
M A N N I N G

Samer Buna

GraphQL language text asking
for exact data needs

Exact data response
(for example, in JSON)

Transport channel
(for example, HTTPS) API serviceAPI consumer

GraphQL
runtime

GraphQL in Action

GraphQL in Action

SAMER BUNA

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical development editor: Alain Couniot
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Deirdre Hiam

Copy editor: Tiffany Taylor
Proofreader: Katie Tennant

Technical proofreader: Valentin Crettaz
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617295683
Printed in the United States of America

http://www.manning.com

 To my wife, Chalena,
for all your unconditional, loving support

 To my children, Odin, Ally, and Leo,
for inspiring me each and every day

 To my parents, Nemeh and Sharif,
for teaching me the value of hard work and always pushing me to the limit

vii

brief contents
PART 1 EXPLORING GRAPHQL ...1

1 ■ Introduction to GraphQL 3

2 ■ Exploring GraphQL APIs 30

3 ■ Customizing and organizing GraphQL operations 47

PART 2 BUILDING GRAPHQL APIS..75

4 ■ Designing a GraphQL schema 77

5 ■ Implementing schema resolvers 110

6 ■ Working with database models and relations 138

7 ■ Optimizing data fetching 171

8 ■ Implementing mutations 208

PART 3 USING GRAPHQL APIS ..251

9 ■ Using GraphQL APIs without a client library 253

10 ■ Using GraphQL APIs with Apollo client 293

ix

contents
preface xv
acknowledgments xvii
about this book xix
about the author xxii
about the cover illustration xxiii

PART 1 EXPLORING GRAPHQL..1

1 Introduction to GraphQL 3
1.1 What is GraphQL? 4

The big picture 5 ■ GraphQL is a specification 9 ■ GraphQL is
a language 9 ■ GraphQL is a service 11

1.2 Why GraphQL? 14
What about REST APIs? 17 ■ The GraphQL way 18 ■ REST
APIs and GraphQL APIs in action 20

1.3 GraphQL problems 25
Security 25 ■ Caching and optimizing 26 ■ Learning
curve 28

2 Exploring GraphQL APIs 30
2.1 The GraphiQL editor 31

CONTENTSx

2.2 The basics of the GraphQL language 36
Requests 36 ■ Fields 39

2.3 Examples from the GitHub API 41
Reading data from GitHub 41 ■ Updating data at GitHub 43
Introspective queries 44

3 Customizing and organizing GraphQL operations 47
3.1 Customizing fields with arguments 48

Identifying a single record to return 48 ■ Limiting the number
of records returned by a list field 49 ■ Ordering records returned
by a list field 51 ■ Paginating through a list of records 51
Searching and filtering 53 ■ Providing input for mutations 54

3.2 Renaming fields with aliases 55

3.3 Customizing responses with directives 57
Variables and input values 58 ■ The @include directive 61
The @skip directive 62 ■ The @deprecated directive 63

3.4 GraphQL fragments 63
Why fragments? 63 ■ Defining and using fragments 64
Fragments and DRY 65 ■ Fragments and UI components 66
Inline fragments for interfaces and unions 71

PART 2 BUILDING GRAPHQL APIS....................................75

4 Designing a GraphQL schema 77
4.1 Why AZdev? 77

4.2 The API requirements for AZdev 78
The core types 80

4.3 Queries 82
Listing the latest Task records 82 ■ Search and the union/interface
types 84 ■ Using an interface type 87 ■ The page for one Task
record 88 ■ Entity relationships 90 ■ The ENUM type 91
List of scalar values 92 ■ The page for a user’s Task records 92
Authentication and authorization 93

4.4 Mutations 94
Mutation input 96 ■ Deleting a user record 98 ■ Creating a
Task object 99 ■ Creating and voting on Approach entries 100

4.5 Subscriptions 102

4.6 Full schema text 103

CONTENTS xi

4.7 Designing database models 103
The User model 104 ■ The Task/Approach models 105
The Approach Details model 107

5 Implementing schema resolvers 110
5.1 Running the development environment 110

Node.js packages 113 ■ Environment variables 113

5.2 Setting up the GraphQL runtime 113
Creating the schema object 115 ■ Creating resolver
functions 116 ■ Executing requests 117

5.3 Communicating over HTTP 119

5.4 Building a schema using constructor objects 122
The Query type 123 ■ Field arguments 125 ■ Custom object
types 127 ■ Custom errors 129

5.5 Generating SDL text from object-based schemas 132
The schema language versus the object-based method 134

5.6 Working with asynchronous functions 135

6 Working with database models and relations 138
6.1 Running and connecting to databases 139

6.2 The taskMainList query 141
Defining object types 142 ■ The context object 143
Transforming field names 147 ■ Transforming field values 150
Separating interactions with PostgreSQL 152

6.3 Error reporting 154

6.4 Resolving relations 156
Resolving a one-to-one relation 157 ■ Resolving a one-to-many
relation 166

7 Optimizing data fetching 171
7.1 Caching and batching 172

The batch-loading function 175 ■ Defining and using a
DataLoader instance 177 ■ The loader for the approachList
field 179

7.2 Single resource fields 182

7.3 Circular dependencies in GraphQL types 187
Deeply nested field attacks 188

CONTENTSxii

7.4 Using DataLoader with custom IDs for caching 190
The taskMainList field 190 ■ The search field 193

7.5 Using DataLoader with MongoDB 199

8 Implementing mutations 208
8.1 The mutators context object 209

8.2 The Mutation type 211

8.3 User mutations 211
The userCreate mutation 211 ■ The userLogin mutation 217

8.4 Authenticating API consumers 221
The me root query field 226

8.5 Mutations for the Task model 232

8.6 Mutations for the Approach model 235
The approachCreate mutation 236 ■ The approachVote
mutation 244

8.7 The userDelete mutation 246

PART 3 USING GRAPHQL APIS251

9 Using GraphQL APIs without a client library 253
9.1 Using a web UI library 254

9.2 Running the web server 255

9.3 Making Ajax requests 258

9.4 Performing GraphQL query requests 260
Using GraphQL fragments in UI components 263 ■ Including
variables in requests 265

9.5 Performing GraphQL mutation requests 269
The login/signup forms 269 ■ Handling generic server
errors 273 ■ Authenticating GraphQL requests 277 ■ The
Create Task form 278 ■ The Create Approach form 281
Voting on an Approach 286

9.6 Performing query requests scoped for a user 287
The Search form 289

9.7 Next up 291

CONTENTS xiii

10 Using GraphQL APIs with Apollo client 293
10.1 Using Apollo Client with JavaScript 294

Making a query request 295 ■ Making a mutation request 300

10.2 Using Apollo Client with React 303
Using the query and mutate methods directly 303 ■ Including
authentication headers 306 ■ Using Apollo hook functions 309
Using the automatic cache 316 ■ Manually updating the
cache 317 ■ Performing operations conditionally 321

10.3 Managing local app state 326

10.4 Implementing and using GraphQL subscriptions 332
Polling and refetching 332 ■ Implementing subscriptions 334
Apollo Server 340 ■ Using subscriptions in UIs 342

Wrapping up 345

index 347

xv

preface
GraphQL is a game changer. It immediately grabbed my full attention when I first
heard about it back in 2015, when Facebook first announced the project. I’ve been a
frustrated maintainer and user of multiple REST-ish APIs, and hearing how Facebook
engineers were trying to solve common data API problems with this new GraphQL
language was a clear sign for me to learn about it.

 GraphQL has many advantages and disadvantages. It solves many technical prob-
lems beautifully; but the best thing about it, in my opinion, is that it greatly improves
the communication process between frontend clients and backend services. Not only
does GraphQL make communication a lot more efficient for both sides, but it also
gives them both a rich, declarative language. GraphQL services can use that language
to express what data they can provide, and GraphQL clients can use the language to
express what data they need. GraphQL also enables frontend developers to be inde-
pendent of backend developers, and that in itself is a big deal. Frontend developers
get more freedom and a stronger impact on the features of the data APIs they use.

 GraphQL is programming-language agnostic. You can create GraphQL services in
JavaScript, Java, Ruby, Python, C#, PHP, Go, and many other languages. However, I had
to pick a programming language for the project we’re building in this book. I chose
JavaScript because it is the most popular programming language out there. This does
mean you need to be familiar with JavaScript to get the best value out of this book,
including modern JavaScript (ECMAScript 2015+) and the Node.js runtime. The
book’s project also uses the React JavaScript library in chapters 9 and 10, but all the
React code is provided and explained where needed.

PREFACExvi

 There is no shortage of learning resources for GraphQL, but what I noticed while
learning it is a scarcity of practical, non-abstract materials. That is why I designed this
book to be a practical reference for working with a full-stack GraphQL-based project.

 This book took me a long time to produce. I researched and developed the ideal
flow for learning the many concepts covered in the book. I also provide many
resources to make your learning experience as smooth as possible. The book features
a GitHub repository, and progress milestones throughout the book have Git branches
that you can check out. I hope this will help you better follow the code and allow you
to restart at any point.

 Learning GraphQL was one of the best time investments I have ever made.
GraphQL allows me to implement ideas faster, and it makes my projects perform bet-
ter. Working with GraphQL is simply a more pleasant experience overall. I hope this
book will enable you to make that investment and join in on all the joy we GraphQL
lovers are having in the GraphQL ecosystem of excellence.

xvii

acknowledgments
This book would not have been possible without the excellent contributions of many
people. I’m privileged to have those people in my life, and I profoundly appreciate
them for helping me produce the best possible version of this book.

 Huge thanks go to the Manning team for their patience and guidance throughout
the writing of this book. Special thanks go to Karen Miller, my developmental editor, and
Tiffany Taylor, my copyeditor, who both taught me a great deal about efficient and clear
writing. I would also like to thank Deirdre Hiam, my project editor; Katie Tennant, my
proofreader; and Aleksandar Dragosavljevic, my reviewing editor. I’m grateful for all
their tireless work to improve the language and presentations of the book. Writing for
Manning was one of the best book-writing experiences I have ever had.

 Many awesome software developers read drafts of this book and gave me valuable
feedback about how to improve things. I am grateful for all of you, especially my tech-
nical reviewer, Valentin Crettaz, who found problems in the draft that I would have
never found with my biased eyes. I’d like to also thank my friends Kyle Holden and Ray-
mond Ly, and my wife, Chalena, for proofreading the language of the book and help-
ing me fine-tune the grammar and phrasing to better communicate my thoughts.

 I’d like to also thank my mentors in the GraphQL ecosystem, from whom I learned
a lot. They inspired me, encouraged me, and kept me in check throughout the process
of getting this book out. Special thanks go to Lee Byron for answering many of my ques-
tions and making sure the topics and flow of this book are as useful as they can be.

 To all of the reviewers—Adam Wendell Åslund, Andrew Eleneski, Andy Kirsch,
Dary Merckens, Dave Cutler, Enric Cecilla, Ethien Daniel, Salinas Dominguez, Ian

ACKNOWLEDGMENTSxviii

Lovell, Isaac Wong, James Black, Jason Down, Jeremy Lange, John Guthrie, Jonathan
Twaddell, Kelvin D. Meeks, Krzysztof Kamyczek, Louis Aloia, Philip Patterson, Rich
Cook, Richard Tobias, Ronald Borman, Russel Dawn Cajoles, and Wayne Mather—
your suggestions helped to make this a better book. Thank you, everyone. You are all
amazing, and your work made this book a thousand times better.

xix

about this book
This book is a practical introduction to GraphQL: an open source, data query and
manipulation language for APIs, and a runtime for fulfilling API consumer data
needs. GraphQL was developed internally at Facebook and later open sourced. It’s
now been adopted by many web and mobile applications worldwide.

 The goal of this book is to provide a complete and realistic example of working
with GraphQL end to end. To follow along with the examples in this book, you’ll need
a development machine (preferably running macOS or a GNU/Linux distribution)
with a recent version of the Node.js runtime, a code editor, and a browser. To get the
most value out of this book, I recommend that you read in sequence and follow the
code progress one listing at a time.

 I hope you find this book useful and that it helps you learn GraphQL quickly and
efficiently.

Who should read this book
This book is designed for frontend developers who need to work with data APIs, and
backend developers who need to create efficient data APIs. I expect readers to know the
fundamentals of programming and the basics of the JavaScript language (which is the
language used by the book’s project). Some familiarity with PostgreSQL and MongoDB
would also help but is not required.

ABOUT THIS BOOKxx

How this book is organized: a roadmap
This book starts by introducing the GraphQL language and its many features, provid-
ing practical examples of things you can do using a GraphQL API service (like
GitHub). The first part of the book (chapters 1–3) answers the why, what, and how
questions about GraphQL. In chapter 1, you’ll learn what exactly GraphQL is, what
problems it solves, and what problems it introduces. You’ll explore the design con-
cepts behind it and how it is different from the alternatives, like REST APIs. Chapter 2
introduces GraphQL’s feature-rich interactive playground, which you can use to
explore what you can do with GraphQL and to write and test GraphQL requests.
Chapter 3 introduces the many built-in features of the GraphQL language that let you
customize and organize data requests and responses.

 The book then takes a deeper dive to build the skills you need to create an efficient
GraphQL API service. In the second part of the book (chapters 4–8), you’ll learn how
to create GraphQL services that can understand the GraphQL language by building a
real data API for a real web application. In chapter 4, you’ll learn about mapping
planned UI features to API operations and using them to come up with a GraphQL ser-
vice schema and design its relations. Chapter 5 will walk you through making a simple
GraphQL schema executable using Node.js database drivers and the GraphQL.js
implementation. In chapter 6, you’ll learn how to resolve fields from databases to
implement the API queries of the book’s project. Chapter 7 builds on that and explores
some optimizations for GraphQL queries. And in chapter 8, you’ll learn how to resolve
API mutation operations to create, update, and delete database entities.

 The last part of the book (chapters 9–10) demonstrates how to use a GraphQL API
in a frontend web application. In chapter 9, we’ll explore how to use a GraphQL API
with direct Ajax requests without a dedicated GraphQL client library. And in chapter
10, we’ll explore the power of the most popular GraphQL client library: Apollo Client.

About the code
This book has many code examples in numbered listings and inline. Code is format-
ted in a fixed-width font 'like this' to separate it from ordinary text. In many cases,
the original source code has been reformatted; we’ve added line breaks and reworked
indentation to accommodate the available page space in the book. Code annotations
accompany many of the listings, highlighting important concepts. To make it easier to
see what has changed, changes in the code listings are presented in bold font. The ini-
tial code I prepared for the book’s project includes comments to help you locate
where changes need to happen.

 The book provides a Git repository, which uses Docker. You’ll need both the Git
version control system and the Docker software installed on your machine to be able
to use that repository. Docker is used to provide ready environments for PostgreSQL
and MongoDB, but you can also use your own services instead of Docker if you want
to. The repository includes all the setup files you need to prepare your own database
service environments.

ABOUT THIS BOOK xxi

Other online resources
To keep the content of the book tightly focused on GraphQL, I provide external links
to articles and other resources to help you expand on some concepts and understand
them in more detail if you need to.

 If you get stuck implementing this book examples, web search is your best friend.
It’s highly likely that someone else has experienced the problems that you might expe-
rience, asked about it on sites like Stack Overflow, and received an answer.

 There are many video training courses on GraphQL on the internet. Pluralsight has
many, including one of my own. I also have many video resources at jsComplete.com,
many of which feature working with GraphQL. You can also join our Slack help channel
at jscomplete.com/help and ask the community there any GraphQL or JavaScript
questions.

https://jscomplete.com/
https://jscomplete.com/help

xxii

about the author
SAMER BUNA has over 20 years of practical experience in designing, implementing, and
optimizing software. He has worked in several industries, including real estate, gov-
ernment, education, and publications.

 Samer has authored several technical books and online courses about JavaScript,
Node.js, React.js, GraphQL, and more. You can find his courses on Pluralsight, LinkedIn
Learning, O’Reilly, Manning, and other sites. He recently created the jsComplete.com
platform to offer interactive and adaptive learning strategies for code education.

 You can find Samer on Twitter and other social networks under the handle
@samerbuna.

https://jscomplete.com/

xxiii

about the cover illustration
The figure on the cover of GraphQL in Action is captioned “Jardinière Française,” or
French farmer. The illustration is taken from a collection of dress costumes from vari-
ous countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Dif-
férents Pays, published in France in 1797. Each illustration is finely drawn and colored
by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify where they lived and what their trade or station
in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly, for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Part 1

Exploring GraphQL

Do you use Yelp, Shopify, Coursera, or GitHub? If so, you have consumed a
GraphQL API! These are just a few of the companies that adopted GraphQL as
their data communication solution.

 The first part of this book answers the why, what, and how questions about
GraphQL. The word GraphQL can mean different things to different people, but
it is fundamentally a “language” that API consumers can use to ask for data. This
part will get you comfortable with the fundamentals of that language.

 In chapter 1, you’ll learn what exactly GraphQL is, what problems it solves,
and what problems it introduces. You’ll explore the design concepts behind it
and how it is different from the alternatives, like REST APIs.

 Chapter 2 explores GraphQL’s feature-rich interactive playground. This play-
ground takes advantage of GraphQL’s introspective power, which you can use to
explore what you can do with GraphQL and to write and test GraphQL requests.
You’ll use this playground to explore examples of GraphQL queries and muta-
tions. You’ll learn about the fundamental parts of a GraphQL request, and you’ll
test practical examples from the GitHub GraphQL API.

 Chapter 3 introduces you to the many built-in features of the GraphQL lan-
guage that let you customize and organize data requests and responses. You’ll
learn about fields and arguments, aliases, directives, fragments, interfaces, and
unions.

3

Introduction
 to GraphQL

Necessity is the mother of invention. The product that inspired the creation of
GraphQL was invented at Facebook because the company needed to solve many
technical issues with its mobile application. However, I think GraphQL became so
popular so fast not because it solves technical problems but rather because it solves
communication problems.

 Communication is hard. Improving our communication skills makes our lives
better on many levels. Similarly, improving the communication between the

This chapter covers
 Understanding GraphQL and the design concepts

behind it

 How GraphQL differs from alternatives like REST
APIs

 Understanding the language used by GraphQL
clients and services

 Understanding the advantages and
disadvantages of GraphQL

4 CHAPTER 1 Introduction to GraphQL

different parts of a software application makes that application easier to understand,
develop, maintain, and scale.

 That’s why I think GraphQL is a game changer. It changes the game of how the dif-
ferent “ends” of a software application (frontend and backend) communicate with
each other. It gives them equal power, makes them independent of each other, decou-
ples their communication process from its underlying technical transport channel,
and introduces a rich new language in a place where the common previously spoken
language was limited to a few words.

 GraphQL powers many applications at Facebook today, including the main web
application at facebook.com, the Facebook mobile application, and Instagram. Devel-
opers’ interest in GraphQL is very clear, and GraphQL’s adoption is growing fast.
Besides Facebook, GraphQL is used in many other major web and mobile applications
like GitHub, Airbnb, Yelp, Pinterest, Twitter, New York Times, Coursera, and Shopify.
Given that GraphQL is a young technology, this is an impressive list.

 In this first chapter, let’s learn what GraphQL is, what problems it solves, and what
problems it introduces.

1.1 What is GraphQL?
The word graph in GraphQL comes from the fact that the best way to represent data in
the real world is with a graph-like data structure. If you analyze any data model, big or
small, you’ll always find it to be a graph of objects with many relations between them.

 That was the first “Aha!” moment for me when I started learning about GraphQL.
Why think of data in terms of resources (in URLs) or tables when you can think of it
naturally as a graph?

 Note that the graph in GraphQL does not mean that GraphQL can only be used
with a “graph database.” You can have a document database (like MongoDB) or a rela-
tional database (like PostgreSQL) and use GraphQL to represent your API data in a
graph-like structure.

 The QL in GraphQL might be a bit confusing, though. Yes, GraphQL is a query
language for data APIs, but that’s only from the perspective of the frontend consumer
of those data APIs. GraphQL is also a runtime layer that needs to be implemented on
the backend, and that layer is what makes the frontend consumer able to use the new
language.

 The GraphQL language is designed to be declarative, flexible, and efficient. Devel-
opers of data API consumers (like mobile and web applications) can use that lan-
guage to request the data they need in a language close to how they think about data
in their heads instead of a language related to how the data is stored or how data rela-
tions are implemented.

 On the backend, a GraphQL-based stack needs a runtime. That runtime provides a
structure for servers to describe the data to be exposed in their APIs. This structure is
what we call a schema in the GraphQL world. An API consumer can then use the
GraphQL language to construct a text request representing their exact data needs.

5What is GraphQL?

The client sends that text request to the API service through a transport channel (for
example, HTTPS). The GraphQL runtime layer accepts the text request, communi-
cates with other services in the backend stack to put together a suitable data response,
and then sends that data back to the consumer in a format like JSON. Figure 1.1 sum-
marizes the dynamics of this communication.

1.1.1 The big picture

In general, an API is an interface that enables communication between multiple com-
ponents in an application. For example, an API can enable the communication that

GraphQL language text asking
for exact data needs

Exact data response
(for example, in JSON)

Transport channel
(for example, HTTPS) API serviceAPI consumer

GraphQL
runtime

Figure 1.1 GraphQL is a language and a runtime.

Using GraphQL with other libraries
GraphQL is not specific to any backend or frontend framework, technical stack, or
database. It can be used in any frontend environment, on any backend platform, and
with any database engine. You can use it on any transport channel and make it use
any data representation format.

In frontend web or mobile applications, you can use GraphQL by making direct Ajax
calls to a GraphQL server or with a client like Apollo or Relay (which will make the Ajax
request on your behalf). You can use a library like React (or React Native) to manage
how your views use the data coming from a GraphQL service, but you can also do that
with APIs native to their UI environments (like the DOM API or native iOS components).

Although you do not need React, Apollo, or Relay to use GraphQL in your applications,
these libraries add more value to how you can use GraphQL APIs without having to
do complex data management tasks.

6 CHAPTER 1 Introduction to GraphQL

needs to happen between a web client and a database server. The client tells the server
what data it needs, and the server fulfills the client’s requirement with objects repre-
senting the data the client asked for (figure 1.2).

 There are different types of APIs, and every big application needs them. For
GraphQL, we are specifically talking about the API type used to read and modify data,
which is usually referred to as a data API.

 GraphQL is one option out of many that can be used to provide applications with
programmable interfaces to read and modify the data the applications need from data
services. Other options include REST, SOAP, XML, and even SQL itself.

 SQL (Structured Query Language) might be directly compared to GraphQL
because QL is in both names, after all. Both SQL and GraphQL provide a language to
query data schemas. They can both be used to read and modify data. For example, if
we have a table of data about a company’s employees, the following is an example
SQL statement to read data about the employees in one department.

SELECT id, first_name, last_name, email, birth_date, hire_date
FROM employees
WHERE department = 'ENGINEERING'

Here is another example SQL statement that inserts data for a new employee.

INSERT INTO employees (first_name, last_name, email, birth_date, hire_date)
VALUES ('Jane', 'Doe', 'jane@doe.name', '01/01/1990', '01/01/2020')

You can use SQL to communicate data operations as we did in listings 1.1 and 1.2. The
database servers to which these SQL statements are sent may support different for-
mats for their responses. Each SQL operation type has a different response. A SELECT
operation might return a single row or multiple rows. An INSERT operation might
return just a confirmation, the inserted rows, or an error response.

TIP Although SQL could be used directly by mobile and web applications to
communicate data requirements, it would not be a good language for that
purpose. SQL is simply too powerful and too flexible, and it would introduce
many challenges. For example, exposing your exact database structure pub-
licly would be a significant security problem. You can put SQL behind

Listing 1.1 SQL statement for querying

Listing 1.2 SQL statement for mutating

I need data about X.

Here’s data about X. Figure 1.2 The big
picture of data APIs

7What is GraphQL?

another service layer, but that means you need to create a parser and analyzer
to perform operations on users’ SQL queries before sending them to the
database. That parser/analyzer is something you get out of the box with any
GraphQL server implementation.

While most relational databases directly support SQL, GraphQL is its own thing.
GraphQL needs a runtime service. You cannot just start querying databases using the
GraphQL query language (at least, not yet). You need to use a service layer that sup-
ports GraphQL or implement one yourself.

TIP Some databases allow their clients to use GraphQL to query them directly.
An example is Dgraph (az.dev/dgraph).

JSON is a language that can be used to communicate data. Here is a JSON object that
can represent Jane’s data.

{
"data": {

"employee":{
"id": 42,
"name": "Jane Doe",
"email": "jane@doe.name",
"birthDate": "01/01/1990",
"hireDate": "01/01/2020"

}
}

}

NOTE The data communicated about Jane does not have to use the same
structure the database uses to save it. I used camel-case property names, and I
combined first_name and last_name into one name field.

JSON is a popular language for communicating data from API servers to client appli-
cations. Most of the modern data API servers use JSON to fulfill the data requirements
of client applications. GraphQL servers are no exception; JSON is the popular choice
to fulfill the requirements of GraphQL data requests.

 JSON can also be used by client applications to communicate their data require-
ments to API servers. For example, here is a possible JSON object that communicates
the data requirements for the employee object response in listing 1.3.

{
"select": {

"fields": ["name", "email", "birthDate", "hireDate"],
"from": "employees",
"where": {

Listing 1.3 JSON object representing data

Listing 1.4 JSON example for querying

https://az.dev/dgraph

8 CHAPTER 1 Introduction to GraphQL

"id": {
"equals": 42

}
}

}
}

GraphQL for client applications is another language they can use to express their data
requirements. The following is how the previous data requirement can be expressed
with a GraphQL query.

{
employee(id: 42) {

name
email
birthDate
hireDate

}
}

The GraphQL query in listing 1.5 represents the same data need as the JSON object in
listing 1.4, but as you can see, it has a different and shorter syntax. A GraphQL server
can understand this syntax and translate it into something the data storage engine can
understand (for example, the GraphQL server might translate the query into SQL
statements for a relational database). Then, the GraphQL server can take what the
storage engine responds with, translate it into something like JSON or XML, and send
it back to the client application.

 This is nice because no matter what storage engine(s) you have to deal with, with
GraphQL, you make API servers and client applications both work with a universal
language for requests and a universal language for responses.

 In a nutshell, GraphQL is all about optimizing data communication between a cli-
ent and a server. This includes the client asking for needed data and communicating
that need to the server, and the server preparing a fulfillment for that need and com-
municating the fulfillment back to the client. GraphQL allows clients to ask for the
exact data they need and makes it easier for servers to aggregate data from multiple
data storage resources.

 At the core of GraphQL is a strong type system that is used to describe data and
organize APIs. This type system gives GraphQL many advantages on both the server
and client sides. Types ensure that clients ask for only what is possible and provide
clear and helpful errors. Clients can use types to minimize any manual parsing of data
elements. The GraphQL type system allows for rich features like having an introspec-
tive API and being able to build powerful tools for both clients and servers. One of the
popular GraphQL tools that relies on this concept is GraphiQL, a feature-rich

Listing 1.5 GraphQL example of querying

9What is GraphQL?

browser-based editor to explore and test GraphQL requests. You will learn about
GraphiQL in the next chapter.

1.1.2 GraphQL is a specification

Although Facebook engineers started working on GraphQL in 2012, it was 2015 when
they released a public specification document. You can see the current version of this
document by navigating to az.dev/graphql-spec; it is maintained by a community of
companies and individuals on GitHub. GraphQL is an evolving language, but the
specification document was a genius start for the project because it defined standard
rules and practices that all implementers of GraphQL runtimes must adhere to. There
have been many implementations of GraphQL libraries in many different program-
ming languages, and all of them closely follow the specification document and update
their implementations when that document is updated. If you work on a GraphQL
project in Ruby and later switch to another project in Scala, the syntax will change,
but the rules and practices will remain the same.

 You can ultimately find everything about the GraphQL language and runtime
requirements in the official specification document. It is a bit technical, but you can
still learn a lot from it by reading its introductory parts and examples. This book will
not cover everything in the document, so I recommend that you skim through it once
you are finished reading the book.

 The specification document starts by describing the syntax of the GraphQL lan-
guage. Let’s talk about that first.

1.1.3 GraphQL is a language

Though the Q (for query) is right there in the name, and querying is associated with
reading, GraphQL can be used for both reading and modifying data. When you need
to read data with GraphQL, you use queries; and when you need to modify data, you
use mutations. Both queries and mutations are part of the GraphQL language.

 GraphQL operations are similar to how we use SQL SELECT statements to read
data and INSERT, UPDATE, and DELETE statements to modify data. The SQL language
has certain rules we must follow. For example, a SELECT statement requires a FROM
clause and can optionally have a WHERE clause. Similarly, the GraphQL language has

GraphQL server libraries
Alongside the specification document, Facebook also released a reference imple-
mentation library for GraphQL runtimes in JavaScript. JavaScript is the most popular
programming language and the one closest to mobile and web applications, which
are two of the popular channels where using GraphQL can make a big difference. The
reference JavaScript implementation of GraphQL is hosted at az.dev/graphql-js, and
it’s the one we use in this book. I’ll refer to this implementation as GraphQL.js.

To see a list of other GraphQL server libraries, check out az.dev/graphql-servers.

https://az.dev/graphql-js
https://az.dev/graphql-spec
https://az.dev/graphql-servers

10 CHAPTER 1 Introduction to GraphQL

certain rules to follow. For example, a GraphQL query must have a name or be the
only query in a request. You will learn about the rules of the GraphQL language in the
next few chapters.

A query language like GraphQL (or SQL) is different from programming languages
like JavaScript and Python. You cannot use the GraphQL language to create user
interfaces or perform complex computations. Query languages have more specific
use cases, and they often require the use of programming languages to make them
work. Nevertheless, I would like you to first think of the query language concept by
comparing it to programming languages and even spoken languages like English.
This is a very limited comparison, but I think it will help you understand and appreci-
ate a few things about GraphQL.

 In general, the evolution of programming languages is making them closer and
closer to spoken human languages. Computers used to only understand imperative
instructions, and that is why we have been using imperative paradigms to program
them. However, computers today are starting to understand declarative paradigms, and
we can program them to understand wishes. Declarative programming has many advan-
tages (and disadvantages), but what makes it such a good idea is that we always prefer
to reason about problems in declarative ways. Declarative thinking is easy for humans.

 We can use the English language to declaratively communicate data needs and ful-
fillments. For example, imagine that John is the client and Jane is the server. Here is
an English data communication session:

John: “Hey Jane, how long does it take sunlight to reach planet Earth?”

Jane: “A bit over 8 minutes.”

John: “How about the light from the moon?”

Jane: “A bit under 2 seconds.”

John can also easily ask both questions in one sentence, and Jane can easily answer
them both by adding more words to her answer.

 When we communicate using the English language, we understand special expres-
sions like “a bit over” and “a bit under.” Jane also understands that the incomplete

GraphQL operations
Queries represent READ operations. Mutations represent WRITE-then-READ opera-
tions. You can think of mutations as queries that have side effects.

In addition to queries and mutations, GraphQL also supports a third request type called
a subscription, used for real-time data monitoring requests. Subscriptions represent
continuous READ operations. Mutations usually trigger events for subscriptions.

GraphQL subscriptions require the use of a data-transport channel that supports con-
tinuous pushing of data. That’s usually done with WebSockets for web applications.

11What is GraphQL?

second question is related to the first one. Computers, on the other hand, are not very
good (yet) at understanding things from the context. They need more structure.

 GraphQL is just another declarative language that John and Jane can use for their
data communication session. It is not as good as the English language, but it is a struc-
tured language that computers can easily parse and use. For example, here’s a hypo-
thetical single GraphQL query that represents both of John’s questions to Jane.

{
timeLightNeedsToTravel(toPlanet: "Earth") {

fromTheSun: from(star: "Sun")
fromTheMoon: from(moon: "Moon")

}
}

The example GraphQL request in listing 1.6 uses a few of the GraphQL language
parts like fields (timeLightNeedsToTravel and from), parameters (toPlanet, star,
and moon), and aliases (fromTheSun and fromTheMoon). These are like verbs and
nouns in English. You will learn about all the syntax parts that you can use in
GraphQL requests in chapters 2 and 3.

1.1.4 GraphQL is a service

If we teach a client application to speak the GraphQL language, it will be able to com-
municate any data requirements to a backend data service that also speaks GraphQL.
To teach a data service to speak GraphQL, you implement a runtime layer and expose
that layer to the clients that want to communicate with the service. Think of this layer
on the server side as simply a translator of the GraphQL language, or a GraphQL-
speaking agent that represents the data service. GraphQL is not a storage engine, so it
cannot be a solution on its own. This is why you cannot have a server that speaks just
GraphQL; you need to implement a translating runtime layer.

 A GraphQL service can be written in any programming language, and it can be
conceptually split into two major parts, structure and behavior:

 The structure is defined with a strongly typed schema. A GraphQL schema is like
a catalog of all the operations a GraphQL API can handle. It simply represents
the capabilities of an API. GraphQL client applications use the schema to know
what questions they can ask the service. The typed nature of the schema is a core
concept in GraphQL. The schema is basically a graph of fields that have types ;
this graph represents all the possible data objects that can be read (or updated)
through the service.

 The behavior is naturally implemented with functions that in the GraphQL
world are called resolver functions. They represent most of the smart logic behind
GraphQL’s power and flexibility. Each field in a GraphQL schema is backed by
a resolver function. A resolver function defines what data to fetch for its field.

Listing 1.6 John’s questions to Jane in GraphQL

12 CHAPTER 1 Introduction to GraphQL

A resolver function represents the instructions on how and where to access
raw data. For example, a resolver function might issue a SQL statement to a
relational database, read a file’s data directly from the operating system, or
update some cached data in a document database. A resolver function is
directly related to a field in a GraphQL request, and it can represent a single
primitive value, an object, or a list of values or objects.

TIP Resolver functions are why GraphQL is often compared to the remote
procedure call (RPC) distributed computing concept. GraphQL is essentially
a way for clients to invoke remote—resolver—functions.

AN EXAMPLE OF A SCHEMA AND RESOLVERS

To understand how resolvers work, let’s take the query in listing 1.5 (simplified) and
assume a client sent it to a GraphQL service.

query {
employee(id: 42) {

name
email

}
}

The service can receive and parse any request. It then tries to validate the request
against its schema. The schema has to support an employee field, and that field has to
represent an object with an id argument, a name field, and an email field. Fields and
arguments must have types in GraphQL. The id argument is an integer. The name and
email fields are strings. The employee field is a custom type (representing that exact
id/name/email structure).

Listing 1.7 Simplified example query text

The GraphQL restaurant analogy
A GraphQL schema is often compared to a restaurant menu. In that analogy, the wait-
staff act like instances of the GraphQL API interface. No wonder we use the term server!

Table servers take your orders back to the kitchen, which is the core of the API ser-
vice. You can compare items on the menu to fields in the GraphQL language. If you
order a steak, you need to tell your server how you would like it cooked. That’s where
you can use field arguments:

order {
steak(doneness: MEDIUMWELL)

}

Let’s say this restaurant is very busy and hired a chef with the sole responsibility of
cooking steaks. This chef is the resolver function for the steak field!

13What is GraphQL?

 Just like the client-side query language, the GraphQL community standardized a
server-side language dedicated to creating GraphQL schema objects. This language is
known as the schema language. It’s often abbreviated SDL (schema definition lan-
guage) or IDL (interface definition language).

 Here’s an example to represent the Employee type using GraphQL’s schema
language.

type Employee(id: Int!) {
name: String!
email: String!

}

This custom Employee type represents the structure of an employee “model.” An
object of the employee model can be looked up with an integer id, and it has name
and email string fields.

 The exclamation marks after the types mean they cannot be empty. A client cannot
ask for an employee field without specifying an id argument, and a valid server
response to this field must include a name string and an email string.

TIP The schema language type definitions are like the database CREATE state-
ments used to define tables and other database schema elements.

Using this type, the GraphQL service can conclude that the GraphQL query in listing
1.7 is valid because it matches the supported type structure. The next step is to pre-
pare the data it is asking for. To do that, the GraphQL service traverses the tree of
fields in that request and invokes the resolver function associated with each field. It
then gathers the data returned by these resolver functions and uses it to form a single
response.

 This example GraphQL service needs at least three resolver functions: one for the
employee field, one for the name field, and one for the email field.

 The employee field’s resolver function might, for example, do a query like SELECT
* FROM employees WHERE id = 42. This SQL statement returns all columns available
on the employees table. Let’s say the employees table happens to have the following
fields: id, first_name, last_name, email, birth_date, and hire_date.

 Then the employee field’s resolver function for employee #42 might return an
object like the following.

{
"id": 42,
"first_name": "Jane",
"last_name": "Doe",
"email": "jane@doe.name",

Listing 1.8 GraphQL schema language example

Listing 1.9 Response from the database for employee #42

14 CHAPTER 1 Introduction to GraphQL

"birth_date": "01/01/1990",
"hire_date": "01/01/2020"

}

The GraphQL service continues to traverse the fields in the tree one by one, invoking
the resolver function for each field. Each resolver function is passed the result of exe-
cuting the resolver function of its parent node. So both the name and email resolver
functions receive the object in listing 1.9 (as their first argument).

 Let’s say we have the following (JavaScript) functions representing the server
resolver functions for the name and email fields:

// Resolver functions
const name => (source) => `${source.first_name} ${source.last_name}`;
const email => (source) => source.email;

Here, the source object is the parent node.

TIP The email resolver function is known as a “trivial” resolver because the
email field name matches the email property name on the parent source
object. Some GraphQL implementations (for example, the JavaScript imple-
mentation) have built-in trivial resolvers and use them as default resolvers if
no resolver is found for a field.

The GraphQL service uses all the responses of these three resolver functions to put
together the following single response for the query in listing 1.7.

{
data: {

employee: {
name: 'Jane Doe',
email: 'jane@doe.name'

}
}

}

We’ll start to explore how to write custom resolvers in chapter 5.

TIP GraphQL does not require any specific data serialization format, but
JSON is the most popular one. All the examples in this book use the JSON
format.

1.2 Why GraphQL?
GraphQL is not the only—or even the first—technology to encourage creating effi-
cient data APIs. You can use a JSON-based API with a custom query language or imple-
ment the Open Data Protocol (OData) on top of a REST API. Experienced backend
developers have been creating efficient technologies for data APIs since long before

Listing 1.10 Example GraphQL response object

15Why GraphQL?

GraphQL. So why do we need a new technology? If you asked me to answer the “Why
GraphQL?” question with a single word, that word would be standards.

 GraphQL provides comprehensive standards and structures to implement API fea-
tures in maintainable and scalable ways. GraphQL makes it mandatory for data API
servers to publish documentation (the schema) about their capabilities. That schema
enables client applications to know everything available for them on these servers. The
GraphQL standard schema has to be part of every GraphQL API. Clients can ask the
service about its schema using the GraphQL language. We’ll see examples in chapter 3.

 Other solutions can be made better by adding similar documentation. The unique
thing about GraphQL here is that the documentation is part of how you create the
API service. You cannot have out-of-date documentation. You cannot forget to docu-
ment a use case. You cannot offer different ways to use APIs, because you have
standards to work with. Most important, you do not need to maintain the documenta-
tion of your API separately from that API. GraphQL documentation is built-in, and it’s
first class.

 The mandatory GraphQL schema represents the possibilities and the limits of
what can be answered by the GraphQL service. But there is some flexibility in how to
use the schema because we are talking about a graph of nodes, and graphs can be tra-
versed using many paths. This flexibility is one of the great benefits of GraphQL
because it allows backend and frontend developers to make progress in their projects
without needing to constantly coordinate their progress with each other. It basically
decouples clients from servers and allows both of them to evolve and scale inde-
pendently. This enables faster iteration in both frontend and backend products.

 I think this standard schema is among the top benefits of GraphQL—but let’s talk
about the technological benefits of GraphQL as well.

 One of the most significant—and perhaps most popular—technological reasons to
consider a GraphQL layer between clients and servers is efficiency. API clients often need
to ask the server about multiple resources, and the API server usually knows how to
answer questions about a single resource. As a result, the client ends up having to com-
municate with the server multiple times to gather all the data it needs (figure 1.3).

With GraphQL, you can basically shift this multirequest complexity to the backend and
have your GraphQL runtime deal with it. The client asks the GraphQL service a single
question and gets a single response with precisely what the client needs (figure 1.4).

1) Data about BOOKS, please

2) Data about AUTHORS, please

3) Data about REVIEWS, please
Figure 1.3 A client
asking a server about
multiple resources

16 CHAPTER 1 Introduction to GraphQL

You can customize a REST-based API to provide one exact endpoint per view, but that’s
not the norm. You will have to implement it without a standard guide.

 Another big technological benefit of GraphQL is communicating with multiple
services. When you have multiple clients requesting data from multiple data storage
services (like PostgreSQL, MongoDB, and a Redis cache), a GraphQL layer in the
middle can simplify and standardize this communication. Instead of a client going
directly to multiple data services, you can have that client communicate with the
GraphQL service. Then the GraphQL service communicates with the different data
services (figure 1.5). This is how GraphQL keeps clients from needing to communi-
cate in multiple languages. A GraphQL service translates a single client’s request into
multiple requests to multiple services using different languages.

One other benefit of GraphQL that I think is often underrated is how it improves the
frontend developer experience. The GraphQL schema gives frontend developers a lot
of power and control to explore, construct, validate, test, and accurately perform data-
need communication without depending on backend developers. It eliminates the
need for the server to hardcode the shape or size of the data, and it decouples clients
from servers. This means clients and servers can be developed and maintained sepa-
rately from each other, which is a significant benefit on its own.

Data about BOOKS, AUTHORS,
and REVIEWS, please

Figure 1.4 GraphQL shifts multirequest complexities to the backend side

One request
(in GraphQL)

One response
(in JSON, XML, etc.)

MongoDB

PostgreSQL

Redis

Figure 1.5 GraphQL
can communicate with
different data services.

17Why GraphQL?

More important, with GraphQL, developers express their UI data requirements using
a declarative language. They express what they need, not how to make it available.
There is a tight relationship between what data a UI needs and the way a developer
can describe that data need in GraphQL.

1.2.1 What about REST APIs?

GraphQL APIs are often compared to REST APIs because the latter have been the
most popular choice for data APIs demanded by web and mobile applications.
GraphQL provides a technological alternative to REST APIS. But why do we need an
alternative? What is wrong with REST APIs?

 The biggest relevant problem with REST APIs is the client’s need to communicate
with multiple data API endpoints. REST APIs are an example of servers that require
clients to do multiple network round trips to get data. A REST API is a collection of
endpoints where each endpoint represents a resource. So, when a client needs data
about multiple resources, it has to perform multiple network requests to that REST
API and then put together the data by combining the multiple responses it receives.
This is a significant problem, especially for mobile applications, because mobile
devices usually have processing, memory, and network constraints.

 Furthermore, in a REST API, there is no client request language. Clients do not have
control over what data the server will return because they do not have a language to
communicate their exact needs. More accurately, the language available for clients of
a REST API is very limited. For example, the READ REST API endpoints are either GET
/ResourceName, to get a list of all the records for that resource, or GET /ResourceName/
ResourceID to get a single record identified by an ID.

 In a pure REST API (not a customized one), a client cannot specify which fields to
select for a record in that resource. That information is in the REST API service itself,
and the REST API service always returns all the fields regardless of which ones the client
actually needs. GraphQL’s term for this problem is over-fetching of information that is not
needed. It is a waste of network and memory resources for both the client and the server.

 One other big problem with REST APIs is versioning. If you need to support multi-
ple versions, that usually means new endpoints. This leads to more problems while
using and maintaining these endpoints, and it might be the cause of code duplication
on the server.

GraphQL is a translator
Imagine three people who speak three different languages and have different types
of knowledge. Then imagine that you have a question that can only be answered by
combining the knowledge of all three people. If you have a translator who speaks all
three languages, the task of putting together an answer to your question becomes
easy. That is what a GraphQL service can do for clients. This point is valid with other
data API options, but GraphQL provides standard structures that enable implement-
ing this kind of data need in easier and more maintainable ways.

18 CHAPTER 1 Introduction to GraphQL

NOTE The REST API problems mentioned here are specific to what GraphQL
is trying to solve. They are certainly not all of the problems with REST APIs.

REST APIs eventually turn into a mix of regular REST endpoints plus custom ad hoc
endpoints crafted for performance reasons. This is where GraphQL offers a much bet-
ter alternative.

 It is important to point out here that REST APIs have some advantages over
GraphQL APIs. For example, caching a REST API response is easier than caching a
GraphQL API response, as you will see in the last section of this chapter. Also, optimiz-
ing the code for different REST endpoints is easier than optimizing the code for a sin-
gle generic endpoint. There is no single magical solution that fixes all issues without
introducing new challenges. REST APIs have their place, and when used correctly,
both GraphQL and REST have great applications. Also, nothing prohibits using them
together in the same system.

1.2.2 The GraphQL way

To see the GraphQL way of solving the REST API problems we have talked about, you
need to understand the concepts and design decisions behind GraphQL. Let’s review
the major ones.

THE TYPED GRAPH SCHEMA

To create a GraphQL API, you need a typed schema. A GraphQL schema contains
fields that have types. Those types can be primitive or custom. Everything in the
GraphQL schema requires a type. This type system is what makes a GraphQL service
predictable and discoverable.

THE DECLARATIVE LANGUAGE

GraphQL has a declarative nature for expressing data requirements. It provides cli-
ents with a declarative language for expressing their data needs. This declarative

REST-ish APIs
Note that I am talking about pure REST APIs in this comparison. Some of the prob-
lems mentioned here and solved by GraphQL can also be solved by customizing REST
APIs. For example, you can modify the REST API to accept an include query string
that accepts a comma-separated list of fields to return in the response. This will avoid
the over-fetching problem. You can also make a REST API include sub-resources with
some query flags. There are tools out there that you can add on top of REST-based
systems, and they can enable such customizations or make those systems easier
to implement.

Such approaches might be okay on a small scale, and I have personally used them
with some success. However, compared to what GraphQL offers, these approaches
require a lot of work and cause slower iterations in projects. They are also not stan-
dardized and do not scale well for big projects.

19Why GraphQL?

nature enables a thinking model in the GraphQL language that is close to the way we
think about data requirements in English, and it makes working with a GraphQL API
a lot easier than the alternatives.

THE SINGLE ENDPOINT AND CLIENT LANGUAGE

To solve the multiple round-trip problem, GraphQL makes the responding server
work as a single endpoint. Basically, GraphQL takes the custom endpoint idea to an
extreme and makes the whole server a single smart endpoint that can reply to all data
requests.

 The other significant concept that goes with the single smart endpoint is the rich
client request language needed to work with that single endpoint. Without a client
request language, a single endpoint is useless. It needs a language to process a custom
request and respond with data for that custom request.

 Having a client request language means clients are in control. They can ask for
exactly what they need, and the server will reply with exactly what they ask for. This
solves the problem of over-fetching data that is not needed.

 Furthermore, having clients ask for exactly what they need enables backend devel-
opers to generate more useful analytics about what data is being used and what parts
of the data are in higher demand. This is very useful information. For example, it can
be used to scale and optimize data services based on usage patterns. It can also be
used to detect abnormalities and client version changes.

THE SIMPLE VERSIONING

When it comes to versioning, GraphQL has an interesting take. Versioning can be
avoided altogether. Basically, you can add new fields and types without removing the
old ones because you have a graph and can flexibly grow it by adding more nodes. You
can leave paths on the graph for old APIs and introduce new ones. The API just grows,
and no new endpoints are needed. Clients can continue to use older features, and
they can also incrementally update their code to use new features. Using a single
evolving version, GraphQL APIs give clients continuous access to new features and
encourage cleaner, more maintainable server code.

 This is especially important for mobile clients because you cannot control the ver-
sion of the API they are using. Once installed, a mobile app might continue to use
that same old version of the API for years. On the web, it is easy to control the API ver-
sion because you can just push new code and force all users to use it. For mobile apps,
this is a lot harder to do.

 This simple versioning approach has some challenges. Keeping old nodes forever
introduces downsides. More maintenance effort is required to make sure old nodes
still work as they should. Furthermore, users of the APIs might be confused about
which fields are old and which are new. GraphQL offers a way to deprecate (and hide)
older nodes so that consumers of the schema only see the new ones. Once a field is
deprecated, the maintainability problem becomes a question of how long old users
continue to use it. The great thing here is that as a maintainer, you can confidently

20 CHAPTER 1 Introduction to GraphQL

answer the questions “Is a field still being used?” and “How often is a field being
used?” thanks to the client query language. The removal of unused, deprecated fields
can even be automated.

1.2.3 REST APIs and GraphQL APIs in action

Let’s go over a one-to-one comparison example between a REST API and a GraphQL
API. Imagine that you are building an application to represent the Star Wars films and
characters. The first UI you tackle is a view to show information about a single Star
Wars character. This view should display the character’s name, birth year, the name of
their planet, and the titles of all the films in which they appeared. For example, for
Darth Vader, along with his name, the view should display his birth year (41.9BBY), his
planet name (Tatooine), and the titles of the four Star Wars films in which he
appeared (A New Hope, The Empire Strikes Back, Return of the Jedi, and Revenge of the Sith).

 As simple as this view sounds, you are actually dealing with three different
resources: Person, Planet, and Film. The relationship between these resources is sim-
ple. We can easily guess the shape of the data needed. A person object has exactly one
planet object and one or more films objects.

 The JSON data for this view could be something like the following.

{
"data": {

"person": {
"name": "Darth Vader",
"birthYear": "41.9BBY",
"planet": {

"name": "Tatooine"
},
"films": [

{ "title": "A New Hope" },
{ "title": "The Empire Strikes Back" },
{ "title": "Return of the Jedi" },
{ "title": "Revenge of the Sith" }

]
}

}
}

Assuming that a data service can give us this exact structure, here is one possible way
to represent its view with a frontend component library like React.js.

// The Container Component:
<PersonProfile person={data.person}></PersonProfile>
// The PersonProfile Component:
Name: {data.person.name}

Listing 1.11 JSON data example object for a UI component

Listing 1.12 UI view example in React.js

21Why GraphQL?

Birth Year: {data.person.birthYear}
Planet: {data.person.planet.name}
Films: {data.person.films.map(film => film.title)}

This is a very simple example. Our background knowledge of Star Wars helped us
design the shape of the needed data and figure out how to use it in the UI.

 Note one important thing about the UI view in listing 1.12: its relationship with the
JSON data object in listing 1.11 is very clear. The UI view used all the “keys” from the
JSON data object. See the values in curly brackets in listing 1.12.

 Now, how can you ask a REST API service for the data in listing 1.11? You need a
Star Wars character’s information. Assuming that you know that character’s ID, a
REST API is expected to expose that information with an endpoint like this:

GET - /people/{id}

This request will give you the name, birthYear, and other information about the char-
acter. A REST API will also give you access to the ID of the character’s planet and an
array of IDs for all the films they appeared in.

 The JSON response for this request could be something like the following:

{
"name": "Darth Vader",
"birthYear": "41.9BBY",
"planetId": 1
"filmIds": [1, 2, 3, 6],
·-·-·

}

TIP Throughout this book, I use ·-·-· in code listings to indicate omitted
content. This is to distinguish it from the three-dots syntax (...), which is
part of both JavaScript and GraphQL (see az.dev/js-intro).

Then, to read the planet’s name, you ask

GET - /planets/1

And to read the film titles, you ask

GET - /films/1
GET - /films/2
GET - /films/3
GET - /films/6

Once you have all six responses from the server, you can combine them to satisfy the
view’s data need.

 Besides the fact that you had to do six network round trips to satisfy a simple data
need for a simple UI, the whole approach here is imperative. You give instructions on
how to fetch the data and how to process it to make it ready for the view. For example,

Other information
that is not needed
for this view

https://az.dev/js-intro

22 CHAPTER 1 Introduction to GraphQL

you have to deal with the planet and film IDs, although the view does not really need
them. You have to manually combine multiple data objects, although you are imple-
menting a single view that naturally needs just a single data object.

 Try asking for this data from a REST API yourself. The Star Wars data has an excel-
lent REST API called SWAPI, which you can find at az.dev/swapi. Construct the same
data object there. The names of the data elements might be a bit different, but the
endpoint structure is the same. You will need to do exactly six API calls. Furthermore,
you will have to over-fetch information that the view does not need.

 SWAPI is just one pure implementation of a REST API for this data. There could
be better custom implementations that make this view’s data needs easier to fulfill.
For example, if the API server implemented nested resources and understood the
relationship between a person and a film, you could read the film data (along with the
character data) with something like this:

GET - /people/{id}/films

However, a pure REST API would not have that out of the box. You would need to ask
the backend engineers to create this custom endpoint for your view. This is the reality
of scaling a REST API: you add custom endpoints to efficiently satisfy clients’ growing
needs. Managing custom endpoints like these is hard.

 For example, if you customized your REST API endpoint to return the film data
for a character, that would work great for the view you are currently implementing.
However, in the future, you might need to implement a shorter or longer version of
the character’s profile information. Maybe you will need to show only one of their
films or display the film description in addition to the title. Every new requirement
will mean a change must be made to customize the endpoint further or come up with
new endpoints to optimize the communication needed for the new views. This
approach is simply limited.

 Let’s now look at the GraphQL approach. A GraphQL server is a single smart end-
point. The transport channel does not matter. If you are doing this over HTTP, the
HTTP method certainly does not matter either. Let’s assume that you have a single
GraphQL endpoint exposed over an HTTPS transport channel at a /graphql endpoint.

 Since you want to ask for data in a single network round trip, there has to be a way
for you to express the complete data needs for the server to parse. You do this with a
GraphQL query:

GET or POST - /graphql?query={·-·-·}

A GraphQL query is just a string, but it must include all the pieces of the data that you
need. This is where the declarative power comes in.

https://az.dev/swapi

23Why GraphQL?

 Let’s compare how this simple view’s data requirement can be expressed with
English and with GraphQL in table 1.1.

Can you see how close the GraphQL expression is to the English version? It is as close
as it can get. Furthermore, compare the GraphQL query with the original JSON data
object that we started with (table 1.2).

The GraphQL query is the exact structure of the JSON data object, except without all
the “value” parts (bold in table 1.2). If you think of this in terms of a question-answer
relation, the question is the answer statement without the answer part.

Table 1.1 How GraphQL is close to English

In English In GraphQL

The view needs:
a person’s name,

birth year,
planet’s name,

and the titles of all their films.

{
person(ID: ·-·-·) {

name
birthYear
planet {

name
}
films {

title
}

}
}

Table 1.2 The similar structure between a GraphQL query and its response

GraphQL query (question) Needed JSON (answer)

{
person(ID: ·-·-·) {

name
birthYear
planet {

name
}
films {

title
}

}
}

{
"data": {

"person": {
"name": "Darth Vader",
"birthYear": "41.9BBY",
"planet": {

"name": "Tatooine"
},

"films": [
{ "title": "A New Hope" },
{ "title": "The Empire Strikes Back" },
{ "title": "Return of the Jedi" },
{ "title": "Revenge of the Sith" }

]
}

}
}

24 CHAPTER 1 Introduction to GraphQL

If the answer statement is

The name of the Star Wars character who has the ID 4 is Darth Vader.

A good representation of the question is the same statement without the
answer part:

(What is) the name of the Star Wars character who has the ID 4?

The same relationship applies to a GraphQL query. Take a JSON data object and
remove all the “answer” parts (the values), and you end up with a GraphQL query suit-
able to represent a question about that JSON data object.

 If you analyze the GraphQL query against the UI view that uses it, you’ll find that
every element of the GraphQL query is used in the UI view, and every dynamic part
that is used in the UI view appears in the GraphQL query.

 This obvious mapping is one of the greatest powers of GraphQL. The UI view
knows the exact data it needs, and extracting that requirement from the view code is
fairly easy. You simply look for what variables are used in the view.

 If you think about this in terms of multiple nested UI components, every UI com-
ponent can ask for the exact part of the data that it needs, and the application's com-
plete data needs can be constructed by putting together these partial data needs from
components.

TIP GraphQL provides a way for a UI component to define the partial data
need via a feature called fragments. You will learn about GraphQL fragments
in chapter 3.

Furthermore, if you invert this mapping model, you find another powerful concept. If
you have a GraphQL query, you know exactly how to use its response in the UI
because the query will have the same structure as the response. You do not need to
inspect the response to know how to use it, and you do not need any documentation
about the API. It is all built in.

 Star Wars data has a GraphQL API (see az.dev/swapi-graphql). You can use the
GraphiQL editor available there to test a GraphQL query. We’ll talk about the
GraphiQL editor in the next chapter, but you can go ahead and try to construct the
example data person object. There are a few minor differences that you will learn
about later in the book, but here is the official query you can use against this API to
read the data requirement for the same view (with Darth Vader as an example).

{
person(personID: 4) {

name
birthYear
homeworld {

name
}
filmConnection {

Listing 1.13 GraphQL query for the Star Wars example | az.dev/gia

https://az.dev/swapi-graphql

25GraphQL problems

films {
title

}
}

}
}

TIP If you are reading the print version of this book, you can copy the text of
all useable code listings in the book at az.dev/gia. The query in listing 1.13
can be found there along with any listings that have the link in their caption.

Just paste this query in the editor area and click the run button. This request will give
you a response structure very close to what the view used. You expressed the data need
in a way that is close to how you would express it in English, and you get all the data in
a single network round trip.

GraphQL offers many advantages over REST APIs, but let’s also talk about the chal-
lenges GraphQL brings to the table.

1.3 GraphQL problems
Perfect solutions are fairy tales. The flexibility that GraphQL introduces opens a door
to some clear issues and concerns.

1.3.1 Security

A critical threat for GraphQL APIs is resource-exhaustion attacks (aka denial-of-service
attacks). A GraphQL server can be attacked with overly complex queries that consume
all the server resources. It is very simple to query for deeply nested relationships (user
–> friends –> friends –> friends …) or use field aliases to ask for the same field many
times. Resource-exhaustion attacks are not specific to GraphQL, but when working with
GraphQL, you have to be extra careful about them.

NOTE This resource-exhaustion problem can also come from non-malignant
client applications that have certain bugs or bad implementations. Remem-
ber that a GraphQL client is free to ask for whatever data it requires, so it
might just ask for too much data at once.

Is GraphQL a REST killer?
When I first learned about GraphQL, I tweeted that “REST APIs can REST IN PEACE!”
Joking aside, I don’t really think that GraphQL is a REST API “killer.” I do think, how-
ever, that more people will pick GraphQL over REST for APIs used by web and mobile
applications. REST APIs have their place, but I don’t think that place is for web and
mobile applications.

I believe GraphQL will do to REST what JSON did to XML. XML is still pretty heavily
used, but almost every web-based API I know of today uses the JSON format.

https://az.dev/gia

26 CHAPTER 1 Introduction to GraphQL

There are some mitigations you can use. You can implement cost analysis on the query
in advance and enforce limits on the amount of data that can be consumed. You can
also implement a timeout to kill requests that take too long to resolve. In addition,
since a GraphQL service is just one layer in any application stack, you can handle the
rate-limit enforcement at a lower level under GraphQL.

 If the GraphQL API endpoint you are trying to protect is not public and is
designed for internal use by your client applications (web or mobile), you can use an
allow-list approach and preapprove queries the server can execute. Clients can ask the
server to execute preapproved queries using a unique query identifier. While this
approach reintroduces some dependencies between servers and clients, automation
strategies can be used to mitigate against that issue. For example, you can give the
frontend engineers the freedom to modify the queries and mutations they use in
development and then automatically replace them with their unique IDs during
deployment to production servers. Some client-side GraphQL frameworks are already
testing similar concepts.

 Authentication and authorization are other concerns that you need to think about
when working with GraphQL. Do you handle them before, after, or during GraphQL’s
fields resolving process?

 To answer this question, think of GraphQL as a domain-specific language (DSL)
on top of your backend data-fetching logic. It is just one layer that you could put
between the clients and your actual data services. Think of authentication and autho-
rization as another layer. GraphQL will not help with the actual implementation of
the authentication or authorization logic. It is not meant for that. But if you want to
put these layers behind GraphQL, you can use GraphQL to communicate the access
tokens between the clients and the enforcing logic. This is very similar to the way
authentication and authorization are usually implemented in REST APIs.

 In chapter 8, we’ll go over an example of implementing an authentication layer
behind GraphQL.

1.3.2 Caching and optimizing

One task that GraphQL makes a bit more challenging is clients’ caching of data.
Responses from REST APIs are a lot easier to cache because of their dictionary nature.
A specific URL gives certain data, so you can use the URL itself as the cache key.

 With GraphQL, you can adopt a similar basic approach and use the query text as a
key to cache its response. But this approach is limited, is not very efficient, and can
cause problems with data consistency. The results of multiple GraphQL queries can
easily overlap, and this basic caching approach will not account for the overlap.

 There is a brilliant solution to this problem. A graph query means a graph cache. If
you normalize a GraphQL query response into a flat collection of records and give
each record a global unique ID, you can cache those records instead of caching the
full responses.

27GraphQL problems

 This is not a simple process, though. There will be records referencing other
records, so you will be managing a cyclic graph. Populating and reading the cache will
require query traversal. You will probably have to implement a separate layer to
handle this cache logic. However, this method will be a lot more efficient than
response-based caching.

 One of the other most famous problems you may encounter when working with
GraphQL is commonly referred to as N+1 SQL queries. GraphQL query fields are
designed to be standalone functions, and resolving those fields with data from a data-
base might result in a new database request per resolved field. For simple REST API
endpoint logic, it is easy to analyze, detect, and solve N+1 issues by enhancing the con-
structed SQL queries. For GraphQL dynamically resolved fields, it is not that simple.

 Luckily, Facebook is pioneering one possible solution to this data-loading-
optimization problem: it’s called DataLoader. As the name implies, DataLoader is a
utility you can use to read data from databases and make it available to GraphQL resolver
functions. You can use DataLoader instead of reading the data directly from databases
with SQL queries, and DataLoader will act as your agent to reduce the SQL queries you
send to the database (figure 1.6).

DataLoader uses a combination of batching and caching to accomplish that. If the
same client request results in a need to ask the database about multiple things, Data-
Loader can consolidate these questions and batch load their answers from the data-
base. DataLoader also caches the answers and makes them available for subsequent
questions about the same resources.

 We’ll explore the practical benefits of DataLoader in chapter 7.

DataLoader

Figure 1.6 DataLoader can optimize the requests between GraphQL and databases.

28 CHAPTER 1 Introduction to GraphQL

TIP There are other SQL optimization strategies that you can use. For exam-
ple, you can construct optimal join-based SQL queries by analyzing GraphQL
requests. If you are using a relational database with native efficient capabili-
ties to join tables of data and reuse previously parsed queries, then in many
cases, a join-based strategy may be more efficient than ID-based batching.
However, ID-based batching is much easier to implement.

1.3.3 Learning curve

Working with GraphQL requires a bigger learning curve than the alternatives. A
developer writing a GraphQL-based frontend application has to learn the syntax of
the GraphQL language. A developer implementing a GraphQL backend service has
to learn a lot more than just the language: they have to learn the API syntax of a
GraphQL implementation. They must also understand schemas and resolvers, among
many other concepts specific to a GraphQL runtime.

 This is less of an issue in REST APIs because they do not have a client language or
require any standard implementations. You have the freedom to implement REST
endpoints however you wish because you don’t have to parse, validate, and execute
special language text.

Summary
 The best way to represent data in the real world is with a graph data structure. A

data model is a graph of related objects. GraphQL embraces this fact.
 A GraphQL system has two primary components: the query language, which

can be used by consumers of data APIs to request their exact data needs; and
the runtime layer on the backend, which publishes a public schema describing
the capabilities and requirements of data models. The runtime layer accepts
incoming requests on a single endpoint and resolves incoming data requests
with predictable data responses. Incoming requests are strings written with the
GraphQL query language.

 GraphQL is all about optimizing data communication between a client and a
server. GraphQL allows clients to ask for the exact data they need in a declara-
tive way, and it enables servers to aggregate data from multiple data storage
resources in a standard way.

 GraphQL has an official specification document that defines standard rules and
practices that all implementers of GraphQL runtimes must adhere to.

 A GraphQL service can be written in any programming language, and it can be
conceptually split into two major parts: a structure that is defined with a
strongly typed schema representing the capabilities of the API, and behavior
that is naturally implemented with functions known as resolvers. A GraphQL
schema is a graph of fields, which have types. This graph represents all the pos-
sible data objects that can be read (or updated) through the GraphQL service.
Each field in a GraphQL schema is backed by a resolver function.

29GraphQL problems

 The difference between GraphQL and its previous alternatives is that it pro-
vides standards and structures to implement API features in maintainable and
scalable ways. The alternatives lack such standards. GraphQL also solves many
technical challenges like having to do multiple network round trips and deal
with multiple data responses on the client.

 GraphQL has some challenges, especially in the areas of security and optimiza-
tion. Because of the flexibility it provides, securing a GraphQL API requires
thinking about more vulnerabilities. Caching a flexible GraphQL API is also a
lot harder than caching fixed API endpoints (as in REST APIs). The GraphQL
learning curve is also steeper than that of many of its alternatives.

30

Exploring
 GraphQL APIs

The easiest way to start learning about the powerful features of the GraphQL lan-
guage is to use its feature-rich interactive in-browser IDE. This IDE uses GraphQL’s
type system to provide features you can use to explore what you can do with
GraphQL and to write and test your GraphQL requests without leaving your
browser. Using this IDE, we will continue to explore examples of GraphQL queries
and mutations. We’ll look at the fundamental parts of a GraphQL request and test
examples from the official GitHub GraphQL API.

