SPRINGER BRIEFS IN COMPUTER SCIENCE

Elisa Bertino

Homomorphic
Encryption and
Applications

SpringerBriefs in Computer Science

Series Editors

Stan Zdonik
Shashi Shekhar
Jonathan Katz
Xindong Wu
Lakhmi C. Jain
David Padua
Xuemin (Sherman) Shen
Borko Furht

V.S. Subrahmanian
Martial Hebert
Katsushi Ikeuchi
Bruno Siciliano
Sushil Jajodia
Newton Lee

More information about this series at http://www.springer.com/series/10028

http://www.springer.com/series/10028

Xun Yi * Russell Paulet ¢ Elisa Bertino

Homomorphic Encryption
and Applications

@ Springer

Xun Yi Russell Paulet

RMIT University Victoria University
Computer Science & Info Tech Melbourne, VIC, Australia
Melbourne, VIC, Australia

Elisa Bertino
Computer Science
Purdue University

West Lafayette, IN, USA
ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-3-319-12228-1 ISBN 978-3-319-12229-8 (eBook)

DOI 10.1007/978-3-319-12229-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014953221

© Xun Yi, Russell Paulet, Elisa Bertino 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

To our families

Preface

Homomorphic encryption is a form of encryption that allows specific types of
computations to be carried out on ciphertext and generate an encrypted result that,
when decrypted, matches the result of operations performed on the plaintext.

This is a desirable feature in modern communication system architectures. The
homomorphic property of various cryptosystems can be used to create secure voting
systems and private information retrieval schemes and enable widespread use of
cloud computing by ensuring the confidentiality of processed data.

This book presents the basic homomorphic encryption techniques and their
applications. It begins with an introduction of the history of encryption techniques
from classical ciphers to secret key encryption and public-key encryption, including
secret key encryption and public-key encryption models. It then provides the defi-
nition of homomorphic encryption followed by the description of some well-known
homomorphic encryption schemes, such as the ElGamal and Paillier encryption
schemes. On the basis of the homomorphic encryption concept, this book further
introduces the state-of-the-art fully homomorphic encryption concept and describes
the fully homomorphic encryption schemes over integers. After that, this book
focuses on three applications of homomorphic encryption techniques. The first
application introduces an electronic voting scheme on the basis of the ElGamal
encryption scheme. The second application deals with nearest neighbor queries with
location privacy on the basis of private information retrieval built on the Paillier
encryption scheme. The third application discusses private searching on streaming
data on the basis of fully homomorphic encryption schemes.

This book is designed to serve as a reference book for undergraduate- or
graduate-level courses in computer science or mathematics departments, as a
general introduction suitable for self-study (especially for beginning graduate
students), and as a reference for students, researchers, and practitioners.

RMIT University, Melbourne, VIC, Australia Xun Yi
Victoria University, Melbourne, VIC, Australia Russell Paulet
Purdue University, West Lafayette, IN, USA Elisa Bertino

September 2014

vii

Acknowledgments

We would like to express our appreciation to Professor Udaya Parampalli (The
University of Melbourne, Australia) and Dr. Junzuo Lai (Jinan University, China)
for their comments on our book.

ix

Contents

1

3

Introduction i 1
1.1 Classical Ciphers e 1
1.1.1 Substitution Cipherscovviiiiiiiiiiiieeeneeen... 2
1.1.2 Transposition Ciphersccooviiiiiiiiiiiiiiiiininnn. 3
1.1.3 Product Ciphersoooviiiiiiiiiii e 5
1.2 Secret Key EnCryptionccooooiiiiiiiiiiiiiiiiiiiiiiiiiiiinn, 7
1.2.1 Secret Key Encryption Model.................oooiiiiiiii 7
1.2.2 Data Encryption StandardoeeiieeieLL . 8
1.2.3 Advanced Encryption Standard 11
1.3 Public-Key Encryption..........ccoooiiiiiiiiiiiiiiiiiiiiiiiiiee e 14
1.3.1 Public-Key Encryption Model 14
1.3, 2 RS A 16
1.3.3 Rabin Public-Key Encryptionccoooiiiiiiiiiii 20
1.3.4 Public-Key Cryptography Standards..........................e 22
RefErencesveiiii 24
Homomorphic Encryption ... 27
2.1 Homomorphic Encryption Definition 27
2.2 Goldwasser—Micali Encryption Scheme 29
2.3 ElGamal Encryption Scheme................coooviiiiiiiiiinnnnenn.... 32
2.4 Paillier Encryption Scheme.......................oooL L, 36
2.5 Boneh—Goh—-Nissim Encryption Scheme 41
REfEreNCeSeeeeei e 46
Fully Homomorphic Encryptionoooooiiiiiiiiiiiiiiiii, 47
3.1 Fully Homomorphic Encryption Definition 47
3.2 Overview of Fully Homomorphic Encryption Schemes 49
3.3 Somewhat Homomorphic Encryption Scheme over Integers 50
3.3.1 Secret Key Somewhat Homomorphic Encryption............. 50
3.3.2 Public-Key Somewhat Homomorphic Encryption 54
3.4 Fully Homomorphic Encryption Scheme over Integers............... 58
3.4.1 Squashed Encryptionooooiiiiiiiiinnn.... 58

xi

xii

Contents

3.4.2 Bootstrappable Encryptioncccviiiiiiiiiiii 63

343 Implementationo.uueeeeeiiiiiieeeeiniiiieeeaanas 64
REfeIeNCes ..ot 65
Remote End-to-End Voting Scheme 67
4.1 INtrodUCHION ...coiiint ettt 67
4.2 Remote End-to-End Votingoooviiiiiiiiiiiiiiiiiiiiiiienns 70
4.2.1 Participating Parties..............ccooiiiiiiiiii i 70

4.2.2 Basic Remote Voting Schemeccooiiiiiiinn 70

4.2.3 General Remote Voting Schemecooeiiiin 74

4.2.4 Voter Reference Refresh............cooooiiiiiiiiiiiiiiiii 76

4.3 Conclusion and DiSCUSSIONoeeiiiiiiiiiiiiiiiiiiiiiie s 78
REfEreNCest 78
Nearest Neighbor Queries with Location Privacy........................ 81
5.1 INtroductioneeeiiiii e 81
5.2 Private k Nearest Neighbor Queries........................ooeeeenn.. 84
5.2.1 Security Model........oovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieas 84
5.2.2 Private kNN Queries Without Data Privacy 87

