O'REILLY"

Head First

Kotlin

A Brain-Friendly Guide

A learner’s guide to
Kotlin programming

Fool around
in the Kotlin
Standard | { . &
Library Sf L & Avoid embarrassing
— — lambda mistakes

Uncover
the ins and
outs of generics

Write out-of-this-
world higher-order
functions

Put collections under

See how Elvis can the microscope

change your life

Dawn Griffiths & David Griffiths

O'REILLY"

Head First Kotlin Cleas oo, anc sons

to understand. If youre

What will you learn from this book? new to Kotlin, this is an

' N . . excellent introduction.”
Head First Kotlin is a complete introduction to coding in Kotlin. This hands-

— Ken Kousen
Official Kotlin Trainer,
certified by JetBrains

on book helps you learn the Kotlin language with a unique method that
goes beyond syntax and how-to manuals, and teaches you how to think like
a great Kotlin developer. You’ll learn everything from language fundamen-
tals to collections, generics, lambdas, and higher-order functions. Along

the way, you’ll get to play with both object-oriented and functional pro- “Head First Kotlin will

gramming. If you want to really understand Kotlin, this is the book for you. definitely help you come
to grips fast, build a solid
Learn sbout Ko {l'm’s Create your foundation, and (re)gain
basie Lypes. £ own classes your joy in writing code.”
and ob\')cd:s.
— Ingo Krotzky
(= Kof}in /(’m')'z(;r
P Bend Your mind
3 ” avound over 40
Byie Shert i Long . H Kotlin puzzles. “At last! Learn Kotlin
e Build a game °£ without knowing Java.
A A [Rotk, Paper, Stissors: .)
| KgstoPounds Pounds to US Tons | O“V&‘uei\" O“Va!ueB“ Smlple7 concise and fuIlv
U f’ this is the book I've been
Fihd ou{‘, how ‘Eo combine()

waiting for.”
use lambdas, and
ereate higher— A

order functions. “estoUsTens

— Dr. Matt Wenham
data scientist and Python coder

Map
Distover how to use Kotlin's tollections.

Why does this book look so different?

Based on the latest research in cognitive science and learning theory, Head

First Kotlin uses a visually rich format to engage your mind, rather than a
text-heavy approach that puts you to sleep. Why waste your time struggling
with new concepts? This multi-sensory learning experience is designed for

the way your brain really works.

KOTLIN / PROGRAMMING

Twitter: @oreillymedia

US $69.99 CAN $92.99 facebook.com/oreilly

ISBN: 978-1-491-99669-0

JVUTROCACAN i

7814911996690

oreilly.com

Head First
Kotlin

Wouldn't it be dreamy if there

were a book on Kotlin that was

easier to understand than the

space shuttle flight manual? T
0 guess it's just a fantasy...

Dawn Griffiths
David Griffiths

Beijing + Boston « Farnham - Sebastopol + Tokyo [K@AR{={|MN4S

Head First Kotlin
by Dawn Griffiths and David Griffiths

Copyright © 2019 Dawn Griffiths and David Griffiths. All rights reserved.
Printed in Canada.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates
Editor: Jeft Bleiel

Cover Designer: Randy Comer

Production Editor: Kristen Brown

Production Services: Jasmine Kwityn

Indexer: Lucie Haskins

Brain image on spine: Eric Freeman

Page Viewers: Mum and Dad, Laura and Aisha

Printing History:
February 2019: First Edition.

Mum and Dad '_é

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head Furst Kotlin, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark

claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No Duck objects were harmed in the making of this book.

ISBN: 978-1-491-99669-0
[MBP]

To the brains behind Kotlin for creating
such a great programming language.

the authors

Authors of Head First Kotlin

)
Dawn Griffiths

Dawn Griffiths has over 20 years experience
working in the IT industry, working as a senior
developer and senior software architect. She has
written various books in the Head First series, including
Head First Android Development. She also developed the
animated video course The Agile Sketchpad with her
husband, David, as a way of teaching key concepts and
techniques in a way that keeps your brain active and
engaged.

When Dawn’s not writing books or creating videos,
you’ll find her honing her Tai Chi skills, reading,
running, making bobbin lace, or cooking. She
particularly enjoys spending time with her wonderful
husband, David.

David Griffiths has worked as an Agile coach,
a developer and a garage attendant, but not in that

order. He began programming at age 12 when he
saw a documentary on the work of Seymour Papert,
and when he was 15, he wrote an implementation of
Papert’s computer language LOGO. Before writing
Head Furst Kotlin, David wrote various other Head First
books, including Head First Android Development, and
created The Agile Sketchpad video course with Dawn.

When David’s not writing, coding, or coaching, he
spends much of his spare time traveling with his lovely
wife—and coauthor—Dawn.

You can follow Dawn and David on Twitter at kitps://
twitter.com/Head FurstRotlin.

table of contents

Table of Contents (Summary)

Intro xx1
1 Getting Started: A quuck dip 1
2 Basic Types and Variables: Being a variable 31
3 Functions Getting out of main 39
4 Classes and Objects: 4 bit of class 91
5 Subclasses and Superclasses: Using your inheritance 121
6 Abstract Classes and Interfaces: Serious polymorphism 155
7 Data Classes: Dealing with data 191
8 Nulls and Exceptions: Safe and sound 219
9 Collections: Get organized 251
10 Generics: Know your ins_from_your outs 289
11 Lambdas and Higher-Order Functions: Treating code like data 325
12 Built-in Higher-Order Functions: Power up your code 363
i Coroutines: Running code in parallel 397
i Testing: Hold your code to account 409
i Leftovers: The top ten things (we didn’t cover) 415

Table of Contents (the rea] thing)

Intro
Your brain on Kotlin. Here you are trying to learn something, while here
your brain is, doing you a favor by making sure the learning doesn't stick. Your brain’s
thinking, “Better leave room for more important things, like which wild animals to
avoid and whether naked snowboarding is a bad idea!” So how do you trick your

brain into thinking that your life depends on knowing how to code in Kotlin?

Who is this book for? XXl
‘We know what youre thinking xxiil
We know what your brain is thinking xxiil
Metacognition: thinking about thinking XXV
Here’s what WE did: XXV1
Read me xxviil
The technical review team XXX
Acknowledgments XXX1

table of contents

getting started
A Quick Dip

Kotlin is making waves.

From its first release, Kotlin has impressed programmers with its friendly syntax,
conciseness, flexibility and power. In this book, we'll teach you how to build your
own Kotlin applications, and we'll start by getting you to build a basic application and
run it. Along the way, you'll be introduced to some of Kotlin’s basic syntax, such as

statements, loops and conditional branching. Your journey has just begun...

Bcin3 able {‘,o thoose L

which plat Lorm 4o compile Welcome to Kotlinville 2

Your ode against means You can use Kotlin nearly everywhere 3

that Kotlin tode tan vun What we’ll do in this chapter 4

on seevers, in the tloud, Install Intelli] IDEA (Community Edition) 7

in browsers, on mobile o i o

deviees, and move. Let’s build a basic application 8
You've just created your first Kotlin project 11

\{/ Add a new Kotlin file to the project 12

Anatomy of the main function 13
Add the main function to App.kt 14
Test drive 15
What can you say in the main function? 16
Loop and loop and loop... 17
A'loopy example 18
Conditional branching 19
Using if to return a value 20
Update the main function 21
Using the Kotlin interactive shell 23
You can add multi-line code snippets to the REPL 24
Mixed Messages 27
Your Kotlin Toolbox 30

Vi

var Int

Int

basic types and variables
Being a Variable

table of contents

There’s one thing all code depends on—yvariables.

So in this chapter, we’re going to look under the hood, and show you how Kotlin

variables really work. You'll discover Kotlin’s basic types, such as Ints, Floats and

Booleans, and learn how the Kotlin compiler can cleverly infer a variable’s type from

the value it’s given. You'll find out how to use String templates to construct complex

Strings with very little code, and you'll learn how to create arrays to hold multiple

values. Finally, you'll discover why objects are so important to life in Kotlinville.

Your code needs variables

What happens when you declare a variable
The variable holds a reference to the object
Kotlin’s basic types

How to explicitly declare a variable’s type
Use the right value for the variable’s type
Assigning a value to another variable

We need to convert the value

What happens when you convert a value
Watch out for overspill

Store multiple values in an array

Create the Phrase-O-Matic application
Add the code to PhraseOMatic.kt

The compiler infers the array’s type from its values

var means the variable can point to a different array

val means the variable points to the same array forever...

Mixed References

Your Kotlin Toolbox

32
33
34
35
37
38
39
40
41
42
45
46
47
49
50
51
54
58

Vii

table of contents

functions
Getting Out of Main

It’s time to take it up a notch, and learn about functions.

So far, all the code you've written has been inside your application’s main function. But
if you want to write code that's better organized and easier to maintain, you need to
know how to split your code into separate functions. In this chapter, you'll learn how
to write functions and interact with your application by building a game. You’ll discover
how to write compact single expression functions. Along the way you'll find out how

to iterate through ranges and collections using the powerful for loop.

Let’s build a game: Rock, Paper, Scissors 60

A high-level design of the game 61

Get the game to choose an option 63

How you create functions 64

’—"2;::«- ‘:.,E‘L \9 You can send more than one thing to a function 65
- _A\ You can get things back from a function 66
P Functions with single-expression bodies 67

/j - . Add the getGameChoice function to Game.kt 68
ﬁ‘\ The getUserChoice function 75

P How for loops work 76
-3#* ﬁ\ Ask the user for their choice 78
Mixed Messages 79

We need to validate the user’s input 81

Add the getUserChoice function to Game.kt 83
Add the printResult function to Game .kt 87
Your Kotlin Toolbox 389

O "ROCk" O l'PapeP'l

O "Scissors"

String

val Array<String>

viii

table of contents

classes and objects
A Bit of Class

It’s time we looked beyond Kotlin’s basic types.

Sooner or later, you're going to want to use something more than Kotlin’s basic
types. And that's where classes come in. Classes are templates that allow you
to create your own types of objects, and define their properties and functions.
Here, you'll learn how to design and define classes, and how to use them

to create new types of objects. You'll meet constructors, initializer blocks,
getters and setters, and you'll discover how they can be used to protect your
properties. Finally, you'll learn how data hiding is built into all Kotlin code,

saving you time, effort and a multitude of keystrokes.

One c]_ ass Object type.s are defined using classes 92
How to design your own classes 93
Let’s define a Dog class 94
How to create a Dog object 95
How to access properties and functions 96
Create a Songs application 97
The miracle of object creation 98
How objects are created 99

Behind the scenes: calling the Dog constructor 100

Many ohjects

Going deeper into properties 105
Flexible property initialization 106
How to use initializer blocks 107
You MUST initialize your properties 108
. How do you validate property values? 111
How to write a custom getter 112
How to write a custom setter 113
The full code for the Dogs project 115
Your Kotlin Toolbox 120
$ <7 name: “Fido”
R weight: 79 —~
f‘/l breed: “Mixed”
myDog_’ O
\ { Dog
—
var Dog

table of contents

subclasses and superclasses
Using Your Inheritance

Ever found yourself thinking that an object’s type would be
perfect if you could just change a few things?

Well, that's one of the advantages of inheritance. Here, you'll learn how to create
subclasses, and inherit the properties and functions of a superclass. You'll discover
how to override functions and properties to make your classes behave the way
you want, and you’ll find out when this is (and isn’t) appropriate. Finally, you'll see how

inheritance helps you avoid duplicate code, and how to improve your flexibility with

polymorphism.

Inheritance helps you avoid duplicate code 122
Animal What we’re going to do 123
image Design an animal class inheritance structure 124
foot':i Use inheritance to avoid duplicate code in subclasses 125
Eagg:ﬁ What should the subclasses override? 126
- We can group some of the animals 127
:_:latl(()ENOISe() Add Canine and Feline classes 128
roam() Use IS-A to test your class hierarchy 129
sleep() The IS-A test works anywhere in the inheritance tree 130
We’ll create some Kotlin animals 133
Declare the superclass and its properties and functions as open 134
Hippo Canine How a subclass inherits from a superclass 135
image How (and when) to override properties 136
food Overriding properties lets you do more than assign default values 137
habitat How to override functions 138
makeNoise() An overridden function or property stays open... 139
eat() Add the Hippo class to the Animals project 140
Add the Canine and Wolf classes 143
image Which function is called? 144
L(;i)?t at When you call a function on the variable, it’s the object’s version
that responds 146
makeNoise() You can use a supertype for a function’s parameters and return type 147
eat() The updated Animals code 148
Your Kotlin Toolbox 153

table of contents

abstract classes and interfaces
Serious Polymorphism

A superclass inheritance hierarchy is just the beginning.

If you want to fully exploit polymorphism, you need to design using abstract classes
and interfaces. In this chapter, you'll discover how to use abstract classes to control
which classes in your hierarchy can and can’t be instantiated. You'll see how they can
force concrete subclasses to provide their own implementations. You'll find out how
to use interfaces to share behavior between independent classes. And along the

way, you'll learn the ins and outs of is, as, and when.

(interface)

Roamable The Animal class hierarchy revisited 156
Some classes shouldn’t be instantiated 157

Abstract or concrete? 158

An abstract class can have abstract properties and functions 159

The Animal class has two abstract functions 160

How to implement an abstract class 162

Veh. icle You MUST implement all abstract properties and functions 163
Let’s update the Animals project 164

Independent classes can have common behavior 169

roam() An interface lets you define common behavior OUTSIDE

a superclass hierarchy 170

Let’s define the Roamable interface 171

How to define interface properties 172

Declare that a class implements an interface... 173

How to implement multiple interfaces 174

Treat me like the
Wolf you know T am.

How do you know whether to make a class, a subclass,

an abstract class, or an interface? 175

o Update the Animals project 176

Q Interfaces let you use polymorphism 181

Where to use the is operator 182

Use when to compare a variable against a bunch of options 183

The is operator usually performs a smart cast 184

Use as to perform an explicit cast 185

val Roamable Wolf Update the Animals project 186
Your Kotlin Toolbox 189

Xi

table of contents

data classes
Dealing with Data

Nobody wants to spend their life reinventing the wheel.

Most applications include classes whose main purpose is to store data, so to make
your coding life easier, the Kotlin developers came up with the concept of a data class.
Here, you'll learn how data classes enable you to write code that's cleaner and more
concise than you ever dreamed was possible. You'll explore the data class utility
functions, and discover how to destructure a data object into its component parts.
Along the way, you'll find out how default parameter values can make your code

more flexible, and we’ll introduce you to Any, the mother of all superclasses.

== calls a function named equals 192
equals is inherited from a superclass named Any 193
The common behavior defined by Any 194

equals() We might want equals to check whether two objects are equivalent 195

hashCode()

toString() A data class lets you create data objects 196
Data classes override their inherited behavior 197
Copy data objects using the copy function 198
Data classes define componentN functions... 199
YourClassHere Create the Recipes project 201
Mixed Messages 203
Generated functions only use properties defined in the constructor 205
Initializing many properties can lead to cumbersome code 206
How to use a constructor’s default values 207
D ata OI)jeCts Functions can use default values too 210
. C[C[Overloading a function 211

are considere o
Let’s update the Recipes project 212
e([l[al 1{ tllei]f' The code continued... 213
Your Kotlin Toolbox 217

Properties hold

the same values.

Xii

table of contents

nulls and exceptions
Safe and Sound

Everybody wants to write code that’s safe.

And the great news is that Kotlin was designed with code-safety at its heart. We'll

start by showing you how Kotlin’s use of nullable types means that you'll hardly ever

experience a NullPointerException during your entire stay in Kotlinville. You'll discover

how to make safe calls, and how Kotlin’s Elvis operator stops you being all shook up.

And when we’re done with nulls, you'll find out how to throw and catch exceptions like

a pro.

Thank you
very much.

This is the Elvis operator.

I'm gonnha TRY this
risky thing, and CATCH
myself if I fail.

How do you remove object references from variables?
Remove an object reference using null

You can use a nullable type everywhere you can use
a non-nullable type

How to create an array of nullable types

How to access a nullable type’s functions and properties
Keep things safe with safe calls

You can chain safe calls together

The story continues...

You can use safe calls to assign values...

Use let to run code if values are not null

Using let with array items

Instead of using an if expression...

The !! operator deliberately throws a NullPointerException
Create the Null Values project

The code continued...

An exception is thrown in exceptional circumstances
Catch exceptions using a try/catch

Use finally for the things you want to do no matter what
An exception is an object of type Exception

You can explicitly throw exceptions

try and throw are both expressions

Your Kotlin Toolbox

220
221

222
223
224
225
226
227
228
231
232
233
234
235
236
239
240
241
242
244
245
250

xiii

table of contents

collections
Get Organized

Ever wanted something more flexible than an array?

Kotlin comes with a bunch of useful collections that give you more flexibility and
greater control over how you store and manage groups of objects. \Want to keep

a resizeable list that you can keep adding to? Want to sort, shuffle or reverse its
contents? Want to find something by name? Or do you want something that will
automatically weed out duplicates without you lifting a finger? If you want any of these

things, or more, keep reading. It’s all here...

Arrays can be useful... 252

5 q “Tea” ...but there are things an array can’t handle 253
When in doubt, go to the Library 254

String List, Set and Map 255

> /-\ Fantastic Lists... 256
L s “Coffee” Create a MutableList... 257
. <o A List allows You can remove a value... 258

String duylica{:c values. You can change the order and make bulk changes... 259

Create the Collections project 260

Lists allow duplicate values 263

How to create a Set 264

How a Set checks for duplicates 265

Hash codes and equality 266

O“Va‘lueA” O“Va‘lueB” Rules for overriding hashCode and equals 267
How to use a MutableSet 268

D 5 Update the Collections project 270
— 7 Time for a Map 276

Qg%l Q,é\/, How to use a Map 277

T/ T/ Create a MutableMap 278

i | — | - You can remove entries from a MutableMap 279
“KCYA" “KCYB" “Kc\/C" You can copy Maps and MutableMaps 280
Map The full code for the Collections project 281

A MGP allows Mixed Messages 285

Your Kotlin Toolbox 287

duplicate values, but
not duylica{:c KC\LS

Xiv

table of contents

generics
Know Your Ins from Your Outs

Everybody likes code that’s consistent.

And one way of writing consistent code that’s less prone to problems is to use
generics. In this chapter, we’ll look at how Kotlin’s collection classes use generics
to stop you from putting a Cabbage into a List<Seagull>. You'll discover when and how
to write your own generic classes, interfaces and functions, and how to restrict

a generic type to a specific supertype. Finally, you'll find out how to use covariance

and contravariance, putting YOU in control of your generic type’s behavior.

WITH generics, objects Collections use generics 290

go IN as a reference to How a MutableList is defined 291
only Duck objects... Using type parameters with MutableList 292
Things you can do with a generic class or interface 293

Here’s what we’re going to do 294

O O O O Create the Pet class hierarchy 295
Duck Duck Duck Duck Define the Contest class 296
\l, J, \l, J, Add the scores property 297
Create the getWinners function 298

Create some Contest objects 299

Create the Generics project 301

O O O O The Retailer hierarchy 305
Duck Duck Duck Duck Define the Retailer interface 306

We can create CatRetailer, DogRetailer and FishRetailer objects... 307

.and come OUT as a

reference of type Duck. Use out to make a generic type covariant 308
Update the Generics project 309
We need a Vet class 313
Create Vet objects 314
{%ﬁ Use in to make a generic type contravariant 315
Vet<T: Pet> A A generic type can be locally contravariant 316
Update the Generics project 317
Your Kotlin Toolbox 324
treat(t: T)

XV

table of contents

2]

| Kgs to Pounds

lambdas and higher-order functions
Treating Code Like Data

Want to write code that’s even more powerful and flexible?

If so, then you need lambdas. A lambda—or lambda expression—is a block of code

that you can pass around just like an object. Here, you'll discover how to define

a lambda, assign it to a variable, and then execute its code. You'll learn about

function types, and how these can help you write higher-order functions that use

lambdas for their parameter or return values. And along the way, you'll find out how a

little syntactic sugar can make your coding life sweeter.

]

Pounds to US Tons |

We'll eveate a
funetion that
tombines two
lambdas into a
single lambda.

combine()

(|

Kgs to US Tons

T take two Int
parameters named x and
y. I add them together,
and return the result.

——

A

Lambda

o
Q
!

{x:Int,y:Int >x+y}

XVi

Introducing lambdas

What lambda code looks like

You can assign a lambda to a variable

Lambda expressions have a type

The compiler can infer lambda parameter types
Use the right lambda for the variable’s type

Create the Lambdas project

You can pass a lambda to a function

Invoke the lambda in the function body

What happens when you call the function

You can move the lambda OUTSIDE the ()’s...
Update the Lambdas project

A function can return a lambda

Write a function that receives AND returns lambdas
How to use the combine function

Use typealias to provide a different name for an existing type
Update the Lambdas project

Your Kotlin Toolbox

- Y
Q&i, , \ l{1t+5}

add .
Fivel (Int) -> Int
/

S—

val
(Int) -> Int

326
327
328
331
332
333
334
339
340
341
343
344
347
348
349
353
354
361

table of contents

built-in higher-order functions
Power Up Your Code

Kotlin has an entire host of built-in higher-order functions.
And in this chapter, we’ll introduce you to some of the most useful ones. You'll meet
the flexible filter family, and discover how they can help you trim your collection down
to size. You'll learn how to transform a collection using map, loop through its
items with forEach, and how to group the items in your collection using groupBy.
You'll even use fold to perform complex calculations using just one line of code. By
the end of the chapter, you'll be able to write code more powerful than you ever

thought possible.