This chapter covers
 Using GraphQL’s in-browser IDE to test GraphQL

requests

 Exploring the fundamentals of sending GraphQL
data requests

 Exploring read and write example operations from
the GitHub GraphQL API

 Exploring GraphQL’s introspective features

31The GraphiQL editor

2.1 The GraphiQL editor
When thinking about the requests your client applications need to make to servers,
you can benefit from a graphical tool to first help you come up with these requests
and then test them before committing to them in application code. Such a tool can
also help you improve these requests, validate your improvements, and debug any
requests that are running into problems. In the GraphQL world, this tool is called
GraphiQL (with an i before the QL and pronounced “graphical”). GraphiQL is an
open source web application (written with React.js and GraphQL) that can be run in
a browser.

 GraphiQL is one of the reasons GraphQL is popular. It is easy to learn, and it will
be a very helpful tool for you. I guarantee that you will love it. It is one of my favorite
tools for frontend development, and I cannot imagine working on a GraphQL-based
project without it.

 You can download GraphiQL and run it locally, but an easier way to get a feel for
what this tool has to offer is to use it with an existing GraphQL API service like the Star
Wars service that we previewed in chapter 1.

 Head over to az.dev/swapi-graphql in your browser to find the GraphiQL editor,
which works with the Star Wars data and is publicly available for you to test. Figure 2.1
shows what it looks like.

 This editor is a simple two-pane application: the left pane is the editor, and the
right pane is where the results of executing GraphQL requests appear.

Figure 2.1 The GraphiQL editor

https://az.dev/swapi-graphql

32 CHAPTER 2 Exploring GraphQL APIs

Go ahead and type the following simple GraphQL query in the editor.

{
person(personID: 4) {

name
birthYear

}
}

This simple GraphQL query asks for the name and birth year of the person whose ID
is 4. To execute the query, you can press Ctrl-Enter or press the run button (with the
little black triangle). When you do, the result pane shows the data that the query is
asking for, as shown in figure 2.2.

The best thing about the GraphiQL editor is that it provides intelligent type-ahead
and autocompletion features that are aware of the GraphQL type schema you are cur-
rently exploring. For the previous example, the editor is completely aware that there
is a person object with name and birthYear fields. In addition, the editor has live syn-
tax and validation error highlighting for any text you type.

NOTE The awesome features in GraphiQL are all possible because of the
GraphQL schema. With one big query to the server, this editor can know
about everything the server offers.

Listing 2.1 A query for the person field

Figure 2.2 Executing queries with GraphiQL

33The GraphiQL editor

To explore these features, clear the editor pane (you can select all the text in the edi-
tor with Ctrl-A). Then, just type an empty set of curly brackets: {}. Place your cursor
within this empty set, and press Ctrl-Space. You get an autocompletion list like that
shown in figure 2.3.

 Nice! You can very quickly start exploring what fields this GraphQL API offers
right there in the editor while you are thinking about your requests. The person field
we used before is one of the items in the list.

 This list will also be used to autocomplete fields as you type them. Type p, and
notice how the list changes to highlight what starts with p. Then, type an e and see
how the list only highlights the person field. Press Enter to “pick” the currently high-
lighted item in the list.

 The great thing about this type-ahead list is its context awareness. It shows you the
fields available on the level where you are typing. For example, now that you picked
the person field, type another empty set of curly brackets after the word person, put
your cursor within this new set, and bring up the type-ahead list by pressing Ctrl-
Space. You should see a new list, this time with all the fields you can ask for in the con-
text of a person object (figure 2.4).

 Context awareness is extremely helpful, and I am talking not about the “less typing”
aspect but rather about the discoverability and validation aspects that enable you to
work more quickly and make fewer mistakes. This is an example of the power and con-
trol I was talking about in the previous chapter. And that is how GraphQL is different.

Figure 2.3 GraphiQL’s type-ahead list

34 CHAPTER 2 Exploring GraphQL APIs

Before we pick the name and birthYear fields again, note that one of the closing curly
brackets has a red underline. This is part of the live error highlighting you also get in
this tool. Discard the type-ahead list by pressing Esc, and hover your mouse cursor
over the underlined curly bracket. You should see an error complaining about unex-
pected syntax. This is because the text in the editor is not yet valid GraphQL syntax.
Every time you start a new level of curly brackets, known as a selection set, it needs its
own fields.

 Go ahead and pick the name and birthYear fields within the person field. The
query syntax is now valid (the red underline is gone), but the query is still missing one
important piece—and this time, it is not a syntax problem.

 You can always execute the query to see what the server has to say about it. If the
server rejects the query, it will most likely give you a good reason why it did. For exam-
ple, executing the query we have right now returns the following.

{
"errors": [

{
"message": "must provide id or personID",
"locations": [

{
"line": 2,
"column": 3

}

Listing 2.2 Example GraphQL error response

Figure 2.4 GraphiQL’s type-ahead list is context aware.

35The GraphiQL editor

],
"path": [

"person"
]

}
],
"data": {

"person": null
}

}

Note that the response in listing 2.2 is a normal JSON response (200-OK) and that it
gives two top-level properties: an errors property that is an array of error objects and
a data property that represents an empty response. A GraphQL server response can
represent partial data when that server has errors about other parts of the response.
This makes the response more predictable and makes the task of handling errors a bit
easier.

 The error message here is helpful: the path “person” must provide id or personID.
Since we are asking the server about one person, it needs a way to identify which person’s
data to return. Note again that this was not a syntax problem but rather a missing-
required-value problem.

 To make a path provide a value, we use syntax similar to calling functions. Place the
cursor immediately after the word person, and type the (character. GraphiQL auto-
completes it and shows you a new type-ahead list that, this time, knows what values can
be provided as arguments for the person field (figure 2.5).

Figure 2.5 Exploring field arguments with the type-ahead list

36 CHAPTER 2 Exploring GraphQL APIs

Now you can pick the personID argument, give it a value of 4, and get back to the
same query you started with. But this time, you discovered the elements you needed
through the powerful features of the GraphiQL editor.

 In addition to discovering the structure and types of elements inline while you type
them, you can browse the Docs section to see full lists and more details. Click the Docs
link in the top-right corner of the editor. You should see a search box that you can use
to find any type in the current GraphQL schema. I typed the word person and picked
the first result; figure 2.6 shows the schema type Person with its description and fields.

Take a moment to explore more of what the GraphiQL editor has to offer. Try more
queries, and get a feeling for how easy it is to come up with them.

2.2 The basics of the GraphQL language
To ask any GraphQL server for data, we send it a request written in the GraphQL query
language. A GraphQL request contains a tree of fields. Let’s explore these two funda-
mental concepts of the language in detail.

2.2.1 Requests

At the core of a GraphQL communication is a request object. The source text of a
GraphQL request is often referred to as a document. A document contains text that
represents a request through operations like queries, mutations, and subscriptions. In
addition to the main operations, a GraphQL document text can contain fragments
that can be used to compose other operations, as we will see in the next chapter.

Figure 2.6 GraphiQL shows the documentation schema.

37The basics of the GraphQL language

 A GraphQL request can also contain an object
representing values of variables that may be used in
the request document text. The request may also
include meta-information about operations (figure
2.7). For example, if the request document contains
more than one operation, a GraphQL request must
include information about which operation to
execute. If the request document contains only one
operation, the GraphQL server will just execute that.
You do not even need to label the operation with a
name in that case, but naming operations is a good
practice to follow.

 Let’s look at a full GraphQL request. Here is a
hypothetical example (don’t worry about the new
syntax just yet).

query GetEmployees($active: Boolean!) {
allEmployees(active: $active) {

...employeeInfo
}

}

query FindEmployee {
employee(id: $employeeId) {

...employeeInfo
}

}

fragment employeeInfo on Employee {
name
email
startDate

}

Since this document uses generic variables (the ones starting with the $ sign), we need
a JSON object to represent values specific to a request.

{
"active": true,
"employeeId": 42

}

Also, since the document contains more than one operation (GetEmployees and
FindEmployee), the request needs to provide the desired operation to be executed.

Listing 2.3 Example GraphQL request: document

Listing 2.4 Example GraphQL request: variables

Document
Queries
Mutations
Subscriptions
Fragments

Request

Variables

Meta-information

Figure 2.7 The structure of a
GraphQL request

38 CHAPTER 2 Exploring GraphQL APIs

operationName="GetEmployees"

If we send all three elements of this request to a GraphQL server, it will parse the
whole document, pick the GetEmployees query, fill the variable values, and return the
data response for that query.

 Three types of operations can be used in GraphQL:

 Query operations that represent a read-only fetch
 Mutation operations that represent a write followed by a fetch
 Subscription operations that represent a request for real-time data updates

The example in listing 2.3 represented a query operation. Here is a hypothetical
example of a mutation operation.

mutation RateStory {
addRating(storyId: 123, rating: 5) {

story {
averageRating

}
}

}

The mutation operation in listing 2.6 adds a new five-star rating record for a story and
then retrieves the new average rating of that same story. Note that this is a write fol-
lowed by a read. All GraphQL mutation operations follow this concept.

 Here is a hypothetical example of a subscription operation.

subscription StoriesRating {
allStories {

id
averageRating

}
}

The subscription operation in listing 2.7 instructs the GraphQL server to open a
socket connection with the client, send story IDs along with their average ratings, and
keep doing that when the information changes on the server. This feature is a much
better alternative than continuously polling data to keep a UI view up to date.

2.2.2 Fields

One of the core elements in the text of a GraphQL operation is the field. The simplest
way to think about a GraphQL operation is as a way to select fields on objects.

Listing 2.5 Example GraphQL request: meta-information

Listing 2.6 Example GraphQL mutation operation

Listing 2.7 Example GraphQL subscription operation

39The basics of the GraphQL language

 A field always appears within a selection set (inside a pair of curly brackets), and it
describes one discrete piece of information that you can retrieve about an object. It
can describe a scalar value (like the name of a person or their birth year), an object
(like the home planet of a Star Wars character), or a list of objects (like the list of films
in which a Star Wars character appeared). For the last two cases, the fields contain
another selection set to customize the information needed about the objects the fields
describe.

 Here is an example GraphQL query with different types of fields.

{
me {

email
birthday {

month
year

}
friends {

name
}

}
}

The fields email, month, year, and name are all scalar fields. Scalar types represent prim-
itive leaf values. GraphQL schemas often support four major scalar types: Int, String,
Float, and Boolean. The built-in custom scalar value ID can also be used to represent
identity values. We’ll see an example in chapter 4.

TIP The term leaf comes from Graph theory. It means a vertex with no
children.

You can also customize a GraphQL schema to support more scalar values with certain
formats. For example, a schema can be designed to have a Time scalar value represent-
ing a time value in a standard and parsable format (ISO/UTC).

 The me and birthday fields describe objects, so they require their own nested
selection sets to represent their properties. The friends field describes a list of friend
objects, so it also requires a nested selection set to represent the properties of the
objects in that list.

 All GraphQL operations must specify their selections down to fields that return
scalar values (leaf values). For example, they cannot have fields that describe objects
without providing further nested selection sets to specify which scalar values to fetch
for these objects. The last-nested level of fields should always consist of only fields that
describe scalar values. For the example in listing 2.8, if you did not specify the nested
selection set for the friends field (the { name } part), the GraphQL query would not

Listing 2.8 GraphQL fields

40 CHAPTER 2 Exploring GraphQL APIs

be valid because in that case, not all of the last-nested-level fields would describe sca-
lar values.

 The root fields in an operation usually represent information that is globally accessi-
ble to your application and its current user.

NOTE I use the term root field to refer to the first-level fields in a GraphQL
operation.

Some typical examples of root fields include references to a currently logged-in user.
These fields are often named viewer or me. For example:

{
me {

username
fullName

}
}

Root fields are also generally used to access certain types of data referenced by a
unique identifier. For example:

Ask for the user whose ID equal to 42
{

user(id: 42) {
fullName

}
}

In this query, the user field represents one of many users in a graph of data. To
instruct the server to pick one user, we specify a unique ID value for the user field.

 Note that in the previous example, the # character is used to write a comment
about the query. This is the official character to comment a single line (or the remain-
der of a line) in a GraphQL document. There is no supported way to have multiline
comments in GraphQL documents, but you can have many lines, each of which starts
with the # character. The server will just ignore all the comments. It will also ignore
any extra spaces, all line terminators, and all insignificant commas between fields.
These characters can be used to improve the legibility of source text and emphasize
the separation of tokens. They have no significance to the semantic meaning of
GraphQL documents.

2.3 Examples from the GitHub API
Now that you know about requests, documents, operations, and fields, let’s put this
knowledge to use and explore some real-world examples of GraphQL requests from
the GitHub API. GitHub moved from REST APIs to GraphQL APIs in 2017. We can
use their GraphQL API explorer at az.dev/github-api; this embedded GraphiQL edi-
tor (figure 2.8) includes the proper authentication headers for the API (you need to
be logged in with a GitHub.com account).

https://az.dev/github-api

41Examples from the GitHub API

TIP You can also use a standalone GraphiQL editor to explore the GitHub
API (see az.dev/graphiql-app). You have to manually include an access token
in that app. You can use this standalone app with any GraphQL API service.

Let’s first look at some common queries from this API.

WARNING The GitHub API uses your real, live production data at
GitHub.com.

2.3.1 Reading data from GitHub

When you first launch the GitHub GraphQL API explorer, it has a default simple
query that displays your login. The currently logged-in user is represented by the
viewer field. Under this field, you can read all the information that is available about
you at GitHub.

 For example, here is a query to see information about the most recent 10 reposito-
ries that you own or contribute to.

{
viewer {

repositories(last: 10) {
nodes {

name
description

Listing 2.9 Your most recent repos (az.dev/gia)

Figure 2.8 The GraphiQL editor for the GitHub API

https://az.dev/graphiql-app

42 CHAPTER 2 Exploring GraphQL APIs

}
}

}
}

Here is another query to see all the supported licenses in GitHub along with their
URLs.

{
licenses {

name
url

}
}

Next is a more complex query to find the first 10 issues of the facebook/graphql
repository. It asks for the name of the author and the title used for the issue page,
along with the date when the issue was created.

{
repository(owner: "facebook", name: "graphql") {

issues(first: 10) {
nodes {

title
createdAt
author {
login

}
}

}
}

}

2.3.2 Updating data at GitHub

Let’s now explore some mutations we can do with the GitHub GraphQL API. The sim-
plest mutation is to “star” a repository. If you execute the following mutation under
your logged-in user, its action is equivalent to going to github.com/jscomplete/
graphql-in-action and clicking the star button.

mutation {
addStar(input: { starrableId: "MDEwOlJlcG9zaXRvcnkxMjU2ODEwMDY=" }) {

starrable {
stargazers {

Listing 2.10 All GitHub-supported licenses (az.dev/gia)

Listing 2.11 The first 10 issues of a repo (az.dev/gia)

Listing 2.12 “Star” a repository (az.dev/gia)

Use listing 2.13 to find
this starrableId value

https://github.com/jscomplete/graphql-in-action
https://github.com/jscomplete/graphql-in-action
https://github.com/jscomplete/graphql-in-action

43Examples from the GitHub API

totalCount
}

}
}

}

The mutation stars the repository and then reads the new total number of stargazers
after the mutation. The input for this mutation is a simple object that has a starrableId
value, which is the node identifier for the graphql-in-action repository. I was able to find
that value using this query.

{
repository(name: "graphql-in-action", owner: "jscomplete") {

id
}

}

Let’s execute another mutation. This time, let’s add a comment to an issue in a repos-
itory. I created an issue for you to test this mutation under the repository at
github.com/jscomplete/graphql-in-action. You can see the details of this issue using
the following query.

query GetIssueInfo {
repository(owner: "jscomplete", name: "graphql-in-action") {

issue(number: 1) {
id
title

}
}

}

This gives you the value of the id field needed to add a comment to the issue using a
mutation. Now execute the following mutation, which uses that id value.

mutation AddCommentToIssue {
addComment(input: {

subjectId: "MDU6SXNzdWUzMDYyMDMwNzk=",
body: "Hello from California!"

}) {
commentEdge {

node {
createdAt

}

Listing 2.13 Find a repo ID (az.dev/gia)

Listing 2.14 The details of one issue under a repo (az.dev/gia)

Listing 2.15 Adding a comment to a repo issue (az.dev/gia)

Tell us where you’re from
in your test comment. :)

https://github.com/jscomplete/graphql-in-action

44 CHAPTER 2 Exploring GraphQL APIs

}
}

}

After the mutation in listing 2.15 saves your comment to the special issue, it reports
the createdAt date for that comment. Feel free to send as many comments as you
wish to this special issue, but only do so through the GitHub API explorer.

 You can see the comments you added and all the other comments on this issue at
github.com/jscomplete/graphql-in-action/issues/1.

2.3.3 Introspective queries

GraphQL APIs support introspective queries that can be used to answer questions about
the API schema. This introspection support gives GraphQL tools powerful functionality,
and it drives the features we have been using in the GraphiQL editor. For example, the
awesome type-ahead list in GraphiQL is sourced with an introspective query.

 Introspective queries start with a root field that’s either __type or __schema,
known as meta-fields. There is also another meta-field, __typename, which can be used
to retrieve the name of any object type. Fields with names that begin with double
underscore characters are reserved for introspection support.

NOTE Meta-fields are implicit. They do not appear in the fields list of their types.

The __schema field can be used to read information about the API schema, such as
what types and directives it supports. We will explore directives in the next chapter.

 Let’s ask the GitHub API schema what types it supports. Here is an introspective
query to do that.

{
__schema {

types {
name
description

}
}

}

This query returns all the types this schema supports, and it also includes the descriptions
of these types. This is a helpful list to explore the custom types defined in the GitHub
GraphQL schema. For example, you should see that the GitHub API schema defines types
like Repository, Commit, Project, Issue, PullRequest, and many more (figure 2.9).

Listing 2.16 Example GraphQL introspective query (az.dev/gia)

https://github.com/jscomplete/graphql-in-action/issues/1
https://github.com/jscomplete/graphql-in-action/issues/1

45Examples from the GitHub API

If you need to retrieve information about a single type, you can use the __type meta-
field. For example, here is a query to find all the supported fields under the type Commit
along with any arguments they accept.

{
__type(name: "Commit") {

fields {
name
args {

name
}

}
}

}

Use the GraphiQL type-ahead feature to discover what other information you can
retrieve under these introspective meta-fields.

Listing 2.17 Supported fields under a Commit object (az.dev/gia)

Figure 2.9 Listing all the supported types under the GitHub API schema

46 CHAPTER 2 Exploring GraphQL APIs

Summary
 GraphiQL is an in-browser IDE for writing and testing GraphQL requests. It

offers many great features to write, validate, and inspect GraphQL queries and
mutations. These features are made possible thanks to GraphQL’s introspective
nature, which comes with its mandatory schemas.

 A GraphQL request consists of a set of operations, an object for variables, and
other meta-information elements as needed.

 GraphQL operations use a tree of fields. A field represents a unit of informa-
tion. The GraphQL language is largely about selecting fields on objects.

 GitHub has a powerful GraphQL API that you can use to read data about repos-
itories and users and do mutations like adding a star to a repository or com-
menting on an issue in a repository.

 GraphQL introspective queries offer a way for clients to get meta-information
about the GraphQL API.

47

Customizing
 and organizing

 GraphQL operations

In any nontrivial application, you have to do many things beyond asking the server
a direct, simple, single-value question. Data fetching is usually coupled with vari-
ables and meta-questions about the structure of the response. You often need to
modify the data returned by the server to make it suitable for your application.

This chapter covers
 Using arguments to customize what a request

field returns

 Customizing response property names with
aliases

 Describing runtime executions with directives

 Reducing duplicated text with fragments

 Composing queries and separating data
requirement responsibilities

48 CHAPTER 3 Customizing and organizing GraphQL operations

Sometimes you have to remove parts of the data or go back to the server and ask for
other parts that are required based on conditions in your application. Sometimes you
need a way to organize big requests and categorize them to know which part of your
application is responsible for each part of your requests. Luckily, the GraphQL lan-
guage offers many built-in features you can use to do all of this and much more. These
customizing and organizing features are what this chapter is all about.

3.1 Customizing fields with arguments
The fields in a GraphQL operation are similar to functions. They map input to out-
put. A function input is received as a list of argument values. Just like functions, we
can pass any GraphQL field a list of argument values. A GraphQL schema on the
backend can access these values and use them to customize the response it returns for
that field.

 Let’s look at use cases for these field arguments and some examples used by the
GitHub GraphQL API (az.dev/github-api).

3.1.1 Identifying a single record to return

Every API request that asks for a single record from a collection needs to specify an
identifier for that record. This identifier is usually associated with a unique identifier
for that record in the server’s database, but it can also be anything else that can
uniquely identify the record.

 For example, if you ask an API for information on a single user, you usually send
along with your request the ID of the user you are interested in. You can also send
their email address, username, or Facebook ID connection if, for example, you are
logging them in through a Facebook button.

 Here is an example query that asks for information about the user whose email
address is jane@doe.name.

query UserInfo {
user(email: "jane@doe.name") {

firstName
lastName
username

}
}

The email part inside the user field is called a field argument.
 Note that for an API field representing a single record, the argument value you

pass to identify that record must be a unique value on that field record in the data-
base. For example, you cannot pass the person’s full name to identify their user
record because the database might list many people who have the same name.

Listing 3.1 Using field arguments

https://az.dev/github-api

49Customizing fields with arguments

 However, you can pass multiple arguments to identify the user. For example, you
can pass a full name and an address to uniquely identify a single person.

 Examples of single-record fields are popular. Some GraphQL APIs even have a single-
record field for every object in the system. This is commonly known in the GraphQL
world as a Node interface: a concept popularized by the Relay framework (which also orig-
inated at Facebook). With a Node interface, you can look up any node in the data graph
by its unique global system-wide ID. Then, based on what that node is, you can use an
inline fragment to specify the properties on that node that you are interested in seeing
in the response.

query NodeInfo {
node(id: "A-GLOBALLY-UNIQUE-ID-HERE") {

...on USER {
firstName
lastName
username
email

}
}

}

See section 3.4.5 later in this chapter for more details about the inline-fragment in list-
ing 3.2.

 In the GitHub API, some examples of single-record fields are user, repository,
project, and organization. Here is an example to read information about the jsCom-
plete organization, which hosts all open source resources for jsComplete.com.

query OrgInfo {
organization(login: "jscomplete") {

name
description
websiteUrl

}
}

3.1.2 Limiting the number of records returned by a list field

When you ask for a list of records from a collection, a good API will always ask you to
provide a limit. How many records are you interested in?

 It is usually a bad idea to leave a general API capability for listing records in a col-
lection without a limit. You do not want a client to be able to fetch more than a few
hundred records at a time, because that would put your API server at risk of resource
exhaustion and does not scale well. This is exactly why the GitHub API requires the

Listing 3.2 Identifying a single global node

Listing 3.3 One organization’s information (az.dev/gia)

https://jscomplete.com/

50 CHAPTER 3 Customizing and organizing GraphQL operations

use of an argument like first (or last) when you ask it for a list of records. Go ahead
and try to ask for all the repositories under the jsComplete organization. You can use
the repositories field within the organization field in the OrgInfo query in listing
3.3. You should see that GitHub asks for a first or last value, as shown in figure 3.1.

Since any list of records in a database has a certain order, you can limit your request
results using either end of that order. If you are interested in 10 records, you can get
the first 10 records or the last 10 records using these arguments.

 Here is the query you can use to retrieve the first 10 repositories under the jsCom-
plete organization.

query First10Repos {
organization(login: "jscomplete") {

name
description
websiteUrl
repositories(first: 10) {

nodes {
name

}
}

}
}

Listing 3.4 First 10 repos under the organization (az.dev/gia)

Figure 3.1 The repositories field requires a first or last argument.

51Customizing fields with arguments

By default, the GitHub API orders the repositories in ascending order by date of cre-
ation. You can customize that ordering logic with another field argument.

3.1.3 Ordering records returned by a list field

In the previous example, the GitHub API ordered the list of repositories under the
jsComplete organization by the CREATED_AT repository field, which is the default order
field. The API supports many other order fields, including UPDATED_AT, PUSHED_AT,
NAME, and STARGAZERS.

 Here is a query to retrieve the first 10 repositories when they are ordered alphabet-
ically by name.

query orgReposByName {
organization(login: "jscomplete") {

repositories(first: 10, orderBy: { field: NAME, direction: ASC }) {
nodes {

name
}

}
}

}

Can you use the GitHub field arguments you learned about to find the top-10 most
popular repositories under the jsComplete organization? Base a repository’s popular-
ity on the number of stars it has.

 Here is one query you can use to do that.

query OrgPopularRepos {
organization(login: "jscomplete") {

repositories(first: 10, orderBy: { field: STARGAZERS, direction: DESC }) {
nodes {

name
}

}
}

}

3.1.4 Paginating through a list of records

When you need to retrieve a page of records, in addition to specifying a limit, you need
to specify an offset. In the GitHub API, you can use the field arguments after and
before to offset the results returned by the arguments first and last, respectively.

 To use these arguments, you need to work with node identifiers, which are different
than database record identifiers. The pagination interface that the GitHub API uses is
called the Connection interface (which originated from the Relay framework as well).

Listing 3.5 First 10 repos under an organization (az.dev/gia)

Listing 3.6 10 most popular repos under an organization (az.dev/gia)

52 CHAPTER 3 Customizing and organizing GraphQL operations

In that interface, every record is identified by a node field (similar to the Node interface)
using a cursor field. The cursor is basically the ID field for each node, and it is the field
we use with the before and after arguments.

 To work with every node’s cursor next to that node’s data, the Connection inter-
face adds a new parent to the node concept called an edge. The edges field represents
a list of paginated records.

 Here is a query that includes cursor values through the edges field.

query OrgRepoConnectionExample {
organization(login: "jscomplete") {

repositories(first: 10, orderBy: { field: CREATED_AT, direction: ASC }) {
edges {

cursor
node {
name

}
}

}
}

}

Note that within an edges field, we now ask about a single node field because the list is
no longer a list of nodes but rather a list of edges where each edge is a node plus a cursor.

 Now that you can see the string values of these cursors, you can use them as the
after and before arguments to fetch extra pages of data. For example, to fetch the
second page of the repositories under the jsComplete organization, you need to iden-
tify the cursor of the last repository on the first page and use that cursor value as the
after value.

query OrgRepoConnectionExample2 {
organization(login: "jscomplete") {

repositories(
first: 10,
after: "Y3Vyc29yOnYyOpK5MjAxNy0wMS0yMVQwODo1NTo0My0wODowMM4Ev4A3",
orderBy: { field: CREATED_AT, direction: ASC }

) {
edges {

cursor
node {
name

}
}

}
}

}

Listing 3.7 Working with cursors under edges (az.dev/gia)

Listing 3.8 Fetching the second page of repos (az.dev/gia)

53Customizing fields with arguments

The introduction of the edges field also allows the addition of metadata about the list.
For example, on the same level where we ask for a list of edges, we can also ask how
many records in total this relation has and whether there are more records to fetch
after the current page. Here is the previous query modified to show some metadata
about the relation.

query OrgReposMetaInfoExample {
organization(login: "jscomplete") {

repositories(
first: 10,
after: "Y3Vyc29yOnYyOpK5MjAxNy0wMS0yMVQwODo1NTo0My0wODowMM4Ev4A3",
orderBy: { field: STARGAZERS, direction: DESC }

) {
totalCount
pageInfo {

hasNextPage
}
edges {

cursor
node {
name

}
}

}
}

}

Since the jsComplete organization has more than 20 repositories (two pages, in this
example), the hasNextPage field is true. When you fetch the very last page, hasNext-
Page will return false, indicating that there is no more data to fetch. This is much
better than having to do an extra empty page fetch to conclude that you have reached
the end of the paginated data.

3.1.5 Searching and filtering

A field argument in GraphQL can be used to provide filtering criteria or search terms
to limit the results returned by a list. Let’s see examples for both features.

 In GitHub, a repository can have a list of projects to manage any work related to
that repository. For example, the Twitter Bootstrap repository at GitHub uses a project
per release to manage all the issues related to a single release. Here is a query that
uses a search term within the projects relation to return the Twitter Bootstrap proj-
ects that start with v4.1.

query SearchExample {
repository(owner: "twbs", name: "bootstrap") {

projects(search: "v4.1", first: 10) {

Listing 3.9 Meta-pagination information (az.dev/gia)

Listing 3.10 Using field arguments to search (az.dev/gia)

54 CHAPTER 3 Customizing and organizing GraphQL operations

nodes {
name

}
}

}
}

Note that the projects field also implements the Connection interface.
 Some fields allow you to filter the returned list by certain properties of that field.

For example, by default, the list of your repositories under the viewer field includes
all the repositories that you own or can contribute to. To list only the repositories that
you own, you can use the affiliations field argument.

query FilterExample {
viewer {

repositories(first: 10, affiliations: OWNER) {
totalCount
nodes {

name
}

}
}

}

3.1.6 Providing input for mutations

The field arguments concept is what GraphQL mutations use to accept the mutation
operation’s input. In the previous chapter, we used the following mutation example to
add a star to the graphql-in-action repository under the jsComplete organization.

mutation StarARepo {
addStar(input: { starrableId: "MDEwOlJlcG9zaXRvcnkxMjU2ODEwMDY=" }) {

starrable {
stargazers {

totalCount
}

}
}

}

The input value in that mutation is also a field argument. It is a required argument.
You cannot perform a GitHub mutation operation without an input object. All
GitHub API mutations use this single required input field argument that represents
an object. To perform a mutation, you pass the various input values as key/value pairs
on that input object.

Listing 3.11 Using field arguments to filter (az.dev/gia)

Listing 3.12 Arguments to provide mutation input (az.dev/gia)

55Renaming fields with aliases

NOTE Not all arguments are required. A GraphQL API can control which
arguments are required and which are optional.

There are many more cases where a field argument can be useful. Explore the GitHub
API and other publicly available GraphQL APIs for more useful patterns for field
arguments.

3.2 Renaming fields with aliases
The alias feature in a GraphQL operation is very simple but powerful because it allows
you to customize a response coming from the server through the request itself. By
using aliases, you can minimize any post-response processing on the data.

 Let me explain this with an example. Let’s say you are developing the profile page
in GitHub. Here is a query to retrieve partial profile information for a GitHub user.

query ProfileInfo {
user(login: "samerbuna") {

name
company
bio

}
}

You get a simple user object in the response (see figure 3.2).

Listing 3.13 Profile information query (az.dev/gia)

Figure 3.2 The ProfileInfo query asking for a company field

56 CHAPTER 3 Customizing and organizing GraphQL operations

Now an application UI can use this user object in the query’s response to substitute
for the values in a UI template. However, suppose you have just discovered a mismatch
between the structure of your response and the structure the application UI is using
for the user object. The application UI was developed to expect a companyName field
on a user instead of a company field (as found in the API response). What do you do?
Assume that changing the application UI code itself is not an option.

 If you do not have the option to use an alias (I will show you how in a bit), you can
process the response every time you need to use the response object. You’ll have to
transform the user object from the response into a new object with the right structure.
This can be costly if the structure you are working with is deep and has multiple levels.

 Luckily, in GraphQL, the awesome alias feature lets us declaratively instruct the
API server to return fields using different names. All you need to do is specify an alias
for that field, which you can do using this syntax:

aliasName: fieldName

Just prefix any field name with an alias, and the server will return that field renamed
using your alias. There is no need to process the response object. For the example in
listing 3.13, all you need to do is specify a companyName alias.

query ProfileInfoWithAlias {
user(login: "samerbuna") {

name
companyName: company
bio

}
}

This gives a response that is ready for you to plug into the application UI (see figure 3.3).

Listing 3.14 Profile information query with an alias (az.dev/gia)

Figure 3.3 Using the GraphQL alias feature to get a companyName field from the server

57Customizing responses with directives

3.3 Customizing responses with directives
Sometimes, the customization you need on a server response goes beyond the simple
renaming of fields. You may need to conditionally include (or exclude) branches of
data in your responses. This is where the directives feature of GraphQL can be helpful.

 A directive in a GraphQL request is a way to provide a GraphQL server with addi-
tional information about the execution and type validation behavior of a GraphQL
document. It is essentially a more powerful version of field arguments: you can use
directives to conditionally include or exclude an entire field. In addition to fields,
directives can be used with fragments and top-level operations.

 A directive is any string in a GraphQL document that begins with the @ character.
Every GraphQL schema has three built-in directives: @include, @skip, and @depre-
cated. Some schemas have more directives. You can use this introspective query to see
the list of directives supported by a schema.

query AllDirectives {
__schema {

directives {
name
description
locations
args {

name
description
defaultValue

}
}

}
}

This query shows the name and description of each directive and includes an array of
all possible locations where that directive can be used (figure 3.4). In addition, it lists
all arguments supported by that directive. Each directive can optionally receive a list
of arguments, and just like field arguments, some argument values may be required by
the API server. The response to the previous query should show that in any GraphQL
schema, both the @include and @skip directives have the argument if. The @depre-
cated directive has the argument reason.

 The list of locations in the previous query’s response is also important. Directives
can be used only in the locations they are declared to belong to. For example, the
@include and @skip directives can only be used after fields or fragments. You cannot
use them at the top level of an operation. Similarly, the @deprecated directive can only
be used after field definitions or ENUM values when defining a GraphQL service schema.

NOTE An ENUM (enumerated) type represents a set of possible unique values.
We’ll see an example in the next chapter.

Listing 3.15 All the supported directives in a schema (az.dev/gia)

58 CHAPTER 3 Customizing and organizing GraphQL operations

Since directives are usually used with arguments, they are often paired with query vari-
ables to have them sent with a dynamic value. We saw some examples of variables in
the previous chapter, but let me remind you about them.

3.3.1 Variables and input values

A variable is simply any name in the GraphQL document that begins with a $ sign: for
example, $login or $showRepositories. The name after the $ sign can be anything.
We use variables to make GraphQL operations generically reusable and avoid having
to hardcode values and concatenate strings.

 To use a variable in a GraphQL operation, you first need to define its type. You do
that by providing arguments to any named operation. For example, let’s take the query
example that we used to read information about the jsComplete organization at
GitHub. Instead of hardcoding the login value (as we did before), let’s now use a
variable. The operation must have a name, and then we can use that name’s arguments
to define any variables. Let’s call the variable $orgLogin. It should be a required string.
You can see the type of the arguments using the Docs explorer. Look up the
organization field to see the type of its login argument. You can also click the
organization field in the query while holding the Command key (Ctrl in Windows).

 As you can see in figure 3.5, the login argument has a type of String!. The trail-
ing exclamation mark on that type is GraphQL’s way of labeling the argument value as
required. A value for this login argument must be specified—it cannot be null.

Figure 3.4 List of all directives supported by a schema

59Customizing responses with directives

Now we can use the same syntax to define the new variable. The type for $orgLogin
should match the type of the argument where it is going to be used. Here is the
OrgInfo query written with this new $orgLogin variable.

query OrgInfo($orgLogin: String!) {
organization(login: $orgLogin) {

name
description
websiteUrl

}
}

Note that on the first line, the query specifies that $orgLogin is a String!.
 You cannot execute the query in listing 3.16 as is. If you try, the GraphQL server

will return an error. Since we used a variable, we must give the executor on the server
the value that we wish to use for that variable. In GraphiQL, we do that using the vari-
ables editor, which is in the lower-left corner. In that editor, you write a JSON object
that represents all variables you want to send to the executor along with the operation.

 Since we used only one variable, the JSON object for that is

{
"orgLogin": "jscomplete"

}

Now you can execute the query with different JSON objects, making it reusable for dif-
ferent organizations (see figure 3.6).

Listing 3.16 Using variables for argument values (az.dev/gia)

Figure 3.5 Looking up one field’s documentation in a schema

60 CHAPTER 3 Customizing and organizing GraphQL operations

A variable like $orgLogin can also have a default value, in which case it does not need the
trailing exclamation mark. You specify the default value using an equals sign after the
type of the variable. For example, the previous query can have the value "jscomplete"
as the default value of $orgLogin using this syntax.

query OrgInfoWithDefault($orgLogin: String = "jscomplete") {
organization(login: $orgLogin) {

name
description
websiteUrl

}
}

You can execute this OrgInfoWithDefault query without passing a JSON object for
variables. The query will use the default value in that case. If you pass a JSON object
with a value for orgLogin, that value will override the default value.

 Variables can be used in fields and directives to make them accept input values of
various literal primitives. An input value can be scalar, like Int, Float, String, Bool-
ean, or Null. It can also be an ENUM value, a list, or an object. The $orgLogin variable
represents a scalar string input value for the login argument within the organization
field. Read the various GraphQL operation examples we have seen so far and try to
identify more input values. For example, try to find where we used an object as an
input value.

Listing 3.17 Using default values for variables (az.dev/gia)

Figure 3.6 Variables make a GraphQL query reusable.

61Customizing responses with directives

 Now that we know how to define and use variables and values, let’s use them with
directives.

3.3.2 The @include directive

The @include directive can be used after fields (or fragments) to provide a condition
(using its if argument). That condition controls whether the field (or fragment)
should be included in the response. The use of the @include directive looks like this:

fieldName @include(if: $someTest)

This says to include the field when the query is executed with $someTest set to true
and not to include the field when $someTest is set to false. Let’s look at an example
from the GitHub API.

 Building on the previous OrgInfo query example, let’s assume that we want to con-
ditionally include an organization’s websiteUrl based on whether we are showing full
or partial details in the UI. Let’s design a Boolean variable to represent this flag and
call it $fullDetails.

 This new $fullDetails variable will be required because we are about to use it
with a directive. The first line of the OrgInfo query needs to be changed to add the
type of $fullDetails:

query OrgInfo($orgLogin: String!, $fullDetails: Boolean!) {

Now we want to include the websiteUrl only when we execute the OrgInfo query with
$fullDetails set to true. A simple use of the @include directive can do that. The if
argument value in this case will be the $fullDetails variable. Here is the full query.

query OrgInfo($orgLogin: String!, $fullDetails: Boolean!) {
organization(login: $orgLogin) {

name
description
websiteUrl @include(if: $fullDetails)

}
}

Go ahead and test this query by executing it with $fullDetails set to true and then
to false. You will see that the response honors that Boolean value and uses it to
include or exclude websiteUrl from the response object (see figure 3.7).

Listing 3.18 The @include directive (az.dev/gia)

62 CHAPTER 3 Customizing and organizing GraphQL operations

3.3.3 The @skip directive

This directive is simply the inverse of the @include directive. Just like the @include
directive, it can be used after fields (or fragments) to provide a condition (using its if
argument). The condition controls whether the field (or fragment) should be
excluded in the response. The use of the @skip directive looks like this:

fieldName @skip(if: $someTest)

This means to exclude the field when the query is executed with $someTest set to
true and include the field when $someTest is set to false. This directive is useful to
avoid negating a variable value, especially if that variable has a negative name already.

 Suppose that instead of designing the Boolean variable to be $fullDetails, we
decide to name it $partialDetails. Instead of inverting that variable value in the
JSON values object, we can use the @skip directive to use the $partialDetails value
directly. The OrgInfo query becomes the following.

query OrgInfo($orgLogin: String!, $partialDetails: Boolean!) {
organization(login: $orgLogin) {

name
description
websiteUrl @skip(if: $partialDetails)

}
}

Listing 3.19 The @skip directive (az.dev/gia)

Figure 3.7 Using the @include directive with a variable

63GraphQL fragments

Note that a field (or fragment) can be followed by multiple directives. You can repeat
@include multiple times or even use both @include and @skip together. All directive
conditions must be met for the field (or fragment) to be included or excluded.

 Neither @include nor @skip has precedence over the other. When used together, a
field is included only when the include condition is true and the skip condition is
false; it is excluded when either the include condition is false or the skip condition is
true. The following query will never include websiteUrl no matter what value you use
for $partialDetails.

query OrgInfo($orgLogin: String!, $partialDetails: Boolean!) {
organization(login: $orgLogin) {

name
description
websiteUrl @skip(if: $partialDetails) @include(if: false)

}
}

3.3.4 The @deprecated directive

This special directive can be used in GraphQL servers to indicate deprecated portions
of a GraphQL service’s schema, such as deprecated fields on a type or deprecated
ENUM values.

 When deprecating a field in a GraphQL schema, the @deprecated directive supports
a reason argument to provide the reason behind the deprecation. The following is the
GraphQL’s schema language representation of a type that has a deprecated field.

type User {
emailAddress: String
email: String @deprecated(reason: "Use 'emailAddress'.")

}

3.4 GraphQL fragments
When we explored directives, I kept adding “(or fragment)” whenever I mentioned
the use of a directive. It is now time to discuss my favorite feature of the GraphQL lan-
guage: fragments!

3.4.1 Why fragments?

To build anything complicated, the truly helpful strategy is to split what needs to be
built into smaller parts and then focus on one part at a time. Ideally, the smaller parts
should be designed in a way that does not couple them with each other. They should
be testable on their own, and they should also be reusable. A big system should be the
result of putting these parts together and having them communicate with each other

Listing 3.20 Using @include and @skip together (az.dev/gia)

Listing 3.21 The @deprecated directive

64 CHAPTER 3 Customizing and organizing GraphQL operations

to form features. For example, in the UI domain, React.js (and other libraries) popu-
larized the idea of using small components to build a full UI.

 In GraphQL, fragments are the composition units of the language. They provide a
way to split big GraphQL operations into smaller parts. A fragment in GraphQL is sim-
ply a reusable piece of any GraphQL operation.

 I like to compare GraphQL fragments to UI components. Fragments, if you will,
are the components of a GraphQL operation.

 Splitting a big GraphQL document into smaller parts is the main advantage of
GraphQL fragments. However, fragments can also be used to avoid duplicating a
group of fields in a GraphQL operation. We will explore both benefits, but let’s first
understand the syntax for defining and using fragments.

3.4.2 Defining and using fragments

To define a GraphQL fragment, you can use the fragment top-level keyword in any
GraphQL document. You give the fragment a name and specify the type on which that
fragment can be used. Then, you write a partial query to represent the fragment.

 For example, let’s take the simple GitHub organization information query example:

query OrgInfo {
organization(login: "jscomplete") {

name
description
websiteUrl

}
}

To make this query use a fragment, you first need to define the fragment.

fragment orgFields on Organization {
name
description
websiteUrl

}

This defines an orgFields fragment that can be used within a selection set that
expands an organization field. The on Organization part of the definition is called
the type condition of the fragment. Since a fragment is essentially a selection set, you
can only define fragments on object types. You cannot define a fragment on a scalar
value.

 To use the fragment, you “spread” its name where the fields were originally used in
the query.

Listing 3.22 Defining a fragment in GraphQL

65GraphQL fragments

query OrgInfoWithFragment {
organization(login: "jscomplete") {

...orgFields
}

}

The three dots before orgFields are what you use to spread that fragment. The con-
cept of spreading a fragment is similar to the concept of spreading an object in Java-
Script. The same three-dots operator can be used in JavaScript to spread an object
inside another object, effectively cloning that object.

 The three-dotted fragment name (...orgFields) is called a fragment spread. You
can use a fragment spread anywhere you use a regular field in any GraphQL operation.

 A fragment spread can only be used when the type condition of that fragment
matches the type of the object under which you want to use that fragment. There are
no generic fragments in GraphQL. Also, when a fragment is defined in a GraphQL
document, that fragment must be used somewhere. You cannot send a GraphQL
server a document that defines fragments but does not use them.

3.4.3 Fragments and DRY
Fragments can be used to reduce any duplicated text in a GraphQL document. Con-
sider this example query from the GitHub API.

query MyRepos {
viewer {

ownedRepos: repositories(affiliations: OWNER, first: 10) {
nodes {

nameWithOwner
description
forkCount

}
}
orgsRepos: repositories(affiliations: ORGANIZATION_MEMBER, first: 10) {

nodes {
nameWithOwner
description
forkCount

}
}

}
}

This query uses a simple alias with field arguments to have two lists with an identical
structure: one list for the repositories owned by the current authenticated user and a
second list of the repositories under organizations of which the current authenticated
user is a member.

Listing 3.23 Using a fragment in GraphQL

Listing 3.24 Example query with repeated sections (az.dev/gia)

66 CHAPTER 3 Customizing and organizing GraphQL operations

 This is a simple query, but there is room for improvement. The fields under a
repository connection are repeated. We can use a fragment to define these fields just
once and then use that fragment in the two places where the nodes field is repeated.
The nodes field is defined on the special RepositoryConnection in GitHub (it is the
connection between a user and a list of repositories).

 Here is the same GraphQL operation modified to use a fragment to remove the
duplicated parts.

query MyRepos {
viewer {

ownedRepos: repositories(affiliations: OWNER, first: 10) {
...repoInfo

}
orgsRepos: repositories(affiliations: ORGANIZATION_MEMBER, first: 10) {

...repoInfo
}

}
}
fragment repoInfo on RepositoryConnection {

nodes {
nameWithOwner
description
forkCount

}
}

Pretty neat, right? But as I mentioned, the DRY benefit of fragments is less important.
The big advantage of fragments is that they can be matched with other units of com-
position (like UI components). Let’s talk about that!

3.4.4 Fragments and UI components

The word component can mean different things to different people. In the UI domain,
a component can be an abstract input text box or Twitter’s full 280-character tweet
form with its buttons and counter display. You can pick any part of an application and
call it a component. Components can be small or big. They can be functional on their
own, or they can be parts that have to be put together to make something functional.

 Bigger components can be composed of smaller ones. For example, Twitter’s
TweetForm component may consist of a TextArea component with a TweetButton
component and a few others to attach an image, add a location, and count the num-
ber of characters typed in the text area.

 All HTML elements can be considered simple components. They have properties
and behaviors, but they are limited because they cannot represent dynamic data. The
story of UI components gets interesting when we make a component represent data.
We can do that with modern libraries and frameworks like React.js, Angular.js, and
Polymer.js. These data components can then be reused for any data that matches the

Listing 3.25 Using fragments to minimize repetition (az.dev/gia)

67GraphQL fragments

shape they have been designed to work with. The data components do not care about
what that data is; they are only concerned about the shape of that data.

TIP Data components are making their way into browsers with what are com-
monly called web components. Many browsers support most of the features
needed to define and use web components. The Polymer.js project is
designed to provide polyfills to support using web components in any browser
and then to enhance the features offered by these components.

Let’s assume we are building an app like Twitter by using rich data components, and
let’s take one example page from that app and analyze it in terms of components and
their data requirements. I picked the user’s profile page for this example.

 The user’s profile page is simple: it displays public information about a user, some stats,
and a list of their tweets. For example, if you navigate to twitter.com/ManningBooks,
you will see something like figure 3.8.

I can see at least 12 components on this page:

 The Header component, which can include the following components: Tweet-
Count, ProfileImage, UserInfo, FollowingCount, and FollowersCount

Figure 3.8 The @ManningBooks profile page at Twitter

https://twitter.com/ManningBooks

68 CHAPTER 3 Customizing and organizing GraphQL operations

 The Sidebar component, which can include the following components: User-
Media, MediaItem, and SuggestedFollowing

 The TweetList component, which is simply a list of Tweet components

This is just one choice of components. The page can be built with many more compo-
nents, and it can also be built with just two components. No matter how small or big
the components you design are, they share a simple characteristic: they all depend on
data that has a certain shape.

 For example, the Header component in this UI needs a data object to represent a
profile. The shape of that data object might look like this.

const profileData = {
tweetsCount: ·-·-·,
profileImageUrl: ·-·-·,
backgroundImageUrl: ·-·-·,
name: ·-·-·,
handle: ·-·-·,
bio: ·-·-·,
location: ·-·-·,
url: ·-·-·,
createdAt: ·-·-·,
followingCount: ·-·-·,
followersCount: ·-·-·,

};

The TweetList component needs a data object that might look like this.

const tweetList = [
{ id: ·-·-·,

name: ·-·-·,
handle: ·-·-·,
date: ·-·-·,
body: ·-·-·,
repliesCount: ·-·-·,
tweetsCount: ·-·-·,
likes: ·-·-·,

},
{ id: ·-·-·,

name: ·-·-·,
handle: ·-·-·,
date: ·-·-·,
body: ·-·-·,
repliesCount: ·-·-·,
tweetsCount: ·-·-·,
likesCount: ·-·-·,

},
·-·-·,

];

Listing 3.26 Possible shape of a data object for Twitter’s profile page

Listing 3.27 Possible shape of a data object to represent a list of tweets

69GraphQL fragments

These components can be used to render information about any profile and any list
of tweets. The same TweetList component can be used on Twitter’s main page, a
user’s list page, or the search page.

 As long as we feed these components the exact shape of data they need, they will
work. This is where GraphQL comes into the picture: we can use it to describe the
data shape that an application requires.

 A GraphQL query can be used to describe an application data requirement. The
data required by an application is the sum of the data required by that application’s
individual components, and GraphQL fragments offer a way to split a big query into
smaller ones. This makes a GraphQL fragment the perfect match for a component!
We can use a GraphQL fragment to represent the data requirements for a single com-
ponent and then put these fragments together to compose the data requirements for
the entire application.

 To simplify the Twitter example, we will build the profile page with just these four
primary components: Header, Sidebar, TweetList, and Tweet. Let’s come up with the
data required by the Twitter profile page example using a single GraphQL query for
each of these components. The data required by the Header component can be
declared using this GraphQL fragment.

fragment headerData on User {
tweetsCount
profileImageUrl
backgroundImageUrl
name
handle
bio
location
url
createdAt
followingCount
followersCount

}

The data required by the Sidebar component can be declared using this fragment.

fragment sidebarData on User {
SuggestedFollowing {

profileImageUrl
}
media {

mediaUrl
}

}

Listing 3.28 Fragment for the Header UI component

Listing 3.29 Fragment for the Sidebar UI component

70 CHAPTER 3 Customizing and organizing GraphQL operations

Note that the suggestedFollowing part and the media part can also come from the
subcomponents we identified earlier in the Sidebar component.

 The data required by a single Tweet component can be declared as follows.

fragment tweetData on Tweet {
user {

name
handle

}
createdAt
body
repliesCount
retweetsCount
likesCount

}

Finally, the data required by the TweetList component is an array of the exact data
required by a single Tweet component. So, we can use the tweetData fragment here.

fragment tweetListData on TweetList {
tweets: {

...tweetData
}

}

To come up with the data required by the entire page, all we need to do is put these
fragments together and form one GraphQL query using fragment spreads.

query ProfilePageData {
user(handle: "ManningBooks") {

...headerData

...sidebarData

...tweetListData
}

}

Now we can send this single ProfilePageData query to the GraphQL server and get
back all the data needed for all the components on the profile page.

 When the data comes back, we can identify which component requested which
parts of the response and make those parts available to only the components that
requested them. This helps isolate a component from any data it does not need.

 But this is not the coolest thing about this approach. By making every component
responsible for declaring the data it needs, these components have the power to

Listing 3.30 Fragment for the Tweet UI component

Listing 3.31 Fragment for the TweetList UI component

Listing 3.32 Combining fragments to form one query for a UI view

71GraphQL fragments

change their data requirements when necessary without having to depend on any of
their parent components in the tree.

 For example, let’s assume Twitter decided to show the number of views each tweet
has received next to the likesCount. All we need to do to satisfy the new data require-
ments for this UI change is to modify the tweetData fragment.

fragment tweetData on Tweet {
user {

name
handle

}
createdAt
body
repliesCount
retweetsCount
likesCount
viewsCount

}

None of the other application components need to worry about this change or even
be aware of it. For example, the direct parent of a Tweet component, the TweetList
component, does not have to be modified to make this change happen. That compo-
nent always constructs its own data requirements by using the Tweet component’s data
requirement, no matter what that Tweet component asked for. This is great. It makes
maintaining and extending this app a much easier task.

 Fragments are to queries what UI components are to a full application. By match-
ing every UI component in the application to a GraphQL fragment, we give these
components the power of independence. Each component can declare its own data
requirement using a GraphQL fragment, and we can compose the data required by
the full application by putting together these GraphQL fragments.

3.4.5 Inline fragments for interfaces and unions

Earlier in this chapter, we saw an example of an inline fragment when we talked about
the Node interface. Inline fragments are, in a way, similar to anonymous functions that
you can use without a name. They are just fragments without names, and you can
spread them inline where you define them.

 Here is an inline fragment use case from the GitHub API.

query InlineFragmentExample {
repository(owner: "facebook", name: "graphql") {

ref(qualifiedName: "master") {
target {

... on Commit {

Listing 3.33 Modifying one fragment to match its UI component’s needs

Listing 3.34 Inline fragment example (az.dev/gia)

72 CHAPTER 3 Customizing and organizing GraphQL operations

message
}

}
}

}
}

Inline fragments can be used as a type condition when querying against an interface
or a union. The bolded part in the query in listing 3.34 is an inline fragment on the
Commit type within the target object interface; so, to understand the value of inline
fragments, you first need to understand the concepts of unions and interfaces in
GraphQL.

 Interfaces and unions are abstract types in GraphQL. An interface defines a list of
“shared” fields, and a union defines a list of possible object types. Object types in a
GraphQL schema can implement an interface that guarantees that the implementing
object type will have the list of fields defined by the implemented interface. Object
types defined as unions guarantee that what they return will be one of the possible
types of that union.

 In the previous example query, the target field is an interface that represents a
Git object. Since a Git object can be a commit, tag, blob, or tree, all these object types
in the GitHub API implement the GitObject interface; because of that, they all get a
guarantee that they implement all the fields a GitObject implements (like reposi-
tory, since a Git object belongs to a single repository).

 Within a repository, the GitHub API has the option to read information about a
Git reference using the ref field. Every Git reference points to an object, which the
GitHub API named target. Now, since that target can be one of four different object
types that implement the GitObject interface, within a target field, you can expand
the selection set with the interface fields; but you can also conditionally expand its
selection set based on the type of that object. If the object that this ref points to hap-
pens to be a Commit, what information from that commit are you interested in? What
if that object is a Tag?

 This is where inline fragments are useful because they basically represent a type
condition. The inline fragment in the previous query essentially means this exact con-
dition: if the object pointed to by the reference is a commit, then return the message
of that commit. Otherwise, the target will return nothing. You can use another inline
fragment to add more cases for the condition.

 The union concept is probably a bit easier to understand. It is basically OR logic. A
type can be this or that. In fact, some union types are named xOrY. In the GitHub API,
you can see an example under a repository field, where you can ask for issueOrPull-
Request. Within this union type, the only field you can ask for is the special
__typename meta-field, which can be used to answer the question, “Is this an issue or a
pull request?”

73GraphQL fragments

 Here is an example from the facebook/graphql repository.

query RepoUnionExample {
repository(owner: "facebook", name: "graphql") {

issueOrPullRequest(number: 3) {
__typename

}
}

}

The issueOrPullRequest with number 3 on this repository happens to be an issue. If
you try the query with number 5 instead of 3, you should see a pull request. An inline
fragment is useful here to conditionally pick fields within an issueOrPullRequest
based on the type. For example, maybe we are interested in the merge information of
a pull request and the closing information of an issue. Here is a query to pick these
different fields based on the type of the issueOrPullRequest whose number is 5.

query RepoUnionExampleFull {
repository(owner: "facebook", name: "graphql") {

issueOrPullRequest(number: 5) {
... on PullRequest {

merged
mergedAt

}
... on Issue {

closed
closedAt

}
}

}
}

Since number 5 (in this repository) is a pull request, the merged and mergedAt fields
will be used for this query.

 Another common use of union types is to implement a search field to search
among multiple types. For example, a GitHub user search might return a user object
or an organization object. Here is a query to search GitHub users for the term
"graphql".

query TestSearch {
search(first: 100, query: "graphql", type: USER) {

nodes {
... on User {

Listing 3.35 Example GraphQL union type (az.dev/gia)

Listing 3.36 Using inline fragments with union types (az.dev/gia)

Listing 3.37 The union-type search field (az.dev/gia)

74 CHAPTER 3 Customizing and organizing GraphQL operations

name
bio

}
... on Organization {

login
description

}
}

}
}

You should see users who have the term “graphql” somewhere in their profile and
organizations with that term in their name or description. When the matching
returned item is a User object, the fields name and bio are returned; and when the
item is an Organization object, the fields login and description are returned.

Summary
 You can pass arguments to GraphQL fields when sending requests. GraphQL

servers can use these arguments to support features like identifying a single
record, limiting the number of records returned by a list field, ordering records
and paginating through them, searching and filtering, and providing input val-
ues for mutations.

 You can give any GraphQL field an alias name. This enables you to customize a
server response using the client’s request text.

 You can use GraphQL directives to customize the structure of a GraphQL
server response based on conditions in your applications.

 Directives and field arguments are often used with request variables. These vari-
ables make your GraphQL requests reusable with dynamic values without need-
ing to resort to string concatenation.

 You can use fragments, which are the composition units of GraphQL, to reuse
common parts of a GraphQL query and compose a full query by putting
together multiple fragments. This is a winning strategy when paired with UI
components and their data needs. GraphQL also supports inline fragments that
can be used to conditionally pick information out of union object types or
object types that implement an interface.

Part 2

Building GraphQL APIs

In part 1 of this book, you learned the fundamentals of the GraphQL “lan-
guage” that API consumers can use to ask GraphQL services for data and
instruct them to do mutations. It is now time to learn how to create GraphQL
services that can understand that language. In this part of the book, we’ll do
exactly that by building a real data API for a real web application.

 In chapter 4, you’ll learn about mapping planned UI features to API opera-
tions. You’ll start the practical process of coming up with the structure of a
GraphQL schema and understand it in the context of database models.

 Chapter 5 will walk you through making a simple GraphQL schema execut-
able using Node.js database drivers and the GraphQL.js implementation. You’ll
learn about resolver functions and GraphQL built-in types.

 In chapter 6, you’ll learn how to resolve fields from databases to implement
the API queries of the book’s project. Chapter 7 builds on that and explores
some optimizations for GraphQL queries. And in chapter 8, you’ll learn how to
resolve API mutation operations to create, update, and delete database entities.

77

Designing
 a GraphQL schema

In this chapter, we are going to build a real data API for a real web application. I
picked the name AZdev for it, which is short for “A to Z” of developer resources.
AZdev will be a searchable library of practical micro-documentation, errors and
solutions, and general tips for software developers.

 I am not a fan of useless abstract examples that are removed from practical real-
ities. Let’s build something real (and useful).

4.1 Why AZdev?
When software developers are performing their day-to-day tasks, they often need to
look up one particular thing, such as how to compute the sum of an array of numbers
in JavaScript. They are not really interested in scanning pages of documentation to

This chapter covers
 Planning UI features and mapping them to API

operations

 Coming up with schema language text based on
planned operations

 Mapping API features to sources of data

78 CHAPTER 4 Designing a GraphQL schema

find the simple code example they need. This is why at AZdev, they will find an entry on
“Calculate the sum of numbers in a JavaScript array” featuring multiple approaches on
just that particular code-development need.

 AZdev is not a question-answer site. It is a library of what developers usually look
up. It’s a quick way for them to find concise approaches to handle exactly what they
need at the moment.

 Here are some examples of entries I would imagine finding on AZdev:

 Get rid of only the unstaged changes since the last Git commit
 Create a secure one-way hash for a text value (like a password) in Node
 A Linux command to lowercase names of all files in a directory

You can certainly find approaches to these needs by reading documentation and Stack
Overflow questions, but wouldn’t it be nice to have a site that features specific tasks
like these with their approaches right there, without all the noise?

 AZdev is something I have wished existed for as long as I can remember. Let’s take
the first step into making it happen. Let’s build an API for it!

4.2 The API requirements for AZdev
A great way to start thinking about a GraphQL schema is to look at it from the point of
view of the UIs you’ll be building and what data operations they will require. However,
before we do that, let’s first figure out the sources of data the API service is going to use.
GraphQL is not a data storage service; it’s an interface to one or many (figure 4.1).

 To make things interesting for the AZdev GraphQL API, we will have it work with
two different data services. We’ll use a relational database service to store transactional
data and a document database service to store dynamic data. A GraphQL schema can
resolve data from many services, even in the same query!

Data source #1

Data source #2

Data source #3

API server
(GraphQL)

Figure 4.1 An API server interfaces
data-storage services.

79The API requirements for AZdev

It’s not at all unusual to have many sources of data in the same project. They don’t all
have to be database services. A project can use a key-value cache service, get some data
from other APIs, or even read data directly from files in the filesystem. A GraphQL
schema can interface as many services as needed.

 For the API vocabulary, let’s use the word Task to represent a single micro-
documentation entry at AZdev and the word Approach for a single way or method to
do that Task. A Task can have multiple Approaches. An Approach belongs to a Task.

NOTE From now on, I will use the capitalized version of the words task and
approach to refer to the database/API entities: for example, “Our first task is to
create a Tasks table, and we will approach the Approaches table with some
constraints in mind.”

Anyone can browse AZdev and find Tasks and Approaches. Logged-in users can add
new Tasks and Approaches, and they can also up-vote or down-vote Approaches.

 AZdev’s main entries for both Tasks and Approaches will be stored in a relational
database. I picked PostgreSQL for that. We’ll also store the User records in PostgreSQL.
A relational database like PostgreSQL is great for, well, relations! A Task has many
Approaches and is defined by a User.

NOTE Why PostgreSQL? PostgreSQL is a scalable, open source, object-
relational database that’s free to use and easy to set up. It offers an impressive
set of advanced features that will be handy when you need them. It is one of
the most popular choices among open source relational databases.

Extra data elements on Approaches like explanations, warnings, or general notes will
be stored in a document database. I picked MongoDB for that. A document database
like MongoDB is “schemaless,” which makes it a good fit for this type of dynamic data.
An Approach might have a warning or an explanation associated with it, and it might
have other data elements that we’re not aware of at the moment. Maybe at some point
we will decide to add some performance metrics on Approaches or include a list of

Naming entities in a GraphQL schema
I am using simple names for the entities of this small API, but when you’re designing
a big GraphQL API with entities that are related to multiple other entities, you should
invest a little time when it comes to naming things.

This is general programming advice; but for GraphQL schemas, try to use specific
names for your types when possible. For example, if you have a lesson that belongs
to a course, name that type CourseLesson instead of just Lesson, even if the data-
base model is named lessons. This is especially important if your GraphQL service
is public. Your database schemas will evolve, and the types you use to describe their
entities will need to evolve as well. You’ll need to deprecate types and introduce new
ones. Specificity makes all that easier.

80 CHAPTER 4 Designing a GraphQL schema

related links. We don’t need to modify a database schema for that; we can just instruct
MongoDB to store these new data elements.

NOTE Why MongoDB? MongoDB is the most popular open source document
(NoSQL) database. The company behind it (MongoDB, Inc.) offers a commu-
nity edition that is free to use and available on the three major operating systems.

TIP This book will not be a proper source for you to learn these database ser-
vices. However, the concepts we use in these services will be briefly explained,
and all the commands and queries related to them will be provided as we
progress through the API. I’ll also provide some sample data to help test the
API features we add.

4.2.1 The core types

The main entities in the API I’m envisioning for AZdev are User, Task, and Approach.
These will be represented by database tables in PostgreSQL. Let’s make each table
have a unique identity column and an automated creation date-time column.

 In a GraphQL schema, tables are usually mapped to object types, and table columns
are mapped to fields under these object types. I’ll use the term model to represent an
entity in the API (a table represented by a GraphQL type), and I’ll use the term field to
represent a property on an object under that model. Models are usually defined with
upper camel-case (Pascal case), while fields are defined with lower camel-case (Drom-
edary case).

 The User model will have fields to represent the information for a user. Let’s start
with name and username.

 Both the Task and Approach models will have a content field to hold their main
text content. Here’s a schema language definition (SDL) that can be used to define
the three core models in this API with their fields so far.

type User {
id: ID!
createdAt: String!
username: String!
name: String

More fields for a User object
}

type Task {
id: ID!
createdAt: String!
content: String!

More fields for a Task object
}

Listing 4.1 SDL for the three core output object types

81The API requirements for AZdev

type Approach {
id: ID!
createdAt: String!
content: String!

More fields for an Approach object
}

TIP Open your code editor, type in the initial schema text in listing 4.1, and
modify it as we progress through the analysis of the AZdev API. The rest of the
SDL listings in this chapter will omit some existing parts of the schema for
clarity.

Note that I defined the id field using the ID type. The ID type is special and means a
unique identifier; it gets serialized as a String (even if the resolved values for it are
integers). Using strings for IDs (instead of integers) is usually a good practice in Java-
Script applications. The integer representation in JavaScript is limited.

 Also note that I defined the createdAt “date” field as a String. GraphQL does not
have a built-in format for date-time fields. The easiest way to work with these fields is
to serialize them as strings in a standard format (like ISO/UTC).

 Remember that the exclamation mark after the ID and String types indicates that
these fields cannot have null values. Each record in the database will always have an id
value and a createdAt value.

The id and createdAt fields are examples of how GraphQL schema types don’t have
to exactly match the column types in your database. GraphQL gives you flexibility for
casting one type from the database into a more useful type for the client. Try to spot
other examples of this as we progress through the API.

NOTE The object types in listing 4.1 are known as output types as they are used
as output to operations, and also to distinguish them from input types, which
are often used as input to mutation operations. We’ll see examples of input
types later in this chapter.

GraphQL type modifiers
The trailing exclamation mark is known as a type modifier because it modifies a type
to be not null. Another type modifier is a pair of square brackets around the type (for
example, [String]) to indicate that a type is a list of items of another type. These
modifiers can also be combined. For example, [String!]! means a non-null list con-
sisting of non-null string items. We’ll see an example of that shortly.

Note that if a field is defined with the type [String!]!, that does not mean the
response of that field cannot be an empty array. It means it cannot be null.

If you want a field to always have a non-empty array, you can add that validation in
its resolver’s logic or define a custom GraphQL type for it.

82 CHAPTER 4 Designing a GraphQL schema

This is a good start for the three core object types. We’ll add more fields to them as we
discuss their relation to UI features. Let’s do that next.

4.3 Queries
I like to come up with pseudo-code-style operations (queries, mutations, and subscrip-
tions) that are based on the envisioned UI context and then design the schema types
and fields to support these operations.

 Let’s start with the queries.

