eureka!” and jumped out of the tub to tell everyone in his city. Tunic or no tunic,
Archimedes wanted all Greeks to share in his joy.

Jump forward roughly 2200 years. I’m 12 years old. In a conversation about mov-
ing some furniture, my father quotes Archimedes: “Give me a big enough lever,
and I can move the world.” I try to picture this. Here’s Earth, hanging out in
space, and there’s a long, long stick with a curl at the bottom. The curl reaches
under the big planet and nudges it to a new position.

Stinker that I was, I saw three problems with this scenario. First, how would you
anchor the bottom of the lever at a fixed point in empty space? Second, how would
you keep the lever from digging an enormous hole into some soft part of the
Earth? And finally, how would the people of Earth take to having their planet
knocked out of orbit? As you can see, I was an ornery kid.

IN THIS CHAPTER

 » Installing Dart and Flutter

 » Installing a development
environment

 » Mimicking mobile devices on your
laptop computer

30 PART 1 Getting Ready

But the idea of leverage stuck in my mind. The longer the lever, the more benefit
you get from it. You can’t lift a big boulder on your own without a lever, but you
can move the boulder with a humongous lever. A lever is a tool, and tools are won-
derful things.

Tools don’t directly do the things you want done. You can’t eat a tool, read a good
tool, hear a tool’s happy song, or dance the jig with a tool. But you can use tools
to make food, books, musical instruments, and dance floors.

This chapter is all about tools — the tools you use to make great mobile apps.

The Stuff You Need
This book tells you how to create apps using Flutter. Before you can create apps,
you need some software tools. Here’s a list of the tools you need:

 » The Flutter Software Development Kit (SDK)

The Flutter SDK includes lots and lots of prewritten, reusable Flutter code and
a bunch of software tools for running and testing Flutter apps. The SDK has
the official Flutter code libraries, Dart code libraries, documentation, and even
some sample apps.

 » An integrated development environment

You can create Flutter apps by using geeky, keyboard-only tools, but eventu-
ally you’ll tire of typing and retyping commands. An integrated development
environment (IDE), on the other hand, is a little like a word processor: A word
processor helps you compose documents (memos, poems, and other works
of fine literature); in contrast, an IDE helps you compose instructions for
processors.

For composing Flutter apps, I recommend the Android Studio IDE. Don’t be
fooled by the word Android in the IDE’s name. Using Android Studio, you can
create iPhone apps, web apps, and other kinds of apps.

 » Some sample Flutter apps, to help you get started

All examples in this book are available for download here:

www.allmycode.com/Flutter

http://www.allmycode.com/Flutter

CHAPTER 2 Setting Up Your Computer for Mobile App Development 31

 » A device for testing your Flutter code

You write some code, and then you run it to see whether it works correctly.
Usually, it doesn’t work correctly until you make some changes. Most often, it
doesn’t work correctly until you make lots of changes.

In this book, I emphasize the creation of apps for iPhones and Android
phones. You can run your code on your own phone, but you can also run it on
your computer. To run a mobile app on your computer, you need software
that displays a phone on your screen and runs your app within that display.

In the iPhone world, this type of software is called a simulator, and Android
calls its software an emulator. Simulators and emulators are examples of
virtual devices. In contrast, an actual iPhone or Android phone is called a
physical device.

Another name for a physical device is a real device. For emphasis, I sometimes
write real, physical device. I suppose I could be more emphatic and write real,
actual, hard-core, physical device, you betcha!

An emulator isn’t quite the same thing as a simulator. An emulator is software
that behaves, to a large extent, like the hardware of a real, physical phone.
A simulator is software that runs a phone’s apps without really behaving too
much like the phone’s hardware. Fortunately, when you run this book’s apps,
you can ignore this subtle difference.

All these tools run on the development computer — the laptop or desktop computer
you use to develop Flutter apps. Later, when you publish your app, users run the
app on their target devices — physical devices such as iPhones, Android phones,
and (someday soon) smart toasters.

Here’s good news: You can download for free all the software you need to run this
book’s examples. The software is separated into four downloads:

 » When you visit https://flutter.dev/docs/get-started/install, you
can click a button to install the Flutter SDK.

 » A button at the page http://developer.android.com/studio gives you
the Android Studio IDE download. Along with this download comes the
Android emulator.

 » This book’s website (www.allmycode.com/Flutter) has a link to all of the
book’s code.

 » The iPhone simulator, as well as all the code you need for generating iPhone
apps, comes with the installation of Xcode on your Mac. Xcode is available from
the Macintosh App Store. (Unfortunately, you can’t develop for iPhone on a
Windows PC.)

https://flutter.dev/docs/get-started/install
http://developer.android.com/studio
http://www.allmycode.com/Flutter

32 PART 1 Getting Ready

In the world of mobile app development, things change very quickly. The instruc-
tions I write on Tuesday can be out-of-date by Thursday morning. The creators of
Flutter are always creating new features and new tools. The old tools stop work-
ing, and the old instructions no longer apply. If you see something on your screen
that doesn’t look like one of my screen shots, don’t despair. It might be something
very new, or you might have reached a corner of the software that I don’t describe
in this book. One way or another, send me an email, a tweet, or some other form
of communication. (Don’t try sending a carrier pigeon. My cat will get to it before
I find the note.) My contact info is in this book’s introduction.

What to Do
It’s an old, familiar refrain. First you get some software. Then you run the
software.

Getting and installing the stuff
1. Visit www.allmycode.com/Flutter and download a file containing all the

program examples in this book.

The downloaded file is a .zip archive file. (Refer to the later sidebars “Those
pesky filename extensions” and “Compressed archive files.”)

Most web browsers save files to the Downloads directory on the computer’s
hard drive. But your browser may be configured a bit differently. One way
or another, make note of the folder containing the downloaded file
FlutterForDummies_Listings.zip.

2. Extract the contents of the downloaded file to a place on your computer’s
hard drive.

3. Visit https://flutter.dev/docs/get-started/install and download
the Flutter SDK.

Choose a version of the software that matches your operating system
(Windows, Macintosh, or whatever).

4. Extract the contents of the downloaded file to a place on your computer’s
hard drive.

The aforementioned contents is actually a directory full of stuff. The directory’s
name is flutter. Put your new flutter directory in a place that isn’t pro-
tected with special privileges. For example, if you try extracting the flutter
directory inside the c:\program files directory, Windows displays its User

http://www.allmycode.com/Flutter
https://flutter.dev/docs/get-started/install

CHAPTER 2 Setting Up Your Computer for Mobile App Development 33

Account Control dialog box and asks for confirmation. Don’t put the flutter
directory inside a place like that.

You say “folder.” I say “directory.” To not-quite-quote Gershwin, let’s call the
whole thing off because, in this book, I use these two words interchangeably.

Personally, I like to put the flutter directory inside my home directory. My
computer has a directory named Users, and inside that Users directory is a
directory named barryburd. That barryburd directory is my home directory.
This home directory contains my Documents directory, my Downloads directory,
and lots of other stuff. After I extract the downloaded file’s content, my
barryburd home directory has a brand-new flutter directory.

You don’t have to extract the flutter directory right inside your home
directory, but it’s the simplest, most reliable thing I can think of doing.

5. Make a note of the place on your hard drive where the new flutter
directory lives.

For example, if you copied the .zip file’s contents to your /Users/
janeqreader directory, make a note of the /Users/janeqreader/flutter
directory. That’s your Flutter SDK path.

To make sure that you’ve extracted the downloaded file’s contents correctly,
look inside the flutter directory for a subdirectory named bin. My flutter
directory has other subdirectories, named dev, examples, and packages. Your
mileage may vary, depending on when you download the Flutter SDK.

6. Visit http://developer.android.com/studio and download the Android
Studio IDE.

The download is an .exe file, a .dmg file, or maybe something else.

7. Install the software that you downloaded in Step 6.

During the installation, a dialog box may offer the option of installing an
Android virtual device (AVD). If so, accept the option.

For other details about installing Android Studio, see this chapter’s later section
“On Installing Android Studio.”

Android Studio isn’t the only IDE that has features for creating Flutter apps.
Some developers prefer Virtual Studio Code (known affectionately as VS Code),
which is available for Windows, Macintosh, and Linux. And if you enjoy
roughing it, you can do without an IDE and use the command line along with
your favorite text editor — Emacs, vi, or Notepad. In this book, I focus on
Android Studio, but you can find plenty of alternatives.

To learn more about Visual Studio Code, visit https://code.visualstudio.com.

http://developer.android.com/studio
https://code.visualstudio.com/

34 PART 1 Getting Ready

While you’re visiting any software download site, check the requirements for
downloading, installing, and running that software. Make sure you have enough
memory and an operating system that’s sufficiently up to date.

For Mac users only
If you have a Mac and you want to create iPhone apps, follow these steps:

1. Select App Store from the Apple menu.

2. In the store’s search field, type Xcode and then press Enter.

The App Store’s search finds dozens of apps, but only one has the simple
name Xcode.

THOSE PESKY FILENAME EXTENSIONS
The filenames displayed in File Explorer or in a Finder window can be misleading.
You may browse a directory and see the name android-studio-ide or flutter_
windows. The file’s real name might be android-studio-ide.exe, flutter_
windows.zip, or plain old flutter_windows. Filename endings such as .zip, .exe,
.dmg, .app, and .dart are filename extensions.

The ugly truth is that, by default, Windows and the Mac hide many filename extensions.
This awful feature tends to confuse people. If you don’t want to be confused, change
your computer’s system-wide settings. Here’s how to do it:

• In Windows 7: Choose Start ➪  Control Panel ➪  Appearance and Personalization ➪  
Folder Options. Then skip to the third bullet.

• In Windows 8: On the Charms bar, choose Settings ➪  Control Panel. In the Control
Panel, choose Appearance and Personalization ➪  Folder Options. Then proceed to
the following bullet.

• In Windows 7 or 8: Follow the instructions in one of the preceding bullets. Then, in
the Folder Options dialog box, click the View tab. Look for the Hide File Extensions
for Known File Types option. Make sure that this check box is not selected.

• In Windows 10: On the File Explorer’s main menu, select View. On the ribbon that
appears, put a check mark next to File Name Extensions.

• In macOS: On the Finder application’s menu, select Preferences. In the resulting
dialog box, select the Advanced tab and look for the Show All File Extensions option.
Make sure that this check box is selected.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 35

3. Click the Xcode app’s Get button.

As a result, the App Store installs Xcode on your computer.

4. Launch the Xcode application.

The first time you run Xcode, your Mac installs some additional components. If
you want your apps to run on Apple devices, you need those additional
components.

Configuring Android Studio
Android Studio doesn’t come automatically with Flutter support, meaning you
have to add Flutter support the first time you run the IDE. Here’s what you do.

COMPRESSED ARCHIVE FILES
When you visit www.allmycode.com/Flutter and download this book’s examples,
you download a file named FlutterForDummies_Listings.zip. A zip file is a single
file that encodes a bunch of smaller files. The FlutterForDummies_Listings.zip file
encodes files with names such as App0301.dart, App0302.dart, and App0401.dart.
The App0301.dart file contains the code in Listing 3-1 — the first listing in Chapter 3.
Likewise, App0302.dart and App0401.dart have the code in Listings 3-2 and 4-1.

The FlutterForDummies_Listings.zip file also encodes a folder named assets.
This folder contains copies of the images that appear in the book’s apps.

A .zip file is an example of a compressed archive file. Other examples of compressed
archives include .tar.gz files, .rar files, and .sparsebundle files. When you uncom-
press a file, you extract the original files and folders stored inside the larger archive file.
(For a .zip file, another word for uncompressing is unzipping.)

When you download FlutterForDummies_Listings.zip, the web browser may
uncompress the file automatically for you. If not, you can get your computer to uncom-
press the file. Here’s how:

• On a Windows computer, double-click the .zip file’s icon. When you do this,
Windows File Explorer shows you the files and folders inside the compressed .zip
archive. Drag all these files and folders to another place on your computer’s hard
drive (a place that’s not inside the archive file).

• On a Mac, double-click the .zip file’s icon. When you do this, the Mac extracts the
contents of the archive file and shows you the extracted contents in a Finder
window.

http://www.allmycode.com/Flutter

36 PART 1 Getting Ready

1. Launch the Android Studio application.

The first time you run a fresh, new copy of Android Studio, you see the
Welcome screen.

2. Select Configure ➪  Plugins on the Welcome screen.

You’ll find the Configure drop-down menu in the lower right corner of the
Welcome screen. (See Figure 2-1.)

3. Search for a plugin named Flutter. Install that plugin.

If Android Studio offers the option of installing Dart as well, accept the option.

After installing the plugin, Android Studio may want to be restarted. Of course,
you should restart it. When you do, you see the Welcome screen again. Now
the Welcome screen includes the Start a New Flutter Project option. (See
Figure 2-2.)

For other details about configuring Android Studio, see the section
“On installing Android Studio’s Flutter plugin,” later in this chapter.

Running your first app
You’ve installed Android Studio, added Android Studio’s Flutter plugin, and then
restarted Android Studio. Now you’re staring at Android Studio’s Welcome screen.
What do you do next?

FIGURE 2-1:
Android Studio’s
default Welcome

screen.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 37

1. Connect to the Internet.

During the run of your very first app, Android Studio downloads some
additional software.

2. Select the Start a New Flutter Project option. (Refer to Figure 2-2.)

On your phone, an app is an app, and that’s all there is to it. But on your
development computer, all your work is divided into projects. For professional
purposes, you’re not absolutely correct if you think of one app as equaling one
project. But, for the examples in this book, the “one project equals one app”
model works just fine.

If you don’t see the Start a New Flutter Project option, you may not have
installed the Flutter plugin correctly. I recommend double-checking the
instructions in the “Configuring Android Studio” section, earlier in this chapter.
If that doesn’t help, or if you get stuck somewhere else in this chapter, send me
an email. My email address is in the book’s introduction.

Having selected Start a New Flutter Project, you’ll see three dialog boxes, one
after another. The first asks what kind of Flutter project you want to create, the
second asks for the new app’s name and other details, and the third creates
something called a package.

3. In the first dialog box, select Flutter Application and then click Next.
(See Figure 2-3.)

The second dialog box has four fields: Project Name, Flutter SDK Path, Project
Location, and Description. (See Figure 2-4.)

FIGURE 2-2:
You’ve installed

the Flutter plugin.

38 PART 1 Getting Ready

4. Select a name that has only lowercase letters and, if you want, under-
score (_) characters.

Flutter project names cannot contain uppercase letters, blank spaces, or
punctuation characters other than the underscore.

FIGURE 2-3:
Creating a Flutter

application.

FIGURE 2-4:
Details about

your new app.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 39

If you create many apps, keeping track of them all can drive you crazy. So, it
helps if you decide on a formula for naming your apps and then stick to that
formula as closely as you can. Later on, when you start marketing your apps,
you can abandon the formula, and use clever names that attract peoples’
attention.

5. For the Flutter SDK path, supply your Flutter SDK path.

You copied down the Flutter SDK path when you followed Step 5 in the earlier
section “Getting and installing the stuff,” didn’t you? If you forgot, search your
hard drive for a folder named flutter. It’s bound to be there somewhere.

6. Don’t change the Project Location option, unless you have a specific
reason for doing so.

You don’t have to specify a new directory for each of your projects. Android
Studio does that for you automatically with this project location as the
starting point.

7. For the description, type something that’s silly and off the wall.

Do it now, while you still can. When you create apps professionally, you have to
be more serious.

After you click Next, Android Studio displays its Set the Package Name dialog
box. (See Figure 2-5.)

FIGURE 2-5:
The finishing

touches.

40 PART 1 Getting Ready

8. If your company has a domain name, or if you have your own domain
name, type it in the Company Domain field. If not, type anything at all or
leave the default text alone.

A package is a collection of closely related pieces of code, and each Flutter app
belongs to its own package. In the Flutter world, it’s customary to start a
package’s name with the reverse of a domain name. For example, my com-
pany’s domain name is allmycode.com. So, when I create a Flutter app, the
app is usually in a package named com.allmycode.somethingorother. The
somethingorother part is unique to each of my apps.

When you create your first project, the Company Name field’s default text is
probably example.com. Several years ago, the Internet Corporation for
Assigned Names and Numbers (ICANN) set this name aside for anyone to use.
Immediately below that, the dialog box supplies the package name example.
com.whateveryounamedyourapp. This default package name is just fine when
you’re creating your very first Flutter apps.

This dialog box may have check boxes labeled Generate Sample Content,
Include Kotlin Support for Android Code, and Include Swift Support for iOS
Code. Don’t worry about these check boxes. Check them, or don’t check them.
For your first Flutter app, it doesn’t matter.

9. Click Finish.

As if by magic, Android Studio’s main window appears. (See Figure 2-6.) The main
window has all the tools you need for developing top-notch Flutter applications.
It even has a sample starter application, which you run in the next few steps.

Android Studio’s main window may look overwhelming at first. To help you
become underwhelmed (or maybe just average-whelmed), I describe the main
window’s parts in this chapter’s “Using Android Studio” section, later in this
chapter.

In Figure 2-7, notice two important items near the top of Android Studio’s main
window:

• The Target Selector displays the text <no devices>.

• The Run icon is a little right-pointing green arrow.

What you do next depends on your development computer and your develop-
ment goals.

10. If you have a Mac, and you want to run an iPhone simulator, select Open
iOS Simulator in the Target Selector drop-down list.

If you don’t have a Mac, or if you want to run an Android emulator, select
Tools ➪  AVD Manager on Android Studio’s main menu bar. In the result-
ing dialog box, look for a Green Arrow icon on the right side of the dialog
box. Click that Green Arrow icon. (See Figure 2-8.)

http://www.allmycode.com/

CHAPTER 2 Setting Up Your Computer for Mobile App Development 41

If the AVD manager is empty — that is to say, if it’s not like the manager shown
in Figure 2-8, which shows a virtual device labeled Pixel API 28 — you have to
create an Android Virtual Device. See the section “Running apps on an Android
device,” later in this chapter, for details.

Android Virtual Devices don’t always start quickly. On my computer with
16 gigabytes of RAM, the start-up time may be two to three minutes. On a
computer with only 4 gigabytes of RAM, the AVD might never start up. Apple’s
iPhone simulator tends to be a bit snappier, but you never know. I’ve devoted
two later sections of this chapter to Android emulator and iPhone simulator
tricks — “On adding virtual devices” and “Divisiveness Among Devices.”

FIGURE 2-6:
Android Studio’s

main window.

FIGURE 2-7:
Android Studio’s

toolbar.

FIGURE 2-8:
Start running an

Android Virtual
Device.

42 PART 1 Getting Ready

When your virtual device’s home screen appears on the screen, you’re ready to
run the sample Flutter app.

11. Click the Run icon on Android Studio’s toolbar. (Refer to Figure 2-7.)

As a result, Android Studio’s Run tool window appears in the lower portion of
the main window. A few messages appear while you wait impatiently for the
app to start running. When the app starts running, the virtual device (the
simulator or emulator) sports a handsome display. (See Figure 2-9.)

Congratulations! Your first app is running. You can try out the app by clicking the
mouse on the app’s floating action button (the circular item in the lower right
corner of the virtual device’s screen). The message in the middle tells you how
many times you’ve clicked the button. It’s not the world’s most useful app, but
it’s a good start.

For details about any of these steps, see the next several sections.

FIGURE 2-9:
Isn’t it wonderful?

CHAPTER 2 Setting Up Your Computer for Mobile App Development 43

Dealing with the Devil’s Details
Several decades ago, I bought a book about databases from the deep-discount
table at my local supermarket. When I got the book home, I got hopelessly stuck
in Chapter 1. I couldn’t figure out how to run the software correctly. I struggled for
several hours and then gave up. I’ve never touched the book since that day.

Why do I write about this nasty experience? I write about it to assure you that
I’ve scraped my knuckles trying to get software running. It’s the problem that
most readers ask about when they send an email to me. It’s natural to get stuck
and need help.

In earlier sections, I present the basic steps for setting up your computer and run-
ning your first Flutter app. Basic steps are nice, but they don’t work for everyone.
That’s why, in this section, I delve a bit deeper.

In the world of mobile app development, things change very quickly. The instruc-
tions that I write on Tuesday can be out-of-date by Thursday morning. The
 creators of Flutter are always creating new features and new tools. The old tools
stop working, and the old instructions no longer apply. If you see something on
your screen that doesn’t look like one of my screen shots, don’t despair. It might
be something very new, or you might have reached a corner of the software that
I don’t describe in this book. One way or another, send me an email or a tweet or
some other form of communication. (Don’t send a carrier pigeon. My cat will get
to it before I find the note.) My contact info is in this book’s introduction.

On installing Android Studio
What you do to install Android Studio depends on your operating system:

 » In Windows: The downloaded file is probably an .exe file. Double-click the
.exe file’s icon.

When you double-click the .exe file’s icon, a wizard guides you through the
installation.

 » On a Mac: The downloaded file is probably a .dmg file. Double-click the .dmg
file’s icon.

When you double-click the .dmg file’s icon, you see the Android Studio icon
(also known as the Android Studio.app icon). Drag the Android Studio icon to
your Applications folder.

About .exe files and .dmg files, I make no guarantees. The downloaded file might
be a .zip archive or maybe some other exotic kind of archive file. If you can’t
figure out what to do, send me an email.

44 PART 1 Getting Ready

For more information on topics like .exe and .dmg, refer to the earlier sidebar
“Those pesky filename extensions.” And, if you need help with .zip files, see the
earlier sidebar “Compressed archive files.”

On launching Android Studio
for the first time
Is it time to launch Android Studio? This section has a few small details.

 » In Windows: Click the Start button and look for the Android Studio entry.

 » On a Mac: Press Command-space to make the Spotlight appear. In the
Spotlight’s search field, start typing Android Studio. When your Mac makes the
full name Android Studio appear in the Spotlight’s search field, press Enter.

If your Mac complains that Android Studio is from an unidentified developer,
look for the Android Studio icon in your Applications folder. Ctrl-click the
Android Studio icon and select Open. When another “unidentified developer”
box appears, click the box’s Open button.

When you launch Android Studio for the first time, you might see a dialog box
offering to import settings from a previous Android Studio installation. Chances
are, you don’t have a previous Android Studio installation, so you should firmly
but politely decline this offer.

When the dust settles, Android Studio displays the Welcome screen. The Welcome
screen has options such as Start a New Android Studio Project, Open an Existing
Android Studio Project, Configure, and Get Help. (Refer to Figures 2-1 and 2-2.)

You see this Welcome screen again and again. Stated informally, the Welcome
screen says, “At the moment, you’re not working on any particular project (any
particular Flutter app). So, what do you want to do next?”

On installing Android Studio’s Flutter plugin
When you first launch Android Studio, you should definitely install Android
 Studio’s plugin for developing Flutter apps. Here’s a closer, more detailed look at
how you do it:

1. On Android Studio’s Welcome screen, select Configure ➪  Plugins. (See
Figure 2-10.)

A Plugins dialog box with three tabs appears on the screen. The tabs are
labeled Marketplace, Installed, and Updates (see Figure 2-11).

CHAPTER 2 Setting Up Your Computer for Mobile App Development 45

FIGURE 2-10:
Check out

Android Studio’s
plugins.

FIGURE 2-11:
The Plugins
dialog box.

46 PART 1 Getting Ready

On some versions of Android Studio, the Welcome screen has no Configure
option. In that case, select the Welcome screen’s Start a New Android Studio
Project option. Accept all the defaults until you see Android Studio’s main
window. Then, in the main menu bar, select File ➪  Settings ➪  Plugins (on
Windows) or Android Studio ➪  Preferences ➪  Plugins (on a Mac).

2. Select the Marketplace tab.

When you do, Android Studio shows you an extensive list of available plugins.
You’ll want to narrow down this list.

3. In the dialog box’s search field, type the word Flutter.

Android Studio shows you a bunch of plugins with the word Flutter in their
titles. Each plugin has its own Install button. Look for the plugin named
Flutter — not Flutter Snippets, flutter_json_format, or anything like that.

4. Select the Install button for the plugin named Flutter.

After showing you a dialog box that Google’s lawyers created, Android Studio
asks whether you want to install the Dart plugin.

5. Select Yes.

You definitely want to install the Dart plugin. (To find out why, refer to Chapter 1.)

When the plugin installations are finished, Android Studio offers to restart itself.

6. Restart Android Studio.

After the restart, Android Studio’s Welcome screen has a new option, with the
label Start a New Flutter Project. (Refer to Figure 2-2.) You’re all set.

On adding virtual devices
When it comes to installing virtual devices, the stories for iPhone and Android are
a bit different.

 » With an Apple, Windows, or Linux computer, you can download Android Studio
and get the Android emulator that comes with it. You might have to do a bit of
work to install an Android Virtual Device (AVD), but that’s not a big deal.

 » If you have an Apple computer, you get an iPhone simulator by downloading
Apple’s Xcode software.

If you don’t have an Apple computer, you can find third-party simulators by
searching the Web, but keep in mind that creating iPhone apps on anything
other than a Mac is difficult. Depending on the way you do it, the process
might even be illegal.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 47

Android makes a distinction between an emulator and an Android Virtual Device
(AVD). Here’s the scoop:

 » When you install Android Studio, you get the Android phone emulator
automatically. This emulator can bridge the gap between your development
computer’s hardware and a mock-up of a phone’s hardware. But which
phone’s hardware is it mocking? Is it a Samsung Galaxy or a Sony Xperia?
How big is the phone’s screen? What kind of camera does the phone have?

MIMICKING AN ANDROID PHYSICAL DEVICE
Android’s emulated device is really three pieces of software rolled into one:

• A system image is a copy of one version of the Android operating system.

For example, a particular system image might be for Android Pie (API Level 28) run-
ning on an Intel x86_64 processor.

• An emulator bridges the gap between the system image and the processor on
your development computer.

You might have a system image for an Atom_64 processor, but your development
computer runs a Core i5 processor. The emulator translates instructions for the
Atom_64 processor into instructions that the Core i5 processor can execute.

• An Android Virtual Device (AVD) is a piece of software that describes a
device’s hardware.

An AVD contains a bunch of settings, telling the emulator all the details about the
device to be emulated. What’s the screen resolution of the device? Does the device
have a physical keyboard? Does it have a camera? How much memory does it have?
Does it have an SD card? All these choices belong to a particular AVD.

Android Studio’s menus and dialog boxes make it easy to confuse these three items.
When you create a new AVD, you create a new system image to go with that AVD.
But Android Studio’s dialog boxes blur the distinction between the AVD and the sys-
tem image. You also see the word emulator, when the correct term is AVD. If the subtle
differences between system images, emulators, and AVDs don’t bother you, don’t worry
about them.

A seasoned Android developer typically has several system images and several AVDs on
the development computer, but only one Android emulator program.

48 PART 1 Getting Ready

 » An Android Virtual Device is a description of a phone’s hardware. The emulator
doesn’t work unless you create an AVD for the emulator to emulate. When
you install Android Studio, you may or may not see an option to install an
AVD. If you do, accept the option. If you don’t, that’s okay. You’ll be able to
create a bunch of AVDs when you get Android Studio running.

When you install Android Studio, the installer may offer you the option to create
an AVD for you to use. If you weren’t offered this option, or if you skipped
the option, you can create an AVD using the AVD Manager tool. In fact, you can
create several additional AVDs and use several different AVDs to run and test your
Flutter apps on Android’s emulator.

To open the AVD Manager, go to Android Studio’s main menu bar and choose
Tools ➪ AVD Manager. Figures 2-12 through 2-15 show the dialog boxes that you
might find in the AVD Manager.

FIGURE 2-12:
The opening page

of the AVD
Manager.

FIGURE 2-13:
The first page

in creating a
new AVD.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 49

I’m reluctant to list instructions for using the AVD Manager, because the look
of the AVD Manager tool is constantly in flux. Chances are, what you see on
your computer’s screen doesn’t look much like the mid-2019 screen shots in
Figures 2-12 through 2-15.

FIGURE 2-14:
The second page

in creating a
new AVD.

FIGURE 2-15:
The final page

in creating a
new AVD.

50 PART 1 Getting Ready

Instead of giving you explicit instructions, my general advice when creating a new
AVD is to select the newer phones or tablets and the higher-numbered API levels,
and to accept defaults whenever you’re tempted to play eeny-meeny-miny-moe.
Just keep clicking Next until you can click Finish. If you don’t like the AVD that
you’ve created, you can always reopen the AVD Manager and select different
options to create another AVD. When you reach the level of proficiency where
you’re finicky about your AVD’s characteristics, you’ll probably know your way
around many of the AVD Manager’s options, and you’ll be able to choose wisely.

On installing Flutter
Sometimes, when I feel sick, I go to the doctor. If you’re having trouble running
apps, and you think your Flutter installation is sick, you can take Flutter to the
doctor. Here’s how:

1. In Android Studio, start a new Flutter project or open an existing project.

For help with that, refer to this chapter’s “Running your first app” section.

2. In Android Studio’s main menu bar, select Tools ➪  Flutter ➪  Flutter
Doctor.

As a result, the computer reports to you on the health of your Flutter
installation.

The report from Flutter Doctor isn’t always helpful. Some of the report’s findings
may be false alarms. Others may be difficult to interpret. If you see something that
looks like a useful diagnosis, give it a try. Many of the doctor’s hints involve open-
ing up a Terminal or Command Prompt window. You’ll find advice about that in
the “Your friend, the command line” sidebar.

YOUR FRIEND, THE COMMAND LINE
In ancient times, the only way to communicate with a computer was at the command
line. You had to know exactly what to type and, if you got it wrong, either nothing hap-
pened or something bad happened. These days, you issue most commands through a
graphical user interface (GUI). You click here, drag-and-drop there, and do all kinds of
things in a windowed environment.

But, alas, command line interfaces haven’t gone away. Some tasks still require long,
cryptic typewritten commands, and some people prefer typing commands over clicking
buttons.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 51

Most of the instructions in this book require pointing and clicking. But, here and there,
you have to do things the old-fashioned way. To help you survive the unimaginable
 misery of typing error-prone, enigmatic commands, I provide a few tips:

• You can’t type commands just anywhere. To communicate directly with your com-
puter, you must first open your computer’s Terminal (as it’s known in the Mac
world) or Command Prompt (as it’s known to Windows users).

If Android Studio is running, you can open Mac’s Terminal or the Windows
Command Prompt by clicking the little Terminal tool button near the bottom of
Android Studio’s window.

• On a Mac, you can always open Mac’s Terminal by pressing Command+space, typ-
ing Terminal, and then pressing Enter.

On Windows, you can always open the Command Prompt by pressing Start, typing
cmd, and then pressing Enter.

• At any moment, a Terminal or Command Prompt window has a working directory.
For example, if the working directory is /Users/isaacnewton/Documents, and
you type more myfile.txt, the computer looks in the /Users/isaacnewton/
Documents directory for a file named myfile.txt. If the /Users/isaacnewton/
Documents directory has a file named myfile.txt, the computer displays the con-
tents of myfile.txt in page-size chunks.

(On Windows): To find out which directory is the working directory, look at the
prompt or type cd. To change the working directory, type cd followed by the new
directory’s name.

c:\Users\isaacnewton\Documents>cd

c:\Users\isaacnewton\Documents

c:\Users\isaacnewton\Documents>cd c:\Users\isaacnewton

c:\Users\isaacnewton>cd

c:\Users\isaacnewton

• (On a Mac): To find out which directory is the working directory, type pwd. To
change the working directory, type cd followed by the new directory’s name.

Isaacs-Air:Documents isaacnewton$ pwd

/Users/isaacnewton/Documents

Isaacs-Air:Documents isaacnewton$ cd /Users/isaacnewton

Isaacs-Air:~ isaacnewton$ pwd

/Users/isaacnewton

52 PART 1 Getting Ready

The content provided by flutter doctor is not intended to serve as a substitute
for professional medical advice. Seek the advice of your Flutter physician with any
questions you may have regarding a medical condition. Never disregard profes-
sional medical advice because of something you have read in the output of
flutter doctor.

Divisiveness Among Devices
If your development computer has enough horsepower, you can run a few Android
Virtual Devices simultaneously. On a Mac, you can run an iPhone simulator while
your Android Virtual Devices are running. But using your virtual and physical
devices can be tricky. This section gives you some tips.

Running apps on an Android device
A reader from Minnesota writes:

Dear Barry,

I’ve followed all your instructions. Things go well until I try to run an app. The
Android emulator doesn’t work. What should I do?

Signed,

Still Freezing in Minneapolis

Well, Ms. Freezing, the emulator that comes with Android Studio swallows up lots
of resources on your development computer. If you’re like me and you don’t
always have the latest, most powerful hardware, you may have trouble running
apps in the emulator. Maybe you don’t see Android’s home screen or you don’t see
your app running five minutes or so after the emulator starts running. If so, here
are several things you can try:

 » Lather, rinse, repeat.

Close the emulator and launch your application again. Sometimes, the second
or third time’s a charm. On rare occasions, my first three attempts fail, but my
fourth attempt succeeds.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 53

 » If you have access to a computer with more RAM, try running your app
on it.

Horsepower matters.

 » If you don’t have access to a computer with more RAM, close all non-
essential programs on your development computer, and try running
your app again.

 » Try a different AVD.

The “On adding virtual devices” section, earlier in this chapter, tells you how
to add a new AVD to your system. An AVD with an x86 system image is better
than an AVD with an armeabi image. (Fortunately, when a dialog box lets
you choose between x86 and armeabi, you don’t have to know what x86 or
armeabi means.)

 » Wrestle with virtualization technology.

You might not want to start down this rabbit hole.

When it runs on an Intel x86 processor, Android’s emulator tries to use
something called Intel Virtualization Technology (VT) with the Intel Hardware
Accelerated Execution Manager (HAXM). If your computer isn’t completely
comfortable with a VT-and-HAXM configuration, you’re likely to have trouble
using Android’s emulator.

Don’t despair! Try installing an armeabi system image.

Finally, if your computer can use VT and HAXM, and if you want to adjust
these items on your computer, go right ahead. Just don’t blame me if, a month
later, you suddenly remember that your goal was to learn about Flutter.

The previous bulleted list describes a few remedies for problems with Android
Studio’s emulator. Unfortunately, none of the bullets in this list is a silver bullet.
If you’ve tried these tricks, and you’re still having trouble, you might try aban-
doning the emulator that comes with Android Studio and running apps on a “real”
device.

Testing apps on a physical device
You can bypass virtual devices and test your apps on a physical phone, a tablet
device, or maybe even a smart coffee pot. To do so, you have to prepare the physi-
cal device, prepare your development computer, and then hook together the two.
It’s quite a chore, but after you do it the first time, it becomes much easier. This
section describes an outline of the steps you must follow.

54 PART 1 Getting Ready

For more details, visit these pages:

https://flutter.dev/docs/get-started/install/macos - deploy-to-ios-devices

https://flutter.dev/docs/get-started/install/windows - set-up-your-android-device

Preparing to test on an Android physical device
To test your app on an Android device, follow these steps:

1. On your Android device, enable Developer Options.

On many Android devices, you do this by choosing Settings ➪  About. In the
About list, tap the Build Number item seven times. (Yes, seven times.) Then
press the Back button to return to the Settings list. In the Settings list, tap
System ➪  Developer Options.

Some people have reported that, after tapping the Build Number item seven
times, it helps to twirl a rabbit’s foot over their head three times. So far, I
haven’t been able to replicate these results.

2. In the Developer Options list, turn on USB debugging.

Here’s what one of my devices displays when I mess with this setting:

USB debugging is intended for development purposes.

Use it to copy data between your computer and your device,

install apps on your device without notification, and read log data.

The stewards of Android are warning me that the USB Debugging option can
expose my device to malware.

On my device, I keep USB debugging on all the time. But if you’re nervous
about security, turn off USB debugging when you’re not using the device to
develop apps.

3. (For Windows users only) Visit https://developer.android.com/studio/
run/oem-usb.html to download your Android device’s Windows USB
driver. Install the driver on your Windows development computer.

While you follow the next step, keep an eye on your Android device’s screen.

https://flutter.dev/docs/get-started/install/macos#deploy-to-ios-devices
https://flutter.dev/docs/get-started/install/windows#set-up-your-android-device
https://developer.android.com/studio/run/oem-usb.html
https://developer.android.com/studio/run/oem-usb.html

CHAPTER 2 Setting Up Your Computer for Mobile App Development 55

4. With a USB cable, connect the device to the development computer.

Not all USB cables are created equal. Some cables, called data cables, have
wires and metal in places where other cables, called charging cables, have
nothing except plastic. Try to use whatever USB cable came with your device. If,
like me, you can’t find the cable that came with your device or you don’t know
which cable came with your device, try more than one cable. When you find a
cable that works, label that able cable. (If the cable always works, label it “stable
able cable.”)

When you plug in the cable, you see a pop-up dialog box on the Android
device’s screen. The pop-up asks whether you want to allow USB debugging.

5. Yes, allow USB debugging.

If you’re not looking for it, you can miss the pop-up to allow USB debugging. Be
sure to look for this pop-up when you plug in your device. If you definitely don’t
see the pop-up, you might be okay anyway. But if the message appears and
you don’t respond to it, you definitely won’t be okay.

CHECKING THE CONNECTION AND
BREAKING THE CONNECTION
To find out whether your Android phone is properly connected to your development
computer, follow these steps:

1. Open the Terminal on a Mac, or the Command Prompt on Windows.

For details, refer to the earlier sidebar “Your friend, the command line.”

2. Use the cd command to navigate to Android’s platform-tools directory.

I’m a rootin’-tootin’, two-fisted computer user. On my PC, I type

cd %HOMEDRIVE%%HOMEPATH%\AppData\Local\Android\Sdk\platform-tools

On my Mac, I type

cd ~/Library/Android/sdk/platform-tools/

(continued)

56 PART 1 Getting Ready

3. Type adb devices. (On a Mac, type ./adb devices.)

If your computer’s response includes a very long hexadecimal number (such as
2885046445FF097), that number represents your connected device. For example,
with one particular phone connected, my computer’s response is

emulator-5554 device

emulator-5556 device

2885046445FF097 device

If you see the word unauthorized next to the long hexadecimal number, you proba-
bly didn’t answer OK to the question “Allow USB debugging?” in Step 5 of the earlier
section “Preparing to test on an Android physical device.”

If your computer’s response doesn’t include a long hexadecimal number, you might
have missed the boat on one of the other steps in that earlier section.

Eventually, you’ll want to disconnect your device from the development computer. Look
for some reference to the device in File Explorer or the Finder.

• If you don’t see a reference, you can probably yank the device’s USB cable from
your computer.

• If you see a reference, try to eject the device.

If you try to eject the device, and you see the dreaded Not Safe to Remove Device mes-
sage, start by following Steps 1 and 2 in this sidebar. Then do one of the following:

• On a Mac, type

./adb kill-server

and then press Enter.

• On Windows, type

adb kill-server

and then press Enter.

After that, you see the friendly Safe to Remove Hardware message.

(continued)

CHAPTER 2 Setting Up Your Computer for Mobile App Development 57

Preparing to test on an iPhone
To test your app on an iPhone (or even an iPad), you must be using an Apple com-
puter. If you have a Mac, follow these steps:

1. Visit https://brew.sh and follow the instructions to install Homebrew
on your computer.

Homebrew is a third-party software package manager for macOS and Linux.
You can use it to install all kinds of software, not just iPhone development tools.

2. Open your Mac’s Terminal application.

3. In the Terminal application window, type the following commands, one
after another:

brew update

brew install --HEAD usbmuxd

brew link usbmuxd

brew install --HEAD libimobiledevice

brew install ideviceinstaller ios-deploy cocoapods

pod setup

Wasn’t that fun? It takes a long time to get responses, and you probably see
scary warning messages along the way.

The instructions in this step are current as of August 23, 2019 at 10:05 AM,
Eastern Daylight Time. After that moment, I make no promises. If you get stuck,
consult the web or send me an email.

4. Visit developer.apple.com, and sign up for free membership in Apple’s
developer program.

After these three steps, your development computer is ready to go. Follow these
steps whenever you want to test a new Flutter app on a physical iPhone:

1. Connect the physical phone to your development computer using a USB
data cable.

Not all cables are alike. Apple puts a proprietary chip in each of its iPhone
cables. If you buy your cable from a third-party vendor, you might not be able
to use it to transfer an app to your phone.

2. In Android Studio, open your new Flutter project.

3. Look for the Project tool window — the panel displaying a tree of files
and folders.

https://brew.sh/
https://developer.apple.com/

58 PART 1 Getting Ready

You find the Project tool window along the left side of Android Studio’s main
window. If you have trouble finding it, skip ahead to the section entitled
“The Project tool window” in this chapter.

4. Expand one of the tree’s topmost branches to find a subbranch named iOS.

5. Right-click the iOS subbranch. In the resulting context menu, select
Flutter ➪  Open iOS Module in Xcode.

As a result, Xcode starts up. There’s a tree of files and folders on the left side of
the Xcode window.

6. In the tree of files and folders, select Runner. (See Figure 2-16.)

7. Select the Signing & Capabilities tab near the top of the Xcode window.
(Again, refer to Figure 2-16.)

The Signing & Capabilities tab has a Team dropdown list.

8. In the Team drop-down list, select Add an Account.

As a result, an Accounts dialog box appears. With your Apple ID, you automati-
cally belong to a team of developers — your personal team with you as its only
member.

9. Do whatever you have to do in the Accounts dialog box, and then dismiss
the dialog box.

As a result, you return to the Signing & Capabilities tab.

10. In the Team drop-down list, select your very own team.

11. Close Xcode.

You’re good to go.

FIGURE 2-16:
Who’s Berry

Burd?

CHAPTER 2 Setting Up Your Computer for Mobile App Development 59

Testing on any physical device (Android or iPhone)
When you’re ready to test your app on a physical device, and you’ve connected the
device to your development computer, look at the Target Selector drop-down list
on Android Studio’s toolbar. When your development computer is communicating
properly with the physical device, the device’s name appears as one of this drop-
down list’s items. (See Figure 2-17.) Select this item and then click the Run icon.

Using Android Studio
Android Studio is a customized version of IntelliJ IDEA — a general-purpose IDE
with tools for Java development, C/C++ development, PHP development, model-
ing, project management, testing, debugging, and much more.

In this section, you get an overview of Android Studio’s main window. I focus on
the most useful features that help you build Flutter apps, but keep in mind that
Android Studio has hundreds of features and many ways to access each feature.

Starting up
Each Flutter app belongs to a project. You can have dozens of projects on your
computer’s hard drive. When you run Android Studio, each of your projects is
either open or closed. An open project appears in a window (its own window) on
your computer screen. A closed project doesn’t appear in a window.

Several of your projects can be open at the same time. You can switch between
projects by moving from window to window.

I often refer to an open project’s window as Android Studio’s main window. This
can be slightly misleading because, with several projects open at a time, you have
several main windows open at a time. In a way, none of these windows is more
“main” than the others. When I write main window, I’m referring to the window
whose Flutter project you’re working on at that moment.

If Android Studio is running and no projects are open, Android Studio displays its
Welcome screen. (Refer to Figure 2-2.) The Welcome screen may display some

FIGURE 2-17:
My iPhone is

connected!

60 PART 1 Getting Ready

recently closed projects. If so, you can open a project by clicking its name on the
Welcome screen. For an existing app that’s not on the Recent Projects list, you can
click the Welcome screen’s Open an Existing Android Studio Project option.

If you have any open projects, Android Studio doesn’t display the Welcome screen.
In that case, you can open another project by choosing File ➪ Open or File ➪ Open
Recent in an open project’s window. To close a project, you can choose File ➪ Close
Project, or you can do whatever you normally do to close one of the windows on
your computer. (On a PC, click the X in the window’s upper right corner. On a Mac,
click the little red button in the window’s upper left corner.)

Android Studio remembers which projects were open from one run to the next.
If any projects are open when you quit Android Studio, those projects open again
(with their main windows showing) the next time you launch Android Studio. You
can override this behavior (so that only the Welcome screen appears each time you
launch Android Studio). In Android Studio on a Windows computer, start by choos-
ing File ➪ Settings ➪ Appearance and Behavior ➪ System Settings. In Android Studio
on a Mac, choose Android Studio ➪ Preferences ➪ Appearance and Behavior ➪ System
Settings. In either case, uncheck the Reopen Last Project on Startup check box.

The main window
Android Studio’s main window is divided into several areas. Some of these areas
can appear and disappear on your command. What comes next is a description of
the areas in Figure 2-18, moving from the top of the main window to the bottom.

FIGURE 2-18:
The main window
has several areas.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 61

The areas that you see on your computer screen may be different from the areas
in Figure 2-18. Usually, that’s okay. You can make areas come and go by choosing
certain menu options, including the View option on Android Studio’s main menu
bar. You can also click the little tool buttons on the edges of the main window.

The top of the main window
The topmost area contains the toolbar and the navigation bar.

 » The toolbar contains action buttons, such as Open and Save All. It also
contains the Target Selector and the Run icon.

The Target Selector is the dropdown list whose default option is <no devices>.
In Figure 2-18, the Target Selector displays the name iPhone XR.

The Run icon is the thing that looks like a green Play button.

You can read more about these items earlier, in this chapter’s “Running your
first app” section.

 » The navigation bar displays the path to one of the files in your Flutter project.

A Flutter project contains many files, and, at any particular moment, you work
on one of these files. The navigation bar points to that file.

The Project tool window
Below the main menu and the toolbars, you see two different areas. The area on
the left contains the Project tool window, which you use to navigate from one file to
another within your Android app.

At any given moment, the Project tool window displays one of several possible
views. For example, back in Figure 2-18, the Project tool window displays its
Project view. In Figure 2-19, I click the drop-down list and select Packages view
(instead of Project view).

FIGURE 2-19:
Selecting

Packages view.

62 PART 1 Getting Ready

Packages view displays many of the same files as Project view, but in Packages
view, the files are grouped differently. For most of this book’s instructions, I
assume that the Project tool window is in its default view; namely, Project view.

If Android Studio doesn’t display the Project tool window, look for the Project tool
button — the little button displaying the word Project on the left edge of the main
window. Click that Project tool button. (But wait! What if you can’t find the little
Project button? In that case, go to Android Studio’s main menu and select Win-
dow ➪ Restore Default Layout.)

The Editor area
The area to the right of the Project tool window is the Editor area. When you edit a
Dart program file, the editor displays the file’s text. (Refer to Figure 2-18.) You
can type, cut, copy, and paste text as you would in other text editors.

The Editor area can have several tabs. Each tab contains a file that’s open for edit-
ing. To open a file for editing, double-click the file’s branch in the Project tool
window. To close the file, click the little x next to the file’s name on the Editor tab.

The lower area
Below the Project tool window and the Editor area is another area that contains
several tool windows. When you’re not using any of these tool windows, you
might not see this lower area.

In the lower area, the tool window that I use most often is the Run tool window.
(Refer to the lower portion of Figure 2-18.) The Run tool window appears auto-
matically when you click the Run icon. This tool window displays information
about the run of a Flutter app. If your app isn’t running correctly, the Run tool
window may contain useful diagnostic information.

You can force other tool windows to appear in the lower area by clicking tool but-
tons near the bottom of the Android Studio window. For example, when you click
the Terminal tool button, Android Studio displays the Windows Command Prompt,
the Mac Terminal app, or another text-based command screen that you specify.
For details, refer to the earlier sidebar “Your friend, the command line.”

A particular tool button might not appear when there’s nothing you can do with it.
For example, the Run tool button might not appear until you press the Run icon.
Don’t worry about that. The tool button shows up whenever you need it.

Finishing your tour of the areas in Figure 2-18. . . .

CHAPTER 2 Setting Up Your Computer for Mobile App Development 63

The status bar
The status bar is at the bottom of Android Studio’s window.

The status bar tells you what’s happening now. For example, if the cursor is on the
37th character of the 11th line in the editor, you see 11:37 somewhere on the sta-
tus line. When you tell Android Studio to run your app, the status bar contains the
Run tool window’s most recent message.

The kitchen sink
In addition to the areas that I mention in this section, other areas might pop up as
the need arises. You can dismiss an area by clicking the area’s Hide icon. (See
Figure 2-20.)

Running This Book’s Sample Programs
This book has dozens of sample Flutter apps, and they’re all available for down-
load from the book’s website: https://allmycode.com/Flutter. You can run any
of these programs as part of an Android Studio Flutter app. This section has all the
details.

1. Launch Android Studio.

For the run of your first app, you need an Internet connection.

What you do next depends on what you see when you launch Android Studio.

2. If you see Android Studio’s Welcome screen (refer to Figure 2-2), select
Start a New Flutter Project.

If you see another Android Studio window with a File option on the main
menu bar, choose File ➪  New ➪  New Flutter Project on the main
menu bar.

Either way, the first dialog box for creating a new Flutter project appears.

FIGURE 2-20:
Hiding the Project
tool window area.

https://allmycode.com/Flutter

64 PART 1 Getting Ready

3. Create a new Flutter project by following Steps 3 through 9 in this
chapter’s earlier section “Running your first app.”

4. In Android Studio’s Project tool window, look for a folder named lib.

If you need help finding that tool window, refer to the “Project tool window”
section earlier in this chapter.

The Project tool window contains a tree of folders and files. Expand one of the
tree’s topmost branches to find the lib folder. This lib folder contains your
project’s Dart code.

5. Right-click the tree’s main.dart branch, and then select Delete.

If Android Studio prompts you for confirmation, click OK. One way or another,
give main.dart the old heave-ho.

Throughout this book, I write right-click as though everyone has a mouse with
two or more buttons. If you’re a Mac user and your mouse has only one
button, Control+click wherever you see the term right-click.

6. Make sure that you’ve uncompressed the FlutterForDummies_Listings.
zip file.

For details, refer to the earlier sidebar “Compressed archive files.”

If you’re unsure where to find the FlutterForDummies_Listings.zip file,
look first in a folder named Downloads. Most web browsers put stuff inside
Downloads by default.

Safari on a Mac generally uncompresses .zip archives automatically, and
Windows browsers (Internet Explorer, Firefox, Chrome, and others) do not
uncompress .zip archives automatically. For the complete scoop on archive
files, see the earlier sidebar “Compressed archive files.”

7. In File Explorer or the Finder, navigate to the uncompressed
FlutterForDummies_Listings folder. Inside that folder, look for the
example that you want to run.

If you look inside the uncompressed download, you notice files named
App0301.dart, App0302.dart, and so on. With a few exceptions, the numbers
in these file names are chapter numbers followed by listing numbers. For
example, in the name App0602.dart, the 06 stands for Chapter 6, and the 02
stands for the second code listing in that chapter.

For this experiment, I suggest that you look for the App0201.dart file. (No
code is listed anywhere in this chapter. So, in this unusual case, 0201 doesn’t
refer to a project whose code is in Listing 2-1.)

8. Right-click the chosen App####.dart file. Then, in the resulting context
menu, select Copy.

CHAPTER 2 Setting Up Your Computer for Mobile App Development 65

9. Right-click the new project’s empty lib folder. On the resulting context
menu, select Paste.

If Android Studio displays a dialog box offering to paste to a particular
directory, check to make sure that the directory’s full name ends in lib. Then,
press OK.

Now you’re ready to run one of this book’s examples. Go for it!

On occasion, you may have more than one file in your project’s lib folder and
more than one app in your project. If you do, pressing the Run icon might not run
the app that appears in Android Studio’s editor area. To run the app that’s
showing in the editor area, look for that app’s tab along the top of the editor area.
When you right-click that tab, you see an option such as Run ’App0201.dart’.
Select that option and watch the program run.

Enjoying reruns
The second time you run a particular example from this book, you don’t have to
follow all the steps in the previous section. It’s easy to run an example over and
over again. You can make changes to the code and then click the Run icon again.
That’s all you have to do.

If you’ve closed a project and you want to run it again, simply reopen the project
in Android Studio and click the Run icon. For details, refer to this chapter’s “Start-
ing up” section.

If you’re finicky . . .
After following the steps in the previous section, you may see some error markers
(squiggly, red underlines) in the Project tool window. Android Studio’s sample
Flutter project describes something named MyApp, but the code that you copied
into the lib folder makes no mention of MyApp. You can run this project over and
over again without fixing the squiggly, red underlines. But if you want to fix them,
simply follow these steps:

1. In the Project tool window, expand the branch labeled test.

Inside that branch, you find a file named widget_test.dart.