Kotlin has a bunch of built-in higher-order functions 364
The min and max functions work with basic types 365
These items have no natural .
order. To Lind the hi 5HCS‘{: A closer look at minBy and maxBy’s lambda parameter 366
or lowest value, we need to The sumBy and sumByDouble functions 367
‘%\T L— sycti‘cy some ctviteria, suth Create the Groceries project 368
r) as unitPrice or quantity. Meet the filter function 371
\/\‘/ Use map to apply a transform to your collection 372
What happens when the code runs 373
The story continues... 374
forEach works like a for loop 375
forEach has no return value 376
Update the Groceries project 377
Use groupBy to split your collection into groups 381
The fold /\O 1 You can use groupBy in function call chains 382
‘Flahé‘l:ion —| 0 g \ How to use the fold function 383
starts m Int Behind the scenes: the fold function 384
with the 2 Some more examples of fold 386
fivst item 7 . .
in Lhe] O Update the Groceries project 387
colleetion. /\ Int Mixed Messages 391
> 3 Your Kotlin Toolbox 394
7 O Leaving town... 395

List<int>

Xvii

table

xviii

contents

coroutines
Running Code in Parallel

Some tasks are best performed in the background.

If you want to read data from a slow external server, you probably don’t want the

rest of your code to hang around, waiting for the job to complete. In situations such

as these, coroutines are your new BFF. Coroutines let you write code that’s run
asynchronously. This means less time hanging around, a better user experience,
and it can also make your application more scalable. Keep reading, and you'll learn the

secret of how to talk to Bob, while simultaneously listening to Suzy.

Bam! Bam! Bam! Bam! Bam! Bam!
Tish! Tish!
4\

This time, the toms and
eymbals play in pavalle.

testing
Hold Your Code to Account

Everybody knows that good code needs to work.

But each code change that you make runs the risk of introducing fresh bugs that stop
your code from working as it should. That’s why thorough testing is so important: it
means you get to know about any problems in your code before it’s deployed to the live
environment. In this appendix, we’'ll discuss JUnit and KotlinTest, two libraries which

you can use to unit test your code so that you always have a safety net.

table of contents

lettovers
The Top Ten Things (We Didn’t Cover)

Even after all that, there’s still a little more.

There are just a few more things we think you need to know. We wouldn’t feel right
about ignoring them, and we really wanted to give you a book you’d be able to lift
without training at the local gym. Before you put down the book, read through these
tidbits.

1. Packages and imports 416
. Visibility modifiers 418

. Enum classes 420

* S{:"‘“ﬁ . Sealed classes 422

. Nested and inner classes 424

. Extensions 429

Inner

2
3
4
5
6. Object declarations and expressions 426
7
8. Return, break and continue 430
9

The Innev and Outer objects shave a
special bond. The [nner can use the
Outer’s vaviables, and vice versa.

. More fun with functions 432

10. Interoperability 434

Xix

the intro

how to use this book
Intro

I can't believe they
put that in a Kotlin
book.

Is this book for you?
This
With the money tq pay
for it. And it makes 4
great gift for that
Special somaone

Book is for anyone

[ion, wWe answevr the bu\rn'mg t\ucs{:iov.\i i
“lé‘o{:::\lsgrgoih:\/ ?ulc that in a book on Kotlin?

you are here » xXXi

how to use this book
Who is this book for?
If you can answer “yes” to all of these:

o Have you done some programming?
This is NOT a vefevence book.

e Do you want to learn Kotlin? Head Fivst Kotlin is a book
designcd ‘('\o\' lca\rhing, not an
9 Do you prefer actually doing things and applying the stuff cnc\/cloycdia of Kotlin facts.

you learn over listening to someone in a lecture rattle on
for hours on end?

this book is for you.

Who should probably back away from this book?

If you can answer “yes” to any of these:

o Is your programming background limited to HTML only,
with no scripting language experience?

(If you’'ve done anything with looping, or if/then logic,
you’ll do fine with this book, but HTML tagging alone
might not be enough.)

e Are you a kick-butt Kotlin programmer looking for a
reference book?

e Would you rather have your toenails pulled out by 15
screaming monkeys than learn something new? Do you
believe a Kotlin book should cover everything, especially
all the obscure stuff you'll never use, and if it bores the
reader to tears in the process, then so much the better?

this book is not for you.

[Note from Markc'l:ingr this
book is for anyone with 3 tredit
tard or 3 PayPal actount]

XXii intro

the intro

We know what youte thinking

“How can thus be a serious Kotlin book?”
“What’s with all the graphics?”
“Can I actually learn it this way?”

“Do I smell pizza?”

We know what your brainis thinking e

Your brain craves novelty. It’s always searching, scanning, wazting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you—what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge. Great. Only 450
And that’s how your brain knows... more dull, dry,
boring pages.

This must be important! Don’t forget it!

_ - . i LS
But imagine you’re at home or in a library. It’s a safe, warm, tiger-free zone. \four \3*3:'1; wor
You're studying. Getting ready for an exam. Or trying to learn some tough TS ** °
technical topic your boss thinks will take a week, ten days at the most. savindy \

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously unimportant content doesn’t clutter up scarce
resources. Resources that are better spent storing the really bzg things.
Like tigers. Like the danger of fire. Like how you should never have
posted those party photos on your Facebook page. And there’s no
simple way to tell your brain, “Hey brain, thank you very much, but
no matter how dull this book is, and how little I'm registering on the
emotional Richter scale right now, I really do want you to keep this
stuff around.”

you are here » xxiii

XXiv

how to use this

We think of a “Head First’ reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure
you don’t forget it. It's not about pushing facts into your head. Based on the latest
research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things more

understandable. Put the words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to solve problems related to the

content.

Use a conversational and personalized style. In recent studies, students performed up

to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don't take yourself too seriously. Which would you pay more attention to:a stimulating dinner-party

companion, ora lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons,

nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking guestions, and activities that involve both sides of the brain and

multiple senses.

Get—and keep—the reader’s attention. Wwe've all had the”l really want to learn this, but | can't

stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn't have to be

boring. Your brain will learn much more quickly if it's not.

Touch their emotions. We now know that your ability to remember something is largely dependent

on its emotional content. You remember what you caré about. You remember when you feel something.

No, we're not talking heart-wrenching stories about a boy and his dog. We're talking emotions like

surprise, curiosity, fun, “what the...?", and the feeling of "l rule!” that comes when you solve a puzzle, learn

something everybody else thinks is hard, or realize you know something that“I'm more technical than

thou” Bob from Engineering doesn't.

the

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more

T wonder how
T can trick my brain
info remembering
this stuff...

deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely laught to learn.

But we assume that if you’re holding this book, you really want to learn how o
to code in Kotlin. And you probably don’t want to spend a lot of time. If you '
want to use what you read in this book, you need to remember what you read.

And for that, you've got to understand it. To get the most from this book, or any
book or learning experience, take responsibility for your brain. Your brain on
this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you're in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat Kotlin like
it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way 1s about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t fee/ important to him, but
he keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning. ..

XXV

how to use this

Here’s what WE did:

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really s worth a thousand words. And when text and pictures work
together, we embedded the text i the pictures because your brain works more effectively
when the text is within the thing it refers to, as opposed to in a caption or buried in the body
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain

1s tuned to pay attention to the biochemistry of emotions. That which causes you to fee/
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included activities, because your brain is tuned to learn and remember more when
you do things than when you read about things. And we made the exercises challenging-yet-
doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see

an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have

a straight answer, because your brain is tuned to learn and remember when it has to work at
something, Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, you’re a person. And your
brain pays more attention to people than it does to things.

XXVi

the

// o5 Here’s what YOU can do to bend
vyour brain into subwmission

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Cut this out and stick it

" on Your refvigerator.

a Slow down. The more you understand, the G Drink water. Lots of it.

less you have to memorize. Your brain works best in a nice bath of fluid.

Don’t just read. Stop and think. When the book asks Dehydration (which can happen before you ever

you a question, don’t just skip to the answer. Imagine feel thirsty) decreases cognitive function.

that someone really s asking the question. The

more deeply you force your brain to think, the better 0 Listen to your brain.

chance you have of learning and remembering. Pay attention to whether your brain is getting

. i overloaded. If you find yourself starting to skim

e Do the exercises. Write your own notes. the surface or forget what you just read, it’s time

We put them in, but if we did them for you, that for a break. Once you go past a certain point, you

would be like having someone else do your workouts won’t learn faster by trying to shove more in, and

for you. And don’t just look at the exercises. Use a you might even hurt the process.

pencil. There’s plenty of evidence that physical

activity w/z/e learning can increase the learning e Feel something.

6 Read “There Are No Dumb Questions.” Your brain needs to know that this matters. Get
’ involved with the stories. Make up your own

captions for the photos. Groaning over a bad joke
1s still better than feeling nothing at all.

That means all of them. They’re not optional
sidebars, they’re part of the core content!

Don’t skip them.

e Make this the last thing you read before bed. e Write a lot of code!
Or at least the last challenging thing. There’s only one way to learn Kotlin: write a
Part of the learning (especially the transfer to lot of code. And that’s what you’re going to do
long-term memory) happens ¢/ you put the book throughout this book. Coding is a skill, and the
down. Your brain needs time on its own, to do more only way to get good at it is to practice. We’re
processing. If you put in something new during that going to give you a lot of practice: every chapter
processing time, some of what you just learned will has exercises that pose a problem for you to solve.
be lost. Don’t just skip over them—a lot of the learning

happens when you solve the exercises. We included

e Talk about it. Out loud. a solution to each exercise—don’t be afraid to
Speaking activates a different part of the brain. If peek at the solution if you get stuck! (It’s easy to
you’re trying to understand something, or increase get snagged on something small.) But try to solve
your chance of remembering it later, say it out loud. the problem before you look at the solution. And
Better still, try to explain it out loud to someone else. definitely get it working before you move on to the
You’ll learn more quickly, and you might uncover next part of the book.

ideas you hadn’t known were there when you were
reading about it.

XXvii

how to use this

Read wme

This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We assume you’re new to Kotlin, but not to programming.

We assume that you've already done some programming. Maybe not a lot, but we’ll assume
you've already seen things like loops and variables in some other language. And unlike a lot
of other Kotlin books, we don’t assume that you already know Java.

We begin by teaching some basic Kotlin concepts, and then we
start putting Kotlin to work for you right away.

We cover the fundamentals of Kotlin code in Chapter 1. That way, by the time you make
it all the way to Chapter 2, you are creating programs that actually do something. The rest
of the book then builds on your Kotlin skills, turning you from Rotlin newbie to Kotlin ninja
master in very little time.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books don’t
have retention and recall as a goal, but this book 1s about learning, so you’ll see some of the
same concepts come up more than once.

The code examples are as lean as possible.

We know how frustrating it is to wade through 200 lines of code looking for the two lines
you need to understand. Most examples within this book are shown within the smallest
possible context, so that the part you’re trying to learn is clear and simple. So don’t expect
the code to be robust, or even complete. That’s your assignment for after you finish the
book, and it’s all part of the learning experience.

XXviii

The exercises and activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.

Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. So don’t skip the exercises! Your brain will thank you for

1t.

The Brain Power exercises don’t have answers.

Not printed in the book, anyway. For some of them, there is no right answer, and for
others, part of the learning experience is for you to decide if and when your answers are
right. In some of the Brain Power exercises, you will find hints to point you in the right

direction.

the

XXix

the review team

The technical review team

Technical reviewers:

Ingo Krotzky is a trained health information Ken Kousen is the author of the books Modern
technician who has been working as a database Java Recipes (O’Reilly), Gradle Recipes for Android
programmer/software developer for contract research (O’Reilly) and Making Java Groovy (Manning), as
nstitutes. well as O’Reilly video courses in Android, Groovy,

Gradle, advanced Java and Spring. He is a regular
speaker on the No Fluff] Just Stuff’ conference tour
and a 2013 and 2016 JavaOne Rock Star, and has
spoken at conferences all over the world. Through
his company, Kousen I.'T,, Inc., he has taught
software development training courses to thousands
of students.

XXX intro

the intro

Acknowledgments

Our editor:

Heartfelt thanks to our awesome editor Jeff Bleiel for all

his work and help. We’ve truly valued his trust, support, and

encouragement. We’ve appreciated all the times he pointed out

when things were unclear or needed a rethink, as it’s led to us

writing a much better book. Jeff Bleiel

The O’Reilly team:

A big thank you goes to Brian Foster for his carly help in getting Head First
Kotlin oft the ground; Susan Conant, Rachel Roumeliotis and Nancy
Davis for their help smoothing the wheels; Randy Comer for designing the
cover; the early release team for making early versions of the book available
for download; and Kristen Brown, Jasmine Kwityn, Lucie Haskins and
the rest of the production team for expertly steering the book through the
production process, and for working so hard behind the scenes.

Friends, family and colleagues:

Writing a Head First book is always a rollercoaster, and we’ve truly valued the
kindness and support of our friends, family and colleagues along the way. Special
thanks go to Jacqui, Ian, Vanessa, Dawn, Matt, Andy, Simon, Mum, Dad,
Rob and Lorraine.

The without-whom list:

Our awesome technical review team worked hard to give us their thoughts on the
book, and we’re so grateful for their input. They made sure that what we covered
was spot on, and kept us entertained along the way. We think the book is much
better as a result of their feedback.

Finally, our thanks to Kathy Sierra and Bert Bates for creating this
extraordinary series of books, and for letting us into their brains.

you are here » XXXi

o’reilly

0’Reilly

For almost 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers.

For more information, please visit Attp://oreilly.com.

XXXii

1 getting started

*
+ A Quick Dip *

Come on, the water's great! We'll
jump right in, write some code,
and look at some basic Kotlin
syntax. You'll be coding in no time.

Kotlin is making waves.

From its first release, Kotlin has impressed programmers with its friendly syntax,
conciseness, flexibility and power. In this book, we’ll teach you how to build your own
Kotlin applications, and we'll start by getting you to build a basic application and run it.
Along the way, you'll be introduced to some of Kotlin’s basic syntax, such as statements,

loops and conditional branching. Your journey has just begun...

this is a new chapter

kotlin

Welcome to Kotlinville

Kotlin has been taking the programming world by storm.
Despite being one of the youngest programming languages in
town, many developers now view it as their language of choice.
So what makes Kotlin so special?

A language that's
designed for computers
AND humans? Awesomel!

Kotlin has many modern language features that make it
attractive to developers. You’ll find out about these features
in more detail later in the book, but for now, here are some of
the highlights.

It’s crisp, concise and readable

Unlike some languages, Kotlin code is very concise, and you can
perform powerful tasks in just one line. It provides shortcuts for
common actions so that you don’t have to write lots of repetitive
boilerplate code, and it has a rich library of functions that you can
use. And as there’s less code to wade through, it’s quicker to read,
write and understand, leaving you more time to do other things.

You can use object-oriented AND functional programming

Can’t decide whether to learn object-oriented or functional

programming? Well, why not do both? Kotlin lets you

create object-oriented code that uses classes, inheritance and

polymorphism, just as you can in Java. But it also supports ¢ =
functional programming, giving you the best of both worlds. j, ‘

The compiler keeps you safe
Nobody likes unsafe, buggy code, and Kotlin’s compiler

Kotlin virtually

puts a lot of effort into making sure your code is as clean as eliminates tlle kiﬂ(}[s 0‘[
possible, preventing many of the errors that can occur in other

programming languages. Kotlin is statically typed, for example, errors tllat re gutar ly

so you can’t perform inappropriate actions on the wrong type of .

variable and crash your code. And most of the time, you don’t occur 1n Otllel"

even need to explicitly specify the type yourself as the compiler . l

can infer it for you. Pr Ogl" ammlng anguageSO

So Kotlin is a modern, powerful and flexible programming Tllat means sa{el", more

language that offers many advantages. But that’s not the end relial)le COC[e, al'l(l less
of the story.

time sPent cltasing l)ugs.

getting started

You can use Kotlin nearly everywhere

Kotlin is so powerful and flexible that you can use it as a
general-purpose language in many different contexts. This
is because you can choose which platform to compile
your Kotlin code against.

Java Virtual Machines (JVMs)

Kotlin code can be compiled to JVM (Java Virtual Machine)
bytecode, so you can use Kotlin practically anywhere that you
can use Java. Kotlin is 100% interoperable with Java, so you

Bcing able to thoose
which Flaf‘("orm) tompile

can use existing Java libraries with it. If you’re working on an z:ui ?dzl.aﬁa'"sf means
application that contains a lot of old Java code, you don’t have at Ko " tode tan vun
to throw all the old code away; your new Kotlin code will work on sevvers, in the ¢loud,

in browse\rs, on mobile

alongside it. And if you want to use the Kotlin code you’ve .
devites, and more.

written from inside Java, you can do so with ease.

Awndroid

Alongside other languages such as Java, Kotlin has first-class —.
support for Android. Kotlin is fully supported in Android \
Studio, and you can make the most of Kotlin’s many

advantages when you develop Android apps.

Client-side and server-side JavaSeript

You can also transpile—or translate and compile—Kotlin code —| /% ._/
into JavaScript, so that you can run it in a browser. You can use - ‘ J
it to work with both client-side and server-side technology, such

as WebGL or Node.js. -~

Native apps

If you want to write code that will run quickly on less powerful
devices, you can compile your Kotlin code directly to native
machine code. This allows you to write code that will run, for
example, on 108 or Linux.

In this book, we’re going to focus on creating Kotlin Even {‘)\ough we've bui|d'm3 aﬂ?l,ica{:nons for
applications for JVMs, as this is the most straightforward way &— Java Virtual Machines, you don't hCCd. to
of getting to grips with the language. Afterwards, you’ll be know Java to gc{: the most out of this
able to apply the knowledge you've gained to other platforms. book. We've assuming Yyou have some 3"‘"31

programming expevience, but that's it

Let’s dive in.

you are here » 3

steps

What we’ll do in this chapter

In this chapter, we’re going to show you how to build a basic
Kotlin application. There are a number of steps we’re going to
go through to do this:

o Create a new Kotlin project.
We’ll start by installing Intelli] IDEA (Community Edition), a free IDE
that supports Kotlin application development. We’ll then use the IDE to
build a new Kotlin project:

5 MyFirstApp

[=] Project + D= 5 -
v g MyFirstApp ~/ldeaProjects/MyFirstApp
» o lidea
[sre

1 A, | Add Configuration... | = & 0. B Q B

pingiuy # uasew 3

() Event Log

' MyFirstApp.iml
» Il External Libraries
gy Scratches and Consoles
.)
£ This is the project well
2 ereate with the [DE.
il
*
o
E
]
£
&
~1
B Terminal i= 6: TODO

|IZ Configure Kotlin: Added /Users /dawna/Library/Applicatien Support/IdealC2018.3/Kotlin/kotling/lib/kotlin-stdlib-jdk7 jar to library c... (2 minutes ago)

e Add a function that displays some text.
We’ll add a new Kotlin file to the project, then write a simple main
function that will output the text “Pow!”

9 Update the function to make it do more.
Kotlin includes basic language structures such as statements, loops and
conditional branching. We’ll use these to change our function so that it
does more.

e Try out code in the Kotlin interactive shell.
Finally, we’ll look at how to try out snippets of code in the Kotlin
interactive shell (or REPL).

We’ll install the IDE after you've tried the following exercise.

4 Chapter 1

getting started

_ @G harpen your pencil

X We know we've not taught you any Kotlin code yet, but see if you
can guess what each line of code is doing. We've completed the
first one to get you started.

val name = "Misty" _ Detlare a variable named ‘name’ and give it a value of “Misty”. ..
val height = 9

val a =

val b =

val c

val str

I
Q
.
©]
0
t
o]
-
o]

Q

val numlList = arrayOf(l, 2, 3) _

var x = 0

while (x < 3) {

println("Item $x is S{NUMLISE LRI I™) e eeeeeeeeesesssseeeeeeee e .
X = x + l ...
d e eee ettt et ettt ettt
val myCat = Cat(name, NeIgih) oo s e e s s ee e eeeson
VB L = A g = 3 e e ee e s eseeeee oottt
1E (Y < 5) MYCATIIAOW (4) | oo seeeeee e esseeeee s eseee e seneeess e seennens
W L (Y B) oo e eeesee e eese e .

you are here » 5

sharpen solution

_ @%harpen your perci

& solutlon We know we've not taught you any Kotlin code yet, but see if you
can guess what each line of code is doing. We've completed the
first one to get you started.

val name = "Misty" Declare a variable named ‘name’ and aive it a value of “Misty.”-

val height = 9 Detlave a variable named ‘heiaht’ and give it a value of 9.

val a =
val b =

val ¢ =

val str

val numList = arrayOf(1l, 2, 3) _ Create an array tontaining values of I, 2 and 3.

var x = 0

while (x < 3) { chf looping as lonq as x is less than 3.

val myCat = Cat (name, height) Detlare a variable named ‘mYCA‘E' and eveate a Cat obec{:.
val y = height - 3

if (y < 5) myCat.miaow(4) £ yis less than 5, the Cat should miaow 4 times.

while (y < 8) { Keep looping as long as Y.is less than 8.

myCat.play () Make the Cat ?lay.

y =y +1 Add'fo\/

} This is the end of the loop.

6

Chapter 1

You ave here.

