
Avoid embarrassing
lambda mistakes

A learner’s guide to
Kotlin programming

Uncover
the ins and

outs of generics Write out-of-this-
world higher-order

functions

Put collections under
the microscope

Fool around
in the Kotlin

Standard
Library

Head First

Kotlin

Dawn Griffiths & David Griffiths

A Brain-Friendly Guide

See how Elvis can
change your life

Head First
Kotlin

Wouldn’t it be dreamy if there
were a book on Kotlin that was
easier to understand than the
space shuttle flight manual? I

guess it’s just a fantasy…

Dawn Griffiths
David Griffiths

Boston

Head First Kotlin
by Dawn Griffiths and David Griffiths

Copyright © 2019 Dawn Griffiths and David Griffiths. All rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Editor: Jeff Bleiel

Cover Designer: Randy Comer

Production Editor: Kristen Brown

Production Services: Jasmine Kwityn

Indexer: Lucie Haskins

Brain image on spine: Eric Freeman

Page Viewers: Mum and Dad, Laura and Aisha

Printing History:
February 2019: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First Kotlin, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No Duck objects were harmed in the making of this book.

ISBN: 978-1-491-99669-0
[MBP]

Mum and Dad Aisha and Laura

To the brains behind Kotlin for creating
such a great programming language.

iv

the authors

Authors of Head First Kot lin

David Griffiths

David Griffiths has worked as an Agile coach,
a developer and a garage attendant, but not in that
order. He began programming at age 12 when he
saw a documentary on the work of Seymour Papert,
and when he was 15, he wrote an implementation of
Papert’s computer language LOGO. Before writing
Head First Kotlin, David wrote various other Head First
books, including Head First Android Development, and
created The Agile Sketchpad video course with Dawn.

When David’s not writing, coding, or coaching, he
spends much of his spare time traveling with his lovely
wife—and coauthor—Dawn.

You can follow Dawn and David on Twitter at https://
twitter.com/HeadFirstKotlin.

Dawn Griffiths

Dawn Griffiths has over 20 years experience
working in the IT industry, working as a senior
developer and senior software architect. She has
written various books in the Head First series, including
Head First Android Development. She also developed the
animated video course The Agile Sketchpad with her
husband, David, as a way of teaching key concepts and
techniques in a way that keeps your brain active and
engaged.

When Dawn’s not writing books or creating videos,
you’ll find her honing her Tai Chi skills, reading,
running, making bobbin lace, or cooking. She
particularly enjoys spending time with her wonderful
husband, David.

table of contents

v

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on Kotlin. Here you are trying to learn something, while here

your brain is, doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to

avoid and whether naked snowboarding is a bad idea.” So how do you trick your

brain into thinking that your life depends on knowing how to code in Kotlin?

Intro

Who is this book for? xxii

We know what you’re thinking xxiii

We know what your brain is thinking xxiii

Metacognition: thinking about thinking xxv

Here’s what WE did: xxvi

Read me xxviii

The technical review team xxx

Acknowledgments xxxi

 Intro xxi

1 Getting Started: A quick dip 1

2 Basic Types and Variables: Being a variable 31

3 Functions Getting out of main 59

4 Classes and Objects: A bit of class 91

5 Subclasses and Superclasses: Using your inheritance 121

6 Abstract Classes and Interfaces: Serious polymorphism 155

7 Data Classes: Dealing with data 191

8 Nulls and Exceptions: Safe and sound 219

9 Collections: Get organized 251

10 Generics: Know your ins from your outs 289

11 Lambdas and Higher-Order Functions: Treating code like data 325

12 Built-in Higher-Order Functions: Power up your code 363

i Coroutines: Running code in parallel 397

ii Testing: Hold your code to account 409

iii Leftovers: The top ten things (we didn’t cover) 415

table of contents

vi

Welcome to Kotlinville 2

You can use Kotlin nearly everywhere 3

What we’ll do in this chapter 4

Install IntelliJ IDEA (Community Edition) 7

Let’s build a basic application 8

You’ve just created your first Kotlin project 11

Add a new Kotlin file to the project 12

Anatomy of the main function 13

Add the main function to App.kt 14

Test drive 15

What can you say in the main function? 16

Loop and loop and loop... 17

A loopy example 18

Conditional branching 19

Using if to return a value 20

Update the main function 21

Using the Kotlin interactive shell 23

You can add multi-line code snippets to the REPL 24

Mixed Messages 27

Your Kotlin Toolbox 30

A Quick Dip1
getting started

Kotlin is making waves.
From its first release, Kotlin has impressed programmers with its friendly syntax,

conciseness, flexibility and power. In this book, we’ll teach you how to build your

own Kotlin applications, and we’ll start by getting you to build a basic application and

run it. Along the way, you’ll be introduced to some of Kotlin’s basic syntax, such as

statements, loops and conditional branching. Your journey has just begun...

Being able to choose
which platform to compile your code against means
that Kotlin code can run on servers, in the cloud,
in browsers, on mobile
devices, and more.

IntelliJ IDEA

table of contents

vii

Being a Variable
There’s one thing all code depends on—variables.
So in this chapter, we’re going to look under the hood, and show you how Kotlin

variables really work. You’ll discover Kotlin’s basic types, such as Ints, Floats and

Booleans, and learn how the Kotlin compiler can cleverly infer a variable’s type from

the value it’s given. You’ll find out how to use String templates to construct complex

Strings with very little code, and you’ll learn how to create arrays to hold multiple

values. Finally, you’ll discover why objects are so important to life in Kotlinville.

basic types and variables

2
Your code needs variables 32

What happens when you declare a variable 33

The variable holds a reference to the object 34

Kotlin’s basic types 35

How to explicitly declare a variable’s type 37

Use the right value for the variable’s type 38

Assigning a value to another variable 39

We need to convert the value 40

What happens when you convert a value 41

Watch out for overspill 42

Store multiple values in an array 45

Create the Phrase-O-Matic application 46

Add the code to PhraseOMatic.kt 47

The compiler infers the array’s type from its values 49

var means the variable can point to a different array 50

val means the variable points to the same array forever... 51

Mixed References 54

Your Kotlin Toolbox 58

var Int
Int

5REF

x

Byte Short Int Long

table of contents

viii

Getting Out of Main
It’s time to take it up a notch, and learn about functions.
So far, all the code you’ve written has been inside your application’s main function. But

if you want to write code that’s better organized and easier to maintain, you need to

know how to split your code into separate functions. In this chapter, you’ll learn how

to write functions and interact with your application by building a game. You’ll discover

how to write compact single expression functions. Along the way you’ll find out how

to iterate through ranges and collections using the powerful for loop.

functions

3
Let’s build a game: Rock, Paper, Scissors 60

A high-level design of the game 61

Get the game to choose an option 63

How you create functions 64

You can send more than one thing to a function 65

You can get things back from a function 66

Functions with single-expression bodies 67

Add the getGameChoice function to Game.kt 68

The getUserChoice function 75

How for loops work 76

Ask the user for their choice 78

Mixed Messages 79

We need to validate the user’s input 81

Add the getUserChoice function to Game.kt 83

Add the printResult function to Game.kt 87

Your Kotlin Toolbox 89

0 1 2

REF
REF

REF

REF

options

String

"Rock"

String

"Paper"

String

"Scissors"

val Array<String>

table of contents

ix

Object types are defined using classes 92

How to design your own classes 93

Let’s define a Dog class 94

How to create a Dog object 95

How to access properties and functions 96

Create a Songs application 97

The miracle of object creation 98

How objects are created 99

Behind the scenes: calling the Dog constructor 100

Going deeper into properties 105

Flexible property initialization 106

How to use initializer blocks 107

You MUST initialize your properties 108

How do you validate property values? 111

How to write a custom getter 112

How to write a custom setter 113

The full code for the Dogs project 115

Your Kotlin Toolbox 120

A Bit of Class4
classes and objects

It’s time we looked beyond Kotlin’s basic types.
Sooner or later, you’re going to want to use something more than Kotlin’s basic

types. And that’s where classes come in. Classes are templates that allow you

to create your own types of objects, and define their properties and functions.

Here, you’ll learn how to design and define classes, and how to use them

to create new types of objects. You’ll meet constructors, initializer blocks,

getters and setters, and you’ll discover how they can be used to protect your

properties. Finally, you’ll learn how data hiding is built into all Kotlin code,

saving you time, effort and a multitude of keystrokes.

var Dog

Dog

name: “Fido”
weight: 70
breed: “Mixed”

REF

myDog

Dog

name
weight
breed

bark()

Dog

name
weight
breed

bark()

One class

Many objects

table of contents

x

Using Your Inheritance
Ever found yourself thinking that an object’s type would be
perfect if you could just change a few things?
Well, that’s one of the advantages of inheritance. Here, you’ll learn how to create

subclasses, and inherit the properties and functions of a superclass. You’ll discover

how to override functions and properties to make your classes behave the way

you want, and you’ll find out when this is (and isn’t) appropriate. Finally, you’ll see how

inheritance helps you avoid duplicate code, and how to improve your flexibility with

polymorphism.

subclasses and superclasses

5
Inheritance helps you avoid duplicate code 122

What we’re going to do 123

Design an animal class inheritance structure 124

Use inheritance to avoid duplicate code in subclasses 125

What should the subclasses override? 126

We can group some of the animals 127

Add Canine and Feline classes 128

Use IS-A to test your class hierarchy 129

The IS-A test works anywhere in the inheritance tree 130

We’ll create some Kotlin animals 133

Declare the superclass and its properties and functions as open 134

How a subclass inherits from a superclass 135

How (and when) to override properties 136

Overriding properties lets you do more than assign default values 137

How to override functions 138

An overridden function or property stays open... 139

Add the Hippo class to the Animals project 140

Add the Canine and Wolf classes 143

Which function is called? 144

When you call a function on the variable, it’s the object’s version
that responds 146

You can use a supertype for a function’s parameters and return type 147

The updated Animals code 148

Your Kotlin Toolbox 153

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

table of contents

xi

Serious Polymorphism
A superclass inheritance hierarchy is just the beginning.
If you want to fully exploit polymorphism, you need to design using abstract classes

and interfaces. In this chapter, you’ll discover how to use abstract classes to control

which classes in your hierarchy can and can’t be instantiated. You’ll see how they can

force concrete subclasses to provide their own implementations. You’ll find out how

to use interfaces to share behavior between independent classes. And along the

way, you’ll learn the ins and outs of is, as, and when.

abstract classes and interfaces

6
The Animal class hierarchy revisited 156

Some classes shouldn’t be instantiated 157

Abstract or concrete? 158

An abstract class can have abstract properties and functions 159

The Animal class has two abstract functions 160

How to implement an abstract class 162

You MUST implement all abstract properties and functions 163

Let’s update the Animals project 164

Independent classes can have common behavior 169

An interface lets you define common behavior OUTSIDE
a superclass hierarchy 170

Let’s define the Roamable interface 171

How to define interface properties 172

Declare that a class implements an interface... 173

How to implement multiple interfaces 174

How do you know whether to make a class, a subclass,
an abstract class, or an interface? 175

Update the Animals project 176

Interfaces let you use polymorphism 181

Where to use the is operator 182

Use when to compare a variable against a bunch of options 183

The is operator usually performs a smart cast 184

Use as to perform an explicit cast 185

Update the Animals project 186

Your Kotlin Toolbox 189

Vehicle

roam()

(interface)
Roamable

roam()

val Roamable Wolf

REF

item

Treat me like the
Wolf you know I am.

table of contents

xii

== calls a function named equals 192

equals is inherited from a superclass named Any 193

The common behavior defined by Any 194

We might want equals to check whether two objects are equivalent 195

A data class lets you create data objects 196

Data classes override their inherited behavior 197

Copy data objects using the copy function 198

Data classes define componentN functions... 199

Create the Recipes project 201

Mixed Messages 203

Generated functions only use properties defined in the constructor 205

Initializing many properties can lead to cumbersome code 206

How to use a constructor’s default values 207

Functions can use default values too 210

Overloading a function 211

Let’s update the Recipes project 212

The code continued... 213

Your Kotlin Toolbox 217

Dealing with Data7
data classes

Nobody wants to spend their life reinventing the wheel.
Most applications include classes whose main purpose is to store data, so to make

your coding life easier, the Kotlin developers came up with the concept of a data class.

Here, you’ll learn how data classes enable you to write code that’s cleaner and more

concise than you ever dreamed was possible. You’ll explore the data class utility

functions, and discover how to destructure a data object into its component parts.

Along the way, you’ll find out how default parameter values can make your code

more flexible, and we’ll introduce you to Any, the mother of all superclasses.

YourClassHere

Any

equals()
hashCode()
toString()

...

Data objects
are considered
equal if their
properties hold
the same values.

table of contents

xiii

Safe and Sound
Everybody wants to write code that’s safe.
And the great news is that Kotlin was designed with code-safety at its heart. We’ll

start by showing you how Kotlin’s use of nullable types means that you’ll hardly ever

experience a NullPointerException during your entire stay in Kotlinville. You’ll discover

how to make safe calls, and how Kotlin’s Elvis operator stops you being all shook up.

And when we’re done with nulls, you’ll find out how to throw and catch exceptions like

a pro.

nulls and exceptions

8
How do you remove object references from variables? 220

Remove an object reference using null 221

You can use a nullable type everywhere you can use
a non-nullable type 222

How to create an array of nullable types 223

How to access a nullable type’s functions and properties 224

Keep things safe with safe calls 225

You can chain safe calls together 226

The story continues... 227

You can use safe calls to assign values... 228

Use let to run code if values are not null 231

Using let with array items 232

Instead of using an if expression... 233

The !! operator deliberately throws a NullPointerException 234

Create the Null Values project 235

The code continued... 236

An exception is thrown in exceptional circumstances 239

Catch exceptions using a try/catch 240

Use finally for the things you want to do no matter what 241

An exception is an object of type Exception 242

You can explicitly throw exceptions 244

try and throw are both expressions 245

Your Kotlin Toolbox 250

I'm gonna TRY this
risky thing, and CATCH
myself if I fail.

?:

Thank you
very much.

This is the Elvis operator.

table of contents

xiv

Get Organized
Ever wanted something more flexible than an array?
Kotlin comes with a bunch of useful collections that give you more flexibility and

greater control over how you store and manage groups of objects. Want to keep

a resizeable list that you can keep adding to? Want to sort, shuffle or reverse its

contents? Want to find something by name? Or do you want something that will

automatically weed out duplicates without you lifting a finger? If you want any of these

things, or more, keep reading. It’s all here...

collections

9
Arrays can be useful... 252

...but there are things an array can’t handle 253

When in doubt, go to the Library 254

List, Set and Map 255

Fantastic Lists... 256

Create a MutableList... 257

You can remove a value... 258

You can change the order and make bulk changes... 259

Create the Collections project 260

Lists allow duplicate values 263

How to create a Set 264

How a Set checks for duplicates 265

Hash codes and equality 266

Rules for overriding hashCode and equals 267

How to use a MutableSet 268

Update the Collections project 270

Time for a Map 276

How to use a Map 277

Create a MutableMap 278

You can remove entries from a MutableMap 279

You can copy Maps and MutableMaps 280

The full code for the Collections project 281

Mixed Messages 285

Your Kotlin Toolbox 287
A Map allows
duplicate values, but
not duplicate keys.

“KeyA” “KeyB” “KeyC”

REF
REF

REF

“ValueA” “ValueB”

Map

A List allows
duplicate values.

REF

0

1

2

REF

REF

“Tea”

“Coffee”

String

String

List

table of contents

xv

Know Your Ins from Your Outs
Everybody likes code that’s consistent.
And one way of writing consistent code that’s less prone to problems is to use

generics. In this chapter, we’ll look at how Kotlin’s collection classes use generics

to stop you from putting a Cabbage into a List<Seagull>. You’ll discover when and how

to write your own generic classes, interfaces and functions, and how to restrict

a generic type to a specific supertype. Finally, you’ll find out how to use covariance

and contravariance, putting YOU in control of your generic type’s behavior.

generics

10
Collections use generics 290

How a MutableList is defined 291

Using type parameters with MutableList 292

Things you can do with a generic class or interface 293

Here’s what we’re going to do 294

Create the Pet class hierarchy 295

Define the Contest class 296

Add the scores property 297

Create the getWinners function 298

Create some Contest objects 299

Create the Generics project 301

The Retailer hierarchy 305

Define the Retailer interface 306

We can create CatRetailer, DogRetailer and FishRetailer objects... 307

Use out to make a generic type covariant 308

Update the Generics project 309

We need a Vet class 313

Create Vet objects 314

Use in to make a generic type contravariant 315

A generic type can be locally contravariant 316

Update the Generics project 317

Your Kotlin Toolbox 324

WITH generics, objects
go IN as a reference to
only Duck objects...

...and come OUT as a
reference of type Duck.

MutableList<Duck>

Duck Duck Duck Duck

Duck Duck Duck Duck

Vet<T: Pet>

treat(t: T)

table of contents

xvi

Introducing lambdas 326

What lambda code looks like 327

You can assign a lambda to a variable 328

Lambda expressions have a type 331

The compiler can infer lambda parameter types 332

Use the right lambda for the variable’s type 333

Create the Lambdas project 334

You can pass a lambda to a function 339

Invoke the lambda in the function body 340

What happens when you call the function 341

You can move the lambda OUTSIDE the ()’s... 343

Update the Lambdas project 344

A function can return a lambda 347

Write a function that receives AND returns lambdas 348

How to use the combine function 349

Use typealias to provide a different name for an existing type 353

Update the Lambdas project 354

Your Kotlin Toolbox 361

Treating Code Like Data11
lambdas and higher-order functions

Want to write code that’s even more powerful and flexible?
If so, then you need lambdas. A lambda—or lambda expression—is a block of code

that you can pass around just like an object. Here, you’ll discover how to define

a lambda, assign it to a variable, and then execute its code. You’ll learn about

function types, and how these can help you write higher-order functions that use

lambdas for their parameter or return values. And along the way, you’ll find out how a

little syntactic sugar can make your coding life sweeter.

λ
{ x: Int, y: Int -> x + y }

Lambda

I take two Int
parameters named x and
y. I add them together,
and return the result.

{ it + 5 }

(Int) -> Int

REF

add
Five

val
(Int) -> Int

λ

combine()

Kgs to Pounds

λ
Pounds to US Tons

λ

Kgs to US Tons

λ

We'll create a
function that
combines two
lambdas into a
single lambda.

table of contents

xvii

Kotlin has a bunch of built-in higher-order functions 364

The min and max functions work with basic types 365

A closer look at minBy and maxBy’s lambda parameter 366

The sumBy and sumByDouble functions 367

Create the Groceries project 368

Meet the filter function 371

Use map to apply a transform to your collection 372

What happens when the code runs 373

The story continues... 374

forEach works like a for loop 375

forEach has no return value 376

Update the Groceries project 377

Use groupBy to split your collection into groups 381

You can use groupBy in function call chains 382

How to use the fold function 383

Behind the scenes: the fold function 384

Some more examples of fold 386

Update the Groceries project 387

Mixed Messages 391

Your Kotlin Toolbox 394

Leaving town... 395

Power Up Your Code12
built-in higher-order functions

Kotlin has an entire host of built-in higher-order functions.
And in this chapter, we’ll introduce you to some of the most useful ones. You’ll meet

the flexible filter family, and discover how they can help you trim your collection down

to size. You’ll learn how to transform a collection using map, loop through its

items with forEach, and how to group the items in your collection using groupBy.

You’ll even use fold to perform complex calculations using just one line of code. By

the end of the chapter, you’ll be able to write code more powerful than you ever

thought possible.

These items have no natural
order. To find the highest
or lowest value, we need to
specify some criteria, such
as unitPrice or quantity.

1

Int

REF

0

1

2

REF

REF

List<Int>

2

Int
3

Int

The fold
function
starts
with the
first item
in the
collection.

table of contents

xviii

Bam! Bam! Bam! Bam! Bam! Bam!
Tish! Tish!

This time, the toms and
cymbals play in parallel.

Some tasks are best performed in the background.
If you want to read data from a slow external server, you probably don’t want the

rest of your code to hang around, waiting for the job to complete. In situations such

as these, coroutines are your new BFF. Coroutines let you write code that’s run

asynchronously. This means less time hanging around, a better user experience,

and it can also make your application more scalable. Keep reading, and you’ll learn the

secret of how to talk to Bob, while simultaneously listening to Suzy.

Running Code in Parallel
coroutines

i

Everybody knows that good code needs to work.
But each code change that you make runs the risk of introducing fresh bugs that stop

your code from working as it should. That’s why thorough testing is so important: it

means you get to know about any problems in your code before it’s deployed to the live

environment. In this appendix, we’ll discuss JUnit and KotlinTest, two libraries which

you can use to unit test your code so that you always have a safety net.

Hold Your Code to Account
testing

ii

table of contents

xix

Bam! Bam! Bam! Bam! Bam! Bam!
Tish! Tish!

Even after all that, there’s still a little more.
There are just a few more things we think you need to know. We wouldn’t feel right

about ignoring them, and we really wanted to give you a book you’d be able to lift

without training at the local gym. Before you put down the book, read through these

tidbits.

The Top Ten Things (We Didn’t Cover)
leftovers

iii
1. Packages and imports 416

2. Visibility modifiers 418

3. Enum classes 420

4. Sealed classes 422

5. Nested and inner classes 424

6. Object declarations and expressions 426

7. Extensions 429

8. Return, break and continue 430

9. More fun with functions 432

10. Interoperability 434

Outer

Inner

x: String
y: String

The Inner and Outer objects share a
special bond. The Inner can use the
Outer’s variables, and vice versa.

you are here 4 xxi

the intro

how to use this book

Intro

In this section, we answer the burning question:
“So why DID they put that in a book on Kotlin?”

I can’t believe they
put that in a Kotlin

book.

xxii intro

how to use this book

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from Marketing: this book is for anyone with a credit card or a PayPal account]

Do you want to learn Kotlin?2

Is your programming background limited to HTML only,
with no scripting language experience?

(If you’ve done anything with looping, or if/then logic,
you’ll do fine with this book, but HTML tagging alone
might not be enough.)

1

Have you done some programming?1

Would you rather have your toenails pulled out by 15
screaming monkeys than learn something new? Do you
believe a Kotlin book should cover everything, especially
all the obscure stuff you’ll never use, and if it bores the
reader to tears in the process, then so much the better?

3

Do you prefer actually doing things and applying the stuff
you learn over listening to someone in a lecture rattle on
for hours on end?

3

This is NOT a reference book.
Head First Kotlin is a book
designed for learning, not an
encyclopedia of Kotlin facts.

Are you a kick-butt Kotlin programmer looking for a
reference book?

2

you are here 4 xxiii

the intro

“How can this be a serious Kotlin book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

“Do I smell pizza?”

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you—what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!
But imagine you’re at home or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously unimportant content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things.
Like tigers. Like the danger of fire. Like how you should never have
posted those party photos on your Facebook page. And there’s no
simple way to tell your brain, “Hey brain, thank you very much, but
no matter how dull this book is, and how little I’m registering on the
emotional Richter scale right now, I really do want you to keep this
stuff around.”

We know what you’re thinking

We know what your brain is thinking
Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.

Great. Only 450
more dull, dry,
boring pages.

33

xxiv intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the latest

research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things more

understandable. Put the words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to solve problems related to the

content.

Use a conversational and personalized style. In recent studies, students performed up

to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a stimulating dinner-party

companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons,

nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both sides of the brain and

multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this, but I can’t

stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be

boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent

on its emotional content. You remember what you care about. You remember when you feel something.

No, we’re not talking heart-wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I rule!” that comes when you solve a puzzle, learn

something everybody else thinks is hard, or realize you know something that “I’m more technical than

thou” Bob from Engineering doesn’t.

you are here 4 xxv

the intro

Metacognit ion: thinking about thinking
I wonder how

I can trick my brain
into remembering
this stuff…

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how
to code in Kotlin. And you probably don’t want to spend a lot of time. If you
want to use what you read in this book, you need to remember what you read.
And for that, you’ve got to understand it. To get the most from this book, or any
book or learning experience, take responsibility for your brain. Your brain on
this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat Kotlin like
it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t feel important to him, but
he keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

xxvi intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing it refers to, as opposed to in a caption or buried in the body
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included activities, because your brain is tuned to learn and remember more when
you do things than when you read about things. And we made the exercises challenging-yet-
doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see
an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, you’re a person. And your
brain pays more attention to people than it does to things.

you are here 4 xxvii

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

6 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

9 Write a lot of code!
There’s only one way to learn Kotlin: write a
lot of code. And that’s what you’re going to do
throughout this book. Coding is a skill, and the
only way to get good at it is to practice. We’re
going to give you a lot of practice: every chapter
has exercises that pose a problem for you to solve.
Don’t just skip over them—a lot of the learning
happens when you solve the exercises. We included
a solution to each exercise—don’t be afraid to
peek at the solution if you get stuck! (It’s easy to
get snagged on something small.) But try to solve
the problem before you look at the solution. And
definitely get it working before you move on to the
next part of the book.

8 Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

7 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

5 Talk about it. Out loud.
Speaking activates a different part of the brain. If
you’re trying to understand something, or increase
your chance of remembering it later, say it out loud.
Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover
ideas you hadn’t known were there when you were
reading about it.

4 Make this the last thing you read before bed.
Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the book
down. Your brain needs time on its own, to do more
processing. If you put in something new during that
processing time, some of what you just learned will
be lost.

3 Read “There Are No Dumb Questions.”
That means all of them. They’re not optional
sidebars, they’re part of the core content!
Don’t skip them.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you, that
would be like having someone else do your workouts
for you. And don’t just look at the exercises. Use a
pencil. There’s plenty of evidence that physical
activity while learning can increase the learning.

Don’t just read. Stop and think. When the book asks
you a question, don’t just skip to the answer. Imagine
that someone really is asking the question. The
more deeply you force your brain to think, the better
chance you have of learning and remembering.

Slow down. The more you understand, the
less you have to memorize.

1

xxviii intro

how to use this book

Read me

This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We assume you’re new to Kotlin, but not to programming.

We assume that you’ve already done some programming. Maybe not a lot, but we’ll assume
you’ve already seen things like loops and variables in some other language. And unlike a lot
of other Kotlin books, we don’t assume that you already know Java.

We begin by teaching some basic Kotlin concepts, and then we
start putting Kotlin to work for you right away.
We cover the fundamentals of Kotlin code in Chapter 1. That way, by the time you make
it all the way to Chapter 2, you are creating programs that actually do something. The rest
of the book then builds on your Kotlin skills, turning you from Kotlin newbie to Kotlin ninja
master in very little time.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books don’t
have retention and recall as a goal, but this book is about learning, so you’ll see some of the
same concepts come up more than once.

The code examples are as lean as possible.
We know how frustrating it is to wade through 200 lines of code looking for the two lines
you need to understand. Most examples within this book are shown within the smallest
possible context, so that the part you’re trying to learn is clear and simple. So don’t expect
the code to be robust, or even complete. That’s your assignment for after you finish the
book, and it’s all part of the learning experience.

you are here 4 xxix

the intro

The exercises and activities are NOT optional.
The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. So don’t skip the exercises! Your brain will thank you for
it.

The Brain Power exercises don’t have answers.
Not printed in the book, anyway. For some of them, there is no right answer, and for
others, part of the learning experience is for you to decide if and when your answers are
right. In some of the Brain Power exercises, you will find hints to point you in the right
direction.

xxx intro

the review teamthe review team

The technical rev iew team

Ken Kousen is the author of the books Modern
Java Recipes (O’Reilly), Gradle Recipes for Android
(O’Reilly) and Making Java Groovy (Manning), as
well as O’Reilly video courses in Android, Groovy,
Gradle, advanced Java and Spring. He is a regular
speaker on the No Fluff, Just Stuff conference tour
and a 2013 and 2016 JavaOne Rock Star, and has
spoken at conferences all over the world. Through
his company, Kousen I.T., Inc., he has taught
software development training courses to thousands
of students.

Ingo

Technical reviewers:

Ingo Krotzky is a trained health information
technician who has been working as a database
programmer/software developer for contract research
institutes.

Ken

you are here 4 xxxi

the intro

Our editor:

Heartfelt thanks to our awesome editor Jeff Bleiel for all
his work and help. We’ve truly valued his trust, support, and
encouragement. We’ve appreciated all the times he pointed out
when things were unclear or needed a rethink, as it’s led to us
writing a much better book.

The O’Reilly team:

Acknowledgments

Jeff Bleiel

A big thank you goes to Brian Foster for his early help in getting Head First
Kotlin off the ground; Susan Conant, Rachel Roumeliotis and Nancy
Davis for their help smoothing the wheels; Randy Comer for designing the
cover; the early release team for making early versions of the book available
for download; and Kristen Brown, Jasmine Kwityn, Lucie Haskins and
the rest of the production team for expertly steering the book through the
production process, and for working so hard behind the scenes.

Friends, family and colleagues:

Writing a Head First book is always a rollercoaster, and we’ve truly valued the
kindness and support of our friends, family and colleagues along the way. Special
thanks go to Jacqui, Ian, Vanessa, Dawn, Matt, Andy, Simon, Mum, Dad,
Rob and Lorraine.

The without-whom list:

Our awesome technical review team worked hard to give us their thoughts on the
book, and we’re so grateful for their input. They made sure that what we covered
was spot on, and kept us entertained along the way. We think the book is much
better as a result of their feedback.

Finally, our thanks to Kathy Sierra and Bert Bates for creating this
extraordinary series of books, and for letting us into their brains.

xxxii intro

o’reilly

O’Reil ly
For almost 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers.

For more information, please visit http://oreilly.com.

this is a new chapter 1

Come on, the water’s great! We’ll
jump right in, write some code,
and look at some basic Kotlin
syntax. You’ll be coding in no time.

getting started1

A Quick Dip

Kotlin is making waves.
From its first release, Kotlin has impressed programmers with its friendly syntax,

conciseness, flexibility and power. In this book, we’ll teach you how to build your own

Kotlin applications, and we’ll start by getting you to build a basic application and run it.

Along the way, you’ll be introduced to some of Kotlin’s basic syntax, such as statements,

loops and conditional branching. Your journey has just begun...

2 Chapter 1

kotlin overview

Welcome to Kotlinville
Kotlin has been taking the programming world by storm.
Despite being one of the youngest programming languages in
town, many developers now view it as their language of choice.
So what makes Kotlin so special?

Kotlin has many modern language features that make it
attractive to developers. You’ll find out about these features
in more detail later in the book, but for now, here are some of
the highlights.

It’s crisp, concise and readable
Unlike some languages, Kotlin code is very concise, and you can
perform powerful tasks in just one line. It provides shortcuts for
common actions so that you don’t have to write lots of repetitive
boilerplate code, and it has a rich library of functions that you can
use. And as there’s less code to wade through, it’s quicker to read,
write and understand, leaving you more time to do other things.

You can use object-oriented AND functional programming
Can’t decide whether to learn object-oriented or functional
programming? Well, why not do both? Kotlin lets you
create object-oriented code that uses classes, inheritance and
polymorphism, just as you can in Java. But it also supports
functional programming, giving you the best of both worlds.

The compiler keeps you safe
Nobody likes unsafe, buggy code, and Kotlin’s compiler
puts a lot of effort into making sure your code is as clean as
possible, preventing many of the errors that can occur in other
programming languages. Kotlin is statically typed, for example,
so you can’t perform inappropriate actions on the wrong type of
variable and crash your code. And most of the time, you don’t
even need to explicitly specify the type yourself as the compiler
can infer it for you.

So Kotlin is a modern, powerful and flexible programming
language that offers many advantages. But that’s not the end
of the story.

Kotlin virtually
eliminates the kinds of
errors that regularly
occur in other
programming languages.
That means safer, more
reliable code, and less
time spent chasing bugs.

A language that’s
designed for computers
AND humans? Awesome!

you are here 4 3

getting started

You can use Kotlin nearly everywhere

Native apps
If you want to write code that will run quickly on less powerful
devices, you can compile your Kotlin code directly to native
machine code. This allows you to write code that will run, for
example, on iOS or Linux.

Client-side and server-side JavaScript
You can also transpile—or translate and compile—Kotlin code
into JavaScript, so that you can run it in a browser. You can use
it to work with both client-side and server-side technology, such
as WebGL or Node.js.

Java Virtual Machines (JVMs)
Kotlin code can be compiled to JVM (Java Virtual Machine)
bytecode, so you can use Kotlin practically anywhere that you
can use Java. Kotlin is 100% interoperable with Java, so you
can use existing Java libraries with it. If you’re working on an
application that contains a lot of old Java code, you don’t have
to throw all the old code away; your new Kotlin code will work
alongside it. And if you want to use the Kotlin code you’ve
written from inside Java, you can do so with ease.

Android
Alongside other languages such as Java, Kotlin has first-class
support for Android. Kotlin is fully supported in Android
Studio, and you can make the most of Kotlin’s many
advantages when you develop Android apps.

In this book, we’re going to focus on creating Kotlin
applications for JVMs, as this is the most straightforward way
of getting to grips with the language. Afterwards, you’ll be
able to apply the knowledge you’ve gained to other platforms.

Let’s dive in.

Even though we’re building applications for
Java Virtual Machines, you don’t need to
know Java to get the most out of this
book. We’re assuming you have some general
programming experience, but that’s it.

Being able to choose
which platform to compile your code against means
that Kotlin code can run on servers, in the cloud,
in browsers, on mobile
devices, and more.

Kotlin is so powerful and flexible that you can use it as a
general-purpose language in many different contexts. This
is because you can choose which platform to compile
your Kotlin code against.

4 Chapter 1

steps

What we’ll do in this chapter
In this chapter, we’re going to show you how to build a basic
Kotlin application. There are a number of steps we’re going to
go through to do this:

Create a new Kotlin project.
We’ll start by installing IntelliJ IDEA (Community Edition), a free IDE
that supports Kotlin application development. We’ll then use the IDE to
build a new Kotlin project:

1

Add a function that displays some text.
We’ll add a new Kotlin file to the project, then write a simple main
function that will output the text “Pow!”

2

Update the function to make it do more.
Kotlin includes basic language structures such as statements, loops and
conditional branching. We’ll use these to change our function so that it
does more.

3

Try out code in the Kotlin interactive shell.
Finally, we’ll look at how to try out snippets of code in the Kotlin
interactive shell (or REPL).

4

We’ll install the IDE after you’ve tried the following exercise.

This is the project we’ll
create with the IDE.

you are here 4 5

getting started

We know we’ve not taught you any Kotlin code yet, but see if you
can guess what each line of code is doing. We’ve completed the
first one to get you started.

val name = "Misty"

val height = 9

println("Hello")

println("My cat is called $name")

println("My cat is $height inches tall")

val a = 6

val b = 7

val c = a + b + 10

val str = c.toString()

val numList = arrayOf(1, 2, 3)

var x = 0

while (x < 3) {

 println("Item $x is ${numList[x]}")

 x = x + 1

}

val myCat = Cat(name, height)

val y = height - 3

if (y < 5) myCat.miaow(4)

while (y < 8) {

 myCat.play()

 y = y + 1

}

Declare a variable named ‘name’ and give it a value of “Misty”.

6 Chapter 1

sharpen solution

We know we’ve not taught you any Kotlin code yet, but see if you
can guess what each line of code is doing. We’ve completed the
first one to get you started.

val name = "Misty"

val height = 9

println("Hello")

println("My cat is called $name")

println("My cat is $height inches tall")

val a = 6

val b = 7

val c = a + b + 10

val str = c.toString()

val numList = arrayOf(1, 2, 3)

var x = 0

while (x < 3) {

 println("Item $x is ${numList[x]}")

 x = x + 1

}

val myCat = Cat(name, height)

val y = height - 3

if (y < 5) myCat.miaow(4)

while (y < 8) {

 myCat.play()

 y = y + 1

}

Declare a variable named ‘name’ and give it a value of “Misty”.

Prints “My cat is 9 inches tall”.

Declare a variable named ‘height’ and give it a value of 9.

Prints “Hello” to the standard output.
Prints “My cat is called Misty”.

Declare a variable named ‘a’ and give it a value of 6.
Declare a variable named ‘b’ and give it a value of 7.

Declare a variable named ‘c’ and give it a value of 23.
Declare a variable named ‘str’ and give it a text value of “23”.

Create an array containing values of 1, 2 and 3.
Declare a variable named ‘x’ and give it a value of 0.

Keep looping as long as x is less than 3.
Print the index and value of each item in the array.

Add 1 to x.
This is the end of the loop.

Declare a variable named ‘myCat’ and create a Cat object.
Declare a variable named ‘y’ and give it a value of 6.

If y is less than 5, the Cat should miaow 4 times.

Keep looping as long as y is less than 8.
Make the Cat play.

Add 1 to y.
This is the end of the loop.

you are here 4 7

getting started

Install IntelliJ IDEA (Community Edition)
The easiest way of writing and running Kotlin code is to use
IntelliJ IDEA (Community Edition). This is a free IDE from
JetBrains, the people who invented Kotlin, and it comes with
everything you need to develop Kotlin applications, including:

To follow along with us in this book, you need to install IntelliJ
IDEA (Community Edition). You can download the IDE here:

https://www.jetbrains.com/idea/download/index.html

Once you’ve installed the IDE, open it. You should see the IntelliJ
IDEA welcome screen. You’re ready to build your first Kotlin
application.

Make sure you choose the option to download
the free Community Edition of IntelliJ IDEA.

IntelliJ IDEABuild tools
You can compile and run your code
using quick and easy shortcuts.

Kotlin REPL
You have easy access to the Kotlin
REPL, which lets you try out code
snippets outside your main code.

A code editor
The code editor offers code completion
to help you write Kotlin code, and
formatting and color highlighting to
make your code easier to read. It also
gives you hints for improving your code.

Version control
IntelliJ IDEA interfaces with major
version control systems such as Git,
SVN, CVS and more

There are many more features too, all
there to make your coding life easier.

This is the
IntelliJ IDEA
welcome screen.

Build application
Add function
Update function
Use REPL

You are here.

8 Chapter 1

create project

Let’s build a basic application
Now that you’ve set up your development environment, you’re
ready to create your first Kotlin application. We’re going
to create a very simple application that will display the text

“Pow!” in the IDE.

Whenever you create a new application in IntelliJ IDEA, you
need to create a new project for it. Make sure you have the
IDE open, and follow along with us.

1. Create a new project
The IntelliJ IDEA welcome screen gives you a number of
options for what you want to do. We want to create a new
project, so click on the option for “Create New Project”.

Click on the option to
create a new project.

Any projects you
create will appear
here. This is our
first project,
so this area is
currently empty.

Build application
Add function
Update function
Use REPL

you are here 4 9

getting started

Building a basic application (continued)

2. Specify the type of project
Next, you need to tell IntelliJ IDEA what sort of project you want to
create.

IntelliJ IDEA allows you to create projects for various languages and
platforms, such as Java and Android. We’re going to create a Kotlin
project, so choose the option for “Kotlin”.

You also need to specify which platform you want your Kotlin project
to target. We’re going to create a Kotlin application with a JVM
target, so select the Kotlin/JVM option. Then click on the Next
button.

We’re creating a Kotlin
project, so choose the
Kotlin option.

We’ll run our Kotlin application in a JVM,
so select the Kotlin/JVM option.

Click on the Next
button to proceed
to the next step.

There are other options too, but
we’re going to focus on creating
applications that run against a JVM.

Build application
Add function
Update function
Use REPL

10 Chapter 1

configure project

Building a basic application (continued)

3. Configure the project
You now need to configure the project by saying what you want to
call it, where you want to store the files, and what files should be used
by the project. This includes which version of Java should be used by
the JVM, and the library for the Kotlin runtime.

Name the project “MyFirstApp”, and accept the rest of the defaults.

When you click on the Finish button, IntelliJ IDEA will create your
project.

Click on the Finish
button, and the IDE
will create your project.

Name the project “MyFirstApp”

Accept the default values.

Build application
Add function
Update function
Use REPL

you are here 4 11

getting started

Build application
Add function
Update function
Use REPL

You’ve just created your first Kotlin project
After you’ve finished going through the steps to create a new
project, IntelliJ IDEA sets up the project for you, then displays
it. Here’s the project that the IDE created for us:

As you can see, the project features an explorer
which you can use to navigate the files and folders
that make up your project. IntelliJ IDEA creates this
folder structure for you when you create the project.

The folder structure is comprised of configuration
files that are used by the IDE, and some external
libraries that your application will use. It also includes
a src folder, which is used to hold your source code.
You’ll spend most of your time in Kotlinville working
with the src folder.

The src folder is currently empty as we haven’t added
any Kotlin files yet. We’ll do this next.

Any Kotlin source
files you create
need to be added
to the src folder.

This is a folder
explorer. Use it to
navigate the files and
folders in your project.

The contents of any
Kotlin files you open
will be displayed here.

We’ve completed this step, so we’ve checked it.

12 Chapter 1

add file

Add a new Kotlin file to the project
Before you can write any Kotlin code, you first need to create a
Kotlin file to put it in.

To add a new Kotlin file to your project, highlight the src folder
in IntelliJ IDEA’s explorer, then click on the File menu and
choose New → Kotlin File/Class. You will prompted for the
name and type of Kotlin file you want to create. Name the file

“App”, and choose File from the Kind option, like this:

When you click on the OK button, IntelliJ IDEA creates a new
Kotlin file named App.kt, and adds it to the src folder in your
project:

Next, let’s look at the code we need to add to App.kt to get it to
do something.

A new file called App.kt has
been added to our src folder.

Name the file “App”.

Choose a file kind of “File”.

Build application
Add function
Update function
Use REPL

you are here 4 13

getting started

Anatomy of the main function
We’re going to get our Kotlin code to display “Pow!” in the IDE’s
output window. We’ll do this be adding a function to App.kt.

Whenever you write a Kotlin application, you must add a function to it
called main, which starts your application. When you run your code,
the JVM looks for this function, and executes it.

The main function looks like this:

The function begins with the word fun, which is used to
tell the Kotlin compiler that it’s a function. You use the fun
keyword for each new Kotlin function you create.

The fun keyword is followed by the name of the function, in
this case main. Naming the function main means that it will
be automatically executed when you run the application.

The code in the braces () after the function name tells the
compiler what arguments (if any) the function takes. Here, the
code args: Array<String> specifies that the function
accepts an array of Strings, and this array is named args.

You put any code you want to run between the curly braces
{} of the main function. We want our code to print “Pow!” in
the IDE, and we can do that using code like this:

println("Pow!") prints a string of characters, or String,
to the standard output. As we’re running our code in an IDE,
it will print “Pow!” in the IDE’s output pane.

Now that you’ve seen what the function looks like, let’s add it
to our project.

fun main (args: Array<String>) {

 //Your code goes here

}

“fun” means
it’s a function.

The name of this function.

The function’s parameters, enclosed
in parentheses. The function is given
an array of Strings, and the array is
named “args”.

Opening brace of the function.

Closing brace of the function.

fun main(args: Array<String>) {

 println ("Pow!")

}

This says to
print to the
standard
output. The text you want to print.

The “//” denotes a
comment. Replace the
comment with any
code you want the
function to execute.

Build application
Add function
Update function
Use REPL

Parameterless
main functions

If you’re using Kotlin 1.2, or
an earlier version, your main
function must take the following
form in order for it to start your
application:

fun main(args: Array<String>) {

 //Your code goes here

}

From Kotlin1.3, however, you can omit
main’s parameters so that the function
looks like this:

fun main() {

 //Your code goes here

}

Through most of this book, we’re going to
use the longer form of the main function
because this works for all versions of
Kotlin.

14 Chapter 1

main function

Add the main function to App.kt
To add the main function to your project, open the file App.kt
by double-clicking on it in IntelliJ IDEA’s explorer. This opens
the code editor, which you use to view and edit files:

fun main(args: Array<String>) {

 println("Pow!")

}

Let’s try running our code to see what happens.

Then, update your version of App.kt so that it matches ours
below:

You can find App.kt in this folder.src

App.kt

MyFirstApp

This is IntelliJ IDEA’s code
editor pane. It’s currently
empty as our version of App.kt
doesn’t contain any code yet.

This shows you which
file you’re editing—in
this case, App.kt.

Build application
Add function
Update function
Use REPL

Q: Do I have to add a main function to every Kotlin file I
create?

A: No. A Kotlin application might use dozens (or even hundreds)
of files, but you may only have one with a main function—the one
that starts the application running.

you are here 4 15

getting started

Test drive
You run code in IntelliJ IDEA by going to the Run menu,
and selecting the Run command. When prompted, choose
the AppKt option. This builds the project, and runs the code.

After a short wait, you should see “Pow!” displayed in an
output window at the bottom of the IDE like this:

What the Run command does
When you use the Run command, IntelliJ IDEA goes through
a couple of steps before it shows you the output of your code:

The IDE compiles your Kotlin source code into JVM bytecode.
Assuming your code has no errors, compiling the code creates one or more
class files that can run in a JVM. In our case, compiling App.kt creates a class
file called AppKt.class.

1

The IDE starts the JVM and runs AppKt.class.
The JVM translates the AppKt.class bytecode into something the underlying
platform understands, then runs it. This displays the String “Pow!” in the
IDE’s output window.

2

App.kt AppKt.class

Kotlin compiler

AppKt.class

Pow!

Here’s the output
text in the IDE.

Build application
Add function
Update function
Use REPL

Now that we know our function works, let’s look at how we
can update it to make it do more.

It specifically compiles
our source code into
JVM bytecode because
when we created the
project, we selected
the JVM option. Had
we chosen to run it in
another environment,
the compiler would have
compiled it into code
for that environment
instead.

16 Chapter 1

statements, loops, branches

What can you say in the main function?
Once you’re inside the main function (or any other function, for that
matter), the fun begins. You can say all the normal things that you say in
most programming languages to make your application do something.

You can get your code to:

 var x = 3

 val name = "Cormoran"

 x = x * 10

 print("x is $x.")

 //This is a comment

 while (x > 20) {

 x = x - 1

 print(" x is now $x.")

 }

 for (i in 1..10) {

 x = x + 1

 print(" x is now $x.")

 }

 if (x == 20) {

 println(" x must be 20.")

 } else {

 println(" x isn't 20.")

 }

 if (name.equals("Cormoran")) {

 println("$name Strike")

 }

We’ll look at these in more detail over the next few pages.

Syntax Up Close
Here are some general syntax
hints and tips for while you’re finding
your feet in Kotlinville:

¥ A single-lined comment begins with
two forward slashes:

//This is a comment

¥ Most white space doesn’t matter:

x = 3

¥ Define a variable using var or val,
followed by the variable’s name. Use
var for variables whose value you
want to change, and val for ones
whose value will stay the same. You’ll
learn more about variables in Chapter
2:

var x = 100

val serialNo = "AS498HG"

Build application
Add function
Update function
Use REPL

Do something under a condition (branching)¥

Do something (statements)¥

Do something again and again (loops)¥

you are here 4 17

getting started

Loop and loop and loop...
Kotlin has three standard looping constructs: while, do-while and for.
For now we’ll just focus on while.

The syntax for while loops is relatively simple. So long as some condition is
true, you do everything inside the loop block. The loop block is bounded by a
pair of curly braces, and whatever you need to repeat needs to be inside that
block.

The key to a well-behaved while loop is its conditional test. A conditional test
is an expression that results in a boolean value—something that is either true
or false. As an example, if you say something like “While isIceCreamInTub is
true, keep scooping” you have a clear boolean test. There is either ice cream
in the tub, or there isn’t. But if you say “While Fred, keep scooping”, you
don’t have a real test. You need to change it to something like “While Fred is
hungry, keep scooping” in order for it to make sense.

Simple boolean tests
You can do a simple boolean test by checking the value of a variable using a
comparison operator. These include:

 < (less than)

 > (greater than)

 == (equality)

 <= (less than or equal to)

 >= (greater than or equal to)

Notice the difference between the assignment operator (a single
equals sign) and the equals operator (two equals signs).

Here’s some example code that uses boolean tests:

If you just have one line of
code in the loop block, you
can omit the curly braces.

You use two equals signs to test for equality, not one.

var x = 4 //Assign 4 to x
while (x > 3) {
 //The loop code will run as x is greater than 4
 println(x)
 x = x - 1
}
var z = 27
while (z == 10) {
 //The loop code will not run as z is 27
 println(z)
 z = z + 6
}

Build application
Add function
Update function
Use REPL

18 Chapter 1

going loopy

A loopy example
Let’s update the code in App.kt with a new version of the main
function. We’ll update the main function so that it displays a
message before the loop starts, each time it loops, and when
the loop has ended.

Update your version of App.kt so that it matches ours below
(our changes are in bold):

fun main(args: Array<String>) {

 println("Pow!")

 var x = 1

 println("Before the loop. x = $x.")

 while (x < 4) {

 println("In the loop. x = $x.")

 x = x + 1

 }

 println("After the loop. x = $x.")

}

Delete this line, as it’s no longer needed.

Let’s try running the code.

Test drive
Run the code by going to the Run menu, and selecting the
Run ‘AppKt’ command. The following text should appear
in the output window at the bottom of the IDE:

Before the loop. x = 1.
In the loop. x = 1.
In the loop. x = 2.
In the loop. x = 3.
After the loop. x = 4.

Now that you’ve learned how while loops and boolean
tests work, let’s look at if statements.

src

App.kt

MyFirstApp

print vs. println
You’ve probably noticed us
switching between print and
println. What’s the difference?

println inserts a new line
(think of println as print new
line) while print keeps printing to the
same line. If you want each thing to print
out on its own line, use println. If you
want everything to stick together on the
same line, use print.

Build application
Add function
Update function
Use REPL

This prints out the value of x.

you are here 4 19

getting started

Conditional branching
An if test is similar to the boolean test in a while loop except
instead of saying “while there’s still ice cream...” you say “if there’s
still ice cream...”

So that you can see how this works, here’s some code that prints a
String if one number is greater than another:

fun main(args: Array<String>) {

 val x = 3

 val y = 1

 if (x > y) {

 println("x is greater than y")

 }

 println("This line runs no matter what")

}

The above code executes the line that prints “x is greater than
y” only if the condition (x is greater than y) is true. Regardless
of whether it’s true, though, the line that prints “This line runs
no matter what” will run. So depending on the values of x and y,
either one statement or two will print out.

We can also add an else to the condition, so that we can say
somthing like, “if there’s still ice cream, keep scooping, else
(otherwise) eat the ice cream then buy some more”.

Here’s an updated version of the above code that includes an else:

fun main(args: Array<String>) {

 val x = 3

 val y = 1

 if (x > y) {

 println("x is greater than y")

 } else {

 println("x is not greater than y")

 }

 println("This line runs no matter what")

}

In most languages, that’s pretty much the end of the story as far as
using if is concerned; you use it to execute code if conditions have
been met. Kotlin, however, takes things a step further.

This line is only executed
if x is greater than y.

This line is only executed if
the condition x > y is not met.

If you just have
one line of code
in the if block,
you can leave out
the curly braces.

Build application
Add function
Update function
Use REPL

20 Chapter 1

if expressions

Using if to return a value

println(if (x > y) "x is greater than y" else "x is not greater than y")

In Kotlin, you can use if as an expression, so that it returns a
value. It’s like saying “if there’s ice cream in the tub, return one
value, else return a different value”. You can use this form of if
to write code that’s more concise.

Let’s see how this works by reworking the code you saw on the
previous page. Previously, we used the following code to print a
String:

if (x > y) {

 println("x is greater than y")

} else {

 println("x is not greater than y")

}

We can rewrite this using an if expression like so:

So if x is greater than y, “x is greater than y” gets printed. If it’s
not, “x is not greater than y” gets printed instead.

As you can see, using an if expression in this way has the same
effect as the code you saw on the previous page, but it’s more
concise.

We’ll show you the code for the entire function on the next page.

The code:

if (x > y) "x is greater than y" else "x is not greater than y"

is the if expression. It first checks the if’s condition: x > y.
If this condition is true, the expression returns the String “x is
greater than y”. Otherwise (else) the condition is false, and the
expression returns the String “x is not greater than y” instead.

The code then prints the value of the if expression using
println:

println(if (x > y) "x is greater than y" else "x is not greater than y")

If x is greater than y, the code
prints “x is greater than y”. If x is
not greater than y, the code prints
“x is not greater than y” instead.

Build application
Add function
Update function
Use REPL

When you use if as an
expression, you MUST
include an else clause.

you are here 4 21

getting started

Update the main function
Let’s update the code in App.kt with a new version of the
main function that uses an if expression. Replace the
code in your version of App.kt so that it matches ours below:

Build application
Add function
Update function
Use REPL

fun main(args: Array<String>) {

 var x = 1

 println("Before the loop. x = $x.")

 while (x < 4) {

 println("In the loop. x = $x.")

 x = x + 1

 }

 println("After the loop. x = $x.")

 val x = 3

 val y = 1

 println(if (x > y) "x is greater than y" else "x is not greater than y")

 println("This line runs no matter what")

}

Let’s take the code for a test drive.

Delete these lines.

Test drive
Run the code by going to the Run menu, and selecting the
Run ‘AppKt’ command. The following text should appear
in the output window at the bottom of the IDE:

x is greater than y
This line runs no matter what

Now that you’ve learned how to use if for conditional
branching and expressions, have a go at the following
exercise.

22 Chapter 1

code magnets

Code Magnets
Somebody used fridge magnets to write a useful new main
function that prints the String “YabbaDabbaDo”. Unfortunately, a
freak kitchen whirlwind has dislodged the magnets. Can you piece
the code back together again?

You won’t need to use all of the magnets.

4

2
3

1

2

println

print
print println

4

1

fun main(args: Array<String>) {

 var x = 1

 while (x <) {

 (if (x ==) "Yab" else "Dab")

 ("ba")

 x = x + 1

 }

 if (x ==) println("Do")

}

3

Answers on page 29.

you are here 4 23

getting started

Using the Kotlin interactive shell
We’re nearly at the end of the chapter, but before we go, there’s one
more thing we want to introduce you to: the Kotlin interactive shell,
or REPL. The REPL allows you to quickly try out snippets of code
outside your main code.

You open the REPL by going to the Tools menu in IntelliJ IDEA
and choosing Kotlin → Kotlin REPL. This opens a new pane at the
bottom of the screen like this:

REPL stands for Read-Eval-Print
Loop, but nobody ever calls it that.

To use the REPL, simply type the code you want to try out into the
REPL window. As an example, try adding the following:

Type any code you want to try out into the REPL here. Ours is showing hint text telling us what keys to press to execute the code in the REPL, but you just overwrite this text.

println("I like turtles!")

Click
on this
button to
execute
code in
the REPL. Here’s our output.

Once you’ve executed the code you want to
try out, the REPL’s ready for you to add
a new snippet. We'll do that next.

Build application
Add function
Update function
Use REPL

Once you’ve added the code, execute it by clicking on the large green
Run button on the left side of the REPL window After a pause, you
should see the output “I like turtles!” in the REPL window:

24 Chapter 1

using the REPL

val x = 6

val y = 8

println(if (x > y) x else y)

It’s exercise time
Now that you’ve learned how to write Kotlin code and seen
some of its basic syntax, have a go at the following exercises.
Remember, if you’re unsure, you can try out any code
snippets in the REPL.

You can add multi-line code
snippets to the REPL
As well as adding single-line code snippets to the REPL, as
we did on the previous page, you can try out code segments
that take up multiple lines. As an example, try adding the
following lines to the REPL window:

When you execute the code, you should see the output 8 in
the REPL like this:

These look like
small versions
of the execute
button, but
they’re not.
They indicate
which blocks
of code you’ve
executed.

This is the output of our
second code segment.

Build application
Add function
Update function
Use REPL

We’ve completed all the
steps for this chapter.

This prints the larger of two numbers, x and y.

you are here 4 25

getting started

BE the Compiler
Each of the Kotlin files on this page
represents a complete source file. Your
job is to play like you’re the compiler

and determine whether each
of these files will compile.
If they won’t compile, how
would you fix them?

fun main(args: Array<String>) {

 var x = 1

 while (x < 10) {

 if (x > 3) {

 println("big x")

 }

 }

}

fun main(args: Array<String>) {

 val x = 10

 while (x > 1) {

 x = x - 1

 if (x < 3) println("small x")

 }

}

fun main(args: Array<String>) {

 var x = 10

 while (x > 1) {

 x = x - 1

 print(if (x < 3) "small x")

 }

}

A

B

C

Build application
Add function
Update function
Use REPL

26 Chapter 1

be the compiler solution

BE the Compiler Solution
Each of the Kotlin files on this page
represents a complete source file. Your
job is to play like you’re the compiler

and determine whether each
of these files will compile.
If they won’t compile, how
would you fix them?

fun main(args: Array<String>) {

 var x = 1

 while (x < 10) {

 x = x + 1
 if (x > 3) {

 println("big x")

 }

 }

}

fun main(args: Array<String>) {

 val var x = 10
 while (x > 1) {

 x = x - 1

 if (x < 3) println("small x")

 }

}

fun main(args: Array<String>) {

 var x = 10

 while (x > 1) {

 x = x - 1

 print(if (x < 3) "small x" else ˝big x")
 }

}

A

B

C

This will compile and run with no output, but
without a line added to the program, it will
run forever in an infinite “while” loop.

This won’t compile. x has been defined
using val, which means that its value
can’t change. The code therefore can’t
update the value of x inside the “while”
loop. To fix, change val to var.

This won't compile as it uses an if
expression with no else clause. To
fix, add the else clause.

you are here 4 27

getting started

 Mixed
Messages

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

fun main(args: Array<String>) {

 var x = 0

 var y = 0

 while (x < 5) {

 print("xy ")

 x = x + 1

 }

}

y = x - y

00 11 21 32 42

Candidates: Possible output:

y = y + x

02 14 25 36 47

y = y + 3

if (y > 4) y = y - 1

03 15 27 39 411

22 57

x = x + 2

y = y + x

00 11 23 36 410

if (y < 5) {

 x = x + 1

 if (y < 3) x = x - 1

}

y = y + 3 03 26 39 412

00 11 22 33 44

The candidate
code goes here.

Match each
candidate
with one of
the possible
outputs.

28 Chapter 1

mixed messages solution

 Mixed
Messages
Solution

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

fun main(args: Array<String>) {

 var x = 0

 var y = 0

 while (x < 5) {

 print("xy ")

 x = x + 1

 }

}

y = x - y

00 11 21 32 42

Candidates: Possible output:

y = y + x

02 14 25 36 47

y = y + 3

if (y > 4) y = y - 1

03 15 27 39 411

22 57

x = x + 2

y = y + x

00 11 23 36 410

if (y < 5) {

 x = x + 1

 if (y < 3) x = x - 1

}

y = y + 3 03 26 39 412

00 11 22 33 44

you are here 4 29

getting started

Code Magnets Solution
Somebody used fridge magnets to write a useful new main
function that prints the String “YabbaDabbaDo”. Unfortunately, a
freak kitchen whirlwind has dislodged the magnets. Can you piece
the code back together again?

You won’t need to use all of the magnets.

4

2

2

println

println

4

1

fun main(args: Array<String>) {

 var x = 1

 while (x <) {

 (if (x ==) "Yab" else "Dab")

 ("ba")

 x = x + 1

 }

 if (x ==) println("Do")

}

3

1print

print

3

You didn’t need to
use these magnets.

30 Chapter 1

kotlin toolbox

 � Use fun to define a function.

 � Every application needs a function named
main.

 � Use // to denote a single-lined comment.

 � A String is a string of characters. You
denote a String value by enclosing its
characters in double quotes.

 � Code blocks are defined by a pair of curly
braces { }.

 � The assignment operator is one equals
sign =.

 � The equals operator uses two equals signs
==.

 � Use var to define a variable whose value
may change.

 � Use val to define a value whose value
will stay the same.

 � A while loop runs everything within its
block so long as the conditional test is true.

 � If the conditional test is false, the while
loop code block won't run, and execution
will move down to the code immediately
after the loop block.

 � Put a conditional test inside parentheses
().

 � Add conditional branches to your code
using if and else. The else clause is
optional.

 � You can use if as an expression so that
it returns a value. In this case, the else
clause is mandatory.

Your Kotlin Toolbox

You’ve got Chapter 1 under
your belt and now you’ve

added Kotlin basic syntax to
your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.CH

AP
T

ER
 1

this is a new chapter 31

I’d love to take you
out, but Mommy says I
must be home by 6pm.

basic types and variables2

Being a Variable

There’s one thing all code depends on—variables.
So in this chapter, we’re going to look under the hood, and show you how Kotlin

variables really work. You’ll discover Kotlin’s basic types, such as Ints, Floats and

Booleans, and learn how the Kotlin compiler can cleverly infer a variable’s type from

the value it’s given. You’ll find out how to use String templates to construct complex

Strings with very little code, and you’ll learn how to create arrays to hold multiple values.

Finally, you’ll discover why objects are so important to life in Kotlinville.

I don’t think
you’re my type.

32 Chapter 2

variable declarations

A variable is like a cup.
It holds something.

So far, you’ve learned how to write basic statements, expressions,
while loops and if tests. But there’s one key thing we need to look
at in order to write great code: variables.

You’ve already seen how to declare variables using code like:

Your code needs variables

var x = 5

The code looks simple, but what’s going on behind the scenes?

A variable is like a cup
When you think of a variable in Kotlin, think of a cup. Cups come
in many different shapes and sizes—big cups, small cups, the giant
disposable cups that popcorn comes in at the movies—but they all
have one thing in common: a cup holds something.

Declaring a variable is like ordering a drink from Starbucks. When
you place your order, you tell the barista what type of drink you want,
what name to shout out when it’s ready, and even whether to use a
fancy reusable cup instead of one that just gets thrown away. When
you declare a variable using code like:

var x = 5

you’re telling the Kotlin compiler what value the variable should
have, what name to give it, and whether the variable can be reused
for other values.

In order to create a variable, the compiler needs to know three things:

What the variable’s name is.
This is so we can use that name in our code.

¥

Whether or not the variable can be reused.
If we initially set your variable to 2, for example, can we later set it to 3?
Or should it remain 2 forever?

¥

What type of variable it is.
Is it an integer? A String? Or something more complex?

¥

You’ve already seen how to name a variable, and how to use the
val and var keywords to specify whether it can be reused for other
values. But what about a variable’s type?

you are here 4 33

basic types and variables

var x = 5

the value you’re assigning to the variable is used to create a new
object. In this example, you’re assigning the number 5 to a new
variable named x. The compiler knows that 5 is an integer, and
so the code creates a new Int object with a value of 5:

Int

5

What happens when you declare a variable
The compiler really cares about a variable’s type so that it can
prevent bizarre or dangerous operations that might lead to bugs.
It won’t let you assign the String “Fish” to an integer variable,
for example, because it knows that it’s inappropriate to perform
mathematical operations on a String.

For this type-safety to work, the compiler needs to know the type
of the variable. And the compiler can infer the variable’s
type from the value that’s assigned to it.

Let’s see how this works.

The value is transformed into an object...
When you declare a variable using code like:

...and the compiler infers the variable’s type from that of the object
The compiler then uses the type of the object for the type of the
variable. In the above example, the object’s type is Int, so the
variable’s type is Int as well. The variable stays this type forever.

var Int

x

Next, the object is assigned to the variable. How does this
happen?

We’re going to look at some different types in more detail a couple of pages ahead.

To create a variable,
the compiler needs
to know its name,
type and whether it
can be reused.

The compiler knows that you need a
variable with a type of Int so that
it matches the type of the object

34 Chapter 2

val and var

var Int

Int

5

REF

The variable holds a reference to the object

As the variable holds a reference to the object, this gives it access to the
object.

x

When an object is assigned to a variable, the object itself doesn’t go
into the variable. A reference to the object goes into the variable instead:

Now that you’ve seen what happens when you declare a variable, let’s
look at some of Kotlin’s basic types for integers, floating points, booleans,
characters and Strings.

var x = 5

x = 6

to assign a value of 6 to x, this creates a new Int object with a value of 6,
and puts a reference to it into x. This replaces the original reference:

var Int

Int

5

REF

x

x = 6

Int

6

val vs. var revisited
If you declare the variable using val, the reference to the object stays
in the variable forever and can’t be replaced. But if you use the var
keyword instead, you can assign another value to the variable. As an
example, if we use the code:

We can replace the
reference held by the
variable because it’s been
declared using var. This
wouldn’t be possible if
we’d declared the variable
using val.

you are here 4 35

basic types and variables

Integers
Kotlin has four basic integer types: Byte, Short, Int and Long.
Each type can hold a fixed number of bits. Bytes can hold 8 bits, for
example, so a Byte can hold integer values from -128 to 127. Ints,
on the other hand, can hold 32 bits, so an Int can hold integer
values from -2,147,483,648 to 2,147,483,647.

By default, if you declare a variable by assigning an integer to it using
code like this:

var x = 1

you will create an object and variable of type Int. If the integer
you assign is too large to fit into an Int, it will use a Long
instead. You will also create a Long object and variable if you
add an “L” to the end of the integer like this:

var hugeNumber = 6L

Here’s a table showing the different integer types, their bit sizes
and value ranges:

Type Bits Value range
Byte 8 bits -128 to 127

Short 16 bits -32768 to 32767

Int 32 bits -2147483648 to 2147483647

Long 64 bits -huge to (huge - 1)

Byte Short Int Long

Floating points
There are two basic floating-point types: Float and Double. Floats
can hold 32 bits, whereas Doubles can hold 64 bits.

By default, if you declare a variable by assigning a floating-point number
to it using code like:

var x = 123.5

you will create an object and variable of type Double. If you add an “F”
or “f ” to the end of the number, a Float will get created instead:

var x = 123.5F

Kotlin’s basic types

Float Double

Hexadecimal and
Binary Numbers

¥ Assign a binary number
by prefixing the number
with 0b.

x = 0b10

¥ Assign a hexadecimal number by
prefixing the number with 0x.

y = 0xAB

¥ Octal numbers aren’t supported.

36 Chapter 2

basic types

Booleans
Boolean variables are used for values that can either be true
or false. You create a Boolean object and variable if you
declare a variable using code like this:

var isBarking = true

var isTrained = false

var letter = 'D'

You said the compiler decides what the variable’s
type should be by looking at the type of value
that’s assigned to it. So how do I create a Byte or
Short variable if the compiler assumes that small
integers are Ints? And what if I want to define a
variable before I know what value it should have?

In these situations, you need to
explicitly declare the variable’s type.
We’ll look at how you do this next.

Char variables
are used for single
characters. String
variables are used for
multiple characters
strung together.

Characters and Strings
There are two more basic types: Char and String.

Char variables are used for single characters. You create a Char
variable by assigning a character in single quotes like this:

String variables are used to hold multiple characters strung
together. You create a String variable by assigning the
characters enclosed in double quotes:

var name = "Fido"

you are here 4 37

basic types and variables

How to explicitly declare a variable’s type

var smallNum: Short

Instead of letting the compiler infer the variable’s type from its
value, you put a colon (:) after the variable’s name, followed by the
type you want it to be. So the above code is like saying “create a
reusable variable named smallNum, and make sure it’s a Short”.

Similarly, if you want to declare a Byte variable, you use code like
this:

var tinyNum: Byte

var z: Short = 6

Declaring the type AND assigning a value
The above examples create variables without assigning values to
them. If you want to explicitly declare a variable’s type and assign
a value to it, you can do that too. As an example, here’s how you
create a Short variable named z, and assign it a value of 6:

small
Num

var Short

By explicitly declaring a
variable’s type, you give
the compiler just enough
information to create the
variable: its name, its type
and whether it can be reused.

When you assign a value to a variable, you need to make sure that
the value is compatible with the variable. We’ll look at this in more
detail on the next page.

So far, you’ve seen how to create a variable by assigning a value
to it, and letting the compiler infer the type from the value. But
there are times when you need to explicitly tell the compiler what type
of variable you want to create. You may want to use Bytes or Shorts
instead of Ints, for example, because they are more efficient. Or
you may want to declare a variable at the start of your code, and
assign a value to it later on.

You explicitly declare a variable’s type using code like this:

This example creates a variable named z with a type of Short.
The variable’s value, 6, is small enough to fit into a Short, so
a Short object with a value of 6 is created. A reference to the
Short object is then put into the variable.

var Short
Short

6REF

z

tiny
Num

var Byte

Assigning an initial value
to a variable is called
initialization. You MUST
initialize a variable before
you use it, or you’ll get
a compiler error. The
following code, for example,
won’t compile as x hasn’t
been been assigned a value:
 var x: Int
 var y = x + 6

x hasn’t been
assigned a value,
so the compiler
gets upset.

38 Chapter 2

type compatibility

Use the right value for the variable’s type
As we said earlier in the chapter, the compiler really cares
about a variable’s type so that it can stop you from performing
inappropriate operations that may lead to bugs in your code. As
an example, if you try to assign a floating-point number such as
3.12 to an integer variable, the compiler will refuse to compile
your code. The following code, for example, won’t work:

var x: Int = 3.12

//This won't work

var tinyNum: Byte = 500

So in order to assign a literal value to a variable, you need to
make sure that the value is compatible with the variable’s type.
This is particularly important when you want to assign the value
of one variable to another. We’ll look at this next.

The Kotlin compiler
will only let you assign
a value to a variable if
the value and variable
are compatible. If the
value is too large or it’s
the wrong type, the
code won’t compile.

The compiler realizes that 3.12 won’t fit into an Int without
some loss of precision (like, everything after the decimal point), so
it refuses to compile the code.

Similarly, if you try put a large integer into a variable that’s too
small for it, the compiler will get upset. If you try to assign a value
of 500 to a Byte variable, for example, you’ll get a compiler
error:

Q: In Java, numbers are primitives, so a variable holds the
actual number. Is that not the case with Kotlin?

A: No, it’s not. In Kotlin, numbers are objects, and the variable
holds a reference to the object, not the object itself.

Q: Why does Kotlin care so much about a variable’s type?

A: Because it makes your code safer, and less prone to bugs. It
might sound picky, but trust us, it’s a good thing.

Q: In Java, you can treat char primitives as numbers. Can
you do the same for Chars in Kotlin?

A: No, Chars in Kotlin are characters, not numbers. Repeat
after us, Kotlin isn’t Java.

Q: Can I name my variables anything I want?

A: No. The rules are a little flexible, but you can’t, say, give your
variable a name that’s a reserved word. Naming your variable while,
for example, is just asking for trouble. But the great news is that if
you try and give a variable a name that’s illegal, IntelliJ IDEA will
immediately highlight it as a problem.

you are here 4 39

basic types and variables

Assigning a value to another variable
When you assign the value of one variable to another, you need
to make sure that their types are compatible. Let’s see why by
working through the following example:

var x = 5

var y = x

var z: Long = x

var x = 5

This creates an Int variable named x, and
an Int object with a value of 5. x holds a
reference to that object.

1

var Int
Int

5REF

x

var y = x

The compiler sees that x is an Int object, so
it knows that y must also have a type of Int.
Rather than create a second Int object, the
value of variable x is assigned to variable y. But
what does this mean? It’s like saying “Take the
bits in x, make a copy of them, and stick that
copy into y.” This means that both x and y
contain references to the same object.

2

Int

5

var z: Long = x

This line tells the compiler that you want to
create a new Long variable, z, and assign it the
value of x. But there’s a problem. The x variable
contains a reference to an Int object with a
value of 5, not a Long object. We know that the
object has a value of 5, and we know that 5 fits
into a Long object. But because the z variable is
a different type to the Int object, the compiler
gets upset and refuses to compile the code.

3

Int

5

I’m sorry, you’re
just not my type.

So how do you assign the value of one variable to another if the
variables are of different types?

var Int

REF

x

var Int

REF

y

var Long

z

40 Chapter 2

type conversions

An object has state and behavior
Being an object means that it has two things: state and behavior.

An object’s state refers to the data that’s associated with the object: its
properties and values. A numeric object, for example, has a numeric
value, such as 5, 42 or 3.12 (depending on the object’s type). A Char
object has a value that’s a single character. A Boolean is either
true or false.

An object’s behavior describes the things the object can do, or that can
be done to it. A String can be capitalized, for example. Numeric
objects know how to perform basic math, and convert their value
into an object of a different numeric type. The object’s behavior is
exposed through its functions.

We need to convert the value
Suppose you want to assign the value of an Int variable to a
Long. The compiler won’t let you assign the value directly as the
two variables are different types; a Long variable can only hold a
reference to a Long object, so the code won’t compile if you try and
assign an Int to it.

In order for the code to compile, you first have to convert the value
to the right type. So if you want to assign the value of an Int
variable to a Long, you first have to convert its value to a Long.
And you do this using the Int object’s functions.

var x = 5

var z: Long = x.toLong()

Every numeric type has
the following conversion
functions: toByte(),
toShort(), toInt(), toLong(),
toFloat() and toDouble().

How to convert a numeric value to another type
In our example, we want to assign the value of an Int variable to
a Long. Every numeric object has a function called toLong(),
which takes the object’s value, and uses it to create a new Long
object. So if you want to assign the value of an Int variable to a
Long, you use code like this:

The dot operator (.) allows you to call an object’s functions. So
x.toLong() is like saying “Go to the object that variable x has a
reference to, and call its toLong() function”.

We’ll walk through what the code does on the next page.

Int

5

I have state and
behavior: my value is
5, and I know how to
do basic sums.

This is the dot operator.

you are here 4 41

basic types and variables

var Int

Long

5

REF

x

REF

z

Int

5

var Long

var x = 5

This creates an Int variable named x, and an Int object with a value of 5. x holds a
reference to that object.

1

var Int
Int

5REF

x

What happens when you convert a value

var z: Long = x.toLong()

This creates a new Long variable, z. The toLong() function on x’s object is called, and
this creates a new Long object with a value of 5. A reference to the Long object gets put
into the z variable.

2

toLong()

This approach works well if you want to convert a value into an
object that’s larger. But what if the new object is too small to contain
the value?

The toLong() function
creates a new Long
object with the same
value as the Int.

42 Chapter 2

more type conversions

Watch out for overspill
Trying to put a large value into a small variable is like trying
to pour a bucket-load of coffee into a tiny teacup. Some of the
coffee will fit into the cup, but some will spill out.

Suppose you want to put the value of a Long into an Int.
As you saw earlier in the chapter, a Long can hold larger
numbers than an Int.

If the Long’s value is within the range of values that an Int
will hold, converting the value from a Long to an Int isn’t a
problem. As an example, converting a Long value of 42 to an
Int will give you an Int with a value of 42:

var x = 123.456

var y: Int = x.toInt() //Value is 123

var x = 1234567890123

var y: Int = x.toInt() //Value is 1912276171!

The key thing is that when you’re converting numeric values from
one type to another, make sure the type is large enough for the
value or you may get unexpected results in your code.

Now that you’ve seen how variables work and have some
experience with Kotlin’s basic types, have a go at the following
exercise.

It involves signs, bits, binary and other geekery
that we’re not going into here. If you’re really
curious, however, search for “two’s complement”.

var x = 42L

var y: Int = x.toInt() //Value is 42

But if the Long’s value is too big for an Int, the compiler chops
up the value, and you’re left with some weird (but calculable)
number. As an example, if you try to convert a Long value
of 1234567890123 to an Int, your Int will have a value of
1912276171:

The compiler assumes this is deliberate, so the code compiles. And
let’s say you have a floating-point number, and you just want the
whole number part of it. If you convert the number to an Int, the
compiler will chop off everything after the decimal point:

you are here 4 43

basic types and variables

The following main function doesn’t compile. Circle the lines that
are invalid, and say why they stop the code from being compiled.

fun main(args: Array<String>) {

 var x: Int = 65.2

 var isPunk = true

 var message = 'Hello'

 var y = 7

 var z: Int = y

 y = y + 50

 var s: Short

 var bigNum: Long = y.toLong()

 var b: Byte = 2

 var smallNum = b.toShort()

 b = smallNum

 isPunk = "false"

 var k = y.toDouble()

 b = k.toByte()

 s = 0b10001

}

44 Chapter 2

sharpen solution

The following main function doesn’t compile. Circle the lines that
are invalid, and say why they stop the code from being compiled.

fun main(args: Array<String>) {

 var x: Int = 65.2

 var isPunk = true

 var message = 'Hello'

 var y = 7

 var z: Int = y

 y = y + 50

 var s: Short

 var bigNum: Long = y.toLong()

 var b: Byte = 2

 var smallNum = b.toShort()

 b = smallNum

 isPunk = "false"

 var k = y.toDouble()

 b = k.toByte()

 s = 0b10001

}

65.2 isn’t a valid Int value.

Single quotes are used to define Chars,
which hold single characters.

smallNum is a Short, so its value can’t be assigned to a Byte variable.

isPunk is a Boolean variable, so false shouldn’t be enclosed in double quotes.

you are here 4 45

basic types and variables

Store multiple values in an array
There’s one more type of object we want to introduce you to—the
array. Suppose you wanted to store the names of fifty ice cream
flavors, or the bar codes of all the books in a library. To do that with
variables would quickly get awkward. Instead, you can use an array.

Arrays are great if you want a quick and dirty group of things. They’re
easy to create, and you get fast access to each item in the array.

You can think of an array as being like a tray of cups, where each item
in the array is a variable:

How to create an array
You create an array using the arrayOf() function. As an example,
here’s how you use the function to create an array with three items (the
Ints 1, 2 and 3), and assign the array to a variable named myArray:

var myArray = arrayOf(1, 2, 3)

You can get the value of an item in the array by referencing
the array variable with an index. As an example, here’s how
you print the value of the first item:

println(myArray[0])

And if you want to get the size of the array, use

myArray.size

On the next page, we’ll put this together to write a serious
business application—the Phrase-O-Matic.