5.2.3 Private kNN Queries with Data Privacy 89
5.2.4 Private kNN Queries Based on POI Typeccooveet 91

5.2.5 Private Cloaking Region...........ccooviiiiiiiiiiiiinnnnns 94

5.3 Performance AnalysiS..........oovviiiiiiiiiiiiiiiiiieae., 96
5.3.1 Protocol Performance..............ccooiiiiiiiiiiiiiiiiiina. 96

5.3.2 Performance CompariSonceveveeiiiiirereeeeeeeneens 97

5.4 Conclusion and DiSCUSSIONeeeeiiiiiiiieeiiiiiiiie e, 97
ReferencCesveeiiii 98
Private Searching on Streaming Data 101
6.1 Introductioncoiiiiiiiiiiiiiiii e 101
6.2 Overview of Private Searching on Streaming Data.................... 103
6.3 Preliminariesoooviiiiiieeiiiiii e 106
6.3.1 Integer Additionwith FHEL L. 106

6.3.2 Integer Comparison with FHE 107

6.3.3 Binary Linear Codes.............oovviiiiiiiiiiiininninnnnnn.... 107

6.4 DefinitionsS .. cooonnnnttt ettt e 108
6.5 Private Threshold Query Based on Keyword Frequency.............. 111
6.5.1 Disjunctive Threshold Query......................ooeeeeeatL. 111

6.5.2 Conjunctive Threshold Query.......................oeeeeaa. 115

6.5.3 Complement Threshold Queryooeeeeat. 118

6.5.4 Generic Threshold Query................oovvviiiiiiiiinen.... 121

6.6 Performance AnalysiS..........c.oooiiiiiiiiiiiiiii 122
6.7 Conclusion and DiSCUSSIONceevviiiiiiiieeiiiiiiiieeiniieeee. 124

R erenCes . oo 125

Chapter 1
Introduction

Abstract Encryption is the process of converting messages, information, or data
into a form unreadable by anyone except the intended recipient. Encrypted data
must be decrypted, before it can be read by the recipient. In its earliest form, people
have been attempting to conceal certain information that they wanted to keep to their
own possession by substituting parts of the information with symbols, numbers, and
pictures. Today’s encryption algorithms are divided into two categories: secret key
and public key. Secret key encryption schemes use the same key (the secret key) to
encrypt and decrypt a message, and public-key encryption schemes use one key (the
public key) to encrypt a message and a different key (the private key) to decrypt
it, and all of today’s encryption algorithms fit within those two categories. This
chapter introduces the history of encryption techniques from classical ciphers to
secret key encryption and public-key encryption, including secret key and public-
key encryption models. It provides some background for homomorphic encryption.

1.1 Classical Ciphers

A cipher is a technique for hiding a message, by which letters of the message
are substituted or transposed to other letters, letter pairs, and even many letters.
In cryptography, a classical cipher is a type of cipher that was used historically
but not now. In general, classical ciphers operate on an alphabet of letters (such
as “A-Z”) and can be implemented by hand or with simple mechanical devices.
They are the most basic types of ciphers and not very secure, especially after
new technology was developed. Modern schemes use computers or other digital
technology and operate on bits and bytes.

Many classical ciphers were used by well-respected people, such as Julius Caesar
and Napoleon, who created their own ciphers which were then popularly used.
Many ciphers had their origins in the military and were used for transporting secret
messages among people on the same side.

Classical schemes are often susceptible to ciphertext-only attacks, sometimes
even without knowledge of the encryption system itself, using tools such as
frequency analysis.

Classical ciphers are often divided into substitution ciphers, transposition
ciphers, and product ciphers as follows:

© Xun Yi, Russell Paulet, Elisa Bertino 2014 1
X. Yi et al., Homomorphic Encryption and Applications, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-12229-8_1

2 1 Introduction

1. Substitution cipher is a method of encryption by which plaintext letters are
replaced with ciphertext letters, according to an encryption system. The receiver
decrypts the ciphertexts by performing an inverse substitution.

2. Transposition cipher is a method of encryption by which the positions held
by plaintext letters are shifted according to an encryption system, so that the
ciphertext letters constitute a permutation of the plaintext letters. Mathematically
a bijective map is used on the letters’ positions to encrypt and an inverse map to
decrypt.

3. Product cipher combines a sequence of simple transformations such as trans-
position ciphers and substitution ciphers. The combination could yield a cipher
system more powerful than either one alone.

1.1.1 Substitution Ciphers

A well-known example of substitution ciphers is the Caesar cipher [14]. The Caesar
cipher is named after Julius Caesar (July 100 BC-15 March 44 BC), who was a
Roman general, statesman, and Consul and played a critical role in the events that
led to the demise of the Roman Republic and the rise of the Roman Empire. Caesar
was the first recorded use of this cipher.

To encrypt a message with the Caesar cipher, each letter of message is replaced
by the letter three positions later in the alphabet. Hence, A is replaced by D, B by
E, C by F, etc. Finally, X, Y, and Z are replaced by A, B, and C respectively. So, for
example, “CAESAR” encrypts as “FDHVDU.” Caesar rotated the alphabet by three
letters, but any number works. When the number of rotations is 19, the plaintext and
ciphertext alphabets look like:

Plaintext alphabet: abcde fghi jklmnopqgrstuvwxyz
Ciphertext alphabet: t uvwx y zabcde fghi jklmnopgqrs

While the encryption is done by substituting plaintext letters with the correspond-
ing ciphertext letters, the decryption is done by performing an inverse substitution.
The encryption and decryption processes can be implemented by a cipher wheel as
shown in Fig. 1.1, where the plaintext and ciphertext alphabets are on the outer and
inner wheels, respectively, and the inner wheel is turnable.

As there are only 25 possible rotations for the alphabet, the Caesar cipher can be
easily broken by a brute-force attack or exhaustive key search, i.e., systematically
checking all possible keys until the correct one is found.

The Caesar cipher is a monoalphabetic substitution cipher, where just one
ciphertext alphabet is used. It is also possible to have a polyalphabetic substitution
cipher, where multiple ciphertext alphabets are used. This makes the ciphertext
much harder to decode because the codebreaker would have to figure out ciphertext
alphabets used.

1.1 Classical Ciphers 3

S Oq\ﬂ

)

— T Al
(2 & N

Fig. 1.1 Caesar cipher wheel

A typical example of polyalphabetic substitution ciphers is the Vigenere cipher
[5]. The Vigenere cipher is named after Blaise de Vigenere (5 April 152319 Febru-
ary 1596), who was a French diplomat, cryptographer, translator, and alchemist.