Install Intellid IPEA (Community Edition)

The easiest way of writing and running Kotlin code is to use
Intelli] IDEA (Community Edition). This is a free IDE from
JetBrains, the people who invented Kotlin, and it comes with
everything you need to develop Kotlin applications, including:

A code editor /\
The code editor offers code completion Kotlin REPL

to help you write Kotlin code, and
formatting and color highlighting to
make your code easier to read. It also
gives you hints for improving your code.

Build tools /\

You can compile and run your code
using quick and easy shortcuts.

There ave many more featuves too, all
there 1o make Your toding life easier.

To follow along with us in this book, you need to install Intelli]
IDEA (Community Edition). You can download the IDE here:

hitps:/ /www.jetbrains.com/idea/ download / index.html <— Mak

Once you've installed the IDE, open it. You should see the Intelli]
IDEA welcome screen. You're ready to build your first Kotlin

e sure You thoose the op

the free Commumﬂ:\/ Edition

getting started
Build application
Add function
Update function
Use REPL

You have easy access to the Kotlin
REPL, which lets you try out code
snippets outside your main code.

Version control
Intelli] IDEA interfaces with major

version control systems such as Git,
SVN, CVS and more

{jon ‘{'p download
of In{‘,c“i\) IDEA

application.
800 Welcome to Intelli) IDEA
This is the I—J
Intelli) IDEA —
weleome sereen. Intellid IDEA

Version 2018.3.3

+ Create New Project
1¥ Import Project
&= Open

H Check out from Version Control ~

£ Configure ~ Get Help ~

you are here » 7

create project

Let’s build a basic application

Now that you’ve set up your development environment, you’re
ready to create your first Kotlin application. We’re going

to create a very simple application that will display the text
“Pow!” in the IDE.

Whenever you create a new application in Intelli] IDEA, you
need to create a new project for it. Make sure you have the
IDE open, and follow along with us.

1. Create a new project

The Intellif IDEA welcome screen gives you a number of
options for what you want to do. We want to create a new
project, so click on the option for “Create New Project”.

Build application
Add function
Update function
Use REPL

800 Welcome to Intelli) IDEA

1J

so this avea is
eurrently empty.

¥ Import Project

& Open

8 Chapter 1

Intellid IDEA

Ah\/ P\ro‘)ccfs You

eveate will appear Version 2018.3.3

heve. This is our

fiest project, + Create New Project /

|+ Check out from Version Control =

Cliek on the option to
eveate a new project

£x Configure * Get Help =

getting started
Build application
Add function
Update function
Use REPL

Building a basic application (continued)

2. Specify the type of project

Next, you need to tell Intelli] IDEA what sort of project you want to
create.

Intelli] IDEA allows you to create projects for various languages and
platforms, such as Java and Android. We’re going to create a Kotlin
project, so choose the option for “Kotlin”.

You also need to specify which platform you want your Kotlin project

to target. We’re going to create a Kotlin application with a JVM gTh eve ave other options too, but

target, so select the Kotlin/JVM option. Then click on the Next we've going to fotus on eveating

button. applications that vun against a VM.
® 00 New Project
= Java <
2 Java FX I Kotlin/Js well Kotlin applicat J
. . . el vun our Kotlin application in a VUM,
Android I, Kotlin/Native so seleet the Kotlin/JVM option.
Intelli) Platform Plugin IIZ Kotlin (IS Client/JVM Server)
7 Maven I, Kotlin (Multiplatform Library)
Cradle I, Kotlin (Mobile Android/i0S)

'_.1" Kotlin (Mobile Shared Library)
& Groovy

N
= Empty Project

We've treating a Kotlin
projett, so thoose the
Ko‘glin o?{:'lon

Kotlin module for JVM target

9 Cancel Previous m

Click on the Next
button to proteed
o the next step.

you are here » 9

configure project
> Build application
Add function

Building a basic application (continued) Update function

Use REPL

3. Configure the project

You now need to configure the project by saying what you want to

call it, where you want to store the files, and what files should be used

by the project. This includes which version of Java should be used by

the JVM, and the library for the Kotlin runtime.

Name the project “MyFirstApp”, and accept the rest of the defaults.

When you click on the Finish button, Intelli] IDEA will create your

project.

X)
Name the project “MyFiestApp’
/
8 .00 ‘/ New Project
| =
Project name: MyFirstApp
Project location: | ~/ldeaProjects /MyFirstApp
Project SDK: = 1.8 (java version "1.8.0_102") B New...
Kotlin runtime ‘; Accept the default values.
Use library: | Il KotlinJavaRuntime B Create...
Project level library KotlinJavaRuntime with 3 files will be created Configure...

¥ More Settings

? Cancel Previous m

Click on the FihiSh]\

button, and the IDE
will eveate Your Pro)cc{:-

10 Chapter 1

We've completed this step, so we've cheeked it
\L, getting started

Build application
Add function

You've just created your first Kotlin project Update function

After you've finished going through the steps to create a new Use REPL

project, Intelli] IDEA sets up the project for you, then displays
it. Here’s the project that the IDE created for us:

[A | Add Configuration... | b & 0. W Q B

[= Project + B = o —
v g MyFirstApp ~/IdeaProjects/MyFirstApp
b Bm .idea
[wsre
{'m MyFirstApp.iml
» Il External Libraries
g Scratches and Consoles

pingiuy s uanew 3

£ This is a folder

5% explorer. Use it to

% navigate the Liles and
folders in your project.

13 The tontents of any

i Kotlin files You open

will be displayed here.

M Terminal = 6: TODO () Event Log
Configure Kotlin: Added /Users /dawng/LibraryfApplicatien Support/ldealC2018.3/Kotlin/kotlinc/lib/kotlin-stdlib-jd k7 jar to library c... (2 minutes ago) LI

a

As you can see, the project features an explorer
which you can use to navigate the files and folders
that make up your project. Intelli] IDEA creates this
folder structure for you when you create the project.

I3 MyFirstApp

[Project v D & —
v I=MyFIrstApp ~fldeaProjects/MyFirstApp
v Bbm.idea
» W codeStyles
» B libraries
iam encodings.xml
e kotline.xml

The folder structure is comprised of configuration
files that are used by the IDE, and some external
libraries that your application will use. It also includes
a src folder, which is used to hold your source code.
You’ll spend most of your time in Kotlinville working
with the src folder.

.
i Misc.xml

a1

@ modules.xml
i Workspace.xml

Any KO‘Hih sourte
Files You eveate— |
need to be added Fsre

2: Favorites

fa MyFirstApp.iml
» Il External Libraries
P Scratches and Consoles

The src folder is currently empty as we haven’t added to the sre folder-.
any Kotlin files yet. We’ll do this next.

7:Structure

B Terminal = 6:TODO

]

you are here » 1"

add file

Build application
Add function
Update function
Use REPL

Add a new Kotlin file to the project

Before you can write any Kotlin code, you first need to create a
Kotlin file to put it in.

To add a new Kotlin file to your project, highlight the sr¢ folder
in Intelli] IDEA’s explorer, then click on the File menu and
choose New — Kotlin File/Class. You will prompted for the
name and type of Kotlin file you want to create. Name the file
“App”, and choose File from the Kind option, like this:

800 New Kotlin File/Class
Name the ‘cilc “APF"'“&

Name: App il

Choose a file kind of “File”. —>Kind: L File

When you click on the OK button, Intelli] IDEA creates a new
Kotlin file named App.kt, and adds it to the src folder in your
project:

6 O O B MyFirstApp [~/ldeaProjects/MyFirstApp] - .../
= MyFirstApp src 1 A, | Add Config

i Project = D T [— ipAppk
g = MyFirstApp ~/IdeaProjects/MyFirstApp
| JIdea

A new file called Appkt has |8

been added to our sre folder- > ik Aopkt

u MyFirstApp.iml
|l External Libraries
o Scratches and Consoles

¥ 2: Favorit

i

M Terminal = 6 TODO

IOl Configure Kotlin: A 1:

sers/dawng/L... (10 minutes ago)

Next, let’s look at the code we need to add to App.kt to get it to
do something

12 Chapter 1

getting started
Build application
Add function
Update function
Use REPL

Anatowmy of the main function

We’re going to get our Kotlin code to display “Pow!” in the IDE’s
output window. We’ll do this be adding a function to App.kt.

Whenever you write a Kotlin application, you must add a function to it
called main, which starts your application. When you run your code,
the JVM looks for this function, and executes it.

The main function looks like this:

“fun” means The name of this function.
it's a function. | L
&| fun”main ||(args: Array<String>) | 4— Opening brace

of the funttion.

The “//” denotes a The function’s parameters, enclosed
tomment. Replace the —.—>| //Your code goes here | in parentheses. The funetion is given

tomment with any an avvay of Strings, and the array is
tode You want the named “a\rgs".

funetion to exetute. /<“ Closing brace of the funttion.

The function begins with the word £un, which is used to
tell the Kotlin compiler that it’s a function. You use the fun

keyword for each new Kotlin function you create. Paf amefer less

2. o]
N funefien
The fun keyword is followed by the name of the function, in mal Fu clion5

this case main. Naming the function main means that it will

be automatically executed when you run the application. If you're using Kotlin 1.2, or

an earlier version, your main

The code in the braces () after the function name tells the function must take the following
compiler what arguments (if’ any) the function takes. Here, the form in order for it to start your
code args: Array<String> specifies that the function application:

accepts an array of Strings, and this array is named args. fun main(args: Array<String>) |

You put any code you want to run between the curly braces //Your code goes here
{} of the main function. We want our code to print “Pow!” in }

the IDE, and we can do that using code like this:
From Kotlin1.3, however, you can omit

fun main(args: Array<string>) { main's parameters so that the function

This says to looks like this:

print to the -_>| println”("Pow! ")| fun main() {

standard 23 //Your code goes here
output. } The text You want to ?rin{})

Through most of this book, we're going to
use the longer form of the main function
because this works for all versions of
Kotlin.

println ("Pow!") prints a string of characters, or String,
to the standard output. As we’re running our code in an IDE,
it will print “Pow!” in the IDE’s output pane.

Now that you’ve seen what the function looks like, let’s add it
to our project.

you are here » 13

main function

Build application
Add function
Update function

Add the main function to App.kt

. . . Use REPL
To add the main function to your project, open the file App.kt
by double-clicking on it in Intelli] IDEA’s explorer. This opens
the code editor, which you use to view and edit files:
800 MyFirstApp [~/ldeaProjects/MyFirstApp] - .../src/App.kt [MyFirstApp] g"
2 MyFirstApp sre 1 A, | Add Configuration... Q e
g Project « € = & — | [pAppkt —
3 s MyFirstApp ~/ldeaProjects/MyFirstApp v g
2 .idea This shows you whith 5
[voesc | file you've editing—in »
" r App.-kt '{')\is case A k{‘, =
& . .
E w MyFirstApp.iml) 11PP a
. . =
E Il External Libraries =
il © 5cratches and Consoles
* L .
This is Intellid [DEA’s eode
g editor pane. [£'s currently
=1 .
g empty as our version of Appkt
‘%. doesn't tontain any tode \/C‘{',
[
M Terminal = 6: TODO () Event Log
IC1 Configure Kotlin: Added fUsers/dawng/Library/Application Support/idealC2018.... (12 minutes ago) 1:1 n/a UTF-8 % 4spaces * 'im %

Then, update your version of App.kt so that it matches ours
below:

MyFirstApp

fun main(args: Array<String>) {

println("Pow!") rc k—\/ou ¢an find App-kt in this folder.

App.kt
Let’s try running our code to see what happens.

therejare no
Dumb Questions

Q} Do | have to add a main function to every Kotlin file | AZ No. A Kotlin application might use dozens (or even hundreds)
create? of files, but you may only have one with a ma i n function—the one
that starts the application running.

14 Chapter 1

= -

Test drive

getting started
Build application
Add function
Update function
Use REPL

You run code in Intelli] IDEA by going to the Run menu,
and selecting the Run command. When prompted, choose
the AppKt option. This builds the project, and runs the code.

After a short wait, you should see “Pow!” displayed in an
output window at the bottom of the IDE like this:

HCVC)S fhc ou'f:Fu{: —
text in the [DE.

[
Run: AppKt
> /Library/Java/JavaVirtualMachines/jdkl.8.0_102.jdk/Contents /Home/bin/java
| ., | objcl154@]: Class JavalLaunchHelper is implemented in both /Library/Javas)
E Pow!
3
& = Process finished with exit code @
~|
I=
e e
Terminal = 0: Messages b 4:Run = 6: TODO
Ll Compilation completed successfully in 6 s 852 ms (moments ago)

What the Run command does

When you use the Run command, Intelli] IDEA goes through
a couple of steps before it shows you the output of your code:

o

It speeifically compiles

our sourte tode into
The IDE compiles your Kotlin source code into JVM bytecode. &« /M bykecode because

. i~ h
Assuming your code has no errors, compiling the code creates one or more th?‘ Vf (‘rea{r‘i J’ dc
class files that can run in a JVM. In our case, compiling App.kt creates a class proyect, we selecte

the JVM option. Had
file called AppAi.class. we thosen Lo vun it in

another envivonment,
the compiler would have
compiled it into code
for that environment
instead.

Kotlin compiler

App.kt AppKt.class

The IDE starts the JVM and runs AppKt.class.

The JVM translates the AppKi.class bytecode into something the underlying
platform understands, then runs it. This displays the String “Pow!” in the
IDE’s output window.

AppKft.class

Now that we know our function works, let’s look at how we
can update it to make it do more.

you are here »

15

statements, branches

What can you say in the main function?

Once you're inside the main function (or any other function, for that
matter), the fun begins. You can say all the normal things that you say in
most programming languages to make your application do something.

You can get your code to:

o Do something (statements)

var x = 3

val name = "Cormoran"
x = x * 10

print ("x is $x.")

//This is a comment

O Do something again and again (loops)

while (x > 20) {

x =x -1

print (" x is now $x.")
}
for (1 in 1..10) {

X =x + 1

print (" x is now $x.")

° Do something under a condition (branching)

if (x == 20) {
println(" x must be 20.")
} else {
println(" x isn't 20.")
}
if (name.equals ("Cormoran")) {

println ("$name Strike")

We’ll look at these in more detail over the next few pages.

16

Build application
Add function
Update function
Use REPL

Syntax Up Clese

Here are some general syntax
hints and tips for while you're finding
your feet in Kotlinville:

* A single-lined comment begins with
two forward slashes:

//This is a comment

* Most white space doesn’t matter:

X = 3

* Define a variable using var or val,
followed by the variable’s name. Use
var for variables whose value you
want to change, and val for ones
whose value will stay the same. You'll
learn more about variables in Chapter
2:

var x = 100

val serialNo = "AS498HG"

getting started

Build application
Add function

Loop and loop and loop... Update function

Kotlin has three standard looping constructs: while, do-while and for. Use REPL

For now we’ll just focus on while.

The syntax for while loops is relatively simple. So long as some condition is . line of
true, you do everything inside the loop block. The loop block is bounded by a 1€ you J“S{" have one fine

pair of curly braces, and whatever you need to repeat needs to be inside that €— tede in the loop blotk, you
block. tan omit the curly braces.

The key to a well-behaved while loop is its conditional test. A conditional test
is an expression that results in a boolean value—something that is either true
or false. As an example, if you say something like “While slceCreamInTub is
true, keep scooping” you have a clear boolean test. There is either ice cream
in the tub, or there isn’t. But if you say “While Fred, keep scooping”, you
don’t have a real test. You need to change it to something like “While Fred is
hungry, keep scooping” in order for it to make sense.

Simple boolean tests

You can do a simple boolean test by checking the value of a variable using a
comparison operator. These include:

< (less than)

> (greater than)

== (equality) €— You use two equals signs to fest for equality, not one.
<= (less than or equal to)

>= (greater than or equal to)

Notice the difference between the assignment operator (a single
equals sign) and the equals operator (two equals signs).

Here’s some example code that uses boolean tests:

var x = 4 //Assign 4 to x

while (x > 3) {
//The loop code will run as x is greater than 4
println (x)

x =x -1
}
var z = 27
while (z == 10) {

//The loop code will not run as z is 27
println(z)
z =2z + 6

you are here » 17

going loopy

A loopy example

Let’s update the code in App.kt with a new version of the main
function. We’ll update the main function so that it displays a
message before the loop starts, each time it loops, and when
the loop has ended.

Update your version of App.kt so that it matches ours below
(our changes are in bold):

fun main(args: Array<String>) {

Build application
Add function

[T KK

~priasin i Reury—C— Delete this line, as it's no longer needed.

var x = 1

println("Before the loop. x = $x.")
while (x < 4) {
println("In the loop. x = $x.")
x=x+1
}
println("After the loop. x = $x.")

}

Let’s try running the code.

Test drive

Run the code by going to the Run menu, and selecting the
Run ‘AppKt’ command. The following text should appear
in the output window at the bottom of the IDE:

Before the loop. x = 1.
In the loop. x = 1.

In the loop. x=2.

In the loop. x = 3.
After the loop. x =4.

Now that you've learned how while loops and boolean
tests work, let’s look at i f statements.

18 Chapter 1

This prints out the value of x.

> Update function
Use REPL
MyFirstApp
L
src
-
App.kt

print vs. pring[n

You've probably noticed us
switching between print and
println. What's the difference?

printlninserts a new line

(think of println as print new

line) while print keeps printing to the
same line. If you want each thing to print
out on its own line, use println. If you
want everything to stick together on the
same line, use print.

getting started
Build application
Add function
Update function

Conditional branching

. S . . Use REPL

An 1if test is similar to the boolean test in a while loop except

instead of saying “while there’s still ice cream...” you say “if there’s

still ice cream...”

So that you can see how this works, here’s some code that prints a

Stringif one number is greater than another:

fun main(args: Array<String>) {

,‘(: You J“S{" have val x = 3

one line of tode i 1

. . va =

in the if bloek, Y

You €an leave out if (x> y) _{

the eurly braces. println("x is greater than y") <— [his line is only exetuted

\} if % is greater than y.

println("This line runs no matter what")

The above code executes the line that prints “x is greater than

" only if the condition (x is greater than y) is true. Regardless

of whether it’s true, though, the line that prints “This line runs
no matter what” will run. So depending on the values of x and vy,
either one statement or two will print out.

We can also add an else to the condition, so that we can say
somthing like, “7f there’s still ice cream, keep scooping, else
(otherwise) eat the ice cream then buy some more”.

Here’s an updated version of the above code that includes an else:

fun main(args: Array<String>) {
val x = 3
val v =1
if (x > y) {
println("x is greater than y")
} else {
println("x is not greater than y") <=— This line is only exetuted if
} the tondition % >y is not met.

println("This line runs no matter what")

In most languages, that’s pretty much the end of the story as far as
using 1 £ 1s concerned; you use it to execute code if conditions have
been met. Kotlin, however, takes things a step further.

you are here » 19

if expressions

Using if to return a value

In Kotlin, you can use if as an expression, so that it returns a
value. It’s like saying “if there’s ice cream in the tub, return one
value, else return a different value”. You can use this form of i f
to write code that’s more concise.

Let’s see how this works by reworking the code you saw on the
previous page. Previously, we used the following code to print a
String:

if (x > y) |
println("x is greater than y")
} else {
println("x is not greater than y")

}

We can rewrite this using an i f expression like so:

Build application
Add function
Update function
Use REPL

[T KK

When you use if as an
expression, you MUST

include an else clause.

println(if (x > y) "x is greater than y" else "x is not greater than y")

The code:

if (x > y) "x is greater than y" else "x is not greater than y"

is the 1 £ expression. It first checks the 1£’s condition: x > y.

If this condition is true, the expression returns the String “xis
greater than y”. Otherwise (e1se) the condition is false, and the
expression returns the String “x is not greater than y” instead.

The code then prints the value of the 1 f expression using
println:

println(if (x > y) "x is greater than y" else "x is not greater than y")

So if x is greater than y, “x is greater than y” gets printed. If it’s
not, “x is not greater than y” gets printed instead.

As you can see, using an if expression in this way has the same
effect as the code you saw on the previous page, but it’s more
concise.

We’ll show you the code for the entire function on the next page.

20 Chapter 1

€ is greater than ¥, H\c"codc .
prints “x is greater than ¥ 1€« is
not greater than Y, ﬂ\clcodc prints
“X is not greater than y" instead.

getting started

Build application
Add function

Update the main function Update function

Let’s update the code in App.kt with a new version of the Use REPL

main function that uses an if expression. Replace the
code in your version of App.kt so that it matches ours below:

fun main(args: Array<String>) {
N T
Wwhite—Ee< 4T

— Delete these lines.

~N—

val x = 3
val y = 1
println(if (x > y) "x is greater than y" else "x is not greater than y")

println("This line runs no matter what")

Let’s take the code for a test drive.

Test drive

Run the code by going to the Run menu, and selecting the
Run AppKt’ command. The following text should appear
in the output window at the bottom of the IDE:

x is greater than y
This line runs no matter what

Now that you’ve learned how to use i £ for conditional
branching and expressions, have a go at the following
exercise.

you are here » 21

code magnets

Code Magnets

Somebody used fridge magnets to write a useful new main
function that prints the St ring“YabbaDabbaDo". Unfortunately, a
freak kitchen whirlwind has dislodged the magnets. Can you piece
the code back together again?

You won't need to use all of the magnets.

fun main(args: Array<String>) {

var x = 1

(1if (x ==) "Yab" else "Dab")

if (x ==) println("Do")

1
ER iy S
J)

— Answers on page 29.