0 1 2

REF
REF

REFREF

my
Array

Int

1

Int

2

Int

3

Think of an array as
being like a tray of cups.

Notice that the array is
an object, and the variable
holds a reference to it.

46 Chapter 2

create project

Create the Phrase-O-Matic application
We’re going to create a new application that generates useful
marketing slogans.

First, create a new project in IntelliJ IDEA. To do this:

 Open IntelliJ IDEA and choose “Create New Project” from the
welcome screen. This starts the wizard you saw in Chapter 1.

1

 When prompted, choose the options to create a Kotlin project that
targets the JVM.

2

 Name the project “PhraseOMatic”, accept the rest of the defaults, and
click on the Finish button.

3

 When your new project appears in the IDE, create a new Kotlin file
named PhraseOMatic.kt by highlighting the src folder, clicking on the File
menu and choosing New → Kotlin File/Class. When prompted, name
the file “PhraseOMatic”, and choose File from the Kind option.

4

2

3

4

you are here 4 47

basic types and variables

fun main(args: Array<String>){

 val wordArray1 = arrayOf("24/7", "multi-tier", "B-to-B", "dynamic", "pervasive")

 val wordArray2 = arrayOf("empowered", "leveraged", "aligned", "targeted")

 val wordArray3 = arrayOf("process", "paradigm", "solution", "portal", "vision")

 val arraySize1 = wordArray1.size

 val arraySize2 = wordArray2.size

 val arraySize3 = wordArray3.size

 val rand1 = (Math.random() * arraySize1).toInt()

 val rand2 = (Math.random() * arraySize2).toInt()

 val rand3 = (Math.random() * arraySize3).toInt()

 val phrase = "${wordArray1[rand1]} ${wordArray2[rand2]} ${wordArray3[rand3]}"

 println(phrase)

}

Add the code to PhraseOMatic.kt
The Phrase-O-Matic code consists of a main function that creates
three arrays of words, randomly picks one word from each, and then
joins them together. Add the code below to PhraseOMatic.kt:

src

PhraseOMatic.kt

PhraseOMatic

You’ve already seen what most of the code does, but there are a
couple of lines we want to draw your attention to.

First, the line

val rand1 = (Math.random() * arraySize1).toInt()

generates a random number. Math.random() returns a random
number between 0 and (almost) 1, so we have to multiply it by the
number of items in the array. We then use toInt() to force the
result to be an integer.

Finally, the line

val phrase = "${wordArray1[rand1]} ${wordArray2[rand2]} ${wordArray3[rand3]}"

uses a String template to pick three words and put them together.
We’ll look at String templates on the next page, and then we’ll
show you more stuff you can do with arrays.

We need a...

 � multi-tier leveraged
solution

 � dynamic targeted vision

 � 24/7 aligned paradigm

 � B-to-B empowered
portal

48 Chapter 2

up close

String Templates Up Close

String templates provide a quick and easy way of referring
to a variable from inside a String.

To include the value of a variable inside a String, you
prefix the variable name with a $. To include the value of an
Int variable named x inside a String, for example, you
would use:

var x = 42

var value = "Value of x is $x"

You can also use String templates to refer to an object’s
properties, or call its functions. In this case, you enclose the
expression in curly braces. As an example, here’s how you
include an array’s size in a String, and the value of its first
item:

var myArray = arrayOf(1, 2, 3)

var arraySize = "myArray has ${myArray.size} items"

var firstItem = "The first item is ${myArray[0]}"

You can even use String templates to evaluate more
complex expressions from inside a String. Here’s how, for
example, you would use an if expression to include different
text depending on the size of the array myArray:

var result = "myArray is ${if (myArray.size > 10) "large" else "small"}"

So String templates allow you to construct complex
Strings with very little code.

Notice how {}’s enclose
the expression we want to
evaluate inside the String.

Q: Is Math.random() the standard way of getting a
random number in Kotlin?

A: It depends which version of Kotlin you’re using.

Before version 1.3, Kotlin didn’t have a built-in way of generating
its own random numbers. For applications running on a JVM,
however, you could use the random() method from the Java
Math library, as we have.

If you’re using version 1.3 or above, you can use Kotlin’s built-in
Random functions instead. The following code, for example, uses
Random’s nextInt() function to generate a random Int:

 kotlin.random.Random.nextInt()

In this book, we’ve decided to continue using
Math.random() to generate random numbers, as this
approach works with all versions of Kotlin running on the JVM.

you are here 4 49

basic types and variables

You’ve seen how to create an array and access its items, so let’s look at
how you update its values.

Suppose you have an array of Ints named myArray:

var myArray = arrayOf(1, 2, 3)

If you want to update the second item so that it has a value of 15, you
use code like the following:

myArray[1] = 15

But there’s a catch: the value has to be the right type.

The compiler looks at the type of each item in the array, and infers
what type of items the array should contain forever. In the above
example, we’ve declared an array using Int values, so the compiler
infers that the array can only hold Ints. If you try and put anything
other than an Int into the array, your code won’t compile:

The compiler infers the array’s type from its values

myArray[1] = "Fido" //This won't compile

How to explicitly define the array’s type
Just as we did with other variables, you can explicitly define what type
of items an array should hold. As an example, suppose you wanted to
declare an array that holds Byte values. To do this, you would use
code like the following:

var myArray: Array<Byte> = arrayOf(1, 2, 3)

The code Array<Byte> tells the compiler that you want to create
an array that holds Byte variables. In general, simply specify the
type of array you want to create by putting the type between the angle
brackets (<>).

0 1 2

REF
REF

REFREF

my
Array

Byte

1

Byte

2

Byte

3

var Array<Byte>

Arrays hold items of
a specific type. You
can either let the
compiler infer the
type from the array’s
values, or explicitly
define the type using
Array<Type>.

The variable has a type of
Array<Byte>, so the array
contains references to Byte
objects.

50 Chapter 2

var arrays

var means the variable can point to a different array
There’s one final thing we need to look at: what effect val and var
have when you declare an array.

As you already know, a variable holds a reference to an object.
When you declare a variable using var, you can update the
variable so that it holds a reference to a different object instead. If
the variable holds a reference to an array, this means that you can
update the variable so that it refers to a different array of the same
type. As an example, the following code is perfectly valid and will
compile:

var myArray = arrayOf(1, 2, 3)

myArray = arrayOf(4, 5)

0 1 2

REF
REF

REF

Int

1

Int

2

Int

3

0 1

REF

my
Array

Int

4

Int

5

REF
REF

var myArray = arrayOf(1, 2, 3)

This creates an array of Ints, and a
variable named myArray that holds a
reference to it.

1

Let’s walk through what happens.

myArray = arrayOf(4, 5)

This creates a new array of Ints. A reference
to the new array gets put into the myArray
variable, replacing the previous reference.

2

var Array<Int>

So what happens if we use the variable using val instead?

This is a brand-new array.

you are here 4 51

basic types and variables

val means the variable points to the same array forever...
When you declare an array using val, you can no longer update
the variable so that it holds a reference to a different array. The
following code, for example, won’t compile:

val myArray = arrayOf(1, 2, 3)

myArray = arrayOf(4, 5, 6)

Once the variable is assigned an array, it holds a reference to that
array forever. But even though the variable maintains a reference
to the same array, the array itself can still be updated.

...but you can still update the variables in the array

val myArray = arrayOf(1, 2, 3)

myArray[2] = 6

0 1 2

REF
REF

REFREF

my
Array

Int

1

Int

2

Int

3

val Array<Int>
Int

6

When you declare a variable using val, you’re telling the
compiler that you want to create a variable that can’t be reused for
other values. But this instruction only applies to the variable itself.
If the variable holds a reference to an array, the items in the array
can still be updated.

As an example, suppose you have the following code:

This creates a variable named myArray that holds a reference
to an array of Ints. It’s declared using val, so the variable must
hold a reference to the same array for the duration of the program.
The third item in the array is then successfully updated to 6, as the
array itself can be updated:

Now that you know how arrays work in Kotlinville, have a go at
the following exercises.

Declaring a variable
using val means that
you can’t reuse the
variable for another
object. You can,
however, still update
the object itself.

If you declare an array variable using val, you
can’t get it to refer to a different array.

This updates the third item in the array.

The array itself can still be
updated, even though the
variable is declared using val.

52 Chapter 2

be the compiler

fun main(args: Array<String>) {

 val hobbits = arrayOf("Frodo", "Sam", "Merry", "Pippin")

 var x = 0;

 while (x < 5) {

 println("${hobbits[x]} is a good Hobbit name")

 x = x + 1

 }

}

fun main(args: Array<String>) {

 val firemen = arrayOf("Pugh", "Pugh", "Barney McGrew", "Cuthbert", "Dibble", "Grub")

 var firemanNo = 0;

 while (firemanNo < 6) {

 println("Fireman number $firemanNo is $firemen[firemanNo]")

 firemanNo = firemanNo + 1

 }

}

BE the Compiler
Each of the Kotlin files on this page
represents a complete source file. Your
job is to play like you're the compiler

and determine whether each
of these files will compile
and run without errors. If
they won't, how would you
fix them?

A

B

Answers on page 55.

We want to print a line for each name in the hobbits array.

We want to print a line for each
fireman in the firemen array.

you are here 4 53

basic types and variables

Code Magnets
A working Kotlin program is all scrambled up on the fridge. Can
you reconstruct the code snippets to make a working Kotlin
function that produces the following output:

Fruit = Banana
Fruit = Blueberry
Fruit = Pomegranate
Fruit = Cherry

fun main(args: Array<String>) {

}

val index = arrayOf(1, 3, 4, 2)

val fruit = arrayOf("Apple", "Banana", "Cherry", "Blueberry", "Pomegranate")

var x = 0

var y: Intwhile (x < 4) {
y = index[x]

println("Fruit = ${fruit[y]}"
)

x = x + 1

}

The magnets need to go in this space.

Answers on page 56.

54 Chapter 2

mixed references

 Mixed
References

A short Kotlin program is listed below. When the line //Do stuff is
reached, some objects and variables have been created. Your task is to
determine which of the variables refer to which objects by the time the
//Do stuff line is reached. Some objects may be referred to more
than once. Draw lines connecting the variables to their objects.

Variables: Objects:

fun main(args: Array<String>) {

 val x = arrayOf(0, 1, 2, 3, 4)

 x[3] = x[2]

 x[4] = x[0]

 x[2] = x[1]

 x[1] = x[0]

 x[0] = x[1]

 x[4] = x[3]

 x[3] = x[2]

 x[2] = x[4]

 //Do stuff

}

0

1

2

3

4

REF

x[0]

REF

x[1]

REF

x[2]

REF

x[3]

REF

x[4]

Match each variable
to its object.

Answers on page 57.

you are here 4 55

basic types and variables

fun main(args: Array<String>) {

 val hobbits = arrayOf("Frodo", "Sam", "Merry", "Pippin")

 var x = 0;

 while (x < 5 4) {
 println("${hobbits[x]} is a good Hobbit name")

 x = x + 1

 }

}

fun main(args: Array<String>) {

 val firemen = arrayOf("Pugh", "Pugh", "Barney McGrew", "Cuthbert", "Dibble", "Grub")

 var firemanNo = 0;

 while (firemanNo < 6) {

 println("Fireman number $firemanNo is ${firemen[firemanNo]}")
 firemanNo = firemanNo + 1

 }

}

BE the Compiler Solution
Each of the Kotlin files on this page
represents a complete source file. Your
job is to play like you're the compiler

and determine whether each
of these files will compile
and run without errors. If
they won't, how would you
fix them?

A

B

The code compiles, but produces an error when it runs. Remember
that arrays start with item 0, and end with item (size - 1).

You need curly braces around firemen[firemanNo] in
order to print the name of each fireman.

56 Chapter 2

magnets solution

Code Magnets Solution
A working Kotlin program is all scrambled up on the fridge. Can
you reconstruct the code snippets to make a working Kotlin
function that produces the following output:

Fruit = Banana
Fruit = Blueberry
Fruit = Pomegranate
Fruit = Cherry

fun main(args: Array<String>) {

}

val index = arrayOf(1, 3, 4, 2)

val fruit = arrayOf("Apple", "Banana", "Cherry", "Blueberry", "Pomegranate")

var x = 0

var y: Int

while (x < 4) {

y = index[x]

println("Fruit = ${fruit[y]}"
)

x = x + 1

}

you are here 4 57

basic types and variables

 Mixed
References
 Solution

A short Kotlin program is listed below. When the line //Do stuff is
reached, some objects and variables have been created. Your task is to
determine which of the variables refer to which objects by the time the
//Do stuff line is reached. Some objects may be referred to more
than once. Draw lines connecting the variables to their objects.

Variables: Objects:

fun main(args: Array<String>) {

 val x = arrayOf(0, 1, 2, 3, 4)

 x[3] = x[2]

 x[4] = x[0]

 x[2] = x[1]

 x[1] = x[0]

 x[0] = x[1]

 x[4] = x[3]

 x[3] = x[2]

 x[2] = x[4]

 //Do stuff

}

0

1

2

3

4

REF

x[0]

REF

x[1]

REF

x[2]

REF

x[3]

REF

x[4]

Match each variable
to its object.

58 Chapter 2

toolbox

Your Kotlin Toolbox

You’ve got Chapter 2 under
your belt and now you’ve

added basic types and
variables to your toolbox.

CH
AP

T
ER

 2 You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

 � In order to create a variable, the compiler needs
to know its name, its type, and whether it can be
reused.

 � If the variable’s type isn’t explicitly defined, the
compiler infers it from its value.

 � A variable holds a reference to an object.

 � An object has state and behavior. Its behavior is
exposed through its functions.

 � Defining the variable with var means the
variable’s object reference can be replaced.
Defining the variable with val means the
variable holds a reference to the same object
forever.

 � Kotlin has a number of basic types: Byte,
Short, Int, Long, Float, Double,
Boolean, Char and String.

 � Explicitly define a variable’s type by putting a
colon after the variable’s name, followed by the
type:
 var tinyNum: Byte

 � You can only assign a value to a variable that has
a compatible type.

 � You can convert one numeric type to another.
If the value won’t fit into the new type, some
precision is lost.

 � Create an array using the arrayOf function:
var myArray = arrayOf(1, 2, 3)

 � Access an array’s items using, for example,
myArray[0]. The first item in an array has an
index of 0.

 � Get an array’s size using myArray.size.

 � The compiler infers the array’s type from its items.
You can explicitly define an array’s type like this:
 var myArray: Array<Byte>

 � If you define an array using val, you can still
update the items in the array.

 � String templates provide a quick and easy
way of referring to a variable or evaluating an
expression from inside a String.

this is a new chapter 59

You said you wanted something
fun, so I bought you a brand-
new set of functions.

functions3

Getting Out of Main

It’s time to take it up a notch, and learn about functions.
So far, all the code you’ve written has been inside your application’s main function. But if

you want to write code that’s better organized and easier to maintain, you need to know

how to split your code into separate functions. In this chapter, you’ll learn how to write

functions and interact with your application by building a game. You’ll discover how to

write compact single expression functions. Along the way you’ll find out how to iterate

through ranges and collections using the powerful for loop.

How sweet!

60 Chapter 3

rock paper scissors

Choices Result

Scissors, Paper The Scissors choice wins, as Scissors can cut Paper.

Rock, Scissors The Rock choice wins, as Rock can blunt Scissors.

Paper, Rock The Paper choice wins, as Paper can cover Rock.

The game will be run in the IDE’s output window.

Let’s build a game: Rock, Paper, Scissors

It makes your code more organized.
Instead of having all your code in one long main function, it’s split into
more manageable chunks. This makes the code much easier to read and
understand.

¥

It makes your code more reusable.
By splitting the code into separate functions, you can reuse it elsewhere.

¥

Each function is a named section of code that performs a specific
task. As an example, you could write a function named max that
determines the highest value out of two values, and then call this
function at various stages in your application.

In this chapter, we’re going to take a closer look at how functions
work by building a game of Rock, Paper, Scissors.

In all the code examples you’ve seen so far, we’ve added code to
the application’s main function. As you already know, this function
launches your application as it’s the function that gets executed when
you run it.

This approach has worked well while we’ve been learning Kotlin’s
basic syntax, but most applications in the real-world split the code
across multiple functions. This is because:

How the game will work
Goal: Make a guess that beats the computer’s, and win!

Setup: When the application is launched, the game chooses Rock,
Paper or Scissors at random. It then asks you to choose one of these
options.

The rules: The game compares the two choices. If they are the
same, the result is a draw. If the choices are different, however, the
game determines the winner using the following rules:

There are other reasons
too, but these are two
of the most important.

you are here 4 61

functions

A high-level design of the game
Before we start writing the code for the game, we need to
draw up a plan of how it will work.

First, we need to figure out the general flow of the game.
Here’s the basic idea:

You start the game.
The application randomly chooses one of the
options: Rock, Paper or Scissors.

1

The application asks for your choice.
You type your choice in the IDE’s output
window.

2

The application validates your choice.
If you haven’t chosen a valid option, it goes
back to step 2, and asks you for another
choice. The game does this repeatedly until
you enter a valid option.

3

The game displays the result.
It tells you what choices you and the
application have made, and whether you’ve
won, lost, or the result is a draw.

4

Start

Game
over

Get computer choice

Get user choice

Is
choice
valid?

Display result

No

Yes

A circle represents
the start or end
of the process.

A rectangle
represents
an action.

A diamond represents
a decision point.

1

2

3

4

Now that we have a clearer idea of how the application will
work, let’s look at how we’ll code it.

A legit flowchart.

62 Chapter 3

steps

Here’s what we’re going to do
There are a number of steps we’re going to go through to build
the game:

Get started: create the project
We’ll start by creating a project for the application. You do this in
exactly the same way you did in previous chapters.

Create a new Kotlin project that targets the JVM, and name the
project “Rock Paper Scissors”. Then create a new Kotlin file named
Game.kt by highlighting the src folder, clicking on the File menu and
choosing New → Kotlin File/Class. When prompted, name the file

“Game”, and choose File from the Kind option.

Now that you’ve created the project, let’s start writing some code.

Get the game to choose an option.
We’ll create a new function named getGameChoice which will
choose one of “Rock”, “Paper” or “Scissors” at random.

1

Ask the user for their choice.
We’ll do this by writing another new function named
getUserChoice, and this will ask the user to enter their choice. We’ll
make sure they’ve entered a valid choice, and if they haven’t, we’ll keep
asking them until they do.

2

Print the result.
We’ll write a function named printResult, which will figure out
whether the user won or lost, or whether the result is a tie. The function
will then print the result.

3

Please enter one of the following: Rock Paper Scissors.
Errr... dunno
You must enter a valid choice.
Please enter one of the following: Rock Paper Scissors.
Paper

You chose Paper. I chose Rock. You win!

you are here 4 63

functions

Get the game to choose an option
The first thing we’ll do is get the game to choose one of the options
(Rock, Paper or Scissors) at random. Here’s what we’ll do:

Create an array that contains the Strings “Rock”, “Paper” and
“Scissors”.
We’ll add this to the application’s main function.

1

Create a new getGameChoice function that will choose one of
the options at random.

2

Call the getGameChoice function from the main function.3

We’ll start by creating the array.

Create the Rock, Paper, Scissors array
We’ll create the array using the arrayOf function, just as we did
in the previous chapter. We’ll add this code to the application’s
main function so that it gets created when the application
launches. This also means that we’ll be able to use it in the rest of
the code we’ll write later in the chapter.

To create the main function and add the array, update your
version of Game.kt to match ours below:

fun main(args: Array<String>) {

 val options = arrayOf("Rock", "Paper", "Scissors")

}
src

Game.kt

Rock Paper Scissors

Now that we’ve created the array, we need to define the new
getGameChoice function. Before we can do this, we need to
understand more about how you create functions.

Game choice
User choice
Result

64 Chapter 3

functions are fun

How you create functions
As you learned back in Chapter 1, you define new functions using
the fun keyword, followed by the name of the function. As an
example, if you wanted to create a new function named foo,
you’d write code like this:

fun foo() {

 //Your code goes here

}

You can send things to a function
Sometimes, a function needs extra information in order for it
to perform a task. If you’re writing a function to determine the
highest of two values, for example, the function needs to know
what these two values are.

You tell the compiler what values a function can accept by
specifying one or more parameters. Each parameter must have
a name and type.

As an example, here’s how you specify that the foo function
takes a single Int parameter named param:

Once you’ve written the function, you can call it from elsewhere
in your application:

fun main(args: Array<String>) {

 foo()

}

fun foo(param: Int) {

 println("Parameter is $param")

}

You can then call the function and pass it an Int value:

foo(6)

Note that if a function has a parameter, you must pass it
something. And that something must be a value of the appropriate
type. The following function call, for instance, won’t work because the
foo function accepts an Int value, not a String:

foo("Freddie")

Parameters and
Arguments

Depending on your
programming background
and personal preferences, you
might use the term arguments
or parameters for the values passed
into a function. Although there are
formal computer science distinctions
that people who wear lab coats make,
we have bigger fish to fry. You can call
them whatever you like (arguments,
parameters, donuts...) but we're doing
it like this:

A function uses parameters. A caller
passes it arguments.

Arguments are the things you pass
into the functions. An argument (a
value like 2 or “Pizza”) lands face-down
into a parameter. And a parameter is
nothing more than a local variable: a
variable with a name and type that’s
used inside the body of the function.

Game choice
User choice
Result

‘fun’ tells Kotlin
that it’s a function.

This runs a function named ‘foo’.

You declare
parameters
inside the
function’s
parentheses.

We’re passing ‘6’ to the foo function.

We can’t pass a String to foo
as it only accepts an Int.

you are here 4 65

functions

You can send more than one thing to a function
If you want your function to have multiple parameters, you
separate them with commas when you declare them, and
separate the arguments with commas when you pass them to the
function. Most importantly, if a function has multiple parameters,
you must pass arguments of the right type in the right order.

Calling a two-parameter function, and sending
it two arguments

fun main(args: Array<String>) {

 printSum(5, 6)

}

fun printSum(int1: Int, int2: Int) {

 val result = int1 + int2

 println(result)

}

The arguments you pass land in the function in the
same order you passed them. The first argument
lands in the first parameter, the second argument
lands in the second parameter, and so on.

fun main(args: Array<String>) {

 val x: Int = 7

 val y: Int = 8

 printSum(x, y)

}

fun printSum(int1: Int, int2: Int) {

 val result = int1 + int2

 println(result)

}

You can pass variables to a function so long as
the variable type matches the parameter type

Each argument you pass must be the
same type as the parameter it lands in.

As well as passing values to a function, you can also get things
back. Let’s see how.

Game choice
User choice
Result

66 Chapter 3

return values

You can get things back from a function
If you want to get something back from a function, you need
to declare it. As an example, here’s how you declare that a
function named max returns an Int value:

fun max(a: Int, b: Int): Int {

 val maxValue = if (a > b) a else b

 return maxValue

}

If you declare that a function returns a value, then you must return
a value of the declared type. As an example, the following code is
invalid becuase it returns a String instead of an Int:

fun max(a: Int, b: Int): Int {

 val maxValue = if (a > b) a else b

 return "Fish"

}

Functions with no return value
If you don’t want your function to return a value, you can
either omit the return type from the function declaration,
or specify a return type of Unit. Declaring a return type
of Unit means that the function returns no value. As an
example, the following two function declarations are both
valid, and do the same thing:

fun printSum(int1: Int, int2: Int) {

 val result = int1 + int2

 println(result)

}

fun printSum(int1: Int, int2: Int): Unit {

 val result = int1 + int2

 println(result)

}

The : Unit here means that the function
returns no value. It’s completely optional.

If you specify that your function has no return value, then
you need to make sure that it doesn’t return one. If you try
to return a value in a function with no declared return type,
or a return type of Unit, your code won’t compile.

Game choice
User choice
Result

The : Int tells the compiler that
the function returns an Int value.

You return a value using the ‘return’ keyword,
followed by the value you’re returning.

We’ve declared that the function returns an Int value, so the compiler will get upset if you try and return something else, like a String.

you are here 4 67

functions

Functions with single-expression bodies
If you have a function whose body consists of a single expression,
you can simplify the code by removing the curly braces and
return statement from the function declaration. As an example,
on the previous page, we showed you the following function to
return the higher of two values:

fun max(a: Int, b: Int): Int {

 val maxValue = if (a > b) a else b

 return maxValue

}

The function returns the result of a single if expression, which
means that we can rewrite the function like so:

fun max(a: Int, b: Int): Int = if (a > b) a else b

And because the compiler can infer the function’s return type from
the if expression, we can make the code even shorter by omitting
the : Int:

fun max(a: Int, b: Int) = if (a > b) a else b

Create the getGameChoice function
Now that you’ve learned how to create functions, see if you can
write the getGameChoice function for our Rock, Paper, Scissors
game by having a go at the following exercise.

Code Magnets
The getGameChoice function will accept one parameter,
an array of Strings, and return one of the array’s items.
See if you can write the function using the magnets below.

*
Math.random()

.size

.toInt()

)

Array<String> (

fun getGameChoice() =

 optionsParam[]

optionsParam

optionsParam:

Game choice
User choice
Result

The max function has a
single expression in its body, which we then return.

Use = to say what the function
returns, and remove the {}’s.

The compiler knows that a
and b are Ints, so it can
work out the function’s
return type from the
expression.

68 Chapter 3

magnets solution

fun getGameChoice() =

 optionsParam[]

Code Magnets Solution
The getGameChoice function will accept one parameter,
an array of Strings, and return one of the array’s items.
See if you can write the function using the magnets below.

*Math.random() optionsParam .size .toInt())

optionsParam: Array<String>

(

Add the getGameChoice function to Game.kt
Now that we know what the getGameChoice function looks
like, let’s add it to our application, and update our main function
so that it calls the new function. Update your version of Game.kt
so that it matches ours below (our changes are in bold):

fun main(args: Array<String>) {

 val options = arrayOf("Rock", "Paper", "Scissors")

 val gameChoice = getGameChoice(options)

}

fun getGameChoice(optionsParam: Array<String>) =

 optionsParam[(Math.random() * optionsParam.size).toInt()]

src

Game.kt

Rock Paper Scissors

Now that we’ve added the getGameChoice function to our
application, let’s look at what’s going on behind the scenes
when the code runs.

Q: Can I return more than one value from a function?

A: A function can declare only one return value. But if you want
to, say, return three Int values, then the declared type can be an
array of Ints (Array<Int>). Put those Ints into the array,
and pass it back.

Q: Do I have to do something with the return value of a
function? Can I just ignore it?

A: Kotlin doesn’t require you to acknowledge a return value. You
might want to call a function with a return type, even though you
don’t care about the return value. In this case, you’re calling the
function for the work it does inside the function, rather than for what
it returns. You don’t have to assign or use the return value.

Game choice
User choice
Result

The function has one parameter,
an array of Strings.

Choose one of
the array’s
items at
random.

Call the getGameChoice function, passing it the options array.

You need to add the function.

you are here 4 69

functions

Behind the scenes: what happens
When the code runs, the following things happen:

0 1 2

REF
REF

REFREF

options

String

"Rock"

String

"Paper"

String

"Scissors"

val Array<String>

val options = arrayOf("Rock", "Paper", "Scissors")

This creates an array of Strings, and a variable named options that
holds a reference to it.

1

val gameChoice = getGameChoice(options)

The contents of the options variable get passed to the getGameChoice
function. The options variable holds a reference to an array of Strings,
so a copy of the reference gets passed to the getGameChoice function, and
lands in its optionsParam parameter. This means that the options and
optionsParam variables both hold a reference to the same array.

2

REF

options
Param

val Array<String>

0 1 2

REF
REF

REF

REF

options

String

"Rock"

String

"Paper"

String

"Scissors"

val Array<String>

Game choice
User choice
Result

The options
variable is
created in the
main function.

The optionsParam
variable is a
parameter in the
getGameChoice
function.

The options variable in the main function
and the optionsParam variable in the
getGameChoice function each hold a
reference to the same array.

70 Chapter 3

what the code does

The story continues

0 1 2

REF
REF

REFREF

options
Param

String

"Rock"

String

"Paper"

String

"Scissors"

val Array<String>

val gameChoice = getGameChoice(options)

This puts the reference returned by the getGameChoice function into a new
variable named gameChoice. If, for example, the getGameChoice function
returns a reference to the “Scissors” item of the array, this means that a reference
to the “Scissors” object is put into the gameChoice variable.

4

0 1 2

REF
REF

REF

REF

options

String

"Rock"

String

"Paper"

String

"Scissors"

val Array<String>

fun getGameChoice(optionsParam: Array<String>) =
 optionsParam[(Math.random() * optionsParam.size).toInt()]

The getGameChoice function selects one of the optionsParam’s items at
random (for example, the “Scissors” item). The function returns a reference to this
item.

3

REF

game
Choice

val String

Game choice
User choice
Result

The getGameChoice
function selects the
“Scissors” item.

A reference to the
“Scissors” String is
assigned to the new
gameChoice variable.

you are here 4 71

functions

So when you pass a value to a function,
you’re really passing it a reference to
an object. Does this mean you can make
changes to the underlying object?

REF

options
Param

val Array<String>

0 1 2

REF
REF

REF

REF

options

String

"Rock"

String

"Paper"

String

"Scissors"

val Array<String>

String

"Fred"

Yes, you can.
As an example, suppose you have the following code:

fun main(args: Array<String>) {

 val options = arrayOf("Rock", "Paper", "Scissors")

 updateArray(options)

 println(options[2])

}

fun updateArray(optionsParam: Array<String>) {

 optionsParam[2] = "Fred"

}

The main function creates an array containing the Strings “Rock”, “Paper”
and “Scissors”. A reference to this array is passed to the updateArray function,
which updates the third item of the array to “Fred”. Finally, the main function
prints the value of the array’s third item, so it prints the text “Fred”.

Game choice
User choice
Result

The options
variable is
created in the
main function.

The optionsParam
variable is a
parameter in
the updateArray
function. Both variables hold a reference

to the same array, so when one
of its items is updated, both
variables see the change.

72 Chapter 3

up close

Local Variables Up Close

As we said earlier in the chapter, a local variable is one that’s used inside
the body of a function. They’re declared within a function, and they’re
only visible inside that function. If you try to use a variable that’s defined in
another function, you’ll get a compiler error, as in the example below:

fun main(args: Array<String>) {

 var x = 6

}

fun myFunction() {

 var y = x + 3

}

Any local variables must be initialized before they can be used. If you’re
using a variable for a function’s return value, for example, you must
initialize that variable or the compiler will get upset:

fun myFunction(): String {

 var message: String

 return message

}

Function parameters are virtually the same as local variables, as they only
exist within the context of the function. They’re always initialized, however,
so you’ll never get a compiler error telling you that a parameter variable
might not have been initialized. This is because the compiler will give
you an error message if you try to invoke a function without sending the
arguments that the function needs; the compiler guarantees that functions
are always called with arguments that match the parameters declared in the
function, and the arguments are automatically assigned to the parameters.

Note that you can’t assign a new value to any of a function’s parameter
variables. Behind the scenes, the parameter variables are created as local
val variables that can’t be reused for other values. The following code, for
example, won’t compile because we’re trying to assign a new value to the
function’s parameter variable:

fun myFunction(message: String){

 message = "Hi!"

}

This code won’t compile because myFunction
can’t see the x variable that’s declared in main.

You must initialize a variable if you want to use it as a function’s return value, so this code won’t compile.

Parameter variables are treated as local variables created
using val, so you can’t reuse them for other values.

you are here 4 73

functions

BE the Compiler
Here are three complete Kotlin
functions. Your job is to play like
you’re the compiler and determine

whether each of these
functions will compile.
If they won’t compile,
how would you fix them?

fun doSomething(msg: String, i: Int): Unit {

 if (i > 0) {

 var x = 0

 while (x < i) {

 println(msg)

 x = x + 1

 }

 }

}

fun timesThree(x: Int): Int {

 x = x * 3

 return x

}

fun maxValue(args: Array<Int>) {

 var max = args[0]

 var x = 1

 while (x < args.size) {

 var item = args[x]

 max = if (max >= item) max else item

 x = x + 1

 }

 return max

}

A

B

C

74 Chapter 3

be the compiler solution

This will compile and run successfully. The
function has a Unit return type, and this
means that it has no return value.

BE the Compiler Solution
Here are three complete Kotlin
functions. Your job is to play like
you’re the compiler and determine

whether each of these
functions will compile.
If they won’t compile,
how would you fix them?

fun doSomething(msg: String, i: Int): Unit {

 if (i > 0) {

 var x = 0

 while (x < i) {

 println(msg)

 x = x + 1

 }

 }

}

A

fun maxValue(args: Array<Int>): Int {
 var max = args[0]

 var x = 1

 while (x < args.size) {

 var item = args[x]

 max = if (max >= item) max else item

 x = x + 1

 }

 return max

}

C

fun timesThree(x: Int): Int {

 x val y = x * 3
 return x y
}

B This won’t compile, as you’re assigning a new value to the
function’s parameter. You would also need to consider the
function’s return type, as multiplying an Int by three may
result in a value that’s too large for an Int value.

This won't compile because the
function needs to declare that
it returns an Int value.

you are here 4 75

functions

The getUserChoice function
Now that we’ve written the code to make the game choose an option,
we can move onto the next step: getting the user’s choice. We’ll write
a new function to do this called getUserChoice, which we’ll
call from the main function. We’ll pass the options array to the
getUserChoice function as a parameter, and we’ll get it to return
the user’s choice (a String):

Ask the user for their choice.
We’ll loop through the items in the options array, and ask the user to type
their choice into the output window.

1

Read the user’s choice from the output window.
After the user’s entered their choice, we’ll assign its value to a new variable.

2

Validate the user’s choice.
We’ll check that the user has entered a choice, and that it’s in the array. If
the user has entered a valid choice, we’ll get the function to return it. If
they haven’t, we’ll keep asking until they do.

3

Let’s start with the code to prompt the user for their choice.

Ask for the user’s choice
To ask the user to input their choice of option, we’ll make the
getUserChoice function print the following message: “Please
enter one of the following: Rock Paper Scissors.”

One way of doing this would be to hard-code the message using the
println function like this:

println("Please enter one of the following: Rock Paper Scissors.")

A more flexible approach, however, is to loop through each item in
the options array, and print each item. This will be useful if we
ever want to change any of the options.

Instead of using a while loop to do this, we’re going to use a new
type of loop called a for loop. Let’s see how it works.

You might want to play Rock, Paper,
Scissors, Lizard, Spock instead.

Let’s go through what we need the getUserChoice function to do:

fun getUserChoice(optionsParam: Array<String>): String {

 //Code goes here

}

Game choice
User choice
Result

76 Chapter 3

for loops

How for loops work
A for loop is useful in situations where you want to loop through a fixed
range of numbers, or through every item in an array (or some other type of
collection—we’ll look at collections in Chapter 9). Let’s look at how you do this.

Looping through a range of numbers
Suppose you wanted to loop through a range of numbers, from 1 to 10.
You’ve already seen how to do this kind of thing using a while loop:

var x = 1

while (x < 11) {

 //Your code goes here

 x = x + 1

}

But it’s much cleaner, and requires fewer lines of code, if you use a
for loop instead. Here’s the equivalent code:

for (x in 1..10) {

 //Your code goes here

}

It’s like saying “for each number between 1 and 10, assign the number
to a variable named x, and run the body of the loop”.

To loop through a range of numbers, you first specify a name for
the variable the loop should use. In the above case, we’ve named the
variable x, but you can use any valid variable name. The variable gets
created when the loop runs.

You specify the range of values using the .. operator. In the case
above, we’ve used a range of 1..10, so the code loops through the
numbers 1 through to 10. At the beginning of each loop, it assigns the
current number to the variable (in our case x).

Just like a while loop, if the loop body consists of a single statement,
you can omit the curly braces. As an example, here’s how you would
use a for loop to print the numbers 1 to 100:

for (x in 1..100) println(x)

Note that the .. operator includes the end number in its range. If you wanted
to exclude it, you would replace the .. operator with until. As an example,
the following code prints the numbers from 1 to 99, and excludes 100:

for (x in 1 until 100) println(x)

Game choice
User choice
Result

Math Shortcuts
The increment operator
++ adds 1 to a variable.
So:

 x++

is a shortcut for:

 x = x + 1

Similarly, the decrement operator
-- subtracts 1 from a variable. Use:

 x--

as a shortcut for:

 x = x - 1

If you want to add a number other
than 1 to a variable, you can use
the += operator. So:

 x += 2

does the same as:

 x = x + 2

Similarly, you can use -=, *= and
/= as shortcuts for subtraction,
multiplication and division.

While loops run
while a given
condition is true.

For loops run
over a range of
values or items.

you are here 4 77

functions

Use downTo to reverse the range
If you want to loop through a range of numbers in reverse order, you
use downTo instead of .. or until. As an example, you’d use the
following code to print the numbers from 15 down to 1:

for (x in 15 downTo 1) println(x)

Use step to skip numbers in the range
By default, the .. operator, until and downTo step through the range
one number at a time. If you want, you can increase the size of the step
using step. As an example, the following code prints alternate numbers
from 1 to 100:

for (x in 1..100 step 2) println(x)

Looping through the items in an array
You can also use a for loop to iterate through the items in an array. In our
case, for example, we want to loop through the items in an array named
options. To do this, we can use a for loop in this format:

for (item in optionsParam) {

 println("$item is an item in the array")

}

You can also loop through an array’s indices using code like this:

for (index in optionsParam.indices) {

 println("Index $index has item ${optionsParam[index]}")

}

You can even simplify the above loop by returning the array’s index and
value as part of the loop:

for ((index, item) in optionsParam.withIndex()) {

 println("Index $index has item $item")

}

Now that you know how for loops work, let’s write the code that will
ask the user to enter one of “Rock, “Paper” or “Scissors”.

How for loops work (continued)

Game choice
User choice
Result

Using downTo instead of .. loops through the numbers in reverse order.

This loops through each item in an array named optionsParam.

This loops through each item in the
array. It assigns the item’s index
to the index variable, and the item
itself to the item variable.

78 Chapter 3

readLine

Ask the user for their choice
We’re going to use a for loop to print the text “Please enter one of
the following: Rock Paper Scissors.” Here’s the code that will do this;
we’ll update Game.kt later in the chapter when we’ve finished writing
the getUserChoice function:

fun getUserChoice(optionsParam: Array<String>): String {

 //Ask the user for their choice

 print("Please enter one of the following:")

 for (item in optionsParam) print(" $item")

 println(".")

}

Use the readLine function to read the user’s input
After we’ve asked the user to enter their choice, we need to read their
response. We’ll do this by calling the readLine() function:

val userInput = readLine()

The readLine() function reads a line of input from the standard
input stream (in our case, the output window in the IDE). It returns
a String value, the text entered by the user.

If the input stream for your application has been redirected to a
file, the readLine() function returns null if the end of file has
been reached. null means that it has no value, or that it’s missing.

Here’s an updated version of the getUserChoice function (we’ll
add it to our application when we’ve finished writing it):

fun getUserChoice(optionsParam: Array<String>): String {

 //Ask the user for their choice

 print("Please enter one of the following:")

 for (item in optionsParam) print(" $item")

 println(".")

 //Read the user input

 val userInput = readLine()

}

Next, we need to validate the user input to make sure they’ve
entered an appropriate choice. We’ll do that after you’ve had a go
at the following exercise.

Game choice
User choice
Result

This prints the value of each item in the array.

We’ll update the getUserChoice function a few pages ahead.

This reads the user’s input from the standard input stream. In our case, this is the output window in the IDE.

You’ll find out a lot more about null
values in Chapter 8 but for now, this
is all you need to know about them.

you are here 4 79

functions

 Mixed
Messages

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

fun main(args: Array<String>) {

 var x = 0

 var y = 20

 for(outer in 1..3) {

 for (inner in 4 downTo 2) {

 y++

 x += 3

 }

 y -= 2

 }

 println("$x $y")

}

x += 6

Candidates: Possible output:

x--

x = y

y++

4286 4275

The candidate
code goes here.

Match each
candidate
with one of
the possible
outputs.

y = x + y

y = 7

x = x + y

y = x - 7

27 23

27 6

81 23

27 131

18 23

35 32

3728 3826

80 Chapter 3

mixed messages solution

 Mixed
Messages
Solution

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

fun main(args: Array<String>) {

 var x = 0

 var y = 20

 for(outer in 1..3) {

 for (inner in 4 downTo 2) {

 y++

 x += 3

 }

 y -= 2

 }

 println("$x $y")

}

x += 6

Candidates: Possible output:

x--

x = y

y++

3728 3826

The candidate
code goes here.

y = x + y

y = 7

x = x + y

y = x - 7

18 23

27 6

81 23

27 131

27 23

35 32

4286 4275

you are here 4 81

functions

We need to validate the user’s input
The final code we need to write for the getUserChoice function needs
to validate the user’s input to make sure they’ve entered a valid option.
The code needs to do the following:

Check that the user input isn’t null.
As we said earlier, the readLine() function returns a null value if it’s reading
a line from a file, and it’s at the end of the file. Even though this isn’t the case
in our situation, we still need to check that the user input isn’t null in order to
keep the compiler sweet.

1

Check whether the user’s choice is in the options array.
We can do this using the in operator that you saw when we discussed for loops.

2

Loop until the user enters a valid choice.
We want to loop until a condition is met (the user enters a valid option), so we’ll
use a while loop for this.

3

You’re already familiar with most of the code needed to do this, but
to write code that’s more concise, we’re going to use some boolean
expressions that are more powerful than the ones you’ve seen before.
We’ll discuss these next, and after that we’ll show you the full code for the
getUserChoice function.

‘And’ and ‘Or’ operators (&& and ||)
Let’s say you’re writing code to choose a new phone, with lots of rules
about which phone to select. You might, say, want to limit the price range
so that it’s between $200 and $300. To do this, you use code like this:

if (price >= 200 && price <= 300) {

 //Code to choose the phone

}

The && means “and”. It evaluates to true if both sides of the && are true.
When the code gets run, Kotlin first evaluates the left side of the expression.
If this is false, Kotlin doesn’t bother evaluating the right side. As one side of
the expression is false, this means that the entire expression must be false.

If you want to use an “or” expression instead, you use the || operator:

if (price <= 10 || price >= 1000) {

 //Phone is too cheap or too expensive

}

This expression evaluates to true if either side of the || is true. This
time, Kotlin doesn’t evaluate the right side of the expression if the left side
is true.

Game choice
User choice
Result

This is sometimes referred to as short-circuiting.

82 Chapter 3

boolean expressions

Not equals (!= and !)
Suppose you wanted to run code for all phones except one model.
To do this, you’d use code like the following:

if (model != 2000) {

 //Code that runs if model is not 2000

}

The != means “is not equal to”.

Similarly, you can use ! to indicate “not”. As an example, the
following loop runs while the isBroken variable is not true:

while (!isBroken) {

 //Code that runs if the phone is not broken

}

Use parentheses to make your code clear
Boolean expressions can get really big and complicated:

if ((price <= 500 && memory >= 16) ||

 (price <= 750 && memory >= 32) ||

 (price <= 1000 && memory >= 64)) {

 //Do something appropriate

}

If you want to get really technical, you might wonder about the
precedence of these operators. Instead of becoming an expert
in the arcane world of precedence, we recommend that you use
parentheses to make your code clearer.

Now that you’ve seen some more powerful boolean expressions,
we’ll show you the remaining code for the getUserChoice
function, and add it to the application.

More powerful boolean expressions (continued)
Game choice
User choice
Result

you are here 4 83

functions

Add the getUserChoice function to Game.kt
Below is the revised code for the application, including the
complete getUserChoice function. Update your version
of Game.kt so that it matches ours (our changes are in bold):

fun main(args: Array<String>) {

 val options = arrayOf("Rock", "Paper", "Scissors")

 val gameChoice = getGameChoice(options)

 val userChoice = getUserChoice(options)

}

fun getGameChoice(optionsParam: Array<String>) =

 optionsParam[(Math.random() * optionsParam.size).toInt()]

fun getUserChoice(optionsParam: Array<String>): String {

 var isValidChoice = false

 var userChoice = ""

 //Loop until the user enters a valid choice

 while (!isValidChoice) {

 //Ask the user for their choice

 print("Please enter one of the following:")

 for (item in optionsParam) print(" $item")

 println(".")

 //Read the user input

 val userInput = readLine()

 //Validate the user input

 if (userInput != null && userInput in optionsParam) {

 isValidChoice = true

 userChoice = userInput

 }

 //If the choice is invalid, inform the user

 if (!isValidChoice) println("You must enter a valid choice.")

 }

 return userChoice

}

src

Game.kt

Rock Paper Scissors

Let’s take the code for a test drive, and see what happens
when it runs.

Game choice
User choice
Result

Call the getUserChoice function.

We’ll use the isValidChoice variable to indicate
whether the user has entered a valid choice.

Keep looping until isValidChoice is true.

Check that the user input isn’t null,
and that it’s in the options array.

If the user input is OK, we can stop looping.

If the user input is invalid, we’ll keep looping.

84 Chapter 3

test drive

Test drive
Run your code by going to the Run menu, and selecting the Run
‘GameKt’ command. When the IDE’s output window opens, you’ll be
asked to enter one of “Rock”, “Paper” or “Scissors”:

Fred
You must enter a valid choice.
Please enter one of the following: Rock Paper Scissors.
George
You must enter a valid choice.
Please enter one of the following: Rock Paper Scissors.
Ginny
You must enter a valid choice.
Please enter one of the following: Rock Paper Scissors.
Rock

Please enter one of the following: Rock Paper Scissors.

When you enter an invalid option and hit the Return key, you’re asked
to enter an option that’s valid. This is repeated until you enter one of

“Rock”, “Paper” or “Scissors”, at which point the program ends.

We need to print the results
The final thing we need our application to do is print the results. As a
reminder, if the user and the game make the same choice, the result is a
tie. If the choices are different, however, the game determines the winner
using the following rules:

We’ll print the results in a new function named printResult. We’ll
call this function from main, and pass it two parameters: the user’s choice
and the game’s choice.

Before we show you the code for the function, see if you can figure it out
for yourself by having a go at the following exercise.

Game choice
User choice
Result

Game choice
User choice
Result

We entered
a few invalid
options...

...and then
entered “Rock”.

Choices Result

Scissors, Paper The Scissors choice wins, as Scissors can cut Paper.

Rock, Scissors The Rock choice wins, as Rock can blunt Scissors.

Paper, Rock The Paper choice wins, as Paper can cover Rock.

you are here 4 85

functions

Note: each thing from
the pool can only be
used once!

fun printResult(userChoice: String, gameChoice: String) {

 val result: String

 //Figure out the result

 if (userChoice gameChoice) result = "Tie!"

 else if ((userChoice "Rock" gameChoice "Scissors")

 (userChoice "Paper" gameChoice "Rock")

 (userChoice "Scissors" gameChoice "Paper")) result = "You win!"

 else result = "You lose!"

 //Print the result

 println("You chose $userChoice. I chose $gameChoice. $result")

}

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the printResult
function. You may not use the
same code snippet more than
once, and you won’t need to use
all the snippets. Your goal is to

print the choices made by the user
and the game, and say who won.

==

=

!=

==

==

==

==

==

==

=

=

=

=

=

=

&&

&&

&&

||

||

||

!=

!=
!=

!=

!=

!=

86 Chapter 3

pool puzzle solution

fun printResult(userChoice: String, gameChoice: String) {

 val result: String

 //Figure out the result

 if (userChoice gameChoice) result = "Tie!"

 else if ((userChoice "Rock" gameChoice "Scissors")

 (userChoice "Paper" gameChoice "Rock")

 (userChoice "Scissors" gameChoice "Paper")) result = "You win!"

 else result = "You lose!"

 //Print the result

 println("You chose $userChoice. I chose $gameChoice. $result")

}

Pool Puzzle Solution
Your job is to take code snippets from

the pool and place them into the
blank lines in the printResult
function. You may not use the
same code snippet more than
once, and you won’t need to use
all the snippets. Your goal is to

print the choices made by the user
and the game, and say who won.

==

=

!=

== ==

== ==

== ==

=

=

=

=

=

=

&&

&&

&&

||

||

||

!=

!=

!=

!=

!=

!=

You didn’t need to
use these snippets.

If the user and the game chose the
same option, the result is a tie.If any

of these
combos
are true,
the user
wins.

you are here 4 87

functions

Add the printResult function to Game.kt
We need to add the printResult function to Game.kt, and call it from
the main function. Here’s the code: update your version of the code so
that it matches ours (our changes are in bold):

fun main(args: Array<String>) {

 val options = arrayOf("Rock", "Paper", "Scissors")

 val gameChoice = getGameChoice(options)

 val userChoice = getUserChoice(options)

 printResult(userChoice, gameChoice)

}

fun getGameChoice(optionsParam: Array<String>) =

 optionsParam[(Math.random() * optionsParam.size).toInt()]

fun getUserChoice(optionsParam: Array<String>): String {

 var isValidChoice = false

 var userChoice = ""

 //Loop until the user enters a valid choice

 while (!isValidChoice) {

 //Ask the user for their choice

 print("Please enter one of the following:")

 for (item in optionsParam) print(" $item")

 println(".")

 //Read the user input

 val userInput = readLine()

 //Validate the user input

 if (userInput != null && userInput in optionsParam) {

 isValidChoice = true

 userChoice = userInput

 }

 //If the choice is invalid, inform the user

 if (!isValidChoice) println("You must enter a valid choice.")

 }

 return userChoice

}

src

Game.kt

Rock Paper Scissors

Game choice
User choice
Result

Call the printResult function from main.

The code continues
on the next page.

88 Chapter 3

test drive

The Game.kt code continued
fun printResult(userChoice: String, gameChoice: String) {

 val result: String

 //Figure out the result

 if (userChoice == gameChoice) result = "Tie!"

 else if ((userChoice == "Rock" && gameChoice == "Scissors") ||

 (userChoice == "Paper" && gameChoice == "Rock") ||

 (userChoice == "Scissors" && gameChoice == "Paper")) result = "You win!"

 else result = "You lose!"

 //Print the result

 println("You chose $userChoice. I chose $gameChoice. $result")

} src

Game.kt

Rock Paper Scissors

Test drive
When we run the code, the IDE’s output window opens, enter one
of “Rock”, “Paper” or “Scissors” (we’re choosing “Paper”):

That’s all the code we need for our application. Let’s see what
happens when we run it.

Please enter one of the following: Rock Paper Scissors.
Paper
You chose Paper. I chose Rock. You win!

Q: I entered an option of “paper” but the game told me I’d
entered an invalid option. Why’s that?

A: It’s because you entered a lowercase String, instead of
one that starts with an initial capital letter. The game requires you to
enter one of “Rock”, “Paper” or “Scissors”, and it doesn’t recognize

“paper” as one of the options.

Q: Can I get Kotlin to ignore the case? Can I capitalize the
user input before checking whether it’s in the array?

A: Kotlin includes toLowerCase, toUpperCase and
capitalize functions to create a lowercase, uppercase or
capitalized version of a String. As an example, here’s how you
would use the capitalize function to capitalize the first letter
of the String named userInput:

 userInput = userInput.capitalize()

So you could convert the user input to an appropriate format before
checking if it matches any of the values in the array.

The application prints our choice, the option selected by the game,
and the result.

Game choice
User choice
Result

You need to add this function.

you are here 4 89

functions

Game.kt

CHAPT
ER 3

Your Kotlin Toolbox

You’ve got Chapter 3 under
your belt and now you’ve

added functions to your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

 � Use functions to organize your code and
make it more reusable.

 � A function can have parameters, so you
can pass more than one value to it.

 � The number and type of values you pass to
the function must match the order and type
of the parameters declared by the function.

 � A function can return a value. You must
define the type of value (if any) it returns.

 � A Unit return type means that the
function doesn’t return anything.

 � Choose for loops over while loops
when you know how many times you want
to repeat the loop code.

 � The readLine() function reads a line
of input from the standard input stream. It
returns a String value, the text entered
by the user.

 � If the input stream has been redirected
to a file and the end of the file has been
reached, the readLine() function
returns null. null means it has no
value, or it’s missing.

 � && means “and”. || means “or”. ! means
“not”.

this is a new chapter 91

classes and objects4

A Bit of Class

It’s time we looked beyond Kotlin’s basic types.
Sooner or later, you’re going to want to use something more than Kotlin’s basic types. And

that’s where classes come in. Classes are templates that allow you to create your own

types of objects, and define their properties and functions. Here, you’ll learn how to

design and define classes, and how to use them to create new types of objects. You’ll

meet constructors, initializer blocks, getters and setters, and you’ll discover how they

can be used to protect your properties. Finally, you’ll learn how data hiding is built into

all Kotlin code, saving you time, effort and a multitude of keystrokes.

My love life got much
better after I wrote

myself a new Boyfriend class.

92 Chapter 4

classes

Object types are defined using classes

Behind the scenes, these types are defined using classes. A
class is a template that defines what properties and functions
are associated with objects of that type. When you create an
Int object, for example, the compiler checks the Int class and
sees that it requires an integer value, and has functions such as
toLong and toString.

var Int

Int

6REF

x

var x = 6

this creates an Int object with a value of 6, and a reference to
the object is assigned to a new variable named x:

So far, you’ve learned how to create and use variables from
Kotlin’s basic types, such as numbers, Strings and arrays. You
know, for example, that when you write the code:

var Dog

Dog

name: “Fido”
weight: 70
breed: “Mixed”

REF

myDog

So how do you go about defining a class?

You can define your own classes
If you want your application to deal with types of objects that
Kotlin doesn’t have, you can define your own types by writing
new classes. If you’re building an application that records
information about dogs, for example, you might want to define
a Dog class so that you can create your own Dog objects, and
record the name, weight and breed of each dog:

Dog

name
weight
breed

bark()

This is the Dog class. It
tells the compiler that a
Dog has a name, weight and
breed, and a bark function.

you are here 4 93

classes and objects

How to design your own classes
When you want to define your own class, you need to think
about the objects that will be created from that class. You need
to consider:

The things each object knows about itself.¥

The things each object can do.¥

The things an object knows about itself are its properties.
They represent an object’s state (the data), and each object of
that type can have unique values. A Dog class, for example,
might have name, weight and breed properties. A Song
class might have title and artist properties.

The things an object can do are its functions. They
determine an object’s behavior, and may use the object’s
properties. The Dog class, for example, might have a bark
function, and the Song class might have a play function.

Here are some examples of classes with their properties and
functions:

The things an object
knows about itself are
its properties.

The things an object
can do are its functions.

When you know what properties and functions your class
should have, you’re ready to write the code to create it. We’ll
look at this next.

Dog

name
weight
breed

bark()

Properties

Functions

ShoppingCart

cartContents

addToCart()
removeFromCart()
checkout()

Properties

Functions

Song

title
artist

play()
stop()

Properties

Functions

Alarm

alarmTime
alarmMode
alarmSound

setAlarm()
isAlarmSet()
snooze()

Properties

Functions

The properties are
the things an object
knows about itself.
In this example, a
Song knows its title
and artist.

The functions
are the things an
object can do. Here,
a ShoppingCart
knows how to add
items, remove items
and check out.

94 Chapter 4

Dog class

Let’s define a Dog class
We’re going to create a Dog class that we can use to create Dog
objects. Each Dog will have a name, weight and breed, so we’ll use
these for the class properties. We’ll also define a bark function so
that the size of the Dog’s bark depends on its weight.

Here’s what our Dog class code looks like:

defines the name of the class (Dog), and the properties that the Dog
class has. We’ll take a closer look at what’s going on behind the
scenes a few pages ahead, but for now, all you need to know is that
the above code defines the name, weight and breed properties—
and when the Dog object is created, values are assigned to these
properties.

You define any class functions in the class body (inside the curly
braces {}). We’re defining a bark function, so the code looks like
this:

The code:

class Dog(val name: String, var weight: Int, val breed: String) {

 ...

}

class Dog(val name: String, var weight: Int, val breed: String) {

 fun bark() {

 println(if (weight < 20) "Yip!" else "Woof!")

 }

}

Now that you’ve seen the code for the Dog class, let’s look at how
you use it to create a Dog object.

A function that’s defined
inside a class is called
a member function. It's
sometimes called a method.

Dog

name
weight
breed

bark()

“class” means
it’s a class.

The name of the class.
Opening brace
of the class.

Closing brace of the class.

class Dog (val name: String, var weight: Int, val breed: String) {

 fun bark() {

 println(if (weight < 20) "Yip!" else "Woof!")

 }

}

The class properties.

The bark
function.

This is just like the functions you
saw in the previous chapter. The
only difference is that it's defined
inside the Dog class body.

you are here 4 95

classes and objects

How to create a Dog object

var myDog = Dog("Fido", 70, "Mixed")

We’re going to use the Dog class to create a Dog object, and assign it to
a new variable named myDog. Here’s the code:

The code passes three arguments to the Dog object. These match the
properties we defined in the Dog class: the Dog’s name, weight and
breed:

class Dog(val name: String, var weight: Int, val breed: String) {

 ...

}

When the code runs, it creates a new Dog object, and the arguments
are used to assign values to the Dog’s properties. In our case, for
example, we’re creating a new Dog object where the name property is

“Fido”, the weight property is 70 pounds, and the breed property is
“Mixed”:

You can think of a class as a template for an object, as it tells the
compiler how to make objects of that particular type. It tells the
compiler what properties each object should have, and each object
made from that class can have its own values. Each Dog object, for
example, would have name, weight and breed properties, with
each Dog having its own values.

Dog

name
weight
breed

bark()

One class

Now that you’ve seen how to create a new Dog object, let’s look at how
you access its properties and functions.

Many objects

You create a Dog by
passing it arguments for
the three properties.

var Dog

Dog

name: “Fido”
weight: 70
breed: “Mixed”

REF

myDog

Dog

name
weight
breed

bark()

96 Chapter 4

accessing members

How to access properties and functions

var myDog = Dog("Fido", 70, "Mixed")

println(myDog.name)

Once you’ve created an object, you can access its properties using the
dot operator (.). If you wanted to print a Dog’s name, for example,
you would use code like this:

myDog.bark()

You can also update any properties that you have defined using the
var keyword. As an example, here’s how you would update the
Dog’s weight property to 75 pounds:

myDog.weight = 75

Note that the compiler won’t let you update any properties that
you’ve defined using the val keyword. If you try to do so, you’ll get a
compiler error.

You can also use the dot operator to call an object’s functions. If you
wanted to call the Dog’s bark function, for example, you would use
the following code:

What if the Dog is in a Dog array?
You can also add any objects you create to an array. If you wanted to
create an array of Dogs, for example, you would use code like this:

var dogs = arrayOf(Dog("Fido", 70, "Mixed"), Dog("Ripper", 10, "Poodle"))

This defines a variable named dogs, and as it’s an array that
you’re populating with Dog objects, the compiler makes its type
array<Dog>. Two Dog objects are then added to the array.

You can still access the properties and functions of each Dog object in
the array. As an example, suppose you wanted to update the second
Dog’s weight and make it bark. To do this, you would get a
reference to the second item in the dogs array using dogs[1], and
then use the dot operator to access the Dog’s weight property and
bark function:

dogs[1].weight = 15

dogs[1].bark()

This is like saying “get the second object from the dogs array, change
its weight to 15 pounds, and make it bark.”

myDog.name is like saying “go to myDog, and get its name”.

Go to myDog, and set its weight to 75.

Go to myDog, and call its bark function.

This code creates two Dog
objects, and adds them to an
array<Dog> array named dogs.

The compiler knows that dogs[1] is a Dog object, so you can access the Dog’s properties and call its functions.

you are here 4 97

classes and objects

class Song(val title: String, val artist: String) {

 fun play() {

 println("Playing the song $title by $artist")

 }

 fun stop() {

 println("Stopped playing $title")

 }

}

fun main(args: Array<String>) {

 val songOne = Song("The Mesopotamians", "They Might Be Giants")

 val songTwo = Song("Going Underground", "The Jam")

 val songThree = Song("Make Me Smile", "Steve Harley")

 songTwo.play()

 songTwo.stop()

 songThree.play()

}

Create a Songs application
Before we go any further into how classes work, we’re going to give
you some more class practice by creating a new Songs project. We’ll
add a Song class to the project, and create and use some Song objects.

Create a new Kotlin project that targets the JVM, and name the
project “Songs”. Then create a new Kotlin file named Songs.kt by
highlighting the src folder, clicking on the File menu and choosing
New → Kotlin File/Class. When prompted, name the file “Songs”,
and choose File from the Kind option.

Next, add the following code to Songs.kt:

src

Songs.kt

Songs

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

Playing the song Going Underground by The Jam
Stopped playing Going Underground
Playing the song Make Me Smile by Steve Harley

Song

title
artist

play()
stop()

Now that you’ve seen how to define a class and use it to create objects,
let’s dive into the mysterious world of object creation.

Define title and artist properties.

Add play and stop functions.

Create three Songs.

Play songTwo, stop it,
then play songThree.

98 Chapter 4

object creation

The miracle of object creation
When you declare and assign an object, there are three main steps:

Declare a variable.1

var myDog = Dog("Fido", 70, "Mixed")

var myDog = Dog("Fido", 70, "Mixed")

var Dog

Dog

name: “Fido”
weight: 70
breed: “Mixed”

REF

myDog

var Dog

REF

myDog

Create an object.2

Dog

name: “Fido”
weight: 70
breed: “Mixed”

Link the object to the variable by assigning a reference.3

var myDog = Dog("Fido", 70, "Mixed")

The big miracle happens at step two—when the object is created.
There’s a lot going on behind the scenes, so let’s take a closer look.

you are here 4 99

classes and objects

How objects are created
When we define an object using code like:

var myDog = Dog("Fido", 70, "Mixed")

it looks like we’re calling a function named Dog. But even though
it looks and feels a lot like a function, it’s not. Instead, we’re calling
the Dog constructor.

A constructor contains the code that’s needed to initialize an
object. It runs before the object can be assigned to a reference,
which means that you get a chance to step in, and do things to
make the object ready for use. Most people use constructors to
define an object’s properties and assign values to them.

Each time you create a new object, the constructor for that
object’s class is invoked. So when you run the code:

var myDog = Dog("Fido", 70, "Mixed")

the Dog class constructor gets called.

What the Dog constructor looks like
When we created our Dog class, we included a constructor; it’s the
parentheses and the code in between in the class header:

class Dog(val name: String, var weight: Int, val breed: String) {

 ...

}

The Dog constructor defines three properties—name,
weight and breed. Each Dog has these properties, and
when the Dog gets created, the constructor assigns a value
to each property. This initializes the state of each Dog, and
ensures that it’s set up correctly.

Let’s take a look at what happens behind the scenes when the
Dog constructor gets called.

A constructor runs
when you instantiate
an object. It’s used
to define properties
and initialize them.

It looks like we’re calling a function
named Dog because of the parentheses.

This code (including the parentheses) is the class constructor. Technically, it’s called the primary constructor.

100 Chapter 4

Dog construction

Behind the scenes: calling the Dog constructor
Let’s go through what happens when we run the code:

var myDog = Dog("Fido", 70, "Mixed")

Dog

The system allocates the space for a new Dog object, and
the Dog constructor gets called.

2

Dog

name

val String

weight

var Int

breed

val String

The Dog constructor defines three properties: name, weight and breed.
Behine the scenes, each property is a variable. A variable of the appropriate type is
created for each property, as defined in the constructor.

3

class Dog(val name: String,
 var weight: Int,
 val breed: String) {

}

The system creates an object for each argument that’s passed to the
Dog constructor.
It creates a String with a value of “Fido”, an Int with a value of 70, and a String
with a value of “Mixed”.

1

“Fido”

String

70

Int

“Mixed”

String

you are here 4 101

classes and objects

The story continues...

Each of the Dog’s property variables is assigned a reference to the
appropriate value object.
The name property, for example, is assigned a reference to the “Fido” String object, and so on.

4

var Dog
Dog

REF

myDog

REF

name

val String

REF

weight

var Int

REF

breed

val String

String

“Fido”

Int

70

String

“Mixed”

Dog

REF

name

val String

REF

weight

var Int

REF

breed

val String

String

“Fido”

Int

70

String

“Mixed”

Finally, a reference to the Dog object is assigned to a new Dog variable
named myDog.

5

102 Chapter 4

properties and variables

I get it. The Dog constructor defines properties,
and each property is really just a variable that’s local to
the object. A value is then assigned to that variable.

That’s right—a property is a variable that’s
local to the object.
This means that everything you’ve already learned about
variables applies to properties. If you define a property
using the val keyword, for example, this means that you
can’t assign a new value to it. You can, however, update
any properties that have been defined using var.

In our example, we’re using val to define the name and
breed properties, and var to define the weight:

class Dog(val name: String, var weight: Int, val breed: String) {

 ...

}

This means that we can only update the Dog’s weight
property, and not the Dog’s name or breed.

Q: Does the constructor allocate the memory for the
object that’s being created?

A: No, the system does. The constructor initializes the object,
so it makes sure that the object’s properties are created and that
they’re assigned their initial values. All memory is managed by
the system.

Q: Can I define a class without defining a constructor?

A: Yes, you can. You’ll find out how this works later in the
chapter.

An object is sometimes
known as an instance of
a particular class, so its
properties are sometimes
called instance variables.

you are here 4 103

classes and objects

ding ding ba-da-bing!
bang bang bang!
ding ding ba-da-bing!

Code Magnets
Somebody used fridge magnets to write a noisy new DrumKit
class, and a main function that prints the following output:

class DrumKit(var hasTopHat: Boolean, var hasSnare: Boolean) {

}

fun main(args: Array<String>) {

}

Unfortunately, the magnets have got scrambled. Can you piece the
code back together again?

d.playTopHat()

d.playSnare()

d.hasSnare =

fun playTopHat()

if

false

d.playTopHat()

d.playSnare()

{

(hasTopHat) }

fun playSnare()

if

{

(hasSnare)

}

println("ding ding ba-da-bing
!")

println("bang bang bang!")

val d = DrumKit(true, true)

You need to put the
magnets in these boxes.

104 Chapter 4

magnets solution

ding ding ba-da-bing!
bang bang bang!
ding ding ba-da-bing!

Code Magnets Solution
Somebody used fridge magnets to write a noisy new DrumKit
class, and a main function that prints the following output:

class DrumKit(var hasTopHat: Boolean, var hasSnare: Boolean) {

}

fun main(args: Array<String>) {

}

Unfortunately, the magnets have got scrambled. Can you piece the
code back together again?

d.playTopHat()

d.playSnare()

d.hasSnare =

fun playTopHat()

if

false

d.playTopHat()

d.playSnare()

{

(hasTopHat)

}

fun playSnare()

if

{

(hasSnare)

}

println("ding ding ba-da-bing
!")

println("bang bang bang!")

val d = DrumKit(true, true)

The playTopHat
function prints
some text if
the hasTopHat
property is true.

The playSnare
function prints some
text if the hasSnare
property is true.

Create a DrumKit variable.

hasTopHat and hasSnare are both true, so
playTopHat and playSnare both print text.

Setting the hasSnare property to false means
that only the playTopHat function prints text.

you are here 4 105

classes and objects

So far you’ve seen how to define a property by including it in the class
constructor, and how doing so assigns a value to that property when the
constructor is called. But what if you need to do something a little different?
What if you want to validate a value before assigning it to a property? Or what
if you want to initialize a property with a generic default value so that you
don’t need to add it to the class constructor?

To find out how you can do this kind of thing, we need to take a closer look at
constructor code.

Here, the three constructor parameters—name_param, weight_param
and breed_param—have no val and var prefixes, which means that they
no longer define properties. They are plain old parameters, just like the ones
you see in function definitions. The name, weight and breed properties are
instead defined in the main body of the class. Each one is assigned the value of
the associated constructor parameter.

So how does this allow us to do more with our properties?

Going deeper into properties

Behind the scenes of the Dog constructor
As you already know, our current Dog constructor code defines three
properties for the name, weight and breed of each Dog object, and assigns
a value to each one when the Dog constructor is called:

class Dog(val name: String, var weight: Int, val breed: String) {

 ...

}

You can do this so concisely because the constructor code uses a shortcut
for performing this kind of task. When the Kotlin language was developed,
the brains behind it felt that defining and initializing properties was such a
common action that it was worth making the syntax to do it very concise and
simple.

If you were to perform the same action without using the shortcut, here’s what
the code would look like:

class Dog(name_param: String, weight_param: Int, breed_param: String) {

 val name = name_param

 var weight = weight_param

 val breed = breed_param

 ...

}

Dog

name
weight
breed

bark()

The constructor parameters no
longer have val and var prefixes,
so the constructor no longer
creates properties for them.

The properties are defined in the class body instead.

106 Chapter 4

property initialization

Flexible property initialization
Defining properties in the main body of the class gives you a
lot more flexibility than adding them to the constructor, as it
means that you no longer have to initialize each one with a
parameter value.

Suppose that you wanted to assign a default value to a
property without including it in the constructor. You might,
for example, want to add an activities property to the
Dog class, and initialize it with a default array containing a
value of “Walks”. Here’s the code to do this:

class Dog(val name: String, var weight: Int, val breed: String) {

 var activities = arrayOf("Walks")

 ...

}

Alternatively, you might want to tweak the value of a
constructor parameter before assigning it to a property. You
might, for example, want to record an uppercase String for
the breed property instead of the value that’s passed to the
constructor. To do this, you would use the toUpperCase
function to create an uppercase version of the String,
which you would then assign to the breed property like this:

class Dog(val name: String, var weight: Int, breed_param: String) {

 var activities = arrayOf("Walks")

 val breed = breed_param.toUpperCase()

 ...

}

Dog

name: “Fido”
weight: 70
breed: “Mixed”
activities: “Walks”

Dog

name: “Fido”
weight: 70
breed: “MIXED”
activities: “Walks”

Initializing a property in this way works well if you want to
assign a simple value or expression to it. But what if you need
to do something more complex?

Dog

name
weight
breed
activities

bark()

Each Dog object that’s created will have an
activities property. It’s initial value will be
an array containing a value of “Walks”.

This takes the value of breed_param, makes it
uppercase, and assigns it to the breed property.

you are here 4 107

classes and objects

How to use initializer blocks
If you need to initialize a property to something more complex than a simple
expression, or if there’s extra code you want to run when each object is
created, you can use one or more initializer blocks. Initializer blocks are
executed when the object is initialized, immediately after the constructor is
called, and they’re prefixed with the init keyword. Here’s an example of an
initializer block that prints a message whenever a Dog object is initialized:

Your class can have multiple initializer blocks. Each one runs in the order in
which it appears in the class body, interleaved with any property initializers.
Here’s an example of some code with multiple initializer blocks:

class Dog(val name: String, var weight: Int, breed_param: String) {

 var activities = arrayOf("Walks")

 val breed = breed_param.toUpperCase()

 init {

 println("Dog $name has been created.")

 }

 ...

}

class Dog(val name: String, var weight: Int, breed_param: String) {

 init {

 println("Dog $name has been created.")

 }

 var activities = arrayOf("Walks")

 val breed = breed_param.toUpperCase()

 init {

 println("The breed is $breed.")

 }

 ...

}

As you’ve seen, there are various ways in which you can initialize your
variables. But is it necessary?

Dog

name
weight
breed
activities

bark()

This is an
initializer block. It
contains the code
that you want to
runs when the Dog
object is initialized.

The properties defined in the constructor are created first.

This initializer block runs next.

These properties are created after the
first initializer block has finished.

The second initializer block runs after
the properties have been created.

108 Chapter 4

initialize properties before you use them

You MUST initialize your properties
Back in Chapter 2, you learned that every variable you declare
in a function must be initialized before it can be used. This also
applies to any properties you define in a class: you must initialize
properties before you try to use them. This is so important
that if you declare a property without initializing it in either the
property declaration or the initializer block, the compiler will get
very upset and refuse to compile your code. The following code, for
example, won’t compile because we’ve added a new property named
temperament which hasn’t been initialized:

class Dog(val name: String, var weight: Int, breed_param: String) {

 var activities = arrayOf("Walks")

 val breed = breed_param.toUpperCase()

 var temperament: String

 ...

}

Nearly all of the time, you’ll be able to assign default values to your
properties. In the above example, for instance, your code will compile
if you initialize the temperament property to "":

var temperament = ""

Q: In Java, you don’t have to initialize the variables that
you declare inside a class. Is there a way of not initializing
class properties in Kotlin?

A: If you’re completely certain that you can’t assign an initial
value to a property when you call the class constructor, you can
prefix it with lateinit. This tells the compiler that you’re
aware that the property hasn’t been initialized yet, and you’ll handle
it later. If you wanted to mark the temperament property for late
initialization, for example, you’d use:

 lateinit var temperament: String

Doing so allows the compiler to compile your code. In general,
however, we strongly encourage you to initialize your properties.

Q: What happens if I try to use a property value before it’s
been initialized?

A: If you don’t initialize a property before you try and use it,
you’ll get a runtime error when you run the code.

Q: Can I use lateinit with any type of property?

A: You can only use lateinit with properties defined
using var, and you can’t use it with any of the following types:
Byte, Short, Int, Long, Double, Float, Char or
Boolean. This is down to how these types are treated when the
code runs in the JVM. This means that properties of any of these
types must be initialized when the property is defined, or in an
initializer block.

The temperament property hasn’t been initialized, so the code won’t compile.

This initializes the temperament property with an empty String.

you are here 4 109

classes and objects

Empty Constructors Up Close

class Duck {

 fun quack() {

 println("Quack! Quack! Quack!")

 }

}

When you define a class with no constructor, the compiler secretly
writes one for you. It adds an empty constructor (a constructor with
no parameters) to your compiled code. So when you compile the
above Duck class, the compiler treats it as though you’d written
the following code:

This means that in order to create a Duck object, you use the code:

If you want to be able to quickly create objects without passing
values for any of its properties, you can define a class with no
constructor.

Suppose, for example, that you wanted to quickly create Duck
objects. To do this, you could define a Duck class without a
constructor like this:

class Duck() {

 fun quack() {

 println("Quack! Quack! Quack!")

 }

}

var myDuck = Duck()

and not:

var myDuck = Duck

The compiler has created an empty constructor for the Duck
class on your behalf, so this means that you must call the empty
constructor in order to instantiate the Duck.

There’s no () after the name of the class, so the class has no defined constructor.

This is an empty constructor: a constructor with no parameters.
Behind the scenes, whenever you define a class with no constructor,
the compiler adds an empty constructor to your compiled code.

Creates a Duck variable, and assigns
it a reference to a Duck object.

This code won’t compile.
var Duck

Duck

REF

myDuck

110 Chapter 4

be the compiler

BE the Compiler
Each of the Kotlin files on this page
represents a complete source file. Your
job is to play like you’re the compiler

and determine whether each
of these files will compile.
If they won’t compile, how
would you fix them?

class TapeDeck {

 var hasRecorder = false

 fun playTape() {

 println("Tape playing")

 }

 fun recordTape() {

 if (hasRecorder) {

 println ("Tape recording")

 }

 }

}

fun main(args: Array<String>) {

 t.hasRecorder = true

 t.playTape()

 t.recordTape()

}

A B

class DVDPlayer(var hasRecorder: Boolean) {

 fun recordDVD() {

 if (hasRecorder) {

 println ("DVD recording")

 }

 }

}

fun main(args: Array<String>) {

 val d = DVDPlayer(true)

 d.playDVD()

 d.recordDVD()

}

Answers on page 119.

you are here 4 111

classes and objects

How do you validate property values?

myDog.weight = 75

But in the hands of the wrong person, allowing direct access to
all our properties in this way can be quite a dangerous weapon.
Because what’s to prevent someone writing the following code:

and that you can set its weight to 75 pounds using:

println(myDog.name)

myDog.weight = -1

A Dog with negative weight would be a Bad Thing.

To stop this kind of thing from happening, we need some way of
validating a value before it’s assigned to a property.

Earlier in the chapter, you learned how to directly get or set a
property’s value using the dot operator. You already know, for
example, that you can print the Dog’s name using:

The solution: custom getters and setters
If you want to tweak a property’s return value, or validate a value
before it gets assigned to a property, you can write your own
getters and setters.

Getters and setters let you, well, get and set property values. A
getter’s sole purpose in life is to send back a return value, the
value of whatever it is that particular getter is supposed to be
getting. And a setter lives and breathes for the chance to take an
argument value, and use it to set the value of a property.

Writing custom getters and setters lets you protect your property
values, and they give you more control over what values are
returned or assigned. We’ll show you how they work by adding
two new things to our Dog class:

If you’re into being all formal about it, you might prefer to call them accessors and mutators instead.

A custom getter to return the Dog’s weight in kilograms.¥

A custom setter to validate a proposed value for the Dog’s weight
before we assign it.

¥

Let’s start by creating a custom getter to return the Dog’s weight
in kilograms.

Cripes.

112 Chapter 4

custom getters

How to write a custom getter

The line:

class Dog(val name: String, var weight: Int, breed_param: String) {

 var activities = arrayOf("Walks")

 val breed = breed_param.toUpperCase()

 val weightInKgs: Double

 get() = weight / 2.2

 ...

}

the property’s getter gets called. The above code, for example,
calls the getter for the weightInKgs property. The getter uses
the Dog’s weight property to calculate the Dog’s weight in
kilograms, and returns the result.

Note that in this example, we didn’t need to initialize the
weightInKgs property because its value is derived in the
getter. Each time the property’s value is required, the getter is
called, which figures out the value that should be returned.

Now that you know how to add a custom getter, let’s look at
how you add a custom setter by adding one to the weight
property.