2. Delete the widget_test.dart file.

The squiggly, red underlines are gone. Problem solved!

66 PART 1 Getting Ready

The apps in this book are practice apps. No one runs these apps to get real work
done. (This includes Doris, whom you meet in Chapter 7.) When you develop a real
app, you must never ignore code in the test folder. Testing is an essential part of
the software development process. Thorough testing is what makes programs
work reliably.

Another way to get rid of the squiggly, red underlines is to jump into a time
machine and redo instructions in the “Running This Book’s Sample Programs”
section. If you disregard Step 5 and don’t delete main.dart, you won’t get those
red underlines. But you may have to deal with two other issues. The Run icon’s
behavior may become a bit confusing. In addition, you may create a rift in the
space-time continuum and become your own grandparent.

Were These Setup Steps Fun or What?
I always dread any software setup that isn’t completely trivial. Everybody’s
 computer is different, and the instructions for an app’s installation can’t possibly
cover every possible scenario. But, after getting the software up and running,
I feel exhilarated. I can finally start using the software and enjoying the payoff
from having labored through the setup steps.

If all the jibber-jabber in this chapter got you to the point where you’re ready to
learn Flutter, great! But if you’re still struggling to get the software working, drop
me a line. My contact info is in the book’s introduction. I’ll be happy to help.

2Flutter: A Burd’s-
Eye View

IN THIS PART . . .

Writing your first program

Learning the Dart programming language

Adding text and images

Improving an app’s look and feel

CHAPTER 3 “Hello” from Flutter 69

Chapter 3
“Hello” from Flutter

♪ “Hello, I Must Be Going” ♪
BERT KALMAR AND HARRY RUBY, SUNG BY GROUCHO MARX,

IN ANIMAL CRACKERS, 1930

The word hello is a relative newcomer in the English language. Its first known
use in print was in the Norwich, Connecticut, Courier in 1826. Alexander
Graham Bell, the inventor of the telephone, believed that phone calls should

start with the term Ahoy! but, apparently, Thomas Edison preferred Hello, and
early telephone books recommended Edison’s choice.

According to legend, the first computer program to print nothing but “Hello
world!” was written by Brian Kernighan, as part of the BCPL programming
 language documentation. The first public appearance of such a program was in
Kernighan and Ritchie’s 1972 book, The C Programming Language. Nowadays, the
term Hello world program, or simply Hello program, applies to any dirt-simple code
for someone’s first exposure to a new language or new framework.

This chapter features a simple “Hello world” Flutter program and several embel-
lishments. You can run the code, dissect it, change it, and have fun with it.

First Things First
Listing 3-1 contains your first Flutter app.

IN THIS CHAPTER

 » Running your first Flutter app

 » Adding text and images

 » Improving your app’s layout

70 PART 2 Flutter: A Burd’s-Eye View

LISTING 3-1: Ahoy, Maties!

import 'package:flutter/material.dart';

main() => runApp(App0301());

class App0301 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 child: Text("Hello world!"),

),

);

 }

}

You can download this app’s code (and the code for every other listing in this
book) from my website. The URL is https://allmycode.com/Flutter. You can
find detailed instructions for running the code in Chapter 2.

If you prefer to type the code yourself, follow these steps:

1. Create a new Flutter project.

Refer to Chapter 2.

As usual, Android Studio creates a file full of Dart code for you. The file’s name
is main.dart.

2. Make sure that the main.dart code appears in Android Studio’s editor.

If it doesn’t, expand the tree in the Project tool window on the left side of
Android Studio’s main window. Look for lib branch and, within the lib
branch, the main.dart branch. Double-click that main.dart branch.

3. In Android Studio’s editor, delete all the main.dart code.

How liberating!

4. In Android Studio’s editor, type the code that you see in Listing 3-1.

tHE dART PROGRAMMING LANGUAGE IS cASe-sEnsITiVE. If you change a
lowercase letter in a word to an UpperCase letter, you can change the word’s
meaning. cHANGING the case can make the entire word go from being
meaningful to being meaningless. In the first line of Listing 3-1, you can’t
replace import with Import. iF YOU DO, THE WHOLE PROGRAM STOPS
WORKING. Try it and see for yourself!

Figure 3-1 shows you the finished product.

https://allmycode.com/Flutter

CHAPTER 3 “Hello” from Flutter 71

5. Run your new app.

For detailed instructions about initiating a run, refer to Chapter 2.

Figure 3-2 shows you what you see when you run the Flutter app in Listing 3-1.
The app looks pretty bad, but at least you can see the little Hello world! in the upper
left corner of the screen. I’ll tend to the app’s cosmetic aspects later in this
chapter.

You may see red markers in Android Studio’s editor. If you do, hover over a marker
and read the explanation that appears. Some explanations are easy to understand;
others aren’t. The more practice you have in interpreting these messages, the
more skilled you become at fixing the problems.

Another thing you can try is to select the Dart Analysis tab at the bottom of Android
Studio’s main window. This tab lists many of the spots in your project that contain
questionable code. For any item in the list, a red icon indicates an error —
something that must be fixed. (If you don’t fix it, your app can’t run.) Any other
color icon indicates a warning — something that won’t prevent your code from
running but might be worth considering.

In the next several sections, I take apart the code in Listing 3-1. I explore the code
from many points of view. I explain what the code does, why it does what it does,
and what it might do differently.

FIGURE 3-1:
A Flutter app is

ready to run.

FIGURE 3-2:
Running the code

in Listing 3-1.

72 PART 2 Flutter: A Burd’s-Eye View

What’s it all about?
When you look at Listing 3-1, you may see words, punctuation, and indentation,
but that’s not what experienced Flutter developers see. They see the broad outline.
They see big ideas in complete sentences. Figure 3-3 shows you what Listing 3-1
looks like to an experienced developer.

A Flutter program is like a set of Russian matryoshka dolls. It’s a thing within
a thing within another thing, and so on, until you reach an endpoint. (See
Figure 3-4.)

FIGURE 3-3:
The big picture.

FIGURE 3-4:
The layered look.

CHAPTER 3 “Hello” from Flutter 73

Listing 3-1 has some Text inside a piece of Material which is, in turn, inside a
MaterialApp. The words Text, Material, and MaterialApp begin commands to
construct things. In Dart language terminology, the words Text, Material, and
MaterialApp are the names of constructor calls. Here’s the inside story:

 » The code

Text("Hello world!")

is a constructor call. When Flutter executes this code, it constructs a Text
object. That Text object contains the words Hello world!

 » The code

Material(

 child: Text("Hello world!"),

)

is another constructor call. When Flutter executes this code, it constructs a
Material object. That Material object contains the aforementioned Text
object. (See Figure 3-5.)

A Material object has some of the characteristics that physical material, such
as a piece of fabric, might have. It has a certain shape. It may be elevated from
the surface below it. You can move it or pinch it. Granted, the background in
Figure 3-2 doesn’t look much like a piece of fabric. But imitating the texture of
cloth isn’t Material Design’s goal. The point of Material Design is to create a
language for describing the status of the components on a user’s screen, and
to describe how these components relate to one another.

For the scoop on Material Design, visit https://material.io/.

FIGURE 3-5:
Each constructor

call creates an
object.

https://material.io/

74 PART 2 Flutter: A Burd’s-Eye View

 » The code

MaterialApp(

 home: Material(

 child: Text("Hello world!"),

),

)

is yet another constructor call. When Flutter executes this code, it constructs a
MateralApp whose starting screen is the Material object. (Refer to Figure 3-3.)

Here’s a way to sum it all up:

In Listing 3-1, the MaterialApp object has a Material object, and the Material
object has a Text object.

In that sentence, the seemingly innocent use of the words “has a” is important.
For more details, see the later section “A brief treatise on within-ness’.”

To understand the code in Listing 3-1, you have to know where pairs of parenthe-
ses begin and end. But finding the matches between open and close parentheses
isn’t always easy. To help with this problem, Android Studio has a few tricks up its
virtual sleeve. If you place the cursor near a parenthesis character, Android Studio
highlights the matching parenthesis. In addition, you can visit Android Studio’s
Settings or Preferences dialog box. (On Windows, select File ➪ Settings. On a Mac,
select Android Studio ➪ Preferences.) In that dialog box, select Editor ➪
General ➪ Appearance and put a check mark in the Show Closing Labels in Dart
Source Code check box. After you dismiss the dialog box, Android Studio displays
comments marking the ends of many constructor calls. (Notice the labels
// Material and // MaterialApp in Figure 3-6.)

FIGURE 3-6:
Helpful closing

labels.

CHAPTER 3 “Hello” from Flutter 75

A constructor’s parameters
Every constructor call has a list of parameters (usually called a parameter list).
In Listing 3-1, each constructor’s parameter list has only one parameter in it.
(See Figure 3-7.)

Constructor calls can have many parameters, or have no parameters. Take, for
example, the Text call in Listing 3-1. In that code, the parameter "Hello world!"
supplies information to Dart — information that’s specific to the Text widget
that Dart is constructing. Try changing Text("Hello world!") to Text("Hello
world!", textScaleFactor: 4.0). When you save the new code, Android
Studio does a hot restart that changes the look of the app in your emulator. (See
Figure 3-8.)

Chapter 1 describes the difference between Flutter’s hot restart and hot reload
features. Both features apply updates to an app while the app is running. To do a
hot restart, simply save your code. To do a hot reload, press the Run icon near the
top of Android Studio’s main window.

The constructor call

Text("Hello world!", textScaleFactor: 4.0)

FIGURE 3-7:
Constructor calls

have parameters.

FIGURE 3-8:
An ugly app to

illustrate the
textScaleFactor

parameter’s
effect.

76 PART 2 Flutter: A Burd’s-Eye View

contains two kinds of parameters:

 » "Hello world!" is a positional parameter.

A positional parameter is a parameter whose meaning depends on its position
in the parameter list. When you create a new Text object, the characters to be
displayed must always come first in the list. You can see this for yourself by
changing the constructor call to the following, invalid code:

Text(textScaleFactor: 4.0, "Hello world!") // Bad code!!

In this code, the positional "Hello world!" parameter doesn’t come first in
the list. So, if you type this line in Android Studio’s editor, the editor marks this
line with an ugly red error indicator. Quick! Change it back so that the "Hello
world!" parameter comes first! You don’t want Android Studio to form a bad
impression of you!

 » textScaleFactor: 4.0 is a named parameter.

A named parameter is a parameter whose meaning depends on the word
before the colon. A Text constructor call can have many different named
parameters, such as textScaleFactor, style, and maxLines. You can write
the named parameters in any order as long as they come after any of the
positional parameters.

When you supply a textScaleFactor parameter, the parameter tells Flutter
how large the text should be. (Refer to Figure 3-8.) When you don’t supply a
textScaleFactor parameter, Flutter uses the default 1.0 factor.

The size of the text depends on a few things, such as the textScaleFactor
and a style parameter’s font size. For example, the following code makes
Hello world! twice as large as it is in Figure 3-8.

Text("Hello world!", textScaleFactor: 4.0,

 style: TextStyle(fontSize: 28.0))

The app shown in Figure 3-8 already has textScaleFactor 4.0. But it has the
default font size, which is 14.0. Because 28.0 is two times 14.0, the fontSize:
28.0 parameter doubles the size of the text.

A note about punctuation
In Dart, you use commas to separate a constructor’s parameters from one
another. And, for all but the simplest parameter lists, you end the list with a
trailing comma.

CHAPTER 3 “Hello” from Flutter 77

return MaterialApp(

 home: Material(

 child: Text("Hello world!"), // Trailing comma after the child parameter

), // Trailing comma after the home parameter

);

Without trailing commas, your code runs as expected. But the next section tells
you how you can get Android Studio to make your code look good. And, without
trailing commas, Android Studio doesn’t do its best.

A pair of slashes (//) has a special meaning in Dart. To find out what it is, see
Chapter 4.

Don’t relent — simply indent
Take another look at Listing 3-1, and notice how some of the lines are indented.
As a general rule, if one thing is subordinate to some other thing, its line of code is
indented more than that other thing. For example, in Listing 3-1, the MaterialApp
object contains the Material object, so the home: Material line is indented more
than the return MaterialApp line.

Here are two facts to keep in mind:

 » In a Dart program, indentation isn’t necessary.

 » In a Dart program, indentation is necessary.

Wait! What are those two facts again?

If you change the indentation in a Dart program, the program still runs. Here’s a
valid reworking of the code in Listing 3-1.

// Don't do this. It's poorly indented code.

 import 'package:flutter/material.dart';

main() => runApp(App0301());

class App0301 extends StatelessWidget {

Widget build(BuildContext context) {

return MaterialApp(

home: Material(

78 PART 2 Flutter: A Burd’s-Eye View

child: Text("Hello world!"),

),

);

 }

 }

When you ask Android Studio to run this poorly indented code, it works. Android
Studio dutifully runs the code on your virtual or physical device. But having this
code run isn’t good enough. This poorly indented code is hideous. It’s almost impossible
to read. The indentation, or lack thereof, gives you no indication of the program’s
structure. You have to wade through the words to discover that the Material
widget is inside the MateralApp widget. Instead of showing you the app’s struc-
ture at a glance, this code makes your eyes wander aimlessly in a sea of seemingly
unrelated commands.

The good news is, you don’t have to learn how to indent your code. Android Studio
can do the indentation for you. Here’s how:

1. Open Android Studio’s Settings or Preferences dialog box.

On Windows, select File ➪  Settings.

On a Mac, select Android Studio ➪  Preferences.

2. In that dialog box, select Languages & Frameworks ➪  Flutter and then
put a check mark in the Format Code on Save check box.

The check mark tells Android Studio to fix your code’s indentation whenever
you save your work.

While you’re at it, you might as well put a check mark in the next check box —
the Organize Imports on Save check box.

3. Select OK to dismiss the dialog box.

Hazzah! When you run the code — or simply save the code — Android Studio
fixes the code’s indentation.

If you want more control over Android Studio’s behavior, don’t fiddle with the
Settings or Preferences dialog box. Instead, whenever you want indentation to
be fixed, put the cursor in the Editor panel, and then choose Code ➪ Reformat Code
from Android Studio’s main menu.

One way or another, please indent your code properly.

CHAPTER 3 “Hello” from Flutter 79

Classes, Objects, and Widgets
Dart is an object-oriented language, so Dart has things called objects and classes.
Listing 3-1 contains the names of many classes, such as App0301, Stateless
Widget, Widget, BuildContext, MaterialApp, Material, and Text. It’s fair to say
that almost every word in Listing 3-1 that starts with an uppercase letter is the
name of a class.

You don’t have to know a lot about object-oriented programming to understand
the role of these words in Listing 3-1, but it helps to keep a few facts in mind:

 » An object is a thing of some kind. Each object belongs to a particular
class of things.

The word Text is the name of a class of things — things that contain characters
to be displayed on the screen. On its own, a class doesn’t do much. The fact
that Flutter has a Text class doesn’t mean anything for an app that displays
images and no characters. You can talk about the class of all unicorns, but I’ve
never seen a unicorn in my front yard.

In contrast, the constructor call Text("Hello world!") constructs an actual
object. That object appears on the user’s screen. For example, a Text object
containing the words Hello world! appears in Figure 3-2. You can refer to
that object as an instance of the Text class.

In any particular app, you can construct no Text instances, one Text instance,
or many Text instances. The same is true of classes such as Widget and
Material and almost every other class.

 » Being an instance of one class might make you automatically be an
instance of a bigger class.

Every instance of the Cat class is, by definition, an instance of the Animal class.
(If that weren’t true, millions of YouTube videos wouldn’t exist.) And what
about the Animal class? Every instance of the Animal class is an instance of
the LivingThing class. (See Figure 3-9.)

FIGURE 3-9:
I have to mention

cats somewhere
in this book.

80 PART 2 Flutter: A Burd’s-Eye View

In the same way, every instance of Flutter’s Text class is, by definition, an
instance of Flutter’s StatelessWidget class. And, in turn, every instance of
the StatelessWidget class is an instance of Flutter’s Widget class. So every
Text instance is also a Widget instance. (Refer to Figure 3-9.)

 » In Flutter, almost every object is, in one way or another, an instance of
the Widget class.

Informally, a widget is a component on a user’s screen. Flutter takes this idea
to another level, with each part of the user interface (the Text instance, the
Material instance, and even the MaterialApp instance) being a widget in its
own right.

In Listing 3-1, App0301 is the name of a class. In the line

main() => runApp(App0301());

the term App0301() is yet another constructor call. This call constructs an
instance of the App0301 class.

The line

class App0301 extends StatelessWidget

and all the code below it is the declaration of the App0301 class. The declaration
tells Dart what kind of class it is and what kinds of things you can do with the
class. In particular, the word extends in that first line makes any instance of the
App0301 class be an instance of the StatelessWidget class. That’s all you have
to do to make App0301 instances be instances of the StatelessWidget class.

Now you have several terms with subtly different meanings — class, object,
instance, and widget. In Listing 3-1, the code Text("Hello world!") constructs
something, but exactly what kind of thing does that code construct?

 » From the Dart language’s point of view, Text("Hello world!")
constructs an object.

In Dart terminology, you call it an instance of the Text class.

 » From the Flutter point of view, Text("Hello world!") creates a widget.

It’s an instance of the Text class and therefore (. . . guilt by association . . .) an
instance of the StatelessWidget class and an instance of the Widget class.

For more of my babble about objects, classes, and widgets, see Chapter 7.

CHAPTER 3 “Hello” from Flutter 81

A brief treatise on “within-ness”
In a Dart program, you can find widgets within other widgets. (Refer to Figure 3-4.)
In the same Dart program, you find classes within other classes. (Refer to
Figure 3-9.) These two kinds of “within-ness” aren’t the same. In fact, these two
kinds of “within-ness” have little to do with one another.

In Figure 3-3, a Text widget is the child of a Material widget. This doesn’t mean
that a Text instance is also an instance of the Material class. To understand the
difference, think about two kinds of relationships: “is a” relationships and “has a”
relationships.

 » The relationships that I describe in the “What’s it all about?” section are
“has a” relationships.

In Listing 3-1, the MaterialApp object has a Material object inside of it, and
the Material object has a Text object inside of it.

There’s nothing special about “has a” relationships. There can be “has a”
relationships in a barnyard. A Cat has a Mouse, and the Mouse has a
PieceOfCheese.

 » The relationships that I describe in the earlier “Classes, Objects, and
Widgets” section are “is a” relationships.

In every Flutter program, each Text object is a StatelessWidget object and,
in turn, each StatelessWidget object is a Widget object.

In a barnyard, each Cat is an Animal and, in turn, each Animal is a LivingThing.

It wouldn’t make sense to say that a Cat is a Mouse, or that a Material object is a
Text object. In the same way, it’s not correct to say that every Cat has an Animal,
or that every Text object has a StatelessWidget object. The two kinds of
 relationships — “has a” and “is a” — are quite different.

If you’re hungering for terminology that’s more formal than “has a” and “is a,”
I have some for you:

 » A chain of things connected by the “has a” relationship is called a
composition hierarchy.

Frivolous as it may be, the diagram in Figure 3-4 illustrates a composition
hierarchy.

 » The chain of things connected by the “is a” relationship is called the
inheritance hierarchy.

The diagrams in Figure 3-9 are part of Flutter’s class hierarchy.

82 PART 2 Flutter: A Burd’s-Eye View

Don’t you feel better now that you have these fancy terms to fling around?

In Flutter, almost everything is called a “widget.” Many classes are widgets. When
a class is a widget, the class’s instances (any objects constructed from that class)
are also called widgets.

The documentation is your friend
You may be asking yourself how you’re going to memorize all these names: Text,
StatelessWidget, MaterialApp, and probably thousands more. Sorry to say,
you’re asking the wrong question. You don’t memorize anything. When you use a
name often enough, you remember it naturally. When you don’t remember a
name, you look it up in the online Flutter docs. (Sometimes, you’re not sure where
to look for the name you want. In that case, you have to poke around a bit.)

To see what I mean, point your web browser to https://api.flutter.dev/
flutter/widgets/Text-class.html. When you do, you see a page with informa-
tion about the Text class, some sample code, and some other stuff. (See
Figure 3-10.)

In the page’s upper right corner, you find a list of Text constructors. In Figure 3-10,
there are two possibilities: Text and rich. If you select the Text link, you see a
page describing the Text constructor call. (See Figure 3-11.)

This page lists the parameters in the constructor call and provides other helpful
information.

FIGURE 3-10:
Useful info about

the Text class.

https://api.flutter.dev/flutter/widgets/Text-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html

CHAPTER 3 “Hello” from Flutter 83

On the page in Figure 3-11, notice how all but one of the constructor’s parameters
are enclosed in a pair of curly braces. The parameter that’s not in curly braces
(namely, String data) is the constructor’s one and only positional parameter. Each
of the parameters inside the curly braces (including double textScaleFactor) is a
named parameter.

You can always count on Flutter’s documentation to tell you what kinds of objects
you can and cannot put inside of other objects. For example, the following code is
doomed to failure:

return MaterialApp(

 child: Text("Hello world!"), // Don't do this!

);

It’s doomed because, according to the Flutter docs, the MaterialApp constructor
has no parameter named child.

Making Things Look Nicer
The app shown in Figure 3-2 looks pretty bad. The words Hello world! are tucked
up against the screen’s upper left corner. Fortunately, Flutter offers an easy way
to fix this: You surround the Text widget with a Center widget. As its name
 suggests, the Center widget centers whatever is inside of it.

FIGURE 3-11:
The Text

constructor call.

84 PART 2 Flutter: A Burd’s-Eye View

The word Center is the name of a class, so any object constructed from that class
is called an instance of that class. In a term such as “Center widget,” the word
widget suggests that something like Center (something to help manage the
screen’s layout) is a component of some kind. A piece of Text on the screen is a
component, a piece of Material on the screen is a component, and a Center object
is also a component. Even though a Center widget doesn’t light up somewhere on
the screen, a Center widget is still a component. Part of Flutter’s great strength is
that Flutter treats all things the same way. When so many things are widgets, so
many things can serve as parameters in the constructors of other things. The
people who make up names for programming features call this the composability
feature, and composability is a very nice feature to have.

You have a few ways to surround a Text widget’s code with a Center widget’s
code. One way is to poke the cursor somewhere inside Android Studio’s editor,
start typing, and hope that you navigate the thicket of parentheses correctly.
A better way is to do the following:

1. Place the cursor on the word Text in the editor.

2. Press Alt+Enter.

As a result, a dropdown list appears.

3. In the dropdown list, select Center Widget.

Listing 3-2 shows you what you get.

LISTING 3-2: Centering the Text

import 'package:flutter/material.dart';

main() => runApp(App0302());

class App0302 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 child: Center(

 child: Text("Hello world!"),

),

),

);

 }

}

CHAPTER 3 “Hello” from Flutter 85

In Listing 3-2, the Material widget has a Center widget child, which, in turn, has
a Text widget child. You can think of the Text widget as the grandchild of the
Material widget.

Flutter supports hot restarting. After adding the Center code to the program in
Android Studio’s editor, save the changes by pressing Ctrl+S (on Windows) or
Cmd+S (on a Mac). If the program from Listing 3-1 was already running, Flutter
applies your changes and updates the emulator screen almost immediately.

In some situations, hot restart doesn’t work. Instead of updating your app,
Android Studio displays an error message. If that happens, try a hot reload. (Press
the Run icon near the top of Android Studio’s main window.) And what if hot
reload fails? In that case, press the Stop icon — the red square icon that’s in the
same row as the Run icon. When you press the Stop icon, the run of your app ends
completely. Pressing the Run icon to start afresh may fix the problem.

Figure 3-12 shows what you get when you run the code in Listing 3-2.

FIGURE 3-12:
Yes, you’ve

centered the text.

86 PART 2 Flutter: A Burd’s-Eye View

Creating a scaffold
The Text widget in Figure 3-12 looks so lonely. Let’s add some fanfare to the basic
app. Listing 3-3 has the code; Figures 3-13 and 3-14 show you the new screen.

LISTING 3-3: Using a Scaffold

import 'package:flutter/material.dart';

main() => runApp(App0303());

class App0303 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("My First Scaffold"),

),

 body: Center(

 child: Text("Hello world!"),

),

 drawer: Drawer(

 child: Center(

 child: Text("I'm a drawer."),

),

),

),

);

 }

}

FIGURE 3-13:
Behold! A

scaffold!

CHAPTER 3 “Hello” from Flutter 87

The home for a MaterialApp doesn’t have to be a Material widget. In Listing 3-3,
the home is a Scaffold. When companies build skyscrapers, they create
scaffolds — temporary wooden structures to support workers in high places.
In programming, a scaffold is a structure that provides basic, often-used
functionality.

The Scaffold constructor in Listing 3-3 has three parameters — an appBar, a
body, and a drawer. In Figures 3-13 and 3-14, the appBar is the dark region at the
top of the screen. The body is the large white region containing the Center with
its Text widget. In Figure 3-14, the drawer is the big white area that appears when
the user swipes from the left edge of the screen. The drawer also appears when the
user presses the “hamburger” icon — three horizontal lines near the screen’s top
left corner.

The body is nothing special. It’s very much like the entire screen in the earlier
examples. But the appBar and drawer are new. The appBar and drawer are two of
the things you can have when you create a Scaffold. Other things made available
by Scaffold widgets include navigation bars, floating buttons, bottom sheets,
footer buttons, and more.

In this chapter, Listings 3-1 and 3-2 have Material widgets, and Listing 3-3 has
a Scaffold. These widgets form the backgrounds for their respective apps. If you
remove the Material widget from Listing 3-1 or 3-2, your app’s screen becomes
an ugly mess. You get large red letters with yellow underlines against a black
background. The same thing happens when you remove the Scaffold from
 Listing 3-3. There are other widgets that can provide backgrounds for your apps,
but Material and Scaffold are the most commonly used.

FIGURE 3-14:
Pulling out a

drawer.

88 PART 2 Flutter: A Burd’s-Eye View

Adding visual tweaks
Try this experiment: Change the appBar parameter from Listing 3-3 to the code
snippet in Listing 3-4.

LISTING 3-4: A Slight Change for the Code from Listing 3-3

appBar: AppBar(

 title: Text("My First Scaffold"),

 elevation: 100,

 brightness: Brightness.light,

)

In Figure 3-15, I try to show the effect of adding the elevation and brightness
parameters to the AppBar constructor call. I might not succeed because the effect
of the elevation parameter is subtle.

In Google’s Material Design language, you imagine that the background rests on
some flat surface, and that other components are elevated off the background by
some number of pixels. For an AppBar, the default elevation is 4, but you can
change a bar’s elevation with . . . wait for it . . . the elevation parameter.

A component’s elevation affects several aspects of the component’s appearance.
But in this section, the most obvious change is probably the shadow beneath the
AppBar. You might not be able to see the difference between the shadows in
 Figures 3-13 and 3-15, but when you run the code on a virtual or physical device,
an AppBar with elevation: 100 casts quite a large shadow.

FIGURE 3-15:
A slight change

from the screen
in Figure 3-13.

CHAPTER 3 “Hello” from Flutter 89

You may be wondering what the 100 in elevation: 100 means. Is it millimeters,
pixels, points, or light-years? In truth, it means “100 density-independent
 pixels” — or “100 dps,” for short. No matter what screen the user has, one dp is
1/160 of an inch. So elevation: 100 means 100/160 of an inch (better known as
five-eighths of an inch).

For all the details about Material Design’s elevation property, visit https://
material.io/design/environment/elevation.html.

An AppBar widget’s brightness parameter is yet another matter. The effect of
adding brightness: Brightness.light is to tell Flutter that, because the AppBar
is light, the text and icons at the top of the AppBar should be dark. (Compare
Figures 3-13 and 3-15.) The dark text and icons are easy to see against what is
considered to be a light AppBar.

Dart’s enum feature
An interesting feature of the Dart programming language is hiding inside
 Listing 3-4. The word Brightness refers to something called an enum (pronounced
“ee-noom”). The word enum is short for enumeration. An enum is a bunch of values,
like Brightness.light and Brightness.dark.

In Listing 3-4, notice how you refer to an enum’s value. You don’t use a construc-
tor call. Instead, you use the name of the enum (such as Brightness), followed by
a period, followed by the unique part of the value’s name (such as light or dark).

Flutter has many other built-in enums. For example, the Orientation enum
has values Orientation.portrait and Orientation.landscape. The Animation
Status enum has values AnimationStatus.forward, AnimationStatus.reverse,
AnimationStatus.completed, and AnimationStatus.dismissed.

To find out how to create a new enum, see 7.

Hello from sunny California!
Google announced Material Design at its developer conference in 2014. The first
version of this design language dealt mostly with Android devices, but Version 2
embraced custom branding for iPhones and other iOS devices. Flutter’s Material
widget runs on iPhones with automatic platform-specific adaptations.

You can run any of this book’s MaterialApp examples on iPhones as well as
Android phones, but if you want an iPhone-first design strategy, you can use
Flutter’s Cupertino widget collection. Listing 3-5 has an example.

https://material.io/design/environment/elevation.html
https://material.io/design/environment/elevation.html

90 PART 2 Flutter: A Burd’s-Eye View

LISTING 3-5: How to Look Like an iPhone App

import 'package:flutter/cupertino.dart';

void main() => runApp(App0305());

class App0305 extends StatelessWidget {

 Widget build(BuildContext context) {

 return CupertinoApp(

 home: CupertinoPageScaffold(

 navigationBar: CupertinoNavigationBar(),

 child: Center(

 child: Text("Hello world!"),

),

),

);

 }

}

Listing 3-5 is very much like its Material Design cousin, Listing 3-3. But instead
of having MaterialApp, Scaffold and AppBar widgets, Listing 3-5 has the
CupertinoApp, CupertinoPageScaffold, and CupertinoNavigationBar widgets.
Instead of importing 'package:flutter/material.dart', Listing 3-5 imports
'package:flutter/cupertino.dart'. (This import declaration makes Flutter’s
Cupertino widget library available for use by the rest of the listing’s code.)

Flutter’s Material Design and Cupertino widgets aren’t completely parallel with
one another. For example, the Scaffold constructor call in Listing 3-3 has a body
parameter. In place of that parameter, the CupertinoPageScaffold constructor
call in Listing 3-5 has a child parameter. When in doubt, check the official Flutter
documentation pages to find out which parameter names belong to which widgets’
constructor calls.

You can mix and match Material Design and Cupertino widgets in the same app.
You can even tailor your app’s design style for different kinds of phones. You can
even put code of the following kind in your app:

if (Platform.isAndroid) {

 // Do Android-specific stuff

}

if (Platform.isIOS) {

 // Do iOS-specific stuff

}

For more information, visit https://pub.dev/packages/device_info.

https://pub.dev/packages/device_info

CHAPTER 3 “Hello” from Flutter 91

Adding another widget
When you run out of things to talk about, you can ask people about their families.
Sometimes you learn interesting facts, at other times you hear lists of complaints,
and sometimes you get a long, boring monologue. One way or another, it fills in
any awkward silences.

When it comes to understanding familial relationships, I’m a slow learner. Some-
one tells me about their second cousin’s wife’s mother-in-law, and I have to pause
the conversation to draw a mental diagram. Otherwise, I’m just plain confused.

My own family tree is rather simple. It was Mom, Dad, and me. People ask me if
I was lonely being an only child. “Heck, no!” I say. “As an only child, I didn’t have
to share things.”

This discussion about families is my dubious lead-in to the subject of Column
 widgets. In the previous examples, the Text widget was an only child. But eventu-
ally, the Text widget must learn to share. (Otherwise, the Text widget becomes
spoiled, like me.)

How do you put two children on a scaffold’s body? You might be tempted to try
this:

// DON'T DO THIS:

body: Center(

 child: Text("Hello world!"),

 child: AnotherWidget(...)

)

But a constructor call can’t have two parameters with the same name. So, what
can you do?

Flutter has a Column widget. The Column widget’s constructor has a children
parameter. The column widget’s children line up, one under another, on the
screen. That sounds promising! Listing 3-6 has some code, and Figure 3-16 has
the resulting display.

LISTING 3-6: More Widgets, Please!

import 'package:flutter/material.dart';

main() => runApp(App0306());

class App0306 extends StatelessWidget {

(continued)

92 PART 2 Flutter: A Burd’s-Eye View

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("Adding Widgets"),

),

 body: Column(

 children: [

 Text(

 "Hello world!",

 textScaleFactor: 2.0,

),

 Text("It's lonely for me inside this phone.")

],

),

),

);

 }

}

A Column constructor call has a children parameter, and the children parame-
ter’s value is a list. In the Dart programming language, a list is a bunch of objects.
Each object’s position in the list is called an index. The index values start from 0
and work their way upward.

One way to create a list is to enclose objects in square brackets. For example,
 Listing 3-6 contains a list with two objects. (See Figure 3-17.)

A list’s indices don’t begin with 1. They begin with 0.

FIGURE 3-16:
I wonder who’s

in there!

LISTING 3-6: (continued)

CHAPTER 3 “Hello” from Flutter 93

FIGURE 3-17:
Square brackets

create lists of
things.

STRING THINGS
In the Dart programming language, the stuff that you surround with quotation marks
(as in "Hello world!") is called a string. It’s a bunch of characters, one after another.
Here are some handy facts about strings:

• To create a string, you can use double quotation marks or single quotation
marks.

In other words, 'Hello world!' is the same as "Hello world!".

• It’s easy to put a single quotation mark inside a double quoted string.

Refer to the string

"It's lonely for me inside this phone."

in Listing 3-6.

• It’s easy to put a double quotation mark inside a single quoted string.

For example, the following is a valid string:

'"Yikes!" she said.'

• Using backslash characters (\), you can put either kind of quotation mark
inside either kind of string.

Here are two examples:

'It\'s lonely for me inside this phone.'

"\"Yikes!\" she said."

(continued)

94 PART 2 Flutter: A Burd’s-Eye View

Centering the text (Part 1)
Figure 3-16 looks strange because the words are tucked up against the upper left
corner. In this section, I walk you through some steps to diagnose this problem,
and to fix it.

1. While the app in Listing 3-6 runs, look on the right edge of Android
Studio’s window for a toolbar button with the words Flutter Inspector
on it. Click that toolbar button.

As a result, the Flutter Inspector appears. (See Figure 3-18.)

2. In the upper left corner of the Flutter Inspector, look for the Enable Select
Widget Mode icon. (Refer to Figure 3-18.) Click that icon.

3. Select the Flutter Inspector’s Widgets tab. (Once again, refer to Figure 3-18.)

FIGURE 3-18:
The Flutter
Inspector.

• A string can straddle several lines if you use triple quotation marks.

Both of these examples are valid Dart code:

'''And the winner is ...

 Charles Van Doren!'''

"""And the winner is ...

 Charles Van Doren!"""

• To paste strings one after another, use a plus sign (+) or some blank spaces.

Both of these examples are valid Dart code:

"Hello" + " world!"

"Hello" " world!"

For some other things you can do with strings, see Chapter 4.

(continued)

CHAPTER 3 “Hello” from Flutter 95

4. In the tree of widgets, select Column. (See Figure 3-19.)

As a result, the device that’s running your app adds highlighting and a little
label to the Column widget on the screen. (See Figure 3-20.)

5. Just for fun, select a few other branches in the Flutter Inspector’s tree of
widgets.

You can determine the boundaries of almost any of your widgets by using this
technique.

The highlighting in Figure 3-20 tells you that the Column widget isn’t centered
inside of its parent Scaffold widget, and it’s not wide enough to fill the entire
Scaffold widget. To fix this, put the Column widget inside of a Center widget.
Put the cursor on the word Column in Android Studio’s editor, and then follow
the instructions at the start of the earlier “Making Things Look Nicer” section.
 Listing 3-7 shows you what you get.

FIGURE 3-19:
Selecting a
branch of

the Flutter
Inspector’s tree.

FIGURE 3-20:
Widget Select
mode is really

useful!

96 PART 2 Flutter: A Burd’s-Eye View

LISTING 3-7: Centering the Column Widget

import 'package:flutter/material.dart';

main() => runApp(App0307());

class App0307 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("Adding Widgets"),

),

 body: Center(

 child: Column(

 children: [

 Text(

 "Hello world!",

 textScaleFactor: 2.0,

),

 Text("It's lonely for me inside this phone.")

],

),

),

),

);

 }

}

When you save your changes, Android Studio does a hot restart and you see the
new-and-improved display in Figure 3-21.

FIGURE 3-21:
The Column

widget is
centered.

CHAPTER 3 “Hello” from Flutter 97

Centering the text (Part 2)
The Text widgets in Figure 3-21 are centered horizontally, but they’re not centered
vertically. To center them vertically, you can fiddle with Flutter’s Center widget,
but there’s a much easier way.

1. In Android Studio’s Flutter Inspector, select the Column widget.

The Flutter Inspector’s lower panel displays all the properties of whatever
widget you’ve selected.

Wait! What’s a “property”? Every object has properties, and each property of
each object has a value. For example, every instance of Flutter’s Text class
has a textScaleFactor property. In Listing 3-7, a constructor call sets a Text
instance’s textScaleFactor property to the value 2.0.

Constructor calls aren’t the only way of setting the properties of objects. In
Figure 3-22, the Flutter Inspector’s lower panel shows the values of the Column
widget’s direction property, its mainAxisAlignment property, and many
other properties. In addition, the two Text children appear in the Flutter
Inspector’s lower panel.

FIGURE 3-22:
Properties of the

Column (the
Column widget

that’s constructed
in Listing 3-7).

98 PART 2 Flutter: A Burd’s-Eye View

2. In the lower panel, hover over the Column widget’s mainAxisAlignment
property.

When you do, Android Studio displays a pop-up explaining the mainAxis
Alignment property’s meaning. (See Figure 3-23.) The text in this pop-up
comes automatically from Flutter’s official documentation.

A column’s main axis is an invisible line going from the column’s top to its
bottom.

3. Again in the lower panel, hover over the word start in the Column
widget’s mainAxisAlignment property.

The new pop-up says that you can replace start with any of the values end,
center, spaceBetween, spaceAround, or spaceEvenly. (See Figure 3-24.)

4. In Android Studio’s editor, add a mainAxisAlignment parameter to the
Column widget’s constructor. (See Listing 3-8.)

FIGURE 3-23:
What is main

AxisAlignment,
anyway?

FIGURE 3-24:
The values you

can assign to the
mainAxis

Alignment
property.

CHAPTER 3 “Hello” from Flutter 99

In Listing 3-8, mainAxisAlignment is the name of a parameter,
MainAxisAlignment is the name of an enum, and MainAxisAlignment.
center is one of the enum’s values.

For another look at Dart’s enum feature, refer to the “Dart’s enum feature”
section earlier in this chapter. And if you hunger for even more, see Chapter 7.

5. Save your editor changes to do a hot restart.

On the device that’s running your app, the Text widgets are centered horizon-
tally and vertically. (See Figure 3-25.)

This section’s example illustrates aspects of Flutter’s Column widget, which
 displays things from top to bottom. It should come as no surprise that Flutter has
a Row widget, which displays things from side to side. Most facts about the
Column widget are also true of the Row widget. (Well, they’re true when you’re
lying down instead of sitting upright.)

LISTING 3-8: Time for an Alignment

import 'package:flutter/material.dart';

main() => runApp(App0308());

class App0308 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("Adding Widgets"),

),

 body: Center(

 child:

 Column(mainAxisAlignment:

 MainAxisAlignment.center,children: [

 Text(

 "Hello world!",

 textScaleFactor: 2.0,

),

 Text("It's lonely for me inside this phone.")

],

),

),

),

);

 }

}

100 PART 2 Flutter: A Burd’s-Eye View

In addition, Flutter has a ListView widget. The ListView widget displays things
either way — from top to bottom or from side to side. In addition, the ListView
widget has its own scrolling feature. You can put 100 items on a ListView even
though only 20 items fit on the screen. When the user scrolls the screen, items
move off the screen while other items move on.

To read about Flutter’s ListView widget, see Chapter 8.

Displaying an image
Words are nice, but pictures are prettier. In this section, you put an image on your
Flutter app screen.

1. In Android Studio, start a new Flutter project.

I named my project app0308, but you don’t have to use that name.

2. In Android Studio’s Project Tool window, right-click the project’s name.

As a result, a contextual menu appears. (See Figure 3-26.)

FIGURE 3-25:
How lovely!

CHAPTER 3 “Hello” from Flutter 101

3. On the contextual menu, choose New ➪  Directory. (Refer to Figure 3-26.)

As a result, the New Directory dialog box appears. How convenient!

4. In the dialog box, type the name assets, and then press Enter.

To be honest, you can name this new directory almost anything you want. But
if you don’t name it assets, you’ll confuse other Flutter developers.

5. Check the Project Tool window to make sure that the project tree has a
new assets branch. (See Figure 3-27.)

Seasoned Flutter developers create an images subdirectory of the new assets
directory. I won’t bother with that right now.

6. Find an image file.

Search your development computer’s hard drive for an image file. Look for
filenames ending in .png, .jpg, .jpeg, or .gif.

If your File Explorer or Finder doesn’t show filename extensions (such as .png,
.jpg, .jpeg, or .gif for image files), refer to the sidebar in Chapter 2 that
talks about those pesky filename extensions.

7. In your development computer’s File Explorer or Finder, copy the
image file.

That is, right-click the image file’s name. On the contextual menu that appears,
select Copy.

8. Using Android Studio’s Project Tool window, paste the image file into the
assets directory.

That is, right-click the assets branch. On the resulting contextual menu,
choose Paste. In the resulting dialog box, type a name for your image file, and
then press Enter.

FIGURE 3-26:
Right-clicking the
app0308 branch.

FIGURE 3-27:
The assets

directory is a
subdirectory of

the app0308
directory.

102 PART 2 Flutter: A Burd’s-Eye View

When I did all this, I named the file MyImage.png, but you don’t have to use
that name.

9. Open your project’s pubspec.yaml file.

More specifically, double-click the pubspec.yaml branch in the Project Tool
window’s tree.

Here’s a fun fact: The extension .yaml stands for Yet Another Markup
Language.

10. In the pubspec.yaml file, look for advice about adding assets to your
project.

The advice might look something like this:

To add assets to your application,

add an assets section, like this:

assets:

- images/a_dot_burr.jpeg

- images/a_dot_ham.jpeg

(In case you’re wondering, the file names a_dot_burr.jpeg and a_dot_ham.
jpeg refer to Aaron Burr and Alexander Hamilton. These file names occur
many times in Flutter’s official documentation. Flutter is the technology behind
the mobile app for the Broadway musical Hamilton.)

In a .yaml file, a hashtag (#) tells the computer to ignore everything on the rest
of the line. So, in this part of the .yaml file, none of the lines has any effect.

11. Delete the hashtags on two of the lines. On the second line, change the
name of the image file to the name you chose in Step 8.

When I do this, my pubspec.yaml file contains the following text:

To add assets to your application,

add an assets section, like this:

assets:

 - MyImage.png

- images/a_dot_ham.jpeg

I use the name MyImage.png instead of images/MyImage.png because, in
Step 5, I didn’t create an images directory.

I often forget to make the necessary changes in the pubspec.yaml file. Try not
to forget this step. When you do forget (and almost everyone does), go back
and edit the project’s pubspec.yaml file.

CHAPTER 3 “Hello” from Flutter 103

12. Replace all the code in the main.dart file with the code in Listing 3-9.

Use your own class name and filename instead of my App0309 and MyImage.
png names.

13. Let ’er rip.

That is, run the code on a virtual or physical device. The display on the device’s
screen looks something like the result in Figure 3-28.

At this point, I want to make one thing perfectly clear: I’m not a narcissist. The
reason I use this book’s cover image in Figure 3-28 is that I’m fascinated by
recursion. I like having a reference to this book inside of this book.

(Besides, I’m a bit of a narcissist.)

Flutter has an Image class, and the Image class has several different constructors.
The Image.asset constructor in Listing 3-9 grabs a file from a place inside your
Flutter project’s directory. To grab an image off the Internet, you call a different
constructor — the Image.network constructor. To get an image from somewhere
on your hard drive (somewhere outside of your Flutter project’s directory), you
can call the Image.file constructor. Each of these constructors is called a named
constructor. In each case, the stuff after the dot (.asset, .network, and .file) is
that particular constructor’s name.

LISTING 3-9: Displaying an Image

import 'package:flutter/material.dart';

main() => runApp(App0309());

class App0309 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text("My First Image"),

),

 body: Center(

 child: Image.asset('MyImage.png'),

),

),

);

 }

}

104 PART 2 Flutter: A Burd’s-Eye View

Hey, Wait a Minute . . .
This chapter covers some fundamental ideas in Dart and Flutter app development.
You start with a Hello World program and make several changes to it. While you
do all that, you build up a vocabulary of useful concepts — concepts like classes,
constructors, enums, and widgets.

You’ve done all that while I cleverly diverted your attention from several lines in
the Hello World program. What do the first four lines of the Hello World program
do? Why do you return something when you construct a MaterialApp?

The answers to these questions, and others like them, are in the next chapter.
What are you waiting for? Read on!

♪ “Happy trails to you / Until we meet again” ♪
WRITTEN BY DALE EVANS, SUNG BY ROY ROGERS AND DALE EVANS ON

“THE ROY ROGERS SHOW,” 1944–1957

FIGURE 3-28:
To find

Figure 3-28, look
inside that Flutter

For Dummies
book.

CHAPTER 4 Hello Again 105

Chapter 4
Hello Again

♪ “Hello, hello again, sh-boom and hopin’ we’ll meet again.” ♪
— JAMES KEYES, CLAUDE FEASTER, CARL FEASTER, FLOYD F. MCRAE, AND

JAMES EDWARDS, SUNG BY THE CHORDS, THE CREW-CUTS,
STAN FREBERG, AND OTHERS, 1954

C
hapter 3 is all about a simple Hello world program. For convenience, I copy
one version of the code here, in Listing 4-1.

LISTING 4-1: Yet Another Look at the First Hello Program

import 'package:flutter/material.dart';

main() => runApp(App0401());

class App0401 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 child: Center(child: Text("Hello world!")),

),

);

 }

}

IN THIS CHAPTER

 » Looking at functions in a Flutter app

 » Learning to type

 » Dealing with variables and other little
things

106 PART 2 Flutter: A Burd’s-Eye View

In Chapter 3, I have you concentrate on the middle of the program — the
MaterialApp and all the stuff inside it. I let you gleefully ignore the other parts of
the program. In particular, I let you ignore anything having to do with things
called “functions.” This chapter continues the tour of a Hello World program and
sets its sites on those “function” things.

Creating and Using a Function
Here’s an experiment: Run the app whose code is shown in Listing 4-2.

LISTING 4-2: Words, Words, Words

import 'package:flutter/material.dart';

main() => runApp(App0402());

class App0402 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 child: Center(child: Text(highlight("Look at me"))),

),

);

 }

}

highlight(words) {

 return "*** " + words + " ***";

}

You can download this app’s code (and the code for every other listing in this
book) from my website. The URL is https://allmycode.com/Flutter.

Figure 4-1 shows you the output of the app in Listing 4-2.

Listing 4-2 contains a function declaration and a function call. (See Figure 4-2.)

FIGURE 4-1:
Another exciting

Flutter app.

https://allmycode.com/Flutter

CHAPTER 4 Hello Again 107

The function declaration
Think about a recipe — a set of instructions for preparing a particular meal.
A function declaration is like a recipe: It’s a set of instructions for performing a
particular task. In Listing 4-2, this set of instructions says, “Form the string
 containing asterisks followed by some words followed by more asterisks, and
return that string somewhere.”

Most recipes have names, like Macaroni and Cheese or Triple Chocolate Cake.
The function at the bottom of Listing 4-2 also has a name: Its name is highlight.
(See Figure 4-3.) There’s nothing special about the name highlight. I made up
the name highlight all by myself.

FIGURE 4-2:
The highlight

function in
Listing 4-2.

FIGURE 4-3:
A header

and a body.

108 PART 2 Flutter: A Burd’s-Eye View

In Figure 4-3, the function name highlight is in the part of the declaration called
the header. The function’s instructions (return "*** " + words + " ***") are
in the part of the declaration called the body.

A recipe for macaroni and cheese sits in a book or on a web page. The recipe
doesn’t do anything. If no one uses the recipe, the recipe lies dormant. The same
is true of a function declaration. The declaration in Listing 4-2 doesn’t do anything
on its own. The declaration just sits there.

A function call
Eventually, somebody might say, “Please make macaroni and cheese for dinner,”
and then someone follows the Macaroni and Cheese recipe’s instructions. One way
or another, the process begins when someone says (or maybe only thinks) the
name of the recipe.

A function call is code that says, “Please execute a particular function declaration’s
instructions.” Imagine a phone or another device that’s running the code in
 Listing 4-2. When the phone encounters the function call highlight("Look at
me"), the phone is diverted from its primary task — the task of constructing an
app with its Material, Center, and Text widgets. The phone takes a detour to
execute the instructions in the highlight function’s body. After figuring out that
it should create "*** Look at me ***", the phone returns to its primary task,
adding the Text widget with "*** Look at me ***" to the Center widget, adding
the Center widget to the Material widget, and so on.

A function call consists of a function’s name (such as the name highlight in
 Listing 4-2), followed by some last-minute information (such as "Look at me"
in Listing 4-2).

Wait! In the previous sentence, what does some last-minute information mean?
Read on.

Parameters and the return value
Suppose that your recipe for macaroni and cheese serves one person and calls for
two ounces of uncooked elbow macaroni. You’ve invited 100 people to your inti-
mate evening gathering. In that case, you need 200 ounces of uncooked elbow
macaroni. In a way, the recipe says the following: “To find the number of ounces
of uncooked elbow macaroni that you need, multiply the number of servings
by 2.” That number of servings is last-minute information. The person who wrote
the recipe doesn’t know how many people you’ll be serving. You provide a number

CHAPTER 4 Hello Again 109

of servings when you start preparing the mac-and-cheese. All the recipe says is to
multiply that number by 2.

In a similar way, the highlight function declaration in Listing 4-2 says, “To find
the value that this function returns, combine asterisks followed by the words that
you want to be highlighted followed by more asterisks.”

A function declaration is like a black box. You give it some values. The function
does something with those values to calculate a new value. Then the function
returns that new value. (See Figures 4-4 and 4-5.)

FIGURE 4-4:
Good stuff in,

good stuff out.

FIGURE 4-5:
In with the old,

out with the new.

110 PART 2 Flutter: A Burd’s-Eye View

Figures 4-4 and 4-5 show what it means to give values to a function, and for a
function to return a value.

 » You give values to a function with the function’s parameter list.

Like any constructor call, every function call has a parameter list. Each
parameter feeds a piece of information for the function to use. In Figure 4-5,
the function call highlight("Look at me") passes the value "Look at me"
to the highlight function’s declaration. Inside the function declaration, the
name words stands for "Look at me", so the expression "*** " + words +
" ***" stands for "*** Look at me ***".

 » You return a value from a function with a return statement.

In Listing 4-2, the line

return "*** " + words + " ***";

is a return statement. Again, imagine a phone that’s running the code in
Listing 4-2. With the execution of this return statement, this is what happens:

• The phone stops executing any code inside the body of the highlight
function.

• The phone replaces the entire function call with the returned value so that

Center(child: Text(highlight("Look at me")))

effectively becomes

Center(child: Text("*** Look at me ***"))

• It continues to execute whatever code it was executing before it became
diverted by the function call. It takes up where it left off, constructing the
Center, Material, and MaterialApp widgets.

A cookbook may have only one recipe for chicken fricassee, but you can follow the
recipe as many times as you want. In the same way, a particular function has only
one declaration, but an app may contain many calls to that function. To see
this in action, look at Listing 4-2, and change the code’s child parameter, like so:

child: Column(mainAxisAlignment: MainAxisAlignment.center, children: [

 Text(highlight("Look at me")),

 Text(highlight("Your attention, please"))

])

The new child contains two calls to the highlight function, each with its own
parameter value. The resulting app is what you see in Figure 4-6.

CHAPTER 4 Hello Again 111

FIGURE 4-6:
Two Text widgets.

SAVING THE PLANET
In Chapter 3, I advise you to end each parameter list with a trailing comma. It’s good
advice in most cases. But, for printed books, page counts matter a lot. To keep this book
to a reasonable size, I’ve omitted some trailing commas here and there.