22 Chapter 1

getting started

Build application

Add function

Using the Kotlin interactive shell Update function

Use REPL

We’re nearly at the end of the chapter, but before we go, there’s one
more thing we want to introduce you to: the Kotlin interactive shell,

or REPL. The REPL allows you to quickly try out snippets of code < REPL stands for Read—Eval—Print
outside your main code. Loop, but nobod\/ ever ealls it that.

You open the REPL by going to the Tools menu in Intelli] IDEA
and choosing Kotlin — Kotlin REPL. This opens a new pane at the
bottom of the screen like this:

To use the REPL, simply type the code you want to try out into the
REPL window. As an example, try adding the following:

println("I like turtles!")

Once you've added the code, execute it by clicking on the large green
Run button on the left side of the REPL window After a pause, you
should see the output “I like turtles!” in the REPL window:

—

? Run: » Kotlin REPL (in module MyFirstApp) o —

E c [Erd .-’Lihrary.’JavaiJi?vav:i.rtqall"lach:i.nes.-’jdkl.a.&_laz.jdk.’tontents.’Hnme.’hin.-'java

= Welcome to Kotlin version 1.3.8-rc-146 (JRE 1.8.0_102-bld4)

~i| Type :help for help, :quit for quit

* x

) x X —Type any code you want to try out into the REPL here. Ours

£ is showing hint text telling us what keys to press to exetute

;:_: the tode in the REPL, but You Jus{: overwrite this text.

B Terminal = 0: Messages b 4:Run = 6:TODD) Event Log
I Compilation completed successfully in 12 s 161 ms (2 minutes ago) 32 njfa UTF-8% & @

Run: . Kotlin REPL (in module MyFirstApp) o -
Cliek s EF /Library/Java/JavaVirtualMachines/jdk1.8.8_102.jdk/Contents/Home/bin/java ...
on {:his E(,L Welcome to Kotlin version 1.3.8-rc-146 (JRE 1.8.0_1082-bl4)
ﬁ" S Type :help for help, :quit for guit
button to 22) '
cxcéu{:c :" x| » println{"I like turtles!")
tode in I like turtles!
the REPL | S Here's our output
. -]
=1)
g Once you've executed the code you want to
3 ‘E\r\/ out, the REPL’s rcady for You to add
™ a new snippet. We'll do that next.
M Terminal = 0: Messages P, 4:Run i= B TODD) Event Log
O] Compilation completed successfully in 12 s 161 ms (4 minutes ago) 1:1 nja UTF-8% ‘i %

you are here »

23

using the REPL

Build application
Add function

You can add wulti-line code e o
snippets to the REPL Use REPL

As well as adding single-line code snippets to the REPL, as We've tompleted all the
we did on the previous page, you can try out code segments steps for this ehapter-.
that take up multiple lines. As an example, try adding the

following lines to the REPL window:

val x = 6
val vy = 8 d
println (if (x > y) % else y) eT‘“S ?Y‘.lnb {')\C largcr O‘C £W° numbcrs, * an \/

When you execute the code, you should see the output 8 in
the REPL like this:

Run: . Kotlin REPL (in module MyFirstApp) o —

c [/Library/Java/JavaVirtualMachines/jdk1.8.0_102.jdk/Contents/Home/bin/java ...
- Welcome to Kotlin version 1.3.8-rc-146 (JRE 1.8.0_102-b14)

Type :help for help, :quit for quit
These look like | | * ’

smal| versions E X/(P println{"I like turtles!")
S I like turtles!
of the exee s
; u{:cqi)
IA‘H:on, but ol $ 2 val x = 6
) * val vy = 8
"f::cy rcd"°££ println{if (x > y) x else y)
ey inditate - 8 -
whic);\ blocks 3 Y This is the output of our
tode \/ou'vc £ setond tode scgmcn‘l:-
w1
exetuted. ~

M Terminal = 0: Messages I-. 4: Run = B TODOD 0 Event Log

Ll Compilation completed successfully in 12 s 161 ms (7 minutes agao) 11 njfa UTF-8% T &

It’s exercise time

Now that you've learned how to write Kotlin code and seen
some of its basic syntax, have a go at the following exercises.
Remember, if you’re unsure, you can try out any code
snippets in the REPL.

24 Chapter 1

BE ﬂy@ Com 11@1?

Each of the Kotlin files on this page

' represents a complete source file. Your

.\ job is to play like you're the compiler
g and determine whether each

of these files will compile.

If they won’t compile, how

wou]d you fix them?

Q fun main(args: Array<String>) {
var x = 1
while (x < 10) {
if (x > 3) {
println("big x")

G fun main(args: Array<String>) {
val x = 10
while (x > 1) {

x =x -1

if (x < 3) println("small x")

G fun main(args: Array<String>) {
var x = 10
while (x > 1) {
x=x -1

print (if (x < 3) "small x")

getting started
Build application
Add function
Update function
Use REPL

you are here » 25

be the compiler solution

BE the Compiler Sofution
Each of the Kotlin files on this page
g represents a complete source file. Your

\ job is to play like you're the compiler

) and determine whether each
of these files will compile.
If they won’t compile, how
wou]d you fix them?

Q fun main(args: Array<String>) {

Va% x =1 This will compile and vun with no output, but
Whlli _fi:_ }O) { without a line added to the program, it will

vun forever in an infinite “while” loop.
I ever in a te “while” loop

println("big x")

G fun main(args: Array<String>) {

L VI x = 10 This won't compile. % has been defined
while (x > 1) { using val, which means that its value
x =x -1 can't thange. The code therefore can't
if (x < 3) println("small x") update the value of x inside the “while”

loop. To fix, thange val to var.

G fun main(args: Array<String>) {

var x = 10

while (x > 1) { This won't tompile as it uses an if
x = x - 1 expression with no else ¢lause. To
print (if (x < 3) "small x" else “big) fix, add the else ¢lause.

26 Chapter 1

getting started

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you'd see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the

Mixed candidate blocks of code with their matching output.
Messages
fun main(args: Array<sString>) {
var x = 0
var y = 0
while (x < 5) {
é/Thc tandidate
tode goes heve.
print ("$xSy ")
x=x+1
}
}
Candidates: Possible output:
Yy=X-Y 00 11 23 36 410
VSRV 00 11 22 33 44
Mateh eath
cazdidaiccmc T
with one : - 00 11 21 32 42
the possble (AE(y >4y =y =2
ou{:\?u{35~
x=x+2 03 15 27 39 411
= + X
. 22 57
if (y <5) {
x=x+1
if (y<3) x=x-1 02 14 25 36 47
}
y=y + 3 03 26 39 412

you are here » 27

mixed messages solution

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you'd see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the

Mixed candidate blocks of code with their matching output.
Messages
Solution | |
fun main(args: Array<String>) {
var x = 0
var y = 0
while (x < 5) {
print ("S$xSy ")
x =x + 1
}
}
Candidates: Possible output:
y=X-Y 00 11 23 36 410
y=y +x
00 11 22 33 44
y=y + 3
if (y>4) y=y -1 00 11 21 32 42
= 2 03 15 27 39 411
y =y +x \
. 22 57
if (y < 5) {
x=x+1
if (y<3) x=x-1 02 14 25 36 47
} \
y=y + 3 03 26 39 412
28 Chapter 1

Code Magnets Solution

Somebody used fridge magnets to write a useful new main
function that prints the St ring“YabbaDabbaDo". Unfortunately, a
freak kitchen whirlwind has dislodged the magnets. Can you piece
the code back together again?

You won't need to use all of the magnets.

fun main(args: Array<String>) {

var x = 1

while (x <) {
(if (x ==) "Yab" else "Dab")

x =x + 1

if (x ==) println ("Do")

-
= 2 9

You didn't need to -

use these magnets.

getting started

you are here »

29

&
=
=
()

kotlin

30

QBUI.I.ET POINTS

Your Kotlin Toolbox

You’ve got Chapter 1 under
your belt and now you’ve

added Kotlin basic syntax to
your toolbox.

You ¢an download
the full code for
the ehapter from
htps// Linyurl- tom/
HFKotlin.

——————————————

Use fun to define a function.

Every application needs a function named
main.

Use // to denote a single-lined comment.

A stringis a string of characters. You
denote a St ring value by enclosing its
characters in double quotes.

Code blocks are defined by a pair of curly
braces { }.

The assignment operator is one equals
sign =.
The equals operator uses two equals signs

Use var to define a variable whose value
may change.

Use val to define a value whose value
will stay the same.

Awhile loop runs everything within its
block so long as the conditional test is true.

If the conditional test is false, the while
loop code block won't run, and execution
will move down to the code immediately
after the loop block.

Put a conditional test inside parentheses
().

Add conditional branches to your code
using i f and else. The else clause is
optional.

You can use 1if as an expression so that
it returns a value. In this case, the e1se
clause is mandatory.

2 basic types and variables

*
+ Being a Variable *

T don't think
you're my type.

T'd love fo take you
out, but Mommy says I
must be home by 6pm.

There’s one thing all code depends on—variables.

So in this chapter, we’re going to look under the hood, and show you how Kotlin
variables really work. You'll discover Kotlin’s basic types, such as Ints, Floats and
Booleans, and learn how the Kotlin compiler can cleverly infer a variable’s type from
the value it’s given. You'll find out how to use String templates to construct complex
Strings with very little code, and you'll learn how to create arrays to hold multiple values.
Finally, you’ll discover why objects are so important to life in Kotlinville.

this is a new chapter

31

variable declarations

Your code needs variables

So far, you've learned how to write basic statements, expressions,
while loops and 1if tests. But there’s one key thing we need to look
at in order to write great code: variables.

You've already seen how to declare variables using code like:

var x = 5

The code looks simple, but what’s going on behind the scenes?

A variable is like a cup

When you think of a variable in Kotlin, think of a cup. Cups come
in many different shapes and sizes—big cups, small cups, the giant
disposable cups that popcorn comes in at the movies—but they all
have one thing in common: a cup holds something,

Declaring a variable is like ordering a drink from Starbucks. When
you place your order, you tell the barista what type of drink you want,
what name to shout out when it’s ready, and even whether to use a
fancy reusable cup instead of one that just gets thrown away. When
you declare a variable using code like:

var x = 5
you're telling the Kotlin compiler what value the variable should

have, what name to give it, and whether the variable can be reused
for other values.

In order to create a variable, the compiler needs to know three things:

o What the variable’'s name is.

This is so we can use that name in our code.

o Whether or not the variable can be reused.

,k— A variable is like a eup.
[£ holds something,

If we initially set your variable to 2, for example, can we later set it to 3?

Or should it remain 2 forever?

o What type of variable it is.

Is it an integer? A String? Or something more complex?

You've already seen how to name a variable, and how to use the
val and var keywords to specify whether it can be reused for other
values. But what about a variable’s type?

32 Chapter 2

basic types and variables

What happens when you declare a variable

The compiler really cares about a variable’s type so that it can
prevent bizarre or dangerous operations that might lead to bugs.

It won’t let you assign the String “IFish” to an integer variable, TO Create a Varia]:)le,
for example, because it knows that it’s inappropriate to perform .

mathematical operations on a String. tlle COmpller nee({s
For this type-safety to work, the compiler needs to know the type 10 l(l'lOW lts name

of the variable. And the compiler can infer the variable’s ’
type from the value that’s assigned to it. tyPe anc[Wlletllel" it

Let’s see how this works.

can he reused.
The valuve is transformed into an object...

When you declare a variable using code like:

var x = 5

the value you’re assigning to the variable is used to create a new

object. In this example, you’re assigning the number 5 to a new

variable named x. The compiler knows that 5 is an integer, and

so the code creates a new Int object with a value of 5: <<—__)
AWc e going to look at some d'..ﬁ'crcn{: ‘{:\/Pcs
in more detail a couple of pages ahead.

5

Int

..and the compiler infers the variable’s type from that of the object

The compiler then uses the type of the object for the type of the
variable. In the above example, the object’s type is Int, so the
variable’s type 1s Int as well. The variable stays this type forever.

'<_‘ The tompiler knows that You need a

X vaviable with a {:\/?c of Int so that
[it matehes the type of the object
var Int

Next, the object is assigned to the variable. How does this
happen?

you are here » 33

val and var

The variable holds a reference to the object

When an object is assigned to a variable, the object itself doesn’t go
into the variable. A reference to the object goes into the variable instead:

iﬂ
Q?—“
@

varx=5

Int

var Int

As the variable holds a reference to the object, this gives it access to the
object.

val vs. var revisited

If you declare the variable using val, the reference to the object stays
in the variable forever and can’t be replaced. But if you use the var

keyword instead, you can assign another value to the variable. As an
example, if we use the code:

X = 6
to assign a value of 6 to x, this creates a new Int object with a value of 6,
and puts a reference to it into x. This replaces the original reference:

x=6

We tan veplace the
vefevente held by the
vaviable because it's been

detlaved using var. This S var Int
wouldn't be possible if

we'd declaved the variable

us'm5 val.

Int

Int

Now that you’ve seen what happens when you declare a variable, let’s

look at some of Kotlin’s basic types for integers, floating points, booleans,
characters and Strings.

34 Chapter 2

basic types and variables

Kotlin’s basic types

Integers

Kotlin has four basic integer types: Byte, Short, Int and Long.
Each type can hold a fixed number of bits. Bytes can hold 8 bits, for
example, so a Byte can hold integer values from -128 to 127. Ints,
on the other hand, can hold 32 bits, so an Int can hold integer
values from -2,147,483,648 to 2,147,483,647.

By default, if you declare a variable by assigning an integer to it using
code like this:

var x = 1
. . . .]

you will create an object and variable of type Int. If the integer — Hexade(ﬂmal and
you assign is too large to fit into an Int, it will use a Long B°n 1 loel’S
instead. You will also create a Long object and variable if you 1 al’}’ N m
add an “L” to the end of the integer like this: * Assign a binary number

var hugeNumber = 6L by prefixing the number

with Ob.

Here’s a table showing the different integer types, their bit sizes % = 0b10

and value ranges:

* Assign a hexadecimal number by

Type Bits Value range prefixing the number with 0x.
Byte 8 bits -128 to 127 y = OxAB
Short 16 bits -32768 to 32767
Int 32 bits -2147483648 to 2147483647

* ! .
Long 64 bits -huge to (huge - 1) Octal numbers aren’t supported

Floating points

There are two basic floating-point types: Float and Double. Floats
can hold 32 bits, whereas Doubles can hold 64 bits.

By default, if you declare a variable by assigning a floating-point number
to it using code like: ,

var x = 123.5 f
— S—m®

you will create an object and variable of type Double. If you add an “F Float Double

or “f” to the end of the number, a Float will get created instead:

var x = 123.5F

you are here » 35

basic

Booleans

Boolean variables are used for values that can either be true
or false. You create a Boolean object and variable if you
declare a variable using code like this:

var isBarking = true

var isTrained = false

Characters and Strings

There are two more basic types: Char and String.

Char variables
are used for single

Char variables are used for single characters. You create a Char

variable by assigning a character in single quotes like this: Cllaracters. Strlng

var detrer = variables are used for
String variables are usedlto hold .multlple chgrgcters strung mUItl Ple Cllaractel"s
together. You create a String variable by assigning the
characters enclosed in double quotes: strung togetllel".

var name = "Fido"

You said the compiler decides what the variable's
type should be by looking at the type of value
that's assigned to it. So how do I create a Byte or
Short variable if the compiler assumes that small
integers are Ints? And what if T want to define a
variable before I know what value it should have?

In these situations, you need to
explicitly declare the variable’s type.

We’ll look at how you do this next.

36

basic types

How to explicitly declare a variable’s type

So far, you've seen how to create a variable by assigning a value

to it, and letting the compiler infer the type from the value. But
there are times when you need to explicitly tell the compiler what type
of variable you want to create. You may want to use Bytes or Shorts
instead of Ints, for example, because they are more efficient. Or
you may want to declare a variable at the start of your code, and
assign a value to it later on.

You explicitly declare a variable’s type using code like this:

var smallNum: Short

Instead of letting the compiler infer the variable’s type from its
value, you put a colon (:) after the variable’s name, followed by the
type you want it to be. So the above code 1s like saying “create a
reusable variable named smallNum, and make sure it’s a Short”.

Similarly, if you want to declare a Byte variable, you use code like
this:

var tinyNum: Byte

Peclaring the type ANP assigning a value

The above examples create variables without assigning values to
them. If you want to explicitly declare a variable’s type and assign
a value to it, you can do that too. As an example, here’s how you
create a Short variable named z, and assign it a value of 6:

var z: Short = 6

This example creates a variable named z with a type of Short.
The variable’s value, 6, is small enough to fit into a Short, so

a Short object with a value of 6 is created. A reference to the
Short object is then put into the variable.

Short

var Short

When you assign a value to a variable, you need to make sure that
the value is compatible with the variable. We’ll look at this in more
detail on the next page.

By explicitly detlaring a
'k——— vaviable’s type, you give

smally the compiler just enough

Nunig information to eveate the

~...-’ vaviable: its name, its ’c\/yc
var Short and whether it ¢an be veused:

var Byte

Assigning an initial value
to a variable is called

initialization. You MUST

initialize a variable hefore

you use it, or you’ll get

a COmPiI.et' error. The

Jr'ollowing coJe, for example,

won't c0m]oile as x hasn't

heen heen assignecl a value:
var x: Int % hasn't been

assigned a value,
] =+ the tom il

vary =x+6 el

37

type

Use the right value for the variable’s type

As we said earlier in the chapter, the compiler really cares

about a variable’s type so that it can stop you from performing

inappropriate operations that may lead to bugs in your code. As
an example, if you try to assign a floating-point number such as
3.12 to an integer variable, the compiler will refuse to compile

your code. The following code, for example, won’t work:

var x: Int = 3.12

The compiler realizes that 3.12 won’t fit into an Int without

The Kotlin compiler

will only let you assign
a value to a variable if
the value and variable

some loss of precision (like, everything after the decimal point), so

it refuses to compile the code.

Similarly, if you try put a large integer into a variable that’s too
small for it, the compiler will get upset. If you try to assign a value
of 500 to a Byte variable, for example, you’ll get a compiler

€rror:

//This won't work

var tinyNum: Byte = 500

So in order to assign a literal value to a variable, you need to

are com]oatil)le. If the
value is too large or it's
the wrong ty])e, the

code won't com]oile.

make sure that the value is compatible with the variable’s type.
This is particularly important when you want to assign the value

of one variable to another. We’ll look at this next.

Dum

Q,: In Java, numbers are primitives, so a variable holds the
actual number. Is that not the case with Kotlin?

A: No, it's not. In Kotlin, numbers are objects, and the variable
holds a reference to the object, not the object itself.

Q: Why does Kotlin care so much about a variable’s type?

A: Because it makes your code safer, and less prone to bugs. It
might sound picky, but trust us, it's a good thing.

38

tlverelgre no

Questions

Q: In Java, you can treat char primitives as numbers. Can
you do the same for Chars in Kotlin?

A: No, Chars in Kotlin are characters, not numbers. Repeat
after us, Kotlin isn’t Java.

Q,: Can | name my variables anything | want?

A: No. The rules are a little flexible, but you can't, say, give your
variable a name that's a reserved word. Naming your variable while,
for example, is just asking for trouble. But the great news is that if
you try and give a variable a name that's illegal, IntelliJ IDEA will
immediately highlight it as a problem.

basic types and variables

Assigning a value to another variable

When you assign the value of one variable to another, you need
to make sure that their types are compatible. Let’s see why by
working through the following example:

var x = 5
var y = x
var z: Long = x
O verxes .
. . @& 5
This creates an Int variable named x, and |
an Int object with a value of 5. x holds a X
reference to that object. | Int
var Int
e vary = x
s
The compiler sees that x is an Int object, so o> | 5
it knows that y must also have a type of Int. X
Rather than create a second Int object, the |
value of variable x is assigned to variable y. But var Int Int
what does this mean? It’s like saying “Take the Q}Q\'
bits in x, make a copy of them, and stick that 2 “,
copy into y.” This means that both x and y ‘
contain references to the same object. y i
var Int
e var z: Long = x
- . I'm sorry, you're
This line tells the compiler that you want to 'u?’r noo 1'er'\ yiy e
create a new Long variable, z, and assign it the J Y Type.
value of x. But there’s a problem. The x variable o o
contains a reference to an Int object with a
value of 5, not a Long object. We know that the '
object has a value of 5, and we know that 5 fits N f 8
into a Long object. But because the z variable is e >
a different type to the Int object, the compiler var Long Int

gets upset and refuses to compile the code.

So how do you assign the value of one variable to another if the
variables are of different types?

you are here » 39

type

We need to convert the value

Suppose you want to assign the value of an Int variable to a

Long. The compiler won’t let you assign the value directly as the
two variables are different types; a Long variable can only hold a
reference to a Long object, so the code won’t compile if you try and
assign an Int to it.

In order for the code to compile, you first have to convert the value
to the right type. So if you want to assign the value of an Int
variable to a Long, you first have to convert its value to a Long.
And you do this using the Int object’s functions.

An object has state and behavior

Being an object means that it has two things: state and behavior.

An object’s state refers to the data that’s associated with the object: its
properties and values. A numeric object, for example, has a numeric
value, such as 5, 42 or 3.12 (depending on the object’s type). A Char
object has a value that’s a single character. A Boolean is either
trueor false.

An object’s behavior describes the things the object can do, or that can
be done to it. A String can be capitalized, for example. Numeric
objects know how to perform basic math, and convert their value
into an object of a different numeric type. The object’s behavior is
exposed through its functions.