In order to add a custom getter that will allow us to return the Dog’s
weight in kilograms, we’re going to do two things: add a new property
to the Dog class named weightInKgs, and write a custom getter for it
which will return the appropriate value. Here’s the code to do both these
things:

defines the getter. It’s a no parameter function named get that you add
to the property. You add it to the property by writing it immediately
below the property declaration. Its return type must match that of the
property whose value you want to return or the code won’t compile. In
the above example, the weightInKgs property is a Double, so the
property’s getter must also return a Double.

Each time you ask for the value of a property using code like:

get() = weight / 2.2

Technically, getters and
setters are optional parts
of the property declaration.

myDog.weightInKgs

Dog

name
weight
breed
activities
weightInKgs

bark()

Q: Couldn’t we have written a normal
function to return the weight in kilograms?

A: We could, but sometimes it’s useful to
create a new property with a getter instead.
Many frameworks, for example, let you bind a
GUI component to a property, so creating a new
property in this sort of situation can make your
coding life a lot easier.

This code adds a new weightInKgs property with a custom getter. The getter takes the value of the weight parameter, and divides it by 2.2 to get the weight in kilograms.

you are here 4 113

classes and objects

A property’s setter
runs each time you
try to set a property’s
value. The following
code, for example, calls
the weight property’s
setter, passing it a
value of 75:
 myDog.weight = 75

How to write a custom setter
We’re going to add a custom setter to the weight property so that the
weight can only be updated to a value greater than 0. To do this, we need
to move the weight property definition from the constructor to the class
body, and then add the setter to the property. Here’s the code to do that:

class Dog(val name: String, weight_param: Int, breed_param: String) {

 var activities = arrayOf("Walks")

 val breed = breed_param.toUpperCase()

 var weight = weight_param

 set(value) {

 if (value > 0) field = value

 }

 ...

}

The following code defines the setter:

set(value) {

 if (value > 0) field = value

}

var weight = weight_param

 set(value) {

 if (value > 0) weight = value

 }

A setter is a function named set that’s added to the property by writing
it beneath the property declaration. A setter has one parameter—usually
named value—which is the proposed new value of the property.

In the above example, the value of the weight property is only
updated if the value parameter is greater than 0. If you try and update
the weight property to a value that’s less than or equal to 0, the setter
stops the property from being updated.

The setter updates the value of the weight property by means of the
field identifier. field refers to the property’s backing field, which
you can think of as being a reference to the underlying value of the
property. Using field in your getters and setters in place of the
property name is important, as it stops you getting stuck in an endless
loop. When the following setter code runs, for example, the system tries
to update the weight property, which results in the setter being called
again... and again... and again:

Don’t do this! You’ll get stuck in an endless loop. Use field instead.

This code adds a custom setter to the weight property.
The setter means that the value of the weight property
will only get updated to a value greater than 0.

114 Chapter 4

up close

Data Hiding Up Close

As you’ve seen over the past few pages, writing custom getters
and setters means that you can protect your properties from
misuse. A custom getter lets you control what value is returned
when the property value is requested, and a custom setter lets
you validate a value before asigning it to a property.

Behind the scenes, the compiler secretly creates getters and
setters for all properties that don’t already have one. If a
property is defined using val, the compiler adds a getter, and if
a property is defined using var, the compiler adds both a getter
and a setter. So when you write the code:

var myProperty: String

var myProperty: String

 get() = field

 set(value) {

 field = value

 }

the compiler secretly adds the following getters and setters when
the code is compiled:

This means that whenever you use the dot operator to get
or set a property’s value, behind the scenes its always the
property’s getter or setter that gets called.

So why does the compiler do this?

Adding a getter and setter to every property means that there’s
a standard way of accessing that property’s value. The getter
handles any requests to get the value, and the setter handles any
requests to set it. So if you want to change your mind about how
these requests are implemented, you can do so without breaking
anybody else’s code.

A val property doesn’t
need a setter because once
it’s been initialized, its
value can’t be updated.

Removing direct access
to a property’s value
by wrapping it in
getters and setters is
known as data hiding.

you are here 4 115

classes and objects

class Dog(val name: String,

 weight_param: Int,

 breed_param: String) {

 init {

 print("Dog $name has been created. ")

 }

 var activities = arrayOf("Walks")

 val breed = breed_param.toUpperCase()

 init {

 println("The breed is $breed.")

 }

 var weight = weight_param

 set(value) {

 if (value > 0) field = value

 }

 val weightInKgs: Double

 get() = weight / 2.2

 fun bark() {

 println(if (weight < 20) "Yip!" else "Woof!")

 }

}

The full code for the Dogs project
We’re nearly at the end of the chapter, but before we go, we thought
we’d show you the entire code for the Dogs project.

Create a new Kotlin project that targets the JVM, and name the
project “Dogs”. Then create a new Kotlin file named Dogs.kt by
highlighting the src folder, clicking on the File menu and choosing
New → Kotlin File/Class. When prompted, name the file “Dogs”,
and choose File from the Kind option.

Next, add the following code to Dogs.kt:

src

Dogs.kt

Dogs

Dog

name
weight
breed
activities
weightInKgs

bark()

116 Chapter 4

test drive

The code continued...
fun main(args: Array<String>) {

 val myDog = Dog("Fido", 70, "Mixed")

 myDog.bark()

 myDog.weight = 75

 println("Weight in Kgs is ${myDog.weightInKgs}")

 myDog.weight = -2

 println("Weight is ${myDog.weight}")

 myDog.activities = arrayOf("Walks", "Fetching balls", "Frisbee")

 for (item in myDog.activities) {

 println("My dog enjoys $item")

 }

 val dogs = arrayOf(Dog("Kelpie", 20, "Westie"), Dog("Ripper", 10, "Poodle"))

 dogs[1].bark()

 dogs[1].weight = 15

 println("Weight for ${dogs[1].name} is ${dogs[1].weight}")

}

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

Dog Fido has been created. The breed is MIXED.
Woof!
Weight in Kgs is 34.090909090909086
Weight is 75
My dog enjoys Walks
My dog enjoys Fetching balls
My dog enjoys Frisbee
Dog Kelpie has been created. The breed is WESTIE.
Dog Ripper has been created. The breed is POODLE.
Yip!
Weight for Ripper is 15

src

Dogs.kt

Dogs

Woof!

you are here 4 117

classes and objects

Pool Puzzle
Your job is to take code snippets from the pool

and place them into the blank lines in the
code. You may not use the same code
snippet more than once, and you won’t
need to use all the snippets. Your goal is
to create the code that will produce the
output listed.

Note: each thing from
the pool can only be
used once!

class Rectangle(var width: Int, var height: Int) {

 val isSquare: Boolean

 (width == height)

 val area: Int

 (width * height)

}

fun main(args: Array<String>) {

 val r = arrayOf(Rectangle(1, 1), Rectangle(1, 1),

 Rectangle(1, 1), Rectangle(1, 1))

 for (x in 0..) {

 .width = (x + 1) * 3

 .height = x + 5

 print("Rectangle $x has area ${ }. ")

 println("It is ${if () "" else "not "}a square.")

 }

}

Rectangle 0 has area 15. It is not a square.
Rectangle 1 has area 36. It is a square.
Rectangle 2 has area 63. It is not a square.
Rectangle 3 has area 96. It is not a square.

The code needs to
produce this output.

r[x]

r[x] 3

get() =

get() =

set() =

set() =

4

r[x]

r[x]

area

isSquare

.

.

118 Chapter 4

pool puzzle solution

Pool Puzzle Solution
Your job is to take code snippets from the pool

and place them into the blank lines in the
code. You may not use the same code
snippet more than once, and you won’t
need to use all the snippets. Your goal is
to create the code that will produce the
output listed.

Rectangle 0 has area 15. It is not a square.
Rectangle 1 has area 36. It is a square.
Rectangle 2 has area 63. It is not a square.
Rectangle 3 has area 96. It is not a square.

You didn’t need to
use these snippets.

class Rectangle(var width: Int, var height: Int) {

 val isSquare: Boolean

 (width == height)

 val area: Int

 (width * height)

}

fun main(args: Array<String>) {

 val r = arrayOf(Rectangle(1, 1), Rectangle(1, 1),

 Rectangle(1, 1), Rectangle(1, 1))

 for (x in 0..) {

 .width = (x + 1) * 3

 .height = x + 5

 print("Rectangle $x has area ${ }. ")

 println("It is ${if () "" else "not "}a square.")

 }

}

r[x]

r[x]

r[x].area

r[x].isSquare

3

get() =

get() =

set() =

set() =

4

This is a getter that says
whether a rectangle is square.

This is a getter that calculates the rectangle’s area.

The r array has 4 items, so we’ll
loop from index 0 to index 3.Set the width

and height of
the rectangle.

Print the rectangle’s area.

Print whether or not
the rectangle is a square.

you are here 4 119

classes and objects

BE the Compiler Solution
Each of the Kotlin files on this page
represents a complete source file. Your
job is to play like you’re the compiler

and determine whether each
of these files will compile.
If they won’t compile, how
would you fix them?

class TapeDeck {

 var hasRecorder = false

 fun playTape() {

 println("Tape playing")

 }

 fun recordTape() {

 if (hasRecorder) {

 println ("Tape recording")

 }

 }

}

fun main(args: Array<String>) {

 val t = TapeDeck()
 t.hasRecorder = true

 t.playTape()

 t.recordTape()

}

A B

class DVDPlayer(var hasRecorder: Boolean) {

 fun playDVD() {
 println("DVD playing")
 }

 fun recordDVD() {

 if (hasRecorder) {

 println ("DVD recording")

 }

 }

}

fun main(args: Array<String>) {

 val d = DVDPlayer(true)

 d.playDVD()

 d.recordDVD()

}

This won’t compile because you
need to create a TapeDeck
object before you can use it.

This won’t compile because the DVDPlayer class
needs to have a playDVD function.

120 Chapter 4

toolbox

Your Kotlin Toolbox

You’ve got Chapter 4 under
your belt and now you’ve

added classes and objects to
your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

 � Classes let you define your own types.

 � A class is a template for an object. One
class can create many objects.

 � The things an object knows about itself are
its properties. The things an object can do
are its functions.

 � A property is a variable that’s local to the
class.

 � The class keyword defines a class.

 � Use the dot operator to access an object’s
properties and functions.

 � A constructor runs when you initialize an
object.

 � You can define a property in the primary
constructor by prefixing a parameter with
val or var. You can define a property
outside the constructor by adding it to the
class body.

 � Initializer blocks run when an object is
initialized.

 � You must initialize each property before
you use its value.

 � Getters and setters let you get and set
property values.

 � Behind the scenes, the compiler adds a
default getter and setter to every property.

CH
AP

T
ER

 4

this is a new chapter 121

subclasses and superclasses5

Using Your Inheritance

Ever found yourself thinking that an object’s type would be
perfect if you could just change a few things?
Well, that’s one of the advantages of inheritance. Here, you’ll learn how to create

subclasses, and inherit the properties and functions of a superclass. You’ll discover how

to override functions and properties to make your classes behave the way you want,

and you’ll find out when this is (and isn’t) appropriate. Finally, you’ll see how inheritance

helps you avoid duplicate code, and how to improve your flexibility with polymorphism.

I inherited my
dashingGoodLooks().

122 Chapter 5

understanding inheritance

Inheritance helps you avoid duplicate code
When you develop larger applications with multiple classes, you
need to start thinking about inheritance. When you design with
inheritance, you put common code in one class, and then allow other
more specific classes to inherit this code. When you need to modify
the code, you only have to update it in one place, and the changes are
reflected in all the classes that inherit that behavior.

The class that contains the common code is called the superclass,
and the classes that inherit from it are called subclasses.

A superclass contains
common properties
and functions that
are inherited by one
or more subclasses.

A subclass can include
extra properties and
functions, and can
override the things
that it inherits.

An inheritance example
Suppose you have two classes named Car and ConvertibleCar.

The Car class includes the properties and functions required
to create a generic car, such as make and model properties,
and functions named accelerate, applyBrake and
changeTemperature.

The ConvertibleCar class is a subclass of the Car class, so it
automatically inherits all the Car properties and functions. But the
ConvertibleCar class can also add new functions and properties
of its own, and override the things it inherits from the Car superclass:

Car

make
model

accelerate()
applyBrake()
changeTemperature()

ConvertibleCar

changeTemperature()
openTop()
closeTop()

The ConvertibleCar class adds two extra functions named openTop
and closeTop. It also overrides the changeTemperature function
so that if the car gets too cold when the roof is open, it closes the roof.

A superclass is sometimes called a base
class, and a subclass is sometimes called
a derived class. In this book, we’re
sticking with superclass and subclass.

We’re using this type of
arrow to indicate an
inheritance relationship.

you are here 4 123

subclasses and superclasses

What we’re going to do
In this chapter, we’re going to teach you how to design and code an
inheritance class hierarchy. We’re going to do this in three stages:

We’ll start by designing the animal inheritance structure.

Design an animal class hierarchy.
We’ll take a bunch of animals, and design an inheritance structure for
them. We’ll take you through a set of general steps for designing with
inheritance which you can then apply to your own projects.

1

Write the code for (part of) the animal class hierarchy.
Once we’ve designed the inheritance, we’ll write the code for some of
the classes.

2

Hippo

Animal

val Animal
Wolf

REF

animal

Write code that uses the animal class hierarchy.
We’ll look at how to use the inheritance structure to write more flexible
code.

3

124 Chapter 5

designing for inheritance

Design an animal class inheritance structure

Look for attributes and behaviors that the objects
have in common.
Look at these types of animal. What do they have in common?

This helps you to abstract out attributes and behaviors that can
be added to the superclass.

1

Imagine you’ve been asked to design the class structure for an
animal simulation program that lets the user add a bunch of
different animals to an environment to see what happens.

We know some of the types of animal that will be included in the
application, but not all. Each animal will be represented by an
object, and it will do whatever it is that each particular type of
animal is programmed to do.

We want to be able to add new kinds of animals to the
application later on, so it’s important that our class design is
flexible enough to accommodate this.

Before we start thinking about specific animals, we need to figure
out the characteristics that are common to all the animals. We
can then build these characteristics into a superclass that all the
animal subclasses can inherit from.

We’re going to guide you through the general steps for designing a class inheritance hierarchy. This is the first step.

Design classes
Build classes
Use classes

We’re not going to code the whole application,
we’re mostly interested in the class design.

you are here 4 125

subclasses and superclasses

Use inheritance to avoid
duplicate code in subclasses
We’re going to add some common properties and functions to
an Animal superclass so that they can be inherited by each of
the animal subclasses. This isn’t meant to be an exhaustive list,
but it’s enough for you to get the general idea.

We’ll have four properties:

image: The file name representing an image of this animal.

food: The type of food this animal eats, such as meat or grass.

habitat: The animal’s primary habitat, such as woodland,
savannah or water.

hunger : An Int representing the hunger level of the animal. It
changes depending on when (and how much) the animal eats.

And four functions:

makeNoise(): Lets the animal make a noise.

eat(): What the animal does when it encounters its preferred
food source.

roam(): What the animal does when it’s not eating or sleeping.

sleep(): Makes the animal take a nap.

Design a superclass that
represents the common state
and behavior.
We’ll put properties and functions
common to all the animals into a new
superclass named Animal. All of the
animal subclasses will inherit these
properties and functions.

2

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Lion

Hippo

Lynx

Cheetah

Wolf

Fox

Design classes
Build classes
Use classes

126 Chapter 5

designing for inheritance

What should the subclasses override?
Next, we need to think about which properties and functions the
animal subclasses should override. We’ll start with the properties.

The animals have different property values...
The Animal superclass has properties named image, food,
habitat and hunger, and all of these properties are inherited
by the animal subclasses.

All of our animals look different, live in different habitats, and have
different dietary requirements. This means that we can override
the image, food and habitat properties so that they’re
initialized in a different way for each type of animal. We can
initialize the Hippo habitat property with a value of “water”,
for example, and set the Lion’s food property to “meat”.

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

...and different function implementations
Each animal subclass inherits functions named makeNoise,
eat, roam and sleep from the Animal subclass. So which of
these functions can we override?

Lions roar, wolves howl and hippos grunt. All of the animals
make different noises, which means that we should override the
makeNoise function in each animal subclass. Each subclass will
still include a makeNoise function, but the implementation of
this function will vary from animal to animal.

Similarly, each animal eats, but how it eats can vary. A hippo
grazes on grass, for example, while a cheetah hunts meat. To
accommodate these different eating habits, we’ll override the eat
function in each animal subclass.

Decide if a subclass needs
default property values or
function implementations that
are specific to that subclass.
In this example, we’ll override
the image, food and habitat
properties, and the makeNoise and
eat functions.

3

If you think I’m
eating Hippo food
you’ve got to be joking.

Design classes
Build classes
Use classes

We’ll override
the image, food
and habitat
properties, and
the makeNoise
and eat functions.

For now, we’ll keep the
hunger property and
the sleep and roam
functions generic.

you are here 4 127

subclasses and superclasses

We can group some of the animals

Look for more opportunities to abstract out
properties and functions by finding two or
more subclasses with common behavior.
When we look at our subclasses, we see that we have two
canines, three felines and a hippo (which is neither).

4

The class hierarchy is starting to shape up.
We have each subclass overriding a bunch of
properties and functions, so that there’s no
mistaking a wolf ’s howl for a hippo’s grunt.

But there’s more that we can do. When you
design with inheritance, you can build a whole
hierarchy of classes that inherit from each
other, starting with the topmost superclass and
working down. In our example, we can look at
the animal subclasses, and see if two or more
can be grouped together in some way, and given
code that’s common to only that group. A wolf
and fox are both types of canine, for example,
so there may be common behavior that we can
abstract out into a Canine class. Similarly, a
lion, cheetah and lynx are all types of feline, so
it might be helpful to add a new Feline class.

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Lion

image
food
habitat

makeNoise()
eat()

Hippo

image
food
habitat

makeNoise()
eat()

Lynx

image
food
habitat

makeNoise()
eat()

Fox

image
food
habitat

makeNoise()
eat()

Wolf

image
food
habitat

makeNoise()
eat()

Cheetah

image
food
habitat

makeNoise()
eat()

Design classes
Build classes
Use classes

128 Chapter 5

designing for inheritance

Add Canine and Feline classes
Animals already have an organizational hierarchy, so we
can reflect this in our class design at the level that makes
most sense. We’ll use the biological families to organize the
animals by adding Canine and Feline classes to our
class hierarchy. The Canine class will contain properties
and functions common to canines such as wolves and foxes,
and the Feline class will contain the properties and
functions that cats such as lions, cheetahs and lynx have in
common.

Complete the class hierarchy.
We’ll override the roam function in both
the Canine and Feline classes because
these groups of animal tend to roam
in ways that are similar enough for the
simulation program. We’ll let the Hippo
class continue to use the generic roam
function it inherits from Animal.

5

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Lion

image
food
habitat

makeNoise()
eat()

Hippo

image
food
habitat

makeNoise()
eat()

Cheetah

image
food
habitat

makeNoise()
eat()

Fox

image
food
habitat

makeNoise()
eat()

Wolf

image
food
habitat

makeNoise()
eat()

Lynx

image
food
habitat

makeNoise()
eat()

Feline

roam()

Canine

roam()

Design classes
Build classes
Use classes

Each subclass can also define its own
properties and functions, but here we’re just
concentrating on the animals’ commonality.

you are here 4 129

subclasses and superclasses

Use IS-A to test your class hierarchy
When you’re designing a class hierarchy, you can test if one
thing should be a subclass of another by applying the IS-A test.
Simply ask yourself: “Does it make sense to say type X IS-A type
Y?” If it does, then both classes should probably live in the same
inheritance hierarchy, as the chances are, they have the same or
overlapping behaviors. If it doesn’t make sense, then you know that
you need to think again.

It makes sense, for example, for us to say “a Hippo IS-A Animal”.
A hippo is a type of animal, so the Hippo class can sensibly be a
subclass of Animal.

Keep in mind that the IS-A relationship implies that if X IS-A Y,
then X can do anything that a Y can do (and possibly more), so
the IS-A test works in only one direction. It doesn’t make sense,
for example, to say that “an Animal IS-A Hippo” because an
animal is not a type of hippo.

There’s more to it than this, but it’s a
good guideline for now. We’ll look at more
class design issues in the next chapter.

Use HAS-A to test for other relationships
If the IS-A test fails for two classes, they may still be related in
some way.

Suppose, for example, that you have two classes named Fridge
and Kitchen. Saying “a Fridge IS-A Kitchen” makes no sense,
and neither does “a Kitchen IS-A Fridge.” But the two classes are
still related, just not through inheritance.

Kitchen and Fridge are joined by a HAS-A relationship.
Does it make sense to say “a Kitchen HAS-A Fridge”? If yes, then
it means that the Kitchen class has a Fridge property. In
other words, Kitchen includes a reference to a Fridge, but
Kitchen is not a subclass of Fridge, and vice versa.

Hippo

Animal

Fridge

size: Int

openDoor()
closeDoor()

Kitchen

fridge: Fridge

It makes sense to
say “a Hippo IS-A
Animal”, so Hippo
can sensibly be a
subclass of Animal.

Kitchen HAS-A Fridge,
so there’s a relationship.
But neither class is a
subclass of the other.

Design classes
Build classes
Use classes

130 Chapter 5

IS-A test

The IS-A test works anywhere
in the inheritance tree
If your inheritance tree is well-designed, the IS-A test should
make sense when you ask any subclass if it IS-A any of its
supertypes.

If class B is a subclass of class A, class B IS-A class A. This
is true anywhere in the inheritance tree. If class C is
a subclass of B, class C passes the IS-A test for both B
and A.

With an inheritance tree like the one shown here, you’re
always allowed to say “Wolf is a subclass of Animal”, or

“Wolf IS-A Animal”. It makes no difference if Animal is the
superclass of the superclass of Wolf. As long as Animal is
somewhere in the inheritance hierarchy above Wolf,
Wolf IS-A Animal will always be true.

The structure of the Animal inheritance tree tells the world:

“Wolf IS-A Canine, so Wolf can do anything a Canine can do.
And Wolf IS-A Animal, so Wolf can do anything an Animal
can do.”

It makes no difference if Wolf overrides some of the
functions in Animal or Canine. As far as the code is
concerned, a Wolf can do those functions. How Wolf
does them, or in which class they’re overridden, makes
no difference. A Wolf can makeNoise, eat, roam and
sleep because Wolf is a subclass of Animal.

Now that you’ve seen how to design a class hierarchy, have
a go at the following exercise. After that, you’ll learn how to
code the Animal class hierarchy.

Canine IS-A Animal

Wolf IS-A Canine

Wolf IS-A Animal

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

 Don't use inheritance if the IS-A test fails, just so
that you can reuse code from another class.

As an example, suppose you added special voice activation
code to an Alarm class, which you want to reuse in a Kettle class.
A Kettle is not a specific type of Alarm, so Kettle should not be

a subclass of Alarm. Instead, consider creating a separate VoiceActivation
class that all voice activation objects can take advantage of using a HAS-A
relationship. (You'll see more design options in the next chapter.)

Design classes
Build classes
Use classes

you are here 4 131

subclasses and superclasses

Class Superclasses Subclasses
Person

Musician

RockStar

BassPlayer

ConcertPianist

Below is a table containing a list of class names. Your job is to
figure out the relationships that make sense, and say what the
superclasses and subclasses are for each class. Then draw an
inheritance tree for the classes.

132 Chapter 5

sharpen solution

Below is a table containing a list of class names. Your job is to
figure out the relationships that make sense, and say what the
superclasses and subclasses are for each class. Then draw an
inheritance tree for the classes.

ConcertPianist

Person

Musician

RockStar BassPlayer

All the classes
inherit from Person.

The Musician class is
a subclass of Person,
and a superclass
of the RockStar,
ConcertPianist and
BassPlayer classes.

RockStar, ConcertPianist and BassPlayer are
subclasses of Musician. This means that they
pass the IS-A test for Musician and Person.

Class Superclasses Subclasses
Person Musician, RockStar, BassPlayer, ConcertPianist
Musician Person RockStar, BassPlayer, ConcertPianist
RockStar Musician, Person
BassPlayer Musician, Person
ConcertPianist Musician, Person

 Don’t worry if your
inheritance tree
looks different to
ours.

Any inheritance hierarchies and class
designs that you come up with will
depend on how you want to use them, so
there’s rarely a single correct solution. An
animal design hierarchy, for example,
will probably be different depending on
whether you want to use it for a video
game, a pet store, or a museum of zoology.
The key thing is that your design meets
the requirements of your application.

you are here 4 133

subclasses and superclasses

We’ll create some Kotlin animals
Now that we’ve designed an animal class hierarchy, let’s write the
code for it.

First, create a new Kotlin project that targets the JVM, and name the
project “Animals”. Then create a new Kotlin file named Animals.kt
by highlighting the src folder, clicking on the File menu and choosing
New → Kotlin File/Class. When prompted, name the file “Animals”,
and choose File from the Kind option.

We’ll add a new class named Animal to the project, which will
provide the default code for creating a generic animal. Here’s the
code—update your version of Animals.kt to match ours:

class Animal {

 val image = ""

 val food = ""

 val habitat = ""

 var hunger = 10

 fun makeNoise() {

 println("The Animal is making a noise")

 }

 fun eat() {

 println("The Animal is eating")

 }

 fun roam() {

 println("The Animal is roaming")

 }

 fun sleep() {

 println("The Animal is sleeping")

 }

}

src

Animals.kt

Animals

Now that we have an Animal class, we need to tell the compiler that
we want to use it as a superclass.

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Design classes
Build classes
Use classes

The Animal class has properties named
image, food, habitat and hunger.

We’ve defined default
implementations of the makeNoise,
eat, roam and sleep functions.

134 Chapter 5

open classes

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

open class Animal {

 open val image = ""

 open val food = ""

 open val habitat = ""

 var hunger = 10

 open fun makeNoise() {

 println("The Animal is making a noise")

 }

 open fun eat() {

 println("The Animal is eating")

 }

 open fun roam() {

 println("The Animal is roaming")

 }

 fun sleep() {

 println("The Animal is sleeping")

 }

}

src

Animals.kt

Animals

Declare the superclass and its
properties and functions as open
Before a class can be used as a superclass, you have to explicitly tell the
compiler that this is allowed. You do this by prefixing the name of the
class—and any properties or functions you want to override—with the
keyword open. This tells the compiler that you’ve designed the class to
be a superclass, and that you’re happy for the properties and functions
you’ve declared as open to be overridden.

In our class hierarchy, we want to be able to use Animal as a
superclass, and override most of its properties and functions. Here’s the
code to allow us to do that—update your version of Animals.kt to reflect
our changes (in bold):

Now that we’ve declared the Animal superclass as open, along with
all the properties and functions we want to override, we can start
creating animal subclasses. Let’s see how to do this by writing the code
for the Hippo class.

Design classes
Build classes
Use classes

We want to
use the class
as a superclass,
so we need to
declare it open.

We want to override the image,
food and habitat properties, so
we’ve prefixed each one with open.

We’ve declared the
makeNoise, eat and
roam functions as
open because we’ll
override them in
our subclasses.

To use a class as a
superclass, it must
be declared as open.
Everything you
want to override
must also be open.

you are here 4 135

subclasses and superclasses

To make a class inherit from another, you add a colon (:) to the
class header followed by the name of the superclass. This makes
the class a subclass, and gives it all the properties and functions of
the class it inherits from.

In our case, we want the Hippo class to inherit from the Animal
superclass, so we use the following code:

class Hippo : Animal() {

 //Hippo code goes here

}

The Animal() after the : calls the Animal’s constructor. This
ensures that any Animal initialization code—such as assigning
values to properties—gets to run. Calling the superclass constructor is
mandatory: if the superclass has a primary constructor, then
you must call it in the subclass header or your code won’t
compile. And even if you haven’t explicitly added a constructor to
your superclass, remember that the compiler automatically creates an
empty one for you when the code gets compiled.

If the superclass constructor includes parameters, you must pass values
for these parameters when you call the constructor. As an example,
suppose you have a Car class that has two parameters in its constructor
named make and model:

Animal

Hippo

How a subclass inherits from a superclass

open class Car(val make: String, val model: String) {

 //Code for the Car class

}

To define a subclass of Car named ConvertibleCar, you would
have to call the Car constructor in the ConvertibleCar class
header, passing in values for the make and model parameters. In this
situation, you would normally add a constructor to the subclass that
asks for these values, and then pass them to the superclass constructor,
as in the example below:

class ConvertibleCar(make_param: String,

 model_param: String) : Car(make_param, model_param) {

 //Code for the ConvertibleCar class

}

Now that you know how to declare a superclass, let’s look at how you
override its properties and functions. We’ll start with the properties.

Design classes
Build classes
Use classes

This is like saying “class Hippo
is a subtype of class Animal”.
We’ll add the Hippo class to
our code a few pages ahead.

We didn’t add a constructor to our
Animal class, so the compiler added an
empty one when it compiled the code.
This constructor is called using Animal().

The ConvertibleCar constructor has two
parameters: make_param and model_param.
It passes the values of these parameters to
the Car constructor, which initializes the
make and model properties.

The Car constructor defines two properties: make and model.

136 Chapter 5

overriding properties

How (and when) to override properties
You override a property that’s been inherited from a superclass
by adding the property to the subclass, and prefixing it with the
override keyword.

In our example, we want to override the image, food and
habitat properties that the Hippo class inherits from the Animal
superclass so that they’re initialized with values that are specific to
the Hippo. Here’s the code to do that:

class Hippo : Animal() {

 override val image = "hippo.jpg"

 override val food = "grass"

 override val habitat = "water"

}

In this example, we’ve overridden the three properties in order to
initialize each with a different value to the superclass. This is because
each property is defined in the Animal superclass using val.

As you learned on the previous page, when a class inherits from a
superclass, you have to call the superclass constructor; this is so that
it can run its initialization code, including creating its properties
and initializing them. This means that if you define a property
in the superclass using val, you must override it in the
subclass if you want to assign a different value to it.

If a superclass property has been defined using var, you don’t need
to override it in order to assign a new value to it, as var variables
can be reused for other values. You can instead assign it a new value
in the subclass’s initializer block, as in this example:

open class Animal {

 var image = ""

 ...

}

class Hippo : Animal() {

 init {

 image = "hippo.jpg"

 }

 ...

}

Animal

image
food
habitat
hunger

Hippo

image
food
habitat

Design classes
Build classes
Use classes

This overrides
the image, food
and habitat
properties from
the Animal class.

We’ll add the Hippo class to
our project a few pages ahead.

Here, image is defined using
var, and initialized with ““.

We’re using the Hippo’s
initializer block to assign
a new value to the image
property. In this case,
there was no need to
override the property.

you are here 4 137

subclasses and superclasses

Overriding properties lets you do
more than assign default values
So far, we’ve only discussed how you can override a property to
initialize it with a different value to the superclass, but this isn’t the
only way in which overriding properties can help your class design:

You can override a property’s getter and setter.
In the previous chapter, you learned how to add custom getters and setters to
properties. If you want a property to have a different getter or setter to the one it
inherits from the superclass, you can define new ones by overriding the property
and adding the getter and setter to the subclass.

¥

You can override a val property in the superclass with a var
property in the subclass.
If a property in the superclass has been defined using val, you can override it with
a var property in the subclass. To do this, simply override the property and declare
it to be a var. Note that this only works one way; if you try to override a var
property with a val, the compiler will get upset and refuse to compile your code.

¥

Now that you know how to override properties, and when you
should do it, let’s look at how you override functions.

Q: Can I override a property
that’s been defined in the superclass
constructor?

A: Yes. Any properties you define in
the class constructor can be prefixed
with open or override, so you can
overide properties that have been defined
in the superclass constructor.

Q: Why do I have to prefix classes,
properties and functions with open if
I want to override them? You don’t in
Java.

A: In Kotlin, you can only inherit from
superclasses and override their properties
and functions if they’ve been prefixed with
open. This is the opposite way round to
how it works in Java.

In Java, classes are open by default, and
you use final to stop other classes
inheriting from them or overriding their
instance variables and methods.

Q: Why does Kotlin take the opposite
approach to Java?

A: Because the open prefix makes
it much more explicit as to which classes
have been designed to be used as
superclasses, and which properties and
functions can be overridden. This approach
corresponds to one of the principles
from Joshua Bloch’s book Effective Java:

“Design and document for inheritance or
else prohibit it.”

Design classes
Build classes
Use classes

You can override a property’s type with one of the superclass
version’s subtypes.
When you override a property, its type must match the type of the superclass
version of the property, or be one of its subtypes.

¥

138 Chapter 5

overriding functions

How to override functions
You override a function in a similar way to how you override a
property: by adding the function to the subclass, prefixed with
override.

In our example, we want to override the makeNoise and eat
functions in the Hippo subclass so that the actions they perform are
specific to the Hippo. Here’s the code to do that:

class Hippo : Animal() {

 override val image = "hippo.jpg"

 override val food = "grass"

 override val habitat = "water"

 override fun makeNoise() {

 println("Grunt! Grunt!")

 }

 override fun eat() {

 println("The Hippo is eating $food")

 }

}

The rules for overriding functions
When you override a function, there are two rules that you must
follow:

The function parameters in the subclass must match
those in the superclass.
So if, for example, a function in the superclass takes three Int
arguments, the overridden function in the subclass must also take
three Int arguments or the code won't compile.

¥

The function return types must be compatible.
Whatever the superclass function declares as a return type, the
overriding function must return either the same type, or a subclass type.
A subclass type is guaranteed to do anything its superclass declares, so
it’s safe to return a subclass where the superclass is expected.

¥

In our Hippo code above, the functions we’re overriding have no
parameters and no return types. This matches the function definitions
in the superclass, so they follow the rules for overriding functions.

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Hippo

image
food
habitat

makeNoise()
eat()

Grunt! Grunt!

You’ll find out more about using a subclass in place of a superclass later in the chapter.

Design classes
Build classes
Use classes

We’re overriding the makeNoise
and eat functions so that their
implementations are Hippo-specific.

We’ll add the Hippo
class to our project a
couple of pages ahead.

you are here 4 139

subclasses and superclasses

An overridden function or property stays open...
As you learned earlier in the chapter, if you want to override a function
or property, you have to declare it open in the superclass. What we
didn’t tell you is that the function or property stays open in each of its
subclasses, even if it’s overridden, so you don’t have to declare it as
open further down the tree. The code for the following class hierarchy,
for example, is valid:

open class Vehicle {

 open fun lowerTemperature() {

 println("Turn down temperature")

 }

}

open class Car : Vehicle() {

 override fun lowerTemperature() {

 println("Turn on air conditioning")

 }

}

class ConvertibleCar : Car() {

 override fun lowerTemperature() {

 println("Open roof")

 }

}

...until it’s declared final
If you want to stop a function or property from being overridden further
down the class hierarchy, you can prefix it with final. If, for example,
you wanted to prevent subclasses of the Car class from overriding the
lowerTemperature function, you would use the following code:

open class Car : Vehicle() {

 final override fun lowerTemperature() {

 println("Turn on air conditioning")

 }

}

Now that you know how to inherit properties and functions from a
superclass and override them, let’s add the Hippo code to our project.

Vehicle

lowerTemperature()

ConvertibleCar

lowerTemperature()

Car

lowerTemperature()

Design classes
Build classes
Use classes

The lowerTemperature() function remains open in
the Car subclass, even though we’re overriding it...

The Vehicle class defines an open
lowerTemperature() function.

...which means that we can override it
again in the ConvertibleCar class.

Declaring the
function as final in
the Car class means
that it can no longer
be overridden in any
of Car’s subclasses.

140 Chapter 5

add class

Add the Hippo class to the Animals project

open class Animal {
 open val image = ""
 open val food = ""
 open val habitat = ""
 var hunger = 10

 open fun makeNoise() {
 println("The Animal is making a noise")
 }

 open fun eat() {
 println("The Animal is eating")
 }

 open fun roam() {
 println("The Animal is roaming")
 }

 fun sleep() {
 println("The Animal is sleeping")
 }
}

class Hippo : Animal() {
 override val image = "hippo.jpg"
 override val food = "grass"
 override val habitat = "water"

 override fun makeNoise() {
 println("Grunt! Grunt!")
 }

 override fun eat() {
 println("The Hippo is eating $food")
 }
}

src

Animals.kt

Animals

Now that you’ve seen how to create the Hippo class, see if you can
create the Canine and Wolf classes in the following exercise.

We want to add the Hippo class code to the Animals project, so
update your code in Animals.kt so that it matches ours below (our
changes are in bold):

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Hippo

image
food
habitat

makeNoise()
eat()

Design classes
Build classes
Use classes

The Animal class hasn’t changed.

The Hippo class is a subclass of Animal.

The Hippo
subclass
overrides
these
properties
and
functions.

you are here 4 141

subclasses and superclasses

 class Canine {

 fun {

 println("The is roaming")

 }

}

class Wolf {

 val image = "wolf.jpg"

 val food = "meat"

 val habitat = "forests"

 fun makeNoise() {

 println("Hooooowl!")

 }

 fun eat() {

 println("The Wolf is eating $food")

 }

}

Code Magnets
See if you can rearrange the magnets below to create the Canine and Wolf classes.

The Canine class is a subclass of Animal, and overrides its roam function.

The Wolf class is a subclass of Canine, and overrides the image, food and habitat
properties, and the makeNoise and eat functions, from the Animal class.

You won’t need to use all of the magnets.

open Animal()

:

Animal

:

Canine()

Canine

extends

extends

roam()

Canine

Wolf

override

override

override

override

override

override

override

open

open

open
open

open

open

142 Chapter 5

magnets solution

 class Canine {

 fun {

 println("The is roaming")

 }

}

class Wolf {

 val image = "wolf.jpg"

 val food = "meat"

 val habitat = "forests"

 fun makeNoise() {

 println("Hooooowl!")

 }

 fun eat() {

 println("The Wolf is eating $food")

 }

}

Code Magnets Solution
See if you can rearrange the magnets below to create the Canine and Wolf classes.

The Canine class is a subclass of Animal, and overrides its roam function.

The Wolf class is a subclass of Canine, and overrides the image, food and habitat
properties, and the makeNoise and eat functions, from the Animal class.

You won’t need to use all of the magnets.

Animal

Canine

extends

extends

Wolf

override

open

open

open
open

open

open

open Animal()

:

:

Canine()

roam()

Canine

override

override

override

override

override

override

You didn’t need to
use these magnets.

Canine is a subclass of Animal. It’s
declared open so that we can use it
as a superclass for the Wolf class.

Override the roam() function.

Wolf is a subclass of Canine.

Override
these
properties.

Override these two functions.

you are here 4 143

subclasses and superclasses

Add the Canine and Wolf classes
Now that you’ve created the Canine and Wolf classes, let’s add
them to the Animals project. Update the code in Animals.kt to add
these two classes (our changes are shown below in bold):

open class Animal {

 ...

}

class Hippo : Animal() {

 ...

}

open class Canine : Animal() {

 override fun roam() {

 println("The Canine is roaming")

 }

}

class Wolf : Canine() {

 override val image = "wolf.jpg"

 override val food = "meat"

 override val habitat = "forests"

 override fun makeNoise() {

 println("Hooooowl!")

 }

 override fun eat() {

 println("The Wolf is eating $food")

 }

}

Next, we’ll look at what happens when we create a Wolf object
and call some of its functions.

src

Animals.kt

Animals

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

Design classes
Build classes
Use classes

We’ve not changed the code for
the Animal or Hippo classes.

Add the Canine class...

...and also the Wolf class.

144 Chapter 5

calling functions

Which function is called?
The Wolf class has four functions: one inherited from
Animal, one inherited from Canine (which is an overridden
version of a function in the Animal class), and two overridden
in the Wolf class. When you create a Wolf object and assign
it to a variable, you can use the dot operator on that variable
to invoke each of the four functions. But which version of those
functions gets called?

When you call a function on an object reference, you’re calling
the most specific version of the function for that
object type: the one that’s lowest on the inheritance tree.

When you call a function on a Wolf object, for example, the
system first looks for the function in the Wolf class. If the
system finds the function in this class, it executes the function.
If the function isn’t defined in the Wolf class, however, the
system walks up the inheritance tree to the Canine class. If
the function is defined here, the system executes it, and if it’s
not, the system continues up the tree. The system continues
to walk up the class hierarchy until it finds a match for the
function.

To see this in action, imagine that you decide to create a new
Wolf object and call its makeNoise function. The system
looks for the function in the Wolf class, and as the function
has been overridden in this class, the system executes this
version:

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

w.sleep()

Finally, suppose you call the Wolf’s sleep function. The
system looks for the function in the Wolf class, and as it hasn’t
been overridden here, the system walks up the inheritance tree
to the Canine class. The function hasn’t been overridden
in this class either, so the system uses the version that’s in
Animal.

Design classes
Build classes
Use classes

val w = Wolf()

w.makeNoise()

w.roam()

What if you then decide to call the Wolf’s roam function?
This function isn’t overridden in the Wolf class, so the
system looks for it in the Canine class instead. As it’s been
overridden here, the system uses this version.

Calls the makeNoise() function
defined in the Wolf class.

Calls the function in the Canine class.

Calls the function in the Animal class.

you are here 4 145

subclasses and superclasses

Inheritance guarantees that all
subclasses have the functions and
properties defined in the superclass
When you define a set of properties and functions in a superclass, you’re
guaranteeing that all its subclasses also have these properties and
functions. In other words, you define a common protocol, or contract,
for a set of classes that are related by inheritance.

The Animal class, for example, establishes a common protocol for all
animal subtypes that says “any Animal has properties named image, food,
habitat and hunger, and functions named makeNoise, eat, roam and sleep”:

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

You’re telling the world that
any Animal has these properties
and can do these things.

When we say “any Animal”, we mean the
Animal class, or any subclass of Animal.

Any place where you can use a superclass, you can
use one of its subclasses instead
When you define a supertype for a group of classes, you can use any
subclass in place of the superclass it inherits from. So when
you declare a variable, any object that’s a subclass of the variable’s
type can be assigned to it. The following code, for example, defines
an Animal variable, and assigns it a reference to a Wolf object. The
compiler knows that a Wolf is a type of Animal, so the code compiles:

val animal: Animal = Wolf()

val Animal
Wolf

REF

animal

Design classes
Build classes
Use classes

Animal and Wolf are
explicitly different types,
but because Wolf IS-A type
of Animal, the code compiles.

The code creates a Wolf
object, and assigns it to a
variable of type Animal.

146 Chapter 5

the object responds to a function call

val animals = arrayOf(Hippo(),

 Wolf(),

 Lion(),

 Cheetah(),

 Lynx(),

 Fox())

for (item in animals) {

 item.roam()

 item.eat()

}

When you call a function on the variable,
it’s the object’s version that responds

As you already know, if you assign an object to a variable, you can
use the variable to access the object’s functions. This is still the
case if the variable is a supertype of the object.

Suppose, for example, that you assign a Wolf object to an
Animal variable and call its eat function using code like this:

val animal: Animal = Wolf()

animal.eat()

When the eat function gets called, it’s the version that’s in the
Wolf class that responds. The system knows that the underlying
object is a Wolf, so it gets to respond in a Wolf-like way.

You can also create an array of different types of animal, and get
each one to behave in its own way. As each animal is a subclass
of Animal, we can simply add each one to an array, and call
functions on each item in the array:

So designing with inheritance means that you can write flexible
code in the safe knowledge that each object will do the right thing
when its functions are called.

But that’s not the end of the story.

Design classes
Build classes
Use classes

eat()

val Animal
Wolf

REF

animal

If you have an Animal that’s a Wolf, telling it to eat will call the Wolf’s eat() function.

The compiler spots that these are
all types of Animal, so it creates an
array of type Array<Animal>.

This loops through the animals, and calls the roam() and eat() functions of each one. Each animal responds in a way that’s appropriate to its type.

you are here 4 147

subclasses and superclasses

You can use a supertype for a function’s
parameters and return type

If you can declare a variable of a supertype (say, Animal), and
assign a subclass object to it (say, Wolf), what do you think might
happen when you use a subtype as an argument to a function?

Suppose, for example, that we create a Vet class with a function
named giveShot:

class Vet {

 fun giveShot(animal: Animal) {

 //Code to do something medical to the Animal that it won't like

 animal.makeNoise()

 }

}

The Animal parameter can take any Animal type as the
argument. So when the Vet’s giveShot function is called, it
executes the Animal’s makeNoise function, and whatever type
of Animal it is will respond:

val vet = Vet()

val wolf = Wolf()

val hippo = Hippo()

vet.giveShot(wolf)

vet.giveShot(hippo)

So if you want other types of animal to work with the Vet class,
all you have to do is make sure that each one is a subclass of the
Animal class. The Vet’s giveShot function will still work,
even though it was written without any knowledge of any new
Animal subtypes the Vet may be working on.

Being able to use one type of object in a place that explicitly
expects a different type is called polymorphism. It’s the ability
to provide different implementations for functions that have been
inherited from somewhere else.

We’ll show you the full code for the Animals project on the next
page.

Polymorphism means
“many forms”. It allows
different subclasses
to have different
implementations of the
same function.

Vet

giveShot()

Design classes
Build classes
Use classes

The Vet’s giveShot function has
an Animal parameter.

Wolf and Hippo are both types of Animal,
so you can pass Wolf and Hippo objects
as arguments to the giveShot function.

giveShot calls the Animal’s makeNoise function

148 Chapter 5

project code

The updated Animals code
Here’s an updated version of Animals.kt that includes the Vet
class and a main function. Update your version of the code to
match ours below (our changes are in bold):

open class Animal {
 open val image = ""
 open val food = ""
 open val habitat = ""
 var hunger = 10

 open fun makeNoise() {
 println("The Animal is making a noise")
 }

 open fun eat() {
 println("The Animal is eating")
 }

 open fun roam() {
 println("The Animal is roaming")
 }

 fun sleep() {
 println("The Animal is sleeping")
 }
}

class Hippo: Animal() {
 override val image = "hippo.jpg"
 override val food = "grass"
 override val habitat = "water"

 override fun makeNoise() {
 println("Grunt! Grunt!")
 }

 override fun eat() {
 println("The Hippo is eating $food")
 }
}

open class Canine: Animal() {
 override fun roam() {
 println("The Canine is roaming")
 }
}

src

Animals.kt

Animals

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

Vet

giveShot()

Design classes
Build classes
Use classes

The code continues
on the next page.

We’ve not changed any
of the code on this page.

you are here 4 149

subclasses and superclasses

class Wolf: Canine() {
 override val image = "wolf.jpg"
 override val food = "meat"
 override val habitat = "forests"

 override fun makeNoise() {
 println("Hooooowl!")
 }

 override fun eat() {
 println("The Wolf is eating $food")
 }
}

class Vet {
 fun giveShot(animal: Animal) {
 //Code to do something medical
 animal.makeNoise()
 }
}

fun main(args: Array<String>) {
 val animals = arrayOf(Hippo(), Wolf())
 for (item in animals) {
 item.roam()
 item.eat()
 }

 val vet = Vet()
 val wolf = Wolf()
 val hippo = Hippo()
 vet.giveShot(wolf)
 vet.giveShot(hippo)
}

src

Animals.kt

Animals

The code continued...

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

The Animal is roaming
The Hippo is eating grass
The Canine is roaming
The Wolf is eating meat
Hooooowl!
Grunt! Grunt!

Animal

image
food
hunger
habitat

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

Vet

giveShot()

Design classes
Build classes
Use classes

Add the Vet class.

Add the main function.

Loop through an
array of Animals.

Call the Vet’s giveShot
function, passing in two
Animal subtypes.

Hippo inherits the Animal's roam function.

Wolf inherits the Canine's roam function.
Each Animal makes its own noise when
the Vet's giveShot function runs.

150 Chapter 5

no dumb questions

Q: Why does Kotlin let me override a
val property with a var?

A: Back in Chapter 4, we said that when
you create a val property, the compiler
secretly adds a getter for it. And when you
create a var property, the compiler adds
both a getter and a setter.

When you override a val property with a
var, you’re effectively asking the compiler
to add an extra setter to the property in
the subclass. This is valid, so the code
compiles.

Q: Can I override a var property
with a val?

A: No. If you try to override a var
property with a val, your code won’t
compile.

When you define a class hierarchy, you’re
guaranteeing that you can do the same
things to a subclass that you can do to
a superclass. And if you try to override a
var property with a val, you’re telling
the compiler that you no longer want to
be able to update a property’s value. This
breaks the common protocol between the
superclass and its subtypes, so the code
won’t compile.

Q: You said that when you call a
function on a variable, the system walks
up the inheritance hierarchy looking for
a match. What happens if the system
doesn’t find one?

A: You don’t have to worry about the
system not finding a matching function.

The compiler guarantees that a particular
function is callable for a specific variable
type, but it doesn’t care from which class
that function comes from at runtime. If we
were to call the sleep function on a
Wolf, for example, the compiler checks
that the sleep function exists, but it
doesn’t care that the function is defined in
(and inherited from) class Animal.

Remember that if a class inherits a function,
it has the function. Where the inherited
function is defined makes no difference to
the compiler. But at runtime, the system will
always pick the right one, the most specific
version of the function for that particular
object.

Q: Can a subclass have more than
one direct superclass?

A: No. Multiple inheritance isn’t allowed
in Kotlin, so each subclass can have only
one direct superclass. We’ll look at this in
more detail in Chapter 6.

Q: When I override a function in
a subclass, the function parameter
types must be the same. Can I define a
function that has the same name as the
one in the superclass but with different
parameter types?

A: Yes, you can. You can define multiple
functions with the same name, just so long
as the parameter types are different. This
is called overloading (not overriding) and it
has nothing to do with inheritance.

We’ll look at overloading functions in
Chapter 7.

Q: Can you explain polymorphism
again?

A: Sure. Polymorphism is the ability
to use any subtype object in place of its
supertype. As different subclasses can
have different implementations of the same
function, it allows each object to respond
to function calls in the way that’s most
appropriate for each object.

You’ll find out more ways in which you can
take advantage of polymorphism in the
next chapter.

you are here 4 151

subclasses and superclasses

BE the Compiler
The code on the left represents a source file. Your
job is to play like you’re the compiler and say which of
the A-B pairs of functions on the right would compile

and produce the required output when
inserted into the code on the left. The A
function fits into class Monster, and the
B function fits into class Vampyre.

open class Monster {

}

class Vampyre : Monster() {

}

class Dragon : Monster() {

 override fun frighten(): Boolean {

 println("Fire!")

 return true

 }

}

fun main(args: Array<String>) {

 val m = arrayOf(Vampyre(),

 Dragon(),

 Monster())

 for (item in m) {

 item.frighten()

 }

}

open fun frighten(): Boolean {

 println("Aargh!")

 return true

}

override fun frighten(): Boolean {

 println("Fancy a bite?")

 return false

}

fun frighten(): Boolean {

 println("Aargh!")

 return true

}

override fun frighten(): Boolean {

 println("Fancy a bite?")

 return true

}

open fun frighten(): Boolean {

 println("Aargh!")

 return false

}

fun beScary(): Boolean {

 println("Fancy a bite?")

 return true

}

The code needs to
produce this output.

A

B

This is the code.
These are the pairs of functions.

1A

1B

2A

2B

3A

3B

Fancy a bite?
Fire!
Aargh!

Output:

152 Chapter 5

be the compiler solution

BE the Compiler Solution
The code on the left represents a source file. Your
job is to play like you’re the compiler and say which of
the A-B pairs of functions on the right would compile

and produce the required output when
inserted into the code on the left. The A
function fits into class Monster, and the
B function fits into class Vampyre.

open class Monster {

}

class Vampyre : Monster() {

}

class Dragon : Monster() {

 override fun frighten(): Boolean {

 println("Fire!")

 return true

 }

}

fun main(args: Array<String>) {

 val m = arrayOf(Vampyre(),

 Dragon(),

 Monster())

 for (item in m) {

 item.frighten()

 }

}

open fun frighten(): Boolean {

 println("Aargh!")

 return true

}

override fun frighten(): Boolean {

 println("Fancy a bite?")

 return false

}

fun frighten(): Boolean {

 println("Aargh!")

 return true

}

override fun frighten(): Boolean {

 println("Fancy a bite?")

 return true

}

open fun frighten(): Boolean {

 println("Aargh!")

 return false

}

fun beScary(): Boolean {

 println("Fancy a bite?")

 return true

}

Fancy a bite?
Fire!
Aargh!

A

B

1A

1B

2A

2B

3A

3B

This code compiles
and produces the
correct output

This code won't
compile because the

frighten() function in the
Monster class isn't open.

This compiles but it produces
incorrect output as Vampyre
doesn't override frighten().

Output:

you are here 4 153

subclasses and superclasses
CHAPT

ER 5

Your Kotlin Toolbox

You’ve got Chapter 5 under
your belt and now you’ve

added superclasses and
subclasses to your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

 � A superclass contains common properties
and functions that are inherited by one or
more subclasses.

 � A subclass can include extra properties and
functions that aren’t in the superclass, and
can override the things it inherits.

 � Use the IS-A test to verify that your
inheritance is valid. If X is a subclass of Y,
then X IS-A Y must make sense.

 � The IS-A relationship works in only one
direction. A Hippo is an Animal, but not
all Animals are Hippos.

 � If class B is a subclass of class A, and class
C is a subclass of class B, class C passes
the IS-A test for both B and A.

 � Before you can use a class as a superclass,
you must declare it open. You must also
declare any properties and functions you
want to override as open.

 � Use : to specify a subclass’s superclass.

 � If the superclass has a primary constructor,
then you must call it in the subclass header.

 � Override properties and functions in
the subclass by prefixing them with
override. When you override a property,
its type must be compatible with that of the
superclass property. When you override a
function, its parameter list must stay the
same, and its return type must be compatible
with that of the superclass.

 � Overridden functions and properties stay
open until they’re declared final.

 � When a function is overridden in a subclass,
and that function is invoked on an instance
of the subclass, the overridden version of the
function is called.

 � Inheritance guarantees that all subclasses
have the functions and properties defined in
the superclass.

 � You can use a subclass in any place where
the superclass type is expected.

 � Polymorphism means “many forms”. It
allows different subclasses to have different
implementations of the same function.

this is a new chapter 155

abstract classes and interfaces6

Serious Polymorphism

A superclass inheritance hierarchy is just the beginning.
If you want to fully exploit polymorphism, you need to design using abstract classes

and interfaces. In this chapter, you’ll discover how to use abstract classes to control

which classes in your hierarchy can and can’t be instantiated. You’ll see how they can

force concrete subclasses to provide their own implementations. You’ll find out how

to use interfaces to share behavior between independent classes. And along the way,

you’ll learn the ins and outs of is, as, and when.

Great news! Sam just
implemented all his
abstract functions!

156 Chapter 6

animal hierarchy

The Animal class hierarchy revisited
In the previous chapter, you learned how to design an
inheritance hierarchy by creating the class structure for
a bunch of animals. We abstracted out the common
properties and functions into an Animal superclass,
and overrode some of the properties and functions
in the Animal subclasses so that we’d have subclass-
specific implementations where we thought it was
appropriate.

By defining the common properties and functions in
the Animal superclass, we’re establishing a common
protocol for all Animals, which makes the design
nice and flexible. We can write code using Animal
variables and parameters so that any Animal subtype
(including ones we didn’t know about at the time we
wrote our code) can be used at runtime.

Here’s a reminder of the class structure:

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Lion

image
food
habitat

makeNoise()
eat()

Hippo

image
food
habitat

makeNoise()
eat()

Cheetah

image
food
habitat

makeNoise()
eat()

Fox

image
food
habitat

makeNoise()
eat()

Wolf

image
food
habitat

makeNoise()
eat()

Lynx

image
food
habitat

makeNoise()
eat()

Feline

roam()

Canine

roam()

you are here 4 157

abstract classes and interfaces

Some classes shouldn’t be instantiated
The class structure, however, needs some improvement. It
makes sense for us to create new Wolf, Hippo or Fox objects,
but the inheritance hierarchy also allows us to create generic
Animal objects. This is a Bad Thing because we can’t say
what an Animal looks like, what it eats, what sort of noise it
makes, and so on.

We know what Wolf, Hippo and Fox objects
look like, but what about an Animal
object? Does it have fur? Does it have
legs? And how does it eat and roam?

How do we deal with this? We need an Animal class for
inheritance and polymorphism, but we only want to be able to
instantiate the less abstract subclasses of Animal, not Animal
itself. We want to be able to create Hippo, Wolf and Fox
objects, but not Animal objects.

Declare a class as abstract to stop it from being instantiated
If you want to prevent a class from being instantiated, you can
mark the class as abstract by prefixing it with the abstract
keyword. Here’s how, for example, you turn Animal into an
abstract class:

abstract class Animal {

 ...

}

Being an abstract class means that nobody can create any objects
of that type, even if you’ve defined a constructor for it. You can
still use that abstract class as a declared variable type, but you
don’t have to worry about somebody creating objects of that
type—the compiler stops it from happening:

var animal: Animal

animal = Wolf()

animal = Animal()

Think about the Animal class hierarchy. Which classes do
you think should be declared abstract? In other words, which
classes do you think shouldn’t be instantiated?

val Animal
Animal

REF

animal

If a superclass is
marked as abstract,
you don’t need to
declare that it’s open.

Prefix class with “abstract” to
make it an abstract class.

This line won’t compile because
you can’t create Animal objects.

158 Chapter 6

abstract classes

Abstract or concrete?
In our Animal class hierarchy, there are three classes
that need to be declared abstract: Animal, Canine and
Feline. While we need these classes for inheritance, we
don’t want anyone to be able to create objects of these types.

A class that’s not abstract is called concrete, so that leaves
Hippo, Wolf, Fox, Lion, Cheetah and Lynx as the
concrete subclasses.

In general, whether a class should be abstract or concrete
depends on the context of your application. A Tree class,
for example, might need to be abstract in a tree nursery
application where the differences between an Oak and
a Maple really matter. But if you were designing a golf
simulation, Tree might be a concrete class because the
application doesn’t need to distinguish between different
types of tree.

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Lion

image
food
habitat

makeNoise()
eat()

Hippo

image
food
habitat

makeNoise()
eat()

Cheetah

image
food
habitat

makeNoise()
eat()

Fox

image
food
habitat

makeNoise()
eat()

Wolf

image
food
habitat

makeNoise()
eat()

Lynx

image
food
habitat

makeNoise()
eat()

Feline

roam()

Canine

roam()

Abstract

Abstract

Abstract

We’re marking the Animal, Canine
and Feline classes as abstract by
giving each one a gray background.

you are here 4 159

abstract classes and interfaces

An abstract class can have
abstract properties and functions
In an abstract class, you can choose to mark properties and
functions as abstract. This is useful if the class has behaviors that
don’t make sense unless they’re implemented by a more specific
subclass, and you can’t think of a generic implementation that
might be useful for subclasses to inherit.

Let’s see how this works by considering what properties and
functions we should mark as abstract in the Animal class.

abstract class Animal {

 abstract val image: String

 abstract val food: String

 abstract val habitat: String

 var hunger = 10

 ...

}

We can mark three properties as abstract
When we created the Animal class, we decided to instantiate the
image, food and habitat properties with generic values and
override them in the animal-specific subclasses. This was because
there was no value we could assign to these properties that would
have been useful to the subclasses.

Because these properties have generic values that must be
overridden, we can mark each one as abstract by prefixing it with
the abstract keyword. Here’s the code to do that:

Notice that in the above code, we haven’t initialized any of the
abstract properties. If you try to initialize an abstract property,
or define a custom getter or setter for it, the compiler will refuse
to compile your code. This is because by marking a property as
abstract, you’ve decided that there’s no useful initial value it can
have, and no useful implementation for a custom getter or setter.

Now that we know what properties we can mark as abstract, let’s
consider the functions.

An abstract class can
contain abstract and
non-abstract properties
and functions. It’s
possible for an abstract
class to have no
abstract members.

Animal

image
food
habitat
hunger

...

Here, we’ve marked the
image, food and habitat
properties as abstract

Abstract
properties and
functions don’t
need to be
marked as open.

160 Chapter 6

abstract functions

The Animal class has two abstract functions

abstract class Animal {

 ...

 abstract fun makeNoise()

 abstract fun eat()

 open fun roam() {

 println("The Animal is roaming")

 }

 fun sleep() {

 println("The Animal is sleeping")

 }

}

In the above code, neither of the abstract functions have function
bodies. This is because when you mark a function as abstract,
you’re telling the compiler that there’s no useful code you can write
for the function body.

If you try to add a body to an abstract function, the compiler will
get upset and refuse to compile your code. The following code, for
example, won’t compile because there are curly braces after the
function definition:

abstract fun makeNoise() {}

 If you mark a
property or
function as
abstract, you
must mark the

class as abstract too.

If you put even one abstract
property or function in a class,
you have to mark the class as
abstract or your code won’t
compile.

In order for the code to compile, you must remove the curly braces
so that the code looks like this:

The Animal class defines two functions—makeNoise and
eat—that are overridden in every concrete subclass. As these two
functions are always overridden and there’s no implementation
we can provide that would help the subclasses, we can mark the
makeNoise and eat functions as abstract by prefixing each one
with the abstract keyword. Here’s the code to do this:

As the abstract function no longer has a function body, the code
compiles.

abstract fun makeNoise()

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

The curly braces form an
empty function body, so
the code won’t compile.

you are here 4 161

abstract classes and interfaces

I don’t get it. If you can’t add code to an
abstract function, what’s the point in having
it? I thought the whole point in having an
abstract class was to have common code that
could be inherited by subclasses.

Abstract properties and functions define a common
protocol so that you can use polymorphism.
Inheritable function implementations (functions with actual bodies)
are useful to put in a superclass when it makes sense. And in an abstract
class, it often doesn’t make sense because you may not be able to come
up with any generic code that the subclasses would find useful.

Abstract functions are useful because even though they don’t contain
any actual function code, they define the protocol for a group of
subclasses which you can use for polymorphism. As you learned in
the previous chapter, polymorphism means that when you define a
supertype for a group of classes, you can use any subclass in place
of the superclass it inherits from. It gives you the ability to use a
superclass type as a variable type, function argument, return type or
array type, as in the following example:

val animals = arrayOf(Hippo(),

 Wolf(),

 Lion(),

 Cheetah(),

 Lynx(),

 Fox())

for (item in animals) {

 item.roam()

 item.eat()

}

This means that you can add new subtypes (such as a new Animal
subclass) to your application without having to rewrite or add new
functions to deal with those new types.

Now that you’ve seen how (and when) to mark classes, properties and
functions as abstract, let’s see how you implement them.

Create an array
of different
Animal objects.

Each Animal in the array responds in its own way.

162 Chapter 6

implement an abstract class

How to implement an abstract class

When you implement abstract properties and functions, you must
follow the same rules for overriding that you use for overriding normal
properties and functions:

You declare that a class inherits from an abstract superclass in the
same way that you say that a class inherits from a normal superclass:
by adding a colon to the class header followed by the name of the
abstract class. Here’s how, for example, you say that the Hippo class
inherits from the abstract Animal class:

class Hippo : Animal() {

 override val image = "hippo.jpg"
 override val food = "grass"
 override val habitat = "water"

 override fun makeNoise() {
 println("Grunt! Grunt!")
 }

 override fun eat() {
 println("The Hippo is eating $food")
 }
}

 When you implement an abstract function, it must have the same function
signature (name and arguments) as the function that’s defined in the abstract
superclass. Its return type must be compatible with the declared return type.

¥

class Hippo : Animal() {
 ...

}

You implement abstract properties and functions by overriding each
one and providing an implementation. This means that you need to
initialize any abstract properties, and you need to provide a body for
any abstract functions.

In our example, the Hippo class is a concrete subclass of Animal.
Here’s the code for the Hippo class that implements the image,
food and habitat properties, along with the makeNoise and eat
functions:

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Hippo

image
food
habitat

makeNoise()
eat()

 When you implement an abstract property, it must have the same name, and
its type must be compatible with the type defined in the abstract superclass.
In other words, it must be the same type, or one of its subtypes.

¥

Just like when you inherit from a normal superclass, you must call the abstract class constructor in the subclass header.

You implement abstract
properties and functions
by overriding them. This
is the same as if the
superclass was concrete.

you are here 4 163

abstract classes and interfaces

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

You MUST implement
all abstract properties and functions
The first concrete class in the inheritance tree below the abstract
superclass must implement all abstract properties and functions.
In our class hierarchy, for example, the Hippo class is a direct
concrete subclass of Animal, so it must implement all the abstract
properties and functions defined in the Animal class in order for
the code to compile.

With abstract subclasses, you have a choice: you can either
implement the abstract properties and functions, or pass the buck
to its subclasses. If both Animal and Canine are abstract, for
example, the Canine class can either implement the abstract
properties and functions from Animal, or say nothing about them
and leave them for its subclasses to implement.

Any abstract properties and functions that aren’t implemented
in Canine must be implemented in its concrete subclasses, like
Wolf. And if the Canine class were to define any new abstract
properties and functions, the Canine subclasses would have to
implement these too.

Now that you’ve learned about abstract classes, properties and
functions, let’s update the code in our Animal hierarchy.

When a subclass
inherits from an
abstract superclass,
the subclass can
still define its
own functions and
properties.

Q: Why must the first concrete
class implement all the abstract
properties and functions it inherits?

A: Every property and function in a
concrete class must be implemented so
that the compiler knows what to do when
they’re accessed.

Only abstract classes can have abstract
properties or functions. If a class has any
properties or functions that are marked as
abstract, the entire class must be abstract.

Q: I want to define a custom getter
and setter for an abstract property.
Why can’t I?

A: When you mark a property as
abstract, you’re telling the compiler that
the property has no useful implementation
that would help its subclasses. If the
compiler sees that an abstract property
has some sort of implementation, such
as a custom getter or setter, or an initial
value, the compiler gets confused and
won’t compile the code.

164 Chapter 6

update code

Let’s update the Animals project
In the previous chapter, we wrote the code for the Animal,
Canine, Hippo, Wolf and Vet classes, and added these to the
Animals project. We need to update this code so that we make
the Animal and Canine classes abstract. We’ll also make the
image, food and habitat properties in the Animal class
abstract, along with its makeNoise and eat functions.

Open the Animals project that you created in the previous chapter,
and then update your version of the code in file Animals.kt so that it
matches ours below (our changes are in bold):

abstract open class Animal {

 abstract open val image: String = ""

 abstract open val food: String = ""

 abstract open val habitat: String = ""

 var hunger = 10

 abstract open fun makeNoise() {

 println("The Animal is making a noise")

 }

 abstract open fun eat() {

 println("The Animal is eating")

 }

 open fun roam() {

 println("The Animal is roaming")

 }

 fun sleep() {

 println("The Animal is sleeping")

 }

}

src

Animals.kt

Animals

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

Vet

giveShot()

The code continues
on the next page.

Mark the Animal class as abstract instead of open.

Mark these
properties as
abstract...

...and also
these two
functions.

you are here 4 165

abstract classes and interfaces

class Hippo : Animal() {

 override val image = "hippo.jpg"

 override val food = "grass"

 override val habitat = "water"

 override fun makeNoise() {

 println("Grunt! Grunt!")

 }

 override fun eat() {

 println("The Hippo is eating $food")

 }

}

abstract open class Canine : Animal() {

 override fun roam() {

 println("The Canine is roaming")

 }

}

class Wolf : Canine() {

 override val image = "wolf.jpg"

 override val food = "meat"

 override val habitat = "forests"

 override fun makeNoise() {

 println("Hooooowl!")

 }

 override fun eat() {

 println("The Wolf is eating $food")

 }

}

The code continued...

src

Animals.kt

Animals

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

Vet

giveShot()

The code continues
on the next page.

Mark the Canine class as abstract.

166 Chapter 6

test drive

Test drive
Run your code. The following text gets printed in the IDE’s output
window as before, but now we’re using abstract classes to control
which classes can be instantiated.

The Animal is roaming
The Hippo is eating grass
The Canine is roaming
The Wolf is eating meat
Hooooowl!
Grunt! Grunt!

class Vet {

 fun giveShot(animal: Animal) {

 //Code to do something medical

 animal.makeNoise()

 }

}

fun main(args: Array<String>) {

 val animals = arrayOf(Hippo(), Wolf())

 for (item in animals) {

 item.roam()

 item.eat()

 }

 val vet = Vet()

 val wolf = Wolf()

 val hippo = Hippo()

 vet.giveShot(wolf)

 vet.giveShot(hippo)

}

Let’s take the code for a test drive to see what happens.

The code continued...

src

Animals.kt

Animals

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

Vet

giveShot()We’ve not changed any of
the code on this page.

you are here 4 167

abstract classes and interfaces

Note: each thing from
the pool can only be
used once!

CoffeeMaker

color
coffeeLeft

consumePower()
fillWithWater()
makeCoffee()

Appliance

pluggedIn
color

consumePower()

 class Appliance {

 var pluggedIn = true

 val color: String

 fun

}

class CoffeeMaker {

 val color = ""

 var coffeeLeft = false

 fun {

 println("Consuming power")

 }

 fun fillWithWater() {

 println("Fill with water")

 }

 fun makeCoffee() {

 println("Make the coffee")

 }

}

abstract

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the code. You may
not use the same code snippet
more than once, and you won’t
need to use all the snippets.
Your goal is to create the code

that matches the class inheritance
hierarchy shown below.

open

abstract

abstract

open

consumePower()

consumePower() { }

:

extends

Appliance()

Appliance

override

implements

implements

implements

override consumePower()

168 Chapter 6

pool puzzle solution

You didn’t need to
use these snippets.

 class Appliance {

 var pluggedIn = true

 val color: String

 fun

}

class CoffeeMaker {

 val color = ""

 var coffeeLeft = false

 fun {

 println("Consuming power")

 }

 fun fillWithWater() {

 println("Fill with water")

 }

 fun makeCoffee() {

 println("Make the coffee")

 }

}

abstract

Pool Puzzle Solution
Your job is to take code snippets from

the pool and place them into the
blank lines in the code. You may
not use the same code snippet
more than once, and you won’t
need to use all the snippets.
Your goal is to create the code

that matches the class inheritance
hierarchy shown below.

CoffeeMaker

color
coffeeLeft

consumePower()
fillWithWater()
makeCoffee()

Appliance

pluggedIn
color

consumePower()

open

abstract

abstract

open

consumePower()

consumePower() { }

:

extends

Appliance()

Appliance

override

implements

implements

implements

override consumePower()

Mark the Appliance class as abstract,
along with the color property and the
consumePower() function.

CoffeeMaker inherits from Appliance.

Override the
color property.

Override the
consumePower()
function.

you are here 4 169

abstract classes and interfaces

Independent classes can have common behavior

When you have independent classes that exhibit common
behavior, you can model this behavior using an interface. So
what’s an interface?

Vehicle

roam()

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Vehicle

roam()

So far, you’ve learned how to create an inheritance hierarchy
using a mix of abstract superclasses and concrete subclasses.
This approach helps you to avoid writing duplicate code, and
it means that you can write flexible code that benefits from
polymorphism. But what if you want to include classes in
your application that share some of the behavior defined in the
inheritance hierarchy, but not all?

Suppose, for example, that we want to add a Vehicle class
to our animal simulation application that has one function:
roam. This would allow us to create Vehicle objects that
can roam around the animals environment.

It would be useful if the Vehicle class could somehow
implement the Animal’s roam function, as this would
mean that we could use polymorphism to create an array of
objects that can roam, and call functions on each one. But
the Vehicle class doesn’t belong in the Animal superclass
hierarchy as it fails the IS-A test: saying “a Vehicle IS-A
Animal” makes no sense, and neither does saying “an Animal
IS-A Vehicle”.

Animal and Vehicle each have
a roam() function, but neither
class is a subclass of the other.

If two classes fail
the IS-A test, this
indicates that they
probably don’t
belong in the same
superclass hierarchy.

170 Chapter 6

interfaces

An interface lets you define
common behavior OUTSIDE
a superclass hierarchy
Interfaces are used to define a protocol for common
behavior so that you can benefit from polymorphism
without having to rely on a strict inheritance structure.
Interfaces are similar to abstract classes in that they
can’t be instantiated, and they can define abstract
or concrete functions and properties, but there’s one
key difference: a class can implement multiple
interfaces, but can only inherit from a single
direct superclass. So using interfaces can provide
the same benefits as using abstract classes, but with
more flexibility.

Let’s see how this works by adding an interface
named Roamable to our application, which we’ll
use to define roaming behavior. We’ll implement this
interface in the Animal and Vehicle classes.

We’ll start by defining the Roamable interface.

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Lion

image
food
habitat

makeNoise()
eat()

Hippo

image
food
habitat

makeNoise()
eat()

Cheetah

image
food
habitat

makeNoise()
eat()

Fox

image
food
habitat

makeNoise()
eat()

Wolf

image
food
habitat

makeNoise()
eat()

Lynx

image
food
habitat

makeNoise()
eat()

Feline

roam()

Canine

roam()

Vehicle

roam()

(interface)
Roamable

roam()

We’ll add a
Roamable
interface.

A dotted arrow
indicates the class
implements an interface.

you are here 4 171

abstract classes and interfaces

interface Roamable {

 fun roam()

}

Let’s define the Roamable interface
We’re going to create a Roamable interface that we can use to provide
a common protocol for roaming behavior. We’ll define an abstract
function named roam that the Animal and Vehicle classes will need
to implement (you’ll see the code for these classes later).

Here’s what our Roamable interface code looks like (we'll add it to our
Animals project a few pages ahead):

“interface” means
it’s an interface.

The name of the interface.
Opening brace of the interface.

Closing brace of
the interface.

The roam function.

interface Roamable {

 fun roam()

}

When you add an abstract function to an interface, there’s no need to
prefix the function name with the abstract keyword, as you would
if you were adding an abstract function to an abstract class. With an
interface, the compiler automatically infers that a function with no body
must be abstract, so you don’t have to mark it as such.

You can also add concrete functions to interfaces by providing the
function with a body. The following code, for example, provides a
concrete implementation for the roam function:

interface Roamable {

 fun roam() {

 println("The Roamable is roaming")

 }

}

Interface functions can be abstract or concrete
You add functions to interfaces by including them in the interface body
(inside the curly braces {}). In our example, we’re defining an abstract
function named roam, so the code looks like this:

As you can see, you define functions in an interface in a similar way to
how you define functions in an abstract class. So what about properties?

(interface)
Roamable

roam()

This is how you define an abstract function in an interface.

To add a concrete function to an
interface, simply give it a body.

172 Chapter 6

interface properties

How to define interface properties
You add a property to an interface by including it in the interface
body. This is the only way in which you can define an interface
property, as unlike abstract classes, interfaces can’t have
constructors. Here’s how, for example, you would add an abstract
Int property to the Roamable interface named velocity:

interface Roamable {

 val velocity: Int
}

Just as with abstract functions,
there’s no need to prefix an abstract
property with the abstract keyword.

Unlike properties in abstract classes, properties that are defined in
an interface can’t store state, and therefore can’t be initialized. You
can, however, return a value for a property by defining a custom
getter using code like this:

Another restriction is that interface properties don’t have backing
fields. You learned in Chapter 4 that a backing field provides a
reference to the underlying value of a property, so you can’t, say,
define a custom setter that updates a property’s value like this:

interface Roamable {

 val velocity: Int

 get() = 20
}

interface Roamable {

 var velocity: Int

 get() = 20

 set(value) {
 field = value
 }
}

You, however, define a setter so long as it doesn’t try and reference
the property’s backing field. The following code, for example, is valid:

interface Roamable {

 var velocity: Int

 get() = 20

 set(value) {
 println("Unable to update velocity")
 }
}

Now that you've learned how to define an interface, let’s see how to
implement one.

(interface)
Roamable

velocity

This returns a value of 20 whenever the property is
accessed. But you can still override the property in
any class that implements the interface.

If you try to write code like this in an interface,
it won’t compile. This is because you can’t use
the “field” keyword in an interface, so you can’t
update the underlying value of the property.

This code compiles because you’re not using
the field keyword. But it won’t update
the underlying value of the property.

you are here 4 173

abstract classes and interfaces

You mark that a class implements an interface in a similar way to how
you mark that a class inherits from a superclass: by adding a colon to
the class header followed by the name of the interface. Here’s how,
for example, you declare that the Vehicle class implements the
Roamable interface:

class Vehicle : Roamable {

 ...

}

Unlike when you declare that a class inherits from a superclass, you
don’t put parentheses after the interface name. This is because the
parentheses are only needed in order to call the superclass constructor,
and interfaces don’t have constructors.

Declare that a class implements an interface...

...then override its properties and functions
Declaring that a class implements an interface gives the class all the
properties and functions that are in that interface. You can override
any of these properties and functions, and you do this in exactly the
same way that you would override properties and functions inherited
from a superclass. The following code, for example, overrides the
roam function from the Roamable interface:

class Vehicle : Roamable {

 override fun roam() {

 println("The Vehicle is roaming")

 }

}

Just like abstract superclasses, any concrete classes that implement
the interface must have a concrete implementation for any abstract
properties and functions. The Vehicle class, for example, directly
implements the Roamable interface, so it must implement all the
abstract properties and functions defined in this interface in order
for the code to compile. If the class that implements the interface is
abstract, however, the class can either implement the properties and
functions itself, or pass the buck to its subclasses.

Note that a class that implements an interface can still define its
own properties and functions. The Vehicle class, for example,
could define its own fuelType property and still implement the
Roamable interface.

Earlier in the chapter, we said that a class could implement multiple
interfaces. Let’s see how.