For example, an excerpt from the code in Listing 4-2 looks like this:

home: Material(

 child: Center(child: Text(highlight("Look at me"))),

)

When you select Code ➪  Reformat Code, Android Studio formats your code according
to official Dart guidelines. (Dart uses a tool named Dartfmt.) When Android Studio for-
mats the excerpt from Listing 4-2, the excerpt has only three lines. The middle line ends
with three close parentheses.

But, instead of having three parentheses in a row, I can separate the close parentheses
with commas. When I do that, Android Studio formats the code this way:

home: Material(

 child: Center(

 child: Text(

 highlight("Look at me"),

),

),

)

The Dartfmt tool interprets a comma as a signaI to start a new line of code. This doubles
the number of lines in the code excerpt. I feel guilty for including so many lines in this
sidebar!

So, do as I say, not as I do. Remember that many examples in this book omit trailing
commas. The examples run correctly, but the code’s style is out of whack. Add trailing
commas to adhere to Dart’s rigorous guidelines.

112 PART 2 Flutter: A Burd’s-Eye View

A return statement is only one of several kinds of statements in the Dart
 programming language. For more about this topic, see the section “Statements
and declarations,” later in this chapter.

In this chapter, I’m careful to distinguish between a function declaration and a
function call. In many other chapters, I become sloppy and refer to either the
 declaration, the call, or both as a plain, old function. I’m not alone in this practice.
Most programmers do the same thing.

Programming in Dart: The Small Stuff
“Dart is boring.” That’s what Faisal Abid said during a presentation at DevFest
NYC 2017. He wasn’t talking trash about Dart. He was merely explaining that
Dart is much like many other programming languages. If you’ve written some
programs in Java, C++, or JavaScript, you find Dart’s features to be quite familiar.
You encounter a few surprises, but not too many. When you’re learning to create
Flutter apps, you don’t want a new, complicated programming language to get in
your way. So, a boring language like Dart is just what you need.

This section presents some unexciting facts about the Dart programming language.
Try not to fall asleep while you read it.

Statements and declarations
A statement is a piece of code that commands Dart to do something. If you think
this definition is vague, that’s okay for now. Anyway, in Listing 4-2, the line

return "*** " + words + " ***";

is a statement because it commands Dart to return a value from the execution of
the highlight function.

Unlike a statement, a declaration’s primary purpose is to define something. For
example, the highlight function declaration in Listing 4-2 defines what should
happen if and when the highlight function is called.

Statements and declarations aren’t completely separate from one another. In
Listing 4-2, the highlight function declaration contains one statement — a
return statement. A function declaration may contain several statements. For
example, the following declaration contains three statements:

CHAPTER 4 Hello Again 113

highlight2(words) {

 print("Wha' da' ya' know!");

 print("You've just called the highlight2 function!");

 return "*** " + words + " ***";
}

The first two statements (calls to Dart’s print function) send text to Android
Studio’s Run tool window. The third statement (the return statement) makes
highlight("Look at me") have the value "*** Look at me ***".

Use Dart’s print function only for testing your code. Remove all calls to print
before publishing an app. If you don’t, you might face some trouble. At best, the
calls serve no purpose and can slow down the run of your app. At worst, you may
print sensitive data and show it to malicious hackers.

Dart’s typing feature
What does “five” mean? You can have five children, but you can also be five
feet tall. With five children, you know exactly how many kids you have. (Unlike
the average American family, you can’t have 2.5 kids.) But if you’re five feet tall,
you might really be five feet and half an inch tall. Or you might be four feet
eleven-and-three-quarter inches tall, and no one would argue about it.

What else can “five” mean? Nuclear power plants can undergo fire-induced
 vulnerability evaluation, also known as five. In this case, “five” has nothing to do
with a number. It’s just f-i-v-e.

A value’s meaning depends on the value’s type. Consider three of the Dart
 language’s built-in types: int, double, and String.

 » An int is a whole number, with no digits to the right of the decimal point.

If you write

int howManyChildren = 5;

in a Dart program, the 5 means “exactly five.”

 » A double is a fractional number, with digits to the right of the decimal
point.

If you write

double height = 5;

114 PART 2 Flutter: A Burd’s-Eye View

in a Dart program, the 5 means “as close to five as you care to measure.”

 » A String is a bunch of characters.

If you use single quotes (or double quotes) and write

String keystroke = '5';

in a Dart program, the '5' means “the character that looks like an uppercase
letter S but whose upper half has pointy turns.”

A value’s type determines what you can do with that value. Consider the values 86
and "86".

 » The first one, 86, is a number. You can add another number to it.

86 + 1 is 87

 » The second one, "86", is a string. You can’t add a number to it, but you
can add another string to it.

"86" + "1" is "861"

In some languages, you can combine any value with any other value and produce
some kind of a result. You can’t do that in Dart. The Dart programming language
is type safe.

Literals, variables, and expressions
The Dart language has literals and variables. The value of a literal is the same in
every Dart program. For example, 1.5 is a literal because 1.5 means “one-and-a-
half” in every Dart program. Likewise, "Hello world!" in Listing 4-1 is a literal
because "Hello world!" stands for the same string of 12 characters in every Dart
program. (Yes, the blank space counts as one of the characters.)

Fun fact: In early versions of FORTRAN (circa 1956), you could change the mean-
ing of the literal 5 so that it stood for something else, like the number 6. Talk
about confusing!

The value of a variable is not the same in every Dart program. In fact, the value of
a variable may not be the same from one part of a Dart program to another. Take,
for example, the following line of code:

int howManyChildren = 5;

CHAPTER 4 Hello Again 115

This line is called a variable declaration. The line defines a variable named how-
ManyChildren whose type is int. The line initializes that variable with the value 5.
When Dart encounters this line, howManyChildren stands for the number 5.

Later, in the same program, Dart may execute the following line:

howManyChildren = 6;

This line is called an assignment statement. The line makes howManyChildren refer
to 6 instead of 5. Congratulations on the birth of a new child! Is it a girl or a boy?

An expression is a part of a Dart program that stands for a value. Imagine that your
code contains the following variable declarations:

int numberOfApples = 7;

int numberOfOranges = 10;

If you start with these two declarations, each entry in the left column of Table 4-1
is an expression.

TABLE 4-1	 Fruitful Expressions
Expression Value Type Notes

7 7 int

7.1 7.1 double

7.0 7.0 double Even with .0, you get a double.

7.1 + 8 15.1 double A double plus an int is a double.

0.1 + 0.1 + 0.1 0.30000000000000004 double Arithmetic on double values isn’t
always accurate.

numberOfApples 7 int

numberOfOranges 10 int

numberOfApples +
numberOfOranges

17 int Who says you can’t add apples
and oranges?

8 + numberOfApples 15 int

numberOfOranges * 10 100 An asterisk (*) stands for
multiplication.

(continued)

116 PART 2 Flutter: A Burd’s-Eye View

In the last row of Table 4-1, do you really need the toString() part? Yes, you do.
If you write '9' + numberOfApples, you get an error message because ’9' is a
String and numberOfApples is an int. You can’t add an int value to a String
value.

The Dart language has statements and expressions. A statement is a command to
do something; an expression is code that has a value. For example, the statement
print("Hello"); does something. (It displays Hello in Android Studio’s Run tool
window.) The expression 3 + 7 * 21 has a value. (Its value is 150.)

You can apply Dart’s toString to any expression. For some examples, see
Chapter 7.

Dart provides a quick way to determine the type of a particular expression. To see
this, change the highlight function declaration in Listing 4-2 as follows:

highlight(words) {

 print(20 / 7);

 print((20 / 7).runtimeType);

 return "*** " + words + " ***";
}

Expression Value Type Notes

20 / 7 2.857142857142857 double A slash (/) performs division and
produces a double.

20.0 ~/ 7.0 2 int The ~/ combination performs
 division and produces an int. It
always rounds down.

(20 / 7).round() 3 int This is how you round up or down
to the nearest int value.

20 % 7 6 int When you divide 20 by 7, you get
2 with a remainder of 6.

highlight("Look at
me")

"*** Look at me ***" String Assuming that you’ve declared
highlight as in Listing 4-2, the
function returns a Striing.

'9' + numberOfApples.
toString()

'97' String numberOfApples.toString() is
a String. Its value is '7'.

TABLE 4-1 (continued)

CHAPTER 4 Hello Again 117

When you run the app, the following lines appear in Android Studio’s Run tool
window:

flutter: 2.857142857142857

flutter: double

The value of 20 /7 is 2.857142857142857, and the value of (20 / 7).runtime
Type is double.

Two for the price of one
In Dart, some statements do double duty as both statements and expressions.
As an experiment, change the highlight function in Listing 4-2 so that it looks
like this:

highlight(words) {

 int numberOfKazoos;

 print(numberOfKazoos);

 print(numberOfKazoos = 94);

 return "*** " + words + " ***";
}

Android Studio issues a warning that the numberOfKazoos variable isn’t used, but
that’s okay. This is only an experiment. Here’s what you see in Android Studio’s
Run tool window when you run this code:

flutter: null

flutter: 94

The line int numberOfKazoos; is a variable declaration without an initialization.
That’s fair game in the Dart programming language.

When Dart executes print(numberOfKazoos); you see flutter: null in the Run
tool window. Roughly speaking, null means “nothing.” At this point in the pro-
gram, the variable numberOfKazoos has been declared but hasn’t yet been given a
value, so numberOfKazoos is still null.

Finally, when Dart executes print(numberOfKazoos = 94); you see flutter: 94
in the Run tool window. Aha! The code numberOfKazoos = 94 is both a statement
and an expression! Here’s why:

 » As a statement, numberOfKazoos = 94 makes the value of numberOf
Kazoos be 94.

 » As an expression, the value of numberOfKazoos = 94 is 94.

118 PART 2 Flutter: A Burd’s-Eye View

Of these two facts, the second is more difficult for people to digest. (I’ve known
some experienced programmers who think about this the wrong way.) To execute
print(numberOfKazoos = 94); Dart covertly substitutes 94 for the expression
numberOfKazoos = 94, as shown in Figure 4-7.

In other words, the value numberOfKazoos = 94 is 94. So, in addition to doing
something, the code numberOfKazoos = 94 also has a value. That’s why
numberOfKazoos = 94 is both a statement and an expression.

Simple assignment statements aren’t the only things that double as expressions.
Try this code out for size:

numberOfKazoos = 100;

print(numberOfKazoos);

print(numberOfKazoos++);
print(numberOfKazoos);

The code’s output is

flutter: 100

flutter: 100

flutter: 101

If the middle line of output surprises you, you’re not alone. As a statement,
numberOfKazoos++ adds 1 to the value of numberOfKazoos, changing the value
from 100 to 101. But, as an expression, the value of numberOfKazoos++ is 100, not
101. (Refer to Figure 4-7.)

Here’s a comforting thought. By the time Dart executes the last print
(numberOfKazoos) statement, the value of numberOfKazoos has already changed
to 101. Whew!

FIGURE 4-7:
Dart’s innermost

thoughts.

CHAPTER 4 Hello Again 119

As a statement, ++numberOfKazoos (with the plus signs in front) does the same
thing that numberOfKazoos++ does: It adds 1 to the value of numberOfKazoos. But,
as an expression, the value of ++numberOfKazoos isn’t the same as the value of
numberOfKazoos++. Try it. You’ll see.

Dart has some other statements whose values are expressions. For example, the
following code prints flutter: 15 twice:

int howManyGiraffes = 10;

print(howManyGiraffes += 5);
print(howManyGiraffes);

And the following code prints flutter: 5000 twice:

int rabbitCount = 500;

print(rabbitCount *= 10);

print(rabbitCount);

For more info about topics like += and *=, visit this page:

https://dart.dev/guides/language/language-tour#operators

Dart’s var keyword
On occasion, you might want to create a variable whose type can change. To do so,
declare the variable using Dart’s var keyword and leave out an initialization in the
declaration. For example, the following code won’t work:

int x = 7;

print(x);

x = "Someone's trying to turn me into a String"; // You can't do this

print(x);

But the following code works just fine:

var x;

x = 7;

print(x);

x = "I've been turned into a String"; // Dart is happy to oblige

print(x);

Another reason for using var is to avoid long, complicated type names. For an
example, see this chapter’s “Build-in types” section.

https://dart.dev/guides/language/language-tour#operators

120 PART 2 Flutter: A Burd’s-Eye View

WE PAUSE FOR A FEW COMMENTS
You may have noticed some stuff beginning with two slashes (//) in some of the
 chapter’s code examples. Two slashes signal the beginning of a comment.

A comment is part of a program’s text. But unlike declarations, constructor calls, and
other such elements, a comment’s purpose is to help people understand your code.
A comment is part of a good program’s documentation.

The Dart programming language has three kinds of comments:

• End-of-line comments

An end-of-line comment starts with two slashes and goes to the end of a line of type.
So, in the following code snippet, the text // Dart is happy to oblige is an
end-of-line comment:

x = "I've been turned into a String"; // Dart is happy to oblige

All the text in an end-of-line comment is for human eyes only. No information from
the two slashes to the end of the line is translated by Dart’s compiler.

• Block comments

A block comment begins with /* and ends with */.

A block comment can span across several lines. For example, the following code is a
block comment:

/* Temporarily commenting out this code.

 That is, omitting these statements to see what happens:

 x = "Someone's trying to turn me into a String";

 print(x); */

Once again, no information between /* and */ gets translated by the compiler.

• Doc comments

An end-of-line doc comment begins with three slashes (///). A block doc comment
begins with /** and ends with */.

A doc comment is meant to be read by people who never even look at the Dart
code. But that doesn’t make sense. How can you see a doc comment if you never
look at the code?

Well, a certain program called dartdoc (what else?) can find any doc comments
in a program and turn these comments into a nice-looking web page. (For an
 example of such a page, visit https://api.flutter.dev/flutter/widgets/
Widget-class.html.)

https://api.flutter.dev/flutter/widgets/Widget-class.html
https://api.flutter.dev/flutter/widgets/Widget-class.html

CHAPTER 4 Hello Again 121

Built-in types
In a Dart program, every value has a type. Dart has ten built-in types. (See
Table 4-2.)

Which is better — end-of-line doc comments or block doc comments? Professional
Dart programmers favor end-of-line doc comments over block doc comments. They
mock block doc comments and knock block doc comments. They put no stock in
block doc comments. They don’t grok block doc comments. In their opinion, an
end-of-line doc comment rocks, but the whole idea of a block doc comment is a crock.

One more thought about comments in general: In Chapter 3, I describe a way to display
closing labels in Android Studio’s editor.

home: Material(
 child: Text("Hello world!"),
), // Material

Does that final // Material look like a comment to you? Well, it’s not really a com-
ment. (Sorry about that.) Closing labels belong to a broader category of items called
code decoration. When Android Studio creates code decoration, it doesn’t add the deco-
ration to the program’s text. It only displays that decoration in the editor. If you examine
a program’s text using Notepad or TextEdit, you don’t see the code decoration.

TABLE 4-2	 Dart’s Built-In Types
Type Name What Literals Look Like Useful Info About the Type

Number types

int 42 Numbers with no digits to the right of the decimal
point — typically, from –9007199254740992 to
9007199254740991.

double 42.0 42.1 Numbers with digits to the right of the decimal point
(possibly, all zero digits).

num 42 42.0 42.1 A number of some kind. Every int value, and every
double value, is an example of a num value.

(continued)

122 PART 2 Flutter: A Burd’s-Eye View

You can combine types to create new types. One way to do this is to put types
inside of collection types. For example, in the following declaration, the variable
amounts is a List containing only int values.

List<int> amounts = [7, 3, 8, 2];

TABLE 4-2	(continued)

Type Name What Literals Look Like Useful Info About the Type

Collection types

List [2, 4, –9, 25, 18]

["Hello", "Goodbye", 86]

[]

<int>[]

A bunch of values. The initial value is the 0th, the next
value is the 1st, the next value is the 2nd, and so on.
(With [], the bunch has no values in it.)

Set {2, 4, –9, 25, 18}

{"Hello", "Goodbye", 86}

{}

<int>{}

A bunch of values with no duplicates in no particular
order. (With {}, the bunch has no values in it.)

Map { 'one' : 1, 'two' : 2 ,

'three' : 3, 'many': 99}

<String, int>{}

A bunch of pairs, each pair consisting of a key (such as
'one', 'two', 'three', or 'many') and a value (such as
1, 2, 3, or 99). (With {}, the bunch has no pairs in it.)

Other types

String 'Dart is boring'

""

"""The previous

string is empty."""

A sequence of characters.

bool true, false A logical value. A variable of this type has one of only
two possible values: true and false.

Runes Runes('I ' '\u2665' '
you')

A string of Unicode characters. For example, '\u2665'
is a heart character (♥).

Symbol (Not applicable) Turns an identifier in a Dart program into a value in a
Dart program. (Don’t worry about it!)

CHAPTER 4 Hello Again 123

Of course, you can go crazy layering types within types within other types:

Map<String, Map<String, List<int>>> values = {

 "Size": {

 "Small": [1, 2, 3],

 },

};

In cases like that, your best bet is to use the var keyword. Dart can usually figure
things out by looking at the rest of the code.

var values = {

 "Size": {

 "Small": [1, 2, 3],

 },

};

Types that aren’t built-in
In addition to the types in Table 4-2, every class is a type. For example, in
 Listing 4-1, App0401 is the name of a type. It’s a type that’s defined in Listing 4-1.
You can add a line to Listing 4-1 that makes a variable refer to an instance of the
App0401 class. Here’s one such line:

App0401 myApp = App0401();

Like many other variable declarations, this line has a type name (App0401),
 followed by a new variable name (myApp), followed by an initialization. The
 initialization makes myApp refer to a newly constructed App0401 instance.

The Dart language comes with a library full of standard, reusable code. The formal
name for such a library is an application programming interface (API). Dart’s API
has declarations of many classes. For example, instances of Dart’s DateTime class
are moments in time, and instances of the Duration class are time intervals.

Similarly, the Flutter toolkit comes with a feature-rich API. In Listing 4-1, Widget,
StatelessWidget, BuildContext, MaterialApp, Material, Center, and Text are
the names of classes in the Flutter API.

Using import declarations
Woe is me! I can’t read the book Flutter For Dummies unless I go to my local library
and check out a copy. The same is true of Dart’s and Flutter’s library classes

124 PART 2 Flutter: A Burd’s-Eye View

(well, almost). You can’t use Flutter’s MaterialApp or Material classes unless
you start your program with

import 'package:flutter/material.dart';

If you delete this line, you can’t even use any of Flutter’s Widget classes
(StatelessWidget, Widget, Center, and Text, to name a few). That’s because,
when you import 'package:flutter/material.dart', you automatically import
'package:flutter/widgets.dart' also.

A relatively small number of Dart’s API classes, like the aforementioned DateTime
class, belong to a package named dart.core. You can start your program with
the line

import 'dart:core';

but it won’t do you any good. Classes from the dart.core package are always
imported, whether you ask for it or not.

No one (and I do mean no one) memorizes the names of all the classes in the Dart
or Flutter libraries. When you need to know about a class, look it up by visiting
https://api.flutter.dev.

Variations on a Theme from
Die Flutter Mouse

This section shows some alternative ways of creating function declarations.
 Listing 4-3 has the first example.

LISTING	4-3:	 Messing with Function Declarations

import 'package:flutter/material.dart';

main() {

 runApp(App0403());

}

class App0403 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

https://api.flutter.dev/

CHAPTER 4 Hello Again 125

 child: Center(child: Text(highlight("Look at me"))),

),

);

 }

}

highlight(words) => "*** $words ***";

BLING YOUR STRING
Listing 4-2 contains the following code:

"*** " + words + " ***"

The juxtaposition of plus signs and quotation marks can make code difficult to read. To
make your life easier, Dart has string interpolation. With string interpolation, a dollar sign
($) means, “Temporarily ignore the surrounding quotation marks and find the value of
the following variable.” That’s why, in Listing 4-3, the expression "*** $words ***"
stands for "*** Look at me ***" — the same string you get in Listing 4-2.

Not impressed with string interpolation? Look over the following function and see what
you think of it:

// The function call

getInstructions1(8, "+", ";", "'")

// The function's declaration

getInstructions1(howMany, char1, char2, char3) {

 return "Password: " +
 howMany.toString() +
 " characters; Don't use " +
 char1 +
 " " +
 char2 +
 " or " +
 char3;

}

Quite a mess, isn’t it? The value that the getInstructions1 function returns is

Password: 8 characters; Don't use + ; or '

(continued)

126 PART 2 Flutter: A Burd’s-Eye View

To read all about the dollar sign ($) on the last line of Listing 4-3, see the nearby
“Bling your string” sidebar.

A run of the code in Listing 4-3 is the same as that of Listing 4-2. (Refer to
 Figure 4-1.) In a sense, Listing 4-3 contains the same program as Listing 4-2. The
notation for things is slightly different, but the things themselves are the same.

In Listing 4-3, the highlight function declaration

highlight(words) => "*** $words ***";

Whenever I try to write code of this kind, I forget to include some blank spaces, quota-
tion marks, or other items. Here’s how you get the same return value using string
interpolation:

// The function call

Text(getInstructions2(8, "+", ";", "'")

// The function's declaration

getInstructions2(howMany, char1, char2, char3) {

 return "Password: $howMany characters; Don't use $char1 $char2 or $char3";

}

This new function, getInstructions2, is easier to create and easier to understand
than getInstructions1.

When you use string interpolation, you can go a step further. Here’s what you can do
when you add curly braces to the mix:

// The function call

getInstructions3(8, "+", ";", "'")

// The function's declaration

getInstructions3(howMany, char1, char2, char3) {

 return "Password: ${howMany + 1} characters; Don't use $char1 $char2 or

$char3";

}

This new getInstructions3 function returns

Password: 9 characters; Don't use + ; or '

String interpolation can handle all kinds of expressions — arithmetic expressions, logical
expressions, and others.

(continued)

CHAPTER 4 Hello Again 127

is shorthand for the more long-winded highlight declaration in Listing 4-2.
When the body of a function declaration contains only one statement, you can use
this quick-and-easy fat arrow (=>) notation.

In a fat arrow function declaration, you never use the return keyword.

Back in Listing 4-2, I use the fat arrow notation to declare the main function. Just
to show that I can do it, I “un-fat-arrow” this declaration in Listing 4-3.

Every Dart program has a function named main. When you start running a
 program, Dart looks for the program’s main function declaration and starts
 executing whatever statements are in the declaration’s body. In a Flutter app, a
statement like

runApp(App0403());

tells Dart to construct an instance of App0403 and then run that instance. The
runApp function is part of Flutter’s API.

Type names in function declarations
Listing 4-4 adds some type names to the code from Listing 4-2.

LISTING 4-4: Better Safe than Sorry

import 'package:flutter/material.dart';

void main() => runApp(App0404());

class App0404 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 child: Center(child: Text(highlight("Look at me"))),

),

);

 }

}

String highlight(String words) {

 return "*** $words ***";

}

128 PART 2 Flutter: A Burd’s-Eye View

In Listing 4-4, String and void add some welcome redundancy to the code. The
occurrence of String in (String words) tells Dart that, in any call to the
highlight function, the words parameter must have type String. Armed with
this extra String information, Dart will cough up and spit out a bad function call
such as

highlight(19)

This is bad because 19 is a number, not a String. You may argue and say, “I’ll
never make the mistake of putting a number in a call to the highlight function.”
And my response is, “Yes you will, and so will I, and so will every other program-
mer on earth.” When you’re writing code, mistakes are inevitable. The trick is to
catch them sooner rather than later.

Near the end of Listing 4-4, String highlight tells Dart that the value returned
by the highlight function must be a String. If you accidentally write the follow-
ing code, Dart will complain like nobody’s business:

String highlight(String words) {

 return 99; //Bad code!

}

Sorry, chief. The value 99 isn’t a String.

Continuing our journey through Listing 4-4, void main doesn’t quite mean, “The
main function must return a value of type void.” Why not? It’s okay to put a type
name in front of a fat arrow declaration. So, what’s different about void main?

Simply stated, void isn’t a type. In a way, void means “no type.” The word void
reminds Dart that this main function isn’t supposed to return anything useful. Try
declaring void main and putting a return statement in the declaration’s body:

void main() {

 runApp(App0404());

 return 0; // Bad

}

If you do this, Android Studio’s editor adds red marks to your code. Dart is saying,
“Sorry, Bud. You can’t do that.”

Naming your parameters
Chapter 3 distinguishes between constructors’ positional parameters and named
parameters. All that fuss about the kinds of parameters applies to functions as

CHAPTER 4 Hello Again 129

well. For example, the highlight function in Listing 4-4 has one parameter — a
positional parameter.

highlight("Look at me") // A function call

String highlight(String words) { // The function declaration

 return "*** $words ***";

}

If you want, you can turn words into a named parameter. Simply surround the
parameter with curly braces:

highlight(words: "Look at me") // A function call

String highlight({String words}) { // The function declaration

 return "*** " + words + " ***";
}

You can even have a function with both positional and named parameters. In the
parameter list, all the positional parameters must come before any of the named
parameters. For example, the following code displays +++Look at me!+++.

highlight(// A function call

 "Look at me",

 punctuation: "!",

 symbols: "+++",
)

String highlight(// The function declaration

 String words, {

 String punctuation,

 String symbols,

}) {

 return symbols + words + punctuation + symbols;
}

What about the build function?
Listing 4-4 contains some familiar-looking code:

class App0404 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

130 PART 2 Flutter: A Burd’s-Eye View

Here are some facts:

 » In this code, build is the name of a function, and

Widget build(BuildContext context)

is the function declaration’s header.

The build function does exactly what its name suggests. It builds something.
To be precise, it builds the widget whose content is the entire Flutter app.

 » The build function returns a value of type Widget.

Quoting from Chapter 3, “Being an instance of one class might make you
automatically be an instance of a bigger class.” In fact, every instance of the
MaterialApp class is automatically an instance of the StatefulWidget class,
which, in turn, is automatically an instance of the Widget class. So there you
have it — every MaterialApp is a Widget. That’s why it’s okay for the build
function’s return statement to return a MaterialApp object.

 » The function’s one-and-only parameter has the type BuildContext.

When Dart builds a widget, Dart creates a BuildContext object and passes
that to the widget’s build function. A BuildContext object contains informa-
tion about the widget and the widget’s relationship to other widgets in the
program. For more info, see Chapter 6.

In Listing 4-4, the build function’s declaration is inside the class App0404
 definition, but the highlight function declaration isn’t inside any class defini-
tion. In a sense, this build function “belongs to” instances of the App0404 class.

A function that belongs to a class, or to the class’s instances, has a special name.
It’s called a method. More on this in Chapter 5.

More Fun to Come!
What happens if a user taps the screen and wants a response from the app in
 Listing 4-4? Absolutely nothing.

Let’s fix that. Turn the page to see what’s in Chapter 5.

♪ “Goodbye from us to you.” ♪
— BUFFALO BOB ON “THE HOWDY DOODY SHOW,” 1947–1960

CHAPTER 5 Making Things Happen 131

Chapter 5
Making Things Happen

The day is October 20, 1952. In Kenya, the British colonial governor declares
a state of emergency. In Philadelphia, actress Melanie Mayron (grand-
daughter of Frances Goodman) is born. In the US, an installment of “I Love

Lucy” becomes the first TV episode ever to be broadcast more than once.

What? “I Love Lucy”? Yes, “I Love Lucy.” Until that day, television reruns (also
known as “repeats”) didn’t exist. Everything on TV was brand-new.

Since then, repeat airings of TV programs have become the norm. So much of
television’s content is a rehash of old video that broadcasters no longer advertise
a “new episode.” Instead, they announce the airing of an “all-new episode.” The
word new is no longer good enough. Common household products aren’t new;
they’re “new and improved.”

Of course, hyping things as “new,” “the best,” or “the latest” can backfire. In
fact, hyping of any kind can backfire. Consider the case of Stanley’s Swell Shaving
Cream. Back in 1954, Stanley’s was the market leader. A year later, when sales
were slowing down, advertisers rebranded it Stanley’s Neat New Shaving Cream.
The year after that, it became Stanley’s Superior Shaving Cream. Sales of the
product were okay for the next few years. But in the early 1960s, sales slumped
and Stanley’s advertisers were in a bind. What could possibly be better than
“Superior Shaving Cream”? Better than Best Shaving Cream? After several long
meetings, a genius in the marketing department came up with Stanley’s
 Sensational Shocking Pink Shaving Cream — a brightly colored mixture of soap,
glycerin, emollients, red dye number 2, and probably some slow-drying glue.

IN THIS CHAPTER

 » What happens when you press
buttons on a device’s screen

 » The truth about widgets’ states

 » How to remain anonymous

 » How to move variables from one
place to another

132 PART 2 Flutter: A Burd’s-Eye View

That was the end of the line. The idea of shaving with a pink-colored cream wasn’t
popular with consumers, and Stanley’s company went bankrupt. Consumers
talked about Stanley’s Slimy Soap, Stanley’s Ruby Rubbish, and, worst of all,
Stanley’s Disgusting Dung.

You may ask, “What in the world does Stanley’s Shaving Cream have to do with
developing Flutter apps?” My point is, there’s a danger in overhyping a product,
and overhyping an app development concept is no better. In Chapters 3 and 4,
I use glowing terms to describe Flutter’s programming strategies, with its con-
structors, functions, and other good stuff. But here in Chapter 5, I cast aspersions
on those introductory examples because none of them allows the user to change
anything on the screen. An app that always displays the same old text is boring,
and users will rate the app with zero stars. An interesting app interacts with the
user. The app’s screen changes when the user enters text, taps a button, moves a
slider, or does something else to get a useful response from the app. Making
things happen is essential for any kind of mobile app development. So, in this
chapter, you begin learning how to make things happen.

Let’s All Press a Floating Action Button
When you create a new Flutter project, Android Studio makes a main.dart file for
you. The main.dart file contains a cute little starter app. Listing 5-1 has a scaled-
down version of that starter app.

LISTING 5-1: Press a Button; Change the Screen

import 'package:flutter/material.dart';

void main() => runApp(App0501());

class App0501 extends StatelessWidget {

 Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

 }

}

class MyHomePage extends StatefulWidget {

 _MyHomePageState createState() => _MyHomePageState();

}

class _MyHomePageState extends State {

CHAPTER 5 Making Things Happen 133

 String _pressedOrNot = "You haven't pressed the button.";

 void _changeText() {

 setState(_getNewText);

 }

 void _getNewText() {

 _pressedOrNot = "You've pressed the button.";

 }

 Widget build(BuildContext context) {

 return Scaffold(

 body: Center(

 child: Text(

 _pressedOrNot,

),

),

 floatingActionButton: FloatingActionButton(

 onPressed: _changeText,

));

 }

}

The code in Listing 5-1 captures the essence of the starter app in the October 2019
version of Android Studio. By the time you read this book, the creators of Flutter
may have completely changed the starter app. If the stuff in Listing 5-1 bears little
resemblance to the starter app you get when you create a new project, don’t worry.
Just do what you’ve been doing. That is, delete all of Android Studio’s main.dart
code, and replace it with the code in Listing 5-1.

When you launch the app in Listing 5-1, you see the text “You haven’t pressed the
button” and, in the screen’s lower right corner, a blue circle. (See Figure 5-1.)

FIGURE 5-1:
Before pressing

the button.

134 PART 2 Flutter: A Burd’s-Eye View

That blue circle is called a floating action button. It’s one of the widgets that you can
add to a Scaffold. When you click this app’s floating action button, the words on
the screen change to “You’ve pressed the button.” (See Figure 5-2.)

At last! A Flutter app is making something happen!

To understand what’s going on, you have to know about two kinds of widgets. To
learn their names, read the next section’s title.

Stateless widgets and stateful widgets
Some systems have properties that can change over time. Take, for example, your
common, everyday traffic light. If it’s functioning properly, it’s either red, yellow,
or green. Imagine that you’re hurrying to get to work and you stop for a red light.
Under your breath, you may grumble, “I’m annoyed that this traffic light’s state
is red. I wish that the state of that system would change to green.” A system’s
state is a property of the system that may change over time.

This tip has nothing to do with Flutter. If you meet someone from another coun-
try, ask them the color of the middle bulb on a traffic light. During a brief conver-
sation with five people, I got yellow, amber, gold, and orange. See how many
different color names you can collect.

The app in Listing 5-1 has a home page (named MyHomePage), and that home page
is in one of two states. One state is shown in Figure 5-1. It’s the state in which the
Text widget displays “You haven’t pressed the button.” The other state is shown
in Figure 5-2. It’s the state in which the Text widget displays “You’ve pressed the
button.”

In Listing 5-1, the first line of the MyHomePage class declaration is

class MyHomePage extends StatefulWidget

FIGURE 5-2:
After pressing

the button.

CHAPTER 5 Making Things Happen 135

You want the look of the MyHomePage widget to be able to change itself nimbly, so
you declare MyHomePage objects to be stateful widgets. Each MyHomePage instance
has a state — something about it that may change over time.

In contrast, the App0501 class in Listing 5-1 is a stateless widget. The app itself
(App0501) relies on its home page to keep track of whatever text is being dis-
played. So, the app has no need to remember whether it’s in one state or another.
Nothing about an App0501 instance changes during the run of this code.

Think again about a traffic light. The part with the bulbs rests on a pole that’s
fastened permanently to the ground. The entire assembly — pole, bulbs and all —
doesn’t change. But the currents running through the bulbs change every 30 seconds
or so. There you have it. The entire assembly is unchanging and stateless, but a
part of that assembly — the part that’s responsible for showing colors — is
changing and stateful. (See Figure 5-3.)

Widgets have methods
In Listing 5-1, the declaration of the App0501 class contains a function named
build. A function that’s defined inside of a class declaration is called a method.
The App0501 class has a build method. That’s good because there’s some fine
print in the code for StatelessWidget. According to that fine print, every class
that extends StatelessWidget must contain the declaration of a build method.

A stateless widget’s build method tells Flutter how to build the widget. Among
other things, the method describes the widget’s look and behavior. Whenever you
launch the program in Listing 5-1, Flutter calls the App0501 class’s build method.

FIGURE 5-3:
A riddle: How is a

Flutter program
like a traffic light?

136 PART 2 Flutter: A Burd’s-Eye View

That build method constructs a MaterialApp instance, which, in turn, constructs
a MyHomePage instance. And so on. From that point onward, the MaterialApp
instance doesn’t change. Yes, things inside the MaterialApp instance change, but
the instance itself doesn’t change.

How often does your town build a new traffic light assembly? Where I live, I may
see one going up every two years or so. The metal part of a traffic light isn’t
designed to change regularly. The town planners call the traffic light assembly’s
build method only when they construct a new light. The same is true of stateless
widgets in Flutter. A stateless widget isn’t designed to be changed. When a state-
less widget requires changing, Flutter replaces the widget.

What about stateful widgets? Do they have build methods? Well, they do and they
don’t. Every stateful widget has to have a createState method. The createState
method makes an instance of Flutter’s State class, and every State class has its
own build method. In other words, a stateful widget doesn’t build itself. Instead,
a stateful widget creates a state, and the state builds itself. (See Figure 5-4.)

FIGURE 5-4:
Stateful widgets

weren’t built
in a day.

CHAPTER 5 Making Things Happen 137

“I’M TALKING TO YOU, STATELESS
WIDGET — YOU MUST HAVE
A BUILD METHOD!”
Every class that extends StatelessWidget must have a build method. Flutter’s API
enforces that rule.

But don’t take my word for it. Temporarily comment out the build method declaration
in Listing 5-1. That is, change the declaration of App0501 so that it looks like this:

class App0501 extends StatelessWidget {

// Widget build(BuildContext context) {

// return MaterialApp(

// home: MyHomePage(),

//);

// }

}

When you do, you’ll see some red marks in Android Studio’s editor. The red marks indi-
cate that the program contains an error; namely, that App0501 doesn’t have its own
build method.

To quickly comment out several lines of code, drag the mouse so that the highlight
touches each of those lines. Then, if you’re using Windows, press Ctrl-/. If you’re using
a Mac, press Cmd-/.

How does Dart enforce its build method requirement? As a novice developer, you
don’t have to know the answer You can skip the rest of this sidebar and go merrily on
your way. But if you’re curious, and you don’t mind taking a little detour in your learning,
try this:

In Android Studio’s editor, right-click on the word StatelessWidget. On the result-
ing context menu, select Go To ➪  Declaration. Et voilá! A new tab containing the
StatelessWidget class declaration opens up in the editor. If you ignore most of
the code in the StatelessWidget class declaration, you see something like this:

abstract class StatelessWidget extends Widget {

 // A bunch of code that you don't have to worry about, followed by ...

 Widget build(BuildContext context);

}

(continued)

138 PART 2 Flutter: A Burd’s-Eye View

A typical traffic light’s state changes every 30 seconds or every few minutes, and
thus, the state of the light gets rebuilt. In the same way, the build method that
belongs (indirectly) to a stateful widget gets called over and over again during the
run of a program. That’s what stateful widgets are for. They’re nimble things
whose appearance can easily change. In contrast, a stateless widget is like the pole
of a traffic light. It’s a rigid structure meant for one-time use.

The first word, abstract, warns Dart that this class declaration contains methods (that
is, functions) with no bodies. And, indeed, the line

 Widget build(BuildContext context);

is a method header with no body. In place of a body, there’s only a semicolon.

You might not be surprised to learn that StatelessWidget is an example of an
abstract class and that the class’s build method is an abstract method. With that in
mind, I offer you these two facts:

• You can’t make a constructor call for an abstract class.

You can construct a Text widget by writing Text("Hello") because the Text
class isn’t abstract. But you can’t construct a StatelessWidget by writing
StatelessWidget(). That makes sense because, in the declaration of
StatelessWidget, the build method isn’t fully defined.

• If you extend an abstract class, you have to provide a full declaration for each
of the class’s abstract methods.

The StatelessWidget class declaration contains the following line:

 Widget build(BuildContext context);

Because of this, the App0501 class in Listing 5-1 must contain a full build method
declaration. What’s more, the declaration must specify a parameter of type
BuildContext. Sure enough, the build method belonging to App0501 does
the job:

Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

}

With a fully defined build method, the App0501 class isn’t abstract. That’s good
because, near the top of Listing 5-1, there’s a line containing an App0501() con-
structor call.

(continued)

CHAPTER 5 Making Things Happen 139

Pay no attention to the framework
behind the curtain
A program that displays buttons and other nice-looking things has a graphical user
interface. Such an interface is commonly called a GUI (pronounced “goo-ey,” as in
“This peanut butter is really gooey”). In many GUI programs, things happen
behind the scenes. While your app’s code runs, lots of other code runs in the back-
ground. When you run a Flutter app, code that was written by the creators of Flut-
ter runs constantly to support your own app’s code. This background support code
belongs to the Flutter framework.

Listing 5-1 has declarations for functions named main, build, createState,
_getNewText, and _changeText, but the code in Listing 5-1 doesn’t call any of
these functions. Instead, Flutter’s framework code calls these functions when a
device runs the app.

Here’s a blow-by-blow description:

 » The Dart language calls the main function when the code in Listing 5-1
starts running.

The main function constructs an instance of App0501 and calls runApp to get
things going. Then . . .

 » The Flutter framework calls the App0501 instance’s build function.

The build function constructs an instance of MyHomePage. Then . . .

 » The Flutter framework calls the MyHomePage instance’s createState
function.

The createState function constructs an instance of _myHomePageState. Then . . .

 » The Flutter framework calls the _myHomePageState instance’s build
function.

The build function constructs a Scaffold containing a Center with a Text
widget and a FloatingActionButton widget.

To understand the Text widget’s constructor, look at a few lines of code:

String _pressedOrNot = "You haven't pressed the button.";

// Later in the listing ...

 child: Text(

 _pressedOrNot,

),

140 PART 2 Flutter: A Burd’s-Eye View

Initially, the value of the _pressedOrNot variable is "You haven't pressed the
button." So, when the app starts running, the Text widget obediently displays
“You haven’t pressed the button.”

But the floating action button’s code is a different story.

void _changeText() {

 setState(_getNewText);

}

void _getNewText() {

 _pressedOrNot = "You've pressed the button.";

}

// Later in the listing ...

 floatingActionButton: FloatingActionButton(

 onPressed: _changeText,

)

The constructor for the FloatingActionButton has an onPressed parameter, and
the value of that parameter is _changeText. What’s that all about?

The onPressed parameter tells Flutter “If and when the user presses the button,
have the device call the _changeText function.” In fact, a lot of stuff happens
when the user presses the floating action button. In the next few sections, you see
some of the details.

The big event
In GUI programming, an event is something that happens — something that may
require a response of some kind. The press of a button is an example of an event.
Other examples of events include an incoming phone call, the movement of a
device to a new GPS location, or the fact that one app needs information from
another app.

An event handler is a function that’s called when an event occurs. In Listing 5-1,
the _changeText function is a handler for the button’s onPressed event. In and of
itself, the code onPressed: _changeText doesn’t call the _changeText function.
Instead, that code registers the function _changeText as the official handler for float-
ing action button presses.

A call to the _changeText function would look like this: _changeText(). The call
would end with open and close parentheses. The code onPressed: _changeText,
with no parentheses, doesn’t call the _changeText function. That code tells the
device to remember that the name of the button’s onPressed event handler

CHAPTER 5 Making Things Happen 141

is _changeText. The device uses this information when, and only when, the user
presses the button.

Call me back
A phone rings four times. No one answers, but I hear a recorded announcement.

“This is Steve Hayes — executive editor at John Wiley and Sons. I’m sorry that I’m
not here to take your call. Please leave a message, and I’ll get back to you as soon
as I can.” <beep>

“Hello, Steve. This is Barry. The Flutter For Dummies manuscript is coming along
nicely, but it’s going to be several months late. Please call me so we can discuss a
new timetable. Don’t call me at my regular phone number. Instead, call me at my
hotel in Taha’a, French Polynesia. The number is +689 49 55 55 55. Bye!”

My phone number in Taha’a is a callback number. In the same way, the functions
_changeText and _getNewText in Listing 5-1 are callbacks. The line

onPressed: _changeText

tells the framework, “Call me back by calling my _changeText function.” And
the line

setState(_getNewText)

tells the framework “Call me back by calling my _getNewText function.”

Callbacks are useful
You may have written programs that have no callbacks. When your program starts
running, the system executes the first line of code, and keeps executing instruc-
tions until it reaches the last line of code. Everything runs as planned from start
to finish. (Well, in the best of circumstances, everything runs as planned.)

A callback adds an element of uncertainty to a program. When will an event take
place? When will a function be called? Where’s the code that calls the function?
Programs with callbacks are more difficult to understand than programs with no
callbacks.

Why do you need callbacks? Can you get away without having them? To help
answer this question, think about your common, everyday alarm clock. Before
going to sleep, you tell the alarm clock to send sound to your ears (a callback)
when the 9 A.M. event happens:

on9am: _rattleMyEarDrums,

142 PART 2 Flutter: A Burd’s-Eye View

If you didn’t rely on a callback, you’d have to keep track of the time all night on
your own. Like Bart and Lisa Simpson in the back seat of a car, you’d repeatedly
be asking, “Is it 9 A.M. yet? Is it 9 A.M. yet? Is it 9 A.M. yet?” You certainly
wouldn’t get a good night’s sleep. By the same token, if a Flutter program had to
check every hundred milliseconds for a recent press of the button, there wouldn’t
be much time for the program to get anything else done. That’s why you need
callbacks in Flutter programs.

Programming with callbacks is called event driven programming. If a program
doesn’t use callbacks and, instead, repeatedly checks for button presses and other
such things, that program is polling. In some situations, polling is unavoidable.
But when event driven programming is possible, it’s far superior to polling.

The outline of the code
One good way to look at code is to squint so that most of it’s blurry and unreada-
ble. The part that you can still read is the important part. Figure 5-5 contains my
mostly blurry version of some code in Listing 5-1.

According to Figure 5-5, this is the state management strategy in Listing 5-1:

1. Register _changeText as a callback function and wait for the user to press the
floating action button.

When, at last, the user presses the floating action button, . . .

FIGURE 5-5:
What to look for

in Listing 5-1.

CHAPTER 5 Making Things Happen 143

2. Have _changeText call setState, and pass _getNewText as the one-and-only
parameter in the setState function call.

The setState function calls _getNewText. When it does, . . .

3. The _getNewText function does whatever it has to do with some text.

The setState function also gets the Flutter framework to call build. When it
does, . . .

4. The stuff on the user’s screen is rebuilt.

The rebuilt screen displays the new text.

There’s nothing special about the state management strategy in Listing 5-1. You
can copy-and-paste this strategy into many other programs. Figure 5-6 shows
you the general idea.

According to Figure 5-6, these steps form a state management strategy:

1. Register a function as a callback function for an event and wait for that event to
take place.

In Figure 5-6, the name of the callback function is _handlerFunction. Like all
such functions, the _handlerFunction takes no parameters and returns void.

When, at last, the event takes place, . . .

2. Have the callback function call setState and pass another function as the
one-and-only parameter in the setState function call.

FIGURE 5-6:
What to look for
in many Flutter

programs.

144 PART 2 Flutter: A Burd’s-Eye View

In Figure 5-6, the name of this other function is _getNewInfo. Like all such
functions, the _getNewInfo function takes no parameters and returns void.

The setState function calls _getNewInfo (or whatever name you’ve used,
other than _getNewInfo). When it does, . . .

3. The _getNewInfo function changes something about the state of a widget.

The setState function also gets the Flutter framework to call build. When it does, . . .

4. The stuff on the user’s screen is rebuilt.

The rebuilt screen displays the widget in its new state.

And so it goes.

C’mon, what really happens?
When you run a program that has a graphical user interface, lots of stuff happens
behind the scenes. If you want, you can look at the framework’s code, but that
code can be quite complex. Besides, with any decent framework, you shouldn’t
have to read the framework’s own code. You should be able to call the frame-
work’s functions and constructors by knowing only the stuff in the framework’s
documentation.

I know for sure that, when Listing 5-1 runs, the setState call results in a call to
_getNewText. I know this because, when I comment out the setState call, the
text doesn’t change. But, I confess, I’m never completely comfortable with any
GUI framework’s magic. I want some sense of the framework’s inner mecha-
nisms, even if it’s only a rough outline. (I’m the same way with everything. I’m
not sure that the light goes out when I close the refrigerator door.)

WHAT TO DO WHEN YOU CALL setState
Try this experiment: Modify the _changeText function in Listing 5-1 this way:

void _changeText() {

 _getNewText();

 setState(_doNothing);

}

void _doNothing() {}

CHAPTER 5 Making Things Happen 145

To that end, I present Figure 5-7. The figure summarizes the description of event
handling in the previous few sections. It illustrates some of the action in
Listing 5-1, including a capsule summary of the code in the setState function.
Make no mistake: Figure 5-7 is an oversimplified view of what happens when
Flutter handles an event, but you might find the figure useful. I learned some
things just by drawing the figure.

Move the reference to _getNewText outside of the setState function. After this move,
the change of text happens before the call to setState, so setState doesn’t have to
call _getNewText. Of course, you still have to feed setState a function to call, so you
feed it the _doNothing function. That _doNothing function keeps setState busy
while it prepares to call the build method.

Does the modified code work? In this chapter’s example, it does. But, in general, a
change of this kind is a bad idea. Putting _getNewText inside the setState call
ensures that the assignment to _pressedOrNot and the call to build happen together.
In a more complicated program, the call to build might be delayed, and the results can
be strange.

Here’s another thing to consider: In Listing 5-1, the _getNewText function contains one
simple assignment statement. But imagine an app that does a long, time-consuming
calculation before displaying that calculation’s result. The update of the screen comes in
these three parts:

1. Do the calculation.

2. Change the text to be displayed so that it contains the calculation’s result.

3. Have the framework call build to refresh the display.

In that case, Flutter experts recommend the following division of labor:

• Do the long, time-consuming calculation before the call to setState.

• Do the change of text in a parameter when you call setState.

In other words, keep the code that does heavy lifting outside the setState call, but put
the code that changes the state’s values inside the setState call. That’s good advice.

146 PART 2 Flutter: A Burd’s-Eye View

Enhancing Your App
The code in Listing 5-1 is a simplified version of Android Studio’s starter app.
That’s nice, but maybe you want to know more about the starter app. To that end,
Listing 5-2 includes a few more features — features that enhance the look and
behavior of the simple Flutter demo program.

LISTING 5-2: Inching Toward Android Studio’s Starter App

import 'package:flutter/material.dart';

void main() => runApp(App0502());

class App0502 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 title: 'Flutter Demo',

 theme: ThemeData(

 primarySwatch: Colors.blue,

),

 home: MyHomePage(),

);

 }

}

FIGURE 5-7:
Flutter responds
to the press of a

button.

CHAPTER 5 Making Things Happen 147

class MyHomePage extends StatefulWidget {

 @override

 _MyHomePageState createState() => _MyHomePageState();

}

class _MyHomePageState extends State {

 int _counter = 0;

 void _incrementCounter() {

 setState(() {

 _counter++;

 });

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text("Listing 5-2"),

),

 body: Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Text(

 'You have pushed the button this many times:',

),

 Text(

 '$_counter',

 style: Theme.of(context).textTheme.display1,

),

],

),

),

 floatingActionButton: FloatingActionButton(

 onPressed: _incrementCounter,

 tooltip: 'Increment',

 child: Icon(Icons.add),

),

);

 }

}

Figures 5-8 and 5-9 show a run of the code in Listing 5-2. Figure 5-8 is what you
see when the app starts running, and Figure 5-9 is what you see after one click of
the floating action button. On subsequent clicks, you see the numbers 2, 3, 4, and
so on.

148 PART 2 Flutter: A Burd’s-Eye View

Whenever the user clicks the floating action button, the number on the screen
increases by 1. To make this happen, Listing 5-2 has three references to the vari-
able named _counter. Figure 5-10 illustrates the role of the _counter variable in
the running of the app.

The app’s Text widget displays the value of the _counter variable. So, when the
app starts running, the Text widget displays 0. When the user first presses the
floating action button and the Flutter framework calls setState, the _counter
variable becomes 1. So, the number 1 appears in the center of the app’s screen.
When the user presses the action button again, _counter becomes 2, and so on.

More parameters, please
Listing 5-2 introduces some tried-and-true constructor parameters. For example,
the MaterialApp constructor has title and theme parameters.

 » The title (in this example, Flutter Demo) appears only on Android
phones, and only when the user conjures up the Recent Apps list.

 » The value of theme is a ThemeData instance (thus, the use of the
ThemeData constructor in Listing 5-2).

FIGURE 5-8:
Before the first

button press.

FIGURE 5-9:
After the first
button press.

CHAPTER 5 Making Things Happen 149

In the world of app design, themes are vitally important. A theme is a bunch of
choices that apply to all parts of an app. For example, “Use the Roboto font for
all elements that aren’t related to accessibility” is a choice, and that choice can
be part of a theme.

The choice made in Listing 5-2 is “Use the blue color swatch throughout the
app.” A swatch is a bunch of similar colors — variations on a single color that
can be used throughout the app. The Colors.blue swatch contains ten
shades of blue, ranging from very light to very dark. (For a look at some pretty
swatches, see https://api.flutter.dev/flutter/material/Colors-
class.html.)

As an experiment, run the code in Listing 5-2, and then change Colors.blue
to Colors.deepOrange or Colors.blueGrey. When you save the change, all
elements in the app suddenly look different. That’s cool! You don’t have to
specify each widget’s color. The theme maintains a consistent look among all
widgets on the screen. For a big app with more than one page, the theme
maintains a consistent look from one page to another. This helps the user
understand the flow of elements in the app.

FIGURE 5-10:
Updating the
Text widget.

https://api.flutter.dev/flutter/material/Colors-class.html
https://api.flutter.dev/flutter/material/Colors-class.html

150 PART 2 Flutter: A Burd’s-Eye View

In Listing 5-2, a Text widget’s style parameter uses a roundabout way to get a
TextStyle instance. The code Theme.of(context).textTheme.display1 repre-
sents a TextStyle with large text size. Figure 5-11 shows you the options that are
available when you use Theme.of(context).textTheme.