4.3.1 Listing the latest Task records

On the main page of AZdev, I would like to list the latest Task records. The GraphQL
API has to provide a query root field to do that. This list will be limited to just the last
100 records, and it will always be sorted by the creation timestamp (newer first). Let’s
name this field taskMainList.

query {
taskMainList {

id
content

Fields on a Task object
}

}

Note that I named the root field taskMainList instead of a more natural name like
mainTaskList. This is just a style preference, but it has an advantage: by putting the sub-
ject of the action (task, in this case) first, all actions on that subject will naturally be
grouped alphabetically in file trees and API explorers. This is helpful in many places,
but you can think about the autocomplete list in GraphiQL as an example. If you’re
looking for what you can do on a Task model, you just type task, and all relevant actions

Listing 4.2 Pseudo query #1: taskMainList

Where is the password field?
Why is there no password field in the User type?

It’s important to remember here that we are not designing a database schema (yet);
we are designing an API schema. Some GraphQL tools let you generate a database
schema from a GraphQL API schema, but that limits the important differences
between these two.

The password field should not be a readable part of the API schema. However, it will
be part of the database schema (which we build in the next chapter).

Note that the password field will be part of the mutations to create or authenticate
a user, as we will see later in this chapter.

83Queries

will be presented in order in the autocomplete list. I’ll follow this practice for all que-
ries, mutations, and subscriptions of every entity of this API.

 A query root field is one that is defined directly under the Query type. Every
GraphQL schema starts with its root fields. They are the entry points with which API
consumers will always start their data queries.

 To support the simple taskMainList query root field, here’s a possible schema
design.

type Query {
taskMainList: [Task!]

More query root fields
}

The type for the new taskMainList is [Task!]. The square brackets modify the type
to indicate that this field is a list of objects from the Task model. The resolver of this
field will have to resolve it with an array. The exclamation mark after the Task type
inside the square brackets indicates that all items in this array should have a value and
that they cannot be null.

Listing 4.3 Incremental UI-driven schema design

Root field nullability
A general good practice in GraphQL schemas is to make the types of fields non-null,
unless you have a reason to distinguish between null and empty. A non-null type can
still hold an empty value. For example, a non-null string can be empty, a non-null list
can be an empty array, and a non-null object can be one with no properties.

Only use nullable fields if you want to associate an actual semantic meaning with the
absence of their values. However, root fields are special because making them nul-
lable has an important consequence. In GraphQL.js implementations, when an error
is thrown in any field’s resolver, the built-in executor resolves that field with null.
When an error is thrown in a resolver for a field that is defined as non-null, the exec-
utor propagates the nullability to the field’s parent instead. If that parent field is also
non-null, the executor continues up the tree until it finds a nullable field.

This means if the root taskMainList field were to be made non-null, then when an
error is thrown in its resolver, the nullability will propagate to the Query type (its par-
ent). So the entire data response for a query asking for this field would be null, even
if the query had other root fields.

This is not ideal. One bad root field should not block the data response of other root
fields. When we start implementing this GraphQL API in the next chapter, we will see
an example.

This is why I made the taskMainList nullable, and it’s why I will make all root fields
nullable. The semantic meaning of this nullability is, in this case, “Something went
wrong in the resolver of this root field, and we’re allowing it so that a response can
still have partial data for other root fields.”

84 CHAPTER 4 Designing a GraphQL schema

Another way to implement the main Tasks list is to have a generic taskList root field
and make that field support arguments to indicate any desired sorting and what limit
to use. This is actually a more flexible option as it can be made to support many spe-
cific lists. However, flexibility comes with a cost. When designing a public API, it’s safer
to implement the exact features of the currently envisioned UI and then optimize and
extend the API according to the changing demands of the UI. Specificity helps in
making better changes going forward.

4.3.2 Search and the union/interface types

The main feature of the AZdev UI is its search form (figure 4.2). Users will use it to
find both Task and Approach objects.

To support a search form, the GraphQL API should provide a query root field for it.
Let’s name that field search.

 The GraphQL type of this search root field is interesting. It has to perform a full-
text SQL query to find records and sort them by relevance. Furthermore, that SQL
query must work with two models and return a mixed list of matching Task and
Approach objects, which may have different fields!

 For example, in the UI, when the search result item is a Task record, let’s make it
display how many Approach records it has; and when the search result item is an
Approach record, let’s make it display the Task information for that Approach record.

 To support that, we can simply add these new fields to the Task and Approach
types.

Figure 4.2 Mock-up of the AZdev main landing page

85Queries

type Task {
·-·-·
approachCount: Int!

}

type Approach {
·-·-·
task: Task!

}

However, the search root field cannot be a list of Task records or a list of Approach
records. It has to group these two models under a new type. In GraphQL, you can
model this grouping with either a union type or an interface type. I’ll tell you how to
implement both of these types; but first, let’s understand why we need to group the
two models in one list. Why not design the API to support a query like this?

query {
search(term: "something") {

taskList {
id
content
approachCount

}
approachList {

id
content
task {

id
content

}
}

}
}

This design works okay, but it has one major problem: it returns two different lists for
search results. That means we cannot have an accurate rank of search results based on
relevance. We can only rank them per set.

 To improve this design, we have to return one list of all the objects matching the
search term so that we can rank them based on relevance. However, since these
objects can have different fields, we need to come up with a new type that combines
them.

 One approach to do that is to make the search root field represent an array of
objects that can have nullable fields based on what model they belong to: for example,
something like the following.

Listing 4.4 The approachCount and task fields

Listing 4.5 A simple query for the search field

86 CHAPTER 4 Designing a GraphQL schema

search(term: "something") {
id
content

approachCount // when result is a Task

task { // when result is an Approach
id
content

}
}

This is better, and it solves the rank problem. However, it’s a bit messy, as the API con-
sumer will have to rely on knowing what fields are null to determine how to render
search results.

 GraphQL offers better solutions for this challenge. We can group search result
items under either a union type or an interface type.

USING A UNION TYPE

Remember that a union type represents OR logic (as discussed in chapter 3). A search
result can be either a Task or an Approach. We can use the introspective __typename
to ask the server what type a search result item is, and we can use inline fragments to
conditionally pick the exact fields our UI requires based on the type of the returned
item (just like we did for GitHub’s issueOrPullRequest example in chapter 3).

 With a union implementation, this is the query a consumer can use to implement
the search feature.

query {
search(term: "something") {

type: __typename
... on Task {

id
content
approachCount

}
... on Approach {

id
content
task {

id
content

}
}

}
}

Note that this query is just a more structured version of the query in listing 4.6. The
“when x is y” comment we had there is now an official part of the query, thanks to

Listing 4.6 A better query for the search field

Listing 4.7 The union-type search field

87Queries

inline fragments, and the consumer knows exactly what type an item is thanks to the
__typename introspective field.

 In the GraphQL schema language, to implement this union type for the search
root field, we use the union keyword with the pipe character (|) to form a new object
type.

union TaskOrApproach = Task | Approach

type Query {
·-·-·
search(term: String!): [TaskOrApproach!]

}

Note that I added parentheses after the search field to indicate that this field will
receive an argument (the search term). Also note that a search result will always be an
array, and any items in that array cannot be null. However, the array can be empty
(when there are no matches).

4.3.3 Using an interface type

The query in listing 4.7 has a bit of duplication. Both the id and content fields are
shared between the Task and Approach models. In chapter 3, we saw how shared
fields can be implemented using an interface type.

 Basically, we can think of a search item as an object that has three main properties
(type, id, and content). This is its main interface. It can also have either an
approachCount or a task field (depending on its type).

 This means we can write a query to consume the search root fields, as follows.

query {
search(term: "something") {

type: __typename
id
content
... on Task {

approachCount
}
... on Approach {

task {
id
content

}
}

}
}

Listing 4.8 Implementing search with a union type

Listing 4.9 The interface-type search field

88 CHAPTER 4 Designing a GraphQL schema

There are no duplicated fields in this version, and that’s certainly a bit better. But how
do we decide when to pick an interface over a union or the other way around?

 I ask this question: “Are the models (to be grouped) similar but with a few differ-
ent fields, or are they completely different with no shared fields?”

 If they have shared fields, then an interface is a better fit. Only use unions when
the grouped models have no shared fields.

 In the GraphQL schema language, to implement an interface type for the search
root field, we use the interface keyword to define a new object type that defines the
shared fields. Then we make all the models (to be grouped) implement the new inter-
face type (using the implements keyword).

interface SearchResultItem {
id: ID!
content: String!

}

type Task implements SearchResultItem {
·-·-·
approachCount: Int!

}

type Approach implements SearchResultItem {
·-·-·
task: Task!

}

type Query {
·-·-·
search(term: String!): [SearchResultItem!]

}

Besides the fact that the consumer query is simpler with an interface, there is a subtle
reason why I prefer the interface type here. With the interface type, looking at the
implementation of the Task/Approach types, you can easily tell they are part of
another type. With unions, you cannot; you have to find what other types use them by
looking at code elsewhere.

TIP A GraphQL type can also implement multiple interface types. In SDL,
you can just use a comma-separated list of interface types to implement.

4.3.4 The page for one Task record

Users of the AZdev UI can select a Task entry on the home page (or from search
results) to navigate to a page that represents a single Task record. That page will have
the record’s full information, including its list of Approaches.

Listing 4.10 Implementing search with an interface type

Replaces the union
TaskOrApproach type

89Queries

 The GraphQL API must provide a query root field to enable consumers to get data
about one Task object. Let’s name this root field taskInfo.

query {
taskInfo (

Arguments to identify a Task record
) {

Fields under a Task record
}

}

To identify a single Task record, we can make this field accept an id argument. Here is
what we need to add in the schema text to support this new root field.

type Query {
·-·-·
taskInfo(id: ID!): Task

}

Great. This enables API users to fetch full information about a Task object, but how
about the information of the Approach objects that are defined under that Task
object? How do we enable users to fetch these?

 Also, because users of the AZdev application will be able to vote on Approaches, we
should probably make the API return the list of Approaches sorted by their number of
votes. The simplest way to account for the number of votes on Approaches is to add a
field to track how many current votes each Approach object has. Let’s do that.

type Approach implements SearchResultItem {
·-·-·
voteCount: Int!

}

Now, to return the list of Approaches related to a Task object, we need to talk about
entity relationships.

TIP Remember to always think of a GraphQL type in terms of what will be
needed by the UI that’s going to use that type. It’s easy to add features when
you need them. It’s a lot harder to remove them when you don’t.

Listing 4.11 Pseudo query #2: taskInfo

Listing 4.12 Incremental UI-driven schema design

Listing 4.13 The voteCount field

90 CHAPTER 4 Designing a GraphQL schema

4.3.5 Entity relationships

The list of Approaches under a Task object represents a relationship. A Task object
can have many Approach objects.

 There are a few other relationships that we have to support as well:

 When displaying a Task record in the UI, we should display the name of the
user who created it. The same applies to Approach objects.

 For each Approach, the application will display its list of extra detail data ele-
ments. It’s probably a good idea to have a new Approach Detail object type to
represent that relation.

We need to represent four relationships in this API:

 A Task has many Approaches.
 A Task belongs to a User.
 An Approach belongs to a User.
 An Approach has many Approach Detail records.

In the database, these relationships are usually represented with integers in identity
columns (primary keys and foreign keys). The clients of this API are really interested
in the data these IDs represent: for example, the name of the person who authored a
Task record or the content of the Approaches defined on it. That’s why a client is
expected to supply a list of leaf fields when they include these relation fields in a
GraphQL query.

query {
taskInfo (

Arguments to identify a Task record
) {

Fields under a Task record

author {
Fields under a User record

}

approachList {
Fields under an Approach record

author {
Fields under a User record

}

detailList {
Fields under an Approach Detail record

}
}

}
}

Listing 4.14 Relation fields under taskInfo

91Queries

NOTE I named the field representing the User relationship author. I’ve also
named the list of detail records detailList instead of approachDetailList.
The name of a field does not have to match the name of its type or database
source.

To support these relationships in the schema, we add references to their core types.

type ApproachDetail {
content: String!

More fields for an Approach Detail record
}

type Approach implements SearchResultItem {
·-·-·
author: User!
detailList: [ApproachDetail!]!

}

type Task implements SearchResultItem {
·-·-·
author: User!
approachList: [Approach!]!

}

Note that I used the User type for the author field. We’ve also planned to use the
same User type under the me field scope. This introduces a problem because of the
taskList field that we need to define under the User type (see section 4.3.8). When a
user is asking for their own Task records, that will work fine. However, when the API
reports the author details of a public Task record, these details should not include the
taskList of that author. We’ll figure out the solution to this problem as we imple-
ment the me field scope (in chapter 7).

4.3.6 The ENUM type

An Approach Detail record is just a text field (which I named content), but it is spe-
cial because it will be under a particular category. We would like the API to support
the initial set of categories NOTE, EXPLANATION, and WARNING. Since these three catego-
ries will be the only accepted values in an Approach Detail’s categories, we can use
GraphQL’s special ENUM type to represent them. Here is how to do that (in SDL).

enum ApproachDetailCategory {
NOTE
EXPLANATION
WARNING

}

Listing 4.15 Incremental UI-driven schema design

Listing 4.16 The ApproachDetailCategory ENUM type

New core type to represent
Approach Detail objects

92 CHAPTER 4 Designing a GraphQL schema

The special ENUM type allows us to enumerate all the possible values for a field. Doing
so adds a layer of validation around that field, making the enumerated values the only
possible ones. This is especially helpful if you’re accepting input from the user for an
enumerated field, but it’s also a good way to communicate through the type system
that a field will always be one of a fixed set of values.

 Now we can modify the ApproachDetail GraphQL type to use this new ENUM type.

type ApproachDetail {
content: String!
category: ApproachDetailCategory!

}

This is a good start for the GraphQL types we need to support the queries we are plan-
ning for the UI. It is, however, just a start. There are more fields to think about for the
core types, and we may need to introduce more types as we make progress on the API.

NOTE You should make API consumers paginate through list-type fields like
taskMainList, search, approachList and detailList (under taskInfo), and
taskList (under me). Never have the API return all records under a list. Check
the official AZdev API source code for examples.

4.3.7 List of scalar values

To make Task objects more discoverable, let’s enable API users to supply a list of tags
when they create a Task object. A tag can be something like git, javascript, com-
mand, code, and so on. Let’s also make these tags part of the data response for each
field that returns Task objects. It can simply be an array of strings.

type Task implements SearchResultItem {
·-·-·
tags: [String!]!

}

4.3.8 The page for a user’s Task records

Let’s give logged-in users the ability to see the list of their Task records. We will name
the field to support that taskList.

 However, making taskList a root field might be confusing. It could be inter-
preted as a field to return a list of all Task records in the database!

 We can name it differently to clear up that confusion, but another useful practice
can also solve this issue. We can introduce a query root field representing the scope of
the currently logged-in user and put the taskList field under it.

Listing 4.17 GraphQL type for an Approach Detail

Listing 4.18 The tags field

93Queries

 This field is commonly named me in GraphQL APIs, but that name is not a require-
ment. You can name it anything.

query {
me (

Arguments to validate user access
) {

taskList {
Fields under a Task record

}
}

}

Any fields under the me field will be filtered for the currently logged-in user. In the
future, we might add more fields under that scope. The me field is a good way to orga-
nize multiple fields related to the current user.

 To support the me { taskList } feature, we will have to introduce two fields in the
schema: a root me field that returns a User type and a taskList field on the User type.

type User {
·-·-·
taskList: [Task!]!

}

type Query {
·-·-·
me: User

}

NOTE Once again, I made the me field nullable. A session might time out on
the backend, but instead of returning a completely null response for a query
that has a me field, we can return null for the timed-out me field and still
include partial data in other parts of the query.

Great! A logged-in user can now ask for their own Task records. But how exactly will a
user log in to the API, and how do we determine if a query request is from a logged-in
user? This is a good place to talk about the concept of authentication (and authoriza-
tion) in GraphQL.

4.3.9 Authentication and authorization

The me field will require an access token. In this project, we’re going to use a simple
string access token for authentication. I’ll refer to that token as authToken from now
on. This string value will be stored in the database with a user record, and we can use
it for personal query fields like me and search and some mutations as well.

Listing 4.19 Pseudo query #3: list of Task records for an authenticated user

Listing 4.20 Incremental UI-driven schema design

94 CHAPTER 4 Designing a GraphQL schema

TIP A simple string value token is known as a bearer token. That label is often
used in request headers to identify an authentication token.

When an authToken is included with a request, the API server will use it to identify the
user who is making that request. This token is similar in concept to a session cookie. It
will be remembered per user session and sent with GraphQL requests made by that
session. It should be renewed when users log in to the AZdev application.

We can include the authToken value in the GraphQL request text. For example, it can
be a simple field argument. However, it’s a common practice to keep access tokens
separate. For web APIs, request headers can be used to include such tokens.

 It’s also a common practice to not do any authentication or authorization logic
directly in field resolvers in a GraphQL API service and instead delegate those tasks to
a higher layer, which should be the single source of truth for these concerns. For the
AZdev API, that single source of truth can be the database. I’ll provide the SQL state-
ments and point out any logic in them that’s crafted for authentication or authorization.

 The authToken value is like a temporary password: it must be kept confidential in
transit and in storage. Web applications should only send it over HTTPS connections,
and it should not be stored in plain text in the database.

TIP The string value token concept is the simplest thing we can do for
authentication. If you’re interested in learning about more in-depth
approaches to authentication and authorization, take a look at JSON Web
Tokens (JWT). JWT uses JSON to carry certain common fields such as sub-
ject, issuer, expiration time, and so on. Along with related specs like JSON
Web Signature (JWS) and JSON Web Encryption (JWE), JWT can be used to
secure and validate token values. You can read more about JWT at az.dev/jwt.

4.4 Mutations
To add content to AZdev (Tasks, Approaches, Details, Votes), a guest must create an
account and log in to the application. This will require the API to host a users data-
base table to store users’ credentials. The GraphQL API will need to provide muta-
tions to create a user and allow them to obtain an authorization token.

What about authorization?
Authorization is the business logic that determines whether a user has permission to
read a piece of data or perform an action. For example, an authorization rule in the
AZdev API could be, “Only the owner of a Task record can delete that record.”

The AZdev authToken value will make the server determine the API consumer’s iden-
tity, and that identity can then be used to enforce authorization rules.

https://az.dev/jwt

95Mutations

mutation {
userCreate (

Input for a new User record
) {

Fail/Success response
}

}

mutation {
userLogin (

Input to identify a User record
) {

Fail/Success response
}

}

The userCreate mutation will enable users to create an account for the AZdev appli-
cation, and the userLogin mutation will enable them to perform future queries and
mutations that are specific to them.

 Note that for each mutation, I plan for handling a fail response as well as the nor-
mal success response. Mutations typically rely on valid user input to succeed. It’s a
good idea to represent errors caused by invalid uses of mutations differently from
other root errors a GraphQL API consumer can cause. For example, trying to request
a nonexistent field is a root error. However, trying to create a user with a username
that’s already in the system is a user error that we should handle differently.

We can implement this fail/success response with either a union type or a special out-
put payload type for each entity in the system. I’ll use the payload concept for the
AZdev API mutations.

Listing 4.21 Pseudo mutation #1: userCreate

Listing 4.22 Pseudo mutation #2: userLogin

Payload errors
The root errors field is used for server problems (like 5xx HTTP codes), but it is also
used for some client issues: for example, hitting the limit on a rate-limited API or
accessing something without the proper authorization. GraphQL also uses that field
if the client sends a bad request that fails the schema validation. The payload errors
concept is suitable for user-friendly messages when users supply bad input.

Using user-friendly errors in payloads acts as an error boundary for the operation.
Some developers even use payloads with errors in query fields. You can use them to
hide implementation details and not expose server errors to the API consumer.

96 CHAPTER 4 Designing a GraphQL schema

 A mutation output payload can include user errors, the entity on which that muta-
tion operates, and any other values that might be useful for that mutation’s consumer.
For example, the userLogin mutation can include the generated authToken value as
part of its output payload. Here’s an example of how that can be done.

type UserError {
message: String!

}

type UserPayload {
errors: [UserError!]!
user: User
authToken: String

}
More entity payloads

type Mutation {
userCreate(

Mutation Input
): UserPayload!

userLogin(
Mutation Input

): UserPayload!

More mutations
}

Note that I kept the authToken field separate from the user field in the UserPayload
type. I think this makes any use of the API cleaner. The authToken value is not really
part of a User record; it’s just a temporary value for users to authenticate themselves
for future operations. They will need to renew it at some point.

 This takes care of the output of these two mutation operations. We still need to fig-
ure out the structure of their input.

TIP I kept the UserError type simple, with just one required message field.
This matches the structure of the GraphQL root errors array. I think it’s a
good idea to also support the optional path and locations fields in this type
to give API consumers more power to figure out what to do with these errors.

4.4.1 Mutation input

Mutations always have some kind of input that usually has multiple elements. To bet-
ter represent and validate the structure of a multifield input, GraphQL supports a spe-
cial input type that can be used to group scalar input values into one object.

 For example, for the userCreate mutation, let’s allow the mutation consumer to
specify a first name, last name, username, and password. All of these fields are strings.

Listing 4.23 Incremental UI-driven schema design

97Mutations

 Instead of defining four scalar arguments for the userCreate mutation, we can
group these input values as one input object argument. We use the input keyword to
do that.

Define an input type:
input UserInput {

username: String!
password: String!
firstName: String
lastName: String

}

Then use it as the only argument to the mutation:
type Mutation {

userCreate(input: UserInput!): UserPayload!

More mutations
}

A couple of things to note about this new type:

 You can use any name for the input object type and the mutation argument.
However, the names <Model>Input and input are the common conventions. I’ll
use these conventions in the AZdev schema.

 Making firstName and lastName optional allows a user to register an account
with just their username (and password).

The UserInput type is similar to the core User type we designed for the queries for
this API. So, why introduce a new input object type when we already have the core
object type for a user?

 Input object types are basically a simplified version of output object types. Their
fields cannot reference output object types (or interface/union types). They can only
use scalar input types or other input object types.

 Input object types are often smaller and closer to the database schema, while
object types are likely to introduce more fields to represent relations or other custom
logic. For example, the id field is a required part of the User type, but we do not need
it in the UserInput type because it’s a value that will be generated by the database.
Some fields will appear in input object types but should not be in their corresponding
output object types. An example is the password field. We need it to create a user
account (or log in), but we should never expose it in any readable capacity.

 While you can pass the username, firstName, and lastName values directly to the
mutation, the input object type structure is preferable because it allows passing an object
to the mutation. This often reduces the complexity of the code using that mutation and
enhances code readability in general. Having an input object also adds a reusability ben-
efit to your code.

Listing 4.24 Incremental UI-driven schema design

98 CHAPTER 4 Designing a GraphQL schema

TIP Although the benefit of using an input object type relates to when you
have multiple scalar input values, it’s a good practice to use the same pattern
across all mutations, even those with a single scalar input value.

For the userLogin mutation, we need the consumer to send over their username and
password. Let’s create an AuthInput type for that.

input AuthInput {
username: String!
password: String!

}

type Mutation {
·-·-·
userLogin(input: AuthInput!): UserPayload!

}

4.4.2 Deleting a user record

Let’s also offer AZdev API consumers a way to delete their user profile. We will plan
for a userDelete mutation to do that.

mutation {
userDelete {

Fail/Success payload
}

}

Note that this mutation does not have input. The user will be identified through their
authToken value, which needs to be part of that request’s headers.

 For a payload, we can just return the ID of the deleted user if the operation was a
success. Here’s the SDL text that represents this plan:

type UserDeletePayload {
errors: [UserError!]!
deletedUserId: ID

}

type Mutation {
·-·-·
userDelete: UserDeletePayload!

}

4.4.3 Creating a Task object

To create a new Task record in the AZdev application, let’s make the API support a
taskCreate mutation. Here’s what that mutation operation will look like.

Listing 4.25 Incremental UI-driven schema design

Listing 4.26 Pseudo mutation #3: userDelete

99Mutations

mutation {
taskCreate (

Input for a new Task record
) {

Fail/Success Task payload
}

}

To support this mutation, we need to define the Task input and payload types and cre-
ate a new mutation field that uses them.

 The input object’s main field is the simple text field for the content field on a Task
record. There is also the tags field, which is an array of string values. Let’s also enable
users to create private Tasks that are not to be included in the search (unless the user
who is searching owns them).

TIP Private Task entries will be handy for users to keep a reference of things
they need in their private projects. Keep in mind that these entries will make
things a bit more challenging since we need to exclude them, unless the API
consumer is the user who owns them.

Here’s the SDL text that represents what we planned for the Task entity mutations.

input TaskInput {
content: String!
tags: [String!]!
isPrivate: Boolean!

}

type TaskPayload {
errors: [UserError!]!
task: Task

}

type Mutation {
·-·-·
taskCreate(input: TaskInput!): TaskPayload!

}

4.4.4 Creating and voting on Approach entries

To create a new Approach record on an existing Task record, let’s make the API sup-
port an approachCreate mutation.

mutation {
approachCreate (

Listing 4.27 Pseudo mutation #4: taskCreate

Listing 4.28 Incremental UI-driven schema design

Listing 4.29 Pseudo mutation #4: approachCreate

100 CHAPTER 4 Designing a GraphQL schema

Input to identify a Task record
Input for a new Approach record (with ApproachDetail)

) {
Fail/Success Approach payload

}
}

A logged-in user viewing a Task record page along with the list of its mutations can up-
vote or down-vote a single Approach record. Let’s make the API support an
approachVote mutation for that. This mutation needs to return the new votes count
for the voted-on approach. We’ll make that part of the Approach payload.

mutation {
approachVote (

Input to identify an Approach record
Input for "Vote"

) {
Fail/Success Approach payload

}
}

Here are the schema text changes needed to support these two new mutations.

input ApproachDetailInput {
content: String!
category: ApproachDetailCategory!

}

input ApproachInput {
content: String!
detailList: [ApproachDetailInput!]!

}

input ApproachVoteInput {
up: Boolean!

}

type ApproachPayload {
errors: [UserError!]!
approach: Approach

}

type Mutation {
·-·-·

Listing 4.30 Pseudo mutation #5: approachVote

Listing 4.31 Incremental UI-driven schema design

The ENUM type here will validate
the accepted categories.

101Mutations

approachCreate(
taskId: ID!
input: ApproachInput!

): ApproachPayload!

approachVote(
approachId: ID!
input: ApproachVoteInput!

): ApproachPayload!
}

Note that I opted to represent up-votes and down-votes with a simple Boolean field
and not an ENUM of two values. That’s an option when there are exactly two accepted
values. It’s probably better to use an ENUM for this, but let’s keep it as a Boolean and
add a comment to clarify it. We just put the comment text on the line before the field
that needs it and surround that text with triple quotes (""").

input ApproachVoteInput {
"""true for up-vote and false for down-vote"""
up: Boolean!

}

The clarifying text is known as a description in a GraphQL schema, and it is part of the
structure of that schema. It’s not really a comment but rather a property of this type.
Tools like GraphiQL expect it and display it in autocomplete lists and documentation
explorers. You should consider adding a description property to any field that could
use an explanation.

TIP We should probably also support userUpdate and approachUpdate
mutations. I’ll leave that as a multichapter exercise for you. In this chapter,
you need to plan for how these mutations will be called and come up with the
SDL text for them.

Note again that I am naming all the mutations using the form <model>Action (e.g.,
taskCreate) rather than the more natural action<Model> (e.g., createTask). Now all
actions on a Task record are alphabetically grouped together. We’ll find the task-
MainList, taskInfo, taskCreate, and taskUpdate operations next to each other.

TIP The ApproachDetailInput type (listing 4.31) is identical to the
ApproachDetail type (listing 4.17). However, don’t be tempted to reuse out-
put object types as input object types. In the future, we might upgrade the
Approach Detail concept to also have unique IDs and creation timestamps.
There is also great value in keeping everything consistent.

Listing 4.32 Adding description text

102 CHAPTER 4 Designing a GraphQL schema

4.5 Subscriptions
On Twitter and other social media apps, while you’re looking at a post, its counters for
replies, shares, and likes are autoupdated. Let’s plan for a similar feature for the vote
counts. While looking at the list of Approaches on the Task page, let’s make the votes
autoupdate!

 We can use a subscription operation to do that. This operation will have to accept
a taskId input so that a user can subscribe to the vote changes on Approaches under
a single Task object (rather than all Approaches in the system). Let’s name this sub-
scription operation voteChanged.

subscription {
voteChanged (

Input to identify a Task record
) {

Fields under an Approach record
}

}

On the AZdev home page, which shows the list of all the latest Tasks, another
subscription-based feature that will add value is to show an indicator telling the user
that new Task records are available. They can click that indicator to show the new
Tasks. Let’s name this subscription operation taskMainListChanged.

subscription {
taskMainListChanged {

Fields under a Task record
}

}

To support these subscriptions, we define a new Subscription type with the new fields
under it, like this:

type Subscription {
voteChanged(taskId: ID!): Approach!
taskMainListChanged: [Task!]

}

How does all that sound to you? Let’s make it happen!

NOTE I will be adding more features to the AZdev API outside of this book,
but we need to keep things simple and manageable here. You can explore the
AZdev current production GraphQL API at az.dev/api and see what other
queries, mutations, and subscriptions I have added.

Listing 4.33 Pseudo subscription #1: voteChanged

Listing 4.34 Pseudo subscription #2: taskMainListChanged

https://az.dev/api

103Designing database models

4.6 Full schema text
Did you notice that I came up with the entire schema description so far just by think-
ing in terms of the UI? How cool is that? You can give this simple schema language
text to the frontend developers on your team, and they can start building the front-
end app right away! They don’t need to wait for your server implementation. They can
even use some of the great tools out there to make a mock GraphQL server that
resolves these types with random test data.

TIP The schema is often compared to a contract. You always start with a
contract.

The full schema text representing this book’s version of the AZdev GraphQL API can
be found at az.dev/gia-schema.

TIP I’ll repeat relevant sections of this schema text when we work through
the tasks of implementing them.

With the GraphQL schema ready, let’s design a database schema to support it.

4.7 Designing database models
We have four database models in this project so far:

 User, Task, and Approach in PostgreSQL
 ApproachDetail in MongoDB

Let’s start with the User model in PostgreSQL. But before we do, it’s a good idea to
create a schema in a PostgreSQL database to host an application’s tables rather than
have them in the default public schema. This way, you will have the option to use the
same PostgreSQL database to host data for many applications.

NOTE A PostgreSQL schema has nothing to do with a GraphQL schema. It’s
just a way to organize tables and views (and other objects) in a PostgreSQL
database.

To create a PostgreSQL schema, you can use this command:

CREATE SCHEMA azdev;

NOTE You don’t have to execute any of the code listings in this section. In
chapter 5, we will start with a project template that has all the SQL and
NoSQL statements that you need for the entire AZdev project. I have also pre-
pared database service containers that are ready with the models we’re going
to design here. You can just download them and run them to prepare your
environment with all database-related entities. However, I strongly recom-
mend that you go over this section to be sure you understand all the database
design decisions we are going to make.

https://az.dev/gia-schema

104 CHAPTER 4 Designing a GraphQL schema

4.7.1 The User model

The users database table will have a record for each registered user. Besides the
unique ID and creation-time fields we’re adding under each model, a user record will
have a unique username field and a hashed password field. These fields are required.

 We’ve designed the GraphQL User type to have a name field. However, let’s design
the database tables to have separate first- and last-name fields.

 We need a mechanism to authenticate requests to the GraphQL API after a user
logs in without having them send over their password each time. We’ll manage that
with a column to store temporary authToken values (which should be hashed as well).

 Here’s a SQL statement to create a table for the User model.

CREATE TABLE azdev.users (
id serial PRIMARY KEY,
username text NOT NULL UNIQUE,
hashed_password text NOT NULL,
first_name text,
last_name text,
hashed_auth_token text,
created_at timestamp without time zone NOT NULL

DEFAULT (now() at time zone 'utc'),

CHECK (lower(username) = username)
);

I gave the id field the serial type and the PRIMARY KEY constraint. The serial type
will automatically fill this field using a sequence of integers (which is automatically
created and managed for this table). The PRIMARY KEY constraint will make sure that
values in this column are unique and not null. We’ll need the same id column defini-
tion in all tables as this column will be used for referential integrity constraints (mak-
ing sure records reference existing records).

TIP The username field is also unique and not null, making it practically
another primary key. If you want to use the username as a primary key (and
that’s not a bad idea), you just need to make sure any referential integrity
constraints are updated correctly if the user decides to change their user-
name. PostgreSQL has some advanced features to help with that.

The created_at field will be automatically populated by PostgreSQL, through the
DEFAULT keyword. It will store the time each record was created in the UTC time zone.
Neither the id nor the created_at field will be mutated by the GraphQL API; con-
sumers can read them if they need to.

TIP Keep it simple! I find it a lot easier to store date-time values without time
zone information and always store UTC values. Life is too short to deal with
time-zoned date-time values and their conversions.

Listing 4.35 The azdev.users table

105Designing database models

The CHECK constraint on the username field validates that usernames are always stored
in lowercase form. This is a good practice for fields that are unique regardless of their
case. I’ve learned that the hard way.

 The hashed_auth_token field is needed to authenticate requests to the GraphQL
API after a user logs in. Because HTTP APIs are stateless, instead of having the user
send over their password with every GraphQL operation, once they log in successfully,
we will give them a temporary random string value to use in subsequent GraphQL
requests, and the server will use that value to identify them. The hashed_auth_token
value should be renewed per session, and we can come up with a way to invalidate it
after a time.

TIP There will always be more things you can do to make an API more
secure, but for the purposes of this book, we will keep things simple while
going with the practical minimum. For example, don’t ever store plain-text
passwords or access tokens in your database! Even encrypting them is not
secure enough. You should one-way hash them. That’s why I named these
fields using the hashed_ prefix.

Note that I used snake-case (underscore separator) for PostgreSQL column names and
not camel-case like GraphQL fields. PostgreSQL column names are case insensitive
(unless you use quotes). So if we named the column createdAt, it would be converted
to createdat. The snake-case style is the common convention in PostgreSQL, and it will
add some challenges for us down the road when we need to map these columns to
GraphQL camel-case fields.

4.7.2 The Task/Approach models

The tasks table will have a record for each Task object that’s submitted to the AZdev
application. We designed a Task object to have a content text field, a list of tags, and
an approachCount integer field. We’ll also need to add a field to support the isPrivate
property, which we planned for in the mutation to create a new Task object.

 A Task object can have many tags. We could come up with a new tags database
table and introduce a new many-to-many relation to it, but let’s just store these tags as
a comma-separated value for each Task record. Remember that GraphQL types don’t
need to match their data source, so we can still make the GraphQL tags field be
resolved as an array of strings.

TIP PostgreSQL has an advanced feature to manage a list of items for a single
row. A PostgreSQL column can have an array data type! I am using the
comma-separated value to keep things simple, but feel free to experiment
with that array data type and see how to deal with it once we start mapping
PostgreSQL columns to GraphQL fields.

A Task (or Approach) record has to belong to a User record because only logged-in
users can submit new entries. For that, we can use a FOREIGN KEY constraint to validate
the map between a Task and a User. We’ll need to do the same for Approaches.

106 CHAPTER 4 Designing a GraphQL schema

 Here’s a SQL statement to create a table for the Task model.

CREATE TABLE azdev.tasks (
id serial PRIMARY KEY,
content text NOT NULL,
tags text,
user_id integer NOT NULL,
is_private boolean NOT NULL DEFAULT FALSE,
approach_count integer NOT NULL DEFAULT 0,
created_at timestamp without time zone NOT NULL

DEFAULT (now() at time zone 'utc'),

FOREIGN KEY (user_id) REFERENCES azdev.users
);

The approaches table will have a record for each Approach object submitted on a Task
entry. We designed an Approach object to have a content text field and a voteCount
integer field. Each Approach object must be stored under a valid User record and
mapped to a Task record. This table will have two FOREIGN KEY constraint columns:
user_id and task_id.

 Here’s a SQL statement to create a table for the Approach model.

CREATE TABLE azdev.approaches (
id serial PRIMARY KEY,
content text NOT NULL,
user_id integer NOT NULL,
task_id integer NOT NULL,
vote_count integer NOT NULL DEFAULT 0,
created_at timestamp without time zone NOT NULL

DEFAULT (now() at time zone 'utc'),

FOREIGN KEY (user_id) REFERENCES azdev.users,
FOREIGN KEY (task_id) REFERENCES azdev.tasks

);

Figure 4.3 summarizes these three tables and how they are related to each other.
 Did you notice that I’ve used many database constraints like PRIMARY KEY, NOT

NULL, UNIQUE, CHECK, and FOREIGN KEY? These database constraints will help future
developers understand the design decisions we’re making today, and they will be the
last-standing guard if a client tries to insert invalid data into the database. When it
comes to data integrity, spare no layers! The least you can do is have the database vali-
date it. Don’t skip that. You should also add more layers to give users of your API more
meaningful error messages when they attempt to insert invalid data. We’ll do some
data validation in the GraphQL layer as well.

Listing 4.36 The Tasks table

Listing 4.37 The approaches table

107Designing database models

4.7.3 The Approach Details model
Since this is the first (and only) data model that we have in MongoDB, we first need to
create a new MongoDB database for AZdev.

 In MongoDB, there is no schema concept to group related database entities. You
just create a database for that purpose. You actually don’t need to “create a database”;
you just use it, and MongoDB automatically creates the currently used database the
first time you insert any data into it.

 You can run the following command to use a new database in a MongoDB client:

use azdev

A Model in MongoDB is represented with a Collection object, and—just like the data-
base itself—you don’t need to create a collection. MongoDB will accept requests to
store any data in any form or shape, regardless of whether a collection for it existed
before. For new types of documents, MongoDB automatically creates new collections.

TIP The flexibility in document databases is great, but it can also be a source
of big problems. A simple typo might lead to having a brand-new (wrong) col-
lection in the database. Be careful: with flexibility comes great responsibility!

You can create empty collections in MongoDB if you want, and you can also restrict
the privileges of a database user to only perform certain actions on certain collections
in certain databases! I think that’s a great way to validate that data will be stored in its
intended locations. I’ll skip the privileges part here, but let’s plan the collection for
the extra dynamic data elements that we want to support on Approaches.

1

*

1

*

1

*

users

id serial

username text

hashed_password text

first_name text

last_name text

hashed_auth_token text

created_at timestamp

approaches

id serial

content text

user_id integer

task_id integer

vote_count integer

created_at timestamp

tasks

id serial

content text

tags text

user_id integer

is_private boolean

approach_count integer

created_at timestamp

Figure 4.3 The relationship diagram for the three tables in PostgreSQL

108 CHAPTER 4 Designing a GraphQL schema

 MongoDB supports performing some data validation when inserting (or updat-
ing) documents in collections. This is useful when certain fields in your documents
cannot be empty or must have a particular type or structure. For an Approach entry to
have extra data elements in MongoDB, we need to associate its MongoDB record with
its PostgreSQL ID to be able to do the mapping between the two sources (figure 4.4).

Let’s use MongoDB schema validation to make sure we have that mapping for each
Approach document. Here’s the MongoDB command you can use to create the
approachDetails collection and define its validator that checks for the existence of
a numeric pgId field.

db.createCollection("approachDetails", {
validator: {

$jsonSchema: {
bsonType: "object",
required: ["pgId"],
properties: {

pgId: {
bsonType: "int",
description: "must be an integer and is required"

},
}

}
}

});

This command creates an approachDetails collection. And because this is the first
thing we’re creating in the currently used azdev database, the command also creates
the database. You can verify that with the show dbs command. The show collections
command should report back approachDetails.

Listing 4.38 The approachDetails collection

1

1

approaches

id serial

content text

user_id integer

task_id integer

vote_count integer

created_at timestamp

approachDetails (In MongoDB)

id serial

pgId integer

explanations array

warnings array

notes array

Figure 4.4 The relationship diagram for the Approaches collection

109Designing database models

 Each Approach record will have a single record in the approachDetails collec-
tion. The Approach Detail record will have fields like explanations, warnings, notes,
and other categories in the future. Each of these fields will have an array of text items.
We’ll have to transform this special storage schema when resolving a GraphQL API
request that asks for Approach Details.

TIP Think of adding more tables and collections to the azdev database. For
example, maybe store vote records and track who voted what and when. I’ll
leave that as an exercise for you if you want to expand the scope of this API
and make it more challenging.

Summary
 An API server is an interface to one or many data sources. GraphQL is not a

storage engine; it’s just a runtime that can power an API server.
 An API server can talk to many types of data services. Data can be queried from

databases, cache services, other APIs, files, and so on.
 A good first step when designing a GraphQL API is to draft a list of operations

that will theoretically satisfy the needs of the application you’re designing.
Operations include queries, mutations, and subscriptions.

 Relational databases (like PostgreSQL) are a good fit to store relations and well-
defined, constrained data. Document databases (like MongoDB) are great for
dynamic data structures.

 Draft GraphQL operations can be used to design the tables and collections in
databases and to come up with the initial GraphQL schema language text.

 You should utilize the powerful data-integrity constraints and schema validators
that are natively offered by database services.

110

Implementing
 schema resolvers

In the previous chapter, we designed the structure of the GraphQL API schema
and came up with its full SDL text. In chapters 5–8, we are going to make that
schema executable. We’ll use Node.js database drivers and the GraphQL.js imple-
mentation to expose the entities in the databases by using resolver functions.

5.1 Running the development environment
To let you focus on the GraphQL skills in this book’s project, I prepared a Git
repository that contains all the non-GraphQL things that you need to follow up
with the project. We will use this repository in chapters 5–10. It has the skeleton for

This chapter covers
 Using Node.js drivers for PostgreSQL and

MongoDB

 Using an interface to communicate with a
GraphQL service

 Making a GraphQL schema executable

 Creating custom object types and handling errors

111Running the development environment

both the API server (which we’re going to build in chapters 5–8) and the skeleton for
the web server (which we’ll build in chapters 9 and 10). Clone that repo.

git clone https://az.dev/gia-repo graphql-in-action

Cloning the repo creates the graphql-in-action directory under your current working
directory. There, the first step is to install the initial packages that are used by the
repo.

$ cd graphql-in-action
$ npm install

Listing 5.1 Command to clone the book’s repo

Listing 5.2 Command: installing repo dependencies

Node.js and Linux
You need a modern version of Node.js installed in your OS to follow along from this
point. If you don’t have Node, or if you have an old version (anything less than 12),
download the latest from nodejs.org and use that.

Some familiarity with the Node.js runtime is required. You don’t need to be an expert
in Node, but if you have never worked with it before, it would help if you learn its
basics before proceeding with this chapter. I wrote a short introductory book on Node,
which you can get at az.dev/node-intro.

All the commands in this book are for Linux. They will also work on a Mac machine
because macOS is Linux-based. On Microsoft Windows, you’ll have to find the native
equivalent of these commands, or you can spare yourself a lot of trouble and use the
Windows Subsystem for Linux (see az.dev/wsl). If that is not an option, you can also
run a Linux machine in a virtual hardware environment like VirtualBox.

If developing natively on Microsoft Windows is your only option, I recommend using
PowerShell instead of the CMD command. Most Linux Bash shell commands work with
PowerShell.

Microsoft Windows is not the best option when it comes to working with Node-based
applications. Node was originally designed for Linux, and many of its internal optimi-
zations depend on Linux native APIs. Windows support for Node started a few years
after Node was first released, and there are active efforts to make it “better,” but it
will never be as good as Node for Linux. Running Node on Windows natively is an
option, but it will give you trouble. Only develop natively on Windows if you plan to
host your production Node applications on Windows servers.

https://az.dev/node-intro
https://az.dev/wsl

112 CHAPTER 5 Implementing schema resolvers

Take a look at the package.json file to see the initial packages I added. These packages
are used by the API server (and by the web server later). Note that I provided the
scripts we will need to run these two servers.

{
"name": "az.dev",
"version": "0.0.1",
"private": true,
"scripts": {
"scripts": {

"start-dbs": "docker-compose -f dev-dbs/docker.yml up",
"api-server": "(cd api && nodemon -r esm src/server.js)",
"web-server": "(cd web/src && rimraf .cache dist && parcel index.html)",
"start-blank-dbs": "docker-compose -f dev-dbs/docker-blank.yml up"

},
},
·-·-·

}

TIP You can add as many npm run scripts as you need, and you should use
them for any tasks you wish to introduce to the project. With npm run scripts,
all developers on the team can run these tasks in a standard, consistent way.

Explore the repo, and notice its three directories:

 The api directory is the focus of chapters 5–8. It’s where we will put the logic of
the API server implementation. It has a bare-bone Express.js server configured
with an example endpoint. I’ve also provided all the database configurations
and SQL statements used throughout the book. Take a look around.

 The web directory is the focus of chapters 9–10. It’s where we will put the logic
of using the API server in a web application. It has a bare-bone React app con-
figured with some mock data.

 The dev-dbs directory has everything related to running dev database servers
for development. You can use the files there to create your own database ser-
vices and load them with sample data or to run the provided ready Docker
images. We’ll do that in the next chapter.

TIP Given the fast-changing ecosystem of GraphQL and other libraries used
in the book, configurations and code samples may not work for you as is.
Check out az.dev/gia-updates to see any updates that you may need to work
through the book’s code examples.

Listing 5.3 Run scripts in package.json

Command to run the provided Docker
images (used in chapter 6)

Command to run the API
server (which we need in

this chapter)

Command to run the web
server (used in chapter 9)

https://az.dev/gia-updates

113Setting up the GraphQL runtime

5.1.1 Node.js packages

For the GraphQL runtime service to communicate with databases like PostgreSQL
and MongoDB, it needs a driver. We’ll use Node’s pg and mongodb packages for that
purpose. These are not the only packages that can be used as drivers, but they are the
most popular in Node’s ecosystem. These packages expose JavaScript APIs to execute
operations for PostgreSQL and MongoDB. We’ll need to configure them to connect
to these database services.

 For a web server to host the project’s API endpoint, we will use Express.js. There
are a few other Express-related packages that we need. All these packages are already
installed in the repo’s starting point.

 To implement the GraphQL API server, we need two new packages.

$ npm install graphql express-graphql

The graphql package is for GraphQL.js, the JavaScript implementation of GraphQL.
It takes care of things like validating and executing GraphQL operations.

 To work with a GraphQL runtime, we need an interface. This is where the
express-graphql package comes in handy. It has an HTTP(S) listener function that is
designed to be used with a middleware-based web framework like Express and acts as
an interface to a GraphQL schema.

TIP Although it’s named express-graphql, this package can work with any
HTTP web framework that supports connect-style middleware (Hapi, Fastify,
and many others).

5.1.2 Environment variables

Under the api directory is a .env file that contains the default environment variables
we need in this project. If you do not plan to use any of the project’s defaults, you’ll
need to change these variables. This file is automatically loaded, and its variables are
exported in api/src/config.js.

TIP Environment files like .env usually are not part of the source code as they
will need to be different on different machines and environments. I’ve
included a .env file in the repo to keep things simple.

5.2 Setting up the GraphQL runtime
We can now start the implementation of the project's GraphQL runtime layer. Let's
first work through a very simple example so that we can focus on testing the runtime
layer setup and understanding its core dynamics.

 Suppose we are creating a web application that needs to know the exact current
time the server is using (and not rely on the client’s time). We would like to be able to
send a query request to the API server as follows.

Listing 5.4 Command: installing new dependencies

114 CHAPTER 5 Implementing schema resolvers

{
currentTime

}

To respond to this query, let’s make the server use an ISO UTC time string in the
HH:MM:SS format.

{
currentTime: "20:32:55"

}

This is a simple GraphQL request with a single operation (a query operation).
GraphQL requests can also have multiple operations and include other information
related to these operations (for example, variables).

 For the server to accomplish this current time communication, it needs to

1 Have an interface for a requester to supply a GraphQL request.
2 Parse the supplied request and make sure it has valid syntax according to the

GraphQL language rules.
3 Validate the request using a schema. You cannot run just any request on a

GraphQL server: you can only run the ones allowed by its schema. The server
also needs to validate that all the required parts of the request are supplied. For
example, if a query uses variables, then the server needs to validate their exis-
tence and make sure they have the right types. If a request has more than one
operation the server needs to validate that the request also includes the name
of the operation that should be executed for the response.

4 Resolve all fields in the request into scalar data elements. If the request is for a
mutation operation, the server must perform the side effects of that mutation.
If the request is for a subscription operation, the server must open a channel to
communicate data changes when they happen.

5 Gather all the data for the response, and serialize it into a format like JSON.
The serialized response needs to include the request structure and its resolved
data (and any errors the server encountered).

6 Have an interface for the requester to receive the response text generated for
their request text.

All of these tasks are shared among all GraphQL requests the server has to deal with.
In fact, except for the tasks where I used the italicized words (schema and resolve), all
other tasks are shared among all GraphQL services. This means they can be abstracted
and reused. We don’t have to do them for each service.

Listing 5.5 Querying the server for the current time

Listing 5.6 Format for the currentTime response

115Setting up the GraphQL runtime

 Luckily, this has been done already! We don’t have to reimplement any of the pre-
vious steps except dealing with schemas and resolvers. The rest is where a GraphQL
implementation (like GraphQL.js) comes into the picture.

 What exactly is a GraphQL implementation? It’s basically code written in a certain lan-
guage to do the bulk of the work described in the previous six steps. It exposes its own
code APIs, which your code can use to perform the generic behaviors expected of a
GraphQL server. Another example of a GraphQL implementation in JavaScript is
Apollo Server, which wraps GraphQL.js and enhances it with many features like SDL-
first implementation and a subscription-ready transport channel. We’ll see an exam-
ple of using Apollo Server in chapter 10.

 As a GraphQL service developer, you can use your GraphQL implementation of
choice to do most of the heavy lifting like parsing, validating, and executing GraphQL
requests. This enables you to focus on your application logic details. You need to write
a schema and come up with how the parts in that schema should be resolved (as data
and side effects). We designed the AZdev schema in the previous chapter, and we will
start implementing its resolvers in this chapter. However, before we do that, let’s work
through the simple currentTime field example.

5.2.1 Creating the schema object
For the very first GraphQL.js example, we need to use two of the functions exported
by the graphql package:

 The buildSchema function that builds a schema from a schema language text.
 The graphql function to execute a GraphQL query against that generated

schema. To avoid confusion, I’ll refer to it as the graphql executor function.

Let’s create two files: one to host the schema and resolver definitions and the other to
execute the schema using query text supplied by the user. To keep this example sim-
ple, I’ll use a command-line interface to read the query text from the user instead of
introducing a more featured user interface (like an HTTP server).

 Create a schema directory under api/src, and put the following index.js file in it.

import { buildSchema } from 'graphql';

The buildSchema function takes a string written in the GraphQL schema language,
which represents a set of types. Every object in a GraphQL schema must have an
explicit type. This starts with the root of what the schema is offering. For example, to
make the schema accept queries in general, you need to define the special Query type.
To make the schema accept a currentTime field in a query operation, you need to add
it within the Query type and mark it as a String.

Listing 5.7 New file: api/src/schema/index.js

116 CHAPTER 5 Implementing schema resolvers

 Here’s the schema text for the simple example schema we’re building.

export const schema = buildSchema(`
type Query {

currentTime: String!
}

`);

The string in listing 5.8 is the schema language text. Note the use of backticks to allow
for having the text on multiple lines.

 The result of executing buildSchema is a JavaScript object designed to work with
the graphql executor function.

5.2.2 Creating resolver functions

We have a schema, and we can validate any request against it if we need to, but we have
not told the GraphQL service what data to associate with the currentTime field in that
schema. If a client asks for that field, what should the server response be?

 This is the job of a resolver function. Each field defined in the schema needs to be
associated with a resolver function. When it is time for the server to reply with data for
that field, it will just execute that field’s resolver function and use the function’s
return value as the data response for the field.

 Let’s create an object to hold the many resolver functions we will eventually have.
Here’s one way to implement the currentTime resolver logic.

export const rootValue = {
currentTime: () => {

const isoString = new Date().toISOString();
return isoString.slice(11, 19);

},
};

This rootValue object will have more functions as we add more features to the API.
It’s named rootValue because GraphQL.js uses it as the root of the graph. Functions
within the rootValue object are the resolvers for the top-level nodes in your graph.

 You can do anything you wish within a resolver function! For example, you can
query a database for data (which is what we need to do for the AZdev API).

NOTE I exported the schema and rootValue objects. Other modules in the
server will need to import and use these objects.

Listing 5.8 Changes in api/src/schema/index.js

Listing 5.9 Changes in api/src/schema/index.js

The ISO format is fixed. The
11-19 slice is the time part.

117Setting up the GraphQL runtime

5.2.3 Executing requests

The schema and rootValue objects are the core elements in any GraphQL service. You
can pass them to the graphql executor function along with the text of a query or
mutation, and the executor will be able to parse, validate, execute, and return data
based on them. This is what we need to do next to test the currentTime field.

 The graphql executor function can be used for this purpose. We can test that in
api/src/server.js. Add the following import line.

NOTE The api/src/server.js file has some commented-out code to start a
bare-bone express web server. You can ignore these comments for now.

import { graphql } from 'graphql';

This graphql executor function accepts a list of arguments: the first is a schema object,
the second is a source request (the operation text), and the third is a rootValue
object of resolvers. Here’s an example of how you call it.

graphql(schema, request, rootValue);

TIP The graphql executor function has more positional arguments that can
be used for advanced cases. However, we will soon use an HTTP(S) wrapper
to run this function instead of calling it directly, and we will use named argu-
ments when we do.

The graphql executor function returns a promise. In JavaScript, we can access the
resolved value of this promise by putting the keyword await in front of it and wrap-
ping the code with a function labeled with the async keyword.

async () => {
const resp = await graphql(schema, request, rootValue);

};

NOTE You don’t need to add listings with captions prefixed with “Example:”
anywhere.

The promise resolves to the GraphQL response in JSON. Each GraphQL response has
a data attribute that holds any successfully resolved data elements (and an error attri-
bute if errors are encountered). Let’s just print the resp.data attribute.

Listing 5.10 Changes in api/src/server.js

Listing 5.11 Example: signature of the graphql executor function

Listing 5.12 Example: the async/await pattern

118 CHAPTER 5 Implementing schema resolvers

 For the three arguments of the graphql executor function, we can import the
schema and rootValue objects from the previous file we worked on, but where do we
get the request text?

 The request text is something the clients of this API server will supply. They’ll do
that eventually over an HTTP(S) channel, but for now, we can read it directly from
the command line as an argument. We’ll test the server.js file this way.

$ node -r esm api/src/server.js "{ currentTime }"

For this test, the request text is the third argument in the command line (for the npm
run script). You can capture that in any Node script with process.argv[2].

Here’s the full code snippet in api/src/server.js that we can use to carry out this test.

import { graphql } from 'graphql';
import { schema, rootValue } from './schema';

const executeGraphQLRequest = async request => {
const resp = await graphql(schema, request, rootValue);
console.log(resp.data);

};

executeGraphQLRequest(process.argv[2]);
// ·-·-·

We simply import the schema and rootValue that we prepared, wrap the graphql
executor function in an async function, and use process.argv[2] to read the
GraphQL request text from the user.

 This example is complete! You can test it with the command in listing 5.13, and
you should see the server report the time in UTC:

Listing 5.13 Command: testing a query operation from the command line

Listing 5.14 Changes in api/src/server.js

This command will work after you implement the next code
change. The -r esm part enables working with ECMAScript
modules on older versions of Node.js.

The process.argv array
In Node, process.argv is a simple array with an item for each positional token in
the command line (that ran the process), starting with the command itself. For the
command in listing 5.13, process.argv is

["path/to/node/command", "api/src/server.js", "{ currentTime }"]

119Communicating over HTTP

$ node -r esm api/src/server.js "{ currentTime }"
[Object: null prototype] { currentTime: '18:35:10' }

TIP The GraphQL.js implementation uses null-prototyped objects for data
responses. This is why [Object: null prototype] is part of the response. The
console.log function in Node reports that when it sees it. Null-prototyped
objects are generally better for maps/lists because they start empty and do not
inherit any default properties. For example, you can do ({}).toString(), but
you cannot do Object.create(null).toString().

5.3 Communicating over HTTP
Before adding more fields to this API, let’s use a better interface than the simple com-
mand line. Let’s communicate with the GraphQL service via HTTP. To do that, we
need an HTTP server.

TIP You should host your GraphQL services behind an HTTPS service. You
can use Node to create an HTTPS server, but a better option is to use a web
server like NGINX (or a web service like Cloudflare) to protect your HTTP
service and make it available only over HTTPS.

We’re going to use the express package to create an HTTP server and the express-
graphql package to wire that server to work with the GraphQL service that we have so
far.

TIP For reference, the code to run a bare-bone Express server is commented
out in api/src/server.js.

Remove the executeGraphQLRequest function and the graphql executor function (in
api/src/server.js). Instead, import the graphqlHTTP named export from the express-
graphql package.

Current code
You can use the command git checkout 5.1 to synchronize your local repo with
the current progress in the code (after the currentTime test).

The 5.1 part of this command is the name of a Git branch. The branch you start with
when you clone the repo is named main. You can always go back to any branch using
the checkout command. You can also make your own commits on a branch until we
check out the next branch. This will enable you to use the git diff command to
compare your work with mine if you want to.

If you’ve made any local changes so far, you need to either commit them or get rid of
them before you check out a new branch. You can also stash them with the command
git add . && git stash.

120 CHAPTER 5 Implementing schema resolvers

import { graphqlHTTP } from 'express-graphql';
import { schema, rootValue } from './schema';

// Uncomment the code to run a bare-bone Express server

import express from 'express';
import bodyParser from 'body-parser';
import cors from 'cors';
import morgan from 'morgan';

import * as config from './config';

async function main() {
// ·-·-·

}

main();

The default export in the express package is a function. To create an Express server,
you just invoke that function. Then you can use the listen method on the created
server to make the server listen to incoming connections on a certain port. That part
is already done in the main function.

 When you run this code, an HTTP server will listen on port 4321. To make the
server accept incoming connections for a certain HTTP URL/VERB combination
(like GET /), we need to add a server.get method (or .post, .put, or .delete) or
the generic server.use method that makes the server accept all HTTP VERBs for a
certain URL.

 The provided main function has an example of a server.get call. Here is the sig-
nature of the server.VERB methods and an example of what you can do within it.

server.use('/', (req, res, next) => {
// Read something from req
// Write something to res
// Either end things here or call the next function

});

The first argument for the .use method is the URL for which the server will start
accepting connections. The second argument is the function that will be invoked
every time the server accepts a connection on that URL. This function is usually called
the listener function.

 The listener function exposes two important objects as arguments, req and res
(the next object is not usually used for response handlers):

 The req object is how the service can read information from the HTTP request.
For example, we need to read the text of the query/mutation (and other
related objects) from a client that is using this API. We can do that using req.

Listing 5.15 Changes in api/src/server.js

Listing 5.16 Example: Express.js API to define a route and its handler

121Communicating over HTTP

 The res object is how the service can reply with data to the client that is
requesting it. This is how the API server responds with the data it generates for
incoming GraphQL requests.

Between reading from the request and writing to the response, we will need to exe-
cute the graphql executor function just as we did for the command-line test. This will
happen for each GraphQL request, and it’s another general process that can be
abstracted and reused.

 The graphqlHTTP function we imported from express-graphql is a listener func-
tion that does exactly that. It will parse the HTTP request, run the graphql executor
function, await its response, and send its resolved data back to the requester. We just
need to tell it what schema and rootValue objects to use.

 Here’s the .use method wired to work with the graphqlHTTP function. Put this in
api/src/server.js, replacing the provided example server.use('/') call.

// ·-·-·

async function main() {
// ·-·-·

// Replace the example server.use call with:
server.use(

'/',
graphqlHTTP({

schema,
rootValue,
graphiql: true,

})
);

server.listen(config.port, () => {
console.log(`Server URL: http://localhost:${config.port}/`);

});
}

main();

This will allow us to communicate with the schema over HTTP. Not only that, but by
using graphiql: true in the configuration object, we will also get the mighty GraphiQL
editor mounted on that URL, and it will work with our schema!

TIP The graphqlHTTP function call returns a handler function that expects
req/res arguments. That matches the signature needed for the use method’s
handler function (its second argument).

Listing 5.17 Changes in api/src/server.js

122 CHAPTER 5 Implementing schema resolvers

Let’s test. Start the API server with the following command.

$ npm run api-server

You should see this message:

Server URL: http://localhost:4321/

Then head over to http://localhost:4321/. You should see the GraphiQL editor, and
you should be able to test the currentTime field query in it, as shown in figure 5.1.

NOTE The API server is configured to run with the nodemon command
instead of the node command. nodemon runs a node process while monitoring
files for changes and automatically restarts that node process when it detects
changes to the files. That makes the API server auto-restart whenever you save
any file in the api directory.

Note that the entire HTTP channel to communicate with the server has nothing to do
with the GraphQL service. It’s just another service layer offering a convenient way to
communicate with the GraphQL service layer. A web application can now use Ajax
requests to retrieve data from the GraphQL service. In a large-scale GraphQL API ser-
vice, this HTTP communication layer would be a separate entity that can be managed
and scaled independently.

TIP You can turn off the GraphiQL editor in production (if you want to) and
use .post instead of .use for the graphqlHTTP handler. That way, the service
will only work for Ajax post requests.

Listing 5.18 Command: running the API server

Figure 5.1 express-graphql has the GraphiQL editor built in.

Current code
Use git checkout 5.2 to reset your local repo to the current progress in the code.

123Building a schema using constructor objects

5.4 Building a schema using constructor objects
The GraphQL schema language is a great programming-language-agnostic way to
describe a GraphQL schema. It’s a human-readable format that’s easy to work with,
and it is the popular, preferable format for describing your GraphQL schemas. How-
ever, it has some limitations.

 GraphQL.js has another format that can be used to create a GraphQL schema and
its various types. Instead of text written with the schema language, you can use JavaScript
objects instantiated from calls to various constructor classes. For example, you can use
the GraphQLSchema constructor to create a schema object, the GraphQLObjectType
constructor to create an object type, the GraphQLUnionType to create a union type, and
many more classes just like these.

 This format is useful if you need to construct a schema programmatically. It’s more
flexible and easier to test, manage, and extend.

NOTE The method of using objects to create a GraphQL schema does not
have a universally agreed-on name. I’ve heard “code-first” and “resolvers-
first,” but I don’t think these names fairly represent the method. I’ll refer to it
in this book as the object-based method.

Let’s start exploring this object-based method by converting the schema we have so far
(which only supports a currentTime field).

5.4.1 The Query type

Since we are now going to use the object-based method to build the schema, you can
delete everything you have so far in api/src/schema/index.js.

 To create a GraphQL schema using this method, we need to import a few objects
from the graphql package, as follows.

import {
GraphQLSchema,
GraphQLObjectType,
GraphQLString,
GraphQLInt,
GraphQLNonNull,

} from 'graphql';

These type-based objects are designed to work together to help us create a schema.
For example, to instantiate a schema object, you just do something like this.

const schema = new GraphQLSchema({
query: new GraphQLObjectType({

name: 'Query',

Listing 5.19 New code replacing what’s in api/src/schema/index.js

Listing 5.20 Example: creating a schema object

124 CHAPTER 5 Implementing schema resolvers

fields: {
// Root query fields are defined here

}
}),

});

These calls to GraphQLSchema and GraphQLObjectType return special objects designed
to work with the graphql executor function.

 Instead of inlining the call to GraphQLObjectType, let’s extract it into its own
variable. I’ll name it QueryType. In this type’s fields property, we need to add the
currentTime field, specify its type, and include its resolver function. Here’s the code.

const QueryType = new GraphQLObjectType({
name: 'Query',
fields: {

currentTime: {
type: GraphQLString,
resolve: () => {

const isoString = new Date().toISOString();
return isoString.slice(11, 19);

},
},

},
});

export const schema = new GraphQLSchema({
query: QueryType,

});

TIP Don’t memorize the ways to use these constructor and type helpers. Just
understand and retain their capabilities and what they enable you to do.

An object type has a name and a list of fields (represented with an object). Each field
has a type property and a resolve function.

 This code maps to the schema-language version we had before. We’re just doing it
with objects instead of strings. Instead of currentTime: String, this method requires
defining a property currentTime and giving it a configuration object with a type of
GraphQLString. Instead of a rootValue object, we define a resolve function.

 The resolve function is the same one we had under the rootValue object, but
now it’s part of the schema object. Using the object-based method, we don’t need a
rootValue object because all resolvers are included where they’re needed alongside
their fields. The schema object created with GraphQLSchema is executable on its own.

 I used the GraphQLString scalar type for currentTime. The GraphQL.js imple-
mentation offers a few similar scalar types, including GraphQLInt, GraphQLBoolean,
and GraphQLFloat.

 To test this code, we need to remove the rootValue concept from api/src/server.js.

Listing 5.21 Changes in api/src/schema/index.js

125Building a schema using constructor objects

// ·-·-·
import { schema } from './schema';
// ·-·-·

async function main() {
// ·-·-·
server.use(

'/',
graphqlHTTP({

schema,
graphiql: true,

}),
);
server.listen(config.port, () => {

console.log(`Server URL: http://localhost:${config.port}/`);
});

}

main();

That’s it. You can test in GraphiQL that the service supports the currentTime field,
but now using the object-based method.

5.4.2 Field arguments

To explore the GraphQL.js API further, let’s look at an example with a bigger scope.
Let’s make the API support a sumNumbersInRange field that accepts two arguments
(begin and end) representing a range of numbers and returns the sum of all whole
numbers in that range (inclusive to its edges). Figure 5.2 shows the desired end result.

Here’s a simple implementation of the sumNumbersInRange field. Add this to the
fields property for QueryType.

Listing 5.22 Changes in api/src/server.js

Remove the
rootValue object

Current code
Use git checkout 5.3 to reset your local repo to the current progress in the code.