How to convert a numeric value to another type

In our example, we want to assign the value of an Int variable to
a Long. Every numeric object has a function called toLong (),
which takes the object’s value, and uses it to create a new Long
object. So if you want to assign the value of an Int variable to a
Long, you use code like this:

var x = 5

var z: Long = x.toLong() Thisis the dot ovcrahoh

The dot operator (.) allows you to call an object’s functions. So
x.toLong () 1s like saying “Go to the object that variable x has a
reference to, and call its toLong () function”.

We’ll walk through what the code does on the next page.

40

I have state and
behavior: my value is
5, and I know how to
do basic sums.

Int

Every numeric type has
the Jf'ollowing conversion
functions: toByte(),
toShort(), tolnt(), toLong(),
toFloat() and toDoublel).

basic types and variables
What happens when you convert a value
o varx =95

This creates an Int variable named x, and an Int object with a value of 5. x holds a
reference to that object.

Int
var Int

e var z: Long = x.toLong)

This creates a new Long variable, z. The toLong () function on x’s object is called, and

this creates a new Long object with a value of 5. A reference to the Long object gets put
mto the z variable.

5
The {',oLong() ("unc{:ion
eveates a new Long
toLong() ob\')cé‘[', with the same
value as the [nt.
5

var Long

This approach works well if you want to convert a value into an

object that’s larger. But what if the new object is too small to contain
the value?

you are here » 41

more

Watch out for overspill

Trying to put a large value into a small variable is like trying
to pour a bucket-load of coffee into a tiny teacup. Some of the
coffee will fit into the cup, but some will spill out.

Suppose you want to put the value of a Long into an Int.
As you saw earlier in the chapter, a Long can hold larger
numbers than an Int.

If the Long’s value is within the range of values that an Int
will hold, converting the value from a Long to an Int isn’t a
problem. As an example, converting a Long value of 42 to an
Int will give you an Int with a value of 42:

var x = 42L

var y: Int = x.toInt() //Value is 42

But if the Long’s value is too big for an Int, the compiler chops .
up the value, and you’re left with some weird (but calculable) &— |£ involves signs, bits, binary and other geekery

number. As an example, if you try to convert a Long value that we've not going into hc:c- IFI Yyoure rca”\/"
of 1234567890123 to an Int, your Int will have a value of curious, however, searth for “two's complement”.
1912276171:

var x = 1234567890123
var y: Int = x.toInt() //Value is 1912276171!

The compiler assumes this is deliberate, so the code compiles. And
let’s say you have a floating-point number, and you just want the
whole number part of it. If you convert the number to an Int, the
compiler will chop off everything after the decimal point:

var x = 123.456
var y: Int = x.toInt() //Value is 123

The key thing is that when you’re converting numeric values from
one type to another, make sure the type is large enough for the
value or you may get unexpected results in your code.

Now that you’ve seen how variables work and have some
experience with Kotlin’s basic types, have a go at the following
exercise.

42

basic types and variables

_ G harpen your pencil
X The following main function doesn’t compile. Circle the lines that
are invalid, and say why they stop the code from being compiled.
fun main(args: Array<String>) {
var x: Int = 65.2
var isPunk = true
var message = 'Hello'

var y = 7

var z: Int =y

var s: Short

var bigNum: Long = y.toLong()
var b: Byte = 2

var smallNum = b.toShort ()

b = smallNum

isPunk = "false"

var k = y.toDouble ()

b = k.toByte ()

0b10001

0]
Il

you are here » 43

sharpen solution

_ G harpen your pencil

X SOIutmn The following main function doesn’t compile. Circle the lines that
are invalid, and say why they stop the code from being compiled.

fun main(args: Array<String>) {

var x: Int = 65.2 65.2 isn't a valid [nt value.

var isPunk = true

m Single quotes ave used to define Chas,

whith hold sihglc thavacters.

var y = 7

var z: Int =y

y =y + 50

var s: Short

var bigNum: Long = y.toLong()
var b: Byte = 2

var smallNum = b.toShort ()

smallNum is a Short, so its value tan't be assianed to a Byte variable.
isPunk is @ Boolean vaviable, so false shouldn't be entlosed in double quotes.

var k = y.toDouble ()
b = k.toByte()

0b10001

0]
Il

44 Chapter 2

basic types and variables

Store wmultiple values in an array

There’s one more type of object we want to introduce you to—the
array. Suppose you wanted to store the names of fifty ice cream
flavors, or the bar codes of all the books in a library. To do that with
variables would quickly get awkward. Instead, you can use an array.

Arrays are great if you want a quick and dirty group of things. They’re
easy to create, and you get fast access to each item in the array.

You can think of an array as being like a tray of cups, where each item

in the array is a variable:
f?: f?: f?: f?: f?:
| | | ;' | | | ;‘ | [| &<—Think of an avray as

— — being like a tray of Cups.

S S— | S—

How to create an array

You create an array using the arrayOf () function. As an example,
here’s how you use the function to create an array with three items (the
Ints 1, 2 and 3), and assign the array to a variable named myArray:

var myArray = arrayOf(l, 2, 3) O 1 O 2

You can get the value of an item in the array by referencing Notice that the avvay is
the array variable with an index. As an example, here’s how an obiett, and the vaviable
you print the value of the first item: holds a veferente to it.

println (myArray[0])
And if you want to get the size of the array, use

myArray.size

On the next page, we’ll put this together to write a serious
business application—the Phrase-O-Matic.

you are here » 45

create project

Create the Phrase-0-Matic application

We’re going to create a new application that generates useful
marketing slogans.

First, create a new project in Intelli] IDEA. To do this:

o Open Intelli] IDEA and choose “Create New Project” from the
welcome screen. This starts the wizard you saw in Chapter 1.

When prompted, choose the options to create a Kotlin project that

targets the JVM.

Name the project “PhraseOMatic”, accept the rest of the defaults, and
click on the Finish button.

© 0 O

When your new project appears in the IDE, create a new Kotlin file
named PhraseOMatic.kt by highlighting the s7¢ folder, clicking on the File
menu and choosing New — Kotlin File/Class. When prompted, name
the file “PhraseOMatic”, and choose File from the Kind option.

e 800 New Project
= Java Kotlin/JVM
2 Java FX I Kotlin/Js
Android %, Kotlin/Native

Intelli) Platform Plugin %, Kotlin (S Client/JVM Server)
IZ, Kotlin (Multiplatform Library)

M Maven
Gradle % Kotlin (Mobile Android/i0OS)
800 New Project
¢ Groovy Praject name: PhraseOMatic

Project location:

~[ldeaProjects /PhraseOMatic

Praject SDK: "= 1.8 (java version "1.8.0_102") B New...

= Empty Proje

Kotlin runtime

Use library: il KotlinJavaRuntime B Create...

Project level library KotlinJavaRuntime with 3 files will be created Configure...

800 New Kotlin File/Class

Name: PhraseOMatic

Kind: g File

Cancel

46 Chapter 2

basic types and variables

Add the code to PhraseQMatic.kt

The Phrase-O-Matic code consists of a main function that creates
three arrays of words, randomly picks one word from each, and then
joins them together. Add the code below to PhraseOMatic.kt:

fun main(args: Array<String>) {

val wordArrayl arrayOf ("24/7", "multi-tier", "B-to-B", "dynamic", "pervasive")
val wordArray2 = arrayOf ("empowered", "leveraged", "aligned", "targeted")

val wordArray3 = arrayOf ("process", "paradigm", "solution", "portal", "vision")

val arraySizel = wordArrayl.size

val arraySize2 = wordArray2.size

PhraseOMatic

val arraySize3 = wordArray3.size LD
src

val randl = (Math.random() * arraySizel).tolInt() I—

val rand?2 (Math.random () * arraySize2).tolnt()

PhraseOMatic.kt
val rand3 = (Math.random() * arraySize3).tolInt()

val phrase = "${wordArrayl[randl]} ${wordArray2[rand2]} ${wordArray3[rand3]}"
println (phrase)

You've already seen what most of the code does, but there are a

: X We need a...
couple of lines we want to draw your attention to.
First, the line = multi-tier leveraged
’ solution

val randl = (Math.random() * arraySizel).toInt() » dynamic targeted vision

generates a random number. Math. random () returns a random " 24/7 aligned paradigm

number between 0 and (almost) 1, so we have to multiply it by the = B-to-B empowered
number of items in the array. We then use toInt () to force the portal
result to be an integer.

Finally, the line

val phrase = "${wordArrayl[randl]} ${wordArray2[rand2]} ${wordArray3[rand3]}"
uses a String template to pick three words and put them together.

We’ll look at String templates on the next page, and then we’ll
show you more stuff you can do with arrays.

you are here » 47

up close

String Templates Up Close

String templates provide a quick and easy way of referring
to a variable from inside a String.

To include the value of a variable inside a String, you
prefix the variable name with a $. To include the value of an
Int variable named x inside a String, for example, you

would use:
var x = 42
var value = "Value of x is $x"

You can also use String templates to refer to an object’s
properties, or call its functions. In this case, you enclose the
expression in curly braces. As an example, here’s how you
include an array’s size in a String, and the value of its first
item:

var myArray = arrayof(l, 2, 3)

var arraySize = "myArray has ${myArray.size} items"

var firstItem = "The first item is ${myArray[O0]}"

You can even use String templates to evaluate more
Linside Notice how {}'s entlose

the expression we want to
evaluate inside the String.

complex expressions from inside a String. Here’s how, for
example, you would use an if expression to include different
text depending on the size of the array myArray:

var result = "myArray is ${if (myArray.size > 10) "large" else "small"}"

So String templates allow you to construct complex
Strings with very little code.

therejare no
Dumb Questions

If you're using version 1.3 or above, you can use Kotlin's built-in
Random functions instead. The following code, for example, uses
Random's nextInt () function to generate a random Int:

Q: IsMath.random/() the standard way of getting a
random number in Kotlin?

A: It depends which version of Kotlin you're using. kotlin.random.Random. nextInt ()

Before version 1.3, Kotlin didn’t have a built-in way of generating
its own random numbers. For applications running on a JVM,
however, you could use the random () method from the Java
Math library, as we have.

In this book, we've decided to continue using
Math.random () to generate random numbers, as this
approach works with all versions of Kotlin running on the JVM.

48 Chapter 2

basic types

The compiler infers the array’s type from its values

You've seen how to create an array and access its items, so let’s look at
how you update its values.

Suppose you have an array of Intsnamed myArray:

var myArray = arrayOf(l, 2, 3)

If you want to update the second item so that it has a value of 15, you
use code like the following:

myArray[l] = 15

But there’s a catch: the value has to be the right type.

The compiler looks at the type of each item in the array, and infers
what type of items the array should contain forever. In the above
example, we've declared an array using Int values, so the compiler
infers that the array can only hold Ints. If you try and put anything
other than an Int into the array, your code won’t compile:

myArray[l] = "Fido" //This won't compile

How to explicitly define the array’s type

Just as we did with other variables, you can explicitly define what type
of items an array should hold. As an example, suppose you wanted to
declare an array that holds Byte values. To do this, you would use
code like the following:

var myArray: Array<Byte> = arrayOf(l, 2, 3)

The code Array<Byte> tells the compiler that you want to create
an array that holds Byte variables. In general, simply specify the

type of array you want to create by putting the type between the angle
brackets (<>).

Arrays hold items of
a specific type. You
can either let the
COmPiler infer the
type from the array’s
values, or explicitly
define the type using
Array(Type).

Byte

The vaviable has a type of
Awa\/<B\/Jcc>, so the arvay
contains veferentes to B\/{C

ob\')ct{‘,5~ 49

var arrays

var means the variable can point to a different array

There’s one final thing we need to look at: what effect val and var
have when you declare an array:.

As you already know, a variable holds a reference to an object.
When you declare a variable using var, you can update the
variable so that it holds a reference to a different object instead. If
the variable holds a reference to an array, this means that you can
update the variable so that it refers to a different array of the same
type. As an example, the following code is perfectly valid and will
compile:

var myArray = arrayOf(l, 2, 3)

myhrray = arrayOf (4, 5)—This is a brand-new arvay.

Let’s walk through what happens.

o var myArray = arrayOf(1, 2, 3) 1 O 2
This creates an array of Ints, and a O
variable named myArray that holds a
reference to it.

>
(ek ?@?

var Array<iInt>

e myArray = array0f(4, 5)

This creates a new array of Ints. A reference
to the new array gets put into the myArray
variable, replacing the previous reference.

So what happens if we use the variable using val instead?

50 Chapter 2

basic types and variables

val means the variable points to the same array forever...

When you declare an array using val, you can no longer update
the variable so that it holds a reference to a different array. The
following code, for example, won’t compile:

val myArray = arrayOf(l, 2, 3)))
1€ you declave an arvay vaviable using val, you

myArray = arrayof(4, 5, & eant get it to vefer to a diffevent avray.

Once the variable is assigned an array, it holds a reference to that
array forever. But even though the variable maintains a reference

to the same array, the array itself can still be updated. D eClar lng a var lal)le

..but you can still update the variables in the array using val means that

9
When you declare a variable using val, you're telling the you cant reuse tl‘e
compiler that you want to create a variable that can’t be reused for .
other values. But this instruction only applies to the variable itself. var lal)l’e {OI' aﬂotllel'
If the variable holds a reference to an array, the items in the array

can still be updated. ol’]‘*Ct You can,

As an example, suppose you have the following code: however ’ stlu, UPC[ate
val myArray = arrayOf (1, 2, 3) tlle Ol)ject itsel{.

myArray[2] = 6 <—This updates the third item in the array.

This creates a variable named myArray that holds a reference

to an array of Ints. It’s declared using val, so the variable must
hold a reference to the same array for the duration of the program.
The third item in the array is then successfully updated to 6, as the
array itself can be updated:

R “,
my . Int
Array
6
N —
val Array<Int>
Int

The arvay itself can still be
u?da‘{:cd, even {')\ough the

Now that you know how arrays work in Kotlinville, have a go at _
vaviable is declared using val.

the following exercises.

you are here » 51

be the compiler

BE t}y@ (om ﬂer

Each of the Kotlin files on this page
g Trepresents a complete source file. Your
.\ job is to play like you're the compiler
‘ and determine whether each
of these files wil] compile
and run without errors. If
they won't, how would you
fix them?

e fun main(args: Array<String>) {

val hobbits = arrayOf ("Frodo", "Sam", "Merry", "Pippin")

var x = 0;

We want to print a line for

eath name in the hobbits array.
while (x < 5) {

println("${hobbits[x]} is a good Hobbit name")

x =x + 1

e fun main(args: Array<String>) {

val firemen = arrayOf ("Pugh", "Pugh", "Barney McGrew", "Cuthbert", "Dibble", "Grub")
var firemanNo = 0;

while (firemanNo < 6) {

println ("Fireman number $firemanNo is S$firemen[firemanNo]")

firemanNo = firemanNo + 1

/ We want to print a line for eath
Liveman in the Livemen avray:

—— Answers on page 55.

52 Chapter 2

basic types and variables

(@gf“ Code Magnets

N
/—_@ A working Kotlin program is all scrambled up on the fridge. Can
you reconstruct the code snippets to make a working Kotlin
function that produces the following output:
Fruit = Banana
Fruit = Blueberry
Fruit = Pomegranate
Fruit = Cherry
in this space.
fun main(args: Array<String>) { \/Thc magncﬁs need to 9o in this sp

inds = arrayOf (1, 3, 4, 2) - -
lw println("Fruit = §{fruit[yl}")

val fruit = arrayOf ("Apple", "Banana", "Cherry", "Blueberry",

"Pomegranate")

— Answers on page 56.

you are here » 53

mixed references

A short Kotlin program is listed below. When the line / /Do stuffis
reached, some objects and variables have been created. Your task is to
determine which of the variables refer to which objects by the time the
/ /Do stuff lineis reached. Some objects may be referred to more
than once. Draw lines connecting the variables to their objects.

Mixed
Refel‘ences fun main(args: Array<String>) {
val x = arrayOf (0, 1, 2, 3, 4)
x[3] = x[2]
x[4] = x[0]
x[2] = x[1]
x[1] = x[0]
x[0] = x[1]
x[4] = x[3]
x[3] = x[2]
x[2] = x[4]
//Do stuff
}
Variables: Objects:
Mateh each variable 8
. . P> 0
to its ob\)cc{:- ,
x[0]
|
$
TQ@», O 1
x[1]
|
x[2] .‘
|
x[3]
|
S
5 O
x[4]

54 Chapter 2

basic types and variables

BE the Compiler Sefufion
Each of the Kotlin files on this page
| represents a complete source file. Your
L job is to play like you're the compiler

‘ and determine whether each
of these files wil] compile
and run without errors. If

they won't, how would you
fix them?

Q fun main(args: Array<String>) {

val hobbits = arrayOf ("Frodo", "Sam", "Merry", "Pippin")

= 0; . .
var x The tode tompiles, but produces an error when it vuns. Remember

. that arays start with item O, and end with item (size - |).
while (x <-5~4) {

println("${hobbits[x]} is a good Hobbit name")

x =x + 1

e fun main(args: Array<String>) {

val firemen = arrayOf ("Pugh", "Pugh", "Barney McGrew", "Cuthbert", "Dibble", "Grub")
var firemanNo = 0;

while (firemanNo < 6) {

println("Fireman number $firemanNo is ${firemen[firemanNo]}W

firemanNo = firemanNo + 1

You need Lu\rl\/ braces around fivemenlfiremanNoJ in
order 4o print the name of eath fiveman.

you are here » 55

magnets solution

Code Magnets Solution

A working Kotlin program is all scrambled up on the fridge. Can
you reconstruct the code snippets to make a working Kotlin
function that produces the following output:

Fruit = Banana
Fruit = Blueberry
Fruit = Pomegranate
Fruit = Cherry

fun main(args: Array<String>) {

val index = arrayOf(l, 3, 4, 2)

val fruit = arrayOf ("Apple"

var y: Int !

while (x < 4) {

, "Banana", "Cherry", "Blueberry", "Pomegranate")

Y = index[x]

println("Fruit = ${fruitlyl}")

56 Chapter 2

basic types and variables

A short Kotlin program is listed below. When the line / /Do stuffis
reached, some objects and variables have been created. Your task is to
determine which of the variables refer to which objects by the time the
/ /Do stuff lineis reached. Some objects may be referred to more
than once. Draw lines connecting the variables to their objects.

Mixed
Refel‘ences fun main(args: Array<String>) {
SOlu'tiOIl val x = arrayOf (0, 1, 2, 3, 4)
x[3] = x[2]
x[4] = x[0]
x[2] = x[1]
x[1] = x[0]
x[0] = x[1]
x[4] = x[3]
x[3] = x[2]
x[2] = x[4]
//Do stuff
}
Variables: Objects:
Mateh each variable xgz‘/
bo its object = 0

you are here » 57

toolbox

%BULLET POINTS

Your Kotlin Toolbox

You’ve got Chapter 2 under
your belt and now you’ve
added basic types and
variables to your toolbox.

You tan down\oad
the £ull eode for
4he ehapter from
Witps:// Linyurl. tom/
HFKotlin.

———————————————

In order to create a variable, the compiler needs
to know its name, its type, and whether it can be
reused.

If the variable’s type isn't explicitly defined, the
compiler infers it from its value.

A variable holds a reference to an object.

An object has state and behavior. Its behavior is
exposed through its functions.

Defining the variable with var means the
variable’s object reference can be replaced.
Defining the variable with va1 means the
variable holds a reference to the same object
forever.

Kotlin has a number of basic types: Byte,
Short, Int, Long, Float, Double,
Boolean, Char and String.

Explicitly define a variable’s type by putting a
colon after the variable’s name, followed by the
type:

var tinyNum: Byte

You can only assign a value to a variable that has
a compatible type.

You can convert one numeric type to another.
If the value won't fit into the new type, some
precision is lost.

Create an array using the arrayOf function:
var myArray = arrayOof(l, 2, 3)

Access an array’s items using, for example,
myArray [0]. The firstitem in an array has an
index of 0.

Get an array’s size using myArray.size.

The compiler infers the array’s type from its items.
You can explicitly define an array’s type like this:
var myArray: Array<Byte>

If you define an array using va1, you can still
update the items in the array.

String templates provide a quick and easy
way of referring to a variable or evaluating an
expression from inside a St ring.

58

3 Yunctions

*
+ Getting Out of Main +

You said you wanted something
fun, so I bought you a brand-
new set of functions.

It’s time to take it up a notch, and learn about functions.

So far, all the code you've written has been inside your application’s main function. But if
you want to write code that’s better organized and easier to maintain, you need to know
how to split your code into separate functions. In this chapter, you'll learn how to write
functions and interact with your application by building a game. You’ll discover how to
write compact single expression functions. Along the way you'll find out how to iterate

through ranges and collections using the powerful for loop.

this is a new chapter

59

rock paper scissors

Let’s build a game: Rock, Paper, Scissors

In all the code examples you'’ve seen so far, we’ve added code to

the application’s main function. As you already know;, this function
launches your application as it’s the function that gets executed when
you run it.

This approach has worked well while we’ve been learning Kotlin’s
basic syntax, but most applications in the real-world split the code
across multiple functions. This is because:

o It makes your code more organized.
Instead of having all your code in one long main function, it’s split into
more manageable chunks. This makes the code much easier to read and
understand.

Theve are other veasons

{:oo, bu{: these are {:wo

o It makes your code more reusable. of the most important

By splitting the code into separate functions, you can reuse it elsewhere.

Each function is a named section of code that performs a specific
task. As an example, you could write a function named max that
determines the highest value out of two values, and then call this
function at various stages in your application.