A particular style may be too large for the screens on some phones. For example,
to create Figure 5-11, I ran an emulator with a Pixel 3 XL virtual device. But with a
plain old Pixel 3 in portrait mode, the word display4 is too large for the width of
the screen. The digit 4 appears on a line of its own.

As it is with the MaterialApp theme, the notion of a text theme is mighty handy.
When you rely on Flutter’s Theme.of(context).textTheme values, you provide a
uniform look for all the text elements in your app. You can also take comfort in the
fact that you’re using standard values — nice-looking values chosen by profes-
sional app designers.

Names like display1 in the Flutter API don’t correspond exactly to the names in
Google’s Material Design specifications, and I suspect that the options available in
Flutter’s API will change soon. For more on the Material Design specs, visit this
page:

https://material.io/design/typography/#

Finally, the floating action button in Listing 5-2 has tooltip and child
parameters.

FIGURE 5-11:
Flutter’s

TextTheme
styles.

https://material.io/design/typography/

CHAPTER 5 Making Things Happen 151

 » The tooltip string shows up when a user long-presses the button.

When you touch the screen and keep your finger in the same place for a
second or two, you’re long-pressing that part of the screen. The app in
Listing 5-2 displays the word Increment whenever the user long-presses
the floating action button.

 » For the button’s child, you construct an Icon instance.

The Icon instance displays a tiny image from Flutter’s Icons class; namely,
the Icons.add image. Sure enough, that image is a plus sign. (Refer to
Figures 5-8 and 5-9.)

For a list of images in Flutter’s Icons class, visit

https://api.flutter.dev/flutter/material/Icons-class.html

You can read more about parameters in Listing 5-2 and discover other useful
parameters by visiting Flutter’s documentation pages. For a brief introduction to
those pages, refer to Chapter 3.

The override annotation
The line @override, which appears several times in Listing 5-2, is called an anno-
tation. In Dart, an annotation begins with the at-sign (@).

A statement, such as _pressedOrNot = "You've pressed the button.", tells
Dart what to do during the run of a program. But an annotation is different. An
annotation tells Dart something about part of a Dart program. An @override
annotation reminds Dart that the class you’re extending has a matching
declaration.

For example, consider the following code in Listing 5-2:

class App0502 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

The line @override says “The StatelessWidget class, which this App0502 class
extends, has its own build(BuildContext context) method declaration.” And
indeed, according to this chapter’s earlier sidebar “I’m talking to you, stateless
widget — you must have a build method!” the StatelessWidget class in the Flut-
ter API code has a build(BuildContext context) method with no body. It all
works out nicely.

https://api.flutter.dev/flutter/material/Icons-class.html

152 PART 2 Flutter: A Burd’s-Eye View

Listing 5-2 has @override annotations, but Listing 5-1 doesn’t. Look at that! You
can get away without having @override annotations! So, why bother having
them?

The answer is “safety.” The more information you give Dart about your code, the
less likely it is that Dart will let you do something wrong. If you make a mistake
and declare your build method incorrectly, Dart might warn you. “Hey! You
said that you intend to override the build method that’s declared in the
StatelessWidget class, but your new build method doesn’t do that correctly. Fix
it, my friend!”

You can make Dart warn you about methods that don’t match with their
@override annotations. For details, visit https://dart.dev/guides/language/
analysis-options.

What does <Widget> mean?
In Listing 5-2, the column’s list of children starts with some extra stuff:

children: <Widget>[

 Text(

 'You have pushed the button this many times:',

),

 Text(

 '$_counter',

 style: Theme.of(context).textTheme.display1,

),

]

The <Widget> word, with its surrounding angle brackets, is called a generic, and a
list that starts with a generic is called a parameterized list. In Listing 5-2, the
<Widget> generic tells Dart that each of the list’s values is, in one way or another,
a Widget. According to Chapter 3, every instance of the Text class is an instance of
the Widget class, so the <Widget> generic isn’t lying.

In many situations, the use of generics is a safety issue. Consider the following
two lines of code:

var words1 = ["Hello", "Goodbye", 1108]; // No error message

var words2 = <String>["Hello", "Goodbye", 1108]; // Error message!

You may plan to fill your list with String values, but when you declare words1 and
words2, you accidentally include the int value 1108. The words1 list isn’t param-
eterized, so Dart doesn’t catch the error. But the words2 list is parameterized with

https://dart.dev/guides/language/analysis-options
https://dart.dev/guides/language/analysis-options

CHAPTER 5 Making Things Happen 153

the <String> generic, so Dart catches the mistake and refuses to run the code. An
error message says The element type 'int' can't be assigned to the list
type 'String'. To this, you should respond, “Good catch, Dart. Thank you very
much.”

Anonymous functions
In the Dart programming language, some functions don’t have names. Take a look
at the following code:

void _incrementCounter() {

 setState(_addOne);

}

void _addOne() {

 _counter++;

}

Imagine that your app contains no other references to _addOne. In that case,
you’ve made up the name _addOne and used the name only once in your app. Why
bother giving something a name if you’ll be using the name only once? “Let’s give
this ear of corn the name ’sinkadillie’. And now, let’s eat sinkadillie.”

To create a function with no name, you remove the name. If the function’s header
has a return type, you remove that too. So, for example,

void _addOne() {

 _counter++;

}

becomes

 () {

 _counter++;

}

When you make this be the parameter for the setState function call, it looks like
this:

void _incrementCounter() {

 setState(() {

 _counter++;

 });

}

154 PART 2 Flutter: A Burd’s-Eye View

CONFRONTING THE GREAT VOID
Take a nostalgic look at some code from the beginning of this chapter. It’s in Listing 5-1.

void _changeText() {
 setState(_getNewText);
}

And later, in Listing 5-1:

floatingActionButton: FloatingActionButton(
 onPressed: _changeText,
))

The button press triggers a call to _changeText, and the _changeText function calls
setState(_getNewText). Why not eliminate the middleman and have onPressed
point directly to setState(_getNewText)? The resulting code would look something
like this:

 floatingActionButton: FloatingActionButton(
 onPressed: setState(_getNewText), // This doesn't

work.
))

When you write this code, an error message says, “The expression here has a type of
’void’ and, therefore, can’t be used.” Flutter wants the onPressed parameter to be a
function, but the expression setState(_getNewText) isn’t a function. It’s a call to
setState, and a call to setState returns void. (See this sidebar’s first figure.)

CHAPTER 5 Making Things Happen 155

That’s what you have in Listing 5-2.

A function with no name is called an anonymous function. When an anonymous
function contains more than one statement, those statements must be enclosed in
curly braces. But if the function contains only one statement, you can use fat

A VoidCallback function is a function that takes no arguments and has the return
type void. A common reason for creating a VoidCallback function is . . . well . . . to call
a function back. Flutter wants the onPressed parameter to be a VoidCallback func-
tion, and the _changeText function fulfills the criteria for being a VoidCallback func-
tion. So, in Listing 5-1, the code onPressed: _changeText is fine and dandy.

But setState(_getNewText) isn’t a VoidCallback. No, setState(_getNewText) is
a plain old void. So the code onPressed: setState(_getNewText) falls flat on its
face.

How can you fix the problem? You can revert to the original Listing 5-1 code, or you can
save the day by using yet another anonymous function. All you do is add () => before
the reference to setState, like so:

floatingActionButton: FloatingActionButton(
 onPressed: () => setState(_getNewText),
)

This sidebar’s second figure describes the miraculous change that takes place when you
add a few characters to your code. What was formerly a call to setState becomes a
VoidCallback, and everyone is happy. Most importantly, Dart is happy. Your program
runs correctly.

156 PART 2 Flutter: A Burd’s-Eye View

arrow notation. For example, in Listing 5-2, the following code would work just
fine:

void _incrementCounter() {

 setState(() => _counter++);

}

What belongs where
In Listing 5-2, the _counter variable’s declaration is inside the _MyHomePage
State class but outside of that class’s _incrementCounter and build methods. A
variable of this kind is called an instance variable or a field. (It depends on whom
you ask.)

Why did I declare the _counter variable in that particular place? Why not put the
declaration somewhere else in the code? I could write a whole chapter to answer
the question in detail, but you don’t want to read all that, and I certainly don’t
want to write it. Instead, I suggest some experiments for you to try:

1. Starting with the code in Listing 5-2, add a reference to _counter inside
the MyHomePage class. (See Figure 5-12.)

FIGURE 5-12:
References to the
boldface _counter
variable are valid

only inside the
grey box.

CHAPTER 5 Making Things Happen 157

Android Studio marks this new reference with a jagged red underline. The
underline shames you into admitting that this additional reference was a bad
idea. You’ve declared the _counter variable in the _MyHomePageState class,
but you’re trying to reference the variable in a different class; namely, the
MyHomePage class.

Whenever you declare a variable inside of a class, that variable is local to the
class. You can’t refer to that variable outside the class. In particular, you can’t
refer to that variable inside a different class.

Don’t you hate it when authors contradict themselves? There is a way to refer
to a variable outside of its class’s code. I cover it in detail in Chapter 7.

2. Remove the reference to _counter that you added in Step 1. Then move
the declaration of _counter to the end of the _MyHomePageState class.
(See Figure 5-13.)

Near the start of the _MyHomePageState class, you do _counter++. But you
don’t declare the _counter variable until the end of the _MyHomePageState
class. Nevertheless, the program runs correctly. The moral of this story is, you
don’t have to declare a variable before you refer to that variable. Nice!

FIGURE 5-13:
References to the
boldface _counter
variable are valid

inside the
grey box.

158 PART 2 Flutter: A Burd’s-Eye View

3. Move the declaration of _counter so that it’s inside the body of the
_incrementCounter function. (See Figure 5-14.)

When you do, you see an error marker on the occurrence of _counter in
the build function. You’ve declared the _counter variable inside the
_incrementCounter function, but you’re trying to reference that variable
in a different function; namely, the build function.

Whenever you declare a variable inside a function, that variable is local to the
function. You can’t refer to that variable outside the function. In particular, you
can’t refer to that variable inside a different function.

4. Keep the declaration of _counter inside the _incrementCounter function,
and add another _counter declaration inside the build function.
Initialize the build function’s _counter variable to 99. (See Figure 5-15.)

When you do this, the error message from Step 3 goes away. So the code is
correct. Right?

No! The code isn’t correct. When you run the code, the number in the center of
the device is 99, and its value never changes. Pressing the floating action
button has no effect. What’s going on?

FIGURE 5-14:
References to the
boldface _counter
variable are valid

only inside the
grey box.

CHAPTER 5 Making Things Happen 159

With this revised code, you have two different _counter variables — one that’s
local to the _incrementCounter function and another that’s local to the build
function. The statement _counter++ adds 1 to one of these _counter
variables, but it doesn’t add 1 to the other _counter variable. It’s like having
two people named Barry Burd — one living in New Jersey and the other in
California. If you add a dollar to one of their bank accounts, the other person
doesn’t automatically get an additional dollar.

5. Have only one _counter declaration. Put it just before the start of the
_MyHomePageState class. (See Figure 5-16.)

After making this change, the editor doesn’t display any error markers. Maybe
you click the Run icon, anticipating bad news. Either the app doesn’t run, or it
runs and behaves badly. But, lo and behold, the app runs correctly!

A declaration that’s not inside a class or a function is called a top-level declara-
tion, and a top-level name can be referenced anywhere in your program. (Well,
almost anywhere. There are some limits. In particular, see the later section
“Names that start with an underscore.”)

6. Have two _counter variable declarations — one at the top level, and
another inside the _MyHomePageState class. Initialize the top-level
_counter to 2873 and the latter _counter to 0. (See Figure 5-17.)

Before testing this version of the code, end the run of any other version. Start
this version of the code afresh.

FIGURE 5-15:
You can refer to

one _counter
variable only in
the upper grey

region; you can
refer to the other
_counter variable
only in the lower

grey region.

160 PART 2 Flutter: A Burd’s-Eye View

When this modified app starts running, the number in the center of the screen
is 0, not 2873. The top-level declaration of _counter has no effect because it’s
shadowed by the declaration in the _MyHomePageState class.

The _counter declaration in the _MyHomePageState class applies to the code
inside the _MyHomePageState class. The top-level _counter declaration
applies everywhere else in this file’s code.

This section is all about classes, methods, and variables. The section describes an
instance variable as a variable whose declaration is inside of a class, but not inside
any of the class’s methods. That’s almost a correct description of an instance vari-
able. To be precise, an instance variable’s declaration is one that doesn’t contain
the word static @@ a word that you encounter in Chapters 7 and 8. Until you
read Chapters 7 and 8, don’t worry about it.

Names that start with an underscore
Someday soon, when you’re a big-shot Flutter developer, you’ll create a large,
complicated app that involves several different .dart files. A file’s import
 statements will make code from one file available for use in another file. But how
does this work? Are there any restrictions? Figure 5-18 says it all.

FIGURE 5-16:
Use a top-level

name anywhere
in your .dart file.

CHAPTER 5 Making Things Happen 161

A variable or function whose name begins with an underscore (_) is local to the file
in which it’s declared and can’t be referenced in other .dart files. All other names
can be imported and shared among all the files in an application. In Figure 5-18,
the _number variable can be used only in one_file.dart. But, because of an
import statement, the amount variable is available in both one_file.dart and
another_file.dart.

If you’re used to writing code in languages like Java, forget about access modifiers
such as public and private. The Dart language doesn’t have those things.

FIGURE 5-17:
The Shadow

knows!

FIGURE 5-18:
“I got plenty

numbers left.”
(Google it.)

162 PART 2 Flutter: A Burd’s-Eye View

Whew!
This is a heavy-duty chapter. If you’ve spent the evening reading every word of it,
you’re probably a bit tired. But that’s okay. Take a breather. Make yourself a cup
of tea. Sit in your easy chair, and relax with a performance of The Well-Tempered
Clavier (Praeludium 1, BWV 846).

Chapter 6 continues the theme of widgets responding to user actions. In that
chapter, you slide sliders, switch switches, drop dropdown lists, and do other fun
things. Go for it (but don’t forget to unwind a bit first)!

TOP-LEVEL NAMES AREN’T ALWAYS BEST
In Step 5 of this section’s instructions, you declare _counter at the top level, and the
program runs without a hitch. If it’s okay to declare _counter at the top level, why don’t
you do that in Listing 5-2? Well, you should expect more from a program than that it
simply runs correctly. In addition to running correctly, a good program is sturdy. The
program doesn’t break when someone changes a bit of code.

In Listing 5-2, the only use of the _counter variable is inside the _MyHomePageState
class. A programmer who’s working on the _MyHomePageState class’s code should be
able to mess with the _counter variable. But other programmers, those who work on
other parts of the app, have no need to reference the _counter variable. By keeping
access to _counter inside the _MyHomePageState class, you’re protecting the variable
from accidental misuse by programmers who don’t need to reference it. (Object-
oriented programmers call this encapsulation.)

The program in Listing 5-2 isn’t a large, industrial-strength app. So, in that program, any-
one who writes code outside the _MyHomePageState class is likely to know all about
the code inside the _MyHomePageState class. But for real-life applications in which
teams of programmers work on different parts of the code, protecting one part of the
code from the other parts is important. No, it’s not important. It’s absolutely essential.

Remember: In any program that you write, limit access to variable names and other
names as much as you can. Don’t declare them at the top level if you don’t have to. It’s
safer that way.

CHAPTER 6 Laying Things Out 163

Chapter 6
Laying Things Out

According to folklore, the size of a fish tank determines the sizes of the
goldfish in the tank. A goldfish in a small tank can be only one or two
inches long, but the same goldfish in a larger tank grows to be ten inches

long. It’s as if a fish’s cells sense the boundaries of the fish’s living space, and the
cells stop growing when they feel that doing so would be impractical.

Several online resources say that the tank size phenomenon is a myth, but that
doesn’t stop me from comparing it with Flutter layouts. (Nothing stops me from
making comparisons with Flutter layouts.)

In a Flutter layout, widgets are nested inside of other widgets. The outer widget
sends a constraint to the inner widget:

“You can be as wide as you want, as long as your width is between 0 and 400 density-
independent pixels.”

Later on, the inner widget sends its exact height to the outer widget:

“I’m 200 density-independent pixels wide.”

The outer widget uses that information to position the inner widget:

“Because you’re 200 density-independent pixels wide, I’ll position your left edge
100 pixels from my left edge.”

IN THIS CHAPTER

 » Putting widgets where you want
them

 » Dealing with common layout
problems

 » Working with various screen sizes

164 PART 2 Flutter: A Burd’s-Eye View

Of course, this is a simplified version of the true scenario. But it’s a useful starting
point for understanding the way Flutter layouts work. Most importantly, this
outer/inner communication works its way all along an app’s widget chain.

Imagine having four widgets. Starting from the outermost widget (such as the
Material widget), call these widgets “great-grandmother”, “grandmother”,
“mother”, and “Elsie.” Here’s how Flutter decides how to draw these widgets:

1. Great-grandmother tells grandmother how big she (grandmother) can be.

2. Grandmother tells mother how big she (mother) can be.

3. Mother tells Elsie how big she (Elsie) can be.

4. Elsie decides how big she is and tells mother.

5. Mother determines Elsie’s position, decides how big she (mother) is, and then
tells grandmother.

6. Grandmother determines mother’s position, decides how big she (grand-
mother) is, and then tells great-grandmother.

7. Great-grandmother determines mother’s position and then decides how big
she (great-grandmother is).

Yes, the details are fuzzy. But it helps to keep this pattern in mind as you read
about Flutter layouts.

The Big Picture
Listings 6-1 and 6-2 introduce a handful of Flutter layout concepts, and Figure 6-1
shows what you see when you run these listings together.

LISTING 6-1: Reuse This Code

// App06Main.dart

import 'package:flutter/material.dart';

import 'App0602.dart'; // Change this line to App0605, App0606, and so on.

void main() => runApp(App06Main());

CHAPTER 6 Laying Things Out 165

class App06Main extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: _MyHomePage(),

);

 }

}

class _MyHomePage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Material(

 color: Colors.grey[400],

 child: Padding(

 padding: const EdgeInsets.symmetric(

 horizontal: 20.0,

),

 child: buildColumn(context),

),

);

 }

}

Widget buildTitleText() {

 return Text(

 "My Pet Shop",

 textScaleFactor: 3.0,

 textAlign: TextAlign.center,

);

}

Widget buildRoundedBox(

 String label, {

 double height = 88.0,

}) {

 return Container(

 height: height,

 width: 88.0,

 alignment: Alignment(0.0, 0.0),

 decoration: BoxDecoration(

 color: Colors.white,

 border: Border.all(color: Colors.black),

 borderRadius: BorderRadius.all(

 Radius.circular(10.0),

),

),

166 PART 2 Flutter: A Burd’s-Eye View

 child: Text(

 label,

 textAlign: TextAlign.center,

),

);

}

LISTING 6-2: A Very Simple Layout

// App0602.dart

import 'package:flutter/material.dart';

import 'App06Main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 buildRoundedBox(

 "Sale Today",

 height: 150.0,

),

],

);

}

The code in Listing 6-1 refers to code in Listing 6-2, and vice versa. As long as
these two files are in the same Android Studio project, running the app in
 Listing 6-1 automatically uses code from Listing 6-2. This works because of the
import declarations near the top of each of the listings. For info about import
declarations, refer to Chapter 4.

FIGURE 6-1:
A sale at

My Pet Shop.

CHAPTER 6 Laying Things Out 167

Listings 6-1 and 6-2 illustrate some coding concepts along with a bunch of useful
Flutter features. I cover these in the next several sections.

Creating bite-size pieces of code
In Listings 6-1 and 6-2, I create some of the widgets by making method calls.

child: buildColumn(context),

// ... And elsewhere, ...

Column(

 // ... Blah, blah, ...

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 buildRoundedBox(

 // ... Etc.

Each method call takes the place of a longer piece of code — one that describes a
particular widget in detail. I create these methods because doing so makes the
code easier to read and digest. With a glance at Listing 6-2, you can tell that the
Column consists of title text, a sized box, and a rounded box. You don’t know any
of the details until you look at the buildTitleText and buildRoundedBox method
declarations in Listing 6-1, but that’s okay. With the code divided into methods
this way, you don’t lose sight of the app’s overall outline.

In the design of good software, planning is essential. But sometimes your plans
change. Imagine this scenario: You start writing some code that you believe will
be fairly simple. After several minutes (or, sometimes, several hours), you realize
that the code has become large and unwieldy. So you decide to divide the code into
methods. To do this, you can take advantage of one of Android Studio’s handy
refactoring features. Here’s how it works:

1. Start with a constructor call that you want to replace with your own
method call.

For example, you want to replace the Text constructor call in the following
code snippet:

children: <Widget>[

 Text(

 "My Pet Shop",

168 PART 2 Flutter: A Burd’s-Eye View

 textScaleFactor: 3.0,

 textAlign: TextAlign.center,

),

 SizedBox(height: 20.0),

2. Place the mouse cursor on the constructor call’s name.

For the snippet in Step 1, click on the word Text.

3. On Android Studio’s main menu, select Refactor ➪  Extract ➪  Method.

As a result, Android Studio displays the Extract Method dialog box.

4. In the Extract Method dialog box, type a name for your new method.

For a constructor named Text, Android Studio suggests the method name
buildText. But, to create Listings 6-1 and 6-2, I made up the name
buildTitleText.

5. In the Extract Method dialog box, press Refactor.

As if by magic, Android Studio adds a new method declaration to your code
and replaces the original widget constructor with a call to the method.

The new method’s return type is whatever kind of widget your code is trying to
construct. For example, starting with the code in Step 1, the method’s first two
lines might look like this:

Text buildTitleText() {

 return Text(

6. Do yourself a favor and change the type in the method’s header to Widget.

Widget buildTitleText() {

 return Text(

Every instance of the Text class is an instance of the Widget class, so this
change doesn’t do any harm. In addition, the change adds a tiny bit of flexibility
that may eventually save you some mental energy. Maybe later, you decide to
surround the method’s Text widget with a Center widget.

// Baby, you're no good . . .

Text buildTitleText() {

 return Center(

 child: Text(

CHAPTER 6 Laying Things Out 169

After you make this change, your code is messed up because the header’s
return type is inaccurate. Yes, every instance of the Text class is an instance of
the Widget class. But, no, an instance of the Center class isn’t an instance of
the Text class. Your method returns an instance of Center, but the method’s
header expects the method to return an instance of Text. Don’t you wish you
had changed the first word in the header to Widget? Do it sooner rather than
later. That way, you won’t be distracted when you’re concentrating on making
changes in the method’s body.

Creating a parameter list
In Listing 6-1, the header of the buildRoundedBox declaration looks like this:

Widget buildRoundedBox(

 String label, {

 double height = 88.0,

})

The method has two parameters: label and height.

 » The label parameter is a positional parameter.

It’s a positional parameter because it’s not surrounded by curly braces. In a
header, all the positional parameters must come before any of the named
parameters.

 » The height parameter is a named parameter.

It’s a named parameter because it’s surrounded by curly braces.

In a call to this method, you can omit the height parameter. When you do,
the parameter’s default value is 88.0.

With these facts in mind, the following calls to buildRoundedBox are both valid:

buildRoundedBox(// Flutter style guidelines recommend having a

 "Flutter", // trailing comma at the end of every list.

 height: 1000.0, // It's the comma after the height parameter.

)

buildRoundedBox("Flutter") // In the method header, the height parameter

 // has the default value 88.0.

170 PART 2 Flutter: A Burd’s-Eye View

Here are some calls that aren’t valid:

buildRoundedBox(// In a function call, all positional parameters

 height: 1000.0, // must come before any named parameters.

 "Flutter",

)

buildRoundedBox(

 label: "Flutter", // The label parameter is a positional parameter,

 height: 1000.0, // not a named parameter.

)

buildRoundedBox(// The height parameter is a named parameter,

 "Flutter", // not a positional parameter.

 1000.0,

)

buildRoundedBox() // You can't omit the label parameter, because

 // the label parameter has no default value.

For info about positional parameters and named parameters, refer to Chapter 3.
For the basics on declaring functions, refer to Chapter 4.

In Listing 6-2, the declaration of buildColumn has a BuildContext parameter.
You may ask, “What good is this BuildContext parameter? The body of the
buildColumn method makes no reference to this parameter’s value.” For an
answer, see the last section of this chapter.

Living color
Chapter 5 introduces Flutter’s Colors class with basic things like Colors.grey
and Colors.black. In fact, the Colors class provides 12 different shades of grey,
7 shades of black, 28 shades of blue, and a similar variety for other colors. For
example, the shades of grey are named Colors.grey[50] (the lightest), Colors.
grey[100], Colors.grey[200], Colors.grey[300], and so on, up to Colors.
grey[900] (the darkest). You can’t put arbitrary numbers inside the brackets, so
things like Colors.grey[101] and Colors.grey[350] simply don’t exist. But one
shade — Colors.grey[500] — is special. You can abbreviate Colors.grey[500]
by writing Colors.grey without having a number in brackets.

If you want extra-fine control over the look of your app, you can use Flutter’s
Color.fromRGBO constructor. (That’s Color singular, as opposed to Colors plu-
ral.) The letters RGBO stand for Red, Green, Blue, and Opacity. In the constructor,
the values of Red, Green, and Blue range from 0 to 255, and the value of Opacity

CHAPTER 6 Laying Things Out 171

ranges from 0.0 to 1.0. For example, Color.fromRGBO(255, 0, 0, 1.0) stands for
completely opaque Red. Table 6-1 has some other examples:

To find out about other options for describing colors, visit Flutter’s Color class
documentation page:

https://api.flutter.dev/flutter/dart-ui/Color-class.html

Adding padding
Flutter’s Padding widget puts some empty space between its outermost edge and
its child. In Listing 6-1, the code

Padding(

 padding: const EdgeInsets.symmetric(

 horizontal: 20.0,

),

 child: buildColumn(context),

surrounds the buildColumn call with 20.0 units of empty space on the left and the
right. (Refer to Figure 6-1.) With no padding, the column would touch the left and
right edges of the user’s screen, and so would the white Sale Today box inside the
column. That wouldn’t look nice.

TABLE 6-1	 Sample Parameters for the Color.fromRGBO Constructor
Parameter List What the Parameter List Means

(0, 255, 0, 1.0) Green

(0, 0, 255, 1.0) Blue

(255, 0, 255, 1.0) Purple (equal amounts of Red and Blue)

(0, 0, 0, 1.0) Black

(255, 255, 255, 1.0) White

(190, 190, 190, 1.0) Grey (approximately 75% whiteness)

(255, 0, 0, 0.5) 50% transparent Red

(255, 0, 0, 0.0) Nothing (complete transparency, no matter what the Red,
Green, and Blue values are)

https://api.flutter.dev/flutter/dart-ui/Color-class.html

172 PART 2 Flutter: A Burd’s-Eye View

In Flutter, a line such as horizontal: 20.0 stands for 20.0 density-independent
pixels. A density-independent pixel (dp) has no fixed size. Instead, the size of a
density-independent pixel depends on the user’s hardware. In particular, every
inch of the user’s screen is roughly 96 dp long. That makes every centimeter
approximately 38 pixels long. According to Flutter’s official documentation, the
rule about having 96 dp per inch “may be inaccurate, sometimes by a significant
margin.” Run this section’s app on your own phone, and you’ll see what they
mean.

In Flutter, you describe padding of any kind by constructing an EdgeInsets object.
The EdgeInsets.symmetric constructor in Listing 6-1 has one parameter — a
horizontal parameter. In addition to the horizontal parameter, an EdgeInsets.
symmetric constructor can have a vertical parameter, like so:

Padding(

 padding: const EdgeInsets.symmetric(

 horizontal: 20.0,

 vertical: 10.0,

)

A vertical parameter adds empty space on the top and bottom of the child widget.

Table 6-2 lists some alternatives to the EdgeInsets.symmetric constructor.

TABLE 6-2	 EdgeInsets Constructor Calls
Constructor Call How Much Blank Space Surrounds the Child Widget

EdgeInsets.all(20.0) 20.0 dp on all four sides

EdgeInsets.only(
left: 15.0,
top: 10.0,
)

15.0 dp on the left
10.0 dp on top

EdgeInsets.only(
top: 10.0,
right: 15.0,
bottom: 15.0,
)

10.0 dp on top
15.0 dp on the right
15.0 dp on the bottom

EdgeInsets.fromLTRB(
5.0,
10.0,
3.0,
2.0,
)

5.0 dp on the left
10.0 dp on top
3.0 dp on the right
2.0 dp on the bottom

CHAPTER 6 Laying Things Out 173

When I started working on the code in Listing 6-1, the listing had no Padding
widget. The call to buildColumn was a direct descendant of the Material widget:

return Material(

 color: Colors.grey[400],

 child: buildColumn(context),

);

I used the Alt+Enter trick from Chapter 3 to surround the buildColumn call with
the new Padding widget. When I did this, Android Studio also added its own const
EdgeInsets code. I tinkered with Android Studio’s code a bit, but I didn’t remove
the code’s const keyword. For the inside story on Dart’s const keyword, see
Chapter 7.

The Padding widget adds blank space inside of itself. To add space outside of a
widget, see the section “Your friend, the Container widget,” later in this chapter.

Your humble servant, the Column widget
Think about it: Without Flutter’s Column widget, you wouldn’t be able to position
one widget above another. Everything on a user’s screen would be squished into
one place. The screen would be unreadable, and no one would use Flutter. You
wouldn’t be reading this book. I wouldn’t earn any royalties. What an awful world
it would be!

The Column widget in Listing 6-2 has two properties related to alignment:

Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 // ... And so on.

The mainAxisAlignment property comes up in Chapter 3. It describes the
way children are positioned from the top to the bottom of the column. With
MainAxisAlignment.center, children gather about halfway down from the top of
the screen. (Refer to Figure 6-1.) In contrast, the crossAxisAlignment describes
how children are situated from side to side within the column. (See Figure 6-2.)

174 PART 2 Flutter: A Burd’s-Eye View

A column’s crossAxisAlignment can make a big difference in the way the
 column’s children appear on the screen. For example, if you comment out the
cross AxisAlignment line in Listing 6-2, you see the screen shown in Figure 6-3.

In Listing 6-2, the CrossAxisAlignment.stretch value tells the column that its
children should fill the entire cross axis. This means that, regardless of the chil-
dren’s explicit width values, children shrink or widen so that they run across the
entire column. If you don’t believe me, try the following experiment:

1. Run the code in Listing 6-1.

Use the iPhone simulator, the Android emulator, or a real physical phone. Start
with the device in portrait mode, as in Figure 6-1.

FIGURE 6-2:
Every Flutter

book contains a
drawing like this.

FIGURE 6-3:
When you don’t
stretch the Sale

Today box.

CHAPTER 6 Laying Things Out 175

2. Turn the device sideways so that the device is in landscape mode.

If you’re running a virtual device, press Command-right arrow (on a Mac) or
Ctrl+right arrow (on Windows). If you’re running a physical device, turn the
darn thing sideways.

3. Observe the change in the size of the Sale Today box.

No matter how wide the screen is, the Sale Today box stretches almost all the
way across. The width: 88.0 setting in Listing 6-1 has no effect.

You can read more about axis alignments in the sections that follow.

When you turn a device sideways, the device might not switch between portrait
and landscape modes. This is true for both physical devices (real phones and tab-
lets) and virtual devices (emulators and simulators). If your device’s orientation
refuses to change, try this:

 » On an Android device, in Settings ➪  Display, turn on Auto Rotate Screen.

 » On an iPhone or iPad, swipe up from the bottom of the screen, and press the
button that displays a lock and a circular arrow.

With an emulator or a simulator, you can try turning the computer monitor side-
ways, but that probably won’t work.

The SizedBox widget
If I planned to live on a desert island and I could bring only seven widgets with
me, those seven widgets would be Column, Row, SizedBox, Container, Expanded,
Spacer, and Padding. (If I could bring only two kinds of food with me, the two
kinds of food would be cheeseburgers and chocolate.)

A SizedBox is a rectangle that developers use for taking up space. A SizedBox has
a width, a height, and possibly a child. Very often, only the width or the height
matters.

Listing 6-2 has a SizedBox of height 20.0 sitting between the title text and the
rounded box. Without the SizedBox, there would be no space between the title text
and the rounded box.

A Spacer is like a SizedBox, except that a Spacer uses flex instead of explicit
height and width parameters. For a look at Flutter’s flex property, see the sec-
tion “Flexing some muscles,” later in this chapter.

176 PART 2 Flutter: A Burd’s-Eye View

Your friend, the Container widget
In Listing 6-2, the box displaying the words Sale Today uses a Container widget.
A Container is a widget that contains something. (That’s not surprising.) While
the widget is containing something, it has properties like height, width,
alignment, decoration, padding, and margin.

The height and width parameters
You might be curious about a particular line in Listing 6-1:

 return Container(

 height: height,

What could height: height possibly mean? The height is what it is? The height
is the height is the height?

To find out what’s going on, place the cursor on the second occurrence of the word
height — the one after the colon. When you do, Android Studio highlights that
occurrence along with one other. (See Figure 6-4.)

Noticeably absent is any highlight on the height that’s immediately before the
colon. Listing 6-1 has two variables named height. One is a parameter of build-
RoundedBox; the other is a parameter of the Container constructor. The line

height: height,

makes the Container parameter have the same value as the buildRoundedBox
parameter. (The buildRoundedBox parameter gets its value from the call in
Listing 6-2.)

In a Container constructor call, the height and width parameters are
 suggestions — not absolute sizes. For details, refer to the section “Your humble
servant, the Column widget,” earlier in this chapter. And, while you’re at it, check
out the section “Using the Expanded Widget,” later in this chapter.

FIGURE 6-4:
Selecting a name

in Android
Studio’s editor.

CHAPTER 6 Laying Things Out 177

The alignment parameter
To align a child within a Container widget, you don’t use mainAxisAlignment or
crossAxisAlignment. Instead, you use the plain old alignment parameter. In
Listing 6-1, the line

alignment: Alignment(0.0, 0.0)

tells Flutter to put the child of the container in the center of the container.
 Figure 6-5 illustrates the secrets behind the Alignment class.

The decoration parameter
As the name suggests, decoration is something that livens up an otherwise
dull-looking widget. In Listing 6-1, the BoxDecoration constructor has three
parameters of its own:

 » color: The widget’s fill color.

This property fills the Sale Today box in Figure 6-1 with white.

Both the Container and BoxDecoration constructors have color parameters.
When you put a BoxDecoration inside of a Container, have a color parame-
ter for the BoxDecoration, not the Container. If you have both, your program
may crash.

FIGURE 6-5:
Using a

 container’s
alignment

parameter.

178 PART 2 Flutter: A Burd’s-Eye View

 » border: The outline surrounding the widget.

Listing 6-1 uses the Border.all constructor, which describes a border on all
four sides of the Sale Today box.

To create a border whose sides aren’t all the same, use Flutter’s Border
constructor (without the .all part). Here’s an example:

Border(

 top: BorderSide(width: 5.0, color: Colors.black),

 bottom: BorderSide(width: 5.0, color: Colors.black),

 left: BorderSide(width: 3.0, color: Colors.blue),

 right: BorderSide(width: 3.0, color: Colors.blue),

)

 » borderRadius: The amount of curvature of the widget’s border.

Figure 6-6 shows what happens when you use different values for the
borderRadius parameter.

The padding and margin parameters
The Container constructor call in Listing 6-1 has no padding or margin
parameters, but padding and margin can be useful in other settings. To find out
how padding and margin work, look first at Listing 6-3.

LISTING	6-3:	 Without Padding or Margin

// App0603.dart

import 'package:flutter/material.dart';

void main() => runApp(App0602());

FIGURE 6-6:
Experiments with

a border radius.

CHAPTER 6 Laying Things Out 179

class App0602 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Material(

 color: Colors.grey[50],

 child: Container(

 color: Colors.grey[500],

 child: Container(

 color: Colors.grey[700],

),

),

),

);

 }

}

Listing 6-3 has a container within another container that’s within a Material
widget. The inner container is grey[700], which is fairly dark grey. The outer
container is a lighter grey, and the Material widget background is grey[50],
which is almost white.

I told my editor that I wanted to use up page space with a figure devoted to a run
of Listing 6-3, but he said no. I wonder why! Who could object to a figure that’s
nothing but a dark grey rectangle?

When you run the app in Listing 6-3, the inner container completely covers the
outer container, which, in turn, completely covers the Material widget. Each of
these widgets expands to fill its parent, so each of the three widgets takes up the
entire screen. The only widget you can see is the innermost, dark grey container.
What a waste!

To remedy this situation, Listing 6-4 uses both padding and margin. Figure 6-7
shows you the result.

LISTING	6-4:	 With Padding and Margin

// App0604.dart

import 'package:flutter/material.dart';

void main() => runApp(App0603());

class App0603 extends StatelessWidget {

180 PART 2 Flutter: A Burd’s-Eye View

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: SafeArea(

 child: Material(

 color: Colors.grey[50],

 child: Container(

 color: Colors.grey[500],

 padding: EdgeInsets.all(80.0),

 margin: EdgeInsets.all(40.0),

 child: Container(

 color: Colors.grey[700],

),

),

),

),

);

 }

}

Listing 6-4 is all about the middle container — the one whose color is a medium
shade of grey. I’ve marked up Figure 6-7 to make the result crystal-clear. The
general rules are as follows:

 » Padding is the space between a widget’s outermost edges and the
widget’s child.

In Figure 6-7, the medium grey stuff is padding.

FIGURE 6-7:
Padding versus

margin.

CHAPTER 6 Laying Things Out 181

 » A margin is the space between a widget’s outermost edges and the
widget’s parent.

In Figure 6-7, the white (or nearly white) stuff is the margin.

From what I observe, Flutter developers use padding a lot but use margin
sparingly.

You can add padding to almost any widget without putting that widget inside a
Container. To do so, simply put the widget inside of a Padding widget. For an
example, look for the Padding widget in Listing 6-1.

When you think about a mobile device, you probably imagine a rectangular screen.
Does this mean that an entire rectangle is available for use by your app? It doesn’t.
The top of the rectangle may have a notch. The corners of the rectangle may be
rounded instead of square. The operating system (iOS or Android) may consume
parts of the screen with an Action Bar or other junk.

To avoid items in this obstacle course, Flutter has a SafeArea widget. The SafeArea
is the part of the screen that’s available for the free, unencumbered use by your
app. In Listing 6-4, a SafeArea helps me show the padding and margin in all their
glory. Without that SafeArea, the top part of the margin might be covered by stuff
that’s not part of my app.

Nesting Rows and Columns
You hardly ever see an app with only one column of widgets. Most of the time, you
see widgets alongside other widgets, widgets arranged in grids, widgets at angles
to other widgets, and so on. The most straightforward way to arrange Flutter wid-
gets is to put columns inside of rows and rows inside of columns. Listing 6-5 has
an example, and Figure 6-8 shows you the results.

LISTING	6-5:	 A Row Within a Column

// App0605.dart

import 'package:flutter/material.dart';

import 'App06Main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

182 PART 2 Flutter: A Burd’s-Eye View

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildRowOfThree(),

],

);

}

Widget _buildRowOfThree() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 buildRoundedBox("Cat"),

 buildRoundedBox("Dog"),

 buildRoundedBox("Ape"),

],

);

}

In Listing 6-1, the Column widget’s crossAxisAlignment property forces the Sale
Today box to be as wide as it could possibly be. That happens because the Sale
Today box is one of the Column widget’s children. But in Listing 6-5, the Cat, Dog,
and Ape boxes aren’t children of the Column widget. Instead, they’re grandchildren
of the Column widget. So, for Listing 6-5, the major factor positioning the Cat,
Dog, and Ape boxes is the Row widget’s mainAxisAlignment property.

To see this in action, change the lines

return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

in Listing 6-5 to the following lines:

return Row(

 mainAxisAlignment: MainAxisAlignment.center,

FIGURE 6-8:
Animals for sale.

CHAPTER 6 Laying Things Out 183

When you do, you see the arrangement shown in Figure 6-9.

To find out about values you can give to a mainAxisAlignment property, refer to
Chapter 3.

More Levels of Nesting
Every sack had seven cats,

Every cat had seven kits . . .
FROM A TRADITIONAL ENGLISH LANGUAGE NURSERY RHYME

Yes, you can create a row within a column within a row within a column within a
row. You can go on like that for a very long time. This section has two modest
examples. The first example (Listing 6-6) has a row of captioned boxes.

LISTING 6-6: (Does This Listing Have Three Captions?)

// App0606.dart

import 'package:flutter/material.dart';

import 'App06Main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildCaptionedRow(),

],

);

}

FIGURE 6-9:
Animals in

cramped
quarters.

184 PART 2 Flutter: A Burd’s-Eye View

Widget _buildCaptionedRow() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 _buildCaptionedItem(

 "Cat",

 caption: "Meow",

),

 _buildCaptionedItem(

 "Dog",

 caption: "Woof",

),

 _buildCaptionedItem(

 "Ape",

 caption: "Chatter",

),

],

);

}

Column _buildCaptionedItem(String label, {String caption}) {

 return Column(

 children: <Widget>[

 buildRoundedBox(label),

 SizedBox(

 height: 5.0,

),

 Text(

 caption,

 textScaleFactor: 1.25,

),

],

);

}

Figure 6-10 shows a run of the code from Listing 6-6.

FIGURE 6-10:
Noisy animals

for sale.

CHAPTER 6 Laying Things Out 185

The next example, Listing 6-7, does something a bit different. In Listing 6-7, two
boxes share the space where one box might be.

LISTING	6-7:	 More Widget Nesting

// App0607.dart

import 'package:flutter/material.dart';

import 'App06Main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildColumnWithinRow(),

],

);

}

Widget _buildColumnWithinRow() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 buildRoundedBox("Cat"),

 SizedBox(width: 20.0),

 buildRoundedBox("Dog"),

 SizedBox(width: 20.0),

 Column(

 children: <Widget>[

 buildRoundedBox(

 "Big ox",

 height: 36.0,

),

 SizedBox(height: 16.0),

 buildRoundedBox(

 "Small ox",

 height: 36.0,

),

],

),

],

);

}

186 PART 2 Flutter: A Burd’s-Eye View

Figure 6-11 shows a run of the code from Listing 6-7.

Using the Expanded Widget
Start with the code in Listing 6-5, and add two more boxes to the row:

Widget _buildRowOfThree() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 buildRoundedBox("Cat"),

 buildRoundedBox("Dog"),

 buildRoundedBox("Ape"),

 buildRoundedBox("Ox"),

 buildRoundedBox("Gnu"),

],

);

}

Yes, the method name is still _buildRowOfThree. If the name bothers you, you can
either change the name or Google the Hitchhiker’s Guide to the Galaxy trilogy.

When you run this modified code on a not-too-large phone in portrait mode, you
see the ugly display in Figure 6-12. (If your phone is too large to see the ugliness,
add more buildRoundedBox calls.)

FIGURE 6-11:
A multilevel

arrangement.

FIGURE 6-12:
You can’t cross
the barricade.

CHAPTER 6 Laying Things Out 187

The segment on the right side of Figure 6-12 (the stuff that looks like barricade
tape) indicates overflow. To put it crudely, you’ve created a blivit. The row is
trying to be wider than the phone’s screen. Look near the top of Android Studio’s
Run tool window and you see the following message:

A RenderFlex overflowed by 67 pixels on the right.

What else is new?

When you line up too many boxes side-by-side, the screen becomes overcrowded.
That’s not surprising. But some layout situations aren’t so obvious. You can stum-
ble into an overflow problem when you least expect it.

What can you do when your app overflows? Here’s an off-the-wall suggestion:
Tell each of the boxes to expand. (You read that correctly: Tell them to expand!)
Listing 6-8 has the code, and Figure 6-13 shows you the results.

LISTING	6-8:	 Expanding Your Widgets

// App0608.dart

import 'package:flutter/material.dart';

import 'App06Main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildRowOfFive(),

],

);

}

Widget _buildRowOfFive() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 _buildExpandedBox("Cat"),

 _buildExpandedBox("Dog"),

 _buildExpandedBox("Ape"),

 _buildExpandedBox("Ox"),

 _buildExpandedBox("Gnu"),

188 PART 2 Flutter: A Burd’s-Eye View

],

);

}

Widget _buildExpandedBox(

 String label, {

 double height = 88.0,

}) {

 return Expanded(

 child: buildRoundedBox(

 label,

 height: height,

),

);

}

I quote from the official Flutter documentation (https://api.flutter.dev/
flutter/widgets/Expanded-class.html):

A widget that expands a child of a Row, Column, or Flex so that the child fills the
available space.

Using an Expanded widget makes a child of a Row, Column, or Flex expand to fill
the available space along the main axis (horizontally for a Row or vertically for a
Column). If multiple children are expanded, the available space is divided among
them according to the flex factor.

In spite of its name, the Expanded widget doesn’t necessarily make its child big-
ger. Instead, the Expanded widget makes its child fill the available space along
with any other widgets that are competing for that space. If that available space
differs from the code’s explicit height or width value, so be it. Listing 6-8 inher-
its the line

width: 88.0,

FIGURE 6-13:
A nice row of five.

https://api.flutter.dev/flutter/widgets/Expanded-class.html
https://api.flutter.dev/flutter/widgets/Expanded-class.html

CHAPTER 6 Laying Things Out 189

to describe the width of each rounded box. But, in Figure 6-13, none of the boxes
is 88.0 dp wide. When I run the app on an iPhone 11 Pro Max, each box is only
74.8 dp wide.

Expanded versus unexpanded
The code in the previous section surrounds each of a row’s boxes with the Expanded
widget. In this section, Listing 6-9 shows you what happens when you use
Expanded more sparingly.

LISTING	6-9:	 Expanding One of Three Widgets

// App0609.dart

import 'package:flutter/material.dart';

import 'App06Main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildRowOfThree(),

],

);

}

Widget _buildRowOfThree() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 buildRoundedBox(

 "Giraffe",

 height: 150.0,

),

 SizedBox(width: 10.0),

 buildRoundedBox(

 "Wombat",

 height: 36.0,

),

 SizedBox(width: 10.0),

 _buildExpandedBox(

 "Store Manager",

190 PART 2 Flutter: A Burd’s-Eye View

 height: 36.0,

),

],

);

}

Widget _buildExpandedBox(

 String label, {

 double height = 88.0,

}) {

 return Expanded(

 child: buildRoundedBox(

 label,

 height: height,

),

);

}

The code in Listing 6-9 surrounds only one box — the Store Manager box — with
an Expanded widget. Here’s what happens:

 » The code gets width: 88.0 from the buildRoundedBox method in
Listing 6-1, so the Giraffe and Wombat boxes are 88.0 dp wide each.

 » Two SizedBox widgets are 10.0 dp wide each.

So far, the total is 196.0 dp.

 » Because the Store Manager box sits inside an Expanded widget, the remaining
screen width goes to the Store Manager box. (See Figure 6-14.)

Use of the Expanded widget affects a widget’s size along its parent’s main axis,
but not along its parent’s cross axis. So, in Figure 6-14, the Store Manager box
grows from side to side (along the row’s main axis) but doesn’t grow from top to
bottom (along the row’s cross axis). In fact, only the numbers 150.0, 36.0, and

FIGURE 6-14:
The store
manager

takes up space.

CHAPTER 6 Laying Things Out 191

36.0 in the _buildRowOfThree method (see Listing 6-9) have any influence on
the heights of the boxes.

With a bit of tweaking, the code in Listing 6-9 can provide more evidence that an
Expanded widget isn’t necessarily a large widget. Try these two experiments:

1. Rerun the code from Listings 6-1 and 6-9. But, in the buildRoundedBox
method declaration, change width: 88.0 to width: 130.0.

On my iPhone 11 Pro Max simulator, the widths of the Giraffe and Wombat
boxes are 130.0 dp each. But the width of the Expanded Store Manager box
is only 94.0 dp. The Giraffe and Wombat boxes are quite large. So, when the
Store Manager box fills the remaining available space, that space is only
94.0 dp wide. (See Figure 6-15.)

2. In the buildRoundedBox method declaration, change width from its value
in Step 1 (width: 130.0) to width: 180.0.

With the Giraffe and Wombat boxes and the SizedBox widgets taking up
380.0 dp, there’s no room left on my iPhone 11 Pro Max simulator for the
Store Manager box. Alas! I see the black-and-yellow stripe, indicating
RenderBox overflow. (See Figure 6-16.) The Expanded widget isn’t a miracle
worker. It doesn’t help solve every problem.

FIGURE 6-15:
Expanding to fit

into a small
space.

FIGURE 6-16:
More barricade

tape.

192 PART 2 Flutter: A Burd’s-Eye View

Expanded widget saves the day
Listings 6-10 and 6-11 illustrate a nasty situation that may arise when you mix
rows and columns at various levels.

LISTING	6-10:	 A Listing That’s Doomed to Failure

// App0610.dart -- BAD CODE

import 'package:flutter/material.dart';

import 'App06Main.dart';

import 'constraints_logger.dart';

Widget buildColumn(BuildContext context) {

 return Row(

 children: [

 _buildRowOfThree(),

],

);

}

Widget _buildRowOfThree() {

 return ConstraintsLogger(

 comment: 'In _buildRowOfThree',

 child: Row(

 children: <Widget>[

 _buildExpandedBox("Cat"),

 _buildExpandedBox("Dog"),

 _buildExpandedBox("Ape"),

],

),

);

}

Widget _buildExpandedBox(

 String label, {

 double height = 88.0,

}) {

 return Expanded(

 child: buildRoundedBox(

 label,

 height: height,

),

);

}

CHAPTER 6 Laying Things Out 193

LISTING 6-11: An Aid For Debugging

// constraints_logger.dart

import 'package:flutter/material.dart';

class ConstraintsLogger extends StatelessWidget {

 final String comment;

 final Widget child;

 ConstraintsLogger({

 this.comment = "",

 @required this.child,

 }) : assert(comment != null);

 Widget build(BuildContext context) {

 return LayoutBuilder(

 builder: (BuildContext context, BoxConstraints constraints) {

 print('$comment: $constraints to ${child.runtimeType}');

 return child;

 },

);

 }

}

When you run the code in Listings 6-10 and 6-11, three things happen:

 » Nothing appears on your device’s screen except maybe a dull, grey
background.

 » In Android Studio’s Run tool window, you see the following error message:

RenderFlex children have non-zero flex but incoming width

constraints are unbounded.

Flutter developers start groaning when they see this message.

Later on, in the Run tool window . . .

If a parent is to shrink-wrap its child, the child

cannot simultaneously expand to fit its parent.

 » Also, in the Run tool window, you see a message like this one:

I/flutter (5317): In _buildRowOfThree:

BoxConstraints(0.0<=w<=Infinity, 0.0<=h<=683.4) to Row

194 PART 2 Flutter: A Burd’s-Eye View

This I/flutter message tells you that the layout’s inner row is being handed a
width constraint that has something to do with Infinity. This informative
0.0<=w<=Infinity message comes to you courtesy of the code in Listing 6-11.

What do all these messages mean? In a Flutter app, your widgets form a tree.
 Figure 6-17 shows a tree of widgets as it’s depicted in Android Studio’s Flutter
Inspector.

To display your widgets, Flutter travels in two directions:

 » Along the tree from top to bottom

During this travel, each widget tells its children what sizes they can be. In
Flutter terminology, each parent widget passes constraints to its children.

For example, a Run tool window message says that, in Listing 6-11, the outer
row passes the width constraint of 0.0<=w<=Infinity to the inner row.
Because of the word Infinity, this constraint is called an unbounded
constraint.

If you’re looking for an example of a bounded constraint, look at the same
Run tool window message. The outer row passes the height constraint of

FIGURE 6-17:
The tree created
by Listings 6-10

and 6-11.

CHAPTER 6 Laying Things Out 195

0.0<=h<=683.4 to the inner row. That constraint is bounded by the value
683.4 dp.

Eventually, Flutter reaches the bottom of your app’s widget tree. At that
point . . .

 » Along the tree again — this time, from bottom to top

During this travel, each child widget tells its parent exactly what size it wants
to be. The parent collects this information from each of its children and uses
the information to assign positions to the children.

Sometimes this works well, but in Listing 6-11, it fails miserably.