Figure 5.2 The sumNumbersInRange field

126 CHAPTER 5 Implementing schema resolvers

fields: {
// ·-·-·

sumNumbersInRange: {
type: new GraphQLNonNull(GraphQLInt),
args: {

begin: { type: new GraphQLNonNull(GraphQLInt) },
end: { type: new GraphQLNonNull(GraphQLInt) },

},
resolve: function (source, { begin, end }) {

let sum = 0;
for (let i = begin; i <= end; i++) {
sum += i;

}
return sum;

},
},

},

The sumNumbersInRange field has a type of new GraphQLNonNull(GraphQLInt). The
GraphQLNonNull wrapper around this integer type indicates that this field will always
have a value. The response of a sumNumbersInRange field in a query will never be null.

 The definition of sumNumbersInRange included an args property to define the
structure of the arguments it accepts and their types (which I defined using new
GraphQLNonNull(GraphQLInt) as well). Both of these arguments are required. A cli-
ent cannot ask for the sumNumbersInRange field without specifying the begin and end
numbers for that range. The GraphQL service will throw an error if that happens.

 The resolver function for sumNumbersInRange makes use of its arguments. The first
argument is always the source parent object of that resolved level. For sumNumbers-
InRange, there is no parent object because it is a root field. The second argument for
the resolve function exposes the field argument values as defined by the API con-
sumer. I destructured begin and end from that argument as both of these values are
required.

 The resolver function simply loops over the range, computes the sum, and returns
it. Use the following query to test the new field this API now supports.

{
sumNumbersInRange(begin: 2, end: 5)

}

Note that the sumNumbersInRange field has no sub-selection set because it’s a leaf field
that resolves to a scalar value. However, to learn about custom object types, next we
will change it to a non-leaf field that requires a sub-selection set.

Listing 5.23 Changes in api/src/schema/index.js

Listing 5.24 The sumNumbersInRange leaf field

127Building a schema using constructor objects

NOTE The GraphQLNonNull helper is the GraphQL.js way to specify a type mod-
ifier, and it’s equivalent to the exclamation mark in the schema language. The
equivalent of adding square brackets to make a list is the GraphQLList type
modifier. For example, to define a field that represents an array of strings, the
type would be new GraphQLList(GraphQLString).

5.4.3 Custom object types

So far, we’ve created one object type to represent the root fields under the query type. To
explore using custom object types, let’s replace the sumNumbersInRange leaf field with a
numbersInRange object field that supports the same begin and end arguments, and let’s
make it support two leaf fields for the sum and count of the whole numbers in the range.

 Here’s how the new numbersInRange field will be queried.

{
numbersInRange(begin: 2, end: 5) {

sum
count

}
}

To implement this, we need to define a custom object type to represent the new “num-
bers in range” structure, which looks like an object that has sum and count properties.
Let’s name it NumbersInRange.

 To organize the code for GraphQL object types, let’s create a file for each, starting
with this new type for the numbersInRange field.

 Create a new directory api/src/schema/types, and create a numbers-in-range.js
file there to implement the NumbersInRange type.

import {
GraphQLObjectType,
GraphQLInt,
GraphQLNonNull,

} from 'graphql';

const NumbersInRange = new GraphQLObjectType({
name: 'NumbersInRange',
description: 'Aggregate info on a range of numbers',
fields: {

sum: {
type: new GraphQLNonNull(GraphQLInt),

},
count: {

type: new GraphQLNonNull(GraphQLInt),
},

Listing 5.25 The numbersInRange field

Listing 5.26 New file: api/src/schema/types/numbers-in-range.js

128 CHAPTER 5 Implementing schema resolvers

},
});

export default NumbersInRange;

Besides the name property, we can give each type an optional description property to
describe the type. Both of these will show up in GraphiQL’s Docs explorer when the
new NumbersInRange type is used in the main schema.

TIP You can use rich-text formats like Markdown in these description proper-
ties and then have the client tool render them in a more readable way.
GraphiQL supports rendering Markdown in descriptions out of the box!

Note that the sum and count fields in the NumbersInRange type do not have resolver
functions. Although this design makes sum and count leaf fields, having resolver func-
tions for them is optional. This is because these leaf fields can use the default trivial
resolvers based on properties defined on their parent source object. For this to work,
the object resolved as the parent object (which is of type NumbersInRange) has to
respond to sum and count methods.

 Let’s create a function that takes begin and end as arguments, computes the
sum/count, and returns an object with sum and count properties. Here’s one way to
implement that (you can put this code in the api/src/utils.js file).

// ·-·-·

export const numbersInRangeObject = (begin, end) => {
let sum = 0;
let count = 0;
for (let i = begin; i <= end; i++) {

sum += i;
count++;

}
return { sum, count };

};

TIP There is a better way to compute the count and sum of consecutive num-
bers in a range without using a loop: you can use the arithmetic progression
formulas. I used a loop for simplicity.

Now we need to change the QueryType object. It has a non-leaf field named numbers-
InRange, and that field needs to be resolved with the object returned by calling the
numbersInRangeObject helper function.

// ·-·-·
import NumbersInRange from './types/numbers-in-range';
import { numbersInRangeObject } from '../utils';

Listing 5.27 Changes in api/src/utils.js

Listing 5.28 Changes in api/src/schema/index.js

129Building a schema using constructor objects

const QueryType = new GraphQLObjectType({
name: 'Query',
fields: {

// ·-·-·

// Remove the sumNumbersInRange field

numbersInRange: {
type: NumbersInRange,
args: {

begin: { type: new GraphQLNonNull(GraphQLInt) },
end: { type: new GraphQLNonNull(GraphQLInt) },

},
resolve: function (source, { begin, end }) {

return numbersInRangeObject(begin, end);
},

},
},

});
// ·-·-·

That’s it. If you test the API now, you should be able to execute a query like the following:

{
numbersInRange(begin: 2, end: 5) {

sum
count

}
}

And you will get this response:

{
"data": {

"numbersInRange": {
"sum": 14,
"count": 4

}
}

}

5.4.4 Custom errors
A GraphQL executor automatically handles any invalid queries or types used for argu-
ments in the query. For example, if you omit one of the required arguments, you get
the error shown in figure 5.3. If you use strings instead of integers for begin and end,
you get the error shown in figure 5.4. And if you attempt to query for a nonexisting
leaf field, you get the error shown in figure 5.5.

Challenge
Add an avg field to the NumbersInRange type, and make it return the sum divided by
the count.

130 CHAPTER 5 Implementing schema resolvers

This is the power of a strongly typed schema. You get many great validations out of the
box, but what about the custom cases? What should happen if a requester specifies an
invalid range for the numbersInRange field (for example, using an end value that is
less than the begin value)? The API currently ignores this case and just returns zeros,
as shown in figure 5.6.

 Let’s fix this. Let’s change the API to reject this input and, instead of returning
zeros, return a custom error message to the requester. If the range is invalid, the

Figure 5.3 All required arguments must be present in the request.

Figure 5.4 Only the right data types are accepted.

Figure 5.5 Only fields published by the schema can be used.

131Building a schema using constructor objects

requester should be made aware of that fact, because otherwise, bugs might sneak
into the code.

 We do the check in the resolver function for the numbersInRange field and throw
an error with our custom message.

export const numbersInRangeObject = (begin, end) => {
if (end < begin) {

throw Error(`Invalid range because ${end} < ${begin}`);
}
// ·-·-·

};

Now, if you attempt to make an invalid range query, you get the message shown in fig-
ure 5.7.

Listing 5.29 Changes in api/src/utils.js

Figure 5.6 To error or not to error?

Figure 5.7 A custom error message in the response

132 CHAPTER 5 Implementing schema resolvers

Note that the errors are again delivered as part of the JSON response (and not through
HTTP error codes, for example). In some cases, the JSON response may have both
errors and partial data that is not affected by the errors. You can test that by including
the currentTime field in a query with a bad range for numbersInRange; see figure 5.8.

Did you notice how I made the numbersInRange field nullable in listing 5.28? For this
particular case, a numbersInRange field may be absent from the response when the
range it uses is invalid. This is another example of a case where nullability is okay
because I am attaching a semantic meaning to it. Also, because numbersInRange is a
root field, making it non-nullable will prevent having a partial response in other root
fields (like currentTime) when there is an error in the range.

5.5 Generating SDL text from object-based schemas
The executable schema object that we created using the object-based method can be
converted to the schema-language format using the printSchema function, which is
another function we can import from the graphql package. We call it and pass in the
executable schema object (the one exported by api/src/schema/index.js) as the
argument.

import {
// ·-·-·
printSchema,

} from 'graphql';
// ·-·-·

export const schema = new GraphQLSchema({
query: QueryType,

});
console.log(printSchema(schema));

Listing 5.30 Changes in api/src/schema/index.js

Figure 5.8 The response has both errors and data.

133Generating SDL text from object-based schemas

Here’s what you’ll see.

type Query {
currentTime: String
numbersInRange(begin: Int!, end: Int!): NumbersInRange

}
"""Aggregate info on a range of numbers"""
type NumbersInRange {

sum: Int!
count: Int!

}

This is the schema representation without the resolver functions, but it is a lot more
concise and readable. My favorite part about this conversion is how the arguments to
the numbersInRange field are defined in the schema language format:

(begin: Int!, end: Int!)

Compare that with:

args: {
begin: { type: new GraphQLNonNull(GraphQLInt) },
end: { type: new GraphQLNonNull(GraphQLInt) },

},

Note that the description of NumbersInRange is included right before it, surrounded
by a set of three double quotes. Here’s an example of a well-described version of the
API we have so far.

"""The root query entry point for the API"""
type Query {

"The current time in ISO UTC"
currentTime: String

"""
An object representing a range of whole numbers
from "begin" to "end" inclusive to the edges
"""
numbersInRange(

"The number to begin the range"
begin: Int!,
"The number to end the range"
end: Int!

): NumbersInRange!
}
"""Aggregate info on a range of numbers"""
type NumbersInRange {

Listing 5.31 Output of printSchema

Listing 5.32 Example: using descriptions in SDL

134 CHAPTER 5 Implementing schema resolvers

"Sum of all whole numbers in the range"
sum: Int!
"Count of all whole numbers in the range"
count: Int!

}

5.5.1 The schema language versus the object-based method

The schema language enables front-end developers to participate in designing the
API and, more important, start using a mocked version of it right away. The frontend
people on your team will absolutely love it. It enables them to participate in designing
the API and, more important, start using a mocked version of it right away. The
schema language text can serve as an early version of the API documentation.

 However, completely relying on the full-schema text to create a GraphQL schema
has a few drawbacks. You’ll need to put in some effort to make the code modularized
and clear, and you’ll have to rely on coding patterns and tools to keep the schema-
language text consistent with the tree of resolvers (aka resolvers map). These are
solvable problems.

 The biggest issue I see with the full-schema method is that you lose some flexibility
in your code. All your types have to be written in that specific way that relies on the
schema-language text. You can’t use constructors to create some types when you need to.
You’re locked into this string-based approach. Although the schema-language text
makes your types more readable, in many cases, you’ll need flexibility over readability.

 The object-based method is flexible and easier to extend and manage. It does not
suffer from any of the problems I just mentioned. Your code will be modular with it
because your schema will be a bunch of objects. You also don’t need to merge mod-
ules, because these objects are designed and expected to work like a tree.

 The only issue I see with the object-based method is that you have to deal with a lot
more code around what’s important to manage in your modules (types and resolvers).
Many developers see that as noise, and I do not blame them.

 If you’re creating a small, well-defined GraphQL service, using the full-schema-
string method is probably okay. However, in bigger and more agile projects, I think
the more flexible and powerful object-based method is the way to go.

TIP You should still use the schema-language text even if you’re using the
object-based method. For example, at jsComplete.com, we use the object-
based method, but every time the schema is built, we use the printSchema
function to write the complete schema to a file. We commit and track that file
in the project’s Git repo, which has proven to be a very helpful practice!

Current code
Use git checkout 5.4 to reset your local repo to the current progress in the code.

135Working with asynchronous functions

5.6 Working with asynchronous functions
Both fields we have so far in this example are mapped to a normal synchronous
resolver. However, if a field needs to do a lot of work to resolve its data, it should use
an asynchronous resolver because, otherwise, the entire API service will be blocked
and unable to serve other requests.

 To demonstrate this problem, let’s fake a delay in processing the currentTime
field. JavaScript has no sleep function, but it’s easy to accomplish something similar by
comparing dates. Here’s one way to make the currentTime resolver function synchro-
nously take 5 seconds to complete.

currentTime: {
type: GraphQLString,
resolve: () => {

const sleepToDate = new Date(new Date().getTime() + 5000);
while (sleepToDate > new Date()) {

// sleep
}
const isoString = new Date().toISOString();
return isoString.slice(11, 19);

},
},

Now, each time you ask for the currentTime field, the server will spend 5 seconds
doing nothing, and then it will return the answer. The problem is that during these 5
seconds, the whole node process for the server is completely blocked. A second
requester cannot get any data from the API until the while loop in the first request is
finished (see figure 5.9).

Listing 5.33 Delaying returning from currentTime by 5 seconds

Figure 5.9 The second request (right side) is waiting on the first request.

136 CHAPTER 5 Implementing schema resolvers

You should never do that. Instead, all long-running processes should be done
asynchronously either with native APIs offered by Node and its many packages or by
forking the work over to a worker thread/process.

 For example, to make the currentTime field fake-delay its response by 5 seconds
but do so asynchronously, we can use the setTimeout method and wrap it in a prom-
ise object.

currentTime: {
type: GraphQLString,
resolve: () => {

return new Promise(resolve => {
setTimeout(() => {

const isoString = new Date().toISOString();
resolve(isoString.slice(11, 19));

}, 5000);
});

},
};

NOTE We don’t need to await this promise. A resolver function can return a
promise, and the executor will await that promise and use its data. This
behavior is built into the GraphQL.js implementation.

With this change, each time you ask the API service for the currentTime field, it will
still answer after 5 seconds, but the service process will not be blocked! Other request-
ers can ask for other parts of the API and get immediate responses while a requester is
waiting for the currentTime (see figure 5.10).

This is going to be very handy when we work with objects coming from databases,
because we should definitely use asynchronous APIs to make all communications with
all the databases.

 I think we’re ready to do that!

Listing 5.34 Replacing existing code

Resolver functions support
returning a promise object.

Figure 5.10 The second requester (right side) can get a response while the first requester is waiting.

137Working with asynchronous functions

Summary
 A GraphQL service is centered around the concept of a schema that is made

executable with resolver functions.
 A GraphQL implementation like GraphQL.js takes care of the generic tasks

involved in working with an executable schema.
 You can interact with a GraphQL service using any communication interface.

HTTP(S) is the popular choice for GraphQL services designed for web and
mobile applications.

 You can convert from one schema representation to another using GraphQL.js
helper functions like buildSchema and printSchema.

 You should not do long-running processes synchronously because doing so will
block a GraphQL service process for all clients. Resolver functions in the
GraphQL.js implementation can work with asynchronous promise-based opera-
tions out of the box.

Current code
For your reference, I put the code for the current-time sync-versus-async example in
its own Git branch. You can use the command git checkout 5.T1 to see that code.

I did not include this example in the current 5.4 branch (which you can go back to
with the command git checkout 5.4).

138

Working with database
 models and relations

Now that you’ve learned the core concepts of building a simple “static” schema and
how to resolve its fields, it’s time to get real and learn how to resolve fields from
databases. It’s time to implement the queries of the AZdev API. We’ll go through
them one by one as we designed them in chapter 4 and learn the concepts we need
as we use them.

This chapter covers
 Creating object types for database models

 Defining a global context shared among all
resolvers

 Resolving fields from database models and
transforming their names and values

 Resolving one-to-one and one-to-many relations

 Working with database views and join statements

139Running and connecting to databases

6.1 Running and connecting to databases
The easiest way to get this project’s databases up and running with sample data is to
use Docker. Docker uses your OS virtualization to provide software in packaged con-
tainers. It’s available on all three major operating systems.

 I’ve prepared two Docker containers for this project: one for PostgreSQL and one
for MongoDB. They both have the database structure created and the sample data
imported. If you’re new to Docker, no worries. It’s really simple. All you need is to install
Docker Desktop (az.dev/docker) on your OS and leave it running in the background.

NOTE If you would like to use your own database services for the project, you
can execute the dev-dbs/schema.* files to create the database entities and
load the sample data.

Once Docker is running, you can run this command to start both databases.

$ npm run start-dbs

This command will take a while the first time you run it as it will download the two
containers on your machine. It will also start these containers and expose the database
on their default ports. PostgreSQL will be running on port 5432 and MongoDB will be
running on port 27017.

NOTE I’ve also provided a Docker file to download and run clean blank data-
bases if you would like to go through the steps to create a database schema
and load it up with sample data.

Having sample data in all tables and collections is a great way to get started and enable
us to test the GraphQL queries before dealing with the GraphQL mutations! Make
sure you get some realistic data in all the database tables one way or another.

 Take a look at the dev-dbs/schema.* files, and verify the structure of tables and col-
lections that we designed in chapter 4. Note the insert statement I prepared there
for the sample data.

Listing 6.1 Command: start the database servers

Current code
Use git checkout 6.0 to reset your local repo to the current progress in the code.
If you need to stash any local changes, use git add . && git stash. Remember
to run npm install to install any missing dependencies.

https://az.dev/docker

140 CHAPTER 6 Working with database models and relations

TIP The dev-dbs/schema.sql file uses the pgcrypto extension to manage the
hashing of passwords and tokens in the users table. You can read the docu-
mentation for this extension at az.dev/pgcrypto.

If the database servers run successfully, you should have six Tasks with their
Approaches and some extra dynamic data elements in MongoDB for each Approach.
Use the following SQL queries to see the data in PostgreSQL.

SELECT * FROM azdev.users;

SELECT * FROM azdev.tasks;

SELECT * FROM azdev.approaches;

For the data in MongoDB, you can use this find command.

db.approachDetails.find({});

TIP You can use database GUIs to inspect the databases and make sure they
have the sample data loaded up. On my Mac, I use Postico for PostgreSQL
(az.dev/postico) and Robo 3T for MongoDB (az.dev/robo).

Before a client can execute commands on a database and retrieve data from it, it needs
to connect to it. There are many ways to connect to both PostgreSQL and MongoDB from
the Node drivers. We can do a one-time connection per SQL statement in the pg driver,
but a better way is to have the driver manage a pool of open connections and reuse them
as needed (figure 6.1). Both drivers support this mode.

Listing 6.2 In psql: queries to read data

Listing 6.3 In mongo: command to read the approaches data

Node.js

PostgreSQL

MongoDB

Connection
pool

Connection
pool

Figure 6.1 Keeping pools of
open connections to databases

https://az.dev/pgcrypto
https://az.dev/postico
https://az.dev/robo

141The taskMainList query

The code to connect to these databases is ready under api/src/db/. Take a look at pg-
client.js and mongo-client.js and see if you need to do anything differently. If your
local copy of the project fails to connect to databases, these two files are where you
need to start troubleshooting.

 Note that I tested the connections to both databases by counting the numbers of
tables/collections. This step is optional, but it verifies that connections are successful
when the server starts.

TIP Note that I made both database client modules (under api/src/db)
return an object with similar purposes. I find that kind of normalization help-
ful for entities in the project that are meant to do similar things.

6.2 The taskMainList query
To be able to work with Task records in the GraphQL schema, we need to define a
new custom type for these records just like what we did for numbersInRange when we
converted it from a leaf field into a non-leaf field. We need to create a custom type for
each entity in the AZdev API: a Task type, an Approach type, and a User type.

 Let’s start by implementing the main Task type. Here is the SDL text we prepared
for it.

type Task implements SearchResultItem {
id: ID!
createdAt: String!
content: String!
tags: [String!]!
approachCount: Int!

author: User!
approachList: [Approach!]!

}

The first query field that will use this Task type is the list of the latest Tasks that will be
displayed on the main page of the AZdev app. We named that field taskMainList.

type Query {
taskMainList: [Task!]

}

To learn the concepts in the right order, let’s start with the five simple scalar leaf fields
under this type: id, content, tags, approachCount, and createdAt.

 Here’s a GraphQL query that we can use to start testing this feature.

Listing 6.4 The Task type

Listing 6.5 Using the Task type in the taskMainList field on Query

142 CHAPTER 6 Working with database models and relations

query {
taskMainList {

id
content
tags
approachCount
createdAt

}
}

This query should return an array of Task records. Each item in that array is an object
with five properties whose values will come from the PostgreSQL azdev.tasks table
(which has columns matching the five field names). Let’s implement this feature with
the simplest code possible and improve it once we get it to work naively. As Kent Beck
said, “Make it work. Make it right. Make it fast.”

 To implement this feature, we need to follow these three steps:

1 Define a new object type named Task that has the five scalar fields.
2 Write any non-default resolvers for the Task type. We have to do date-to-string

conversion for the created_at database column. We also decided to expose the
tags GraphQL field as an array of strings instead of the comma-separated string
values in the database.

3 Modify the Query type to have a field named taskMainList that is a list of non-
null Task items, and resolve it with an array of records from the azdev.tasks
table.

Let’s start by defining the Task type.

6.2.1 Defining object types

Here’s a possible implementation of the new Task type (without any resolvers). Put
this under api/src/schema/types/task.js.

import {
GraphQLID,
GraphQLObjectType,
GraphQLString,
GraphQLInt,
GraphQLNonNull,
GraphQLList,

} from 'graphql';

const Task = new GraphQLObjectType({
name: 'Task',
fields: {

id: { type: new GraphQLNonNull(GraphQLID) },

Listing 6.6 The taskMainList query

Listing 6.7 New file: api/src/schema/types/task.js

143The taskMainList query

content: { type: new GraphQLNonNull(GraphQLString) },
tags: {

type: new GraphQLNonNull(
new GraphQLList(new GraphQLNonNull(GraphQLString))

),
},
approachCount: { type: new GraphQLNonNull(GraphQLInt) },
createdAt: { type: new GraphQLNonNull(GraphQLString) },

},
});

export default Task;

The Task object here is just a direct translation of the SDL text in listing 6.4. The six
lines in the SDL version more than tripled with all the object-based method boiler-
plate code. The worst part about this is probably the type for the tags field. The sim-
ple [String!]! had to be written with nested calls of three functions:

new GraphQLNonNull(
new GraphQLList(

new GraphQLNonNull(
GraphQLString

)
)

)

There is no debate that the SDL text is a better way to present this type. This is why
many tools were created to enable building GraphQL schemas based on SDL texts for
types and other elements. The GraphQL.js buildSchema function itself was popular-
ized by these tools. Some tools expanded the SDL syntax to enable modularizing an
SDL-based schema into many parts. Other tools were introduced to merge multiple
SDL-based schemas and resolve any conflicts between them. These tools are helpful
and have practical uses, but I would like to keep this book focused purely on the
GraphQL.js implementation and use the natively supported object-based method.

6.2.2 The context object

The next step is to modify the Query type to include the taskMainList field. This field
is a list of non-null items where each item has the Task type introduced in listing 6.4.

Using SDL with the object-based method
In the future, the GraphQL.js implementation might support an API that will allow you
to use an SDL text with the object-based method (so it’s not one way or the other).

I wrote a package that enables a similar approach using the current GraphQL.js imple-
mentation. I named it graphql-makers, and you can read about it at jscomplete
.com/graphql-makers.

https://jscomplete.com/graphql-makers
https://jscomplete.com/graphql-makers
https://jscomplete.com/graphql-makers

144 CHAPTER 6 Working with database models and relations

This means the type for the taskMainList field should be new GraphQLList(new

GraphQLNonNull(Task)). To resolve this field, we need to execute this SQL statement
on the PostgreSQL database.

SELECT *
FROM azdev.tasks
WHERE is_private = FALSE
ORDER BY created_at DESC
LIMIT 100

Before we can execute this SQL query, we need to open the pool of connections to
PostgreSQL. To do that, we need to import the api/src/db/pg-client.js module and
invoke its default export (the pgClient function). But where exactly should we do this?

 The pool of connections to a database should be started when the server is started
and then made available to all the resolver functions that are going to use it. This is a
lot more efficient than connecting to the database from within resolver functions.

 The GraphQL.js implementation has a feature to help us make a pool of connec-
tions globally available to all resolvers. It’s called the context object.

 The special context object enables resolver functions to communicate and share
information because it is passed to all of them (as their third argument). They can
read it and write to it if needed. We only need a readable context for sharing the pool
of database connections.

 You can pass any object as the context object to the graphql executor function or
the graphqlHTTP listener function. The object that we need to make part of the global
context here is the pgPool object that is returned by the pgClient function.

 Here are the changes we need in api/src/server.js to make the pgPool object avail-
able using the GraphQL context concept.

// ·-·-·
import pgClient from './db/pg-client';

async function main() {
const { pgPool } = await pgClient();
const server = express();
// ·-·-·

server.use(
'/',
graphqlHTTP({

schema,
context: { pgPool },
graphiql: true,

}),

Listing 6.8 SQL statement for the taskMainList field

Listing 6.9 Changes in api/src/server.js

Don’t include private Task objects.

Sorts Tasks by creation date, newest first

Limits the results to 100 Task objects

145The taskMainList query

);

// ·-·-·
}

main();

Now all resolver functions will have access to the context object, and we can use the
pgPool object to execute database queries in them!

 The pgPool object has a query method we can use to execute a SQL statement. We
can use it this way to execute the SELECT statement in listing 6.8.

const pgResp = await pgPool.query(`
SELECT *
FROM azdev.tasks
WHERE is_private = FALSE
ORDER BY created_at DESC
LIMIT 100

`);

The result of the query method is a promise that will resolve to an object, which I
named pgResp. This pgResp object will have a rows property holding an array of
objects representing the rows returned by the database.

[
{ id: 1, content: 'Task #1', approach_count: 1, ·-·-·},
{ id: 2, content: 'Task #2', approach_count: 1, ·-·-·},
·-·-·

]

Note that the pg package transforms every database row into a JavaScript object with
the database field names as keys and the row values as the values for these keys. Also
note that the key names use the snake-case format (for example, approach_count).

 The context object is exposed to each resolver function as the third argument
(after source and args).

resolve: (source, args, context, info) => {}

NOTE The fourth info argument will have information about the execution
context, like what field/type this resolver is associated with. This argument is
rarely used but is handy in a few advanced cases.

Listing 6.10 Example: executing a SQL statement with pgPool

Listing 6.11 Example: shape of the pgResp.rows property

Listing 6.12 Example: the four arguments for each resolver function

146 CHAPTER 6 Working with database models and relations

The taskMainList field should be resolved with an array of Task records (and the rows
property on the pgPool.query response in listing 6.10 is that exact array). Remember
from the previous chapter that you can return a promise from a resolver function, and
GraphQL.js will do the right thing for it. We can just resolve taskMainList with the
promise returned by the pgPool.query function.

import {
// ·-·-·
GraphQLList,

} from 'graphql';
// ·-·-·
import Task from './types/task';

const QueryType = new GraphQLObjectType({
name: 'Query',
fields: {

// ·-·-·

taskMainList: {
type: new GraphQLList(new GraphQLNonNull(Task)),
resolve: async (source, args, { pgPool }) => {

const pgResp = await pgPool.query(`
SELECT *
FROM azdev.tasks
WHERE is_private = FALSE
ORDER BY created_at DESC
LIMIT 100

`);
return pgResp.rows;

},
},

},
});
// ·-·-·

Go ahead and test things now. The API should be able to answer this query (see fig-
ure 6.2):

{
taskMainList {

id
content

}
}

NOTE Task #5 does not show up in the response for the taskMainList query
because it’s a private Task in the sample data.

Listing 6.13 Changes in api/src/schema/index.js

147The taskMainList query

If you try to ask for the tags or createdAt field, you’ll get the following errors:

 For the tags field, you’ll get this error message: “Expected Iterable, but did not
find one for field Task.tags.”

 For the createdAt field, you’ll get this error message: “Cannot return null for
non-null field Task.createdAt.” The same error will occur for the approach-
Count field.

Take a moment and try to figure out these error messages. I’ll explain them in the
next section.

6.2.3 Transforming field names

In some cases, we need the API to represent columns and rows in the database with a
different structure. Maybe the database has a confusing column name; or maybe we
want the API to consistently use camel-case for all field names, and the database uses

Figure 6.2 Server response for the taskMainList query

Using a subset of fields in SQL
Since we did a SELECT * operation, all fields available in the azdev.tasks table will
be available on the parent source object in the Task type. However, only the proper-
ties represented by the defined fields will be available in the API. You can optimize
the SQL statement to only include the fields that the API is interested in.

For example:

SELECT id, content, tags, approach_count, created_at
FROM azdev.tasks
WHERE ·-·-·

148 CHAPTER 6 Working with database models and relations

snake-case for its columns. This latter situation is exactly what we have to deal with next.
Columns on the azdev.tasks table are snake-case in the database (for example,
created_at), and we planned to represent all fields as camel-case in the API
(createdAt). This means we cannot rely on the default resolvers as we did for the id
and content fields.

 With camel-case fields, the default resolver tries to find the property createdAt on
the row returned by the database. That property does not exist. That’s why we got an
error when we tried to ask for createdAt.

 There are three main methods to deal with this issue.

METHOD #1
We can simply perform a case map on all properties on each row when we get data
back from the database. This way, the parent source object for the Task type will have
the right property names, and all fields can be kept using the default resolvers. For
example, if we have a function caseMapper that takes an object and makes all of its
properties camel-case, we can modify the resolver of taskMainList as follows.

resolve: async (source, args, { pgPool }) => {
const pgResp = await pgPool.query(

// ·-·-·
);
return pgResp.rows.map(caseMapper);

},

TIP The caseMapper function implementation is omitted here, but you can
use a function like camelizeKeys from the humps Node package. That func-
tion even supports converting an array of objects, and it will camel-case all
properties on all objects in that array.

Can you spot a problem with this method? Actually, can you spot two problems with it?
Not only are we looping over each row in the returned set (with the map method), but
the caseMapper function loops over all the properties of a row object.

 This is probably not a big deal if you’re working with small sets of data. However,
the GraphQL tree/resolver structure is already looping over fields and levels. We can
use a field resolver to do the conversion manually when needed. That’s method #2.

METHOD #2
We can create custom resolvers for the fields that need to be converted. For example,
we can change the createdAt field in listing 6.7 to include this resolve function.

const Task = new GraphQLObjectType({
name: 'Task',
fields: {

Listing 6.14 Example: changing the structure of objects received from the database

Listing 6.15 Example: using custom resolvers

149The taskMainList query

// ·-·-·
createdAt: {

type: new GraphQLNonNull(GraphQLString),
resolve: (source) => source.created_at,

},
},

});

This takes care of the case issue because we are resolving a createdAt field using the
created_at property available on the parent source object (which is the row object
coming from the database). You’ll need to do this for each multiword field.

 If you made this change, you can test the API by asking for a createdAt field on
the taskMainList field, it will work (figure 6.3).

NOTE The createdAt reply is a 13-digit number. This is the number of milli-
seconds since midnight 01 January 1970 UTC. We’ll change that value in the
next section.

I like the readability of this method, and it’s also helpful when you need to perform
other custom logic on the value, not just map it as is. However, I am not a fan of mix-
ing snake-case variable names with camel-case. It would be ideal if API server logic did
not have to deal with snake-case variables. PostgreSQL has something up its sleeve to
save us from needing to do the transformation in the first place! That’s method #3.

NOTE Before you proceed, undo the resolve function changes in listing 6.15
(if you made them).

METHOD #3
We can use the column alias feature in PostgreSQL to make it return the rows natively
as camel-case. However, this solution requires listing all the leaf fields in the SELECT
statement. For example, here’s a version of the taskMainList resolver function to
implement this method.

Figure 6.3 The createdAt field server response

150 CHAPTER 6 Working with database models and relations

resolve: async (source, args, { pgPool }) => {
const pgResp = await pgPool.query(`

SELECT id, content, tags,
approach_count AS "approachCount", created_at AS "createdAt"

FROM azdev.tasks
WHERE // ·-·-·

`);
return pgResp.rows;

},

Note that I use the AS "approachCount" and AS "createdAt" syntax to rename the
returned columns. The quotes around the aliases are required because PostgreSQL is
case insensitive. To force it to behave otherwise, you need to use quotes.

 I think this is the better method because it makes the data come from PostgreSQL
in the exact shape we need and because, in my opinion, having to list the column
names that a statement needs is a good thing. Specificity is always the safer way.

NOTE You will not need to write any SQL statements or aliases beyond this
first example. All SQL statements with their aliased column names are avail-
able in api/src/db/sqls.js.

6.2.4 Transforming field values

GraphQL’s default serialization for date objects in JavaScript is to call the valueOf
method on them, and that method is equivalent to calling getTime (which returns the
13-digit milliseconds number). If we want to serialize fields (including date fields) dif-
ferently, we can do that in custom resolver functions. For example, let’s serialize all
date-time fields for the AZdev API using UTC ISO format. We can use the JavaScript
toISOString method for this. We’ll need to implement the createdAt field’s resolver
function using the following.

createdAt: {
type: new GraphQLNonNull(GraphQLString),
resolve: (source) => source.createdAt.toISOString(),

},

NOTE Note that I used source.createdAt (and not source.created_at)
since PostgreSQL returns data in camel-case object properties now.

Now the API displays values of createdAt using the ISO format (figure 6.4).
 What about the tags field? Currently, the API is displaying this error for it:

“Expected Iterable, but did not find one for field Task.tags.”
 This is because we defined the tags field as a GraphQLList type. The GraphQL

executer expects its resolved value to be an iterable, like an array. The default resolver

Listing 6.16 Changes in api/src/schema/index.js

Listing 6.17 Changes in api/src/schema/types/task.js

151The taskMainList query

for the tags field is currently resolving with what’s in the tags database column: a
string of comma-separated values (for example, "node,git"). We need to transform
this value into an array of strings instead (so, ["node", "git"]). We do that with a
custom resolver function.

tags: {
type: new GraphQLNonNull(

new GraphQLList(new GraphQLNonNull(GraphQLString))
),
resolve: (source) => source.tags.split(','),

},

With that, the resolver will return an array when asked for the tags property (figure 6.5).

As you can see, it is fairly easy to control the shape of the GraphQL schema and use
powerful transformation on the raw data returned by the database.

Listing 6.18 Changes in api/src/schema/types/task.js

Figure 6.4 The createdAt field as an ISO string

Figure 6.5 The tags comma-separated value exposed as an array in the API

152 CHAPTER 6 Working with database models and relations

6.2.5 Separating interactions with PostgreSQL

Before we continue implementing the author/approach relations on the Task type,
let’s do a small refactoring. Instead of using SQL statements directly in resolver func-
tions, let’s introduce a module responsible for communicating with PostgreSQL and
just use that module’s API in the resolver functions.

 This separation of responsibilities will generally improve the readability of the
API’s code. The logic to fetch things from PostgreSQL will not be mixed with the logic
to transform raw data into the public API. This new module will also improve the
maintainability of the code! If the database driver changes its API or if a decision is
made to use a different database driver, you can make these changes in one place
instead of many. You’ll also have one place where you can add logging or any other
diagnostics around database calls. It will also be a lot easier to test this new module on
its own, isolated from the other logic in the resolver functions, and to test the logic in
the resolvers by mocking this new module.

 I’ll name this new module pgApi. We’ll expose it in the context object instead of the
driver’s native pgPool object and make all read and write interactions with PostgreSQL
through it.

 Let’s also move the line in api/src/server.js where we called the pgClient function
to get a pgPool into this new pgApi module. This is an asynchronous operation, which
means we need the pgApi module to be wrapped in an async function. I’ll name this
function pgApiWrapper and make it the default export in the new module.

 Here’s the implementation I came up with. Put this in api/src/db/pg-api.js.

import pgClient from './pg-client';
import sqls from './sqls';

const pgApiWrapper = async () => {
const { pgPool } = await pgClient();
const pgQuery = (text, params = {}) =>

pgPool.query(text, Object.values(params));

return {
taskMainList: async () => {

const pgResp = await pgQuery(sqls.tasksLatest);
return pgResp.rows;

},
};

};

export default pgApiWrapper;

Listing 6.19 New file: api/src/db/pg-api.js

Current code
Use git checkout 6.1 to reset your local repo to the current progress in the code.

The tasksLatest SQL
statement is already
in api/src/db/sqls.js.

153The taskMainList query

Note that I imported the sqls object from the provided ./sqls.js file and used sqls
.tasksLatest. That is the same SQL query as in listing 6.16. Having all the SQL state-
ments in one place is a simple way to organize this module. Another way would be to cre-
ate a file per database API function and have that file define the SQL statements it needs.
The latter is better for bigger projects, but I’ll leave the simple two-file structure here. The
pg-api.js file will define the functions, and the sqls.js file will define the SQL statements.

 Also note that I introduced a new function, pgQuery, which is a wrapper for
pgPool.query. The pgPool.query function is the current driver’s method, and it
expects query variables as an array. The pgQuery function is something we can control
any time when needed, and I made it receive query variables as an object (which will
make the code a bit more readable, in my opinion).

TIP Wrapping third-party APIs is generally a good practice, but don’t overdo
it! For example, I have not wrapped the GraphQL.js API yet because the proj-
ect’s entire structure depends on it. The AZdev API code is not just using
GraphQL.js; it’s built around it. When GraphQL.js makes a non-backward-
compatible change to its API, it will probably be time for a complete project
overhaul. However, the other benefits to wrapping a third-party API still
apply. For example, if we would like to change the syntax of creating type
objects to reduce the boilerplate and use something similar to the SDL
method, we can introduce a wrapper.

Now we need to change the context object in api/src/server.js to use the new pgApi-
Wrapper function instead of the driver-native pgClient function.

// ·-·-·
import pgApiWrapper from './db/pg-api';

async function main() {
const pgApi = await pgApiWrapper();

// ·-·-·

server.use(
'/',
graphqlHTTP({

schema,
context: { pgApi },
graphiql: true,

})
);

// ·-·-·
}

Finally, we need to change the resolve function for taskMainList to use the new
pgApi instead of issuing a direct SQL statement.

Listing 6.20 Changes in api/src/server.js

This line replaces the
pg-client import line.

This line replaces the
pgClient() call line.

154 CHAPTER 6 Working with database models and relations

taskMainList: {
type: new GraphQLList(new GraphQLNonNull(Task)),
resolve: async (source, args, { pgApi }) => {

return pgApi.taskMainList();
},

},

That’s it. You can test all these changes using the same query we’ve been using so far.
Nothing changed on the public API service, but a lot has changed in the codebase.
The code is off to a better start.

6.3 Error reporting
I would like to introduce one little modification here. By default, the GraphQL.js
implementation does not report errors in logs, and that might cause frustration. It will
still respond to API consumers with these errors, but as a backend developer, you
don’t see them.

 Let’s look at an example. Fake an error anywhere in the code that resolves data for
the taskMainList field, something like the following.

const QueryType = new GraphQLObjectType({
name: 'Query',
fields: {

// ·-·-·
taskMainList: {

type: new GraphQLList(new GraphQLNonNull(Task)),
resolve: async (source, args, { pgApi }) => {

return pgApi.taksMainList();
},

},
},

});

Now observe what happens when you ask for the taskMainList field in GraphiQL
(figure 6.6).

Listing 6.21 Changes in api/src/schema/index.js

Listing 6.22 Temp changes in api/src/db/pg-api.js

Typo!

Figure 6.6 The backend error on the frontend app

155Error reporting

You see the error as a consumer (which is bad). You also don’t see the error in the
backend at all (which is also bad).

 To solve that, the express-graphql package supports a customFormatErrorFn
option, which is an optional function that can be used to format errors produced
while the server is fulfilling GraphQL operations. We can use this function to report
the error and return a generic error to the consumer (for example, in production).

async function main() {
// ·-·-·

server.use(
'/',
graphqlHTTP({

schema,
context: { pgApi },
graphiql: true,
customFormatErrorFn: (err) => {

const errorReport = {
message: err.message,
locations: err.locations,
stack: err.stack ? err.stack.split('\n') : [],
path: err.path,

};
console.error('GraphQL Error', errorReport);
return config.isDev
? errorReport
: { message: 'Oops! Something went wrong! :(' };

},
}),

);

// ·-·-·
}

With that, if you execute the faulty taskMainList query now, the frontend consumer
will see the generic error message while the backend developer will see the helpful
error message in the API server logs.

TIP It’s a common practice to not expose thrown errors to your API consum-
ers in production. These often reveal implementation details and usually are
not helpful to users. Only expose helpful error messages to your API consum-
ers. We’ll see examples when we work with mutations.

Don’t forget to undo the intentional typo we made in listing 6.22.

Listing 6.23 Changes in api/src/server.js

Makes the error
stack show up in
development, which
is very handy

Logs the
error in the
server logs

Returns a
generic error
in production

Current code
Use git checkout 6.2 to reset your local repo to the current progress in the code.

156 CHAPTER 6 Working with database models and relations

It’s now time to talk about resolving relations. This will highlight one of the biggest
challenges when creating GraphQL APIs: the infamous N+1 queries problem.

6.4 Resolving relations
The remaining fields on the Task type are author and approachList. We’ll need to
implement two new GraphQL types for them. I’ll name them Author and Approach.

 These fields will not be leaf fields in a query. They represent relations. A Task has
one Author and many Approaches. To resolve these fields, the GraphQL server will
have to execute SQL statements over many tables and return objects from these
tables.

 When we’re done implementing the author and approachList fields, the API
server should accept and reply to this query.

{
taskMainList {

id
content
tags
approachCount
createdAt

author {
id
username
name

}

approachList {
id
content
voteCount
createdAt

author {
id
username
name

}
}

}
}

This is the complete query that should be supported by the API service. Note the
nested fields Task –> Author and Task –> Approach –> Author.

NOTE An Approach also has an Author. To complete the taskMainList field,
we will have to implement that relation as well.

Listing 6.24 The taskMainList complete query

157Resolving relations

With this query, we would like to get all the information about all the latest Tasks, who
authored them, what approaches are defined on them, and who authored these
approaches.

NOTE The Latest Tasks UI view will not include Approaches. Approaches will
be displayed only in the Single Task UI view. For simplicity, I used one Task
type here, but type specificity can be used to match expected usage and
enforce the acceptable ways to use the API. We’ll see an example under the
me root field.

6.4.1 Resolving a one-to-one relation
The author field has to be resolved from the azdev.users table. The foreign key that
connects a Task object to a User object is the user_id field on the azdev.tasks table.
When we resolved the taskMainList field with a list of Task objects, each of these
objects had a value in its userId property. For each one, we have to execute another
SQL statement to get information about the User who authored it. You can find
that SQL statement under sqls.usersFromIds (in api/src/db/sqls.js).

// $1: userIds
usersFromIds: `

SELECT id, username,
first_name AS "firstName", last_name AS "lastName",
created_at AS "createdAt"

FROM azdev.users
WHERE id = ANY ($1)

`,

Note that this SQL statement has a $1 in it. This is new. It’s the syntax we can use with
the pg driver to insert a variable into the SQL statement without resorting to string
concatenation. The statement is expected to be executed with one variable, and that
variable will be used to replace the $1 part.

NOTE The ANY comparison construct can be used to fetch multiple records
from the database using an array of IDs. This is going to help us reduce the
number of SQL queries that the API server needs to execute. We’ll see exam-
ples in chapter 7.

Next we need to design a function in the pgApi module to execute the sqls
.usersFromIds statement. Let’s design that function to accept a userId value as an
argument.

const pgApiWrapper = async () => {
// ·-·-·
return {

Listing 6.25 Second SQL statement in api/src/db/sqls.js

Listing 6.26 Changes in api/src/db/pg-api.sql

158 CHAPTER 6 Working with database models and relations

// ·-·-·
userInfo: async (userId) => {

const pgResp = await pgQuery(sqls.usersFromIds, { $1: [userId] });
return pgResp.rows[0];

},
};

};

The sqls.usersFromIds statement is designed to work with multiple user IDs and
return multiple user records. That’s why the $1 value was [userId]. However, since
we’re passing only a single userId value, the SQL statement will fetch one row or
nothing (because the ID column is unique). The pg driver always returns the rows
property on its response as an array, even when it’s just one row. That’s why the
returned value was the first row from the statement’s response (pgResp.rows[0]).

 Note that I am designing the interactions with PostgreSQL first instead of start-
ing with the GraphQL type and resolver functions and working my way down to the
PostgreSQL interactions (which is what we did for the taskMainList field). What’s
important is that we can do each side of this task in complete isolation from the
other!

 To make the GraphQL server aware of the new author field, we need to define the
User type. Everything in a GraphQL schema must have a type. In the SDL text, we had
this structure for the User type.

type User {
id: ID!
username: String!
name: String
taskList: [Task!]!

}

Remember the three steps we went through for the Task type? We need to do some-
thing similar for the User type:

1 Define a new object type named User, which has the three scalar fields.
2 Write any non-default resolvers for the User type. Let’s combine the database

first_name and last_name columns on table azdev.users into a single name
field for the API.

3 Modify the Task type to have a field named author that is a non-null object of
type User (the new type), and resolve this field with a record from the
azdev.users table using the new userInfo function in listing 6.26.

Here’s a possible implementation of the new User type along with its non-default
resolver for the name field.

Listing 6.27 The User type

Passes $1 to the SQL
statement as [userId]

We’ll implement the
taskList field under
the me root field.

159Resolving relations

import {
GraphQLID,
GraphQLObjectType,
GraphQLString,
GraphQLNonNull,

} from 'graphql';

const User = new GraphQLObjectType({
name: 'User',
fields: {

id: { type: new GraphQLNonNull(GraphQLID) },
username: { type: GraphQLString },
name: {

type: GraphQLString,
resolve: ({ firstName, lastName }) =>

`${firstName} ${lastName}`,
},

},
});

export default User;

Note that for the resolve functions of the name field, I destructured the properties
that are to be used in the resolver out of the first source argument.

NOTE I did not include the createdAt field under this new type. I’ll add it
when we implement the me root field. The timestamp when the user was cre-
ated should not appear under the author relation. It can be helpful under
the me root field. For example, a UI can use it to show profile information for
the currently logged-in user.

To use this new User type, we need to import it in the Task type and make the new
author field use it. To resolve the author field, we just make a call to the userInfo
function we added to pgApi.

import User from './user';

const Task = new GraphQLObjectType({
name: 'Task',
fields: {

// ·-·-·

author: {
type: new GraphQLNonNull(User),
resolve: (source, args, { pgApi }) =>

pgApi.userInfo(source.userId),
},

},
});

Listing 6.28 New file: api/src/schema/types/user.js

Listing 6.29 Changes in api/src/schema/types/task.js

160 CHAPTER 6 Working with database models and relations

That will do it. You can test the new relation with this query.

{
taskMainList {

content
author {

id
username
name

}
}

}

The API displays the information about the Author for each Task, which is the same
test account in the sample data we’re using (figure 6.7).

DEALING WITH NULL VALUES

There is a small problem in the data response in figure 6.7: the Author name was
returned as null null. Why is that?

 The null concept is confusing. Different coders associate different meanings with
it. You need to be careful to always consider the possibility of dealing with null. You
should ask, “What if this is null?” about every variable you use in your code. This is one
reason why languages like TypeScript and Flow are popular: they can help detect
these problems.

 When we used the template string ${firstName} ${lastName}, we should have
asked ourselves that question! What if these properties are null? JavaScript will just
insert “null” as a string. How do we solve this issue?

 First, do we need to have first_name and last_name as nullable columns in the
database? Will there ever be a semantic difference between null and an empty string

Listing 6.30 Query to test the Task/Author relation

Figure 6.7 Getting Author information for each Task object

161Resolving relations

in these columns? If not (which is the most likely answer), it would have been a better
design decision to make these fields non-null in the database and maybe make them
default to an empty string.

 For the sake of example, let’s assume that we don’t have control over the structure
of the database table and/or we cannot fix the data that’s already there. This does not
mean we should leak these problems out to the consumers of this API. We can make
the API’s name field non-null and make the server always return either the name or an
empty string instead of nulls, or worse, nulls cast in a string.

 There are many ways to implement that. Here’s one.

name: {
type: new GraphQLNonNull(GraphQLString),
resolve: ({ firstName, lastName }) =>

[firstName, lastName].filter(Boolean).join(' '),
},

This way, the API will always return a string that will ignore null values in firstName,
lastName, or both (figure 6.8).

THE N+1 QUERIES PROBLEM

Now that we have implemented a relation and made the GraphQL server execute
multiple SQL statements for it, we can talk about the N+1 queries problem. It is the
first big challenge when implementing GraphQL services. To see this problem in

Listing 6.31 Changes to the name field in api/src/schema/types/user.js

Figure 6.8 Making the name field always return a value (which could be an empty string)

Current code
Use git checkout 6.3 to reset your local repo to the current progress in the code.

162 CHAPTER 6 Working with database models and relations

action, you’ll need to enable logging for your PostgreSQL service and tail the logs
while you execute GraphQL queries.

NOTE How to enable logging for PostgreSQL depends on your platform, OS,
version, and many other factors, so you’ll need to figure it out on your own.
Make sure the server logs report a SQL query every time it is executed on the
PostgreSQL service. The provided Docker image for PostgreSQL should do
that out of the box.

Once you’re tailing the logs, execute the query in listing 6.25 and find every instance
in the log related to executing a SQL statement. Here are the SQL queries that were
executed on my PostgreSQL server when I tested this.

LOG: statement:
SELECT ·-·-·
FROM azdev.tasks WHERE ·-·-·
LOG: execute <unnamed>:
SELECT ·-·-·
FROM azdev.users WHERE id = ANY ($1)
DETAIL: parameters: $1 = '1'
LOG: execute <unnamed>:
SELECT ·-·-·
FROM azdev.users WHERE id = ANY ($1)
DETAIL: parameters: $1 = '1'
LOG: execute <unnamed>:
SELECT ·-·-·
FROM azdev.users WHERE id = ANY ($1)
DETAIL: parameters: $1 = '1'
LOG: execute <unnamed>:
SELECT ·-·-·
FROM azdev.users WHERE id = ANY ($1)
DETAIL: parameters: $1 = '1'
LOG: execute <unnamed>:
SELECT ·-·-·
FROM azdev.users WHERE id = ANY ($1)
DETAIL: parameters: $1 = '1'

If you’re using Docker Desktop and the provided Docker images, you can see the
PostgreSQL logs by opening the dashboard and navigating to the Logs view of the
running gia_pg container (see figure 6.9). You can also see them in the output of the
npm run start-dbs command.

TIP PostgreSQL will likely log a lot more lines around these executions. For
example, you might see parse/bind lines as well. Look for entries that have a
statement or execute label.

Why are we executing six SQL queries? Because we have one main query (for Tasks),
and we have five public Task records in the sample data. For each Task record, we’re
asking the database about its associated User record. That’s five queries for Users plus

Listing 6.32 Excerpt from my PostgreSQL logs showing the N+1 problem

“1” is the ID value for the user
I used in the sample data.

163Resolving relations

the main query. This 5 + 1 is the N+1 problem. If we had 41 public Task objects in the
azdev.tasks table, we would be executing 42 SQL queries here.

 Clearly this is a problem. We should not be doing that. There are many ways to fix
this issue. I’ll show you one of them here, and we will see a better one in the next
chapter.

 An easy way to fix this problem is through the direct use of database joins (or data-
base views based on joins). Database joins are powerful. You can form a single SQL
query that gets information from two or more tables at once. For example, if we’re to
find a Task record and get the information for its associated User in the same SQL
response, we can do a join like this (you can put this in api/src/db/sqls.js).

const views = {
tasksAndUsers: `

SELECT t.*,
u.id AS "author_id",
u.username AS "author_username",
u.first_name AS "author_firstName",
u.last_name AS "author_lastName",
u.created_at AS "author_createdAt"

FROM azdev.tasks t
JOIN azdev.users u ON (t.user_id = u.id)

`,
};
// ·-·-·

Listing 6.33 Changes in api/src/db/sqls.js

Figure 6.9 Docker container logs

164 CHAPTER 6 Working with database models and relations

The tasksAndUsers string can act like a view, and we can use it to create an actual
database view object if we want to. However, let’s just use it inline for this example.

 You can test the SELECT statement in a PostgreSQL client (like psql). Docker Desk-
top provides a CLI button to give you command-line access to the running container
(see figure 6.10).

Note that I used column aliases to prefix the users table columns with "author_". If
we don’t do that, there might be a conflict in column names (for example, both tables
have an id field). This prefixing will also make it easier for us to implement the
GraphQL resolvers for this relation.

 To use the tasksAndUsers view, instead of selecting from the azdev.tasks table for
the sqls.tasksLatest SQL query, we can select from the new tasksAndUsers view.

taskMainList: `
SELECT id, content, tags, ·-·-·

"author_id", "author_username", "author_firstName",
"author_lastName", "author_createdAt"

FROM (${views.tasksAndUsers})
WHERE is_private = FALSE
ORDER BY created_at DESC
LIMIT 100

`,

Listing 6.34 Changes in api/src/db/sqls.js

Figure 6.10 The SQL view that has both Task and Author info

165Resolving relations

With that, the parent source object used to resolve the Task type will also have
author_-prefixed columns that hold the author information inline in the same object.
No further SQL queries are necessary. However, we need to extract the prefixed col-
umns into an object suitable to be the parent source object for the User type resolvers.
Let’s create a utility function to do that. I’ll name it extractPrefixedColumns. Here’s
how we will use it in the Task type.

// ·-·-·
import { extractPrefixedColumns } from '../../utils';

const Task = new GraphQLObjectType({
name: 'Task',
fields: {

// ·-·-·

author: {
type: new GraphQLNonNull(User),
resolve: prefixedObject =>

extractPrefixedColumns({ prefixedObject, prefix: 'author' }),
},

},
});

The implementation of extractPrefixedColumns can be a simple reduce call to filter
the columns and only include the prefixed columns, but without their prefixes.

export const extractPrefixedColumns = ({
prefixedObject,
prefix,

}) => {
const prefixRexp = new RegExp(`^${prefix}_(.*)`);
return Object.entries(prefixedObject).reduce(

(acc, [key, value]) => {
const match = key.match(prefixRexp);
if (match) {

acc[match[1]] = value;
}
return acc;

},
{},

);
};

That’s it! You can test the query in listing 6.30, and it will work exactly the same—except
instead of N+1 executed statements in the logs, there will be exactly one statement.

Listing 6.35 Changes in api/src/schema/types/task.js

Listing 6.36 New function in api/src/utils.js

match[1] will be the prefixed column
name without the prefix part.

166 CHAPTER 6 Working with database models and relations

LOG: statement:
SELECT ·-·-·

FROM (
SELECT ·-·-·
FROM azdev.tasks t
JOIN azdev.users u ON (t.user_id = u.id)

) tau WHERE ·-·-·

This method is simple. It’s efficient in terms of communicating with PostgreSQL.
However, it does mean that for each returned row, we need to perform a loop over its
objects to extract the prefixed keys. This issue can be improved by changing the
Author type to resolve directly with the prefixed values. However, that means adding
more complexity, which, I think, will make the code less readable. There is a better
way, and we will discuss it in the next chapter.

 I am going to undo all the view-based changes made to solve the N+1 problem to
prepare for the other solution. However, before we talk about it, let’s resolve the last
remaining relation under taskMainList: the list of Approaches (and their Authors).

6.4.2 Resolving a one-to-many relation

We’ll implement the approachList field starting from the types and resolvers. We
need to modify the Task type to add the new approachList field. That field is a non-
null list of non-null Approach objects (which is the new GraphQL type we need to
introduce). To resolve the approachList field, we need a new function in pgApi that
takes a taskId and returns an array of Approach objects associated with it. Let’s name
that function approachList.

// ·-·-·
import Approach from './approach';

const Task = new GraphQLObjectType({
name: 'Task',
fields: {

// ·-·-·
approachList: {

type: new GraphQLNonNull(
new GraphQLList(new GraphQLNonNull(Approach))

Listing 6.37 Excerpt from my PostgreSQL logs showing that only one query was executed

Listing 6.38 Changes in api/src/schema/types/task.js

Current code
For your reference, I put the code for the view-based example in its own Git branch.
You can use the command git checkout 6.T1 to see that code.

I did not include this example in the current 6.3 branch (which you can go back to
with the command git checkout 6.3).

Approach is the new
GraphQL type we
need to introduce.

167Resolving relations

),
resolve: (source, args, { pgApi }) =>

pgApi.approachList(source.id),
},

},
});

NOTE This code uses two things that we do not have yet: the Approach type
and the pgApi.approachList function.

Let’s implement the Approach type next. This is the schema-language text we have for it.

type Approach implement SearchResultItem {
id: ID!
createdAt: String!
content: String!
voteCount: Int!
author: User!
task: Task!
detailList: [ApproachDetail!]!

}

The implementation of this type is mostly similar to the Task type. We can use the
default resolvers for id and content, voteCount, the same ISO casting for createdAt,
and the same code we used for the author field.

import {
GraphQLID,
GraphQLObjectType,
GraphQLString,
GraphQLInt,
GraphQLNonNull,

} from 'graphql';

import User from './user';

const Approach = new GraphQLObjectType({
name: 'Approach',
fields: {

id: { type: new GraphQLNonNull(GraphQLID) },
content: { type: new GraphQLNonNull(GraphQLString) },
voteCount: { type: new GraphQLNonNull(GraphQLInt) },
createdAt: {

type: new GraphQLNonNull(GraphQLString),
resolve: ({ createdAt }) => createdAt.toISOString(),

},
author: {

type: new GraphQLNonNull(User),

Listing 6.39 The Approach type in the schema-language text

Listing 6.40 New file: api/src/schema/types/approach.js

pgApi.approachList receives the ID of
a Task object (source.id) and should
return a list of Approach objects.

We’ll implement the task and
detailList fields in the next chapter.

168 CHAPTER 6 Working with database models and relations

resolve: (source, args, { pgApi }) =>
pgApi.userInfo(source.userId),

},
},

});

export default Approach;

The approachList field must be resolved from the azdev.approaches table. The for-
eign key that connects a Task object to a list of Approach objects is the task_id field
in the azdev.approaches table. For each resolved Task object, we need to issue this
SQL statement (which is already in the sqls.js file) to get the information about the list
of Approach objects available under it.

tasksApproachLists: `
SELECT id, content, user_id AS "userId", task_id AS "taskId",

vote_count AS "voteCount", created_at AS "createdAt"
FROM azdev.approaches
WHERE task_id = ANY ($1)
ORDER BY vote_count DESC, created_at DESC

`,

TIP Naming is hard, and I’m not always good at it. In the official open source
repo for the AZdev API, you may see names other than the ones I use here in
the book. In fact, if you can think of better names than those currently in the
AZdev API GitHub repository, please open an issue or a pull request! You can
find the GitHub repository for the AZdev project at az.dev/contribute.

The sqls.approachesForTaskIds statement will be used by the pgApi.approachList
function that we will implement next.

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·
approachList: async (taskId) => {

const pgResp = await pgQuery(sqls.approachesForTaskIds, {
$1: [taskId],

});
return pgResp.rows;

},
};

};

Listing 6.41 The sqls.tasksApproachLists statement

Listing 6.42 Changes in api/src/db/pg-api.js

The columns are aliased as camel-case.

This statement needs a Task
ID value to be passed as $1.

Sorts Approaches by their vote count (and then
timestamp, if many records have the same vote count)

Passes $1 to the SQL
statement as [taskId]

https://az.dev/contribute

169Resolving relations

I hope this is getting easier for you. We still have a lot more examples to go through,
but the taskMainList example is finally complete (figure 6.11)! Go ahead and test
the full query for it from listing 6.24.

Guess how many SQL statements we’re sending to PostgreSQL to satisfy this GraphQL
query?

 One for the main Task list.
 One for each Task’s Author info (five total).
 One for each Task’s list of Approaches (five total).
 One for each Approach on each Task to get that Approach’s Author info. We

have a total of six Approaches in the sample data.

That’s a total of 17 SQL statements! We can still fix this with database views, but doing
so will add a lot more complexity to the code. Let’s explore the better option, which is
to use the data-loader concept. We’ll talk about that in the next chapter.

Summary
 Use realistic, production-like data in development to make your manual tests

relevant and useful.
 Start with the simplest implementations you can think of. Make things work,

and then improve on your implementations.

Figure 6.11 The response for the complete taskMainList query

Current code
Use git checkout 6.4 to reset your local repo to the current progress in the code.

170 CHAPTER 6 Working with database models and relations

 You can use the GraphQL context object to make a pool of database connec-
tions available to all resolver functions.

 You can use fields’ resolvers to transform the names and values of your data ele-
ments. The GraphQL API does not have to match the structure of the data in
the database.

 Try to separate the logic for database interactions from other logic in your
resolvers.

 It’s a good practice to wrap third-party APIs with your own calls. This gives you
some control over their behavior and makes the code a bit more maintainable
going forward.

 Resolving database relations involves issuing SQL statements over many tables.
This causes an N+1 queries problem by default because of the graph-resolving
nature of GraphQL. We can solve this problem using database views, but that
complicates the code in the GraphQL service. In the next chapter, we will learn
about the DataLoader library, which offers a better way to deal with the N+1
problem and make your GraphQL service more efficient in general.

171

Optimizing data fetching

Now that we have a GraphQL service with a multimodel schema, we can look at one
of GraphQL’s most famous problems, the N+1 queries problem. We ended the
previous chapter with a GraphQL query that fetches data from three database
tables.

{
taskMainList {

// ·-·-·
author {

// ·-·-·
}
approachList {

This chapter covers
 Caching and batching data-fetch operations

 Using the DataLoader library with primary keys
and custom IDs

 Using GraphQL’s union type and field arguments

 Reading data from MongoDB

Listing 7.1 The N+1 query example

172 CHAPTER 7 Optimizing data fetching

// ·-·-·
author {

// ·-·-·
}

}
}

}

Because the GraphQL runtime traverses the tree field by field and resolves each field
on its own as it does, this simple GraphQL query resulted in a lot more SQL state-
ments than necessary.

7.1 Caching and batching
To analyze a solution to this problem, let’s go back to the simpler query from listing
6.30.

{
taskMainList {

content
author {

id
username
name

}
}

}

If you remember, this query was issuing six SQL SELECT statements to the database,
which is an example of the N+1 problem (N being five Task records). We’ve seen how
to use database join views to make it execute only one SQL statement, but that solu-
tion is not ideal. It’s not easy to maintain or scale.

 Another solution is to use the concepts of caching and batching for all the neces-
sary SQL statements in a single GraphQL operation:

 Caching—The least we can do is cache the response of any SQL statements
issued and then use the cache the next time we need the exact same SQL state-
ment. If we ask the database about user x, do not ask it again about user x; just

Listing 7.2 The taskMainList query

Current code
Use git checkout 7.0 to reset your local repo to the current progress in the code.
If you need to stash any local changes, use git add . && git stash. Remember
to run npm install to install any missing dependencies.

173Caching and batching

use the previous response. Doing this in a single API request (from one con-
sumer) is a no-brainer, but you can also use longer-term, multisession caching if
you need to optimize things further. However, caching by itself is not enough.
We also need to group queries asking for data from the same tables.

 Batching—We can delay asking the database about a certain resource until we
figure out the IDs of all the records that need to be resolved. Once these IDs
are identified, we can use a single query that takes in a list of IDs and returns
the list of records for them. This enables us to issue a SQL statement per table,
and doing so will reduce the number of SQL statements required for the simple
query in listing 7.2 to just two: one for the azdev.tasks table and one for the
azdev.users table.

Manually managing these caching and batching operations would still be a lot of
work. However, this is the type of work that can be abstracted to a separate library.
After releasing the GraphQL.js reference implementation, the Facebook team also
released a reference implementation for such a library. They named it DataLoader
(az.dev/data-loader).

TIP While the DataLoader JavaScript project originated at Facebook as
another reference implementation mirroring Facebook’s own internal data-
loading library, it has since moved to the GraphQL foundation and it is now
maintained by the GraphQL community. It’s a stable, battle-tested project;
and despite being young, it’s already part of thousands of open source proj-
ects and is downloaded millions of times each month.

DataLoader is a generic JavaScript utility library that can be injected into your applica-
tion’s data-fetching layer to manage caching and batching operations on your behalf.

 To use DataLoader in the AZdev API project, we need to install it first.

$ npm install dataloader

This npm package has a default export that we usually import as DataLoader. This
default export is a JavaScript class that we can use to instantiate a DataLoader
instance. The DataLoader class constructor expects a function as its argument, and
that function is expected to do the data fetching. This function is known as the batch-
loading function because it expects an array of key IDs and should fetch all records asso-
ciated with those IDs in one batch action and then return the records as an array that
has the same order as the array of input IDs.

 For example, here’s one way to create a loader responsible for loading user
records.

Listing 7.3 Command: installing the dataloader package

https://az.dev/data-loader

174 CHAPTER 7 Optimizing data fetching

import DataLoader from 'dataloader';

const userLoader = new DataLoader(
userIds => getUsersByIds(userIds)

);

Once you have the logic of fetching a list of user records based on a list of ID values,
you can start using the userLoader object to fetch multiple users. For example, imag-
ine that a request in your API application needs to load information about users in
the following order.

const promiseA = userLoader.load(1);
const promiseB = userLoader.load(2);

// await on something async

const promiseC = userLoader.load(1);

DataLoader takes care of batching the first two statements into a single SQL statement
because they happen in the same frame of execution, which is known in Node.js as a
single tick of the event loop (az.dev/event-loop).

 For the third statement, Dataloader uses its memoization cache of .load() calls.
User 1 has already been fetched from the database (in the previous frame of execu-
tion, but still in the same request). Fetching it again would be redundant.

 This minimization of SQL statements and elimination of redundant loads relieves
pressure on your data-storage services. It also creates fewer objects overall, which may
relieve memory pressure on your API application as well.

Listing 7.4 Example: the DataLoader syntax

Listing 7.5 Example: using a DataLoader object

The userIds argument is an array, and
getUsersByIds is the batch-loading function that
takes an array of IDs and returns an array of
user records representing these IDs (in order).