In this chapter, we’re going to take a closer look at how functions
work by building a game of Rock, Paper, Scissors.

How the game will work

Goal: Make a guess that beats the computer’s, and win!

Setup: When the application is launched, the game chooses Rock,
Paper or Scissors at random. It then asks you to choose one of these
options.

The rules: The game compares the two choices. If they are the
same, the result is a draw. If the choices are different, however, the
game determines the winner using the following rules: "l

Choices Result

Scissors, Paper [The Scissors choice wins, as Scissors can cut Paper.

_/6

Rock, Scissors | The Rock choice wins, as Rock can blunt Scissors.

Paper, Rock The Paper choice wins, as Paper can cover Rock.

The game will be run in the IDE’s output window. ’—M

60 Chapter 3

A high-level design of the game

Before we start writing the code for the game, we need to
draw up a plan of how it will work.

First, we need to figure out the general flow of the game.
Here’s the basic idea:

o

functions

A tivele vepresents

L— the start or end

of the protess.

0 You start the game.
The application randomly chooses one of the
options: Rock, Paper or Scissors.

A veetangle

Get computer choice < vepresents

an action.

\

e The application asks for your choice. e

You type your choice in the IDE’s output Get user choice

window. l

9 The application validates your choice.
If you haven’t chosen a valid option, it goes
back to step 2, and asks you for another e
choice. The game does this repeatedly until
you enter a valid option.

Is
choice
valid?

S A diamond vepresents

a detision Poih{‘,-

9 The game displays the result.

It tells you what choices you and the o Display result
application have made, and whether you've

won, lost, or the result is a draw.

Game
Now that we have a clearer idea of how the application will over
work, let’s look at how we’ll code 1it.

A legit flowehart.

you are here » 61

steps

Here’s what we’re going to do

There are a number of steps we’re going to go through to build
the game:

o Get the game to choose an option.
We’ll create a new function named getGameChoice which will
choose one of “Rock”, “Paper” or “Scissors” at random.

9 Ask the user for their choice.

We’ll do this by writing another new function named
getUserChoice, and this will ask the user to enter their choice. We’ll
make sure they’ve entered a valid choice, and if they haven’t, we’ll keep
asking them until they do.

Please enter one of the following: Rock Paper Scissors.

Errr.. dunno

You must enter a valid choice.

Please enter one of the following: Rock Paper Scissors.

Paper

e Print the result.
We’ll write a function named printResult, which will figure out
whether the user won or lost, or whether the result is a tie. The function
will then print the result.

You chose Paper. I chose Rock. You win!

Get started: create the project

We’ll start by creating a project for the application. You do this in
exactly the same way you did in previous chapters.

Create a new Kotlin project that targets the JVM, and name the
project “Rock Paper Scissors”. Then create a new Kotlin file named
Game.kt by highlighting the sr¢ folder, clicking on the File menu and
choosing New — Kotlin File/Class. When prompted, name the file
“Game”, and choose File from the Kind option.

Now that you've created the project, let’s start writing some code.

62

Get the game to choose an option

functions
> Game choice
User choice
Result

The first thing we’ll do is get the game to choose one of the options

(Rock, Paper or Scissors) at random. Here’s what we’ll do:

a Create an array that contains the Strings “"Rock”, “Paper” and

“Scissors”.
We’ll add this to the application’s main function.

e Create a new getGameChoice function that will choose one of

the options at random.

e Call the getGameChoice function from the main function.

We’ll start by creating the array.

Create the Rock, Paper, Scissors array

We’ll create the array using the arrayOf function, just as we did

in the previous chapter. We’ll add this code to the application’s
main function so that it gets created when the application

launches. This also means that we’ll be able to use it in the rest of

the code we’ll write later in the chapter.

To create the main function and add the array, update your
version of Game.kt to match ours below:

fun main(args: Array<String>) {

val options = arrayOf ("Rock", "Paper",

Now that we’ve created the array, we need to define the new
getGameChoice function. Before we can do this, we need to
understand more about how you create functions.

Rock Paper Scissors

-

"Scissors") src

Game.kt

63

functions are fun

How you create functions

As you learned back in Chapter 1, you define new functions using
the fun keyword, followed by the name of the function. As an
example, if you wanted to create a new function named foo,
you’d write code like this:

Con’ tells Koklin © > fun foo() {

that it's a funttion. //Your code goes here
}

Once you've written the function, you can call it from elsewhere
in your application:

fun main(args: Array<String>) {

£ = .
oo () Ths Yuns 3 ‘('\W\Cﬁoh hamcd “FOO'-

You can send things to a function

Sometimes, a function needs extra information in order for it
to perform a task. If you’re writing a function to determine the
highest of two values, for example, the function needs to know
what these two values are.

You tell the compiler what values a function can accept by
specifying one or more parameters. Fach parameter must have
a name and type.

As an example, here’s how you specify that the foo function
takes a single Int parameter named param:

K\You detlave
fun foo (param: Int) { yaramclccrs
inside the

pumd:ionjs
paventheses.

println ("Parameter is S$param")

You can then call the function and pass it an Int value:
foo (g\Wc)Yc passing ‘6" to the foo funttion.

Note that if a function has a parameter, you must pass it
something. And that something must be a value of the appropriate
type. The following function call, for instance, won’t work because the
foo function accepts an Int value, nota String:

foo ("Freddie™) We can”c pass a S{:\ring {'p Foo
as it onl\/ aCCc‘?{:S an Int.

64 Chapter 3

Game choice
User choice
Result

—— Parameters and

Arguments

Depending on your

programming background

and personal preferences, you

might use the term arguments

or parameters for the values passed
into a function. Although there are
formal computer science distinctions
that people who wear lab coats make,
we have bigger fish to fry. You can call
them whatever you like (arguments,
parameters, donuts...) but we're doing
it like this:

A function uses parameters. A caller
passes it arguments.

Arguments are the things you pass
into the functions. An argument (a
value like 2 or “Pizza") lands face-down
into a parameter. And a parameter is
nothing more than a local variable: a
variable with a name and type that'’s
used inside the body of the function.

functions
> Game choice
User choice

You can send more than one thing to a function Result

If you want your function to have multiple parameters, you
separate them with commas when you declare them, and
separate the arguments with commas when you pass them to the
function. Most importantly, if a function has multiple parameters,
you must pass arguments of the right type in the right order.

Calling a two-parameter function, and sending

it two arguments
fun main (args: Array<String>) { o
printSum(5, 6) The argumcn‘{:s Yyou pass land in the Lunttion in the
} same order You passed them. The fivst argumcn{:

lands in the fivst ?avamc{:cr, the setond a\rgumcn{:
lands in the setond parameter, and so on.

fun printSum(intl: Int, int2: Int) {
val result = intl + int2

println(result)

You can pass variables to a function so long as
the variable type matches the parameter type

fun main(args: Array<String>) {
val x: Int =7
val y: Int = 8
printSum(x, y)

) Each argument you pass must be the
same type as the pavameter it lands in.

fun printSum(intl: Int, int2: Int) {
val result = intl + int2

println(result)

As well as passing values to a function, you can also get things
back. Let’s see how.

you are here » 65

return values
Game choice
User choice

You can getf things back from a function Result

If you want to get something back from a function, you need
to declare it. As an example, here’s how you declare that a
function named max returns an Int value: The : Ink tells the compiler that

ion returns an [nt value.
fun max(a: Int, b: Int): Int { {hcﬁun&bon et

val maxValue = if (a > b) a else b

return maxValue

T~ You veturn a value using the ‘retuen’ keyword,
} followed b\/ the value \/ou)\rc \r‘t'{:wrnihg-

If you declare that a function returns a value, then you must return
a value of the declared type. As an example, the following code is
invalid becuase it returns a String instead of an Int:

fun max(a: Int, b: Int): Int {
val maxValue = if (a > b) a else b

return "Fish"

S~ We've detlaved that the function veturns an Int value, so the compiler
} will get upset if you try and veturn something else, like a String,

Funetions with no return valve

If you don’t want your function to return a value, you can
either omit the return type from the function declaration,
or specify a return type of Unit. Declaring a return type
of Unit means that the function returns no value. As an

example, the following two function declarations are both
valid, and do the same thing:

fun printSum(intl: Int, int2: Int) {
val result = intl + int2

println(result)

} The : Unit heve means that the ‘Cunl.i ion
veburns no value. [£'s completely optional.

“

fun printSum(intl: Int, int2: Int): Unit {
val result = intl + int2
println(result)

}

If you specify that your function has no return value, then
you need to make sure that it doesn’t return one. If you try
to return a value in a function with no declared return type,
or a return type of Unit, your code won’t compile.

66 Chapter 3

functions
> Game choice
User choice

Functions with single-expression bodies Result

If you have a function whose body consists of a single expression,
you can simplify the code by removing the curly braces and
return statement from the function declaration. As an example,
on the previous page, we showed you the following function to
return the higher of two values:

fun max(a: Int, b: Int): Int { The max funetion has a
val maxValue = if (a > b) a else b <€ Si'\ﬂlc €XPpression in its body,
return maxValue which we then veturn.

}

The function returns the result of a single 1 f expression, which ~ Use = to say what the Lunetion
. . .)
means that we can rewrite the function like so: veturns, and vemove the {Ys.

fun max(a: Int, b: Int): Int = if (a > b) a else b

And because the compiler can infer the function’s return type from
the 1 f expression, we can make the code even shorter by omitting

the : Int:
e n The tompiler knows that a

fun max(a: Int, b: Int) = if (a > b) a else b <—and b are |nts, so it can
work out the function’s
vetuen type from the

€Xpression.

Create the getGameChoice function

Now that you’ve learned how to create functions, see if you can
write the getGameChoice function for our Rock, Paper, Scissors
game by having a go at the following exercise.

Code Magnets

The getGameChoice function will accept one parameter,
an array of Strings, and return one of the array’s items.
See if you can write the function using the magnets below.

l Array<String> ' l oPtiouparam: D —
| Math.random() ' l optionsParam ' ‘

you are here » 67

magnets solution

Game choice
User choice
Result

The funttion has one parameter,

{ Code M Soluti
o571 Lode Magnets dolution
27
/—_E The getGameChoice function will accept one parameter,
an array of Strings, and return one of the array’s items.
See if you can write the function using the magnets below.

f—— an array of Strings.

fun getGameChoice (| optionsParam: H Array<String> i) =

Choose one of

the a""fa)')s‘>optionsParam [Math.random () optionsParam || .size) -toInt()]
items at : l; uu

vandom.

Add the getGameChoice function to Game.kt

Now that we know what the getGameCho1ice function looks
like, let’s add it to our application, and update our main function

so that it calls the new function. Update your version of Game.kt

so that it matches ours below (our changes are in bold):

fun main(args: Array<String>) {

val options = arrayOf ("Rock", "Paper", "Scissors")

val gameChoice = getGameChoice (options) Rock Paper Scissors
: Call the getGameChoice funttion, passing it the options array. g
L

fun getGameChoice (optionsParam: Array<String>) =

optionsParam|[(Math.random() * optionsParam.size).toInt()] Game.kt

Now that we’ve added the getGameChoice function to our
application, let’s look at what’s going on behind the scenes

when the code runs.

Dum

Q,- Can | return more than one value from a function?

A: A function can declare only one return value. But if you want
to, say, return three Int values, then the declared type can be an
array of Ints (Array<Int>). Putthose Ints into the array,
and pass it back.

68 Chapter 3

there]gre no

Questions

You need to add the Lunction.

Q,: Do | have to do something with the return value of a
function? Can | just ignore it?

A: Kotlin doesn’t require you to acknowledge a return value. You
might want to call a function with a return type, even though you
don't care about the return value. In this case, you're calling the
function for the work it does inside the function, rather than for what
it returns. You don’t have to assign or use the return value.

Behind the scenes: what happens

When the code runs, the following things happen:

functions

Result

o val options = arrayOf ("Rock", "Paper", "Scissors")

This creates an array of Strings, and a variable named options that

holds a reference to it.

The o?‘l:ions
variable is
ereated in the
main ‘(:und:ion

val Array<String>

O "Rock" O "Paper"

O"Scissors“

String

e val gameChoice = getGameChoice (options)

The contents of the options variable get passed to the getGameChoice
function. The options variable holds a reference to an array of Strings,
so a copy of the reference gets passed to the getGameChoice function, and
lands in its opt ionsParam parameter. This means that the options and
optionsParam variables both hold a reference to the same array.

val Array<String>

The optionsParam Qﬁ‘gq

vaviable is a

parameter in the —>options,
etQameChoice Param,

2unt:tiov\, b

—

val Array<String>

O "ROCk" O "Pa‘peP"

O"Scissors“

String

The oF‘f:ions variable in the main funetion
and the optionsParam vaviable in the
getGameChoite funttion eath hold a
veferente to the same array.

you are here »

Game choice
User choice

69

what the code does
Game choice

User choice

The story continves Result

9 fun getGameChoice (optionsParam: Array<String>) =
optionsParam [(Math.random () * optionsParam.size).toInt()]

The getGameChoice function selects one of the optionsParam’s items at
random (for example, the “Scissors” item). The function returns a reference to this

item.

O "ROCk" O "Pa‘per'l

String String

> O"Scissors"

String

val Array<String>
The getGameChoite

Lunction seleets the

o val gameChoice = getGameChoice (options) Seissors” item.

This puts the reference returned by the getGameChoice function into a new
variable named gameChoice. If] for example, the getGameChoice function
returns a reference to the “Scissors” item of the array, this means that a reference
to the “Scissors” object is put into the gameCho1ice variable.

String String

O "Scissors"

String

val Array<String>

A veferente 1o the
| —"Seissors” S{Ving is
assigned to the new
gameChoite vaviable.
val String

70 Chapter 3

functions
>/ Game choice
User choice

H
- Result

So when you pass a value to a function,
you're really passing it a reference to

an object. Does this mean you can make
changes to the underlying object?

Yes, you can.

As an example, suppose you have the following code:

fun main(args: Array<String>) {
val options = arrayOf ("Rock", "Paper", "Scissors")
updateArray (options)
println (options[2])

fun updateArray (optionsParam: Array<String>) {

optionsParam[2] = "Fred"

The main function creates an array containing the Strings “Rock”, “Paper”
and “Scissors”. A reference to this array is passed to the updateArray function,
which updates the third item of the array to “Ired”. Finally, the main function
prints the value of the array’s third item, so it prints the text “Ired”.

T~ X

The options
vaviable is
ereated in the

main ‘Fuhé‘{:ion. "Scissors"

The optionsParam "Fred"

vaviable is a i
parameter in — > ptions,
the updateprray Paramf
funetion. o<Stri Both vaviables hold a vefevente
val Array<String> to the same arvay, so when one
of its items is updated, both
vaviables see the thange.

String
String

you are here » 71

up close

Loca] Variables Up Close

As we said earlier in the chapter, a local variable is one that’s used inside
the body of a function. They’re declared within a function, and they’re
only visible inside that function. If you try to use a variable that’s defined in
another function, you’ll get a compiler error, as in the example below:

fun main(args: Array<String>) {

var x = 6
}
fun myFunction() {
var y = x + 3 &— This tode won't tompile because myFunction
} can't see the x variable that’s detlared in main.

Any local variables must be initialized before they can be used. If you're
using a variable for a function’s return value, for example, you must
initialize that variable or the compiler will get upset:

fun myFunction(): String {

var message: String

return message YRR
9€ S You must initialize a variable if You want to use it as
.)
a function’s veturn value, so this tode won't tompile.

Function parameters are virtually the same as local variables, as they only
exist within the context of the function. They’re always initialized, however,
so you’ll never get a compiler error telling you that a parameter variable
might not have been initialized. This is because the compiler will give

you an error message if you try to invoke a function without sending the
arguments that the function needs; the compiler guarantees that functions
are always called with arguments that match the parameters declared in the
function, and the arguments are automatically assigned to the parameters.

Note that you can’t assign a new value to any of a function’s parameter
variables. Behind the scenes, the parameter variables are created as local
val variables that can’t be reused for other values. The following code, for
example, won’t compile because we’re trying to assign a new value to the
function’s parameter variable:

fun myFunction (message: String) {

message = "Hi!" &S Parameter variables are treated as local variables eveated
} using val, so you can't veuse them for other values.

72 Chapter 3

functions

BE t}y@ (om ﬂe}?

Here are three complete Kotlin
functions. Your job is to play like
you're the compiler and determine
whether each of these
functions wil] compile.
If they won't compile,
how would you fix them?

Q fun doSomething(msg: String, i: Int): Unit {
if (1 > 0) |
var x = 0
while (x < 1) {
println (msg)

x =x + 1

G fun timesThree (x: Int): Int {
X =x * 3

return x

G fun maxValue (args: Array<Int>) {

var max = args[0]

var x = 1

while (x < args.size) {
var item = args|[x]
max = if (max >= item) max else item
x =x + 1

}

return max

you are here » 73

be the compiler solution

Here are three complete Kotlin

@ functions. Your job is to play like
\ you're the compiler and determine

) whether each of these

If they won't compi]e,

doSomething (msg:
(1 > 0) {

String, 1i:
if
var x = 0
while (x < 1) {
println (msqg)

X =x + 1

timesThree (x: Int): Int {

‘:’ fun

\x~valy =x * 3

return q(\y

‘E’ fun

var max = args[0]

var x = 1

while (x < args.size) {
var item = args([x]
max = if
x=x+1

}

return max

}

74 Chapter 3

functions will compile.

BE the Combiler §olufion

how would you fix them?

Int): Unit {

This will tompile and vun sutécssfu"y. The
Lunetion has a Unit veturn {:\/?c, and this
means that it has no veturn value.

This won't tompile, as you're assigning a new value to the
function’s yaramc{:cr. ‘/ou would also need to consider the
function’s veturn fy?c, as mulfi?l\/ing an Int b\/ three may
vesult in a value that's too large for an Int value.

maxValue (args: Array<Int>): h{ {

This won't COm\?ilc betause the
Funt‘{:ion needs to detlave that
it veturns an [nt value.

(max >= item) max else item

functions
M Game choice
> | User choice

The getUserChoice function | Resut

Now that we’ve written the code to make the game choose an option,
we can move onto the next step: getting the user’s choice. We’ll write
a new function to do this called getUserChoice, which we’ll

call from the main function. We’ll pass the options array to the
getUserChoice function as a parameter, and we’ll get it to return
the user’s choice (a String):

fun getUserChoice (optionsParam: Array<String>): String ({

//Code goes here
}

Let’s go through what we need the getUserChoice function to do:

o Ask the user for their choice.

We’ll loop through the items in the options array, and ask the user to type
their choice into the output window.

e Read the user’s choice from the output window.

After the user’s entered their choice, we’ll assign its value to a new variable.

9 Validate the user’s choice.
We’ll check that the user has entered a choice, and that it’s in the array. If
the user has entered a valid choice, we’ll get the function to return it. If
they haven’t, we’ll keep asking until they do.

Let’s start with the code to prompt the user for their choice.

Ask for the user’s choice

To ask the user to input their choice of option, we’ll make the
getUserChoice function print the following message: “Please
enter one of the following: Rock Paper Scissors.”

One way of doing this would be to hard-code the message using the
println function like this:

println ("Please enter one of the following: Rock Paper Scissors.")

A more flexible approach, however, is to loop through each item in
the options array, and print cach item. This will be useful if we <<
ever want to change any of the options.

You might want to play Rock, Paper,
Geissovs, Lizard, Spotk instead.

Instead of using a while loop to do this, we’re going to use a new
type of loop called a for loop. Let’s see how it works.

you are here » 75

for

Game choice
User choice

How for loops work Result

A for loop is useful in situations where you want to loop through a fixed
range of numbers, or through every item in an array (or some other type of
collection—we’ll look at collections in Chapter 9). Let’s look at how you do this.

— Math Shorteuts

The increment operator

Looping through a range of numbers

Suppose you wanted to loop through a range of numbers, from 1 to 10. ++ adds 1 to a variable.
You’ve already seen how to do this kind of thing using a while loop: So:
var x =1 o

. is a shortcut for:
while (x < 11) {

//Your code goes here x=x +1

X = x + 1 Similarly, the decrement operator

) ——subtracts 1 from a variable. Use:

o
But it’s much cleaner, and requires fewer lines of code, if you use a
for loop instead. Here’s the equivalent code:

as a shortcut for:

x =x -1

for (x in 1..10) { If you want to add a number other
//Your code goes here than 1 to a variable, you can use

} the += operator. So:

. . . X += 2

It’s like saying “for each number between 1 and 10, assign the number

. » does the same as:

to a variable named «, and run the body of the loop”.

. X =x t+ 2

To loop through a range of numbers, you first specify a name for

the variable the loop should use. In the above case, we’ve named the Similarly, you can use —=, *=and

variable x, but you can use any valid variable name. The variable gets /=as shortcuts for subtraction,

created when the loop runs. multiplication and division.

You specify the range of values using the . . operator. In the case
above, we’ve used a range of 1. .10, so the code loops through the
numbers 1 through to 10. At the beginning of each loop, it assigns the Wl‘lle lOOPs run

current number to the variable (in our case x).

while a given

Just like a while loop, if the loop body consists of a single statement,
you can omit the curly braces. As an example, here’s how you would
use a for loop to print the numbers 1 to 100:

condition is true.

for (x in 1..100) println(x)

Note that the . . operator includes the end number in its range. If you wanted FOI‘ lOOPs run

to exclude it, you would replace the . . operator with until. As an example, {

the following code prints the numbers from 1 to 99, and excludes 100: over a r aﬂg €o
for (x in 1 until 100) println(x) Values or items.