In Listing 6-11, because each animal box is inside an Expanded widget, the inner
row doesn’t know how large it should be. The inner row needs to be given a width
in order to divide up the space among the animal boxes. But the outer row has
given an unbounded constraint to the inner row. Instead of telling the inner row
its width, the outer row is asking the inner row for its width. Nobody wants to take
responsibility, so Flutter doesn’t know what to do. (See Figure 6-18.)

How can you fix this unpleasant problem? Oddly enough, another Expanded widget
comes to the rescue.

Widget _buildRowOfThree() {

 return Expanded(

 child: ConstraintsLogger(

 comment: 'In _buildRowOfThree',

 child: Row(

 children: <Widget>[

FIGURE 6-18:
My first graphic

novel.

196 PART 2 Flutter: A Burd’s-Eye View

 _buildExpandedBox("Cat"),

 _buildExpandedBox("Dog"),

 _buildExpandedBox("Ape"),

],

),

),

);

}

This new Expanded widget passes bounded constraints down the widget tree, as
you can see from this new message in the Run tool window:

I/flutter (5317): In _buildRowOfThree:

BoxConstraints(w=371.4, 0.0<=h<=683.4) to Row

The new Expanded widget tells the inner row that its width must be exactly
371.4 dp, so the confusion that’s illustrated in Figure 6-18 goes away. Flutter
knows how to display the app’s widgets, and you see three nicely arranged animal
boxes on your device’s screen. Problem solved!

The constraint w=371.4 is called a tight constraint because it gives the row an exact
size with no leeway whatsoever. In contrast, the constraint 0.0<=h<=683.4 is
called a loose constraint. The loose constraint says, “Be as short as 0.0 dp high and
as tall as 683.4 dp high. See if I care.”

This business with constraints and sizes may seem overly complicated. But the
process of scanning down the tree and then up the tree is an important part of the
Flutter framework. The two-scan approach makes for efficient rebuilding of
stateful widgets. And the rebuilding of stateful widgets is fundamental to the way
Flutter apps are designed.

Some layout schemes work well with small numbers of components but start
slowing down when the number of components becomes large. Flutter’s layout
scheme works well with only a few widgets and scales nicely for complicated lay-
outs with large numbers of widgets.

The ConstraintsLogger widget is for debugging purposes only. Before publishing
an app, remove all uses of the ConstraintsLogger from your code.

Flexing some muscles
Using Flutter’s Expanded widget, you can specify the relative sizes of the children
inside a column or a row. Listing 6-12 has an example.

CHAPTER 6 Laying Things Out 197

LISTING 6-12: How to Specify Relative Sizes

// App0612.dart

import 'package:flutter/material.dart';

import 'App06Main.dart';

Widget buildColumn(BuildContext context) {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 buildTitleText(),

 SizedBox(height: 20.0),

 _buildRowOfThree(),

],

);

}

Widget _buildRowOfThree() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

 children: <Widget>[

 _buildExpandedBox(

 "Moose",

),

 _buildExpandedBox(

 "Squirrel",

 flex: 1,

),

 _buildExpandedBox(

 "Dinosaur",

 flex: 3,

),

],

);

}

Widget _buildExpandedBox(

 String label, {

 double height = 88.0,

 int flex,

}) {

 return Expanded(

 flex: flex,

 child: buildRoundedBox(

198 PART 2 Flutter: A Burd’s-Eye View

 label,

 height: height,

),

);

}

What will happen to our heroes, the Moose and the Squirrel, in Listing 6-12? To
find out, see Figure 6-19.

Notice the frequent use of the word flex in Listing 6-12. An Expanded widget can
have a flex value, also known as a flex factor. A flex factor decides how much space
the widget consumes relative to the other widgets in the row or column.

Listing 6-12 has three boxes:

 » Moose, with no flex value (the value null)

 » Squirrel, with flex value 1

 » Dinosaur, with flex value 3

Here’s the lowdown on the resulting size of each box:

Because the Moose box has a null flex value, the Moose box has whatever width
comes explicitly from the _buildExpandedBox method. The Moose box’s width is
88.0. (Refer to Figure 6-19.)

Both the Squirrel and Dinosaur boxes have non-null, non-zero flex values. So
those two boxes share the space that remains after the Moose box is in place. With
flex values of Squirrel: 1, Dinosaur: 3, the Dinosaur box is three times the width of
the Squirrel box. On my Pixel 2 emulator, the Squirrel box is 70.9 dp wide, and the
Dinosaur box is 212.5 dp wide. That’s the way flex values work.

FIGURE 6-19:
The squirrel is

small; the
dinosaur is big.

CHAPTER 6 Laying Things Out 199

In addition to the Expanded widget’s flex property, Flutter has classes named
Flex and Flexible. It’s easy to confuse the three of them. Every Flex instance is
either a Row instance or a Column instance. And every Expanded instance is an
instance of the Flexible class. A Flexible instance can have a flex value, but a
Flexible instance doesn’t force its child to fill the available space. How about
that!

How Big Is My Device?
The title of this section is a question, and the answer is “You don’t know.” I can
run a Flutter app on a small iPhone 6, or in a web page on a 50-inch screen. You
want your app to look good no matter what size my device happens to be. How can
you do that? Listing 6-13 has an answer.

LISTING	6-13:	 Checking Device Orientation

// App0613.dart

import 'package:flutter/material.dart';

import 'App06Main.dart';

Widget buildColumn(context) {

 if (MediaQuery.of(context).orientation == Orientation.landscape) {

 return _buildOneLargeRow();

 } else {

 return _buildTwoSmallRows();

 }

}

Widget _buildOneLargeRow() {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Row(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: <Widget>[

 buildRoundedBox("Aardvark"),

 buildRoundedBox("Baboon"),

 buildRoundedBox("Unicorn"),

 buildRoundedBox("Eel"),

 buildRoundedBox("Emu"),

 buildRoundedBox("Platypus"),

],

200 PART 2 Flutter: A Burd’s-Eye View

),

],

);

}

Widget _buildTwoSmallRows() {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: [

 Row(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: [

 buildRoundedBox("Aardvark"),

 buildRoundedBox("Baboon"),

 buildRoundedBox("Unicorn"),

],

),

 SizedBox(

 height: 30.0,

),

 Row(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: [

 buildRoundedBox("Eel"),

 buildRoundedBox("Emu"),

 buildRoundedBox("Platypus"),

],

),

],

);

}

Figures 6-20 and 6-21 show what happens when you run the code in Listing 6-13.
When the device is in portrait mode, you see two rows, with three boxes on each
row. But when the device is in landscape mode, you see only one row, with six
boxes.

The difference comes about because of the if statement in Listing 6-13.

if (MediaQuery.of(context).orientation == Orientation.landscape) {

 return _buildOneLargeRow();

} else {

 return _buildTwoSmallRows();

}

CHAPTER 6 Laying Things Out 201

Yes, the Dart programming language has an if statement. It works the same way
that if statements work in other programming languages.

if (a certain condition is true) {

 Do this stuff;

FIGURE 6-20:
Listing 6-13 in

portrait mode.

FIGURE 6-21:
Listing 6-13 in

landscape mode.

202 PART 2 Flutter: A Burd’s-Eye View

} otherwise {

 Do this other stuff;

}

In the name MediaQuery, the word Media refers to the screen that runs your app.
When you call MediaQuery.of(context), you get back a treasure trove of infor-
mation about that screen, such as

 » orientation: Whether the device is in portrait mode or landscape mode

 » size.height and size.width: The number of dp units from top to bottom
and across the device’s screen

 » size.longestSide and size.shortestSide: The larger and smaller screen
size values, regardless of which is the height and which is the width

 » size.aspectRatio: The screen’s width divided by its height

 » devicePixelRatio: The number of physical pixels for each dp unit

 » padding, viewInsets, and viewPadding: The parts of the display that aren’t
available to the Flutter app developer, such as the parts covered up by the
phone’s notch or (at times) the soft keyboard

 » alwaysUse24HourFormat: The device’s time display setting

 » platformBrightness: The device’s current brightness setting

 » . . . and many more

For example, a Pixel C tablet with 2560-by-1800 dp is big enough to display a row
of six animal boxes in either portrait or landscape mode. To prepare for your app
to run on such a device, you may not want to rely on the device’s orientation
property. In that case, you can replace the condition in Listing 6-13 with some-
thing like the following:

if (MediaQuery.of(context).size.width >= 500.0) {

 return _buildOneLargeRow();

} else {

 return _buildTwoSmallRows();

}

Notice the word context in the code MediaQuery.of(context). In order to query
media, Flutter has to know the context in which the app is running. That’s why,
starting with this chapter’s very first listing, the _MyHomePage class’s build
method has a BuildContext context parameter. Listing 6-1 has this method call:

buildColumn(context)

CHAPTER 6 Laying Things Out 203

And other listings have method declarations with this header:

Widget buildColumn(BuildContext context)

Listings 6-2 to 6-12 make no use of that context parameter. But what if, in List-
ing 6-1, I omit the method’s context parameter, like so:

buildColumn()

Then everything is hunky-dory until Listing 6-13, which has no access to the con-
text and is unable to call MediaQuery.of(context). What a pity!

When I created Listing 6-1, I added the context parameter because I anticipated
the need for the context value in this chapter’s last listing — Listing 6-13. Yes,
I’m a very smart dude.

Well, that’s not really true. When I started writing this chapter, I didn’t anticipate
the need for the context value. I didn’t see the context issue coming until
I started writing this last section. At that point, I went back and modified every
single listing so that the context would be available to Listing 6-13. Oh, well!
Everybody has to make course corrections. It’s part of life, and it’s certainly part
of professional app development.

On to the next chapter. . . .

3Details, Details

IN THIS PART . . .

Responding to user input

Laying out an app’s components

Navigating from page to page

Creating animation

CHAPTER 7 Interacting with the User 207

Chapter 7
Interacting with the User

L
ove is in the air! The sun is shining. The birds are singing. My heart is all
a-Flutter. (Pun intended.)

Doris D. Developer wants to find a mate, and she has two important criteria. First,
she wants someone who’s 18 or older. Second, she’s looking for someone who
loves developing Flutter apps. What better way for Doris to achieve her goal than
for her to write her own dating app?

This chapter covers Doris’s outstanding work. To create the app, Doris uses
several kinds of widgets: a text field, a slider, a dropdown button, and some
others. A widget of this kind — one that the user sees and interacts with — is
called a control element, or simply a control.

Doris’s app also has some layout widgets, such as Center, Row, and Column, but
these layout widgets aren’t called controls. The user doesn’t really see them, and
certainly doesn’t interact with them. This chapter’s emphasis is on the controls,
not on the layout widgets or the app’s other assorted parts.

Doris’s final dating app isn’t full-featured by commercial standards, but the code
for the app is a few hundred lines long. That’s why Doris develops the app in small
pieces — first one control, and then another, and another, and so on. Each piece
is a small, free-standing practice app.

The first practice app deals with a simple question: Is the prospective mate at least
18 years old?

IN THIS CHAPTER

 » Collecting responses from the user

 » Responding to input

 » Dealing with null values

 » Advice on love and marriage

208 PART 3 Details, Details

A Simple Switch
A Switch is a control that’s in one of two possible states: on or off, yes or no, true
or false, happy or sad, over 18 or not. Listing 7-1 has the code for the practice
Switch app.

LISTING 7-1: How Old Are You?

import 'package:flutter/material.dart';

void main() => runApp(App0701());

class App0701 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

 }

}

class MyHomePage extends StatefulWidget {

 @override

 _MyHomePageState createState() => _MyHomePageState();

}

const _youAre = 'You are';

const _compatible = 'compatible with\nDoris D. Developer.';

class _MyHomePageState extends State<MyHomePage> {

 bool _ageSwitchValue = false;

 String _messageToUser = "$_youAre NOT $_compatible";

 /// State

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text("Are you compatible with Doris?"),

),

 body: Padding(

 padding: const EdgeInsets.all(8.0),

 child: Column(

 children: <Widget>[

 _buildAgeSwitch(),

CHAPTER 7 Interacting with the User 209

 _buildResultArea(),

],

),

),

);

 }

 /// Build

 Widget _buildAgeSwitch() {

 return Row(

 children: <Widget>[

 Text("Are you 18 or older?"),

 Switch(

 value: _ageSwitchValue,

 onChanged: _updateAgeSwitch,

),

],

);

 }

 Widget _buildResultArea() {

 return Text(_messageToUser, textAlign: TextAlign.center);

 }

 /// Actions

 void _updateAgeSwitch(bool newValue) {

 setState(() {

 _ageSwitchValue = newValue;

 _messageToUser =

 _youAre + (_ageSwitchValue ? " " : " NOT ") + _compatible;

 });

 }

}

Figures 7-1 and 7-2 show the app in its two possible states.

This chapter’s listings are practice apps. They’re bite-size samples of Doris’s big,
beautiful dating app. But even “bite-size” programs can be long and complicated.
To keep this chapter’s listings short, I reuse code from one listing to another. I bend
a few rules and ignore some good programming practices to make the listings com-
patible with one another. But, don’t worry. Each listing works correctly, and each
listing illustrates useful Flutter development concepts. You can find the entire dat-
ing app in Appendix A and in the stuff that you download from this book’s website
(www.allmycode.com/Flutter).

http://www.allmycode.com/Flutter

210 PART 3 Details, Details

The code in Listing 7-1 isn’t much different from the code in Chapter 5. In
Chapter 5, the floating action button has an onPressed parameter. In Listing 7-1,
the Switch widget has something similar. Listing 7-1 has an onChanged parameter.
The onChanged parameter’s value is a function; namely, the _updateAgeSwitch
function. When the user flips the switch, that flip triggers the switch’s onChanged
event, causing the Flutter framework to call the _updateAgeSwitch function.

Unlike the event handling functions in Chapter 5, the _updateAgeSwitch function
in Listing 7-1 isn’t a VoidCallback. A VoidCallback function takes no parame-
ters, but the _updateAgeSwitch function has a parameter. The parameter’s name
is newValue:

void _updateAgeSwitch(bool newValue)

When the Flutter framework calls _updateAgeSwitch, the framework passes the
Switch widget’s new position (off or on) to the newValue parameter. Because
the type of newValue is bool, newValue is either false or true. It’s false when
the switch is off and true when the switch is on.

If _updateAgeSwitch isn’t a VoidCallback, what is it? (That was a rhetorical
question, so I answer it for you. . . .) The _updateAgeSwitch function is of type
ValueChanged<bool>. A ValueChanged function takes one parameter and returns
void. The function’s parameter can be of any type, but a ValueChanged<bool>
function’s parameter must be of type bool. In the same way, a ValueChanged<double>
function’s parameter must be of type double. And so on.

FIGURE 7-1:
The user turns on

the switch.

FIGURE 7-2:
The user turns off

the switch again.

CHAPTER 7 Interacting with the User 211

Make no mistake about it: Even though the term ValueChanged<bool> doesn’t
have the word Callback in it, the _updateAgeSwitch function is a callback. When
the user flips the Switch widget, the Flutter framework calls your code back. Yes,
the _updateAgeSwitch function is a callback. It’s just not a VoidCallback.

With many controls, nothing much happens if you don’t change the control’s
value and call setState. For a few laughs, I tried commenting out the setState
call in the body of the _updateAgeSwitch function in Listing 7-1:

void _updateAgeSwitch(bool newValue) {

 // setState(() {

 _ageSwitchValue = newValue;

 _messageToUser = _youAre + (_ageSwitchValue ? " " : " NOT ") + _compatible;
 // });

}

Then I uncommented the setState call and commented out the assignment
statements:

void _updateAgeSwitch(bool newValue) {

 setState(() {

// _ageSwitchValue = newValue;

// _messageToUser =

// _youAre + (_ageSwitchValue ? " " : " NOT ") + _compatible;

 });

}

In both cases, I restarted the program and then tapped on the switch. Not only did
the _messageToUser refuse to change, but the switch didn’t even budge. That
settles it! The look of the switch is completely dependent on the _ageSwitchValue
variable and the call to setState. If you don’t assign anything to _ageSwitch
Value or you don’t call setState, the switch is completely unresponsive.

Dart’s const keyword
Here’s my cardinal rule: Once I’ve made a decision, I never change my mind. The
only exception to this rule is when I change my mind about the cardinal rule.

In app development, the issue of change is very important. The term variable
comes from the word vary, which means “change.” But some things shouldn’t
change. In Listing 7-1, I refer to the strings 'You are' and 'compatible with\
nDoris D. Developer' more than once, so I create handy names _youAre
and _compatiblc for these strings. That way, I don’t have to type things like
'compatible with\nDoris D. Developer' more than once. I don’t risk typing
the phrase correctly one time and incorrectly another time.

212 PART 3 Details, Details

But what if the value of _youAre is allowed to change throughout the run of the
program? A developer who’s working with my code might mistakenly write

_youAre = 'sweet';

I don’t want that to happen. I want _youAre to stand for 'You are' throughout
the run of the program. Android Studio should flag the assignment _youAre =
'sweet' as an error. That’s why, in Listing 7-1, I declare _youAre with the word
const. Dart’s const keyword is short for constant. As a constant, the value of
_youAre cannot change. The same holds true for the declaration of _compatible
in Listing 7-1. The use of Dart’s const keyword is a safety measure, and it’s a darn
good one!

In case you’re wondering, \n in 'compatible with\nDoris D. Developer' tells
Dart to go to a new line of text. That way, Doris D. Developer appears on a line
of its own. (See Figures 7-1 and 7-2.) The character combination \n is called an
escape sequence.

Referring to the code in Listing 7-1, an experienced developer might say, “the _
youAre constant” or “the _youAre variable.” The former is more accurate, but the
latter is acceptable.

Dart has two keywords to indicate that certain things shouldn’t change: const and
final. The const keyword says, “Don’t change this value at any time during a run
of the app.” The final keyword says, “Don’t change this value unless you encoun-
ter this declaration again.” The difference between const and final has many
subtle consequences, so I don’t open that can of worms in this chapter. Instead,
simply remember that programs with const may run a bit faster than programs
with final. You can put any old const declaration at the top level of your code or
inside a function declaration. But, for a const at the start of a class, the story is
different. The following code is illegal:

// Don't do this:

class _MyHomePageState extends State<MyHomePage> {

 const _youAre = 'You are';

But this code is just fine:

Prod: Note the bold code.-BB

// Do this instead:

class _MyHomePageState extends State<MyHomePage> {

 static const _youAre = 'You are';

CHAPTER 7 Interacting with the User 213

For the real scoop on Dart’s static keyword, see the “Callout 4” section, later in
this chapter.

Compatible or NOT?
For some users, the Dating app should say, “You are compatible with Doris
D. Developer.” For other users, the app should add NOT to its message. That’s why
Listing 7-1 contains the following code:

_messageToUser =

 _youAre + (_ageSwitchValue ? " " : " NOT ") + _compatible;

The expression _ageSwitchValue ? " " : " NOT " is a conditional expression, and
the combination of ? and : in that expression is Dart’s conditional operator.
Figure 7-3 shows you how Dart evaluates a conditional expression.

A conditional expression looks like this:

condition ? expression1 : expression2

When the condition is true, the value of the whole expression is whatever you
find in the expression1 part. But, when the condition is false, the value of the
whole expression is whatever you find in the expression2 part.

In addition to its conditional expressions, Dart has if statements. A conditional
expression is like an if statement but, unlike an if statement, a conditional
expression has a value. That value can be assigned to a variable.

FIGURE 7-3:
Evaluating a
conditional
expression.

214 PART 3 Details, Details

To illustrate the point, I give you an if statement whose effect is the same as the
conditional expression in Listing 7-1:

if (_ageSwitchValue) {

 _messageToUser = _youAre + " " + _compatible;
} else {

 _messageToUser = _youAre + " NOT " + _compatible;
}

Translated into plain English, this if statement says:

If the bool variable _ageSwitchValue has the value true,

 _messageToUser = _youAre + " " + _compatible;
otherwise

 _messageToUser = _youAre + " NOT " + _compatible;

In some situations, choosing between an if statement and a conditional expres-
sion is a matter of taste. But in Listing 7-1, the conditional expression is a clear
winner. After all, an if statement doesn’t have a value. You can’t assign an if
statement to anything or add an if statement to anything. So, code of the follow-
ing kind is illegal:

// THIS CODE IS INVALID.

_messageToUser =

 _youAre +

 if (_ageSwitchValue) {

 " ";

 } else {

 " NOT ";

 } +

_compatible;

Another name for Dart’s conditional operator is the ternary operator. The word
ternary means “three,” and the operator has three parts: one before the question
mark, a second between the question mark and the colon, and a third after the
colon.

Wait For It!
Today’s users are impatient. They want instant feedback. How do I know this?
A bunch of actors convinced me. Here’s the story:

CHAPTER 7 Interacting with the User 215

A long time ago, in a theater far, far from Broadway, I saw a musical comedy in
the company of nine other people. Three of them were my friends, two of them
were watching from third-row seats, and the other four were the play’s perform-
ers. I remember this event for two reasons. First, it was the beginning of my life-
long philosophy about making performers feel good. The play’s jokes weren’t
funny, but I laughed out loud at every one of them. The singing was out of tune,
but I clapped vigorously after each song. Eventually, we were all having a good
time, and the actors didn’t regret playing to a six-person audience.

The other memorable part of this event was the play’s signature song. It was kind
of silly, but it stuck in my mind for years and years. To this day, my wife and
I chuckle whenever we howl out the song’s first few measures. The title of this
tune was “Immediate Gratification.” It was a mockery of modern culture, in which
every need is urgent and every desire must be fulfilled.

In following this line of thought, I present a humble widget known as the Raised
Button. A button isn’t much. You press it, and something happens. You press it
again, and something may or may not happen. Buttons used to be the go-to
control for web developers and app developers. But these days, buttons are passé.
When a user flips a switch, the app responds immediately. There’s no waiting
around to find a button to press. The old light-grey rectangle with the word
Submit on it has taken a back seat.

In celebration of the good old days, this section’s example shuns the quick
response of the app in Listing 7-1. When the user flicks a switch, the switch sim-
ply moves. The app doesn’t say, “You’re compatible” or “You’re not compatible”
until the user presses a button. Come sit on the porch and relax while this app
runs! The code is in Listing 7-2.

LISTING 7-2: Responding to a Button Press

// Copy the code up to and including the _buildAgeSwitch

// method from Listing 7-1 here.

 Widget _buildResultArea() {

 return Row(

 children: <Widget>[

 RaisedButton(

 child: Text("Submit"),

 onPressed: _updateResults,

),

 SizedBox(

 width: 15.0,

),

 Text(_messageToUser, textAlign: TextAlign.center),

(continued)

216 PART 3 Details, Details

],

);

 }

 /// Actions

 void _updateAgeSwitch(bool newValue) {

 setState(() {

 _ageSwitchValue = newValue;

 });

 }

 void _updateResults() {

 setState(() {

 _messageToUser = 'You are' +

 (_ageSwitchValue ? " " : " NOT ") +

 'compatible with \nDoris D. Developer.';

 });

 }

}

Figure 7-4 shows a snapshot from a run of the code in Listing 7-2.

When it’s combined with some code from Listing 7-1, the app in Listing 7-2 has
both onPressed and onChanged event handlers. In particular:

 » The function _updateAgeSwitch handles onChanged events for the switch.

When the user taps the switch, the appearance of the switch changes from off
to on or from on to off.

 » The function _updateResults handles onPressed events for the button.

When the user presses the button, the app’s message catches up with the
switch’s status. If the switch is on, the message becomes, “You are compatible.”
If the switch is off, the message becomes “You are NOT compatible.”

FIGURE 7-4:
Good news!

LISTING 7-2: (continued)

CHAPTER 7 Interacting with the User 217

Between the moment when the user flicks the switch and the time when the user
presses the button, the message on the screen might be inconsistent with the
switch’s state. In an online form with several questions, that’s not a problem. The
user doesn’t expect to see a result until after the concluding button press. But in
this chapter’s practice apps, each with only one question for the user, the lack of
coordination between the user’s answer and the message that’s displayed is prob-
lematic. These practice apps don’t win any user experience awards.

Fortunately, Doris doesn’t publish her practice apps. Instead, she publishes an
app that combines all the controls from her practice apps and more.

You can download and run Doris’s full-fledged dating app. It’s the file named
App_endix.dart in the download from this book’s website. If you need immediate
gratification and downloading code isn’t fast for you, just flip this book’s pages
until you reach Appendix A.

So, what’s next? I know! How about a slider?

How Much Do You Love Flutter?
Doris the Developer wants to meet someone who loves to create Flutter apps. Her
homemade dating app includes a slider with values from 1 to 10. Scores of 8 and
above are acceptable. Anyone with a response of 7 or below can take a hike.

Listing 7-3 has the highlights of Doris’s practice slider app.

To see the rest of Doris’s slider practice app, look for the App0703 project in the
download from this book’s website. (Quick! Visit www.allmycode.com/Flutter
right away!)

LISTING 7-3: For the Love of Flutter

// This is not a complete program. (No way!)

class _MyHomePageState extends State<MyHomePage> {

 double _loveFlutterSliderValue = 1.0;

 Widget _buildLoveFlutterSlider() {

 return // ...

 Text("On a scale of 1 to 10, "

 "how much do you love developing Flutter apps?"),

(continued)

http://www.allmycode.com/Flutter

218 PART 3 Details, Details

 Slider(

 min: 1.0,

 max: 10.0,

 divisions: 9,

 value: _loveFlutterSliderValue,

 onChanged: _updateLoveFlutterSlider,

 label: '${_loveFlutterSliderValue.toInt()}',

),

 }

 void _updateLoveFlutterSlider(double newValue) {

 setState(() {

 _loveFlutterSliderValue = newValue;

 });

 }

 void _updateResults() {

 setState(() {

 _messageToUser = _youAre +
 (_loveFlutterSliderValue >= 8 ? " " : " NOT ") +
 _compatible;

 });

 }

}

Figure 7-5 shows a run of the slider app with the slider set all the way to 10. (How
else do you expect me to set the “love Flutter” slider?)

FIGURE 7-5:
Love at first byte.

LISTING 7-3: (continued)

CHAPTER 7 Interacting with the User 219

The Slider constructor call in Listing 7-3 has these six parameters:

 » min: The slider’s smallest value.

The little gizmo that moves from left to right along a slider is called a thumb.
The position of the thumb determines the slider’s value. So min is the value of
the slider when the slider’s thumb is at the leftmost point. The min parameter
has type double.

 » max: The slider’s largest value.

This is the value of the slider (again, a double) when the thumb is at the
rightmost point.

A slider’s values may increase going from left to right or from right to left.
Before displaying a slider, Flutter checks a textDirection property. If the
value is TextDirection.ltr, the slider’s minimum value is on the left. But
if the textDirection property’s value is TextDirection.rtl, the slider’s
minimum value is on the right. Apps written for speakers of Arabic, Farsi,
Hebrew, Pashto, and Urdu use TextDirection.rtl. Other apps use
TextDirection.ltr. In case you’re wondering, Flutter doesn’t support
boustrophedon writing — an ancient style in which alternate lines flow from
left to right and then from right to left.

 » divisions: The number of spaces between points where the thumb can be
placed. (See Figure 7-6.)

The slider in Listing 7-3 can be placed at values 1.0, 2.0, 3.0, and so on, up to 10.0.

If you omit the divisions parameter, or if you set that parameter to null,
the thumb can be placed anywhere along the slider. For example, with the
following constructor, the slider’s value can be 0.0, 0.20571428571428554,
0.917142857142857, 1.0, or almost any other number between 0 and 1.

Slider(

 min: 0.0,

 max: 1.0,

 value: _loveFlutterSliderValue,

 onChanged: _updateLoveFlutterSlider,

)

FIGURE 7-6:
Why the number

of divisions is 9
in Listing 7-3.

220 PART 3 Details, Details

 » value: A number in the range from min to max.

This parameter determines the thumb’s position.

 » onChanged: The event handling function for changes to the slider.

When the user moves the slider’s thumb, the Flutter framework calls this
function.

 » label: The widget that’s displayed on the slider’s value indicator.

As the user moves the thumb, an additional shape appears. That shape is the
slider’s value indicator. In Figure 7-5, the bubble with the number 10 on it is the
slider’s value indicator.

Despite its name, the value indicator doesn’t necessarily display a Text widget
showing the slider’s value. In fact, the value indicator can display anything you
want it to display. (Well, almost anything.)

Luckily for us, the widget on the slider in Listing 7-3 displays _loveFlutter
SliderValue — the slider’s very own value. But remember: If you don’t want
numbers like 0.20571428571428554 to appear in the value indicator, you
have to convert the slider’s double values into int values. That’s why, in
Listing 7-3, the widget on the slider’s value indicator displays _loveFlutter
SliderValue.toInt(), not plain old _loveFlutterSliderValue.

If you don’t specify a label parameter, or if you specify a label but make it
null, the value indicator never appears.

Dealing with Text Fields
In this section, I introduce Doris’s friend Irving. Unlike Doris, Irving wants a
companion with lots of money. To this end, Irving asks Doris to create a variation
on her dating app. Irving’s custom-made app has two text fields — one for a
user’s name and another for the user’s income. If the user’s income is $100,000
or more, the app reports “compatible.” Otherwise, the app reports “incompati-
ble.” Figure 7-7 has an illustrated version of the app’s _MyHomePageState class.
To see the rest of Irving’s app, look for the App0704 project in the download from
this book’s website.

CHAPTER 7 Interacting with the User 221

To keep the size of Figure 7-7 manageable, I omitted the declaration of
_buildDecoration. In case you’re wondering, here’s that method’s code:

InputDecoration _buildDecoration(String label) {

 return InputDecoration(

 labelText: label,

 border: OutlineInputBorder(

FIGURE 7-7:
(Also known

as Listing 7-4.)
How much

do you earn?

222 PART 3 Details, Details

 borderRadius: BorderRadius.all(Radius.circular(10.0)),

),

);

}

Figure 7-8 shows Pat’s pathetic attempt to be deemed compatible with Irving.
With an income of $61,937, Pat doesn’t have a chance. (In 2018, the median
income for households in the United States was $61,937. Irving’s sights are set
too high.)

Text fields have the same kinds of event handlers that switches and sliders have.
In particular, a TextField constructor can have an onChanged event handler — a
function that looks like this:

 void _updateStuff(String newValue) {

 // When the user types a character, do something with

 // the characters inside the text field (the newValue).

 }

But what about the press of a button? Is there a nice way to find out what’s in
a text field when the field’s characters aren’t changing? Yes, there is. It’s the
TextEditingController — a stand-out feature in Figure 7-7.

In fact, Figure 7-7 has two TextEditingController objects — one for the Your
Name field and another for the Your Income field. The next several paragraphs
add details to the numbered callouts in Figure 7-7.

FIGURE 7-8:
Bad news for Pat.

CHAPTER 7 Interacting with the User 223

Callouts 1 and 2
In a Flutter program, constructor calls rule the roost. You get a Text widget with
a constructor call like Text("Hello"). You get a Column and two Text widgets
with code like Column(children: [Text('a'), Text('b')]).

When you issue a constructor call, the call itself stands for an object. For example,
the call Text("Hello") stands for a particular Text widget — an instance of the
Text class. You can assign the call to a variable and use that variable elsewhere in
your code:

@override

Widget build(BuildContext context) {

 Text myTextInstance = Text("I'm reusable");

 return Scaffold(

 appBar: AppBar(

 title: myTextInstance,

),

 body: Column(

 children: <Widget>[

 myTextInstance,

],

),

);

}

In many cases, you can separate the variable declaration from the call:

Text myTextInstance;

// More code here, and elsewhere ...

myTextInstance = Text("I'm reusable");

In Figure 7-7, the declaration of the two controller variables (_nameField
Controller and _incomeFieldController) is separate from the corresponding
TextEditingController constructor calls. I do this in order to introduce Flutter’s
initState and dispose methods.

A State object is like anything else in the world — it comes into being and, even-
tually, it goes away. Flutter calls initState when a State instance comes into
being, and calls dispose when the State instance goes away.

224 PART 3 Details, Details

It may not be obvious, but the code in Figure 7-7 refers to two different initState
methods. The declaration that begins with void initState() describes a method
that belongs to the _MyHomePageState class. But the _MyHomePageState class
extends Flutter’s own State class, and that State class has its own initState
declaration. (See Figure 7-9.)

NULL POUR LES NULS
You can declare a variable name without assigning anything to that variable. If you do,
the variable’s starting value is null, which means “absolutely nothing.” In many cases,
that’s exactly what you want to do.

But you have to be careful. An unwanted null value can be dangerous. For example,
the following code crashes like a reckless car on the New Jersey Turnpike:

main() {

 int quantity;

 print(quantity.isEven); // null.isEven -- You can't do this

}

On the other hand, if you assign something to the quantity variable, the code runs
without a hitch:

main() {

 int quantity;

 quantity = 22;

 print(quantity.isEven); // Outputs the word "true" (without quotes)

}

Here’s a mistake that I sometimes make: I create a variable declaration that doesn’t
assign a value to its variable. Then I forget to assign a value to that variable elsewhere in
the code. Oops! My code crashes. My advice is, try not to make that mistake.

FIGURE 7-9:
Overriding an

extended class’s
initState method.

CHAPTER 7 Interacting with the User 225

When you have two methods named initState, how do you distinguish one from
another? Well, what if you meet a woman named Mary, whose child is also named
Mary? Chances are, the child doesn’t call her mother “Mary.” Instead, the child
calls her mother “Mom” or something like that. For her mother’s birthday, she
buys a souvenir mug displaying the words Super Mom, and her mother smiles
politely on receiving another useless gift.

The same kind of thing happens when two classes — a parent and its child — have
methods named initState. The child class (_MyHomePageState) has to call the
initState method belonging to its parent class (Flutter’s State class). To do so,
the child class calls super.initState(). Unlike the Mary situation, the use of
the keyword super isn’t meant to be flattering. It’s simply a reference to the
initState method that’s defined in the parent class. (I can’t resist: The keyword
super may not be flattering, but it’s certainly Fluttering.)

To stretch the mother/daughter metaphor a bit further, imagine that Super Mom
Mary is a real estate agent. In that case, the child can’t buy a house without first
consulting her mother. The child’s decideWhichHouse method must include a call
to the mother’s decideWhichHouse method, like so:

// The child's method declaration:

@override

void decideWhichHouse() {

 super.decideWhichHouse();

 // Etc.

}

That may be the situation when your code overrides Flutter’s initState method.
In some versions of Flutter, if you don’t call super.initState(), your code
won’t run.

Callout 3
Each TextField constructor can have its own controller parameter. A text field’s
controller mediates the flow of information between the text field and other parts
of the app. (For details, jump to the later section “Callout 4.”)

Elsewhere in the TextField constructor call, the TextInputType.number param-
eter in the income text field’s constructor tells a device to display a soft keyboard
with only digits on the keys. Alternatives include TextInputType.phone, Text
InputType.emailAdress, TextInputType.datetime, and others. For an authori-
tative list of TextInputType choices, visit https://api.flutter.dev/flutter/
services/TextInputType-class.html.

https://api.flutter.dev/flutter/services/TextInputType-class.html
https://api.flutter.dev/flutter/services/TextInputType-class.html

226 PART 3 Details, Details

This tip applies while you develop and test your app. The Android emulator and
iPhone simulator have options to suppress the appearance of the soft keyboard,
allowing input with only your development computer’s keyboard. If that option is
turned on, you don’t see the effect of the TextInputType.number parameter. If
you type a letter on your computer keyboard, that letter appears in your app’s text
field.

If you plan to run your app on a real, physical phone, you should test the app with
the virtual device’s soft keyboard enabled. When you do, you might see some
troublesome effects that you weren’t expecting. For example, when you move
from a text field to another kind of control, the soft keyboard doesn’t go away. To
make the soft keyboard go away automatically, enclose the scaffold in a gesture
detector. Here’s how you do it:

Widget build(BuildContext context) {

 return GestureDetector(

 onTap: () {

 final currentFocus = FocusScope.of(context);

 if (!currentFocus.hasPrimaryFocus) {

 currentFocus.unfocus();

 }

 },

 child: Scaffold(

 // ... Etc.

For more chitchat about the GestureDetector, see Chapter 9.

Callout 4
In Figure 7-7, the expression _nameFieldController.text stands for the charac-
ters that appear in the Name text field, and _incomeFieldController.text
stands for the characters in the Income text field. If the code included the
statement

 _nameFieldController.text = "May I. Havanother";

execution of that statement would change whatever was already in the Name text
field to May I. Havanother.

In Figure 7-7, the expression _nameFieldController.text adds the user’s name
to the outgoing message. The expression _incomeFieldController.text stands
for whatever characters the user has entered in the app’s Income field, but those

CHAPTER 7 Interacting with the User 227

characters come with a slight catch. The stuff in a text field is always a String
value, never a numeric value. In Figure 7-8, Pat enters 61937 in the Income text
field, so the value of _incomeFieldController.text is "61937" (the String), not
61937 (the number).

Luckily, Dart’s int class has a parse method. If the value of _incomeField
Controller.text is "61937" (the String), the value of int.parse(_income
FieldController.text) is 61937 (the int number value). In Figure 7-7, the code

int.parse(_incomeFieldController.text) >= 1000000

compares a number like 61937 to Irving’s high-demand number of 1000000. The
result of the comparison is either true or false, so the value of _richUser
becomes either true or false.

WHAT DOES A DARN DOT DO?
In object-oriented programming, an object can have certain things called properties.
Using dot notation, you can refer to each of those properties.

Here are a few examples:

• Every String instance has length and isEmpty properties.

The value of "Dart".length is 4, and the value of "".isEmpty is true.

• Every int value has isEven, isNegative, and bitLength properties.

The value of 44.isEven is true, and the value of 99.isNegative is false. The
value of 99.bitLength is 7 because the binary representation of 99 is 1100011,
which has 7 bits.

• Every TextEditingController instance has a text property.

In Figure 7-7, the value of _nameFieldController.text is whatever string of
characters appears in the Name text field.

You can apply dot notation to expressions of all kinds. For example, the value of
(29 + 10).isEven is false. With phrase = "I like Dart", the value of phrase.
length is 11.

(continued)

228 PART 3 Details, Details

Properties are examples of things called members. A class’s members also include the
class’s variables and methods. Consider the following:

• Every String instance has methods named toUpperCase, endsWith, split,
trim, and many others.

The value of "Attention!".toUpperCase() is "ATTENTION!".

The value of " Holy moly! ".trim() is "Holy moly!".

• Every int value has methods named abs, toRadixString, and several others.

The value of (-182).abs() is 182 because 182 is the absolute value of –182. The
value of 99.toRadixString(2) is 1100011 because the binary (base 2) represen-
tation of 99 is 1100011.

There’s nothing mysterious about the members of a class. Here’s a class named
Account and a main function that calls the Account class’s constructor:

class Account {

 // Two member variables:

 String customerName;

 int balance;

 // A member method:

 void deposit({int amount}) {

 balance += amount;
 }

}

void main() {

 // A call to the Account class's constructor:

 Account myAccount = Account();

 // References to the Account class's members:

 myAccount.customerName = "Barry Burd";

 myAccount.balance = 100;

 myAccount.deposit(amount: 20);

 print(myAccount.customerName);

 print(myAccount.balance);

}

/*

 * Output:

 * Barry Burd

 * 120

 */

(continued)

CHAPTER 7 Interacting with the User 229

The classes in this book’s Flutter listings have members too. For example, the class in
Figure 7-7 has several members, including _nameFieldController, _incomeField
Controller, _messageToUser, initState, and build.

Some classes have things called static members. A static member belongs to an entire
class, not to any of the class’s instances. For example, the int class has a static method
named parse. Because the parse method is static, you put the name of the class (the
word int) before the dot. You don’t put any particular int value before the dot. Here
are some examples:

• The value of int.parse("1951") is the number 1951.

• Expressions such as 1951.parse("1951"), 1951.parse() and 1951.parse are
invalid.

None of these works because, in each case, the value before the dot isn’t the class
name int. Instead, the value before the dot is an object — an instance of the int
class.

• Putting any expression with an int value before .parse is invalid.

For example, the following code breaks your program:

int numberOfClowns;

int otherNumber = numberOfClowns.parse("2020");

Creating a static member is no big deal. Simply add the word static to your member
declaration, like so:

class Automobile {

 static int numberOfWheels = 4;

}

void main() {

 Automobile jalopy = Automobile();

 // print(jalopy.numberOfWheels); This is incorrect.

 print(Automobile.numberOfWheels);

}

/*

 * Output:

 * 4

 */

230 PART 3 Details, Details

Figure 7-7 calls Dart’s int.parse method — a handy method indeed! But Dart has
an even better method. It’s called int.tryParse. It’s a lot like int.parse, but it’s
safer to use. When you call int.tryParse('This is not a number'), the app
doesn’t blow up in your face.

Callout 5
Much of the fuss in earlier paragraphs about the initState method applies
equally to Flutter’s dispose method. Before a State class gets the heave-ho, the
Flutter framework calls the code’s dispose method. In Figure 7-7, the dispose
method does these three things:

 » It calls the dispose method belonging to the _nameFieldController.

The dispose method for _nameFieldController trashes that controller,
freeing up any resources that the controller happens to be hogging.

 » It calls the dispose method belonging to the _incomeFieldController.

Goodbye, _incomeFieldController. Glad to see that your resources are
being freed up.

 » It calls the State class’s dispose method.

The State class’s dispose method, built solidly into the Flutter framework,
cleans up any other stuff having to do with _MyHomePageState. As it is with
initState, your own code’s dispose method must call super.dispose().

Creating Radio Buttons
Every dating app has a question about the user’s gender. For this question, Doris
decides on a group of radio buttons. Listing 7-5 has much of Doris’s radio button
code.

For the rest of Doris’s practice app with radio buttons, see App0705 in the files
that you download from this book’s website:

www.allmycode.com/Flutter

http://www.allmycode.com/Flutter

CHAPTER 7 Interacting with the User 231

LISTING 7-5: How Do You Identify?

// This is not a complete program.

// Some trees have been saved.

// The trees are happy about that.

enum Gender { Female, Male, Other }

String shorten(Gender gender) => gender.toString().replaceAll("Gender.", "");

class _MyHomePageState extends State<MyHomePage> {

 String _messageToUser = "";

 Gender _genderRadioValue;

// And later ...

 Widget _buildGenderRadio() {

 return Row(

 children: <Widget>[

 Text(shorten(Gender.Female)),

 Radio(

 value: Gender.Female,

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

 SizedBox(width: 25.0),

 Text(shorten(Gender.Male)),

 Radio(

 value: Gender.Male,

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

 SizedBox(width: 25.0),

 Text(shorten(Gender.Other)),

 Radio(

 value: Gender.Other,

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

],

);

 }

 Widget _buildResultArea() {

 return Row(

(continued)

232 PART 3 Details, Details

 children: <Widget>[

 RaisedButton(

 child: Text("Submit"),

 onPressed: _genderRadioValue != null ? _updateResults : null,

),

 SizedBox(

 width: 15.0,

),

 Text(

 _messageToUser,

 textAlign: TextAlign.center,

),

],

);

 }

 /// Actions

 void _updateGenderRadio(Gender newValue) {

 setState(() {

 _genderRadioValue = newValue;

 });

 }

 void _updateResults() {

 setState(() {

 _messageToUser =

 "You selected ${shorten(_genderRadioValue)}.";

 });

 }

}

Figures 7-10 and 7-11 show snapshots from a run of the code in Listing 7-5.

FIGURE 7-10:
Before selecting a

radio button.

LISTING 7-5: (continued)

CHAPTER 7 Interacting with the User 233

Creating an enum
Chapter 3 introduces Flutter’s built-in Brightness enum with its values
Brightness.light and Brightness.dark. That’s nice, but why let the creators of
Flutter have all the fun? You can define your own enum by doing what you see in
Listing 7-5.

 enum Gender { Female, Male, Other }

With this declaration, your code has three new values; namely, Gender.Female,
Gender.Male, and Gender.Other. You can use these values in the rest of the app’s
code.

Building the radio group
The code in Listing 7-5 has three radio buttons. Each radio button has its own
value but, taken together, all three buttons have only one groupValue. In fact, the
common groupValue is what ties the three buttons together. When a user selects
the button with value Gender.Female, the groupValue of all three becomes
Gender.Female. It’s as if part of the code suddenly looked like this:

// Don't try this at home. This is fake code.

Radio(

 value: Gender.Female,

 groupValue: Gender.Female,

),

Radio(

 value: Gender.Male,

 groupValue: Gender.Female,

),

Radio(

 value: Gender.Other,

 groupValue: Gender.Female,

),

FIGURE 7-11:
After selecting a

radio button and
pressing Submit.

234 PART 3 Details, Details

Each radio button has its own onChanged parameter. In Listing 7-5, the function
that handles onChanged events (the _updateGenderRadio function) does exactly
what you would expect — it changes the radio buttons’ groupValue to whatever
value the user has selected.

WHY BOTHER?
A reader from Minnesota asks, “What good is the enum declaration in Listing 7-5? Why
can’t I assign the String values "Female", "Male", and "Other" directly to the three
radio buttons?”

Good question, reader! Thanks for asking. The answer is, “You’re correct. You can assign
String values to the radio buttons.” You don’t really need an enum to create a group of
radio buttons. The following code with no enum is valid:

String _genderRadioValue;

// And later ...

Radio(

 value: "Female",

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

Radio(

 value: "Male",

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

Radio(

 value: "Other",

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRadio,

),

// And later ...

void _updateGenderRadio(String newValue) {

 setState(() {

 _genderRadioValue = newValue;

 });

}

void _updateResults() {

 setState(() {

CHAPTER 7 Interacting with the User 235

Displaying the user’s choice
The shorten method in Listing 7-5 is a workaround for a slightly annoying Dart
language feature. In Dart, every enum value has a toString method which, in
theory, gives you a useful way to display the value. The problem is that, when you
apply the toString method, the result is always a verbose name. For example,
Gender.Female.toString() is "Gender.Female", and that’s not quite what you
want to display. In Figure 7-10, the user sees the sentence You selected Female
instead of the overly technical sentence You selected Gender.Female sentence.

Applying the replaceAll("Gender.", "") method call turns "Gender." into the
empty string, so "Gender.Female" becomes plain old "Female". Problem
solved! — or maybe not.

 _messageToUser = "You selected $_genderRadioValue.";

 });

}

So, in Listing 7-5, why do I bother creating the Gender enum? And the answer is, genders
aren’t strings. Being male doesn’t mean that a person carries around the four letters m,
then a, then l, and then e. Instead, maleness is one of two or more possibilities, another
possibility being femaleness. The best way to represent genders in the code is to enu-
merate the alternatives, not to use a few strings and hope that no one misspells them.

Consider this code that uses the String type:

String _genderRadioValue = "Femail";

The code is incorrect but, as far as the Dart language is concerned, the code is peachy
keen.

Now, consider this code that uses an enum type:

enum Gender { Female, Male, Other }

Gender _genderRadioValue = Gender.Femail;

The code is incorrect, and Dart refuses to accept it. With the declaration of the Gender
enum, the programmer guarantees that the only possible values of _genderRadio
Value are Gender.Female, Gender.Male, and Gender.Other. That’s good program-
ming practice. Safety first!

236 PART 3 Details, Details

Look at the declaration of _genderRadioValue in Listing 7-5:

Gender _genderRadioValue;

This declaration doesn’t assign anything to _genderRadioValue, so _gender
RadioValue starts off being null. That’s good because having null for _gender
RadioValue means that none of the radio group’s buttons is checked. That’s
exactly what you want when the app starts running.

But what if the user presses Submit without selecting one of the radio buttons?
Then _genderRadioValue is still null, so the shorten method’s gender parame-
ter is null. Inside the shorten method, you have the following nasty situation:

String shorten(Gender null) => null.toString().replaceAll("Gender.", "");

Oops! When you apply toString() to null, you get "null" (the string consisting
of four characters). If you don’t do anything about that, the message on the user’s
screen becomes You selected null. That’s not user-friendly!

"null" is a four-letter word.

In Listing 7-5, the Submit button’s onPressed handler responds appropriately
whenever _genderRadioValue is null. Here’s the code:

RaisedButton(

 child: Text("Submit"),

 onPressed: _genderRadioValue != null ? _updateResults : null,

),

If _genderRadioValue isn’t null, the handler is a nice, conventional _update
Results method — a method that creates a _messageToUser and displays that
message inside a Text widget. Nothing special there.

But when _genderRadioValue is null, the Submit button’s onPressed handler is
also null. And the good news is, a RaisedButton with a null handler is com-
pletely disabled. The user can see the button, but the button’s surface is greyed
out, and pressing the button has no effect. That’s great! If no gender is selected
and the user tries to press the Submit button, nothing happens and no message
appears.

CHAPTER 7 Interacting with the User 237

¿WHAT DO ?. AND ?? DO?
In Listing 7-5, the Submit button is lifeless until the user selects a gender. Are there
other ways to approach the no-selection-yet problem? This sidebar explores two of the
alternatives. First, here’s a boring alternative:

RaisedButton(

 child: Text("Submit"),

 onPressed: _updateResults,

),

// And later in the code ...

void _updateResults() {

 setState(() {

 if (_genderRadioValue != null) {

 _messageToUser = "You selected ${shorten(_genderRadioValue)}.";

 } else {

 _messageToUser = "You selected nothing yet.";

 }

 });

}

In this version of the code, the Submit button is always enabled, and the method that
handles a button click (the _updateResults method) treats _genderRadioValue
being null as a special case. (See this sidebar’s first figure.) Putting an if statement
inside the _updateResults method certainly works but, like I say, it’s boring.

What’s not boring are Dart’s null-aware operators. Here’s some code:

String shorten(Gender gender) => gender?.toString()?.

replaceAll("Gender.", "");

_messageToUser =

 "You selected ${shorten(_genderRadioValue) ?? 'nothing yet'}.";

(continued)

238 PART 3 Details, Details

A null-aware operator is a thingamajig that does something special when you apply it to
a null value. Take, for example, Dart’s ?. operator.

• If gender is null, then gender.toString() is "null".

That’s what happens when you don’t use Dart’s ?. operator. In Dart, everything has
its own toString method. What better string representation for the null value
than the string "null"?

• If gender is null, then gender?.toString() is null.

That’s what happens when you use Dart’s ?. operator. Whenever someValue is
null, someValue?.something_else is null. That’s the rule.

This sidebar’s second figure illustrates the behavior of the shorten method with and
without ?. operators.

(continued)

CHAPTER 7 Interacting with the User 239

Creating a Dropdown Button
As soon as word gets around about Doris’s dating app, everyone wants a piece of
the action. Doris’s friend Hilda wants a dropdown button to gauge the potential
mate’s level of commitment. Hilda wants a committed relationship and possibly
marriage. Listing 7-6 shows some of the code that Doris writes for Hilda.
Figures 7-12, 7-13, and 7-14 show the code in action.*

What can you do when the entire shorten method returns null? Another one of Dart’s
null-aware operators — the ?? operator — can take care of the null value. The
expression

shorten(_genderRadioValue) ?? 'nothing yet'

stands for either shorten(_genderRadioValue) or 'nothing yet'. To be a bit more
precise,

• The ?? expression stands for shorten(_genderRadioValue) unless shorten(_
genderRadioValue) is null.

• If shorten(_genderRadioValue) is null, the ?? expression stands for 'nothing
yet'.

The ?? operator has a name. It’s called the if-null operator. When you use the if-null
operator in combination with ?. operators, you get a result like the one in this sidebar’s
first figure.

FIGURE 7-12:
The user hasn’t

decided yet.

* Thanks to David Nesterov–Rappoport, for creating the Heart and BrokenHeart
images shown in Figures 7-13 and 7-14.

240 PART 3 Details, Details

LISTING 7-6: What Are You Looking For?

// This listing is missing some parts. See App0705 in the files that

// you download from this book's website (www.allmycode.com/Flutter).

enum Relationship {

 Friend,

 OneDate,

 Ongoing,

 Committed,

 Marriage,

}

Map<Relationship, String> show = {

 Relationship.Friend: "Friend",

 Relationship.OneDate: "One date",

 Relationship.Ongoing: "Ongoing relationship",

 Relationship.Committed: "Committed relationship",

 Relationship.Marriage: "Marriage",

};

FIGURE 7-13:
A user with

cold feet.

FIGURE 7-14:
A serious user.