Why DataLoader?
While you can do the batching and caching manually, DataLoader enables you to
decouple the data-loading logic in your application without sacrificing the perfor-
mance of the caching and batching optimizations. DataLoader instances present a
consistent API over your various data sources (PostgreSQL, MongoDB, and any oth-
ers). This allows you to focus on your application’s logic and safely distribute its data-
fetching requirements without worrying about maintaining minimal requests to your
databases and other sources of data.

Note that DataLoader uses simple single-resource batching and short-term caching.
There are other GraphQL-to-database execution layers that use multiresource batch-
ing (without caching and its many problems) to achieve similar (and often better) per-
formance improvements. However, I think the DataLoader approach is simpler, more
flexible, and easier to maintain.

https://az.dev/event-loop

175Caching and batching

7.1.1 The batch-loading function

A batch-loading function like getUsersByIds in listing 7.4 accepts an array of IDs (or
generic keys) and should return a promise object that resolves to an array of records.
To be compatible with DataLoader, the resulting array must be the exact same length
as the input array of IDs, and each index in the resulting array of records must corre-
spond to the same index in the input array of IDs.

 For example, if the getUsersByIds batch function is given the input array of IDs
[2, 5, 3, 1], the function needs to issue one SQL statement to fetch all user
records for those IDs. Here’s one way to do that in PostgreSQL.

SELECT *
FROM azdev.users
WHERE id IN (2, 5, 3, 1);

TIP If an ORDER BY clause is not specified in a SELECT statement, the database
will pick the most efficient way to satisfy the statement. The order of the
returned rows will not be guaranteed.

For the sake of this example, let’s assume that for this SQL statement, the database
returned three user records (instead of four) in the following order:

{ id: 5, name: 'Luke' }
{ id: 1, name: 'Jane' }
{ id: 2, name: 'Mary' }

The getUsersByIds batch-loading function cannot use the result of that SQL state-
ment as is. It needs to reorder the records and ensure that each item aligns with the
original order of IDs: [2, 5, 3, 1]. If an ID has no corresponding record in the
result, it should be represented with a null value:

[
{ id: 2, name: 'Mary' },
{ id: 5, name: 'Luke' },
null,
{ id: 1, name: 'Jane' }

]

In chapter 6, we wrote the pgApi.userInfo function in api/src/db/pg-api.js. Let’s
convert that into a batch-loading function and see what we need to do to make it Data-
Loader-compatible.

 First, we should rename it to usersInfo now that it will be used to return an array
of user records. We should also rename its argument to userIds to indicate that it
expects a list of user IDs.

Listing 7.6 Example: using the SQL IN operator

The results order is different from
the order of IDs in the input array.

The database did not have a user
corresponding to the input id 3.

176 CHAPTER 7 Optimizing data fetching

 The sqls.usersFromIds statement is already designed to work with an array of
user IDs (using the ANY construct).

We need to change the $1 value we pass to be the new userIds argument, which itself
should be an array.

 Finally, we need to reorder the list of user records coming from the database to
match the order in the input array of userIds. We can use a simple .map/.find com-
bination to do that.

 Here are all the changes we need to make the pgApi.usersInfo a DataLoader-
compatible batch-loading function.

const pgApiWrapper = async () => {
// ·-·-·
return {

// ·-·-·
usersInfo: async (userIds) => {

const pgResp = await pgQuery(sqls.usersFromIds, { $1: userIds });
return userIds.map((userId) =>

pgResp.rows.find((row) => userId === row.id)
);

},
// ·-·-·

};
};

TIP The .map/.find method is not the most efficient way to accomplish the
task in listing 7.7, but it is simple. You should consider converting the
pgReps.rows array into an object and do a constant time lookup within the .map
loop. I’ll leave that as an exercise for you. Look at the final codebase for the proj-
ect (az.dev/contribute) to see the optimization we are doing for this part.

Listing 7.7 Changes in api/src/db/pg-api.js

The ANY comparison construct
There are many ways to fetch multiple records from the database using an array of
IDs. The easiest is to use the ANY PostgreSQL comparison construct because we can
feed it an array directly (so no array manipulation is needed).

The SQL statement in listing 7.6 can be written with ANY as follows:

SELECT *
FROM azdev.users
WHERE id = ANY ('{2, 5, 3, 1}');

Note that the array syntax in PostgreSQL uses curly brackets instead of square brack-
ets. This might look a bit weird, but we don’t have to deal with this issue ourselves
as the driver we’re using will take care of that conversion for us.

Plural
names

Passes $1 as userIds, which
is now an array of user IDs

Uses a .map call on the input array to
ensure that the output array has the exact

same length and order. DataLoader will not
work properly if you don’t do that.

https://az.dev/contribute

177Caching and batching

This batch-loading function is ready. Let’s use it.

7.1.2 Defining and using a DataLoader instance

DataLoader caching is not meant to be part of your application-level caching that’s
shared among requests. It’s meant to be a simple memoization to avoid repeatedly
loading the same data in the context of a single request in your application. To do
that, you should initialize a loader object for each request in your application and use
it only for that request.

 Since we’re using the Express.js framework to manage requests to the AZdev API,
to make the “Users loader” scoped to a single request, we can define it inside the lis-
tener function of the server.use call in api/src/server.js.

 However, the code currently delegates the entire listener function argument to the
graphqlHTTP higher-order function. We’ll need to change that. Here’s one way of
doing so.

// ·-·-·
import DataLoader from 'dataloader';

async function main() {
// ·-·-·

server.use('/', (req, res) => {
const loaders = {

users: new DataLoader((userIds) => pgApi.usersInfo(userIds)),
};
graphqlHTTP({

schema,
context: { pgApi, loaders },
// ·-·-·

})(req, res);
}

);

This change introduces a new function as the listener function for server.use,
defines the users loader within this new request-scoped context, and then delegates
the rest of the work back to the graphqlHTTP function. With that, we’re now able to
make the new loaders object part of the GraphQL context object.

 Note that I made loaders into an object that has the usersDataLoader instance as
a property because we will be introducing more loaders for more database models.

 Also note that graphqlHTTP is a higher-order function that returns another func-
tion. Its returned function expects the req and res arguments (coming from the
Express listener function). We are basically doing the same thing as before; but now
that we’ve introduced a wrapper listener function, we need to pass these req and res
objects manually.

Listing 7.8 Changes in the server.use call in api/src/server.js

178 CHAPTER 7 Optimizing data fetching

TIP I defined the loaders object for both POST and GET requests. Ideally, in a
production environment, it should be defined only for POST requests. I’ll
leave that part for you to optimize.

That’s it for initializing the loaders. Each time there is a request, we create a Data-
Loader instance for the Users model that uses the pgApi.usersInfo batch-loading
function that we have prepared. Let’s now replace the manual direct fetching of users
in the codebase with this new DataLoader instance. We need to modify the two
GraphQL types that previously used pgApi.userInfo. Look that up: we used it in the
Task and Approach types.

 Here’s how to change both of these places to use the new usersDataLoader
instance. First, here is the Task type.

const Task = new GraphQLObjectType({
name: 'Task',
fields: {

// ·-·-·

author: {
type: new GraphQLNonNull(User),
resolve: (source, args, { loaders }) =>

loaders.users.load(source.userId),
},

// ·-·-·
},

});

And here is the Approach type.

const Approach = new GraphQLObjectType({
name: 'Approach',
fields: {

// ·-·-·

author: {
type: new GraphQLNonNull(User),
resolve: (source, args, { loaders }) =>

loaders.users.load(source.userId),
},

// ·-·-·
},

});

Listing 7.9 Changes in the Task type in api/src/schema/types/task.js

Listing 7.10 Changes in the Approach type in api/src/schema/types/approach.js

179Caching and batching

The changes to these types are identical. We use the new loaders object in the
resolver’s context object (instead of the previous pgApi object) and then use a .load
call on the usersDataLoader instance.

 DataLoader takes care of the rest! When multiple .load calls are made in the same
execution context while the GraphQL query is being resolved, DataLoader batches
the calls. It prepares an array from all the loaded IDs and executes the batch-loading
function just once. It then uses the response for that single call to satisfy all user data
requirements that were made in the query.

 If we try the same GraphQL query in listing 7.2 now while tailing the logs of Postgre-
SQL, we will see something like the following excerpt from my PostgreSQL logs:

LOG: statement: SELECT ... FROM azdev.tasks WHERE ...
LOG: execute <unnamed>: SELECT ... FROM azdev.users WHERE id = ANY ($1)
DETAIL: parameters: $1 = '{1}'

Note that the parameter value is {1}, which represents an array in PostgreSQL. More
important, note that only one SQL statement was issued for the users table (instead of
five, as previously).

 We added a lot of value with just a few lines of code. But to appreciate it more, let’s
exclusively load the other ID-based data fetching through DataLoader instances.
Remember the GraphQL query that made 17 SQL statements at the end of chapter 6?
Let’s see how many SQL statements it will make after converting all data-fetching logic
to go through DataLoader instances.

7.1.3 The loader for the approachList field

The other ID-based fetching we have done so far is in the pgApi.approachList func-
tion in api/src/db/pg-api.js. This function is a bit different than the pgApi
.usersInfo function as it takes a taskId and returns an array of Approach records.
This means when we switch it to work with an array of keys instead of a single value, it
will take an array of taskIds, and it should return an array of arrays (each array repre-
senting the list of Approaches for one Task).

 DataLoader, in this case, will be concerned about the order of the top-level array.
The order of the items in the inner-level arrays is an application-level concern.

 sqls.approachesForTaskIds accepts an array of Task IDs, but it will return a sin-
gle list of all the Approach records under all the input Task IDs. We’ll need to split this
list and group Approach records by Task IDs while keeping the order of the top-level
array matching the order of the input array.

“1” is the ID value for the
test user in the sample data.

Current code
Use git checkout 7.1 to reset your local repo to the current progress in the code.

180 CHAPTER 7 Optimizing data fetching

 We can use a .map/.filter combination to do that. Here are all the changes I
made to this function.

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·
approachLists: async (taskIds) => {

const pgResp = await pgQuery(sqls.approachesForTaskIds, {
$1: taskIds,

});
return taskIds.map((taskId) =>

pgResp.rows.filter((row) => taskId === row.taskId),
);

},
};

};

The pgApi.approachLists batch-loading function is now compatible with Data-
Loader. To use it, we instantiate a new loader instance in api/src/server.js.

const loaders = {
users: new DataLoader((userIds) => pgApi.usersInfo(userIds)),
approachLists: new DataLoader((taskIds) =>

pgApi.approachLists(taskIds),
),

};

Then we use this new instance in the GraphQL types that previously used a direct
database fetch to list Approaches. The only type that did that is the Task type.

const Task = new GraphQLObjectType({
name: 'Task',
fields: {

// ·-·-·

approachList: {
type: new GraphQLNonNull(

new GraphQLList(new GraphQLNonNull(Approach))
),
resolve: (source, args, { loaders }) =>

loaders.approachLists.load(source.id),
},

},
});

Listing 7.11 Changes in api/src/db/pg-api.js

Listing 7.12 Changes in api/src/server.js

Listing 7.13 Changes in api/src/schema/types/task.js

Plural
names Passes $1 as the taskIds array

Splits the rows and groups them under their
corresponding taskId value. The filter call will group

the items in the response by the taskId value. The
returned result is an array of approach arrays.

181Caching and batching

That should do it. Go ahead and test the same query we tested at the end of chapter 6
(listing 6.24) while tailing the PostgreSQL logs. You should see something like this
excerpt from my PostgreSQL logs:

LOG: statement: SELECT ... FROM azdev.tasks WHERE ...;
LOG: execute <unnamed>: SELECT ... FROM azdev.users WHERE id = ANY ($1)
DETAIL: parameters: $1 = '{1}'
LOG: execute <unnamed>: SELECT ... FROM azdev.approaches WHERE task_id = ANY

➥ ($1) ...
DETAIL: parameters: $1 = '{1,2,3,4,6}'

The key thing to notice here is that we’re using a single SQL query to fetch Approaches
for all Tasks. This same query will be used whether we have 100 or 1,000 Tasks.

 With the new DataLoader instances in place, the query that used 17 SQL state-
ments before is now using only 3 statements (one statement per database table). We
did not need to do any join statements or field renaming. This is a win!

 This win also contributes to making the server more resilient to denial-of-service
attacks using intentionally complicated queries: for example, if we used GraphQL’s
alias concept to ask for Approach data multiple times, as follows.

{
taskMainList {

id
author {

id
}
a1: approachList {

id
author {

id
}

}
a2: approachList {

id
author {

id
}

}
a3: approachList {

id
author {

id
}

}
}

}

The DataLoader instances would take care of not going to the database multiple times
per alias. This intentionally complicated query would still only execute three

Listing 7.14 An intentionally complicated query example

182 CHAPTER 7 Optimizing data fetching

statements over the wire. We should certainly put more protection layers between
public queries and the backend schema, but it’s good to know that if something slipped
through the cracks, we have a level of optimization to fall back on.

Note that we did not need to optimize the sqls.tasksLatest statement because it
does not depend on IDs (so no batching is needed). However, we can still use Data-
Loader to take advantage of the caching of any query asking for the taskMainList
field. We’ll do that soon, but first let’s implement the task field under an Approach
object and learn about circular dependencies with GraphQL types.

7.2 Single resource fields
In our schema plan, the taskInfo root query root field is supposed to fetch the infor-
mation for a single Task record identified by an ID that the API consumer can send as
a field argument.

type Query {
taskInfo(id: ID!): Task
// ·-·-·

}

Here’s a query that we can use to work through this field.

query taskInfoTest {
taskInfo(id: 3) {

id
content
author {

id
}
approachList {

content
}

}
}

Note that this field has to support the nested author and approachList information.
But guess what? We don’t need to do anything new. We have already implemented
these relationships under taskMainList. The taskInfo field uses the same output
type (Task).

Listing 7.15 The taskInfo root field and its id argument

Listing 7.16 Example query for the taskInfo field

Current code
Use git checkout 7.2 to reset your local repo to the current progress in the code.

183Single resource fields

 You might be tempted to think that since this taskInfo field works with a single
record, there is no need to use DataLoader for it. However, using DataLoader is pref-
erable for many reasons. For one thing, having all database fetch requests go through
DataLoader is simply a good code abstraction practice, but there is still performance
value for composite queries. For example, take a look at this query.

query manyTaskInfoTest {
task1: taskInfo(id: 1) {

id
content
author {

id
}

}
task2: taskInfo(id: 2) {

id
content
author {

id
}

}
}

If we don’t use a DataLoader instance for the taskInfo field, this query will ask the
database about two Task records using two SQL statements. With a DataLoader
instance, these two statements are batched into one.

 Before we implement the taskInfo field, let’s do a little refactoring. The
api/src/schema/index.js file is currently doing two things that are logically separate:
it defines the main Query type and uses it to create a schema. Let’s split these two tasks
into two files instead of one.

import { GraphQLSchema, printSchema } from 'graphql';

import QueryType from './queries';

export const schema = new GraphQLSchema({
query: QueryType,

});

console.log(printSchema(schema));

Move everything else that was in the file to api/src/schema/queries.js, and export the
main QueryType from that file.

Listing 7.17 Example query for the taskInfo field

Listing 7.18 New content in api/src/schema/index.js

184 CHAPTER 7 Optimizing data fetching

import {
GraphQLObjectType,
GraphQLString,
GraphQLInt,
GraphQLNonNull,
GraphQLList,

} from 'graphql';

import NumbersInRange from './types/numbers-in-range';
import { numbersInRangeObject } from '../utils';

import Task from './types/task';

const QueryType = new GraphQLObjectType({
name: 'Query',
fields: {

currentTime: {
type: GraphQLString,
resolve: () => {

const isoString = new Date().toISOString();
return isoString.slice(11, 19);

},
},
numbersInRange: {

type: NumbersInRange,
args: {

begin: { type: new GraphQLNonNull(GraphQLInt) },
end: { type: new GraphQLNonNull(GraphQLInt) },

},
resolve: function (source, { begin, end }) {

return numbersInRangeObject(begin, end);
},

},
taskMainList: {

type: new GraphQLList(new GraphQLNonNull(Task)),
resolve: async (source, args, { pgApi }) => {

return pgApi.taskMainList();
},

},
},

});

export default QueryType

TIP Note that I made the refactoring changes in a separate Git commit. This
is a good practice to keep the history of changes in a Git repo clean and easy
to understand.

Listing 7.19 New file: api/src/schema/queries.js

Current code
Use git checkout 7.3 to reset your local repo to the current progress in the code.

185Single resource fields

Let’s make this change with a top-down approach this time (so far, we’ve been using a
bottom-up approach). We’ll first define the taskInfo root query (in the new
api/src/schema/queries.js file). Note that—for the first time so far—we’re going to
use a field argument (the id argument for taskInfo). In the definition of the
taskInfo field, we have to include the type of that id argument. We can use the
GraphQLID type for it.

import {
GraphQLID,
GraphQLObjectType,
GraphQLString,
GraphQLInt,
GraphQLNonNull,
GraphQLList,

} from 'graphql';
// ·-·-·

const QueryType = new GraphQLObjectType({
name: 'Query',
fields: {

// ·-·-·
taskInfo: {

type: Task,
args: {

id: { type: new GraphQLNonNull(GraphQLID) },
},
resolve: async (source, args, { loaders }) => {

return loaders.tasks.load(args.id);
},

},
},

});

The loaders.tasks function does not exist yet. I often start planning for a change in
the codebase just like this. I find it helpful to think about the new objects and func-
tions I need and use them before I write them. This approach helps me come up with
better, more practical designs. The new loader function goes in api/src/server.js.

const loaders = {
// ·-·-·
tasks: new DataLoader((taskIds) => pgApi.tasksInfo(taskIds)),

};

Following the top-down analysis, we now need to define the pgApi.tasksInfo func-
tion. I have prepared a sqls.tasksFromIds statement for it in api/src/db/sqls.js.

Listing 7.20 Changes in api/src/schema/queries.js

Listing 7.21 Changes in api/src/server.js

Defines the
name/type

of a field
argument

When a consumer passes values for
a field’s arguments, the values are

captured as one object passed as the
second argument for each resolve
method (commonly named args).

Reads the value a consumer used
for the id argument out of the
resolve method’s args object

186 CHAPTER 7 Optimizing data fetching

// $1: taskIds
// $2: userId (can be null)
tasksFromIds: `

SELECT ...
FROM azdev.tasks
WHERE id = ANY ($1)
AND (is_private = FALSE OR user_id = $2)

`,

Something new and important is introduced in this statement. It takes two variables:
one is the IDs of tasks to be loaded, and the other is a userId argument. The query
will then make sure the looked-up Task is either public or owned by the user identi-
fied by the userId value. Without that condition, private Tasks can be looked up using
the taskInfo field (which will use this SQL statement).

 This SQL statement can be used without a userId value (which is what we need to
do first); for that case, it will only fetch information about public Task records.

 Here’s the pgApi DataLoader-compatible function to execute the SQL statement.

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·
tasksInfo: async (taskIds) => {

const pgResp = await pgQuery(sqls.tasksFromIds, {
$1: taskIds,
$2: null, // TODO: pass logged-in userId here.

});
return taskIds.map((taskId) =>

pgResp.rows.find((row) => taskId == row.id),
);

},
};

};

export default pgApiWrapper;

Listing 7.22 The sqls.tasksFromIds statement

Listing 7.23 Changes in api/src/db/pg-api.js

Note the loose equality
operator (==) here.

Challenge
Can you think of the reason why I used the abstract (or loose) equality operator in
listing 7.23?

Answer: The id argument in the taskInfo root field is defined with the GraphQLID
type. GraphQL casts any value you pass to a GraphQLID field to a string. The actual
id values coming from PostgreSQL are integers (because all primary key fields were
defined using the serial type). Comparing integers to strings is one of the rare
cases where the loose equality operator is useful.

187Circular dependencies in GraphQL types

That’s it! Go ahead and test the taskInfoTest query in listing 7.16.

TIP The $1/$2 variables have to be defined in order. The pgQuery wrapper is
designed to pass their values in order as positional items in an array.

7.3 Circular dependencies in GraphQL types
We designed the Approach type to have a task field so that we can display the parent
Task information when a search result item is an Approach record. To implement this
relation, we can reuse the loaders and pgApi function we wrote for the taskInfo root
field.

 However, this relation is the inverse of the Task –> Approach relation we imple-
mented for the approachList field. This means it will introduce a circular depen-
dency in the graph: Task –> Approach –> Task –> Approach –> …

 To see this problem in action, let’s try to implement the new relation. The only
change we need to make is the Approach type.

 Since the Approach type now needs to use the Task type, and since that Task type
already uses the Approach type, the Approach type will hit the circular dependency
problem. Check it out: here are the necessary changes.

// ·-·-·
import Task from './task';

const Approach = new GraphQLObjectType({
name: 'Approach',
fields: {

// ·-·-·
task: {

type: new GraphQLNonNull(Task),
resolve: (source, args, { loaders }) =>

loaders.tasks.load(source.taskId)
},

},
});

export default Approach;

Listing 7.24 Changes in api/src/schema/types/approach.js

Alternatively, you can do the number-to-string casting yourself before making the
comparison.

Current code
Use git checkout 7.4 to reset your local repo to the current progress in the code.

This line is the problem.
Task uses Approach,
which now uses Task.

188 CHAPTER 7 Optimizing data fetching

The server logs will report this problem:

ReferenceError: Task is not defined

Luckily, there is a simple solution. Instead of using types directly under the fields
property, that property can be a function whose return value is the object represent-
ing the fields. GraphQL.js supports this out of the box, and it’s handy for situations
like these.

const Approach = new GraphQLObjectType({
name: 'Approach',
fields: () => ({

// ·-·-·
task: {

type: new GraphQLNonNull(Task),
resolve: (source, args, { pgApi }) =>

pgApi.tasks.load(source.taskId),
},

}),
});

Changing the fields configuration property to be a function delays this dependency
and uses it dynamically instead of statically. That function is basically executed after
Node.js loads all modules. This function is often referred to as a thunk, which is a
fancy name for a function that is used to delay a calculation until results are needed
(among a few other applications).

 The ReferenceError should be gone now. Verify that, and test the task field
under the approachList field.

 It is a good practice to always use the function signature for the fields configura-
tion property instead of the object form. Go ahead and make that change, and retest
the queries we already finished.

7.3.1 Deeply nested field attacks

When you implement two-way relations, you should think of a way to prevent the
deeply nested field attacks discussed in chapter 1. For example, the new Approach –>
Task relation will open the door for a query like this (figure 7.1).

 You can protect your API server against this type of attack in many ways. The sim-
plest solution is just to count the nesting levels and block the query after a certain
threshold. The fourth argument of each resolver has a path property that can be used

Listing 7.25 Changes in api/src/schema/types/approach.js

Note the new function syntax here!

Current code
Use git checkout 7.5 to reset your local repo to the current progress in the code.

189Circular dependencies in GraphQL types

Figure 7.1 Example:
deeply nested fields in a query

190 CHAPTER 7 Optimizing data fetching

for that purpose if you want to selectively do this check in certain fields (like task on
the Approach type). However, a better way here would be to do this validation per
operation rather than per resolver.

 You can also design your schema such that nested attacks are not even possible. For
example, we can come up with a different type for a “search-result-approach-object” and
define the task field only on that type rather than the main Approach type. Similarly,
the approachList field can be made available only under the taskInfo root field and
not under the taskMainList field (where it is actually not needed in the UI). Check out
the AZdev GitHub repo (az.dev/contribute) to see examples of using more specific
types to prevent deeply nested field attacks. We’ll also see an example of this concept
in the next chapter under the root me field.

TIP The deeply nested field attack is just one example of many ways an API
server can be attacked with intentionally complicated operations. To protect
your server from all of them, you can analyze each operation to be executed,
estimate how much time and data it will use, and block operations beyond
certain thresholds. There are libraries out there to help you do that. You can
also just let all queries run but implement a timeout to cancel operations that
take a long time. Or, you can implement a timeout based on custom cost fac-
tors you define on specific operations and block an operation if its total cost
goes beyond a certain threshold.

7.4 Using DataLoader with custom IDs for caching
Although a DataLoader batch-loading function is often associated with a list of input
IDs, you don’t need actual IDs coming from primary fields in the database. You can
come up with your own ID-to-result association and use DataLoader with the custom
map you designed. This is usually helpful when you are using the caching aspect of
DataLoader. For example, you can come up with SQL statements and give each state-
ment a unique label. That label becomes one of the IDs you can use with a Data-
Loader instance.

 Many examples in the GraphQL schema we designed could benefit from that
approach. One of them is the taskMainList field.

7.4.1 The taskMainList field

Let’s test how many SQL statements the following GraphQL query will currently issue.
Can you guess?

{
a1: taskMainList {

id
}
a2: taskMainList {

id

Listing 7.26 An example of a query using multiple aliases

https://az.dev/contribute

191Using DataLoader with custom IDs for caching

}
a3: taskMainList {

id
}
a4: taskMainList {

id
}

}

Since we have not used DataLoader for taskMainList, this GraphQL query will issue
the same SELECT statement four times.

 Here’s the related excerpt from my PostgreSQL logs:

LOG: statement: SELECT ... FROM azdev.tasks WHERE;
LOG: statement: SELECT ... FROM azdev.tasks WHERE;
LOG: statement: SELECT ... FROM azdev.tasks WHERE;
LOG: statement: SELECT ... FROM azdev.tasks WHERE;

We can use DataLoader to cache the data response it gets the first time it loads this list
and then not go back to the database for the same request. However, DataLoader is
wired to fetch a value for a key. You can think of the “value” here as the list of the latest
Task records, but there are no keys in this case. To make this database statement work
with DataLoader, we need to come up with a custom key for this SELECT statement. A
key here is just any unique label for it. I’ll use the label latest for this one.

 Let’s do this change with a top-down approach. The type that needs to be resolved
with the latest Tasks is the root Query type. Instead of issuing pgApi.taskMainList(),
let’s assume we have a tasksByTypes loader that can fetch any list of Task records by a
particular type, and let’s fetch the latest type.

const QueryType = new GraphQLObjectType({
name: 'Query',
fields: () => ({

// ·-·-·
taskMainList: {

type: new GraphQLList(new GraphQLNonNull(Task)),
resolve: async (source, args, { loaders }) => {

return loaders.tasksByTypes.load('latest');
},

},
}),

});

Note that I am using a top-down approach here as well. Let’s now write the tasksBy-
Types loader. We’ll need to add it to the listener function (in api/src/server.js).

Listing 7.27 Changes in api/src/schema/queries.js

192 CHAPTER 7 Optimizing data fetching

const loaders = {
// ·-·-·
tasksByTypes: new DataLoader((types) =>

pgApi.tasksByTypes(types),
),

};
graphqlHTTP({

schema,
context: { loaders },
graphiql: true,
// ·-·-·

})(req, res);

Again, I’ve used a tasksByTypes property that does not exist on pgApi yet. This is my
plan for the new batch-loading function. We’ll write that next.

 The new pgApi.tasksByTypes batch-loading function is special in this case. It cur-
rently only supports loading the latest type, but we still have to write it in a way that
makes it accept an array of types and return an array of results associated with these
types.

const pgApiWrapper = async () => {
// ·-·-·

return {
tasksByTypes: async (types) => {

const results = types.map(async (type) => {
if (type === 'latest') {
const pgResp = await pgQuery(sqls.tasksLatest);
return pgResp.rows;

}
throw Error('Unsupported type');

});
return Promise.all(results);

},
// ·-·-·

};
};

Note that the SQL query is invoked within the .map call, making the map callback
function return a pending promise, which makes the results object an array of pend-
ing promises. That’s why I wrap the returned result with a Promise.all call. Depend-
ing on what other types we end up adding (or not adding), this particular way of
fetching within a map call can be optimized. It’s okay as is for now because we’re really
just faking the batching nature of this list.

 That’s it. No matter how many aliases you add to fetch the taskMainList root
field, DataLoader will only ask the database about that list once. Verify that.

Listing 7.28 Changes in api/src/server.js

Listing 7.29 Changes in api/src/db/pg-api.js

Note that the pgApi object was removed from the
context object. We don’t need to query the database
directly anymore. All database communication
should happen through a loader object.

Replaces the
taskMainList function

193Using DataLoader with custom IDs for caching

 With DataLoader in the stack, we can now continue implementing other fields and
either use existing loaders or define new ones as needed.

7.4.2 The search field

The search field takes an argument—the search term—and returns a list of matching
records from both the Task and Approach models through the interface type they
implement: SearchResultItem.

type Query {
...
search(term: String!): [SearchResultItem!]

}

The search term, in this case, is the unique key that can be used with a DataLoader
batch-loading function.

 The search feature has a new concept that we’re going to implement for the first
time: the GraphQL interface type. Here are the parts of the schema related to it.

interface SearchResultItem {
id: ID!
content: String!

}

type Task implements SearchResultItem {
...

}

type Approach implements SearchResultItem {
...

}

For each record in the search results, the new interface type needs a way to determine
what type it is. It needs to tell the API consumer that a search result is a Task object or
an Approach object. We can do that using the resolveType configuration property,
which is a function whose argument is the object that implements the Search-
ResultItem type; it needs to return which GraphQL type represents that object. Let’s
design the search results objects to have a type property that holds a task or approach
string value. We can use that to implement the resolveType function logic.

 Here’s one implementation of the SearchResultItem type that’s based on this
plan. Put this in api/src/schema/types/search-result-item.js.

Listing 7.30 The search field

Current code
Use git checkout 7.6 to reset your local repo to the current progress in the code.

194 CHAPTER 7 Optimizing data fetching

import {
GraphQLID,
GraphQLInterfaceType,
GraphQLNonNull,
GraphQLString,

} from 'graphql';

import Task from './task';
import Approach from './approach';

const SearchResultItem = new GraphQLInterfaceType({
name: 'SearchResultItem',
fields: () => ({

id: { type: new GraphQLNonNull(GraphQLID) },
content: { type: new GraphQLNonNull(GraphQLString) },

}),
resolveType(obj) {

if (obj.type === 'task') {
return Task;

}
if (obj.type === 'approach') {

return Approach;
}

},
});

export default SearchResultItem;

We can now use this new type to define the root search field. We also need to define
the arguments this field expects. We designed it to expect a term value, which is a
string. To resolve the search field, let’s assume that we have a loader named
searchResults whose key is the search term.

 Here’s one possible implementation of the field.

// ·-·-·
import SearchResultItem from './types/search-result-item';

const QueryType = new GraphQLObjectType({
name: 'Query',
fields: () => ({

// ·-·-·

search: {
type: new GraphQLNonNull(

new GraphQLList(new GraphQLNonNull(SearchResultItem)),
),
args: {

term: { type: new GraphQLNonNull(GraphQLString) },
},
resolve: async (source, args, { loaders }) => {

Listing 7.31 New file: api/src/schema/types/search-result-item.js

Listing 7.32 Changes in api/src/schema/queries.js

Defines the
name/type

of a field
argument

195Using DataLoader with custom IDs for caching

return loaders.searchResults.load(args.term);
},

},
}),

});

Now, to make the Task and Approach types implement this new interface type, we
used the interfaces property of the GraphQLObjectType configuration object. The
value of this property is an array of all the interface types an object type implements.

// ·-·-·
import SearchResultItem from './search-result-item';

const Task = new GraphQLObjectType({
name: 'Task',
interfaces: () => [SearchResultItem],
fields: () => ({

// ·-·-·
}),

});

// ·-·-·
import SearchResultItem from './search-result-item';

const Approach = new GraphQLObjectType({
name: 'Approach',
interfaces: () => [SearchResultItem],
fields: () => ({

// ·-·-·
}),

});

Note that I wrapped the interfaces array as a thunk just as we are now doing for the
fields property.

 Following the top-down analysis, we now need to define a DataLoader instance
named searchResults. Let me pause here and ask this question: do we really need a
caching/batching loader for a search query?

 Probably not. It’s unlikely an API consumer will do multiple searches in one query.
And unless they are intentionally trying to overload the API service, it’s unlikely they
will search for the same term many times!

 However, as we’ve seen in taskMainList, using a loader provides some protection
against bad queries (whether they were malicious or not). Imagine a UI application
with a bug that causes a search query to repeat 100 times in a GraphQL request. You
don’t want your API server to issue 100 full-text-search SQL statements to the database
in that case.

Listing 7.33 Changes in api/src/schema/types/task.js

Listing 7.34 Changes in api/src/schema/types/approach.js

Reads the value a consumer
used for the term field
argument out of the resolve
method’s args object

196 CHAPTER 7 Optimizing data fetching

 Another reason to use a loader for this case is for consistency. DataLoader is now
an abstraction layer in our stack, and all database communication should happen
through it. Mixing some direct database communication here would be a code smell.

 The searchResults batch-loading function takes a list of search query terms, and
it should do a full-text-search operation for each.

 Let’s assume that the pgApi module has a searchResults method to do the SQL
communication. Here’s what I came up with for the loader definition.

async function main() {
// ·-·-·

server.use('/', (req, res) => {
const loaders = {

// ·-·-·
searchResults: new DataLoader((searchTerms) =>

pgApi.searchResults(searchTerms),
),

};
// ·-·-·

});

// ·-·-·
};

The final piece of this puzzle is the pgApi.searchResults method and the full-text-
search logic it executes. Luckily, PostgreSQL has built-in support for full-text search. I
prepared a single SQL statement that retrieves search results from both the
azdev.tasks and azdev.approaches tables; check it out at sqls.searchResults.

// $1: searchTerm
// $2: userId (can be null)
searchResults: `

WITH viewable_tasks AS (
SELECT *
FROM azdev.tasks n
WHERE (is_private = FALSE OR user_id = $2)

)
SELECT id, "taskId", content, tags, "approachCount", "voteCount",

"userId", "createdAt", type,
ts_rank(to_tsvector(content), websearch_to_tsquery($1)) AS rank

FROM (
SELECT id, id AS "taskId", content, tags,

approach_count AS "approachCount", null AS "voteCount",
user_id AS "userId", created_at AS "createdAt",
'task' AS type

FROM viewable_tasks

Listing 7.35 Changes in api/src/server.js

Listing 7.36 The sqls.searchResults full-text-search statement

197Using DataLoader with custom IDs for caching

UNION ALL
SELECT a.id, t.id AS "taskId", a.content, null AS tags,

null AS "approachCount", a.vote_count AS "voteCount",
a.user_id AS "userId", a.created_at AS "createdAt",
'approach' AS type

FROM azdev.approaches a JOIN viewable_tasks t ON (t.id = a.task_id)
) search_view
WHERE to_tsvector(content) @@ websearch_to_tsquery($1)
ORDER BY rank DESC, type DESC

`,

This SQL statement uses a few cool PostgreSQL tricks. For example, it uses an inline
view (viewable_tasks) to make sure the operation only works on viewable Task
records, which are either public or owned by a userId value. The userId value can be
null, in which case the statement will only work for public Task records.

 The statement uses a UNION ALL operator to combine result sets from multiple
database tables into a single set. It then uses this combined set as the source for the
full-text search, which it performs using the to_tsvector, websearch_to_tsquery,
and ts_rank PostgreSQL functions. This is just one set of many functions and opera-
tors that can be used to perform and optimize this search, but those are beyond the
scope of this book. You can read more about PostgreSQL full-text-search capabilities
at az.dev/pg-fts.

 Here’s how we can use this SQL statement in the pgApi module.

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·
searchResults: async (searchTerms) => {
const results = searchTerms.map(async (searchTerm) => {

const pgResp = await pgQuery(sqls.searchResults, {
$1: searchTerm,
$2: null, // TODO: pass logged-in userId here.

});
return pgResp.rows;

});
return Promise.all(results);

},
};

};

Note that this function uses the same “promise-map” method we used for tasksBy-
Types to be DataLoader compatible. Also note that I passed the $2 value as null for
now. Once we enable API consumers to log in, we need to figure out how to make the
current userId value available for this function. We’ll do that in the next chapter.

Listing 7.37 Changes in api/src/db/pg-api.js

https://az.dev/pg-fts

198 CHAPTER 7 Optimizing data fetching

 We can test now! Here’s an example of how to query the new search field in
GraphQL.

{
search(term: "git OR sum") {

content
... on Task {

approachCount
}
... on Approach {

task {
id
content

}
}

}
}

This search should return three records from the sample data: two Task records and
one Approach record (figure 7.2).

Note the power of the PostgreSQL text-search capabilities. The example uses OR, and
the search results are ranked based on relevance. Try a few other search terms, and
explore the many other features we enabled.

Listing 7.38 An example query to test the search field

Figure 7.2 Executing the search query in GraphiQL

199Using DataLoader with MongoDB

TIP If an interface type is implemented by many types, the resolveType
property can become difficult to maintain. It’s not ideal that you need to edit
it every time you add another type that implements your interface.
GraphQL.js supports another method to determine the type of the imple-
menting object. You can define an isTypeOf function on every object type
that implements an interface, and GraphQL.js will pick the first object type
whose isTypeOf returns true. If you define isTypeOf on all objects that imple-
ment an interface, you won’t need the resolveType property.

Let’s now implement the detailList field under an Approach record. I’ve delayed
implementing this one because of its complexity and because we really should do it
through DataLoader. I think we’re ready for it.

7.5 Using DataLoader with MongoDB
Since we’ve decided to store the dynamic Details of an Approach record in MongoDB,
we need to make a DataLoader instance that fetches data from there. This is the first
time we will be reading data from MongoDB, so we need to create an API module for
MongoDB, instantiate it on the main server, and use it to define a DataLoader
instance.

 Let’s do this one with a top-down approach as well. Similar to how we named objects
for PostgreSQL and where we stored its modules, let’s come up with a mongoApi module
and assume that it has a batch-loading function named detailLists to load a list of
Detail objects given a list of Approach IDs.

 Here are the changes I came up with for api/src/server.js (mirroring what’s there
for PostgreSQL).

// ·-·-·
import mongoApiWrapper from './db/mongo-api';

async function main() {
const pgApi = await pgApiWrapper();
const mongoApi = await mongoApiWrapper();

// ·-·-·

server.use('/', (req, res) => {
const loaders = {

// ·-·-·

Listing 7.39 Changes in api/src/server.js

Current code
Use git checkout 7.7 to reset your local repo to the current progress in the code.

200 CHAPTER 7 Optimizing data fetching

detailLists: new DataLoader((approachIds) =>
mongoApi.detailLists(approachIds)

),
};
// ·-·-·

});

// ·-·-·
};

The new mongoApi module will host all the interactions with MongoDB. Here’s the
implementation I came up with for it (also mirroring what we have so far for api/src/
db/pg-api.js). Put this in api/src/db/mongo-api.

import mongoClient from './mongo-client';

const mongoApiWrapper = async () => {
const { mdb } = await mongoClient();

const mdbFindDocumentsByField = ({
collectionName,
fieldName,
fieldValues,

}) =>
mdb

.collection(collectionName)

.find({ [fieldName]: { $in: fieldValues } })

.toArray();

return {
detailLists: async (approachIds) => {

// TODO: Use mdbFindDocumentsByField to
// implement the batch-loading logic here

},
};

};

export default mongoApiWrapper;

Note that I placed the current mongo-client driver’s logic to find a list of documents
in a MongoDB collection into its own function named mdbFindDocumentsByField
(just as I did for pgQuery). Eventually, there will be more functions of this nature, and
they can be abstracted, maintained, and tested separately from the application-level
logic that’s going to use them. In fact, I’m already thinking these functions should be
moved to the client files, but I’ll keep them next to their usage for simplicity.

Listing 7.40 New file: api/src/db/mongo-api

201Using DataLoader with MongoDB

TIP The abstraction I did for mdbFindDocumentsByField is a bit more
detailed than what I did for pgQuery because the mongo driver API uses Java-
Script objects (versus SQL text statements in the pg driver). The level of
abstraction is a matter of preference, but what I tried to achieve here is to
keep everything related to the mongo driver separate from the application-
level logic (to make the code DataLoader compatible, for example). An argu-
ment can be made that this is a premature abstraction, but I have been down
this road many times, and I’ve found these abstractions very helpful as the
project grows.

Because the mongoApi.detailLists function is used as the batch-loading function for
a DataLoader instance, it needs to maintain the size and order of the input array of
approachIds. Let’s figure out what we need here, one piece at a time.

 First, remember that the approachIds value is coming from PostgreSQL, which
means we will need to filter the response we get out of MongoDB for the approach-
Details collection using the pgId field on a document to find each document associ-
ated with each Approach. If there is no match in MongoDB, that means the Approach
record has no Detail records.

 Using the same .map/.find trick we did in pgApi.usersInfo, here’s the skeleton
of what we need in mongoApi.detailLists.

const mongoApiWrapper = async () => {
// ·-·-·

return {
detailLists: async (approachIds) => {

const mongoDocuments = await mdbFindDocumentsByField({
collectionName: 'approachDetails',
fieldName: 'pgId',
fieldValues: approachIds,

});

return approachIds.map((approachId) => {
const approachDoc = mongoDocuments.find(
(doc) => approachId === doc.pgId

);

if (!approachDoc) {
return [];

}

const { explanations, notes, warnings } = approachDoc;

// ·-·-·
});

},
};

};

Listing 7.41 Changes in api/src/db/mongo-api

These destructured variables will
each hold an array of values.
They can also be undefined.

We need to restructure the raw MongoDB data
here to match our GraphQL schema design.

202 CHAPTER 7 Optimizing data fetching

Once the ID-to-document map is finished, each approachDetails document in
MongoDB is an object whose properties represent the three content categories that
we designed for the ApproachDetail ENUM type.

enum ApproachDetailCategory {
NOTE
EXPLANATION
WARNING

}

Each of these properties holds an array of text values. However, remember that we
designed the ApproachDetail type to have a category field and a content field.

type ApproachDetail {
category: ApproachDetailCategory!
content: String!

}

This means we need a bit of logic to take an object:

{
explanations: [explanationsValue1, ·-·-·],
notes: [notesValue1, ·-·-·],
warnings: [warningsValue1, ·-·-·],

}

And we convert the object to the following:

[
{

content: explanationsValue1,
category: "EXPLANATION"

},
{

content: notesValue1,
category: "NOTE"

},
{

content: warningsValue1,
category: "WARNING"

},
·-·-·

]

Furthermore, the content categories are optional in an approachDetail document.
One category might have 10 values while another category might not exist (and be
undefined in listing 7.41).

Listing 7.42 The ApproachDetail ENUM type

Listing 7.43 The ApproachDetail type in the SDL text

203Using DataLoader with MongoDB

 Considering all these points, here’s one way to do the necessary conversion for the
schema.

const mongoApiWrapper = async () => {
// ·-·-·

return {
detailLists: async (approachIds) => {

// ·-·-·

return approachIds.map((approachId) => {
// ·-·-·

const approachDetails = [];
if (explanations) {
approachDetails.push(

...explanations.map((explanationText) => ({
content: explanationText,
category: 'EXPLANATION',

}))
);

}
if (notes) {
approachDetails.push(

...notes.map((noteText) => ({
content: noteText,
category: 'NOTE',

}))
);

}
if (warnings) {
approachDetails.push(

...warnings.map((warningText) => ({
content: warningText,
category: 'WARNING',

}))
);

}
return approachDetails;

});
},

};
};

We start with an empty array of objects (approachDetails). Then, for each array values
property on an approachDetail document, if that array value exists, we push into the
approachDetails array all the items in that array value after mapping them to the
{ content: '·-·-·', category: '·-·-·' } structure.

Listing 7.44 Changes in api/src/db/mongo-api.js

204 CHAPTER 7 Optimizing data fetching

TIP There is certainly a chance to do the three if statements in listing 7.44
dynamically with one loop and allow for future values in an Approach Detail
category. I’ll leave that for you as an exercise.

Next, we need to define two new types in this GraphQL schema: ApproachDetail and
ApproachDetailCategory. Let’s start with the latter. It’s an ENUM with three fixed val-
ues. To define an ENUM type, the GraphQL.js API provides a GraphQLEnumType con-
structor that takes a configuration object representing the ENUM values. Here’s what I
did to define the ApproachDetailCategory type. Put this in a new file at
api/src/schema/types/approach-detail-category.js.

import { GraphQLEnumType } from 'graphql';

const ApproachDetailCategory = new GraphQLEnumType({
name: 'ApproachDetailCategory',
values: {

NOTE: {},
EXPLANATION: {},
WARNING: {},

},
});

export default ApproachDetailCategory;

Now we can define the ApproachDetail type, which uses the ApproachDetailCategory
type. The ApproachDetail type is a simple instance of GraphQLObjectType. Create a
new file for it at api/src/schema/types/approach-detail.js.

import {
GraphQLObjectType,
GraphQLString,
GraphQLNonNull,

} from 'graphql';

import ApproachDetailCategory from './approach-detail-category';

const ApproachDetail = new GraphQLObjectType({
name: 'ApproachDetail',
fields: () => ({

content: {
type: new GraphQLNonNull(GraphQLString),

},
category: {

type: new GraphQLNonNull(ApproachDetailCategory),

Listing 7.45 New file: api/src/schema/types/approach-detail-category.js

Listing 7.46 New file: api/src/schema/types/approach-detail.js

These objects can be used to specify a description per value or deprecate a value.
Also, if the values in the database are stored differently, such as with numbers,
you can do the string-to-number map in each value’s configuration object.

205Using DataLoader with MongoDB

},
}),

});

export default ApproachDetail;

Finally, we need to define the detailList field itself on the Approach type. This is
where we use the new DataLoader instance, and it’s exactly the same as we did for the
previous types. Hopefully this is getting easier now!

import {
// ·-·-·
GraphQLList,

} from 'graphql';
// ·-·-·
import ApproachDetail from './approach-detail';

const Approach = new GraphQLObjectType({
name: 'Approach',
fields: () => ({

// ·-·-·

detailList: {
type: new GraphQLNonNull(

new GraphQLList(new GraphQLNonNull(ApproachDetail))
),
resolve: (source, args, { loaders }) =>

loaders.detailLists.load(source.id),
},

},
});

You can test this new feature using the following query (see figure 7.3).

{
taskMainList {

content
approachList {

content
detailList {

content
category

}
}

}
}

Listing 7.47 Changes in api/src/schema/types/approach.js

Listing 7.48 An example query to test the detailList field

206 CHAPTER 7 Optimizing data fetching

For each of the five public Tasks in our sample data, this query fetches all Approaches
from PostgreSQL and then fetches all Details on every Approach from MongoDB.
Guess how many times it reaches out to MongoDB?

 One time.
 Thanks to the DataLoader instance, all of the MongoDB operations are batched

into a single one.

The only root query field remaining is the me field, but to properly test it we need a
valid authentication token. Let’s first implement the mutations we designed for the
schema. Then, once we can issue the mutation to get a valid authToken value, we will
implement the me field and do the TODOs we left in the code that require passing the
ID for the current user (as identified by an authToken).

Summary
 To optimize data-fetching operations in a generic, scalable way, you can use the

concepts of caching and batching. You can cache SQL responses based on
unique values like IDs or any other custom unique values you design in your
API service. You can also delay asking the database about a specific resource
until you figure out all the unique IDs of all the records needed from that

Figure 7.3 Output of the taskMainList query

Current code
Use git checkout 7.7 to reset your local repo to the current progress in the code.

207Using DataLoader with MongoDB

resource and then send a single request to the database to include all the
records based on all the IDs.

 DataLoader is a generic JavaScript library that can be used as part of your appli-
cation’s data-fetching layer to provide a simplified, consistent API over various
data sources and abstract the use of batching and caching. This enables you to
focus on your application’s logic and safely distribute its data-fetching require-
ments without worrying about maintaining minimal requests to your databases
and other sources of data.

 DataLoader instances are meant to be scoped for a single request. They can be
used for both ID-based SQL statements and more complex statements like
fetching lists or even full-text-search requests.

 If you use DataLoader in your stack, it’s a good practice to do all database com-
munications through it. Your GraphQL resolvers will then delegate the task of
resolving the data to the DataLoader instances. This makes the code cleaner
and more maintainable.

208

Implementing mutations

We implemented most of the query tree for the AZdev GraphQL API in chapter 7.
It’s now time to implement the mutation operations we planned, starting with the
userCreate mutation to enable AZdev users to create an account and use other
mutations (and queries) that require authenticated requests.

 Since this is the very first mutation we’re creating, we need to do some ground-
work to wire things up for all mutations. We basically need to make the schema
ready to host mutations.

This chapter covers
 Implementing GraphQL’s mutation fields

 Authenticating users for mutation and query
operations

 Creating custom, user-friendly error messages

 Using powerful database features to optimize
mutations

209The mutators context object

8.1 The mutators context object
We’ve abstracted all database READ operations to go through DataLoader instances
using the loaders object we passed to each resolver as part of the global GraphQL
context. It’s time to think about the WRITE operations. Every mutation operation will
perform an INSERT, UPDATE, or DELETE SQL statement or a MongoDB operation (or a
combination of them). These WRITE operations do not need to go through Data-
Loader. Although we could make the mutations’ READ parts go through DataLoader, I
think that would be a case of overengineering.

TIP A mutation can contain multiple fields, resulting in the server executing
multiple database WRITE/READ operations. However, unlike query fields,
which are executed in parallel, mutation fields run in a series, one after the
other. If an API consumer sends two mutation fields, the first is guaranteed to
finish before the second begins. This is to ensure that a race condition does
not happen, but it also complicates the task of something like DataLoader.

Let’s add to the global context another object responsible for mutations. I’ll name it
mutators. This object will host all the database mutation operations (for both
PostgreSQL and MongoDB). In fact, let’s plan to group all database operations under
a mutators property in the database API objects. Add a mutators property to both
pgApi and mongoApi.

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·

mutators: {

},
};

};

Listing 8.1 Changes in api/src/db/pg-api.js

Current code
Use git checkout 8.0 to reset your local repo to the current progress in the code.
If you need to stash any local changes, use git add . && git stash. Remember
to run npm install to install any missing dependencies.

210 CHAPTER 8 Implementing mutations

const mongoApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·

mutators: {

},
};

};

Each future mutation operation will be a sub-property of these new mutators properties.

TIP You can also group all the pgApi functions used by DataLoader under a
loaders property, but I’ll skip that here to keep things simple. Ideally, every
loader or mutator function should have its own file and host its own database
statements. I’ll leave this refactoring for you as an exercise.

Now, in api/src/server.js, let’s create a new object to host all database mutation opera-
tions (from both databases) and make that object part of the global context.

async function main() {
// ·-·-·

server.use('/', (req, res) => {
// ·-·-·

const mutators = {
...pgApi.mutators,
...mongoApi.mutators,

};

graphqlHTTP({
schema,
context: { loaders, mutators },
graphiql: true,

})(req, res);
});

// ·-·-·
};

Now all mutation resolvers will have access to all database mutation operations.

TIP Resolvers for query fields will also have access to this new mutators
object. However, they should never use it. Query fields should be pure and
never cause side effects.

Listing 8.2 Changes in api/src/db/mongo-api.js

Listing 8.3 Changes in api/src/server.js

211User mutations

8.2 The Mutation type
Just as we defined a QueryType that held all the root query fields that API consumers
could start with, we need to define a MutationType to hold all the mutation fields that
API consumers can invoke. We do that in api/src/schema/index.js, mirroring what
we already have there for QueryType.

import QueryType from './queries';
import MutationType from './mutations';

export const schema = new GraphQLSchema({
query: QueryType,
mutation: MutationType,

});

The new mutations.js file will be under api/src/schema, and it will use a regular
GraphQLObjectType object.

import { GraphQLObjectType } from 'graphql';
const MutationType = new GraphQLObjectType({

name: 'Mutation',
fields: () => ({

// ·-·-·
}),

});

export default MutationType;

8.3 User mutations
Now that we have the skeleton to support mutation operations, let’s tackle the first two
mutations that will allow a consumer of this API to create an account (userCreate)
and then obtain an authentication token to use other mutations (userLogin).

 Remember that for each mutation, in addition to the main mutation field, we need
to define two types: an input type and a payload type. For the first mutation, we also need
to define the UserError type, which we planned to use to represent user-friendly error
messages when users send the mutation bad input (for example, a short password).

8.3.1 The userCreate mutation
Here’s the part of the SDL that we need to focus on for the userCreate mutation.

input UserInput {
username: String!
password: String!

Listing 8.4 Changes in api/src/schema/index.js

Listing 8.5 New file: api/src/schema/mutations.js

Listing 8.6 SDL for userCreate and its dependencies

212 CHAPTER 8 Implementing mutations

firstName: String
lastName: String

}

type UserError {
message: String!

}

type UserPayload {
errors: [UserError!]!
user: User
authToken: String!

}

type Mutation {
userCreate(input: UserInput!): UserPayload!

More mutations
}

The generic UserError type is a simple instance of GraphQLObjectType. Put it under
api/src/schema/types/user-error.js.

import {
GraphQLObjectType,
GraphQLString,
GraphQLNonNull,

} from 'graphql';

const UserError = new GraphQLObjectType({
name: 'UserError',
fields: () => ({

message: {
type: new GraphQLNonNull(GraphQLString),

},
}),

});

export default UserError;

We can now define the UserPayload type, which uses the UserError type. The User-
Payload type is used in two mutations (userCreate and userLogin), so let’s put it in
its own file under api/src/schema/types/payload-user.js.

import {
GraphQLObjectType,
GraphQLString,
GraphQLNonNull,
GraphQLList,

Listing 8.7 New file: api/src/schema/types/user-error.js

Listing 8.8 New file: api/src/schema/types/payload-user.js

213User mutations

} from 'graphql';

import User from './user';
import UserError from './user-error';

const UserPayload = new GraphQLObjectType({
name: 'UserPayload',
fields: () => ({

errors: {
type: new GraphQLNonNull(

new GraphQLList(new GraphQLNonNull(UserError)),
),

},
user: { type: User },
authToken: { type: GraphQLString },

}),
});

export default UserPayload;

Now we can implement the mutation field and its UserInput type. To use this muta-
tion, the consumer has to supply a username address and a password; they can option-
ally supply first and last names. Usually, you want the consumer’s input to include at
least all the non-null fields in the database: in this case, username and password. We
cannot create a User record without these.

TIP Note that I named the file payload-user.js instead of user-payload.js. I did
that to have the payload types grouped together in the types directory. In a
bigger project, you can organize different GraphQL types under different
directories for categories or API features.

For the UserInput type, we need to use a GraphQLInputObjectType object. This is
another GraphQL.js constructor object that is similar to GraphQLObjectType.

import {
GraphQLInputObjectType,
GraphQLString,
GraphQLNonNull,

} from 'graphql';

const UserInput = new GraphQLInputObjectType({
name: 'UserInput',
fields: () => ({

username: { type: new GraphQLNonNull(GraphQLString) },
password: { type: new GraphQLNonNull(GraphQLString) },
firstName: { type: GraphQLString },
lastName: { type: GraphQLString },

}),
});

export default UserInput;

Listing 8.9 New file: api/src/schema/types/input-user.js

214 CHAPTER 8 Implementing mutations

Now we can import both the UserPayload and UserInput types into api/src/schema/
mutations.js and define the userCreate field object—which, just like query fields, has
type, args, and resolve properties.

import { GraphQLObjectType, GraphQLNonNull } from 'graphql';
import UserPayload from './types/payload-user';
import UserInput from './types/input-user';

const MutationType = new GraphQLObjectType({
name: 'Mutation',
fields: () => ({

userCreate: {
type: new GraphQLNonNull(UserPayload),
args: {

input: { type: new GraphQLNonNull(UserInput) },
},
resolve: async (source, { input }, { mutators }) => {

return mutators.userCreate({ input });
},

},
}),

});

export default MutationType;

Finally, we need to implement mutators.userCreate, which we used in the resolve
function. It expects an object with an input property (which itself is an object of type
UserInput).

TIP Note that I matched the mutators function name to the field that’s using
it. This is just a style preference on my part to keep methods grouped by their
subject, which I think is a useful practice to follow everywhere. However, in a
bigger codebase, you should consider adding a suffix to methods to make
them easy to find and replace. For example, you can do something like user-
CreateLoader and userCreateMutator.

Remember that a GraphQL mutation is always a WRITE operation followed by a READ
operation. The type of a mutation is what can be read after it’s finished. In this case,
it’s a UserPayload record, which includes the newly created user record from the
database. The newly created user record has to be read from the database because it
needs to include the values that are autofilled by the database (like the serial ID and
creation timestamp information). This means we need an INSERT statement followed
by a SELECT statement.

 That’s when PostgreSQL will surprise you. We can actually tell PostgreSQL to
return a newly created record using the same INSERT statement. Here’s an example.

Listing 8.10 Changes in api/src/schema/mutations.js

The mutators.userCreate
method does not exist yet.

215User mutations

INSERT INTO azdev.users (username, password)
VALUES ('janedoe', 'ChangeMe')

RETURNING id, username, created_at

Did you notice that RETURNING part? Not only will this INSERT statement insert a row in
the table, but it will also SELECT columns from that new row and return them in the
same database operation. That’s one of my favorite features in PostgreSQL.

 With this magic, all we need to do is read the input values and pass them to a ver-
sion of that INSERT statement, but with a few more details to hash the password and
alias the columns. I’ll also include an example for you to use the UserError structure
in the payload by blocking the mutation operation if the consumer sends a password
value with fewer than six characters.

 Here’s what I came up with for the mutators.userCreate function.

// ·-·-·

import { randomString } from '../utils';

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·

mutators: {
// ·-·-·

userCreate: async ({ input }) => {
const payload = { errors: [] };
if (input.password.length < 6) {
payload.errors.push({

message: 'Use a stronger password',
});

}
if (payload.errors.length === 0) {
const authToken = randomString();
const pgResp = await pgQuery(sqls.userInsert, {

$1: input.username.toLowerCase(),
$2: input.password,
$3: input.firstName,
$4: input.lastName,
$5: authToken,

});
if (pgResp.rows[0]) {

payload.user = pgResp.rows[0];
payload.authToken = authToken;

}

Listing 8.11 Example: PostgreSQL’s RETURNING clause

Listing 8.12 New mutator method in api/src/db/pg-api.js

The randomString function returns
a random string. It’s already
implemented in api/src/utils.js.

The userInsert SQL statement
inserts a row into the azdev.users
table. It’s already implemented in

api/src/db/sqls.js.

216 CHAPTER 8 Implementing mutations

}
return payload;

},
},

};
};

Remember that an auth_token acts like a temporary password. That’s why its value is
hashed as well, but the user is expected to use the plain-text version (which is gener-
ated at random).

 Note that just like the resolve functions for query fields, a mutation’s resolve
function can also return a promise, and GraphQL.js will do the “awaiting” for us. Also
note that the “short password” error completely blocks the INSERT statements (other-
wise, what’s the point?), but sometimes user errors may be captured during the
INSERT statement. For example, to make sure the supplied username value is not one
that’s already used, instead of issuing an extra SELECT statement before the INSERT
statement, we can simply let the INSERT statement fail because the database already
has a validation on that column. Let me leave that here as an exercise for you. Also,
make a validation around the firstName and lastName input values. For example,
don’t allow numbers. If the consumer sends the name as { firstName: "James",
lastName: "007" }, fail that operation with a user error.

 To test the userCreate mutation, here’s a request you can use in GraphiQL.

mutation userCreate {
userCreate(input: {

username: "janedoe"
password: "123"
firstName: "Jane"
lastName: "Doe"

}) {
errors {

message
}
user {

id
name

}
authToken

}
}

Figure 8.1 shows the response you should get when you try a short password.

TIP The stored auth_token value should expire after a certain time. One way
to do that is to add another column to azdev.users to manage the time valid-
ity of each token.

Listing 8.13 Example mutation request to test userCreate

Try it first with a short password to
see the UserError response, and then
try it with a valid password.

217User mutations

8.3.2 The userLogin mutation

To offer returning users a way to obtain a new auth_token value, we need to imple-
ment the userLogin mutation. Here’s the part of the SDL text to implement for it.

input AuthInput {
username: String!
password: String!

}

type Mutation {
userLogin(input: AuthInput!): UserPayload!

·-·-·
}

We’ve already implemented the UserPayload type, so we can reuse it here, but we
need to create the AuthInput type. This is simple, and it’s similar to the UserInput
type. Put the following in api/src/schema/types/input-auth.js.

import {
GraphQLInputObjectType,
GraphQLString,

Listing 8.14 SDL for userLogin and its dependencies

Listing 8.15 New file: api/src/schema/types/input-auth.js

Figure 8.1 A user-error data response

Current code
Use git checkout 8.1 to reset your local repo to the current progress in the code.

218 CHAPTER 8 Implementing mutations

GraphQLNonNull,
} from 'graphql';

const AuthInput = new GraphQLInputObjectType({
name: 'AuthInput',
fields: () => ({

username: { type: new GraphQLNonNull(GraphQLString) },
password: { type: new GraphQLNonNull(GraphQLString) },

}),
});

export default AuthInput;

The userLogin mutation field needs to be defined under MutationType (in api/src/
schema/mutations.js). This is also similar to the userCreate field, except that it will
use a different mutators function.

// ·-·-·

import AuthInput from './types/input-auth';

const MutationType = new GraphQLObjectType({
name: 'Mutation',
fields: () => ({

// ·-·-·
userLogin: {

type: new GraphQLNonNull(UserPayload),
args: {

input: { type: new GraphQLNonNull(AuthInput) },
},
resolve: async (source, { input }, { mutators }) => {

return mutators.userLogin({ input });
},

},
}),

});

export default MutationType;

While it’s possible to do this mutation operation with a single database UPDATE state-
ment, I’ll do it with two statements: one to validate the input username/password val-
ues (sqls.userFromCredentials) and one to update the auth_token user field in the
database (sqls.userUpdateAuthToken). Take a look at these two prepared statements
in api/src/db/sqls.js.

TIP Both SQL statements use PostgreSQL’s crypt function from the
pgcrypto extension (az.dev/pgcrypto).

For input validation on this mutators function, let’s make sure the username/password
values are not empty. Here’s the implementation I came up with for this function.

Listing 8.16 Changes in api/src/schema/mutations.js

https://az.dev/pgcrypto

219User mutations

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·

mutators: {
// ·-·-·
userLogin: async ({ input }) => {
const payload = { errors: [] };
if (!input.username || !input.password) {
payload.errors.push({

message: 'Invalid username or password',
});

}
if (payload.errors.length === 0) {
const pgResp = await pgQuery(sqls.userFromCredentials, {

$1: input.username.toLowerCase(),
$2: input.password,

});
const user = pgResp.rows[0];
if (user) {

const authToken = randomString();
await pgQuery(sqls.userUpdateAuthToken, {

$1: user.id,
$2: authToken,

});
payload.user = user;
payload.authToken = authToken;

} else {
payload.errors.push({

message: 'Invalid username or password'
});

}
}
return payload;

},
},

};
};

We start by checking the values in input.username and input.password and pushing
a user error to the payload if they are empty. Although these input fields were defined
in the input object as not-null, empty values will still pass the GraphQL validation.
Then, if the username and password are valid, we can update the users table to store
a hashed value for a new, randomly generated authToken value and return the plain-
text version of it as part of the payload.

TIP We don’t need to distinguish the invalidity of passwords from the invalid-
ity of usernames. Grouping the two validations in one is more secure.

To test the userLogin mutation, here’s a request you can use in GraphiQL.

Listing 8.17 Changes in api/src/db/pg-api.js

220 CHAPTER 8 Implementing mutations

mutation userLogin {
userLogin(input: {

username: "test",
password: "123456"

}) {
errors {

message
}
user {

id
name

}
authToken

}
}

Try this mutation with a valid and an invalid password (figures 8.2 and 8.3), and make sure
both cases work okay.

Listing 8.18 Request to test userLogin

The "test/123456" credentials
are valid (from the sample
development data).

Figure 8.2 Testing the userLogin mutation with invalid credentials

Figure 8.3 Testing the userLogin mutation with valid credentials

221Authenticating API consumers

TIP Save the returned valid authToken value, as we need it in the next section.

8.4 Authenticating API consumers
Now that we can use the API to get a valid authToken value, we need to figure out how
to include that token in the headers of future requests so that we can use it with
GraphQL operations that require a valid user session.

 The GraphiQL editor that comes bundled with the express-graphql package sup-
ports a headers editor (similar to the variables editor). To enable it, make the follow-
ing change in api/src/server.js.

async function main() {
// ·-·-·

server.use('/', (req, res) => {
// ·-·-·
graphqlHTTP({

schema,
context: { loaders, mutators },
graphiql: { headerEditorEnabled: true },
// ·-·-·

})(req, res);
});

// ·-·-·
}

The GraphiQL editor should now show the REQUEST HEADERS editor (figure 8.4).

Listing 8.19 Changes in api/src/server.js

Current code
Use git checkout 8.2 to reset your local repo to the current progress in the code.

Figure 8.4 The REQUEST HEADERS section in GraphiQL

222 CHAPTER 8 Implementing mutations

We can use the Authorization request header to include the authToken value with
every request made by GraphiQL. The syntax for that request header is shown next.

Authorization: <type> <credentials>

Since we’re using a single string value authToken, we can use the Bearer type (which
is a token-based system).

TIP The Bearer type is the basis for OAuth open standard and JWT. My plan
here is to implement the most basic form of token-based authentication and
let you build on that. If you’re interested in learning more about API security,
check out the book API Security in Action by Neil Madden (Manning, 2019) at
www.manning.com/books/api-security-in-action.

Remember the TODOs we left in pgApi functions that passed null as the current
userId value? One was for the taskInfo root query field, and the other was for the
search root query field. Let’s fix these first.

 Use the userLogin mutation to obtain a valid authToken value using the
“test/123456” credentials. That user owns a private Task record that should show up if
they send the following GraphQL query.

{
search(term: "babel") {

content
}

}

To include the authToken value, put this in the request headers editor:

{
"Authorization": "Bearer AUTH_TOKEN_VALUE_HERE"

}

This query currently returns no data, and we need to make it work because the con-
sumer is now sending the server a valid authToken value.