76

functions
m Game choice
> | User choice

How for loops work (continved) | Resurt

Use downTo to reverse the range

If you want to loop through a range of numbers in reverse order, you
use downTo instead of .. or until. As an example, you'd use the
following code to print the numbers from 15 down to 1:

for (x in 15 downTo 1) println (x)4< “Si"ﬁ downTo instead of .. looPs
theough the numbers in veverse order.

Use step to skip numbers in the range

By default, the . . operator, until and downTo step through the range
one number at a time. If you want, you can increase the size of the step
using step. As an example, the following code prints alternate numbers
from 1 to 100:

for (x in 1..100 step 2) println(x)

Looping through the itewms in an array

You can also use a for loop to iterate through the items in an array. In our
case, for example, we want to loop through the items in an array named
options. To do this, we can use a for loop in this format:

for (item in optionsParam) |{ £— This loops through eath item in an arvay named o?{ionSParam
println("$item is an item in the array")

}

You can also loop through an array’s indices using code like this:

for (index in optionsParam.indices) {
println("Index $index has item ${optionsParam[index]}")

}

You can even simplify the above loop by returning the array’s index and
value as part of the loop:

for ((index, item) in optionsParam.withIndex()) { <— T} loops {:h\rough eath ikem in the

println("Index $index has item Sitem") array. It assigns the item’s index
} to the index vaviable, and the item
itself to the item vaviable.

Now that you know how for loops work, let’s write the code that will
ask the user to enter one of “Rock, “Paper” or “Scissors”.

you are here » 77

readLine

Game choice

Ask the user for their choice User choice

Result

We’re going to use a for loop to print the text “Please enter one of
the following: Rock Paper Scissors.” Here’s the code that will do this;
we’ll update Game.kt later in the chapter when we’ve finished writing
the getUserChoice function:

fun getUserChoice (optionsParam: Array<String>): String {
//Ask the user for their choice
print ("Please enter one of the following:")

for (item in optionsParam) print(" $item") gThis P\r‘in‘{:s Lhe vl 04(:
ue

println (", ") Cach i‘{:Cm in ‘Ehc ay-y-a\/.

Use the readline function to read the user’s input

After we’ve asked the user to enter their choice, we need to read their
response. We’ll do this by calling the readLine () function:

val userInput = readLine()

The readLine () function reads a line of input from the standard
input stream (in our case, the output window in the IDE). It returns
a String value, the text entered by the user.

If the input stream for your application has been redirected to a - ot abouk mull
file, the readLine () function returns null if the end of file has <— \{0“ I ?"‘d out Z bmzrz ° w, Lhis
been reached. null means that it has no value, or that it’s missing. values in Chapter 8 but Tor now,

is all You need o know about them.

Here’s an updated version of the getUserChoice function (we’ll ,
add it to our application when we’ve finished writing it): We'll update the getUserChoice
function a few pages ahead.
fun getUserChoice (optionsParam: Array<String>): String {

//Ask the user for their choice

print ("Please enter one of the following:")
for (item in optionsParam) print (" S$item")
println(".")

//Read the user input

val userInput = readLine()<T— This reads the user’s input from the standard input
) stream. [n our ase, this is the ou{:Pch window in the |DE.

Next, we need to validate the user input to make sure they’ve
entered an appropriate choice. We’ll do that after you’ve had a go
at the following exercise.

78 Chapter 3

functions

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you'd see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

Mixed
Messages

fun main(args: Array<String>) {
var x = 0
var y = 20
for (outer in 1..3) {

for (inner in 4 downTo 2) {

< The candidate

tode goes here.

println ("S$x $y")

Candidates: Possible output:
X += 6 4286 4275
27 23
x——
Mateh each
candidate - x4 27 6
with one o ¥ y
the possible 81 23
outputs. y =17
27 131
=x +y
y=x-17 18 23
x =y 35 32
yt++ 3728 3826

you are here » 79

mixed messages solution

Mixed
Messages
Solution

A short Kotlin program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of code
(on the left), with the output that you'd see if the block were
inserted. Not all the lines of output will be used, and some lines of
output may be used more than once. Draw lines connecting the
candidate blocks of code with their matching output.

fun main(args: Array<String>)
var x = 0
var y = 20

for (outer in 1..3) {

{

é_/Thc tandidate

tode 9oes heve.

for (inner in 4 downTo 2) {
y++
X += 3

}

y —= 2

println ("S$x $y")

Candidates:
X +=
x——
y=x+y
y =17
=x +y
=x - 7
X=Yy
y++

80 Chapter 3

Possible output:

3728 3826
18 23

27 6

81 23

27 131
27 23

35 32

4286 4275

functions
M Game choice
> | User choice

We need to validate the user’s input | Resut

The final code we need to write for the getUserChoice function needs
to validate the user’s input to make sure they’ve entered a valid option.
The code needs to do the following:

o Check that the user input isn't null.
As we said earlier, the readLine () function returns a null value if it’s reading
a line from a file, and it’s at the end of the file. Even though this isn’t the case
in our situation, we still need to check that the user input isn’t null in order to
keep the compiler sweet.

e Check whether the user's choice is in the options array.

We can do this using the in operator that you saw when we discussed for loops.

9 Loop until the user enters a valid choice.
We want to loop until a condition is met (the user enters a valid option), so we’ll
use a while loop for this.

You're already familiar with most of the code needed to do this, but

to write code that’s more concise, we’re going to use some boolean
expressions that are more powerful than the ones you've seen before.
We’ll discuss these next, and after that we’ll show you the full code for the
getUserChoice function.

‘And’ and ‘Or’ operators (66 and)

Let’s say you’re writing code to choose a new phone, with lots of rules
about which phone to select. You might, say, want to limit the price range
so that it’s between $200 and $300. To do this, you use code like this:

if (price >= 200 && price <= 300) {
//Code to choose the phone
}

The && means “and”. It evaluates to true if both sides of the && are true.
When the code gets run, Kotlin first evaluates the left side of the expression.
If this is false, Kotlin doesn’t bother evaluating the right side. As one side of
the expression is false, this means that the entire expression must be false. «— T}ic i< sometimes veferved

If you want to use an “or” expression instead, you use the | | operator: to as SHOV{—CirCuifing‘
if (price <= 10 || price >= 1000) {

//Phone is too cheap or too expensive

}

This expression evaluates to true if either side of the | | is true. This
time, Kotlin doesn’t evaluate the right side of the expression if the left side
is true.

you are here » 81

boolean

More powerful boolean expressions (continved)

Not equals (!= and !)

Suppose you wanted to run code for all phones except one model.
To do this, you'd use code like the following:
if (model != 2000) {
//Code that runs if model is not 2000
}

The != means “is not equal to”.

Similarly, you can use ! to indicate “not”. As an example, the
following loop runs while the i sBroken variable is not true:

while (!isBroken) {
//Code that runs if the phone is not broken
}

Use parentheses to make your code clear

Boolean expressions can get really big and complicated:

if ((price <= 500 && memory >= 16) ||
(price <= 750 && memory >= 32) ||
(price <= 1000 && memory >= 64)) {
//Do something appropriate
}
If you want to get really technical, you might wonder about the
precedence of these operators. Instead of becoming an expert

in the arcane world of precedence, we recommend that you use
parentheses to make your code clearer.

Now that you’ve seen some more powerful boolean expressions,
we’ll show you the remaining code for the getUserChoice
function, and add it to the application.

82

Game choice
User choice
Result

functions
m Game choice
User choice

Add the getUserChoice function to Game.kt " Result

Below is the revised code for the application, including the

complete getUserChoice function. Update your version
of Game.kt so that it matches ours (our changes are in bold):

fun

fun

fun

main(args: Array<String>) {
val options = arrayOf ("Rock", "Paper", "Scissors")

val gameChoice = getGameChoice (options) Rock Paper Scissors

val userChoice = getUserChoice (options) LD
: src
Call the 56{:“5&0\01&: Lunction. L

getGameChoice (optionsParam: Array<String>) = Gars Kt

optionsParam|[(Math.random() * optionsParam.size).tolInt ()]

getUserChoice (optionsParam: Array<String>): String {
var isValidChoice = false S—— |\,/|| use the isValidChoice variable o indicate
var userChoice = "" whether the user has entered a valid thoice.
//Loop until the user enters a valid choice
while (!isValidChoice) { <———— Keep looping until isValidChoice is true.
//Ask the user for their choice
print ("Please enter one of the following:")
for (item in optionsParam) print(" $item")
println(".")

//Read the user input
Cheek that the user input isn't null,
and fha&{:’s in the options array.

val userInput = readLine()

//Validate the user input

if (userInput '= null && userInput in optionsParam) {
isValidChoice = true =" [£ the user in\?ch is 0K, we tan s{'p\? loo\?in5~
userChoice = userInput

}

//If the choice is invalid, inform the user

if ('isValidChoice) println("You must enter a valid choice.")

}

return userChoice

4\) .
£ the user input is invalid, we'll keep looping,

Let’s take the code for a test drive, and see what happens

when it runs.

you are here »

83

test drive

Test drive

Game choice
User choice
Result

Run your code by going to the Run menu, and selecting the Run
‘GameKt command. When the IDE’s output window opens, you’ll be
asked to enter one of “Rock”, “Paper” or “Scissors”:

Please enter one of the following: Rock Paper Scissors.

When you enter an invalid option and hit the Return key, you’re asked
to enter an option that’s valid. This is repeated until you enter one of
“Rock”, “Paper” or “Scissors”, at which point the program ends.

Fred

You must enter a valid choice.
We entered Please enter one of the following: Rock Paper Scissors.
a few invalid George
oy{:ions...

You must enter a valid choice.

Please enter one of the following: Rock Paper Scissors.

Ginny

You must enter a valid choice.

and then Please enter one of the following: Rock Paper Scissors.

enteved “Rotk”.—>Rock

We need to print the results

Game choice

The final thing we need our application to do is print the results. As a User choice
reminder, if the user and the game make the same choice, the result is a Result
tie. If the choices are different, however, the game determines the winner

using the following rules:

Choices

Result

Scissors, Paper

The Scissors choice wins, as Scissors can cut Paper.

Rock, Scissors

The Rock choice wins, as Rock can blunt Scissors.

Paper, Rock

The Paper choice wins, as Paper can cover Rock.

We’ll print the results in a new function named printResult. We’ll
call this function from main, and pass it two parameters: the user’s choice

and the game’s choice.

Before we show you the code for the function, see if you can figure it out
for yourself by having a go at the following exercise.

84 Chapter 3

functions

Poo] Puzzle
/ \ Your job is to take code snippets from
the pool and place them into the

\ > blanklines in the printResult
£ function. You may not use the

same code snippet more than

once, and you won't need to use

all the snippets. Your goal is to

print the choices made by the user
and the game, and say who won.

fun printResult (userChoice: String, gameChoice: String) {

val result: String

//Figure out the result

if (userChoice gameChoice) result = "Tie!"
else if ((userChoice "Rock” gameChoice "Scissors") _ .

(userChoice "Paper" gameChoice "Rock")

(userChoice | "Scissors" gameChoice | "Paper")) result = "You win!"
else result = "You lose!"

//Print the result

println("You chose SuserChoice. I chose $gameChoice. $result")

Note: each thing from
the pool can only be

85

pool puzzle

- _ o _
P@@] PHZZIB Solutien
/ \ Your job is to take code snippets from
the pool and place them into the
\ > blanklines in the printResult
£ function. You may not use the
% same code snippet more than
once, and you won't need to use
all the snippets. Your goal is to

print the choices made by the user
and the game, and say who won.

fun printResult (userChoice: String, gameChoice: String) {

val result: String |§ the user and the game those the
I‘F any {/Flgure ou‘lI: the result | | [came 0\7{:'107\, the vesult is a tie.
ocﬁhac if (userChoice == gameChoice) result = "Tie!"
tombos else if ((userChoice == "Rock" && gameChoice == "Scissors") || .
arc{rug (userChoice == "Paper" && gameChoice "Rock")mJLm
£bC““Y == "Paper")) result = "You win!"
wins.

else result = "You lose!"
//Print the result

println("You chose SuserChoice. I chose $gameChoice. $result")

You didn’t need to
use these snippets.

86

Add the printResult function to Game.kt >

We need to add the printResult function to Game.kt, and call it from
the main function. Here’s the code: update your version of the code so
that it matches ours (our changes are in bold):

fun main(args: Array<String>) {
val options = arrayOf ("Rock", "Paper", "Scissors")
val gameChoice = getGameChoice (options)

val userChoice = getUserChoice (options)

| KK

functions
Game choice
User choice
Result

printResult (userChoice, gameChoice) <—C(all the printResult Lunction from main.

fun getGameChoice (optionsParam: Array<String>) =

optionsParam[(Math.random() * optionsParam.size).toInt ()]

fun getUserChoice (optionsParam: Array<String>): String {
var isValidChoice = false
var userChoice = ""
//Loop until the user enters a valid choice
while (!isValidChoice) {
//Ask the user for their choice
print ("Please enter one of the following:")
for (item in optionsParam) print (" $item")
println(".")
//Read the user input
val userInput = readLine ()
//Validate the user input
if (userInput != null && userInput in optionsParam) ({
isValidChoice = true
userChoice = userInput
}

//If the choice is invalid, inform the user

if (!isValidChoice) println("You must enter a valid choice.

}

return userChoice

Rock Paper Scissors

-

src

L

Game.kt

n)

The ¢ode tontinues
on the next Fagc./’"f§

you are here » 87

test

Game choice
User choice

The Game.kt code continuved Result

fun printResult (userChoice: String, gameChoice: String) {
val result: String

//Figure out the result \/ou need to add this Lunction.
if (userChoice == gameChoice) result = "Tie!"
else if ((userChoice == "Rock" && gameChoice == "Scissors") ||
(userChoice == "Paper" && gameChoice == "Rock") ||
(userChoice == "Scissors" && gameChoice == "Paper'")) result = "You win!"
else result = "You lose!"
//Print the result Rock Paper Scissors
println("You chose $userChoice. I chose $gameChoice. $result") LD
} src

That’s all the code we need for our application. Let’s see what
happens when we run it. Game.kt

RN
=

Test drive

When we run the code, the IDE’s output window opens, enter one

of “Rock”, “Paper” or “Scissors” (we're choosing “Paper”):
Please enter one of the following: Rock Paper Scissors.
Paper

You chose Paper. I chose Rock. You win!

The application prints our choice, the option selected by the game,
and the result.

therejare no o
Dumb Questions

Q,: | entered an option of “paper” but the game told me I'd Q: Can | get Kotlin to ignore the case? Can | capitalize the
entered an invalid option. Why’s that? user input before checking whether it’s in the array?

A: It's because you entered a lowercase String, instead of A: Kotlin includes toLowerCase, toUpperCase and

one that starts with an initial capital letter. The game requires youto capitalize functions to create a lowercase, uppercase or

enter one of “Rock”, “Paper” or “Scissors”, and it doesn’t recognize capitalized version of a St ring. As an example, here’s how you

“paper” as one of the options. would use the capitalize function to capitalize the first letter
of the Stringnamed userInput:

userInput = userInput.capitalize()

So you could convert the user input to an appropriate format before
checking if it matches any of the values in the array.

88

Your Kotlin Toolbox

You’ve got Chapter 3 under
your belt and now you’ve

added functions to your toolbox.

You ¢an download
the full code for
the ehapter from
Wttps://tinyurl- ecom/
HFKotlin.

——————————————

QBUI.I.ET POINTS

Use functions to organize your code and
make it more reusable.

= Afunction can have parameters, so you
can pass more than one value to it.

= The number and type of values you pass to
the function must match the order and type
of the parameters declared by the function.

= Afunction can return a value. You must
define the type of value (if any) it returns.

= AUnit return type means that the
function doesn’t return anything.

®m Choose for loops over while loops
when you know how many times you want
to repeat the loop code.

The readLine () function reads a line
of input from the standard input stream. It
returns a St ring value, the text entered
by the user.

If the input stream has been redirected
to a file and the end of the file has been
reached, the readLine () function
returns null. null means it has no
value, or it's missing.

&& means “and”. | | means “or”. ! means
HnotYl.

functions

89

4 classes and objects

+
*ABit of Class ,
e g e x

myself a new Boyfriend class.

It’s time we looked beyond Kotlin’s basic types.

Sooner or later, you're going to want to use something more than Kotlin’s basic types. And
that's where classes come in. Classes are templates that allow you to create your own
types of objects, and define their properties and functions. Here, you’ll learn how to
design and define classes, and how to use them to create new types of objects. You'll
meet constructors, initializer blocks, getters and setters, and you'll discover how they
can be used to protect your properties. Finally, you'll learn how data hiding is built into

all Kotlin code, saving you time, effort and a multitude of keystrokes.

this is a new chapter

91

classes

Object types are defined using classes

So far, you've learned how to create and use variables from
Kotlin’s basic types, such as numbers, Strings and arrays. You
know, for example, that when you write the code:

var x = 6

this creates an Int object with a value of 6, and a reference to
the object is assigned to a new variable named x:

Int

var Int

Behind the scenes, these types are defined using classes. A
class is a template that defines what properties and functions
are associated with objects of that type. When you create an
Int object, for example, the compiler checks the Int class and
sees that it requires an integer value, and has functions such as
toLong and toString.

You can define your own classes

If you want your application to deal with types of objects that
Kotlin doesn’t have, you can define your own types by writing
new classes. If you’re building an application that records This is £the Dog elass. [+
information about dogs, for example, you might want to define Lells the compiler that a
a Dog class so that you can create your own Dog objects, and
record the name, weight and breed of each dog:

/_\ name: “Fido”

Q
>

weight: 70
‘:—" | breed: “Mixed” SN
myDog"
|

Dog

Dog has a name, wcighﬁ and
breed, and a bark -Cunc{:ion.

——
var Dog

So how do you go about defining a class?

92 Chapter 4

How to design your own classes

When you want to define your own class, you need to think
about the objects that will be created from that class. You need
to consider:

©
©

The things an object knows about itself are its properties.
They represent an object’s state (the data), and each object of
that type can have unique values. A Dog class, for example,
might have name, weight and breed properties. A Song
class might have title and artist properties.

The things each object knows about itself.

The things each object can do.

The things an object can do are its functions. They
determine an object’s behavior, and may use the object’s
properties. The Dog class, for example, might have a bark
function, and the Song class might have a play function.

Here are some examples of classes with their properties and
functions:

Properties

Functions | Functions |
Alarm
alarmTime PfoPeIﬂties |
PI’OPEI‘ﬁeS alarmMode
alarmSound .
Functions ‘
. setAlarm()
Functlons isAlarmSet()
snooze()

When you know what properties and functions your class
should have, you’re ready to write the code to create it. We’ll
look at this next.

Properties |

classes and objects

The t]mings an ol)ject

knows about itself are

its pro]@ertie .

The t]mings an ol)ject

can do are its functions.

Song h

“— B

The properties are
the ‘U\ings an ob\')ccjc
knows about H‘,SCH: .
[n this example, a
Song knows its title
and artist.

title
artist

play()
stop()

The ‘Fuhd{:ions
are the {:hings an

ShoppingCart

cartContents

objcd: ¢an do. Here,
addToCart() a ShoppingCart
removeFromCart() knows how to add

checkout() items, vemove items

and theek out.

you are here » 93

Dog class

Let’s define a Pog class

We’re going to create a Dog class that we can use to create Dog
objects. Each Dog will have a name, weight and breed, so we’ll use
these for the class properties. We’ll also define a bark function so
that the size of the Dog’s bark depends on its weight.

Here’s what our Dog class code looks like: Opening brate

«
‘¢lass” means

The name of the class. The (ilzss properties. the ¢lass.

-1
it’s a elass.
ass $|c1ass||Dog||(val name: String, var weight: Int, val breed: String) |

The bark _—>|fun bark() { Dog
Lunttion. println(if (weight < 20) "Yip!" else "Woof!") 1 /name
} > weight

breed
’<‘ Closing brace of the ¢lass. K

> bark()

The code:

class Dog(val name: String, var weight: Int, val breed: String) {

defines the name of the class (Dog), and the properties that the Dog

5) : . . 9 .
class has. We’ll take a closer look at what’s going on behind the A {unctlon tllat s C[e‘[ll'le C[
scenes a few pages ahead, but for now, all you need to know is that
the above code deﬁnes the. name, weight and b?eed properties— inSiC[e a Class 1S callec[
and when the Dog object is created, values are assigned to these ,
properties. a member function. It's

You define any class functions in the class body (inside the curly
braces { }). We’re defining a bark function, so the code looks like
this:

sometimes called a method.

class Dog(val name: String, var weight: Int, wval breed: String) {
fun bark() {

This is just like the funetions you
println(if (weight < 20) "Yip!" else "Woof!")

saw in the previous thapter. The
} onl\/ difference is that it'’s defined
: inside the Dog elass bod)’-

Now that you've seen the code for the Dog class, let’s look at how
you use it to create a Dog object.

94 Chapter 4

classes and objects

How to create a Pog object

You can think of a class as a template for an object, as it tells the
compiler how to make objects of that particular type. It tells the
compiler what properties each object should have, and each object
made from that class can have its own values. Each Dog object, for
example, would have name, weight and breed properties, with
each Dog having its own values.