CHAPTER 7 Interacting with the User 241

List<DropdownMenuItem<Relationship>> _relationshipsList = [

 DropdownMenuItem(

 value: Relationship.Friend,

 child: Text(show[Relationship.Friend]),

),

 DropdownMenuItem(

 value: Relationship.OneDate,

 child: Text(show[Relationship.OneDate]),

),

 DropdownMenuItem(

 value: Relationship.Ongoing,

 child: Text(show[Relationship.Ongoing]),

),

 DropdownMenuItem(

 value: Relationship.Committed,

 child: Text(show[Relationship.Committed]),

),

 DropdownMenuItem(

 value: Relationship.Marriage,

 child: Text(show[Relationship.Marriage]),

),

];

class _MyHomePageState extends State<MyHomePage> {

 Relationship _relationshipDropdownValue;

// And later in the program ...

 /// Build

 Widget _buildDropdownButtonRow() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.start,

 children: <Widget>[

 DropdownButton<Relationship>(

 items: _relationshipsList,

 onChanged: _updateRelationshipDropdown,

 value: _relationshipDropdownValue,

 hint: Text("Select One"),

),

 if (_relationshipDropdownValue != null)

 FlatButton(

 child: Text(

 "Reset",

 style: TextStyle(color: Colors.blue),

),

(continued)

242 PART 3 Details, Details

 onPressed: _reset,

),

],

);

 }

 Widget _buildResultsImage() {

 if (_relationshipDropdownValue != null) {

 return Image.asset((_relationshipDropdownValue.index >= 3)

 ? "Heart.png"

 : "BrokenHeart.png");

 } else {

 return SizedBox();

 }

 }

 /// Actions

 void _reset() {

 setState(() {

 _relationshipDropdownValue = null;

 });

 }

 void _updateRelationshipDropdown(Relationship newValue) {

 setState(() {

 _relationshipDropdownValue = newValue;

 });

 }

}

Building the dropdown button
A DropdownButton constructor has several parameters, one of which is a list of
items. Each item is an instance of the DropdownMenuItem class. Each such instance
has a value and a child. (See Figure 7-15.)

 » An item’s value is something that identifies that particular item.

In Listing 7-6, the items’ values are Relationship.Friend, Relationship.
OneDate, and so on. They’re all members of the Relationship enum. You
don’t want things like Relationship.OneDate appearing on the surface of a
menu item, so . . .

 » An item’s child is the thing that’s displayed on that item.

LISTING 7-6: (continued)

CHAPTER 7 Interacting with the User 243

In Listing 7-6, the items’ children are all Text widgets, but you can display all
kinds of things on the dropdown items. For example, an item’s child can be a
Row containing a Text widget and an Icon widget.

In addition to its list of items, a DropdownButton constructor has onChanged,
value, and hint parameters.

 » The onChanged parameter does what such parameters do in so many
other constructors.

The parameter refers to a function that handles the user’s taps, presses,
tweaks, and pokes.

 » At any moment, the value parameter refers to whichever dropdown
button item is selected.

 » The hint parameter tells Flutter what to display when none of the
dropdown button’s items has been selected.

In this section’s example, Flutter displays the words Select One.

A dropdown button’s hint is typically displayed before the user has chosen any
of the button’s items. But Listing 7-6 has a Reset button. When the user presses
the Reset button, the button’s onPressed handler sets _relationshipDrop
downValue back to null, so the dropdown button’s hint reappears.

FIGURE 7-15:
Anatomy of a

dropdown
button.

244 PART 3 Details, Details

The little Reset button
The Reset button in Listing 7-6 is interesting for more than one reason. First,
it’s not a RaisedButton. Instead, it’s a FlatButton. A FlatButton is like a
RaisedButton except . . . well, a FlatButton is flat. (See Figures 7-13 and 7-14.)

Another reason to wallow in the Reset button’s code is because of a peculiar Dart
language feature — one that’s available only from Dart 2.3 onward. Here’s
an abridged version of the _buildDropdownButtonRow method’s code in
Listing 7-6:

Widget _buildDropdownButtonRow() {

 return Row(

 children: <Widget>[

 DropdownButton<Relationship>(

),

 if (_relationshipDropdownValue != null)

 FlatButton(

),

],

);

}

In this code, the Row widget’s children parameter is a list, and the list consists of
two items: a DropdownButton and something that looks like an if statement. But
appearances can be deceiving. The thing in Listing 7-6 isn’t an if statement. The
thing in Listing 7-6 is a collection if. In Chapter 4, I unceremoniously sneak in the
word collection to describe Dart’s List, Set, and Map types. A collection if helps
you define an instance of one of those types.

In Listing 7-6, the meaning of the collection if is exactly what you’d guess.
If _relationshipDropdownValue isn’t null, the list includes a FlatButton.
Otherwise, the list doesn’t include a FlatButton. That makes sense because, when
_relationshipDropdownValue is null, there’s no sense in offering the user an
option to make it be null.

In addition to its collection if, the Dart programming language has a collection
for. You can read about the collection for in Chapter 8.

CHAPTER 7 Interacting with the User 245

Making a Map
Chapter 4 introduces Dart’s types, one of which is the Map type. A Map is a lot like
a dictionary. To find the definition of a word, you look up the word in a dictionary.
To find a user-friendly representation of the enum value Relationship.OneDate,
you look up Relationship.OneDate in the show map.

Relationship.Friend /ri-lAY-shuhn-ship frEnd/ n. Friend.

Relationship.OneDate /ri-lAY-shuhn-ship wUHn dAYt/ n. One date.

Relationship.Ongoing /ri-lAY-shuhn-ship AWn-goh-ing/ adj. Ongoing relationship.

Relationship.Committed /ri-lAY-shuhn-ship kuh-mIt-uhd / adj. Committed
relationship.

Relationship.Marriage /ri-lAY-shuhn-ship mAIR-ij / n. Marriage.

To be a bit more precise, a Map is a bunch of pairs, each pair consisting of a key
and a value. In Listing 7-6, the variable show refers to a map whose keys are
Relationship.Friend, Relationship.OneDate, and so on. The map’s values are
"Friend", "One date", "Ongoing relationship", and so on. See Table 7-1.

In a Dart program, you use brackets to look up a value in a map. For example,
in Listing 7-6, looking up show[Relationship.OneDate] gives you the string
"One date".

In addition to their keys and values, each map entry has an index. An entry’s index
is its position number in the declaration of the map, starting with position
number 0. Doris’s buddy Hilda wants a committed relationship and possibly
 marriage. So the code in Listing 7-6 checks this condition:

When this condition is true, the app displays a heart to indicate a good match.
Otherwise, the app displays a broken heart. (Sorry, Hilda.)

TABLE 7-1 The show Map
Key Value Index

Relationship.Friend "Friend" 0

Relationship.OneDate "One date" 1

Relationship.Ongoing "Ongoing relationship" 2

Relationship.Committed "Committed relationship" 3

Relationship.Marriage "Marriage" 4

246 PART 3 Details, Details

Onward and Upward
Doris’s work on the dating app has paid off in spades. Doris is now in a committed
relationship with an equally geeky Flutter developer — one who’s well over 18 and
who earns just enough money to live comfortably. Doris and her mate will live
happily ever after, or at least until Google changes the Dart language specification
and breaks some of Doris’s code.

The next chapter is about navigation. How can your app go from one page to
another? When the user finishes using the new page, how can your app go back?
With more than one page in your app, how can the pages share information? For
the answers to these questions, simply turn to this book’s next page!

CHAPTER 8 Navigation, Lists, and Other Goodies 247

Chapter 8
Navigation, Lists, and
Other Goodies

I
n researching this chapter, I learned some interesting things about the art of
page-turning:

 » The web has many sites to help musicians solve their page-turning problems.
Some sites offer advice on the best ways to turn pages manually. Others offer
mechanical solutions with foot pedals to control flipping devices. Scholarly
papers survey the alternatives and draw conclusions based on studies.

 » For nonmusicians, several sites describe build-it-yourself page-turning
contraptions. None of these devices improves the homey look of a person’s
living room or study.

 » One site describes, in ten steps, how a person can use their hands to turn the
page of a book. The site has illustrations and detailed instructions for each of
the ten steps. (I thought I already knew how to turn pages, but maybe I was
wrong!)

 » On one forum, I saw a link to a site that sells the most professional page-turning
device. When I clicked the link, a run-on sentence announced, “We are sorry,
the requested page could not be found.” Maybe what they meant was, “The
requested page-turning device could not be found.”

IN THIS CHAPTER

 » Moving from one page to another

 » Displaying a list of similar items

 » Grabbing info from the Web

248 PART 3 Details, Details

 » Flutter’s Navigator class can transition within an app from one page to
another. In fact, Flutter’s navigation features are so important that one book
has an entire chapter devoted to the subject. The name of the book is Flutter
For Dummies, and the chapter in that book is Chapter 8.

Extending a Dart Class
If I’m not careful, the code listings in this book can become unbearably long. A
simple example to illustrate one new concept may consume several pages. You’d
need magic powers to find each listing’s new and interesting code. To combat this
difficulty, I divide some sections’ examples into two files — one file containing
boilerplate code and another file containing the section’s new features. When
I march from one section to the next, I reuse the file containing the boilerplate
code and introduce a separate file containing only the new features.

All is well and good until I try to split a particular class’s code between two files.
Imagine that I have two files. One file’s name is ReuseMe.dart:

// This is ReuseMe.dart

import 'MoreCode.dart';

class ReuseMe {

 int x = 229;

}

main() => ReuseMe().displayNicely();

The other file’s name is MoreCode.dart.

// This is a bad version of MoreCode.dart

import 'ReuseMe.dart';

void displayNicely() {

 print('The value of x is $x.');

}

What could possibly go wrong?

CHAPTER 8 Navigation, Lists, and Other Goodies 249

Here’s what goes wrong: The declaration of displayNicely isn’t inside the
ReuseMe class. In this pair of files, displayNicely is a lonely function that sits
outside of any particular class. This causes two problems:

 » The line ReuseMe().displayNicely() makes no sense.

 » The displayNicely function can’t casually refer to the ReuseMe class’s x
variable.

This code is bogus. Throw it out!

But wait! A sneaky trick can rescue this example. Since Dart’s 2.7 version, I can
add methods to a class without putting them inside the class’s code. I indicate this
business using Dart’s extension keyword. Here’s how I do it:

// This is a good version of MoreCode.dart

import 'ReuseMe.dart';

extension MyExtension on ReuseMe {

 void displayNicely() {

 print('The value of x is $x.');

 }

}

After making this change, the displayNicely function becomes a method belong-
ing to the ReuseMe class. Dart behaves as if I had written the following code:

// The extension keyword makes Dart pretend that I wrote this code:

class ReuseMe {

 int x = 229;

 void displayNicely() {

 print('The value of x is $x.');

 }

}

Inside the displayNicely method’s body, the name x refers to the ReuseMe class’s
x variable. And every instance of the ReuseMe class has a displayNicely method.
So the call ReuseMe().displayNicely() makes perfect sense.

Everything works. And, best of all, I can swap out the MoreCode.dart file for
another version of the file whenever I want.

250 PART 3 Details, Details

// Another good version of MoreCode.dart

import 'ReuseMe.dart';

extension MyExtension on ReuseMe {

 void displayNicely() {

 print(' * $x * ');

 print(' ** $x ** ');

 print(' *** $x ***');

 print('**** $x ****');

 }

}

I can change the displayNicely function without touching the file that contains
the original ReuseMe class declaration. That’s handy!

Extensions aren’t available in all versions of Dart. If Android Studio complains to
you about your use of extensions, look for the environment section of your proj-
ect’s pubspec.yaml file. That environment section may look something like this:

environment:

 sdk: ">=2.1.0 <3.0.0"

Change the lower Dart version number like so:

environment:

 sdk: ">=2.6.0 <3.0.0"

The name of an extension distinguishes that extension from any other extensions
on the same class. For example, imagine that I’ve defined MyExtension and you’ve
defined YourExtension, both on the ReuseMe class:

extension YourExtension on ReuseMe {

 void displayNicely() {

 print('!!! $x !!!');

 }

}

With two extensions declaring displayNicely methods, the expression
ReuseMe().displayNicely() is ambiguous. To clear up the confusion, name one
of the extensions explicitly:

YourExtension(ReuseMe()).displayNicely()

CHAPTER 8 Navigation, Lists, and Other Goodies 251

From One Page to Another
You’ve probably used an app with a master-detail interface. A master-detail inter-
face has two pages. The first page displays a list of items. When the user selects an
item in the list, a second page displays details about that item. This chapter’s first
example (in Listings 8-1 and 8-2) has a stripped-down master-detail interface.
And why do I say “stripped-down”? The master page’s list consists of only one
item — the name of a particular movie.

LISTING 8-1: Reuse This Code

// App08Main.dart

import 'package:flutter/material.dart';

import 'App0802.dart'; // Change this line to App0803, App0804, and so on.

void main() => runApp(App08Main());

class App08Main extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: MovieTitlePage(),

);

 }

}

class MovieTitlePage extends StatefulWidget {

 @override

 MovieTitlePageState createState() => MovieTitlePageState();

}

class MovieTitlePageState extends State<MovieTitlePage> {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text(

 'Movie Title',

),

),

 body: Padding(

 padding: const EdgeInsets.all(16.0),

 child: Center(

(continued)

252 PART 3 Details, Details

 child: buildTitlePageCore(),

),

),

);

 }

}

class DetailPage extends StatelessWidget {

 final overview = '(From themoviedb.com) One day at work, unsuccessful '

 'puppeteer Craig finds a portal into the head of actor John '

 'Malkovich. The portal soon becomes a passion for anybody who '

 'enters its mad and controlling world of overtaking another human '

 'body.';

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text(

 'Details',

),

),

 body: Padding(

 padding: const EdgeInsets.all(16.0),

 child: Center(

 child: buildDetailPageCore(context),

),

),

);

 }

}

LISTING 8-2: Basic Navigation

// App0802.dart

import 'package:flutter/material.dart';

import 'App08Main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

 goToDetailPage() {

 Navigator.push(

 context,

 MaterialPageRoute(

LISTING 8-1: (continued)

CHAPTER 8 Navigation, Lists, and Other Goodies 253

 builder: (context) => DetailPage(),

),

);

 }

 Widget buildTitlePageCore() {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 Text(

 'Being John Malkovich',

 textScaleFactor: 1.5,

),

 SizedBox(height: 16.0),

 RaisedButton.icon(

 icon: Icon(Icons.arrow_forward),

 label: Text('Details'),

 onPressed: goToDetailPage,

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

 Widget buildDetailPageCore(context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 Text(

 overview,

),

],

);

 }

}

To run this chapter’s first app, your project must contain both Listing 8-1 and
Listing 8-2. Each of these listings depends on code from the other listing. In fact,
many of this chapter’s listings depend on the code from Listing 8-1.

Listings 8-1 and 8-2 must be in separate .dart files because both listings contain
import declarations.

254 PART 3 Details, Details

Listing 8-2 doesn’t have a main method. So, to run the app in Listings 8-1 and 8-2,
you look for the App08Main.dart tab above Android Studio’s editor. You right-
click that tab and then select Run ’App08Main.dart’ from the menu that appears.

Figures 8-1 and 8-2 show the pages generated by the code in Listings 8-1 and 8-2.

Figure 8-1 shows the app’s starting page — a page with a RaisedButton on it.
When the user presses this button, Flutter calls the goToDetailPage method in
Listing 8-2. The goToDetailPage method calls the Navigator class’s push
method. The parameters of the push method point directly to the DetailPage
class. So the app jumps to its second page — the DetailClass page in
Figure 8-2.

The upper left corner of Figure 8-2 has a little backward-pointing arrow. Flutter
creates that arrow automatically whenever it navigates to a page that has an app
bar. When the user presses that arrow, the app returns to the first page — the
MovieTitlePage.

An icon on a button
For a tiny bit of cuteness, I add an icon (a little forward-pointing arrow) to the
RaisedButton in Figure 8-1. To make this happen, I use the word icon a bunch of
times in Listing 8-2. Rather than call the ordinary RaisedButton constructor,
I call Flutter’s RaisedButton.icon constructor. Then, for the constructor’s icon

FIGURE 8-1:
A very simple
master page.

FIGURE 8-2:
A very simple

detail page.

CHAPTER 8 Navigation, Lists, and Other Goodies 255

parameter, I write Icon(Icons.arrow_forward), which means, “Construct an
actual Icon widget whose appearance is that of Flutter’s built-in Icons.arrow_
forward value.”

Flutter has a whole bunch of built-in icons. Most of them are familiar user inter-
face icons, like volume_up, warning, and signal_cellular_4_bar. But others are
ones you don’t expect to find. For example, Flutter has a pets icon (a picture of a
paw), a casino icon (the face of a die), and an airline_seat_legroom_reduced
icon (a person scrunched into a small space).

Pushing and popping
Here’s some useful terminology:

 » A page that calls Navigator.push is a source page.

In Listings 8-1 and 8-2, the MovieTitlePage is a source page.

 » A page that the user sees as a result of a Navigator.push call is a destination
page.

In Listings 8-1 and 8-2, the DetailPage is a destination page.

Some transitions go from a source page to a destination page; others go from a
destination page back to a source page. In this section’s example,

 » The user presses the RaisedButton in Figure 8-1 to go from source to
destination.

 » The user presses the app bar’s Back button in Figure 8-2 to go from destina-
tion to source.

For the most part, a mobile app’s transitions form a structure known as a stack. To
create a stack, you pile each new page on top of all the existing pages. Then, when
you’re ready to remove a page, you remove the page that’s at the top of the stack.
It’s like a seniority system for pages. The youngest page is the first to be removed.
With this Last-In-First-Out (LIFO) rule, the user forms a clear mental image of his
or her place among the app’s pages.

Here’s a bit more terminology:

 » When you add something to the top of a stack, you’re pushing it onto the stack.

 » When you remove something from the top of a stack, you’re popping it off the
stack.

256 PART 3 Details, Details

In Listing 8-2, the name Navigator.push suggests the pushing of a page onto a
stack of pages. In fact, when I think about page transitions, I always imagine
pages on top of pages. The most recent page obscures the older pages that lie
below it. During a run of this chapter’s first app, the DetailPage sits comfortably
on top of the MovieTitlePage, completely obscuring the MovieTitlePage from
the user’s view.

In some situations, the notion of piling one page on top of another isn’t appropri-
ate. Maybe you don’t want to push a destination page on top of a source page.
Instead, you want to replace a source page with a destination page. To do this in
Listing 8-2, you make one tiny change: You change the words Navigator.push to
the words Navigator.pushReplacement. When you do, the MovieTitlePage looks
as it does in Figure 8-1, but the DetailPage differs a bit from the image in
 Figure 8-2. In the new DetailPage, the app bar has no Back button.

In Flutter, screens and pages are called routes. That’s why Listing 8-2 contains a
MaterialPageRoute constructor call.

To make your app look like an iPhone app, use Flutter’s Cupertino widgets instead
of the Material Design widgets and construct a CupertinoPageRoute rather than
a MaterialPageRoute. A CupertinoPageRoute makes page transitions look
“Apple-like.” For more on Flutter’s Cupertino widgets, refer to Chapter 3.

Passing Data from Source to Destination
Sometimes, you want to pass information from one page to another. The next
example (see Listing 8-3) shows you how a source sends information to a
destination.

Before you try to run this section’s app, change one of the import lines in
 Listing 8-1. Change 'App0802.dart' to 'App0803.dart'. Make similar changes to
run Listings 8-3, 8-4, 8-5, 8-7, 8-8, and 8-10.

LISTING 8-3: From Movie Title Page to Detail Page

// App0803.dart

import 'package:flutter/material.dart';

import 'App08Main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

 static bool _isFavorite = true; // You can change this to false.

CHAPTER 8 Navigation, Lists, and Other Goodies 257

 goToDetailPage() {

 Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => DetailPage(),

 settings: RouteSettings(

 arguments: _isFavorite,

),

),

);

 }

 Widget buildTitlePageCore() {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 Text(

 'Being John Malkovich',

 textScaleFactor: 1.5,

),

 SizedBox(height: 16.0),

 RaisedButton.icon(

 icon: Icon(Icons.arrow_forward),

 label: Text('Details'),

 onPressed: goToDetailPage,

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

 Widget buildDetailPageCore(context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 Text(

 overview,

),

 Visibility(

 visible: ModalRoute.of(context).settings.arguments ?? false,

 child: Icon(Icons.favorite),

),

],

);

 }

}

258 PART 3 Details, Details

Figure 8-3 shows you the DetailPage generated by the code in Listings 8-1
and 8-3. A little heart indicates that Being John Malkovich is a favorite movie.

Figure 8-4 illustrates the trip made by the _isFavorite variable’s value in a run
of this section’s example.

When Flutter displays the detail page, the value of

ModalRoute.of(context).settings.arguments

is true. It’s as if the code near the bottom of Listing 8-3 looked like this:

// Remember, I said "as if" the code looked like this...

Visibility(

 visible: true,

 child: Icon(Icons.favorite),

),

FIGURE 8-3:
The Favorite icon

on the detail
page.

FIGURE 8-4:
Passing the value

of _isFavorite
from place to

place.

CHAPTER 8 Navigation, Lists, and Other Goodies 259

A Visibility widget either shows or hides its child depending on the value of its
visible parameter. So, in this example, Flutter’s built-in favorite icon appears
on the user’s screen.

In Listing 8-3, you can change the declaration of _isFavorite like this:

static bool _isFavorite = false;

When you do, the movie title page passes false to the detail page. So, the
Visibility widget’s visible property becomes false, and the little favorite
icon doesn’t appear.

In Listing 8-3, the variable _isFavorite is static. One consequence of this is
that hot restarting the app doesn’t work. If you change _isFavorite from true to
false, and then save your code, the little heart icon doesn’t go away. To make that
change in the value of _isFavorite take effect, stop the run of the app and then
start it again.

RUBE GOLDBERG WOULD BE PLEASED
I admit it: I’ve never seen a more complicated way of making a tiny icon appear than the
way it’s done in Listing 8-3. But remember, passing information from one page to
another is important, whether you’re passing a simple _isFavorite value or a large
chunk of medical data. Dividing an app into pages keeps the pages uncluttered. It also
lends continuity to the flow of an app.

Chapter 5 tells you that Dart has top-level variables — variables that aren’t declared
inside of a class. If you put all of your app’s code in one file, all the code in your app can
refer directly to those top-level variables. So why do you need this section’s arguments
feature? Why not let your master and detail pages share the values of top-level
variables?

The answer is, top-level variables can be dangerous. While Mary withdraws funds on
one page, another page processes an automatic payment and nearly empties Mary’s
account. As a result, Mary overdraws her account and owes a hefty fee to the bank.
That’s not good.

Use top-level variables sparingly. Don’t use top-level variables to pass information
between pages. Instead, use Flutter’s arguments feature.

260 PART 3 Details, Details

In this section, I commit a major-league sin. I want to keep this chapter’s examples
as simple as possible, so Listings 8-1 and 8-3 provide no way for the user to
change the _isFavorite value. Instead, I invite you, the reader, to reach into
 Listing 8-3, change _isFavorite to false, and then rerun the code. It’s a horrible
way to unfavorite a movie — like telling banking account customers to edit their
account pages’ source code — but it gets the job done.

A STATIC VARIABLE
In Listing 8-3, the declaration of _isFavorite starts with the word static. Any vari-
able that you declare in an extension, rather than inside any of the extension’s methods,
must be static. If you follow that rule blindly, you can understand Listing 8-3 without
knowing what static means.

But, if you want to know what static means, consider this tiny bit of code from
Chapter 7:

 ... => _MyHomePageState();

// ... and later ...

class _MyHomePageState extends State<MyHomePage> {

 bool _ageSwitchValue = false;

In the first line, a constructor call creates an instance of the _MyHomePageState
class. A bit later on, the code gives _MyHomePageState an instance variable named
_ageSwitchValue. The code doesn’t have any other _MyHomePageState
constructor calls, so you have only one _MyHomePageState instance, and only
one _ageSwitchValue variable.

In some programs, you may have occasion to call the _MyHomePageState constructor
twice. If you do, you’ll have two instances of _MyHomePageState, each with its own _
ageSwitchValue variable. If you make an assignment such as _ageSwitchValue =
true in one of the instances, it has no effect on the _ageSwitchValue variable in the
other instance. That’s the way instance variables work, but . . .

. . . that’s not the way static variables work. In Listing 8-3, the _isFavorite variable
is static. If you happen to declare two instances of MovieTitlePageState, both
instances share one _isFavorite variable. If you make an assignment such as
_isFavorite = true in one of the instances, it sets the _isFavorite value for both
instances.

CHAPTER 8 Navigation, Lists, and Other Goodies 261

In a RouteSettings constructor call, the parameter name arguments is a bit
 misleading. That parameter can have only one value at a time — a value such as
_isFavorite. So why is the parameter name plural (arguments) instead of singu-
lar (argument)? It’s plural because the single thing that you pass to another page
can have several parts. For example, you can pass many values by making the one
and only arguments value be a list:

settings: RouteSettings(

 arguments: [_isFavorite, _isInTheaters, _isAComedy,],

),

Passing Data Back to the Source
In the previous section, the code uses Navigator.push to send a value from a
source to a destination. That’s cool, but how can the destination send values back
to the source? Listing 8-4 has an answer.

LISTING 8-4: From Detail Page to Movie Title Page

// App0804.dart

import 'package:flutter/material.dart';

import 'App08Main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

 static bool _isFavorite;

 goToDetailPage() async {

 _isFavorite = await Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => DetailPage(),

),

) ??

 _isFavorite;

 }

 Widget buildTitlePageCore() {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

(continued)

262 PART 3 Details, Details

 Row(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Text(

 'Being John Malkovich',

 textScaleFactor: 1.5,

),

 Visibility(

 visible: _isFavorite ?? false,

 child: Icon(Icons.favorite),

),

],

),

 SizedBox(height: 16.0),

 RaisedButton.icon(

 icon: Icon(Icons.arrow_forward),

 label: Text('Details'),

 onPressed: goToDetailPage,

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

 Widget buildDetailPageCore(context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 Text(

 overview,

),

 SizedBox(height: 16.0),

 RaisedButton(

 child: Text(

 'Make it a Favorite!',

),

 onPressed: () {

 Navigator.pop(context, true);

 },

),

],

);

 }

}

LISTING 8-4: (continued)

CHAPTER 8 Navigation, Lists, and Other Goodies 263

Figure 8-5 illustrates the action that takes place during a run of this section’s
example.

The code in Listing 8-4 creates the DetailPage that you see in Figure 8-6.

The DetailPage has two buttons — one on the app bar (a Back button) and one
beneath the movie’s overview (the Make it a Favorite! button). If the user presses
the app bar’s Back button, nothing exciting happens. The app returns to a
MovieTitlePage like the one in Figure 8-1. But, if the user presses the Make it a
Favorite! button, Flutter executes the following statement:

Navigator.pop(context, true);

Flutter pops the DetailPage off of its stack and sends the value true back to
the MovieTitlePage. In the MovieTitlePage, an assignment with a mysterious
looking await word sets _isFavorite to true:

FIGURE 8-5:
The flow of traffic

in Listing 8-4.

FIGURE 8-6:
A button on the

detail page offers
an option.

264 PART 3 Details, Details

_isFavorite = await Navigator.push(

 // ... Etc.

Finally, with _isFavorite set to true, the MovieTitlePage displays a little heart
icon, as you see in Figure 8-7.

Dart’s async and await keywords
A user launches the app in Listing 8-4, navigates from the MovieTitlePage to the
DetailPage, and then pauses to have a cup of coffee. This user insists on having
only the best coffee. With a smartphone displaying the DetailPage, this user
takes an airplane to Vietnam, buys a fresh cup of Kopi Luwak (coming from a palm
civet’s digestive tract), and then flies home. Finally, three days after having
launched this section’s app, the user presses the Make it a Favorite! button, which
returns true to the app’s MovieTitlePage.

You never know how long a user will linger on the app’s DetailPage. That’s
why Flutter’s Navigator.push method doesn’t really get true back from the
DetailPage. Instead, a call to Navigator.push returns an object of type Future.

A Future object is a callback of sorts. It’s a box that may or may not contain a
value like true. While our coffee-loving user is visiting Vietnam, the Future box
has nothing inside of it. But later, when the user returns home and clicks the Make
it a Favorite! button, the Future box contains the value true. This is how Flutter
manages a “don’t know when” navigation problem.

What would happen with the following code?

// Bad code because await is missing:

static bool _isFavorite;

// And elsewhere, ...

_isFavorite = Navigator.push(

 // ... Etc.

FIGURE 8-7:
A Favorite icon on

the movie title
page.

CHAPTER 8 Navigation, Lists, and Other Goodies 265

In this erroneous code, the call to Navigator.push tries to hand a Future object
to the _isFavorite variable. But the _isFavorite variable will have none of it
because the _isFavorite variable’s type is bool, not Future. What’s a developer
to do?

Listing 8-4 solves this problem using Dart’s await keyword. An await keyword
does two things:

 » The await keyword tells Dart not to continue executing the current line until
the Future box has something useful inside it.

In Listing 8-4, Dart doesn’t assign anything to _isFavorite until the
DetailPage has been popped.

 » When the DetailPage has been popped, the await keyword retrieves the
useful value from the Future box.

In Listing 8-4, the call to Navigator.push is a Future value, but the expres-
sion await Navigator.push(// ... etc is a bool value. (See Figure 8-8.)
Your code assigns this bool value to _isFavorite, which, appropriately
enough, is a bool variable.

A function that contains the await keyword may take a long time to finish exe-
cuting. If you’re not careful, the entire app may come to a screeching halt while

FIGURE 8-8:
The correct

combination of
types.

266 PART 3 Details, Details

await does its awaiting. So, in addition to the await keyword, Dart has an async
keyword and a rule to go along with this keyword:

If a function declaration contains the await keyword, that declaration must also
include the async keyword.

(Refer to Listing 8-4.) The async keyword tells Dart that it’s okay to execute some
other code while this function sits there, doing nothing, executing its await
 keyword. That way, the app may continue whatever else it’s doing while our
friend, the Kopi Luwak coffee lover, visits Vietnam.

Taking control of the app bar’s Back button
The app bar button in Figure 8-6 is a backward-pointing arrow. When the user
clicks this button, your app returns to its source page. These two facts are true by
default. But what if you don’t like the defaults? Can you change them? Of course,
you can.

For example, you can change the button’s appearance from a backward arrow to a
red backspace button. To do so, add a leading parameter to an AppBar constructor
call in Listing 8-1.

appBar: AppBar(

 title: Text(

 'Details',

),

 leading: IconButton(

 icon: new Icon(Icons.keyboard_backspace, color: Colors.red),

 onPressed: () => Navigator.pop(context),

),

)

If you don’t want a back button to appear on the app bar, add an automatically
ImplyLeading parameter to the AppBar constructor call.

appBar: AppBar(

 automaticallyImplyLeading: false,

Changing the app bar button’s behavior is trickier. In Listing 8-1, you surround
the Scaffold constructor call with a WillPopScope call:

@override

Widget build(BuildContext context) {

 return WillPopScope(

CHAPTER 8 Navigation, Lists, and Other Goodies 267

 onWillPop: () => _onPop(context),

 child: Scaffold(

In the WillPopScope constructor call, the onWillPop parameter is a function and,
in keeping with the word Will in onWillPop, that function returns a Future.
Here’s a small example:

Future<bool> _onPop(BuildContext context) async {

 return await showDialog(

 context: context,

 child: AlertDialog(

 title: Text("The back button doesn't work"),

 content: Text('Sorry about that, Chief.'),

 actions: <Widget>[

 new FlatButton(

 onPressed: () => Navigator.pop(context, false),

 child: Text('OK'),

),

],

),

) ??

 false;

}

When the user clicks the back button on the DetailPage app bar, Flutter displays
a dialog box containing a FlatButton labeled OK. (See Figure 8-9.) When the user
clicks the FlatButton, Flutter dismisses the dialog box.

Passing Data in Both Directions
This section’s example is a bit more realistic than examples in the previous sec-
tions. In this section, the source and destination pages pass information back and
forth. The code is in Listing 8-5.

FIGURE 8-9:
You Can’t Go
Home Again

(Thomas Wolfe).

268 PART 3 Details, Details

LISTING 8-5: From Title Page to Detail Page and Back Again

// App0805.dart

import 'package:flutter/material.dart';

import 'App08Main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

 static bool _isFavorite;

 goToDetailPage() async {

 _isFavorite = await Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => DetailPage(),

 settings: RouteSettings(

 arguments: _isFavorite,

),

),

) ??

 _isFavorite;

 }

 Widget buildTitlePageCore() {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 Row(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Text(

 'Being John Malkovich',

 textScaleFactor: 1.5,

),

 Visibility(

 visible: _isFavorite ?? false,

 child: Icon(Icons.favorite),

),

],

),

 SizedBox(height: 16.0),

 RaisedButton.icon(

 icon: Icon(Icons.arrow_forward),

 label: Text('Details'),

 onPressed: goToDetailPage,

),

CHAPTER 8 Navigation, Lists, and Other Goodies 269

],

);

 }

}

extension MoreDetailPage on DetailPage {

 Widget buildDetailPageCore(context) {

 final _isFavoriteArgument =

 ModalRoute.of(context).settings.arguments ?? false;

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 Text(

 overview,

),

 SizedBox(height: 16.0),

 RaisedButton(

 child: Text(

 _isFavoriteArgument ? 'Unfavorite this' : 'Make it a Favorite!',

),

 onPressed: () {

 Navigator.pop(context, !_isFavoriteArgument);

 },

),

],

);

 }

}

In this section’s app, the MainTitlePage and DetailPage share the responsibility
for the movie’s “favorite” status. When the Favorite icon appears, it appears on
the MainTitlePage, but the DetailPage has the button that switches between
“favorite” and “not favorite.”

Figure 8-10 describes the action of this section’s app. In the next several para-
graphs, I guide you through the numbered bullets in that figure.

1. When you launch this section’s app, the value of _isFavorite becomes false.
You see a page with a movie title and a Details button, but no Heart icon. To
see that page as it appears on your phone, refer to Figure 8-1.

When you press the Details button, the goToDetailPage method sends the
value of _isFavorite to the DetailPage:

270 PART 3 Details, Details

MaterialPageRoute(

 builder: (context) => DetailPage(),

 settings: RouteSettings(

 arguments: _isFavorite,

),

),

2. The DetailPage receives the value coming from the MovieTitlePage. The
DetailPage stores that value in its own _isFavoriteArgument variable:

final _isFavoriteArgument =

 ModalRoute.of(context).settings.arguments ?? false;

Using this variable’s value, the DetailPage decides what to display on the face
of a button:

RaisedButton(

 child: Text(

 _isFavoriteArgument ? 'Unfavorite this' : 'Make it a Favorite!',

),

At this point in the app’s run, _isFavoriteArgument is false. So the raised
button displays the sentence Make it a favorite! Figure 8-11 shows you the
DetailPage that appears on your phone.

FIGURE 8-10:
Moving from

page to page.

CHAPTER 8 Navigation, Lists, and Other Goodies 271

If you press the Make It a Favorite! button, Dart’s exclamation point operator
(!) prepares the opposite of _isFavoriteArgument to be sent back to the
MovieTitlePage:

onPressed: () {

 Navigator.pop(context, !_isFavoriteArgument);

},

Because _isFavoriteArgument is false, the DetailPage sends its opposite
(true) back to the MovieTitlePage.

3. Upon receipt of the value true, the MovieTitlePage displays the Heart icon.
Figure 8-12 shows you the MovieTitlePage that appears on your phone.

When you press the Details button, the MovieTitlePage sends true to the
DetailPage.

4. This time, the line

_isFavoriteArgument ? 'Unfavorite this' : 'Make it a Favorite!'

tells the DetailPage to display the Unfavorite This button. Figure 8-13 shows
you the DetailPage that appears on your phone.

FIGURE 8-11:
You can make

this movie a
favorite.

FIGURE 8-12:
This movie is a

favorite.

272 PART 3 Details, Details

If you press the Unfavorite This button, Dart’s exclamation point operator
prepares the opposite of _isFavoriteArgument to be sent back to the
MovieTitlePage. Because _isFavoriteArgument is true, the DetailPage
sends its opposite (false) back to the MovieTitlePage.

5. Upon receipt of the value false, the MovieTitlePage doesn’t display the
Heart icon.

The drawing in Figure 8-10 is what is known as a finite state machine diagram.
Diagrams of this kind help a lot when you want to organize your thoughts about
an app’s page transitions.

Creating Named Routes
Navigation can be complicated. Here’s an example:

“Go where the user wants to go unless the user isn’t logged in, in which case, go
to the login page (but remember where the user wanted to go). If the user logs in
correctly, go where the user wanted to go. Otherwise, go to the ’invalid login’ page,
where the user has the option to go to the ’forgot password’ page. From the ’forget
password’ page . . .” And so on.

In Flutter, screens and pages are called routes, and Flutter lets you assign a name
to each of your routes. This Named Routes feature makes your code a bit more
concise. More importantly, the feature keeps you from going crazy, keeping track
of the user’s paths and detours. The code in Listing 8-6 doesn’t display any movie
data — only app bars and buttons. Even so, the listing shows you how named
routes work.

FIGURE 8-13:
You can

unfavorite
this movie.

CHAPTER 8 Navigation, Lists, and Other Goodies 273

LISTING 8-6: Let’s All Play “Name That Route”

// App0806.dart

import 'package:flutter/material.dart';

void main() => runApp(App0806());

class App0806 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 routes: {

 '/': (context) => MovieTitlePage(),

 '/details': (context) => DetailPage(),

 '/details/cast': (context) => CastPage(),

 '/details/reviews': (context) => ReviewsPage(),

 },

);

 }

}

class MovieTitlePage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return _buildEasyScaffold(

 appBarTitle: 'Movie Title Page',

 body: _buildEasyButton(

 context,

 label: 'Go to Detail Page',

 whichRoute: '/details',

),

);

 }

}

class DetailPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return _buildEasyScaffold(

 appBarTitle: 'Detail Page',

 body: Column(

 children: <Widget>[

 _buildEasyButton(

 context,

 label: 'Go to Cast Page',

 whichRoute: '/details/cast',

),

(continued)

274 PART 3 Details, Details

 _buildEasyButton(

 context,

 label: 'Go to Reviews Page',

 whichRoute: '/details/reviews',

),

],

),

);

 }

}

class CastPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return _buildEasyScaffold(

 appBarTitle: 'Cast Page',

 body: Container(),

);

 }

}

class ReviewsPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return _buildEasyScaffold(

 appBarTitle: 'Reviews Page',

 body: Container(),

);

 }

}

Widget _buildEasyScaffold({String appBarTitle, Widget body}) {

 return Scaffold(

 appBar: AppBar(

 title: Text(appBarTitle),

),

 body: body,

);

}

Widget _buildEasyButton(

 BuildContext context, {

 String label,

 String whichRoute,

}) {

 return RaisedButton(

 child: Text(label),

LISTING 8-6: (continued)

CHAPTER 8 Navigation, Lists, and Other Goodies 275

 onPressed: () {

 Navigator.pushNamed(

 context,

 whichRoute,

);

 },

);

}

The code in Listing 8-6 doesn’t depend on any other listing’s code. Simply place
this section’s code in a .dart file, and then run it.

Figure 8-14 shows the tops of the pages for the app in Listing 8-6.

Other listings in this chapter scatter their routing information willy-nilly
throughout the code. But Listing 8-6 summarizes its routing information in the
MaterialApp constructor’s routes parameter. Notice the hierarchical naming of
the routes in Figure 8-14. The more subordinate the route, the more slash charac-
ters (/) in the route’s name.

As an added bonus, the Navigator class’s pushedNamed method is a bit simpler
than the class’s plain old push method. With simpler code comes less anguish for
you, the developer, and a better chance that the code is correct.

In Listing 8-6, the MaterialApp constructor call has no home parameter. That’s
okay because the constructor’s routes parameter takes up the slack. By default, a
route named '/' is the starting point for your app.

FIGURE 8-14:
One app; four

pages.

276 PART 3 Details, Details

If you decide not to have a route named '/', or if you want to override the default,
you can add the initialRoute parameter. For example, you can add one line to
the code in Listing 8-6, like so:

Widget build(BuildContext context) {

 return MaterialApp(

 routes: {

 '/': (context) => MovieTitlePage(),

 '/details': (context) => DetailPage(),

 '/details/cast': (context) => CastPage(),

 '/details/reviews': (context) => ReviewsPage(),

 },

 initialRoute: '/details/cast',

);

}

When the app with this modified code starts running, the user sees the app’s
CastPage, and what happens next may or may not surprise you. When the user
presses the app bar’s Back button, Flutter navigates to the DetailPage. This
 happens because Flutter looks at the slashes in the route names. When you back
away from a route named '/details/cast', '/details/reviews', or '/
details/whatever', Flutter takes you to the route named '/details'.

Creating a List
Imagine this. You’re sitting with friends at a local diner. Someone says, “Remem-
ber that movie Being John Malkovich? I wonder what it was about.” So you whip out
your phone and say, “What a coincidence! I have an app whose sole purpose is to
show me an overview of that movie’s plot.”

After you read the overview to your friends, one of them says, “That’s great! What
about Charlie Kaufman’s next movie? I think it’s called Adaptation.” And you say,
“We’re out of luck. My app has info on only one movie.”

At this point, one of your friends says, “How much did you pay for that app?” And
you reply, “I didn’t pay for it. Barry Burd paid me to install it.”

The beginning of this chapter describes the master-detail interface. It says, “The
first page [in a master-detail interface] displays a list of items.” You can’t cram
information about every item on the list into one page. So, for details about a par-
ticular item, the user clicks that item and navigates to a separate page.

CHAPTER 8 Navigation, Lists, and Other Goodies 277

This section shows you how to navigate between a list of items and a detail page.
The new example is much more useful than the chapter’s Being John Malkovich
examples. The app in Listing 8-7 lists all 25 films in Sylvester Stallone’s Rocky
franchise.

LISTING 8-7: A Rather Long List

// App0807.dart

import 'package:flutter/material.dart';

import 'App08Main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

 goToDetailPage(int index) {

 Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => DetailPage(),

 settings: RouteSettings(

 arguments: index,

),

),

);

 }

 Widget buildTitlePageCore() {

 return ListView.builder(

 itemCount: 25,

 itemBuilder: (context, index) => ListTile(

 title: Text('Rocky ${index + 1}'),

 onTap: () => goToDetailPage(index + 1),

),

);

 }

}

extension MoreDetailPage on DetailPage {

 Widget buildDetailPageCore(context) {

 final sequelNumber = ModalRoute.of(context).settings.arguments;

 final overview =

 'For the $sequelNumber${getSuffix(sequelNumber)} time, palooka '

 'Rocky Balboa fights to be the world heavyweight boxing champion.';

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 Text(overview),

(continued)

278 PART 3 Details, Details

],

);

 }

 String getSuffix(int sequelNumber) {

 String suffix;

 switch (sequelNumber) {

 case 1:

 case 21:

 suffix = 'st';

 break;

 case 2:

 case 22:

 suffix = 'nd';

 break;

 case 3:

 case 23:

 suffix = 'rd';

 break;

 default:

 suffix = 'th';

 }

 return suffix;

 }

}

To run the app in Listing 8-7, your project must have at least two .dart files — one
containing the code in Listing 8-7 and another containing the code in
Listing 8-1.

When you run the code in Listing 8-7, you get two pages — a front page with a list
of movie titles and, as usual, a detail page. Figure 8-15 shows you the page with
the list of movie titles, and Figure 8-16 shows you a detail page.

FIGURE 8-15:
The start of a

long list.

LISTING 8-7: (continued)

CHAPTER 8 Navigation, Lists, and Other Goodies 279

The ListView widget
The essence of Listing 8-7 is a call to Flutter’s ListView.builder constructor.
The constructor takes two parameters: an itemCount and an itemBuilder.

The itemCount parameter
To no one’s surprise, the itemCount tells Flutter how many items to display in the
list. With the code in Listing 8-7, the list’s last item is Rocky 25. But if you omit the
itemCount parameter, the list never ends. The user can scroll for hours to see list
items named Rocky 1000 and Rocky 10000. (At least, that’s what I think will hap-
pen. To be honest, I’ve never tried scrolling beyond Rocky 1200. When I try, my
hand gets tired.)

The secret behind ListView with its itemCount is the ability to scroll. In theory,
the list has more items than the user sees on the device’s screen. In reality, Flutter
juggles list items and keeps only enough to fill the user’s screen. When an item
disappears off the edge of the screen, Flutter recycles that item by giving it a new
Rocky number and displaying it at the other end of the screen. By recycling list
items, Flutter saves memory space and processing time. So the scrolling of the list
goes smoothly.

The itemBuilder parameter
An itemBuilder parameter’s value is a function. In Listing 8-7, to create 25 items,
Flutter starts by creating 25 indices with values 0, 1, 2, and so on, up to and
including 24. Flutter plugs these values into the itemBuilder function, like so:

// This isn't real code. It's the way itemBuilder behaves.

 (context, 0) => ListTile(

 title: Text('Rocky ${0 + 1}'),
 onTap: () => goToDetailPage(0 + 1),
)

 (context, 1) => ListTile(

 title: Text('Rocky ${1 + 1}'),

FIGURE 8-16:
The user taps
the 23rd item

in the list.

280 PART 3 Details, Details

 onTap: () => goToDetailPage(1 + 1),
)

 (context, 2) => ListTile(

 title: Text('Rocky ${2 + 1}'),
 onTap: () => goToDetailPage(2 + 1),
)

// ... and so on.

The result is a list containing 25 items. The Rocky number on each item’s Text
widget is one more than the index value. That way, the list doesn’t start with a
movie named Rocky 0. (Rocky: The Prequel?)

In Dart, anything that counts automatically starts with 0, not 1. This includes
things like the index of an itemBuilder, the position of a character in a String,
and the default for the minimum value of a Slider.

In addition to its Text widget, each item has an onTap function. Each onTap func-
tion sends its own value (a number from 1 to 25) to the goToDetailPage function.
If you keep following the trail, you find that the goToDetailPage function sends
the number value onward as an argument to the app’s DetailPage. And, in turn,
the DetailPage uses that value to decide what information to display. In a real-
life app, the DetailPage might use the value to look up the overview of a movie —
maybe one of several thousand movies. But in Listing 8-7, the DetailPage simply
composes a fake overview.

To see a way of getting real movie info, visit the later section “Fetching Data from
the Internet.”

By the way, you may notice that Listings 8-1 and 8-7 both have overview
variables, and both of these variables live in the same DetailPage class. (The
overview in Listing 8-1 is in the original DetailPage declaration. The overview
in Listing 8-7 is an extension of the DetailPage class.) This double-use of a
variable name is okay. The overview in Listing 8-1 is an instance variable, and the
overview in Listing 8-7 is local to the buildDetailPageCore method. So, when
you run the code in Listing 8-7, the name overview stands for a sentence about
Rocky Balboa. It’s all good.

Are you unsure about the difference between instance variables and local vari-
ables? If so, refer to Chapter 5.

CHAPTER 8 Navigation, Lists, and Other Goodies 281

HOW TO PUT A ListView INSIDE A COLUMN
Some layouts — ones that you might think are okay — send Flutter into an unending,
tail-chasing game. Chapter 6 has a section about it. The game is especially frustrating
when you try to put a list view inside a column. Here’s some bad code:

// Don't do this:

Widget buildTitlePageCore() {

 return Column(

 children: <Widget>[

 Text('Rocky Movies'),

 ListView.builder(

 itemCount: 25,

 itemBuilder: (context, index) => ListTile(

 title: Text('Rocky ${index + 1}'),
 onTap: () => goToDetailPage(index + 1),
),

),

],

);

}

When you run this code, no list view appears. Among dozens of lines of diagnostics,
Android Studio’s Run tool window reports that Vertical viewport was given
unbounded height. As it is in Chapter 6, one widget (the Column widget) is sending an
unbounded height constraint to its children, and one of the children (the ListView
widget) can’t handle all that freedom. The result is an impasse in which the ListView
can’t be displayed. To fix the problem, do the same thing that helps in Chapter 6 — add
an Expanded widget:

// Do this instead

return Column(

 children: <Widget>[

 Text('Rocky Movies'),

 Expanded(

 child: ListView.builder(

 // ... etc.

The Expanded widget says, “Hey, Column. Figure out how tall the Text widget is and tell
the ListView how much vertical space is left over.” When the Column hands this infor-
mation to the ListView, the ListView says, “Thanks. I’ll use all of the leftover space.”
The app displays itself correctly, and everyone’s happy.

282 PART 3 Details, Details

Dart’s switch statement
In my first draft of Listing 8-7, the overview of Rocky 3 reads:

For the 3th time, palooka Rocky Balboa fights to be the world heavyweight boxing
champion.

I couldn’t live with that, so I solicited the help of my friend — the switch state-
ment. A switch statement is like an if statement except that switch statements
lend themselves to multiway branching.

The switch statement in Listing 8-7 says:

Look at the value of sequelNumber.

 If that value is 1 or 21,

 assign 'st' to suffix,

 and then break out of the entire switch statement.

 If you've reached this point and that value is 2 or 22,

 assign 'nd' to suffix,

 and then break out of the entire switch statement.

 If you've reached this point and that value is 3 or 23,

 assign 'rd' to suffix,

 and then break out of the entire switch statement.

 If you've reached this point,

 assign 'th' to suffix.

Each break statement sends you out of the switch statement and onward to
whatever code comes after the switch statement. What happens if you try to omit
the break statements?

// Dart doesn't tolerate this ...

switch (sequelNumber) {

 case 1:

 case 21:

 suffix = 'st';

 case 2:

 // ... and so on.

In Dart, this is a no-no. If you type this code in Android Studio’s Dart editor,
Android Studio complains immediately. Android Studio refuses to run your
program.

CHAPTER 8 Navigation, Lists, and Other Goodies 283

If you’re not fond of break statements, you can rewrite the getSuffix function
using return statements:

String getSuffix(int sequelNumber) {

 switch (sequelNumber) {

 case 1:

 case 21:

 return 'st';

 case 2:

 case 22:

 return 'nd';

 case 3:

 case 23:

 return 'rd';

 }

 return 'th';

}

This new version of getSuffix is much more concise than the one in Listing 8-7.
In this version of getSuffix, each return statement jumps you entirely out of the
getSuffix function. You don’t even need a default clause, because you reach the
return 'th' statement when none of the case clauses applies.

Even this new-and-improved getSuffix function falters if Sylvester Stallone
makes Rocky 31. The movie’s overview will be, “For the 31th time, palooka Rocky
Balboa . . .” That doesn’t sound good.

There are dozens of ways to create more versatile versions of getSuffix,
and it’s fun to try to create one of your own. One of my personal favorites looks
like this:

String getSuffix(int sequelNumber) {

 int onesDigit = sequelNumber % 10;

 int tensDigit = sequelNumber ~/ 10 % 10;

 Map<int, String> suffixes = {1: 'st', 2: 'nd', 3: 'rd'};

 String suffix = suffixes[onesDigit] ?? 'th';

 if (tensDigit == 1) suffix = 'th';

 return suffix;

}

284 PART 3 Details, Details

SOME NEWS ABOUT SCROLLING
You don’t need a ListView to create a scrolling screen. You can enclose all kinds of
stuff inside a SingleChildScrollView. Here’s some code:

return MaterialApp(

 home: Material(

 child: Column(

 children: <Widget>[

 SizedBox(height: 200, child: Text("You've")),

 SizedBox(height: 200, child: Text("read")),

 SizedBox(height: 200, child: Text("many")),

 SizedBox(height: 200, child: Text("chapters")),

 SizedBox(height: 200, child: Text("of")),

 Icon(Icons.book),

 SizedBox(height: 100, child: Text("Flutter For Dummies")),

 Icon(Icons.thumb_up),

],

),

),

);

My phone doesn’t have enough room for all this stuff. So if I don’t add some sort of
scrolling, I see the dreaded black-and-yellow stripes along the bottom of the screen. To
avoid seeing these stripes, I enclose the widgets in a SingleChildScrollView:

return MaterialApp(

 home: Material(

 child: SingleChildScrollView(

 child: Column(

 children: <Widget>[

 SizedBox(height: 200, child: Text("You've")),

 // . . . etc.
],

),

),

),

);

When I rerun the code, I see the topmost few widgets with the option to scroll and see
others.