To encrypt, a table of alphabets, as shown in Fig. 1.2, is used, termed Vigenere
square, composed of the alphabet written out 26 times in different rows, each alpha-
bet shifted cyclically to the left compared to the previous alphabet, corresponding
to the 26 possible Caesar ciphers.

To use the Vigenere square to encrypt a message, we first choose a keyword
and then repeat it until it is the same length as the message we wish to encode.
We then would write the message underneath the repeated keyword to see which
ciphertext alphabet you would use for each letter of the message. The first letter
of the message would be encrypted using the ciphertext alphabet that corresponds
with the first letters of the keyword. For example if we have a keyword of VENUS
and the message we want to encode is polyalphabetic, this is what we would do:

Keyword: V ENUSVENUSVENU
Plaintext: p o l yal phabet i c
Ciphertext: K S Y SSGTUUTZXV W

Some substitution ciphers involve using numbers instead of letters. An example
of this is the Great Cipher [21], where numbers were used to represent syllables.

1.1.2 Transposition Ciphers

In a transposition cipher, the letters themselves are kept unchanged, but their order
within the message is scrambled according to some well-defined scheme. Many
transposition ciphers are done according to a geometric design. A simplest example
of transposition ciphers is the Scytale cipher [13]. The Scytale cipher was used by
the ancient Greeks and Spartans to communicate during their military campaigns.
It was first mentioned by the Greek poet Archilochus, who lived in the seventh
century BC. The Scytale cipher involves three pieces of equipment, namely a pen, a

Introduction

1

ABCDEFGHI JKLMNOPQRSTUVWXY Z

N|<|o|u|O|w|w || T|—|=|x| == Z|Ola | O v - D] > =] <[>
>|N|<|o|u|o|w|w ||| —|-|x|=|=|Z|0]|a | O | -] D] =] =<
x| >|N|<|o|u|Ojw|w |V |T|—| = x| =S| Z|0|o | Ol v D >1=
= x> |N|<|o|u|O|w|w Ol |— ||| 2| =|Z| 0| o] Ol || D>
>| =< >|N|<| || O|w|w || —| - x| 2| S| Z| Ola- | O | v D
O >|= x| > |N|<|o| Lo |w|w ||| — || x| 2| = Z| O|a | Of ccf -
| D> =] x> |N|<|o|u|a|wlw o]z |—| = x| 2| S| Z|o] o | Of oo
VD> S| >[Nl < | |u]O|w|u JO| T —|- x| S| S|Z| O] o Olec
||| o> =] <> | N|< |o|u|o]w]w ol |- || x| oS Z| ol oo
Ol ||| D)= =] x| >|N|<|o|u|o|w|w |O|=|—| | x| =] =] Z]| Ol
o | Ol |n|—|D| > =] <> IN|<|o|u|a|w|w ||| —| x| 2| =] Z|O
O|a| Ol ||| D> =)< |>|N| < ||| O|w|w O] | —| | x| 2| S|=
Z|O|a- ||| H[D] > <> |N| e OfOfwu [O] T —| =[] 5]
S|Z|0|a | Ol |n|—| D= =< | > |N| < |oju|o|w|w| V| | —| -] x| =
| S|Z|O|a ||| |= =2 <] > |N|<|o|u o wiw [O] | —| —ix
| 4|5 Z|Ola | Ol wnl- D= = x| > |N| <|o|u]| o w|w | ol | —| -
||| S| Z|0|a| O] c|n || D)= =X || N| < o V| Ofwi| u| O] T|—
—|x| | S|Z|ofa|Olac |n]- D> = <[> IN| << o]V|O|wiu | V| T
I|—|~x| =S| Z|0|a |0 || D> | =] <> |N| <| oV O wf u v
[T = e = 2 I 5 2 (o) M e 2 0 e Y S S s 5) =) [
wlolz|=]-lx] alSZ[o]a|o]ac|un]-]o == <] >N <] o] U] alw
w|w ||| —|-| x| 1| S|z |O]a | O x|n || D> =] x| >Nl <| o Ula
Ofwiu V| T|— ||| IS |Z|Ofa |Ofac ||| D > = <[> N| < e
Vlowiuo|T|—||x|J|S|Z[O]a |0 | v D] > = [><[>|N| <|o
oo VO|wlu U T|—| x| JS{Z|O]a |Olac|n || D >[=] x| > N|<C
<|aju|O|w|uw ||| —|> x|l S Z|o]a | Olc|n|H D= = x| >N
COVUAWULUI—=—XJdSZ0a0xwnikED>=xX>N

Fig. 1.2 Vigenre square

long strip of paper (leather was used by the Greeks and Spartans), and a cylinder of

some sort, as shown in Fig. 1.3.

The long thin strip of paper is then wrapped around the cylinder, going from one

end to the other. The message

KILL KING TOMORROW MIDNIGHT

is then written horizontally on the paper, one letter for each wrap around, going

from left to right, three letters per column. The cylinder is rotated and the rest of

the message is written until the message is complete. Once its complete, the strip of

paper is taken off and the result

2
<
8
)
9)
wn
N
—
=3
A=
=

1.1 Classical Ciphers 5

KTMIOILMDLONKRIIRGNOHGWT

is the ciphertext. With this ciphertext, the only way to read the original is to re-wrap
it around a cylinder of equal width and read the letters from left to right.

The diameter of the Scytale can be regarded as the key of the cipher. Since the
key can take a limited positive integer only, the Scytale cipher can be easily broken
by a brute-force attack.

Another simple example of transposition ciphers is the columnar cipher [12].
It can be performed by hand. First, the message is written out in rows of a fixed
length, and then read out again column by column, and the columns are chosen
in some scrambled order. Both the width of the rows and the permutation of
the columns are usually defined by a keyword. For example, suppose we use the
keyword GERMAN and the message

defend the east wall of the castle.

The encryption process can be illustrated as follows:

IGERMAN| [AEGMN R

de fend nededf
theeas|_ _laht ese
twal l o lwt]l oa
ftheca ct feah
st l e xx xts e x|/

In the above example, the plaintext has been padded with “xx” so that it
neatly fits in a rectangle. This is known as a regular columnar transposition. An
irregular columnar transposition leaves these characters blank, though this makes
decryption slightly more difficult. The columns are now reordered such that the
letters in the keyword are ordered alphabetically. The ciphertext is read off along
the columns, i.e.,

nalcxehwttdtt fseeleedsoax feahl
Many transposition ciphers are similar to these two examples, usually involving

rearranging the letters into rows or columns and then taking them in a systematic
way to transpose the letters.