 I’ve prepared a SQL statement (sqls.userFromAuthToken) to find a user record
using an authToken value. Let’s create a pgApi.userFromAuthToken function to use
that statement, in api/src/db/pg-api.js.

Listing 8.20 Example: syntax for the Authorization header

Listing 8.21 Searching for a private Task record

The main types of authentication are Basic,
Bearer, Digest, HOBA, Mutual, Client, and Form
Based. The credentials depend on the type.

Replace this with the valid
authToken value you get
from the userLogin mutation.

https://www.manning.com/books/api-security-in-action

223Authenticating API consumers

const pgApiWrapper = async () => {
// ·-·-·

return {
userFromAuthToken: async (authToken) => {

if (!authToken) {
return null;

}
const pgResp = await pgQuery(sqls.userFromAuthToken, {

$1: authToken,
});
return pgResp.rows[0];

},

// ·-·-·
};

};

The pgApi.userFromAuthToken function is special. It is not going to be used by a Data-
Loader instance. It’s not even part of GraphQL resolving logic. We’ll need it before
communicating with GraphQL.

 Don’t do the authentication within GraphQL resolving logic. It’s better to have a dif-
ferent layer handling it either before or after the GraphQL service layer. We’ll do the
authentication work in the Express request-handling layer (where we also prepared the
loaders object). Then we can pass a currentUser value to the search logic to include
it in the sqls.searchResults statement (which is designed to accept a user ID value).

 In api/src/server.js, add the following before the loaders object.

async function main() {
// ·-·-·

server.use('/', async (req, res) => {
const authToken =

req && req.headers && req.headers.authorization
? req.headers.authorization.slice(7) // "Bearer "
: null;

const currentUser = await pgApi.userFromAuthToken(authToken);
if (authToken && !currentUser) {

return res.status(401).send({
errors: [{ message: 'Invalid access token' }],

});
}

// ·-·-·
});

// ·-·-·
}

Listing 8.22 Changes in api/src/db/pg-api.js

Listing 8.23 Changes in api/src/server.js

Note the new async keyword, which is
needed since the new code uses the await
keyword on the userFromAuthToken async
function.

224 CHAPTER 8 Implementing mutations

When there is an authorization header (as parsed by Express), we will validate the
authToken value through the pgApi.userFromAuthToken function.

 Note that I made the server return a 401 error when there is an invalid authToken
(no user record found). This is preferable to just silently failing and not considering the
user as logged in. The user should be notified that they are using an invalid authToken
value (for example, it could be expired, and they need to log out and log in again). Also
note that I formatted the returned error to match GraphQL’s own root errors (an array
of error objects with a message property). This logic is still executed as part of a
GraphQL request, and it should conform to the way GraphQL formats errors.

 Now we’ll take care of the pgApi methods where we left a TODO to include a userId
value that can use the new currentUser variable. Both pgApi.tasksInfo and pgApi
.searchResults need it. Let’s change their argument into an object so that we can
include the currentUser value.

async function main() {
// ·-·-·

server.use('/', async (req, res) => {
// ·-·-·

const loaders = {
users: new DataLoader((userIds) => pgApi.usersInfo(userIds)),
approachLists: new DataLoader((taskIds) =>

pgApi.approachLists(taskIds),
),
tasks: new DataLoader((taskIds) =>

pgApi.tasksInfo({ taskIds, currentUser }),
),
tasksByTypes: new DataLoader((types) =>

pgApi.tasksByTypes(types),
),
searchResults: new DataLoader((searchTerms) =>

pgApi.searchResults({ searchTerms, currentUser }),
),
detailLists: new DataLoader((approachIds) =>

mongoApi.detailLists(approachIds),
),

};

// ·-·-·
});

// ·-·-·
}

Then, change the pgApi function to account for the new argument design and current-
User value.

Listing 8.24 Changes in api/src/server.js

225Authenticating API consumers

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·
tasksInfo: async ({ taskIds, currentUser }) => {

const pgResp = await pgQuery(sqls.tasksFromIds, {
$1: taskIds,
$2: currentUser ? currentUser.id : null,

});
return taskIds.map((taskId) =>

pgResp.rows.find((row) => taskId == row.id),
);

},
searchResults: async ({ searchTerms, currentUser }) => {

const results = searchTerms.map(async (searchTerm) => {
const pgResp = await pgQuery(sqls.searchResults, {
$1: searchTerm,
$2: currentUser ? currentUser.id : null,

});
return pgResp.rows;

});
return Promise.all(results);

},

// ·-·-·
};

};

That’s it. You can test the “babel” search query now, and it should work. Test it with an
invalid authToken value as well (figures 8.5 and 8.6).

Listing 8.25 Changes in api/src/db/pg-api.js

Figure 8.5 Sending a request header with a GraphQL query

226 CHAPTER 8 Implementing mutations

The taskInfo root query field should also work for Task 5 when you’re using a valid
authToken value for the test user.

8.4.1 The me root query field
Let’s implement the me root query field next. The following is the part of the SDL
related to that field.

type Query {
// ·-·-·
me: User

}

type User {
id: ID!
createdAt: String!
username: String!
name: String
taskList: [Task!]!

}

We implemented the User type but without the taskList field. Now that we are imple-
menting the me field, it’s time to also support the taskList field on the User type but
restrict it to only be available within the me field scope.

Listing 8.26 SDL text for the me field

Figure 8.6 Testing an invalid Authorization request header

Current code
Use git checkout 8.3 to reset your local repo to the current progress in the code.

227Authenticating API consumers

 Let’s start with the me field itself. Here’s a query we can use to test it when it’s
finished.

{
me {

id
username

}
}

To support this new root field, we will need to add its definition under QueryType (in
api/src/schema/queries.js). Since we are already getting the currentUser record (for
a valid authToken value) in the Express listener function (in api/src/server.js), we can
make currentUser part of the GraphQL’s context object and just return it directly
from the resolve function of the new me field.

async function main() {
// ·-·-·

server.use('/', async (req, res) => {
// ·-·-·
graphqlHTTP({

schema,
context: { loaders, mutators, currentUser },
graphiql: { headerEditorEnabled: true },
// ·-·-·

})(req, res);
});

// ·-·-·
}

// ·-·-·
import User from './types/user';

const QueryType = new GraphQLObjectType({
name: 'Query',
fields: () => ({

// ·-·-·
me: {

type: User,
resolve: async (source, args, { currentUser }) => {

return currentUser;
},

},
}),

});

Listing 8.27 Example query to test the me root field

Listing 8.28 Changes in api/src/server.js

Listing 8.29 Changes in api/src/schema/queries.js

228 CHAPTER 8 Implementing mutations

This is a special field since the database statement is not executed within the
GraphQL resolver. That’s why we don’t even need to use a DataLoader for it.

 Go ahead and test the query in listing 8.27 (with a valid authToken in the request
headers). See figure 8.7.

However, we designed the root me field to give authorized users a way to see all their
Task records. We need to implement the taskList field under the User type next.

 To do that, we need to distinguish between a taskList field used on any user
record (in any scope) and a taskList field used within the me root field scope.

 There are ways to do that dynamically. One of them is to utilize the fourth info
argument to figure out the path for a taskList field. This might work okay, but I am
going to use a simpler method.

 Let’s just create two User types! We will keep the one we have and introduce a new
one for the me field. The new type gets the taskList field. To implement that without
duplicating the User type fields, we can make its fields configuration property a
function that returns the fields object with or without a taskList field.

 Here’s what I came up with.

import {
// ·-·-·
GraphQLList,

} from 'graphql';

import Task from './task';

Listing 8.30 New code in api/src/schema/types/user.js

Figure 8.7 Testing the me field

229Authenticating API consumers

const fieldsWrapper = ({ meScope }) => {
const userFields = {

id: { type: new GraphQLNonNull(GraphQLID) },
username: { type: GraphQLString },
name: {

type: GraphQLString,
resolve: ({ firstName, lastName }) =>

[firstName, lastName].filter(Boolean).join(' '),
},

};

if (meScope) {
userFields.taskList = {

type: new GraphQLNonNull(
new GraphQLList(new GraphQLNonNull(Task)),

),
resolve: (source, args, { loaders, currentUser }) => {

return loaders.tasksForUsers.load(currentUser.id);
},

};
}

return userFields;
};
const User = new GraphQLObjectType({

name: 'User',
fields: () => fieldsWrapper({ meScope: false }),

});

export const Me = new GraphQLObjectType({
name: 'Me',
fields: () => fieldsWrapper({ meScope: true }),

});

export default User;

This way, the module has two exports. The default is the generic User type that can be
used anywhere, and the other is a named export (Me) to be used under the me field
scope.

 Here’s how to use the new me type.

// ·-·-·
import { Me } from './types/user';

const QueryType = new GraphQLObjectType({
name: 'Query',
fields: () => ({

// ·-·-·
me: {
type: Me,
resolve: async (source, args, { currentUser }) => {

Listing 8.31 Changes in api/src/schema/queries.js

The loaders.tasksForUsers
function does not exist yet.

Replaces the default
User import line

230 CHAPTER 8 Implementing mutations

return currentUser;
},

},
}),

});

Let’s define the loaders.tasksForUsers function and its batch-loading pgApi
function.

const loaders = {
// ·-·-·

tasksForUsers: new DataLoader((userIds) =>
pgApi.tasksForUsers(userIds),

),
};

The implementation of pgApi.tasksForUsers is similar to the other batch-loading
function we wrote earlier. It will use the sqls.tasksForUsers statement and map the
input array of IDs into an array of lists. We’re only going to use this function with the
current user ID value, but keeping all database fetching logic within resolvers the
same is a good practice.

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·

tasksForUsers: async (userIds) => {
const pgResp = await pgQuery(sqls.tasksForUsers, {

$1: userIds,
});
return userIds.map((userId) =>

pgResp.rows.filter((row) => userId === row.userId),
);

},

// ·-·-·
};

};

You can now test that the taskList field is available under the me field (don’t forget to
include a valid authToken in the request headers). See figure 8.8.

Listing 8.32 Changes in api/src/server.js

Listing 8.33 Changes in api/src/db/pg-api.js

231Authenticating API consumers

{
me {

id
username
taskList {

content
}

}
}

You can also make sure that the taskList field is not available under the author field
using this query. See figure 8.9.

{
taskMainList {

content
author {

username
taskList {

content
}

}
}

}

Listing 8.34 Query to test taskList under me

Listing 8.35 Query to test taskList under author

Figure 8.8 The taskList field under the me field

The taskList field should not be available
under the author field scope.

Current code
Use git checkout 8.4 to reset your local repo to the current progress in the code.

232 CHAPTER 8 Implementing mutations

8.5 Mutations for the Task model
Let’s implement the taskCreate mutation field next. Here’s the part of the SDL text
for it.

input TaskInput {
content: String!
tags: [String!]!
isPrivate: Boolean!

}

type TaskPayload {
errors: [UserError!]!
task: Task

}

type Mutation {
taskCreate(input: TaskInput!): TaskPayload!

·-·-·
}

Let’s create a new type under api/src/schema/types to host the TaskInput type.
Here’s the implementation I came up with.

import {
GraphQLInputObjectType,
GraphQLString,
GraphQLNonNull,
GraphQLBoolean,
GraphQLList,

} from 'graphql';

const TaskInput = new GraphQLInputObjectType({
name: 'TaskInput',

Listing 8.36 SDL text for Task mutations and their dependencies

Listing 8.37 New file: api/src/schema/types/input-task.js

Figure 8.9 The taskList field is not available under the author field scope.

233Mutations for the Task model

fields: () => ({
content: { type: new GraphQLNonNull(GraphQLString) },
tags: {

type: new GraphQLNonNull(
new GraphQLList(new GraphQLNonNull(GraphQLString)),

),
},
isPrivate: { type: new GraphQLNonNull(GraphQLBoolean) },

}),
});

export default TaskInput;

The TaskPayload type is a standard GraphQLObjectType that uses the Task type and
the UserError type (which are both defined already).

import {
GraphQLObjectType,
GraphQLNonNull,
GraphQLList,

} from 'graphql';

import Task from './task';
import UserError from './user-error';

const TaskPayload = new GraphQLObjectType({
name: 'TaskPayload',
fields: () => ({

errors: {
type: new GraphQLNonNull(

new GraphQLList(new GraphQLNonNull(UserError)),
),

},
task: { type: Task },

}),
});

export default TaskPayload;

We can now import these two new types to create the taskCreate mutation field.

// ·-·-·
import TaskPayload from './types/payload-task';
import TaskInput from './types/input-task';

const MutationType = new GraphQLObjectType({
name: 'Mutation',
fields: () => ({

// ·-·-·

Listing 8.38 New file: api/src/schema/types/payload-task.js

Listing 8.39 Changes in api/src/schema/mutations.js

234 CHAPTER 8 Implementing mutations

taskCreate: {
type: TaskPayload,
args: {

input: { type: new GraphQLNonNull(TaskInput) },
},
resolve: async (

source,
{ input },
{ mutators, currentUser },

) => {
return mutators.taskCreate({ input, currentUser });

},
},

}),
});

For the mutators.taskCreate method, we have to first validate the input values. For
example, let’s make sure the content field has at least 15 characters. This would be
similar to what we did for the password field in mutators.userCreate.

 If input validation is successful, we can insert the new Task record and return it as
part of the mutation payload. The SQL statement I prepared for this mutation is
sqls.taskInsert.

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·
mutators: {

// ·-·-·
taskCreate: async ({ input, currentUser }) => {

const payload = { errors: [] };
if (input.content.length < 15) {
payload.errors.push({

message: 'Text is too short',
});

}
if (payload.errors.length === 0) {
const pgResp = await pgQuery(sqls.taskInsert, {

$1: currentUser.id,
$2: input.content,
$3: input.tags.join(','),
$4: input.isPrivate,

});

if (pgResp.rows[0]) {
payload.task = pgResp.rows[0];

}
}

Listing 8.40 Changes in api/src/db/pg-api.js

The mutators.taskCreate
method does not exist yet.

Remember that tags are stored as
comma-separated values in the database,
but the API consumer sends them as an
array of strings. That’s why we needed a
join call here.

235Mutations for the Approach model

return payload;
},

},
};

};

Here’s a request you can use in GraphiQL to test the taskCreate mutation.

mutation taskCreate {
taskCreate (

input: {
content: "Use INSERT/SELECT together in PostgreSQL",
tags: ["sql", "postgresql"]
isPrivate: false,

}
) {

errors {
message

}
task {

id
content
tags
author {

id
}
createdAt

}
}

}

Test it with and without a valid authToken value in the request headers.

8.6 Mutations for the Approach model
Let’s now implement the two mutations to add an Approach to a Task (approachCreate)
and vote on existing Approaches (approachVote).

Listing 8.41 Request to test taskCreate

Current code
Use git checkout 8.5 to reset your local repo to the current progress in the code.

Challenge
Give API consumers a way to update a Task record if they own it.

236 CHAPTER 8 Implementing mutations

8.6.1 The approachCreate mutation

Here’s the part of the SDL that we need to focus on to implement the approachCreate
mutation.

input ApproachDetailInput {
content: String!
category: ApproachDetailCategory!

}

input ApproachInput {
content: String!
detailList: [ApproachDetailInput!]!

}

type ApproachPayload {
errors: [UserError!]!
approach: Approach

}

type Mutation {
approachCreate(

taskId: ID!
input: ApproachInput!

): ApproachPayload!

·-·-·
}

Let’s start with the mutation field this time, which goes in api/src/schema/
mutations.js. Let’s plan on having a mutators.approachCreate function to invoke
database statements.

 Because an Approach record may have extra Detail elements, this mutation has to
insert a record in PostgreSQL and then insert a document in MongoDB. The MongoDB
operation depends on the PostgreSQL operation. The simplest way to implement that
is to use a dependency injection and make the main mutators.approachCreate func-
tion do the work in both databases in order. One way to do that is to pass the context-
level mutators object to the main mutator function as an argument.

import {
// ·-·-·
GraphQLID,

} from 'graphql';
// ·-·-·
import ApproachPayload from './types/payload-approach';
import ApproachInput from './types/input-approach';

Listing 8.42 SDL for approachCreate and its dependencies

Listing 8.43 Changes in api/src/schema/mutations.js

We did not implement
these types yet.

237Mutations for the Approach model

const MutationType = new GraphQLObjectType({
name: 'Mutation',
fields: () => ({

// ·-·-·

approachCreate: {
type: ApproachPayload,
args: {

taskId: { type: new GraphQLNonNull(GraphQLID) },
input: { type: new GraphQLNonNull(ApproachInput) },

},
resolve: async (

source,
{ taskId, input },
{ mutators, currentUser },

) => {
return mutators.approachCreate({
taskId,
input,
currentUser,
mutators,

});
},

},
}),

});

This way, the mutators.approachCreate function can start with the PostgreSQL insert
and then invoke a different mutator function to do the insert in MongoDB. Alterna-
tively, we could invoke the two database operations with two different functions within
the resolve function, but I think having one mutator function responsible for the
complete Approach insert operation is cleaner.

TIP Instead of passing mutators as an argument, we could rely on the fact
that mutators is the caller of approachCreate, make approachCreate a regu-
lar (not arrow) function, and then access mutators in it using the this key-
word. I think the argument approach is more readable.

Let’s create the payload and input types this mutation uses. We have ApproachPayload,
which is a simple instance of GraphQLObjectType.

import {
GraphQLList,
GraphQLNonNull,
GraphQLObjectType,

} from 'graphql';

import Approach from './approach';
import UserError from './user-error';

Listing 8.44 New file: api/src/schema/types/payload-approach.js

The main mutator (not
implemented yet)

Note that the mutators
object is passed here.

238 CHAPTER 8 Implementing mutations

const ApproachPayload = new GraphQLObjectType({
name: 'ApproachPayload',
fields: () => ({

errors: {
type: new GraphQLNonNull(

new GraphQLList(new GraphQLNonNull(UserError)),
),

},
approach: { type: Approach },

}),
});

export default ApproachPayload;

The ApproachDetailInput and ApproachInput types are both instances of the Graph-
QLInputObjectType.

import {
GraphQLInputObjectType,
GraphQLString,
GraphQLNonNull,

} from 'graphql';

import ApproachDetailCategory from './approach-detail-category';

const ApproachDetailInput = new GraphQLInputObjectType({
name: 'ApproachDetailInput',
fields: () => ({

content: { type: new GraphQLNonNull(GraphQLString) },
category: {

type: new GraphQLNonNull(ApproachDetailCategory),
},

}),
});

export default ApproachDetailInput;

import {
GraphQLInputObjectType,
GraphQLString,
GraphQLNonNull,
GraphQLList,

} from 'graphql';

import ApproachDetailInput from './input-approach-detail';

const ApproachInput = new GraphQLInputObjectType({
name: 'ApproachInput',
fields: () => ({

Listing 8.45 New file: api/src/schema/types/input-approach-detail.js

Listing 8.46 New file: api/src/schema/types/input-approach.js

239Mutations for the Approach model

content: { type: new GraphQLNonNull(GraphQLString) },
detailList: {

type: new GraphQLNonNull(
new GraphQLList(new GraphQLNonNull(ApproachDetailInput)),

),
},

}),
});

export default ApproachInput;

To implement mutators.approachCreate, we can use the sqls.approachInsert state-
ment to insert the main Approach record into PostgreSQL. If that is successful, we pass
the ID of the newly created Approach record to a MongoDB mutators method. Fur-
thermore, we need to increment the approach_count column in the azdev.tasks
table. I prepared the statement sqls.approachCountIncrement to do that.

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·

mutators: {
// ·-·-·

approachCreate: async ({
taskId,
input,
currentUser,
mutators,

}) => {
const payload = { errors: [] };
if (payload.errors.length === 0) {

const pgResp = await pgQuery(sqls.approachInsert, {
$1: currentUser.id,
$2: input.content,
$3: taskId,

});
if (pgResp.rows[0]) {

payload.approach = pgResp.rows[0];
await pgQuery(sqls.approachCountIncrement, {

$1: taskId,
});
await mutators.approachDetailCreate(

payload.approach.id,
input.detailList,

);
}

}

Listing 8.47 Changes in api/src/db/pg-api.js

Invokes the PostgreSQL
operation to create the

Approach record

The Approach record is
created. Increment the
Task’s approachCount.

Continue to add its
details in MongoDB.

240 CHAPTER 8 Implementing mutations

return payload;
},

},
};

};

Remember how, when we implemented the detailList field under the approaches
field, we had to convert the list from an object (as stored in MongoDB) to an array (as
defined for the detailList)? We’ll need to do the exact inverse conversion for the
approachDetailCreate method. We need to convert this format (as we designed it for
the ApproachDetailInput type):

[
{

content: explanationsValue1,
category: "EXPLANATION"

},
{

content: notesValue1,
category: "NOTE"

},
{

content: warningsValue1,
category: "WARNING"

},
·-·-·

]

Here is the format we will convert it into, which is expected by the approachDetails
MongoDB collection:

{
explanations: [explanationsValue1, ·-·-·],
notes: [notesValue1, ·-·-·],
warnings: [warningsValue1, ·-·-·],

}

A simple loop can do the trick. Here’s what I came up with for this conversion and for
inserting the MongoDB record.

const mongoApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·

mutators: {
approachDetailCreate: async (approachId, detailsInput) => {

Listing 8.48 Changes in api/src/db/mongo-api.js

241Mutations for the Approach model

const details = {};
detailsInput.forEach(({ content, category }) => {
details[category] = details[category] || [];
details[category].push(content);

});
return mdb.collection('approachDetails').insertOne({
pgId: approachId,
...details,

});
},

},
};

};

However, while this is the right direction for what we have to do, it will not work.
There is a problem with this code. Can you spot it?

 The forEach loop in listing 8.48 is optimized to use the category VALUES as keys
for the new object. However, the values stored in the database are lowercase plurals
(that is, notes), while the values exposed to the consumers (and used in inputs) are
uppercase singulars (that is, NOTE). Instead of doing that conversion in the code,
GraphQL’s ENUM type offers a way to change the values of items to match what’s
stored in the database and still expose a different value to API consumers. Here’s
how to do that.

const ApproachDetailCategory = new GraphQLEnumType({
name: 'ApproachDetailCategory',
values: {

NOTE: { value: 'notes' },
EXPLANATION: { value: 'explanations' },
WARNING: { value: 'warnings' },

},
});

This way, the consumer sees the uppercase version but GraphQL will convert that to
the lowercase version when it communicates with the database. However, we now need
to change the first conversion we made to work with this ENUM type change.

const mongoApiWrapper = async () => {
// ·-·-·

return {
detailLists: async (approachIds) => {

// ·-·-·
return approachIds.map((approachId) => {

// ·-·-·

Listing 8.49 Changes in api/src/schema/types/approach-detail-category.js

Listing 8.50 Changes in api/src/db/mongo-api.js

242 CHAPTER 8 Implementing mutations

if (explanations) {
approachDetails.push(

...explanations.map((explanationText) => ({
content: explanationText,
category: 'explanations',

}))
);

}
if (notes) {
approachDetails.push(

...notes.map((noteText) => ({
content: noteText,
category: 'notes',

}))
);

}
if (warnings) {
approachDetails.push(

...warnings.map((warningText) => ({
content: warningText,
category: 'warnings',

}))
);

}
return approachDetails;

});
},

// ·-·-·
};

};

That’s it! You can test the approachCreate mutation with the following request.

mutation approachCreate {
approachCreate(

taskId: 42 # Get this value from a taskCreate mutation call
input: {

content: "INSERT INTO tableName ·-·-·])] SELECT-STATEMENT",
detailList: [

{
content: "You can still use a RETURNING clause after that",
category: NOTE,

},
{
content: "The INSERT statement only works if the SELECT statement

 ➥ does",
category: EXPLANATION,

},
],

}
) {

Listing 8.51 Request to test approachCreate

243Mutations for the Approach model

errors {
message

}
approach {

id
content
voteCount
author {

username
}
detailList {

content
category

}
}

}
}

TIP Error handling becomes more challenging when using different data
sources for entities that are related. For example, think of what needs to be
done if an error occurs in MongoDB while creating an Approach. What
should happen to the Approach record in PostgreSQL?

One way to handle cross-database-related operations is to use database trans-
actions, which allow us to group multiple operations and treat them as one unit
of work that can either happen in full or not happen at all. In PostgreSQL, a
transaction is set up by surrounding the SQL commands of the transaction with
BEGIN and COMMIT commands; and a transaction can be cancelled using the
ROLLBACK command. Combining that with a try/catch statement in JavaScript
offers a way to ensure that cross-database-related work is either complete or
should be reported back to the consumer as an error.

TIP Instead of using a separate SQL statement to increment the approach_
count column after an Approach object is inserted, we can use the power of
PostgreSQL triggers to do that in the database.

Current code
Use git checkout 8.6 to reset your local repo to the current progress in the code.

Challenge
Give API consumers a way to add more details to existing Approach records.

244 CHAPTER 8 Implementing mutations

8.6.2 The approachVote mutation

We planned to give AZdev API consumers a way to vote on Approach records. They
can vote either up or down on any Approach.

 Here’s the part of the SDL text that we need to focus on for the approachVote
mutation.

input ApproachVoteInput {
"""true for up-vote and false for down-vote"""
up: Boolean!

}

type Mutation {
approachVote(

approachId: ID!
input: ApproachVoteInput!

): ApproachPayload!

·-·-·
}

At this point, I would be seriously disappointed if you don’t try to implement this
mutation on your own. To leave you no excuse for not trying, I’ve prepared the
sqls.approachVote statement that you can use.

// $1: approachId
// $2: voteIncrement
approachVote: `

UPDATE azdev.approaches
SET vote_count = vote_count + $2
WHERE id = $1
RETURNING id, content, ·-·-·;

`,

The sqls.approachVote statement expects input in this order:

1 The ID of the Approach on which the user is voting
2 The voteIncrement value, which should be either 1 or -1, depending on the

type of vote (1 for up, -1 for down)

Here’s a request you can use in GraphiQL to test your implementation.

mutation approachVote {
approachVote(

approachId: 42 # Get this value from approachCreate

Listing 8.52 SDL for approachVote and its dependencies

Listing 8.53 approachVote SQL statement in api/src/db/sqls.js

Listing 8.54 Request to test approachVote

245Mutations for the Approach model

input: { up: false }
) {

errors {
message

}
approach {

content
voteCount

}
}

}

Here are the changes I made to implement the approachVote mutation.

import {
GraphQLInputObjectType,
GraphQLBoolean,
GraphQLNonNull,

} from 'graphql';

const ApproachVoteInputType = new GraphQLInputObjectType({
name: 'ApproachVoteInput',
description: "true for up-vote and false for down-vote",
fields: () => ({

up: { type: new GraphQLNonNull(GraphQLBoolean) },
}),

});

export default ApproachVoteInputType;

// ·-·-·
import ApproachVoteInput from './types/input-approach-vote';

const MutationType = new GraphQLObjectType({
name: 'Mutation',
fields: () => ({

// ·-·-·
approachVote: {

type: ApproachPayload,
args: {

approachId: { type: new GraphQLNonNull(GraphQLID) },
input: { type: new GraphQLNonNull(ApproachVoteInput) },

},
resolve: async (

source,
{ approachId, input },
{ mutators },

) => {
return mutators.approachVote({ approachId, input });

Listing 8.55 New file: api/src/schema/types/input-approach-vote.js

Listing 8.56 Changes in api/src/schema/mutations.js

246 CHAPTER 8 Implementing mutations

},
},

}),
});

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·
mutators: {

// ·-·-·
approachVote: async ({ approachId, input }) => {

const payload = { errors: [] };
const pgResp = await pgQuery(sqls.approachVote, {
$1: approachId,
$2: input.up ? 1 : -1,

});

if (pgResp.rows[0]) {
payload.approach = pgResp.rows[0];

}

return payload;
},

},
};

};

Go ahead and test the mutation request in listing 8.54 (which should down-vote an
Approach object).

NOTE I did not check for the existence of a valid user session for this muta-
tion. That means guest users can vote as well. I left out that part so we have an
example mutation that we can test without request headers.

8.7 The userDelete mutation
The last remaining mutation we planned for the AZdev API is to give users a way to
delete their accounts. Here’s the SDL part we prepared.

Listing 8.57 Changes in api/src/db/pg-api.js; new mutators function

Current code
Use git checkout 8.7 to reset your local repo to the current progress in the code.

247The userDelete mutation

type UserDeletePayload {
errors: [UserError!]!
deletedUserId: ID

}

type Mutation {
userDelete: UserDeletePayload!

·-·-·
}

Try implementing this on your own first. I’ve prepared the sqls.userDelete state-
ment. UserDeletePayload is a simple instance of GraphQLObjectType.

import {
GraphQLList,
GraphQLNonNull,
GraphQLObjectType,
GraphQLID,

} from 'graphql';

import UserError from './user-error';

const UserDeletePayload = new GraphQLObjectType({
name: 'UserDeletePayload',
fields: () => ({

errors: {
type: new GraphQLNonNull(

new GraphQLList(new GraphQLNonNull(UserError)),
),

},
deletedUserId: { type: GraphQLID },

}),
});

export default UserDeletePayload;

Let’s implement the mutator function next. It will receive the currentUser object in
its argument, invoke the sqls.userDelete statement, and then return the deleted-
UserId value as part of its payload.

const pgApiWrapper = async () => {
// ·-·-·

return {
// ·-·-·

mutators: {

Listing 8.58 SDL text for deleting a user

Listing 8.59 New file: api/src/schema/types/payload-user-delete.js

Listing 8.60 Changes in api/src/db/pg-api.js

248 CHAPTER 8 Implementing mutations

// ·-·-·

userDelete: async ({ currentUser }) => {
const payload = { errors: [] };
try {
await pgQuery(sqls.userDelete, {

$1: currentUser.id,
});
payload.deletedUserId = currentUser.id;

} catch (err) {
payload.errors.push({

message: 'We were not able to delete this account',
});

}

return payload;
},

},
};

};

Finally, we use this mutator function in the resolve function of the new mutation
field.

// ·-·-·
import UserDeletePayload from './types/payload-user-delete';

const MutationType = new GraphQLObjectType({
name: 'Mutation',
fields: () => ({

// ·-·-·

userDelete: {
type: UserDeletePayload,
resolve: async (source, args, { mutators, currentUser }) => {

return mutators.userDelete({ currentUser });
},

},
}),

});

That’s it. To test this mutation, create a new user account using the userCreate muta-
tion example in listing 8.13, use that account’s authToken value in the request headers
editor, and send the following mutation request.

mutation userDelete {
userDelete {

errors {

Listing 8.61 Changes in api/src/schema/mutations.js

Listing 8.62 Example mutation request to test userDelete

249The userDelete mutation

message
}
deletedUserId

}
}

Note that this mutation will work only if the user does not own any Task or Approach
records. Otherwise, the foreign key constraints in these relations will block the delete
operation. As an example for your reference, I used a try/catch statement on this
operation to catch any database errors and expose the problem with a generic user
error message. Test that as well.

TIP If you want to enable deleting a User record even if the user owns other
records in the database, PostgreSQL supports an ON DELETE option on for-
eign key constraints that automatically deletes (or updates) all records refer-
enced by a record to be deleted. This is a much better approach than
executing many DELETE SQL statements.

With that, this GraphQL schema is in good executable shape to offer an API that can
be used to build a working UI product, and that’s exactly what we will be doing in part
3 of this book.

NOTE To keep things simple, short, and easy to follow in all the implementa-
tions so far, I have skipped over many changes that I wanted to make. For
example, all these mutations require a lot more input validation. Further-
more, the code could use many optimizations and abstractions and, in some
cases, much-needed guards. For example, the approachVote mutation allows
anyone to vote as many times as they want and even vote on private needs.
That should not happen. Check out the code repository at az.dev/contribute
to see the history of the changes beyond what is presented in this book. Feel
free to ask any questions about the final code at the jsComplete help channel
at jscomplete.com/help.

Current code
Use git checkout 8.8 to reset your local repo to the current progress in the code.

Challenge
Give API consumers a way to delete their own Task records.

https://az.dev/contribute
https://jscomplete.com/help

250 CHAPTER 8 Implementing mutations

Summary
 To host mutations, a GraphQL schema must define a root mutation type.
 To organize database operations for mutations, you can group them on a single

object that you expose as part of the global context for resolvers.
 User-friendly error messages can and should be included as part of any muta-

tion response.
 The PostgreSQL RETURNING clause can be used to do a WRITE operation fol-

lowed by a READ operation in a single SQL statement. The INSERT/SELECT com-
bination enables us to make a WRITE operation depend on a READ operation in a
single SQL statement.

 A hashed token value can be used as a temporary password for mutation opera-
tions and query operations that should behave differently for authenticated
users.

 Some mutation operations depend on each other. Dependency injection can be
used in these cases.

The subscription operations
GraphQL.js has some support for creating subscriptions, but it is still evolving. Also,
to use subscriptions, a transport server that supports web sockets must be used.
The simple express.js server setup that we have used so far does not support that.
GraphiQL also does not support testing subscriptions yet (to be more accurate, you
can do some testing with GraphiQL, but that setup is a bit complicated).

The good news is that tools are available to create, test, and use subscriptions with-
out complicated setups. Apollo server/client is the most popular. There is also the
graphql-yoga package, which contains some great abstractions to help implement
subscriptions.

While going the complicated route would be a good educational example, the practi-
cal solution here is to use one of the tools that has well-tested support for subscrip-
tions. Since the last chapter of this book is focused on the Apollo ecosystem, we will
implement and use the subscription operations there.

Part 3

Using GraphQL APIs

In part 2 of the book, we built a data API and implemented various GraphQL
types to support many query and mutation operations. In part 3, we’ll explore
how to use these operations in a frontend application. We’ll do that with and
without a dedicated GraphQL client library.

 In chapter 9, we’ll explore how to use a GraphQL API with direct Ajax
requests. You’ll learn about UI components and their data requirements, you’ll
see examples of using tokens in GraphQL requests to implement authentication
and authorization, and you’ll learn about the value of GraphQL fragments when
coupled with UI components.

 Chapter 10 is a long but fun ride to explore the power of the most popular
GraphQL client library: Apollo Client. You’ll learn how to use it both in plain
JavaScript and in React. You’ll learn about its core concepts, like links, cache,
hook functions, and local app state, as well as how to implement and use
GraphQL subscriptions.

253

Using GraphQL APIs
 without a client library

In the last chapter, we finished the implementation of the AZdev GraphQL API ser-
vice. It’s now time to explore how to use that API practically in a frontend web
application.

 When it comes to using GraphQL in web applications, you can use it either
directly with a simple Ajax library (like axios or fetch) or with a fully featured

This chapter covers
 Analyzing UI components to determine their

GraphQL data requirements

 Performing Ajax POST requests for GraphQL
operations

 Using tokens in request headers to identify the
API consumer

 Using fragments to make every UI component
responsible for its own data requirements

 Using GraphQL features to simplify and generalize
the UI code

254 CHAPTER 9 Using GraphQL APIs without a client library

GraphQL client (like Relay or Apollo) to manage all GraphQL communications. We’ll
explore using a GraphQL API with client libraries in the next chapter. In this chapter,
we will start by exploring how to use the AZdev GraphQL API without a client library.
However, to make this example as close as possible to a real-life project, we’re going to
use a UI library to manage what happens in the browser.

TIP Remember to check out az.dev/gia-updates to see any API updates you
might need for this chapter.

9.1 Using a web UI library
I contemplated demonstrating how to use GraphQL without using a UI library (like
React or Angular). While that would be a good exercise to learn the DOM API, it’s
really not practical. For many reasons (beyond the scope of this book), no one builds
frontend applications today without a UI library. It’s simply messy. UI libraries
decrease the complexities of dealing with the DOM API and offer a declarative alter-
native to it. That is especially important if the web UI gets frequent UI updates.

 The most popular UI libraries today are Vue and React. I’ll use React in this book
because it’s closer to GraphQL’s ecosystem and design principles. Besides the fact that
both React and GraphQL originated at Facebook, React offers a language to declara-
tively describe user interfaces (web or otherwise), and GraphQL offers a language to
declaratively describe data requirements. React offers composability with its compo-
nents, and GraphQL offers composability with its fragments. These similarities allow
for a great match between React and GraphQL.

 In addition, the most popular clients for GraphQL are designed for React first. You
can certainly use some clients with other UI libraries, but their built-in support for
React is first class. You can also use GraphQL in iOS and Android mobile applications
with React Native.

 If you don’t know React at all, it will not be a problem in this chapter. I’ll provide
all the React-related code for the project. I also intentionally kept everything as simple
as possible without making the example too trivial. I want you to focus on how
GraphQL fits in a frontend application. Using a GraphQL API without a client in
other UI libraries is very similar. You just need to find the points to hook GraphQL-
related actions.

 If you want to brush up on React before proceeding with this chapter, I put all the
basics in one article that does not assume you know anything about React. It’s avail-
able at jscomplete.com/learn-react.

NOTE I am also picking React simply because I like it a lot more than the other
options (and I have tried most of them). If you’re interested in my reasons for
preferring React, you can read my “Why React” article at jscomplete.com/
why-react.

https://az.dev/gia-updates
https://jscomplete.com/why-react
https://jscomplete.com/why-react
https://jscomplete.com/why-react
https://jscomplete.com/learn-react

255Running the web server

9.2 Running the web server
If you’ve been following the code we wrote in
part 2 of the book, you should have a Node
web server running on port 4321 (by default)
and serving a GraphQL API service on its root
endpoint.

 So far, we’ve been modifying files under
the api directory in the book’s Git repository
(available at az.dev/gia-repo). We’ll now start
modifying the files under the web directory
structure (figure 9.1).

NOTE You need to have PostgreSQL and
MongoDB both started and ready with the
AZdev schema and have the API server run-
ning as well. See the instructions in the
repo’s README file if you skipped over
part 2 of the book.

With the database and API servers running, use the following command to run the
web server.

$ npm run web-server

This command will run a process that bundles all code and serves it on http://local-
host:1234. If everything works okay, you should be able to access the development web
server main page. It should look as shown in figure 9.2.

 Take a look around the web directory and get familiar with its structure (figure 9.3).
This is a pure React project that mounts a simple single-page app. There are no helper
libraries like Redux or React Router. All React components are in web/src/components.
The top-level component is Root, which is defined in web/src/components/Root.js. The
components that can show up on their own in this example are exported in

Listing 9.1 Command: starting the web-server process

Current code
Use git checkout 9.0 to reset your local repo to the current progress in the code.
If you need to stash any local changes, use git add . && git stash. Remember
to run npm install to install any missing dependencies.

Figure 9.1 The api and web top-level
directories

https://az.dev/gia-repo

256 CHAPTER 9 Using GraphQL APIs without a client library

web/src/components/index.js. You can think of
these components as the virtual pages of the app.

WARNING The starting point for this chapter’s
code will have a lot of ESLint errors because I left
many unused variables in the template, and ESLint
is configured to complain about that. We’ll use
these variables when we need them. There should
be no ESLint errors when we are finished with this
chapter.

A React component is a basic JavaScript function that
can optionally take arguments (known as props in
React). It can have custom logic (like fetching data
from an API), and it always returns a virtual DOM
node. React takes care of mounting that virtual node
in the right place and updates it (efficiently) when it
needs to be updated. You can assume that the declar-
ative state of that component will always be reflected
in the browser. You just need to invoke JavaScript
functions (which I have documented for you in the
code) to get the DOM updated.

 The state of this project’s UI is managed with a sim-
ple global context object. In React, a context object is

Figure 9.2 Project’s main page with mock data

Figure 9.3 The web/src directory

257Running the web server

global to the app that defines it, and every component in the tree can read it and modify
it. The context object is defined in web/src/store.js. The two main things that are man-
aged in the global context are the current component information (what component
to render and what props to pass to it) and the current information of the logged-in user
(if any). A few functions are defined on the context object and imported into the com-
ponents that need them. For example, the useLocalAppState function can be used to
read values from the app state, and the setLocalAppState function can be used to
update the app state. These functions are defined on the context object because they
need to access and modify the global app state.

We will be modifying almost every component file (under web/src/components) and
the context object (in web/src/store.js), but you don’t need to create any new files in
the project to follow this chapter. All the components are ready except where they
require data reads and writes. You also don’t need to modify any of the components’
output (their returned JSX nodes). All the HTML work has been done, but it’s ren-
dered with empty or mock data. We will modify the places in the code where these
data variables are defined. In places where we need to make modifications, I have
added notes in code comments (labeled “GIA NOTES”; see figure 9.4).

 You also don’t need to modify any styling code or add any CSS classes to the HTML
managed by React. The CSS is all wired and ready (in web/src/index.css), but it’s cer-
tainly not the best. I only made a few general style tweaks to make things look decent.
The styles were based on the Tailwind CSS framework, but I extracted them out and
made the project use them directly for simplicity.

TIP If you have any questions about the code as it is now or the new code we
will be writing, feel free to create a GitHub issue on the book’s repository.
You can also ask your questions in the official jsComplete help channel at
jscomplete.com/help.

Module bundlers
All JavaScript code in this project gets bundled using Parcel. Parcel is a simple mod-
ule bundler that can also compile special things like React’s JSX extension, modern
JavaScript features, and even TypeScript. We’re using Parcel’s default configuration,
which has hot module reloading configured out of the box. This will auto-refresh your
browser session when you make changes to the code (and save them). Try that by
changing the content of the mockTasks array in web/src/components/Home.js, and
note that the browser auto-refreshes.

A couple of other popular module bundlers are Webpack and Rollup. Webpack, being
the first, is more widely used. I’ve picked Parcel for this project for its simplicity and
excellent default configurations. The official AZdev open source repository
(az.dev/contribute) uses Webpack.

https://az.dev/contribute
https://jscomplete.com/help

258 CHAPTER 9 Using GraphQL APIs without a client library

9.3 Making Ajax requests
To make a GraphQL request from a web application, we need to invoke an Ajax HTTP
call. Remember that we made our GraphQL service available through HTTP POST
requests.

 Up to this point, we’ve been sending these POST requests through the GraphiQL
editor. Under the hood, the GraphiQL editor issues Ajax calls in the background
when you execute any document there.

 Modern browsers have native APIs to make Ajax requests. For example, browsers
today come with a built-in fetch method that can be used to invoke any type of HTTP
Ajax requests. However, if you need to support older browsers, you cannot use fetch
directly, but you can use a library that wraps the native API or polyfills it if it doesn’t
exist. One common option is cross-fetch, as it will also allow you to do data fetching
from Node.js; that’s something you’ll need if you plan to do any server-side rendering
of your web applications. We’ll use it; it’s already part of this project’s dependencies.

 Let’s do a test GraphQL request. Remember the currentTime field we started with
back in chapter 5? Let’s make the app temporarily console.log it when it loads.

Figure 9.4 GIA
book notes in code

259Making Ajax requests

 Make the following temporary code changes to the Home component (in web/src/
components/Home.js).

export default function Home() {
// ·-·-·

useEffect(() => {
request('{ currentTime }').then(({ data }) => {

console.log(`Server time is: ${data.currentTime}`);
});

// ·-·-·
}, [request]);

return (
// ·-·-·

);
}

This code assumes that the already defined request function receives a GraphQL
request text (like a query or mutation) and returns the GraphQL response object
(which has data and errors attributes).

TIP The useEffect function is called a hook function, and it runs every time
the host component is rendered. This makes the console.log line appear in
the browser’s console when the browser renders the output of the Home com-
ponent. For more details on how React hooks work, check out jscomplete
.com/react-hooks.

The request function’s skeleton is already defined in web/src/store.js. The function
has to submit the Ajax POST request to the GraphQL service endpoint and return the
response object. It needs to include requestText (its first argument) and any vari-
ables as well (second argument). Here’s a basic implementation.

export const useStoreObject = () => {
// ·-·-·

const request = async (requestText, { variables } = {}) => {
const gsResp = await fetch(config.GRAPHQL_SERVER_URL, {

method: 'post',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ query: requestText, variables }),

}).then((response) => response.json());

Listing 9.2 Temporary changes in web/src/components/Home.js

Listing 9.3 Changes in web/src/store.js

https://jscomplete.com/react-hooks
https://jscomplete.com/react-hooks
https://jscomplete.com/react-hooks

260 CHAPTER 9 Using GraphQL APIs without a client library

return gsResp;
};

// ·-·-·
};

If you’re using the default port for the GraphQL API service, you don’t need to do
anything. If you used a different port, then you have to specify your new GRAPHQL_
SERVER_URL in the web/src/config.js file.

 The code in listing 9.3 sends an Ajax POST request to the GraphQL service end-
point. The requestText argument, which is passed as { currentTime } from the Home
component (listing 9.2), is sent as the query variable, which is the default variable that
represents a GraphQL request text in the server HTTP handler (graphqlHTTP) that
we defined in chapter 5.

TIP This implementation of the request function is a simple happy path that
expects a successful response. A more practical implementation will include
error handling. I’ll leave the simple call here, as we’re going to replace this
function in the next chapter.

You should now see the server time log message in your browser console (figure 9.5).

Working with all GraphQL requests is really similar to this simple request. You make
an Ajax request call, supplying a query or mutation operation text (and you include
the variables that the operation uses). Then you do something with the resolved data
response.

 There are really no special tricks to using GraphQL directly without a client. You
just need to make Ajax calls and handle their responses! However, there are some spe-
cial tricks to organize your GraphQL client code in a readable and maintainable way.
We’ll cover a few of them in this chapter.

 Now that we know things are working well, remove the test request code we added
in the Home component (in the useEffect function). Instead, let’s figure out the offi-
cial data request (to fetch a list of the latest Task records) that we have to do in that
useEffect function.

9.4 Performing GraphQL query requests
The Home component is already wired to display a list of mock Task records in the UI.
We now need to issue a GraphQL query that will get information from the GraphQL ser-
vice about actual Task records and use the response data to replace the mock object.

Figure 9.5 The server
time log message

261Performing GraphQL query requests

 The GraphQL root field we designed for this page is taskMainList. You can look
at the code in web/src/components/Home.js to see what subfields must be included
in this taskMainList query. The structure of the data required for this view is the
same as that for the mockTasks object.

{
id: 1,
content: 'Mock content #1',
author: { username: 'mock-author' },
tags: ['tag1', 'tag2'],

}

Relying on the structure of that object, here’s the GraphQL query required by the
HOME component.

query taskMainList {
taskMainList {

id
content
author {

username
}
tags

}
}

This taskMainList query does not need GraphQL variables. We can use its text
directly in the request function. However, it is a good practice to put the text of
GraphQL operations next to the UI components that use them. Let’s do that.

const TASK_MAIN_LIST = `
query taskMainList {

taskMainList {
id
content
author {

username
}
tags

}
}

`;
// delete the mockTasks object...

Listing 9.4 The mockTasks object

Listing 9.5 Query that matches the mockTasks object structure

Listing 9.6 Changes in web/src/components/Home.js

262 CHAPTER 9 Using GraphQL APIs without a client library

export default function Home() {
const { request } = useStore();
const [taskList, setTaskList] = useState(null);

useEffect(() => {
request(TASK_MAIN_LIST).then(({ data }) => {

setTaskList(data.taskMainList);
});

}, [request]);

// ·-·-·
}

We first define the query operation text (which I named TASK_MAIN_LIST to match
what it returns). The all-uppercase naming convention is common but not required.

 We then send that text to the GraphQL service (sometime in the life cycle of this
component). When a successful response is returned, it will have a data property,
which is an object that has a property for every root field in the query. We have only a
single root field in this query (taskMainList). When we have the response (in the
.then promise method), we make React aware of it (through the noted method).
React will automatically update the browser’s DOM tree with the new data.

 In your browser, you should see the sample data Task entries listed with their
author and tags information (figure 9.6).

Figure 9.6 The list of latest Task records on the home page

Current code
Use git checkout 9.1 to reset your local repo to the current progress in the code.

263Performing GraphQL query requests

9.4.1 Using GraphQL fragments in UI components

The mockTasks object in the Home component helps us easily figure out what
GraphQL fields are required for that component. But what if we did not have that
object? Also, what if we did not have the UI component? Is it better to start with a UI
component or with a GraphQL query text?

 The concept that helps me wrap my thoughts around these questions is one that
we briefly touched on in previous chapters, but it’s now time to bring it to the fore-
front. I am talking about how every UI component (view) has specific data require-
ments and should be responsible for declaring those requirements. To figure out the
data requirements of a view tree composed of multiple UI components, you put
together the individual data requirements.

 For example, the data from the taskMainList operation is actually used by two UI
components: Home and TaskSummary. The view tree has only these two components,
and each has its own data requirements. The Home component needs the id of a Task
object. There is no mention of content, author.username, or tags in the Home com-
ponent. These other fields come from the data requirements of the TaskSummary
component, because that component is where they are used.

 Take a look at the TaskSummary component (under web/src/components/
TaskSummary.js), and note the following (in bold).

export default function TaskSummary({ task, link = false }) {
const { AppLink } = useStore();

return (
<div className="box box-primary">

{link ? (
<AppLink to="TaskPage" taskId={task.id}>
{task.content}

</AppLink>
) : (

task.content
)}
<div className="box-footer">

<div className="text-secondary">{task.author.username}</div>
<div className="flex-end">
{task.tags.map((tag) => (

{tag}

))}

</div>
</div>

</div>
);

}

Listing 9.7 The task.* variables in the TaskSummary component

264 CHAPTER 9 Using GraphQL APIs without a client library

Do you see the direct mapping between what variables are used in this component
(the bold parts) and what GraphQL fields were included in the TASK_MAIN_LIST
query in listing 9.6? We don’t have to rely on mock objects. We can use the compo-
nent’s code to directly come up with its GraphQL data requirements. In fact, instead
of putting the entire taskMainList query text in the Home component, let’s officially
make every component declare its own data requirements. In most cases, one UI com-
ponent does not care about the data requirements of its children, parents, or siblings.

 This is where GraphQL fragments can play a role. We can make the TaskSummary
component define a GraphQL fragment that declares that component’s exact data
requirements and then make the Home component use that fragment to compose the
main GraphQL query that’s needed to render the component (and its child
component).

 For example, we can define the following GraphQL fragment in the TaskSummary
component.

// ·-·-·
export const TASK_SUMMARY_FRAGMENT = `

fragment TaskSummary on Task {
content
author {

username
}
tags

}
`;

export default function TaskSummary({ task, link = false }) {
// ·-·-·

}

This fragment simply represents the data required to display a TaskSummary compo-
nent instance.

 Note that we exported this new constant so that other components can import and
use it, which is what we now have to do in the Home component.

// ·-·-·

import TaskSummary, { TASK_SUMMARY_FRAGMENT } from './TaskSummary';

const TASK_MAIN_LIST = `
query taskMainList {

taskMainList {
id

Listing 9.8 Changes in web/src/components/TaskSummary.js

Listing 9.9 Changes in web/src/components/Home.js

265Performing GraphQL query requests

...TaskSummary
}

}
${TASK_SUMMARY_FRAGMENT}

`;
// ·-·-·

Isn’t this a beautiful abstraction?
 Every component is responsible for its own part of a bigger data requirement. With

this change, the Home component basically reaches out to its child (the TaskSummary
component) and asks it, “What fields would you like me to fetch for you?”

 Furthermore, with this structure, if the TaskSummary component is modified to
require more (or fewer) fields from the API service, the Home component will not
need any modifications.

 This concept is often referred to as colocating fragments (or fields). Usually, the
fields in a colocated fragment match the props of the colocated component. I think
this is a good practice to follow, whether you use GraphQL directly (as in this exam-
ple) or a GraphQL client, as we will see in the next chapter.

 One trick to identify which UI components are candidates to define their own data
fragments is to look at the components that are not rendered at the top level (directly
by the Root component). For example, we cannot render a TaskSummary component
on its own page. It’s always rendered by other pages (like Home, Search, and so on).
This is similar to how we cannot invoke a GraphQL fragment on its own.

 What other components are not rendered on their own in this example? If these
components depend on their props to render their content, chances are they should
have their own data fragments.

TIP A child component can define multiple fragments and can also compose
the fragments using subfragments of its own children components.

9.4.2 Including variables in requests

The home page has a list of the latest Task records. The user can click a Task record to
see its Detail page. The navigation is already implemented, but the data requirement
for the page is not. Currently, when you navigate to a Task record page, you see
mocked data.

 We can display this page with the partial data that we’ve already fetched for a Task
record through the taskMainList request (and then fetch the rest of the required data,
like the list of Approaches). A featured client for GraphQL will do that automatically.
It will cache any data it fetches from the server, and it will make partial data available.

Current code
Use git checkout 9.2 to reset your local repo to the current progress in the code.

266 CHAPTER 9 Using GraphQL APIs without a client library

However, for our simplified example, let’s just issue a full request for this page. The
component for this page is TaskPage (under web/src/components/TaskPage.js).

 To determine what GraphQL fields are required for this new view tree, we need to
look at the TaskPage component and all its children. It has two children components:
TaskSummary and Approach.

 We’ve already implemented the fragment for TaskSummary, and we can use it as is.
The data requirements for a child component do not change based on which parent
component renders it.

 To complete the data requirements for the TaskPage component, we first have to
come up with the data requirements for the Approach component, which renders a
single Approach record (with all of its detail records).

 Look at web/src/components/Approach.js, and find all the variables it uses to
come up with a GraphQL fragment that matches these used variables.

export default function Approach({ approach, isHighlighted }) {
// ·-·-·

const [voteCount, setVoteCount] = useState(approach.voteCount);

// ·-·-·

return (
<div className={`box highlighted-${isHighlighted}`}>

<div className="approach">
<div className="vote">
{renderVoteButton('UP')}
{voteCount}
{renderVoteButton('DOWN')}

</div>
<div className="main">
<pre className="code">{approach.content}</pre>
<div className="author">{approach.author.username}</div>

</div>
</div>
<Errors errors={uiErrors} />
{approach.detailList.map((detail, index) => (

<div key={index} className="approach-detail">
<div className="header">{detail.category}</div>
<div>{detail.content}</div>

</div>
))}

</div>
);

}

Here’s the fragment I came up with for the Approach component.

Listing 9.10 The approach.voteCount variables in the Approach component

267Performing GraphQL query requests

// ·-·-·

export const APPROACH_FRAGMENT = `
fragment ApproachFragment on Approach {

content
voteCount
author {

username
}
detailList {

content
category

}
}

`;
// ·-·-·

With fragments for both children components ready, we can now write the full data
requirements for the TaskPage component. We can use the taskInfo root query field
and include the approachList field in its sub-selection. This query will have to import
and use the two fragments declared by the component’s children.

// ·-·-·

import Approach, { APPROACH_FRAGMENT } from './Approach';
import TaskSummary, { TASK_SUMMARY_FRAGMENT } from './TaskSummary';

const TASK_INFO = `
query taskInfo($taskId: ID!) {

taskInfo(id: $taskId) {
id
...TaskSummary
approachList {

id
...ApproachFragment

}
}

}
${TASK_SUMMARY_FRAGMENT}
${APPROACH_FRAGMENT}

`;
// ·-·-·

This query requires the use of a GraphQL variable ($taskId). We can issue the data
request where noted in the component’s code and pass the taskId variable as part of
the second argument to the request function.

Listing 9.11 Changes in web/src/components/Approach.js

Listing 9.12 Changes in web/src/components/TaskPage.js

268 CHAPTER 9 Using GraphQL APIs without a client library

// delete the mockTaskInfo object...

export default function TaskPage({ taskId }) {
// ·-·-·

useEffect(() => {
if (!taskInfo) {

request(TASK_INFO, { variables: { taskId } }).then(
({ data }) => {
setTaskInfo(data.taskInfo);

},
);

}
}, [taskId, taskInfo, request]);

// ·-·-·
}

That’s it. When you navigate to a Task page now, all the data for the Task record, its list
of Approach records, and the Detail list for each Approach should be fetched (with
one GraphQL request) and displayed properly in the UI (figure 9.7).

 So far, we’ve implemented read-only query operations. Let’s now take a look at
how to invoke mutation requests. Spoiler alert: it’s not that different.

Listing 9.13 Changes in web/src/components/TaskPage.js

Figure 9.7 The page for a full Task record

269Performing GraphQL mutation requests

9.5 Performing GraphQL mutation requests
A GraphQL mutation is usually invoked as part of an onSubmit event in an HTML
form. The mutation input is generally read from the HTML form elements (text
input, select value, check box, and so on).

 We have five basic forms in this project: login, signup, create Task, add an Approach
to a Task, and search all Tasks and Approaches. Each of these forms will invoke a single
mutation.

 Sometimes mutations are invoked with a simple onClick event without any input
elements in a form. An example is the vote-on-Approach feature.

 Some mutations can be invoked publicly without the scope of a logged-in user
account. Examples include the mutations to create a new user account and log in an
existing user account. We also kept the vote-on-Approach mutation public.

 Some mutations require the scope of a logged-in user account. For example, only
logged-in users can create Task/Approach records.

 Some mutations can be invoked publicly, but they behave differently if invoked
with the scope of a logged-in user. An example is the search mutation, which includes
private Task records that belong to the user who is making the search. It will only
include public records when invoked without an authenticated user scope.

 Let’s start with the userLogin and userCreate mutations. They can be invoked
without including any authentication headers, and they both return an active auth-
Token value that can be used with the other mutations.

9.5.1 The login/signup forms

You can get to the login/signup forms using the links in the top-right corner of the
home page. The components used for these pages are as follows:

 The Login component is under web/src/components/Login.js.
 The Signup component is under web/src/components/Signup.js.

These components display simple HTML forms with submit buttons. Our task is to
implement their onSubmit event handlers. These handlers are pretty much the same
in both components. They have to read the mutations’ input object from the form ele-
ments, submit the mutation request, and then store the user record on the global
state of the app so that they can navigate to other pages and submit other mutations.

 Here’s the mutation operation that can be used to log in a user using their username/
password. Put this in the Login component.

Current code
Use git checkout 9.3 to reset your local repo to the current progress in the code.

270 CHAPTER 9 Using GraphQL APIs without a client library

// ·-·-·
const USER_LOGIN = `

mutation userLogin($input: AuthInput!) {
userLogin(input: $input) {

errors {
message

}
user {

id
username

}
authToken

}
}

`;
// ·-·-·

Here’s the mutation operation that can be used to create a new user account. Put it in
the Signup component.

// ·-·-·
const USER_CREATE = `

mutation userCreate($input: UserInput!) {
userCreate(input: $input) {

errors {
message

}
user {

id
username

}
authToken

}
}

`;
// ·-·-·

We’ve seen and tested these mutations directly in GraphiQL before, but now we will
invoke them in submit handlers within components. In the Login component, we
invoke the request function using the USER_LOGIN mutation after capturing its input
from the form elements. Here’s one way to do that.

// ·-·-·

export default function Login() {
// ·-·-·

Listing 9.14 Changes in web/src/components/Login.js

Listing 9.15 Changes in web/src/components/Signup.js

Listing 9.16 Changes in web/src/components/Login.js

271Performing GraphQL mutation requests

const handleLogin = async (event) => {
event.preventDefault();
const input = event.target.elements;
const { data } = await request(USER_LOGIN, {

variables: {
input: {
username: input.username.value,
password: input.password.value,

},
},

});
const { errors, user, authToken } = data.userLogin;
if (errors.length > 0) {

return setUIErrors(errors);
}
user.authToken = authToken;
window.localStorage.setItem('azdev:user', JSON.stringify(user));
setLocalAppState({ user, component: { name: 'Home' } });

};

// ·-·-·
}

Test the Login form with invalid credentials.
You should see the “Invalid username or pass-
word” message (figure 9.8).

 To test the Login form with valid creden-
tials, use the test account in the sample data
script (test/123456). You should be redi-
rected to the home page, and the navigation
bar should now display the user’s username
(figure 9.9).

 To invoke the userCreate mutation, we
have to read the values of firstName, last-
Name, username, and password. The form
also has a confirmPassword field, but the
GraphQL API we implemented for this
mutation does not support it. This is an
example of a validation check that we can
do before allowing a GraphQL mutation operation to go through.

The input
data is read
with a DOM
API call. The
state of this
form is not
controlled

with React.

Checks for the existence of any user
errors after the mutation, and sets these

errors for the UI to display somewhere.
This part of the code will display the

“Invalid username or password” error
message when you test the form with

invalid credentials.

Challenge
Try to implement the userCreate mutation in the Signup component on your own
first. The code is very similar to what we did in the Login component.

Figure 9.8 UserError example for this
mutation

Figure 9.9 Navbar link for a logged-in user

272 CHAPTER 9 Using GraphQL APIs without a client library

Here’s how I implemented the mutation call.

// ·-·-·

export default function Signup() {
// ·-·-·

const handleSignup = async (event) => {
event.preventDefault();
const input = event.target.elements;
if (input.password.value !== input.confirmPassword.value) {

return setUIErrors([{ message: 'Password mismatch' }]);
}
const { data } =

await request(USER_CREATE, {
variables: {
input: {

firstName: input.firstName.value,
lastName: input.lastName.value,
username: input.username.value,
password: input.password.value,

},
},

});
const { errors, user, authToken } = data.userCreate;
if (errors.length > 0) {

return setUIErrors(errors);
}
user.authToken = authToken;
window.localStorage.setItem('azdev:user', JSON.stringify(user));
setLocalAppState({ user, component: { name: 'Home' } });

};
// ·-·-·

}

Listing 9.17 Changes in web/src/components/Signup.js

Persisting user sessions
The code as of now will persist the user session with localStorage. This is a simple
example of the persistent caching of an element from the local app state. This is dif-
ferent from caching API data (which we’re not doing yet in this example). An example
of API data caching would be to not fetch the taskMainList array again when you
navigate away from the home page and then navigate back to it. In the next chapter,
we will see how a GraphQL client library seamlessly performs API data caching when
it can.

There is more to persisting user sessions than using a simple localStorage record,
but that is beyond the scope of the book. You can check out the official AZdev project
(at az.dev/contribute) to see how we do session persistence for the project.

https://az.dev/contribute

273Performing GraphQL mutation requests

You can test the signup form now. You should be able to create a new user account,
and you should be logged in after you do.

9.5.2 Handling generic server errors

The happy paths for login/signup are working, but we should also test edge cases.
Here’s an edge case for you to think about. Right now, if you try to create a user
record using a username that already exists in the azdev.users table, the UI will fail
to display an error message and instead log a 500 Internal Server Error in the console
(figure 9.10). Why is this happening, and how can it be fixed?

The database’s unique constraint on the username column is blocking this operation.
It’s making the pg driver throw an error in the code. We can actually see the error in
the server logs (thanks to the customFormatErrorFn function we added earlier; see
figure 9.11). You can also see the error in the Network tab in your dev tools if you
inspect the server response for that network request (figure 9.12).

Figure 9.10 Unhandled error in the server response

274 CHAPTER 9 Using GraphQL APIs without a client library

This is not a good user experience. The UI should display some sort of error when it
cannot do what the user is expecting it to. Let’s fix that.

 This response has a root errors array, and the code we wrote for the Signup com-
ponent does not read it. It only reads the data part, which itself can have another user
errors array as we designed all mutations to. This error, however, is not returned as a
user error; it’s returned as a root error.

 We can fix the API’s mutators method to return the error as a user error, and that
will fix the problem (since we’re already accounting for the user errors array in the
code). However, this is just one of many root errors that might happen. Let’s make
sure this form will display an error in all cases.

 Since we already have an errors variable in the code, let’s rename the root errors
array rootErrors. All we need to do is check for its existence and update the UI if it’s
there.

Figure 9.11 Server logs

Figure 9.12 Inspecting the response in browser’s Network tab

275Performing GraphQL mutation requests

// ·-·-·

export default function Signup() {
// ·-·-·

const handleSignup = async (event) => {
// ·-·-·
const { data, errors: rootErrors } =

await request(USER_CREATE, {
variables: {
input: {

firstName: input.firstName.value,
lastName: input.lastName.value,
username: input.username.value,
password: input.password.value,

},
},

});
if (rootErrors) {

return setUIErrors(rootErrors);
}
const { errors, user, authToken } = data.userCreate;
if (errors.length > 0) {

return setUIErrors(errors);
}
// ·-·-·

};

NOTE Make this same change in the Login component.

With this change, if you try to submit the same data for this mutation, you should see
the error in the UI (figure 9.13). That’s better. Remember that the error will be replaced
by a generic error in production so we don’t leak implementation details (figure 9.14).

Listing 9.18 Changes in web/src/components/Signup.js

Figure 9.13 Showing
development root errors in the UI

276 CHAPTER 9 Using GraphQL APIs without a client library

Note that I kept the error local to this component instead of handling it on a global
level (for example, in the request function) because that makes for a better user
experience. We will have to handle server root errors every time we send any
GraphQL request! We’ll do so in the next chapter as we’re learning about how a
GraphQL client simplifies these challenges.

 Now that we can handle unexpected root errors, we can improve this particular
case and give the user a better error message when they attempt to use a username
that’s already used. Take a look at the mutator function for this operation. It’s the
userCreate function in api/src/db/pg-api.js. The method has no error handling
when the pgQuery promise fails, which is what’s happening in this case.

 We can modify this method to not throw an error, either by doing a SQL read first
to verify or by capturing the error of the SQL insert (in a try/catch statement), and
return a normal user error if the thrown error is caused by the database users_
username_key unique constraint. Maybe do something like the following.

userCreate: async ({ input }) => {
// ·-·-·

if (payload.errors.length === 0) {
const authToken = randomString();
try {

const pgResp = await pgQuery(sqls.userInsert, {

Listing 9.19 Example: handling database errors in mutators

Figure 9.14 Showing
generic root errors in the UI

277Performing GraphQL mutation requests

$1: input.username.toLowerCase(),
$2: input.password,
$3: input.firstName,
$4: input.lastName,
$5: authToken,

});
if (pgResp.rows[0]) {

payload.user = pgResp.rows[0];
payload.authToken = authToken;

}
} catch (err) {

console.error(err);
// Check the err object and either:
// - Push a custom error message to payload
// - Throw the err object again }

}

return payload;
},

I’ll leave this part for you to experiment with. Think of other database-level errors that
might happen in all the other mutations!