CHAPTER 8 Navigation, Lists, and Other Goodies 285

Creating list items one-by-one
From one row to another, the items in Figure 8-15 have no surprises. Each item
displays the name Rocky and a number. Each item exhibits the same behavior
when you tap on it. Because of this uniformity, I can create one itemBuilder that
describes all 25 of the list’s items.

What do you do if there’s little or no uniformity? What if there’s some uniformity
among the items, but so few items that creating an itemBuilder isn’t worth the
effort?

In such cases, you describe the items one-by-one using Flutter’s ListView
 constructor. Listing 8-8 has the code; Figures 8-17 and 8-18 show you some of the
results.

LISTING 8-8: A Small List

// App0808.dart

import 'package:flutter/material.dart';

import 'App08Main.dart';

const Map<String, String> synopses = {

 'Casablanca':

 'In Casablanca, Morocco in December 1941, a cynical American expatriate '

 'meets a former lover, with unforeseen complications.',

 'Citizen Kane':

 '... Charles Foster Kane is taken from his mother as a boy ... '

 'As a result, every well-meaning, tyrannical or '

 'self-destructive move he makes for the rest of his life appears '

 'in some way to be a reaction to that deeply wounding event.',

 'Lawrence of Arabia':

 "The story of British officer T.E. Lawrence's mission to aid the Arab "

 "tribes in their revolt against the Ottoman Empire during the "

 "First World War.",

};

extension MoreMovieTitlePage on MovieTitlePageState {

 goToDetailPage(String movieName) {

 Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => DetailPage(),

 settings: RouteSettings(

 arguments: movieName,

(continued)

286 PART 3 Details, Details

),

),

);

 }

 Widget buildTitlePageCore() {

 return ListView(

 children: [

 ListTile(

 title: Text('Casablanca'),

 onTap: () => goToDetailPage('Casablanca'),

),

 ListTile(

 title: Text('Citizen Kane'),

 onTap: () => goToDetailPage('Citizen Kane'),

),

 ListTile(

 title: Text('Lawrence of Arabia'),

 onTap: () => goToDetailPage('Lawrence of Arabia'),

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

 Widget buildDetailPageCore(context) {

 final movieName = ModalRoute.of(context).settings.arguments;

 final overview = '(From themoviedb.com) ${synopses[movieName]}';

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 Text(overview),

],

);

 }

}

If you visit https://api.flutter.dev/flutter/widgets/ListView-class.html,
you see the documentation for Flutter’s ListView class. In the page’s upper right
corner, you see the class’s constructors, which include ListView and ListView.
builder. Listing 8-7 calls the named ListView.builder constructor. But in the
same place in Listing 8-8, you find the unnamed ListView constructor call.

LISTING 8-8: (continued)

https://api.flutter.dev/flutter/widgets/ListView-class.html

CHAPTER 8 Navigation, Lists, and Other Goodies 287

To read about Dart’s named and unnamed constructors, refer to Chapter 3.

Flutter’s unnamed ListView constructor has a children parameter, and that
children parameter’s value is . . . wait for it . . . a Dart language List. A Dart
 language List is a bunch of objects inside a pair of square brackets, like this:

// A Dart language List:

 [

 ListTile(...),

 ListTile(...),

 ListTile(...),

]

To read about Dart’s List type, refer to Chapter 4.

In Listing 8-8, the Dart List is actually a bunch of ListTile widgets. (They’re
like bathroom tiles with no grout between them.) But Flutter’s ListView is versa-
tile. The children don’t have to be ListTile widgets. The children of a ListView
may be a mixture of Text widgets, SizedBox widgets, Image.asset widgets, and
any other kinds of widgets. It can be a big grab bag.

(If you’re keeping score, Listing 8-8 contains a ListView which contains a Dart
language List of ListTile widgets.)

FIGURE 8-17:
Three movies.

FIGURE 8-18:
“Play it

again, Sam”
(misquoted).

288 PART 3 Details, Details

Another new Dart language feature
One evening, after working on this chapter for 14 hours straight, I was exhausted
and became delirious. I thought about the app in Listing 8-7 with its 25 ListView
items. I imagined a little person inside a user’s phone creating the Rocky 1 item,
and then the Rocky 2 item, and then Rocky 3, and so on. Maybe I can take that
vision, silly as it is, and compose a list view with instructions such as “Build the
first item, build the second item, build the third item, . . .” and more.

Most programming languages have statements that perform repetitive tasks.
For example, languages such as Java, C/C++, and Dart have a thing called a for
statement, also known as a for loop. Figure 8-19 shows you a tiny example.

The example in Figure 8-19 is a Dart program, but it’s not a Flutter program. To
run this program, I didn’t bother creating a Flutter project. Instead, I visited
https://dartpad.dev, typed the code in the page’s big editor window, and then
pressed Run.

In Figure 8-19, the program’s output is a column containing the numbers
1 through 5. That’s because a for statement tells the device to repeat things over
and over again. Figure 8-20 shows you an English language paraphrase of the for
statement in Figure 8-19.

The fact that Dart has a for statement isn’t newsworthy. Dart’s for statement is
almost exactly the same as the C language for statement, which was created in
the early 1970s by Dennis Ritchie at Bell Labs. And the C language for statement
is a direct descendant of FORTRAN’s DO statement from the early 1960s. What’s
new and exciting in Dart is the idea that you can put a for construct inside a Dart
language list. Listing 8-9 has an enlightening code snippet.

FIGURE 8-19:
Dart’s for

statement in
action.

https://dartpad.dev/

CHAPTER 8 Navigation, Lists, and Other Goodies 289

LISTING 8-9: Interesting Code!

Widget buildTitlePageCore() {

 return ListView(

 children: <Widget>[

 for (int index = 0; index < 25; index++)
 ListTile(

 title: Text('Rocky ${index + 1}'),
 onTap: () => goToDetailPage(index + 1),
),

],

);

}

If you replace the buildTitlePageCore method in Listing 8-7 with the code in
Listing 8-9, your app behaves exactly the same way. When Flutter encounters the
code in Listing 8-9, it starts creating 25 ListTile widgets.

Listings 8-7 and 8-9 give you two ways to create a 25-item ListView. Which way
is better? You can decide by asking, “Which way makes the code easier to read and
understand?” In my opinion, the new code (the code in Listing 8-9) is much
clearer.

The stuff in Listing 8-9 looks like a for statement, but it’s not really a for state-
ment. It’s a collection for. The name collection for comes from the fact that a List is
one of Dart’s collection types. (See Table 4-2, over in Chapter 4, for more on col-
lection types.) You can put a collection for inside any kind of collection — a List,
a Set, or a Map. The following code does all three of these things:

main() {

 List<int> myList = [for (int i = 1; i <= 5; i++) i];
 Set<int> mySet = {for (int i = 1; i <= 5; i++) i};

FIGURE 8-20:
Anatomy of a for

statement.

290 PART 3 Details, Details

 Map<int, int> myMap = {for (int i = 1; i <= 5; i++) i: i + 100};
 print(myList);

 print(mySet);

 print(myMap);

}

For some rollicking good fun, run this code at https://dartpad.dev.

Compare Dart’s collection for with its collection if. The collection if appears in
Chapter 7.

The collection for and collection if features work with Dart versions 2.3 and
higher. With earlier versions of Dart, you’re out of luck.

Dart’s collection for is interesting because it’s a new kind of programming lan-
guage construct. The two pillars of programming languages are statements and
expressions, but the collection for is neither a statement nor an expression. If you
want to do some reading about all this geeky stuff, visit https://medium.com/
dartlang/making-dart-a-better-language-for-ui-f1ccaf9f546c.

Fetching Data from the Internet
Do this chapter’s examples remind you of movies that you’ve enjoyed? Would you
like an app that displays facts about these movies? If so, look no further than
Listing 8-10.

LISTING 8-10: Accessing Online Data

// App0810.dart

import 'dart:convert';

import 'package:flutter/material.dart';

import 'package:http/http.dart';

import 'App08Main.dart';

extension MoreMovieTitlePage on MovieTitlePageState {

 goToDetailPage(String movieTitle) {

 Navigator.push(

 context,

 MaterialPageRoute(

https://dartpad.dev/
https://medium.com/dartlang/making-dart-a-better-language-for-ui-f1ccaf9f546c
https://medium.com/dartlang/making-dart-a-better-language-for-ui-f1ccaf9f546c

CHAPTER 8 Navigation, Lists, and Other Goodies 291

 builder: (context) => DetailPage(),

 settings: RouteSettings(

 arguments: movieTitle,

),

),

);

 }

 Widget buildTitlePageCore() {

 TextEditingController _controller = TextEditingController();

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 TextField(

 decoration: InputDecoration(labelText: 'Movie title:'),

 controller: _controller,

),

 SizedBox(height: 16.0),

 RaisedButton.icon(

 icon: Icon(Icons.arrow_forward),

 label: Text('Details'),

 onPressed: () => goToDetailPage(_controller.text),

),

],

);

 }

}

extension MoreDetailPage on DetailPage {

 Future<String> _getMovieData(String movieTitle) {

 return updateOverview(

 movieTitle: movieTitle,

 api_key: "Parents: Don't let your sons and "

 "daughters put api keys in their code.",

);

 }

 Widget buildDetailPageCore(context) {

 final _movieTitle = ModalRoute.of(context).settings.arguments ?? '';

 return Column(

 crossAxisAlignment: CrossAxisAlignment.center,

 children: <Widget>[

 FutureBuilder<String>(

 future: _getMovieData(_movieTitle),

 builder: (context, snapshot) {

 if (snapshot.hasData) {

(continued)

292 PART 3 Details, Details

 return Text(snapshot.data);

 }

 return CircularProgressIndicator();

 },

),

],

);

 }

 Future<String> updateOverview({String api_key, String movieTitle}) async {

 final response = await get(

 'https://api.themoviedb.org/3/search/movie?api_key=' +

 '$api_key&query="$movieTitle"');

 return json.decode(response.body)['results'][0]['overview'];

 }

}

Figures 8-21 and 8-22 show a run of the code in Listing 8-10.

There’s a lot to unpack in Listing 8-10, so I divide it into parts.

FIGURE 8-21:
The user types a

movie’s name.

LISTING 8-10: (continued)

FIGURE 8-22:
The app displays

info from The
Movie Database.

CHAPTER 8 Navigation, Lists, and Other Goodies 293

Using a public API
Before creating Listing 8-10, I searched the web for a site that provides free access
to movie information. Among the sites I found, the one I liked best was The Movie
Database (https://www.themoviedb.org). Like many such sites, The Movie
Database provides access through its own application programming interface (API).
When you use the prescribed API code to send a query to themoviedb.org, the site
spits back information about one or more movies.

For example, to get information about the movie THX 1138, you can try typing the
following URL in a browser’s address bar:

https://api.themoviedb.org/3/search/movie?api_key=XYZ&query="THX 1138"

When you do, the following message appears in your browser window:

Invalid API key: You must be granted a valid key.

Oops! Instead of typing XYZ, you should have typed a valid API key — a string of
characters you get when you sign up on The Movie Database website. Everyone
who signs up gets their own API key.

So get your own API key, replace XYZ with the API key, and type the new URL into
a web browser’s address bar:

// Not a real API key ...

https://api.themoviedb.org/3/search/movie?api_key=4c23b2f8f&query="THX 1138"

When you do, you don’t see an error message, and you don’t get a fancy-looking
web page, either. Instead, you get code that looks something like the stuff in
Listing 8-11.

LISTING 8-11: JSON Code

{

 "page": 1,

 "total_results": 4,

 "total_pages": 1,

 "results": [

 {

 "popularity": 8.126,

 .

 .

 .

(continued)

https://www.themoviedb.org/

294 PART 3 Details, Details

 "title": "THX 1138",

 "vote_average": 6.6,

 "overview": "People in the future live in a totalitarian ...",

 "release_date": "1971-03-11"

 },

 {

 "popularity": 3.11,

 "id": 140979,

 . . . and more . . .

The text in Listing 8-11 isn’t Dart code. It’s JSON code. The acronym JSON stands
for JavaScript Object Notation. The best way to understand JSON code is to realize
that it describes a tree. Compare the code in Listing 8-11 with the upside-down
tree in Figure 8-23.

Sending a URL to a server and getting JSON code in return is an example of Rep-
resentational State Transfer, also known as REST.

As an app developer, your job is to make your app do two things:

 » Send a URL to The Movie Database.

 » Make sense of the JSON code that comes back from The Movie Database.

FIGURE 8-23:
A JSON document

describes a tree.

LISTING 8-11: (continued)

CHAPTER 8 Navigation, Lists, and Other Goodies 295

Sending a URL to a server
One way to enable web server communication is to import Dart’s http package. An
import line near the top of Listing 8-10 does the trick. The only “gotcha” is that
if you fail to add a line to your project’s pubspec.yaml file, Flutter can’t do the
importing:

dependencies:

 flutter:

 sdk: flutter

 http: ^0.12.0+4

Of course, the strange looking version number ^0.12.0+4 is sure to be obsolete by
the time you read this book. To find out what number you should be using, visit
https://pub.dev/packages/http.

In a .yaml file, indentation matters. So, in your project’s pubspec.yaml file, be
sure to indent the http line the way you see it here.

To find out about your project’s pubspec.yaml file, refer to Chapter 3.

In your app’s Dart code, you use the package’s get function to send a URL out onto
the web:

final response = await get(

 'https://api.themoviedb.org/3/search/movie?api_key=' +
 '$api_key&query="$movieTitle"');

A simple function name like get doesn’t scream out at you, “I’m part of the http
package.” To make your code more readable, do two things: Add some extra words
to the http package’s import declaration

import 'package:http/http.dart' as http;

and add a prefix to your get function call:

final response = await http.get(// ... etc.

The need for await, async, and Future in Listing 8-10 comes from one undeniable
fact: If you send a request to a web server, you don’t know when you’ll get back a
response. You don’t want your Flutter app to freeze up while it waits for a response
from who-knows-where. You want to entertain the user while a response makes
its way along the Internet. That’s why, in Listing 8-10, you display a Circular-
ProgressIndicator widget until the response has arrived.

https://pub.dev/packages/http

296 PART 3 Details, Details

Making sense of a JSON response
In Listing 8-10, the updateOverview method awaits a response from The Movie
Database. When a response arrives, the method assigns that response to its own
variable named response. (How clever!) The response variable contains all kinds
of information about HTTP headers and status codes, but it also contains a body,
and that body looks like the JSON code in Listing 8-11.

But wait! How do you sift information out of all that JSON code? I’ll tell you how.
You call the json.decode function — one of the many functions in Dart’s
convert package. (Refer to code near the top and bottom of Listing 8-10.) The
json.decode function turns the code in Listing 8-11 into a big Dart Map structure.
Like all of Dart’s maps, this map has keys and values, and some of the values can
be lists. You use square brackets to get the values from maps and lists. (Refer to
Chapter 7.) So, to pull a movie’s overview out of the code in Listing 8-11, you
write the following line:

return json.decode(response.body)['results'][0]['overview'];

Each pair of square brackets brings you closer to the bottom of the tree in
Figure 8-23.

What’s Next?
Navigator.push(

 context,

 MaterialPageRoute(

 builder: (context) => Chapter_9(),

),

);

CHAPTER 9 Moving Right Along . . . 297

Chapter 9
Moving Right Along . . .

If you’ve read other material in this book, you’re probably tired of my long
chapter introductions, with all their personal stories and bad jokes. That’s why,
for this chapter, I skip the preliminaries and get straight to the point.

This chapter is about animation — making things change right before the user’s
eyes. When I think about animation, I immediately think of movement, but Flutter
provides a much broader definition of animation. With Flutter, you can change
almost any property of a widget on almost any time scale.

Setting the Stage for Flutter Animation
This chapter’s first listing has a bunch of reusable code. Subsequent listings
 contain code that works cooperatively with the code in the first listing. Thanks to
Dart’s extensions feature, each new listing can create methods belonging to the
first listing’s classes. You can read all about Dart extensions in Chapter 8.

The code in Listing 9-1 can’t do anything on its own. Instead, this code relies on
declarations in the chapter’s other listings.

IN THIS CHAPTER

 » Creating animation

 » Mixing other people’s code with your
own code

 » Dragging widgets without dropping
them or breaking them

298 PART 3 Details, Details

LISTING 9-1: Reuse This Code

// App09Main.dart

import 'package:flutter/material.dart';

import 'App0902.dart'; // Change to App0903, App0904, and so on.

void main() => runApp(App09Main());

class App09Main extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

 }

}

class MyHomePage extends StatefulWidget {

 @override

 MyHomePageState createState() => MyHomePageState();

}

class MyHomePageState extends State<MyHomePage>

 with SingleTickerProviderStateMixin {

 Animation<double> animation;

 AnimationController controller;

 @override

 void initState() {

 super.initState();

 controller =

 AnimationController(duration: const Duration(seconds: 3), vsync: this);

 animation = getAnimation(controller);

 }

 @override

 Widget build(BuildContext context) {

 return Material(

 child: SafeArea(

 child: Padding(

 padding: const EdgeInsets.all(8.0),

 child: Column(

 children: <Widget>[

 Expanded(

 child: Stack(

 children: <Widget>[

 buildPositionedWidget(),

CHAPTER 9 Moving Right Along . . . 299

],

),

),

 buildRowOfButtons(),

],

),

),

),

);

 }

 Widget buildRowOfButtons() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 RaisedButton(

 onPressed: () => controller.forward(),

 child: Text('Forward'),

),

 SizedBox(

 width: 8.0,

),

 RaisedButton(

 onPressed: () => controller.animateBack(0.0),

 child: Text('Backward'),

),

 SizedBox(

 width: 8.0,

),

 RaisedButton(

 onPressed: () => controller.reset(),

 child: Text('Reset'),

),

],

);

 }

 @override

 void dispose() {

 controller.dispose();

 super.dispose();

 }

}

Figure 9-1 illustrates the concepts that come together to make Flutter
animation.

300 PART 3 Details, Details

You want something to change as the user looks on. To do this, you need four
things: an Animation, an AnimationController, a ticker, and a feature of the app
that changes. Here’s how it all works:

 » An Animation is a plan for changing a value.

In Listing 9-1, the words Animation<double> indicate that the changing value
is a number with digits beyond the decimal point — a number like 0.0, 0.5,
or 0.75. The plan in Figure 9-1 is to change a value in the range from 1.0 to
200.0.

The Animation itself isn’t about movement of any kind. The value that goes
from 1.0 to 200.0 may be a position, but it may also be a size, an amount of
transparency, a degree of rotation, or whatever. For the animation variable in
Listing 9-1, values like 1.0 and 200.0 are only numbers. Nothing else.

By the way, if you’re looking in Listing 9-1 for a reference to an animation’s
double value, stop looking. The code in Listing 9-1 makes no reference
to such a value. If you peek ahead to the next section’s listing, you see
animation.value. That’s your tangible evidence that an Animation
instance holds a value of some kind.

Flutter’s Animation class is nice, but an Animation can’t do much without an
AnimationController. Here’s why:

FIGURE 9-1:
How Flutter

animation works.

CHAPTER 9 Moving Right Along . . . 301

 » An AnimationController makes the animation start, stop, go forward,
go backward, repeat, and so on.

Calls such as controller.forward(), controller.animateBack(0.0), and
controller.reset() push the animation in one direction or another.

In Listing 9-1, the AnimationController constructor call says that the
animation lasts for 3 seconds. If seconds aren’t good enough, you can use
other parameters, such as microseconds, milliseconds, minutes, hours,
and days. Each of the following constructors describes 51 hours:

Duration(hours: 51)

Duration(days: 1, hours: 27)

Duration(days: 2, hours: 3)

Duration(minutes: 3060)

In addition to its duration, the AnimationController in Listing 9-1 has a
vsync property. If you’re wondering what that is, keep reading.

 » A ticker notifies the AnimationController when each time interval passes.

The words with SingleTickerProviderStateMixin in Listing 9-1 make
MyHomePageState into a ticker. The ticker wakes up repeatedly and says, “It’s
time to change a value.”

But which value gets changed? What part of the code hears the ticker’s
announcement? Making MyHomePageState be a ticker doesn’t connect
MyHomePageState with a particular AnimationController.

To make that connection, the AnimationController in Listing 9-1 has a
vsync: this parameter. That parameter tells Flutter that “this instance of
MyHomePageState is the ticker for the newly constructed Animation
Controller.”

I’ve carefully worded my explanation of tickers and vsync: this so that the
explanation doesn’t offend anyone who knows all the details. The trouble is,
precise explanations can be difficult to understand. If you don’t comprehend
all the stuff about vsync: this, simply add those words to your own code,
and then move on. None of this book’s examples requires an in-depth
understanding of tickers and vsync.

In Listing 9-1, the name SingleTickerProviderStateMixin suggests that
the Dart programming language has something called a mixin. A mixin is
something like an extension, except that it’s not the same as an extension.
For a comparison, see the later sidebar “Another way to reuse code.”

302 PART 3 Details, Details

Here’s the final ingredient in a Flutter animation:

 » Some feature changes as a result of the change in the Animation value.

In Figure 9-1, a balloon’s size changes with an Animation instance’s double
value. But the code in Listing 9-1 makes no reference to a balloon’s size, or to
any other use of the animation variable’s value. On this count, Listing 9-1 is
somewhat lacking.

The code to make things change is in the buildPositionedWidget function,
and that function’s body is in Listings 9-2 through 9-6. Each of those listings
does something different with the Animation object’s double values.

Listing 9-1 has one more interesting feature: It has a place where widgets can
move freely. Imagine making an icon the child of a Center widget. The Center
widget determines the icon’s position, and that’s the end of the story. A Center
widget’s constructor has no parameters that let you wiggle its child in one direc-
tion or another. Don’t bother trying to make a Center widget’s child move. You
have no vocabulary for moving it.

What you need is a widget that lets you mark its children’s exact coordinates
within the available space. For that, Flutter has a Stack.

A Stack is like a Row or a Column, but a Stack doesn’t place its children in a
straight line. Instead, a Stack has two kinds of children — Positioned widgets
and all other kinds of widgets. Each Positioned widget can have top, bottom,
left, and right properties, which determine the exact location of the Positioned
widget’s child. The other widgets (the ones that aren’t Positioned) get stuffed
into some default location.

Have a look at the following code:

Stack(

 children: <Widget>[

 Positioned(

 top: 100.0,

 left: 100.0,

 child: Container(

 width: 50.0,

 height: 50.0,

 color: Colors.black,

),

),

 Positioned(

 top: 120.0,

 left: 120.0,

CHAPTER 9 Moving Right Along . . . 303

 child: Container(

 width: 25.0,

 height: 25.0,

 color: Colors.white,

),

),

],

)

This code creates the drawing shown in Figure 9-2.

The drawing consists of two Container rectangles — one black and the other
white. The white rectangle’s width and height are half those of the black rectan-
gle. But notice this: The two rectangles overlap because the rectangles’ top and
left edges are almost the same.

A Stack constructor has a children parameter, and that parameter’s value is a
list. The order of the widgets in the list matters. If two widgets overlap one
another, the widget that comes later in the list appears to be on top. In the
code accompanying Figure 9-2, you don’t want to change the order of the two
Positioned widgets in the list. If you do, the white rectangle becomes completely
hidden behind the bigger black rectangle.

You can download and run the little Stack app shown in Figure 9-2. It’s the proj-
ect named app0900 in the files that you download from this book’s website.

Moving Along a Straight Line
“A meal without wine is like a day without sunshine.”

— AUTHOR UNKNOWN (AT LEAST, NOT KNOWN BY ME)

“Listing 9-1 without an extension is like a day without dessert.”
— AUTHOR KNOWN (KNOWN TO BE ME)

FIGURE 9-2:
Two containers

on a stack.

304 PART 3 Details, Details

Listing 9-2 contains an extension for the code in Listing 9-1.

LISTING 9-2: Going Downward

// App0902.dart

import 'package:flutter/material.dart';

import 'App09Main.dart';

extension MyHomePageStateExtension on MyHomePageState {

 Animation getAnimation(AnimationController controller) {

 Tween tween = Tween<double>(begin: 100.0, end: 500.0);

 Animation animation = tween.animate(controller);

 animation.addListener(() {

 setState(() {});

 });

 return animation;

 }

 Widget buildPositionedWidget() {

 return Positioned(

 left: 150.0,

 top: animation.value,

 child: Icon(

 Icons.music_note,

 size: 70.0,

),

);

 }

}

Taken together, Listings 9-1 and 9-2 form a complete Flutter app. Figure 9-3
shows you what the app looks like when it starts running. The dotted line is my
way of illustrating the movement of the app’s Musical Note icon. (The dotted line
doesn’t actually appear as part of the app.)

Listing 9-2 has the buildPositionedWidget method declaration that’s missing
from Listing 9-1. In the method’s body, a Positioned widget tells Flutter where
its child (the Musical Note icon) should appear. When the app starts running, the
numbers

left: 150,

top: animation.value,

CHAPTER 9 Moving Right Along . . . 305

place the icon 150.0 dps from the left edge of the Stack, and 100.0 dps from the
top of the Stack. The number 100.0 comes from the animation’s begin value,
which is declared near the start of Listing 9-2. As animation.value increases, the
Musical Note icon moves downward.

To find out what dps means, refer to Chapter 3.

Listing 9-2 also has a getAnimation method — a method that’s called in
Listing 9-1 but not declared in Listing 9-1. The getAnimation method
in Listing 9-2 creates a Tween — a thing that comes from the world of animated
cartoons. Imagine a cartoon character moving an arm from left to right. A car-
toonist draws the arm’s starting position and end position, and a computer cre-
ates the arm’s “between” images. In the same way, an instance of Flutter’s Tween
class has begin and end values. When the animation moves forward, Flutter
changes these values gradually from the begin value to the end value.

FIGURE 9-3:
Drop me a note.

306 PART 3 Details, Details

The rest of the getAnimation method’s code connects the Tween with all the other
puzzle pieces:

 » The call to tween.animate(controller) creates an actual Animation
instance.

The way I describe a Tween, you may think that a Tween is the same as an
Animation. But it’s not. Fortunately, if you’ve created a Tween, you can make
an Animation from it. In Listing 9-2, the tween.animate(controller) call
creates an Animation object. That’s a step in the right direction.

 » The call to addListener tells the MyHomePageState to rebuild itself
whenever the animation’s value changes.

In app development, a listener is a generic name for something that listens for
events. The code in Listing 9-2 says,

Create a function that redraws the screen by calling setState. Make that function
listen for changes in the animation’s value. That way, Flutter redraws the screen
whenever the animation’s value changes.

Each call to setState makes Flutter update the left and top values of the
Positioned widget in Listing 9-2. Because left is always 150.0, the icon
doesn’t move sideways. But the animation object’s value property changes
from moment to moment, so the icon moves up and down along the screen.

The AnimationController in Listing 9-1 determines the icon’s movement:

 » When the user presses the app’s Forward button, Listing 9-1 calls the
controller.forward method.

The icon moves downward if it’s not already at the bottom of its trajectory.

 » When the user presses the app’s Backward button, Listing 9-1 calls
controller.animateBack(0.0).

The icon moves upward if it’s not already at the top.

In the world of animations, numbers from 0.0 to 1.0 are very useful. In an
animateBack call, the number 0.0 means “roll the animation backward until
it reaches its begin value.” To make the animation reach its midpoint, you’d
call controller.animateBack(0.5).

 » When the user presses the app’s Reset button, Listing 9-1 calls
controller.reset().

The icon jumps to its starting position. (If it’s already at the starting position, it
stays there.)

CHAPTER 9 Moving Right Along . . . 307

You may never see the code in Listing 9-2 in any other book. This book’s version
of the getAnimation method avoids a trick that Flutter developers commonly use.
They summarize the entire method body in one statement:

return Tween<double>(begin: 100.0, end: 500.0).animate(controller)

 ..addListener(() {

 setState(() {});

 });

In this code, the pair of dots in front of addListener is Dart’s cascade operator.
The operator calls addListener on the Animation instance that’s about to be
returned. The use of this operator makes the code much more concise.

ANOTHER WAY TO REUSE CODE
Listing 9-2 has an extension, and Listing 9-1 has a mixin. Both extensions and mixins are
ways to make use of code from outside sources. How do mixins differ from extensions?

When you create an extension, you name the class that you intend to extend.

extension MyHomePageStateExtension on MyHomePageState

This code from Listing 9-2 adds functionality to only one class — the MyHomePageState
class in Listing 9-1. You can’t use this extension in any other context.

On the other hand, you can add a mixin to almost any class. Here’s the
SingleTickerProviderStateMixin declaration from Flutter’s API:

mixin SingleTickerProviderStateMixin<T extends StatefulWidget> on State<T>

 implements TickerProvider

The declaration says nothing about the MyHomePageState class or about any
other such class, so any class can use this mixin. (Well, any class that’s already a
StatefulWidget can use this mixin.)

The good thing about mixins is that they spread the wealth. The stewards of Flutter
write 75 lines of SingleTickerProviderStateMixin code and, as a result, anyone’s
StatefulWidget can become a ticker. How convenient!

308 PART 3 Details, Details

Bouncing Around
My big disappointment in writing this chapter is that the figures don’t do justice
to the apps they’re supposed to illustrate. Figure 9-3 has a dotted line instead of
real motion. Figure 9-4 is even worse because the dotted line isn’t really accurate.

In this section’s app, the Cake icon doesn’t move sideways. The dotted line in
Figure 9-4 moves to the right only to show some up-and-down motion near the
end of the animation. Even so, Flutter’s API calls this motion a curve. The code for
Figure 9-4 is in Listing 9-3.

LISTING 9-3: Changing the Animation’s Velocity

// App0903.dart

import 'package:flutter/material.dart';

import 'App09Main.dart';

FIGURE 9-4:
A cake made of

rubber?

CHAPTER 9 Moving Right Along . . . 309

extension MyHomePageStateExtension on MyHomePageState {

 Animation getAnimation(AnimationController controller) {

 return Tween<double>(begin: 100.0, end: 500.0).animate(

 CurvedAnimation(

 parent: controller,

 curve: Curves.bounceOut,

),

)..addListener(() {

 setState(() {});

 });

 }

 Widget buildPositionedWidget() {

 return Positioned(

 left: 150.0,

 top: animation.value,

 child: Icon(

 Icons.cake,

 size: 70.0,

),

);

 }

}

Once again, to change the properties of an object, you enclose that object inside of
another object. It’s a pattern that occurs over and over again in Flutter app devel-
opment. Rather than call animate(controller) the way you do in Listing 9-2,
you call

animate(

 CurvedAnimation(

 parent: controller,

 curve: Curves.bounceOut,

)

You wrap the controller inside a CurvedAnimation object. In Listing 9-2, the
object’s curve property is Curves.bounce.Out, which means “bounce as the ani-
mation ends.” Table 9-1 lists some alternative curve values.

The Flutter API has many more curve values. Each value comes from a precise
equation and describes its own, special pattern for timing the animation. You can
see the whole list of ready-made curve values by visiting https://api.flutter.
dev/flutter/animation/Curves-class.html.

https://api.flutter.dev/flutter/animation/Curves-class.html
https://api.flutter.dev/flutter/animation/Curves-class.html

310 PART 3 Details, Details

Animating Size and Color Changes
With Flutter’s Animation class, you’re not restricted to moving things. You can
control the change of any value you think needs changing. This section’s example
changes an icon’s size and color. The code is in Listing 9-4.

LISTING 9-4: Changing a Few Values

// App0904.dart

import 'package:flutter/material.dart';

import 'App09Main.dart';

extension MyHomePageStateExtension on MyHomePageState {

 Animation getAnimation(AnimationController controller) {

 return Tween<double>(begin: 50.0, end: 250.0).animate(controller)

 ..addListener(() {

 setState(() {});

 });

 }

 Widget buildPositionedWidget() {

 int intValue = animation.value.toInt();

 return Center(

 child: Icon(

 Icons.child_care,

TABLE 9-1 Some Constants of the Curves Class
Value What It Does

Curves.bounceIn Bounces as the animation begins

Curves.decelerate Slows down as the animation progresses

Curves.slowMiddle Moves normally, and then slowly, and then normally

Curves.fastOutSlowIn (Can you guess?)

Curve.ease Speeds up quickly but ends slowly

Curve.elasticOut Rushes in quickly enough to overshoot the end value and then settles
in on the end value

Curve.linear Doesn’t change anything (used whenever you must use CurvedAnimation
for some reason, but you don’t want to apply a curve)

CHAPTER 9 Moving Right Along . . . 311

 size: animation.value,

 color: Color.fromRGBO(

 intValue,

 0,

 255 - intValue,

 1.0,

),

),

);

 }

}

When the app in Listing 9-4 starts running, a small, blue-colored baby face
appears on the screen. (See Figure 9-5. If you’re reading the printed version of
this book, ignore the fact that you don’t see the color.) When the user presses
Forward, the baby face grows and turns color from blue to red. (See Figure 9-6. If
you really care, find a crayon and paint the face yourself.)

The icon in Listing 9-4 has two properties whose values can change.

 » The size property changes along with animation.value.

The icon grows from 50.0 dps to 250.0 dps.

FIGURE 9-5:
Little baby.

FIGURE 9-6:
Big baby.

312 PART 3 Details, Details

 » As the animation progresses, the color property’s redness shrinks and
its blueness grows.

Chapter 6 introduces Flutter’s Color.fromRGBO constructor. The constructor’s
parameters are int values representing amounts of red, green, and blue and
a double value that represents opacity. In Listing 9-4, the amount of red
increases from 50 to 250, and the amount of blue decreases from 205 to 5.

This section is almost at an end. The moral of this section is, an Animation
instance’s value can mean anything you want it to mean. In Listings 9-2 and 9-3,
the animation’s value controls an icon’s position. But in Listing 9-4, the anima-
tion’s value controls an icon’s size and color.

What value would you like to animate? Rotation? Sound volume? Speed? Curva-
ture? Shadow? Background color? Border shape? Mood? The price of a For Dummies
book?

Be creative.

Moving Along a Curve
Life doesn’t always move along a straight line. Sometimes, fate takes bends and
turns. To make this happen in Flutter, you don’t have to change anything about an
animation. Instead, you change the way you use the animation’s value.

The Tween constructor call in this section’s example is almost identical to the calls
in this chapter’s other listings. What’s different about this section’s example is
the Positioned widget’s parameters. It’s all in Listing 9-5.

LISTING 9-5: Fancy Parabolic Motion

// App0905.dart

import 'dart:math';

import 'package:flutter/material.dart';

import 'App09Main.dart';

extension MyHomePageStateExtension on MyHomePageState {

 Animation getAnimation(AnimationController controller) {

 return Tween<double>(begin: 0.0, end: 400.0).animate(controller)

CHAPTER 9 Moving Right Along . . . 313

 ..addListener(() {

 setState(() {});

 });

 }

 Widget buildPositionedWidget() {

 double newValue = animation.value;

 return Positioned(

 left: 15 * sqrt(newValue),

 top: newValue,

 child: Icon(

 Icons.hot_tub,

 size: 70,

),

);

 }

}

In Figure 9-7, the dotted line shows the path taken by the Hot Tub icon when the
animation moves forward.

Have a look at the code in Listing 9-5. As the animation’s value increases, both the
icon’s left and top parameter values change. The top parameter is the same as
the animation’s value, but the left parameter is 15 times the square root of the
animation’s value. How do I come up with the idea of taking 15 times the square
root of the animation’s value? It’s partly knowing the math and partly
trial-and-error.

FIGURE 9-7:
Since when do
hot tubs move
along a curve?

314 PART 3 Details, Details

You can use Dart’s sqrt function only if you import dart.math. When you forget
to import dart.math, Android Studio says, “Method ’sqrt’ isn’t defined.”

As I prepared this section’s example, I added some code to make the app print the
values of left and top. Here’s what I got:

left: top:

 0.0 0.0

 7.4 40.7

 22.1 70.5

 29.4 81.4

 41.2 96.2

 65.0 120.9

 71.8 127.1

 86.5 139.5

101.5 151.1

119.7 164.1

147.4 182.1

165.4 192.9

174.3 198.0

197.9 211.0

206.8 215.7

222.7 223.9

238.3 231.6

266.8 245.0

290.0 255.5

312.6 265.2

335.1 274.6

352.3 281.5

367.2 287.4

384.6 294.2

399.0 299.6

400.0 300.0

The Positioned widget’s left and top values both change. But, because of the
square root formula, the left and top values change at different rates. That’s why
the icon’s movement forms a curve.

Dragging Things Around
In this section’s app, the user drags a widget all around the screen. I’d like to cre-
ate a figure to show you what happens, but I simply can’t do it. Maybe my next
Flutter book will be a pop-up book with cardboard pieces that you can slide from

CHAPTER 9 Moving Right Along . . . 315

place to place. Until then, you have to use your imagination. Picture an icon that
looks like the infinity symbol (∞). As the user moves a finger, the icon changes
position.

But wait! Rather than imagine a user dragging an icon, you can run the code in
Listing 9-6 and see it in action.

LISTING 9-6: Exercise for a User’s Index Finger

// App0906.dart

import 'package:flutter/material.dart';

import 'App09Main.dart';

double distanceFromLeft = 100;

double distanceFromTop = 100;

extension MyHomePageStateExtension on MyHomePageState {

 Animation getAnimation(AnimationController controller) {

 return null;

 }

 Widget buildPositionedWidget() {

 return Positioned(

 top: distanceFromTop,

 left: distanceFromLeft,

 child: GestureDetector(

 onPanUpdate: (details) {

 setState(() {

 distanceFromLeft += details.delta.dx;
 distanceFromTop += details.delta.dy;
 });

 },

 child: Icon(

 Icons.all_inclusive,

 size: 70,

),

),

);

 }

316 PART 3 Details, Details

Like other listings in this chapter, Listing 9-6 relies on the code in Listing 9-1.
Because of that, the app that’s generated by Listing 9-6 has Forward, Backward,
and Reset buttons. Even so, pressing these buttons has no effect.

In the same way, Listing 9-6 has a getAnimation method. That’s necessary
because the code in Listing 9-1 calls a getAnimation method. But to make a widget
move along with the user’s finger, you don’t need an Animation instance. In a sense,
the user is the app’s AnimationController, and the Animation instance is some-
where inside the user’s mind. So, in Listing 9-6, the getAnimation method returns
null. In Dart, null stands for “nothing,” “nada,” “zip,” “goose egg,” “zilch,”
“diddly,” “bupkis.”

Listing 9-6 has no Animation instance, so what part of the code makes the
all_inclusive icon move? The icon lives inside of a GestureDetector — a widget
that senses touches on the screen. A GestureDetector has tons of properties such
as onTap, onDoubleTap, onTapUp, onTapDown, onLongPress, onLongPressStart,
and onLongPressEnd. Other methods belonging to the GestureDetector class
have names with less-than-obvious meanings. The following list has a few
(somewhat oversimplified) examples:

 » onSecondaryTapDown: While holding one finger on the screen, the user
places a second finger on the screen.

 » onScaleUpdate: With two fingers, the user pinches in or out.

 » onHorizontalDragUpdate: The user moves something sideways — a
common gesture for dismissing an item.

 » onPanUpdate: The user moves a finger in one direction or another.

The onPanUpdate parameter’s value is a method, and that method’s parameter is
a DragUpdateDetails object. In Listing 9-6, the DragUpdateDetails object goes
by the name details:

onPanUpdate: (details) {

 setState(() {

 distanceFromLeft += details.delta.dx;
 distanceFromTop += details.delta.dy;
 });

When the user moves a finger along the screen, Flutter fills details with infor-
mation about the movement and calls the onPanUpdate parameter’s method.

CHAPTER 9 Moving Right Along . . . 317

The details variable contains some useful pieces of information:

 » details.globalPosition: The distance from the upper left corner of the
app screen to the current position of the user’s finger

 » details.localPosition: The distance from the place where the user’s
finger first landed on the screen to the current position of the user’s finger

 » details.delta: The distance from a finger’s previous position to its current
position

Each piece of information has two parts: dx (the horizontal distance) and dy (the
vertical distance). The Positioned widget in Listing 9-6 places the app’s all_
inclusive icon at the points distanceFromLeft and distanceFromTop. When
Flutter detects finger movement, the code changes the values of distanceFromLeft
and distanceFromTop by adding the details.delta parameter’s dx and dy values.
That’s what makes the icon move around. It’s pretty clever!

The GestureDectector in Listing 9-6 has a child. But, for any old GestureDectector
constructor call, the child parameter is optional. A GestureDetector with no
child grows to be as large as its parent widget. In contrast, a GestureDetector
with a child shrinks to fit tightly around the child. With the app in Listing 9-6, the
GestureDetector is about the same size as its child — the all_inclusive icon. To
make the icon move, the user’s finger must start right on the icon. Otherwise, noth-
ing happens.

You’re near the end of this book, so maybe it’s time to relax and have some rau-
cous, carefree fun. Can destroying something be fun? Here are some ways to break
Listing 9-6:

 » Remove the setState call.

// Bad code:

onPanUpdate: (details) {

 distanceFromLeft += details.delta.dx;
 distanceFromTop += details.delta.dy;
}

Removing a setState call is almost never a good idea. If you remove the call
in Listing 9-6, the values of distanceFromLeft and distanceFromTop
change, but Flutter doesn’t redraw the screen. As a result, the icon doesn’t
budge.

318 PART 3 Details, Details

 » Move the distanceFromLeft and distanceFromTop declarations so that
they’re immediately before the buildPositionedWidget method.

// More bad code:

Animation getAnimation(AnimationController controller) {

 return null;

}

double distanceFromLeft = 100;

double distanceFromTop = 100;

Widget buildPositionedWidget() {

// ... etc.

If you do this, you can’t even run the app. Dart’s rules include one about
declaring top-level variables inside of extensions. You’re simply not allowed to
do it.

Chapter 5 has some information about top-level variables.

 » Move the distanceFromLeft and distanceFromTop declarations so that
they’re inside the buildPositionedWidget method.

// Even more bad code:

Widget buildPositionedWidget() {

 double distanceFromLeft = 100;

 double distanceFromTop = 100;

 return Positioned(

 // ... etc.

The program runs, but the icon never moves. This happens because the code
sets distanceFromLeft and distanceFromTop to 100 whenever Flutter
redraws the screen. (Actually, the icon moves a tiny bit but not enough for you
to notice. You get a tiny bit of movement from the details.delta values, but
not the kind of movement you want.)

 » Rather than add to the distanceFromLeft and distanceFromTop values,
set them equal to the position of the user’s finger:

// You guessed it! Bad code!

onPanUpdate: (details) {

 setState(() {

 distanceFromLeft = details.globalPosition.dx;

 distanceFromTop = details.globalPosition.dy;

 });

}

CHAPTER 9 Moving Right Along . . . 319

The app runs, but the icon jumps when the user’s finger starts moving.
Throughout the dragging gesture, the icon stays half an inch away from the
user’s finger. This happens because Flutter doesn’t use the middle of the icon
as the Positioned widget’s top and left points.

Similar things happen if you try to use details.localPosition.

Flutter’s animation features don’t end with simple movements and basic size
changes. If you’re interested in making objects move, be sure to check Flutter’s
physics.dart package. With that package, you can simulate springs, gravity,
friction, and much more. You can get information about the package by visiting
https://api.flutter.dev/flutter/physics/physics-library.html.

Where To Go From Here
Learning doesn’t end with the last page of a book. Keep coding and asking ques-
tions, and — by all means — keep in touch. My email is flutter@allmycode.com.
Send me a note, and let me know what you’re up to.

https://api.flutter.dev/flutter/physics/physics-library.html
mailto:flutter@allmycode.com

4The Part of Tens

IN THIS PART . . .

Avoiding mistakes

Turbocharging your software development career

Appreciating ten chapters of Flutter goodness

CHAPTER 10 Ten Ways to Avoid Mistakes 323

Chapter 10
Ten Ways to Avoid
Mistakes
Put Capital Letters Where They Belong

The Dart language is case-sensitive. Don’t type Class when you mean to
type class. Don’t type Runapp when you mean to type runApp.

Use Parentheses When (and Only When)
They’re Appropriate

Remember the difference between _incrementCounter with parentheses:

void _incrementCounter() {

 setState(() {

 _counter++;
 });

}

IN THIS CHAPTER

 » Spotting common errors

 » Using proper code style

324 PART 4 The Part of Tens

and _incrementCounter without parentheses:

floatingActionButton: FloatingActionButton(

 onPressed: _incrementCounter,

 tooltip: 'Increment',

 child: Icon(Icons.add),

)

For details, refer to Chapter 5.

Limit Access to Variables
Wherever you can, avoid declaring top-level variables. To keep other files from
changing your file’s variables, start variable names with an underscore. (Refer to
Chapter 5.)

Call setState
If you press a widget and nothing happens, look for a method with a missing
setState call. (Refer to Chapter 5.)

Make Adjustments for Indices
Starting at Zero

To make values start with 1, you have to add 1 (Refer to Chapter 8.):

return ListView.builder(

 itemCount: 25,

 itemBuilder: (context, index) => ListTile(

 title: Text('Rocky ${index + 1}'),
 onTap: () => goToDetailPage(index + 1),
),

);

CHAPTER 10 Ten Ways to Avoid Mistakes 325

Use the Expanded Widget
When your test device displays black-and-yellow stripes or an empty screen, the
layout you’ve coded is causing trouble. Consider wrapping one or more widgets
inside Expanded widgets. Sometimes, it works wonders. (Refer to Chapters 6
and 8.)

Add itemCount to Your ListView.builder
Without an itemCount parameter, the list of items never ends. (Refer to
Chapter 8.)

Add Imports When They’re Required
For example, if you want to use Dart’s math library, start your file with

import 'dart:math';

If your app pulls data from the Internet, add this line to the top of your file:

import 'package:http/http.dart';

For details, refer to Chapters 8 and 9.

Declare Assets and Dependencies
in pubspec.yaml

To display brokenheart.jpg and heart.jpg on the screen, add some lines to your
project’s pubspec.yaml file:

assets:

 - brokenheart.jpeg

 - heart.jpeg

326 PART 4 The Part of Tens

To get data from the Internet, add http to the file’s list of dependencies:

dependencies:

 flutter:

 sdk: flutter

 http: ^0.12.0+4

For details, refer to Chapters 3 and 8. And remember, in a pubspec.yaml file,
indentation matters.

Indent Your Code According to
Dart Language Guidelines

Code that’s not properly indented is difficult to read and difficult to maintain.
Format your code by selecting Code ➪ Reformat Code from Android Studio’s
main menu.

CHAPTER 11 Ten Ways to Enhance Your App Development Career 327

Chapter 11
Ten Ways to Enhance
Your App Development
Career

With my email address in many of my books, readers often ask me for
career advice: “What should I do next? How can I find a job? How can
I prepare for work in the software industry?” In this chapter, I offer

some of my best hints.

Practice! Practice!
Write as much code as you can. Find problems on the web or make up problems
that interest you. If you get stuck on a problem, look for help on developer forums
or set the problem aside for a while.

When you’ve finished solving a problem, look for ways to add features to your
solution. The more practice you have writing programs, the better your developer
skills will be.

IN THIS CHAPTER

 » Practical advice for the reader who’s
looking for work

 » Personal advice from an author who
pretends to be wise

328 PART 4 The Part of Tens

Critique Your Own Code
Don’t be satisfied with code that merely works. Good code does more than that.
Good code is readable and maintainable. Good code complies with published style
guidelines. Good code runs efficiently. No matter what kind of code you write,
there’s always room for improvement.

Have Others Review Your Code
Other developers can find flaws that you’re too entrenched in the code to notice.
Expect reviewers to be critical but respectful. Respond to reviews with an open
mind. Think carefully about each comment, and decide whether the suggestion
makes sense to you.

Find Out Which Technologies Your
Nearby Companies Use

If local companies use MySQL, learn something about MySQL. If local companies
program in Haskell, learn something about Haskell. What’s trendy throughout the
industry may have little demand in the town where you live.

Attend User Group Meetings
When you hang out with programming professionals, three very nice things
happen.

 » You learn about things that you might not discover on your own.

As a novice at a user group meeting, you don’t choose the topic. That’s a good
thing because it exposes you to ideas on the periphery of your range of
knowledge.

 » You find out what issues are at the forefront of today’s technology.

A few years ago, I heard the word microservices at a small session in New York
City. When I looked it up the next day, I found several blog posts calling
microservices “the next big thing.” The blog posts were right.

CHAPTER 11 Ten Ways to Enhance Your App Development Career 329

 » You network with professionals in your chosen field.

Who knows? Maybe one of them can help you find work!

When you attend a meeting and listen to the discussion, you may not understand
what people are saying. That’s okay. If nothing else, you’re learning by osmosis.

Ask Questions
In my college classes, students apologize for asking what they think are stupid
questions. “Don’t apologize,” I say. “The stupid questions are the ones I’m sure I
can answer.”

Ask Yourself Whether You
Truly Understand

Sometimes, I ignore a gap in my grasp of a particular concept. When I do, it’s
because I’m either too busy, too embarrassed, or too lazy to stop and think in-
depth about the concept. Eventually, my lack of understanding comes back to
haunt me. Even if it doesn’t, I carry around the nagging feeling that I’m deceiving
myself and sometimes deceiving others.

If you don’t understand something that’s useful for you to know, stop and try to
figure it out. The effort always pays off.

Learn Things That You May
Never Need to Know

You may never need to run 13 miles, but you sign up for a half-marathon anyway.
You may never need to paint a stunning landscape, but you visit art museums
anyway. Exercise your mind. Nothing you learn ever goes to waste.

330 PART 4 The Part of Tens

Do What You Love to Do
If you love your work, you love your life.

You may need to earn money in a job you don’t enjoy. If so, make a mental note to
yourself: “For now, I’ll do what I have to do to support myself and my family.
When I can, I’ll find work that I look forward to every day.”

Get Plenty of Sleep
That extra hour you spend trying to be an overachiever won’t help you when
you’re too tired to think clearly. To misquote Ben Franklin: “Early to bed and late
to rise puts a sparkle in your eyes.”

CHAPTER 12 Ten Chapters about Flutter App Development 331

Chapter 12
Ten Chapters about
Flutter App
Development
Introduction

Remarks about this book

What Is Flutter?
A bunch of vocabulary (some interesting and some not-so-interesting), all of it
useful

IN THIS CHAPTER

 » A celebration of having ten chapters
in this book

 » Perhaps a waste of two pages

332 PART 4 The Part of Tens

Setting Up Your Computer for
Mobile App Development

Downloading and installing stuff

‘Hello’ from Flutter
Examining a simple Flutter app

Hello Again
Digging deeper into the simple Flutter app

Making Things Happen
Responding to button presses and other such events

Laying Things Out
Making widgets be where you want them to be

Interacting with the User
Doris’s dating app

CHAPTER 12 Ten Chapters about Flutter App Development 333

Navigation, Lists, and Other Goodies
Taking your app from one page to another and, as a special bonus, fetching infor-
mation from the Internet

Moving Right Along . . .
Adding animation to your app

5Appendices

IN THIS PART . . .

Doris’s dating app

APPENDIX A Doris’s Dating App 337

Appendix A

Doris’s Dating App
Taken together, the examples in Chapter 7 form a dating app with several ques-
tions for the user. As real-world apps go, the dating app isn’t very large — only
340 lines of code. But the app is too large to squeeze into Chapter 7. So, instead of
forcing the app on you in Chapter 7, I put the app’s full text here in Appendix A.

Doris’s stunning

achievement.