1.1.3 Product Ciphers

A product cipher combines two or more transformations in a manner intending
that the resulting cipher is more secure than the individual components. A typical

6 1 Introduction

Fig. 1.4 ADFGVX square

—|7M|=|—|o|O| >
DV Z|P|W|IT|O
|| NIN— X ™
m|<|o|I<|[o || &
NN P |IC| <
QO|o| x|SO X

X<OmMmO >

example of product ciphers is the ADFGVX cipher [12]. The ADFGVX cipher was
used by the German army during World War I. Invented by Colonel Fritz Nebel and
introduced in March 1918, the cipher was combined with a substitution cipher and
a transposition cipher. The cipher is named after the six possible letters used in the
ciphertext: A, D, F, G, V, and X. These letters were chosen deliberately because they
sound very different from each other when transmitted via morse code. The intention
was to reduce the possibility of operator error.

The ADFGVX cipher used a 6 x 6 matrix to substitution-encrypt the 26 letters
and 10 digits into pairs of the symbols A, D, F, G, V, and X. The resulting biliteral
cipher was then written into a rectangular array and route encrypted by reading the
columns in the order indicated by a keyword.

The “key” for a ADFGVX cipher is a “key square” and a key word. The key
square is a 6 by 6 square containing all the letters and the numbers 0-9 as shown in
Fig. 1.4. The keyword is any word, e.g., GERMAN.

There are a number of steps involved:

1. Build a table like that shown in Fig. 1.4 as the key square. This is known as a
Polybius square.

2. Encode the plaintext using this matrix; to encode the letter “a,” locate it in the
matrix and read off the letter on the far left side on the same row, followed by the
letter at the top in the same column. In this way each plaintext letter is replaced
by two cipher text letters, e.g., “attack” is encrypted to

DV XA XA DV VV GX

The ciphertext is now twice as long as the original plaintext. Note that so far, it
is just a simple substitution cipher and trivial to break.
3. Write the keyword with the enciphered plaintext underneath, e.g.,

1.2 Secret Key Encryption 7

GERMAN
DVXAXA
DVVYVGX

4. Perform a columnar transposition. Sort the keyword alphabetically, moving the
columns as you go. Note that the letter pairs that make up each letter get split
apart during this step; this is called fractionating.

AEGMNR
XVDAAX
GVDV XYV

Read the final ciphertext off in columns.
XGVVDDAVAXXV

In the days of manual cryptography, product ciphers were a useful device for
cryptographers, and in fact double transposition or product ciphers on keyword-
based rectangular matrices were widely used. There was also some use of a class
of product ciphers known as fractionation systems, wherein a substitution was first
made from symbols in the plaintext to multiple symbols (usually pairs, in which case
the cipher is called a biliteral cipher) in the ciphertext, which was then encrypted by
a final transposition, known as superencryption.

The great French cryptanalyst Georges J. Painvin succeeded in cryptanalyzing
critical ADFGVX ciphers in 1918 [16], with devastating effect for the German army
at the Second Battle of the Marne.

Nowadays, most of classical ciphers have become less popular. They were
frequently used during World War II, but since computer have become available to
security analysis, their applicability has diminished. However, this does not imply
that a description of classical ciphers is only of historical interest. These ciphers
have had a profound impact on today’s information security technology and provide
an approach for beginners to understand ideas of information security technology.

1.2 Secret Key Encryption

1.2.1 Secret Key Encryption Model

Secret key encryption algorithms are a class of algorithms that use the same secret
keys for both encryption of plaintext and decryption of ciphertext. The keys may
be identical or there may be a simple transformation to go between the two keys.
The keys, in practice, represent a shared secret between two or more parties that can
be used to maintain a private information link.

8 1 Introduction

Plaintext
/Clphertext \
Hello ade% o
5 [Eneryer | 5 s

L o \ e / e = il
Sender vy Receiver
Same Key for Encrypt and Decrypt

Fig. 1.5 Secret key encryption model

A first systematic and information-theoretic study of secret key cryptosystem can
be found in Shannon’s classical paper “Communication Theory of Secrecy Systems”
[20]. This paper was the first to introduce a secret key encryption model, as shown
in Fig. 1.5.

Prior to transmission of a plaintext P, a key source provides both the sender and
the recipient with a shared key K. This key is used by the sender to encrypt the
plaintext, obtaining a ciphertext C which is delivered to the receiver and possibly
intercepted by an enemy eavesdropper. The receiver then uses the key K in order to
reconstruct the clear plaintext P.

1.2.2 Data Encryption Standard

The data encryption standard (DES) is a secret key cryptosystem for the encryption
of electronic data [19]. It was developed in the early 1970s at IBM and is based on an
earlier design by Horst Feistel. The algorithm was submitted to the National Bureau
of Standards (NBS) following the agency’s invitation to propose a candidate for
the protection of sensitive, unclassified electronic government data. In 1976, after
consultation with the National Security Agency (NSA), the NBS eventually selected
a slightly modified version, which was published as an official federal information
processing standard (FIPS) for the United States in 1977.

The overall structure of DES is shown in Fig. 1.6. There are 16 identical stages
of processing, termed rounds. There is also an initial and final permutation, termed
IP and FP, which are inverses. Before the main rounds, the block is divided into
two 32-bit halves and processed alternately; this criss-crossing is known as the
Feistel scheme. The Feistel structure ensures that decryption and encryption are
very similar processes—the only difference being that the subkeys are applied in
the reverse order when decrypting. The rest of the algorithm is identical. This greatly

1.2 Secret Key Encryption 9

| Plaintext |

L w®]

P
4
;

|Plaintext|=|Ciphertext|=64 bits

} Repeated for 16 rounds

L]

} Ciphertext {

Fig. 1.6 Structure of DES

simplifies implementation, particularly in hardware, as there is no need for separate
encryption and decryption algorithms.

The & symbol denotes the exclusive-OR (XOR) operation. The F-function
scrambles half a block together with some of the key. The output from the F-function
is then combined with the other half of the block, and the halves are swapped before
the next round. After the final round, the halves are swapped; this is a feature of the
Feistel structure which makes encryption and decryption similar processes.