Vehicle

roam()

(interface)
Roamable

roam()
This is like saying “The Vehicle class
implements the Roamable interface”.

This code overrides the
roam() function that the
Vehicle class inherits from
the Roamable interface.

Concrete classes can’t
contain abstract
properties and functions,
so they must implement
all of the abstract
properties and functions
that they inherit.

174 Chapter 6

multiple interfaces

How to implement multiple interfaces
You declare that a class (or interface) implements multiple interfaces
by adding each one to the class header, separating each one with a
comma. Suppose, for example, that you have two interfaces named
A and B. You would declare that a class named X implements both
interfaces using the code:

class X : A, B {

 ...

}

A class can also inherit from a superclass in addition to implementing
one or more interfaces. Here’s how, for example, you specify that
class Y implements interface A, and inherits from class C:

class Y : C(), A {

 ...

}

If a class inherits multiple implementations of the same function
or property, the class must provide its own implementation, or
specify which version of the function or property it should use. If, for
example, the A and B interfaces both include a concrete function
named myFunction, and the X class implements both interfaces,
the X class must provide an implementation of myFunction so
that the compiler knows how to handle a call to this function:

interface A {

 fun myFunction() { println("from A") }

}

interface B {

 fun myFunction() { println("from B") }

}

class X : A, B {

 override fun myFunction() {

 super<A>.myFunction()

 super.myFunction()

 //Extra code specific to class X

 }

}

X

(interface)
A

(interface)
B

Y

C (interface)
A

X

myFunction

(interface)
A

myFunction

(interface)
B

myFunction

Class X implements the A and B interfaces.

Class Y inherits from class C,
and implements interface A.

super<A> refers to the superclass (or interface)
named A. So super<A>.myFunction() calls the
version of myFunction that’s defined in A.

This code calls the version of myFunction defined in A, then the version defined in B. It then runs code that’s specific to class X.

you are here 4 175

abstract classes and interfaces

Roses are red,
Violets are blue,
Inherit from one,
But implement two.

A Kotlin class can have on
ly one

parent (superclass), an
d that

parent class defines w
ho you are.

But you can implement multiple

interfaces, and those
interfaces

define the roles that
 you can play.

How do you know whether to
make a class, a subclass, an
abstract class, or an interface?
Unsure whether you should create a class, abstract class or
interface? Then the following tips should help you out:

 Make a class with no superclass when your new class
doesn’t pass the IS-A test for any other type.

¥

 Make an interface when you want to define common
behavior, or a role that other classes can play, regardless
of where these classes are in the inheritance tree.

¥

 Make a subclass that inherits from a superclass when
you need to make a more specific version of a class
and need to override or add new behaviors.

¥

 Make an abstract class when you want to define a
template for a group of subclasses. Make the class
abstract when you want to guarantee that nobody can
make objects of that type.

¥

Now that you’ve seen how to define and implement
interfaces, let’s update the code for our Animals project.

Q: Are there any naming conventions
for interfaces?

A: Nothing is enforced, but because
interfaces specify behavior, words ending
in -ible or -able are often used; they give a
name to what something does, rather than
what it is.

Q: Why don't interfaces and abstract
classes need to be marked as open?

A: Interfaces and abstract classes
live to be implemented or inherited from.
The compiler knows this, so behind the
scenes, every interface and abstract class
is implicitly open, even if it isn’t marked as
such.

Q: You said that you can override
any of the properties and functions that
are defined in an interface. Don’t you
mean that you can override any of its
abstract properties and functions?

A: No. With an interface, you can
override any of its properties and functions.
So even if a function in an interface has
a concrete implementation, you can still
override it.

Q: Can an interface inherit from a
superclass?

A: No, but it can implement one or more
interfaces.

Q: When should I define a concrete
implementation for a function, and when
should I leave it abstract?

A: You normally provide a concrete
implementation if you can think of one that
would be helpful to anything that inherits it.

If you can’t think of a helpful
implementation, you would normally
leave it abstract as this forces any
concrete subclasses to provide their own
implementation.

176 Chapter 6

update code

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

Vet

giveShot()

(interface)
Roamable

roam()

Vehicle

roam()

Update the Animals project
We’ll add a new Roamable interface and Vehicle class
to our project. The Vehicle class will implement the
Roamable interface, and so will the abstract Animal class.

Update your version of the code in file Animals.kt so that it
matches ours below (our changes are in bold):

interface Roamable {

 fun roam()

}

abstract class Animal : Roamable {

 abstract val image: String

 abstract val food: String

 abstract val habitat: String

 var hunger = 10

 abstract fun makeNoise()

 abstract fun eat()

 override fun roam() {

 println("The Animal is roaming")

 }

 fun sleep() {

 println("The Animal is sleeping")

 }

}

The code continues
on the next page.

src

Animals.kt

Animals

Add the Roamable interface with an
abstract function named roam().

The Animal class needs
to implement the
Roamable interface.

Override
the roam()
function
from the
Roamable
interface.

you are here 4 177

abstract classes and interfaces

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

Vet

giveShot()

(interface)
Roamable

roam()

Vehicle

roam()

The code continued...

class Hippo : Animal() {

 override val image = "hippo.jpg"

 override val food = "grass"

 override val habitat = "water"

 override fun makeNoise() {

 println("Grunt! Grunt!")

 }

 override fun eat() {

 println("The Hippo is eating $food")

 }

}

abstract class Canine : Animal() {

 override fun roam() {

 println("The Canine is roaming")

 }

}

class Wolf : Canine() {

 override val image = "wolf.jpg"

 override val food = "meat"

 override val habitat = "forests"

 override fun makeNoise() {

 println("Hooooowl!")

 }

 override fun eat() {

 println("The Wolf is eating $food")

 }

}

The code continues
on the next page.

src

Animals.kt

Animals

We’ve not
updated any
of the code
on this page.

178 Chapter 6

test drive

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

Vet

giveShot()

(interface)
Roamable

roam()

Vehicle

roam()

class Vehicle : Roamable {

 override fun roam() {

 println("The Vehicle is roaming")

 }

}

class Vet {

 fun giveShot(animal: Animal) {

 //Code to do something medical

 animal.makeNoise()

 }

}

fun main(args: Array<String>) {

 val animals = arrayOf(Hippo(), Wolf())

 for (item in animals) {

 item.roam()

 item.eat()

 }

 val vet = Vet()

 val wolf = Wolf()

 val hippo = Hippo()

 vet.giveShot(wolf)

 vet.giveShot(hippo)

}

The code continued...

src

Animals.kt

Animals

Test drive
Run your code. Text gets printed in the IDE’s output window as
before, but now the Animal class uses the Roamable interface
for its roaming behavior.

We still need to use Vehicle objects in our main function, but
first, have a go at the following exercise.

The Animal is roaming
The Hippo is eating grass
The Canine is roaming
The Wolf is eating meat
Hooooowl!
Grunt! Grunt!

Let’s see what happens when we take our code for a test drive.

Add the Vehicle class.

you are here 4 179

abstract classes and interfaces

On the left you’ll find sets of class diagrams. Your job is to turn these into valid Kotlin
declarations. We did the first one for you.

Diagram: Declaration:

Click1

Clack

open class Click { }
class Clack : Click() { }

1

Top2

Tip

2

Alpha3

Omega

3

Foo4

Bar

Baz

4

Fi5

Fo

Fum

Fee

5

Clack

Clack

Clack

Inherits from

Implements

Class

Abstract class

Interface

Key:

180 Chapter 6

exercise solution

On the left you’ll find sets of class diagrams. Your job is to turn these into valid Kotlin
declarations. We did the first one for you.

Diagram: Declaration:

Clack

Clack

Clack

Inherits from

Implements

Class

Abstract class

Interface

Key:

Click1

Clack

open class Click { }
class Clack : Click() { }

1

Top2

Tip

abstract class Top { }
class Tip : Top() { }

2

Alpha3

Omega

abstract class Alpha { }
abstract class Omega : Alpha() { }

3

Foo4

Bar

Baz

interface Foo { }
open class Bar : Foo { }
class Baz : Bar() { }

4

Fi5

Fo

Fum

Fee

interface Fee { }
interface Fi { }
open class Fo : Fi { }
class Fum : Fo(), Fee { }

5

Bar needs to be
marked as open
so that Baz can
inherit from it.

Fum inherits from
the Fo() class and
implements the Fee
interface.

Tip implements the
Top abstract class.

Omega inherits
from Alpha. They
are both abstract.

you are here 4 181

abstract classes and interfaces

Interfaces let you use polymorphism
You already know that using interfaces means that your code
can benefit from polymorphism. You can, for example, use
polymorphism to create an array of Roamable objects, and call
each object’s roam function:

val roamables = arrayOf(Hippo(), Wolf(), Vehicle())

for (item in roamables) {

 item.roam()

}

But what if you don’t just want to access functions and properties
defined in the Roamable interface? What if you want to call each
Animal’s makeNoise function too? You can’t just use:

Access uncommon behavior by checking an object’s type
You can access behavior that’s not defined by a variable’s type by
first using the is operator to check the type of the underlying object.
If the underlying object is of the appropriate type, the compiler
then lets you access behavior that’s appropriate for that type. The
following code, for example, checks whether the object referred to
by an Animal variable is a Wolf, and if so, calls the eat function:

eat()

val Animal
Wolf

REF

animalThe compiler knows that the object
is a Wolf, so calls its eat() function.

val animal: Animal = Wolf()

if (animal is Wolf) {
 animal.eat()

}

In the above code, the compiler knows that the underlying object is
a Wolf, so it’s safe to run any code that’s Wolf-specific. This means
that if we want to call the eat function for each Animal object in
an array of Roamables, we can use the following:

val roamables = arrayOf(Hippo(), Wolf(), Vehicle())

for (item in roamables) {

 item.roam()

 if (item is Animal) {
 item.eat()
 }
}

item.makeNoise()

because item is a variable of type Roamable, so it doesn’t
recognize the makeNoise function.

var Roamable

REF

item

You can use the is operator in a variety of situations. Let’s find out
more.

This line creates an array of Roamable objects.

As the roamables array holds
Roamable objects, this means that
the item variable is of type Roamable.

If the item is an Animal, the compiler knows it can call the item’s eat() function.

Use the is operator
to check if the
underlying object is
the specified type (or
one of its subtypes).

182 Chapter 6

is operator

Where to use the is operator
Here are some of the most common ways in which you might
want to use the is operator:

As the condition for an if
As you’ve already seen, you can use the is operator as the condition
for an if. The following code, for example, assigns a String of

“Wolf ” to variable str if the animal variable holds a reference to a
Wolf object, and “not Wolf ” if it doesn’t:

val str = if (animal is Wolf) "Wolf" else "not Wolf"

In conditions using && and ||
You can build up more complex conditions using && and ||. The
following code, for instance, tests whether a Roamable variable
holds a reference to an Animal object, and if so, it further tests if the
Animal’s hunger property is less than 5:

if (roamable is Animal && roamable.hunger < 5) {

 //Code to deal with a hungry Animal

}

You can also use !is to test if an object is not a particular type. The
following code, for example, is like saying “if the roamable variable
doesn’t hold a reference to an Animal, or if the Animal’s hunger
property is greater than or equal to 5”:

if (roamable !is Animal || x.hunger >= 5) {

 //Code to deal with a non-Animal, or with a non-hungry Animal

}

In a while loop
If you want to use the is operator as the condition for a while loop,
you can do so using code like this:

while (animal is Wolf) {

 //Code that runs while the Animal is a Wolf

}

In the above example, the code continues to loop while the animal
variable holds a reference to a Wolf object.

You can also use the is operator with a when statement. Let’s
find out what these are, and how to use them.

Note that it must be possible for
the underlying object to be the
specified type or the code won’t
compile. You can’t, say, test if an
Animal variable holds a reference
to an Int because Animal and Int
are incompatible types.

The right side of the if condition
only runs if roamable is an Animal, so
we can access its hunger property.

Remember, the right side of an ||
condition only runs if the left side
is false. Therefore, the right side
can only run if roamable is an Animal.

you are here 4 183

abstract classes and interfaces

Use when to compare a variable
against a bunch of options
A when statement is useful if you want to compare a variable
against a set of different options. It’s like using a chain of
if/else expressions, but more compact and readable.

Here’s an example of what a when statement looks like:

when (x) {

 0 -> println("x is zero")

 1, 2 -> println("x is 1 or 2")

 else -> {

 println("x is neither 0, 1 nor 2")

 println("x is some other value")

 }

}

The above code takes the variable x, and checks its value
against various options. It’s like saying: “when x is 0, print “x
is zero”, when x is 1 or 2, print “x is 1 or 2”, otherwise print
some other text”.

If you want to run different code depending on the underlying
type of an object, you can use the is operator inside a when
statement. The code below, for example, uses the is operator
to check the type of the underlying object that’s referenced by
the roamable variable. When the type is Wolf, it runs code
that’s Wolf-specific, when the type is Hippo, it runs Hippo-
specific code, and it runs other code if the type is some other
Animal (not Wolf or Hippo):

when (roamable) {

 is Wolf -> {

 //Wolf-specific code

 }

 is Hippo -> {

 //Hippo-specific code

 }

 is Animal -> {

 //Code that runs if roamable is some other Animal

 }

}

Using when as
an expression

You can also use when as an
expression, which means that you
can use it to return a value. The
following code, for example, uses
a when expression to assign a value to a
variable:

 var y = when (x) {

 0 -> true

 else -> false

 }

When you use the when operator in this
way, you must account for every value the
variable you’re checking can have, usually
by including an else clause.

When x is 0, run this code.Check the value
of variable x.

Run this code when x is 1 or 2.

when statements can
have an else clause.

Run this block of code
when x is some other value.

Check the value of roamable.

This code will only run if roamable is a
type of Animal that’s not Wolf or Hippo.

184 Chapter 6

smart casts

The is operator performs a smart cast
In most circumstances, the is operator performs a smart cast.
Casting means that the compiler treats a variable as though its type
is different to the one that it’s declared as, and smart casting means
that the compiler automatically performs the cast on your behalf.
The code below, for example, uses the is operator to smart cast the
variable named item to a Wolf, so that inside the body of the if
condition, the compiler can treat the item variable as though it’s a
Wolf:

usually

if (item is Wolf) {

 item.eat()

 item.makeNoise()

 //Other Wolf-specific code

} val Roamable

Wolf

REF

item

Treat me like the
Wolf you know I am.

The is operator performs a smart cast whenever the compiler can
guarantee that the variable can’t change between checking the
object’s type and when it’s used. In the above code, for example,
the compiler knows that the item variable can’t be given a
reference to a different type of variable in between the call to the
is operator, and the Wolf-specific function calls.

But there are some situations in which smart casting doesn’t
happen. The is operator won’t smart cast a var property in a
class, for example, because the compiler can’t guarantee that some
other code won’t sneak in and update the property. This means
that the following code won’t compile because the compiler can’t
smart cast the r variable to a Wolf:

So what can you do in this sort of situation?

class MyRoamable {

 var r: Roamable = Wolf()

 fun myFunction() {

 if (r is Wolf) {

 r.eat()

 }

 }

}

 You don’t need to
remember all the
circumstances in
which smart casting
can’t be used.

If you try and use smart casting
inappropriately, the compiler will tell you.

item is smart cast to a
Wolf for the duration
of this code block.

The compiler can’t smart cast the Roamable property r to a Wolf. This is because the compiler can’t guarantee that some other code won’t update the property in between checking its type and its usage. The code therefore won’t compile.

you are here 4 185

abstract classes and interfaces

Use as to perform an explicit cast
If you want to access the behavior of an underlying object but the
compiler can’t perform a smart cast, you can explicitly cast the object
into the appropriate type.

Suppose you’re sure that a Roamable variable named r holds
a reference to a Wolf object, and you want to access the object’s
Wolf-specific behavior. In this situation, you can use the as
operator to copy the reference that’s held in the Roamable variable,
and force it into a new Wolf variable. You can then use the Wolf
variable to access the Wolf behavior. Here’s the code to do this:

If you’re not sure that the underlying object is a Wolf, you can use
the is operator to check before you do the cast using code like this:

var wolf = r as Wolf

wolf.eat()

Note that the wolf and r variables each hold a reference to the
same Wolf object. But whereas the r variable only knows that
the object implements the Roamable interface, the wolf variable
knows that the object is actually a Wolf, so it can treat the object like
the Wolf it really is:

var Roamable
Wolf

REF

r

var Wolf

REF

wolf

if (r is Wolf) {

 val wolf = r as Wolf

 wolf.eat()

}

So now that you’ve seen how casting (and smart casting) works, let’s
update the code in our Animals project.

This code explicitly casts the object to a
Wolf so that you can call its Wolf functions.

r holds a reference to a Wolf object, but because r is a Roamable variable, you can only use it to access any Roamable properties and functions that the underlying object has.

The wolf variable holds a reference
to the same Wolf object, but as this
variable has a type of Wolf, you can
use it to access any Wolf properties
and functions.

If r is a Wolf, cast it as a Wolf
and call its eat() function.

186 Chapter 6

test drive

Animal

image
food
habitat
hunger

makeNoise()
eat()
roam()
sleep()

Wolf

image
food
habitat

makeNoise()
eat()

Canine

roam()

Hippo

image
food
habitat

makeNoise()
eat()

Vet

giveShot()

(interface)
Roamable

roam()

Vehicle

roam()

...

fun main(args: Array<String>) {

 val animals = arrayOf(Hippo(), Wolf())

 for (item in animals) {

 item.roam()

 item.eat()

 }

 val vet = Vet()

 val wolf = Wolf()

 val hippo = Hippo()

 vet.giveShot(wolf)

 vet.giveShot(hippo)

 val roamables = arrayOf(Hippo(), Wolf(), Vehicle())
 for (item in roamables) {
 item.roam()
 if (item is Animal) {
 item.eat()
 }
 }
}

Update the Animals project
We’ve updated the code in our main function so that it includes an
array of Roamable objects. Update your version of the function in
file Animals.kt so that it matches ours below (our changes are in bold):

Test drive
Run your code. When the code loops through the
roamables array, each item’s roam function is called,
but the eat function is only called if the underlying
object is an Animal.

The Animal is roaming
The Hippo is eating grass
The Canine is roaming
The Wolf is eating meat
Hooooowl!
Grunt! Grunt!
The Animal is roaming
The Hippo is eating grass
The Canine is roaming
The Wolf is eating meat
The Vehicle is roaming

src

Animals.kt

Animals

Now that you’ve updated your code, let’s take it for a test drive.

We’re only changing the code in the main function.

Create an array of Roamables.

Call the eat() function for each Animal in the array.

you are here 4 187

abstract classes and interfaces

interface Flyable {

 val x: String

 fun fly() {

 println("$x is flying")

 }

}

class Bird : Flyable {

 override val x = "Bird"

}

class Plane : Flyable {

 override val x = "Plane"

}

class Superhero : Flyable {

 override val x = "Superhero"

}

fun main(args: Array<String>) {

 val f = arrayOf(Bird(), Plane(), Superhero())

 var x = 0

 while (x in 0..2) {

 x++

 }

}

Plane is flying
Superhero is flying

Output:

when (f[x]) {

 is Bird -> {

 x++

 f[x].fly()

 }

 is Plane, is Superhero ->

 f[x].fly()

}

BE the Compiler
The code on the left represents a source
file. Your job is to play like you’re the
compiler and say which of the code

segments on the right would
compile and produce the
required output when inserted
into the code on the left.

if (x is Plane || x is Superhero) {

 f[x].fly()

}

when (f[x]) {

 Plane, Superhero -> f[x].fly()

}

val y = when (f[x]) {

 is Bird -> false

 else -> true

}

if (y) {f[x].fly()}

1

2

3

4

The code needs to
produce this output.

These are the code segments.

Each code segment goes here.

188 Chapter 6

be the compiler solution

when (f[x]) {

 is Bird -> {

 x++

 f[x].fly()

 }

 is Plane, is Superhero ->

 f[x].fly()

}

if (x is Plane || x is Superhero) {

 f[x].fly()

}

when (f[x]) {

 Plane, Superhero -> f[x].fly()

}

val y = when (f[x]) {

 is Bird -> false

 else -> true

}

if (y) {f[x].fly()}

interface Flyable {

 val x: String

 fun fly() {

 println("$x is flying")

 }

}

class Bird : Flyable {

 override val x = "Bird"

}

class Plane : Flyable {

 override val x = "Plane"

}

class Superhero : Flyable {

 override val x = "Superhero"

}

fun main(args: Array<String>) {

 val f = arrayOf(Bird(), Plane(), Superhero())

 var x = 0

 while (x in 0..2) {

 x++

 }

}

Plane is flying
Superhero is flying

Output:

BE the Compiler Solution
The code on the left represents a source
file. Your job is to play like you’re the
compiler and say which of the code

segments on the right would
compile and produce the
required output when inserted
into the code on the left.

This code compiles
and produces the
correct output.

This won't compile because the is operator is
required in order to check the type of f[x].

This won't compile as x is an Int,
and can't be a Plane or Superhero.

1

2

3

4 This code
compiles and
produces the
correct output.

you are here 4 189

abstract classes and interfaces
CHAPT

ER 6

Your Kotlin Toolbox

You’ve got Chapter 6 under
your belt and now you’ve

added abstract classes and
interfaces to your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

 � An abstract class can’t be instantiated. It
can contain both abstract and non-abstract
properties and functions.

 � Any class that contains an abstract property
or function must be declared abstract.

 � A class that’s not abstract is called concrete.

 � You implement abstract properties and
functions by overriding them.

 � All abstract properties and functions must be
overridden in any concrete subclasses.

 � An interface lets you define common
behavior outside a superclass hierarchy so
that independent classes can still benefit
from polymorphism.

 � Interfaces can have abstract or non-abstract
functions.

 � Interfaces properties can be abstract, or they
can have getters and setters. They can’t be
initialized, and they don’t have access to a
backing field.

 � A class can implement multiple interfaces.

 � If a subclass inherits from a superclass (or
implements an interface) named A, you can
use the code:

 super<A>.myFunction

to call the implementation of myFunction
that’s defined in A.

 � If a variable holds a reference to an object,
you can use the is operator to check the
type of the underlying object.

 � The is operator performs a smart cast
when the compiler can guarantee that
the underlying object can’t have changed
between the type check and its usage.

 � The as operator lets you perform an explicit
cast.

 � A when expression lets you compare a
variable against an exhaustive set of different
options.

this is a new chapter 191

That copy() function
worked perfectly. I’m
just like you but taller.

data classes7

Dealing with Data

Nobody wants to spend their life reinventing the wheel.
Most applications include classes whose main purpose is to store data, so to make your

coding life easier, the Kotlin developers came up with the concept of a data class. Here,

you’ll learn how data classes enable you to write code that’s cleaner and more concise

than you ever dreamed was possible. You’ll explore the data class utility functions, and

discover how to destructure a data object into its component parts. Along the way,

you’ll find out how default parameter values can make your code more flexible, and we’ll

introduce you to Any, the mother of all superclasses.

192 Chapter 7

behind the scenes of the == operator

== calls a function named equals

As we said earlier, every object that you create automatically
includes an equals function. But where does this function
come from?

As you already know, you can use the == operator to check for
equality. Behind the scenes, each time you use the == operator, it
calls a function named equals. Every object has an equals
function, and the implementation of this function determines how
the == operator will behave.

By default, the equals function checks for equality by checking
whether two variables hold references to the same underlying object.

To see how this works, suppose that we have two Wolf variables
named w1 and w2. If w1 and w2 hold references to the same Wolf
object, comparing them with the == operator will evaluate to true:

val w1 = Wolf()

val w2 = Wolf()

//w1 == w2 is false

val w1 = Wolf()

val w2 = w1

//w1 == w2 is true

Wolf

REF

w1

val Wolf REF

w2

val Wolf

WolfREF

w1

val Wolf

REF

w2

val Wolf

Wolf

w1 and w2 refer to
different objects, so
w1 == w2 is false.

w1 and w2 refer to
the same object, so
w1 == w2 is true.

If, however, w1 and w2 hold references to separate Wolf objects,
comparing them with the == operator will evaluate to false, even
if the objects hold identical property values.

you are here 4 193

data classes

Each object has a function named equals because its
class inherits the function from a class named Any. Class
Any is the mother of all classes: the ultimate superclass
of everything. Every class you define is a subclass of Any
without you ever having to say it. So if you write the code
for a class named myClass that looks like this:

class MyClass {

 ...

}

The compiler spots that
each object in the array
has a common supertype
of Any, so it creates an
array of type Array<Any>.

The importance of being Any
Having Any as the ultimate superclass has two key benefits:

behind the scenes, the compiler automatically turns it into this:

class MyClass : Any() {

 ...

}

MyClass

Any

val myArray = arrayOf(Car(), Guitar(), Giraffe())

Let’s take a closer look at the common behavior inherited from
the Any class.

It means you can use polymorphism with any object.
Every class is a subclass of Any, so every object you create has
Any as its ultimate supertype. This means that you can create a
function with Any parameters, or an Any return type, so that it
will work with all types of object. It also means that you can create
polymorphic arrays to hold objects of any type using code like this:

¥

It ensures that every class inherits common behavior.
The Any class defines important behavior that the system relies on,
and as every class is a subclass of Any, this behavior is inherited by
every object you create. The Any class defines a function named
equals, for example, which means that every object automatically
inherits this function.

¥

The compiler secretly makes
each class a subclass of Any.

equals is inherited from a superclass named Any

Every class is a subclass of
the Any class, and inherits
its behavior. Every class
IS-A type of Any without
you having to say so.

194 Chapter 7

Any

The common behavior defined by Any
The Any class defines several functions that are inherited by
every class. Here are the ones we care about most, along with an
example of its default behavior:

YourClassHere

Any

equals()
hashCode()
toString()

...

toString(): String
Returns a String message that represents the object. By
default, this is the name of the class and some other number
that we rarely care about.

¥

Wolf@1f32e575

val w = Wolf()

println(w.toString())

hashCode(): Int
Returns a hash code value for the object. They’re often used
by certain data structures to store and retrieve values more
efficiently.

¥

523429237

val w = Wolf()

println(w.hashCode())

equals(any: Any): Boolean
Tells you if two objects are considered “equal”. By default, it
returns true if it’s used to test the same object, and false if
it’s used to test separate objects. Behind the scenes, the equals
function gets called each time you use the == operator.

¥

false

val w1 = Wolf()

val w2 = Wolf()

println(w1.equals(w2))

true

val w1 = Wolf()

val w2 = w1

println(w1.equals(w2))

The Any class provides a default implementation for each of the
above functions, and these implementations are inherited by every
class. They can, however, be overridden if you want to change the
default behavior of any of these functions.

equals returns
false because
w1 and w2 hold
references to
different objects. equals returns true because w1 and w2 hold references to the same object. It’s the same as testing if w1 == w2.

By default, the
equals function
checks whether two
objects are the same
underlying object.

The equals function
defines the behavior
of the == operator.

This is the value
of w’s hash code.

you are here 4 195

data classes

While you could change the behavior of the == operator by
writing extra code to override the equals function, the Kotlin
developers came up with a better approach: they came up with
the concept of a data class. Let’s find out what one of these is,
and how to create one.

you might want the == operator to evaluate to true if it’s used
to compare two Recipe objects that have matching title and
isVegetarian properties:

val r1 = Recipe("Chicken Bhuna", false)

val r2 = Recipe("Chicken Bhuna", false)

REF

r1

val Recipe
Recipe

title: “Chicken Bhuna”
isVegetarian: false

REF

r2

val Recipe
Recipe

title: “Chicken Bhuna”
isVegetarian: false

Recipe

title
isVegetarian

class Recipe(val title: String, val isVegetarian: Boolean) {

}

We might want equals to check
whether two objects are equivalent
There are some situations in which you might want to change the
implementation of the equals function in order to change how
the == operator behaves.

Suppose, for example, that you have a class named Recipe that
lets you create objects that hold recipe data. In this situation, you
might consider two Recipe objects to be equal (or equivalent)
if they hold details of the same recipe. So if the Recipe
class is defined as having two properties named title and
isVegetarian using code like this:

These two objects have matching
property values, so we might want
the == operator to evaluate to true.

196 Chapter 7

data classes

A data class lets you create data objects
A data class is one that lets you create objects whose main
purpose is to store data. It includes features that are helpful
when you’re dealing with data, such as a new implementation
of the equals function that checks whether two data objects
hold the same property values. This is because if two objects
store the same data, they can be considered equal.

You define a data class by prefixing a normal class definition
with the data keyword. The following code, for example,
changes the Recipe class we created earlier into a data class:

data class Recipe(val title: String, val isVegetarian: Boolean) {

}

val r1 = Recipe("Chicken Bhuna", false)

Data classes automatically override their equals function
in order to change the behavior of the == operator so that
it checks for object equality based on the values of
each object’s properties. If, for example, you create
two Recipe objects that hold identical property values,
comparing the two objects with the == operator will evaluate
to true, because they hold the same data:

In addition to providing a new
implementation of the equals
function it inherits from the Any
superclass, data classes also override the
hashCode and toString functions.
Let’s take a look at how these are
implemented.

How to create objects from a data class
You create objects from a data class in the same way that you
create objects from a normal class: by calling its constructor.
The following code, for example, creates a new Recipe data
object, and assigns it to a new variable named r1:

val r1 = Recipe("Chicken Bhuna", false)

val r2 = Recipe("Chicken Bhuna", false)

//r1 == r2 is true

r1 and r2 are
considered “equal” as
the two Recipe objects
hold the same data.

(Data)
Recipe

title
isVegetarian

title: “Chicken Bhuna”
isVegetarian: false

RecipeREF

r1

val Recipe
title: “Chicken Bhuna”
isVegetarian: false

RecipeREF

r2

val Recipe

The data prefix
turns a normal class
into a data class.

you are here 4 197

data classes

Data classes override their inherited behavior

The equals function compares property values
When you define a data class, its equals function (and therefore the
== operator) continues to return true if it’s used to test the same object.
But it also returns true if the objects have identical values for the
properties defined in its constructor:

Equal objects return the same hashCode value
If two data objects are considered equal (in other words, they have
identical property values), the hashCode function returns the same
value for each object:

val r1 = Recipe("Chicken Bhuna", false)

val r2 = Recipe("Chicken Bhuna", false)

println(r1.equals(r2))

true

toString returns the value of each property
Finally, the toString function no longer returns the name of the class
followed by a number. Instead, it returns a useful String that contains
the value of each property that’s defined in the data class constructor:

val r1 = Recipe("Chicken Bhuna", false)

val r2 = Recipe("Chicken Bhuna", false)

println(r1.hashCode())

println(r2.hashCode())

241131113
241131113

val r1 = Recipe("Chicken Bhuna", false)

println(r1.toString())

Recipe(title=Chicken Bhuna, isVegetarian=false)

You can think of a hash code
as being like a label on a bucket.
Objects that are considered
equal are put in the same bucket,
and the hash code tells the
system where to look for them.
Equal objects MUST have the
same hash code value as the
system depends on this. You’ll
find out more about this in
Chapter 9.

A data class needs its objects to play well with data, so it
automatically provides the following implementations for
the equals, hashCode and toString functions it
inherits from the Any superclass:

In addition to overriding the functions it inherits from the
Any superclass, a data class also provides extra features that
help you deal with data more effectively, such as the ability
to copy a data object. Let’s see how this works.

Data objects
are considered
equal if their
properties hold
the same values.

198 Chapter 7

copy function

Copy data objects using the copy function

val r1 = Recipe("Thai Curry", false)

val r1 = Recipe("Thai Curry", false)

val r2 = r1.copy(isVegetarian = true)

REF

r1

val Recipe
Recipe

title: “Thai Curry”
isVegetarian: false

If you wanted to create a copy of the Recipe object, altering
the value of its isVegetarian property to true, you
could do so using the copy function like so:

REF

r2

val Recipe
Recipe

title: “Thai Curry”
isVegetarian: true

It’s like saying “take a copy of r1’s object, change the value of
its isVegetarian property to true, and assign the new object to a
variable named r2”. It creates a new copy of the object, and
leaves the original object intact.

As well as the copy function, data classes also provide
a set of functions that allow you to split a data object
into its component property values in a process called
destructuring. Let’s see how.

If you want to create a new copy of a data object, altering
some of its properties but leaving the rest intact, you can do
so using the copy function. To use, you call the function
on the object you want to copy, passing in the names of any
properties you wish to alter along with their new values.

Suppose that you have a Recipe object named r1 that’s
defined using code like this:

REF

r1

val Recipe
Recipe

title: “Thai Curry”
isVegetarian: false

The copy function lets
you copy a data object,
altering some of its
properties. The original
object remains intact.

This copies r1’s object, changing the value of the isVegetarian property to true.

you are here 4 199

data classes

Data classes define componentN functions...
When you define a data class, the compiler automatically adds
a set of functions to the class that you can use as an alternate
way of accessing its object’s property values. These are known as
componentN functions, where N represents the number of the
property whose value you wish to retrieve (in order of declaration).

To see how componentN functions work, suppose that you have
the following Recipe object:

val r = Recipe("Chicken Bhuna", false)

If you wanted to retrieve the value of the object’s first property
(its title property), you could do this by calling the object’s
component1() function like this:

val title = r.component1()

This does the same thing as the code:

val title = r.title

but it’s more generic. So why is it so useful for a data class to have
generic ComponentN functions?

...that let you destructure data objects
Having generic componentN functions is useful as it provides a
quick way of splitting a data object into its component property
values, or destructuring it.

Suppose, for example, that you wanted to take the property values
of a Recipe object, and assign each property value to a separate
variable. Instead of using the code:

val title = r.component1()

val vegetarian = r.component2()

to explicitly process each property in turn, you can use the
following code instead:

The above code is like saying “create two variables, title
and vegetarian, and assign one of r’s property values to
each one.” It does the same thing as the code:

val title = r.title

val vegetarian = r.isVegetarian

val (title, vegetarian) = r

but it’s more concise.

title: “Chicken Bhuna”
isVegetarian: false

RecipeREF

r

val Recipe

“Chicken Bhuna”

StringREF

title

val String

“Chicken Bhuna”

StringREF

title

val String false

BooleanREF

vegetarian

val Boolean

Destructuring a data
object splits it into
its component parts.

component1() returns
the reference held by
the first property
defined in the data
class constructor.

Assigns the value
of r’s first
property to title,
and the value
of its second
property to
vegetarian.

200 Chapter 7

== vs. ===

Data classes sound great, but I was
wondering... Is there a definitive way of
checking whether two variables refer to the same
underlying object? It sounds like you can’t rely on
the == operator because its behavior depends on
how the equals function has been implemented,
and this may vary from class to class.

The === operator always lets you check
whether two variables refer to the same
underlying object.
If you want to check whether two variables refer to the same
underlying object, irrespective of their type, you should use
the === operator instead of ==. This is because the === operator
always evaluates to true if (and only if) the two variables hold a
reference to the same underlying object. This means that if, for
example, you have two variables named x and y, and the code:

x === y

evaluates to true, then you know that the x and y variables
must refer to the same underlying object:

REF

x

REF

y

Unlike the == operator, the === operator doesn’t rely on the
equals function for its behavior. The === operator always
behaves in this way irrespective of the type of class.

Now that you’ve seen how to create and use data classes, let’s
create a project for the Recipe code.

== checks for
object equivalence.

=== checks for
object identity.

you are here 4 201

data classes

Create the Recipes project
Create a new Kotlin project that targets the JVM, and name the
project “Recipes”. Then create a new Kotlin file named Recipes.kt
by highlighting the src folder, clicking on the File menu and
choosing New → Kotlin File/Class. When prompted, name the
file “Recipes”, and choose File from the Kind option.

We’ll add a new data class named Recipe to the project, and
create some Recipe data objects. Here’s the code—update your
version of Recipes.kt to match ours:

data class Recipe(val title: String, val isVegetarian: Boolean)

fun main(args: Array<String>) {

 val r1 = Recipe("Thai Curry", false)

 val r2 = Recipe("Thai Curry", false)

 val r3 = r1.copy(title = "Chicken Bhuna")

 println("r1 hash code: ${r1.hashCode()}")

 println("r2 hash code: ${r2.hashCode()}")

 println("r3 hash code: ${r3.hashCode()}")

 println("r1 toString: ${r1.toString()}")

 println("r1 == r2? ${r1 == r2}")

 println("r1 === r2? ${r1 === r2}")

 println("r1 == r3? ${r1 == r3}")

 val (title, vegetarian) = r1

 println("title is $title and vegetarian is $vegetarian")

}

src

Recipes.kt

Recipes

(Data)
Recipe

title
isVegetarian

Test drive
When you run your code, the following text gets printed in the IDE’s
output window:

r1 hash code: -135497891
r2 hash code: -135497891
r3 hash code: 241131113
r1 toString: Recipe(title=Thai Curry, isVegetarian=false)
r1 == r2? true
r1 === r2? false
r1 == r3? false
title is Thai Curry and vegetarian is false

We’ve omitted the {}’s as our data class has no body.

Create a copy of r1,
altering its title property.

Destructure r1.

r1 == r2 is true because their objects have matching values.
As they refer to separate objects, r1 === r2 is false.

202 Chapter 7

no dumb questions

Q: You said that every class is a
subclass of Any. I thought that each
class could only have one direct
superclass?

A: Behind the scenes, the Any
class sits at the root of every superclass
hierarchy, so every class you create is
either a direct or indirect subclass of
Any. This means that every class IS-A
type of Any, and inherits the functions
it defines: equals, hashCode and
toString.

Q: I see. And you say that data
classes automatically override these
functions?

A: Yes. When you define a data
class, the compiler secretly overrides
the equals, hashCode and
toString functions the class inherits
so that they’re more appropriate for objects
whose main purpose is to hold data.

Q: Can I override these functions
without creating a data class?

A: Yes, in exactly the same way that you
override functions from any other class:
by providing an implementation for the
functions in the body of your class.

Q: Are there any rules I have to
follow?

A: The main thing is that if you override
the equals function, you should
override the hashCode function as well.

If two objects are considered equal, they
must have the same hash code value.
Some collections use hash codes as an
efficient way of storing objects, and the
system assumes that if two objects are
equal, they also have the same hash code.
You’ll find out more about this in Chapter 9.

Q: That sounds complicated.

A: It’s certainly easier to create a data
class, and using a data class means
that you’ll have cleaner code that’s
more concise. If you want to override
the equals, hashCode and
toString functions yourself, however,
you can get the IDE to generate most of
the code for you.

To get the IDE to generate implementations
for the equals, hashCode or
toString functions, start by writing
the basic class definition, including any
properties. Next, make sure that your text
cursor is in the class, go to the Code menu,
and select the Generate option. Finally,
choose the function you want to generate
code for.

Q: I’ve noticed that you’ve only
defined data class properties in the
constructor using val. Can I define
them using var as well?

A: You can, but we’d strongly encourage
you to make your data classes immutable
by only creating val properties. Doing so
means that once a data object has been
created, it can’t be updated, so you don’t
have to worry about some other code
changing any of its properties. Only having
val properties is also a requirement of
certain data structures.

Q: Why do data classes include a
copy function?

A: Data classes are usually defined
using val properties so that they’re
immutable. Having a copy function is a
good alternative to having data objects that
can be modified as it lets you easily create
another version of the object with modified
property values.

Q: Can I declare that a data class is
abstract? Or open?

A: No. Data classes can’t be declared
abstract or open, so you can’t use a data
class as a superclass. Data classes can
implement interfaces, however, and from
Kotlin 1.1, they can also inherit from other
classes.

you are here 4 203

data classes

 Mixed
Messages

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. All the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

Match each
candidate
with one of
the possible
outputs.

data class Movie(val title: String, val year: String)

class Song(val title: String, val artist: String)

fun main(args: Array<String>) {

 var m1 = Movie("Black Panther", "2018")

 var m2 = Movie("Jurassic World", "2015")

 var m3 = Movie("Jurassic World", "2015")

 var s1 = Song("Love Cats", "The Cure")

 var s2 = Song("Wild Horses", "The Rolling Stones")

 var s3 = Song("Love Cats", "The Cure")

}

println(m2 == m3)

Candidates: Possible output:

println(s1 == s3)

var m5 = m1.copy()

println(m1 === m5)

The candidate
code goes here.

var m4 = m1.copy()

println(m1 == m4)

true

false

var m6 = m2

m2 = m3

println(m3 == m6)

204 Chapter 7

mixed messages solution

 Mixed
Messages
Solution

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. All the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

data class Movie(val title: String, val year: String)

class Song(val title: String, val artist: String)

fun main(args: Array<String>) {

 var m1 = Movie("Black Panther", "2018")

 var m2 = Movie("Jurassic World", "2015")

 var m3 = Movie("Jurassic World", "2015")

 var s1 = Song("Love Cats", "The Cure")

 var s2 = Song("Wild Horses", "The Rolling Stones")

 var s3 = Song("Love Cats", "The Cure")

}

println(m2 == m3)

Candidates: Possible output:

println(s1 == s3)

var m5 = m1.copy()

println(m1 === m5)

The candidate
code goes here.

var m4 = m1.copy()

println(m1 == m4)

true

false

var m6 = m2

m2 = m3

println(m3 == m6)

m2 == m3 is
true because
m1 and m2 are
data objects.

m4 and m1
have matching
property values,
so m1 == m4
is true.

m1 and m5 are
separate objects,
so m1 === m5
is false.

you are here 4 205

data classes

Generated functions only use
properties defined in the constructor
So far, you’ve seen how to define a data class, and add properties to its
constructor. The following code, for example, defines a data class named
Recipe with properties named title and isVegetarian:

data class Recipe(val title: String, val isVegetarian: Boolean) {

}

Just like any other sort of class, you can also add properties and functions
to a data class by including them in the class body. But there’s a Big
Catch.

When the compiler generates implementations for data class functions,
such as overriding the equals function and creating a copy function,
it only includes the properties defined in the primary
constructor. So if you add properties to a data class by defining them
in the class body, they won’t be included in any of the generated functions.

Suppose, for example, that you add a new mainIngredient property
to the Recipe data class body like this:

data class Recipe(val title: String, val isVegetarian: Boolean) {

 var mainIngredient = ""

}

As the mainIngredient property has been defined in the
main body of the class instead of the constructor, it’s ignored by
functions such as equals. This means that if you create two
Recipe objects using code like this:

val r1 = Recipe("Thai curry", false)

r1.mainIngredient = "Chicken"

val r2 = Recipe("Thai curry", false)

r2.mainIngredient = "Duck"

println(r1 == r2) // evaluates to true

the == operator will only look at the title and
isVegetarian properties to determine if the two objects
are equal because only these properties have been defined in
the data class constructor. If the two objects have different
values for the mainIngredient property (as in the above
example), the equals function won’t look at this property
when considering whether two objects are equal.

But what if your data class has many properties that you want
to be included in the functions generated by the data class?

(Data)
Recipe

title
isVegetarian
mainIngredient

title: “Thai Curry”
isVegetarian: false
mainIngredient: “Chicken”

RecipeREF

r1

val Recipe title: “Thai Curry”
isVegetarian: false
mainIngredient: “Duck”

RecipeREF

r2

val Recipe

(Data)
Recipe

title
isVegetarian

r1 == r2 is true because r1 and r2 have matching title and isVegetarian properties. The == operator ignores the mainIngredient property because it hasn’t been
defined in the constructor.

206 Chapter 7

default parameter values

Initializing many properties
can lead to cumbersome code
As you’ve just learned, any properties that you want to be included
in the functions generated by a data class must be defined in its
primary constructor. But if you have many such properties, your
code can quickly become unwieldy. Each time you create a new
object, you need to specify a value for each of its properties, so if
you have a Recipe data class that looks like this:

data class Recipe(val title: String,

 val mainIngredient: String,

 val isVegetarian: Boolean,

 val difficulty: String) {

}

your code to create a Recipe object will look like this:

val r = Recipe("Thai curry", "Chicken", false, "Easy")

This may not seem too bad if your data class has a small
number of properties, but imagine if you needed to specify the
values of 10, 20, or even 50 properties each time you needed
to create a new object. Your code would quickly become much
harder to manage.

So what can you do in this sort of situation?

Default parameter values to the rescue!
If your constructor defines many properties, you can simplify
calls to it by assigning a default value or expression to one
or more property definitions in the constructor. Here’s
how, for example, you would assign default values to the
isVegetarian and difficulty properties in the
Recipe class constructor:

data class Recipe(val title: String,

 val mainIngredient: String,

 val isVegetarian: Boolean = false,

 val difficulty: String = "Easy") {

}

Let’s see what difference this makes to the way in which we
create new Recipe objects.

Every data class must have
a primary constructor,
which must define at
least one parameter.
Each parameter must be
prefixed with val or var.

(Data)
Recipe

title
mainIngredient
isVegetarian
difficulty

(Data)
Recipe

title
mainIngredient
isVegetarian
difficulty

isVegetarian has a
default value of false.

difficulty has
a default value
of “Easy”.

you are here 4 207

data classes

How to use a constructor’s default values
When you have a constructor that uses default values, there
are two main ways of calling it: by passing values in order of
declaration, and by using named arguments. Let’s see how both
approaches work.

1. Passing values in order of declaration
This approach is the same as the one you’ve already been using,
except that you don’t need to provide values for any arguments
that already have default values.

Suppose, for example, that we want to create a Spaghetti
Bolognese Recipe object for a recipe that’s not vegetarian and is
easy to make. We can create this object by specifying the values of
the first two properties in the constructor using the following code:

val r = Recipe("Spaghetti Bolognese", "Beef")

The above code assigns values of “Spaghetti Bolognese”
and “Beef ” to the title and mainIngredient
properties. It then uses the default values specified in the
constructor for the remaining properties.

You can use this approach to override property values if
you don’t want to use the default values. If you wanted
to create a Recipe object for a vegetarian version of
Spaghetti Bolognese, for example, you could use the
following:

val r = Recipe("Spaghetti Bolognese", "Tofu", true)

This assigns values of “Spaghetti Bolognese”, “Tofu” and
true to the first three properties defined in the Recipe
constructor, and uses the default value of “Easy” for the
final difficulty property.

Note that in order to use this approach, you must pass
values in the order in which they are declared. You can’t,
say, omit the value of the isVegetarian property
if you want to override the value of the difficulty
property that comes after it. The following code, for
example, is invalid:

val r = Recipe("Spaghetti Bolognese", "Beef", "Moderate")

Now that you’ve seen how passing values in order of declaration
works, let’s look at how to use named arguments instead.

title: “Spaghetti Bolognese”
mainIngredient: "Beef"
isVegetarian: false
difficulty: “Easy”

RecipeREF

r

val Recipe

title: “Spaghetti Bolognese”
mainIngredient: "Tofu"
isVegetarian: true
difficulty: “Easy”

RecipeREF

r

val Recipe

We’ve not specified values for the
isVegetarian and difficulty property values,
so the object uses their default values.

Assigns isVegetarian a value of
true, and uses the default value
for the difficulty property.

This code won’t compile,
as the compiler expects
the third argument to
be a Boolean.

208 Chapter 7

named arguments

2. Using named arguments
Calling a constructor using named arguments lets you explicitly
state which property should be assigned which value, without
having to stick to the order in which properties are defined.

Suppose, for example, that we want to create a Spaghetti
Bolognese Recipe object that specifies the values of the
title and mainIngredient properties, just as we did
earlier. To do this using named arguments, you would use the
following code:

val r = Recipe(title = "Spaghetti Bolognese",

 mainIngredient = "Beef")

The above code assigns values of “Spaghetti Bolognese”
and “Beef ” to the title and mainIngredient
properties. It then uses the default values specified in
the constructor for the remaining properties

Note that because we’re using named arguments, the
order in which we specify the arguments doesn’t matter.
The following code, for example, does the same thing as
the code above, and is equally valid:

val r = Recipe(mainIngredient = "Beef",

 title = "Spaghetti Bolognese")

The big advantage of using named arguments is
that you only need to include arguments that have
no default value, or whose default value you want to
override. If you wanted to override the value of the
difficulty property, for example, you could do so
using code like this:

val r = Recipe(title = "Spaghetti Bolognese",

 mainIngredient = "Beef",

 difficulty = "Moderate")

Using default parameter values and named arguments
doesn’t just apply to data class constructors; you can also use
them with normal class constructors or functions. We’ll show
you how to use default values with functions after a small
diversion.

You must pass a value
for every argument that
doesn’t have a default
value assigned to it or
your code won’t compile.

title: “Spaghetti Bolognese”
mainIngredient: "Beef"
isVegetarian: false
difficulty: “Easy”

RecipeREF

r

val Recipe

title: “Spaghetti Bolognese”
mainIngredient: "Beef"
isVegetarian: false
difficulty: “Moderate”

RecipeREF

r

val Recipe

This specifies the name of each property,
and the value it should have.

With named arguments, the order in
which you specify the value of each
property doesn’t matter.

you are here 4 209

data classes

Secondary Constructors
Just as in other languages such as Java, classes in Kotlin let you
define one or more secondary constructors. Secondary
constructors are extra constructors that allow you to pass
different parameter combinations to create objects. Most of the
time, however, you don’t need to use them as having default
parameter values is so flexible.

Here’s an example of a class named Mushroom that defines
two constructors—a primary constructor defined in the class
header, and a secondary constructor defined in the class body:

Even though secondary constructors
aren’t used all that much in
Kotlinville, we thought we’d give
you a quick overview so that you
know what they look like.

class Mushroom(val size: Int, val isMagic: Boolean) {

 constructor(isMagic_param: Boolean) : this(0, isMagic_param) {

 //Code that runs when the secondary constructor is called

 }

}

Each secondary constructor starts with the constructor
keyword, and is followed by the set of parameters used to call it.
So in the above example, the code:

constructor(isMagic_param: Boolean)

creates a secondary constructor with a Boolean parameter.

If the class has a primary constructor, each secondary constructor
must delegate to it. The following constructor, for example,
calls the Mushroom class primary constructor (using the this
keyword), passing it a value of 0 for the size property, and the
value of the parameter isMagic_param for the isMagic
parameter:

constructor(isMagic_param: Boolean) : this(0, isMagic_param)

You can define extra code that the secondary constructor should
run when it’s called in the secondary constructor’s body:

constructor(isMagic_param: Boolean) : this(0, isMagic_param) {

 //Code that runs when the secondary constructor is called

}

Finally, once you’ve defined a secondary constructor,
you can use it to create objects using code like this:

val m = Mushroom(true)

size: 0
isMagic: true

Mushroom

REF

m

val Mushroom

Primary constructor.

Secondary
constructor.

This calls the primary constructor of
the current class. It passes the primary
constructor a value of 0 for the size,
and the value of isMagic_param for the
isMagic parameter.

210 Chapter 7

default values

Functions can use default values too
Suppose we have a function named findRecipes that
searches for recipes based on a set of criteria:

fun findRecipes(title: String,

 ingredient: String,

 isVegetarian: Boolean,

 difficulty: String) : Array<Recipe> {

 //Code to find recipes

}

Each time we call the function, we must pass it values for all four
parameters in order for the code to compile like this:

So if we wanted to pass the function a value of “Thai curry” for
the title parameter and accept the default values for the rest,
we could use the code:

We can make the function more flexible by assigning each
parameter a default value. Doing so means that we no longer
have to pass all four values to the function in order for it to
compile, only the ones that we want to override:

val recipes = findRecipes("Thai curry", "", false, "")

And if we wanted to pass the parameter value using named
arguments, we could use the following instead:

fun findRecipes(title: String = "",

 ingredient: String = "",

 isVegetarian: Boolean = false,

 difficulty: String = "") : Array<Recipe> {

 //Code to find recipes

}

val recipes = findRecipes("Thai curry")

val recipes = findRecipes(title = "Thai curry")

Using default values means that you can write functions that are
much more flexible. But there are times when you might want to
write a new version of the function instead by overloading it.

This is the same function as the
one above, but this time, we’ve given
each parameter a default value.

Both of these call the findRecipes
function, using a value of “Thai
curry” for the title argument.

you are here 4 211

data classes

Overloading a function
Function overloading is when you have two or more functions with
the same name but with different argument lists.

Suppose you have a function named addNumbers that looks like this:

An overloaded
function is just a
different function
that happens to
have the same
function name with
different arguments.
An overloaded
function is NOT
the same as an
overridden function.

fun addNumbers(a: Int, b: Int) : Int {

 return a + b

}

The function has two Int arguments, so you can only pass Int
values to it. If you wanted to use it to add together two Doubles, you
would have to convert these values to Ints before passing them to the
function.

You can, however, make life much easier for the caller by overloading
the function with a version that takes Doubles instead, like so:

fun addNumbers(a: Double, b: Double) : Double {

 return a + b

}

addNumbers(1.6, 7.3)

This means that if you call the addNumbers function using the code:

addNumbers(2, 5)

then the system will spot that the parameters 2 and 5 are Ints, and call
the Int version of the function. If, however, you call the addNumbers
function using:

then the system will call the Double version of the function instead, as
the parameters are both Doubles.

The return types can be different.
You’re free to change the return type of an overloaded function, so long as
the argument lists are different.

¥

You can’t change ONLY the return type.
If only the return type is different, it’s not a valid overload—the compiler
will assume you’re trying to override the function. And even that won’t be
legal unless the return type is a subtype of the return type declared in the
superclass. To overload a function, you MUST change the argument list,
although you can change the return type to anything.

¥

Dos and don’ts for function overloading:

This is an overloaded version of the same
function that uses Doubles instead of Ints.

212 Chapter 7

update code

Let’s update the Recipes project
Now that you’ve learned how to use default parameter values
and overload functions, let’s update the code in the Recipes
project.

Update your version of the code in file Recipes.kt so that it
matches ours below (our changes are in bold):

data class Recipe(val title: String,

 val mainIngredient: String,

 val isVegetarian: Boolean = false,

 val difficulty: String = "Easy") {

}

class Mushroom(val size: Int, val isMagic: Boolean) {

 constructor(isMagic_param: Boolean) : this(0, isMagic_param) {

 //Code that runs when the secondary constructor is called

 }

}

fun findRecipes(title: String = "",

 ingredient: String = "",

 isVegetarian: Boolean = false,

 difficulty: String = "") : Array<Recipe> {

 //Code to find recipes

 return arrayOf(Recipe(title, ingredient, isVegetarian, difficulty))

}

fun addNumbers(a: Int, b: Int) : Int {

 return a + b

}

fun addNumbers(a: Double, b: Double) : Double {

 return a + b

}

src

Recipes.kt

Recipes

Mushroom

size
isMagic

(Data)
Recipe

title
mainIngredient
isVegetarian
difficulty

Add new mainIngredient
and difficulty properties.

Assign default
values to the
isVegetarian
and difficulty
properties.This is an example of a class with a secondary

consructor, just so that you can see one in action.

This is an example of a function that uses default parameter values.

These are overloaded functions.

you are here 4 213

data classes

The code continued...
fun main(args: Array<String>) {

 val r1 = Recipe("Thai Curry", "Chicken" false)

 val r2 = Recipe(title = "Thai Curry", mainIngredient = "Chicken" false)

 val r3 = r1.copy(title = "Chicken Bhuna")

 println("r1 hash code: ${r1.hashCode()}")

 println("r2 hash code: ${r2.hashCode()}")

 println("r3 hash code: ${r3.hashCode()}")

 println("r1 toString: ${r1.toString()}")

 println("r1 == r2? ${r1 == r2}")

 println("r1 === r2? ${r1 === r2}")

 println("r1 == r3? ${r1 == r3}")

 val (title, mainIngredient, vegetarian, difficulty) = r1

 println("title is $title and vegetarian is $vegetarian")

 val m1 = Mushroom(6, false)

 println("m1 size is ${m1.size} and isMagic is ${m1.isMagic}")

 val m2 = Mushroom(true)

 println("m2 size is ${m2.size} and isMagic is ${m2.isMagic}")

 println(addNumbers(2, 5))

 println(addNumbers(1.6, 7.3))

}

Test drive
When you run your code, the following text gets printed in the IDE’s
output window:

r1 hash code: 295805076
r2 hash code: 295805076
r3 hash code: 1459025056
r1 toString: Recipe(title=Thai Curry, mainIngredient=Chicken, isVegetarian=false, difficulty=Easy)
r1 == r2? true
r1 === r2? false
r1 == r3? false
title is Thai Curry and vegetarian is false
m1 size is 6 and isMagic is false
m2 size is 0 and isMagic is true
7
8.9

src

Recipes.kt

Recipes

We’ve changed the Recipe primary constructor, so we need
to change how it’s called so that the code compiles.

Include Recipe’s new properties
when we destructure r1.

Create a Mushroom by calling its primary constructor.

Create a Mushroom by calling its secondary constructor.

Call the Int version of addNumbers.

Call the Double version of addNumbers.

214 Chapter 7

no dumb questions

Q: Can a data class include functions?

A: Yes. You define data class functions in exactly the same way
that you define functions in a non-data class: by adding them to the
class body.

Q: Default parameter values look really flexible.

A: They are! You can use them in class constructors (including
data class constructors) and functions, and you can even have a
default parameter value that’s an expression. This means that you
can write code that’s flexible, but very concise.

Q: You said that using default parameter values mostly
gets around the need for writing secondary constructors. Are
there any situations where I may still need them?

A: The most common situation is if you need to extend a class
in a framework (such as Android) that has multiple constructors.

You can find out more about using secondary constructors in
Kotlin’s online documentation:

https://kotlinlang.org/docs/reference/classes.html

Q: I want Java programmers to be able to use my Kotlin
classes, but Java has no concept of default parameter values.
Can I still use default parameter values in my Kotlin classes?

A: You can. When you call a Kotlin constructor or function from
Java, just make sure that the Java code specifies a value for each
parameter, even if it has a default parameter value.

If you plan on making a lot of Java calls to your Kotlin constructor
or function, an alternative approach is to annotate each function or
constructor that uses default parameter values with
@JvmOverloads. This tells the compiler to automatically
create overloaded versions that can more easily be called from
Java.

Here’s an example of how you use @JvmOverloads with a
function:

@JvmOverloads fun myFun(str: String = ""){
 //Function code goes here
}

And here's an example of how you use it with a class that has a
primary constructor:

class Foo @JvmOverloads constructor(i: Int = 0){
 //Class code coes here
}

Note that in order to annotate the primary constructor with
@JvmOverloads, you must also prefix the constructor with
the constructor keyword. Most of the time, this keyword is
optional.

you are here 4 215

data classes

BE the Compiler
Here are two complete Kotlin files.
Your job is to play like you’re the
compiler and determine whether

each of these files will
compile. If they won’t
compile, how would you
fix them?

data class Student(val firstName: String, val lastName: String,

 val house: String, val year: Int = 1)

fun main(args: Array<String>) {

 val s1 = Student("Ron", "Weasley", "Gryffindor")

 val s2 = Student("Draco", "Malfoy", house = "Slytherin")

 val s3 = s1.copy(firstName = "Fred", year = 3)

 val s4 = s3.copy(firstName = "George")

 val array = arrayOf(s1, s2, s3, s4)

 for ((firstName, lastName, house, year) in array) {

 println("$firstName $lastName is in $house year $year")

 }

}

data class Student(val firstName: String, val lastName: String,

 val house: String, val year: Int = 1)

fun main(args: Array<String>) {

 val s1 = Student("Ron", "Weasley", "Gryffindor")

 val s2 = Student(lastName = "Malfoy", firstName = "Draco", year = 1)

 val s3 = s1.copy(firstName = "Fred")

 s3.year = 3

 val s4 = s3.copy(firstName = "George")

 val array = arrayOf(s1, s2, s3, s4)

 for (s in array) {

 println("${s.firstName} ${s.lastName} is in ${s.house} year ${s.year}")

 }

}

216 Chapter 7

be the compiler solution

BE the Compiler Solution
Here are two complete Kotlin files.
Your job is to play like you’re the
compiler and determine whether

each of these files will
compile. If they won’t
compile, how would you
fix them?

data class Student(val firstName: String, val lastName: String,

 val house: String, val year: Int = 1)

fun main(args: Array<String>) {

 val s1 = Student("Ron", "Weasley", "Gryffindor")

 val s2 = Student("Draco", "Malfoy", house = "Slytherin")

 val s3 = s1.copy(firstName = "Fred", year = 3)

 val s4 = s3.copy(firstName = "George")

 val array = arrayOf(s1, s2, s3, s4)

 for ((firstName, lastName, house, year) in array) {

 println("$firstName $lastName is in $house year $year")

 }

}

data class Student(val firstName: String, val lastName: String,

 val house: String, val year: Int = 1)

fun main(args: Array<String>) {

 val s1 = Student("Ron", "Weasley", "Gryffindor")

 val s2 = Student(lastName = "Malfoy", firstName = "Draco", year = 1, house = "Slytherin")
 val s3 = s1.copy(firstName = "Fred", year = 3)
 s3.year = 3

 val s4 = s3.copy(firstName = "George")

 val array = arrayOf(s1, s2, s3, s4)

 for (s in array) {

 println("${s.firstName} ${s.lastName} is in ${s.house} year ${s.year}")

 }

}

This will compile and run
successfully. It prints out
the firstName, lastName,
house and year property
values for each Student.

This line destructures each
Student object in the array.

This won’t compile as a value is required for s2's
house property, and as year is defined using val,
its value can only be set when it's initialized.

you are here 4 217

data classes
CHAPT

ER 7

Your Kotlin Toolbox

You’ve got Chapter 7 under
your belt and now you’ve

added data classes and default
parameter values to your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

 � The behavior of the == operator is determined by
the implementation of the equals function.

 � Every class inherits an equals, hashCode
and toString function from the Any class
because every class is a subclass of Any. These
functions can be overridden.

 � The equals function tells you if two objects are
considered “equal”. By default, it returns true if
it’s used to test the same underlying object, and
false if it’s used to test separate objects.

 � The === operator lets you check whether two
variables refer to the same underlying object
irrespective of the object’s type.

 � A data class lets you create objects whose
main purpose is to store data. It automatically
overrides the equals, hashCode and
toString functions, and includes copy and
componentN functions.

 � The data class equals function checks for
equality by looking at each object’s property
values. If two data objects hold the same data,
the equals function returns true.

 � The copy function lets you create a new copy of
a data object, altering some of its properties. The
original object remains intact.

 � componentN functions let you destructure
data objects into their component property
values.

 � A data class generates its functions by
considering the properties defined in its primary
constructor.

 � Constructors and functions can have default
parameter values. You can call a constructor or
function by passing parameter values in order of
declaration or by using named arguments.

 � Classes can have secondary constructors.

 � An overloaded function is a different function
that happens to have the same function name.
An overloaded function must have different
arguments, but may have a different return type.

Rules for data c
lasses

* There must be a primary constructo
r.

* The primary constructo
r must define

one or more parameters.

* Each parameter must be marked as

val or var.

*Data classes must not be ope
n or

abstract.

this is a new chapter 219

nulls and exceptions8

Safe and Sound

Everybody wants to write code that’s safe.
And the great news is that Kotlin was designed with code-safety at its heart. We’ll start by

showing you how Kotlin’s use of nullable types means that you’ll hardly ever experience

a NullPointerException during your entire stay in Kotlinville. You’ll discover how to make

safe calls, and how Kotlin’s Elvis operator stops you being all shook up. And when we’re

done with nulls, you’ll find out how to throw and catch exceptions like a pro.

Oh, Elvis! I know my
code is safe with you.

220 Chapter 8

removing references

How do you remove object
references from variables?
As you already know, if you want to define a new Wolf variable
and assign a Wolf object reference to it, you can do so using
code like this:

var w = Wolf()

The compiler spots that you want to assign a Wolf object to the
w variable, so it infers that the variable must have a type of Wolf:

Once the compiler knows the variable’s type, it ensures that it
can only hold references to Wolf objects, including any Wolf
subtypes. So if the variable is defined using var, you can update
its value so that it holds a reference to an entirely different Wolf
object using, for example:

w = Wolf()

But what if you want to update the variable so that it holds a
reference to no object at all? How do you remove an object
reference from a variable once one has been assigned?

REF

w

var Wolf

Wolf

REF

w

var Wolf

Wolf

Wolf

As you’re assigning a Wolf object to a
variable, the compiler infers that the
variable’s type should also be Wolf.

Remove the reference
to this Wolf object...

...and assign a reference
to this one instead.

you are here 4 221

nulls and exceptions

Remove an object reference using null

w = null

A null value means that the variable doesn’t refer to an object:
the variable still exists, but it doesn’t point to anything

But there’s a Big Catch. By default, types in Kotlin won’t accept null
values. If you want a variable to hold null values, you
must explicitly declare that its type is nullable.

If you want to remove a reference to an object from a variable,
you can do so by assigning it a value of null:

Why have nullable types?
A nullable type is one that allows null values. Unlike other
programming languages, Kotlin tracks values that can be null to
stop you from performing invalid actions on them. Performing
invalid actions on null values is the most common cause of
runtime problems in other languages such as Java, and can cause
your application to crash in a heap when you least expect it. These
problems, however, rarely happen in Kotlin because of its clever
use of nullable types.

You declare that a type is nullable by adding a question mark (?) to
the end of the type. To create a nullable Wolf variable and assign
a new Wolf object to it, for example, you would use the code:

If you try to perform an invalid operation on
a null value in Java, you’ll be faced with a big
fat NullPointerException. An exception is a
warning that tells you something exceptionally
bad has just happened. We’ll look at exceptions
in more detail later in the chapter.

var w: Wolf? = Wolf()

And if you wanted to remove the Wolf reference from the
variable, you would use:

w = null

The Meaning of Null
When you set a variable to
null, it’s like deprogramming
a remote control. You have a
remote control (the variable),
but no TV at the other end (the
object).

A null reference has bits representing
“null”, but we don’t know or care
what those bits are. The system
automatically handles this for us.

Wolf

REF

w

var Wolf?

Wolf

REF

w

var Wolf?

So where can you use nullable types?

w is a Wolf?, which means it can hold references to Wolf objects, and null.

Setting w to null
removes the reference
to the Wolf object.

A nullable type is one
that can hold null
values in addition to
its base type. A Duck?
variable, for example,
will accept Duck
objects and null.

222 Chapter 8

where to use nullable types

You can use a nullable type everywhere
you can use a non-nullable type
Every type you define can be turned into a nullable version of that type
by simply adding a ? to the end of it. You can use nullable types in the
same places that you would use plain old non-nullable types:

var str: String? = "Pizza"

Note that variables and properties can be instantiated with null. The
following code, for example, compiles and prints the text “null”:

var str: String? = null

println(str)

fun printInt(x: Int?) {

 println(x)

}

When you define a function (or constructor) with a nullable parameter,
you must still provide a value for that parameter when you call the
function, even if that value is null. Just like with non-nullable parameter
types, you can’t omit a parameter unless it’s been assigned a default value.

fun result() : Long? {

 //Code to calculate and return a Long?

}

When defining variables and properties.
Any variable or property can be nullable, but you must explicitly define
it as such by declaring its type, including the ?. The compiler is unable
to infer when a type is nullable, and by default, it will always create a
non-nullable type. So if you want to create a nullable String variable
named str and instantiate it with a value of “Pizza”, you must declare
that it has a type of String? like this:

¥

When defining parameters.
You can declare any function or constructor parameter type as nullable.
The following code, for example, defines a function named printInt
which takes a parameter of type Int? (a nullable Int):

¥

When defining function return types.
A function can have a nullable return type. The following function, for
example, has a return type of Long?:

¥

You can also create arrays of nullable types. Let’s see how.

This is different to saying
 var str: String? = “”
“” is a String object that contains no characters, whereas null is not a String object.

The function must return a value that’s a Long or null.

you are here 4 223

nulls and exceptions

How to create an array of nullable types

Now that you’ve learned how to define nullable types, let’s see
how to refer to its object’s functions and properties.

An array of nullable types is one whose items are nullable. The
following code, for example, creates an array named myArray
that holds String?s (Strings that are nullable):

var myArray = arrayOf("Hi", "Hello", null)

var myArray: Array<String?> = arrayOf("Hi", "Hello")

The compiler can, however, infer that the array should hold
nullable types if the array is initialized with one or more null
items. So when the compiler sees the following code:

it spots that the array can hold a mixture of Strings
and nulls, and infers that the array should have a type of
Array<String?>:

0 1 2

REF
REF

REFREF

my
Array

String

“Hi”

String

“Hello”

var Array<String?>

The third item has been initialized with
a value of null. As the array contains
both Strings and null values, it creates
an array that can hold String?s.

Q: What happens if I initialize a variable with a null value,
and let the compiler infer the variable’s type? For example:

 var x = null

A: The compiler sees that the variable needs to be able to hold
null values, but as it has no information about any other kinds
of object it might need to hold, it creates a variable that can only
hold a value of null. This probably isn’t what you want, so if
you’re going to initialize a variable with a null value, make sure you
specify its type.

Q: You said in the previous chapter that every object is a
subclass of Any. Can a variable whose type is Any hold null
values?

A: No. If you want a variable to hold references to any type of
object and null values, its type must be Any?. For example:

 var z: Any?

An Array<String?> can
hold Strings and nulls.

null

224 Chapter 8

accessing nullable type members

How to access a nullable type’s functions and properties
Suppose you have a variable whose type is nullable, and you want to
access its object’s properties and functions. You can’t make function
calls or refer to the properties of a null value as it doesn’t have any. To
stop you from performing any operations that are invalid, the compiler
insists that you check that the variable is not null before giving you
access to any functions or properties.

Imagine you have a Wolf? variable which has been assigned a
reference to a new Wolf object like this:

var w: Wolf? = Wolf()

To access the underlying object’s functions and properties, you first
have to establish that the variable’s value is not null. One way of
achieving this is to check the value of the variable inside an if. The
following code, for example, checks that w’s value is not null, and
then calls the object’s eat function:

if (w != null) {
 w.eat()
}

You can use this approach to build more complex conditions. The
following code, for example, checks that the w variable’s value is not
null, and then calls its eat function when its hunger property is
less than 5:

if (w != null && w.hunger < 5) {
 w.eat()

}

There are some situations, however, where this kind of code may still fail.
If the w variable is used to define a var property in a class, for example,
it’s possible that a null value may have been assigned to it in between the
null-check and its usage, so the following code won’t compile:

Fortunately, there’s a safer approach that avoids this kind of problem.

class MyWolf {

 var w: Wolf? = Wolf()

 fun myFunction() {

 if (w != null){

 w.eat()

 }

 }

}

This won’t compile because the compiler can’t guarantee that some other code won’t update the w property in between checking it’s not null, and its usage.

Wolf

REF

w

var Wolf?

eat()

The compiler knows that w is not null,
so you can call the eat() function.

The right side of the && is only executed if the left side is true, so here, the compiler knows that w can’t be null, and it allows you to call w.hunger.

you are here 4 225

nulls and exceptions

Keep things safe with safe calls
If you want to access a nullable type’s properties and functions, an
alternative approach is to use a safe call. A safe call lets you access
functions and properties in a single operation without you having to
perform a separate null-check.

To see how safe calls work, imagine you have a Wolf? property (as
before) that holds a reference to a Wolf object like so:

var w: Wolf? = Wolf()

To make a safe call to the Wolf’s eat function, you would use the
following code:

w?.eat()

?. is the safe call
operator. It lets
you safely access
a nullable type’s
functions and
properties.

This will only call the Wolf’s eat function when w is not null. It’s like
saying “if w is not null, call eat”.

Similarly, the following code makes a safe call to w’s hunger property:

w?.hunger

If w is not null, the expression returns a reference to the hunger
property’s value. If, however, w is null, the value of the entire
expression evaluates to null. Here are the two scenarios:

w?.hunger

//Returns null

w?.hunger

//Returns 10

REF

w

var Wolf?

I’m null, so I don’t have
access to Wolf properties.

Wolf

REF

w

var Wolf?

hunger: 10

Scenario A: w is not null.
The w variable holds a reference to a Wolf object, and the value of its
hunger property is 10. The code w?.hunger evaluates to 10.

A

Scenario B: w is null.
The w variable holds a null value, not a Wolf, so the entire expression
evaluates to null.

B

The ?. means that eat() is only called if w is not null.

226 Chapter 8

the chain

You can chain safe calls together
Another advantage of using safe calls is that you can chain them
together to form expressions that are powerful yet concise.

Suppose you have a class named MyWolf that has a single
Wolf? property named w. Here’s the class definition:

class MyWolf {

 var w: Wolf? = Wolf()

}

Suppose also that you have a MyWolf? variable named myWolf
like this:

var myWolf: MyWolf? = MyWolf()

If you wanted to get the value of the hunger property for the
myWolf variable’s Wolf, you could do so using code like this:

myWolf?.w?.hunger

It’s like saying “If myWolf or w is null, return a null value.
Otherwise, return the value of w’s hunger property”. The
expression returns the value of the hunger property if (and only
if) myWolf and w are both not null. If either myWolf or w is
null, the entire expression evaluates to null.

The system first checks that myWolf is not null.
If myWolf is null, the entire expression evaluates to null. If myWolf
is not null (as in this example), the system continues to the next part of
the expression.

1

myWolf?.w?.hunger

REF

myWolf

var MyWolf? MyWolf

myWolf?.w?.hunger

What happens when a safe call chain gets evaluated
Let’s break down what happens when the system evaluates the
safe call chain:

If myWolf is not null, and w is not null, get hunger. Otherwise, use null.

you are here 4 227

nulls and exceptions

The story continues...

The system then checks that myWolf’s w property is not null.
Provided myWolf is not null, the system moves on to the next part of the
expression, the w? part.

If w is null, the entire expression evaluates to null. If w is not null, as in
this example, the system moves onto the next part of the expression.

2

myWolf?.w?.hunger

REF

myWolf

var MyWolf? MyWolf

Wolf

REF

w

var Wolf?

If w is not null, it returns the value of w’s hunger property.
So long as neither the myWolf variable nor its w property are null, the
expression returns the value of w’s hunger property. In this example, the
expression evaluates to 10.

3

myWolf?.w?.hunger

REF

myWolf

var MyWolf? MyWolf

Wolf

REF

w

var Wolf?

hunger: 10

So as you can see, safe calls can be chained together to
form concise expressions that are very powerful yet safe.
But that’s not the end of the story.

228 Chapter 8

safe calls

You can use safe calls to assign values...
As you might expect, you can use safe calls to assign a value to a
variable or property. If you have a Wolf? variable named w, for
example, you can assign the value of its hunger property to a
new variable named x using code like this:

var x = w?.hunger

It’s like saying “If w is null, set x to null, otherwise set x to the
value of w’s hunger property”. As the expression:

w?.hunger

can evaluate to an Int or null value, the compiler infers that x
must have a type of Int?.

...and assign values to safe calls
You can also use a safe call on the left side of a variable or
property assignment.

Suppose, for example, that you wanted to assign a value of 6 to
w’s hunger property, so long as w is not null. You can achieve
this using the code:

w?.hunger = 6

The code checks the value of w, and if it’s not null, the code
assigns a value of 6 to the hunger property. If w is null,
however, the code does nothing.

You can use chains of safe calls in this situation too. The following
code, for example, only assigns a value to the hunger property if
both myWolf and w are not null:

myWolf?.w?.hunger = 2

It’s like saying “if myWolf is not null, and myWolf’s w property
value is not null, then assign a value of 2 to w’s hunger property”:

REF

myWolf

var MyWolf? MyWolf

Wolf

REF

w

var Wolf?

hunger: 2

Wolf

REF

w

var Wolf?

hunger: 10 6

Int

REF

x

var Int?

10

Now that you know how to make safe calls to nullable types, have
a go at the following exercise.

If w’s hunger property is 10,
var x = w?.hunger
creates an Int? variable with
a value of 10.

If w is not null,
w?.hunger = 6
sets w’s hunger property to 6.

hunger is set to 2 only if
myWolf and w are both
not null.

you are here 4 229

nulls and exceptions

class Cat(var name: String? = "") {
 fun Meow() { println("Meow!") }
}

fun main(args: Array<String>) {
 var myCats = arrayOf(Cat("Misty"),
 null,
 Cat("Socks"))
 for (cat in myCats) {
 if (cat != null) {
 print("${cat.name}: ")
 cat.Meow()
 }
 }
}

BE the Compiler
Each of the Kotlin files on this page
represents a complete source file. Your
job is to play like you're the compiler,

and determine whether each
of these files will compile
and produce the output on
the right. If not, why not?

class Cat(var name: String = "") {
 fun Meow() { println("Meow!") }
}

fun main(args: Array<String>) {
 var myCats = arrayOf(Cat("Misty"),
 Cat(null),
 Cat("Socks"))
 for (cat in myCats) {
 if (cat != null) {
 print("${cat?.name}: ")
 cat?.Meow()
 }
 }
}

class Cat(var name: String? = null) {
 fun Meow() { println("Meow!") }
}

fun main(args: Array<String>) {
 var myCats = arrayOf(Cat("Misty"),
 null,
 Cat("Socks"))
 for (cat in myCats) {
 print("${cat?.name}: ")
 cat?.Meow()
 }
}

class Cat(var name: String? = null) {
 fun Meow() { println("Meow!") }
}

fun main(args: Array<String>) {
 var myCats = arrayOf(Cat("Misty"),
 Cat(null),
 Cat("Socks"))
 for (cat in myCats) {
 print("${cat.name}: ")
 cat.Meow()
 }
}

A

Misty: Meow!
Socks: Meow!

B

DC

This is the required output.