9.5.3 Authenticating GraphQL requests

In the handler logic for both the login and signup forms, the returned authToken
value is made part of the current user state object (listings 9.17 and 9.18). That’s the
value we now need to include in other mutation requests (and some query requests as
well).

 We can simply include that authToken value (if one exists) as part of any GraphQL
request we send to the API service and let the API service determine whether to use it
or ignore it. To do that, we have to modify the request function and include the
AuthorizationBearer token. For the fetch function, this is done through the head-
ers property that’s part of the third argument.

const request = async (requestText, { variables } = {}) => {
const headers = state.user

? { Authorization: 'Bearer ' + state.user.authToken }
: {};

const gsResp = await fetch(config.GRAPHQL_SERVER_URL, {
method: 'post',
headers: { ...headers, 'Content-Type': 'application/json' },
body: JSON.stringify({ query: requestText, variables }),

Listing 9.20 Changes in web/src/store.js

Current code
Use git checkout 9.4 to reset your local repo to the current progress in the code.

278 CHAPTER 9 Using GraphQL APIs without a client library

}).then((response) => response.json());

return gsResp;
};

Now, when a user is logged in, all GraphQL requests will include their current auth-
Token value, and they can invoke the mutations that depend on it. You can verify that
by inspecting the headers of any XHR request in the Network tab in your dev tools
(figure 9.15).

9.5.4 The Create Task form

Now that users can log in and their authToken value is included in the headers of all
GraphQL operations, we can have users create a new Task record. The HTML form to
do so can be reached by clicking the Create Task link in the top-right corner (figure 9.16).

Figure 9.15 The authToken is sent with every network request to the API.

Figure 9.16 The Create Task form

279Performing GraphQL mutation requests

The component that renders this HTML form is under web/src/components/
NewTask.js. The form has three elements: the content box, the tags text box, and the
public/private check box.

 These three input elements match the TaskInput type structure that can be used
with the taskCreate mutation field. However, we have to send the tags input value as
an array of strings rather than one string. We can use a .split(',') call on the input
text value to do so.

 When a Task object is created successfully, we can use the commented out set-
LocalAppState call to navigate the user to the page of that newly created Task object.

 Here’s the implementation I came up with for this component.

// ·-·-·
const TASK_CREATE = `

mutation taskCreate($input: TaskInput!) {
taskCreate(input: $input) {

errors {
message

}
task {

id
}

}
}

`;

export default function NewTask() {
// ·-·-·

const handleNewTaskSubmit = async (event) => {
event.preventDefault();
const input = event.target.elements;
const { data, errors: rootErrors } = await request(TASK_CREATE, {

variables: {
input: {
content: input.content.value,
tags: input.tags.value.split(','),
isPrivate: input.private.checked,

},
},

});
if (rootErrors) {

return setUIErrors(rootErrors);
}
const { errors, task } = data.taskCreate;
if (errors.length > 0) {

return setUIErrors(errors);
}
setLocalAppState({

component: { name: 'TaskPage', props: { taskId: task.id } },

Listing 9.21 Changes in web/src/components/NewTask.js

280 CHAPTER 9 Using GraphQL APIs without a client library

});
};

// ·-·-·
}

As a logged-in user, you should now be able to create your own Task records.
 Before we implement the next mutation, let me tell you about a good chance to

optimize the UI that handles this mutation. Right now, the code makes one GraphQL
mutation request to create a Task object. It then navigates the user to the Task page
and makes another GraphQL query request to read the data for that new Task object.
You can verify that in the Networks tab in your browser’s dev tools.

 However, we can skip the second request (to fetch the data in the Task page)
because that same data can be read in full as part of the mutation request. To do that,
we have to make the taskCreate mutation ask for all the data required to render the
TaskPage view.

 This means the TaskPage component should declare its full data requirements as a
fragment (even though it’s a top-level component).

 In the TaskPage component, refactor the TASK_INFO query to use a fragment and
export that fragment for others to use it. Let’s name the fragment FullTaskData.

// ·-·-·
export const FULL_TASK_FRAGMENT = `

fragment FullTaskData on Task {
id
...TaskSummary
approachList {

id
...ApproachFragment

}
}
${TASK_SUMMARY_FRAGMENT}
${APPROACH_FRAGMENT}

`;

const TASK_INFO = `
query taskInfo($taskId: ID!) {

taskInfo(id: $taskId) {
...FullTaskData

}
}
${FULL_TASK_FRAGMENT}

`;
// ·-·-·

Then modify the taskCreate mutation to ask for all the data required by TaskPage.

Listing 9.22 Changes in web/src/components/TaskPage.js

281Performing GraphQL mutation requests

// ·-·-·
import { FULL_TASK_FRAGMENT } from './TaskPage';

const TASK_CREATE = `
mutation taskCreate($input: TaskInput!) {

taskCreate(input: $input) {
errors {

message
}
task {

id
...FullTaskData

}
}

}
${FULL_TASK_FRAGMENT}

`;
// ·-·-·

To optimize the UI of the TaskPage component to not do the extra fetch, we have to
change that component to accept an optional data object (instead of just an ID),
check for it before the TASK_INFO query, and only perform that request if the object
does not exist. This is a React-only change, so I’ll skip it here. It’s a good practice to
always fetch all the data the UI would need to handle the creation of any object, even
if the UI discards it at first (and fetches it again). As we transition into a more featured
client for GraphQL requests, caching and optimizing requests will be managed for us
by that client.

9.5.5 The Create Approach form

Next up, let’s implement the mutation to add an Approach record to an existing Task
record. You need to be logged in first to access the UI form for this feature. While
looking at a Task page, click the Add New Approach button. You should see the Cre-
ate Approach form (figure 9.17).

 One challenge I prepared for this form is the Details category selector. Remember
that an Approach Detail can be a Note, an Explanation, or a Warning; but I did not
hardcode these values in the HTML form (the HTML select element is empty in fig-
ure 9.17).

 What if the GraphQL service adds a new category (or removes one) in the future?
Is there a way to future-proof this HTML form?

Listing 9.23 Changes in web/src/components/NewTask.js

Current code
Use git checkout 9.5 to reset your local repo to the current progress in the code.

282 CHAPTER 9 Using GraphQL APIs without a client library

Yes! This is where you’re going to appreciate GraphQL’s introspective queries. We can
ask the GraphQL service what values it supports in the ApproachDetailCategory type
using the __type introspective field.

// ·-·-·
const DETAIL_CATEGORIES = `

query getDetailCategories {
detailCategories: __type(name: "ApproachDetailCategory") {

enumValues {
name

}
}

}
`;
// ·-·-·

Then, we can use the response to build the HTML form. The React UI code to do that
is already implemented, but we have to make the request for this introspective query
somewhere. For example, we can make it every time this form is rendered. That’s what
I prepared in the code. Here’s how to do it.

// ·-·-·

export default function NewApproach({ taskId, onSuccess }) {
// ·-·-·

Listing 9.24 Changes in web/src/components/NewApproach.js

Listing 9.25 Changes in web/src/components/NewApproach.js

Figure 9.17 The Create Approach form

283Performing GraphQL mutation requests

useEffect(() => {
if (detailCategories.length === 0) {

request(DETAIL_CATEGORIES).then(({ data }) => {
setDetailCategories(data.detailCategories.enumValues);

});
}

}, [detailCategories, request]);

// ·-·-·
}

This should make the values supported by the server appear in the HTML form (fig-
ure 9.18).

TIP This type of request should be cached and not invoked every time a user
renders the HTML form. These categories will not change that frequently. I
would even cache this particular request server-side.

Now that the HTML form is ready, let’s figure out how to make the approachCreate
mutation work with it. That mutation takes a taskId variable and an ApproachInput
object. In its returned data, we can ask for the details of the newly created Approach
record. The exact fields that we have to include in the output of this mutation are
what the UI requires to render an Approach record. We’ve already created a fragment
in the Approach component to represent these fields. We can just reuse it here.

// ·-·-·
import { APPROACH_FRAGMENT } from './Approach';

Listing 9.26 Changes in web/src/components/NewApproach.js

Figure 9.18 The detail categories from the API response

284 CHAPTER 9 Using GraphQL APIs without a client library

// ·-·-·
const APPROACH_CREATE = `

mutation approachCreate($taskId: ID!, $input: ApproachInput!) {
approachCreate(taskId: $taskId, input: $input) {

errors {
message

}
approach {

id
...ApproachFragment

}
}

}
${APPROACH_FRAGMENT}

`;
// ·-·-·

The input to this mutation is a bit special because of the detailList part, which has
to be an array of objects (where each represents one detail record).

 Once the mutation is successful, we can call the noted onSuccess method, passing
the data returned by the mutation for the new Approach record. The logic of the
onSuccess function here is all React, but it basically updates the UI with the newly cre-
ated Approach record (and highlights it as well).

 Here’s the implementation I came up with for this handler.

// ·-·-·

export default function NewApproach({ taskId, onSuccess }) {
// ·-·-·

const handleNewApproachSubmit = async (event) => {
event.preventDefault();
setUIErrors([]);
const input = event.target.elements;
const detailList = detailRows.map((detailId) => ({

category: input[`detail-category-${detailId}`].value,
content: input[`detail-content-${detailId}`].value,

}));
const { data, errors: rootErrors } = await request(

APPROACH_CREATE,
{

variables: {
taskId,
input: {

content: input.content.value,
detailList,

},
},

Listing 9.27 Changes in web/src/components/NewApproach.js

285Performing GraphQL mutation requests

},
);
if (rootErrors) {

return setUIErrors(rootErrors);
}
const { errors, approach } = data.approachCreate;
if (errors.length > 0) {

return setUIErrors(errors);
}
onSuccess(approach);

};

// ·-·-·
}

You can test adding a new Approach entry to a Task entry. The new Approach should
appear on top with a slight background highlight (figure 9.19).

Figure 9.19 UI for a newly created Approach

Current code
Use git checkout 9.6 to reset your local repo to the current progress in the code.

286 CHAPTER 9 Using GraphQL APIs without a client library

9.5.6 Voting on an Approach

The vote count for each Approach is displayed between two arrows. Users should be
able to click these arrows to up-vote or down-vote an Approach record.

 The API service schema provides the approachVote mutation for this feature. It
expects an approachId field and an input object that has an up Boolean property.

 The code for this feature is in the Approach component under web/src/components/
Approach.js. There is a handleVote function that’s wired to deal with this mutation. It
receives a direction argument whose value is either UP or DOWN.

 The mutation should return the updated Approach record We can read the new
voteCount from that record so that we can update the state of this component to
make it show the new vote count.

 By now, you have many similar examples of how to define a GraphQL operation
for a component and how to invoke it, deal with its errors (if any), and deal with its
success response to update the UI. Give this one a try on your own first.

 Here’s the implementation I came up with for this component.

// ·-·-·
const APPROACH_VOTE = `

mutation approachVote($approachId: ID!, $up: Boolean!) {
approachVote(approachId: $approachId, input: { up: $up }) {

errors {
message

}
updatedApproach: approach {

id
voteCount

}
}

}
`;

export default function Approach({ approach, isHighlighted }) {
// ·-·-·

const handleVote = (direction) => async (event) => {
event.preventDefault();
const { data, errors: rootErrors } = await request(

APPROACH_VOTE,
{

variables: {
approachId: approach.id,
up: direction === 'UP',

},
},

);
if (rootErrors) {

return setUIErrors(rootErrors);
}

Listing 9.28 Changes in web/src/components/Approach.js

287Performing query requests scoped for a user

const { errors, updatedApproach } = data.approachVote;
if (errors.length > 0) {

return setUIErrors(errors);
}
setVoteCount(updatedApproach.voteCount);

};

// ·-·-·
}

With this change, you can test the voting arrows. Note that voting is unrestricted in the
API service. A user can vote as many times as they want on any Approach. Practically, a
vote operation like this should be restricted. That would be a fun exercise for you to
go through end to end. It requires changes to both the API code and the UI code.

 I think this is a good set of examples to demonstrate how to invoke GraphQL
mutation requests. You can experiment with a lot more on your own. But before we
conclude, we still have two more query requests to implement: the user’s Task-list fea-
ture and the search feature.

9.6 Performing query requests scoped for a user
As a logged-in user, you can click your username link in the top-right corner to navi-
gate to a page that should list all the Task records you have created (including private
ones). This page is similar to the home page, but the GraphQL query it requires is dif-
ferent. This one has to use the me root field and ask for the taskList field under it. It
can reuse the TaskSummary fragment just as the home page did.

 Try to do this on your own as well. The component that you have to change is
MyTasks under web/src/components/MyTasks.js. Here’s how I implemented it.

// ·-·-·

import TaskSummary, { TASK_SUMMARY_FRAGMENT } from './TaskSummary';

const MY_TASK_LIST = `
query myTaskList {

me {
taskList {

id
...TaskSummary

}
}

}

Listing 9.29 Changes in web/src/components/MyTasks.js

Current code
Use git checkout 9.7 to reset your local repo to the current progress in the code.

288 CHAPTER 9 Using GraphQL APIs without a client library

${TASK_SUMMARY_FRAGMENT}
`;

export default function MyTasks() {
// ·-·-·

useEffect(() => {
request(MY_TASK_LIST).then(({ data }) => {

setMyTaskList(data.me.taskList);
});

}, [request]);

// ·-·-·
}

We don’t need to do anything special for this query because we’re already sending the
current user’s authToken value with every GraphQL request. The server uses that
value to authenticate the request and return the data for the user who is making it.
Log in with test/123456, and click the username link in the navigation bar to test the
user’s Task-list feature (figure 9.20).

Figure 9.20 The page for the user’s own Task records

Current code
Use git checkout 9.8 to reset your local repo to the current progress in the code.

289Performing query requests scoped for a user

9.6.1 The Search form

The search feature is probably the most important feature in the AZdev application. It
will be heavily used because it’s the entry point for all Task records.

 It’s also special because it should work with or without a user session. Without a
user session, the API we implemented will exclude all private Task records. By includ-
ing an authToken, the API will include the private Task records owned by an authenti-
cated user. This is why I kept this feature for last so that we can test these two branches
from the UI.

 The root GraphQL field that we can use is search. We’ll alias it as searchResults.
It expects a term string as its only argument. That string is what we need to read from
the search input text box. However, the UI is designed such that the state of the com-
ponent changes when a user clicks the Search button, and the search-term value can
be read from the local app state. That part is already implemented in the code.

 Another special thing about the search query is how it represents two API object
types. Search results can include both Task and Approach records. The UI is imple-
mented to display these types differently (based on a .type attribute). Look at the JSX
in web/src/components/Search.js to analyze what fields this search query requires
(by looking at used variables):

<h2>Search Results</h2>
<div className="y-spaced">

{searchResults.length === 0 && (
<div className="box box-primary">No results</div>

)}
{searchResults.map((item, index) => (

<div key={index} className="box box-primary">
<AppLink

to="TaskPage"
taskId={
item.type === 'Approach' ? item.task.id : item.id

}
>

{item.type}{' '}
{item.content.substr(0, 250)}

</AppLink>
<div className="search-sub-line">

{item.type === 'Task'
? `Approaches: ${item.approachCount}`
: `Task: ${item.task.content.substr(0, 250)}`}

</div>
</div>

))}
</div>

The bold parts on each search item tell us that we need the following fields: type, id,
content, approachCount (if it’s a Task), and task.content and task.id (if it’s an
Approach). We made the search root field an interface implemented by both Task
and Approach models. This means the __typename introspective field will hold the

290 CHAPTER 9 Using GraphQL APIs without a client library

value of Task or Approach. We’ll have to alias that as type since that’s what the UI is
using.

 The content field can be read directly under the search field because it is com-
mon in both types. However, both the approachCount and task fields will have to be
included conditionally using inline fragments. Here’s the query I came up with after
this analysis.

// ·-·-·
const SEARCH_RESULTS = `

query searchResults($searchTerm: String!) {
searchResults: search(term: $searchTerm) {

type: __typename
id
content
... on Task {

approachCount
}
... on Approach {

task {
id
content

}
}

}
}

`;
// ·-·-·

Here is how I invoked the searchResults query.

// ·-·-·

export default function Search({ searchTerm = null }) {
// ·-·-·

useEffect(() => {
if (searchTerm) {

request(SEARCH_RESULTS, { variables: { searchTerm } }).then(
({ data }) => {
setSearchResults(data.searchResults);

},
);

}
}, [searchTerm, request]);

// ·-·-·
}

Listing 9.30 Changes in web/src/components/Search.js

Listing 9.31 Changes in web/src/components/Search.js

291Next up

You can test the Search form now. Make sure it works for both Task and Approach
content. Also test the public/private feature. If you create a private Task entry, it
should only be included in search results when you’re logged in. The sample data has
a private entry owned by the “test” user. Test searching for “babel” as a guest and as the
“test” sample data user (figures 9.21 and 9.22).

9.7 Next up
We have skipped many complexities in this chapter. While some simple applications
will not need to worry about such complexities, most will. You should be aware of
them in all cases. For example, what if the API service takes too long to reply? What if
it’s down? What if it returns partial data with errors?

 In each of these situations, the UI should behave in a user-friendly way. It might
need to retry a request, display a global error message, or display a warning to tell the
user that a request is taking longer than usual.

Figure 9.21 A guest searching for a private Task

Figure 9.22 An owner searching for a private Task

Current code
Use git checkout 9.9 to reset your local repo to the current progress in the code.

292 CHAPTER 9 Using GraphQL APIs without a client library

 The complexities are on both ends of this stack. The browser has many limitations.
What if it cannot allocate more memory? What if it has a limited network or CPU
power? There is a lot we can do to make this application a bit more usable on slow and
restricted devices. Just as we used DataLoader to cache and batch SQL operations, we
can use a specialized GraphQL client library to cache and batch GraphQL operations.

 Here are a few generic considerations when deciding whether to use a client
library like Apollo or Relay. These libraries greatly simplify things like the following:

 Performance—For example, caching responses and batching multiple network
requests into one. Also, displaying a big list of records using pagination, to
avoid overwhelming the app memory.

 Efficiency—For example, asking servers for only the new data required by a view
and then merging new data with old data; or asking servers for only the data
used in the visible window and asking for the rest of the data as the user scrolls
up or down.

 Dealing with failure—For example, employing standard error-handling for fail-
ing requests and a standard retry strategy.

 Responsiveness—For example, showing expected data changes optimistically
while waiting on a confirmation from the server. Then, possibly performing a
rollback on those optimistic changes if the server fails to persist the data.

 Cache management—For example, deciding what to cache, where to cache it, and
when to expire something in the cache.

These factors are why specialized frontend GraphQL client libraries exist. In the next
chapter, we will explore one of the most popular GraphQL clients today: the Apollo
Client.

Summary
 To use a GraphQL operation in a frontend web application, you need to make

Ajax calls. These calls usually cause the UI state to change. You’ll have to make
them in a place where it’s possible to read and update the state of the UI.

 Components can define operations and fragments. An operation can be a
query, a mutation, or a subscription. A component query operation is generally
used to display that component. A mutation operation is usually used within a
DOM event handler (like onSubmit or onClick). A subscription operation is
generally used to autoupdate a frequently changed view.

 Fragments allow components to be responsible for their own data require-
ments. Parent components can use these fragments to include the data
required by their children components.

 Mutation operations usually require the reading of input element values. The
structure of a UI form should match the structure of the mutation input type.

 GraphQL introspective queries can be used to future-proof parts of the UI that
depend on dynamic values.

293

Using GraphQL APIs
 with Apollo client

Shortly after GraphQL implementations started getting attention on GitHub,
another class of GraphQL libraries began to attract notice as well: client libraries.

 GraphQL client libraries are designed to manage communications between
frontend applications and backend GraphQL services. A client library abstracts the
tasks of asking a GraphQL service for data, instructing it to do mutations, and mak-
ing its data responses available to the view layer of a frontend application.

This chapter covers
 Using Apollo Client in plain JavaScript and React

 Understanding Apollo’s links and cache

 Using Apollo’s hook functions for queries and
mutations

 Managing local app state with Apollo

 Implementing and using GraphQL subscriptions
over WebSockets

294 CHAPTER 10 Using GraphQL APIs with Apollo client

 Just as a GraphQL service can be thought of as an agent that does all the communi-
cation with your databases, a GraphQL client can be thought of as an agent that does
all the communication with your GraphQL services.

 Many GraphQL client libraries also have server components to enrich the server
experience and support common frontend application requirements like caching,
paginating through lists, and using real-time data.

 Some GraphQL clients are designed to work with React exclusively. The most pop-
ular one in that category is Relay (relay.dev), which is primarily a Facebook project
influenced by how Facebook uses GraphQL. Relay is the first client framework for
GraphQL, and it shaped the evolution of the GraphQL language at Facebook.

 Other GraphQL clients are designed for multiple view libraries with a primary focus
on React. The most popular one in that category is Apollo Client (apollographql.com),
which is part of a stack of GraphQL tools managed by Meteor Development Group.

 There is also AWS Amplify (aws.amazon.com/amplify) by Amazon. It is a complete
development platform that covers the entire development workflow of frontend
applications.

 These are just some of the top JavaScript projects that include a GraphQL client,
but there are many more clients in JavaScript and many other languages. Check out
az.dev/graphql-clients for a full list of all GraphQL client libraries.

 GraphQL clients offer similar features with varying levels of complexity and cus-
tomization. To explore an example of how to use a GraphQL client library with a
GraphQL API, we will use Apollo Client simply because it’s the most popular client
that supports multiple view libraries.

TIP If you’re interested in learning how to use Relay.js, check out the mate-
rial at jscomplete.com/relay.

10.1 Using Apollo Client with JavaScript
Apollo Client can be used with React, Vue, Angular, and many others. It can also be
used with plain JavaScript. Let’s start with an example of how to do that first; then we
will see how to use it in the AZdev React project.

 The first step to work with Apollo Client is to add it to the project dependencies.
It’s hosted under the npm package @apollo/client.

Current code
Use git checkout 10.0 to reset your local repo to the current progress in the code.
If you need to stash any local changes, use git add . && git stash. Remember
to run npm install to install any missing dependencies.

https://aws.amazon.com/amplify/
https://relay.dev/
https://az.dev/graphql-clients
https://jscomplete.com/relay
https://www.apollographql.com/

295Using Apollo Client with JavaScript

$ npm install @apollo/client

TIP All the code examples in this chapter are designed to work with Apollo
Client version 3, the latest version as of this writing. If, by the time you’re
reading this book, a newer version of Apollo Client is out, its API will most
likely be different. Check out az.dev/gia-updates to see any API updates you
might need for this chapter.

10.1.1 Making a query request

Let’s start by looking at how to make a simple GraphQL query request using the
Apollo Client query method (which is not React-specific).

NOTE Listings 10.2—10.5 are temporary examples for testing. We’ll revert
things back in listing 10.6.

Delete all the content in web/src/index.js, and replace it with the following.

import {
ApolloClient,
HttpLink,
InMemoryCache,
gql,

} from '@apollo/client';

import * as config from './config';

const cache = new InMemoryCache();
const httpLink = new HttpLink({ uri: config.GRAPHQL_SERVER_URL });
const client = new ApolloClient({ cache, link: httpLink });

async function main() {
const { data, errors } = await client.query({

query: gql`
query {

numbersInRange(begin: 1, end: 100) {
sum

}
}

`,
});

console.log({ data, errors });
}

main();

Listing 10.1 Command: installing the Apollo client package

Listing 10.2 Example: initializing and using Apollo Client (in web/src/index.js)

https://az.dev/gia-updates

296 CHAPTER 10 Using GraphQL APIs with Apollo client

This is the simplest example of using Apollo Client in plain JavaScript, but it intro-
duces many new concepts. Let’s walk through them:

 A client library like Apollo replaces any other Ajax library in your application.
You don’t need “fetch” to make Ajax requests directly because the client makes
all the requests internally. This is the primary task of every GraphQL client: they
make all the Ajax requests for you and abstract the complexities of dealing with
HTTP requests and responses.

 The ApolloClient object is a constructor that can be used to initialize a client
object per GraphQL service. An application might use multiple client instances
to work with multiple GraphQL services. In this example, we have one
httpLink object, and I initialized it using the same config.GRAPHQL_SERVER_
URL that we’ve been using so far.

 In addition to the link attribute, Apollo Client requires the cache attribute.
This attribute is used to specify the cache object that Apollo will use for its store.
The default cache is an instance of the InMemoryCache object, which makes
Apollo Client use the browser’s memory for caching. That’s what most web
applications need to do. This cache flexibility allows an Apollo Client instance
to be used with other types of cache. For example, if you need your applica-
tion’s cached data to be persisted between sessions, you can use a cache object
that works on top of window.localStorage.

 Once you have a client object initialized and configured with a valid GraphQL
service link attribute and caching strategy, you can use its API methods. The
code in listing 10.2 uses the query method to send a GraphQL query operation
and retrieve the server response for it. The query method takes an object
whose query property is an object representing the GraphQL operation text to
be sent.

 Instead of using a string with the Apollo Client query method, we wrap that
string with the gql tag function. You can use gql either as a template string tag
(as we did in listing 10.2) or as a normal function call with the string as its argu-
ment. The gql function parses a GraphQL string into an abstract syntax tree
(AST). It basically converts the string into a structured object. Strings are lim-
ited. Structured objects give GraphQL clients more control over GraphQL
operations and make it easier for them to offer advanced features.

If everything works fine, you should see the console.log message in the browser’s con-
sole displaying the result of summing the numbers in the range 1–100 (figure 10.1).

297Using Apollo Client with JavaScript

At first glance, listing 10.2 is a lot of code to make a small request that can be done
with a simple, direct Ajax call. However, this code comes with a huge win that we can
see right away. Repeat the same query operation, and look at the Network tab in your
browser when you refresh the session. Here’s an example to demonstrate.

async function main() {
const resp1 = await client.query({

query: gql`
{

numbersInRange(begin: 1, end: 100) {
sum

}
}

`,
});
console.log(resp1.data);

const resp2 = await client.query({
query: gql`

{
numbersInRange(begin: 1, end: 100) {
sum

}
}

`,
});
console.log(resp2.data);

}

Figure 10.2 shows what you should see in the browser’s Network tab, filtered to show
only XHR requests (XMLHttpRequest). Apollo Client issued only one Ajax request for
both query operations because the response of the first request was automatically
cached (in memory), and Apollo Client figured out that there is no need to ask the
server again for data that we already have.

Listing 10.3 Example: repeating a query with Apollo Client

Figure 10.1 Output of the query request

298 CHAPTER 10 Using GraphQL APIs with Apollo client

This is a simple example, but Apollo Client does a lot of heavy lifting under the hood
to make the cache as useful as it can be. For example, it caches every data response in
a flattened data structure so that it can use the cache of individual objects to deter-
mine what future network requests are needed, even for different queries. For exam-
ple, make the following changes in web/src/index.js.

async function main() {
const resp1 = await client.query({

query: gql`
{

taskMainList {
id
content
tags
createdAt

Listing 10.4 Example: repeating a partial query

Figure 10.2 Output of the repeated query request

299Using Apollo Client with JavaScript

}
}

`,
});
console.log(resp1.data);

const resp2 = await client.query({
query: gql`

{
taskMainList {
content

}
}

`,
});
console.log(resp2.data);

}

This code asks to send two different query operations to the server. However, because
the second one is a subset of the first, Apollo Client will not go to the server a second
time (as shown in figure 10.3).

While this is impressive, wait until you see the other features offered by Apollo Client
(caching and more). Let me give you another example, but this time with a mutation
operation.

Figure 10.3 Output of the partial query code

300 CHAPTER 10 Using GraphQL APIs with Apollo client

10.1.2 Making a mutation request
To make a mutation request with Apollo Client, you use the .mutate method (instead
of .query) and supply an object with a mutation property. If the operation to be sent
uses variables, you can supply a variables property to specify their values.

 The following is an example of sending the mutation operation to vote on
Approach 2. I’ve also included a query to fetch the voteCount field for Approach 2
(which is under Task 2) before and after the mutation to verify that it worked.

async function main() {
const resp1 = await client.query({

query: gql`
query taskInfo {

taskInfo(id: "2") {
approachList {

id
voteCount

}
}

}
`,

});
console.log(resp1.data);

const resp2 = await client.mutate({
mutation: gql`

mutation approachVote($approachId: ID!) {
approachVote(approachId: $approachId, input: { up: true }) {
approach {

id
voteCount

}
}

}
`,
variables: { approachId: '2' },

});
console.log(resp2.data);

const resp3 = await client.query({
query: gql`

query taskInfo {
taskInfo(id: "2") {
approachList {

id
voteCount

}
}

}
`,

});
console.log(resp3.data);

}

Listing 10.5 Example: sending a mutation request

301Using Apollo Client with JavaScript

The first query request should show that Approach 2 has 0 votes. The second request
updates that vote count to 1, and the third verifies that Approach 2 now has 1 vote.

Note that Apollo Client included the introspective __typename field in all three oper-
ations, although we did not specify it (see figure 10.4). How did it do that? And, more
important, why did it do that?

Figure 10.4 Output of the mutation request code

302 CHAPTER 10 Using GraphQL APIs with Apollo client

 That’s one other reason we’re wrapping all operations with gql. Since the requests
are represented as objects, Apollo Client can inspect these objects and easily modify
them to, for example, include the __typename field.

 To understand why Apollo Client did that, take a good look at your Network tab
(or mine, in figure 10.4), and note that Apollo Client made only two network
requests. It did not issue a network request for the third query operation because that
operation did not ask for anything new. The mutation operation already informed
Apollo Client that the new voteCount is 1, so it cached that number. Since it asked for
the __typename as well, it can use a combination of __typename and id to uniquely
identify each object it sees on a global level. It did exactly that for Approach 2. It used
the Approach’s globally unique ID (Approach:2) to determine that we already know
the object’s id and voteCount.

 That’s impressive. We did nothing special to make this powerful feature work.
We’re just issuing the same simple queries and mutations, and Apollo Client is intelli-
gently making the cache work seamlessly for them.

 The rest of this chapter demonstrates how Apollo Client can be used with React
and shows the powerful features it offers for React applications. First, instead of the
manual Ajax requests we’ve been doing so far without a client, we will use Apollo’s
query and mutate methods. Then we will explore how to invoke these mutations with
Apollo’s React-specific methods.

 You can now revert all the test changes made so far in web/src/index.js and put
back the original code.

import 'regenerator-runtime/runtime';
import React from 'react';
import ReactDOM from 'react-dom';

import { useStoreObject, Provider } from './store';
import Root from './components/Root';

export default function App() {
const store = useStoreObject();
return (

<Provider value={store}>
<Root />

</Provider>
);

}

ReactDOM.render(<App />, document.getElementById('root'));

Listing 10.6 Code in web/src/index.js

Current code
Use git checkout 10.1 to reset your local repo to the current progress in the code.

303Using Apollo Client with React

10.2 Using Apollo Client with React
To use Apollo Client with React, we first need to initialize it (just as we did in listing
10.2). A good place to do so for this application is in web/src/store.js, where we have
been managing the local app state so far.

import React, { useState } from 'react';
import fetch from 'cross-fetch';

import * as config from './config';
import {

ApolloClient,
HttpLink,
InMemoryCache,

} from '@apollo/client';

const httpLink = new HttpLink({ uri: config.GRAPHQL_SERVER_URL });
const cache = new InMemoryCache();
const client = new ApolloClient({ link: httpLink, cache });
// ·-·-·

10.2.1 Using the query and mutate methods directly

Now, instead of the fetch-based request method that is exported in the store’s context
object, we need to introduce two new methods: one for queries and one for muta-
tions. To keep the changes in the app to a minimum, we will start by having the exact
same function signature as the good-old request function. The new methods will just
be wrappers around Apollo Client’s methods.

// ·-·-·

export const useStoreObject = () => {
// ·-·-·

const query = async (query, { variables } = {}) => {
const resp = await client.query({ query, variables });
return resp;

};

const mutate = async (mutation, { variables } = {}) => {
const resp = await client.mutate({ mutation, variables });
return resp;

};

return {
useLocalAppState,
setLocalAppState,

Listing 10.7 Changes in web/src/store.js

Listing 10.8 Changes in web/src/store.js

304 CHAPTER 10 Using GraphQL APIs with Apollo client

AppLink,
query,
mutate,

};
};

TIP You can remove the request method. We no longer need that dependency.

Note that I kept these new methods within the useStoreObject function because we
still need to include the authToken header, which is part of the user state object
(which is managed by the store). Later in this chapter, we will see how Apollo Client
can replace the entire local app state store.

 Now, for every call to the old request function in all components, we have to do
the following:

1 Add an import { gql } from '@apollo/client' statement.
2 Wrap the query or mutation text with gql.
3 Instead of request, destructure query or mutate out of useStore.
4 Replace the request method with query if the operation is a query or mutate if

the operation is a mutation.

For example, in web/src/components/Home.js, here are the changes we have to
make.

// ·-·-·
import { gql } from '@apollo/client';

const TASK_MAIN_LIST = gql`
query taskList {

taskList {
id
...TaskSummary

}
}

${TASK_SUMMARY_FRAGMENT}
`;

export default function Home() {
const { query } = useStore();
const [taskList, setTaskList] = useState(null);

useEffect(() => {
query(TASK_MAIN_LIST).then(({ data }) => {

setTaskList(data.taskList);
});

}, [query]);

if (!taskList) {

Listing 10.9 Changes in web/src/components/Home.js

305Using Apollo Client with React

return <div className="loading">Loading...</div>;
}

// ·-·-·
}

Here’s an example of how to replace the request call for a mutation operation. In
web/src/components/Login.js, the changes to make are as follows.

// ·-·-·
import { gql } from '@apollo/client';

const USER_LOGIN = gql`
mutation userLogin($input: AuthInput!) {

userLogin(input: $input) {
errors {

message
field

}
user {

id
name

}
authToken

}
}

`;

export default function Login() {
const { mutate, setLocalAppState } = useStore();
const [uiErrors, setUIErrors] = useState();
const handleLogin = async (event) => {

event.preventDefault();
const input = event.target.elements;
const { data, errors: rootErrors } = await mutate(USER_LOGIN, {

variables: {
input: {
username: input.username.value,
password: input.password.value,

},
},

});
// ·-·-·

};

// ·-·-·
}

That’s it on the simplest level. You can now test the home page and the login form.
GraphQL operations will be done through Apollo Client instead of the previous fetch-
based request method.

Listing 10.10 Changes in web/src/components/Login.js

306 CHAPTER 10 Using GraphQL APIs with Apollo client

NOTE Everything else would error out for you if you removed the old
request method.

Go ahead and change all the other components to use query/mutate instead of
request. Look for request(in your code editor to find all the components that need
to be changed. Some operations will not work correctly because the new query/
mutate methods do not include the current user’s authToken yet. We’ll fix that next.

 The Git branch 10.2 has all these changes. All GraphQL operations are done with
the new query/mutate methods.

Did you notice that the changes we made in the components were minimal? We just
wrapped operation texts with gql and replaced a method with another one. That’s the
power of having good abstractions.

 What we have done so far is a basic use of Apollo Client in a React application, but
it’s already paying off. The home page data is now cached after the first hit. If you nav-
igate to a Task page and then back to the home page, Apollo Client will not issue
another network request for the taskList.

10.2.2 Including authentication headers
While caching is great, it introduces some challenges that we need to learn about. Test
the search form right now. Since we’re no longer including the authToken in all
requests, the search operation will not work correctly for private Task entries. As an
example, test searching for “babel” after you log in with test/123456. That user owns
the sample data Task record about Babel, but the search field is not currently return-
ing it. We need to include the current authToken value in the headers of GraphQL
requests to fix that.

 However, now that we’re making the Ajax request through Apollo Client, we don’t
have direct control over what headers to send. We need to do the request through
Apollo Client methods and flow. We can do Ajax requests through the @apollo/
link-context package, which can be used to change the context of the GraphQL
operations issued by Apollo Client. We just create a new link object and make it part
of Apollo Client’s link chain.

TIP Apollo has a few different link objects that you can make part of the link
chain. For example, @apollo/link-schema can be used to perform GraphQL
operations directly on a provided schema object. That is commonly used for
server-side rendering. There is also @apollo/link-ws, which we will use later to
make Apollo Client work with WebSockets. There is even @apollo/link-rest,
which can be used to integrate data from REST APIs to your Apollo Client’s
cache. See the full list of Apollo links at az.dev/apollo-links.

Current code
Use git checkout 10.2 to reset your local repo to the current progress in the code.

https://az.dev/apollo-links

307Using Apollo Client with React

To make the current user’s authToken value part of the link chain context, start by
installing the new package.

$ npm install @apollo/link-context

Then change web/src/store.js as follows to make the new link part of the chain for
Apollo Client.

// ·-·-·
import { setContext } from '@apollo/link-context';
// ·-·-·

export const useStoreObject = () => {
// ·-·-·

const AppLink = ({ children, to, ...props }) => {
// ·-·-·

};

const authLink = setContext((_, { headers }) => {
return {

headers: {
...headers,
authorization: state.user
? `Bearer ${state.user.authToken}`
: '',

},
};

});

client.setLink(authLink.concat(httpLink));

// ·-·-·
};

Note that I placed the new authLink in the useStoreObject app so that it can use
JavaScript closures to access the state.user object (which is stored on the React con-
text object). Now, if you search for “babel” while logged in as the “test” user, it should
work.

TIP If the search for “babel” does not work, try restarting your web server to
clear any previous cache.

However, there is a problem. To see it in action, test this flow without refreshing the
browser:

Listing 10.11 Command: installing the Apollo link-context package

Listing 10.12 Changes in web/src/store.js

308 CHAPTER 10 Using GraphQL APIs with Apollo client

1 Log in with test/123456.
2 Search for “babel” (which should work).
3 Log out.
4 Search for “babel” again (which should not work).

You’ll notice that the second public search returns the private Babel Task entry (fig-
ure 10.5). Why?

This is happening because of Apollo Client caching. The search for “babel” was cached
when the owner was logged in, and it remained cached when the owner logged out.

 This is a common challenge when dealing with caching. The application logic
often needs to manually reset the cache.

TIP You should install the Apollo Client devtools extension (az.dev/
ac-devtools). It will add an Apollo tab in your browser’s dev tools where you
can inspect and debug Apollo-related problems. This extension will also
enable you to visualize your Apollo cache store, view active queries and
variables, and test GraphQL mutations using the same network interface
that’s used by the Apollo Client object we configured in web/src/store.js.

Apollo Client provides many methods to work with the cache. You can reset the cache
in part or in whole, and you can do that either directly after operations (for example,
right after the USER_LOGIN mutation) or globally when the state of your application
changes. Let’s do the latter. Let’s reset the entire stored cache when the user logs in or
out. We can do that in the setLocalAppState context method (which is the one this
code uses to make updates to the local app state).

const setLocalAppState = (newState) => {
if (newState.component) {

newState.component.props = newState.component.props ?? {};
}
setState((currentState) => {

Listing 10.13 Changes in web/src/store.js

Figure 10.5 Cache user session problem

https://az.dev/ac-devtools
https://az.dev/ac-devtools
https://az.dev/ac-devtools

309Using Apollo Client with React

return { ...currentState, ...newState };
});
// Reset cache when users login/logout
if (newState.user || newState.user === null) {

client.resetStore();
}

};

Now, if you test the double search flow again, it should work properly.

TIP You don’t have to reset the whole store. You can reset it in parts. For
example, you can clear cached data for a single query using the cache.write-
Query method. We’ll see an example of how to use that later in the chapter.

10.2.3 Using Apollo hook functions

While we have a working solution to make all GraphQL communications through
Apollo Client, this is not the ideal way to use it. We are simply not utilizing a big part
of the power Apollo Client offers.

 Apollo Client offers React hook functions to simplify the logic of view components.
The two most common Apollo hook functions are useQuery and useMutation, and
they are the primary way of using Apollo Client with React. In fact, if we change the
code to use them, we will not need the query/mutate methods that we have so far.

 To be able to use these hook functions in components, we have to wrap the compo-
nents tree with a provider component. The provider component concept is simple: you
supply a provider component with an object, and it makes that object available to all
the children components in the components tree it wraps.

 Inspect the code in web/src/index.js, and see how it uses a Provider component to
make the global store available in children components. Components do not generally
use the store object directly but rather methods that have access to it (through React’s
context). Examples of such methods in the current store are useLocalAppState,
setLocalAppState, and AppLink.

 Apollo Client’s provider component works in a similar way. You make the client
instance (which is becoming our new app state store) the provided context value.
Children components can then use the hook functions (like useQuery) to access and
modify Apollo Client’s state (the cache).

 React supports having multiple provider wrappers (that provide different con-
texts). To make the changes minimal for this first step of using Apollo hooks, let’s
wrap the components tree as is with the Apollo provider component.

 First, let’s remove the query and mutate methods from the store and expose the
client instance object instead.

Current code
Use git checkout 10.3 to reset your local repo to the current progress in the code.

310 CHAPTER 10 Using GraphQL APIs with Apollo client

// ·-·-·
export const useStoreObject = () => {

// ·-·-·

const authLink = setContext((_, { headers }) => {
// ·-·-·

});

client.setLink(authLink.concat(httpLink));

// Remove query/mutate methods

return {
useLocalAppState,
setLocalAppState,
AppLink,
client,

};
};

NOTE Remember, the Apollo Client object still has to be bound to the cur-
rent local app state store (to access the user state and include the current
authToken value). Later in this chapter, we will see how to manage the app
state through Apollo Client itself to simplify the code and use only one global
context object.

Apollo exports the ApolloProvider component that can be used to make the client
instance available to all children components. Here are the changes in
web/src/index.js to define and use ApolloProvider.

// ·-·-·
import { ApolloProvider } from '@apollo/client';

import { useStoreObject, Provider as StoreProvider } from './store';
import Root from './components/Root';

export default function App() {
const store = useStoreObject();
return (

<ApolloProvider client={store.client}>
<StoreProvider value={store}>

<Root />
</StoreProvider>

</ApolloProvider>
);

}

ReactDOM.render(<App />, document.getElementById('root'));

Listing 10.14 Changes in web/src/store.js

Listing 10.15 Changes in web/src/index.js

311Using Apollo Client with React

Note that I renamed the previous Provider component StoreProvider because it’s
no longer “the” provider. More-specific names are better.

 With the client instance object available to all components, we can now use Apollo
hooks everywhere in the components tree. Let’s start with the Home component.

 Here are the changes that I made to that component to make it use the useQuery
hook function.

import React from 'react';
import { gql, useQuery } from '@apollo/client';

import Search from './Search';
import TaskSummary, { TASK_SUMMARY_FRAGMENT } from './TaskSummary';
// ·-·-·

export default function Home() {
const { loading, data } = useQuery(TASK_MAIN_LIST);

if (loading) {
return <div className="loading">Loading...</div>;

}

return (
<div>

<Search />
<div>

<h1>Latest</h1>
{data.taskMainList.map((task) => (
<TaskSummary key={task.id} task={task} link={true} />

))}
</div>

</div>
);

}

How simple and nice is that? Look at the output of git diff on this change to see
what we’re able to replace (figure 10.6).

 The simple useQuery hook function enabled us to replace the useState and
useEffect React hook functions, which were previously used to manually do the data
fetching and manage the request status. This is now all done internally in Apollo
Client.

 The loading variable is a Boolean value that Apollo sets to true while the network
data request is pending. useQuery also returns an error variable, which holds any
GraphQL root errors or network errors. Your UIs should always handle both the

Listing 10.16 Changes in web/src/components/Home.js

Invokes the query operation, and returns the
GraphQL response object and loading state

While the query is pending,
the UI can show an indicator.
When the query operation is
finished, React rerenders the
component, and Apollo sets
loading to false.

312 CHAPTER 10 Using GraphQL APIs with Apollo client

loading and error states. For example, we can add another if statement and render
an error message when the error variable has a value.

export default function Home() {
const { error, loading, data } = useQuery(TASK_MAIN_LIST);

if (error) {
return <div className="error">{error.message}</div>

}

if (loading) {
return <div className="loading">Loading...</div>;

}

// ·-·-·
}

Listing 10.17 Changes in web/src/components/Home.js

Figure 10.6 Output of git diff for src/components/Home.js

If useQuery returns an
error value, that value
is an object that has a
message property
describing the errors.

313Using Apollo Client with React

TIP When it comes to handling errors in the UI, you should try to make the
error branch as close as possible to the data associated with it. For example,
the if statement I added in listing 10.17 blocks the entire home page, includ-
ing the search box. The search box has nothing to do with any possible errors
in the TASK_MAIN_LIST query. Try to fix that as an exercise.

This change in the Home component was straightforward because the replaced code was
a common task that components do. We’ll soon see examples of less common things to
do with Apollo; but first, let’s look at how to do a mutation with the useMutation hook
function.

 The useMutation hook function is similar to useQuery, but it does not send the
operation right away. It returns a two-item tuple, where the first item is a function that
sends the mutation operation when invoked. The second item is the mutation result
(after the function is invoked).

 Here’s an example of how we can use both items in the returned tuple.

const [loginUser, { error, loading, data }] = useMutation(USER_LOGIN);

The loginUser function makes the network request when it’s invoked, and it returns
the GraphQL response object. For example, we can do the following to invoke login-
User and read the data/errors properties of its GraphQL response object.

const { data, errors } = await loginUser({
variables: ·-·-·

});

Here are the changes I made to web/src/components/Login.js to make it send its
mutation operation with the useMutation hook function.

import React, { useState } from 'react';
import { gql, useMutation } from '@apollo/client';
// ·-·-·

export default function Login() {
const { setLocalAppState } = useStore();
const [uiErrors, setUIErrors] = useState();

const [loginUser, { error, loading }] = useMutation(USER_LOGIN);

if (error) {
return <div className="error">{error.message}</div>;

}

Listing 10.18 Example: a useMutation call

Listing 10.19 Example: invoking a mutation function

Listing 10.20 Changes in web/src/components/Login.js

Defines the mutation
operation but does

not invoke it

314 CHAPTER 10 Using GraphQL APIs with Apollo client

const handleLogin = async (event) => {
event.preventDefault();
const input = event.target.elements;
const { data, errors: rootErrors } = await loginUser({

variables: {
input: {
username: input.username.value,
password: input.password.value,

},
},

});
if (rootErrors) {

return setUIErrors(rootErrors);
}
const { errors, user, authToken } = data.userLogin;
if (errors.length > 0) {

return setUIErrors(errors);
}
// ·-·-·

};
// ·-·-·

}

Note that the changes are minimal here because the Login component does not have
UI state after the mutation is successful (it simply gets unmounted).

It’s now time for you to get comfortable with useQuery and useMutation. Convert the
TaskPage component next. This component currently has three useState calls and
one useEffect. Introducing the useQuery method can get rid of the useEffect call
and one of the three useState calls. Give it a try. Here’s what I ended up doing.

Invokes the mutation
operation and returns
its GraphQL response
object

What to do with the loading state
You should change your UIs to indicate that a request is pending. For query opera-
tions, this can be as simple as displaying a loading indicator where the data will
appear. For mutations, you should at least disable the Submit button (to prevent mak-
ing multiple operations with multiple clicks). I usually also make the button show a
loading indicator in its label.

For example, in React, here’s how you can disable a button and change its label
based on a loading Boolean variable:

<button
type="submit"
disabled={loading}

>
Save {loading && <i className="spinner">...</i>}

</button>

I’ll change all the buttons in this project to reflect the loading state. You can see
these changes in the final version at the book’s GitHub repository.

315Using Apollo Client with React

import React, { useState } from 'react';
import { gql, useQuery } from '@apollo/client';
// ·-·-·

export default function TaskPage({ taskId }) {
const { AppLink } = useStore();
// const [taskInfo, setTaskInfo] = useState(null);
const [showAddApproach, setShowAddApproach] = useState(false);
const [highlightedApproachId, setHighlightedApproachId] = useState();

const { error, loading, data } = useQuery(TASK_INFO, {
variables: { taskId },

});

if (error) {
return <div className="error">{error.message}</div>;

}

if (loading) {
return <div className="loading">Loading...</div>;

}

const { taskInfo } = data;

const handleAddNewApproach = (newApproach) => {
// setTaskInfo((pTask) => ({
// ...pTask,
// approachList: [newApproach, ...pTask.approachList],
// }));
setHighlightedApproachId(newApproach.id);
setShowAddApproach(false);

};

return (
// ·-·-·

);
}

The remaining useState objects (showAddApproach and highlightedApproachId)
manage state elements that are local to this component. Apollo usually is not used for
this type of local component state. However, we will soon see how Apollo can help us
get rid of the useStore call.

NOTE I commented out the part that handles appending a new Approach
record to the list of Approaches under a Task object. Now that the Task
object is managed in the Apollo cache, we will have to figure out what to do to
append an Approach record to it. We’ll talk about that in section 10.2.5.

Listing 10.21 Changes in web/src/components/TaskPage.js

Current code
Use git checkout 10.4 to reset your local repo to the current progress in the code.

316 CHAPTER 10 Using GraphQL APIs with Apollo client

TIP Another popular project named react-query (dev/react-query) also
offers useQuery/useMutation methods. It offers the same concept of fetching
and updating asynchronous data in React. The project can be used with any
promise-based data request. You can use it with REST APIs, for example.

10.2.4 Using the automatic cache

Let’s now redo the Approach component and replace the mutate method with use-
Mutation. That component has one mutation to update the voteCount of an
Approach object. This redo comes with a nice little surprise; but before I tell you
about it, go ahead and try to do it on your own.

 Here’s what I did. Try to figure out what surprise I am talking about.

import React, { useState } from 'react';
import { gql, useMutation } from '@apollo/client';

import Errors from './Errors';
// ·-·-·

export default function Approach({ approach, isHighlighted }) {
const [uiErrors, setUIErrors] = useState([]);
const [submitVote, { error, loading }] = useMutation(APPROACH_VOTE);

if (error) {
return <div className="error">{error.message}</div>;

}

const handleVote = (direction) => async (event) => {
event.preventDefault();
const { data, errors: rootErrors } = await submitVote({

variables: {
approachId: approach.id,
up: direction === 'UP',

},
});
if (rootErrors) {

return setUIErrors(rootErrors);
}
// Remove the setVoteCount call

};

const renderVoteButton = (direction) => (
<button

className="border-none"
onClick={handleVote(direction)}
disabled={loading}

>
{/* ·-·-· */}

</button>
);

Listing 10.22 Changes in web/src/components/Approach.js

https://az.dev/reac-query

317Using Apollo Client with React

return (
<div className={`box highlighted-${isHighlighted}`}>

<div className="approach">
<div className="vote">
{renderVoteButton('UP')}
{approach.voteCount}
{renderVoteButton('DOWN')}

</div>

{/* ·-·-· */}
</div>

);
}

I am now always handling the error/loading states because Apollo makes that so easy.
Note that I previously even skipped that part because it meant adding a new useState
call. In addition to making the error, loading, and data states easy to use, Apollo also
makes the code required to use them similar and often reusable.

 The vote UI will now work through the Apollo Client hook functions. Verify that.
 Did you find the surprise? I was able to get rid of the voteCount local state that was

there to reflect the voting result in the UI. Yet the voting count still gets updated in
the UI with this new code. How is it working without the local state? The answer is,
once again, the cache!

 Instead of the voteCount local state, I made the UI use approach.voteCount
directly. Since the id and voteCount fields are included in the mutation data (and
remember, Apollo auto-adds the __typename field as well), when this mutation’s data
is received, Apollo uses the unique approach:id identifier to update the identified
Approach object. I didn’t use the data part of this mutation in the component’s code,
but under the hood, Apollo Client did!

TIP You can test this cache update by removing the id or voteCount field (or
both of them) from the mutation result. If you do that, the vote count UI will
not be updated.

Automatically updated cache is great, but often we need to manually update the cache
after a mutation operation. Let’s take a look at that next.

10.2.5 Manually updating the cache

The Apollo cache is not automatically updated when a mutation modifies multiple
objects or when it creates or deletes objects. It only gets updated when the mutation
updates a single object.

 In this application, we have a mutation operation that creates a new Approach
object (in the NewApproach component). Apollo will not automatically update its
cache for this operation.

 The code I commented out in the TaskPage component (listing 10.22) manually
appends a newly created Approach object to a local state element it manages for that
purpose.

318 CHAPTER 10 Using GraphQL APIs with Apollo client

 Since all the Approach objects under a Task object are now managed in Apollo’s
cache, instead of using a state element to append a new Approach object, we have to
update Apollo’s cache to append a new Approach object in memory.

 We can update the cache in either the NewApproach or TaskPage component. The
useMutation hook function accepts an update function (as a property of its second
object argument), and it invokes that function after a mutation operation is success-
ful. That update function receives the cache object and the results object for the
mutation operation. For example, here’s how that update function can be used with
the APPROACH_CREATE mutation.

// ·-·-·
export default function NewApproach({ taskId, onSuccess }) {

// ·-·-·

const [createApproach, { error, loading }] = useMutation(
APPROACH_CREATE,
{

update(cache, { data: { approachCreate } }) {
if (approachCreate.approach) {
// Modify the cache for Task (ID: taskId)
// and append the new approachCreate.approach record }

},
},

);

useEffect(() => {
// ·-·-·

}, [detailCategories, query]);

// ·-·-·
}

Apollo’s cache object manages data using the query operations that resolved that
data. It provides methods like readQuery, writeQuery, and modify to interact with
cached data. For this example, we need to use the cache.modify method. Here is an
example of its basic usage.

cache.modify({
id: cache.identify(object),
fields: {

fieldName(fieldValue) {
return newFieldValue

},
},

});

Listing 10.23 Example: using the update callback after a mutation

Listing 10.24 Example: the cache.modify method

The object whose cached data you need to modify. In the
current example, that is the taskInfo object in the Task
component. The cache.identify method returns the Apollo
global ID for the object (for example, “Task:2”).

A list of functions, one for each field that needs to be modified.
Each field function takes the current field value as an argument
and returns the new value for that field. In the current example,
that is the approachList field.

319Using Apollo Client with React

Since the cache.modify function needs to use the taskInfo object from the TaskPage
component, let’s redesign the handleAddNewApproach function to receive a callback
function (instead of the new Approach record) and call that callback function, pass-
ing in the taskInfo object. Let’s also return the newly created Approach ID value
from that same callback function so that we can use it to highlight the Approach.

export default function TaskPage({ taskId }) {
const { AppLink } = useStore();
const [showAddApproach, setShowAddApproach] = useState(false);
const [

highlightedApproachId,
setHighlightedApproachId,

] = useState();

// ·-·-·

const { taskInfo } = data;

const handleAddNewApproach = (addNewApproach) => {
const newApproachId = addNewApproach(taskInfo);
setHighlightedApproachId(newApproachId);
setShowAddApproach(false);

};

// ·-·-·
}

The handleAddNewApproach function is passed to the NewApproach component as
onSuccess. That is a higher-order function that receives a function as its only argu-
ment. Here’s how the new onSuccess function needs to be called.

onSuccess((taskInfo) => {
// Do something with taskInfo
// return the new Approach ID value

});

Furthermore, the NewApproach component has two GraphQL operations: a query to
load the detail categories (similar to previous query examples) and a mutation to cre-
ate an Approach object (which is where we need to update the cache). Here are all
the changes I made to the NewApproach component to make it issue both operations
and then use the update function option (in useMutation) to modify the cache and
account for the newly created Approach record.

Listing 10.25 Changes in web/src/components/TaskPage.js

Listing 10.26 Example: how to call the new onSuccess function

Callback method that
will update the cache
using the taskInfo
object that’s already
defined

320 CHAPTER 10 Using GraphQL APIs with Apollo client

import React, { useState } from 'react';
import { gql, useQuery, useMutation } from '@apollo/client';
// ·-·-·

export default function NewApproach({ taskId, onSuccess }) {
const { useLocalAppState } = useStore();
const [detailRows, setDetailRows] = useState([0]);
const [uiErrors, setUIErrors] = useState([]);
const user = useLocalAppState('user');

const { error: dcError, loading: dcLoading, data } = useQuery(
DETAIL_CATEGORIES,

);

const [createApproach, { error, loading }] = useMutation(
APPROACH_CREATE,
{

update(cache, { data: { approachCreate } }) {
if (approachCreate.approach) {
onSuccess((taskInfo) => {

cache.modify({
id: cache.identify(taskInfo),
fields: {

approachList(currentList) {
return [approachCreate.approach, ...currentList];

},
},

});
return approachCreate.approach.id;

});
}

},
},

);

if (dcLoading) {
return <div className="loading">Loading...</div>;

}
if (dcError || error) {

return <div className="error">{(dcError || error).message}</div>;
}
const detailCategories = data.detailCategories.enumValues;

// ·-·-·

const handleNewApproachSubmit = async (event) => {
// ·-·-·
const { data, errors: rootErrors } = await createApproach({

variables: {
// ·-·-·

},
});
if (rootErrors) {

Listing 10.27 Changes in web/src/components/NewApproach.js

Gets the Apollo ID of the
taskInfo object that needs
to be updated in the cache

Modifies the approachList
field and prepends the new

Approach object

321Using Apollo Client with React

return setUIErrors(rootErrors);
}
const { errors } = data.approachCreate;
if (errors.length > 0) {

return setUIErrors(errors);
}
// No data handling here. It's all done in the update function

};

// ·-·-·
}

TIP This component needs to handle the loading/error state for two
GraphQL operations. That’s not ideal. You should really try to have one main
operation per UI component. Try to split the NewApproach component into
two: one to fetch the DETAIL_CATEGORIES query and one to invoke the
APPROACH_CREATE mutation.

TIP If you need to use the client instance object in a component, you can
import the useApolloClient hook function from @apollo/client.

TIP Be careful with the cache.modify method, as the cached data in Apollo
might get out of sync with what’s displayed in the browser. You might be try-
ing to modify data that is no longer in the cache! The method returns a Bool-
ean to indicate whether the modification was successful.

10.2.6 Performing operations conditionally

Let’s convert the Search component code to use Apollo hooks. There is a new chal-
lenge: the query has to be sent conditionally only when the component has a value in
the searchTerm prop. How do we make that work with useQuery?

Other cache functions
The readQuery and writeQuery functions interact with cached data that’s associ-
ated with a certain query (and variable values, if any). You pass them the query (for
example, TASK_INFO) and its variables, if any (for example, taskId). You can read
the current cached data for that query and modify it as well. These functions are also
available on the client instance object (defined in web/src/store.js).

Apollo Client also has the readFragment and writeFragment functions that work
similarly but with fragments. Depending on the type of cached objects that have to
be updated, working with fragments is often simpler.

Current code
Use git checkout 10.5 to reset your local repo to the current progress in the code.

322 CHAPTER 10 Using GraphQL APIs with Apollo client

 If we just replace the query function with a useQuery hook and get rid of the
useEffect hook, the code will look like this.

import React from 'react';
import { gql, useQuery } from '@apollo/client';
// ·-·-·

export default function Search({ searchTerm = null }) {
const { setLocalAppState, AppLink } = useStore();
const { error, loading, data } = useQuery(SEARCH_RESULTS, {

variables: { searchTerm },
});

if (error) {
return <div className="error">{error.message}</div>;

}

const handleSearchSubmit = async (event) => {
// ·-·-·

};

return (
<div>

{/* ·-·-· */}
{data && data.searchResults && (

<div>
<h2>Search Results</h2>
<div className="y-spaced">

{data.searchResults.length === 0 && (
<div className="box box-primary">No results</div>

)}
{data.searchResults.map((item, index) => (

<div key={index} className="box box-primary">
{/* ·-·-· */}

</div>
))}

</div>
<AppLink to="Home">{'<'} Home</AppLink>

</div>
)}

</div>
);

}

However, that will send the query operation request with a null value for searchTerm
every time this component renders (figure 10.7). This component renders as part of
the home page (to display the search form). So yeah, that will not work.

 Unfortunately, we cannot put the useQuery call in an if statement. That’s a React
requirement for using hooks (see az.dev/rules-of-hooks).

 We can solve this problem in a few different ways, which we’ll explore next.

Listing 10.28 Changes in web/src/components/Search.js

https://az.dev/rules-of-hooks

323Using Apollo Client with React

USING THE SKIP OPTION

Apollo’s useQuery method supports a skip Boolean option. A true skip value makes
Apollo not send the query operation. That’s exactly what we need.

import React from 'react';
import { gql, useQuery } from '@apollo/client';
// ·-·-·

export default function Search({ searchTerm = null }) {
const { setLocalAppState, AppLink } = useStore();
const { error, loading, data } = useQuery(SEARCH_RESULTS, {

variables: { searchTerm },
skip: !searchTerm,

});

// ·-·-·
}

USING A LAZY QUERY

Apollo Client has a useLazyQuery method that does not perform the query right away
but rather gives you a function to perform the query (similar to how useMutation
works). This means we can keep the useEffect hook function and invoke the lazy
query function in it.

Listing 10.29 Example: skipping a useQuery operation

Figure 10.7 The null searchTerm problemFigure 10.7 The null searchTerm problem

Performs the query only
when there is a searchTerm

324 CHAPTER 10 Using GraphQL APIs with Apollo client

import React from 'react';
import { gql, useLazyQuery } from '@apollo/client';
// ·-·-·

export default function Search({ searchTerm = null }) {
const { setLocalAppState, AppLink } = useStore();
const [

performSearch,
{ error, loading, data },

] = useLazyQuery(SEARCH_RESULTS, { variables: { searchTerm } });

useEffect(() => {
if (searchTerm) {

performSearch();
}

}, [searchTerm, performSearch]);

if (error) {
return <div className="error">{error.message}</div>;

}

// ·-·-·
}

I like this solution a little bit better than the first one. I think it’s more flexible and easier
to work with. However, these solutions (and the original code) are not ideal. I designed
them that way to show you the powerful features of Apollo Client; but if you find yourself
needing to use a lazy query or skip a query, I would like you to first ask yourself if the
problem can be fixed by reorganizing your components using the single-responsibility
principle (or other clean code principles).

USING THE SINGLE-RESPONSIBILITY PRINCIPLE

The problem with the Search component is that it has two responsibilities. It renders
a search form and search results. That violates the single-responsibility principle. A
component should do only one thing.

 By simply extracting the search-results part into a new conditionally rendered com-
ponent, the empty-search problem goes away.

function SearchResults({ searchTerm }) {
const { AppLink } = useStore();
const { error, loading, data } = useQuery(SEARCH_RESULTS, {

variables: { searchTerm },
});

if (error) {
return <div className="error">{error.message}</div>;

}

Listing 10.30 Example: using a lazy query

Listing 10.31 Changes in web/src/components/Search.js

325Using Apollo Client with React

if (loading) {
return <div className="loading">Loading...</div>;

}

return (
<div>

{data.searchResults && (
{/* ·-·-· */})}

</div>
);

}

export default function Search({ searchTerm = null }) {
const { setLocalAppState } = useStore();

const handleSearchSubmit = async (event) => {
event.preventDefault();
const term = event.target.search.value;
setLocalAppState({

component: { name: 'Search', props: { searchTerm: term } },
});

};

return (
<div>

<div className="main-container">
<form method="post" onSubmit={handleSearchSubmit}>
{/* ·-·-· */}

</form>
</div>
{searchTerm && <SearchResults searchTerm={searchTerm} />}

</div>
);

}

Because the new SearchResults component is rendered only when there is a search-
Term, we can use the useQuery function to fetch its data. To put this solution in other
words, we simply made the condition whether to render a component instead of
whether to make a query request.

TIP I kept the split simple in this example, but I would go so far as using
three components here: one for the search form, one for the search results,
and one for the search page (which renders the other two).

As an exercise, convert the rest of the components to use Apollo hook functions every-
where, and test all your changes. You need to change the Signup, MyTasks, and New-
Task components. Compare your changes with Git branch 10.6 in the repo, which has
the code after I made all the conversions.

326 CHAPTER 10 Using GraphQL APIs with Apollo client

10.3 Managing local app state
One of my favorite Apollo Client features is how it can be used to manage the local
app state of an application. The word local here does not mean local to a single com-
ponent. It’s a label for the state data that is not associated with remote data.

 We have already been using Apollo to manage the app state. The difference about
the local app state we are going to implement in this section is that it will not be asso-
ciated with a server (remote) query. Instead, it will be associated with a local query, as
we will see soon.

 In the AZdev application, we have two local app state elements: the current user
and component objects. The entire context object in web/src/store.js is there to man-
age these two elements. Let’s see how Apollo Client can help us get rid of that context
object.

TIP The current local app state in the app is managed with a useState call in
web/src/store.js. The new state will be managed externally to the React appli-
cation. When the state is managed externally, React components that need to
use that state have to subscribe to it (to be notified when the external state is
changed). The useQuery method is a form of subscribing since it will cause a
React component function to render when the Apollo cache store has any
new data for that query.

The local app state management in Apollo uses the writeQuery method to put local
app state element values in the cache. However, writeQuery needs a query, and the
local app state has no such query. In Apollo, we just make up a fake query for it.

 You can come up with any GraphQL query (regardless of the server schema) and
tell Apollo that you’d like to use that query only on the client side. You can do that for

Current code
Use git checkout 10.6 to reset your local repo to the current progress in the code.

Challenge
Test the signup form for the duplicate username address again. Apollo Client’s
default error policy treats the GraphQL root errors array as network errors (and
ignores any partial data). It just throws the error. You can change that behavior by
specifying an errorPolicy string value in the operation options object (the second
argument of hook functions). If you specify errorPolicy as "all", Apollo Client will
keep the GraphQL root errors array as is for your UI to handle. You can access it with
error.graphQLErrors.

You’ll also have to remove the generic error object if statement and move the han-
dling of it to the Errors component.

327Managing local app state

a whole query or part of an existing query. You put the @client directive on any field
in a query to tell Apollo that it’s a client-only field that does not need to be fetched
from the server.