The F-function, depicted in Fig. 1.7, operates on half a block (32 bits) at a time
and consists of four stages:

* Expansion—the 32-bit half-block is expanded to 48 bits using the expansion
permutation, denoted E in the diagram, by duplicating half of the bits. The output
consists of eight 6-bit (§ x 6 = 48 bits) pieces, each containing a copy of 4
corresponding input bits, plus a copy of the immediately adjacent bit from each
of the input pieces to either side.

* Key mixing—the result is combined with a subkey using an XOR operation. 16
48-bit subkeys—one for each round—are derived from the main key using the
key schedule (described below).

10 1 Introduction

Half Block (32 bits) ~ Subkey (48 bits)

Y

gt
[S1][52][53][54][55][56][57][ss]
LI T UL T TPTE TPl TIIE J0

Fig. 1.7 F-function

* Substitution—after mixing in the subkey, the block is divided into eight 6-bit
pieces before processing by the S-boxes, or substitution boxes. Each of the eight
S-boxes replaces its six input bits with four output bits according to a nonlinear
transformation, provided in the form of a lookup table. The S-boxes provide the
core of the security of DES—without them, the cipher would be linear and
trivially breakable.

* Permutation—finally, the 32 outputs from the S-boxes are rearranged according
to a fixed permutation, the P-box. This is designed so that, after permutation,
each S-box’s output bits are spread across 4 different S-boxes in the next round.

The alternation of substitution from the S-boxes and permutation of bits from the
P-box and E-expansion provide the so-called confusion and diffusion, respectively,
a concept identified by Claude Shannon in the 1940s as a necessary condition for
a secure yet practical cipher. Diffusion means that if we change a character of the
plaintext, then several characters of the ciphertext should change, and similarly, if
we change a character of the ciphertext, then several characters of the plaintext
should change. Confusion means that the key does not relate in a simple way to the
ciphertext. In particular, each character of the ciphertext should depend on several
parts of the key.

1.2 Secret Key Encryption 11

t Key (64 bits) I

| PC1]

LT

Subkey 1 (48 bits) ~e— PCZ
2

E
Subkey 2 (48 bits) *_W

-]
Subkey 15 (48 bits) ——
Subkey 16 (48 bits)

Fig. 1.8 Key schedule of DES

The key schedule of DES is illustrated in Fig. 1.8. It generates 16 subkeys.

Initially, 56 bits of the key are selected from the initial 64 bits by Permuted
Choice 1 (PC-1) and the remaining eight bits are either discarded or used as parity
check bits. The 56 bits are then divided into two 28-bit halves; each half is thereafter
treated separately. In successive rounds, both halves are rotated left by one or two
bits (specified for each round), and then 48 subkey bits are selected by Permuted
Choice 2 (PC-2), 24 bits from the left half and 24 from the right. The rotations
(denoted by “<<<” in the diagram) mean that a different set of bits is used in each
subkey; each bit is used in approximately 14 out of the 16 subkeys.

The key schedule for decryption is similar. The subkeys are in reverse order
compared to encryption. Apart from that change, the process is the same as for
encryption.

Although more information has been published on the cryptanalysis of DES
than any other block cipher, the most practical attack to date is still a brute-force
approach. There are three attacks known that can break the full 16 rounds of DES
with less complexity than a brute-force search: differential cryptanalysis (DC) [2],
linear cryptanalysis (LC) [15], and Davies’ attack [9]. However, the attacks are
theoretical and are unfeasible to mount in practice.

1.2.3 Advanced Encryption Standard

The DES cryptosystem (with its variations) was widely used for more than 20 years.
The main problem of the DES algorithm was its relatively short secret key, with 2%
possible keys. Although this is a fairly large number, with sufficient computational
resources brute-force attacks on DES are feasible. So-called DES challenges, where

12 1 Introduction

Plaintext Plaintext

£y
.

Final Round

*

Repeated
N1 times

L}
"
"

-

Decryption Round "

TeaETrTeeR TR

-

" Encryption Round

Encryption
Decryption

Repeated
N1 times

am———

......

g Final Round

Ciphertext Ciphertext

Fig. 1.9 Encryption and decryption of AES

a large number of computers connected to the Internet exhaustively searched the
key space, demonstrated this weakness dramatically. The first DES challenge in
1997 was completed in 4.5 months, the second in 1998 in 39 days, and the third and
final DES challenge in 1999 was completed in less than a day (22.5 h).

In 1997 the US National Institute of Standards and Technology (NIST) started
a public competition to select an algorithm to replace DES. The algorithm was
required to support key sizes of 128, 192, and 256 and to be free of any patents.
The selection process consisted of several rounds where candidate algorithms were
evaluated. At the end of the first round in August 1998, 15 algorithms were accepted
as candidates. In the next round in August 1999, the candidates were reduced
to five finalist algorithms (MARS, Blowfish, RC6, Rijndael, Serpent). Finally, in
April 2000 the Rijndael algorithm was selected as the winner. On 2 October 2000,
NIST officially announced that Rijndael has been chosen as Advanced Encryption
Standard (AES) [8].

The AES algorithm operates on 128-bit data blocks supporting three different
key sizes of 128, 192, and 256 bits. These three flavors of the AES algorithm are
also referred to as AES-128, AES-192, and AES-256, for 128-, 192-, and 256-bit
keys, respectively. An AES encryption process consists of a number of encryption
rounds (N;) that depends on the size of the key. The standard calls for 10 rounds for
AES-128, 12 rounds for an AES-192, and 14 rounds for an AES-256.

During encryption, each round is composed of a set of four basic operations. The
decryption process applies the inverse of these operations in reverse order. Figure 1.9
shows the basic structure of the AES encryption and decryption.

1.2 Secret Key Encryption 13

S[],O S\’J,‘J SD,Z 50,3
Sl,D Sl,! 51,2 51,3

S2,O S2,I 52,2 52,3
SB,O 53,1 53,2 53,3

Fig. 1.10 State of AES

bo 2 3 1 1 ap
bi| |1 2 3 1| |
bz - 1 1 2 3 ag
b3 3 1 1 2 as
Fig. 1.11 MixColumns of AES encryption
To 14 11 13 9 aop
rol |9 14 11 13| |ag
ro| |13 9 14 11| |a2
r3 11 13 9 14 as

Fig. 1.12 InvMixColumns of AES decryption

AES operates on a 4 x 4 column-major order matrix of bytes, termed the state, as
shown in Fig. 1.10, where the element S, . is an 8-bit value that corresponds to the
row r and column c of the state. Most AES calculations are done in a special finite
field.