230 Chapter 8

be the compiler solution

class Cat(var name: String? = "") {
 fun Meow() { println("Meow!") }
}

fun main(args: Array<String>) {
 var myCats = arrayOf(Cat("Misty"),
 null,
 Cat("Socks"))
 for (cat in myCats) {
 if (cat != null) {
 print("${cat.name}: ")
 cat.Meow()
 }
 }
}

BE the Compiler Solution
Each of the Kotlin files on this page
represents a complete source file. Your
job is to play like you're the compiler,

and determine whether each
of these files will compile
and produce the output on
the right. If not, why not?

class Cat(var name: String = "") {
 fun Meow() { println("Meow!") }
}

fun main(args: Array<String>) {
 var myCats = arrayOf(Cat("Misty"),
 Cat(null),
 Cat("Socks"))
 for (cat in myCats) {
 if (cat != null) {
 print("${cat?.name}: ")
 cat?.Meow()
 }
 }
}

class Cat(var name: String? = null) {
 fun Meow() { println("Meow!") }
}

fun main(args: Array<String>) {
 var myCats = arrayOf(Cat("Misty"),
 null,
 Cat("Socks"))
 for (cat in myCats) {
 print("${cat?.name}: ")
 cat?.Meow()
 }
}

class Cat(var name: String? = null) {
 fun Meow() { println("Meow!") }
}

fun main(args: Array<String>) {
 var myCats = arrayOf(Cat("Misty"),
 Cat(null),
 Cat("Socks"))
 for (cat in myCats) {
 print("${cat.name}: ")
 cat.Meow()
 }
}

A

Misty: Meow!
Socks: Meow!

B

DC

This compiles and produces
the correct output.

This doesn’t compile because a
Cat can’t have a null name.

This compiles, but the output is
incorrect (the second Cat with
a null name also Meows).

This compiles, but the output is
incorrect (null gets printed for the
second item in the myCats array).

This is the required output.

you are here 4 231

nulls and exceptions

When you use nullable types, you may want to execute code if
(and only if) a particular value is not null. If you have a Wolf?
variable named w, for example, you might want to print the value
of w’s hunger property so long as w is not null.

One option for performing this kind of task is to use the code:

if (w != null) {

 println(w.hunger)

}

w?.let {

 println(it.hunger)

}

But if the compiler can’t guarantee that the w variable won’t
change in between the null-check and its usage, however, the
code won’t compile.

An alternative approach that will work in all situations is to use
the code:

It’s like saying “if w is not null, let’s print its hunger”. Let’s walk
through this.

The let keyword used in conjunction with the safe call operator
?. tells the compiler that you want to perform some action when
the value it’s operating on is not null. So the following code:

w?.let {

 // Code to do something

}

will only execute the code in its body if w is not null.

Once you’ve established that the value is not null, you can refer
to it in the body of the let using it. So in the following code
example, it refers to a non-nullable version of the w variable,
allowing you to directly access its hunger property:

w?.let {

 println(it.hunger)

}

Use let to run code if values are not null

Let’s look at a couple more examples of when using let can be
useful.

Wolf

REF

w

var Wolf?

hunger: 6

REF

it

var Wolf

?.let allows you to
run code for a value
that’s not null.

This can happen if, say, w defines a var property
in a class, and you want to use its hunger property
in a separate function. It’s the same situation that
you saw earlier in the chapter when we introduced
the need for safe calls.

If w is not null, let’s print its hunger.

You can use “it” to directly
access the Wolf’s functions
and properties. “it” is a non-nullable

version of w that refers to the same Wolf object. You can refer to “it”
within let’s body.

232 Chapter 8

using let

Using let with array items
let can also be used to perform actions using the non-null items
of an array. You can use the following code, for example, to loop
through an array of String?s, and print each item that is not
null:

var array = arrayOf("Hi", "Hello", null)

for (item in array) {

 item?.let {

 println(it)

 }

}

Using let to streamline expressions
let is particularly useful in situations where you want to perform
actions on the return value of a function which may be null.

Suppose you have a function named getAlphaWolf that has a
return type of Wolf? like this:

fun getAlphaWolf() : Wolf? {

 return Wolf()

}

If you wanted to get a reference to the function’s return value
and call its eat function if it’s not null, you could do so (in most
situations) using the following code:

getAlphaWolf()?.let {

 it.eat()

}

var alpha = getAlphaWolf()

if (alpha != null) {

 alpha.eat()

}

If you were to rewrite the code using let, however, you would
no longer need to create a separate variable in which to hold the
function’s return value. Instead, you could use:

It’s like saying “get the alpha Wolf, and if it’s not null, let it eat”.

 You must
use curly
braces to
denote the
let body.

If you omit the { }’s, your
code won’t compile.

This line only runs for non-null items in the array

Using let is more concise. It’s also safe,
so you can use it in all situations.

you are here 4 233

nulls and exceptions

Instead of using an if expression...
Another thing you may want to do when you have nullable types is
use an if expression that specifies an alternate value for something
that’s null.

Suppose that you have a Wolf? variable named w, as before, and
you want to use an expression that returns the value of w’s hunger
property if w is not null, but defaults to -1 if w is null. In most
situations, the following expression will work:

But as before, if the compiler thinks there’s a chance that the w
variable may have been updated in between the null-check and its
usage, the code won’t compile because the compiler considers it to
be unsafe.

Fortunately there’s an alternative: the Elvis operator.

if (w != null) w.hunger else -1

[Note from editor: Elvis? Is this
a joke? Return to sender.]

...you can use the safer Elvis operator
The Elvis operator ?: is a safe alternative to an if expression. It’s
called the Elvis operator because when you tip it on its side, it looks
a bit like Elvis.

Here’s an example of an expression that uses an Elvis operator:

?:

Thank you
very much.

w?.hunger ?: -1

The Elvis operator first checks the value on its left, in this case:

is like saying “if w is not null and its hunger property is not null,
return the value of the hunger property, otherwise return -1”. It
does the same thing as the code:

w?.hunger

If this value is not null, the Elvis operator returns it. If the value
on the left is null, however, the Elvis operator returns the value
on its right instead (in this case -1). So the code

w?.hunger ?: -1

if (w?.hunger != null) w.hunger else -1

but because it’s a safer alternative, you can use it anywhere.

Over the past few pages, you’ve seen how to access a nullable-
type’s properties and functions using safe calls, and how to use let
and the Elvis operator in place of if statements and expressions.
There’s just one more option we want to mention that you can use
to check for null values: the not-null assertion operator.

This is the Elvis operator.

The Elvis operator
?: is a safe version of
an if expression. It
returns the value on its
left if that is not null.
Otherwise, it returns
the value on its right.

234 Chapter 8

intentional NullPointerExceptions

The !! operator deliberately throws a NullPointerException
The not-null assertion operator, or !!, is different to the other
methods for dealing with nulls that we’ve looked at over the past
few pages. Instead of making sure that your code is safe by handling
any null values, the not-null assertion operator deliberately throws a
NullPointerException if something turns out to be null.

Suppose, as before, you have a Wolf? variable named w, and you want
to assign the value of its hunger property to a new variable named x
if w or hunger is not null. To do this using a not-null assertion, you
would use the following code:

var x = w!!.hunger

Exception in thread "main" kotlin.KotlinNullPointerException
 at AppKt.main(App.kt:45)

If w and hunger are is not null, as asserted, the value of the
hunger property is assigned to x. But if w or hunger is null, a
NullPointerException will get thrown, a message will be displayed
in the IDE’s output window, and the application will stop running.

The message that’s displayed in the output window gives you
information about the NullPointerException including a
stack trace giving you the location of the not-null assertion that
caused it. The following output, for example, tells you that the
NullPointerException was thrown from the main function at
line 45 in file App.kt:

The following output, on the other hand, tells you that the
NullPointerException was thrown from a function named
myFunction in class MyWolf at line 98 of file App.kt. This function
was called from the main function at line 67 of the same file:

Exception in thread "main" kotlin.KotlinNullPointerException
 at MyWolf.myFunction(App.kt:98)
 at AppKt.main(App.kt:67)

So not-null assertions are useful if you want to test assumptions about
your code, as they enable you to pinpoint problems.

As you’ve seen, the Kotlin compiler goes to great lengths to make sure
that your code runs error-free, but there are still situations in which
it’s useful to know how to throw exceptions, and handle any that arise.
We’ll look at exceptions after we’ve shown you the full code for a new
project that deals with null values.

Here, the !! makes the assertion that w is not null.

Here’s the NullPointerException, with a
stack trace telling you where it occurred.

The exception happened at line 45.

you are here 4 235

nulls and exceptions

Create the Null Values project
Create a new Kotlin project that targets the JVM, and name
the project “Null Values”. Then create a new Kotlin file
named App.kt by highlighting the src folder, clicking on the File
menu and choosing New → Kotlin File/Class. When prompted,
name the file “App”, and choose File from the Kind option.

We’ll add various classes and functions to the project, and a
main function that uses them, so that you can explore how null
values work. Here’s the code—update your version of App.kt to
match ours:

class Wolf {

 var hunger = 10

 val food = "meat"

 fun eat() {

 println("The Wolf is eating $food")

 }

}

class MyWolf {

 var wolf: Wolf? = Wolf()

 fun myFunction() {

 wolf?.eat()

 }

}

fun getAlphaWolf() : Wolf? {

 return Wolf()

}

src

App.kt

Null Values

Wolf

hunger
food

eat()

MyWolf

wolf

myFunction()

We’re using a cut-down version
of the Wolf class we used in
earlier chapters in order to
keep the code simple.Create the Wolf class.

Create the MyWolf class.

Create the getAlphaWolf function.

The code continues
on the next page.

236 Chapter 8

test drive

The code continued...
fun main(args: Array<String>) {
 var w: Wolf? = Wolf()

 if (w != null) {
 w.eat()
 }

 var x = w?.hunger
 println("The value of x is $x")

 var y = w?.hunger ?: -1
 println("The value of y is $y")

 var myWolf = MyWolf()
 myWolf?.wolf?.hunger = 8
 println("The value of myWolf?.wolf?.hunger is ${myWolf?.wolf?.hunger}")

 var myArray = arrayOf("Hi", "Hello", null)
 for (item in myArray) {
 item?.let { println(it) }
 }

 getAlphaWolf()?.let { it.eat() }

 w = null
 var z = w!!.hunger
}

The Wolf is eating meat
The value of x is 10
The value of y is 10
The value of myWolf?.wolf?.hunger is 8
Hi
Hello
The Wolf is eating meat
Exception in thread "main" kotlin.KotlinNullPointerException
 at AppKt.main(App.kt:55)

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

src

App.kt

Null Values

Wolf

hunger
food

eat()

MyWolf

wolf

myFunction()

Use the Elvis operator to set y to
the value of hunger if w is not null.
If w is null, it sets y to -1.

This prints the non-null
items in the array.

This will throw a NullPointerException as w is null.

you are here 4 237

nulls and exceptions

Note: each thing from
the pool can only be
used once!

class Duck(val height: = null) {

 fun quack() {

 println("Quack! Quack!")

 }

}

class MyDucks(var myDucks: Array< >) {

 fun quack() {

 for (duck in myDucks) {

 {

 .quack()

 }

 }

 }

 fun totalDuckHeight(): Int {

 var h: =

 for (duck in myDucks) {

 h duck height 0

 }

 return h

 }

}

Pool Puzzle
Your job is to take code snippets

from the pool and place them
into the blank lines in the code.
You may not use the same
code snippet more than once,
and you won’t need to use all
the code snippets. Your goal

is to create two classes named
Duck and MyDucks. MyDucks
must contain an array of nullable
Ducks, and include functions to
make each Duck quack, and return
the total height of all the Ducks.

IntInt?

Int

Duck

Duck?

duck

?.

.

let
make

duck

it
?0

null

Int?

=

+=

.

?. ?:

else

238 Chapter 8

pool puzzle solution

class Duck(val height: = null) {

 fun quack() {

 println("Quack! Quack!")

 }

}

class MyDucks(var myDucks: Array< >) {

 fun quack() {

 for (duck in myDucks) {

 {

 .quack()

 }

 }

 }

 fun totalDuckHeight(): Int {

 var h: =

 for (duck in myDucks) {

 h duck height 0

 }

 return h

 }

}

Pool Puzzle Solution
Your job is to take code snippets

from the pool and place them
into the blank lines in the code.
You may not use the same
code snippet more than once,
and you won’t need to use all
the code snippets. Your goal

is to create two classes named
Duck and MyDucks. MyDucks
must contain an array of nullable
Ducks, and include functions to
make each Duck quack, and return
the total height of all the Ducks.

Int

Int?

You didn’t need to
use these snippets.

Int

Duck

Duck?

duck ?.

.

let

make

duck

it

?

0

null

Int?

=

+=

.

?. ?:

else

This is Int?, not Int, as it
must accept a null value.

myDucks is an array
of nullable Ducks.

Here, we’re using let to make each duck quack,
but we could have used duck?.quack() instead.

totalDuckHeight() returns an Int,
so h must be an Int, not an Int?.

If the duck and its height are not null, add the
duck’s height to h. Otherwise, add 0 to h instead.

you are here 4 239

nulls and exceptions

An exception is thrown in exceptional circumstances
As we said earlier, an exception is a type of warning about
exceptional situations that pop up at runtime. It’s a way for code
to say “Something bad happened, I failed”.

Suppose, for example, that you have a function named
myFunction that converts a String parameter to an Int,
and prints it:

fun myFunction(str: String) {

 val x = str.toInt()

 println(x)

 println("myFunction has ended")

}

If you pass a String such as “5” to myFunction, the code will
successfully convert the String to an Int, and print the value
5, along with the text “myFunction has ended”. If, however, you
pass the function a String that can’t be converted to an Int,
like “I am a name, not a number”, the code will stop running,
and display an exception message like this:

Exception in thread "main" java.lang.NumberFormatException: For input string: "I am a name, not a number"
 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
 at java.lang.Integer.parseInt(Integer.java:580)
 at java.lang.Integer.parseInt(Integer.java:615)
 at AppKt.myFunction(App.kt:119)
 at AppKt.main(App.kt:3)

You can catch exceptions that are thrown
When an exception gets thrown, you have two options for dealing
with it:

You can leave the exception alone.
This will display a message in the output window, and stop your
application (as above).

¥

You can catch the exception and handle it.
If you know you might get an exception when you execute particular
lines of code, you can prepare for it, and possibly recover from whatever
caused it.

¥

You’ve seen what happens when you leave exceptions alone, so
let’s look at how you catch them.

Yikes.

The exception stack
trace mentions Java
because we’re running
our code on the JVM.

240 Chapter 8

try and catch

Catch exceptions using a try/catch
You catch exceptions by wrapping the risky code in a try/catch
block. A try/catch block tells the compiler that you know an
exceptional thing could happen in the code you want to execute, and
that you’re prepared to handle it. The compiler doesn’t care how you
handle it; it cares only that you say you’re taking care of it.

Here’s what a try/catch block looks like:

fun myFunction(str: String) {

 try {

 val x = str.toInt()

 println(x)

 } catch (e: NumberFormatException) {

 println("Bummer")

 }

 println("myFunction has ended")

}

The try part of the try/catch block contains the risky code that
might cause an exception. In the above example, this is the code:

try {

 val x = str.toInt()

 println(x)

}

The catch part of the block specifies the exception that you want to
catch, and includes the code you want to run if it catches it. So if our
risky code throws a NumberFormatException, we’ll catch it and
print a meaningful message like this:

I'm gonna TRY this
risky thing, and CATCH
myself if I fail.

catch (e: NumberFormatException) {

 println("Bummer")

}

Any code that follows the catch block then runs, in this case the code:

println("myFunction has ended")

Here’s the try...

...and here’s
the catch.

This line will only run if an exception is caught.

you are here 4 241

nulls and exceptions

Use finally for the things
you want to do no matter what
If you have important cleanup code that you want to run
regardless of an exception, you can put it in a finally block.
The finally block is optional, but it’s guaranteed to run no
matter what.

To see how this works, suppose you want to bake something
experimental that might go wrong.

You start by turning on the oven.

If the thing you try to cook succeeds, you have to turn off
the oven.

If the thing you try is a complete failure, you have to turn
off the oven.

You have to turn off the oven no matter what, so the
code for turning the oven off belongs in a finally block:

try {

 turnOvenOn()

 x.bake()

} catch (e: BakingException) {

 println("Baking experiment failed")

} finally {

 turnOvenOff()

}

Without finally, you have to put the turnOvenOff
function call in both the try and the catch because you
have to turn off the oven no matter what. A finally
block lets you put all your important cleanup code in one
place, instead of duplicating it like this:

try {

 turnOvenOn()

 x.bake()

 turnOvenOff()

} catch (e: BakingException) {

 println("Baking experiment failed")

 turnOvenOff()

}

¥ If the try block fails
(an exception):
Flow control immediately moves
to the catch block. When the
catch block completes, the finally
block runs. When the finally
block completes, the rest of the code
continues.

¥ If the try block succeeds (no
exception):
Flow control skips over the catch
block and moves to the finally block.
When the finally block completes,
the rest of the code continues.

¥ If the try or catch block has
a return statement, finally will
still run:
Flow jumps to the finally block, then
back to the return.

try/catch/finally
flow control

We always want to call
turnOvenOff(), so it
belongs in the finally block.

242 Chapter 8

exception hierarchy

An exception is an object of type Exception
Every exception is an object of type Exception. It’s the
superclass of all exceptions, so every type of exception inherits
from it. On the JVM, for example, every exception has a
function named printStackTrace that you can use to print
the exception’s stack trace using code like this:

try {

 //Do risky thing

} catch (e: Exception) {

 e.printStackTrace()

 //Other code that runs when you get an exception

}

There are many different types of exception, each one of which
is a subtype of Exception. Some of the most common (or
famous) are:

NullPointerException
Thrown when you try to perform operations on a null value. As
you’ve seen, NullPointerExceptions are nearly extinct in
Kotlinville.

¥

ClassCastException
You’ll get this if you try to cast an object to an incorrect type, like
casting a Wolf into a Tree.

¥

IllegalArgumentException
You can throw this if an illegal argument has been passed.

¥

You can also create your own types of exception by defining
a new class with Exception as its superclass. The following
code, for example, defines a new type of exception named
AnimalException:

class AnimalException : Exception() { }

Defining your own types of exception can sometimes be useful
if you want to deliberately throw exceptions in your own code.
We’ll look at how this is done after a small diversion.

IllegalStateException
Use this if some object has state that’s invalid.

¥

Exception

I’m
exceptional!

printStackTrace() is a function that’s available to
all exceptions running on the JVM. If you can’t
recover from an exception, use printStackTrace()
to help you track down the cause of the problem.

Throwable

cause
message

Exception

OtherException

Throwable is Exception’s superclass.

Every exception is a
subclass of Exception,
including all the ones
mentioned on this page.

you are here 4 243

nulls and exceptions

Safe Casts Up Close
As you learned in Chapter 6, in most circumstances, the compiler will
perform a smart cast each time you use the is operator. In the following
code, for example, the compiler checks whether the r variable holds a Wolf
object, so it can smart cast the variable from a Roamable to a Wolf:

val r: Roamable = Wolf()

if (r is Wolf) {

 r.eat()

}

In some situations the compiler can’t perform a smart cast as the variable
may change in between you checking its type and its usage. The following
code, for example, won’t compile because the compiler can’t be certain
that the r property is still a Wolf after checking it:

class MyRoamable {

 var r: Roamable = Wolf()

 fun myFunction() {

 if (r is Wolf) {

 r.eat()

 }

 }

}

You saw in Chapter 6 that you can deal with this by using the as keyword
to explicitly cast r as a Wolf like this:

if (r is Wolf) {

 val wolf = r as Wolf

 wolf.eat()

}

But if r is assigned a value of some other type in between the type-check
and the cast, the system will throw a ClassCastException.

The safe alternative is to perform a safe cast using the as? operator
using code like this:

val wolf = r as? Wolf

This casts r as a Wolf if r holds an object of that type, and returns null
if it doesn’t. This saves you from getting a ClassCastException if
your assumptions about the variable’s type are incorrect.

Animal

hunger

eat()

Wolf

eat()

(interface)
Roamable

Here, r has been smart cast to a Wolf.

This won’t compile, because the
compiler can’t guarantee that r still
holds a reference to a Wolf object.

This will compile, but if r no longer
holds a reference to a Wolf object,
you’ll get an exception at runtime.

as? lets you
perform a safe
explicit cast. If
the cast fails, it
returns null.

244 Chapter 8

how to throw exceptions

You can explicitly throw exceptions
It can sometimes be useful to deliberately throw exceptions
in your own code. If you have a function named
setWorkRatePercentage, for example, you might want to
throw an IllegalArgumentException if someone tries to set a
percentage that’s less than 0 or greater than 100. Doing so forces the
caller to address the problem, instead of relying on the function to
decide what to do.

You throw an exception using the throw keyword. Here’s how, for
example, you’d get the setWorkRatePercentage function to
throw an IllegalArgumentException:

fun setWorkRatePercentage(x: Int) {

 if (x !in 0..100) {

 throw IllegalArgumentException("Percentage not in range 0..100: $x")

 }

 //More code that runs if the argument is valid

}

try {

 setWorkRatePercentage(110)

} catch(e: IllegalArgumentException) {

 //Code to handle the exception

}

You could then catch the exception using code like this:

The setWorkRatePercentage() function
can’t make anyone work at 110%, so the
caller has to deal with the problem.

Exception Rules
¥ You can’t have a catch or finally
without a try.

¥ You can’t put code between the try and the
catch, or the catch and the finally.

callRiskyCode()

catch (e: BadException) { }

Not legal as
there’s no try.

try { callRiskyCode() }

x = 7

catch (e: BadException) { }

Not legal as you
can’t put code
between the try
and the catch.

¥ A try must be followed by either a catch
or a finally.

try { callRiskyCode() }

finally { }

Legal because there’s
a finally, even though
there’s no catch.

¥ A try can have multiple catch blocks.

try { callRiskyCode() }

catch (e: BadException) { }

catch (e: ScaryException) { }

Legal because
a try can have
more than one
catch.

This throws an IllegalArgumentException
if x is not in the range 0..100

you are here 4 245

nulls and exceptions

try and throw are both expressions
Unlike in other languages such as Java, try and throw are expressions,
so they can have return values.

val result = try { str.toInt() } catch (e: Exception) { null }

How to use try as an expression
The return value of a try is either the last expression in the try, or
the last expression in the catch (the finally block, if there, doesn’t
affect the return value). Consider the following code, for example:

How to use throw as an expression
throw is also an expression, so you can, for example, use it with the
Elvis operator using code like this:

val h = w?.hunger ?: throw AnimalException()

If w and hunger are not null, the above code assigns the value of
w’s hunger property to a new variable named h. If, however, w or
hunger are null, it throws an AnimalException.

Q: You said that you can use throw
in an expression. Does that mean
throw has a type? What is it?

A: throw has a return type of
Nothing. This is a special type that
has no values, so a variable of type
Nothing? can only hold a null value.
The following code, for example, creates
a variable named x of type Nothing?
that can only be null:

 var x = null

Q: I get it. Nothing is a type that
has no values. Is there anything I might
want to use that type for?

A: You can also use Nothing to
denote code locations that can never be
reached. You can, say, use it as the return
type of a function that never returns:

 fun fail(): Nothing {
 throw BadException()
 }

The compiler knows that the code stops
execution after fail() is called.

Q: In Java I have to declare when a
method throws an exception.

A: That’s correct, but you don’t in
Kotlin. Kotlin doesn’t differentiate between
checked and unchecked exceptions.

The code creates a variable named result of type Int?. The try
block tries to convert the value of a String variable named str to
an Int. If this is successful, it assigns the Int value to result. If the
try block fails, however, it assigns null to result instead:

This is like saying “Try
to assign str.toInt() to
result, but if you can’t,
set result to null”.

246 Chapter 8

sharpen

fun main(args: Array<String>) {

 val test: String = "No"

 try {

 println("Start try")

 riskyCode(test)

 println("End try")

 } catch (e: BadException) {

 println("Bad Exception")

 } finally {

 println("Finally")

 }

 println("End of main")

}

class BadException : Exception()

fun riskyCode(test: String) {

 println("Start risky code")

 if (test == "Yes") {

 throw BadException()

 }

 println("End risky code")

}

Output when test = "No"

Look at the code on the left. What do you think the output will be
when it’s run? What do you think it would be if the code on line 2
were changed to the following?:

 val test: String = "Yes"

Write your answers in the boxes on the right.

Output when test = "Yes"

Answers on page 248.

you are here 4 247

nulls and exceptions

Answers on page 249.

Code Magnets
Some Kotlin code is all scrambled up on the fridge. See if you
can reconstruct the code so that if myFunction is passed a
String of “Yes”, it prints the text “thaws”, and if myFunction
is passed a String of “No”, it prints the text “throws”.

class BadException : Exception()

fun myFunction(test: String) {

try {

}

The magnets need to go in this space.

print("t")

riskyCode(test)

print("o")

} catch (e: BadException) {

print("a")

} finally {

print("w")

print("s")

}

fun riskyCode(test:String) {

print("h")

if (test == "Yes") {

throw BadException()

}
print("r")

}

248 Chapter 8

sharpen solution

fun main(args: Array<String>) {

 val test: String = "No"

 try {

 println("Start try")

 riskyCode(test)

 println("End try")

 } catch (e: BadException) {

 println("Bad Exception")

 } finally {

 println("Finally")

 }

 println("End of main")

}

class BadException : Exception()

fun riskyCode(test: String) {

 println("Start risky code")

 if (test == "Yes") {

 throw BadException()

 }

 println("End risky code")

}

Output when test = "No"

Start try
Start risky code
End risky code
End try
Finally
End of main

Start try
Start risky code
Bad Exception
Finally
End of main

Look at the code on the left. What do you think the output will be
when it’s run? What do you think it would be if the code on line 2
were changed to the following?:

 val test: String = "Yes"

Write your answers in the boxes on the right.

Output when test = "Yes"

you are here 4 249

nulls and exceptions

Code Magnets Solution
Some Kotlin code is all scrambled up on the fridge. See if you
can reconstruct the code so that if myFunction is passed a
String of “Yes”, it prints the text “thaws”, and if myFunction
is passed a String of “No”, it prints the text “throws”.

class BadException : Exception()

fun myFunction(test: String) {

try {

}

print("t")

riskyCode(test)

print("o")

} catch (e: BadException) {

print("a")

} finally {

print("w")

print("s")

}

fun riskyCode(test:String) {

print("h")

if (test == "Yes") {

throw BadException()

}

print("r")

}

Create a subclass of Exception.

Create myFunction.

Try to run this code.

Run this code if a BadException is thrown.

This code runs no matter what.

Throw a BadException if test == “Yes”

Create riskyCode

250 Chapter 8

toolbox

Your Kotlin Toolbox

You’ve got Chapter 8 under
your belt and now you’ve

added nulls and exceptions to
your toolbox.

CH
AP

T
ER

 8

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

 � null is a value that means a variable
doesn’t hold a reference to an object.
The variable exists, but it doesn’t refer to
anything.

 � A nullable type can hold null values in
addition to its base type. You define a type
as nullable by adding a ? to the end of it.

 � To access a nullable variable’s properties
and functions, you must first check that it’s
not null.

 � If the compiler can’t guarantee that a
variable is not null in between a null-
check and its usage, you must access
properties and functions using the safe call
operator (?.).

 � You can chain safe calls together.

 � To execute code if (and only if) a value is
not null, use ?.let.

 � The Elvis operator (?:) is a safe
alternative to an if expression.

 � The not-null assertion operator (!!) throws
a NullPointerException if the
subject of your assertion is null.

 � An exception is a warning that occurs in
exceptional situations. It’s an object of type
Exception.

 � Use throw to throw an exception.

 � Catch an exception using try/catch/
finally.

 � try and throw are expressions.

 � Use a safe cast (as?) to avoid getting a
ClassCastException.

this is a new chapter 251

Oh, if only there was
a way for me to add new
boyfriends to my collection...

collections9

Get Organized

Ever wanted something more flexible than an array?
Kotlin comes with a bunch of useful collections that give you more flexibility and greater

control over how you store and manage groups of objects. Want to keep a resizeable

list that you can keep adding to? Want to sort, shuffle or reverse its contents? Want to

find something by name? Or do you want something that will automatically weed out

duplicates without you lifting a finger? If you want any of these things, or more, keep

reading. It’s all here...

252 Chapter 9

more about arrays

Arrays can be useful...

Make an array:

var array = arrayOf(1, 3, 2)

¥

Make an array initialized with nulls:

var nullArray: Array<String?> = arrayOfNulls(2)

¥

Find out the size of the array:

val size = array.size

¥

So far, each time we’ve wanted to hold references to a
bunch of objects in one place, we’ve used an array. Arrays
are quick to create, and have many useful functions. Here
are some of the things you can do with an array (depending
on the type of its items):

Reverse the order of the items in the array:

array.reverse()

¥

Find out if it contains something:

val isIn = array.contains(1)

¥

Calculate the average of its items (if they’re numeric):

val average = array.average()

¥

Calculate the sum of its items (if they’re numeric):

val sum = array.sum()

¥

Sort the array in a natural order (works for numbers,
Strings, Chars and Booleans):

array.sort()

¥

Find out the minimum or maximum item (works for numbers,
Strings, Chars and Booleans):

array.min()

array.max()

¥

Creates an array of size 2 initialized
with null values. It’s like saying:
 arrayOf(null, null)

array has space for three
items, so its size is 3.

Flips the order of the items in the array.

array contains 1, so this returns true.

This returns 6 as 2 + 3 + 1 = 6.

This returns a Double—in this case, (2 + 3 + 1)/3 = 2.0.

min() returns 1, as this is the lowest value in the
array. max() returns 3 as this is the highest.

Changes the order of the items in array so
they go from the lowest value to the highest,
or from false to true.But arrays aren’t perfect.

REF
REF

REF

1 3 2

REF
REF

REF

2 3 1

REF
REF

REF

1 2 3

you are here 4 253

collections

...but there are things an array can’t handle
Even though an array lets you perform many useful actions,
there are two important areas in which arrays fall short.

You can’t change an array’s size
When you create an array, the compiler infers its size from
the number of items it’s initialized with. Its size is then fixed
forever. The array won’t grow if you want to add a new item to
it, and it won’t shrink if you want to remove an item.

Arrays are mutable, so they can be updated
Another limitation is that once you create an array you can’t
stop it from being amended. If you create an array using code
like this:

val myArray = arrayOf(1, 2, 3)

there’s nothing to stop the array being updated like so:

myArray[0] = 6

If your code relies on the array not changing, this may be a
source of bugs in your application.

So what’s the alternative?

Q: Can’t I remove an item from an array by setting it to
null?

A: If you create an array that holds nullable types, you can set
one or more of its items to null using code like this:

 val a: Array<Int?> = arrayOf(1, 2, 3)
 a[2] = null

This doesn’t change the size of the array, however. In the above
example, the array’s size is still 3 even though one of its items has
been set to null.

Q: Couldn’t I create a copy of the array that has a different
size?

A: You could, and arrays even have a function named plus
that makes this easier; plus copies the array, and adds a new item
to the end of it. But this doesn’t change the size of the original array.

Q: Is that a problem?

A: Yes. You’ll need to write extra code, and if other variables
hold references to the old version of the array, this might lead to
buggy code.

There are, however, good alternatives to using an array, which we’ll
look at next.

254 Chapter 9

kotlin standard library

When in doubt, go to the Library
Kotlin ships with hundreds of pre-built classes and functions that you can
use in your code. You’ve already met some of these, like String and
Any. And the great news for us is that the Kotlin Standard Library
includes classes that provide great alternatives to arrays.

In the Kotlin Standard Library, classes and functions are grouped into
packages. Every class belongs to a package, and each package has a
name. The kotlin package, for example, holds core functions and types,
and the kotlin.math package holds mathematical functions and constants.

The package we’re interested in here is the kotlin.collections package. This
package includes a number of classes that let you group objects together
in a collection. Let’s look at the main collection types.

Standard Library
You can see what’s in the Kotlin

Standard Library by brow
sing

to:
https://kotlin

lang.org/api/

latest/jvm/stdlib/index.h
tml

Here’s the kotlin.
collections package
in the Kotlin
Standard Library.

You can use
these filters
to display only
those collections
that are relevant
to a particular
platform or
Kotlin version.

you are here 4 255

collections

List, Set and Map
Kotlin has three main types of collection—List, Set
and Map—and each one has its own distinct purpose:

List - when sequence matters
A List knows and cares about index position. It knows
where something is in the List, and you can have
more than one element referencing the same object.

Set - when uniqueness matters
A Set doesn’t allow duplicates, and doesn’t care about
the order in which values are held. You can never have
more than one element referencing the same object, or
more than one element referencing two objects that are
considered equal.

Map - when finding
something by key matters
A Map uses key/value pairs. It knows the
value associated with a given key. You can
have two keys that reference the same object,
but you can’t have duplicate keys. Although
keys are typically String names (so that
you can make name/value property lists, for
example), a key can be any object.

Simple Lists, Sets and Maps are immutable, which means that you
can’t add or remove items after the collection has been initialized.
If you want to be able to add or remove items, Kotlin has mutable
subtypes that you can use instead: MutableList, MutableSet
and MutableMap. So if you want all the benefits of using a List
and you want to be able to update its contents, use a MutableList.

Now that you’ve seen the three main types of collection that Kotlin
has to offer, let’s find out how you use each one, starting with a List.

A List allows
duplicate values.

A Set doesn’t allow
duplicate values.

A Map allows
duplicate
values, but not
duplicate keys.

REF

0

1

2

REF

REF

“Tea”

“Coffee”

String

String

List

REF
REF

String

“Sue”

String

“Jim”

Set

“KeyA” “KeyB” “KeyC”

REF
REF

REF

“ValueA” “ValueB”

Map

256 Chapter 9

Lists

Fantastic Lists...
You create a List in a similar way to how you create an array:
by calling a function named listOf, passing in the values you
want the List to be initialized with. The following code, for
example, creates a List, initializes it with three Strings, and
assigns it to a new variable named shopping:

val shopping = listOf("Tea", "Eggs", "Milk")

The compiler infers the type of object each List should
contain by looking at the type of each value that’s passed
to it when it’s created. The above List, for example, is
initialized with three Strings, so the compiler creates
a List of type List<String>. You can also explicitly
define the List’s type using code like this:

val shopping: List<String>

shopping = listOf("Tea", "Eggs", "Milk")
The variable
has a type of
List<String>, so
the List contains
references to
String objects.

REF

REF

REF

0

1

2

String

“Tea”

String

“Eggs”

String

“Milk”
val List<String>

REF

shopping

...and how to use them
Once you’ve created a List, you can access the items it
contains using the get function. The following code, for
example, checks that the size of the List is greater than
0, then prints the item at index 0:

if (shopping.size > 0) {

 println(shopping.get(0))

 //Prints "Tea"

}

You can loop through all items in a List like so:

It’s a good idea to check the size of
the List first because get() will throw
an ArrayIndexOutOfBoundsException
if it’s passed an invalid index.

for (item in shopping) println (item)

And you can also check whether the List contains a reference to
a particular object, and retrieve its index:

if (shopping.contains("Milk")) {

 println(shopping.indexOf("Milk"))

 //Prints 2

}

As you can see, using a List is a lot like using an array. The
big difference, however, is that a List is immutable—you can’t
update any of the references it stores.

The code creates a List
containing String values of
“Tea”, “Eggs” and “Milk”.

Lists and other
collections can
hold references to
any type of object:
Strings, Ints, Ducks,
Pizzas and so on.

you are here 4 257

collections

Create a MutableList...
If you want a List whose values you can update, you need to
use a MutableList. You define a MutableList in a similar
way to how you define a List, except this time, you use the
mutableListOf function instead:

val mShopping = mutableListOf("Tea", "Eggs")

MutableList is a subtype of List, so you can call
the same functions on a MutableList that you
can on a List. The big difference, however, is that
MutableLists have extra functions that you can
use to add or remove values, or update or rearrange
existing ones.

..and add values to it
You add new values to a MutableList using the add function.
If you want to add a new value to the end of the MutableList,
you pass the value to the add function as a single parameter.
The following code, for example, adds “Milk” to the end of
mShopping:

mShopping.add("Milk")

This increases the size of the MutableList so that it now holds
three values instead of two.

If you want to insert a value at a specific index instead, you can
do so by passing the index value to the add function in addition
to the value. If you wanted to insert a value of “Milk” at index 1
instead of adding it to the end of the MutableList, you could
do so using the following code:

mShopping.add(1, "Milk")

REF

REF

0

1

String

“Tea”

String

“Eggs”

val
MutableList<String>

REF

mShopping

REF

REF

REF

0

1

2

String

“Tea”

String

“Milk”

String

“Eggs”
val

MutableList<String>

REF

mShoppingInserting a value at a specific index in this way
forces other values to move along to make space
for it. In this example, the “Eggs” value moves
from index 1 to index 2 so that “Milk” can be
inserted at index 1.

As well as adding values to a MutableList,
you can also remove or replace them. Let’s see
how.

If you pass String values to the
mutableListOf() function, the compiler
infers that you want an object of type
MutableList<String> (a MutableList
that holds Strings).

If you add “Milk” to
index 1, “Eggs” moves
to index 2 to make
way for the new value.

258 Chapter 9

modifying a MutableList

You can remove a value...
There are two ways of removing a value from a MutableList.

if (mShopping.size > 1) {

 mShopping.removeAt(1)

}

if (mShopping.contains("Milk")) {

 mShopping.remove("Milk")

}

REF

REF

0

1

String

“Tea”

String

“Eggs”

val
MutableList<String>

REF

mShopping

The second way is to use the removeAt function to remove
the value at a given index. The following code, for example,
makes sure that the size of mShopping is greater than 1,
then removes the value at index 1:

Whichever approach you use, removing a value from the
MutableList causes it to shrink.

REF

REF

REF

0

1

2

String

“Tea”

String

“Milk”

String

“Eggs”

val
MutableList<String>

REF

mShopping

The first way is to call the remove function, passing in the
value you want to remove. The following code, for example,
checks whether mShopping contains the String “Milk”,
then removes it:

Removing an
element from a
MutableList...

...causes the
MutableList
to shrink.

As “Milk” has been
removed, “Eggs” moves
from index 2 to index 1.

...and replace one value with another
If you want to update the MutableList so that the
value at a particular index is replaced with another,
you can do so using the set function. The following
code, for instance, replaces the “Tea” value at index 0
with “Coffee”:

if (mShopping.size > 0) {

 mShopping.set(0, "Coffee")

}

REF

REF

0

1

String

“Coffee”

String

“Eggs”

val
MutableList<String>

REF

mShopping

String

“Tea”

The set() function sets
the reference held at a
particular index to that
of a different object.

you are here 4 259

collections

You can change the order and make bulk changes...

mShopping.sort()

mShopping.reverse()

Or you can use the shuffle function to randomize it:

mShopping.shuffle()

mShopping.clear()

...or take a copy of the entire MutableList
It can sometimes be useful to copy a List, or MutableList, so that
you can save a snapshot of its state. You can do this using the toList
function. The following code, for example, copies mShopping, and
assigns the copy to a new variable named shoppingSnapshot:

val shoppingCopy = mShopping.toList()

The toList function returns a List, not a MutableList, so
shoppingCopy can’t be updated. Other useful functions you can use
to copy the MutableList include sorted (which returns a sorted
List), reversed (which returns a List with the values in reverse
order), and shuffled (which returns a List and shuffles its values).

And there are useful functions for making bulk changes to the
MutableList too. You can, for example, use the addAll function
to add all the items that are held in another collection. The following
code, for instance, adds “Cookies” and “Sugar” to mShopping:

val toRemove = listOf("Milk", "Sugar")

mShopping.removeAll(toRemove)

And the retainAll function retains all the items that are held in
another collection and removes everything else:

val toRetain = listOf("Milk", "Sugar")

mShopping.retainAll(toRetain)

MutableList also includes functions to change the order in which
items are held. You can, say, sort the MutableList in a natural
order using the sort function, or reverse it using reverse:

You can also use the clear function to remove every item like this:

The removeAll function removes items that are held in another
collection:

val toAdd = listOf("Cookies", "Sugar")

mShopping.addAll(toAdd)

Q: What’s a package?

A: A package is a grouping of classes
and functions. They’re useful for a couple
of reasons.

First, they help organize a project or
library. Rather than just having one
large pile of classes, they’re all grouped
into packages for specific kinds of
functionality.

Second, they give you name-scoping,
which means that multiple people can
write classes with the same name, just so
long as they’re in different packages.

You’ll find out more about structuring your
code into packages in Appendix III.

Q: In Java I have to import any
packages I want to use, including
collections. Do I in Kotlin?

A: Kotlin automatically imports many
packages from the Kotlin Standard
Library, including kotlin.collections. There
are still situations where you need to
explicitly import packages, however, and
you can find out more in Appendix III.

MutableList also has a toMutableList()
function which returns a copy that's a
new MutableList.

This empties mShopping so its size is 0.

Together, these lines sort the
MutableList in reverse order.

260 Chapter 9

create project

Create the Collections project
Now that you’ve learned about Lists and MutableLists, let’s
create a project that uses them.

Create a new Kotlin project that targets the JVM, and name the
project “Collections”. Then create a new Kotlin file named Collections.kt
by highlighting the src folder, clicking on the File menu and choosing
New → Kotlin File/Class. When prompted, name the file “Collections”,
and choose File from the Kind option.

Next, add the following code to Collections.kt:

fun main(args: Array<String>) {

 val mShoppingList = mutableListOf("Tea", "Eggs", "Milk")

 println("mShoppingList original: $mShoppingList")

 val extraShopping = listOf("Cookies", "Sugar", "Eggs")

 mShoppingList.addAll(extraShopping)

 println("mShoppingList items added: $mShoppingList")

 if (mShoppingList.contains("Tea")) {

 mShoppingList.set(mShoppingList.indexOf("Tea"), "Coffee")

 }

 mShoppingList.sort()

 println("mShoppingList sorted: $mShoppingList")

 mShoppingList.reverse()

 println("mShoppingList reversed: $mShoppingList")

}

src

Collections.kt

Collections

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

mShoppingList original: [Tea, Eggs, Milk]
mShoppingList items added: [Tea, Eggs, Milk, Cookies, Sugar, Eggs]
mShoppingList sorted: [Coffee, Cookies, Eggs, Eggs, Milk, Sugar]
mShoppingList reversed: [Sugar, Milk, Eggs, Eggs, Cookies, Coffee]

Next, have a go at the following exercise.

Printing a List or
MutableList prints each
item in index order
inside square brackets.

you are here 4 261

collections

[Zero, Two, Four, Six]
[Two, Four, Six, Eight]
[Two, Four, Six, Eight, Ten]
[Two, Four, Six, Eight, Ten]

Code Magnets
Somebody used fridge magnets to create a
working main function that produces the
output shown on the right. Unfortunately a
freak sharknado has dislodged the magnets.
See if you can reconstruct the function.

a.add(3, "Six")

println(a)

The function needs to produce this output.

if (a.indexOf("Four") != 4) a
.add("Ten")

println(a)

if (a.contains("Zero")) a.add("Twelve")

fun main(args: Array<String>) {

}

var a: MutableList<String> = mutableListOf()
a.add(0, "Zero")

a.add(1, "Two")

a.add(2, "Four")

if (a.contains("Zero")) a.add("Eight")

a.removeAt(0)

println(a)

println(a)

Your code needs to go here.

262 Chapter 9

magnets solution

Code Magnets Solution
Somebody used fridge magnets to create a
working main function that produces the
output shown on the right. Unfortunately a
freak sharknado has dislodged the magnets.
See if you can reconstruct the function.

a.add(3, "Six")

println(a)

if (a.indexOf("Four") != 4) a
.add("Ten")

println(a)

if (a.contains("Zero")) a.add("Twelve")

fun main(args: Array<String>) {

}

var a: MutableList<String> = mutableListOf()

a.add(0, "Zero")

a.add(1, "Two")

a.add(2, "Four")

if (a.contains("Zero")) a.add("Eight")

a.removeAt(0)

println(a)

println(a)

[Zero, Two, Four, Six]
[Two, Four, Six, Eight]
[Two, Four, Six, Eight, Ten]
[Two, Four, Six, Eight, Ten]

you are here 4 263

collections

Lists allow duplicate values
As you’ve already learned, using a List, or MutableList,
gives you more flexibility than using an array. Unlike an array,
you can explicitly choose whether the collection should be
immutable, or whether your code can add, remove and update
its values.

There are some situations, however, where using a List (or
MutableList) doesn’t quite work.

Imagine you’re arranging a meal out with a group of friends,
and you need to know how many people are going so that you
can book a table. You could use a List for this, but there’s a
problem: a List can hold duplicate values. It’s possible,
for example, to create a List of friends where some of the
friends are listed twice:

Earlier in the chapter, we discussed the different types of
collection that are available in Kotlin. Which type of collection
do you think would be most appropriate for this situation?

But if you want to know how many distinct friends are
in the List, you can’t simply use the code:

val friendList = listOf("Jim",

 "Sue",

 "Sue",

 "Nick",

 "Nick")

friendList.size

to find out how many people you should book a table for. The
size property only sees that there are five items in the List,
and it doesn’t care that two of these items are duplicates.

In this kind of situation, we need to use a collection that
doesn’t allow duplicate values to be held. So what type of
collection should we use?

REF

REF

REF

0

1

2

String

“Jim”

String

“Sue”

String

“Nick”

val List<String>

REF

friend
List

REF

REF

3

4
The List has a size
of 5, but only 3
distinct values.

Here, there are three
friends named Jim, Sue
and Nick, but Sue and
Nick are listed twice..

264 Chapter 9

Sets

How to create a Set
If you need a collection that doesn’t allow duplicates, you can use
a Set: an unordered collection with no duplicate values.

You create a Set by calling a function named setOf, passing
in the values you want the Set to be initialized with. The
following code, for example, creates a Set, initializes it with three
Strings, and assigns it to a new variable named friendSet:

The values in a Set have
no order, and duplicate
values aren’t allowed.

val friendSet = setOf("Jim",

 "Sue",

 "Sue",

 "Nick",

 "Nick")

val friendSet = setOf("Jim", "Sue", "Nick")

REF
REF

REF String

“Sue”

String

“Nick”

String

“Jim”

val Set<String>

REF

friend
Set

A Set can’t hold duplicate values, so if you try to define one
using code like this:

the Set ignores the duplicate “Sue” and “Nick” values. The code
creates a Set that holds three distinct Strings as before.

The compiler infers the Set’s type by looking at the values that
are passed to it when it’s created. The above code, for example,
initializes a Set with String values, so the compiler creates a
Set of type Set<String>.

How to use a Set’s values
A Set’s values are unordered, so unlike a List, there’s no get
function you can use to get the value at a specified index. You
can, however, still use the contains function to check whether
a Set contains a particular value using code like this:

val isFredGoing = friendSet.contains("Fred")

And you can also loop through a Set like this:

for (item in friendSet) println(item)

A Set is immutable, so you can’t add values to it, or remove
existing ones. To do this kind of thing, you’d need to use a
MutableSet instead. But before we show you how to create
and use one of these, there’s an Important Question we need
to look at: how does a Set decide whether a value is a
duplicate?

The code creates a
Set containing the
three String values.

This returns true if friendSet has a
“Fred” value, and false if it doesn’t.

Unlike a List, a Set is
unordered, and can’t
contain duplicate values.

you are here 4 265

collections

How a Set checks for duplicates
To answer this question, let’s go through the steps a Set
takes when it decides whether or not a value is a duplicate.

The Set gets the object’s hash code, and
compares it with the hash codes of the
objects already in the Set.
A Set uses hash codes to store its elements in a way
that makes it much faster to access. It uses the hash
code as a kind of label on a “bucket” where it stores
elements, so all objects with a hash code of, say, 742,
are stored in the bucket labeled 742.

If the Set has no matching hash codes for the new
value, the Set assumes that it’s not a duplicate,
and adds the new value. If, however, the Set has
matching hash codes, it needs to perform extra tests,
and moves on to step 2.

1

The Set uses the === operator to
compare the new value against any
objects it contains with the same hash
code.
As you learned in Chapter 7, the === operator
is used to check whether two references refer to
the same object. So if the === operator returns
true for any object with the same hash code,
the Set knows that the new value is a duplicate,
so it rejects it. If the === operator returns
false, however, the Set moves on to step 3.

2

The Set uses the == operator to compare
the new value against any objects it
contains with matching hash codes.
The == operator calls the value’s equals function.
If this returns true, the Set treats the new value as
a duplicate, and rejects it. If the == operator returns
false, however, the Set assumes that the new
value is not a duplicate, and adds it.

3

REF

hashCode: 742

hashCode: 742

Set

I need to know
if your hash code
values are the same.

REF

hashCode: 742

hashCode: 742

Set

...Or are you equal?

Your hash codes
are the same. Are you
the same object...?

REF

hashCode: 742

hashCode: 742

Set
So there are two situations in which a Set views a value
as a duplicate: if it’s the same object, or equal to a value it
already contains. Let’s look at this in more detail.

266 Chapter 9

equality matters

Hash codes and equality

val a = "Sue"

val b = a

val set = setOf(a, b)

As you learned in Chapter 7, the === operator checks whether two
references point to the same object, and the == operator checks whether
the references point to objects that should be considered equal. A Set,
however, only uses these operators once it’s established that the two objects have
matching hash code values. This means that in order for a Set to work
properly, equal objects must have matching hash codes.

Let’s see how this applies to the === and == operators.

String

“Sue”
hashCode: 83491

REF

a

REF

b

Equality using the == operator
If you want a Set to treat two different Recipe objects as
equal, or equivalent, you have two options: make Recipe a
data class, or override the hashCode and equals functions
it inherits from Any. Making Recipe a data class is easiest
as it automatically overrides the two functions.

As we said above, the default behavior (from Any) is to give
each object a unique hash code value. So you must override
hashCode to be sure that two equivalent objects return the
same hash code. But you must also override equals so that
the == operator returns true when it’s used to compare
objects with matching property values.

In the following example, one value will be added to the Set
if Recipe is a data class:

Equality using the === operator
If you have two references that refer to the same object, you’ll
get the same result when you call the hashCode function
on each reference. If you don’t override the hashCode
function, the default behavior (which it inherits from the Any
superclass) is that each object will get a unique hash code.

When the following code runs, the Set spots that a and b
have the same hash code and refer to the same object, so one
value gets added to the Set:

val a = Recipe("Thai Curry")

val b = Recipe("Thai Curry")

val set = setOf(a, b)

Recipe

“Thai Curry”
hashCode: 64

REF

a

Recipe

“Thai Curry”
hashCode: 64

REF

b

Here, a and b refer
to the same object, so
the Set knows that b
is a duplicate of a.

val String

val String

val Recipe

val Recipe
Here, a and b refer to
separate objects. The Set
sees b as a duplicate only if
a and b have the same hash
code value, and a == b. This
will be the case if Recipe is
a data class.

you are here 4 267

collections

 If two objects are equal, they must have
matching hash codes.

¥

 If two objects are equal, calling equals on
either object must return true. In other words,
if (a.equals(b)) then (b.equals(a)).

¥

 If two objects have the same hash code value,
they are not required to be equal. But if they’re
equal, they must have the same hash code
value.

¥

 So, if you override equals, you must override
hashCode.

¥

 The default behavior of the hashCode
function is to generate a unique integer
for each object. So if you don’t override
hashCode in a non-data class, no two objects
of that type can ever be considered equal.

¥

 The default behavior of the equals function
is to do a === comparison, which tests whether
the two references refer to a single object. So if
you don’t override equals in a non-data class,
no two objects can ever be considered equal
since references to two different objects will
always contain a different bit pattern.

¥

a.equals(b) must also mean that
a.hashCode() == b.hashCode()

But a.hashCode() == b.hashCode()
does not have to mean that a.equals(b)

Q: How can hash codes be the same even if
objects aren’t equal?

A: As we said earlier, a Set uses hash codes
to store its elements in a way that makes it much
faster to access. If you want to find an object in
a Set, it doesn’t have to start searching from
the beginning, looking at each element to see if it
matches. Instead, it uses the hash code as a label
on a “bucket” where it stored the element. So if you
say “I want to find an object in the Set that looks
like this one...”, the Set gets the hash code value
from the object you give it, then goes straight to
the bucket for that hash code.

This isn’t the whole story, but it’s more than enough
for you to use a Set effectively and understand
what’s going on.

The point is that hash codes can be the same
without necessarily guaranteeing that the objects
are equal, because the “hashing algorithm” used in
the hashCode function might happen to return
the same value for multiple objects. And yes, that
means that multiple objects would all land in the
same bucket in the Set (because each bucket
represents a separate hash code value), but that’s
not the end of the world. It might mean that the
Set is a little less efficient, or that it’s filled with
an extremely large number of elements, but if the
Set finds more than one object in the same hash
code bucket, the Set will simply use the ===
and == operators to look for a perfect match. In
other words, hash code values are sometimes
used to narrow down the search, but to find the
one exact match, the Set still has to take all
the objects in that one bucket (the bucket for all
the objects with the same hash code) and see if
there’s a matching object in that bucket.

Rules for overriding
hashCode and equals
If you decide to manually override the hashCode and
equals functions in your class instead of using a data class,
there are a number of laws you must abide by. Failure to do
so will make the Kotlin universe collapse because things like
Sets won’t work properly, so make sure you follow them.

Here are the rules:

268 Chapter 9

MutableSet

How to use a MutableSet
Now that you know about Sets, let’s look at MutableSets. A
MutableSet is a subtype of Set, but with extra functions that
you can use to add and remove values.

You define a MutableSet using the mutableSetOf function
like this:

mFriendSet.add("Nick")

The add function checks whether the object it’s passed already
exists in the MutableSet. If it finds a duplicate value, it returns
false. If it’s not a duplicate, however, the value gets added to
the MutableSet (increasing its size by one) and the function
returns true to indicate that the operation was successful.

You remove values from a MutableSet using the remove
function. The following code, for example, removes “Nick” from
mFriendSet:

If “Nick” exists in the MutableSet, the function removes it
and returns true. If there’s no matching object, however, the
function simply returns false.

You can also use the addAll, removeAll and retainAll
functions to make bulk changes to the MutableSet, just as you
can for a MutableList. The addAll function, for example,
adds all the items to the MutableSet that are held in another
collection, so you can use the following code to add “Joe” and

“Mia” to mFriendSet:

If you pass String values to the
mutableSetOf() function, the compiler
infers that you want an object
of type MutableSet<String> (a
MutableSet that holds Strings).

val mFriendSet = mutableSetOf("Jim", "Sue")

This initializes a MutableSet with two Strings, so
the compiler infers that you want a MutableSet of
type MutableSet<String>.

You add new values to a MutableSet using the add
function. The following code, for example, adds “Nick”
to mFriendSet:

mFriendSet.remove("Nick")

mFriendSet.clear()

val toAdd = setOf("Joe", "Mia")

mFriendSet.addAll(toAdd)

And just as you can with a MutableList, you can use the
clear function to remove every item from the MutableSet:

REF
REF

String

“Sue”

String

“Jim”

val
MutableSet<String>

REF

mFriend
Set

REF
REF

REF String

“Sue”

String

“Joe”

String

“Jim”

REF

String

“Mia”

addAll() adds
the values held
in another Set.

you are here 4 269

collections

You can copy a MutableSet
If you want to take a snapshot of a MutableSet you can
do so, just as you can with a MutableList. You can use the
toSet function, for example, to take an immutable copy of
mFriendSet, and assign the copy to a new variable named
friendSetCopy:

val friendSetCopy = mFriendSet.toSet()

You can also copy a Set or MutableSet into a new List
object using toList:

val friendList = mFriendSet.toList()

Copying a collection into another type can be particularly useful
when you want to perform some action that would otherwise
be inefficient. You can, for example, check whether a List
contains duplicate values by copying the List into a Set, and
checking the size of each collection. The following code uses
this technique to check whether mShopping (a MutableList)
contains duplicates:

And if you have a MutableList or List, you can copy it into
a Set using its toSet function:

val shoppingSet = mShopping.toSet()

if (mShopping.size > mShopping.toSet().size) {

 //mShopping has duplicate values

}

If mShopping contains duplicates, its size will be greater
than when it’s copied into a Set, because converting the
MutableList to a Set will remove the duplicate values.

MutableSet also has a toMutableSet()
function (which copies it to a new
MutableSet), and toMutableList()
(which copies it to a new MutableList).

REF

0

1

2

REF

REF

“Tea”

“Coffee”

String

String
REF

REF

String

“Coffee”

String

“Tea”

This is a List.
It has three
elements, so
its size is 3.

When the
List is copied
to a Set, the
duplicate
“Coffee” value
is removed.
The size of
the Set is 2.

This creates a Set version of
mShopping, and gets its size.

270 Chapter 9

update project

Update the Collections project
Now that you know about Sets and MutableSets, let’s
update the Collections project so that it uses them.

Update your version of Collections.kt to match ours below
(our changes are in bold):

fun main(args: Array<String>) {

 val var mShoppingList = mutableListOf("Tea", "Eggs", "Milk")

 println("mShoppingList original: $mShoppingList")

 val extraShopping = listOf("Cookies", "Sugar", "Eggs")

 mShoppingList.addAll(extraShopping)

 println("mShoppingList items added: $mShoppingList")

 if (mShoppingList.contains("Tea")) {

 mShoppingList.set(mShoppingList.indexOf("Tea"), "Coffee")

 }

 mShoppingList.sort()

 println("mShoppingList sorted: $mShoppingList")

 mShoppingList.reverse()

 println("mShoppingList reversed: $mShoppingList")

 val mShoppingSet = mShoppingList.toMutableSet()

 println("mShoppingSet: $mShoppingSet")

 val moreShopping = setOf("Chives", "Spinach", "Milk")

 mShoppingSet.addAll(moreShopping)

 println("mShoppingSet items added: $mShoppingSet")

 mShoppingList = mShoppingSet.toMutableList()

 println("mShoppingList new version: $mShoppingList")

}

src

Collections.kt

Collections

Update mShoppingList
to a var so that we can
replace it with another
MutableList<String>
later in the code.

Add this code.

Let’s take the code for a test drive.

you are here 4 271

collections

mShoppingList original: [Tea, Eggs, Milk]
mShoppingList items added: [Tea, Eggs, Milk, Cookies, Sugar, Eggs]
mShoppingList sorted: [Coffee, Cookies, Eggs, Eggs, Milk, Sugar]
mShoppingList reversed: [Sugar, Milk, Eggs, Eggs, Cookies, Coffee]
mShoppingSet: [Sugar, Milk, Eggs, Cookies, Coffee]
mShoppingSet items added: [Sugar, Milk, Eggs, Cookies, Coffee, Chives, Spinach]
mShoppingList new version: [Sugar, Milk, Eggs, Cookies, Coffee, Chives, Spinach]

Printing a Set or
MutableSet prints each
item inside square brackets.

Test drive
When we run the code, the following text gets printed in the
IDE’s output window:

Q: You said that I can create a List
copy of a Set, and a Set copy of a
List. Can I do something similar with
an array?

A: Yes, you can. Arrays have a bunch
of functions that you can use to copy the
array to a new collection: toList(),
toMutableList(), toSet()
and toMutableSet(). So the
following code creates an array of Ints,
then copies it into a Set<Int>:

 val a = arrayOf(1, 2, 3)
 val s = a.toSet()

Similarly, List and Set (and
therefore MutableList and
MutableSet) have a function named
toTypedArray() that copies the
collection to a new array of the appropriate
type. So the code:

 val s = setOf(1, 2, 3)
 val a = s.toTypedArray()

creates an array of type Array<Int>.

Q: Can I sort a Set?

A: No, a Set is an unordered collection
so you can’t sort it directly. You can,
however, use its toList() function to
copy the Set into a List, and you can
then sort the List.

Q: Can I use the == operator to
compare the contents of two Sets?

A: Yes, you can. Suppose you have two
Sets, a and b. If a and b contain the
same values, a == b will return true,
as in the following example:

 val a = setOf(1, 2, 3)
 val b = setOf(3, 2, 1)
 //a == b is true

If the two sets compare different values,
however, the result will be false.

Q: That’s clever. What if one of the
Sets is a MutableSet? Do I first
need to copy it to a Set?

A: You can use == without copying
the MutableSet to a Set. In the
following example, a == b returns
true:

val a = setOf(1, 2, 3)
val b = mutableSetOf(3, 2, 1)

Q: I see. Does == work with Lists
too?

A: Yes, you can use == to compare
the contents of two Lists. It will return
true if the Lists hold the same values
against the same indexes, and false if
the Lists hold different values, or hold
the same values in a different order. So in
the following example, a == b returns
true:

 val a = listOf(1, 2, 3)
 val b = listOf(1, 2, 3)

272 Chapter 9

be the set

BE the Set
Here are four Duck classes. Your job is
to play like you're the Set, and say which
classes will produce a Set containing

precisely one item when used
with the main function on the
right. Do any Ducks break
the hashCode() and equals()

rules? If so, how?

class Duck(val size: Int = 17) {
 override fun equals(other: Any?): Boolean {
 if (this === other) return true
 if (other is Duck && size == other.size) return true
 return false
 }

 override fun hashCode(): Int {
 return size
 }
}

fun main(args: Array<String>) {

 val set = setOf(Duck(), Duck(17))

 println(set)

}

data class Duck(val size: Int = 18)

class Duck(val size: Int = 17) {
 override fun equals(other: Any?): Boolean {
 return true
 }

 override fun hashCode(): Int {
 return (Math.random() * 100).toInt()
 }
}

class Duck(val size: Int = 17) {
 override fun equals(other: Any?): Boolean {
 return false
 }

 override fun hashCode(): Int {
 return 7
 }
}

This is the main function.

Answers on page 274.

A

B

D

C

you are here 4 273

collections

val petsLiam = listOf("Cat", "Dog", "Fish", "Fish")

val petsSophia = listOf("Cat", "Owl")

val petsNoah = listOf("Dog", "Dove", "Dog", "Dove")

val petsEmily = listOf("Hedgehog")

Four friends have each made a List of their pets. One item in
the List represents one pet. Here are the four lists:

Write the code below to create a new collection named pets that contains each pet.

How would you use the pets collection to get the total number of pets?

Write the code to print how many types of pet there are.

How would you list the types of pet in alphabetical order?

Answers on page 275.

274 Chapter 9

be the set solution

BE the Set Solution
Here are four Duck classes. Your job is
to play like you're the Set, and say which
classes will produce a Set containing

precisely one item when used
with the main function on the
right. Do any Ducks break
the hashCode() and equals()

rules? If so, how?

class Duck(val size: Int = 17) {
 override fun equals(other: Any?): Boolean {
 if (this === other) return true
 if (other is Duck && size == other.size) return true
 return false
 }

 override fun hashCode(): Int {
 return size
 }
}

fun main(args: Array<String>) {

 val set = setOf(Duck(), Duck(17))

 println(set)

}

data class Duck(val size: Int = 18)

class Duck(val size: Int = 17) {
 override fun equals(other: Any?): Boolean {
 return true
 }

 override fun hashCode(): Int {
 return (Math.random() * 100).toInt()
 }
}

class Duck(val size: Int = 17) {
 override fun equals(other: Any?): Boolean {
 return false
 }

 override fun hashCode(): Int {
 return 7
 }
}

This is the main function.

This follows the hashCode() and equals()
rules. The Set recognizes that the second
Duck is a duplicate, so the main function
creates a Set that contains one item.

This produces a Set with two items. The
class breaks the hashCode() and equals()
rules as equals() always returns false, even if
it's used to compare an object with itself.

This follows the rules, but produces a Set with two items.

This produces a Set with two items. The
class breaks the rules as hashCode() returns
a random number. The rules say that equal
objects should have the same hash code.

A

B

D

C

you are here 4 275

collections

val petsLiam = listOf("Cat", "Dog", "Fish", "Fish")

val petsSophia = listOf("Cat", "Owl")

val petsNoah = listOf("Dog", "Dove", "Dog", "Dove")

val petsEmily = listOf("Hedgehog")

Four friends have each made a List of their pets. One item in
the List represents one pet. Here are the four lists:

Write the code below to create a new collection named pets that contains each pet.

var pets: MutableList<String> = mutableListOf()
pets.addAll(petsLiam)
pets.addAll(petsSophia)
pets.addAll(petsNoah)
pets.addAll(petsEmily)

How would you use the pets collection to get the total number of pets?

pets.size

Write the code below to print how many types of pet there are.

val petSet = pets.toMutableSet()
println(petSet.size)

How would you list the types of pet in alphabetical order?

val petList = petSet.toMutableList()
petList.sort()
println(petList)

Don’t worry
if your answers
looks different
to ours. There
are different
ways of getting
the same result.

276 Chapter 9

Maps

Time for a Map
Lists and Sets are great, but there’s one more type of
collection we want to introduce you to: a Map. A Map is a
collection that acts like a property list. You give it a key, and the
Map gives you back the value associated with that key. Although
keys are usually Strings, they can be any type of object.

Each entry in a Map is actually two objects—a key and a value.
Each key has a single value associated with it. You can have
duplicate values, but you can’t have duplicate keys.

val recipeMap: Map<String, Recipe>

How to create a Map
You create a Map by calling a function named mapOf, passing
in the key/value pairs you want the Map to be initialized with.
The following code, for example, creates a Map with three
entries. The keys are the Strings (“Recipe1”, “Recipe2” and

“Recipe3”), and the values are the Recipe objects:

val r1 = Recipe("Chicken Soup")

val r2 = Recipe("Quinoa Salad")

val r3 = Recipe("Thai Curry")

val recipeMap = mapOf("Recipe1" to r1, "Recipe2" to r2, "Recipe3" to r3)

As you might expect, the compiler infers the type
of the key/value pairs by looking at the entries
it’s initialized with. The above Map, for example,
is initialized with String keys and Recipe
values, so it creates a Map of type Map<String,
Recipe>. You can also explicitly define the Map’s
type using code like this:

In general, the Map’s type takes the form:

Map<key_type, value_type>

“KeyA” “KeyB” “KeyC”

REF
REF

REF

“Value1” “Value2”

Now that you know how to create a Map, let’s
see how to use one.

“Recipe1” “Recipe2” “Recipe3”

Recipe

“Chicken
Soup” Recipe

“Quinoa
Salad”

Recipe

“Thai
Curry”

REF
REF

REF

val
Map<String, Recipe>

REF

recipe
Map

These are the Map’s values.

These are the Map’s keys.

Each entry takes the form Key
to Value. The keys are normally
Strings, as in this example.

The Key type is first... ...followed by the Value type.

you are here 4 277

collections

How to use a Map
There are three main things you might want to do with a Map:
check whether it contains a specific key or value, retrieve a value
for a specified key, or loop through the Map’s entries.

You check whether a Map contains a particular key or value
using its containsKey and containsValue functions. The
following code, for example, checks whether the Map named
recipeMap contains the key “Recipe1”:

recipeMap.containsKey("Recipe1")

You can get the value for a specified key using the get and
getValue functions. get returns a null value if the specified
key doesn’t exist, whereas getValue throws an exception.
Here’s how, for example, you would use the getValue function
to get the Recipe object associated with the “Recipe1” key:

if (recipeMap.containsKey("Recipe1")) {

 val recipe = recipeMap.getValue("Recipe1")

 //Code to use the Recipe object

}

You can also loop through a Map’s entries. Here’s how, for
example, you would use a for loop to print each key/value pair
in recipeMap:

for ((key, value) in recipeMap) {

 println("Key is $key, value is $value")

}

And you can find out whether recipeMap contains a Recipe for
Chicken Soup using the containsValue function like this:

val recipeToCheck = Recipe("Chicken Soup")

if (recipeMap.containsValue(recipeToCheck)) {

 //Code that runs if the Map contains the value

}

A Map is immutable, so you can’t add or remove key/value pairs,
or update the value held against a specific key. To perform this
kind of action, you need to use a MutableMap instead. Let’s see
how these work.

Here, we’re assuming that Recipe is
a data class, so the Map can spot
when two Recipe objects are equal.

If recipeMap doesn’t contain
a “Recipe1” key, this line will
throw an exception.

278 Chapter 9

MutableMaps

If you pass String keys and Recipe values
to the mutableMapOf() function, the
compiler infers that you want an object
of type MutableMap<String, Recipe>.

Create a MutableMap
You define a MutableMap in a similar way to how you define
a Map, except that you use the mutableMapOf function
instead of mapOf. The following code, for example, creates a
MutableMap with three entries, as before:

Next, let’s look at how you remove values.

val r1 = Recipe("Chicken Soup")

val r2 = Recipe("Quinoa Salad")

val mRecipeMap = mutableMapOf("Recipe1" to r1, "Recipe2" to r2)

The MutableMap is initialized with String keys and
Recipe values, so the compiler infers that it must be a
MutableMap of type MutableMap<String, Recipe>.

MutableMap is a subtype of Map, so you can call the same
functions on a MutableMap that you can on a Map. A
MutableMap, however, has extra functions that you can use
to add, remove and update key/value pairs.

val r3 = Recipe("Thai Curry")

mRecipeMap.put("Recipe3", r3)

If the MutableMap already contains the specified key, the put
function replaces the value for that key, and returns the original value.

You can put many key/value pairs into the MutableMap at once
using the putAll function. This takes one argument, a Map
containing the entries you want to add. The following code, for
example, adds Jambalaya and Sausage Rolls Recipe objects to
a Map named recipesToAdd, and then puts these entries into
mRecipeMap:

Put entries in a MutableMap
You put entries into a MutableMap using the put
function. The following code, for example, puts a key
named “Recipe3” into mRecipeMap, and associates
it with a Recipe object for Thai Curry:

 val r4 = Recipe("Jambalaya")

 val r5 = Recipe("Sausage Rolls")

 val recipesToAdd = mapOf("Recipe4" to r4, "Recipe5" to r5)

 mRecipeMap.putAll(recipesToAdd)

“Recipe1” “Recipe2”

Recipe

“Chicken
Soup”

Recipe

“Quinoa
Salad”

REF
REF

val MutableMap
<String, Recipe>

REF

mRecipe
Map

Specify the key
first, then the value.

you are here 4 279

collections

mRecipeMap.clear()

You can remove entries from a MutableMap

Whichever approach you use, removing an entry from the
MutableMap reduces its size.

Finally, you can use the clear function to remove every entry
from the MutableMap, just as you can with MutableLists
and MutableSets:

You remove an entry from a MutableMap using the remove
function. This function is overloaded so that there are two ways of
calling it.

The first way is to pass to the remove function the key
whose entry you want to remove. The following code, for
example, removes the entry from mRecipeMap that has a key
of “Recipe2”:

The second way is to pass the remove function the key name
and a value. In this case, the function will only remove the entry
if it finds a match for both the key and the value. So the following
code only removes the entry for “Recipe2” if it is associated with
a Quinoa Salad Recipe object:

mRecipeMap.remove("Recipe2")

val recipeToRemove = Recipe("Quinoa Salad")

mRecipeMap.remove("Recipe2", recipeToRemove)

Now that you’ve seen how to update a MutableMap,
let’s look at how you can take copies of one.

Remove the entry with a key of “Recipe2”

Remove the entry with a key of
“Recipe2”, but only if its value is a
Quinoa Salad Recipe object.

val MutableMap
<String, Recipe>

REF

mRecipe
Map

Hey, where did
everybody go?

The clear() function removes every entry, but the MutableMap object itself still exists.

280 Chapter 9

copying Maps

You can copy Maps and MutableMaps
Just like the other types of collection you’ve seen, you
can take a snapshot of a MutableMap. You can use the
toMap function, for example, to take a read-only copy of
mRecipeMap, and assign the copy to a new variable:

val recipeMapCopy = mRecipeMap.toMap()

You can copy a Map or MutableMap into a new List object
containing all the key/value pairs using toList like this:

val RecipeList = mRecipeMap.toList()

And you can also get direct access to the key/value pairs using the
Map’s entries property. The entries property returns a Set
if it’s used with a Map, and returns a MutableSet if it’s used
with a MutableMap. The following code, for example, returns a
MutableSet of mRecipeMap’s key/value pairs:

val recipeEntries = mRecipeMap.entries

Other useful properties are keys (which returns a Set, or
MutableSet, of the Map’s keys), and values (which returns
a generic collection of the Map’s values). You can use these
properties to, say, check whether a Map contains duplicate values
using code like this:

mRecipeMap.values.toSet()

if (mRecipeMap.size > mRecipeMap.values.toSet().size) {

 println("mRecipeMap contains duplicates values")

}

This is because the code:

copies the Map’s values into a Set, which removes any duplicate
values.

Now that you’ve learned how to use Maps and MutableMaps,
let’s add some to our Collections project.

A MutableMap also has toMutableMap()
and toMutableList() functions.

Note that the entries, keys and values
properties are the actual contents of
the Map, or MutableMap. They’re not
copies. And if you’re using a MutableMap,
these properties are updatable.

you are here 4 281

collections

The full code for the Collections project

data class Recipe(var name: String)

fun main(args: Array<String>) {
 var mShoppingList = mutableListOf("Tea", "Eggs", "Milk")
 println("mShoppingList original: $mShoppingList")
 val extraShopping = listOf("Cookies", "Sugar", "Eggs")
 mShoppingList.addAll(extraShopping)
 println("mShoppingList items added: $mShoppingList")
 if (mShoppingList.contains("Tea")) {
 mShoppingList.set(mShoppingList.indexOf("Tea"), "Coffee")
 }
 mShoppingList.sort()
 println("mShoppingList sorted: $mShoppingList")
 mShoppingList.reverse()
 println("mShoppingList reversed: $mShoppingList")

 val mShoppingSet = mShoppingList.toMutableSet()
 println("mShoppingSet: $mShoppingSet")
 val moreShopping = setOf("Chives", "Spinach", "Milk")
 mShoppingSet.addAll(moreShopping)
 println("mShoppingSet items added: $mShoppingSet")
 mShoppingList = mShoppingSet.toMutableList()
 println("mShoppingList new version: $mShoppingList")

 val r1 = Recipe("Chicken Soup")
 val r2 = Recipe("Quinoa Salad")
 val r3 = Recipe("Thai Curry")
 val r4 = Recipe("Jambalaya")
 val r5 = Recipe("Sausage Rolls")
 val mRecipeMap = mutableMapOf("Recipe1" to r1, "Recipe2" to r2, "Recipe3" to r3)
 println("mRecipeMap original: $mRecipeMap")
 val recipesToAdd = mapOf("Recipe4" to r4, "Recipe5" to r5)
 mRecipeMap.putAll(recipesToAdd)
 println("mRecipeMap updated: $mRecipeMap")
 if (mRecipeMap.containsKey("Recipe1")) {
 println("Recipe1 is: ${mRecipeMap.getValue("Recipe1")}")
 }
}

src

Collections.kt

Collections

Update your version of Collections.kt to match ours
below (our changes are in bold):

Add the Recipe data class.

Add this
code.

Let’s take the code for a test drive.

282 Chapter 9

test drive

Test drive
When we run the code, the following text gets printed in the
IDE’s output window:

mShoppingList original: [Tea, Eggs, Milk]
mShoppingList items added: [Tea, Eggs, Milk, Cookies, Sugar, Eggs]
mShoppingList sorted: [Coffee, Cookies, Eggs, Eggs, Milk, Sugar]
mShoppingList reversed: [Sugar, Milk, Eggs, Eggs, Cookies, Coffee]
mShoppingSet: [Sugar, Milk, Eggs, Cookies, Coffee]
mShoppingSet items added: [Sugar, Milk, Eggs, Cookies, Coffee, Chives, Spinach]
mShoppingList new version: [Sugar, Milk, Eggs, Cookies, Coffee, Chives, Spinach]
mRecipeMap original: {Recipe1=Recipe(name=Chicken Soup), Recipe2=Recipe(name=Quinoa Salad),
 Recipe3=Recipe(name=Thai Curry)}
mRecipeMap updated: {Recipe1=Recipe(name=Chicken Soup), Recipe2=Recipe(name=Quinoa Salad),
 Recipe3=Recipe(name=Thai Curry), Recipe4=Recipe(name=Jambalaya),
 Recipe5=Recipe(name=Sausage Rolls)}
Recipe1 is: Recipe(name=Chicken Soup)

Q: Why does Kotlin have mutable
and immutable versions of the same
type of collection? Why not just have
mutable versions?

A: Because it forces you to explicitly
choose whether your collection should be
mutable or immutable. This means that you
can prevent collections from being updated
if you don’t want them to be.

Q: Can’t I do that using val and
var?

A: No. val and var specify whether
or not the reference held by the variable
can be replaced with another one after
it’s been initialized. If a variable defined
using val holds a reference to a mutable
collection, the collection can still be
updated. val just means that the variable
can only ever refer to that collection.

Q: Is it possible to create a
non-updateable view of a mutable
collection?

A: Suppose you have a
MutableSet of Ints that’s assigned
to a variable named x:

val x = mutableSetOf(1, 2)

You can assign x to a Set variable
named y using the following code:

val y: Set<Int> = x

As y is a Set variable, it can’t update the
underlying object without you first casting it
to a MutableSet.

Q: Is that different to using toSet?

A: Yes. toSet copies a collection,
so if changes are made to the original
collection, these won’t be picked up.

Q: Can I explicitly create and use
Java collections using Kotlin?

A: Yes. Kotlin includes various
functions that let you explicitly create
Java collections. You can, for example,
create an ArrayList using the
arrayListOf function, and a
HashMap using the hashMapOf
function. These functions, however, create
mutable objects.

We recommend that you stick with using
the Kotlin collections we’ve discussed in
this chapter unless there’s a good reason
why you shouldn’t.