338 PART 5 Appendices

import 'package:flutter/material.dart';

void main() => runApp(App0707());

class App0707 extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: MyHomePage(),

);

 }

}

class MyHomePage extends StatefulWidget {

 @override

 _MyHomePageState createState() => _MyHomePageState();

}

const _youAre = 'You are';

const _compatible = 'compatible with\nDoris D. Developer.';

enum Gender { Female, Male, Other }

String show(Gender gender) => gender.toString().replaceAll("Gender.", "");

enum Relationship {

 Friend,

 OneDate,

 Ongoing,

 Committed,

 Marriage,

}

Map<Relationship, String> nice = {

 Relationship.Friend: "Friend",

 Relationship.OneDate: "One date",

 Relationship.Ongoing: "Ongoing relationship",

 Relationship.Committed: "Committed relationship",

 Relationship.Marriage: "Marriage",

};

List<DropdownMenuItem<Relationship>> _relationshipsList = [

 DropdownMenuItem(

 value: Relationship.Friend,

APPENDIX A Doris’s Dating App 339

 child: Text(nice[Relationship.Friend]),

),

 DropdownMenuItem(

 value: Relationship.OneDate,

 child: Text(nice[Relationship.OneDate]),

),

 DropdownMenuItem(

 value: Relationship.Ongoing,

 child: Text(nice[Relationship.Ongoing]),

),

 DropdownMenuItem(

 value: Relationship.Committed,

 child: Text(nice[Relationship.Committed]),

),

 DropdownMenuItem(

 value: Relationship.Marriage,

 child: Text(nice[Relationship.Marriage]),

),

];

class _MyHomePageState extends State<MyHomePage> {

 TextEditingController _nameFieldController;

 bool _ageSwitchValue;

 Gender _genderRadioValue;

 Relationship _relationshipDropdownValue;

 double _loveFlutterSliderValue;

 String _messageToUser;

 Image _resultImage;

 /// State

 @override

 void initState() {

 super.initState();

 _nameFieldController = TextEditingController();

 _reset();

 }

 @override

 void dispose() {

 _nameFieldController.dispose();

 super.dispose();

 }

340 PART 5 Appendices

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text("Are you compatible with Doris?"),

),

 body: GestureDetector(

 onTap: () {

 FocusScope.of(context).requestFocus(FocusNode());

 },

 child: SingleChildScrollView(

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: <Widget>[

 _buildTitleImage(),

 _buildNameTextField(),

 _buildAgeSwitch(),

 _buildGenderRadio(),

 _buildRelationshipDropdown(),

 _buildLoveFlutterSlider(),

 _buildSubmitRow(),

],

),

),

),

);

 }

 /// Build

 Widget _buildTitleImage() {

 return Row(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Image.asset("Heart.png"),

 Image.asset("BrokenHeart.png"),

],

);

 }

 Widget _buildNameTextField() {

 return Container(

 padding: EdgeInsets.symmetric(vertical: 4.0, horizontal: 8.0),

 child: TextField(

APPENDIX A Doris’s Dating App 341

 controller: _nameFieldController,

 decoration: InputDecoration(

 labelText: "Your name:",

 border: OutlineInputBorder(

 borderRadius: BorderRadius.all(Radius.circular(10.0)),

),

),

),

);

 }

 Widget _buildCommonBorder({Widget child}) {

 return Container(

 padding: EdgeInsets.symmetric(vertical: 10.0, horizontal: 10.0),

 margin: EdgeInsets.symmetric(vertical: 4.0, horizontal: 8.0),

 decoration: BoxDecoration(

 border: Border.all(width: 0.5),

 borderRadius: BorderRadius.all(

 Radius.circular(10.0),

),

),

 child: child,

);

 }

 Widget _buildAgeSwitch() {

 return _buildCommonBorder(

 child: Row(

 children: <Widget>[

 Text("Are you 18 or older?"),

 Switch(

 value: _ageSwitchValue,

 onChanged: _updateAgeSwitch,

),

],

),

);

 }

 Widget _buildGenderRadio() {

 return _buildCommonBorder(

 child: Row(

 children: <Widget>[

 Text(show(Gender.Female)),

342 PART 5 Appendices

 Radio(

 value: Gender.Female,

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRatio,

),

 SizedBox(width: 25.0),

 Text(show(Gender.Male)),

 Radio(

 value: Gender.Male,

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRatio,

),

 SizedBox(width: 25.0),

 Text(show(Gender.Other)),

 Radio(

 value: Gender.Other,

 groupValue: _genderRadioValue,

 onChanged: _updateGenderRatio,

),

],

),

);

 }

 Widget _buildRelationshipDropdown() {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 Text("What kind of relationship are you looking for?"),

 _buildDropdownButtonRow(),

],

);

 }

 Widget _buildDropdownButtonRow() {

 return _buildCommonBorder(

 child: Row(

 mainAxisAlignment: MainAxisAlignment.start,

 children: <Widget>[

 DropdownButton<Relationship>(

 items: _relationshipsList,

 onChanged: _updateRelationshipDropdown,

 value: _relationshipDropdownValue,

 hint: Text("Select One"),

),

APPENDIX A Doris’s Dating App 343

 if (_relationshipDropdownValue != null)

 FlatButton(

 child: Text(

 "Reset",

 style: TextStyle(color: Colors.blue),

),

 onPressed: _resetDropdown,

),

],

),

);

 }

 Widget _buildLoveFlutterSlider() {

 return _buildCommonBorder(

 child: Column(

 children: <Widget>[

 Text("On a scale of 1 to 10, "

 "how much do you love developing Flutter apps?"),

 Slider(

 min: 1.0,

 max: 10.0,

 divisions: 9,

 value: _loveFlutterSliderValue,

 onChanged: _updateLoveFlutterSlider,

 label: '${_loveFlutterSliderValue.toInt()}',

),

],

),

);

 }

 Widget _buildSubmitRow() {

 return Container(

 padding: const EdgeInsets.symmetric(vertical: 12.0, horizontal: 8.0),

 child: Row(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 RaisedButton(

 child: Text("Submit"),

 onPressed: _updateResults,

),

 SizedBox(

 width: 15.0,

),

344 PART 5 Appendices

 RaisedButton(

 child: Text("Reset"),

 onPressed: () => setState(_reset),

),

 SizedBox(

 width: 15.0,

),

 Expanded(

 child: Column(

 children: <Widget>[

 Text(_messageToUser, textAlign: TextAlign.center),

 _resultImage ?? SizedBox(),

],

),

),

],

),

);

 }

 /// Actions

 void _reset() {

 _nameFieldController.text = "";

 _ageSwitchValue = false;

 _genderRadioValue = null;

 _relationshipDropdownValue = null;

 _loveFlutterSliderValue = 1.0;

 _messageToUser = "";

 _resultImage = null;

 }

 void _updateAgeSwitch(bool newValue) {

 setState(() {

 _ageSwitchValue = newValue;

 });

 }

 void _updateGenderRatio(Gender newValue) {

 setState(() {

 _genderRadioValue = newValue;

 });

 }

APPENDIX A Doris’s Dating App 345

 void _updateRelationshipDropdown(Relationship newValue) {

 setState(() {

 _relationshipDropdownValue = newValue;

 });

 }

 void _resetDropdown() {

 setState(() {

 _relationshipDropdownValue = null;

 });

 }

 void _updateLoveFlutterSlider(double newValue) {

 setState(() {

 _loveFlutterSliderValue = newValue;

 });

 }

 void _updateResults() {

 bool isCompatible = _ageSwitchValue && _loveFlutterSliderValue >= 8;

 setState(() {

 _resultImage =

 Image.asset(isCompatible ? "Heart.png" : "BrokenHeart.png");

 _messageToUser = _nameFieldController.text +
 "\n" +
 _youAre +
 (isCompatible ? " " : " NOT ") +
 _compatible;

 });

 }

}

Index 347

Index
Symbols
@ (at-sign), 151
\ (backslash character), 93
$ (dollar sign), 126
=> (fat arrow) notation, 127
∞ (infinity symbol), 315
+ (plus sign), 94
/ (slash), 275
// (slashes), 77, 120

A
abs method, 228
abstract class, 138
abstract method, 138
access modifiers, 161
Account class, 228
adding

imports, 325
itemCount, 325
padding, 171–173
parameters, 148–151
virtual devices, 46–50
visual tweaks, 88–89
widgets, 91–93

ahead-of-time (AOT) compiler, 22
alignment parameter, 177
Android

Android Studio IDE, 30
emulators, 31

Android devices
preparing to test on, 54–56
running apps on, 52–53
testing on, 59

Android runtime (ART), 12
Android Studio

about, 59
configuring, 35–36

installing, 43–44
installing Flutter plugin, 44–46
launching, 44
main window, 60–63
Project tool window, 61–62
starting up, 59–60
using, 59–63

Android Studio IDE, 30, 33
Android Virtual Devices (AVD)

about, 41, 47, 48
emulators vs., 47

angle brackets, 152
animation

about, 297
bouncing, 308–310
color, 310–312
curves, 312–314
dragging widgets, 314–319
moving along straight lines, 303–307
preparing for, 297–303
size, 310–312

Animation class, 300
AnimationController, 301, 306
annotation, override, 151–152
anonymous functions, 153–156
AOT (ahead-of-time) compiler, 22
Apache Cordova, 19
API (application programming interface)

about, 12
Dart programming language, 14–15, 123
Flutter, 14–15
public, 293–294

app bar, controlling Back button of, 266–267
application programming interface (API)

about, 12
Dart programming language, 14–15, 123
Flutter, 14–15
public, 293–294

348 Flutter For Dummies

application programs, 12
Application widget, 26
apps

development of, 25–28
enhancing, 146–162
mobile development of

about, 29–30, 43
adding virtual devices, 46–50
devices, 52–59
installing Android Studio, 43–44
installing Android Studio’s Flutter plugin, 44–46
installing Flutter, 50–52
launching Android Studio, 44
running sample programs from book, 63–66
setting up computer for, 332
steps for, 32–42
tools for, 30–32
using Android Studio, 59–63

running, 36–42
running on Android devices, 52–53
testing on physical devices, 53–59

ART (Android runtime), 12
asking questions, 329
assets, declaring, 325–326
assignment statement, 115
async keyword (Dart), 264–266, 295
at-sign (@), 151
automaticallyImplyLeading parameter, 266
AVD (Android Virtual Devices)

about, 41, 47, 48
emulators vs., 47

AVD Manager, opening, 48–50
avoiding mistakes, 323–326
await keyword (Dart), 264–266, 295

B
Back button

about, 255
controlling, 266–267

Background widget, 26
backslash character (\), 93
Bell, Alexander Graham, 69

’bite-size’ programs, 209
bitLength property, 227
Black Screen app, 23–24
blank spaces, 38, 94
block comments, 120–121
blue circle

methods for widgets, 135–138
pressing, 132–146
stateful widgets, 134–135
stateless widgets, 134–135

bool type, 122
border parameter, 178
borderRadius parameter, 178
bouncing around, animation and, 308–310
bounded constraint, 194–195
box widget, 23
break statement, 282–283
breaking connections, 55–56
build method, 129–130, 135–136, 137, 139, 151–

152, 202
buildColumn method, 170
_buildDropdownButtonRow method, 244
_buildExpandedBox method, 198
building

dropdown buttons, 239–245
enums, 233
function declarations, 124–130
functions, 106–112
list items one-by-one, 285–287
lists, 276–290
maps, 245
named routes, 272–276
parameter lists, 169–170
pieces of code, 167–169
radio buttons, 230–239
radio groups, 233–235
scaffolds, 86–87
stacks, 255

buildPositionedWidget method, 304, 318
buildRoundedBox method, 191
_buildRowOfThree method, 186, 191
built-in types (Dart), 121–123
Burd, Barry (author), 6

Index 349

Button widget, 26
buttons

floating action
methods for widgets, 135–138
pressing, 132–146
stateful widgets, 134–135
stateless widgets, 134–135

icons on, 254–255

C
The C Programming Language (Kernighan and

Ritchie), 69
Cake icon, 308
callbacks, in Flutter framework, 141–142
capitalization, 323
captioned boxes, 183–184
career, advancing your, 327–330
cascade operator, 307
case sensitivity, in Dart programming language, 70
Center widget, 83–85, 302
centering text, 94–100
_changeText function, 140–141, 144–145, 154
changing orientation for devices, 175
charging cables, 55
Cheat Sheet (website), 6
checking connections, 55–56
children parameter, 303
classes

about, 79–83
abstract, 138
Account, 228
Animation, 300
Color, 171
Curves, 310
DateTime, 123
DetailPage, 280
DropdownMenuItem, 242
Flex, 199
Flexible, 199
GestureDetector, 316, 317
Hello World program, 79–83
Icons, 151
Image, 103

int, 113, 121, 227, 228
_MyHomePage, 202
_MyHomePageState, 162, 224, 260, 307
Navigator, 275
StatefulWidget, 307
StatelessWidget, 80, 151–152
Widget, 124

closed project, 59
code

about, 14–15
creating pieces of, 167–169
critiquing your own, 328
getting reviews of your, 328
indenting, 326
native, 17

code decoration, 121
code listing

accessing online data, 290–292
adding widgets, 91–92
aligning text, 99
animation along straight lines, 304
basic navigation, 252–253
captioned boxes, 183–184
centering text, 84, 96
changing animation size/color, 310–311
changing animation velocity, 308–309
checking device orientation, 199–200
columns, 181–182
copying iPhone apps, 90
creating functions, 106
creating list items one-by-one, 285–286
creating lists, 277–278
creating named routes, 273–275
curves, 312–313
debugging, 193
displaying images, 103
dragging widgets, 315
dropdown buttons, 240–242
enhancing apps, 146–147
expanding widgets, 187–188, 189–190, 192
function declarations, 124–125
Hello World program, 70, 105
JSON code, 293–294

350 Flutter For Dummies

code listing (continued)
for layout, 164–166
margin, 178–179, 179–180
master-detail interface, 251–252
nesting widgets, 185
padding, 178–179, 179–180
passing data back to sources, 261–262
passing data from sources to destinations, 256–257
passing data in both directions, 268–269
preparing for animation, 298–299
pressing floating action buttons, 132–133
radio buttons, 231–232
responding to a button press, 215–216
rows, 181–182
slider app, 217–218
specifying relative size, 197–198
for statement, 289
Switch app, 208–209
using functions, 106
using scaffolds, 86, 88
widgets, 26

collection for, 289–290
color

animation and, 310–312
layouts and, 170–171

Color class, 171
color property, 177, 312
Column widget, 91, 173–175, 182, 281
columns
ListView widgets inside, 281
nesting, 181–183

command line interfaces, 50
comments, 120–121
compatibility, 16, 213–214
compiler, 23–24
compiling, 21
composition hierarchy, 81
compressed archive files, 35
computers

Macs
command line in, 51
compressed archive files in, 35
creating iPhone apps in, 34–35
filename extensions on, 34

installing Android Studio, 43
launching Android Studio, 44

setting up for mobile app development, 332
Windows

command line in, 51
compressed archive files in, 35
filename extensions in, 34
installing Android Studio, 43
launching Android Studio, 44

conditional expression, 213
conditional operator, 213
configuring Android Studio, 35–36
connections, breaking/checking, 55–56
const keyword (Dart), 211–213
ConstraintsLogger widget, 196
constructor call, 73
constructors, parameters for, 75–76
Container widget, 176–181
context parameter, 203
control. see control element
control element

about, 203
creating dropdown buttons, 239–245
creating radio buttons, 230–239
feedback, 214–217
slider app, 217–220
Switch, 208–214
text fields, 220–230

controlling Back button, 266–267
Cordova (Apache), 19
_counter variable, 156–157
createState method, 136, 139
creating

dropdown buttons, 239–245
enums, 233
function declarations, 124–130
functions, 106–112
list items one-by-one, 285–287
lists, 276–290
maps, 245
named routes, 272–276
parameter lists, 169–170
pieces of code, 167–169
radio buttons, 230–239

Index 351

radio groups, 233–235
scaffolds, 86–87
stacks, 255

Cross Reference icon, 6
crossAxisAlignment property, 173–174, 177, 182
cross-platform development, Flutter for, 15–17
cross-platform framework, 19
Cupertino widgets, 90, 256
curly braces, 83, 129
CurvedAnimation object, 309
curves

animation and, 312–314
defined, 308

Curves class, 310

D
Dalvik bytecode instructions, 24
Dart programming language

about, 11
application programming interface (API), 14–15, 123
async keyword, 264–266, 295
await keyword, 264–266, 295
built-in types, 121–123
case sensitivity in, 70, 323
const keyword, 211–213
Dartfmt tool, 111
declarations, 112–113
enum feature, 89
expressions, 114–117
Extension keyword, 248–250
highlight function, 117–119
import declarations, 123–124
int.parse method, 230
library (website), 124
literals, 114–117
programming in, 112–124
for statement, 288–290
statements, 112–113
strings, 93–94
switch statement, 282–283
top-level variables, 259
types, non-built-in, 123
typing feature, 113–114

var keyword, 119–121
variables, 114–117

dartdoc program, 120–121
Dartfmt tool, 111
data

fetching from Internet, 290–296
passing back to sources, 261–267
passing from sources to destinations, 256–261
passing in both directions, 267–272

data cables, 55
DateTime class, 123
dating app, 337–345
declarations

about, 80
Dart programming language, 112–113

declaring
assets, 325–326
dependencies, 325–326
variable names, 224

decoration parameter, 177–178
density-independent pixel (dp), 172
dependencies, declaring, 325–326
desktop, 13
destination page, 255
destinations, passing data from sources to, 256–261
DetailPage class, 280
developers, 10
development computer, 31
devices

about, 31, 52
Android

preparing to test on, 54–56
running apps on, 52–53
testing on, 59

changing orientation, 175
iPhones

Android Studio IDE, 30
preparing to test on, 57–58
simulators, 31
testing on, 59

physical
about, 31
preparing to test on Android, 54–56
preparing to test on iPhone, 57–58

352 Flutter For Dummies

devices (continued)
testing apps on, 53–59
testing on Android, 59
testing on iPhone, 59

running apps on Android, 52–53
size of, 199–203
testing apps on physical devices, 53–59
virtual

about, 31
adding, 46–50

directories, 33
displaying

images, 100–104
user choice, 235–236
widgets, 194–195

displayNicely function, 249–250
dispose method, 223
dispose method (Flutter), 230
distanceFromLeft, 318
distanceFromRight, 318
distanceFromTop, 318
divisions parameter, 219
DO statement, 288
doc comments, 120–121
documentation, 82–83
dollar sign ($), 126
dot notation, 227–229
double, 113–114
double quotation marks, 93
double type, 121
downloading software, 31
dp (density-independent pixel), 172
dragging widgets, 314–319
dropdown buttons, creating, 239–245
DropdownMenuItem class, 242

E
EdgeInsets object, 172
Editor area (Android Studio), 62
emulators

about, 31, 47
Android Virtual Devices (AVD) vs., 47

encapsulation, 162
end-of-line comments, 120–121

endsWith method, 228
enhancing apps, 146–162
enum feature (Dart), 89
enums, creating, 233
escape sequence, 212
event driven programming, 142
event handler, 140
events

defined, 140
Flutter framework, 140–141

Expanded widget, 186–199, 281, 325
expressions

about, 289
Dart programming language, 114–117

Extension keyword (Dart), 248–250

F
fat arrow (=>) notation, 127
feedback, 214–217
fetching data from Internet, 290–296
field, 156
filename extensions, 34
files
pubspec.yaml, 325–326
uncompressing, 35
unzipping, 35
.yaml, 295

finite state machine diagram, 270, 272
FlatButton widget, 244
Flex class, 199
flex factor, 198
flex property, 175, 199
Flexible class, 199
floating action buttons

methods for widgets, 135–138
pressing, 132–146
stateful widgets, 134–135
stateless widgets, 134–135

Flutter. see also specific topics
about, 9–10, 331
application programming interface (API), 14–15
framework

about, 17, 139–140
callbacks, 141–142

Index 353

code outline, 142–144
cross-platform, 19
events, 140–141

history of, 18–20
installing, 50–52
library (website), 124
uses for, 15–28

Flutter Doctor, 50
Flutter Inspector, 94
Flutter SDK path, 33
folders, 33
for statement (Dart), 288–290
FORTRAN, 114, 288
fragmentation, 17
framework (Flutter)

about, 17, 139–140
callbacks, 141–142
code outline, 142–144
cross-platform, 19
events, 140–141

function call, 108
function declarations

about, 107–108
creating, 124–130
typing names in, 127–128

functions
anonymous, 153–156
_changeText, 140–141, 144–145, 154
creating, 106–112
displayNicely, 249–250
get, 295
_getNewInfo, 144
_getNewText, 141, 145
getSuffix, 283
_handlerFunction, 143
highlight, 109, 112–113, 116, 117–119, 126–

127, 130
_incrementCounter, 158–159, 323–324
main, 127, 128, 139, 228
print, 113
setState, 143–145, 153, 154, 155, 306, 317, 324
sqrt, 314
_updateAgeSwitch, 210–211, 216
_updateGenderRadio, 234

_updateResults, 216
using, 106–112
VoidCallback, 155, 210–211

G
_genderRadioValue, 236
generating

dropdown buttons, 239–245
enums, 233
function declarations, 124–130
functions, 106–112
list items one-by-one, 285–287
lists, 276–290
maps, 245
named routes, 272–276
parameter lists, 169–170
pieces of code, 167–169
radio buttons, 230–239
radio groups, 233–235
scaffolds, 86–87
stacks, 255

generic, 152
GestureDetector class, 316, 317
get function, 295
getAnimation method, 305–306, 307, 316
_getNewInfo function, 144
_getNewText function, 141, 145
getSuffix function, 283
goToDetailPage method, 254, 280
graphical user interface (GUI), 50, 139

H
_handlerFunction function, 143
hardware, 10–15
Hardware Accelerated Execution Manager (HAXM), 53
header, 108
height parameter, 169, 176
Hello World program

about, 69, 72–74, 332
classes, 79–83
constructor parameters, 75–76
indentation, 77–78
objects, 79–83

354 Flutter For Dummies

Hello World program (continued)
punctuation, 76–77
styling, 83–104
widgets, 79–83

highlight function, 109, 112–113, 116, 117–119,
126–127, 130

hint parameter, 243
history, of Flutter, 18–20
home directory, 33
home parameter, 275
Homebrew, 57
hot reload, 25, 85
hot restart, 24, 85
hybrid app development, 18

I
ICANN (Internet Corporation for Assigned Names and

Numbers), 40
Icon instance, 151
icons

on buttons, 254–255
Cake, 308
explained, 5–6

Icons class, 151
IDE (integrated development environment), 30
if statement, 200–201, 213–214, 244
if-null operator, 239
Image class, 103
images, displaying, 100–104
import declarations, in Dart programming language,

123–124
import statements, 160–161
imports, adding, 325
_incrementCounter function, 158–159, 323–324
indentation, 77–78, 326
index, 92, 245, 324
infinity symbol (∞), 315
inheritance hierarchy, 81
initialRoute parameter, 276
initState method, 223, 224–225, 230
installing

Android Studio, 43–44
Android Studio’s Flutter plugin, 44–46
Flutter, 50–52
software, 32–34

instance, 79
instance variable, 156
int class, 113, 121, 227, 228
integrated development environment (IDE), 30
Intel Hardware Accelerated Execution Manager

(HAXM), 53
Intel Virtualization Technology (VT), 53
Internet, fetching data from, 290–296
Internet Corporation for Assigned Names

and Numbers (ICANN), 40
Internet resources

Android Studio IDE, 31
Cheat Sheet, 6
Color class documentation, 171
curve values, 309
Dart library, 124
example Flutter apps, 30
Flutter API reference documentation, 15
Flutter library, 124
Flutter SDK, 31
Homebrew, 57
images in Icons class, 151
Material Design, 73
Material Design’s elevation

property, 89
The Movie Database, 293
@override annotations, 152
swatches, 149
for this book, 31, 63
Virtual Studio Code (VS Code), 33

interpolating strings, 125–126
int.parse method (Dart), 230
int.tryParse method, 230
iPhones

Android Studio IDE, 30
preparing to test on, 57–58
simulators, 31
testing on, 59

isEmpty property, 227
isEven property, 227
_isFavorite, 259, 260, 263–264
isNegative property, 227
itemBuilder parameter, 279–280
itemCount parameter, 279, 325

Index 355

J
Java, 25
JavaScript Object Notation (JSON), 293–294, 296
JIT (just-in-time) compiler, 22
JSON code, 293–294
just-in-time (JIT) compiler, 22

K
kernel, 12
Kernighan, Brian (author)

The C Programming Language, 69
Kotlin, 25

L
label parameter, 169, 220
landscape mode, 175
Last-In-First-Out (LIFO) rule, 255
launching

Android Studio, 44
AVD Manager, 48–50

layout
about, 163–164
adding padding, 171–173
color, 170–171
Column widget, 173–175
Container widget, 176–181
creating parameter lists, 169–170
creating pieces of code, 167–169
device size, 199–203
examples of, 164–166
Expanded widget, 186–199
nesting levels, 183–186
nesting rows/columns, 181–183
SizedBox widget, 175

leading parameter, 266
learning, importance of, 329
left property, 302
length property, 227
library. see application programming interface (API)
LIFO (Last-In-First-Out) rule, 255
List type, 122, 287

listing, code
accessing online data, 290–292
adding widgets, 91–92
aligning text, 99
animation along straight lines, 304
basic navigation, 252–253
captioned boxes, 183–184
centering text, 84, 96
changing animation size/color, 310–311
changing animation velocity, 308–309
checking device orientation, 199–200
columns, 181–182
copying iPhone apps, 90
creating functions, 106
creating list items one-by-one, 285–286
creating lists, 277–278
creating named routes, 273–275
curves, 312–313
debugging, 193
displaying images, 103
dragging widgets, 315
dropdown buttons, 240–242
enhancing apps, 146–147
expanding widgets, 187–188, 189–190, 192
function declarations, 124–125
Hello World program, 70, 105
JSON code, 293–294
for layout, 164–166
margin, 178–179, 179–180
master-detail interface, 251–252
nesting widgets, 185
padding, 178–179, 179–180
passing data back to sources, 261–262
passing data from sources to destinations, 256–257
passing data in both directions, 268–269
preparing for animation, 298–299
pressing floating action buttons, 132–133
radio buttons, 231–232
responding to a button press, 215–216
rows, 181–182
slider app, 217–218
specifying relative size, 197–198
for statement, 289

356 Flutter For Dummies

listing, code (continued)
Switch app, 208–209
using functions, 106
using scaffolds, 86, 88
widgets, 26

lists
about, 247–248
creating, 276–290
creating items one-by-one, 285–287
ListView widget, 100, 279–284, 285–287, 289, 325
master-detail interface, 251–252
parameterized

about, 152
creating, 169–170

ListTile widget, 287
ListView widget, 100, 279–284, 285–287, 289, 325
literals, in Dart programming language, 114–117
loose constraint, 196

M
macOS, filename extensions in, 34
Macs

command line in, 51
compressed archive files in, 35
creating iPhone apps in, 34–35
filename extensions on, 34
installing Android Studio, 43
launching Android Studio, 44

main axis, 98
main function, 127, 128, 139, 228
main window (Android Studio), 60–63
mainAxisAlignment property, 173, 177, 182–183
Map type, 122, 245
maps, creating, 245
margin, 181
margin parameter, 178–181
master-detail interface, 251–252
Material Design

about, 73, 88, 89–90
elevation property, 89
widgets, 256

Material widget, 78, 81, 85, 87, 89, 179
MaterialApp widget, 78
max parameter, 219

members, 228
methods
abs, 228
abstract, 138
build, 129–130, 135–136, 137, 139, 151–152, 202
buildColumn, 170
_buildDropdownButtonRow, 244
_buildExpandedBox, 198
buildPositionedWidget, 304, 318
buildRoundedBox, 191
_buildRowOfThree, 186, 191
createState, 136, 139
dispose, 223, 230
endsWith, 228
getAnimation, 305–306, 307, 316
goToDetailPage, 254, 280
initState, 223, 224–225, 230
int.parse, 230
int.tryParse, 230
onHorizontalDragUpdate, 316
onPanUpdate, 316
onScaleUpdate, 316
onSecondaryTapDown, 316
parse, 227
pushedNamed, 275
replaceAll(), 235
shorten, 238–239
split, 228
toRadixString, 228
toString, 235, 236
toUpperCase, 228
trim, 228
updateOverview, 296
for widgets, 135–138

min parameter, 219
mistakes, avoiding, 323–326
mixin, 301
mobile app development

about, 29–30, 43
adding virtual devices, 46–50
devices, 52–59
installing Android Studio, 43–44
installing Android Studio’s Flutter plugin, 44–46
installing Flutter, 50–52

Index 357

launching Android Studio, 44
running sample programs from book, 63–66
setting up computer for, 332
steps for, 32–42
tools for, 30–32
using Android Studio, 59–63

The Movie Database, 293
_MyHomePage class, 202
_MyHomePageState class, 162, 224, 260, 307

N
named constructor, 103
named parameter, 76
names

typing in function declarations, 127–128
underscores and, 160–161

naming parameters, 128–129
native code, 17
navigation

about, 247–248
basic, 252–253
creating named routes, 272–276
destination page, 255
Extension keyword, 248–250
fetching data from Internet, 290–296
master-detail interface, 251–252
passing data back to sources, 261–267
passing data from sources to destinations, 256–261
passing data in both directions, 267–272
scrolling, 284
source page, 255

navigation bar (Android Studio), 61
Navigator class, 275
nesting

levels of, 183–186
rows/columns, 181–183

null-aware operator, 238
num type, 121

O
Objective-C language, 25
object-oriented programming, 227

objects
about, 79–83
CurvedAnimation, 309
EdgeInsets, 172
properties of, 97
State, 223

obtaining software, 32–34
On The Web icon, 6
onChanged event handler, 216, 220, 222, 243
onHorizontalDragUpdate method, 316
onPanUpdate method, 316
onPressed event handler, 216
onScaleUpdate method, 316
onSecondaryTapDown method, 316
onWillPop parameter, 267
open project, 59
opening

Android Studio, 44
AVD Manager, 48–50

operating system (OS) software, 11
orientation, changing for devices, 175
orientation property, 202
OS (operating system) software, 11
OS user interface, 13
overflow, 187
override annotation, 151–152

P
package, 40
Packages view (Android Studio), 62
padding

about, 180
adding, 171–173

padding parameter, 178–181
Padding widget, 26, 171–173
parameterized list

about, 152
creating, 169–170

parameters
about, 108–112
adding, 148–151
alignment, 177
automaticallyImplyLeading, 266

358 Flutter For Dummies

parameters (continued)
border, 178
borderRadius, 178
children, 303
for constructors, 75–76
context, 203
decoration, 177–178
divisions, 219
height, 169, 176
hint, 243
home, 275
initialRoute, 276
itemBuilder, 279–280
itemCount, 279, 325
label, 169, 220
leading, 266
margin, 178–181
max, 219
min, 219
named, 76
naming, 128–129
onWillPop, 267
padding, 178–181
positional, 76
theme, 148
title, 148
value, 220, 243
vertical, 172
width, 176

parentheses, 323–324
parse method, 227
passes constraints, 194
passing

data back to sources, 261–267
data from sources to destinations,

256–261
data in both directions, 267–272

physical devices
about, 31
preparing to test on Android, 54–56
preparing to test on iPhone, 57–58
testing apps on, 53–59

testing on Android, 59
testing on iPhone, 59

Pixel C tablet, 202
platform, 16
plug-ins, 19
plus sign (+), 94
polling, 142
popping, off stacks, 255–256
portrait mode, 175
positional parameter, 76
Positioned widget, 302, 304, 314, 317
practice, importance of, 327
preparing, for animation, 297–303
pressing floating action buttons, 132–146
print function, 113
programmer, 10
programming languages

Dart
about, 11, 112–124
application programming interface (API),

14–15, 123
async keyword, 264–266, 295
await keyword, 264–266, 295
built-in types, 121–123
case sensitivity in, 70, 323
const keyword, 211–213
Dartfmt tool, 111
declarations, 112–113
enum feature, 89
expressions, 114–117
Extension keyword, 248–250
highlight function, 117–119
import declarations, 123–124
int.parse method, 230
library (website), 124
literals, 114–117
programming in, 112–124
for statement, 288–290
statements, 112–113
strings, 93–94
switch statement, 282–283
top-level variables, 259

Index 359

types, non-built-in, 123
typing feature, 113–114
var keyword, 119–121
variables, 114–117

defined, 11
programs

application, 12
dartdoc, 120–121
defined, 10
Hello World

about, 69, 72–74, 332
classes, 79–83
constructor parameters, 75–76
indentation, 77–78
objects, 79–83
punctuation, 76–77
styling, 83–104
widgets, 79–83

Project tool button (Android Studio), 62
Project tool window (Android Studio), 61–62
Project view (Android Studio), 61
properties
bitLength, 227
color, 177, 312
crossAxisAlignment, 173–174, 177, 182
flex, 175, 199
isEmpty, 227
isEven, 227
isNegative, 227
left, 302
length, 227
mainAxisAlignment, 173, 177, 182–183
in object-oriented programming, 227
of objects, 97
orientation, 202
right, 302
size, 311
text, 227
values of, 97

public API, 293–294
pubspec.yaml file, 325–326
punctuation characters, 38, 76–77
pushedNamed method, 275
pushing, to stacks, 255–256

Q
questions, asking, 329
quick-and-easy development cycle, Flutter for, 17–25
quotation marks, 93, 94

R
radio buttons, creating, 230–239
radio groups, building, 233–235
RaisedButton widget, 215, 244, 254, 255
React Native, 20
real devices. see physical devices
Remember icon, 5
replaceAll() method, 235
researching technology, 328
Reset button, 244
resources, Internet

Android Studio IDE, 31
Cheat Sheet, 6
Color class documentation, 171
curve values, 309
Dart library, 124
example Flutter apps, 30
Flutter API reference documentation, 15
Flutter library, 124
Flutter SDK, 31
Homebrew, 57
images in Icons class, 151
Material Design, 73
Material Design’s elevation property, 89
The Movie Database, 293
@override annotations, 152
swatches, 149
for this book, 31, 63
Virtual Studio Code (VS Code), 33

return statement, 110, 112, 283
return value, 108–112
right property, 302
Ritchie, Dennis (author), 288

The C Programming Language, 69
routes

creating named, 272–276
defined, 256

rows, nesting, 181–183

360 Flutter For Dummies

Run icon, 85
Run tool window (Android Studio), 62
Runes type, 122
running

apps, 36–42
apps on Android devices, 52–53
sample programs from book, 63–66

runtime, 12

S
SafeArea widget, 181
Scaffold widget, 87
scaffolds, creating, 86–87
scrolling, 284
SDK (Software Development Kit), 30
SEARCH ON WIDGETS IN FIRST 100 PAGES
sending URLs to servers, 295
servers, sending URLs to, 295
Set type, 122
setState function, 143–145, 153, 154, 155, 306,

317, 324
setup, computer for mobile app development, 332
shorten method, 238–239
showing

images, 100–104
user choice, 235–236
widgets, 194–195

simulator, 31
single quotation marks, 93
SingleChildScrollView, 284
size

animation and, 310–312
of devices, 199–203

size property, 311
SizedBox widget, 175
slash character (/), 275
slashes (//), 77, 120
sleep, importance of, 330
slider app, 217–220
software

about, 10–15
compatibility and, 16

downloading, 31
installing, 32–34
obtaining, 32–34
operating system (OS), 11

Software Development Kit (SDK), 30
source code, 10
source page, 255
sources

passing data back to, 261–267
passing data to destinations from, 256–261

split method, 228
sqrt function, 314
square brackets, 296
Stack, 302, 303
stacks, 255–256
Stanley’s Swell Shaving Cream/Superior Shaving

Cream, 131–132
starting

Android Studio, 44, 59–60
AVD Manager, 48–50

state, 134
State object, 223
stateful widgets, 134–135
StatefulWidget class, 307
stateless widgets, 134–135
StatelessWidget class, 80, 151–152
statements
for, 288–290
about, 289
assignment, 115
break, 282–283
Dart programming language, 112–113
defined, 116
DO, 288
if, 200–201, 213–214, 244
import, 160–161
return, 110, 112, 283
switch, 282–283

static members, 229
static variables, 260
status bar (Android Studio), 63
straight lines, animation along, 303–307
String instance, 114, 122, 228

Index 361

strings
Dart programming language, 93–94
interpolating, 125–126

styling, in Hello World program, 83–104
swatch, 149
Swift language, 25
Switch control, 208–214
switch statement (Dart), 282–283
Symbol type, 122
system image, 47

T
target devices, 31
Technical Stuff icon, 6
technology, researching, 328
ternary operator, 214
testing apps on physical devices, 53–59
text, centering, 94–100
text fields, 220–230
text property, 227
Text widget, 26, 75, 81, 83, 84–87, 91, 223, 280
TextEditingController instance, 227
theme parameter, 148
ticker, 301
tight constraint, 196
Tip icon, 5
title parameter, 148
toolbar (Android Studio), 61
tools

Dartfmt, 111
for mobile app development, 30–32

tooltip string, 151
top-level declaration, 159
top-level names, 162
top-level variables (Dart), 259
toRadixString method, 228
toString method, 235, 236
Touge, Alice (historian), 20
toUpperCase method, 228
trailing comma, 76–77, 111
trim method, 228
triple quotation marks, 94
type safe, 114

typing
in Dart programming language, 113–114
names in function declarations, 127–128

U
unbounded constraint, 194
uncompressing files, 35
underscores

about, 38
names and, 160–161

unzipping files, 35
_updateAgeSwitch function, 210–211, 216
_updateGenderRadio function, 234
updateOverview method, 296
_updateResults function, 216
uppercase letters, 38
URLs, sending to servers, 295
USB cables, 55
user group meetings, 328–329
user interaction

about, 203
creating dropdown buttons, 239–245
creating radio buttons, 230–239
feedback, 214–217
slider app, 217–220
Switch, 208–214
text fields, 220–230

users
defined, 10
displaying user choice, 235–236

V
value indicator, 220
value parameter, 220, 243
values, of properties, 97
var keyword, 119–121
variable declarations, 115
variable names, declaring, 224
variables

Dart programming language, 114–117
limiting access to, 324
static, 260

362 Flutter For Dummies

vertical parameter, 172
virtual devices

about, 31
adding, 46–50

Virtual Studio Code (VS Code), 33
Virtualization Technology (VT), 53
Visibility widget, 259
visual tweaks, adding, 88–89
VoidCallback function, 155, 210–211
VT (Virtualization Technology), 53

W
Warning icon, 5
websites

Android Studio IDE, 31
Cheat Sheet, 6
Color class documentation, 171
curve values, 309
Dart library, 124
example Flutter apps, 30
Flutter API reference documentation, 15
Flutter library, 124
Flutter SDK, 31
Homebrew, 57
images in Icons class, 151
Material Design, 73
Material Design’s elevation property, 89
The Movie Database, 293
@override annotations, 152
swatches, 149
for this book, 31, 63
Virtual Studio Code (VS Code), 33

Widget classes, 124
<Widget>, 152–153
widgets

about, 26, 79–83
adding, 91–93
Application, 26
Background, 26
box, 23
Button, 26
Center, 83–85, 302
Column, 91, 173–175, 182, 281
ConstraintsLogger, 196

Container, 176–181
Cupertino, 90, 256
displaying, 194–195
dragging, 314–319
Expanded, 186–199, 281, 325
FlatButton, 244
Hello World program, 79–83
layout of, 163–164
ListTile, 287
ListView, 100, 279–284, 285–287, 289, 325
Material, 78, 81, 85, 87, 89, 179
Material Design, 256
MaterialApp, 78
methods for, 135–138
Padding, 26, 171–173
Positioned, 302, 304, 314, 317
RaisedButton, 215, 244, 254, 255
SafeArea, 181
Scaffold, 87
SizedBox, 175
stateful, 134–135
stateless, 134–135
Text, 26, 75, 81, 83, 84–87, 91, 223, 280
Visibility, 259

width parameter, 176
Windows

command line in, 51
compressed archive files in, 35
filename extensions in, 34
installing Android Studio, 43
launching Android Studio, 44

“within-ness,” 81–82
working directory, 51

X
Xamarin, 20

Y
.yaml file, 295

Z
zip files, 35

About the Author
Barry Burd received an MS degree in computer science at Rutgers University and
a PhD in mathematics at the University of Illinois. As a teaching assistant in
Champaign-Urbana, Illinois, he was elected five times to the university-wide List
of Teachers Ranked as Excellent by Their Students.

Since 1980, Barry has been a professor in the department of mathematics and
computer science at Drew University in Madison, New Jersey. He has spoken at
conferences in the United States, Europe, Australia, and Asia. He is the author of
several articles and books, including Java For Dummies, Beginning Programming
with Java For Dummies, and Java Programming for Android Developers For Dummies, all
from Wiley.

Barry lives in Madison, New Jersey, with his wife of 40 years. In his spare time, he
enjoys eating chocolate and avoiding exercise. You can reach him at flutter@
allmycode.com.

Dedication

mailto:flutter@allmycode.com
mailto:flutter@allmycode.com

Author’s Acknowledgments
I heartily and sincerely thank Paul Levesque, for his work on so many of my books
in this series. Thanks also to Katie Mohr and Steve Hayes, for their patience and
support. Thanks to Martin Rybak, for his technical advice and his ongoing encour-
agement. Thanks to Becky Whitney, for keeping my grammar and punctuation in
check. Thanks to the staff at Wiley, for helping to bring this book to bookshelves.

Thanks to Frank Greco and the leaders of the New York JavaSIG — Jeanne
Boyarsky, Rodrigo Graciano, Chandra Guntur, Justin Lee, Sai Sharan Donthi,
Lily Luo, and Vinay Karle. Thanks to Michael Redlich of the ACGNJ Java User
Group. Thanks to my colleagues, the faculty members in the mathematics and
computer science department at Drew University — Sarah Abramowitz, Chris
Apelian, Ferdi Eruysal, Seth Harris, Emily Hill, Steve Kass, Yi Lu, Ziyuan Meng,
Ellie Small, and Steve Surace. Finally, a special thanks to Richard Bonacci, Peter
Lubbers, and Cameron McKenzie, for their long-term help and support.

Publisher’s Acknowledgments

Acquisitions Editor: Steve Hayes

Senior Project Editor: Paul Levesque

Copy Editor: Becky Whitney

Editorial Assistant: Matthew Lowe

Sr. Editorial Assistant: Cherie Case

Production Editor: Magesh Elangovan

Cover Image: andresr/Getty Images,
screen image courtesy of Barry Burd

Take dummies with you
everywhere you go!
Whether you are excited about e-books, want more

from the web, must have your mobile apps, or are swept
up in social media, dummies makes everything easier.

dummies.com

Find us online!

http://Dummies.com

Leverage the power
Dummies is the global leader in the reference category and one
of the most trusted and highly regarded brands in the world. No
longer just focused on books, customers now have access to the
dummies content they need in the format they want. Together
we’ll craft a solution that engages your customers, stands out
from the competition, and helps you meet your goals.

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.
Dummies.com is a one-stop shop for free, online information
and know-how curated by a team of experts.

• Targeted ads
• Video
• Email Marketing

• Microsites
• Sweepstakes

sponsorship

Advertising & Sponsorships

MILLION
PAGE VIEWS

M IL L I O N

NEWSLETTER

300,000 UNIQUE INDIVIDUALS
EVERY WEEK

UNIQUE

SUBSCRIPTIONS

EVERY SINGLE MONTH

15

700,000

20

43%
OF ALL VISITORS
ACCESS THE SITE
VIA THEIR MOBILE DEVICES

VISITORS PER MONTH

TO THE INBOXES OF

of dummies

you from competitors, amplify your message, and encourage customers to make a
buying decision.

Leverage the strength of the world’s most popular reference brand to reach new
audiences and channels of distribution.

For more information, visit dummies.com/biz

• Apps
• Books

• eBooks
• Video

• Audio
• Webinars

Custom Publishing

Brand Licensing & Content

http://Dummies.com/biz

9781119187790
USA $26.00
CAN $31.99
UK £19.99

9781119179030
USA $21.99
CAN $25.99
UK £16.99

9781119293354
USA $24.99
CAN $29.99
UK £17.99

9781119293347
USA $22.99
CAN $27.99
UK £16.99

9781119310068
USA $22.99
CAN $27.99
UK £16.99

9781119235606
USA $24.99
CAN $29.99
UK £17.99

9781119251163
USA $24.99
CAN $29.99
UK £17.99

9781119235491
USA $26.99
CAN $31.99
UK £19.99

9781119279952
USA $24.99
CAN $29.99
UK £17.99

9781119283133
USA $24.99
CAN $29.99
UK £17.99

9781119287117
USA $24.99
CAN $29.99
UK £16.99

9781119130246
USA $22.99
CAN $27.99
UK £16.99

PERSONAL ENRICHMENT

9781119311041
USA $24.99
CAN $29.99
UK £17.99

9781119255796
USA $39.99
CAN $47.99
UK £27.99

9781119293439
USA $26.99
CAN $31.99
UK £19.99

9781119281467
USA $26.99
CAN $31.99
UK £19.99

9781119280651
USA $29.99
CAN $35.99
UK £21.99

9781119251132
USA $24.99
CAN $29.99
UK £17.99

9781119310563
USA $34.00
CAN $41.99
UK £24.99

9781119181705
USA $29.99
CAN $35.99
UK £21.99

9781119263593
USA $26.99
CAN $31.99
UK £19.99

9781119257769
USA $29.99
CAN $35.99
UK £21.99

9781119293477
USA $26.99
CAN $31.99
UK £19.99

9781119265313
USA $24.99
CAN $29.99
UK £17.99

9781119239314
USA $29.99
CAN $35.99
UK £21.99

9781119293323
USA $29.99
CAN $35.99
UK £21.99

PROFESSIONAL DEVELOPMENT

dummies.com

http://Dummies.com

Available Everywhere Books Are Sold

Learning Made Easy

9781119293576
USA $19.99
CAN $23.99
UK £15.99

9781119293637
USA $19.99
CAN $23.99
UK £15.99

9781119293491
USA $19.99
CAN $23.99
UK £15.99

9781119293460
USA $19.99
CAN $23.99
UK £15.99

9781119293590
USA $19.99
CAN $23.99
UK £15.99

ACADEMIC

9781119215844
USA $26.99
CAN $31.99
UK £19.99

 9781119293378
USA $22.99
CAN $27.99
UK £16.99

9781119293521
USA $19.99
CAN $23.99
UK £15.99

9781119239178
USA $18.99
CAN $22.99
UK £14.99

9781119263883
USA $26.99
CAN $31.99
UK £19.99

dummies.com

http://Dummies.com

Unleash Their Creativity

Small books for big
imaginations

9781119177173
USA $9.99
CAN $9.99
UK £8.99

9781119177272
USA $9.99
CAN $9.99
UK £8.99

9781119177241
USA $9.99
CAN $9.99
UK £8.99

9781119177210
USA $9.99
CAN $9.99
UK £8.99

9781119262657
USA $9.99
CAN $9.99
UK £6.99

9781119291336
USA $9.99
CAN $9.99
UK £6.99

9781119233527
USA $9.99
CAN $9.99
UK £6.99

9781119291220
USA $9.99
CAN $9.99
UK £6.99

9781119177302
USA $9.99
CAN $9.99
UK £8.99

dummies.com

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	How to Use This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Part 1, “Getting Ready”
	Part 2, “Flutter: A Burd’s-Eye View”
	Part 3, “Details, Details”
	Part 4, “The Part of Tens”
	More on the web!

	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting Ready
	Chapter 1 What Is Flutter?
	Hardware and Software (Things You May Already Know)
	Where Does Flutter Fit In?
	Cross-platform development
	A quick-and-easy development cycle
	A great way to think about app development

	Enough New Terminology! What’s Next?

	Chapter 2 Setting Up Your Computer for Mobile App Development
	The Stuff You Need
	What to Do
	Getting and installing the stuff
	For Mac users only
	Configuring Android Studio
	Running your first app

	Dealing with the Devil’s Details
	On installing Android Studio
	On launching Android Studio for the first time
	On installing Android Studio’s Flutter plugin
	On adding virtual devices
	On installing Flutter

	Divisiveness Among Devices
	Running apps on an Android device
	Testing apps on a physical device

	Using Android Studio
	Starting up
	The main window

	Running This Book’s Sample Programs
	Enjoying reruns
	If you’re finicky . . .

	Were These Setup Steps Fun or What?

	Part 2 Flutter: A Burd’s-Eye View
	Chapter 3 “Hello” from Flutter
	First Things First
	What’s it all about?
	A constructor’s parameters
	A note about punctuation
	Don’t relent — simply indent

	Classes, Objects, and Widgets
	A brief treatise on “within-ness”
	The documentation is your friend

	Making Things Look Nicer
	Creating a scaffold
	Adding visual tweaks
	Dart’s enum feature
	Hello from sunny California!
	Adding another widget
	Centering the text (Part 1)
	Centering the text (Part 2)
	Displaying an image

	Hey, Wait a Minute . . .

	Chapter 4 Hello Again
	Creating and Using a Function
	The function declaration
	A function call
	Parameters and the return value

	Programming in Dart: The Small Stuff
	Statements and declarations
	Dart’s typing feature
	Literals, variables, and expressions
	Two for the price of one
	Dart’s var keyword
	Built-in types
	Types that aren’t built-in
	Using import declarations

	Variations on a Theme from Die Flutter Mouse
	Type names in function declarations
	Naming your parameters
	What about the build function?

	More Fun to Come!

	Chapter 5 Making Things Happen
	Let’s All Press a Floating Action Button
	Stateless widgets and stateful widgets
	Widgets have methods
	Pay no attention to the framework behind the curtain

	Enhancing Your App
	More parameters, please
	The override annotation
	What does <Widget> mean?
	Anonymous functions
	What belongs where
	Names that start with an underscore

	Whew!

	Chapter 6 Laying Things Out
	The Big Picture
	Creating bite-size pieces of code
	Creating a parameter list
	Living color
	Adding padding
	Your humble servant, the Column widget
	The SizedBox widget
	Your friend, the Container widget

	Nesting Rows and Columns
	More Levels of Nesting
	Using the Expanded Widget
	Expanded versus unexpanded
	Expanded widget saves the day
	Flexing some muscles

	How Big Is My Device?

	Part 3 Details, Details
	Chapter 7 Interacting with the User
	A Simple Switch
	Dart’s const keyword
	Compatible or NOT?

	Wait For It!
	How Much Do You Love Flutter?
	Dealing with Text Fields
	Callouts 1 and 2
	Callout 3
	Callout 4
	Callout 5

	Creating Radio Buttons
	Creating an enum
	Building the radio group
	Displaying the user’s choice

	Creating a Dropdown Button
	Building the dropdown button
	The little Reset button
	Making a Map

	Onward and Upward

	Chapter 8 Navigation, Lists, and Other Goodies
	Extending a Dart Class
	From One Page to Another
	An icon on a button
	Pushing and popping

	Passing Data from Source to Destination
	Passing Data Back to the Source
	Dart’s async and await keywords
	Taking control of the app bar’s Back button

	Passing Data in Both Directions
	Creating Named Routes
	Creating a List
	The ListView widget
	Creating list items one-by-one
	Another new Dart language feature

	Fetching Data from the Internet
	Using a public API
	Sending a URL to a server
	Making sense of a JSON response

	What’s Next?

	Chapter 9 Moving Right Along . . .
	Setting the Stage for Flutter Animation
	Moving Along a Straight Line
	Bouncing Around
	Animating Size and Color Changes
	Moving Along a Curve
	Dragging Things Around
	Where To Go From Here

	Part 4 The Part of Tens
	Chapter 10 Ten Ways to Avoid Mistakes
	Put Capital Letters Where They Belong
	Use Parentheses When (and Only When) They’re Appropriate
	Limit Access to Variables
	Call setState
	Make Adjustments for Indices Starting at Zero
	Use the Expanded Widget
	Add itemCount to Your ListView.builder
	Add Imports When They’re Required
	Declare Assets and Dependencies in pubspec.yaml
	Indent Your Code According to Dart Language Guidelines

	Chapter 11 Ten Ways to Enhance Your App Development Career
	Practice! Practice!
	Critique Your Own Code
	Have Others Review Your Code
	Find Out Which Technologies Your Nearby Companies Use
	Attend User Group Meetings
	Ask Questions
	Ask Yourself Whether You Truly Understand
	Learn Things That You May Never Need to Know
	Do What You Love to Do
	Get Plenty of Sleep

	Chapter 12 Ten Chapters about Flutter App Development
	Introduction
	What Is Flutter?
	Setting Up Your Computer for Mobile App Development
	‘Hello’ from Flutter
	Hello Again
	Making Things Happen
	Laying Things Out
	Interacting with the User
	Navigation, Lists, and Other Goodies
	Moving Right Along . . .

	Part 5 Appendices
	Appendix A Doris’s Dating App

	Index
	EULA