 So, let’s do that for the user and component local state elements. Here’s the query
I made up for them. Put this in web/src/store.js.

import {
ApolloClient,
HttpLink,
InMemoryCache,
gql,

} from '@apollo/client';
// ·-·-·
export const LOCAL_APP_STATE = gql`

query localAppState {
component @client {

name
props

}
user @client {

username
authToken

}
}

`;

Because all the fields in this query have the @client directive, Apollo will not send this
entire query to the server. When we use the query in the app, Apollo will read it
directly from the cache.

 Note that I matched the structure the app uses for these elements in their made-up
local app state query. This will keep the changes in the app to a minimum.

TIP I like to keep local queries separate from the normal, remote queries.
However, you can mix client-only fields with normal fields, and Apollo will
split your mixed query, manage the local part locally, and send the remote
part to the server.

Now we can use Apollo to read and update the query. For example, in places where we
previously used state.user in the store, we can now read it from the cache.

const { user } = cache.readQuery({ query: LOCAL_APP_STATE });

To update the user/component objects, instead of the current setState calls in the
store, we can do the following.

Listing 10.32 Changes in web/src/store.js

Listing 10.33 Example: readQuery replacing the state object

Note the @client directive,
which tells Apollo that this
query is client-only and should
not be sent to the server.

328 CHAPTER 10 Using GraphQL APIs with Apollo client

cache.writeQuery({
query: LOCAL_APP_STATE,
data: { ...currentState, ...newState },

})

Since the local app state will be managed entirely with the client instance object, that
object is now the new store of the application. We don’t need the useStoreObject func-
tion (or its useStore hook). We can just define all functions as top-level exports and
import them directly in components. This includes the authLink function, which we
previously put inside useStoreObject so that it can access the current user authToken.

 To make things a bit more interesting, let’s keep the code in all React components
as is and try to replace React’s context-based local app state management with Apollo
Client local app state management. This means we can only change the starting-point
file (web/src/index.js) and the store file (web/src/store.js).

 Let’s begin with the Provider components. We can get rid of the StoreProvider
context; we don’t need it anymore. Let’s also move the client initialization code to the
project starting file and leave only local app state management in web/src/store.js.
This way, the local app state methods can be extracted and used across different proj-
ects and with different client instances (instead of relying on the same scope client
instance).

 Here’s the first step in converting the code in web/src/index.js.

import 'regenerator-runtime/runtime';
import React from 'react';
import ReactDOM from 'react-dom';
import {

ApolloProvider,
ApolloClient,
HttpLink,
InMemoryCache,

} from '@apollo/client';
import { setContext } from '@apollo/link-context';

import * as config from './config';
import Root from './components/Root';

const httpLink = new HttpLink({ uri: config.GRAPHQL_SERVER_URL });
const cache = new InMemoryCache();
const client = new ApolloClient({ link: httpLink, cache });

export default function App() {
return (

<ApolloProvider client={client}>
<Root />

</ApolloProvider>

Listing 10.34 Example: writeQuery replacing the setState calls

Listing 10.35 New code in web/src/index.js

Move these lines out of
web/src/store.js (as is).

No more nested providers!

329Managing local app state

);
}

ReactDOM.render(<App />, document.getElementById('root'));

I didn’t do anything new here yet. I just moved a few things around and got rid of the
StoreProvider and useStore calls. The interesting part is how to define the authLink
function that causes the headers to include the authToken of a logged-in user.

 The authLink function previously accessed the state.user object directly. Now it
can read that state out of the Apollo cache.

// ·-·-·
const authLink = setContext((_, { headers }) => {

const { user } = client.readQuery({ query: LOCAL_APP_STATE });
return {

headers: {
...headers,
authorization: user ? `Bearer ${user.authToken}` : '',

},
};

});

const client = new ApolloClient({
link: authLink.concat(httpLink),
cache,

});
// ·-·-·

Note that we no longer need to use the setLink method since the authLink function
no longer depends on another function scope. We can define the Apollo client object
directly with the link chain.

 The last change we need to make in this file is to initialize the local app state. That
was previously done in useStoreObject, but now we can use a writeQuery call.

// ·-·-·
import { LOCAL_APP_STATE } from './store';
// ·-·-·

const client = new ApolloClient({
link: authLink.concat(httpLink),
cache,

});
const initialLocalAppState = {

component: { name: 'Home', props: {} },
user: JSON.parse(window.localStorage.getItem('azdev:user')),

};

Listing 10.36 Changes in web/src/index.js

Listing 10.37 Changes in web/src/index.js

Move
authLink out of
web/src/store.js.

New client-only query
defined in listing 10.32

Move initialLocalAppState out
of web/src/store.js (as is).

330 CHAPTER 10 Using GraphQL APIs with Apollo client

client.writeQuery({
query: LOCAL_APP_STATE,
data: initialLocalAppState,

});

export default function App() {
// ·-·-·

}

Now, what remains to be changed in web/src/store.js are the three functions that
work with the local app state: useLocalAppState, setLocalAppState, and the
AppLink component. We’ll keep these three functions in a useStore function so that
we don’t need to make any changes in the React components.

 Let’s go through these three functions one at a time, starting with useLocal-
AppState. Here is its new implementation.

// ·-·-·
import { useQuery, gql } from '@apollo/client';
// ·-·-·
export const useStore = () => {

// ·-·-·

const useLocalAppState = (...stateMapper) => {
const { data } = useQuery(LOCAL_APP_STATE);
if (stateMapper.length === 1) {

return data[stateMapper[0]];
}
return stateMapper.map((element) => data[element]);

};

// ·-·-·
};

We just read the LOCAL_APP_STATE data with the useQuery hook function. That
query’s data becomes the local app state.

 The setLocalAppState method is a bit more complicated. It needs to read and
write to the cache and reset it when the user logs in or out, but without losing the new
local app state (which now needs to go on that cache).

 Here’s one way to implement that.

// ·-·-·
import { useApolloClient, useQuery, gql } from '@apollo/client';
// ·-·-·
export const useStore = () => {

// Delete the useState line
const client = useApolloClient();

Listing 10.38 Changes in web/src/store.js

Listing 10.39 Changes in web/src/store.js

New way to update
the local app state

This line is what
fundamentally changed
in this function.

331Managing local app state

// ·-·-·

const setLocalAppState = (newState) => {
if (newState.component) {

newState.component.props = newState.component.props ?? {};
}
const currentState = client.readQuery({

query: LOCAL_APP_STATE,
});
const updateState = () => {

client.writeQuery({
query: LOCAL_APP_STATE,
data: { ...currentState, ...newState },

});
};
if (newState.user || newState.user === null) {

client.onResetStore(updateState);
client.resetStore();

} else {
updateState();

}
};

const AppLink = ({ children, to, ...props }) => {
// ·-·-·

};

return {
useLocalAppState,
setLocalAppState,
AppLink,

};
};
// Delete the React Context lines

That’s it. All the UIs work exactly the same with these changes, but now we do all the
local app state management through the Apollo Client. This is simpler than what we
had before. We no longer manage a context object or any custom hooks to access it.

TIP I use the readQuery method where I need to read the data just once
(and not subscribe to it). However, in React components, the useQuery hook
function should be used to read the local app state. With useQuery, compo-
nents will be rerendered when the local app state changes. This is why I made
the useLocalAppState function use the useQuery hook function; because of
that, components that use this function will be rerendered when the local app
state changes.

I hope this little example demonstrated how powerful Apollo local app state manage-
ment is, but we have barely scratched the surface. There is a lot more.

 For bigger local state trees, you can write custom resolvers for your local app state
elements. You can also define local mutations and use them with the useMutation

Reads local app state from the Apollo
cache directly with readQuery

Updates the local app state in the
Apollo cache directly with writeQuery

The resetStore call removes all local
app state data. We need to update
the local app state query when that
happens. onResetStore enables us
to define a callback function to be
invoked after the store is reset.

The AppLink implementation is the same.

332 CHAPTER 10 Using GraphQL APIs with Apollo client

methods instead of doing direct writes. Another thing you get with custom resolvers is
data type validation (because you define the types for arguments and input). Check out
jscomplete.com/apollo for more examples of the powerful features of Apollo Client.

10.4 Implementing and using GraphQL subscriptions
I saved the best for last! Let’s take a look at how to define and use GraphQL
subscriptions.

 Subscriptions are extremely useful when you need your UIs to autoupdate. For
example, while looking at the list of Tasks on the home page, we planned to notify the
user when new Task records are available—just like the way Twitter notifies you when
there are new tweets on your timeline.

10.4.1 Polling and refetching

To implement such a feature, you have two options:

 Make your app continuously ask the server about the list of Tasks.
 Make your app tell the server that it is interested in new Tasks and would like to

be notified when they are created.

The second option is what GraphQL subscriptions can help you do. The first option is
known as continuous polling, and sometimes it is good enough: if the object you’re
autoupdating is small and you don’t need real-time updates, polling is an option to
consider.

 Apollo makes continuous polling easy. You add just one option to the useQuery
second argument to make it repeatedly poll data. For example, we can update the list
of Task records on the home page every five seconds using the following simple
change.

export default function Home() {
const { error, loading, data } = useQuery(TASK_MAIN_LIST, {

pollInterval: 5000,
});

// ·-·-·
}

That’s it! Now the list will be autoupdated every five seconds.

Listing 10.40 Example: using pollInterval

Current code
Use git checkout 10.7 to reset your local repo to the current progress in the code.

https://jscomplete.com/apollo

333Implementing and using GraphQL subscriptions

TIP Test this by opening two browsers and creating a Task record in one
while looking at the home page in the other.

In some cases, you can do the refetching manually instead of automatically in a poll-
ing loop. If you want Apollo to fetch the query again on demand (for example, when
the user clicks a Refresh button), you can use the refetch function, which Apollo
makes available to all useQuery results. Here’s an example.

export default function Home() {
const { error, loading, refetch, data } = useQuery(TASK_MAIN_LIST);

// ·-·-·

return (
<div>

<Search />
<div>

<h1>Latest</h1>
<button onClick={() => refetch()}>Refresh</button>
{/* ·-·-· */}

</div>
</div>

);
}

This code makes Apollo fetch the same query again when the user clicks the Refresh
button.

 These options inefficiently fetch the entire list of the latest Task records. GraphQL
subscriptions are a much more efficient option for getting new data from an API
server. Undo all the polling/refetching changes, and let’s autoupdate this list with a
subscription operation.

Listing 10.41 Example: refetching a query on demand

The fetchPolicy option
If you want Apollo to ignore the cache and always fetch the query when the compo-
nent rerenders, you can change the fetchPolicy option like this:

export default function Home() {
const { error, loading, data } = useQuery(TASK_MAIN_LIST, {

fetchPolicy: 'network-only',
});

// ·-·-·
}

334 CHAPTER 10 Using GraphQL APIs with Apollo client

10.4.2 Implementing subscriptions

In chapter 4, we planned two subscription operations for the AZdev API: the task-
MainListChanged subscription to notify the user that new Task records are available
and the voteChanged subscription to autoupdate vote counts on the Task page. How-
ever, before we start implementing them, we need to revise the API server and make it
support WebSockets.

 GraphQL subscriptions for web apps are usually done over the WebSockets com-
munication protocol. A WebSocket provides a full-duplex communication channel
(over a single TCP connection). The server opens the socket, and the browser con-
nects to it and keeps the connection active. Servers can then use that active connec-
tion to push new data to the browser on demand.

 The Express-based GraphQL server that we have used so far has no support for
WebSockets. We need to run a new server (on a different port) for all subscription
operations. There are many options for web servers that support a WebSocket trans-
port layer designed for GraphQL subscriptions, but the most popular is Apollo Server
(az.dev/apollo-server).

TIP Apollo Server has many cool features, and it can completely replace our
current Express-based server. Let’s first see how to use its WebSocket support.
When we’re finished with the subscription example, we will get rid of the
Express-based server and use Apollo Server as our main GraphQL API server.

Start by installing the apollo-server package.

$ npm install apollo-server

Then make the following changes to api/src/server.js to create an Apollo server
instance that works with our schema.

import { ApolloServer } from 'apollo-server';
// ·-·-·

async function main() {
// ·-·-·

server.listen(config.port, () => {
console.log(`API server is running on port ${config.port}`);

});

const serverWS = new ApolloServer({ schema });

serverWS.listen({ port: 4000 }).then(({ subscriptionsUrl }) => {
console.log(`Subscriptions URL: ${subscriptionsUrl}`);

Listing 10.42 Command: installing the Apollo Server package

Listing 10.43 Changes in api/src/server.js

https://az.dev/apollo-server

335Implementing and using GraphQL subscriptions

});
};

main();

This will run a web-socket server on port 4000.

NOTE Keep the Express-based server running on port 4321 for now. It is still
the main web server for the API service.

The implementation of subscription operations relies on the Pub/Sub pattern (short
for Publish/Subscribe). Pub/Sub is a simple messaging pattern designed to decouple
data events from services that are interested in them. You can label any change to data
in your code with an event label. For example, when a new Task record is created, we
can have the code publish an event; and when a vote count on any Approach record is
changed, we can have the code publish another event.

 Apollo server has a built-in PubSub implementation that we can use to do exactly
that. Since the Pub/Sub operations will happen in multiple places, let’s create a new
file under api/src/pubsub.js to prepare a PubSub instance for any part of the API
server code to use.

import { PubSub } from 'apollo-server';

const pubsub = new PubSub();

export { pubsub };

Now, let’s publish events in the mutations related to the subscriptions we’re imple-
menting. We can use a pubsub.publish call to do that. We can include data as part of
any published event, and that data can be used to make the subscription resolvers
aware of the new mutation data.

 We need to publish two events: one in the taskCreate mutation field to be used by
the taskMainListChanged subscription, and one in the approachVote mutation field to
be used by the voteChanged subscription. Here are the changes in api/src/schema/
mutations.js to publish these events.

import { pubsub } from '../pubsub';
// ·-·-·

const MutationType = new GraphQLObjectType({
name: 'Mutation',
fields: () => ({

// ·-·-·
taskCreate: {

type: TaskPayload,

Listing 10.44 New file: api/src/pubsub.js

Listing 10.45 Changes in api/src/schema/mutations.js

336 CHAPTER 10 Using GraphQL APIs with Apollo client

args: {
input: { type: new GraphQLNonNull(TaskInput) },

},
resolve: async (

source,
{ input },
{ mutators, currentUser },

) => {
const { errors, task } = await mutators.taskCreate({
input,
currentUser,

});
if (errors.length === 0 && !task.isPrivate) {
pubsub.publish(`TASK_MAIN_LIST_CHANGED`, {

newTask: task,
});

}
return { errors, task };

},
},

// ·-·-·

approachVote: {
// ·-·-·
resolve: async (

source,
{ approachId, input },
{ mutators },

) => {
const { errors, approach } = await mutators.approachVote({
approachId,
input,

});
if (errors.length === 0) {
pubsub.publish(`VOTE_CHANGED_${approach.taskId}`, {

updatedApproach: approach,
});

}
return { errors, approach };

},
},

}),
});

You can give your event labels any names you want. I like to make them match the sub-
scription operations they serve.

TIP You should put your event labels in variables and use the variables in the
code instead of using strings directly. Code editors will be more helpful when
you use that approach. For example, they will alert you if you use an incorrect
variable name, but they cannot alert you if you use an incorrect string value. See
AZdev’s official repo (az.dev/contribute) for examples of this practice.

This is a general event,
but it is published only
if the Task object is not
“private.”

Event
payload.
You can
put any
kind of
data in

here.

Example of a dynamic event label. It can be used
with a subscription operation that depends on a
variable. The voteChanged subscription depends

on the taskId variable. It’s not a general
subscription like taskMainListChanged.

https://az.dev/contribute

337Implementing and using GraphQL subscriptions

Any part of the API server code can subscribe to the events being published and, for
example, send their payload data over a WebSocket. That’s exactly what a field under
the Subscription type can now do.

 Let’s first look at the taskMainListChanged subscription. Here’s one way to define it.

import { GraphQLNonNull, GraphQLObjectType } from 'graphql';

import { pubsub } from '../pubsub';
import Task from './types/task';

const SubscriptionType = new GraphQLObjectType({
name: 'Subscription',
fields: () => ({

taskMainListChanged: {
type: new GraphQLNonNull(Task),
resolve: async (source) => {

return source.newTask;
},
subscribe: async () => {

return pubsub.asyncIterator(['TASK_MAIN_LIST_CHANGED']);
},

},
}),

});

export default SubscriptionType;

To make this new subscription field available in the schema, we have to make it part of
the GraphQLSchema object we defined in api/src/schema/index.js.

// ·-·-·
import SubscriptionType from './subscriptions';

export const schema = new GraphQLSchema({
query: QueryType,
mutation: MutationType,
subscription: SubscriptionType,

});

console.log(printSchema(schema));

We can now test the taskMainListChanged subscription field. However, to do that, we
need a consumer that also supports WebSockets. You send the subscription operation
to establish the connection and then send a mutation operation to trigger the event
and see the data reported back by the WebSocket.

Listing 10.46 New file: api/src/schema/subscriptions.js

Listing 10.47 Changes in api/src/schema/index.js

Event to subscribe to

The source argument here will
have the event’s payload data.

338 CHAPTER 10 Using GraphQL APIs with Apollo client

 An Apollo server instance will make the GraphQL Playground editor available at
/graphql by default (in the development environment). GraphQL Playground is a
GraphiQL-based editor that supports WebSockets and has many more cool features.

 To test the taskMainListChanged mutation, open the GraphQL Playground editor
at http://localhost:4000/graphql and run the following operation.

subscription {
taskMainListChanged {

id
content

}
}

You’ll notice that no data is returned initially. Instead, the GraphQL Playground dis-
plays a “Listening” message reflecting the status of this subscription field resolver
function, which is listening for any Pub/Sub events (figure 10.8).

TIP The GraphQL playground has a default dark theme. I changed it to light
for the screenshots.

To trigger a Pub/Sub event publish action, open the UI app in a different browser ses-
sion, log in, and create a test public Task record. The GraphQL Playground should
instantly show the new Task object you create in the subscription’s data response (and
it will continue listening after that). Each time you create a new public Task record, it
will appear in the response data (figure 10.9).

Listing 10.48 The taskMainListChanged subscription

Figure 10.8 Waiting on new data from the subscription

339Implementing and using GraphQL subscriptions

How about you try to implement the voteChanged subscription field on your own
first? We’ve already added the publish event for it. You just need to make changes in
api/src/schema/subscriptions.js. The only difference in this subscription field is that
it receives a taskId argument, so it only subscribes to the events published for one
Task object. Here’s how I implemented it.

import {
GraphQLNonNull,
GraphQLObjectType,
GraphQLID,

} from 'graphql';

import { pubsub } from '../pubsub';
import Task from './types/task';
import Approach from './types/approach';

const SubscriptionType = new GraphQLObjectType({
name: 'Subscription',
fields: () => ({

taskMainListChanged: {
// ·-·-·

},
voteChanged: {

type: new GraphQLNonNull(Approach),
args: {

taskId: { type: new GraphQLNonNull(GraphQLID) },

Listing 10.49 Changes in api/src/schema/subscriptions.js

Figure 10.9 New data from the subscription appearing in real time

This subscription has
a taskId argument.

340 CHAPTER 10 Using GraphQL APIs with Apollo client

},
resolve: async (source) => {

return source.updatedApproach;
},
subscribe: async (source, { taskId }) => {

return pubsub.asyncIterator([`VOTE_CHANGED_${taskId}`]);
},

},
}),

});

Make sure this subscription works as well in the GraphQL Playground (while voting
on Approaches under a Task).

10.4.3 Apollo Server

WebSocket support is just one of the many features the apollo-server package has to
offer. Apollo Server can actually replace many of the packages we’re using server-side.
It can replace GraphQL.js itself, and it supports implementing your GraphQL schema
using only the SDL text (and not using objects). And as mentioned earlier, it can
replace our entire Express-based server setup (everything related to Express).

TIP If you’re interested in learning about implementing a GraphQL service
using strings instead of objects, you can find an article I wrote on that topic at
az.dev/schema-first.

To replace Express with Apollo, we have to move things around a bit. We have to
define the context property as a function. Apollo makes the req object available in
the argument of that function. This means we can define our loaders and mutators
(which depend on the req object) right in that context function.

 Here’s the new web/src/server.js file after I removed everything related to
Express.js (and express-graphql) and modified ApolloServer to work with our con-
text object.

import DataLoader from 'dataloader';
import { ApolloServer } from 'apollo-server';

import { schema } from './schema';
import pgApiWrapper from './db/pg-api';
import mongoApiWrapper from './db/mongo-api';

import * as config from './config';

Listing 10.50 New code in web/src/server.js

Reads the updatedApproach object
from the event’s payload data

Only subscribes to the VOTE_CHANGED
events related to the taskId argument value

Current code
Use git checkout 10.8 to reset your local repo to the current progress in the code.

https://az.dev/schema-first

341Implementing and using GraphQL subscriptions

async function main() {
const pgApi = await pgApiWrapper();
const mongoApi = await mongoApiWrapper();

const server = new ApolloServer({
schema,
formatError: (err) => {

const errorReport = {
message: err.message,
locations: err.locations,
stack: err.stack ? err.stack.split('\n') : [],
path: err.path,

};
console.error('GraphQL Error', errorReport);
return config.isDev

? errorReport
: { message: 'Oops! Something went wrong! :(' };

},
context: async ({ req }) => {

const authToken =
req && req.headers && req.headers.authorization
? req.headers.authorization.slice(7) // "Bearer "
: null;

const currentUser = await pgApi.userFromAuthToken(authToken);
if (authToken && !currentUser) {

throw Error('Invalid access token');
}
const loaders = {

// ·-·-·
};
const mutators = {

...pgApi.mutators,

...mongoApi.mutators,
};

return { loaders, mutators, currentUser };
},

});

server
.listen({ port: config.port })
.then(({ url, subscriptionsUrl }) => {

console.log(`Server URL: ${url}`);
console.log(`Subscriptions URL: ${subscriptionsUrl}`);

});
}

main();

This is a lot simpler. All the code related to accepting data in the request, parsing it,
and then executing the GraphQL schema against that request has been deleted. That
functionality is now done internally in Apollo Server.

The loaders implementation
is the same.

342 CHAPTER 10 Using GraphQL APIs with Apollo client

 Note that I got rid of the 4000 port and used the default config port (which is
4321). The new URLs are as follows:

Server URL: http://localhost:4321/
Subscriptions URL: ws://localhost:4321/graphql

10.4.4 Using subscriptions in UIs
With all the subscription operations ready server-side, let’s now talk about how to use
them in a React application with Apollo Client.

 Apollo Client has a WebSocketLink object that can be used to do WebSocket
communication in the browser. It’s designed to work with GraphQL subscriptions. To
initialize it, you just give it the GraphQL subscription uri and an options object.

import { WebSocketLink } from "@apollo/client/link/ws";

const wsLink = new WebSocketLink({
uri: GRAPHQL_SUBSCRIPTIONS_URL,
options: { reconnect: true },

});

Let’s define the new GRAPHQL_SUBSCRIPTIONS_URL config value for this project.

export const GRAPHQL_SERVER_URL =
process.env.GRAPHQL_SERVER_URL || 'http://localhost:4321';

export const GRAPHQL_SUBSCRIPTIONS_URL =
process.env.GRAPHQL_SUBSCRIPTIONS_URL || `ws://localhost:4321/graphql`;

With a WebSocketLink instance, we have two main links for Apollo Client to use: one
to use with regular HTTP requests (httpLink) and another to use for WebSocket
requests (wsLink). However, instead of making two different client objects for them,
Apollo supports a split function that can determine which link object to use based
on what GraphQL operation is being invoked.

// ·-·-·
import {

ApolloProvider,
ApolloClient,
HttpLink,

Listing 10.51 Example: using the @apollo/link-ws package

Listing 10.52 Changes in web/src/config.js

Listing 10.53 Changes in web/src/index.js

Current code
Use git checkout 10.9 to reset your local repo to the current progress in the code.

URL to use for subscriptions

The reconnect option makes the link
reconnect in case of a connection error.

343Implementing and using GraphQL subscriptions

InMemoryCache,
split,

} from '@apollo/client';
import { getMainDefinition } from '@apollo/client/utilities';
import { WebSocketLink } from "@apollo/client/link/ws";
// ·-·-·
const wsLink = new WebSocketLink({

uri: config.GRAPHQL_SUBSCRIPTIONS_URL,
options: { reconnect: true },

});
const splitLink = split(

({ query }) => {
const definition = getMainDefinition(query);
return (

definition.kind === 'OperationDefinition' &&
definition.operation === 'subscription'

);
},
wsLink,
authLink.concat(httpLink),

);

const client = new ApolloClient({
link: splitLink,
cache,

});

Apollo Client will invoke this new split function for each GraphQL operation it
needs to send over the wire. If the operation is a subscription, the split function tells
Apollo Client to use wsLink. Otherwise, it tells Apollo Client to use httpLink. This
enables us to work with only one client instance everywhere in the app.

 That’s all the setup work required to make Apollo Client ready for subscriptions.
To make a React component use a subscription operation, we just invoke the use-
Subscription hook function. For example, here’s the code to make the vote counts
on Approach objects update in real time.

import { gql, useQuery, useSubscription, } from '@apollo/client';
const VOTE_CHANGED = gql`

subscription voteChanged($taskId: ID!) {
voteChanged(taskId: $taskId) {

id
voteCount

}
}

`;
// ·-·-·

export default function TaskPage({ taskId }) {
// ·-·-·

Listing 10.54 Changes in web/src/components/TaskPage.js

The first argument for split is a function
that receives the operation to be invoked.
It should return either true or false.

getMainDefinition returns the AST
of the first main operation (query,
mutation, or subscription).

If the main operation
is a subscription, this
condition is true.

If the first argument to split returns true,
the link in the second argument is used.

If the first argument to split returns false, the link in
the third argument will be used. This is the link that’s
currently used for all regular HTTP requests.

The first argument for split is a function that receives the
operation to be invoked. It should return either true or false.

344 CHAPTER 10 Using GraphQL APIs with Apollo client

const { error, loading, data } = useQuery(TASK_INFO, {
variables: { taskId },

});

useSubscription(VOTE_CHANGED, {
variables: { taskId },

});

// ·-·-·
}

That’s it. You can test this with two browsers open on the same Task page and vote
up/down on any Approach in one browser. The other browser will update in real
time!

 Under the hood, Apollo takes care of figuring out that this subscription is bringing
updates related to an Approach record on this page. The useQuery results are auto-
refreshed, causing the TaskPage component to rerender with the new vote.

 Try to use the taskMainListChanged subscription on your own. The changes go in
the Home component (web/src/components/Home.js). To keep things simple, when
a new Task is fetched through the subscription, insert it at the top of the list and high-
light it differently. I’ve put my solution in the next (and final!) Git branch.

Summary
 A GraphQL client library like Apollo manages all the communications between

a frontend application and its GraphQL API service. It issues data requests and
makes their data responses available where needed.

 You can use Apollo Client with plain JavaScript or with view libraries like React,
Vue, and Angular. For React, Apollo Client provides custom hook functions
that greatly simplify the code in function components.

 Apollo has a powerful caching store that’s designed to work with GraphQL’s
graph-like structure. The cache works automatically in common cases, but you
can also manually read it and modify it. This cache, combined with other fea-
tures in Apollo, can replace local app state management tools (like React’s con-
text or Redux).

 Apollo Client is flexible. It offers many methods to invoke queries on render, on
demand, or conditionally. You can use different types of caching stores. You can
modify request headers globally or per operation. You can skip queries and
instruct Apollo not to cache them if needed. You can have it communicate with

Current code
Use git checkout 10.8 to reset your local repo to the current progress in the code.

345Wrapping up

multiple GraphQL services and use the same store for them. You can even use it
to communicate with REST-based API services.

 GraphQL subscriptions are great for incremental real-time data. To use sub-
scription operations in web applications, a GraphQL server has to support Web-
Sockets and a Pub/Sub messaging pattern. Apollo Server is an example of a
GraphQL implementation that has that support. On the frontend, a client has
to determine what communication channel to use based on the operation and
use a WebSocket-based link for subscriptions.

Wrapping up
We made it! We have a working product with a decent set of features. It’s usable as is
(but certainly far from perfect). I hope you realize now how easy it is to use a
GraphQL API service (both with and without a featured client).

 This is a wrap on the AZdev app features, but it’s not a wrap on all the fun you’re
about to have making awesome things with GraphQL. You’ve got the skills. Now it’s
time to put them into action. Don’t sit on this knowledge—practice and fail and prac-
tice again and again, until building GraphQL applications becomes something you
can brag about and you have trophies to show (on GitHub).

 I would love to see your GraphQL creations. If you use Twitter, please share them
using the #GraphQLInAction hashtag (which I’ll be monitoring). Writing this book was
one of the hardest projects I’ve done. Please show me what it enabled you to build.
Please tell me my efforts were worth it!

 You’re also welcome to come and brag about your work on the jsComplete slack
channel at jscomplete.com/help. We have thousands of coders, and many will love to
see your work, use it (if you wish to share it), give you feedback, and maybe even help
you improve it.

 Let me leave you with a few challenges that you can tackle on your own to improve
the AZdev application. These challenges require changes on both ends of the AZdev
stack. Don’t cheat, but some of these challenges are implemented in the official
AZdev repository at az.dev/contribute:

1 Display the createdAt field in the UI for both Tasks and Approaches, and
implement a way for the list of Approaches to be sorted by date (newest first) in
addition to the current vote-count order.

2 Support a Boolean flag on the search form to make the results include only
Task records owned by the user who is searching.

3 Paginate the list of latest Task records on the home page. You’ll need to modify
the taskMainList field to accept a pointer pointing to the last-seen Task record
and make its resolver get the set of Task records before/after that pointer. This
pointer is usually named after or before, depending on which direction
you’re sorting before paginating. You can also make the field accept first/

https://jscomplete.com/help
https://az.dev/contribute

346 CHAPTER 10 Using GraphQL APIs with Apollo client

last arguments to limit the response to a size of your choosing. You can read
more about this Relay-based cursor pagination style at az.dev/gia-pagination.

4 Offer a “make private” or “make public” feature on a Task page when the user
looking at that page is its owner.

5 On the search page, if a Task and some of its Approaches match the same search
term, group them under the same entry in the search results. This can be done
with only frontend changes, but it would be a lot more efficient if done server-
side. The search-results page is another place where you can implement and use
pagination, so be sure to implement your pagination’s logic in a reusable way!

6 Offer a change-password feature for logged-in users. They have to provide their
current password.

7 Restrict votes to one per user per Approach. A user can vote on an Approach
only once. You will need to create a new database table for this feature.

8 Implement an optimistic update for the taskCreate mutation. Simulate a slow
network to see how the app behaves. When a user on a slow network creates a
Task record, make the UI show the newly created record right away (using the
input values before the server response). You’ll have to think about what UI
change to make if the server fails to do the mutation.

9 Allow the owner of a Task record to edit and delete it.
10 Implement a way for a logged-in user to delete their AZdev account. We’ve pre-

pared the API userDelete mutation field for that. You need to create the UI
that will invoke that mutation. You also need to log out that user when the
mutation call is successful.

Thank you so much for picking and sticking with this book. It means the world to me.
I hope you got the value you expected out of it; if you have not, please do not hesitate
to tell me. Tweet me @samerbuna (twitter.com/samerbuna) or leave me a review on
Amazon (az.dev/gia-amazon).

https://az.dev/gia-pagination
https://twitter.com/samerbuna
https://az.dev/gia-amazon

347

index

A

affiliations field 54
after field argument 51–52
Ajax requests 258–260
aliases, renaming fields with 55–56
allow list approach 26
ANY construct 157, 176
Apollo Client

using with JavaScript 294–302
making mutation requests 300–302
making query requests 295–299

using with React 303–326
including authentication headers 306–309
manually updating cache 317–321
performing operations conditionally

321–326
using automatic cache 316–317
using hook functions 309–316
using query and mutate methods

directly 303–306
apollo-server package 334, 340
@apollo/client npm package 294, 321
@apollo/link-context package 306
@apollo/link-rest 306
@apollo/link-ws 306
ApolloClient object 296
ApolloProvider component 310
ApolloServer 340
AppLink component 330
AppLink method 309
Approach -> Task relation 188
Approach component 266, 283, 286, 316
Approach Details model 107–109

Approach model 105–107
mutations for 235–246

approachCreate mutation 236–243
approachVote mutation 244–246

Approach objects 106, 166
Approach records 179

creating and voting on 100–102
voting on 286–287

Approach type 141, 167, 178, 187, 190, 195, 205
approach_count column 145, 239, 243
APPROACH_CREATE mutation 318, 321
approach:id identifier 317
approach.voteCount 317
approachCount field 87, 105, 147, 290
approachCreate mutation 100, 235–237,

242–243, 283
ApproachDetail 92
ApproachDetail type 102, 202, 204
ApproachDetailCategory type 204, 282
approachDetailCreate method 240
ApproachDetailInput type 102, 238, 240
approachDetails collection 108, 201, 240
approachDetails document 202
approachDetails object 203
approaches table 106
approachId field 286
approachIds array 201
ApproachInput type 238
approachList field 156, 166, 168, 179–182,

187–188, 190, 267
approachList function 166
ApproachPayload 237
approachUpdate mutation 101
approachVote mutation 100, 235, 244–246, 249,

286, 335
args property 126, 145, 214

INDEX348

arguments, customizing fields with 48–55
identifying single record to return 48–49
limiting number of records returned by list

fields 49–51
ordering records returned by list fields 51
paginating through lists of records 51–53
providing input for mutations 54–55
searching and filtering 53–54

array data type 106
AS “approachCount” 150
async keyword 117
asynchronous functions 135–137
auth_token user field 218
authentication 93–94

API consumers 221–231
authentication headers 306–309
mutation requests 277–278

AuthInput type 98, 217
authLink function 328–329
author field 91, 156, 158–159, 167, 182
author relation 159
Author type 166
author_-prefixed columns 165
Authorization Bearer token 277
Authorization request header 222
authToken 93, 228, 289, 328
await keyword 117, 136
axios, Ajax library 253
azdev database 109
azdev.approaches table 168, 196
azdev.tasks table 142, 148, 163–164, 173, 196, 239
azdev.users table 157, 216, 273

B

batch-loading function 175–177
batching 173
bearer token 94
Bearer type 222
before argument 51–52
begin argument 125–126, 128
BEGIN command 243
begin value 130
Boolean scalar type 39
buildSchema function 115–116, 143

C

cache attribute 296
cache object 318
cache.modify method 318–319, 321
cache.writeQuery method 309
caching 172–182

batch-loading function 175–177

defining and using DataLoader instances
177–179

issues and concerns regarding 26–27
loader for approachList field 179–182
manually updating cache 317–321
using automatic cache 316–317
using DataLoader with custom IDs for 190–199

search field 193–199
taskMainList field 190–193

camelizeKeys function 148
caseMapper function 148
category field 202
CHECK constraint 105
checkout command 119
@client directive 327
client instance object 309, 311, 328
Collection object 107
colocating fragments 265
COMMIT command 243
Commit type 45, 72
component local state element 327
component object 326
config.GRAPHQL_SERVER_URL 296
confirmPassword field 271
Connection interface 52
constructor objects, building schemas using

122–132
custom errors 129–132
custom object types 127–129
field arguments 125–126
Query type 123–125

content field 80, 87, 99, 105–106, 148, 167,
202, 290

context object 143–147
context property 340
continuous polling 332
count property 127–128
CREATE statements 13
Create Task form 278–281
create-approach form 281–285
created_at database column 142
created_at field 105
CREATED_AT repository order field 51
createdAt field 81, 147–149, 159, 167, 345
createdAt function 150
crypt function 218
currentTime field 115–117, 122–125, 132,

135–136, 258
currentTime: String method 124
currentUser record 227
currentUser value 223–224
cursor field 52
customFormatErrorFn function 273
customFormatErrorFn option 155

INDEX 349

D

data attribute 117, 259
data fetching optimization 207

caching and batching 172–182
batch-loading function 175–177
defining and using DataLoader

instances 177–179
loader for approachList field 179–182

circular dependencies in GraphQL types
187–190

single resource fields 182–187
using DataLoader with custom IDs for

caching 190–199
search field 193–199
taskMainList field 190–193

using DataLoader with MongoDB 199–206
data/errors properties 313
database models 103–156

Approach Details model 107–109
error reporting 154–156
running and connecting to databases 139–141
Task and Approach models 105–107
taskMainList query 141–154

context object 143–147
defining object types 142–143
separating interactions with PostgreSQL

152–154
transforming field names 147–150
transforming field values 150–152

User model 104–105
DataLoader

defining and using instances of 177–179
using with custom IDs for caching 190–199

search field 193–199
taskMainList field 190–193

using with MongoDB 199–206
declarative language 18–19
deep-nested fields attacks 188–190
DEFAULT keyword 105
DELETE SQL statements 9, 209, 249
@deprecated directive 57, 63
description field 74, 128
DETAIL_CATEGORIES query 321
detailList array 240
detailList field 199, 205, 240
detailLists function 199
direction argument 286
directives, customizing responses with 57–63

@deprecated directive 63
@include directive 61
@skip directive 62–63
variables and input values 58–61

E

edges field 52–53
email field 12, 48
email resolver function 14
end argument 125–126, 128
ENUM type 91–92, 204, 241
environment variables 113
error attribute 117
error object 326
error reporting 154–156
error states 311
error.graphQLErrors 326
errors array 274
errors attribute 259
Errors component 326
errors field 95
errors variable 274
execute label 162
executeGraphQLRequest function 119
explanations field 109
express package 119–120
express-graphql package 113, 119–120, 155, 221
extractPrefixedColumns function 165

F

fetch method 258, 277
fetchPolicy option 333
field arguments 48, 125–126
fields 39–40

customizing with arguments 48–55
identifying single record to return 48–49
limiting number of records returned by list

fields 49–51
ordering records returned by list fields 51
paginating through lists of records 51–53
providing input for mutations 54–55
searching and filtering 53–54

deep-nested fields attacks 188–190
renaming with aliases 55–56
single resource fields 182–187
Task type 156
transforming field names 147–150
transforming field values 150–152

fields configuration property 124–125, 188,
195, 228

films objects 20
find command 140
first_name nullable columns 7, 160
first/last arguments 345
firstName value 97
Float scalar type 39
forEach loop 241
FOREIGN KEY constraint 106

INDEX350

fragment keyword 64
fragment spread 65
fragments 24, 63–74

defining and using 64–65
DRY and 65–66
reasons for using 63–64
UI components and 66–71

friends field 39
FROM clause 10
FullTaskData fragment 280

G

GET request 178
GetEmployees query 38
getTime 150
getUsersByIds function 175
gia_pg container 162
git add . && git stash command 119, 139, 172, 209,

255, 294
git diff command 119, 311
GitHub API 41–46

introspective queries 44–46
reading data from 41–42
updating data at 43–44

GitObject interface 72
gql tag function 296
graph cache 26
graphiql: true configuration object 121
GraphQL

as a language 9–11
as a service 11–14
as a specification 9
GitHub API 41–46

introspective queries 44–46
reading data from 41–42
updating data at 43–44

GraphiQL editor 31–36
GraphQL language 36–40

fields 39–40
requests 36–39

issues and concerns 25–28
caching and optimizing 26–27
learning curve 28
security 25–26

reasons for using 14–25
REST APIs vs. 17–18

concepts and design decisions 18–20
declarative language 18–19
one-to-one comparison example 20–25
simple versioning 19–20
single endpoint and client language 19
typed schema 18

schema and resolvers 12–14
setting up runtime 113–119

creating resolver functions 116
creating schema object 115–116
executing requests 117–119

using APIs without client libraries 292
Ajax requests 258–260
mutation requests 269–287
query requests 260–268
query requests scoped for users 287–291
running web server 255–257
using web UI libraries 254

using with Apollo client 346
implementing and using subscriptions

332–344
managing local app state 326–332
with JavaScript 294–302
with React 303–326

graphql executor function 115–119, 121, 124, 144
GraphQL Implementation 115
GraphQL language 36–40

fields 39–40
requests 36–39

graphql package 113, 115, 123, 132
GRAPHQL_SERVER_URL 260
GRAPHQL_SUBSCRIPTIONS_URL config

value 342
graphql-yoga package 250
GraphQLBoolean 124
GraphQLEnumType constructor 204
GraphQLFloat 124
graphqlHTTP function 121, 144, 177
GraphQLID type 186
GraphQLInputObjectType object 213, 238–239
GraphQLInt 124
GraphQLList type 126, 150
GraphQLNonNull 126
GraphQLObjectType 124, 195, 204, 211–213, 233,

237, 247
GraphQLSchema 123–124, 337
GraphQLString 124
GraphQLString scalar type 124
GraphQLUnionType 123

H

handleAddNewApproach function 319
hashed_ prefix 105
hashed_auth_token field 105
hashed_auth_token value 105
hasNextPage field 53
Header component 68
headers property 277
highlightedApproachId object 315
Home component 259–260, 263–264, 311, 344
hook functions 259, 309–316
HTTP, communicating over 119–122

INDEX 351

httpLink object 296
httpLink request 342–343
humps node package 148

I

id argument 12–13, 89, 185–186
id field 44, 81, 87, 104–105, 148, 167, 317
ID type 81
id value 44, 186
identity column 80
if argument 57, 61
if statement 204, 312–313, 322, 326
implements keyword 88
@include directive 57, 61
info argument 145, 228
InMemoryCache object 296
input keyword 97
input object 54
input property 214
input type 81, 96
input values 54, 58–61
input.password 219
input.username 219
INSERT operation 6
INSERT statement 9, 209, 214–216
insert statement 139
Int scalar type 39
interface keyword 88
interface types 87–88
interfaces property 195
introspective queries 44–46
issueOrPullRequest 72
isTypeOf function 199
Iterable 151

J

JavaScript, using Apollo Client with 294–302
making mutation requests 300–302
making query requests 295–299

jsComplete organization 49
JSON Web Encryption (JWE) 94
JSON Web Signature (JWS) 94
JSON Web Tokens (JWT) 94

L

languages
declarative 18–19
GraphQL 36–40

fields 39–40
requests 36–39

GraphQL as a language 9–11

schema language vs. object-based method 134
single endpoint and client language 19

last argument 51
last value 50
last_name as nullable columns 160
last_name property 7
lastName value 97
latest type 191–192
“lazy” queries 323–324
leaf 39
link attribute 296
link object 306
listen method 120
listener function 120
.load method 174, 179
loaders object 177–179, 209, 223
loaders property 210
loaders.tasks function 185
loaders.tasksForUsers function 230
loading Boolean variable 314
loading states 311
local git checkout 9.2 265
LOCAL_APP_STATE data 330
localStorage 272
locations field 96
login argument 58, 60
Login component 269–271, 275, 314
login field 74
login form 269–273
loginUser function 313

M

main function 120
mainTaskList field 82
.map loop 148, 176, 192
.map/.filter 180
.map/.find 176, 201
mdbFindDocumentsByField function 200–201
me field 39, 93, 206, 226–228, 230
me root query field 226
me type 229
media part 70
merged fields 73
mergedAt field 73
message field 96
meta-fields 44
mockTasks array 257
mockTasks object 261, 263
modify method 318
mongo driver 201
mongo-client 200
mongoApi function 209
mongoApi module 199–200
mongoApi.detailLists function 201

INDEX352

mongodb packages 113
MongoDB, using DataLoader with 199–206
.mutate method 300, 302, 309, 316
mutation property 300
mutation requests 269–287

authenticating requests 277–278
Create Task form 278–281
create-approach form 281–285
generic server errors 273–277
login/signup forms 269–273
using Apollo Client with JavaScript 300–302
voting on Approaches 286–287

Mutation type 211
mutations 9, 94–250

authenticating API consumers 221–231
creating and voting on Approach entries

100–102
creating Task objects 99
deleting user records 98
for Approach model 235–246

approachCreate mutation 236–243
approachVote mutation 244–246

for Task model 232–235
mutation input 96–98
Mutation type 211
mutators context object 209–210
providing input for 54–55
user mutations 211–221

userCreate mutation 211–217
userDelete mutation 246–250
userLogin mutation 217–221

mutators argument 237
mutators context object 209–210
mutators function 214, 218
mutators method 239, 274
mutators object 210, 236
mutators.approachCreate function 236–237
mutators.taskCreate method 234
mutators.userCreate 214, 234
MyTasks component 287, 325

N

N+1 queries problem 27, 161–166
name field 7, 12–13, 32, 34, 74, 104, 124, 159, 161
new GraphQLNonNull(GraphQLInt) 126
NewApproach component 317, 319, 321
NewTask component 325
next object 120
node command 112
node field 51–52
Node interface 49
Node.js packages 113
nodemon command 112
nodes field 66

notes field 109
npm install 139, 172, 209, 255, 294
npm run start-dbs command 162
null values 160–161
numbersInRange field 127–128, 130–133
NumbersInRange type 127–129
numbersInRangeObject helper function 128

O

object types 80
object-based method 123

generating SDL text from object-based
schemas 132–134

schema language vs. 134
OData (Open Data Protocol) 14
ON DELETE option 249
onClick event 269
onClick event handler 292
one-to-many relations 166–169
one-to-one relations 157–166

N+1 queries problem 161–166
null values 160–161

onSubmit event 269
onSubmit event handler 269, 292
onSuccess function 284, 319
options object 342
ORDER BY clause 175
organization field 49–50, 58, 60, 64
Organization object 74
orgFields fragment 64
OrgInfo query 50, 61
OrgInfoWithDefault query 60
$orgLogin variable 58, 60
output types 81
over-fetching 17

P

password field 82, 97, 104, 213, 234
path field 96
path property 188
performance 292
person field 33–35
person object 20, 24, 32–33
personID argument 36
pg driver 157–158, 201, 273
pg package 113, 145
pgApi function 166, 186–187, 209, 222, 224, 230
pgApi methods 224
pgApi module 152, 157, 196–197
pgApi object 179
pgApi.approachList function 167–168, 179
pgApi.approachLists function 180

INDEX 353

pgApi.searchResults method 196
pgApi.taskMainList() 191
pgApi.tasksByTypes function 192
pgApi.tasksForUsers 230
pgApi.tasksInfo function 185, 224
pgApi.userFromAuthToken function 222–224
pgApi.userInfo function 175
pgApi.usersInfo function 176, 178–179, 201
pgApiWrapper function 152–153
pgClient function 144, 152–153
pgcrypto extension 140, 218
pgId field 108, 201
pgPool object 144, 152
pgPool.query function 146, 153
pgQuery function 153, 200–201
pgQuery promise 276
pgQuery wrapper 187
pgReps.rows array 176
pgResp object 145
planet object 20
.post 122
POST request 178, 258–260
PostgreSQL, separating interactions with 152–154
PRIMARY KEY constraint 104
printSchema function 132, 134
process.argv 118
ProfilePageData query 70
project field 49
projects field 54
promise-map method 197
Promise.all call 192
Provider component 309, 311, 328
publish event 339
PubSub implementation 335
pubsub.publish call 335

Q

queries 9, 82–94
authentication and authorization 93–94
entity relationships 90–91
ENUM types 91–92
interface types 87–88
introspective 44–46
listing latest Task records 82
page for one Task record 88–89
page for user’s Task records 92–93
scalar values 92
search and union/interface types 84–87

.query 300
query function 322
query method 145, 296, 302, 309
query property 296

query requests 260–268
including variables in requests 265–268
scoped for users 287–291
using Apollo Client with JavaScript 295–299
using fragments in UI components 263–265

Query type 83, 115, 123–125, 142–143, 183, 191
query/mutate method 306, 309
QueryType 125, 183, 211, 227
QueryType object 128

R

React, using Apollo Client with 303–326
including authentication headers 306–309
manually updating cache 317–321
performing operations conditionally 321–326
using automatic cache 316–317
using hook functions 309–316
using query and mutate methods directly

303–306
READ operation 10, 209, 214
readFragment function 321
readQuery function 321
readQuery method 318, 331
reason argument 57, 63
ref field 72
ReferenceError 188
refetch function 333
relations, resolving 156–169

one-to-many relations 166–169
one-to-one relations 157–166

remote procedure call (RPC) 12
repositories field 50
repository field 49
RepositoryConnection 66
req arguments 120, 177
req object 121, 340
request function 259–261, 267, 276–277, 303–304
REQUEST HEADERS editor 221
request method 303–305
requests 36–39
requestText argument 259–260
res argument 120, 177
res object 121
resolve function 124, 126, 148–149, 153, 214, 216,

227, 237, 248
resolve method 185
resolve property 214
resolver functions 11
resolvers 137

asynchronous functions 135–137
building schemas using constructor

objects 122–132
custom errors 129–132
custom object types 127–129

INDEX354

resolvers, custom object types (continued)
field arguments 125–126
Query type 123–125

communicating over HTTP 119–122
example of 12–14
generating SDL text from object-based

schemas 132–134
running development environment 110–113

environment variables 113
Node.js packages 113

setting up GraphQL runtime 113–119
creating resolver functions 116
creating schema object 115–116
executing requests 117–119

resolveType configuration property 193
resolveType function 193
resolveType property 199
resp.data attribute 117
responses, customizing with directives 57–63

@deprecated directive 63
@include directive 61
@skip directive 62–63
variables and input values 58–61

responsiveness 292
REST APIs, GraphQL vs. 17–18

concepts and design decisions 18–20
declarative language 18–19
one-to-one comparison example 20–25
simple versioning 19–20
single endpoint and client language 19
typed schema 18

results object 192
RETURNING part 215
ROLLBACK command 243
Root component 256, 265
root fields 40
rootErrors array 274
rootValue object 116–118, 121, 124
rows property 145–146, 158
RPC (remote procedure call) 12

S

scalar fields 39
scalar values 92
schema design 109

AZdev
API requirements for 78–82
reasons for using 77–78

database model design 103–109
Approach Details model 107–109
Task and Approach models 105–107
User model 104–105

full schema text 103

mutations 94–102
creating and voting on Approach

entries 100–102
creating Task objects 99
deleting user records 98
mutation input 96–98

queries 82–94
authentication and authorization 93–94
entity relationships 90–91
ENUM types 91–92
interface types 87–88
listing latest Task records 82
page for one Task record 88–89
page for user’s Task records 92–93
scalar values 92
search and union/interface types 84–87

subscriptions 102–103
__schema field 44
schema language 13
schema language definition (SDL) 80
schema object 116–117, 121
__schema query 44
schemas

building using constructor objects 122–132
custom errors 129–132
custom object types 127–129
field arguments 125–126
Query type 123–125

creating schema object 115–116
example of 12–14
typed 18

SDL (schema language definition) 80
SDL text, generating from object-based

schemas 132–134
Search component 321, 324
search field 84, 93, 193, 198–199, 289–290, 306
search form 289–291
search root field 289
search root query field 222
SearchResultItem interface type 193
SearchResultItem type 193
SearchResults component 325
searchResults function 196
searchResults loader 194–195
searchResults method 196
searchResults query 290
searchTerm 322, 325
searchTerm prop 321
security 25–26
SELECT * operation 147
SELECT columns 215
select element 281
SELECT operation 6
SELECT statement 9, 145, 149, 164, 175, 191,

214, 216

INDEX 355

selection set 34
serial type 104, 186
server.get method 120
server.use method 121, 177
server.VERB methods 120
services, GraphQL as 11–14
setLink method 329
setLocalAppState context method 257, 279,

308, 330
setState calls 327
setTimeout method 136
shared fields 72
show dbs command 109
showAddApproach object 315
Sidebar component 68–69
Signup component 269–271, 274, 325
signup form 269–273
single resource fields 182–187
single-responsibility principle 324–326
skip Boolean option 323
@skip directive 57, 62–63
skip option 323
source argument 159
source object 14, 145
source.createdAt 150
specifications, GraphQL as 9
split function 342–343
SQL (Structured Query Language) 6
sqls.approachCountIncrement statement 239
sqls.approachesForTaskIds statement 168, 179
sqls.approachInsert statement 239
sqls.approachVote statement 244
sqls.searchResults statement 196, 223
sqls.taskInsert 234
sqls.tasksForUsers statement 230
sqls.tasksFromIds statement 185
sqls.tasksLatest 153
sqls.tasksLatest SQL query 164
sqls.tasksLatest statement 182
sqls.userDelete statement 247
sqls.userFromAuthToken statement 222
sqls.userFromCredentials statement 218
sqls.usersFromIds 157
sqls.usersFromIds statement 158, 176
sqls.userUpdateAuthToken statement 218
STARGAZERS field 51
starrableId value 43
state.user object 307, 329
StoreProvider component 311
String type 39, 58, 81
Structured Query Language (SQL) 6
Subscription type 102, 337
subscriptions 10, 102–103, 332–344

Apollo Server 340–342
implementing 334–340

polling and refetching 332–333
using in UIs 342–344

sum field 127–128
sumNumbersInRange field 125–126
sumNumbersInRange leaf field 127

T

tags field 99, 105, 143, 147, 150–151
target field 72
task field 87, 182, 187, 290
Task model

mutations for 232–235
overview 105–107

Task objects 99, 105
Task records

listing latest 82
page for single 88–89
page for user’s 92–93

Task type 141–142, 147, 152, 178, 180, 187, 195
task_id column 106
task_id field 168
TASK_INFO query 280–281
TASK_MAIN_LIST query 264, 313
task.content field 289
task.id field 289
taskCreate mutation 99, 232–233, 235, 279–280,

335, 345
taskId argument 339
taskId input 102
taskId variable 267, 283
taskInfo field 182–183, 186
taskInfo object 319
taskInfo root field 89, 182, 185–187, 190, 222
taskInfo root query 185
taskInfo root query field 226, 267
taskInfoTest query 187
TaskInput type 232
TaskInput type structure 279
taskList field 83, 91–92, 226, 228, 230–231, 287
taskMainList 148, 166, 169, 182, 191, 195
taskMainList array 272
taskMainList field 82–83, 141–143, 146, 149, 154,

156–158, 182, 190–193, 345
taskMainList query 141, 146–154, 261, 264

context object 143–147
defining object types 142–143
separating interactions with PostgreSQL

152–154
transforming field names 147–150
transforming field values 150–152

taskMainList request 265
taskMainList resolver function 149

INDEX356

taskMainList root field 192, 261–262
taskMainListChanged 102, 334–335, 337–338, 344
TaskPage component 266, 280, 314, 317, 319, 344
TaskPage view 280
TaskPayload type 233
tasks table 105
tasksAndUsers 164
tasksByTypes 191–192, 197
TaskSummary component 263, 266
TaskSummary fragment 287
term string 289
TextArea component 66
.then promise method 262
this keyword 237
thunk 188
Time scalar value 39
to_tsvector, websearch_to_tsquery function 197
ts_rank function 197
Tweet component 70
TweetButton component 66
tweetData fragment 70–71
TweetForm component 66
TweetList component 68–69
.type attribute 289
type condition 64
__type introspective field 282
__type meta-field 45
type modifier 81
type property 124, 193, 214
__type query 44
type, id, content, approachCount field 289
__typename field 44, 301–302, 317

U

UNION ALL operator 197
union keyword 87
union types 84–87
up Boolean property 286
update function 318
UPDATE statement 9, 209, 218
UPDATED_AT, PUSHED_AT, NAME field 51
uri object 342
.use method 120–122
useApolloClient hook function 321
useEffect function 259–260, 314, 322–323
useLazyQuery method 323
useLocalAppState function 257, 330–331
useLocalAppState, setLocalAppState local app

state 330
useLocalAppState, setLocalAppState method 309
useMutation component 316
useMutation function 309, 313, 318–319, 323

useMutation methods 331
useQuery function 309, 311, 322, 325, 330–331
useQuery method 314, 316, 323, 326
user field 40, 48–49, 96
user local state element 327
User model 80, 103–105
user mutations 211–221

userCreate mutation 211–217
userLogin mutation 217–221

User object 74
User record 106, 213
user records

deleting 98
page for user’s Task records 92–93

user state 310
user state object 277, 304
User type 91, 93, 97, 141, 158, 165, 226,

228–229, 231
user_id column 106
user_id field 157
USER_LOGIN mutation 270, 308
user/component objects 327
userCreate field 218
userCreate field object 214
userCreate function 276
userCreate mutation 95–96, 208, 211–212,

216–217, 248, 269, 271
userCreateLoader 214
userCreateMutator 214
userDelete mutation 98, 246–250
userDelete mutation field 345
UserDeletePayload 247
UserError structure 215
UserError type 96, 211–212, 233
userId argument 186
userId property 157
userId value 157–158, 186, 197, 222, 224
userIds argument 175–176
userInfo function 159
UserInput type 97, 213–214, 217
userLoader object 174
userLogin mutation 95, 98, 211–212, 217,

219–222, 269
userLogin mutation field 218
username field 104–105, 213
username value 97
UserPayload record 214
UserPayload type 96, 212, 214, 217
users database table 94, 104
users DataLoader 177–179
users loader 177
users table 140, 179, 219
users table columns 164
users_username_key unique constraint 276

INDEX 357

usersInfo 175
useState method 311, 314, 317, 326
useState objects 315
useStore function 330
useStore method 315, 329
useStoreObject 304, 307, 328–329
useSubscription function 343

V

valueOf method 150
variables 58–61
variables property 300
versioning, simple 19–20
viewer field 41, 54
voteChanged operation 102
voteChanged subscription 334–335, 339
voteCount field 106, 167, 300, 302, 317

W

web components 67
web UI libraries 254
websiteUrl 61
WebSocketLink instance 342
WHERE clause 10
window.localStorage 296
WRITE operation 209, 214
WRITE-then-READ operations 10
WRITE/READ operations 209
writeFragment function 321
writeQuery function 321
writeQuery method 318, 326, 329
wsLink request 342–343

X

XMLHttpRequest 297

users

id serial

username text

hashed_password text

first_name text

last_name text

hashed_auth_token text

created_at timestamp

tasks

id serial

content text

tags text

user_id integer

is_private boolean

approach_count integer

created_at timestamp

approaches

id serial

content text

user_id integer

task_id integer

vote_count integer

created_at timestamp

approachDetails (In MongoDB)

id serial

pgId integer

explanations array

warnings array

notes array

Samer Buna

ISBN: 978-1-61729-568-3

G
raphQL APIs are fast, effi cient, and easy to maintain.
They reduce app latency and server cost while boosting
developer productivity. This powerful query layer offers

precise control over API requests and returns, making apps
faster and less prone to error.

GraphQL in Action gives you the tools to get comfortable with
the GraphQL language, build and optimize a data API ser-
vice, and use it in a front-end client application. By working
through set up, security, and error handling you’ll learn to
create a complete GraphQL server. You’ll also unlock easy
ways to incorporate GraphQL into your existing codebase
so you can build simple, scalable data APIs.

What’s Inside
● Defi ne a GraphQL schema for relational and document
 databases
● Implement GraphQL types using both the schema
 language and object constructor methods
● Optimize GraphQL resolvers with data caching
 and batching
● Design GraphQL fragments that match UI components’
 data requirements
● Consume GraphQL API queries, mutations, and
 subscriptions with and without a GraphQL client library

For web developers familiar with client-server applications.

Samer Buna has over 20 years of experience in software
development including front-ends, back-ends, API design,
and scalability.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$49.99 / Can $65.99 [INCLUDING eBOOK]

GraphQL IN ACTION

WEB DEVELOPMENT/APIs

M A N N I N G

“With thorough
explorations of GraphQL
concepts and numerous
practical examples, this

excellent book will quickly
take you from novice

 to expert.”
—Dary Merckens

Gunner Technology

“A great introduction to
GraphQL. This was the fi rst

book where I fi nally ‘got it’.”
— Jeremy Lange, G2

“Learn the new API
paradigm with this excellent

practical guide.”—Isaac Wong, Privé Technologies

“If you want to develop an
API with best practices,

GraphQL is for you, and
this book can help you get

 started quickly.”
—Ethien Daniel Salinas

Domínguez, Intelligential.tech

See first page

	GraphQL in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	Other online resources

	about the author
	about the cover illustration
	Part 1: Exploring GraphQL
	Chapter 1: Introduction to GraphQL
	1.1 What is GraphQL?
	1.1.1 The big picture
	1.1.2 GraphQL is a specification
	1.1.3 GraphQL is a language
	1.1.4 GraphQL is a service

	1.2 Why GraphQL?
	1.2.1 What about REST APIs?
	1.2.2 The GraphQL way
	1.2.3 REST APIs and GraphQL APIs in action

	1.3 GraphQL problems
	1.3.1 Security
	1.3.2 Caching and optimizing
	1.3.3 Learning curve

	Chapter 2: Exploring GraphQL APIs
	2.1 The GraphiQL editor
	2.2 The basics of the GraphQL language
	2.2.1 Requests
	2.2.2 Fields

	2.3 Examples from the GitHub API
	2.3.1 Reading data from GitHub
	2.3.2 Updating data at GitHub
	2.3.3 Introspective queries

	Chapter 3: Customizing and organizing GraphQL operations
	3.1 Customizing fields with arguments
	3.1.1 Identifying a single record to return
	3.1.2 Limiting the number of records returned by a list field
	3.1.3 Ordering records returned by a list field
	3.1.4 Paginating through a list of records
	3.1.5 Searching and filtering
	3.1.6 Providing input for mutations

	3.2 Renaming fields with aliases
	3.3 Customizing responses with directives
	3.3.1 Variables and input values
	3.3.2 The @include directive
	3.3.3 The @skip directive
	3.3.4 The @deprecated directive

	3.4 GraphQL fragments
	3.4.1 Why fragments?
	3.4.2 Defining and using fragments
	3.4.3 Fragments and DRY
	3.4.4 Fragments and UI components
	3.4.5 Inline fragments for interfaces and unions

	Part 2: Building GraphQL APIs
	Chapter 4: Designing a GraphQL schema
	4.1 Why AZdev?
	4.2 The API requirements for AZdev
	4.2.1 The core types

	4.3 Queries
	4.3.1 Listing the latest Task records
	4.3.2 Search and the union/interface types
	4.3.3 Using an interface type
	4.3.4 The page for one Task record
	4.3.5 Entity relationships
	4.3.6 The ENUM type
	4.3.7 List of scalar values
	4.3.8 The page for a user’s Task records
	4.3.9 Authentication and authorization

	4.4 Mutations
	4.4.1 Mutation input
	4.4.2 Deleting a user record
	4.4.3 Creating a Task object
	4.4.4 Creating and voting on Approach entries

	4.5 Subscriptions
	4.6 Full schema text
	4.7 Designing database models
	4.7.1 The User model
	4.7.2 The Task/Approach models
	4.7.3 The Approach Details model

	Chapter 5: Implementing schema resolvers
	5.1 Running the development environment
	5.1.1 Node.js packages
	5.1.2 Environment variables

	5.2 Setting up the GraphQL runtime
	5.2.1 Creating the schema object
	5.2.2 Creating resolver functions
	5.2.3 Executing requests

	5.3 Communicating over HTTP
	5.4 Building a schema using constructor objects
	5.4.1 The Query type
	5.4.2 Field arguments
	5.4.3 Custom object types
	5.4.4 Custom errors

	5.5 Generating SDL text from object-based schemas
	5.5.1 The schema language versus the object-based method

	5.6 Working with asynchronous functions

	Chapter 6: Working with database models and relations
	6.1 Running and connecting to databases
	6.2 The taskMainList query
	6.2.1 Defining object types
	6.2.2 The context object
	6.2.3 Transforming field names
	6.2.4 Transforming field values
	6.2.5 Separating interactions with PostgreSQL

	6.3 Error reporting
	6.4 Resolving relations
	6.4.1 Resolving a one-to-one relation
	6.4.2 Resolving a one-to-many relation

	Chapter 7: Optimizing data fetching
	7.1 Caching and batching
	7.1.1 The batch-loading function
	7.1.2 Defining and using a DataLoader instance
	7.1.3 The loader for the approachList field

	7.2 Single resource fields
	7.3 Circular dependencies in GraphQL types
	7.3.1 Deeply nested field attacks

	7.4 Using DataLoader with custom IDs for caching
	7.4.1 The taskMainList field
	7.4.2 The search field

	7.5 Using DataLoader with MongoDB

	Chapter 8: Implementing mutations
	8.1 The mutators context object
	8.2 The Mutation type
	8.3 User mutations
	8.3.1 The userCreate mutation
	8.3.2 The userLogin mutation

	8.4 Authenticating API consumers
	8.4.1 The me root query field

	8.5 Mutations for the Task model
	8.6 Mutations for the Approach model
	8.6.1 The approachCreate mutation
	8.6.2 The approachVote mutation

	8.7 The userDelete mutation

	Part 3: Using GraphQL APIs
	Chapter 9: Using GraphQL APIs without a client library
	9.1 Using a web UI library
	9.2 Running the web server
	9.3 Making Ajax requests
	9.4 Performing GraphQL query requests
	9.4.1 Using GraphQL fragments in UI components
	9.4.2 Including variables in requests

	9.5 Performing GraphQL mutation requests
	9.5.1 The login/signup forms
	9.5.2 Handling generic server errors
	9.5.3 Authenticating GraphQL requests
	9.5.4 The Create Task form
	9.5.5 The Create Approach form
	9.5.6 Voting on an Approach

	9.6 Performing query requests scoped for a user
	9.6.1 The Search form

	9.7 Next up

	Chapter 10: Using GraphQL APIs with Apollo client
	10.1 Using Apollo Client with JavaScript
	10.1.1 Making a query request
	10.1.2 Making a mutation request

	10.2 Using Apollo Client with React
	10.2.1 Using the query and mutate methods directly
	10.2.2 Including authentication headers
	10.2.3 Using Apollo hook functions
	10.2.4 Using the automatic cache
	10.2.5 Manually updating the cache
	10.2.6 Performing operations conditionally

	10.3 Managing local app state
	10.4 Implementing and using GraphQL subscriptions
	10.4.1 Polling and refetching
	10.4.2 Implementing subscriptions
	10.4.3 Apollo Server
	10.4.4 Using subscriptions in UIs

	Wrapping up

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