Printing a Map or MutableMap prints
each key/value pair inside curly braces.

you are here 4 283

collections

Note: each thing from
the pool can only be
used once!

fun main(args: Array<String>) {

 val term1 = "Array"

 val term2 = "List"

 val term3 = "Map"

 val term4 =

 val term5 = "MutableMap"

 val term6 = "MutableSet"

 val term7 = "Set"

 val def1 = "Holds values in no particular order."

 val def2 = "Holds key/value pairs."

 val def3 = "Holds values in a sequence."

 val def4 = "Can be updated."

 val def5 = "Can't be updated."

 val def6 = "Can be resized."

 val def7 = "Can't be resized."

 val glossary = (to "$def3 $def4 $def6",

 to "$def1 $def5 $def7",

 to "$def3 $def4 $def7",

 to "$def2 $def4 $def6",

 to "$def3 $def5 $def7",

 to "$def1 $def4 $def6",

 to "$def2 $def5 $def7")

 for ((key, value) in glossary) println("$key: $value")

}

"MutableList"

mapOf

term4

term7

term1

term5term2

term6term3

"MutableArray"

Map

Pool Puzzle
Your job is to take code snippets from the

pool and place them into the blank
lines in the code. You may not use
the same code snippet more than
once, and you won’t need to use all
the code snippets. Your goal is to
print the entries of a Map named

glossary that provides definitions
of all the collection types you’ve learned
about.

284 Chapter 9

pool puzzle solution

fun main(args: Array<String>) {

 val term1 = "Array"

 val term2 = "List"

 val term3 = "Map"

 val term4 =

 val term5 = "MutableMap"

 val term6 = "MutableSet"

 val term7 = "Set"

 val def1 = "Holds values in no particular order."

 val def2 = "Holds key/value pairs."

 val def3 = "Holds values in a sequence."

 val def4 = "Can be updated."

 val def5 = "Can't be updated."

 val def6 = "Can be resized."

 val def7 = "Can't be resized."

 val glossary = (to "$def3 $def4 $def6",

 to "$def1 $def5 $def7",

 to "$def3 $def4 $def7",

 to "$def2 $def4 $def6",

 to "$def3 $def5 $def7",

 to "$def1 $def4 $def6",

 to "$def2 $def5 $def7")

 for ((key, value) in glossary) println("$key: $value")

}

Pool Puzzle Solution
Your job is to take code snippets from the

pool and place them into the blank
lines in the code. You may not use
the same code snippet more than
once, and you won’t need to use all
the code snippets. Your goal is to
print the entries of a Map named

glossary that provides definitions of
all the collection types you’ve learned about.

"MutableList"

You didn’t need to
use these snippets.

"MutableArray"

mapOf

Map

term4
term7
term1
term5
term2
term6
term3

you are here 4 285

collections

 Mixed
Messages

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

Match each
candidate with
one of the
possible outputs.

fun main(args: Array<String>) {

 val mList = mutableListOf("Football", "Baseball", "Basketball")

}

mList.sort()

println(mList)

Candidates: Possible output:

val mMap = mutableMapOf("0" to "Netball")

var x = 0

for (item in mList) {

 mMap.put(x.toString(), item)

}

println(mMap.values)

The candidate
code goes here.

mList.addAll(mList)

mList.reverse()

val set = mList.toSet()

println(set)

[Baseball, Basketball, Football]

[Basketball, Baseball, Football]

[Basketball]

mList.sort()

mList.reverse()

println(mList)

[Football, Basketball, Baseball]

[Football]

[Netball]

[Football, Baseball, Basketball]

{Basketball}

{Netball}

{Basketball, Baseball, Football}

286 Chapter 9

mixed messages solution

 Mixed
Messages
Solution

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

fun main(args: Array<String>) {

 val mList = mutableListOf("Football", "Baseball", "Basketball")

}

mList.sort()

println(mList)

Candidates: Possible output:

val mMap = mutableMapOf("0" to "Netball")

var x = 0

for (item in mList) {

 mMap.put(x.toString(), item)

}

println(mMap.values)

The candidate
code goes here.

mList.addAll(mList)

mList.reverse()

val set = mList.toSet()

println(set)

mList.sort()

mList.reverse()

println(mList)

[Baseball, Basketball, Football]

[Basketball, Baseball, Football]

[Basketball]

[Football, Basketball, Baseball]

[Football]

[Netball]

[Football, Baseball, Basketball]

{Basketball}

{Netball}

{Basketball, Baseball, Football}

you are here 4 287

collections

Your Kotlin Toolbox

You’ve got Chapter 9 under
your belt and now you’ve

added collections to your
toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

CHAPT
ER 9

 � Create an array initialized with null
values using the arrayOfNulls
function.

 � Useful array functions include: sort,
reverse, contains, min, max,
sum, average.

 � The Kotlin Standard Library contains pre-
built classes and functions grouped into
packages.

 � A List is a collection that knows and
cares about index position. It can contain
duplicate values.

 � A Set is an unordered collection that
doesn’t allow duplicate values.

 � A Map is a collection that uses key/value
pairs. It can contain duplicate values, but
not duplicate keys.

 � List, Set and Map are immutable.
MutableList, MutableSet and
MutableMap are mutable subtypes of
these collections.

 � Create a List using the listOf
function.

 � Create a MutableList using
mutableListOf.

 � Create a Set using the setOf function.

 � Create a MutableSet using
mutableSetOf.

 � A Set checks for duplicates by first
looking for matching hash code values. It
then uses the === and == operators to
check for referential or object equality.

 � Create a Map using the mapOf function,
passing in key/value pairs.

 � Create a MutableMap using
mutableMapOf.

this is a new chapter 289

generics10

Know Your Ins
from Your Outs

Everybody likes code that’s consistent.
And one way of writing consistent code that’s less prone to problems is to use generics.

In this chapter, we’ll look at how Kotlin’s collection classes use generics to stop you

from putting a Cabbage into a List<Seagull>. You’ll discover when and how to write your

own generic classes, interfaces and functions, and how to restrict a generic type to

a specific supertype. Finally, you’ll find out how to use covariance and contravariance,

putting YOU in control of your generic type’s behavior.

Darling, I fear that
the T in Meat<T> may
implement the Tabby
interface.

290 Chapter 10

generics allow type consistency

Collections use generics
As you learned in the previous chapter, each time you explicitly
declare a collection’s type, you must specify both the kind of
collection you want to use, and the type of element it contains.
The following code, for example, defines a variable that can hold
a reference to a MutableList of Strings:

val x: MutableList<String>

The element type is defined inside angle brackets <>, which
means that it uses generics. Generics lets you write code that’s
type-safe. It’s what makes the compiler stop you from putting
a Volkswagen into a list of Ducks. The compiler knows that
you can only put Duck objects into a MutableList<Duck>,
which means that more problems are caught at compile-time.

WITHOUT generics,
objects would go IN as a
reference to Duck, Fish,
Guitar and Car objects...

...and come OUT as a reference of type Any.

WITH generics,
objects go IN as a
reference to only
Duck objects...

...and come OUT as a reference of type Duck.

With generics, you can make
sure that your collection
only contains objects of
the correct type. You
don’t have to worry about
someone sticking a Pumpkin
into a MutableList<Duck>,
or that what you get out
won’t be a Duck.

Without generics,
there’d be no way
to declare what
type of objects the
MutableList should
contain.

Guitar Car

Any Any

MutableList

Duck

Any

Fish

Any

Duck Duck

Duck Duck

MutableList<Duck>

Duck

Duck

Duck

Duck

you are here 4 291

generics

How a MutableList is defined
Let’s look at the online documentation to see how
MutableList is defined, and how it uses generics. There are
two key areas we’ll consider: the interface declaration, and how
the add function is defined.

interface MutableList<E> : List<E>, MutableCollection<E> {

 fun add(index: Int, element: E): Unit

 //More code

}

Understanding collection documentation
(Or, what’s the meaning of “E”?)
Here’s a simplified version of the MutableList definition:

The “E” is a placeholder for
the REAL type you use when
you declare a MutableList.

MutableList inherits from the List and MutableCollection interfaces. Whatever type (the value of “E”) you specify for the MutableList is automatically used for the type of the List and MutableCollection.

Whatever “E” is determines what
kind of things you’re allowed to
add to the MutableList.

MutableList uses “E” as a stand-in for the type of
element you want the collection to hold and return.
When you see an “E” in the documentation, you can do
a mental find/replace to exchange it for whatever type
you want it to hold.

MutableList<String>, for example, means
that “E” becomes “String” in any function or variable
declaration that uses “E”. And MutableList<Duck>
means that all instances of “E” become “Duck” instead.

Let’s look at this in more detail.

Q: So MutableList isn’t a class?

A: No, it’s an interface. When you create a
MutableList using the mutableListOf
function, the system creates an implementation of
this interface. All you care about when you’re using it,
however, is that it has all the properties and functions
defined in the MutableList interface.

292 Chapter 10

how type parameters work

Using type parameters with MutableList

val x: MutableList<String>

interface MutableList<E> : List<E>, MutableCollection<E> {

 fun add(index: Int, element: E): Unit

 //More code

}

When you write this code:

It means that MutableList:

is treated by the compiler as:

interface MutableList<String> : List<String>, MutableCollection<String> {

 fun add(index: Int, element: String): Unit

 //More code

}

In other words, the “E” is replaced by the real type
(also called the type parameter) that you use when you
define the MutableList. And that’s why the add
function won’t let you add anything except objects with
a type that’s compatible with the type of “E”. So if you
make a MutableList<String>, the add function
suddenly lets you add Strings. And if you make the
MutableList of type Duck, suddenly the add function
lets you add Ducks.

you are here 4 293

generics

But there are still important questions that need answering
about generics, such as how do you define your own generic
classes and interfaces? And how does polymorphism work with
generic types? If you have a MutableList<Animal>, what
happens if you try to assign a MutableList<Dog> to it?

To answer these questions and more, we’re going to create an
application that uses generic types.

Things you can do with a
generic class or interface
Here’s a summary of some of the key things you can do
when you’re using a class or interface that has generic
types:

Create an instance of a generified class.
When you create a collection such as a MutableList, you
have to tell it the type of objects you’ll allow it to hold, or let the
compiler infer it:

¥

val duckList: MutableList<Duck>

duckList = mutableListOf(Duck("Donald"), Duck("Daisy"), Duck("Daffy"))

val list = mutableListOf("Fee", "Fi", "Fum")

Create a function that takes a generic type.
You can create a function with a generic parameter by specifying
its type, just as you would any other sort of parameter:

¥

Create a function that returns a generic type.
A function can return a generic type too. The following code, for
example, returns a MutableList of Ducks:

¥

fun quack(ducks: MutableList<Duck>) {

 //Code to make the Ducks quack

}

fun getDucks(breed: String): MutableList<Duck> {

 //Code to get Ducks for the specified breed

}

294 Chapter 10

steps

We’ll start by creating the pet class hierarchy.

Here’s what we’re going to do
We’re going to create an application that deals with pets. We’ll
create some pets, hold pet contests for them, and create pet
retailers that can sell specific types of pet. And as we’re using
generics, we’ll ensure that each contest and retailer we create can
only deal with a specific type of pet.

Here are the steps that we’ll follow:

Create the Pet hierarchy.
We’ll create a hierarchy of pets that will allow us to create three types of
pet: cats, dogs and fish.

1

Create the Contest class.
The Contest class will let us create contests for different types of pet.
We’ll use it to manage the contestant scores so that we can determine
the winner. And as we want each contest to be limited to a specific type
of pet, we’ll define the Contest class using generics.

2

Create the Retailer hierarchy.
We’ll create a Retailer interface, and concrete implementations
of this interface named CatRetailer, DogRetailer and
FishRetailer. We’ll use generics to ensure that each type of
Retailer can only sell a specific type of pet, so that you can’t buy a
Cat from a FishRetailer.

3

Create a Vet class.
Finally, we’ll create a Vet class, so that we can assign a vet to each
contest. We’ll define the Vet class using generics to reflect the type
of Pet each Vet specializes in treating.

4

you are here 4 295

generics

Create the Pet class hierarchy
Our pet class hierarchy will comprise of four classes: a Pet
class that we’ll mark as abstract, and concrete subclasses
named Cat, Dog and Fish. We’ll add a name property to
the Pet class, which its concrete subclasses will inherit.

We’re marking Pet as abstract because we only want to be
able to create objects that are a subtype of Pet, such as Cat
or Dog, and as you learned in Chapter 6, marking a class as
abstract prevents that class from being instantiated.

Here’s the class hierarchy:

abstract class Pet(var name: String)

class Cat(name: String) : Pet(name)

class Dog(name: String) : Pet(name)

class Fish(name: String) : Pet(name)

The code for the class hierarchy looks like this:

Next, let’s create the Contest class so that we can hold
contests for different kinds of pet.

Pet

name

DogCat Fish

Pets
Contest
Retailers
Vet

Here, Pet is abstract, while
Cat, Dog and Fish are
concrete implementations.

Each subtype of Pet has a name
(which it inherits from Pet), which
gets set in the class constructor.

296 Chapter 10

Contest class

Define the Contest class
We’ll use the Contest class to help us manage the scores for a
pet contest, and determine the winner. The class will have one
property named scores, and two functions named addScore
and getWinners.

We want each contest to be limited to a particular type of pet. A cat
contest, for example, only has cat contestants, and only fish can take
part in a fish contest. We’ll enforce this rule using generics.

So the above code means that you can create Contest objects that
deal with Cats, Fish or Pets, but not Bicycles or Begonias.

Next, let’s add the scores property to the Contest class.

The generic type name can be anything that’s a legal identifier,
but the convention (which you should follow) is to use “T”. The
exception is if you’re writing a collection class or interface, in which
case the convention is to use “E” instead (for “Element”), or “K”
and “V” (for “Key” and “Value”) if it’s a map.

class Contest<T> {

 //More code here

}

You can restrict T to a specific supertype
In the above example, T can be replaced by any real type when the
class is instantiated. You can, however, place restrictions on T by
specifying that it has a type. The following code, for example, tells
the compiler that T must be a type of Pet:

Declare that Contest uses a generic type
You specify that a class uses a generic type by putting the type name
in angle brackets immediately after the class name. Here, we’ll
use “T” to denote the generic type. You can think of “T” as being a
stand-in for the real type that each Contest object will deal with.

Here’s the code:

class Contest<T: Pet> {

 //More code here

}

Contest<T>

Contest<T: Pet>

Pets
Contest
Retailers
Vet

The <T> after the class
name tells the compiler
that T is a generic type.

T is a generic type
that must be Pet, or
one of its subtypes.

you are here 4 297

generics

Add the scores property
The scores property needs to keep track of which contestant
receives which score. We’ll therefore use a MutableMap, with
contestants as keys, and their scores as values. As each contestant
is an object of type T and each score is an Int, the scores
property will have a type of MutableMap<T, Int>. If we create
a Contest<Cat> that deals with Cat contestants, the scores
property’s type will become MutableMap<Cat, Int>, but if we
create a Contest<Pet> object, scores type will automatically
become MutableMap<Pet, Int> instead.

Here’s the updated code for the Contest class:

class Contest<T: Pet> {

 val scores: MutableMap<T, Int> = mutableMapOf()

 //More code here

}

Now that we’ve added the scores property, let’s add the
addScore and getWinners functions.

Create the addScore function
We want the addScore function to add a contestant’s score to the
scores MutableMap. We’ll pass the contestant and score to the
function as parameter values; so long as the score is 0 or above, the
function will add them to the MutableMap as a key/value pair.

Here’s the code for the function:

class Contest<T: Pet> {

 val scores: MutableMap<T, Int> = mutableMapOf()

 fun addScore(t: T, score: Int = 0) {

 if (score >= 0) scores.put(t, score)

 }

 //More code goes here

}

Finally, let’s add the getWinners function.

Contest<T: Pet>

scores

Contest<T: Pet>

scores

addScore

Pets
Contest
Retailers
Vet

This defines a MutableMap with T keys, and Int values, where T is the generic type of Pet that the Contest is dealing with.

Put the contestant and its
score in the MutableMap,
so long as the score is
greater than or equal to 0.

298 Chapter 10

getWinners function

class Contest<T: Pet> {

 val scores: MutableMap<T, Int> = mutableMapOf()

 fun addScore(t: T, score: Int = 0) {

 if (score >= 0) scores.put(t, score)

 }

 fun getWinners(): MutableSet<T> {

 val highScore = scores.values.max()

 val winners: MutableSet<T> = mutableSetOf()

 for ((t, score) in scores) {

 if (score == highScore) winners.add(t)

 }

 return winners

 }

}

Create the getWinners function
The getWinners function needs to return the contestants with
the highest score. We’ll get the value of the highest score from the
scores property, and we’ll return all contestants with this score
in a MutableSet. As each contestant has a generic type of T,
the function must have a return type of MutableSet<T>.

Here’s the code for the getWinners function:

And here’s the code for the complete Contest class:

fun getWinners(): MutableSet<T> {

 val highScore = scores.values.max()

 val winners: MutableSet<T> = mutableSetOf()

 for ((t, score) in scores) {

 if (score == highScore) winners.add(t)

 }

 return winners

}

Now that we’ve written the Contest class, let’s use it to create
some objects.

Contest<T: Pet>

scores

addScore
getWinners

Pets
Contest
Retailers
Vet

Get the highest value from scores.

Add any contestants with the highest score to a MutableSet.
Return the MutableSet of winners.

We’ll add this class to a new
application a few pages ahead.

you are here 4 299

generics

Create some Contest objects
You create Contest objects by specifying what type of objects it should
deal with, and calling its constructor. The following code, for example,
creates a Contest<Cat> object named catContest that deals with
Cat objects:

val catContest = Contest<Cat>()

This means that you can add Cat objects to its scores property, and
use its getWinners function to return a MutableSet of Cats:

catContest.addScore(Cat("Fuzz Lightyear"), 50)

catContest.addScore(Cat("Katsu"), 45)

val topCat = catContest.getWinners().first()

And as Contest uses generics, the compiler prevents you from passing
any non-Cat references to it. The following code, for example, won’t
compile:

catContest.addScore(Dog("Fido"), 23)

A Contest<Pet>, however, will accept any type of Pet, like this:

val petContest = Contest<Pet>()

petContest.addScore(Cat("Fuzz Lightyear"), 50)

petContest.addScore(Fish("Finny McGraw"), 56)

The compiler can infer the generic type
In some circumstances, the compiler can infer the generic type
from the available information. If, say, you create a variable of type
Contest<Dog>, the compiler will automatically infer that any
Contest object you pass to it is a Contest<Dog> (unless you tell it
otherwise). The following code, for example, creates a Contest<Dog>
object and assigns it to dogContest:

val dogContest: Contest<Dog>

dogContest = Contest()

Where appropriate, the compiler can also infer the generic type from
its constructor parameters. If, for example, we’d used a generic type
parameter in the Contest class primary constructor like this:

class Contest<T: Pet>(t: T) {...}

The compiler would be able to infer that the following code creates
a Contest<Fish>:

val contest = Contest(Fish("Finny McGraw"))

Pets
Contest
Retailers
Vet

This creates a Contest that will accept Cats.

getWinners() returns a MutableSet<Cat>
because we’ve specified that catContest
must deal with Cats.

The compiler prevents you from adding non-Cats
to a Contest<Cat>, so this line won’t compile.

As a Contest<Pet> deals with Pets,
contestants can be any subtype of Pet.

Here, you can use Contest() instead of Contest<Dog>() as the
compiler can infer the object type from the variable type.

This is the same as creating a Contest
using Contest<Fish>(Fish(“Finny McGraw”)).
You can omit the <Fish> as the compiler
infers it from the constructor argument.

300 Chapter 10

up close

Generic Functions Up Close

So far, you’ve seen how to define a function that uses a generic
type inside a class definition. But what if you want to define a
function with a generic type outside a class? Or what if you want
a function inside a class to use a generic type that’s not included
in the class definition?

If you want to define a function with its own generic type, you
can do so by declaring the generic type as part of the function
definition. The following code, for example, defines a function
named listPet with a generic type, T, that’s limited to types
of Pet. The function accepts a T parameter, and returns a
reference to a MutableList<T> object:

fun <T: Pet> listPet(t: T): MutableList<T> {

 println("Create and return MutableList")

 return mutableListOf(t)

}

Notice that when you declare a generic function in this way, the
type must be declared in angle brackets before the function name,
like this:

fun <T: Pet> listPet...

To call the function, you must specify the type of object the
function should deal with. The following code, for example,
calls the listPet function, using angle brackets to specify that
we’re using it with Cat objects:

val catList = listPet<Cat>(Cat("Zazzles"))

The generic type, however, can be omitted if the compiler can
infer it from the function’s arguments. The following code,
for example, is legal because the compiler can infer that the
listPet function is being used with Cats:

val catList = listPet(Cat("Zazzles"))

For functions that
declare their own generic
type, the <T: Pet> goes
before the function name.

These two function calls do the same thing, as the compiler can infer that you want the function to deal with Cats.

you are here 4 301

generics

Create the Generics project
Now that you’ve seen how to create a class that uses generics, let’s
add it to a new application.

Create a new Kotlin project that targets the JVM, and name the
project “Generics”. Then create a new Kotlin file named Pets.kt by
highlighting the src folder, clicking on the File menu and choosing
New → Kotlin File/Class. When prompted, name the file “Pets”,
and choose File from the Kind option.

Next, update your version of Pets.kt to match ours below:

abstract class Pet(var name: String)

class Cat(name: String) : Pet(name)

class Dog(name: String) : Pet(name)

class Fish(name: String) : Pet(name)

class Contest<T: Pet> {

 val scores: MutableMap<T, Int> = mutableMapOf()

 fun addScore(t: T, score: Int = 0) {

 if (score >= 0) scores.put(t, score)

 }

 fun getWinners(): MutableSet<T> {

 val winners: MutableSet<T> = mutableSetOf()

 val highScore = scores.values.max()

 for ((t, score) in scores) {

 if (score == highScore) winners.add(t)

 }

 return winners

 }

}

src

Pets.kt

Generics

The code continues
on the next page.

Pets
Contest
Retailers
Vet

Add the Pet hierarchy.

Add the Contest class.

302 Chapter 10

test drive

fun main(args: Array<String>) {

 val catFuzz = Cat("Fuzz Lightyear")

 val catKatsu = Cat("Katsu")

 val fishFinny = Fish("Finny McGraw")

 val catContest = Contest<Cat>()

 catContest.addScore(catFuzz, 50)

 catContest.addScore(catKatsu, 45)

 val topCat = catContest.getWinners().first()

 println("Cat contest winner is ${topCat.name}")

 val petContest = Contest<Pet>()

 petContest.addScore(catFuzz, 50)

 petContest.addScore(fishFinny, 56)

 val topPet = petContest.getWinners().first()

 println("Pet contest winner is ${topPet.name}")

}

The code continued...

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

Cat contest winner is Fuzz Lightyear
Pet contest winner is Finny McGraw

src

Pets.kt

Generics

Q: Can a generic type be nullable?

A: Yes. If you have a function that returns a generic type, and
you want this type to be nullable, simply add a ? after the generic
return type like this:

 class MyClass<T> {
 fun myFun(): T?
 }

Q: Can a class have more than one generic type?

A: Yes. You define multiple generic types by specifying them
inside angle brackets, separated by a comma. If you wanted to
define a class named MyMap with K and V generic types, you
would define it using code like this:

 class MyMap<K, V> {
 //Code goes here
 }

After you’ve had a go at the following exercise, we’ll look at the
Retailer hierarchy.

Pets
Contest
Retailers
VetCreate two Cats and a Fish.

Hold a Cat Contest (Cats-only).

Hold a Pet Contest, that will
accept all types of Pet.

you are here 4 303

generics

Note: each thing from
the pool can only be
used once!

class PetOwner {

 val pets = mutableListOf()

 fun add() {

 pets.add()

 }

 fun remove() {

 pets.remove()

 }

}

fun main(args: Array<String>) {

 val catFuzz = Cat("Fuzz Lightyear")

 val catKatsu = Cat("Katsu")

 val fishFinny = Fish("Finny McGraw")

 val catOwner = PetOwner

 catOwner.add(catKatsu)

}

Pool Puzzle
Your job is to take code snippets from

the pool and place them into
the blank lines in the code. You
may not use the same code
snippet more than once, and
you won’t need to use all the
code snippets. Your goal is to

create a class named PetOwner
that accepts generic Pet types,
which you must then use to create a
new PetOwner<Cat> that holds
references to two Cat objects.

Note: each thing from
the pool can only be
used once!

PetOwner<T: Pet>

pets: MutableList<T>

add(t: T)
remove(t: T)

pets holds a reference
to each pet owned. It’s
initialized with a value
that’s passed to the
PetOwner constructor.

The add and remove functions are
used to update the pets property.
The add function adds a reference,
and the remove function removes one.

<

> T: Pet

(

)

t: T

t

T

t: T

t: T

T: Pet

T: Pet

t

t

<

>

(

)
catFuzz

T

T

fishFinny

304 Chapter 10

pool puzzle solution

class PetOwner {

 val pets = mutableListOf()

 fun add() {

 pets.add()

 }

 fun remove() {

 pets.remove()

 }

}

fun main(args: Array<String>) {

 val catFuzz = Cat("Fuzz Lightyear")

 val catKatsu = Cat("Katsu")

 val fishFinny = Fish("Finny McGraw")

 val catOwner = PetOwner

 catOwner.add(catKatsu)

}

Pool Puzzle Solution
Your job is to take code snippets from

the pool and place them into
the blank lines in the code. You
may not use the same code
snippet more than once, and
you won’t need to use all the
code snippets. Your goal is to

create a class named PetOwner
that accepts generic Pet types,
which you must then use to create a
new PetOwner<Cat> that holds
references to two Cat objects.

PetOwner<T: Pet>

pets: MutableList<T>

add(t: T)
remove(t: T)

<

> T: Pet

<T: Pet>(t: T)

t

T

t: T

t: T

T: Pet

t

t

(catFuzz)

T

T

You didn’t need to
use these snippets.

Specify the generic type. The constructor.

This creates a
MutableList<T>.

Add/Remove T values.

Creates a PetOwner<Cat>,
and initializes pets with a
reference to catFuzz.

fishFinny

you are here 4 305

generics

The Retailer hierarchy
We’re going to use the Pet classes we created earlier to
define a hierarchy of retailers that can sell different types
of pet. To do this, we’ll define a Retailer interface
with a sell function, and three concrete classes named
CatRetailer, DogRetailer and FishRetailer
that implement the interface.

Each type of retailer should be able to sell a particular
type of object. A CatRetailer, for example, can only
sell Cats, and a DogRetailer can only sell Dogs. To
enforce this, we’ll use generics to specify the type of object
that each class deals with. We’ll add a generic type T to the
Retailer interface, and specify that the sell function
must return objects of this type. As the CatRetailer,
DogRetailer and FishRetailer classes all implement
this interface, each one will have to substitute the “real”
type of object they deal with for the generic type T.

Here’s the class hierarchy that we’ll use:

Now that you’ve seen the class hierarchy let’s write the code
for it, starting with the Retailer interface.

(interface)
Retailer<T>

sell(): T

DogRetailer

sell(): Dog

CatRetailer

sell(): Cat

FishRetailer

sell(): Fish

Pets
Contest
Retailers
Vet

Retailer is an interface, while
CatRetailer, DogRetailer and
FishRetailer are concrete
implementations.

Q: Why aren’t you using a PetRetailer
concrete class?

A: In the real world, it’s quite likely that you’d
want to include a PetRetailer which sells all
types of Pet. Here, we’re differentiating between
the different types of Retailer so that we can
teach you more important details about generics.

306 Chapter 10

Retailer interface

interface Retailer<T> {

 fun sell(): T

}

Define the Retailer interface
The Retailer interface needs to specify that it uses a generic type
T, which is used as the return type for the sell function.

Here’s the code for the interface:

class CatRetailer : Retailer<Cat> {

 override fun sell(): Cat {

 println("Sell Cat")

 return Cat("")

 }

}

Each implementation of the Retailer interface must specify
the type of object it deals with by replacing the “T” defined in the
interface with the real type. The CatRetailer implementation,
for example, replaces “T” with “Cat”, so its sell function must
return a Cat. If you try and use anything other than Cat (or a
subtype of Cat) for sell’s return type, the code won’t compile:

class CatRetailer : Retailer<Cat> {

 override fun sell(): Dog = Dog("")

}

So using generics means that you can place limits on how a class uses
its types, making your code much more consistent and robust.

Now that we have the code for our retailers, let’s create some objects.

This code won’t compile because CatRetailer’s sell() function must return a Cat, and a Dog is not a type of Cat.

Similarly, the DogRetailer class deals with Dogs, so we can
define it like this:

The CatRetailer, DogRetailer and FishRetailer classes
need to implement the Retailer interface, specifying the type of
object each one deals with. The CatRetailer class, for example,
only deals with Cats, so we’ll define it using code like this:

class DogRetailer : Retailer<Dog> {

 override fun sell(): Dog {

 println("Sell Dog")

 return Dog("")

 }

}

Pets
Contest
Retailers
Vet

The CatRetailer class implements the
Retailer interface so that it deals
with Cats. This means that the sell()
function must return a Cat.

(interface)
Retailer<T>

sell(): T

CatRetailer

sell(): Cat

(interface)
Retailer<T>

sell(): T

DogRetailer

sell(): Dog

DogRetailer replaces
Retailer's generic type with
Dog, so its sell() function
must return a Dog.

you are here 4 307

generics

val dogRetailer: Retailer<Dog> = DogRetailer()

val catRetailer: Retailer<Cat> = CatRetailer()

We can create CatRetailer,
DogRetailer and FishRetailer objects...
As you might expect, you can create a CatRetailer,
DogRetailer or FishRetailer object and assign it to a
variable by explicitly declaring the variable’s type, or letting the
compiler infer it from the value that’s assigned to it. The following
code uses these techniques to create two CatRetailer
variables and assign a CatRetailer object to each one:

val catRetailer1 = CatRetailer()

val catRetailer2: CatRetailer = CatRetailer()

...but what about polymorphism?
As CatRetailer, DogRetailer and FishRetailer
implement the Retailer interface, we should be able to create
a variable of type Retailer (with a compatible type parameter),
and assign one of its subtypes to it. And this works if we assign a
CatRetailer object to a Retailer<Cat> variable, or assign
a DogRetailer to a Retailer<Dog>:

But if we try to assign one of these objects to a Retailer<Pet>,
the code won’t compile:

val petRetailer: Retailer<Pet> = CatRetailer()

Even though CatRetailer is a type of Retailer, and
Cat is a type of Pet, our current code won’t let us assign a
Retailer<Cat> object to a Retailer<Pet> variable. A
Retailer<Pet> variable will only accept a Retailer<Pet>
object. Not a Retailer<Cat>, nor a Retailer<Dog>, but
only a Retailer<Pet>.

This behavior appears to violate the whole point of
polymorphism. The great news, however, is that we can adjust
the generic type in the Retailer interface to control
which types of objects a Retailer<Pet> variable can
accept.

Pets
Contest
Retailers
Vet

These lines are legal because DogRetailer
implements Retailer<Dog>, and
CatRetailer implements Retailer<Cat>.

This won't compile, even though
CatRetailer is a Retailer<Cat>, and
Cat is a subtype of Pet.

308 Chapter 10

covariance

Use out to make a generic type covariant
If you want to be able to use a generic subtype object in a place
of a generic supertype, you can do so by prefixing the generic
type with out. In our example, we want to be able to assign
a Retailer<Cat> (a subtype) to a Retailer<Pet> (a
supertype) so we’ll prefix the generic type T in the Retailer
interface with out like so:

interface Retailer<out T> {

 fun sell(): T

}

Collections are defined using covariant types
The out prefix isn’t just used by generic classes and interfaces that
you define yourself. They’re also heavily used by Kotlin’s built-in
code, such as collections.

The List collection, for example, is defined using code like this:

When we prefix a generic type with out, we say that the generic
type is covariant. In other words, it means that a subtype can be
used in place of a supertype.

Making the above change means that a Retailer<Pet>
variable can now be assigned Retailer objects that deal with
Pet subtypes. The following code, for example, now compiles:

val petRetailer: Retailer<Pet> = CatRetailer()

In general, a class or interface generic type may be prefixed with
out if the class has functions that use it as a return type, or if the
class has val properties of that type. You can’t, however, use
out if the class has function parameters or var properties of that
generic type.

public interface List<out E> ... { ... }

This means that you can, say, assign a List of Cats to a List
of Pets, and the code will compile:

val catList: List<Cat> = listOf(Cat(""), Cat(""))

val petList: List<Pet> = catList

Now that you’ve seen how to make generic types covariant using
out, let’s add the code we’ve written to our project.

Pets
Contest
Retailers
Vet

If a generic type is
covariant, it means that
you can use a subtype in
place of a supertype.

Here's the out prefix.

The out prefix in the Retailer
interface means that we can
now assign a Retailer<Cat> to
a Retailer<Pet> variable.

Another way of thinking about this is that a generic type that's prefixed with out can only be used in an “out” position, such as a function return type. It can’t, however, be used in an “in” position, so a function can’t receive a covariant type as a parameter value.

you are here 4 309

generics

abstract class Pet(var name: String)

class Cat(name: String) : Pet(name)

class Dog(name: String) : Pet(name)

class Fish(name: String) : Pet(name)

class Contest<T: Pet> {

 val scores: MutableMap<T, Int> = mutableMapOf()

 fun addScore(t: T, score: Int = 0) {

 if (score >= 0) scores.put(t, score)

 }

 fun getWinners(): MutableSet<T> {

 val winners: MutableSet<T> = mutableSetOf()

 val highScore = scores.values.max()

 for ((t, score) in scores) {

 if (score == highScore) winners.add(t)

 }

 return winners

 }

}

interface Retailer<out T> {
 fun sell(): T
}

class CatRetailer : Retailer<Cat> {
 override fun sell(): Cat {
 println("Sell Cat")
 return Cat("")
 }
}

class DogRetailer : Retailer<Dog> {
 override fun sell(): Dog {
 println("Sell Dog")
 return Dog("")
 }
}

src

Pets.kt

Generics

Update the Generics project
Update your version of Pets.kt in the Generics project so that it
matches ours below (our changes are in bold):

The code continues
on the next page.

Pets
Contest
Retailers
Vet

Add the Retailer interface.

Add the CatRetailer
and DogRetailer classes.

310 Chapter 10

test drive

class FishRetailer : Retailer<Fish> {
 override fun sell(): Fish {
 println("Sell Fish")
 return Fish("")
 }
}

fun main(args: Array<String>) {
 val catFuzz = Cat("Fuzz Lightyear")
 val catKatsu = Cat("Katsu")
 val fishFinny = Fish("Finny McGraw")

 val catContest = Contest<Cat>()
 catContest.addScore(catFuzz, 50)
 catContest.addScore(catKatsu, 45)
 val topCat = catContest.getWinners().first()
 println("Cat contest winner is ${topCat.name}")

 val petContest = Contest<Pet>()
 petContest.addScore(catFuzz, 50)
 petContest.addScore(fishFinny, 56)
 val topPet = petContest.getWinners().first()
 println("Pet contest winner is ${topPet.name}")

 val dogRetailer: Retailer<Dog> = DogRetailer()
 val catRetailer: Retailer<Cat> = CatRetailer()
 val petRetailer: Retailer<Pet> = CatRetailer()
 petRetailer.sell()
}

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

Cat contest winner is Fuzz Lightyear
Pet contest winner is Finny McGraw
Sell Cat

Now that you’ve seen how to make generic types covariant using the
out prefix, have a go at the following exercise.

src

Pets.kt

Generics

The code continued...
Pets
Contest
Retailers
Vet

Add the FishRetailer class.

Create some Retailer objects.

you are here 4 311

generics

BE the Compiler
Here are five classes and
interfaces that use generics.
Your job is to play like you’re

the Compiler, and
determine whether
each one will
compile. If it won’t
compile, why not?

interface A<out T> {

 fun myFunction(t: T)

}

interface B<out T> {

 val x: T

 fun myFunction(): T

}

interface C<out T> {

 var y: T

 fun myFunction(): T

}

interface D<out T> {

 fun myFunction(str: String): T

}

abstract class E<out T>(t: T) {

 val x = t

}

A

B

D

C

E

312 Chapter 10

be the compiler solution

BE the Compiler Solution
Here are five classes and
interfaces that use generics.
Your job is to play like you’re

the Compiler, and
determine whether
each one will
compile. If it won’t
compile, why not?

interface A<out T> {

 fun myFunction(t: T)

}

interface B<out T> {

 val x: T

 fun myFunction(): T

}

interface C<out T> {

 var y: T

 fun myFunction(): T

}

interface D<out T> {

 fun myFunction(str: String): T

}

abstract class E<out T>(t: T) {

 val x = t

}

This code won’t compile because the covariant type
T can’t be used as a function parameter.

This code compiles successfully.

This code won’t compile because the covariant type
T can’t be used as the type of a var property.

This code compiles successfully.

This code compiles successfully.

A

B

D

C

E

you are here 4 313

generics

We need a Vet class
As we said earlier in the chapter, we want to be able to assign
a vet to each contest in case there’s a medical emergency with
any of the contestants. As vets can specialize in treating different
types of pet, we’ll create a Vet class with a generic type T, and
specify that it has a treat function that accepts an argument of
this type. We’ll also say that T must be a type of Pet so that you
can’t create a Vet that treats, say, Planet or Broccoli objects.

Here’s the Vet class

Vet<T: Pet>

treat(t: T)

class Vet<T: Pet> {

 fun treat(t: T) {

 println("Treat Pet ${t.name}")

 }

}

Assign a Vet to a Contest
We want to make sure that each Contest has a Vet, so we’ll
add a Vet property to the Contest constructor. Here’s the
updated Contest code:

Next, let’s change the Contest class so that it accepts a Vet.

class Contest<T: Pet>(var vet: Vet<T>) {

 val scores: MutableMap<T, Int> = mutableMapOf()

 fun addScore(t: T, score: Int = 0) {

 if (score >= 0) scores.put(t, score)

 }

 fun getWinners(): MutableSet<T> {

 val winners: MutableSet<T> = mutableSetOf()

 val highScore = scores.values.max()

 for ((t, score) in scores) {

 if (score == highScore) winners.add(t)

 }

 return winners

 }

}

Let’s create some Vet objects, and assign them to Contests.

Pets
Contest
Retailers
Vet

We’re adding a Vet<T> to the Contest
constructor so that you can’t create a
Contest without assigning a Vet to it.

314 Chapter 10

create some Vets

Create Vet objects
We can create Vet objects in the same way that we created
Contest objects: by specifying the type of object each Vet
object should deal with. The following code, for example, creates
three objects—one each of type Vet<Cat>, Vet<Fish> and
Vet<Pet>:

val catVet = Vet<Cat>()

val fishVet = Vet<Fish>()

val petVet = Vet<Pet>()

Each Vet can deal with a specific type of Pet. The Vet<Cat>,
for example, can treat Cats, while a Vet<Pet> can treat any
Pet, including both Cats and Fish. A Vet<Cat>, however,
can’t treat anything that’s not a Cat, such as a Fish:

catVet.treat(Cat("Fuzz Lightyear"))

petVet.treat(Cat("Katsu"))

petVet.treat(Fish("Finny McGraw"))

catVet.treat(Fish("Finny McGraw"))

Let’s see what happens when we try passing Vet objects to
Contests.

Pass a Vet to the Contest constructor
The Contest class has one parameter, a Vet, which must
be able to treat the type of Pet that the Contest is for. This
means that we can pass a Vet<Cat> to a Contest<Cat>, and
a Vet<Pet> to a Contest<Pet> like this:

val catContest = Contest<Cat>(catVet)

val petContest = Contest<Pet>(petVet)

But there’s a problem. A Vet<Pet> can treat all types of Pet,
including Cats, but we can’t assign a Vet<Pet> to a
Contest<Cat> as the code won’t compile:

val catContest = Contest<Cat>(petVet)

So what should we do in this situation?

Pets
Contest
Retailers
Vet

A Vet<Cat> and a Vet<Pet> can both treat Cats.

A Vet<Pet> can treat a Fish.
This line won’t compile, as a Vet<Cat> can’t treat a Fish.

Even though a Vet<Pet> can treat
Cats, a Contest<Cat> won’t accept a
Vet<Pet>, so this line won’t compile.

you are here 4 315

generics

Use in to make a generic type contravariant
In our example, we want to be able to pass a Pet<Vet> to a
Contest<Cat> in place of a Pet<Cat>. In other words, we want
to be able to use a generic supertype in place of a generic subtype.

In this situation, we can solve the problem by prefixing the generic
type used by the Vet class with in. in is the polar opposite of out.
While out allows you to use a generic subtype in place of a supertype
(like assigning a Retailer<Cat> to a Retailer<Pet>), in lets
you use a generic supertype in place of a subtype. So prefixing the
Vet class generic type with in like this:

means that we can use a Vet<Pet> in place of a Vet<Cat>. The
following code now compiles:

class Vet<in T: Pet> {

 fun treat(t: T) {

 println("Treat Pet ${t.name}")

 }

}

val catContest = Contest<Cat>(Vet<Pet>())

When we prefix a generic type with in, we say that the generic type
is contravariant. In other words, it means that a supertype can be
used in place of a subtype.

In general, a class or interface generic type may be prefixed with in
if the class has functions that use it as a parameter type. You can’t,
however, use in if any of the class functions use it as a return type,
or if that type is used by any properties, irrespective of whether
they’re defined using val or var.

Should a Vet<Cat> ALWAYS accept a Vet<Pet>?
Before prefixing a class or interface generic type with in, you
need to consider whether you want the generic subtype to accept a
generic supertype in every situation. in allows you, for example, to
assign a Vet<Pet> object to Vet<Cat> variable, which may not
be something that you always want to happen:

val catVet: Vet<Cat> = Vet<Pet>()

The great news is that in situations like this, you can tailor the
circumstances in which a generic type is contravariant. Let’s see how.

Pets
Contest
Retailers
Vet

If a generic type is
contravariant, it
means that you can
use a supertype in
place of a subtype.
This is the opposite
of covariance.

Here's the in prefix.

The in prefix in the Vet class
means that we can now use a
Vet<Pet> in place of a Vet<Cat>,
so this code now compiles.

In other words, a generic type that's prefixed with “in” can only be used in an “in” position, such as a function parameter value. It can’t be used in “out” positions.

This line compiles as the Vet class uses an in prefix for T.

316 Chapter 10

local contravariance

A generic type can be locally contravariant
As you’ve seen, prefixing a generic type with in as part of the
class or interface declaration makes the generic type globally
contravariant. You can, however, restrict this behavior to
specific properties or functions.

Suppose, for example, that we want to be able to use
a Vet<Pet> reference in place of a Vet<Cat>, but
only where it’s being passed to a Contest<Cat> in its
constructor. We can achieve this by removing the in prefix
from the generic type in the Vet class, and adding it to the
vet property in the Contest constructor instead.

Here’s the code to do this:

class Vet<in T: Pet> {

 fun treat(t: T) {

 println("Treat Pet ${t.name}")

 }

}

class Contest<T: Pet>(var vet: Vet<in T>) {

 ...

}

These changes mean that you can still pass a Vet<Pet> to a
Contest<Cat> like this:

val catContest = Contest<Cat>(Vet<Pet>())

val catVet: Vet<Cat> = Vet<Pet>()

The compiler won’t, however, let you assign a Vet<Pet>
object to a Vet<Cat> variable as Vet’s generic type is not
globally contravariant:

When a generic type
has no in or out prefix,
we say that the type
is invariant. An
invariant type can
only accept references
of that specific type.

Now that you’ve learned how to use contravariance, let’s add
the Vet code to our Generics project.

Pets
Contest
Retailers
Vet

Remove the in prefix
from the Vet class...

...and add it to the Contest constructor instead. This means that T is contravariant, but only in the Contest constructor.

This line compiles, as you can use a
Vet<Pet> in place of a Vet<Cat>
in the Contest<Cat> constructor.

This line, however, won’t compile as you can’t
globally use a Vet<Pet> in place of a Vet<Cat>.

you are here 4 317

generics

abstract class Pet(var name: String)

class Cat(name: String) : Pet(name)

class Dog(name: String) : Pet(name)

class Fish(name: String) : Pet(name)

class Vet<T: Pet> {
 fun treat(t: T) {
 println("Treat Pet ${t.name}")
 }
}

class Contest<T: Pet>(var vet: Vet<in T>) {
 val scores: MutableMap<T, Int> = mutableMapOf()

 fun addScore(t: T, score: Int = 0) {

 if (score >= 0) scores.put(t, score)

 }

 fun getWinners(): MutableSet<T> {

 val winners: MutableSet<T> = mutableSetOf()

 val highScore = scores.values.max()

 for ((t, score) in scores) {

 if (score == highScore) winners.add(t)

 }

 return winners

 }

}

interface Retailer<out T> {

 fun sell(): T

}

class CatRetailer : Retailer<Cat> {

 override fun sell(): Cat {

 println("Sell Cat")

 return Cat("")

 }

}

src

Pets.kt

Generics

Update the Generics project
Update your version of Pets.kt in the Generics project so that it
matches ours below (our changes are in bold):

The code continues
on the next page.

Pets
Contest
Retailers
Vet

Add the Vet class.

Add a constructor to the Contest class.

318 Chapter 10

more code

class DogRetailer : Retailer<Dog> {

 override fun sell(): Dog {

 println("Sell Dog")

 return Dog("")

 }

}

class FishRetailer : Retailer<Fish> {

 override fun sell(): Fish {

 println("Sell Fish")

 return Fish("")

 }

}

fun main(args: Array<String>) {

 val catFuzz = Cat("Fuzz Lightyear")

 val catKatsu = Cat("Katsu")

 val fishFinny = Fish("Finny McGraw")

 val catVet = Vet<Cat>()

 val fishVet = Vet<Fish>()

 val petVet = Vet<Pet>()

 catVet.treat(catFuzz)

 petVet.treat(catKatsu)

 petVet.treat(fishFinny)

 val catContest = Contest<Cat>(catVet)

 catContest.addScore(catFuzz, 50)

 catContest.addScore(catKatsu, 45)

 val topCat = catContest.getWinners().first()

 println("Cat contest winner is ${topCat.name}")

src

Pets.kt

Generics

The code continued...

The code continues
on the next page.

Pets
Contest
Retailers
Vet

Assign a Vet<Cat> to the Contest<Cat>.

Create some Vet objects.

Get the Vets to treat some Pets.

you are here 4 319

generics

 val petContest = Contest<Pet>(petVet)

 petContest.addScore(catFuzz, 50)

 petContest.addScore(fishFinny, 56)

 val topPet = petContest.getWinners().first()

 println("Pet contest winner is ${topPet.name}")

 val fishContest = Contest<Fish>(petVet)

 val dogRetailer: Retailer<Dog> = DogRetailer()

 val catRetailer: Retailer<Cat> = CatRetailer()

 val petRetailer: Retailer<Pet> = CatRetailer()

 petRetailer.sell()

}

src

Pets.kt

Generics

The code continued...

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

Treat Pet Fuzz Lightyear
Treat Pet Katsu
Treat Pet Finny McGraw
Cat contest winner is Fuzz Lightyear
Pet contest winner is Finny McGraw
Sell Cat

Q: Couldn't I have just made Contest’s vet property a
Vet<Pet>?

A: No. This would mean that the vet property could only
accept a Vet<Pet>. And while you could make the vet
property locally covariant using:

 var vet: Vet<out Pet>

it would mean that you could assign a Vet<Fish> to a
Contest<Cat>, which is unlikely to end well.

Q: Kotlin’s approach to generics seems different to Java’s.
Is that right?

A: Yes, it is. With Java, generic types are always invariant, but
you can use wildcards to get around some of the problems this
creates. Kotlin, however, gives you far greater control as you can
make generic types covariant, contravariant, or leave them as
invariant.

Pets
Contest
Retailers
Vet

Assign a Vet<Pet> to the Contest<Pet>.

Assign a Vet<Pet>
to a Contest<Fish>.

320 Chapter 10

be the compiler

Answers on page 322.

BE the Compiler
Here are four classes and
interfaces that use generics.
Your job is to play like you’re

the Compiler, and
determine whether
each one will
compile. If it won’t
compile, why not?

class A<in T>(t: T) {

 fun myFunction(t: T) { }

}

class B<in T>(t: T) {

 val x = t

 fun myFunction(t: T) { }

}

abstract class C<in T> {

 fun myFunction(): T { }

}

class E<in T>(t: T) {

 var y = t

 fun myFunction(t: T) { }

}

A

B

D

C

you are here 4 321

generics

Below is a complete Kotlin file listing. The code, however, won’t
compile. Which lines won’t compile? What changes do you need
to make to the class and interface definitions to make them
compile?

Note: You may not amend the main function.

Answers on page 323.

//Food types

open class Food

class VeganFood: Food()

//Sellers

interface Seller<T>

class FoodSeller: Seller<Food>

class VeganFoodSeller: Seller<VeganFood>

//Consumers

interface Consumer<T>

class Person: Consumer<Food>

class Vegan: Consumer<VeganFood>

fun main(args: Array<String>) {

 var foodSeller: Seller<Food>

 foodSeller = FoodSeller()

 foodSeller = VeganFoodSeller()

 var veganFoodConsumer: Consumer<VeganFood>

 veganFoodConsumer = Vegan()

 veganFoodConsumer = Person()

}

322 Chapter 10

be the compiler solution

This code won’t compile because T can’t
be used as the type of a val property.

This code compiles successfully because the contravariant type
T can be used as a constructor or function parameter type.

BE the Compiler Solution
Here are four classes and
interfaces that use generics.
Your job is to play like you’re

the Compiler, and
determine whether
each one will
compile. If it won’t
compile, why not?

class A<in T>(t: T) {

 fun myFunction(t: T) { }

}

class B<in T>(t: T) {

 val x = t

 fun myFunction(t: T) { }

}

abstract class C<in T> {

 fun myFunction(): T { }

}

class E<in T>(t: T) {

 var y = t

 fun myFunction(t: T) { }

}

This code won’t compile because T can’t
be used as a function’s return type.

This code won’t compile because T can’t
be used as the type of a var property.

A

B

D

C

you are here 4 323

generics

Below is a complete Kotlin file listing. The code, however, won’t
compile. Which lines won’t compile? What changes do you need
to make to the class and interface definitions to make them
compile?

Note: You may not amend the main function.

//Food types

open class Food

class VeganFood: Food()

//Sellers

interface Seller<out T>

class FoodSeller: Seller<Food>

class VeganFoodSeller: Seller<VeganFood>

//Consumers

interface Consumer<in T>

class Person: Consumer<Food>

class Vegan: Consumer<VeganFood>

fun main(args: Array<String>) {

 var foodSeller: Seller<Food>

 foodSeller = FoodSeller()

 foodSeller = VeganFoodSeller()

 var veganFoodConsumer: Consumer<VeganFood>

 veganFoodConsumer = Vegan()

 veganFoodConsumer = Person()

}

This line won’t compile, as it’s assigning
a Seller<VeganFood> to a Seller<Food>.
To make it compile, we must prefix T
with out in the Seller interface.

This line won’t compile, as it’s assigning a Consumer<Food> to a Consumer<VeganFood>. To make it compile, we must prefix T with in in the Consumer interface.

324 Chapter 10

toolbox

Your Kotlin Toolbox

You’ve got Chapter 10 under
your belt and now you’ve

added generics to your toolbox.

CH
AP

T
ER

 10

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

 � Generics let you write consistent code that’s
type-safe. Collections such as MutableList
use generics.

 � The generic type is defined inside angle
brackets <>, for example:

class Contest<T>

 � You can restrict the generic type to a specific
supertype, for example:

class Contest<T: Pet>

 � You create an instance of a class with a generic
type by specifying the “real” type in angle
brackets, for example:

Contest<Cat>

 � Where possible, the compiler will infer the
generic type.

 � You can define a function that uses a generic
type outside a class declaration, or one that
uses a different generic type, for example:

fun <T> listPet(): List<T>{
 ...
}

 � A generic type is invariant if it can only accept
references of that specific type. Generic types
are invariant by default.

 � A generic type is covariant if you can use a
subtype in place of a supertype. You specify that
a type is covariant by prefixing it with out.

 � A generic type is contravariant if you can use a
supertype in place of a subtype. You specify that
a type is contravariant by prefixing it with in.

this is a new chapter 325

val pie = cook { it.pastry()
 it.filling()

 it.bake() }

lambdas and higher-order functions11

Treating Code Like Data

Want to write code that’s even more powerful and flexible?
If so, then you need lambdas. A lambda—or lambda expression—is a block of code that

you can pass around just like an object. Here, you’ll discover how to define a lambda,

assign it to a variable, and then execute its code. You’ll learn about function types,

and how these can help you write higher-order functions that use lambdas for their

parameter or return values. And along the way, you’ll find out how a little syntactic sugar

can make your coding life sweeter.

326 Chapter 11

introducing lambdas

Introducing lambdas
Throughout this book, you’ve seen how to use Kotlin’s built-in
functions, and create your own. But even though we’ve covered a
lot of ground, we’re still just scratching the surface. Kotlin has a pile
of functions that are even more powerful than the ones you’ve already
encountered, but in order to use them, there’s one more thing you
need to learn: how to create and use lambda expressions.

A lambda expression, or lambda, is a type of object that holds a block
of code. You can assign a lambda to a variable, just as you can any
other sort of object, or pass a lambda to a function which can then
execute the code it holds. This means that you can use lambdas to
pass specific behavior to a more generalized function.

Using lambdas in this way is particularly useful when it comes to
collections. The collections package has a built-in sortBy function,
for example, that provides a generic implementation for sorting
a MutableList; you specify how the function should sort the
collection by passing it a lambda that describes the criteria:

How should
I sort these
Grocery items?

Lambda

λλ.sortBy()

Please sort them
by unitPrice.

What we’re going to do
Before introducing you to the built-in functions that use lambdas, we
want you to get to grips with how lambdas work, so in this chapter,
you’re going to learn how to do the following:

Let’s start by examining what a lambda looks like.

Define a lambda.
You’ll discover what a lambda looks like, how to assign it to a variable,
what its type is, and how to invoke the code that it contains.

1

Create a higher-order function.
You’ll find out how to create a function that has a lambda parameter,
and how to use a lambda as a function’s return value.

2

REF

0

1

2

REF

REF

val
MutableList<Grocery>

REF

groceries

The sortBy() function knows how to sort in general...
...and the lambda tells it
what to specifically sort
by in this situation.

Here’s a MutableList
of Grocery items that
need sorting.

you are here 4 327

lambdas and higher order functions

λ

What lambda code looks like
We’re going to write a simple lambda that adds 5 to an Int
parameter value. Here’s what the lambda for this looks like:

{ x: Int -> x + 5 }

Opening brace
of the lambda. Closing brace of the lambda.

The lambda’s parameters.
Here, the lambda must
be given an Int, and the
Int is named x.

The lambda’s body. Here, the body takes x, adds
5, and returns it.

Separates the
parameters
from the body.

The lambda starts and ends with curly braces {}. All lambdas are
defined within curly braces, so they can’t be omitted.

Inside the curly braces, the lambda defines a single Int parameter
named x using x: Int. Lambdas can have single parameters (as
is the case here), multiple parameters, or none at all.

The parameter definition is followed by ->. -> is used to separate
any parameters from the body. It’s like saying “Hey, parameters,
do this!”

Finally, the -> is followed by the lambda body—in this case, x + 5.
This is the code that you want to be executed when the lambda
runs. The body can have multiple lines, and the last evaluated
expression in the body is used as the lambda’s return value.

In the example above, the lambda takes the value of x, and returns
x + 5. It’s like writing the function:

fun addFive(x: Int) = x + 5

except that lambdas have no name, so they’re anonymous.

As we mentioned above, lambdas can have multiple parameters.
The following lambda, for example, takes two Int parameters, x
and y, and returns the result of x + y:

{ x: Int, y: Int -> x + y }

If the lambda has no parameters, you can omit the ->. The
following lambda, for example, has no parameters, and simply
returns the String “Pow!”:

{ "Pow!" }

Now that you know what a lambda looks like, let’s see how you
assign one to a variable.

{ x: Int -> x + 5 }

Lambda

I take one Int
parameter named
x. I add 5 to x, and
return the result.

{ x: Int, y: Int -> x + y }

Lambda

I take two Int
parameters named x and
y. I add them together,
and return the result.

λλ

This lambda has no parameters, so we can omit the ->.

328 Chapter 11

assigning lambdas

You can assign a lambda to a variable
You assign a lambda to a variable in the same way that you
assign any other sort of object to a variable: by defining the
variable using val or var, then assigning the lambda to it.
The following code, for example, assigns a lambda to a new
variable named addFive:

val addFive = { x: Int -> x + 5 }

We’ve defined the addFive variable using val, so it
can’t be updated to hold a different lambda. To update the
variable, it must be defined using var like this:

var addFive = { x: Int -> x + 5 }

addFive = { y: Int -> 5 + y }

When you assign a lambda to a variable, you’re assigning a
block of code to it, not the result of the code being run. To
run the code in a lambda, you need to explicitly invoke it.

Execute a lambda's code by invoking it
You invoke a lambda by calling its invoke function,
passing in the values for any parameters. The following
code, for example, defines a variable named addInts,
and assigns a lambda to it that adds together two Int
parameters. The code then invokes the lambda, passing it
parameter values of 6 and 7, and assigns the result to a new
variable named result:

val addInts = { x: Int, y: Int -> x + y }

val result = addInts.invoke(6, 7)

You can also invoke the lambda using the following
shortcut:

val result = addInts(6, 7)

This does the same thing as:

val result = addInts.invoke(6, 7)

but with slightly less code. It’s like saying “run the lambda
expression held in variable addInts using parameter values
of 6 and 7”.

Let’s go behind the scenes, and see what happens when you
invoke a lambda.

{ x: Int -> x + 5 }

Lambda

REF

add
Five

val Lambda

Int

13
REF

result

val Int

λ

Here, we can assign a new lambda to addFive
because we’ve defined the variable using var.

 Don’t worry if
lambda
expressions
seem a litle
strange at first.

Take your time, and work through
this chapter at a gentle pace, and
you’ll be fine.

you are here 4 329

lambdas and higher order functions

What happens when you invoke a lambda
When you run the code:

val addInts = { x: Int, y: Int -> x + y }

val result = addInts(6, 7)

The following things happen:

val addInts = { x: Int, y: Int -> x + y }

This creates a lambda with a value of { x: Int, y: Int -> x + y }.
A reference to the lambda is assigned to a new variable named addInts.

1

val result = addInts(6, 7)

This invokes the lambda referenced by addInts, passing it values of 6 and
7. The 6 lands in the lambda’s x parameter, and the 7 lands in the lambda’s y
parameter.

2

{ x: Int, y: Int -> x + y }

Lambda

REF

add
Ints

val Lambda

{ x: Int, y: Int -> x + y }

Lambda

REF

add
Ints

val Lambda

REF

x

val Int

Int

6

REF

y

val Int

Int

7

λ

λ

330 Chapter 11

what happens

λ

val addInts = { x: Int, y: Int -> x + y }

The lambda body executes, and calculates x + y. The lambda creates an Int
object with a value of 13, and returns a reference to it.

13

val result = addInts(6, 7)

The value returned by the lambda is assigned to a new Int variable named
result.

4

The story continues...

{ x: Int, y: Int -> x + y }

Lambda

REF

x

val Int

Int

6

REF

y

val Int

Int

7

Int

13

{ x: Int, y: Int -> x + y }

Lambda

REF

add
Ints

val Lambda

I need to return x + y.
x is 6 and y is 7, so I’ll
return an Int of 13.

REF

Int

13
REF

result

val Int

Now that you know what happens when you invoke a
lambda, let’s look at lambda types.

λ

you are here 4 331

lambdas and higher order functions

Lambda expressions have a type
Just like any other sort of object, a lambda has a type. The
difference with a lambda’s type, however, is that it doesn’t
specify a class name that the lambda implements. Instead,
it specifies the type of the lambda’s parameters and return
value.

A lambda’s type takes the form:

(parameters) -> return_type

So if you have a lambda with a single Int parameter that
returns a String like this:

(Int) -> String

When you assign a lambda to a variable, the compiler infers
the variable’s type from the lambda that’s assigned to it, as
in the above example. Just like any other type of object,
however, you can explicitly define the variable’s type. The
following code, for example, defines a variable named add
that can hold a reference to a lambda which has two Int
parameters, and returns an Int:

its type is:

val msg = { x: Int -> "The value is $x" }

val add: (Int, Int) -> Int

add = { x: Int, y: Int -> x + y }

Similarly, the following code defines a variable named
greeting that can hold a reference to a lambda with no
parameters, and a String return value:

val greeting: () -> String

greeting = { "Hello!" }

{ x: Int ->
 “The value is $x” }

(Int) -> String

REF

msg

val
(Int) -> String

λ

{ x: Int, y: Int -> x + y }

(Int, Int) -> Int

REF

add

val
(Int, Int) -> Int

λ

{ “Hello!” }

() -> String

REF

greeting

val
() -> String

λ

A lambda’s type
is also known as a
function type.

The lambda’s
parameter
type.

The lambda’s
return type.

Even if the lambda
has no parameters,
its type definition
still includes the ()’s.

This type has two Int parameters,
and an Int return value.

Just like with any other type of variable declaration, you can
explicitly declare a variable’s type and assign a value to it in
a single line of code. This means that you can rewrite the
above code as:

val greeting: () -> String = { "Hello!" }

Declare the variable. Specify
its type.

Assign a value to it.

332 Chapter 11

type inference

You can replace a single parameter with it
If you have a lambda which has a single parameter, and the
compiler can infer its type, you can omit the parameter, and
refer to it in the lambda body using the keyword it.

To see how this works, suppose, as above, that you have a
lambda that’s assigned to a variable using the code:

As the lambda has a single parameter, x, and the compiler can
infer that x is an Int, we can omit the x parameter from the
lambda, and replace it with it in the lambda body like this:

val addFive: (Int) -> Int = { it + 5 }

val addFive = { it + 5 }

{ x -> x + 5 }

(Int) -> Int

REF

add
Five

val
(Int) -> Int

λ

{ it + 5 }

(Int) -> Int

REF

add
Five

val
(Int) -> Int

λ

This won’t compile because the compiler can’t infer its type.

The compiler can infer
lambda parameter types
When you explicitly declare a variable’s type, you can leave
out any type declarations from the lambda that the compiler
can infer.

Suppose that you have the following code, which assigns a
lambda to a variable named addFive:

val addFive: (Int) -> Int = { x: Int -> x + 5 }

The compiler already knows from addFive’s type definition
that any lambda that’s assigned to the variable must have an
Int parameter. This means that you can omit the Int type
declaration from the lambda parameter definition because the
compiler can infer its type:

val addFive: (Int) -> Int = { x -> x + 5 }

val addFive: (Int) -> Int = { x -> x + 5 }

In the above code, { it + 5 } is equivalent to
{ x -> x + 5 }, but it’s much more concise.

Note that you can only use the it syntax in situations
where the compiler can infer the type of the parameter. The
following code, for example, won’t compile because the
compiler can’t tell what type it should be:

This lambda adds 5 to an Int named x.

The compiler knows that x needs to
be an Int, so we can omit its type.

you are here 4 333

lambdas and higher order functions

Use the right lambda for the variable’s type

calculation = { x: Double, y: Double -> x + y }

You can also use Unit to explicitly specify that you don’t want
to access the result of a lambda’s calculation. The following code,
for example, will compile, but you won’t be able to access the
result of x + y:

val calculation: (Int, Int) -> Unit = { x, y -> x + y }

val calculation: (Int, Int) -> Int

If you try to assign a lambda to calculation whose type
doesn’t match that of the variable, the compiler will get upset.
The following code, for example, won’t compile because the
lambda explicitly uses Doubles:

As you already know, the compiler deeply cares about a variable’s
type. This applies to lambda types, as well as plain object types,
which means that the compiler will only let you assign a lambda
to a variable that is compatible with that variable’s type.

Suppose you have a variable named calculation that can
hold references to lambdas with two Int parameters and an Int
return value like this:

Use Unit to say a lambda has no return value
If you want to specify that a lambda has no return value, you can
do so by declaring that its return type is Unit. The following
lambda, for example, has no return value, and prints the text

“Hi!” when it is invoked:

REF

add

val
(Int, Int) -> Int

val myLambda: () -> Unit = { println("Hi!") }

Q: Does the code
 val x = { "Pow!" }
assign the text “Pow!” to x?

A: No. The above assigns a lambda to x,
and not a String. The lambda, however,
returns “Pow!” when it is executed.

Q: Can I assign a lambda to a
variable of type Any?

A: Yes. An Any variable can accept a
reference to any type of object, including
lambdas.

Q: That it syntax looks familiar.
Have I seen it before?

A: Yes! Back in Chapter 8 we used it
with let. We didn’t tell you at the time
because we wanted you to focus on null
values, but let is actually a function that
accepts a lambda as a parameter.

{ println(“Hi!”) }

() -> Unit

REF

myLambda

val
() -> Unit

λ

This won’t compile, because the calculation
variable will only accept a lambda with two
Int parameters and an Int return type.

334 Chapter 11

test drive

Create the Lambdas project
Now that you’ve seen how to create lambdas, let’s add some to a new
application.

Create a new Kotlin project that targets the JVM, and name the
project “Lambdas”. Then create a new Kotlin file named Lambdas.kt
by highlighting the src folder, clicking on the File menu and choosing
New → Kotlin File/Class. When prompted, name the file “Lambdas”,
and choose File from the Kind option.

Next, update your version of Lambdas.kt to match ours below:

fun main(args: Array<String>) {

 var addFive = { x: Int -> x + 5 }

 println("Pass 6 to addFive: ${addFive(6)}")

 val addInts = { x: Int, y: Int -> x + y }

 val result = addInts.invoke(6, 7)

 println("Pass 6, 7 to addInts: $result")

 val intLambda: (Int, Int) -> Int = { x, y -> x * y }

 println("Pass 10, 11 to intLambda: ${intLambda(10, 11)}")

 val addSeven: (Int) -> Int = { it + 7 }

 println("Pass 12 to addSeven: ${addSeven(12)}")

 val myLambda: () -> Unit = { println("Hi!") }

 myLambda()

}

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

Pass 6 to addFive: 11
Pass 6, 7 to addInts: 13
Pass 10, 11 to intLambda: 110
Pass 12 to addSeven: 19
Hi!

src

Lambdas.kt

Lambdas

you are here 4 335

lambdas and higher order functions

Match each
candidate with
one of the
possible outputs.

 Mixed
Messages

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

fun main(args: Array<String>) {

 val x = 20

 val y = 2.3

}

val lam1 = { x: Int -> x }

println(lam1(x + 6))

Candidates: Possible output:

val lam2: (Double) -> Double

lam2 = { (it * 2) + 5}

println(lam2(y))

The candidate
code goes here.

var lam4 = { y: Int -> (y/2).toDouble() }

print(lam4(x))

lam4 = { it + 6.3 }

print(lam4(7))

val lam3: (Double, Double) -> Unit

lam3 = { x, y -> println(x + y) }

lam3.invoke(y, y)

26

8.3

9.6

9.3

4.6

22.3

10.013.3

1.1513.3

336 Chapter 11

mixed messages solution

 Mixed
Messages
Solution

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

fun main(args: Array<String>) {

 val x = 20

 val y = 2.3

}

val lam1 = { x: Int -> x }

println(lam1(x + 6))

Candidates: Possible output:

val lam2: (Double) -> Double

lam2 = { (it * 2) + 5}

println(lam2(y))

The candidate
code goes here.

var lam4 = { y: Int -> (y/2).toDouble() }

print(lam4(x))

lam4 = { it + 6.3 }

print(lam4(7))

val lam3: (Double, Double) -> Unit

lam3 = { x, y -> println(x + y) }

lam3.invoke(y, y)

26

8.3

9.6

9.3

4.6

22.3

10.013.3

1.1513.3

you are here 4 337

lambdas and higher order functions

?
Here is a list of variable definitions, and a list of lambdas. Which
lambdas can be assigned to which variables? Draw lines connecting the
lambdas with their matching variables.

What's My Type?

Variable definitions: Lambdas:

var lambda1: (Double) -> Int

var lambda2: (Int) -> Double

var lambda3: (Int) -> Int

var lambda4: (Double) -> Unit

var lambda5

{ it + 7.1 }

{ (it * 3) - 4 }

{ x: Int -> x + 56 }

{ println("Hello!") }

{ x: Double -> x + 75 }

338 Chapter 11

what’s my type solution

?
Here is a list of variable definitions, and a list of lambdas. Which
lambdas can be assigned to which variables? Draw lines connecting the
lambdas with their matching variables.

What's My Type?

Variable definitions: Lambdas:

var lambda1: (Double) -> Int

var lambda2: (Int) -> Double

var lambda3: (Int) -> Int

var lambda4: (Double) -> Unit

var lambda5

{ it + 7.1 }

{ (it * 3) - 4 }

{ x: Int -> x + 56 }

{ println("Hello!") }

{ x: Double -> x + 75 }

Solution

you are here 4 339

lambdas and higher order functions

You can pass a lambda to a function
As well as assigning a lambda to a variable, you can also use one
or more as function parameters. Doing so allows you to pass
specific behavior to a more generalized function.

To see how this works, we’re going to write a function named
convert that converts a Double using some formula that’s
passed to it via a lambda, prints the result, and returns it. This
will allow us to, say, convert a temperature from Centigrade
to Fahrenheit, or convert a weight from kilograms to pounds,
depending on the formula that we pass to it in the lambda
argument.

We’ll start by defining the function parameters.

fun convert(x: Double,

 converter: (Double) -> Double) : Double {

 //Code to convert the Int

}

Add a lambda parameter to a function by
specifying its name and type
We need to tell the convert function two things in order for
it to convert one Double to another: the Double we want to
convert, and the lambda that specifies how it should be converted.
We’ll therefore use two parameters for the convert function: a
Double and a lambda.

You define a lambda parameter in the same way that you
define any other sort of function parameter: by specifying the
parameter’s type, and giving it a name. We’ll name our lambda
converter, and as we want the lambda to convert a Double
to a Double, its type needs to be (Double) -> Double
(a lambda that accepts a Double parameter, and returns a
Double).

The function definition (excluding the function body) is below. As
you can see, it specifies two parameters—a Double named x,
and a lambda named converter—and returns a Double:

Next, we’ll write the code for the function body.

A function that
uses a lambda as a
parameter or return
value is known as a
higher-order function.

This is the x parameter, a Double.

This is a lambda parameter
named converter. Its type
is (Double) -> Double.

The function returns a Double.

340 Chapter 11

convert function

Invoke the lambda in the function body

fun convert(x: Double,

 converter: (Double) -> Double) : Double {

 val result = converter(x)

 println("$x is converted to $result")

 return result

}

You call a function with a lambda parameter in the same
way that you call any other sort of function: by passing it
a value for each argument—in this case, a Double and a
lambda.

Let’s use the convert function to convert 20.0 degrees
Centigrade to Fahrenheit. To do this, we’ll pass values of
20.0 and { c: Double -> c * 1.8 + 32 } to
the function:

We want the convert function to convert the value of
the x parameter using the formula that’s passed to it via
the converter parameter (a lambda). We’ll therefore
invoke the converter lambda in the function body,
passing it the value of x, and then print and return the
result.

Here’s the full code for the convert function:

Now that we’ve written the function, let’s try calling it.

convert(20.0, { c: Double -> c * 1.8 + 32 })

Call the function by passing it parameter values

When the above code runs, it returns a value of 68.0 (the
value of 20.0 degrees Centigrade when it’s converted to
Fahrenheit).

Let’s go behind the scenes, and break down what happens
when the code runs.

Invokes the lambda
named converter
and assigns its
return value to
result.

Print the result.

Return the result.

This is the value we
want to convert...

...and this is the lambda that we’ll use to convert it. Note that we could use “it” in place of c because the lambda uses a single parameter whose type the compiler can infer.

you are here 4 341

lambdas and higher order functions

What happens when you call the function
The following things happen when you call the convert
function using the code:

val fahrenheit = convert(20.0, { c: Double -> c * 1.8 + 32 })

This creates a Double object with a value of 20.0, and a lambda with a value of
{ c: Double -> c * 1.8 + 32 }.

1

val fahrenheit = convert(20.0, { c: Double -> c * 1.8 + 32 })

fun convert(x: Double, converter: (Double) -> Double) : Double {
 val result = converter(x)
 println("$x is converted to $result")
 return result
}

The code passes references to the objects it’s created to the convert function.
The Double lands in the convert function’s x parameter, and the lambda
lands in its converter parameter. The code then invokes the converter
lambda, using x as the lambda’s parameter.

2

{ c: Double -> c * 1.8 + 32 }

(Double) -> DoubleDouble

20.0

REF

x

val Double

Double

20.0

REF

converter

val (Double) -> Double

{ c: Double -> c * 1.8 + 32 }

(Double) -> Double

I will plug x into
my body’s formula.

λ

λ
These are the convert
functions parameters.

342 Chapter 11

what happens

The story continues...
fun convert(x: Double, converter: (Double) -> Double) : Double {
 val result = converter(x)
 println("$x is converted to $result")
 return result
}

The lambda’s body executes, and its result (a Double with a value of 68.0) is
assigned to a new variable named result. The function prints the values of
the x and result variables, and returns a reference to the result object.

3

REF

x

val Double

Double

20.0

REF

converter

val (Double) -> Double

{ c: Double -> c * 1.8 + 32 }

(Double) -> Double
REF

result

val Double

Double

68.0

val fahrenheit = convert(20.0, { c: Double -> c * 1.8 + 32 })

A new fahrenheit variable gets created. It’s assigned a reference to the
object returned by the convert function.

4

REF

fahrenheit

val Double

Double

68.0

My return value is
20.0 * 1.8 + 32 = 68.0

Now that you’ve seen what happens when you call a
function with a lambda parameter, let’s look at some
shortcuts you can take when you call this kind of function.

λ

The function prints
this value, and returns
a reference to it.

you are here 4 343

lambdas and higher order functions

So far, you’ve seen how to call a function with a lambda
parameter by passing arguments to the function inside the
function’s parentheses. We called the convert function, for
example, using the following code:

You can move the lambda OUTSIDE the ()’s...

convert(20.0, { c: Double -> c * 1.8 + 32 })

If the final parameter of a function you want to call is a lambda,
as is the case with our convert function, you can move the
lambda argument outside the function call’s parentheses. The
following code, for example, does the same thing as the code
above, but we’ve moved the lambda outside the parentheses:

convert(20.0) { c: Double -> c * 1.8 + 32 }

...or remove the ()’s entirely
If you have a function that has just one parameter, and that
parameter is a lambda, you can omit the parentheses entirely
when you call the function.

To see how this works, suppose you have the following
function named convertFive that converts the Int 5 to
a Double using a conversion formula that’s passed to it via a
lambda. Here’s the code for the function:

fun convertFive(converter: (Int) -> Double) : Double {

 val result = converter(5)

 println("5 is converted to $result")

 return result

}

As the convertFive function has a single parameter, a
lambda, you can call the function like this:

convertFive { it * 1.8 + 32 }

This does the same thing as:

convertFive() { it * 1.8 + 32 }

but we’ve removed the parentheses.

Now that you’ve learned how to write a function that uses a
lambda parameter, let’s update our project code.

Here’s the function’s closing parenthesis.
The lambda is no longer enclosed by the function’s closing parenthesis.

Notice there are no parentheses in this
function call. This is possible because the
function has only one parameter, which is a
lambda.

344 Chapter 11

project code

fun convert(x: Double,

 converter: (Double) -> Double) : Double {

 val result = converter(x)

 println("$x is converted to $result")

 return result

}

fun convertFive(converter: (Int) -> Double) : Double {

 val result = converter(5)

 println("5 is converted to $result")

 return result

}

fun main(args: Array<String>) {

 var addFive = { x: Int -> x + 5 }

 println("Pass 6 to addFive: ${addFive(6)}")

 val addInts = { x: Int, y: Int -> x + y }

 val result = addInts.invoke(6, 7)

 println("Pass 6, 7 to addInts: $result")

 val intLambda: (Int, Int) -> Int = { x, y -> x * y }

 println("Pass 10, 11 to intLambda: ${intLambda(10, 11)}")

 val addSeven: (Int) -> Int = { it + 7 }

 println("Pass 12 to addSeven: ${addSeven(12)}")

 val myLambda: () -> Unit = { println("Hi!") }

 myLambda()

 convert(20.0) { it * 1.8 + 32 }

 convertFive { it * 1.8 + 32 }

}

Update the Lambdas project
We’ll add the convert and convertFive functions to our
Lambdas project. Update your version of Lambdas.kt in the
project so that it matches ours below (our changes are in bold):

src

Lambdas.kt

Lambdas

Let’s take the code for a test drive.

Add these two functions.

Add these lines. Note we can use “it” because each lambda uses a single parameter whose type the compiler can infer.

We no
longer need
these lines,
so you can
delete them.

you are here 4 345

lambdas and higher order functions

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

20.0 is converted to 68.0
5 is converted to 41.0

Before we look at what else you can do with lambdas, have a go at the
next exercise.

Lambda Formatting Up Close

As we said earlier in the chapter, a
lambda body can include multiple lines of
code. The following lambda, for example,
prints the value of its parameter, and then
uses it in a calculation:

{ c: Double -> println(c)

 c * 1.8 + 32 }

When you have a lambda whose body
has multiple lines, the last evaluated
expression is used as the lambda’s return
value. So in the above example, the
return value is defined using the line:

c * 1.8 + 32

A lambda can also be formatted so
that it looks like a code block, with its
surrounding curly braces on different
lines to the lambda’s contents. The
following code uses this technique to pass
the lambda { it * 1.8 + 32 } to
the convertFive function:

convertFive {

 it * 1.8 + 32

}

Q: It looks like there are quite a few shortcuts
you can take when you use lambdas. Do I really
need to know about them all?