AES can be described as follows:

» KeyExpansion—round keys are derived from the key using AES key schedule.
AES requires a separate 128-bit round key block for each round plus one more.
* InitialRound
AddRoundKey—each byte of the state is combined with a block of the round
key using bitwise XOR.
* Rounds
SubBytes—a nonlinear substitution step where each byte is replaced with
another according to a lookup table.
ShiftRows—a transposition step where the last three rows of the state are
shifted cyclically a certain number of steps.
MixColumns—a mixing operation which operates on the columns of the state,
combining the four bytes in each column. MixColumns for encryption is defined
as in Fig. 1.11, while InvMixColumns for decryption is defined as in Fig. 1.12.

14 1 Introduction

AddRoundKey
¢ Final Round (no MixColumns)
SubBytes
ShiftRows
AddRoundKey.

Until May 2009, the only successful published attacks against the full AES were
side-channel attacks on some specific implementations. NSA reviewed all the AES
finalists, including Rijndael, and stated that all of them were secure enough for US
government non-classified data. In June 2003, the US government announced that
AES could be used to protect classified information.

The design and strength of all key lengths of the AES algorithm (i.e., 128, 192,
and 256) are sufficient to protect classified information up to the SECRET Ilevel.
TOP SECRET information will require use of either the 192 or 256 key lengths. The
implementation of AES in products intended to protect national security systems
and/or information must be reviewed and certified by the NSA prior to their
acquisition and use.

1.3 Public-Key Encryption

1.3.1 Public-Key Encryption Model

During the early history of encryption, two parties would rely upon a key that they
would exchange between themselves by means of a secure method. For example, a
face-to-face meeting or an exchange, via a trusted courier, could be used. This key,
which both parties kept absolutely secret, could then be used to exchange encrypted
messages. A number of significant practical difficulties arise with this approach to
distributing keys.

Public-key encryption addresses these drawbacks so that users can communicate
securely over a public channel without having to agree upon a shared key before-
hand.

The public-key encryption model, as shown in Fig. 1.13, was introduced in 1976
by Whitfield Diffie and Martin Hellman [10] who, influenced by Ralph Merkle’s
work on public-key distribution, disclosed a method of public-key agreement.

Public-key encryption, also called asymmetric key encryption, is a class of
algorithms which require two separate keys, one of which is secret (or private)
and one of which is public. Although different, the two parts of this key pair are
mathematically linked. The public key is used to encrypt plaintext; whereas the
private key is used to decrypt ciphertext. The term “asymmetric” stems from the use
of different keys to perform these opposite functions, each the inverse of the other,
as contrasted with conventional (“symmetric key”) encryption which relies on the
same key to perform both.

1.3 Public-Key Encryption 15

Plaintext
/ Ciphertext \
Hello Hello

|—)-—|—)-—|—>—|
I___IT Loy =l T L o al

Sender 0 0 Receiver

Receiver’s Public Key Receiver’s Private Key

Fig. 1.13 Public-key encryption model

In general, a public-key cryptosystem, associated with a key space (K), a
plaintext space M, and a ciphertext space C, consists of three algorithms as
follows:

* Key generation algorithm (KG)—given a security parameter k, a public and
private key pair (pk,sk) is generated, where sk € K. The public key pk is
published to the public, while the private key sk is known to its owner only.

* Encryption algorithm (E)—given a plaintext m € M and a public key pk, a
ciphertext ¢ is produced, denoted as ¢ = E(m, pk), where ¢ € C.

* Decryption algorithm (D)—given a ciphertext ¢ = E(m, pk) and the private key
sk, the plaintext m is recovered, denoted as m = D(c, sk).

The encryption algorithm E, a map from the plaintext space M to the ciphertext
space C, must be a trapdoor one-way function. For virtually all ciphertexts ¢ =
E(m, pk), it must be computationally infeasible to recover the plaintext m from
a given pk and c. However, since the legitimate recipient of the message must be
able to recover m from ¢, more is required of the one-way function. Specially, each
E must have an inverse D, and this inverse must be easily obtainable given some
additional secret information sk. The extra information sk is called a trapdoor of E
and the function F itself is called trapdoor one-way function. It is also required that,
with a knowledge of sk, m = D(c, sk) be easy to compute for all ¢ in the ciphertext
space.

Trapdoor functions are based on mathematical problems which currently admit
no efficient solution that are inherent in certain integer factorization, discrete
logarithm, and elliptic curve relationships. It is computationally easy for a user
to generate their own public- and private key pair and to use them for encryption
and decryption. The strength lies in the fact that it is “impossible” (computationally
unfeasible) for a properly generated private key to be determined from its corre-
sponding public key. Thus the public key may be published without compromising
security, whereas the private key must not be revealed to anyone not authorized to

16 1 Introduction

read messages. Public-key algorithms, unlike secret key algorithms, do not require
a secure initial exchange of one (or more) secret keys between the parties.

1.3.2 RSA

Diffie and Hellman introduced the great idea of public-key cryptosystem in 1976,
but they did not provide a practical public-key cryptosystem. In 1977, the first
practicable public-key cryptosystem, RSA [18], was proposed by Ron Rivest, Adi
Shamir, and Leonard Adleman and named by their names. In RSA, the encryption
key is public and differs from the decryption key which is kept secret, and the
security is based on the practical difficulty of factoring the product of two large
prime numbers, the factoring problem. Clifford Cocks, an English mathematician,
had developed an equivalent system in 1973, but it was not declassified until 1997.

The RSA algorithm involves three algorithms: key generation, encryption, and
decryption algorithms as follows.

Key Generation: RSA involves a public key and a private key. The public key can
be known by everyone and is used for encrypting messages. Messages encrypted
with the public key can only be decrypted in a reasonable amount of time using the
private key. The keys for the RSA algorithm are generated in the following way:

1. Choose two distinct prime numbers p and q. For security purposes, the integers
p and g should be chosen at random and should be of similar bit-length. Prime
integers can be efficiently found using a primality test.