One class Dog
name
weight
breed

Many objects

bark()

We’re going to use the Dog class to create a Dog object, and assign it to
a new variable named myDog. Here’s the code:

‘/ou treate 3 DOS b‘/
?ass'mg it argumchJCS for
£he three properties.

var myDog = Dog("Fido", 70, "Mixed")

The code passes three arguments to the Dog object. These match the
properties we defined in the Dog class: the Dog’s name, weight and
breed:

class Dog(val name: String, var weight: Int, val breed: String) {

}

When the code runs, it creates a new Dog object, and the arguments
are used to assign values to the Dog’s properties. In our case, for
example, we’re creating a new Dog object where the name property is
“Iido”, the weight property is 70 pounds, and the breed property is

“Mixed”:
Q RN name: “Fido”

Q)‘@'“ weight: 70 -
‘ — | breed: “Mixed”
myDog’
L

Dog

——
var Dog

Now that you’ve seen how to create a new Dog object, let’s look at how
you access its properties and functions.

you are here » 95

accessing members

How to access properties and functions

Once you've created an object, you can access its properties using the
dot operator (.). If you wanted to print a Dog’s name, for example,
you would use code like this:

var myDog = Dog ("Fido", 70, "Mixed")

println (myDog.name) < m‘/Dog-namc is like sa\/in5 “30 to MYDOSI and 55'{: its name”.

You can also update any properties that you have defined using the
var keyword. As an example, here’s how you would update the
Dog’s weight property to 75 pounds:

myDog.weight = 75 <— Qo to m\/Dog, and set its weight to 5.

Note that the compiler won'’t let you update any properties that
you’ve defined using the val keyword. If you try to do so, you'll get a
compiler error.

You can also use the dot operator to call an object’s functions. If you
wanted to call the Dog’s bark function, for example, you would use
the following code:

myDog.bark () s=_ Go to '"‘/D°3; and eall its bavk function.

What if the Dog is in a Pog array?

You can also add any objects you create to an array. If you wanted to
create an array of Dogs, for example, you would use code like this:

var dogs = arrayOf (Dog("Fido", 70, "Mixed"), Dog("Ripper", 10, "Poodle"))

This defines a variable named dogs, and as it’s an array that This tode treates two Dog
you’re populating with Dog objects, the compiler makes its type obieets, and adds them to an
array<Dog>. Two Dog objects are then added to the array. arvay <D°5> avvay named dogs.

You can still access the properties and functions of each Dog object in
the array. As an example, suppose you wanted to update the second
Dog’s weight and make it bark. To do this, you would get a
reference to the second item in the dogs array using dogs [1], and
then use the dot operator to access the Dog’s weight property and
bark function:

dogs[1].weight = 15) The tompiler knows that dogsl1] is a Dog object, so You
dogs[1].bark () tan aetess the Dog’s properties and call its Functions.

This 1s like saying “get the second object from the dogs array, change
its weight to 15 pounds, and make it bark.”

96 Chapter 4

classes and objects

Create a Songs application

Before we go any further into how classes work, we’re going to give
you some more class practice by creating a new Songs project. We’ll Song
add a Song class to the project, and create and use some Song objects.

title
Create a new Kotlin project that targets the JVM, and name the artist
project “Songs”. Then create a new Kotlin file named Songs.k¢ by play()

highlighting the sr¢ folder, clicking on the File menu and choosing
New — Kotlin File/Class. When prompted, name the file “Songs”,
and choose File from the Kind option.

stop()

Next, add the following code to Songs.kt:

class Song(val title: String, val artist: String) {é—DC‘CiV\C title and artist ‘:roycr{:ics.
fun play () {
println ("Playing the song $title by Sartist")

Add Fla\/ and S‘{JOF ‘cum‘,‘f:ions.

fun stop() { Songs
println ("Stopped playing $title") iD
} src
}
Songs.kt

fun main(args: Array<String>) {

val songOne = Song ("The Mesopotamians", "They Might Be Giants")
val songTwo = Song ("Going Underground", "The Jam")
Create three Songs.

val songThree = Song("Make Me Smile", "Steve Harley")

songTwo.play ()
songTwo.stop () Pla\/ song Two, st°? it,

songThree.play () then play songThree.

Test drive

When we run the code, the following text gets printed in the IDE’s
output window:

Playing the song Going Underground by The Jam
Stopped playing Going Underground
Playing the song Make Me Smile by Steve Harley

Now that you’ve seen how to define a class and use it to create objects,
let’s dive into the mysterious world of object creation.

you are here » 97

object creation

The wiracle of object ereation

When you declare and assign an object, there are three main steps:

1)

Declare a variable.

var myDog = Dog ("Fido", 70, "Mixed")

Create an object.
var myDog = Dog("Fido", 70, "Mixed")

name: “Fido”
weight: 70
breed: “Mixed”

Dog

Link the object to the variable by assigning a reference.

var myDog = Dog ("Fido", 70, "Mixed")

/_\ name: “Fido”

S
S weight: 70
| breed: “Mixed”
{nyDogf
Dog
e
var Dog

The big miracle happens at step two—when the object is created.

There’s a lot going on behind the scenes, so let’s take a closer look.

98 Chapter 4

classes and objects

How objects are created

When we define an object using code like: |
[+ looks like we've La“ihg a Lunetion
var myDog = Dog ("Fido", 70, "Mixed") named Dog because of the parentheses.

it looks like we’re calling a function named Dog. But even though
it looks and feels a lot like a function, it’s not. Instead, we’re calling
the Dog constructor.

A constructor contains the code that’s needed to initialize an
object. It runs before the object can be assigned to a reference,
which means that you get a chance to step in, and do things to

make the object ready for use. Most people use constructors to A constructor runs

define an object’s properties and assign values to them.

when you instantiate

Each time you create a new object, the constructor for that ,
object’s class is invoked. So when you run the code: an OL]eCt. It S usec[
var myDog = Dog ("Fido", 70, "Mixed")

to define properties
and initialize them.

the Dog class constructor gets called.

What the Dog constructor looks like

When we created our Dog class, we included a constructor; it’s the
parentheses and the code in between in the class header:

class Dog(val name: String, var weight: Int, val breed: String) {

: KTMS tode (intluding the parentheses)
|S)'f:hc tlass Cons{:\rucfo\r. chhniéa“\/,
The Dog constructor defines three properties—name, it’s called the primary onstructor.

weight and breed. Each Dog has these properties, and
when the Dog gets created, the constructor assigns a value
to each property. This initializes the state of each Dog, and
ensures that 1t’s set up correctly.

Let’s take a look at what happens behind the scenes when the
Dog constructor gets called.

you are here » 99

Dog construction

Behind the scenes: calling the Dog constructor

Let’s go through what happens when we run the code:

var myDog = Dog("Fido", 70, "Mixed")

0 The system creates an object for each argument that's passed to the
Dog constructor.

It creates a String with a value of “Fido”, an Int with a value of 70, and a String
with a value of “Mixed”.

“Fido” 70 “Mixed”

String Int String

e The system allocates the space for a new Dog object, and
the Dog constructor gets called.

Dog

9 The Dog constructor defines three properties: name, weight and breed.

Behine the scenes, each property is a variable. A variable of the appropriate type is
created for each property, as defined in the constructor.

class Dog(val name: String, {lame{“
var weight: Int, _—
val String

val breed: String) {

Dog 9
reed/

\

val String
100 Chapter 4

classes and objects

The story continves...

o Each of the Dog's property variables is assigned a reference to the
appropriate value object.
The name property, for example, is assigned a reference to the “Fido” String object, and so on.

Qdo“Fido”
&
‘ —4
name:

String
|

\
val String 70
$
Qo o,

weight

——

var Int

l

reed/ String
\ {
|

val String

e Finally, a reference to the Dog object is assigned to a new Dog variable

named myDog.
qu“Fido”
&
ﬂ:"‘ |

{]ame‘ Strlng

' var Int
{nyDog.‘ .
{ Dog <§ /_80“Mlxed”
— >
var Dog ‘ |
breed String
v\
val String

you are here » 101

properties and variables

I get it. The Dog constructor defines properties,
and each property is really just a variable that's local to
the object. A value is then assigned to that variable.

That’s right—a property is a variable that’s
local to the object.

This means that everything you've already learned about
variables applies to properties. If you define a property
using the val keyword, for example, this means that you
can’t assign a new value to it. You can, however, update
any properties that have been defined using var.

In our example, we’re using val to define the name and
breed properties, and var to define the weight:

class Dog(val name: String, wvar weight: Int, wal breed: String) {

This means that we can only update the Dog’s weight
“) property, and not the Dog’s name or breed.

therejare no o
Dumb Questions

Q: Does the constructor allocate the memory for the
object that’s being created?

An ol)ject 1s sometimes

A: No, the system does. The constructor initializes the object,
so it makes sure that the object’s properties are created and that
they’re assigned their initial values. All memory is managed by

the system. a Partlcular class, so 1ts

known as an instance of

Q: Can | define a class without defining a constructor? PI'OPQI’tleS are sometimes

called instance variables.

A: Yes, you can. You'll find out how this works later in the
chapter.

102 Chapter 4

af;f) Code Magnets

classes and objects

N
/—_@ Somebody used fridge magnets to write a noisy new DrumKit
class, and a main function that prints the following output:
ding ding ba-da-bing!
bang bang bang!
ding ding ba-da-bing!

Unfortunately, the magnets have got scrambled. Can you piece the

code back together again?

class DrumKit (var hasTopHat: Boolean, var hasSnare:

Boolean) {

} You need o put ’chcj\

magnets in these boxes.

fun main(args: Array<String>) {

| println("ding ding ba-da-bing!") '

l d.hasSnare = ' | fun playSnare() '

val d = DrumKit (true, true)

I (hasSnare) ' I fun playTopHat () .

l (hasTopHat) '

2]
l if '
if

false

d.playTopHat () d.playTopHat 0

d.playSnare () d.playSnare ()

l println("bang bang bang!") '

you are here » 103

magnets solution

Code Magnets Solution

Somebody used fridge magnets to write a noisy new DrumKit
class, and a main function that prints the following output:

ding ding ba-da-bing!
bang bang bang!
ding ding ba-da-bing!

Unfortunately, the magnets have got scrambled. Can you piece the
code back together again?

class DrumKit (var hasTopHat: Boolean, wvar hasSnare: Boolean) ({

The yla\/To?Haf
fun playTopHat () funetion prints

. " some {c%f'f
E__<____-—"< e hsTopht

Yro‘;gr{;\l [‘(’Xuc

The playSnare
e s e | b s
sSnave

property is true.

fun main(args: Array<String>) {

val d = DrumKit(true, true) f—- Create a DrumKit variable.

A

d.playTopHat () <’\-—has'ﬁaphla’c and hasSnare are both true, so
d.playSnare () playTopHat and playSnare both print text.

d.playTopHat ()

<—> Setting the hasSnave ?roycr{:\/ 4o false means
that onl\/ the ?layToyHaJc Function yrm{:s text.

d.playSnare ()

104 Chapter 4

classes and objects

Going deeper into properties

So far you've seen how to define a property by including it in the class
constructor, and how doing so assigns a value to that property when the
constructor is called. But what if you need to do something a little different?
What if you want to validate a value before assigning it to a property? Or what
if you want to initialize a property with a generic default value so that you
don’t need to add it to the class constructor?

To find out how you can do this kind of thing, we need to take a closer look at
constructor code.

Behind the scenes of the Pog constructor

As you already know, our current Dog constructor code defines three
properties for the name, weight and breed of each Dog object, and assigns
a value to each one when the Dog constructor is called:

class Dog(val name: String, var weight: Int, val breed: String) {

}

You can do this so concisely because the constructor code uses a shortcut
for performing this kind of task. When the Kotlin language was developed,
the brains behind it felt that defining and initializing properties was such a

common action that it was worth making the syntax to do it very concise and
e y The tonstruetor parameters no

simple. .

P longer have val and var prefines,
If you were to perform the same action without using the shortcut, here’s what so the tonstruttor no longer
the code would look like: treates properties for them.

class Dog(name_param: String, weight param: Int, breed param: String) ({

val name = name param

var weight = weight param Thzh!’“\’"fics are defined Dog
val breed = breed param in the ¢lass bod\/ "‘S{"cad' name
weight
breed
} bark()

Here, the three constructor parameters—name param, weight param
and breed param—have no val and var prefixes, which means that they
no longer define properties. They are plain old parameters, just like the ones
you see in function definitions. The name, weight and breed properties are
instead defined in the main body of the class. Each one is assigned the value of
the associated constructor parameter.

So how does this allow us to do more with our properties?

you are here » 105

property initialization

Flexible property initialization

Defining properties in the main body of the class gives you a
lot more flexibility than adding them to the constructor, as it
means that you no longer have to initialize each one with a
parameter value.

Suppose that you wanted to assign a default value to a
property without including it in the constructor. You might,
for example, want to add an activities property to the
Dog class, and initialize it with a default array containing a
value of “Walks”. Here’s the code to do this:

class Dog(val name: String, var weight: Int, val breed:

var activities = arrayOf ("Walks")

Eath Dog object that's eveated will have an
attivities property. [t's initial value will be
) an arvay ontaining a value of “Walks”.

Alternatively, you might want to tweak the value of a
constructor parameter before assigning it to a property. You
might, for example, want to record an uppercase String for
the breed property instead of the value that’s passed to the
constructor. To do this, you would use the toUpperCase
function to create an uppercase version of the String,
which you would then assign to the breed property like this:

Dog

name
weight
breed
activities

bark()

String) {

name: “Fido”
weight: 70

breed: “Mixed”
activities: “Walks”

Dog

class Dog(val name: String, var weight: Int, breed param: String) ({

var activities = arrayOf ("Walks")

val breed = breed param.toUpperCase ()

This takes the value of breed_param, makes it

Initializing a property in this way works well if you want to
assign a simple value or expression to it. But what if you need
to do something more complex?

106 Chapter 4

uppertase, and assigns it to the breed property.

name: “Fido”
weight: 70

breed: “MIXED”
activities: “Walks”

Dog

classes and objects

How to use initializer blocks

If you need to initialize a property to something more complex than a simple
expression, or if there’s extra code you want to run when each object is
created, you can use one or more initializer blocks. Initializer blocks are
executed when the object is initialized, immediately after the constructor is
called, and they’re prefixed with the init keyword. Here’s an example of an
initializer block that prints a message whenever a Dog object is initialized:

class Dog(val name: String, var weight: Int, breed param: String) {

var activities = arrayOf ("Walks")

val breed = breed param.toUpperCase () Dog
This is an name
initializer block. [£ weight
contains the tode breed

println("Dog $name has been created.")

that you want to activities
vuns when the D05 bark()
objcck is initialized.

Your class can have multiple initializer blocks. Each one runs in the order in
which it appears in the class body, interleaved with any property initializers.
Here’s an example of some code with multiple initializer blocks:

class Dog(val name: String, var weight: Int, breed param: String) ({

The properties defined in the constructor are eveated first.

init {

println("Dog $name has been created.")) This initializer block vuns next.

var activities = arrayOf ("Walks") These properties are crca{:c.d. after the
fiest initializer block has finished.

val breed = breed param.toUpperCase ()

init {
println("The breed is $breed.") The setond initializer block vuns after
} the properties have been eveated.

}

As you’ve seen, there are various ways in which you can initialize your
variables. But is it necessary?

you are here » 107

initialize properties

You MUST initialize your properties

Back in Chapter 2, you learned that every variable you declare
in a function must be initialized before it can be used. This also
applies to any properties you define in a class: you must initialize

properties before you try to use them. This is so important

that if you declare a property without initializing it in either the
property declaration or the initializer block, the compiler will get
very upset and refuse to compile your code. The following code, for

example, won’t compile because we’ve added a new property named

temperament which hasn’t been initialized:

class Dog(val name: String, var weight: Int, breed param: String) ({

var activities = arrayOf ("Walks")

val breed =

breed param.toUpperCase ()

var temperament: String @Thc temperament property hasn't been
initialized, so the code won't tompile.

}

Nearly all of the time, you’ll be able to assign default values to your
properties. In the above example, for instance, your code will compile

if you initialize the temperament property to "":

var temperament = ""~<— This initializes the temperament property with an empty String.

Dum

Q,: In Java, you don’t have to initialize the variables that
you declare inside a class. Is there a way of not initializing
class properties in Kotlin?

A: If you're completely certain that you can’t assign an initial
value to a property when you call the class constructor, you can
prefix it with Lateinit. This tells the compiler that you're
aware that the property hasn’t been initialized yet, and you'll handle
it later. If you wanted to mark the temperament property for late
initialization, for example, you'd use:
lateinit var temperament: String
Doing so allows the compiler to compile your code. In general,
however, we strongly encourage you to initialize your properties.

108

therejare no
b Questions

Q,: What happens if | try to use a property value before it’s
been initialized?

A: If you don't initialize a property before you try and use it,
you'll get a runtime error when you run the code.

Q,: Can | use 1lateinit with any type of property?

A: You can only use 1ateinit with properties defined
using var, and you can'’t use it with any of the following types:
Byte, Short, Int, Long, Double, Float, Charor
Boolean. This is down to how these types are treated when the
code runs in the JVM. This means that properties of any of these
types must be initialized when the property is defined, or in an
initializer block.

classes and objects

Empty Constructers Up Close

If you want to be able to quickly create objects without passing
values for any of its properties, you can define a class with no
constructor.

Suppose, for example, that you wanted to quickly create Duck
objects. To do this, you could define a Duck class without a
constructor like this:

class Duck { ~“—There’s no () after the name of the elass, so the ¢lass has no defined constructor.

fun quack() {
println("Quack! Quack! Quack!")

}

When you define a class with no constructor, the compiler secretly
writes one for you. It adds an empty constructor (a constructor with
no parameters) to your compiled code. So when you compile the
above Duck class, the compiler treats it as though you’d written
the following code:

[V

class Duck() { This is an empty tonstruttor: a tonstruttor with no parameters.

Behind the stenes, whenever Yyou define a ¢lass with no onstructor,
the compiler adds an empty construttor to your compiled ¢ode.
fun quack () {

println ("Quack! Quack! Quack!")

}

This means that in order to create a Duck object, you use the code: & /—\
var myDuck = Duck() é Crca{;cs a DuLk va\riablc, and aSSighS ‘Q;“Q’-ﬁ
it a vefevente to a Dutk objeet- ——> I
and not: :
rinyDucI_(
var myDuck = Duck <— This tode won't tompile. ' ' Duck
N—
The compiler has created an empty constructor for the Duck var Duck

class on your behalf] so this means that you must call the empty
constructor in order to instantiate the Duck.

you are here » 109

be the compiler

BE ﬂ)@/ Com 11@]?
Each of the Kotlin files on this Pa%?
g Tepresents a complete source file. Your
% job is to play like you're the compiler
) and determine whether each

of these files will compile.
If they won't compile, how
would you fix them?

4] o

class TapeDeck { class DVDPlayer (var hasRecorder: Boolean) {
var hasRecorder = false

fun recordDVD () {

fun playTape () { if (hasRecorder) {
println ("Tape playing") println ("DVD recording")
} }
}
fun recordTape () { }

if (hasRecorder) {
println ("Tape recording") fun main(args: Array<String>) {
} val d = DVDPlayer (true)
} d.playDVD()
} d.recordDVD ()

fun main(args: Array<String>) {
t.hasRecorder = true
t.playTape ()

t.recordTape ()

—> Answers on page 119.

110 Chapter 4

classes

How do you validate property values?

Earlier in the chapter, you learned how to directly get or set a
property’s value using the dot operator. You already know, for
example, that you can print the Dog’s name using:

println (myDog.name)
and that you can set its weight to 75 pounds using:

myDog.weight = 75

But in the hands of the wrong person, allowing direct access to
all our properties in this way can be quite a dangerous weapon.
Because what’s to prevent someone writing the following code:

myDog.weight = —lé—’Criycs.

A Dog with negative weight would be a Bad Thing.

To stop this kind of thing from happening, we need some way of
validating a value before it’s assigned to a property.

The solution: custom getfters and setters

If you want to tweak a property’s return value, or validate a value
before it gets assigned to a property, you can write your own
getters and setters.

Getters and setters let you, well, get and set property values. A <<___ If
getter’s sole purpose in life is to send back a return value, the

| you're into being all formal about
it, you might prefer to call them

value of whatever it is that particular getter is supposed to be
p 8 pp ateessors and mutators instead.

getting. And a setter lives and breathes for the chance to take an
argument value, and use it to set the value of a property.

Writing custom getters and setters lets you protect your property
values, and they give you more control over what values are
returned or assigned. We’ll show you how they work by adding
two new things to our Dog class:

° A custom getter to return the Dog's weight in kilograms.

c A custom setter to validate a proposed value for the Dog's weight
before we assign it.

Let’s start by creating a custom getter to return the Dog’s weight
in kilograms.

objects

111

custom gefters

How to write a custom getter

In order to add a custom getter that will allow us to return the Dog’s
weight in kilograms, we’re going to do two things: add a new property

to the Dog class named weightInKgs, and write a custom getter for it
which will return the appropriate value. Here’s the code to do both these

things:

class Dog(val name: String, var weight:

var activities = arrayOf ("Walks")

val breed = breed param.toUpperCase ()

val weightInKgs: Double

get() = weight / 2.2
This ¢ode adds a new wcighﬂnK
. 9s propert
with a custom getter. The getter {:akFes Jc;/\c
) value of the weight pavameter, and divides it

. by 2.2 40 9et the weight in kilograms.
The line:

get() = weight / 2.2

defines the getter. It’s a no parameter function named get that you add

to the property. You add it to the property by writing it immediately

below the property declaration. Its return type must match that of the €