A: It’s useful to know about these shortcuts because
once you get used to them, they can make your
code more concise and readable. Alternative syntax
that’s designed to make your code easier to read is
sometimes referred to as syntactic sugar, as it can
make the language “sweeter” for humans. But even if
you don’t want to use the shortcuts we’ve discussed
in your own code, they’re still worth knowing about
because you may encounter them in third-party code.

Q: Why are lambdas called lambdas?

A: It’s because they come from an area of
mathematics and computer science called Lambda
Calculus, where small, anonymous functions are
represented by the Greek letter λ (a lambda).

Q: Why aren’t lambdas called functions?

A: A lambda is a type of function, but in most
languages, functions always have names. As you’ve
already seen, a lambda doesn’t need to have a name.

346 Chapter 11

pool puzzle

condition

:

Boolean
()

->

Unit

Void

Null

condition

()

code

Note: each thing from
the pool can only be
used once!

Pool Puzzle
Your job is to take code snippets from the pool and place them into

the blank lines in the code. You may not use the same code
snippet more than once, and you won’t need to use all the code
snippets. Your goal is to create a function named unless
that’s called by the main function below. The unless
function should have two parameters, a Boolean named
condition, and a lambda named code. The function should

invoke the code lambda when condition is false.

fun unless(, code:) {

 if () {

 }

}

fun main(args: Array<String>) {

 val options = arrayOf("Red", "Amber", "Green")

 var crossWalk = options[(Math.random() * options.size).toInt()]

 if (crossWalk == "Green") {

 println("Walk!")

 }

 unless (crossWalk == "Green") {

 println("Stop!")

 }

}

!condition

code()

Print “Stop!” unless crossWalk == “Green”.

Answers on page 360.

you are here 4 347

lambdas and higher order functions

A function can return a lambda
As well as using a lambda as a parameter, a function can
also return one by specifying the lambda’s type as its return
type. The following code, for example, defines a function
named getConversionLambda that returns a lambda
of type (Double) -> Double. The exact lambda
that’s returned by the function depends on the value of the
String that’s passed to it.

fun getConversionLambda(str: String): (Double) -> Double {

 if (str == "CentigradeToFahrenheit") {

 return { it * 1.8 + 32 }

 } else if (str == "KgsToPounds") {

 return { it * 2.204623 }

 } else if (str == "PoundsToUSTons") {

 return { it / 2000.0 }

 } else {

 return { it }

 }

}

And the following example uses getConversionLambda
to get a lambda that converts a temperature from Centigrade
to Fahrenheit, and then passes it to the convert function:

convert(20.0, getConversionLambda("CentigradeToFahrenheit"))

You can invoke the lambda returned by a function, or use
it as an argument for another function. The following code,
for example, invokes getConversionLambda’s return
value to get the value of 2.5 kilograms in pounds, and
assigns it to a variable named pounds:

You can even define a function that both receives and returns
a lambda. We’ll look at this next.

val pounds = getConversionLambda("KgsToPounds")(2.5)

(Double) -> Double

λ

It returns a lambda whose
type is (Double) -> Double.The function has one parameter, a String.

The function returns one of these lambdas, depending on the value of the String that’s passed to it.

This calls the getConversionLambda function... ...and this invokes the lambda returned by the function.

Here, we’re passing getConversionLambda’s
return value to the convert function.

348 Chapter 11

combine function

Write a function that
receives AND returns lambdas
We’re going to create a function named combine that takes two
lambda parameters, combines them, and returns the result (another
lambda). If the function is given lambdas for converting a value from
kilograms to pounds, and converting a value from pounds to tons, it
will return a lambda that converts a value from kilograms to US tons.
We’ll then be able to use this lambda elsewhere in our code.

We’ll start by defining the function’s parameters and return type.

fun combine(lambda1: (Double) -> Double,

 lambda2: (Double) -> Double): (Double) -> Double {

 return { x: Double -> lambda2(lambda1(x)) }

}

fun combine(lambda1: (Double) -> Double,

 lambda2: (Double) -> Double): (Double) -> Double {

 //Code to combine the two lambdas

}

 It must take one parameter, a Double. We’ll name this parameter x.¥
 The lambda’s body should invoke lambda1, passing it the value of x.
The result of this invocation should then be passed to lambda2.

¥

We can achieve this using the following code:

Define the parameters and return type
All of the lambdas used by the combine function need to convert
one Double value to another Double value, so each one has a
type of (Double) -> Double. Our function definition therefore
needs to look like this:

Define the function body
The function body needs to return a lambda, and this lambda must
have the following characteristics:

Next, let’s look at the function body.

The combine function has two lambda
parameters of type (Double) -> Double.

The function also returns a lambda of this type.

The lambda returned by combine
takes a Double parameter named x.

x is passed to lambda1, which accepts and returns a Double. The result is then passed to lambda2, which also accepts and returns a Double.
Let’s write some code that uses the function.

combine()

Kgs to Pounds

λ
Pounds to US Tons

λ

Kgs to US Tons

λ

We'll create a
function that
combines two
lambdas into a
single lambda.

you are here 4 349

lambdas and higher order functions

How to use the combine function
The combine function we’ve just created takes two lambdas,
and combines them to form a third. This means that if we pass
the function one lambda to convert a value from kilograms to
pounds, and another to convert a value from pounds to US tons,
the function will return a lambda that converts a value from
kilograms to US tons.

Here’s the code to do this:

//Define two conversion lambdas

val kgsToPounds = { x: Double -> x * 2.204623 }

val poundsToUSTons = { x: Double -> x / 2000.0 }

//Combine the two lambdas to create a new one

val kgsToUSTons = combine(kgsToPounds, poundsToUSTons)

//Invoke the kgsToUSTons lambda

val usTons = kgsToUSTons(1000.0) //1.1023115

Let’s go behind the scenes, and see what happens when the code
runs.

What happens when the code runs

val kgsToPounds = { x: Double -> x * 2.204623 }
val poundsToUSTons = { x: Double -> x / 2000.0 }
val kgsToUSTons = combine(kgsToPounds, poundsToUSTons)

This creates two variables, and assigns a lambda to each one. A reference to
each lambda is then passed to the combine function.

1

{ x: Double -> x * 2.204623 }

(Double) -> Double

REF

kgsTo
Pounds

val (Double) -> Double

λ
{ x: Double -> x / 2000.0 }

(Double) -> Double

REF

poundsTo
USTons

val (Double) -> Double

λ

These lambdas convert a Double
from kilograms to pounds, and
from pounds to US Tons.

Pass the lambdas to the combine function. This produces a lambda that converts a Double from kilograms to US Tons.

Invoke the resulting lambda by
passing it a value of 1000.0.
This returns 1.1023115.

350 Chapter 11

what happens

The story continues...

fun combine(lambda1: (Double) -> Double,
 lambda2: (Double) -> Double): (Double) -> Double {
 return { x: Double -> lambda2(lambda1(x)) }
}

The kgsToPounds lambda lands in the combine function’s lambda1
parameter, and the poundsToUSTons lambda lands in its lambda2 parameter.

2

These are the combine
function’s parameters.

{ x: Double -> x * 2.204623 }

(Double) -> Double

REF

lambda1

val (Double) -> Double

λ

{ x: Double -> x / 2000.0 }

(Double) -> Double

REF

lambda2

val (Double) -> Double

λ

fun combine(lambda1: (Double) -> Double,
 lambda2: (Double) -> Double): (Double) -> Double {
 return { x: Double -> lambda2(lambda1(x)) }
}

lambda1(x) runs. As lambda1’s body is x * 2.204623, where x is a
Double, this creates a Double object with a value of x * 2.204623.

3

{ x: Double -> x * 2.204623 }

(Double) -> Double

REF

lambda1

val (Double) -> Double

λ

Double

x * 2.204623

you are here 4 351

lambdas and higher order functions

The story continues...

fun combine(lambda1: (Double) -> Double,
 lambda2: (Double) -> Double): (Double) -> Double {
 return { x: Double -> lambda2(lambda1(x)) }
}

The Double object with a value of x * 2.204623 is then passed to lambda2.
As lambda2’s body is x / 2000.0, this means that x * 2.204623 is
substituted for x. This creates a Double with a value of
(x * 2.204623) / 2000.0, or x * 0.0011023115.

4

fun combine(lambda1: (Double) -> Double,
 lambda2: (Double) -> Double): (Double) -> Double {
 return { x: Double -> lambda2(lambda1(x)) }
}

This creates the lambda { x: Double -> x * 0.0011023115 }, and a
reference to this lambda is returned by the function.

5

{ x: Double -> x / 0.0011023115 }

(Double) -> Double

λ

Double

x * 0.0011023115

{ x: Double -> x / 2000.0 }

(Double) -> Double

REF

lambda2

val (Double) -> Double

λ

352 Chapter 11

type alias

val kgsToUSTons = combine(kgsToPounds, poundsToUSTons)
val usTons = kgsToUSTons(1000.0)

The lambda returned by the combine function is assigned to a variable named
kgsToUSTons. It’s invoked using an argument of 1000.0, which returns a
value of 1.1023115. This is assigned to a new variable named usTons.

6

{ x: Double -> x / 0.0011023115 }

(Double) -> Double

REF

kgsTo
USTons

val (Double) -> Double

λ

The story continues...

Double

1.1023115
REF

usTons

Double

You can make lambda code more readable
We’re nearly at the end of the chapter, but before we go, there’s
one more thing we want to show you: how to make your lambda
code more readable.

When you use function types (the kind of type that’s used to define
a lambda), it can make your code cumbersome and less readable.
The combine function, for instance, contains multiple references
to the function type (Double) -> Double:

fun combine(lambda1: (Double) -> Double,

 lambda2: (Double) -> Double): (Double) -> Double {

 return { x: Double -> lambda2(lambda1(x)) }

}

You can, however, make your code more readable by replacing the
function type with a type alias. Let’s see what this is, and how to
use one.

The combine function has three
instances of the function type
(Double) -> Double.

you are here 4 353

lambdas and higher order functions

Use typealias to provide a different
name for an existing type
A type alias lets you provide an alternative name for an existing
type, which you can then use in your code. This means that if your
code uses a function type such as (Double) -> Double, you can
define a type alias that’s used in its place, making your code more
readable.

You define a type alias using the typealias keyword. Here’s
how, for example, you use it to define a type alias named
DoubleConversion that we can use in place of the function type
(Double) -> Double:

typealias DoubleConversion = (Double) -> Double

This means that our convert and combine functions can now
become:

fun convert(x: Double,

 converter: DoubleConversion) : Double {

 val result = converter(x)

 println("$x is converted to $result")

 return result

}

fun combine(lambda1: DoubleConversion,

 lambda2: DoubleConversion): DoubleConversion {

 return { x: Double -> lambda2(lambda1(x)) }

}

Each time the compiler sees the type DoubleConversion, it
knows that it’s a placeholder for the type (Double) -> Double.
The convert and combine functions above do the same things as
before, but the code is more readable.

You can use typealias to provide an alternative name for any
type, not just function types. You can, say, use:

typealias DuckArray = Array<Duck>

so that you can refer to the type DuckArray in place of
Array<Duck>.

Let’s update the code in our project.

(Double) -> Double

λ

DoubleConversion

λ

This type alias
means that we can use
DoubleConversion in place of (Double) -> Double.

We can use the
DoubleConversion type
alias in the convert and
combine functions to make
the code more readable.

354 Chapter 11

project code

Update the Lambdas project
We’ll add the DoubleConversion type alias, and the
getConversionLambda and combine functions, to
our Lambdas project, along with some code that uses them.
Update your version of Lambdas.kt in the project so that it
matches ours below (our changes are in bold):

typealias DoubleConversion = (Double) -> Double

fun convert(x: Double,

 converter: (Double) -> Double DoubleConversion) : Double {

 val result = converter(x)

 println("$x is converted to $result")

 return result

}

fun convertFive(converter: (Int) -> Double) : Double {

 val result = converter(5)

 println("5 is converted to $result")

 return result

}

fun getConversionLambda(str: String): DoubleConversion {

 if (str == "CentigradeToFahrenheit") {

 return { it * 1.8 + 32 }

 } else if (str == "KgsToPounds") {

 return { it * 2.204623 }

 } else if (str == "PoundsToUSTons") {

 return { it / 2000.0 }

 } else {

 return { it }

 }

}

fun combine(lambda1: DoubleConversion,

 lambda2: DoubleConversion): DoubleConversion {

 return { x: Double -> lambda2(lambda1(x)) }

}
The code continues
on the next page.

src

Lambdas.kt

Lambdas

Add the typealias.

Replace the function type with the type alias.

Add the getConversionLambda function.

Add the combine function.

Remove this function as we no longer need it.

you are here 4 355

lambdas and higher order functions

fun main(args: Array<String>) {

 convert(20.0) { it * 1.8 + 32 }

 convertFive { it * 1.8 + 32 }

 //Convert 2.5kg to Pounds

 println("Convert 2.5kg to Pounds: ${getConversionLambda("KgsToPounds")(2.5)}")

 //Define two conversion lambdas

 val kgsToPoundsLambda = getConversionLambda("KgsToPounds")

 val poundsToUSTonsLambda = getConversionLambda("PoundsToUSTons")

 //Combine the two lambdas to create a new one

 val kgsToUSTonsLambda = combine(kgsToPoundsLambda, poundsToUSTonsLambda)

 //Use the new lambda to convert 17.4 to US tons

 val value = 17.4

 println("$value kgs is ${convert(value, kgsToUSTonsLambda)} US tons")

}

Let’s take the code for a test drive.

The code continued...

src

Lambdas.kt

Lambdas

Use getConversionLambda to get two lambdas.

Create a lambda that converts a
Double from kilograms to US tons.

Use the lambda to convert
17.4 kilograms to US tons.

Test drive
When we run the code, the following text gets printed in
the IDE’s output window:

Convert 2.5kg to Pounds: 5.5115575
17.4 is converted to 0.0191802201
17.4 kgs is 0.0191802201 US tons

Remove these lines.

You’ve now learned how to use lambdas to create higher-
order functions. Have a go at the following exercises,
and in the next chapter, we’ll introduce you to some of
Kotlin’s built-in higher-order functions, and show you
how powerful and flexible they can be.

Q: I’ve heard of functional programming. What’s that?

A: Lambdas are an important part of functional
programming. While non-functional programming reads data
input and generates data output, functional programs can read
functions as input, and generate functions as output. If your
code includes higher-order functions, you are doing functional
programming.

Q: Is functional programming very different from
object-oriented programming?

A: They are both ways of factoring your code. In object-
oriented programming you combine data with functions, and in
functional programming you combine functions with functions.
The two styles of programming are not incompatible; they are
just different ways of looking at the world.

356 Chapter 11

code magnets

data class Grocery(val name: String, val category: String,

 val unit: String, val unitPrice: Double)

fun main(args: Array<String>) {

 val groceries = listOf(Grocery("Tomatoes", "Vegetable", "lb", 3.0),

 Grocery("Mushrooms", "Vegetable", "lb", 4.0),

 Grocery("Bagels", "Bakery", "Pack", 1.5),

 Grocery("Olive oil", "Pantry", "Bottle", 6.0),

 Grocery("Ice cream", "Frozen", "Pack", 3.0))

 println("Expensive ingredients:")

 search(groceries) {i: Grocery -> i.unitPrice > 5.0}

 println("All vegetables:")

 search(groceries) {i: Grocery -> i.category == "Vegetable"}

 println("All packs:")

 search(groceries) {i: Grocery -> i.unit == "Pack"}

}

Code Magnets
Somebody used fridge magnets to create a search function that prints the
names of items in a List<Grocery> that meet some criteria. Unfortunately,
some of the magnets fell off. See if you can reconstruct the function.

println(l.name)

List<Grocery>

funsearch (

list: ,

criteria:

for (l in list

)

if (

criteria(l) }

(g: Grocery) -> Boolean

) }

{

{

)

{}

The function
goes here.

This is the Grocery
data class.

The main
function
uses the
search
function.

Answers on page 358.

you are here 4 357

lambdas and higher order functions

BE the Compiler
Here are five functions. Your job
is to play like you're the Compiler,
and determine whether each one

will compile. If it
won’t compile, why
not?

Answers on page 359.

fun myFun1(x: Int = 6, y: (Int) -> Int = 7): Int {

 return y(x)

}

fun myFun2(x: Int = 6, y: (Int) -> Int = { it }) {

 return y(x)

}

fun myFun3(x: Int = 6, y: (Int) -> Int = { x: Int -> x + 6 }): Int {

 return y(x)

}

fun myFun4(x: Int, y: Int,

 z: (Int, Int) -> Int = {

 x: Int, y: Int -> x + y

 }) {

 z(x, y)

}

fun myFun5(x: (Int) -> Int = {

 println(it)

 it + 7

}) {

 x(4)

}

A

B

C

D

E

358 Chapter 11

magnets solution

data class Grocery(val name: String, val category: String,

 val unit: String, val unitPrice: Double)

fun main(args: Array<String>) {

 val groceries = listOf(Grocery("Tomatoes", "Vegetable", "lb", 3.0),

 Grocery("Mushrooms", "Vegetable", "lb", 4.0),

 Grocery("Bagels", "Bakery", "Pack", 1.5),

 Grocery("Olive oil", "Pantry", "Bottle", 6.0),

 Grocery("Ice cream", "Frozen", "Pack", 3.0))

 println("Expensive ingredients:")

 search(groceries) {i: Grocery -> i.unitPrice > 5.0}

 println("All vegetables:")

 search(groceries) {i: Grocery -> i.category == "Vegetable"}

 println("All packs:")

 search(groceries) {i: Grocery -> i.unit == "Pack"}

}

Code Magnets Solution
Somebody used fridge magnets to create a search function that prints the
names of items in a List<Grocery> that meet some criteria. Unfortunately,
some of the magnets fell off. See if you can reconstruct the function.

println(l.name)

List<Grocery>fun search (list: ,

criteria:

for (l in list

)if (criteria(l) }

(g: Grocery) -> Boolean

) {

{

}

) {

}

you are here 4 359

lambdas and higher order functions

BE the Compiler Solution
Here are five functions. Your job
is to play like you’re the Compiler,
and determine whether each one

will compile. If it
won’t compile, why
not?

fun myFun1(x: Int = 6, y: (Int) -> Int = 7): Int {

 return y(x)

}

fun myFun2(x: Int = 6, y: (Int) -> Int = { it }) {

 return y(x)

}

fun myFun3(x: Int = 6, y: (Int) -> Int = { x: Int -> x + 6 }): Int {

 return y(x)

}

fun myFun4(x: Int, y: Int,

 z: (Int, Int) -> Int = {

 x: Int, y: Int -> x + y

 }) {

 z(x, y)

}

fun myFun5(x: (Int) -> Int = {

 println(it)

 it + 7

}) {

 x(4)

}

A

B

This won’t compile, as it assigns a
default Int value of 7 to a lambda.

This won’t compile because
the function returns an
Int which isn’t declared.This line returns an Int.

This code compiles. Its parameters have default values of
the correct type, and its return type is correctly declared.

This code compiles. The z
variable is assigned a valid
lambda as its default value.

C

D

E This code compiles. The x
variable is assigned a valid
lambda as its default value, and
this lambda spans multiple lines.

360 Chapter 11

pool puzzle solution

Pool Puzzle Solution
Your job is to take code snippets from the pool and place them into

the blank lines in the code. You may not use the same code
snippet more than once, and you won’t need to use all the code
snippets. Your goal is to create a function named unless
that’s called by the main function below. The unless
function should have two parameters, a Boolean named
condition, and a lambda named code. The function should

invoke the code lambda when condition is false.

You didn’t need to
use these snippets.

fun unless(, code:) {

 if () {

 }

}

fun main(args: Array<String>) {

 val options = arrayOf("Red", "Amber", "Green")

 var crossWalk = options[(Math.random() * options.size).toInt()]

 if (crossWalk == "Green") {

 println("Walk!")

 }

 unless (crossWalk == "Green") {

 println("Stop!")

 }

}

condition: Boolean () -> Unit

Void

Null

condition

!condition
code() If condition is false, invoke the code lambda.

This is formatted like a code block, but it’s actually
a lambda. The lambda is passed to the unless function,
and it runs if crossWalk is not “Green”.

you are here 4 361

lambdas and higher order functions

Your Kotlin Toolbox

You’ve got Chapter 11 under
your belt and now you’ve

added lambdas and higher-
order functions to your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

 � A lambda expression, or lambda, takes the
form:

 { x: Int -> x + 5 }

The lambda is defined within curly braces,
and can include parameters, and a body.

 � A lambda can have multiple lines. The last
evaluated expression in the body is used as
the lambda's return value.

 � You can assign a lambda to a variable. The
variable’s type must be compatible with the
type of the lambda.

 � A lambda’s type has the format:

(parameters) -> return_type

 � Where possible, the compiler can infer the
lambda’s parameter types.

 � If the lambda has a single parameter, you can
replace it with it.

 � You execute a lambda by invoking it. You do
this by passing the lambda any parameters
in parentheses, or by calling its invoke
function.

 � You can pass a lambda to a function as a
parameter, or use one as a function’s return
value. A function that uses a lambda in this
way is known as a higher-order function.

 � If the final parameter of a function is a
lambda, you can move the lambda outside
the function’s parentheses when you call the
function.

 � If a function has a single parameter that’s a
lambda, you can omit the parentheses when
you call the function.

 � A type alias lets you provide an alternative
name for an existing type. You define a type
alias using typealias.

CHAPT
ER 11

this is a new chapter 363

The collection was going crazy,
items everywhere, so I hit it
with a map(), gave it the old
foldRight(), then BAM! All that

was left was an Int of 42.

built-in higher-order functions12

Power Up Your Code

Kotlin has an entire host of built-in higher-order functions.
And in this chapter, we’ll introduce you to some of the most useful ones. You’ll meet the

flexible filter family, and discover how they can help you trim your collection down to

size. You’ll learn how to transform a collection using map, loop through its items with

forEach, and how to group the items in your collection using groupBy. You’ll even

use fold to perform complex calculations using just one line of code. By the end of the

chapter, you’ll be able to write code more powerful than you ever thought possible.

364 Chapter 12

Grocery class

data class Grocery(val name: String, val category: String,

 val unit: String, val unitPrice: Double,

 val quantity: Int)

fun main(args: Array<String>) {

 val groceries = listOf(Grocery("Tomatoes", "Vegetable", "lb", 3.0, 3),

 Grocery("Mushrooms", "Vegetable", "lb", 4.0, 1),

 Grocery("Bagels", "Bakery", "Pack", 1.5, 2),

 Grocery("Olive oil", "Pantry", "Bottle", 6.0, 1),

 Grocery("Ice cream", "Frozen", "Pack", 3.0, 2))

}

Kotlin has a bunch of
built-in higher-order functions
As we said at the beginning of the previous chapter, Kotlin
comes with a bunch of built-in higher-order functions that
take a lambda parameter, many of which deal with collections.
They enable you to filter a collection based on some criteria,
for example, or group the items in a collection by a particular
property value.

Each higher-order function has a generalized implementation,
and its specific behavior is defined by the lambda that you
pass to it. So if you want to filter a collection using the built-in
filter function, you can specify the criteria that should be
used by passing the function a lambda that defines it.

As many of Kotlin’s higher-order functions are designed to
work with collections, we’re going to introduce you to some
of the most useful higher-order functions defined in Kotlin’s
collections package. We’ll explore these functions using a
Grocery data class, and a List of Grocery items named
groceries. Here’s the code to define them:

We’ll start by looking at how to find the lowest or highest value
in a collection of objects.

This is the Grocery
data class.

The groceries List contains
five Grocery items.

you are here 4 365

built-in higher order functions

The min and max functions work with basic types

val highestUnitPrice = groceries.maxBy { it.unitPrice }

val ints = listOf(1, 2, 3, 4)

val maxInt = ints.max() //maxInt == 4

As you already know, if you have a collection of basic types,
you can use the min and max functions to find the lowest
or highest value. If you want to find the highest value in a
List<Int>, for example, you can use the following code:

And if you wanted to find the item with the lowest quantity
value, you would use minBy:

val lowestQuantity = groceries.minBy { it.quantity }

The lambda expression that you pass to the minBy or maxBy
function must take a specific form in order for the code to
compile and work correctly. We’ll look at this next.

The minBy and maxBy functions work with ALL types
If you want to find the lowest or highest value of a type that’s
more complex, you can use the minBy and maxBy functions.
These functions work in a similar way to min and max, except
that you can pass them criteria. You can use them, for example,
to find the Grocery item with the lowest unitPrice or the
Duck with the greatest size.

The minBy and maxBy functions each take one parameter:
a lambda that tells the function which property it should use
in order to determine which item has the lowest or highest
value. If, for example, you wanted to find the item in a
List<Grocery> with the highest unitPrice, you could
do so using the maxBy function like this:

The min and max functions work with Kotlin’s basic types
because they have a natural order. Ints can be arranged in
numerical order, for example, which makes it easy to find
out which Int has the highest value, and Strings can be
arranged in alphabetical order.

The min and max functions, however, can’t be used with
types with no natural order. You can’t use them, for example,
with a List<Grocery> or a Set<Duck>, as the functions
don’t automatically know how Grocery items or Duck
objects should be ordered. This means that for more complex
types, you need a different approach.

1, 2, 3, 4, 5...
“A”, “B”, ”C”...

Numbers and Strings have
a natural order, which
means that you can use
the min and max functions
with them to determine
the lowest or highest value.

This code is like saying
“Find the item in groceries
with the highest unitPrice”.

This line returns a reference to the item in groceries
with the lowest quantity.

These items have no natural order.
To find the highest or lowest value,
we need to specify some criteria,
such as unitPrice or quantity.

366 Chapter 12

minBy and maxBy

A closer look at minBy and maxBy’s lambda parameter

{ i: item_type -> criteria }

The lambda must have one parameter, which we’ve denoted
above using i: item_type. The parameter’s type must
match the type of item that the collection deals with, so
if you want to use either function with a List<Grocery>, the
lambda’s parameter must have a type of Grocery:

When you call the minBy or maxBy function, you must provide
it with a lambda which takes the following form:

As each lambda has a single parameter of a known type, we
can omit the parameter declaration entirely, and refer to the
parameter in the lambda body using it.

The lambda body specifies the criteria that should be used
to determine the lowest—or highest—value in the collection.
This criteria is normally the name of a property—for example,
{ it.unitPrice }. It can be any type, just so long as the
function can use it to determine which item has the lowest or
highest property value.

{ i: Grocery -> criteria }

What about minBy and maxBy’s return type?
When you call the minBy or maxBy function, its return type
matches the type of the items held in the collection. If you use
minBy with a List<Grocery>, for example, the function will
return a Grocery. And if you use maxBy with a Set<Duck>,
it will return a Duck.

Now that you know how to use minBy and maxBy, let’s look at
two of their close relatives: sumBy and sumByDouble.

Q: Do the min and max functions
only work with Kotlin’s basic types,
such as numbers and Strings?

A: min and max work with types
where you can compare two values, and
say whether one value is greater than
another, which is the case for Kotlin’s
basic types. These types work in this way
because behind the scenes, each one
implements the Comparable interface,
which defines how instances of that type
should be ordered and compared.

In practice, min and max work with any
type that implements Comparable.
Instead of implementing Comparable
in your own classes, however, we think that
using the minBy and maxBy functions
is a better approach as they give you more
flexibility.

minBy and maxBy
work with collections
that hold any type of
object, making them
much more flexible
than min and max.

If you call minBy or
maxBy on a collection
that contains no items,
the function will
return a null value.

you are here 4 367

built-in higher order functions

The sumBy and sumByDouble functions
As you may expect, the sumBy and sumByDouble functions
return a sum of the items in a collection according to some
criteria which you pass to it via a lambda. You can use these
functions to, say, add together the quantity values for
each item in a List<Grocery>, or return the sum of each
unitPrice multiplied by the quantity.

The sumBy and sumByDouble functions are almost identical,
except that sumBy works with Ints, and sumByDouble
works with Doubles. To return the sum of a Grocery’s
quantity values, for example, you would use the sumBy
function, as quantity is an Int:

val sumQuantity = groceries.sumBy { it.quantity }

And to return the sum of each unitPrice multiplied by
the quantity value, you would use sumByDouble, as
unitPrice * quantity is a Double:

val totalPrice = groceries.sumByDouble { it.quantity * it.unitPrice }

sumBy and sumByDouble’s lambda parameter
Just like minBy and maxBy, you must provide sumBy and
sumByDouble with a lambda that takes this form:

{ i: item_type -> criteria }

As before, item_type must match the type of item that the
collection deals with. In the above examples, we’re using the
functions with a List<Grocery>, so the lambda’s parameter
must have a type of Grocery. As the compiler can infer this,
we can omit the lambda parameter declaration, and refer to the
parameter in the lambda body using it.

The lambda body tells the function what you want it to sum. As
we said above, this must be an Int if you’re using the sumBy
function, and a Double if you’re using sumByDouble. sumBy
returns an Int value, and sumByDouble returns a Double.

Now that you know how to use minBy, maxBy, sumBy and
sumByDouble, let’s create a new project and add some code to
it that uses these functions.

sumBy adds Ints together,
and returns an Int.

sumByDouble adds Doubles,
and returns a Double.

 You can't use
sumBy or
sumByDouble
directly on a
Map.

You can, however, use them
on a Map’s keys, values
or entries properties. The
following code, for example,
returns the sum of a Map’s
values:

myMap.values.sumBy { it }

This returns the sum of all
quantity values in groceries.

368 Chapter 12

create project

Create the Groceries project
Create a new Kotlin project that targets the JVM, and name the
project “Groceries”. Then create a new Kotlin file named Groceries.kt
by highlighting the src folder, clicking on the File menu and choosing
New → Kotlin File/Class. When prompted, name the file “Groceries”,
and choose File from the Kind option.

Next, update your version of Groceries.kt to match ours below:

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

highestUnitPrice: Grocery(name=Olive oil, category=Pantry, unit=Bottle, unitPrice=6.0, quantity=1)
lowestQuantity: Grocery(name=Mushrooms, category=Vegetable, unit=lb, unitPrice=4.0, quantity=1)
sumQuantity: 9
totalPrice: 28.0

data class Grocery(val name: String, val category: String,

 val unit: String, val unitPrice: Double,

 val quantity: Int)

fun main(args: Array<String>) {

 val groceries = listOf(Grocery("Tomatoes", "Vegetable", "lb", 3.0, 3),

 Grocery("Mushrooms", "Vegetable", "lb", 4.0, 1),

 Grocery("Bagels", "Bakery", "Pack", 1.5, 2),

 Grocery("Olive oil", "Pantry", "Bottle", 6.0, 1),

 Grocery("Ice cream", "Frozen", "Pack", 3.0, 2))

 val highestUnitPrice = groceries.maxBy { it.unitPrice * 5 }

 println("highestUnitPrice: $highestUnitPrice")

 val lowestQuantity = groceries.minBy { it.quantity }

 println("lowestQuantity: $lowestQuantity")

 val sumQuantity = groceries.sumBy { it.quantity }

 println("sumQuantity: $sumQuantity")

 val totalPrice = groceries.sumByDouble { it.quantity * it.unitPrice }

 println("totalPrice: $totalPrice")

}

src

Groceries.kt

Groceries

you are here 4 369

built-in higher order functions

BE the Compiler
Below is a complete Kotlin source
file. Your job is to play like you're
the Compiler, and determine

whether the file will
compile. If it won’t
compile, why not?
How would you correct
it?

data class Pizza(val name: String, val pricePerSlice: Double, val quantity: Int)

fun main(args: Array<String>) {

 val ints = listOf(1, 2, 3, 4, 5)

 val pizzas = listOf(Pizza("Sunny Chicken", 4.5, 4),

 Pizza("Goat and Nut", 4.0, 1),

 Pizza("Tropical", 3.0, 2),

 Pizza("The Garden", 3.5, 3))

 val minInt = ints.minBy({ it.value })

 val minInt2 = ints.minBy({ int: Int -> int })

 val sumInts = ints.sum()

 val sumInts2 = ints.sumBy { it }

 val sumInts3 = ints.sumByDouble({ number: Double -> number })

 val sumInts4 = ints.sumByDouble { int: Int -> int.toDouble() }

 val lowPrice = pizzas.min()

 val lowPrice2 = pizzas.minBy({ it.pricePerSlice })

 val highQuantity = pizzas.maxBy { p: Pizza -> p.quantity }

 val highQuantity3 = pizzas.maxBy { it.quantity }

 val totalPrice = pizzas.sumBy { it.pricePerSlice * it.quantity }

 val totalPrice2 = pizzas.sumByDouble { it.pricePerSlice * it.quantity }

}

370 Chapter 12

be the compiler solution

BE the Compiler Solution
Below is a complete Kotlin source
file. Your job is to play like you're
the Compiler, and determine

whether the file will
compile. If it won’t
compile, why not?
How would you correct
it?

data class Pizza(val name: String, val pricePerSlice: Double, val quantity: Int)

fun main(args: Array<String>) {

 val ints = listOf(1, 2, 3, 4, 5)

 val pizzas = listOf(Pizza("Sunny Chicken", 4.5, 4),

 Pizza("Goat and Nut", 4.0, 1),

 Pizza("Tropical", 3.0, 2),

 Pizza("The Garden", 3.5, 3))

 val minInt = ints.minBy({ it.value })

 val minInt2 = ints.minBy({ int: Int -> int })

 val sumInts = ints.sum()

 val sumInts2 = ints.sumBy { it }

 val sumInts3 = ints.sumByDouble({ number: Double -> number it.toDouble() })
 val sumInts4 = ints.sumByDouble { int: Int -> int.toDouble() }

 val lowPrice = pizzas.min()

 val lowPrice2 = pizzas.minBy({ it.pricePerSlice })

 val highQuantity = pizzas.maxBy { p: Pizza -> p.quantity }

 val highQuantity3 = pizzas.maxBy { it.quantity }

 val totalPrice = pizzas.sumByDouble { it.pricePerSlice * it.quantity }
 val totalPrice2 = pizzas.sumByDouble { it.pricePerSlice * it.quantity }

}

As ints is a List<Int>, ‘it’ is an
Int and has no value property.

This line won’t compile, as the lambda’s
parameter needs to be an Int. We can
replace the lambda with { it.toDouble() }.

The min function won’t work with a List<Pizza>.

{ it.pricePerSlice * it.quantity } returns a Double, so the sumBy
function won’t work. We need to use sumByDouble instead.

you are here 4 371

built-in higher order functions

Meet the filter function
The next stop on our tour of Kotlin’s higher-order functions
is filter. This function lets you search, or filter, a collection
according to some criteria that you pass to it using a lambda.

For most collections, filter returns a List that includes
all the items that match your criteria, which you can then
use elsewhere in your code. If it’s being used with a Map,
however, it returns a Map. The following code, for example,
uses the filter function to get a List of all the items in
groceries whose category value is “Vegetable”:

val vegetables = groceries.filter { it.category == "Vegetable" }

Just like the other functions you’ve seen in this chapter, the
lambda that you pass to the filter function takes one
parameter, whose type must match that of the items in the
collection. As the lambda’s parameter has a known type, you
can omit the parameter declaration, and refer to it in the
lambda body using it.

The lambda’s body must return a Boolean, which is used
for the filter function’s criteria. The function returns
a reference to all items from the original collection where
the lambda body evaluates to true. The following code,
for example, returns a List of Grocery items whose
unitPrice is greater than 3.0:

There’s a whole FAMILY of filter functions
Kotlin has several variations of the filter function that can
sometimes be useful. The filterTo function, for example,
works like the filter function, except that it appends the
items that match the specified criteria to another collection.
The filterIsInstance function returns a List of
all the items which are instances of a given class. And the
filterNot function returns those items in a collection which
don’t match the criteria you pass to it. Here’s how, for example,
you would use the filterNot function to return a List of
all Grocery items whose category value is not “Frozen”:

val unitPriceOver3 = groceries.filter { it.unitPrice > 3.0 }

val notFrozen = groceries.filterNot { it.category == "Frozen" }

You can find o
ut more

about Kotlin’s filter

family in the onlin
e

documentation:

https://kotlin
lang.org/api/

latest/jvm/stdlib/kotlin.

collections/ind
ex.html

Now that you’ve seen how the filter function works, let’s
look at another of Kotlin’s higher-order functions: the map
function.

This returns a List containing
those items from groceries whose
category value is “Vegetable”.

filterNot returns those items where
the lambda body evaluates to false.

372 Chapter 12

map function

Use map to apply
a transform to your collection
The map function takes the items in a collection, and transforms each
one according to some formula that you specify. It returns the results
of this transformation as a new List.

To see how this works, suppose you have a List<Int> that looks
like this:

Yes! The map function returns a List, and not a Map.

val ints = listOf(1, 2, 3, 4)

If you wanted to create a new List<Int> that contains the same
items multiplied by two, you could do so using the map function like
this:

val doubleInts = ints.map { it * 2 }

And you can also use map to create a new List containing the name
of each Grocery item in groceries:

val groceryNames = groceries.map { it.name }

In each case, the map function returns a new List, and leaves the
original collection intact. If, say, you use map to create a List of
each unitPrice multiplied by 0.5 using the following code, the
unitPrice of each Grocery item in the original collection stays
the same:

val halfUnitPrice = groceries.map { it.unitPrice * 0.5 }

Just as before, the lambda that you pass to the map function has
a single parameter whose type matches that of the items in the
collection. You can use this parameter (usually referred to using it) to
specify how you want each item in the collection to be transformed.

You can chain function calls together
As the filter and map functions each return a collection, you
can chain higher-order function calls together to concisely perform
more complex operations. If you wanted to create a List of each
unitPrice multiplied by two, where the original unitPrice is
greater than 3.0, you can do so by first calling the filter function
on the original collection, and then using map to transform the result:

val newPrices = groceries.filter { it.unitPrice > 3.0 }

 .map { it.unitPrice * 2 }

Let’s go behind the scenes and see what happens when this code runs.

This returns a List containing
the items 2, 4, 6 and 8.

This creates a new List, and
populates it with the name of
each Grocery item in groceries.

This returns a List
containing each unitPrice
multiplied by 0.5.

This calls the filter function,
and then calls map on the
resulting List.

you are here 4 373

built-in higher order functions

What happens when the code runs

val newPrices = groceries.filter { it.unitPrice > 3.0 }
 .map { it.unitPrice * 2 }

The filter function is called on groceries, a List<Grocery>. It creates a new List that
holds references to those Grocery items whose unitPrice is greater than 3.0.

1

val newPrices = groceries.filter { it.unitPrice > 3.0 }
 .map { it.unitPrice * 2 }

The map function is called on the new List. As the lambda { it.unitPrice * 2 } returns
a Double, the function creates a List<Double> containing a reference to each unitPrice
multiplied by 2.

2

“Tomatoes”
3.0

Grocery

REF

0

1

2

REF

REF

REF

3

List<Grocery>

val
List<Grocery>

REF

groceries

“Mushrooms”
4.0

Grocery

“Bagels”
1.5

Grocery

“Olive oil”
6.0

Grocery

REF
0

1REF

List<Grocery>

“Tomatoes”
3.0

Grocery

REF

0

1

2

REF

REF

REF

3

List<Grocery>

val
List<Grocery>

REF

groceries

“Mushrooms”
4.0

Grocery

“Bagels”
1.5

Grocery

“Olive oil”
6.0

Grocery

REF

0

1
REF

List<Double>

8.0

Double

12.0

Double

This is the original
groceries List.

The call to the filter function
creates a new List which holds
references to the two items with
a unitPrice greater than 3.0.

The call to the map function
creates a new List containing
references to two Doubles.

374 Chapter 12

what happens

The story continues...

val newPrices = groceries.filter { it.unitPrice > 3.0 }
 .map { it.unitPrice * 2 }

 A new variable, newPrices, gets created, and the reference to the List<Double>
returned by the map function is assigned to it.

3

Now that you’ve seen what happens when higher-order
functions are chained together, let’s have a look at our
next function: forEach.

REF

0

1
REF

List<Double>

8.0

Double

12.0

Doubleval
List<Double>

REF

new
Prices

“Tomatoes”
3.0

Grocery

REF

0

1

2

REF

REF

REF

3

List<Grocery>

val
List<Grocery>

REF

groceries

“Mushrooms”
4.0

Grocery

“Bagels”
1.5

Grocery

“Olive oil”
6.0

Grocery

Q: You said earlier that the filter function has a
number of variations, like filterTo and filterNot.
What about map? Are there variations of that function too?

A: Yes! Variations include mapTo (which appends the results
of the transformation to an existing collection), mapNotNull
(which omits any null values) and mapValues (which works
with and returns a Map). You can find more details here:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/index.html

Q: For the higher-order functions we’ve looked at so far,
you’ve said that the lambda’s parameter type must match that
of the items in the collection. How is that enforced?

A: Using generics.

As you may recall from Chapter 10, generics let you write code that
uses types consistently. It stops you from adding a Cabbage
reference to a List<Duck>. Kotlin’s built-in higher-order
functions use generics to make sure that they only accept and
return values whose type is appropriate for the collection they’re
being used with.

The List created by the call
to the map function is assigned
to the newPrices variable.

you are here 4 375

built-in higher order functions

forEach works like a for loop
The forEach function works in a similar way to a for loop, as it
allows you to perform one or more actions against each item in a
collection. You specify these actions using a lambda.

To see how forEach works, suppose you wanted to loop through
each item in the groceries List, and print the name of each
one. Here’s how you could do this using a for loop:

for (item in groceries) {

 println(item.name)

}

And here’s the equivalent code using the forEach function:

groceries.forEach { println(it.name) }

But if forEach does the same thing as a
for loop, isn’t that just giving me one more
thing to remember? What’s the point in
having yet another function?

Both code examples do the same thing, but using forEach
is slightly more concise.

As forEach is a function, you can use it in
function call chains.
Imagine that you want to print the name of each item in groceries
whose unitPrice is greater than 3.0. To do this using a for
loop, you could use the code:

groceries.filter { it.unitPrice > 3.0 }

 .forEach { println(it.name) }

for (item in groceries) {

 if (item.unitPrice > 3.0) println(item.name)

}

But you can do this more concisely using:

So forEach lets you chain function calls together to perform
powerful tasks in a way that’s concise.

Let’s take a closer look at forEach.

You can use forEach
with arrays, Lists,
Sets, and on a Map’s
entries, keys and
values properties.

Note that { println(it.name) } is a lambda
which we’re passing to the forEach function.
The lambda body can have multiple lines.

376 Chapter 12

getting closure

var itemNames = ""

for (item in groceries) {

 itemNames += "${item.name} "

}

println("itemNames: $itemNames")

When you pass a lambda to a higher-order function such as
forEach, the lambda has access to these same variables, even
though they’ve been defined outside the lambda. This means that instead
of using the forEach function’s return value to get the result
of some calculation, you can update a variable from inside the
lambda body. The following code, for example, is valid:

var itemNames = ""

groceries.forEach({ itemNames += "${it.name} " })

println("itemNames: $itemNames")

The variables defined outside the lambda which the lambda can
access are sometimes referred to as the lambda’s closure. In clever
words, we say that the lambda can access its closure. And as the lambda
uses the itemNames variable in its body, we say that the lambda’s
closure has captured the variable.

Now that you’ve learned how to use the forEach function, let’s
update our project code.

Closure means that
a lambda can access
any local variables
that it captures.

forEach has no return value
Just like the other functions that you’ve seen in this chapter, the
lambda that you pass to the forEach function has a single
parameter whose type matches that of the items in the collection.
And as this parameter has a known type, you can omit the
parameter declaration, and refer to the parameter in the lambda
body using it.

Unlike other functions, however, the lambda’s body has a Unit
return value. This means that you can’t use forEach to return
the result of some calculation as you won’t be able to access it.
There is, however, a workaround.

Lambdas have access to variables
As you already know, a for loop’s body has access to variables
that have been defined outside the loop. The following code, for
example, defines a String variable named itemNames, which
is then updated in a for loop’s body:

You can update the itemNames variable
inside the body of a for loop.

You can also update the itemNames
variable inside the body of the
lambda that’s passed to forEach.

you are here 4 377

built-in higher order functions

Update the Groceries project
We’ll add some code to our Groceries project that uses the filter,
map and forEach functions. Update your version of Groceries.kt in
the project so that it matches ours below (our changes are in bold):

data class Grocery(val name: String, val category: String,

 val unit: String, val unitPrice: Double,

 val quantity: Int)

fun main(args: Array<String>) {

 val groceries = listOf(Grocery("Tomatoes", "Vegetable", "lb", 3.0, 3),

 Grocery("Mushrooms", "Vegetable", "lb", 4.0, 1),

 Grocery("Bagels", "Bakery", "Pack", 1.5, 2),

 Grocery("Olive oil", "Pantry", "Bottle", 6.0, 1),

 Grocery("Ice cream", "Frozen", "Pack", 3.0, 2))

 val highestUnitPrice = groceries.maxBy { it.unitPrice * 5 }

 println("highestUnitPrice: $highestUnitPrice")

 val lowestQuantity = groceries.minBy { it.quantity }

 println("lowestQuantity: $lowestQuantity")

 val sumQuantity = groceries.sumBy { it.quantity }

 println("sumQuantity: $sumQuantity")

 val totalPrice = groceries.sumByDouble { it.quantity * it.unitPrice }

 println("totalPrice: $totalPrice")

 val vegetables = groceries.filter { it.category == "Vegetable" }

 println("vegetables: $vegetables")

 val notFrozen = groceries.filterNot { it.category == "Frozen" }

 println("notFrozen: $notFrozen")

 val groceryNames = groceries.map { it.name }

 println("groceryNames: $groceryNames")

 val halfUnitPrice = groceries.map { it.unitPrice * 0.5 }

 println("halfUnitPrice: $halfUnitPrice")

 val newPrices = groceries.filter { it.unitPrice > 3.0 }

 .map { it.unitPrice * 2 }

 println("newPrices: $newPrices")

src

Groceries.kt

Groceries

The code continues
on the next page.

Delete
these
lines.

Add all these lines.

378 Chapter 12

test drive

The code continued...
 println("Grocery names: ")

 groceries.forEach { println(it.name) }

 println("Groceries with unitPrice > 3.0: ")

 groceries.filter { it.unitPrice > 3.0 }

 .forEach { println(it.name) }

 var itemNames = ""

 groceries.forEach({ itemNames += "${it.name} " })

 println("itemNames: $itemNames")

}

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

vegetables: [Grocery(name=Tomatoes, category=Vegetable, unit=lb, unitPrice=3.0, quantity=3),
Grocery(name=Mushrooms, category=Vegetable, unit=lb, unitPrice=4.0, quantity=1)]
notFrozen: [Grocery(name=Tomatoes, category=Vegetable, unit=lb, unitPrice=3.0, quantity=3),
Grocery(name=Mushrooms, category=Vegetable, unit=lb, unitPrice=4.0, quantity=1),
Grocery(name=Bagels, category=Bakery, unit=Pack, unitPrice=1.5, quantity=2),
Grocery(name=Olive oil, category=Pantry, unit=Bottle, unitPrice=6.0, quantity=1)]
groceryNames: [Tomatoes, Mushrooms, Bagels, Olive oil, Ice cream]
halfUnitPrice: [1.5, 2.0, 0.75, 3.0, 1.5]
newPrices: [8.0, 12.0]
Grocery names:
Tomatoes
Mushrooms
Bagels
Olive oil
Ice cream
Groceries with unitPrice > 3.0:
Mushrooms
Olive oil
itemNames: Tomatoes Mushrooms Bagels Olive oil Ice cream

src

Groceries.kt

Groceries

Now that you’ve updated your project code, have a go at the following
exercise, and then we’ll look at our next higher-order function.

Let’s take the code for a test drive.

Add these lines to the main function.

you are here 4 379

built-in higher order functions

Note: each thing from
the pool can only be
used once!

abstract class Pet(var name: String)

class Cat(name: String) : Pet(name)

class Dog(name: String) : Pet(name)

class Fish(name: String) : Pet(name)

class Contest<T: Pet>() {

 var scores: MutableMap<T, Int> = mutableMapOf()

 fun addScore(t: T, score: Int = 0) {

 if (score >= 0) scores.put(t, score)

 }

 fun getWinners(): Set<T> {

 val highScore =

 val winners = scores { == highScore }

 winners { println("Winner: ${ }") }

 return winners

 }

}

Pool Puzzle
Your job is to take code snippets from the

pool and place them into the blank
lines in the code. You may not use
the same code snippet more than
once, and you won’t need to use all
the code snippets. Your goal is to
complete the getWinners function

in the Contest class so that it returns
a Set<T> of contestants with the highest
score, and prints the name of each winner.

scores

. values.
max()

maxBy()
.

map

it
. value.

keys

.

values

forEach

it
.

name

filter

If this code looks familiar, it’s
because we wrote a different
version of it in Chapter 10.

380 Chapter 12

pool puzzle solution

abstract class Pet(var name: String)

class Cat(name: String) : Pet(name)

class Dog(name: String) : Pet(name)

class Fish(name: String) : Pet(name)

class Contest<T: Pet>() {

 var scores: MutableMap<T, Int> = mutableMapOf()

 fun addScore(t: T, score: Int = 0) {

 if (score >= 0) scores.put(t, score)

 }

 fun getWinners(): Set<T> {

 val highScore =

 val winners = scores { == highScore }

 winners { println("Winner: ${ }") }

 return winners

 }

}

Pool Puzzle Solution
Your job is to take code snippets from the

pool and place them into the blank
lines in the code. You may not use
the same code snippet more than
once, and you won’t need to use all
the code snippets. Your goal is to
complete the getWinners function

in the Contest class so that it returns
a Set<T> of contestants with the highest
score, and prints the name of each winner.

You didn’t need to
use these snippets.

maxBy()

scores.values.max()

map

.filter it.value

values

.keys

.forEach it.name

The scores are held as Int values in a MutableMap
named scores, so this gets the highest score value.

Filter scores to get
the entries whose
value is highScore.
Then use its keys
property to get
the winners.Use the forEach function to

print the name of each winner.

you are here 4 381

built-in higher order functions

Use groupBy to split your collection into groups

The groupBy function accepts one parameter, a lambda, which
you use to specify how the function should group the items in the
collection. The following code, for example, groups the items in
groceries (a List<Grocery>) by the category value:

Vegetable
 Tomatoes
 Mushrooms
Bakery
 Bagels
Pantry
 Olive oil
Frozen
 Ice cream

The next function that we’ll look at is groupBy. This function
lets you group the items in your collection according to some
criteria, such as the value of one of its properties. You can use it
(in conjunction with other function calls) to, say, print the name
of Grocery items grouped by category value:

val groupByCategory = groceries.groupBy { it.category }

groupBy returns a Map. It uses the criteria passed via the
lambda body for the keys, and each associated value is a List of
items from the original collection. The above code, for example,
creates a Map whose keys are the Grocery item category
values, and each value is a List<Grocery>:

“Vegetable”

REF
REF

“Bakery” “Pantry” “Frozen”

REF
REF

Map<String, List<Grocery>>

REF

0

1
REF

List<Grocery>

Tomatoes

Grocery

Mushrooms

Grocery

REF

0

List<Grocery>

Olive
Oil

Grocery

REF

0

List<Grocery>

Bagels

Grocery

REF

0

List<Grocery>

Ice
Cream

Grocery

Note that you can’t use groupBy on
a Map directly, but you can call it on
its keys, values or entries properties.

This is like saying “group
each item in groceries
by its category value”.

Each value in
the Map is a
List<Grocery>. The category values are

used for the Map’s keys,
so each Key is a String.

These are the
category values. The Grocery

names are
grouped by
category value.

382 Chapter 12

call chains

You can use groupBy in function call chains
As the groupBy function returns a Map with List values, you can
make further higher-order function calls on its return value, just as
you can with the filter and map functions.

Imagine that you want to print the value of each category for a
List<Grocery>, along with the name of each Grocery item
whose category property has that value. To do this, you can
use the groupBy function to group the Grocery items by each
category value, and then use the forEach function to loop
through the resulting Map:

groceries.groupBy { it.category }.forEach {

 //More code goes here

}

groceries.groupBy { it.category }.forEach {

 println(it.key)

 it.value.forEach { println(" ${it.name}") }

}

As the groupBy function uses the Grocery category values for its
keys, we can print them by passing the code println(it.key)
to the forEach function in its lambda:

groceries.groupBy { it.category }.forEach {

 println(it.key)

 //More code goes here

}

And as each of the Map’s values is a List<Grocery>, we can
make a further call to forEach in order to print the name of each
grocery item:

So when you run the above code, it produces the following output:

Vegetable
 Tomatoes
 Mushrooms
Bakery
 Bagels
Pantry
 Olive oil
Frozen
 Ice cream

Now that you know how to use groupBy, let’s look at the final
function on our road trip: the fold function.

groupBy returns a Map, which
means that we can call the forEach
function on its return value.

This prints the Map keys (the Grocery category values).

This line gets the corresponding
value for the Map’s key. As
this is a List<Grocery>, we can
call forEach on it to print the
name of the Grocery item.

you are here 4 383

built-in higher order functions

How to use the fold function
The fold function is arguably Kotlin’s most flexible higher-order
function. With fold, you can specify an initial value, and perform
some operation on it for each item in a collection. You can use it to, say,
multiply together each item in a List<Int> and return the result, or
concatenate together the name of each item in a List<Grocery>, all
in a single line of code.

Unlike the other functions we’ve seen in this chapter, fold takes two
parameters: the initial value, and the operation that you want to perform
on it, specified by a lambda. So if you have the following List<Int>:

val ints = listOf(1, 2, 3)

you can use fold to add each of its items to an initial value of 0 using
the following code:

val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

The fold function’s first parameter is the initial value—in this case, 0.
This parameter can be any type, but it’s usually one of Kotlin’s basic
types such as a number or String.

The second parameter is a lambda which describes the operation that
you want to perform on the initial value for each item in the collection.
In the above example, we want to add each item to the initial value, so
we’re using the lambda:

{ runningSum, item -> runningSum + item }

The lambda that you pass to fold has two parameters, which in
this example we’ve named runningSum and item.

The first lambda parameter, runningSum, gets its type from the initial
value that you specify. It’s initialized with this initial value, so in the
above example, runningSum is an Int that’s initialized with 0.

The second lambda parameter, item, has the same type as the items
in the collection. In the example above, we’re calling fold on a
List<Int>, so item’s type is Int.

The lambda body specifies the operation you want to perform for
each item in the collection, the result of which is then assigned to the
lambda’s first parameter variable. In the above example, the function
takes the value of runningSum, adds it to the value of the current
item, and assigns this new value to runningSum. When the function
has looped through all items in the collection, fold returns the final
value of this variable.

Let’s break down what happens when we call the fold function.

fold can be called
on a Map’s keys,
values and entries
properties, but not
on a Map directly.

This is the initial value.
This tells the function that you want to add the value of each item in the collection to the initial value.

Here, we’ve decided to name the lambda parameters
runningSum and item as we’re adding the value of
each item to a running sum. You can, however, give
the parameters any valid variable name.

384 Chapter 12

what happens

Behind the scenes: the fold function
Here’s what happens when we run the code:

val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

val ints = listOf(1, 2, 3)

where ints is defined as:

val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

This creates an Int variable named runningSum which is initialized with 0. This
variable is local to the fold function.

1

val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

The function takes the value of the first item in the collection (an Int with a value
of 1) and adds it to the value of runningSum. This new value, 1, is assigned to
runningSum.

2

var Int

REF

running
Sum

1

Int

1

Int

REF

0

1

2

REF

REF

List<Int>

2

Int

3

Int

var Int

REF

running
Sum

0

Int

This is the initial value that we’ve passed to the fold function. It’s assigned to a local variable named runningSum.

The fold
function
starts
with the
first item
in the
collection. The value of the first

item is added to the
value of runningSum.
This value is then
assigned to runningSum.

you are here 4 385

built-in higher order functions

The story continues...
val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

The function moves to the second item in the collection, which is an Int with a value
of 2. It adds this to runningSum, so that runningSum’s value becomes 3.

3

val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

The function moves to the third and final item in the collection: an Int with a value
of 3. This value is added to runningSum, so that runningSum’s value becomes 6.

4

val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }

As there are no more items in the collection, the function returns the final value of
runningSum. This value is assigned to a new variable named sumOfInts.

5

var Int

REF

running
Sum

3

Int

1

Int

REF

0

1

2

REF

REF

List<Int>

2

Int

3

Int

var Int

REF

running
Sum

6

Int

1

Int

REF

0

1

2

REF

REF

List<Int>

2

Int

3

Int

var Int

REF

sum
OfInts

6

Int

The fold
function
moves to
the second
item in the
collection.

The function adds the
value of the second item
to the value of runningSum.
This new value is assigned
to runningSum.

Finally,
the fold
function
moves to
the third
item in the
collection.

The function adds
the value of the final
item to the value of
runningSum. runningSum’s
new value is now 6

runningSum’s final value is 6, so
the function returns this value.
It gets assigned to sumOfInts.

386 Chapter 12

fold function

Some more examples of fold
Now that you’ve seen how to use the fold function to add
together the values in a List<Int>, let’s look at a few more
examples.

Find the product of a List<Int>
If you want to multiply together all the numbers in a List<Int>
and return the result, you can do so by passing the fold function
an initial value of 1, and a lambda whose body performs the
multiplication:

ints.fold(1) { runningProduct, item -> runningProduct * item }

Concatenate together the name of each item in a List<Grocery>
To return a String that contains the name of each Grocery
item in a List<Grocery>, you can pass the fold function
an initial value of "", and a lambda whose body performs the
concatenation:

groceries.fold("") { string, item -> string + " ${item.name}" }

There’s also a joinToString function which you can use to perform this kind of task.

You can also use fold to work out how much change you’d have
left if you were to buy all the items in a List<Grocery>. To do
this, you’d set the initial value as the amount of money you have
available, and use the lambda body to subtract the unitPrice of
each item multiplied by the quantity:

Subtract the total price of items from an initial value

groceries.fold(50.0) { change, item

 -> change - item.unitPrice * item.quantity }

Now that you know how to use the groupBy and fold
functions, let’s update our project code.

Initialize runningProduct with 1. Multiply runningSum with the value of each item.

Initialize string with “”. This is like saying:
string = string + “ ${item.name}”
for each item in groceries.

Initialize change with 50.0. This subtracts the total price
(unitPrice * quantity) from
change for each item in groceries.

you are here 4 387

built-in higher order functions

data class Grocery(val name: String, val category: String,

 val unit: String, val unitPrice: Double,

 val quantity: Int)

fun main(args: Array<String>) {

 val groceries = listOf(Grocery("Tomatoes", "Vegetable", "lb", 3.0, 3),

 Grocery("Mushrooms", "Vegetable", "lb", 4.0, 1),

 Grocery("Bagels", "Bakery", "Pack", 1.5, 2),

 Grocery("Olive oil", "Pantry", "Bottle", 6.0, 1),

 Grocery("Ice cream", "Frozen", "Pack", 3.0, 2))

 val vegetables = groceries.filter { it.category == "Vegetable" }

 println("vegetables: $vegetables")

 val notFrozen = groceries.filterNot { it.category == "Frozen" }

 println("notFrozen: $notFrozen")

 val groceryNames = groceries.map { it.name }

 println("groceryNames: $groceryNames")

 val halfUnitPrice = groceries.map { it.unitPrice * 0.5 }

 println("halfUnitPrice: $halfUnitPrice")

 val newPrices = groceries.filter { it.unitPrice > 3.0 }

 .map { it.unitPrice * 2 }

 println("newPrices: $newPrices")

 println("Grocery names: ")

 groceries.forEach { println(it.name) }

 println("Groceries with unitPrice > 3.0: ")

 groceries.filter { it.unitPrice > 3.0 }

 .forEach { println(it.name) }

 var itemNames = ""

 groceries.forEach({ itemNames += "${it.name} " })

 println("itemNames: $itemNames")

Update the Groceries project
We’ll add some code to our Groceries project that uses the groupBy
and fold functions. Update your version of Groceries.kt in the project
so that it matches ours below (our changes are in bold):

src

Groceries.kt

Groceries

The code continues
on the next page.

We no
longer need
these lines,
so you can
delete them.

388 Chapter 12

test drive

The code continued...
 groceries.groupBy { it.category }.forEach {
 println(it.key)
 it.value.forEach { println(" ${it.name}") }
 }

 val ints = listOf(1, 2, 3)
 val sumOfInts = ints.fold(0) { runningSum, item -> runningSum + item }
 println("sumOfInts: $sumOfInts")

 val productOfInts = ints.fold(1) { runningProduct, item -> runningProduct * item }
 println("productOfInts: $productOfInts")

 val names = groceries.fold("") { string, item -> string + " ${item.name}" }
 println("names: $names")

 val changeFrom50 = groceries.fold(50.0) { change, item
 -> change - item.unitPrice * item.quantity }
 println("changeFrom50: $changeFrom50")
}

src

Groceries.kt

Groceries

Test drive
When we run the code, the following text gets printed in the IDE’s
output window:

Vegetable
 Tomatoes
 Mushrooms
Bakery
 Bagels
Pantry
 Olive oil
Frozen
 Ice cream
sumOfInts: 6
productOfInts: 6
names: Tomatoes Mushrooms Bagels Olive oil Ice cream
changeFrom50: 22.0

Let’s take the code for a test drive.

Add
these
lines to
the main
function.

you are here 4 389

built-in higher order functions

Q: You said that some of the higher-
order functions in this chapter can’t be
used directly with a Map. Why is that?

A: It’s because Map is defined a little
differently to List and Set, and this
affects which functions will work with it.

Behind the scenes, List and Set
inherit behavior from an interface named
Collection, which in turn inherits
behavior defined in the Iterable
interface. Map, however, does not inherit
from either of these interfaces. This means
that List and Set are both types of
Iterable, while Map isn’t.

This distinction is important because
functions such as fold, forEach
and groupBy are designed to work
with Iterables. And because Map
isn’t an Iterable, you’ll get a compiler
error if you try to directly use any of these
functions with a Map.

The great news, however, is that Map’s
entries, keys and values
properties are all types of Iterable:
entries and keys are both
Sets, and values inherits from the
Collection interface. This means
that while you can’t call functions such as
groupBy and fold on a Map directly,
you can still use them with the Map’s
properties.

Q: Do I always need to provide the
fold function with an initial value?
Can’t I just use the first item in the
collection as the initial value?

A: When you use the fold function,
you must specify the initial value. This
parameter is mandatory, and can’t be
omitted.

If you want to use the first item in the
collection as the initial value, however,
an alternative approach is to use the
reduce function. This function works
in a similar way to fold, except that
you don’t have to specify the initial value.
It automatically uses the first item in the
collection as the initial value.

Q: Does fold iterate through the
collection in a specific order? Can I
reverse this order?

A: The fold and reduce functions
work through items in a collection from left
to right, starting with the first item in the
collection.

If you want to reverse this order, you
can use the foldRight and
reduceRight functions. These
functions works on arrays and Lists, but
not on Sets or Maps.

Q: Can I update the variables in a
lambda’s closure?

A: Yes.

As you may recall, a lambda’s closure
refers to those variables defined outside
the lambda body which the lambda has
access to. Unlike some languages such as
Java, you can update these variables in the
lambda’s body so long as they have been
defined using var.

Q: Does Kotlin have many more
higher-order functions?

A: Yes. Kotlin has far too many higher-
order functions for us to cover in one
chapter, so we decided to focus on just
some of them: the ones which we think are
the most useful or important. Now that you
know how to use these functions, however,
we’re confident that you’ll be able to take
your knowledge, and apply it elsewhere.

You can find a full list of Kotlin’s functions
(including its higher-order functions) in the
online documentation:

https://kotlinlang.org/api/latest/jvm/stdlib/
index.html

390 Chapter 12

sharpen your pencil

Answers on page 392.

The following code defines the Grocery data class, and a
List<Grocery> named groceries:

Write the code below to find out how much will be spent on vegetables.

data class Grocery(val name: String, val category: String,

 val unit: String, val unitPrice: Double,

 val quantity: Int)

val groceries = listOf(Grocery("Tomatoes", "Vegetable", "lb", 3.0, 3),

 Grocery("Mushrooms", "Vegetable", "lb", 4.0, 1),

 Grocery("Bagels", "Bakery", "Pack", 1.5, 2),

 Grocery("Olive oil", "Pantry", "Bottle", 6.0, 1),

 Grocery("Ice cream", "Frozen", "Pack", 3.0, 2))

Create a List containing the name of each item whose total price is less than 5.0

Print the total cost of each category.

Print the name of each item that doesn't come in a bottle, grouped by unit.

you are here 4 391

built-in higher order functions

Match each
candidate with
one of the
possible outputs.

 Mixed
Messages

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

fun main(args: Array<String>) {

 val myMap = mapOf("A" to 4, "B" to 3, "C" to 2, "D" to 1, "E" to 2)

 var x1 = ""

 var x2 = 0

 println("$x1$x2")

}

x1 = myMap.keys.fold("") { x, y -> x + y}

x2 = myMap.entries.fold(0) { x, y -> x * y.value }

Candidates: Possible output:

The candidate
code goes here.

ABCDE0
x2 = myMap.values.groupBy { it }.keys.sumBy { it }

x1 = "ABCDE"

x2 = myMap.values.fold(12) { x, y -> x - y }

x2 = myMap.entries.fold(1) { x, y -> x * y.value }

x1 = myMap.values.fold("") { x, y -> x + y }

x1 = myMap.values.fold(0) { x, y -> x + y }

 .toString()

x2 = myMap.keys.groupBy { it }.size

10

48

432120

125

ABCDE48

43210

Answers on page 393.

392 Chapter 12

sharpen solution

The following code defines the Grocery data class, and a
List<Grocery> named groceries:

Write the code below to find out how much will be spent on vegetables.

groceries.filter { it.category == "Vegetable" }.sumByDouble { it.unitPrice * it.quantity }

groceries.filter { it.unitPrice * it.quantity < 5.0 }.map { it.name }

Create a List containing the name of each item whose total price is less than 5.0

groceries.groupBy { it.category }.forEach {
 println("${it.key}: ${it.value.sumByDouble { it.unitPrice * it.quantity }}")
}

Print the total cost of each category.

Print the name of each item that doesn't come in a bottle, grouped by unit.

groceries.filterNot { it.unit == "Bottle"}.groupBy { it.unit }.forEach {
 println(it.key)
 it.value.forEach { println(" ${it.name}") }
}

data class Grocery(val name: String, val category: String,

 val unit: String, val unitPrice: Double,

 val quantity: Int)

val groceries = listOf(Grocery("Tomatoes", "Vegetable", "lb", 3.0, 3),

 Grocery("Mushrooms", "Vegetable", "lb", 4.0, 1),

 Grocery("Bagels", "Bakery", "Pack", 1.5, 2),

 Grocery("Olive oil", "Pantry", "Bottle", 6.0, 1),

 Grocery("Ice cream", "Frozen", "Pack", 3.0, 2))

Filter by category, then
sum the total price.

Filter by
unitPrice * quantity,
then use map to
transform the result.

For each category...

... print the key, followed by the
result of sumByDouble for each value.

Get the entries where the
value of unit is not “Bottle”

Group the results by unit.

Print each key in the resulting Map.

Each value in the Map is a List<Grocery>,
so we can use forEach to loop through each
List, and print the name of each item.

you are here 4 393

built-in higher order functions

 Mixed
Messages
Solution

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you’d see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

fun main(args: Array<String>) {

 val myMap = mapOf("A" to 4, "B" to 3, "C" to 2, "D" to 1, "E" to 2)

 var x1 = ""

 var x2 = 0

 println("$x1$x2")

}

x1 = myMap.keys.fold("") { x, y -> x + y}

x2 = myMap.entries.fold(0) { x, y -> x * y.value }

Candidates: Possible output:

The candidate
code goes here.

x2 = myMap.values.groupBy { it }.keys.sumBy { it }

x1 = "ABCDE"

x2 = myMap.values.fold(12) { x, y -> x - y }

x2 = myMap.entries.fold(1) { x, y -> x * y.value }

x1 = myMap.values.fold("") { x, y -> x + y }

x1 = myMap.values.fold(0) { x, y -> x + y }

 .toString()

x2 = myMap.keys.groupBy { it }.size

ABCDE0

10

48

432120

125

ABCDE48

43210

394 Chapter 12

toolbox

Your Kotlin Toolbox

You’ve got Chapter 12 under
your belt and now you’ve

added built-in higher-order
functions to your toolbox.

You can download
the full code for
the chapter from
https://tinyurl.com/
HFKotlin.

CH
AP

T
ER

 12

 � Use minBy and maxBy to find the lowest or
highest value in a collection. These functions take
one parameter, a lambda whose body specifies
the function criteria. The return type matches the
type of items in the collection.

 � Use sumBy or sumByDouble to return the
sum of items in a collection. Its parameter, a
lambda, specifies the thing you want to sum.
If this is an Int, use sumBy, and if it’s a
Double, use sumByDouble.

 � The filter function lets you search, or filter, a
collection according to some criteria. You specify
this criteria using a lambda, whose lambda body
must return a Boolean. filter usually
returns a List . If the function is being used
with a Map, however, it returns a Map instead.

 � The map function transforms the items in a
collection according to some criteria that you
specify using a lambda. It returns a List.

 � forEach works like a for loop. It allows you
to perform one or more actions for each item in a
collection.

 � Use groupBy to divide a collection into groups.
It takes one parameter, a lambda, which defines
how the function should group the items. The
function returns a Map, which uses the lambda
criteria for the keys, and a List for each value.

 � The fold function lets you specify an initial
value, and perform some operation for each item
in a collection. It takes two parameters: the initial
value and a lambda that specifies the operation
you want to perform.

We’re sad to see you leave, but there’s nothing like taking what you’ve learned

and putting it to use. There are still a few more gems for you in the back of the book and a

handy index, and then it’s time to take all these new ideas and put them into practice. Bon

voyage!

Leaving town...

It’s been great having you here in Kotlinville

this is an appendix 397

appendix i: coroutines

Running Code in Parallel

Some tasks are best performed in the background.
If you want to read data from a slow external server, you probably don’t want the rest of

your code to hang around, waiting for the job to complete. In situations such as these,

coroutines are your new BFF. Coroutines let you write code that’s run asynchronously.

This means less time hanging around, a better user experience, and it can also make

your application more scalable. Keep reading, and you’ll learn the secret of how to talk to

Bob, while simultaneously listening to Suzy.

You mean I can
walk and chew gum at
the same time? How
exciting!

398 appendix i

create project

Let’s build a drum machine
Coroutines allow you to create multiple pieces of code that can run
asynchronously. Instead of running pieces of code in sequence, one
after the other, coroutines let you run them side-by-side.

Using coroutines means that you can launch a background job, such
as reading data from an external server, without the rest of your code
having to wait for the job to complete before doing anything else.
This gives your user a more fluid experience, and it also makes your
application more scalable.

To see the difference that using coroutines can make to your code,
suppose you want to build a drum machine based on some code that
plays a drum beat sequence. Let’s start by creating the Drum Machine
project by going through the following steps.

1. Create a new GRADLE project
To write code that uses coroutines, we need to create a new Gradle
project so that we can configure it to use coroutines. To do this, create a
new project, select the Gradle option and check Kotlin (Java). Then click
on the Next button.

Select the
Gradle option.

Choose the Kotlin (Java) option, as we’re using Kotlin to target the JVM.

Gradle is a build tool that lets you
compile and deploy code, and include
any third-party libraries that your
code needs. We’re using Gradle here
so that we can add coroutines to
our project a few pages ahead.

The code in this
appendix applies
to Kotlin 1.3 and
above. In earlier
versions, coroutines
were marked as
experimental.

you are here 4 399

coroutines

2. Enter an artifact ID
When you create a Gradle project, you need to specify an
artifact ID. This is the basically the name of the project, except
that, by convention, it should be lowercase. Enter an artifact ID
of “drummachine”, then click on the Next button.

3. Specify configuration details
Next, you need to specify any changes to the default project
configuration. Click on the Next button to accept the default values.

We’re using an artifact ID of “drummachine”.

Accept the default values by
clicking on the Next button.

400 appendix i

add files

4. Specify the project name
Finally, we need to specify a project name. Name the project “Drum
Machine”, then click on the Finish button. IntelliJ IDEA will create
your project.

Add the audio files
Now that you’ve created the Drum Machine project, you need to add
a couple of audio files to it. Download the files crash_cymbal.aiff and
toms.aiff from https://tinyurl.com/HFKotlin, then drag them to your
project. When prompted, confirm that you want to move them to the
Drum Machine folder.

We’ve named our project “Drum Machine”.

We’re adding the files to the
root directory of our project.

you are here 4 401

coroutines

Add the code to the project
We’ve been given some code that plays a drum sequence, which we
need to add to the project. Create a new Kotlin file named Beats.kt
by highlighting the src/main/kotlin folder, clicking on the File menu
and choosing New → Kotlin File/Class. When prompted, name the
file “Beats”, and choose File from the Kind option. Then update your
version of Beats.kt to match ours below:

import java.io.File
import javax.sound.sampled.AudioSystem

fun playBeats(beats: String, file: String) {
 val parts = beats.split("x")
 var count = 0
 for (part in parts) {
 count += part.length + 1
 if (part == "") {
 playSound(file)
 } else {
 Thread.sleep(100 * (part.length + 1L))
 if (count < beats.length) {
 playSound(file)
 }
 }
 }
}

fun playSound(file: String) {
 val clip = AudioSystem.getClip()
 val audioInputStream = AudioSystem.getAudioInputStream(
 File(
 file
)
)
 clip.open(audioInputStream)
 clip.start()
}

fun main() {
 playBeats("x-x-x-x-x-x-", "toms.aiff")
 playBeats("x-----x-----", "crash_cymbal.aiff")
}

Let’s see what happens when the code runs.

src/main/kotlin

Beats.kt

Drum Machine

We’re using two Java libraries, so we need
to import them. You can find out more
about import statements in Appendix III.

The beats parameter specifies the
pattern of beats. The file parameter
specifies the sound file to play.

Call playSound once
for each “x” in the
beats parameter.

Pauses the current thread
of execution so that the
sound file has time to run.

Plays the specified audio file.

Play the toms and cymbals sound files.

402 appendix i

test drive

Test drive
When we run the code, it plays the toms first (toms.aiff), followed by
the cymbals (crash_cymbal.aiff). It does this in sequence, so once the
toms have finished, the cymbals start playing:

But what if we want to play the toms and cymbals in parallel?

Use coroutines to make beats play in parallel
As we said earlier, coroutines allow you to run multiple pieces of
code asynchronously. In our example, this means that we can add
our tom drum code to a coroutine so that it plays at the same time
as the cymbals.

There are two things we need to do to achieve this:

Let’s do this now.

Add coroutines to the project as a dependency.
Coroutines are in a separate Kotlin library, which we need to
add to our project before we can use them.

1

Launch a coroutine.
The coroutine will include the code that plays the toms.

2

Bam! Bam! Bam! Bam! Bam! Bam! Tish! Tish!
The code plays the toms
sound file six times.

It then plays the
cymbals sound file
twice.

you are here 4 403

coroutines

1. Add a coroutines dependency
If you want to use coroutines in your project, you first need to add
it to your project as a dependency. To do this, open build.gradle,
and update the dependencies section like so:

dependencies {

 compile "org.jetbrains.kotlin:kotlin-stdlib-jdk8"

 implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.0.1'

}

Then click on the Import Changes prompt to make the change
take effect:

2. Launch a coroutine
We’ll make our code play the toms sound file in a separate
coroutine in the background by enclosing the code that plays
it in a call to GlobalScope.launch from the kotlinx.
coroutines library. Behind the scenes, this makes the code that
plays the toms sound file run in the background so that the two
sounds play in parallel.

Here’s the new version of our main function—update your code
with our changes (in bold):

Next, we’ll update our main function so that it uses a coroutine.

...

import kotlinx.coroutines.*

...

fun main() {

 GlobalScope.launch { playBeats("x-x-x-x-x-x-", "toms.aiff") }

 playBeats("x-----x-----", "crash_cymbal.aiff")

}

Let’s see this in action by taking the code for a test drive.

src/main/kotlin

Beats.kt

Drum Machine

Drum Machine

build.gradle

Click on Import Changes
if prompted to do so.

Add this line to build.gradle to add the coroutines
library to your project.

Add this line so that we
can use functions from the coroutines library in our code.

Launch a
coroutine in the
background.

404 appendix i

coroutines vs. threads

Test drive
When we run the code, it plays the toms and cymbals in parallel. The
toms sound plays in a separate coroutine in the background.

Now that you’ve seen how to launch a coroutine in the background, and
the effect that this has, let’s dive into coroutines a little deeper.

A coroutine is like a lightweight thread
Behind the scenes, launching a coroutine is like starting a separate thread
of execution, or thread. Threads are really common in other languages
such as Java, and both coroutines and threads can run in parallel and
communicate with each other. The key difference, however, is that it’s
more efficient to use coroutines in your code than it is to use
threads.

Starting a thread and keeping it running is quite expensive in terms of
performance. The processor can usually only run a limited number of
threads at the same time, and its more efficient to run as few threads as
possible. Coroutines, on the other hand, run on a shared pool of threads
by default, and the same thread can run many coroutines. As fewer
threads are used, this makes it more efficient to use coroutines when you
want to run tasks asynchronously.