2. Compute

n=pq (1.1)

n is used as the modulus for both the public and private keys. Its length, usually
expressed in bits, is the key length.
3. Compute

¢(n) = ¢(p)p(g) =(p—D(@—-1) (1.2)

where ¢ is Euler’s totient function (i.e., the number of positive integers less than
n and relatively prime to n).
4. Choose an integer e such that 1 < e < ¢(n) and

ged(e.¢(n)) =1

In other words, e and ¢ (n) are coprime. e is released as the public-key exponent.
e having a short bit-length and small Hamming weight results in more efficient
encryption, most commonly 216 4 1 = 65, 537. However, much smaller values
of e (such as 3) have been shown to be less secure in some settings [4].

1.3 Public-Key Encryption 17

5. Determine d as
d = e Y(mod ¢(n)) (1.3)

that is, d is the multiplicative inverse of e(mod ¢(n)).

This is more clearly stated as solve for d given e-d = 1(mod¢(n)). This is often
computed using the extended Euclidean algorithm. The public key consists of the
modulus n and the public (or encryption) exponent e. The private key consists of the
modulus 7 and the private (or decryption) exponent d, which must be kept secret.
P, 4, and ¢ (n) must also be kept secret because they can be used to calculate d.

Encryption: Alice transmits her public key (7, e) to Bob and keeps the private key
secret. Bob then wishes to send message M to Alice.

He first turns M into an integer m, such that 0 < m < n by using an agreed-upon
reversible protocol known as a padding scheme. He then computes the ciphertext ¢
corresponding to

¢ = m®(mod n) (1.4)

This can be done quickly using the method of exponentiation by squaring. Bob
then transmits ¢ to Alice.

Decryption: Alice can recover m from ¢ by using her private key exponent d by
computing

m = ¢ (mod n) (1.5)

Given m, she can recover the original message M by reversing the padding
scheme.

RSA Example: The parameters used here are artificially small, but one can also
use OpenSSL to generate and examine a real key pair.

1. Choose two distinct prime numbers, such as
p=61,g=>53
2. Compute n = pgq giving
n =61x53=23233
3. Compute the totient of the product as ¢(n) = (p — 1)(¢ — 1), giving

$(3233) = (61 — 1) x (53 — 1) = 3120

18 1 Introduction

4. Choose any number 1 < e < 3120 that is coprime to 3120. Choosing a prime
number for e leaves us only to check that e is not a divisor of 3120. Let

e=17
5. Compute d, the modular multiplicative inverse of e(mod¢ (n)) yielding
d = 2753

The public key is (n = 3233, e = 17). For a padded plaintext message m, the
encryption function is

¢ =m'(mod 3233).

The private key is (n = 3233,d = 2753). For an encrypted ciphertext ¢, the
decryption function is

m = c¢*3(mod 3233).
For instance, in order to encrypt
m = 65
we calculate
c = 65" = 2790(mod 3233).
To decrypt ¢ = 2790, we calculate
m = 2790?33 (mod 3233) = 65.

RSA Security: There are a number of attacks against plain RSA as described
below:

1. When encrypting with low encryption exponents (e.g., ¢ = 3) and small values
of the m (i.e., m < n'/¢) the result of m¢ is strictly less than the modulus 7.
In this case, ciphertexts can be easily decrypted by taking the e-th root of the
ciphertext over the integers.

2. If the same clear text message is sent to e or more recipients in an encrypted way,
and the receivers share the same exponent e, but different p, g, and therefore
n, then it is easy to decrypt the original clear text message via the Chinese
remainder theorem. Johan Hastad [11] noticed that this attack is possible even
if the cleartexts are not equal, but the attacker knows a linear relation between
them. This attack was later improved by Don Coppersmith [6].

1.3 Public-Key Encryption 19

3. Because RSA encryption is a deterministic encryption algorithm (i.e., has no
random component), an attacker can successfully launch a chosen-plaintext
attack against the cryptosystem, by encrypting likely plaintexts under the public
key and test if they are equal to the ciphertext. A cryptosystem is called
semantically secure if an attacker cannot distinguish two encryptions from each
other even if the attacker knows (or has chosen) the corresponding plaintexts.
As described above, RSA without padding is not semantically secure.

4. RSA has the property that the product of two ciphertexts is equal to the
encryption of the product of the respective plaintexts. That is, m{m§ =
(mymy)¢(mod n). Because of this multiplicative property, a chosen-ciphertext
attack is possible, e.g., an attacker, who wants to know the decryption of a
ciphertext ¢ = m°(mod n) may ask the holder of the private key to decrypt
an unsuspicious-looking ciphertext ¢/ = cr¢(mod n) for some value r chosen
by the attacker. Because of the multiplicative property ¢’ is the encryption of
mr(mod n). Hence, if the attacker is successful with the attack, he or she will
learn mr(mod n) from which he or she can derive the message m by multiplying
mr with the modular inverse of r modulo 7.

To avoid these problems, practical RSA implementations typically embed some
form of structured, randomized padding into the value m before encrypting it. This
padding ensures that m does not fall into the range of insecure plaintexts and that
a given message, once padded, will encrypt to one of a large number of different
possible ciphertexts.

The security of RSA is based on two mathematical problems: the problem of
factoring large numbers and the RSA problem. It is easy to multiply two large
prime numbers, but no algorithm is known that is able to factorize a large number
efficiently. The RSA problem is defined as the task of taking eth roots modulo a
composite n: recovering a value m such that c = m°(mod n), where (n, e) is an
RSA public key and ¢ is an RSA ciphertext. Currently the most promising approach
to solving the RSA problem is to factor the modulus n. With the ability to recover
prime factors, an attacker can compute the secret exponent d from a public key
(n, e), then decrypt ¢ using the standard procedure. To accomplish this, an attacker
factors n into p and ¢ and computes (p — 1)(¢ — 1) which allows the determination
of d from e.

However, it is not proved that RSA is as secure as factoring. It can be shown that
if an attacker is able to generate a private key from a public key, he or she is also
able to factorize large numbers. But until today nobody was able to prove that an
attacker who is able to decrypt messages is also able to factorize large numbers. So
it is unknown if the complexity of the RSA problem is the same as the complexity
of factoring.

20 1 Introduction
1.3.3 Rabin Public-Key Encryption

In 1979, two years after the publication of RSA, Michael O. Rabin [17] proposed the
Rabin public-key algorithm, which has the advantage of being provably as secure as
factoring.

As with all asymmetric cryptosystems, the Rabin system uses both a public and
a private key. The public key is necessary for later encryption and can be published,
while the private key must be possessed only by the recipient of the message.

Key Generation: The precise key generation process is as follows:

* Choose two large distinct primes p and g. One may choose p = ¢ = 3(mod 4)
to simplify the computation of square roots modulo p and ¢. But the scheme
works with any primes.