In our code, we’re using GlobalScope.launch to run a new
coroutine in the background. Behind the scenes, this creates a new
thread which the coroutine runs in, so that toms.aiff and crash_cymbal.aiff
are played in separate threads. As it’s more efficient to use as few threads
as possible, let’s find how we can use play the sound files in separate
coroutines, but in the same thread.

Bam! Bam! Bam! Bam! Bam! Bam!
Tish! Tish!

This time, the toms and
cymbals play in parallel.

you are here 4 405

coroutines

Tish! Tish! Bam! Bam! Bam! Bam! Bam! Bam!
It then plays the toms sound
file six times.

The code plays the
cymbals sound file twice.

If you want your code to run in the same thread but in separate coroutines,
you can use the runBlocking function. This is a higher-order function
which blocks the current thread until the code that’s passed to it finishes
running. The runBlocking function defines a scope which is inherited
by the code that’s passed to it; in our example, we can use this scope to run
separate coroutines in the same thread.

Here’s a new version of our main function that does this—update your
version of the code to include our changes (in bold):

fun main() {

 runBlocking {

 GlobalScope.launch { playBeats("x-x-x-x-x-x-", "toms.aiff") }

 playBeats("x-----x-----", "crash_cymbal.aiff")

 }

}

Notice that we’re now starting a new coroutine using launch instead of
GlobalScope.launch. This is because we want to launch a coroutine
that runs in the same thread, instead of in a separate background thread,
and omitting the reference to GlobalScope allows the coroutine to use
the same scope as runBlocking.

Let’s see what happens when we run the code.

Wrap the code we want to
run in a call to runBlocking.

Remove the
reference to
GlobalScope.

Use runBlocking to run coroutines in the same scope

Test drive
When we run the code, the sound files play, but in sequence, not in parallel.

So what went wrong?

src/main/kotlin

Beats.kt

Drum Machine

406 appendix i

Thread.sleep vs. delay

Thread.sleep pauses the current THREAD

Thread.sleep(100 * (part.length + 1L))

This uses a Java library to pause the current thread so that the sound file it’s
playing has time to run, and blocks the thread from doing anything else. As
we’re now playing the sound files in the same thread, they can no longer be
played in parallel, even though they’re in separate coroutines.

We’ll show you the full code for the project on the next page.

As you may have noticed, when we added the playBeats function to our
project, we included the following line:

The delay function may be used in these two situations:

delay(1000)

In our example, we want to use the delay function inside the playBeats
function, which means that we need to tell the compiler that playBeats—
and the main function which calls it—may suspend. To do this, we’ll prefix
both functions with the suspend prefix using code like this:

suspend fun playBeats(beats: String, file: String) {
 ...
}

From inside a coroutine.
The following code, for example, calls the delay function inside a
coroutine:

¥

From inside a function that the compiler knows
may pause, or suspend.

¥

GlobalScope.launch {

 delay(1000)

 //code that runs after 1 second

}

The delay function adds a pause, but it’s
more efficient than using Thread.sleep.

Here, we’re launching the coroutine
then delaying its code for 1 second.

The suspend prefix tells the compiler that the function is allowed to suspend.

When you call a
suspendable function
(such as delay) from
another function,
that function must be
marked with suspend.

The delay function pauses the current COROUTINE
A better approach in this situation is to use the coroutines delay function
instead. This has a similar effect to Thread.sleep, except that instead
of pausing the current thread, it pauses the current coroutine. It suspends the
coroutine for a specified length of time and this allows other code on the
same thread to run instead. The following code, for example, delays the
coroutine for 1 second:

you are here 4 407

coroutines

The full project code
Here’s the full code for the Drum Machine project—update your
version of Beats.kt to include our changes (in bold):

import java.io.File

import javax.sound.sampled.AudioSystem

import kotlinx.coroutines.*

suspend fun playBeats(beats: String, file: String) {
 val parts = beats.split("x")

 var count = 0

 for (part in parts) {

 count += part.length + 1

 if (part == "") {

 playSound(file)

 } else {

 Thread.sleep delay(100 * (part.length + 1L))
 if (count < beats.length) {

 playSound(file)

 }

 }

 }

}

fun playSound(file: String) {

 val clip = AudioSystem.getClip()

 val audioInputStream = AudioSystem.getAudioInputStream(

 File(

 file

)

)

 clip.open(audioInputStream)

 clip.start()

}

suspend fun main() {
 runBlocking {

 launch { playBeats("x-x-x-x-x-x-", "toms.aiff") }

 playBeats("x-----x-----", "crash_cymbal.aiff")

 }

}

src/main/kotlin

Beats.kt

Drum Machine

Mark playBeats
with suspend so
that it can call
the delay function.

Replace Thread.sleep
with delay.

Mark main
with suspend so
that it can call
the playBeats
function.

Let’s see what happens when the code runs.

408 appendix i

test drive

Test drive
When we run the code, it plays the toms and cymbals in parallel
as before. This time, however, the sound files run in separate
coroutines in the same thread.

 � Coroutines let you run code
asynchronously. They are useful for
running background tasks.

 � A coroutine is like a lightweight
thread. Coroutines run on a shared
pool of threads by default, and
the same thread can run many
coroutines.

 � To use coroutines, create a Gradle
project and add the coroutines library
to build.gradle as a dependency.

 � Use the launch function to launch
a new coroutine.

 � The runBlocking function
blocks the current thread until the
code it contains has finished running.

 � The delay function suspends the
code for a specified length of time.
It can be used inside a coroutine, or
inside a function that’s marked using
suspend.

You can find out more about using coroutines here:

https://kotlinlang.org/docs/reference/coroutines-overview.html

You can download
the full code for
this appendix from
https://tinyurl.com/
HFKotlin.

Bam! Bam! Bam! Bam! Bam! Bam!
Tish! Tish!

The toms and cymbals still play in parallel, but this time we’re using a more efficient way of playing the sound files.

this is an appendix 409

appendix ii: testing

Hold Your Code
to Account

Everybody knows that good code needs to work.
But each code change that you make runs the risk of introducing fresh bugs that stop your

code from working as it should. That’s why thorough testing is so important: it means you

get to know about any problems in your code before it’s deployed to the live environment.

In this appendix, we’ll discuss JUnit and KotlinTest, two libraries which you can use to

unit test your code so that you always have a safety net.

I don’t care who
you are, or how tough
you look. If you don’t
know the password,
you’re not getting in.

410 appendix ii

JUnit

As you already know, Kotlin code can be compiled down to Java,
JavaScript or native code, so you can use existing libraries on its
target platform. When it comes to testing, this means that you can
test Kotlin code using the most popular testing libraries in Java and
JavaScript.

Let’s see how to use JUnit to unit test your Kotlin code.

Kotlin can use existing testing libraries

Add the JUnit library
The JUnit library (https://junit.org) is the most frequently used Java
testing library.

To use JUnit in your Kotlin project, you first need to add the JUnit
libraries to your project. You can add libraries to your project by
going to the File menu and choosing Project Structure → Libraries,
or, if you have a Gradle project, you can add these lines to your
build.gradle file:

dependencies {

 testImplementation 'org.junit.jupiter:junit-jupiter-api:5.3.1'

 testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.3.1'

 test { useJUnitPlatform() }

}

Once the code is compiled, you can then run the tests by right-
clicking the class or function name, and then selecting the Run
option.

To see how to use JUnit with Kotlin, we’re going to write a test for
the following class named Totaller: the class is initialized with
an Int value, and it keeps a running total of the values which are
added to it using its add function:

class Totaller(var total: Int = 0) {

 fun add(num: Int): Int {

 total += num

 return total

 }

}

Let’s see what a JUnit test might look like for this class.

Unit testing is used to
test individual units
of source code, such as
classes or functions.

These lines add
version 5.3.1 of the
JUnit libraries to
the project. Change
the numbers if
you want to use a
different version.

you are here 4 411

testing

....

@Test

fun `should be able to add 3 and 4 - and it mustn't go wrong`() {

 val totaller = Totaller()

...

import org.junit.jupiter.api.Assertions.*

import org.junit.jupiter.api.Test

class TotallerTest {

 @Test

 fun shouldBeAbleToAdd3And4() {

 val totaller = Totaller()

 assertEquals(3, totaller.add(3))

 assertEquals(7, totaller.add(4))

 assertEquals(7, totaller.total)

 }

}

This is an annotation that marks the following function as a test.
The TotallerTest class is used to test Totaller.

Create a Totaller object.

Check that if we add 3, the return value is 3.
If we now add 4, the return value should be 7.
Check that the return value matches
the value of the total variable.

Each test is held in a function, prefixed with the annotation @Test.
Annotations are used to add programmatic information about your
code, and the @Test annotation is a way of telling tools “This is a
test function”.

Tests are made up of actions and assertions. Actions are pieces of code
that do stuff, while assertions are pieces of code that check stuff. In
the above code, we’re using an assertion named assertEquals
which checks that the two values it’s given are equal. If they’re not,
assertEquals will throw an exception and the test will fail.

In the above example, we’ve named our test function
shouldBeAbleToAdd3And4. We can, however, use a rarely
used feature of Kotlin which allows us to wrap function names in
back-ticks (`), and then add spaces and other symbols to the function
name to make it more descriptive. Here’s an example:

We’re using code from the JUnit packages, so
we need to import them. You can find out
more about import statements in Appendix III.

Here’s an example JUnit test class named TotallerTest that’s
used to test Totaller:

Create a JUnit test class

For the most part, you use JUnit on Kotlin in almost the same way
you might use it with a Java project. But if you want something a bit
more Kotliny, there’s another library you can use, named KotlinTest.

This looks weird, but it’s a
valid Kotlin function name.

You can find o
ut

more about using

JUnit here:

https://junit.o
rg

412 appendix ii

KotlinTest

Using KotlinTest
The KotlinTest library (https://github.com/kotlintest/kotlintest) has
been designed to use the full breadth of the Kotlin language to
write tests in a more expressive way. Just like JUnit, it’s a separate
library which needs to be added to your project if you want to use it.

KotlinTest is pretty vast, and it allows you to write tests in many
different styles, but here’s one way of writing a KotlinTest version
of the JUnit code we wrote earlier:

import io.kotlintest.shouldBe

import io.kotlintest.specs.StringSpec

class AnotherTotallerTest : StringSpec({

 "should be able to add 3 and 4 - and it mustn't go wrong" {

 val totaller = Totaller()

 totaller.add(3) shouldBe 3

 totaller.add(4) shouldBe 7

 totaller.total shouldBe 7

 }

})

The above test looks similar to the JUnit test you saw earlier, except
that the test function is replaced with a String, and the calls to
assertEquals have been rewritten as shouldBe expressions.
This is an example of KotlinTest’s String Specification—or
StringSpec—style. There are several testing styles available in
KotlinTest, and you should choose the one which is best suited to
your code.

But KotlinTest isn’t just a rewrite of JUnit (in fact, KotlinTest uses
JUnit under the hood). KotlinTest has many more features that can
allow you to create tests more easily, and with less code, than you
can do with a simple Java library. You can, for example, use rows to
test your code against entire sets of data. Let’s look at an example.

The JUnit test function is replaced with a String.

We’re using these functions from the KotlinTest
libraries, so we need to import them.

We’re using shouldBe instead of assertEquals.

you are here 4 413

testing

import io.kotlintest.data.forall
import io.kotlintest.shouldBe

import io.kotlintest.specs.StringSpec

import io.kotlintest.tables.row

class AnotherTotallerTest : StringSpec({

 "should be able to add 3 and 4 - and it mustn't go wrong" {

 val totaller = Totaller()

 totaller.add(3) shouldBe 3

 totaller.add(4) shouldBe 7

 totaller.total shouldBe 7

 }

 "should be able to add lots of different numbers" {
 forall(
 row(1, 2, 3),
 row(19, 47, 66),
 row(11, 21, 32)
) { x, y, expectedTotal ->
 val totaller = Totaller(x)
 totaller.add(y) shouldBe expectedTotal
 }
 }
})

Here’s an example of a second test which uses rows to add lots of
different numbers together (our changes are in bold):

and lots, lots more. If you’re planning on writing a lot of Kotlin code,
then KotlinTest is definitely worth a look.

You can find out more about KotlinTest here:

https://github.com/kotlintest/kotlintest

 Run tests in parallel.¥
 Create tests with generated properties.¥
 Enable/disable tests dynamically. You may, for example, want some tests
to run only on Linux, and others to run on Mac.

¥

 Put tests in groups.¥

You can also use KotlinTest to:

We’re using these two extra functions
from the KotlinTest libraries.

This is the second test.

We’ll run the test for each row of data.

The values in each row will be assigned to
the x, y and expectedTotal variables.

These two lines will run for each row.

Use rows to test against sets of data

this is an appendix 415

Oh my, look at
the tasty treats
we have left...

appendix iii: leftovers

The Top Ten Things
(We Didn’t Cover)

Even after all that, there’s still a little more.
There are just a few more things we think you need to know. We wouldn’t feel right about

ignoring them, and we really wanted to give you a book you’d be able to lift without

training at the local gym. Before you put down the book, read through these tidbits.

416 appendix iii

packages and imports

1. Packages and imports
As we said in Chapter 9, classes and functions in the Kotlin
Standard Library are grouped into packages. What we didn’t
say is that you can group your own code into packages.

Putting your code into packages is useful for two main reasons:

The package declaration tells the compiler that everything
in the source file belongs in that package. The following code,
for example, specifes that com.hfkotlin.mypackage contains the
Duck class and the doStuff function:

package com.hfkotlin.mypackage

How to add a package
You add a package to your Kotlin project by highlighting
the src folder, and choosing File→New→Package. When
prompted, enter the package name (for example,
com.hfkotlin.mypackage), then click on OK.

Package declarations
When you add a Kotlin file to a package (by highlighting the
package name and choosing File→New→Kotlin File/Class), a
package declaration is automatically added to the beginning
of the source file like this:

package com.hfkotlin.mypackage

class Duck

fun doStuff() {

 ...

}

If the source file has no package declaration, the code is
added to a nameless default package.

It lets you organize your code.
You can use packages to group your code into specific kinds of functionality,
like data structures or database stuff.

¥

It prevents name conflicts.
If you write a class named Duck, putting it into a package lets you differentiate
it from any other Duck class that may have been added to your project.

¥

Your project can contain
multiple packages,
and each package can
have multiple source
files. Each source file,
however, can only have
one package declaration.

This is the name of the
package we’re creating.

This is a single source file, so Duck
and doStuff are added to the
package com.hfkotlin.mypackage

you are here 4 417

leftovers

The fully qualified name
When you add a class to a package, it’s full—or fully qualified—name
is the name of the class prefixed with the name of the package. So if
com.hfkotlin.mypackage contains a class named Duck, the fully qualified
name of the Duck class is com.hfkotlin.mypackage.Duck.
You can still refer to it as Duck in any code within the same package,
but if you want to use the class in another package, you have to
provide the compiler with its full name.

There are two ways of providing a fully qualified class name: by using
its full name everywhere in your code, or by importing it.

Type the fully qualified name...
The first option is to type the full class name each time you use it
outside its package, for example:

package com.hfkotlin.myotherpackage

fun main(args: Array<String>) {

 val duck = com.hfkotlin.mypackage.Duck()
 ...

}

This approach, however, can be cumbersome if you need to refer to
the class many times, or refer to multiple items in the same package.

...or import it
An alternative approach is to import the class or package so that you
can refer to the Duck class without typing the fully qualified name
each time. Here’s an example:

package com.hfkotlin.myotherpackage

import com.hfkotlin.mypackage.Duck

fun main(args: Array<String>) {

 val duck = Duck()
 ...

}

You can also use the following code to import an entire package:

import com.hfkotlin.mypackage.*

And if there’s a class name conflict, you can use the as keyword:

import com.hfkotlin.mypackage.Duck

import com.hfKotlin.mypackage2.Duck as Duck2

Default Imports
The following packages
are automatically
imported into each
Kotlin file by default:

 kotlin.*

 kotlin.annotation.*

 kotlin.collections.*

 kotlin.comparisons.*

 kotlin.io.*

 kotlin.ranges.*

 kotlin.sequences.*

 kotlin.text.*

If your target platform is the JVM,
the following are also imported:

 java.lang.*

 kotlin.jvm.*

And if you’re targeting JavaScript,
the following gets imported
instead:

 kotlin.js.*

This is a different package.

This is the fully qualified name.

This line imports
the Duck class...

...so we can refer to it without typing its fully qualified name.

The * means “import everything from this package”.

Here, you can refer to the Duck
class in mypackage2 using “Duck2”.

418 appendix iii

visibility modifiers

2. Visibility modifiers
Visibility modifiers let you set the visibility of any code that you
create, such as classes and functions. You can declare, for example,
that a class can only be used by the code in its source file, or that a
member function can only be used inside its class.

Kotlin has four visibility modifiers: public, private, protected
and internal. Let’s see how these work.

Visibility modifiers and top level code
As you already know, code such as classes, variables and functions
can be declared directly inside a source file or package. By default,
all of this code is publicly visible, and it can be used in any package
that imports it. You can change this behavior, however, by prefixing
declarations with one of the following visibility modifiers:

Remember: if you don’t
specify a package, the code
is automatically added to a
nameless package by default.

Modifier: What it does:

public Makes the declaration visible everywhere. This is applied by default, so
it can be omitted.

private Makes the declaration visible to code inside its source file, but invisible
elsewhere.

internal Makes the declaration visible inside the same module, but invisible
elsewhere. A module is a set of Kotlin files that are compiled together,
such as an IntelliJ IDEA module.

Note that
protected isn’t
available for
declarations at
the top level of
a source file or
package.

The following code, for example, specifies that the Duck class is
public and can be seen anywhere, while the doStuff function is
private, and is only visible inside its source file:

package com.hfkotlin.mypackage

class Duck

private fun doStuff() {

 println("hello")

}

Visibility modifiers can also be applied to members of classes and
interfaces. Let’s see how these work.

Duck has no visibility modifier, which means that it’s public.

doStuff() is marked as private, so it can only be
used inside the source file where it’s defined.

you are here 4 419

leftovers

The following visibility modifiers can be applied to the properties,
functions and other members that belong to a class or interface:

Modifier: What it does:

public Makes the member visible everywhere that the class is visible. This is applied
by default, so it can be omitted.

private Makes the member visible inside the class, and invisible elsewhere.

protected Makes the member visible inside the class, and any of its subclasses.

internal Makes the member visible to anything in the module that can see the class.

Here’s an example of a class with visibility modifiers on its properties,
and a subclass which overrides it:

open class Parent {

 var a = 1

 private var b = 2

 protected open var c = 3

 internal var d = 4

}

class Child: Parent() {

 override var c = 6

}

Note that if you override a protected member, as in the above
example, the subclass version of that member will also be protected
by default. You can, however, change its visibility, as in this example:

The Child class can see the a and c properties, and can also access the d property if Parent and Child are defined in the same module. Child can’t, however, see the b property as it’s visibility modifier is private.

Visibility modifiers and classes/interfaces

class Child: Parent() {

 public override var c = 6

}

By default, class constructors are public, so they are visible
everywhere that the class is visible. You can, however, change a
constructor’s visibility by specifying a visibility modifier, and prefixing
the constructor with the constructor keyword. If, for example, you
have a class defined as:

class MyClass private constructor(x: Int)

class MyClass(x: Int)

you can make its constructor private using the following code:

The c property can now be seen
anywhere that the Child class is visible.

As b is private, it can only be used inside this
class. It can’t be seen by any subclasses of Parent.

By default, the MyClass primary constructor is public.

This code makes the primary constructor private.

420 appendix iii

enums

3. Enum classes
An enum class lets you create a set of values that represent the only
valid values for a variable.

Suppose you want to create an application for a band, and you want
to make sure that a variable, selectedBandMember, can only be
assigned a value for a valid band member. To perform this kind of
task, we can create an enum class named BandMember that contains
the valid values:

enum class BandMember { JERRY, BOBBY, PHIL }

We can then restrict the selectedBandMember variable to one of
these values by specifying its type as BandMember like so:

fun main(args: Array<String>) {

 var selectedBandMember: BandMember

 selectedBandMember = BandMember.JERRY

}

Enum constructors
An enum class can have a constructor, used to initialize each enum
value. This works because each value defined by the enum class
is an instance of that class.

To see how this works, suppose that we want to specify the instrument
played by each band member. To do this, we can add a String
variable named instrument to the BandMember constructor, and
initialize each value in the class with an appropriate value. Here’s the
code:

enum class BandMember(val instrument: String) {

 JERRY("lead guitar"),

 BOBBY("rhythm guitar"),

 PHIL("bass")

}

fun main(args: Array<String>) {

 var selectedBandMember: BandMember

 selectedBandMember = BandMember.JERRY

 println(selectedBandMember.instrument)

}

We can then find out which instrument the selected band member
plays by accessing its instrument property like this:

This defines a property named instrument in
the BandMember constructor. Each value in
the enum class is an instance of BandMember,
so each value has this property.

This produces the output “lead guitar”.

Each value in an
enum class is a
constant.

Each enum
constant exists as
a single instance
of that enum class.

The enum class has three values:
JERRY, BOBBY and PHIL.

The variable’s type
is BandMember...

...so we can assign one
of BandMember’s
values to it.

you are here 4 421

leftovers

enum class BandMember(val instrument: String) {

 JERRY("lead guitar") {

 override fun sings() = "plaintively"

 },

 BOBBY("rhythm guitar") {

 override fun sings() = "hoarsely"

 },

 PHIL("bass");

 open fun sings() = "occasionally"

}

fun main(args: Array<String>) {

 var selectedBandMember: BandMember

 selectedBandMember = BandMember.JERRY

 println(selectedBandMember.instrument)

 println(selectedBandMember.sings())

}

enum properties and functions
In the previous example, we added a property to the BandMember
class by including it in the enum class constructor. You can also
add properties and functions to the main body of the class. The
following code, for example, adds a sings function to the
BandMember enum class:

enum class BandMember(val instrument: String) {

 JERRY("lead guitar"),

 BOBBY("rhythm guitar"),

 PHIL("bass");

 fun sings() = "occasionally"

}

Each value defined in an enum class can override the properties
and functions it inherits from the class definition. Here’s how, for
example, you can override the sings function for JERRY and
BOBBY:

We can then find out how the selected band member sings by
calling its sings function like this:

This line calls JERRY’s sings() function,
and produces the output “plaintively”.

Each enum value has a function named sings() which returns the String “occasionally”.

Note that we need a “;” to separate the sings() function from the enum values.

JERRY and BOBBY have their
own implementation of sings().

As we’re overriding sings() for two
values, we need to mark it as open.

422 appendix iii

seal or no seal

4. Sealed classes
You’ve already seen that enum classes let you create a restricted
set of values, but there are some situations where you need a little
more flexibility.

Suppose that you want to be able to use two different message
types in your application: one for “success”, and another for

“failure”. You want to be able to restrict messages to these two types.

If you were to model this using an enum class, your code might
look like this:

enum class MessageType(var msg: String) {

 SUCCESS("Yay!"),

 FAILURE("Boo!")

}

But there are a couple of problems with this approach:

Each value is a constant which only exists as a single instance.
You can’t, say, change the msg property of the SUCCESS value in one situation, as
this change will be seen everywhere else in your application.

¥

Each value must have the same properties and functions.
It might be useful to add an Exception property to the FAILURE value so that
you can examine what went wrong, but an enum class won’t let you.

¥

Sealed classes to the rescue!
A solution to this kind of problem is to use a sealed class. A
sealed class is like a souped-up version of an enum class. It lets you
restrict your class hierarchy to a specific set of subtypes, each one
of which can define its own properties and functions. And unlike
an enum class, you can create multiple instances of each type.

You create a sealed class by prefixing the class name with sealed.
The following code, for example, creates a sealed class named
MessageType, with two subtypes named MessageSuccess
and MessageFailure. Each subtype has a String property
named msg, and the MessageFailure subtype has an extra
Exception property named e:

So what’s the solution?

sealed class MessageType

class MessageSuccess(var msg: String) : MessageType()

class MessageFailure(var msg: String, var e: Exception) : MessageType()

The MessageType enum class has two
values: SUCCESS and FAILURE.

MessageType is sealed.

MessageSuccess and MessageFailure inherit from MessageType, and define their own properties in their constructors

you are here 4 423

leftovers

As we said, a sealed class lets you create multiple instances of each
subtype. The following code, for example, creates two instances of
MessageSuccess, and a single instance of MessageFailure:

How to use sealed classes

fun main(args: Array<String>) {

 val messageSuccess = MessageSuccess("Yay!")

 val messageSuccess2 = MessageSuccess("It worked!")

 val messageFailure = MessageFailure("Boo!", Exception("Gone wrong."))

}

You can then create a MessageType variable, and assign one of
these messages to it:

fun main(args: Array<String>) {

 val messageSuccess = MessageSuccess("Yay!")

 val messageSuccess2 = MessageSuccess("It worked!")

 val messageFailure = MessageFailure("Boo!", Exception("Gone wrong."))

 var myMessageType: MessageType = messageFailure

}

And as MessageType is a sealed class with a limited set of
subtypes, you can use when to check for each subtype without
requiring an extra else clause using code like this:

fun main(args: Array<String>) {

 val messageSuccess = MessageSuccess("Yay!")

 val messageSuccess2 = MessageSuccess("It worked!")

 val messageFailure = MessageFailure("Boo!", Exception("Gone wrong."))

 var myMessageType: MessageType = messageFailure

 val myMessage = when (myMessageType) {

 is MessageSuccess -> myMessageType.msg

 is MessageFailure -> myMessageType.msg + " " + myMessageType.e.message

 }

 println(myMessage)

}

myMessageType can only have a type
of MessageSuccess or MessageFailure, so
there’s no need for an extra else clause.

You can find out more about creating and using sealed classes here:

https://kotlinlang.org/docs/reference/sealed-classes.html

messageFailure is a subtype of MessageType, so we can assign it to myMessageType.

424 appendix iii

nested and inner classes

5. Nested and inner classes
A nested class is a class that’s defined inside another class. This
can be useful if you want to provide the outer class with extra
functionality that’s outside its main purpose, or bring code closer
to where it’s being used.

You define a nested class by putting it inside the curly braces of
the outer class. The following code, for example, defines a class
named Outer which has a nested class named Nested:

class Outer {

 val x = "This is in the Outer class"

 class Nested {

 val y = "This is in the Nested class"

 fun myFun() = "This is the Nested function"

 }

}

You can then refer to the Nested class, and its properties and
functions, using code like this:

fun main(args: Array<String>) {

 val nested = Outer.Nested()

 println(nested.y)

 println(nested.myFun())

}

Note that you can’t access a nested class from an instance of the
outer class without first creating a property of that type inside the
outer class. The following code, for example, won’t compile:

val nested = Outer().Nested()

Another restriction is that a nested class doesn’t have access to
an instance of the outer class, so it can’t access its members. You
can’t access Outer’s x property from the Nested class, for
example, so the following code won’t compile:

A nested class in
Kotlin is like a static
nested class in Java.

This is the nested class. It’s
fully enclosed by the outer class.

class Outer {

 val x = "This is in the Outer class"

 class Nested {

 fun getX() = "Value of x is: $x"

 }

}

Creates an instance of Nested,
and assigns it to a variable.

This won't compile as we're using Outer(), not Outer.

Nested can't see x as it's defined in the
Outer class, so this line won't compile.

you are here 4 425

leftovers

An inner class can access the outer class members
If you want a nested class to be able to access the properties and
functions defined by its outer class, you can do so by making it an
inner class. You do this by prefixing the nested class with inner.
Here’s an example:

class Outer {

 val x = "This is in the Outer class"

 inner class Inner {

 val y = "This is in the Inner class"

 fun myFun() = "This is the Inner function"

 fun getX() = "The value of x is: $x"

 }

}

An inner class is a nested class that
has access to the outer class members.
So in this example, the Inner class has
access to Outer’s x property.

You can access an inner class by creating an instance of the outer class,
and then using this to create an instance of the inner class. Here’s an
example, using the Outer and Inner classes defined above:

fun main(args: Array<String>) {

 val inner = Outer().Inner()

 println(inner.y)

 println(inner.myFun())

 println(inner.getX())

}

Alternatively, you can access the inner class by instantiating a property
of that type in the outer class, as in this example:

class Outer {

 val myInner = Inner()

 inner class Inner {

 ...

 }

}

fun main(args: Array<String>) {

 val inner = Outer().myInner

}

The key thing is that an inner class instance is always tied to a specific
instance of the outer class, so you can’t create an Inner object without
first creating an Outer object.

Outer

Inner

x: String
y: String

The Inner and Outer objects share a
special bond. The Inner can use the
Outer’s variables, and vice versa.

As Inner is an inner class, we have to use Outer(), not Outer.

Outer's myInner property
holds a reference to an
instance of its Inner class.

426 appendix iii

objects

6. Object declarations and expressions
There are times where you want to make sure that only a
single instance of a given type can be created, such as if you
want to use a single object to coordinate actions across an
entire application. In these situations, you can use the object
keyword to make an object declaration.

An object declaration defines a class declaration and creates an
instance of it in a single statement. And when you include it in
the top level of a source file or package, only one instance of
that type will ever be created.

Here’s what an object declaration looks like:

package com.hfkotlin.mypackage

object DuckManager {

 val allDucks = mutableListOf<Duck>()

 fun herdDucks() {

 //Code to herd the Ducks

 }

}

As you can can see, an object declaration looks like a class
definition except that it’s prefixed with object, not class.
Just like a class, it can have properties, functions and initializer
blocks, and it can inherit from classes or interfaces. You can’t,
however, add a constructor to an object declaration. This
is because the object is automatically created as soon as it’s
accessed, so having a constructor would be redundant.

You refer to an object that’s created using an object declaration
by calling its name directly, and this allows you to access
its members. If you wanted to call the DuckManager’s
herdDucks function, for example, you could do so using code
like this:

DuckManager.herdDucks()

An object
declaration defines
a class and creates
an instance of it in
a single statement.

If you’re familiar with design
patterns, an object declaration is
the Kotlin equivalent of a Singleton.

As well as adding an object declaration to the top level of a
source file or package, you can also add one to a class. Let’s see
how.

DuckManager is an object.

It has a property named allDucks,
and a function named herdDucks().

you are here 4 427

leftovers

The following code adds an object declaration—DuckFactory—to a
class named Duck:

class Duck {

 object DuckFactory {
 fun create(): Duck = Duck()
 }
}

When you add an object declaration to a class, it creates an object that
belongs to that class. One instance of the object is created per class, and
it’s shared by all instances of that class.

Once you’ve added an object declaration, you can access the object from
the class using the dot notation. The following code, for example, calls
the DuckFactory’s create function, and assigns the result to a new
variable named newDuck:

val newDuck = Duck.DuckFactory.create()

...and companion objects
One object per class can be marked as a companion object using the
companion prefix. A companion object is like a class object, except that
you can omit the object’s name. The following code, for example, turns
above DuckFactory object into an unnamed companion object:

When you create a companion object, you access it by simply
referring to the class name. The following code, for example,
calls the create() function that’s defined by Duck’s
companion object:

val newDuck = Duck.create()

class Duck {

 companion object DuckFactory {
 fun create(): Duck = Duck()

 }

}

If you prefix an object declaration with companion,
you no longer need to provide an object name. You
can, however, include the name if you want to.

To get a reference to a nameless companion object, you use
the Companion keyword. The following code, for example,
creates a new variable named x, and assigns to it a reference to
Duck’s companion object:

val x = Duck.Companion

Class objects...

A companion object can
be used as the Kotlin
equivalent to static methods
in Java.
Any functions you add to a
companion object are shared
by all class instances.

Add an object
declaration to a
class to create a
single instance of
that type which
belongs to the class.

The object declaration goes in
the main body of the class.

Note that you access the
object using Duck, not Duck().

Now that you’ve learned about object declarations and
companion objects, let’s look at object expressions.

428 appendix iii

object expressions

Object expressions
An object expression is an expression that creates an anonymous
object on the fly with no predefined type.

Suppose that you want to create an object that holds an initial value
for x and y coordinates. Instead of defining a Coordinate class and
creating an instance of it, you could instead create an object that uses
properties to hold the values of the x and y coordinates. The following
code, for example, creates a new variable named startingPoint,
and assigns such an object to it:

val startingPoint = object {

 val x = 0

 val y = 0

}

Object expressions are mainly used as the equivalent of anonymous
inner classes in Java. If you’re writing some GUI code, and you
suddenly realize that you need an instance of a class that implements
a MouseAdapter abstract class, you can use an object expression to
create that instance on the fly. The following code, for example, passes
an object to a function named addMouseListener; the object
implements MouseAdapter, and overrides its mouseClicked and
mouseEntered functions:

You can find out more about object declarations and expressions here:

https://kotlinlang.org/docs/reference/object-declarations.html

println("starting point is ${startingPoint.x}, ${startingPoint.y}")

You can then refer to the object’s members using code like this:

window.addMouseListener(object : MouseAdapter() {

 override fun mouseClicked(e: MouseEvent) {

 //Code that runs when the mouse is clicked

 }

 override fun mouseReleased(e: MouseEvent) {

 //Code that runs when the mouse is released

 }

})

This
statement...

...ends
down
here.

The object expression in
bold is like saying “create
an instance of a class
(with no name) that
implements MouseAdapter,
and by the way, here’s
the implementation of
the mouseClicked and
mouseReleased functions”. In
other words, we’re providing
the addMouseListener
function with a class
implementation, and an
instance of that class, right
where we need it.

This creates an object with
two properties, x and y.

you are here 4 429

leftovers

7. Extensions
Extensions let you add new functions and properties to an existing
type without you having to create a whole new subtype.

Imagine you’re writing an application where you frequently need to
prefix a Double with “$” in order to format it as dollars. Instead
of performing the same action over and over again, you can write
an extension function named toDollar that you can use with
Doubles. Here’s the code to do this:

fun Double.toDollar(): String {

 return "$$this"

}

The above code specifies that a function named toDollar,
which returns a String, can be used with Double values. The
function takes the current object (referred to using this), prefixes
it with “$”, and returns the result.

Once you’ve created an extension function, you can use it in the
same way that you’d use any other function. The following code,
for example, calls the toDollar function on a Double variable
that has a value of 45.25:

var dbl = 45.25

println(dbl.toDollar()) //prints $45.25

You can create extension properties in a similar way to how you
create extension functions. The following code, for example, creates
an extension property for Strings named halfLength which
returns the length of the current String divided by 2.0:

val String.halfLength

 get() = length / 2.0

And here’s some example code that uses the new property:

val test = "This is a test"

println(test.halfLength) //prints 7.0

You can find out more about how to use extensions—including how
to add them to companion objects—here:

https://kotlinlang.org/docs/reference/extensions.html

And you can find out more about using this here:

https://kotlinlang.org/docs/reference/this-expressions.html

Design Patterns
Design patterns are
general-purpose solutions
to common problems, and
Kotlin offers you easy ways
to implement some of
these patterns.

Object declarations provide a way
of implementing the Singleton
pattern, as each declaration creates
a single instance of that object.
Extensions may be used in place
of the Decorator pattern as they
allow you to extend the behavior
of classes and objects. And if you’re
interested in using the Delegation
pattern as an alternative to
inheritance, you can find out more
here:

https://kotlinlang.org/docs/reference/
delegation.html

Defines a function named toDollar(), which extends Double.

Return the current value, prefixed with $.

Defines a halfLength property
that can be used with Strings.

There are also Kotlin extension libraries
you can use to make your coding life
easier, such as Anko and Android KTX
for Android app development.

430 appendix iii

hopping around

8. Return, break and continue
Kotlin has three ways of jumping out of a loop. These are:

return
As you already know, this returns from the enclosing function.

¥

break
This terminates (or jumps to the end of) the enclosing loop, for example:

¥

continue
This moves to the next iteration of the enclosing loop, for example:

¥

var x = 0

var y = 0

while (x < 10) {

 x++

 break
 y++

}

var x = 0

var y = 0

while (x < 10) {

 x++

 continue
 y++

}

This increments x, then moves back to the line while (x < 10) without executing the line y++. It keeps incrementing x until the while’s condition (x < 10) is false. x has a final value of 10, and y’s value remains 0.

This code increments x, then terminates the
loop without executing the line y++. x has a
final value of 1, and y’s value remains 0.

Using labels with break and continue
If you have nested loops, you can explicitly specify which loop you
want to jump out of by prefixing it with a label. A label is comprised
of a name, followed by the @ symbol. The following code, for example,
features two loops, where one loop is nested inside another. The outer
loop has a label named myloop@, which is used by a break expression:

myloop@ while (x < 20) {
 while (y < 20) {

 x++

 break@myloop
 }

}

When you use break with a label, it jumps to the end of the enclosing
loop with this label, so in the above example, it terminates the outer
loop. When you use continue with a label, it jumps to the next
iteration of that loop.

This is like saying “break out of the
loop labeled myloop@ (the outer loop)”.

you are here 4 431

leftovers

Using labels with return
You can also use labels to control your code’s behavior in nested
functions, including higher order functions.

Suppose you have the following function, which includes a call to
forEach, which is a built-in higher order function that accepts a
lambda:

In this example, the code exits the myFun function when it reaches the
return expression, so the line:

fun myFun() {

 listOf("A", "B", "C", "D").forEach {

 if (it == "C") return
 println(it)

 }

 println("Finished myFun()")

}

println("Finished myFun()")

never runs.

If you want to exit the lambda but continue running myFun, you can
add a label to the lambda, which the return can then reference.
Here’s an example:

fun myFun() {

 listOf("A", "B", "C", "D").forEach myloop@{
 if (it == "C") return@myloop
 println(it)

 }

 println("Finished myFun()")

}

This can be replaced with an implicit label, whose name matches the
function to which the lambda is passed:

You can find out more about how to use labels to control your code
jumps here:

https://kotlinlang.org/docs/reference/returns.html

fun myFun() {

 listOf("A", "B", "C", "D").forEach {

 if (it == "C") return@forEach
 println(it)

 }

 println("Finished myFun()")

}

Here, we’re using return inside a lambda. When we reach the return, it exits the myFun() function.

The lambda that we’re passing to the forEach
function is labeled myloop@. The lambda’s return
expression uses this label, so when it’s reached,
it exits lambda, and returns to its caller (the
forEach loop).

Here, we’re using an implicit label to tell
the code to exit the lambda, and return
to its caller (the forEach loop).

432 appendix iii

more function stuff

9. More fun with functions
You’ve learned a lot about functions over the course of the book,
but there are just a few more things that we thought you should
know about.

Only one
parameter can
be marked with
vararg. This
parameter is
usually the last.

vararg
If you want a function to accept multiple arguments of the same
type but you don’t know how many, you can prefix the parameter
with vararg. This tells the compiler that the parameter can accept
a variable number of arguments. Here’s an example:

fun <T> valuesToList(vararg vals: T): MutableList<T> {

 val list: MutableList<T> = mutableListOf()

 for (i in vals) {

 list.add(i)

 }

 return list

}

You call a function with a vararg parameter by passing values to it,
just as you would any other sort of function. The following code, for
example, passes five Int values to the valuesToList function:

val mList = valuesToList(1, 2, 3, 4, 5)

If you have an existing array of values, you can pass these to the
function by prefixing the array name with *. This is known as the
spread operator, and here are a couple of examples of it in use:

val myArray = arrayOf(1, 2, 3, 4, 5)

val mList = valuesToList(*myArray)

val mList2 = valuesToList(0, *myArray, 6, 7)

The vararg prefix means that we can
pass multiple values for ints parameter.

vararg values are passed to the function as an
array, so we can loop through each value. Here,
we’re adding each value to a MutableList.

This passes the values held in myArray
to the valuesToList function.

Pass 0 to the function... ...followed by
the contents
of myArray...

...followed by 6 and 7.

you are here 4 433

leftovers

infix
If you prefix a function with infix, you can call it without using
the dot notation. Here’s an example of an infix function:

inline
Higher order functions can sometimes be slightly slower to run, but
a lot of the time, you can improve their performance by prefixing
the function with inline, for example:

You can find additional information about using these techniques,
and more, here:

https://kotlinlang.org/docs/reference/functions.html

class Dog {

 infix fun bark(x: Int): String {

 //Code to make the Dog bark x times

 }

}

As the function has been marked using infix, you can call it using:

Dog() bark 6

A function can be marked with infix if it’s a member or extension
function, and has a single parameter which has no default value,
and isn’t marked with vararg.

inline fun convert(x: Double, converter: (Double) -> Double) : Double {

 val result = converter(x)

 println("$x is converted to $result")

 return result

}

When you inline a function in this way, the generated code removes
the function call, and replaces it with the contents of the function. It
removes the overhead of calling the function, which will often make
the code run faster, but behind the scenes, it generates more code.

This creates a Dog and calls its bark()
function, passing the function a value of 6.

We’ve
marked
the bark()
function
with infix.

This is a function we created in Chapter 11, but here, we’ve marked it as an inline function.

434 appendix iii

interoperability

10. Interoperability
As we said at the beginning of the book, Kotlin is interoperable with
Java, and Kotlin code can be transpiled into JavaScript. If you plan to
use your Kotlin code with other languages, we recommend that you
read the interoperability sections of Kotlin’s online documentation.

Interoperability with Java
You can call nearly all Java code from Kotlin without any problems.
Simply import any libraries that haven’t been imported automatically,
and use them. You can read about any extra considerations—such as
how Kotlin deals with null values coming from Java—here:

https://kotlinlang.org/docs/reference/java-interop.html

Similarly, you can find out more about using your Kotlin code from
inside Java here:

https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html

Using Kotlin with JavaScript
The online documentation also includes a wealth of information on
using Kotlin with JavaScript. If your application targets JavaScript, for
example, you can use Kotlin’s dynamic type which effectively switches
off Kotlin’s type checker:

You can find out more about the dynamic type here:

https://kotlinlang.org/docs/reference/dynamic-type.html

Similarly, the following page gives you information about using
JavaScript from Kotlin:

https://kotlinlang.org/docs/reference/js-interop.html

And you can find out about accessing your Kotlin code from JavaScript
here:

https://kotlinlang.org/docs/reference/js-to-kotlin-interop.html

val myDynamicVariable: dynamic = ...

Writing native code with Kotlin
You can also use Kotlin/Native to compile Kotlin code to native
binaries. To find out more about how to do this, see here:

https://kotlinlang.org/docs/reference/native-overview.html

If you want to be able
 to

share your cod
e across multiple

target platfor
ms, we suggest

you look at Kotlin’s support

for multiplatform projects.

You can find o
ut more about

multiplatform projects here:

https://kotlin
lang.org/docs/

reference/multiplatform.html

this is the index 435

Index

Symbols
&& (and operator) 81, 182, 224

@ (annotation/label) 411, 430–431

// (comment) 13, 16

{} (curly braces)
class body and 94
empty function body and 160
interfaces and 171
lambdas and 327
let body and 232
main function and 13
nested classes and 424
String templates and 48

-- (decrement operator) 76

. (dot operator) 40, 96, 114, 144

?: (Elvis operator) 233

== (equality operator)
about 17, 200, 267, 271
equals() function and 192, 194–196, 265–266
generated functions and 205

= (equals operator) 17

<> (generics) 49, 290

> (greater than operator) 17

>= (greater than or equal to operator) 17

++ (increment operator) 76, 430

< (less than operator) 17

<= (less than or equal to operator) 17

: (name/type separator) 37, 135, 162, 173

!= (not equals operator) 82, 224

!! (not-null assertion operator) 234

! (not operator) 82, 182

? (nullable type) 222–223

|| (or operator) 81, 182

() (parentheses)
arguments and 13
Boolean expressions and 82
lambda parameters and 343
superclass constructors and 173

.. (range operator) 76–77

=== (referential equality operator) 200, 265–267

?. (safe call operator) 225, 231–232

-> (separator) 327

, (separator) 65

* (spread operator) 432

$ (String template) 48

A
abstract classes

about 158–161
declaring 157
implementing 162–163
inheritance and 162
instantiation and 157
tips when creating 175

abstract functions
about 159–160, 175
concrete classes and 173
implementing 162–163
interfaces and 171
polymorphism and 161

abstract keyword 157, 159, 171

abstract properties
about 159–160
concrete classes and 173
implementing 162–163
initialization and 159, 162
polymorphism and 161

abstract superclasses 157, 162–163

accessors (getters) 111–113, 137, 163, 172

436 Index

the index

actions 411

addAll() function
MutableList interface 259
MutableSet interface 268

add() function
MutableList interface 257
MutableSet interface 268

and operator (&&) 81, 182, 224

Android devices 3

angle brackets <> 49, 290

annotations/labels (@) 411, 430–431

Any superclass 193–194, 196, 202, 223

applications, building. See building applications

arguments
about 13, 64
named 208
and order of parameters 65
overloading functions 211

Array class 45, 77, 252–253, 271

arrayListOf() function 282

arrayOf() function 45, 63, 146, 252–253

arrayOfNulls() function 252

arrays
building applications using 46–47
creating 45, 63
declaring 50–51
evaluating 48
explicitly defining type 49
inferring type from values 49
limitations of 253
looping through items in 77
of nullable types 223, 253
object references and 45, 49–51, 69–71
starting index value 45
storing values in 45
ways to use 252

Array<Type> type 49

as operator 185, 243, 417

assertEquals assertion 411

assertion operators 234

assertions 411

assignment operators 17

asynchronous execution 402–404

attributes (objects). See properties

average() function (Array) 252

B
backing fields 113, 172

base classes. See superclasses

behavior (objects) 40, 125, 127. See also functions

binary numbers 35

Boolean expressions 81–82

Boolean tests, simple 17

Boolean type 36

break statement 430

building applications
adding files to projects 11–12
adding functions 13–16
basic overview 4
build tools 7
creating projects 8–12
installing IDE 7
testing code with REPL 4, 23–24
updating functions 17–21

built-in higher-order functions
about 363–364
filter() function 364, 371–374
filterIsInstance() function 371
filterNot() function 371, 374
filterTo() function 371, 374
fold() function 383–386, 389
foldRight() function 389
forEach() function 375–376, 382, 389
groupBy() function 381–382
map() function 372–374
maxBy() function 365–366
max() function 365–366
minBy() function 365–366
min() function 365–366
reduceRight() function 389
sumByDouble() function 367
sumBy() function 367

Byte type 35

you are here 4 437

the index

C
capitalize() function 88

casting 184–185, 242–243

catch block (try/catch) 240–241, 244

catching exceptions 239–240

characteristics (objects). See properties

characters (type) 36

Char type 36

ClassCastException 242–243

classes
about 91–92
abstract 157–163
adding to projects 133, 143
building 133–140
common protocols for 145, 150, 156, 161, 171
concrete 158, 163, 173, 300
data. See data classes
defining 92–94
defining properties in main body 106
defining without constructors 109
designing 93
enum 420–421
generics and 293–296, 302, 308, 313, 315
inheritance. See inheritance
inner 425
member functions and 94, 96
nested 424–425
outer 424–425
prefixing with open 134, 137
sealed 422–423
subclasses. See subclasses
superclasses. See superclasses
as templates 91–92, 95, 175
tips when creating 175
visibility modifiers and 419

class keyword 94

clear() function
MutableList interface 259
MutableMap interface 279
MutableSet interface 268

closure (lambdas) 376, 389

code editors 7, 14

Collection interface 389

collections
about 282
arrays and 252–253
generics and 290–293, 297–300
higher-order functions and 364–367, 371–376,

381–386, 389
Kotlin Standard Library 254
List interface 255–256, 263, 271
Map interface 255, 276–280
MutableList interface 255, 257–259, 263, 291–293,

300
MutableMap interface 255, 278–280, 297
MutableSet interface 255, 264, 268–269, 298–299
Set interface 255, 264–269, 271, 282

colon (:) 37, 135, 162, 173

comma (,) 65

comments, forward slash and 13, 16

companion keyword 427

Comparable interface 366

comparison operators 17, 192, 194–196, 200

componentN functions 199

concrete classes 158, 163, 173, 305

concrete functions 171

conditional branching
if expression 20, 48, 67, 233
if statement 17–19
main function using 16

conditional tests 17–18

configuring projects 10

constants
enum classes and 420–421
sealed classes and 422–423

constructor keyword 209

constructors
about 99–102
with default values 207–208
defining classes without 109
defining properties 100, 102, 205
empty 109
enum classes and 420
generics and 314
@JvmOverloads annotation 214

438 Index

the index

primary. See primary constructors
secondary 209, 214
visibility modifiers 419

contains() function
Array class 252
List interface 256
Set interface 264

containsKey() function (Map) 277

containsValue() function (Map) 277

continue statement 430

contravariant generic types 315–316, 319

conversion functions 40

converting values 40–42

copy() function 198, 202

coroutines
adding dependencies 402–403
asynchronous execution 402
drum machine application 398–408
launching 402–406
runBlocking() function 405
threads and 404–406

covariant generic types 308, 319

creating
abstract classes 175
arrays 45, 63
exceptions 242
functions 64
interfaces 175
objects 95, 98–100, 196
projects 4, 8–12, 62
subclasses 175
variables 32

curly braces {}
class body and 94
empty function body and 160
interfaces and 171
lambdas and 327
let body and 232
main function and 13
nested classes and 424
String templates and 48

custom getters/setters 112

D
data classes

about 196, 200, 202
componentN functions and 199
constructors with default values 207–208
copying data objects 198
creating objects from 196
defining 196, 205
generated functions and 205
initializing many properties 206
overloading functions 211
overriding inherited behavior 197, 202
parameters with default values 210, 214
primary constructors 205–209
rules for 217
secondary constructors 209

data hiding 114

data keyword 196

data objects
copying 198
creating 196
destructuring 199
properties and 197

declarations
abstract classes 157
arrays 50–51
classes 134
functions 66
object 98, 426–427, 429
packages 416
passing values in order of 207
properties 112
superclasses 134, 139
variables 32–37, 98, 331

Decorator pattern 429

decrement operator (--) 76

default values
constructors with 207–208
parameters with 210, 214
properties with 206

delay() function 406

Delegation pattern 429

derived classes. See subclasses

you are here 4 439

the index

design patterns 429

destructuring data objects 199

dollar sign ($) 48

dot operator (.) 40, 96, 114, 144

Double type 35

do-while loops 17

downTo() function 77

duplicate code, avoiding 122, 125

duplicate values
List interface and 263
Map interface and 276, 280
Set interface and 255, 265, 269

E
else clause

if expression 20
if statement 19
when statement 183

Elvis operator (?:) 233

empty constructors 109

empty function body 160

entries property
Map interface 280, 389
MutableMap interface 280

enum classes 420–421

equality operator (==)
about 17, 200, 267, 271
data class and 205
equals() function and 192, 194–196, 265–266

equals() function
about 192–194
data class and 205
overriding 196–197, 202, 267
Set interface and 265

equals operator (=) 17

exceptions
about 221, 239, 242, 245
catching 239–240
ClassCastException 242–243
creating 242
defining 242
finally block 240

IllegalArgumentException 242, 244
IllegalStateException 242
NullPointerException 221, 234
rules for 244
throwing 234, 239, 244
try/catch block 240

Exception type 242

explicit casting 185, 243

explicitly declaring variables 37

explicitly defining array type 49

explicitly throwing exceptions 244

expressions
Boolean 81–82
chaining safe calls together 226–227
if 20, 48, 67, 233
lambda. See lambdas
object 428
return values and 245
shouldBe 412
streamlining with let 232
String templates evaluating 48

extensions 429

F
field, backing 113, 172

file management 11–12, 14–15

filter() function 364, 371–374

filterIsInstance() function 371

filterNot() function 371, 374

filterTo() function 371, 374

final keyword 139

finally block 241, 244

Float type 35

fold() function 383–386, 389

foldRight() function 389

forall() function 413

forEach() function 375–376, 382, 389

for loops
about 16–17, 76–77
println command in 75
until clause 76–77

440 Index

the index

forward slash (//) 13, 16

fully qualified names 417

functional programming 2, 355

functions. See also specific functions
about 60
abstract 159–163, 171, 173, 175
accessing for nullable types 224–225
arguments and 13, 64–65
calling on object references 144
componentN functions 199
concrete 171
conversion 40
creating 64
declaring 66
with default values 210
enum classes and 421
extensions adding 429
generated 205
generics and 293, 297–298, 300
higher-order 339–343, 355, 433
infix 433
inheritance and 122, 125–127, 144–145
interface 171, 173, 175
lambdas and 339–343, 345, 347–352
main function 13–14, 16, 21
member 94, 96
object behavior and 40
of objects 93
overloading 150, 211
overriding. See overriddden functions
parameters and 64–65, 147, 150, 210, 214, 308
passing arguments and 64–65
polymorphism and 147
prefixing with final 139
prefixing with open 137
return types and 66, 147, 211, 222
without return values 66, 376
with return values 66, 68
single expression 66
String templates calling 48
suspendable 406
updating 4, 17–21

function types 331, 352–354

fun keyword 13

G
generated functions, properties and 205

generics and generic types
about 290–291, 306, 374
classes and 293–296, 302, 308, 313, 315
collections and 290–293, 297–300
compiler inferring 299–300
constructors and 314
contravariant 315–316, 319
covariant 308, 319
functions and 293, 297–298, 300
interfaces and 293, 305–308, 315
invariant 316, 319
Java versus Kotlin approach 319
nullable 302
objects and 299, 307, 314
polymorphism and 293, 307
prefixing with in 290, 315–316
prefixing with out 290, 308, 315
properties and 297
restricting to specific types 296
subtypes and 308, 315
supertypes and 296, 308, 315
type parameters and 292
ways to use 293–294

get() function
List interface 256
Map interface 277

getters (accessors) 111–113, 137, 163, 172

getValue() function (Map) 277

GlobalScope.launch 403–406

Gradle build tool 398–400

greater than operator (>) 17

greater than or equal to operator (>=) 17

groupBy() function 381–382

H
HAS-A test 129

hashCode() function 194, 196–197, 202, 266–267

hash codes 265–267

hashMapOf() function 282

you are here 4 441

the index

hexadecimal numbers 35

higher-order functions
about 339, 389
built-in 363–394
collections and 364
functional programming and 355
inline prefix 433
lambdas and 339–343

I
if expression

about 20
else clause 20
nullable types and 233
single 67
String templates evaluating arrays 48

if statement
about 19
else clause 19
is operator and 182

IllegalArgumentException 242, 244

IllegalStateException 242

immutability
of classes 202
of collection types 255–256, 263–264, 282

implicit labels 431

import statement 401, 417

increment operator (++) 76, 430

index (indices) 45, 58, 77, 255–258

indexOf() function (List) 256

infix keyword 433

inheritance
about 122
abstract classes and 162
Any superclass and 193–194, 196
avoiding duplicate code with 122, 125
building class hierarchy 133–140
class hierarchy using 144–150
designing class structure 123–130
functions and 122, 125–127, 144–145
HAS-A test 129
interfaces and 175

IS-A test 129–130, 169, 193
polymorphism and 147
properties and 122, 125–127, 145
subtypes and 145

initialization
abstract properties and 159, 162
interface properties and 172
objects and 99, 107
properties and 99, 106, 108
property 206
superclasses and 136
variables and 37

initializer blocks 107, 136

init keyword 107

in keyword 290, 315–316

inline keyword 433

inner classes 425

in operator 81

installing IntelliJ IDEA IDE 4, 7

instances. See objects

instance variables. See properties

instantiation
abstract classes and 157
interfaces and 170

IntelliJ IDEA IDE
installing 4, 7
processing Run command 15
Tools menu 23

interactive shell. See REPL

interfaces
about 170
defining 171
functions in 171, 173, 175
generics and 293, 305–308, 315
implementing 174
inheritance and 175
instantiation and 170
naming conventions 175
polymorphism and 170, 181
properties in 171–175
tips when creating 175
visibility modifiers and 419

442 Index

the index

internal modifier 418–419

interoperability 434

Int type 35

invariant generic types 316, 319

invoke() function 328

IS-A test 129–130, 169, 193

is operator 181–184, 242

Iterable interface 389

it keyword 231–232, 332–333, 340, 376

J
Java libraries 401

Java programming language 319, 434

JavaScript 3, 434

Java Virtual Machines (JVMs) 3

JUnit library 410–412

@JvmOverloads annotation 214

JVMs (Java Virtual Machines) 3

K
keys property (Map) 280, 389

key/value pairs 276–277, 280, 297

kotlin.collections package 254

Kotlin extension libraries 429

kotlin package 254

Kotlin programming language 2–3

Kotlin Standard Library 254

KotlinTest library 412–413

kt file extension 12

L
labels/annotations (@) 411, 430–431

lambdas
about 325–327, 345
closure and 376, 389
functional programming and 355
functions and 339–343, 345, 347–352
invoking 328–330

labeling 431
parameters and 327, 331–332, 339–343
shortcuts for 328, 342, 345
variables and 328, 331–333, 376

lateinit keyword 108

launch function 403–406

less than operator (<) 17

less than or equal to operator (<=) 17

let keyword 231–232, 333

linking variables to objects. See object references

List interface 255–256, 263, 271, 371–374, 386, 389

listOf() function (List) 256, 263

locally contravariant generic type 316

locally covariant generic type 319

local variables 64, 72

Long type 35

looping constructs
do-while 17
for 16–17, 75–77
labeling 430
main function using 16
while 17–18

M
main function

about 13
adding to application 14
conditional branching in 16
loops in 16
parameterless 13
statements in 16
updating 21

map() function 372–374

Map interface 255, 276–280, 367, 371, 381, 389

mapOf() function (Map) 276

Math.random() function 47

maxBy() function 365–366

max() function 252, 365–366

member functions (methods) 94, 96

minBy() function 365–366

you are here 4 443

the index

min() function 252, 365–366

modifiers, visibility 418–419

mutability
of arrays 253
of collection types 255, 282

MutableList interface 255, 257–259, 263, 291–293, 300

mutableListOf() function (MutableList) 257, 291, 300

MutableMap interface 255, 278–280, 297

mutableMapOf() function (Map) 278

MutableSet interface 255, 264, 268–269, 298–299

mutableSetOf() function (MutableSet) 268

mutators (setters) 111–113, 137, 163, 172

N
named arguments 208

naming conventions for interfaces 175

naming variables 16, 32, 38

native code 3, 434

nested classes 424–425

nextInt() function (Random) 48

not equals operator (!=) 82, 224

Nothing type 245

not-null assertion operator (!!) 234

not operator (!) 82, 182

nullable types
accessing functions 224–225
accessing properties 224–225
arrays of 223, 253
executing code conditionally 231
generics and 302
safe calls and 225–228
ways to use 222–223

NullPointerException 221, 234, 242

null value
about 78
checking for 81
nullable types and 221–224
safe calls and 225–228

O
object declarations 98, 426–427, 429

object expressions 428

object keyword 426

object references
arrays and 45, 49–51, 69–71
assigning 33–34, 38, 98
functions calling on 144
removing from variables 220–221
removing using null 221

objects
abstract classes and 157
constructors and 99–102
creating 95, 98–100
creating from data classes 196
defining types 92
equals function and 192
functions of 93
generics and 299, 307, 314
initializing 99, 107
properties of. See properties

opening REPL 23

open keyword 134, 137, 139, 159

or operator (||) 81, 182

outer classes 424–425

out keyword 290, 308, 315

overloading functions 150, 211

overridden functions
data classes and 197
interfaces and 173
open keyword and 134, 139
overloaded functions versus 211
rules for 138, 267
subclasses and 122, 126, 150
ways to use 138

overridden properties
interfaces and 173
open keyword and 134, 139
subclasses and 122, 126
val and var keywords 137, 150
ways to use 136–137

override keyword 136–138

444 Index

the index

P
packages 254, 259, 416–418

parallel execution 402–404

parameters
about 64–65
with default values 210, 214
empty constructors and 109
functions and 64–65, 147, 150, 210, 214, 308
lambdas and 327, 331–332, 339–343
local variables and 72
nullable types 222
order of arguments and 65
prefixing with val/var 105, 120, 206
properties as 105
separating multiple 65
superclass constructors and 135
type 292
variable types matching 65

parentheses ()
arguments and 13
Boolean expressions and 82
lambda parameters and 343
superclass constructors and 173

passing values
for arguments without default values 208
in order of declaration 207

platforms
specifying for projects 9
supporting Kotlin 3

plus() function (Array) 253

polymorphism
about 147, 150, 161
abstract functions and 161
abstract properties and 161
Any superclass and 193
generics and 293, 307
independent classes and 169
interfaces and 170, 181

primary constructors
about 99, 214
data classes and 205–209
private modifier 419
superclasses and 135–136, 173

print command 18

println command
about 13
in for loop 75
print versus 18

printStackTrace() function 242

private modifier 418–419

projects
adding classes to 133, 143
adding files to 11–12
configuring 10
creating 4, 8–12, 62
specifying types of 9
src folder and 11–12

properties
about 40, 93, 102
abstract 159–163, 173
accessing 96
assigning default values to 206
constructors defining 100, 102, 205
data hiding values 114
data objects and 197
declaring 112
defining in main body of class 106
enum classes and 421
extensions adding 429
flexible initialization 106
generated functions and 205
generics and 297
inheritance and 122, 125–127, 145
initializing 99, 106, 108, 206
interface 171–175
nullable types 222, 224–225
overriding. See overridden properties
as parameters 105
prefixing with final 139
prefixing with open 137
String templates referencing 48
validating values 111–113

protected modifier 419

public modifier 418–419

putAll() function (Map) 278

put() function (Map) 278

you are here 4 445

the index

Q
question mark (?) 222–223

R
Random.nextInt() function 48

random number generation 47–48

range of numbers
looping in reverse order 77
looping through 76
skipping numbers 77

range operator (..) 76–77

reading user input 78

readLine() function 78, 81

reduce() function 389

reduceRight() function 389

referential equality operator (===) 200, 265–267

removeAll() function
MutableList interface 259
MutableSet interface 268

removeAt() function (MutableList) 258

remove() function
MutableList interface 258
MutableMap interface 279
MutableSet interface 268

REPL (interactive shell)
about 7
opening 23
testing code in 4, 23–24

retainAll() function
MutableList interface 259
MutableSet interface 268

return statement 430–431

return type
functions and 66, 147, 211
generic types and 315
higher-order functions and 366
lambdas and 347–348
nullable types 222
Unit 66, 333

return values
expressions and 20, 183, 245

functions with 66, 68
functions without 66, 376
interface properties and 172
lambdas and 331
null value 78, 81

reversed() function 259

reverse() function
Array class 252
MutableList subtype 259

Rock, Paper, Scissors game
game choice 63–71
high-level design 61–62
result 87–88
rules of 60
user choice 75–78, 81–84

row() function 413

rules
for data classes 217
for exceptions 244
for overridden functions 138, 267

runBlocking() function 405

Run command 15

S
safe call operator (?.) 225, 231–232

safe calls
about 225
assigning values with 228
chaining together 226
evaluating chains 226–227

safe explicit casts 243

sealed classes 422–423

secondary constructors 209, 214

set() function (MutableList) 258

Set interface 255, 264–269, 271, 282, 389

setOf() function (Set) 264

setters (mutators) 111–113, 137, 163, 172

short-circuiting 81

Short type 35

shouldBe expression 412

shuffled() function (MutableList) 259

446 Index

the index

shuffle() function (MutableList) 259

single expression functions 67

Singleton pattern 429

size property
Array class 45, 252
List interface 256, 263
MutableSet interface 269

sleep() function 406

smart casts 184, 243

sortBy() function (MutableList) 326

sorted() function (MutableList) 259

sort() function
Array class 252
MutableList subtype 259

spread operator (*) 432

src folder
adding files to project 11–12
source code files in 11

statements
if 17–19, 182
import 401, 417
main function using 16
when 182–183

state (objects) 40, 124. See also properties

storing values in arrays 45

String templates 47–48

string type 13, 36

subclasses
about 122
adding constructors to 135
defining 135
functions and 122, 125–126, 138–139, 144–147
inheritance. See inheritance
initializer blocks in 136
polymorphism and 147, 161
properties and 122, 125–126, 137, 145
tips when creating 175

subtypes
about 137
abstract properties and 162
adding 161
generic 308, 315
inheritance and 145

polymorphism and 150, 161
sealed classes and 422–423

sumByDouble() function 367

sumBy() function 367

sum() function (Array) 252

superclasses
about 122
abstract 157, 162
declaring 134, 139
functions and 122, 125–126, 138–139, 144–145
inheritance. See inheritance
polymorphism and 161
primary constructors 135–136, 173
properties and 122, 125–126, 136–137, 139, 145

supertypes
generic 296, 308, 315
inheritance and 145–147
polymorphism and 161

suspendable functions 406

T
templates

classes as 91–92, 95, 175
String 47–48

@Test annotation 411

test-intro xxiii

tests and testing
HAS-A test 129
IS-A test 129–130, 169, 193
JUnit library 410–412
KotlinTest library 412–413
Run command and 15

threads 404–406

throwing exceptions 234, 239, 244

throw keyword 244–245

toByte() function 40

toDouble() function 40

toFloat() function 40

toInt() function 40, 47

toList() function
Array class 271
Map interface 280

you are here 4 447

the index

MutableList interface 259
MutableMap interface 280
Set interface 269

toLong() function 40–41

toLowerCase() function 88

toMap() function (MutableMap) 280

toMutableList() function
Array class 271
MutableList interface 259, 271
MutableMap interface 280

toMutableMap() function (MutableMap) 280

toMutableSet() function (Array) 271

Tools menu (IntelliJ IDEA) 23

toSet() function
about 282
Array class 271
Map interface 280
MutableSet interface 269

toShort() function 40

toString() function 194, 196–197, 202

toTypedArray() function
List interface 271
Set interface 271

toUpperCase() function 88, 106

try block (try/catch) 138, 240–241, 244–245

two’s complement 42

typealias keyword 353

type parameters 292

types
of collections 255–256, 263–264, 282
converting values of 40–42
function 331, 352–354
generic. See generics and generic types
inferring for arrays 49
nullable 223–228, 231, 253, 302
return 66, 147, 211, 222, 315
subtypes. See subtypes
supertypes. See supertypes
variable 32–38

U
Unit return type 66, 333

unit testing 410–411

until clause (for) 76–77

updating functions 4, 17–21

user input 78, 81

V
validating

property values 111–113
user input 81

val keyword
about 16, 282
assigning lambdas to variables 328
declaring arrays using 51
defining properties and 102
getters and setters 114
overriding properties and 137, 150
parameter variables and 72
prefixing parameters with 105, 120, 206
var versus 16, 34, 102

values
assigning 32–34, 37–39
assigning to safe calls 228
converting 40–42
data hiding property 114
duplicate 255, 263, 265, 269
enum classes 420
inferring array type from 49
initializing for variables 37
object state and 95, 124
return 20, 66
reusability of 16, 32, 34, 50–51
storing in arrays 45
validating property 111–113

values property (Map) 280, 389

vararg keyword 432

variables
about 32, 34
assigning values 32–34, 37–39

448 Index

the index

Boolean tests on 17
comparing options for 183
converting values 40–41
creating 32
declaring 32–37, 98, 331
initializing 37
instance 102
lambdas and 328, 331–333, 376
local 64, 72
matching parameter type 65
naming 16, 32, 38
object references and. See object references
prefixing with $ 48
reusability of 16, 32, 34, 50–51
types of 32–38

var keyword
about 16, 282
assigning lambdas to variables 328
declaring arrays using 50
defining properties and 102
getters and setters 114
lateinit keyword and 108
overriding properties and 137, 150
prefixing parameters with 105, 120, 206
smart casting and 184
updating properties and 96
val versus 16, 34, 102

version control, IntelliJ IDEA and 7

visibility modifiers 418–419

W
when expression 183

when statement 182–183

while loops
about 16–17, 76, 81
conditional tests 17–18
is operator and 182

white space 16

withIndex() function (Array) 77

writing custom getters/setters 112

	Authors of Head First Kotlin
	Table of Contents
	Intro
	how to use this book
	Who is this book for?
	Who should probably back away from this
	We know what you’re thinking
	We know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend
	Read me
	The technical review team
	Acknowledgments
	O’Reilly

	Chapter 1: getting started
	Welcome to Kotlinville
	You can use Kotlin nearly everywhere
	What we’ll do in this chapter
	Install IntelliJ IDEA (Community Edition
	Let’s build a basic application
	Building a basic application (continued)
	Building a basic application (continued)
	You’ve just created your first Kotlin pr
	Add a new Kotlin file to the project
	Anatomy of the main function
	Add the main function to App.kt
	Test drive
	What can you say in the main function?
	Loop and loop and loop...
	A loopy example
	Conditional branching
	Using if to return a value
	Update the main function
	Using the Kotlin interactive shell
	You can add multi-line code snippets to
	Messages
	MessagesSolution
	Your Kotlin Toolbox

	Chapter 2: basic types and variables
	Your code needs variables
	What happens when you declare a variable
	The variable holds a reference to the ob
	Kotlin’s basic types
	How to explicitly declare a variable’s t
	Use the right value for the variable’s t
	Assigning a value to another variable
	We need to convert the value
	What happens when you convert a value
	Watch out for overspill
	Store multiple values in an array
	Create the Phrase-O-Matic application
	Add the code to PhraseOMatic.kt
	The compiler infers the array’s type fro
	var means the variable can point to a di
	val means the variable points to the sam
	References
	References Solution
	Your Kotlin Toolbox

	Chapter 3: functions
	Let’s build a game: Rock, Paper, Scissor
	Choices
	A high-level design of the game
	Here’s what we’re going to do
	Get the game to choose an option
	How you create functions
	You can send more than one thing to a fu
	You can get things back from a function
	Functions with single-expression bodies
	Add the getGameChoice function to Game.k
	Behind the scenes: what happens
	The story continues
	The getUserChoice function
	How for loops work
	How for loops work (continued)
	Ask the user for their choice
	Messages
	MessagesSolution
	We need to validate the user’s input
	More powerful boolean expressions (conti
	Add the getUserChoice function to Game.k
	Test drive
	Choices
	Add the printResult function to Game.kt
	The Game.kt code continued
	Your Kotlin Toolbox

	Chapter 4: classes and objects
	Object types are defined using classes
	How to design your own classes
	Let’s define a Dog class
	How to create a Dog object
	How to access properties and functions
	Create a Songs application
	The miracle of object creation
	How objects are created
	Behind the scenes: calling the Dog const
	The story continues...
	Going deeper into properties
	Flexible property initialization
	How to use initializer blocks
	You MUST initialize your properties
	How do you validate property values?
	How to write a custom getter
	How to write a custom setter
	The full code for the Dogs project
	The code continued...
	Your Kotlin Toolbox

	Chapter 5: subclasses and superclasses
	Inheritance helps you avoid duplicate code
	What we’re going to do
	Design an animal class inheritance structure
	Use inheritance to avoidduplicate code in subclasses
	What should the subclasses override?
	We can group some of the animals
	Add Canine and Feline classes
	Use IS-A to test your class hierarchy
	The IS-A test works anywhere in the inhe
	We’ll create some Kotlin animals
	Declare the superclass and itsproperties
	How a subclass inherits from a superclas
	How (and when) to override properties
	Overriding properties lets you domore th
	How to override functions
	An overridden function or property stays
	Add the Hippo class to the Animals proje
	Add the Canine and Wolf classes
	Which function is called?
	Inheritance that all subclasses have th
	When you call a function on the variable
	You can use a supertype for a function’s
	The updated Animals code
	The code continued...
	Your Kotlin Toolbox

	Chapter 6: abstract classes and interfaces
	The Animal class hierarchy revisited
	Some classes shouldn’t be instantiated
	Abstract or concrete?
	An abstract class can have abstract properties and functions
	The Animal class has two abstract functions
	How to implement an abstract class
	You MUST implement all abstract properties and functions
	Let’s update the Animals project
	The code continued...
	Independent classes can have common behavior
	An interface lets you define common behavior OUTSIDE a superclass hierarchy
	Let’s define the Roamable interface
	How to define interface properties
	Declare that a class implements an interface
	How to implement multiple interfaces
	How do you know whether to make a class,a subclass, an abstract class, or an interface?
	Update the Animals project
	The code continued...
	Interfaces let you use polymorphism
	Where to use the operator
	Use when to compare a variable against a bunch of options
	The is operator performs a smart cast
	Use as to perform an explicit cast
	Update the Animals project
	Your Kotlin Toolbox

	Chapter 7: data classes
	== calls a function named equals
	equals is inherited from a superclass named Any
	The common behavior defined by Any
	We might want equals to check whether two objects are equivalent
	A data class lets you create data object
	Data classes override their inherited behavior
	Copy data objects using the copy function
	Data classes define componentN functions
	Create the Recipes project
	Messages
	MessagesSolution
	Generated functions only use properties defined in the constructor
	Initializing many properties can lead to cumbersome code
	How to use a constructor’s default value
	Functions can use default values too
	Overloading a function
	Let’s update the Recipes project
	The code continued...
	Your Kotlin Toolbox

	Chapter 8: nulls and exceptions
	How do you remove object references from variables?
	Remove an object reference using null
	You can use a nullable type everywhere you can use a non-nullable type
	How to create an array of nullable types
	How to access a nullable type’s function
	Keep things safe with safe calls
	You can chain safe calls together
	The story continues...
	You can use safe calls to assign values.
	Use to run code if values are not null
	Using let with array items
	Instead of using an if expression...
	The !! operator deliberately throws a NullPointerException
	Create the Null Values project
	The code continued...
	An exception is thrown in exceptional circumstances
	Catch exceptions using a try/catch
	Use finally for the things you want to do no matter what
	An exception is an object of type Except
	You can explicitly throw exceptions
	try and throw are both expressions
	Your Kotlin Toolbox

	Chapter 9: collections
	Arrays can be useful...
	...but there are things an array can’t handle
	When in doubt, go to the Library
	List, Set and Map
	Fantastic Lists...
	Create a MutableList...
	You can remove a value...
	You can change the order and make bulk changes
	Create the Collections project
	Lists allow duplicate values
	How to create a Set
	How a Set checks for duplicates
	Hash codes and equality
	Rules for overridinghashCode and equals
	How to use a MutableSet
	You can copy a MutableSet
	Update the Collections project
	Test drive
	Time for a Map
	How to use a Map
	Create a MutableMap
	You can remove entries from a MutableMap
	You can copy Maps and MutableMaps
	The full code for the Collections project
	Test drive
	Messages
	MessagesSolution
	Your Kotlin Toolbox

	Chapter 10: generics
	Collections use
	How a MutableList is defined
	Using type parameters with MutableList
	Things you can do with a generic class or interface
	Here’s what we’re going to do
	Create the Pet class hierarchy
	Define the Contest class
	Add the scores property
	Create the getWinners function
	Create some Contest objects
	Create the Generics project
	The code continued...
	The Retailer hierarchy
	Define the Retailer interface
	We can create CatRetailer, DogRetailer and FishRetailer objects
	Use to make a generic type
	Update the Generics project
	The code continued...
	We need a Vet class
	Create Vet objects
	Use in to make a generic type contravariant
	A generic type can be locally contravariant
	Update the Generics project
	The code continued...
	Your Kotlin Toolbox

	Chapter 11: lambdas and higher-order functions
	Introducing lambdas
	What lambda code looks like
	You can assign a lambda to a variable
	What happens when you invoke a lambda
	The story continues...
	Lambda expressions have a type
	The compiler can infer lambda parameter types
	Use the right lambda for the variable’s
	Create the Lambdas project
	Messages
	MessagesSolution
	You can pass a lambda to a function
	Invoke the lambda in the function body
	What happens when you call the function
	The story continues...
	You can move the lambda OUTSIDE the ()’s
	Update the Lambdas project
	Test drive
	A function can return a lambda
	Write a function that receives AND returns lambdas
	How to use the combine function
	The story continues...
	Use typealias to provide a different name for an existing type
	Update the Lambdas project
	The code continued...
	Your Kotlin Toolbox

	Chapter 12: built-in higher-order functions
	Kotlin has a bunch of built-in higher-order functions
	The min and max functions work with basic types
	A closer look at minBy and maxBy’s lambda parameter
	The sumBy and sumByDouble functions
	Create the Groceries project
	Meet the filter function
	Use map to apply a transform to your collection
	What happens when the code runs
	The story continues...
	forEach works like a for loop
	forEach has no return value
	Update the Groceries project
	The code continued...
	Use groupBy to split your collection into groups
	You can use groupBy in function call chains
	How to use the fold function
	Behind the scenes: the fold function
	The story continues...
	Some more examples of fold
	Update the Groceries project
	The code continued...
	Messages
	MessagesSolution
	Your Kotlin Toolbox
	Leaving town...

	Appendix i: coroutines
	Let’s build a drum machine
	Add the code to the project
	Test drive
	1. Add a coroutines dependency
	2. Launch a coroutine
	Test drive
	Use runBlocking to run coroutines in the same scope
	Thread.sleep pauses the current THREAD
	The full project code
	Test drive

	Appendix ii: testing
	Kotlin can use existing testing libraries
	Create a JUnit test class
	Using KotlinTest
	Use rows to test against sets of data

	Appendix iii: leftovers
	1. Packages and imports
	The fully qualified name

	2. Visibility modifiers
	Visibility modifiers and classes/interfaces

	3. Enum classes
	enum properties and functions

	4. Sealed classes
	How to use sealed classes

	5. Nested and inner classes
	An inner class can access the outer class members

	6. Object declarations and expressions
	Class objects...
	Object expressions

	7. Extensions
	8. Return, break and continue
	Using labels with return

	9. More fun with functions
	10. Interoperability

	Index