* Letn = p-q. Then n is the public key. The primes p and g are the private key.
To encrypt a message only the public key 7 is needed. To decrypt a ciphertext the
factors p and g of n are necessary.

As a (non-real-world) example, if p = 7 and ¢ = 11, then n = 77. The public
key, 77, would be released, and the message encoded using this key. And, in order to
decode the message, the private keys, 7 and 11, would have to be known (of course,
this would be a poor choice of keys, as the factorization of 77 is trivial; in reality
much larger numbers would be used).

Encryption: For the encryption, only the public key # is used, thus producing a
ciphertext out of the plaintext. The process is as follows:

Let P = {0,...,n—1} be the plaintext space (consisting of numbers) and m € P
be the plaintext. Now the ciphertext c is determined by

¢ = m*(mod n) (1.6)

That is, ¢ is the quadratic remainder of the square of the plaintext, modulo the
public key 7.

In the simple example, P = {0, ..., 76} is the plaintext space. We will take m =
20 as the plaintext. The ciphertext is thus ¢ = m?(mod n) = 400(mod 77) = 15.
For exactly four different values of m, the ciphertext 15 is produced, i.e., for m €
{13,20, 57, 64}. This is true for most ciphertexts produced by the Rabin algorithm,
i.e., it is a four-to-one function.

Decryption: To decode the ciphertext, the private keys are necessary. The process
is as follows:

If ¢ and n are known, the plaintext is then m € {0,...,n — 1} with m? =
c(mod n). For a composite n (that is, like the Rabin algorithm’s n = p - g) there is
no efficient method known for the finding of m. If, however n is prime (as are p and
q in the Rabin algorithm), the Chinese remainder theorem can be applied to solve
for m.

1.3 Public-Key Encryption 21

Thus the square roots

m, = /c(mod p) (1.7)
my = /c(mod q) (1.8)

must be calculated.
When p = g = 3(mod 4), we can compute square roots by

m, = c%(pH)(mod p) (1.9)

my = c%(‘”l)(mod q) (1.10)

In the example we get m, = 1 and m; = 9.

By applying the extended Euclidean algorithm, we wish to find y, and y, such
that y, - p + y, - ¢ = 1. In the example, we have y, = —3 and y, = 2.

Now, by invocation of the Chinese remainder theorem, the four square roots
+r,—r, +s,and —s of c+nZ € 7./ nZ are calculated (Z/nZ here stands for the ring

of congruence classes modulo n). The four square roots are in the set {0, ...,n—1}:
r=Qp-p-myg+y,-q-mp) mod n (1.11)

—r=n-—r (1.12)
s=yp-p-myg—ys-q-mp) mod n (1.13)

—s=n-—s (1.14)

One of these square roots mod n is the original plaintext m. In the example,
m € {64,20,13,57}.

Security: Rabin pointed out in his paper that if someone is able to compute both,
r and s, then he is also able to find the factorization of n because either ged(|r —
s|,n) = porged(|r —s|,n) = ¢, where gcd means greatest common divisor. Since
the greatest common divisor can be calculated efficiently, you are able to find the
factorization of n efficiently if you know r and s. In the our example (picking 57
and 13 as r and s):

gcd(57 — 13,77) = ged(44,77) = 11 = ¢

Rabin scheme has, however, a downside: Every decryption operation produces
four possible outputs and thus is not suitable for practical applications. Williams
[22] suggested a change that avoids these ambiguities. This is called the Rabin—
Williams algorithm.

22 1 Introduction
1.3.4 Public-Key Cryptography Standards

The public-key cryptography standards (PKCS) are a set of standard protocols
for making possible secure information exchange on the Internet using a public-
key infrastructure (PKI). The standards include RSA encryption, password-based
encryption, extended certificate syntax, and cryptographic message syntax for
S/MIME, RSA’s proposed standard for secure e-mail. The standards were devel-
oped by RSA laboratories in cooperation with a consortium that included Apple,
Microsoft, DEC, Lotus, Sun, and MIT.

Public-key cryptography standards (PKCS) #1 provides the basic definitions
of and recommendations for implementing the RSA algorithm for public-key
cryptography. It defines the mathematical properties of public and private keys,
primitive operations for encryption and signatures, secure cryptographic schemes,
and related ASN.1 syntax representations. The current version, 2.1, was published
in June 2002 and was also republished as RFC 3447 in February 2003.

Standards such as PKCS#1 have been carefully designed to securely pad
messages prior to RSA encryption. Because these schemes pad the plaintext m
with some number of additional bits, the size of the un-padded message must
be somewhat smaller. RSA padding schemes must be carefully designed so as to
prevent sophisticated attacks which may be facilitated by a predictable message
structure. Early versions of the PKCS#1 standard (up to version 1.5) used a
construction that appears to make RSA semantically secure. However, at Eurocrypt
2000, Coron et al. [7] showed that for some types of messages, this padding
does not provide a high enough level of security. Furthermore, at Crypto 1998,
Bleichenbacher [3] showed that this version is vulnerable to a practical adaptive
chosen-ciphertext attack. Later versions of the standard include optimal asymmetric
encryption padding (OAEP) [1], which prevents these attacks. As such, OAEP
should be used in any new application, and PKCS#1 v1.5 padding should be
replaced wherever possible.

Optimal asymmetric encryption padding (OAEP) is a padding scheme often used
together with RSA encryption. OAEP was introduced by Bellare and Rogaway [1]
and subsequently standardized in PKCS #1v2 and RFC 2437.

The OAEP algorithm is a form of Feistel network which uses a pair of random
oracles G and H to process the plaintext prior to asymmetric encryption. When
combined with any secure trapdoor one-way permutation, this processing is proved
in the random oracle model to result in a combined scheme which is semantically
secure under chosen-plaintext attack (IND-CPA). When implemented with certain
trapdoor permutations (e.g., RSA), OAEP is also proved secure against chosen-
ciphertext attack. OAEP can be used to build an all-or-nothing transform.

The OAEP algorithm can be depicted in a diagram as shown in Fig. 1.14. In the
diagram,

e n is the number of bits in the RSA modulus.
* ko and k; are integers fixed by the protocol.

1.3 Public-Key Encryption 23

n-ko‘k1 k1 ko

em_.<7

n-ko

Fig. 1.14 Optimal asymmetric encryption padding (OAEP)

* m is the plaintext message, an (n — ko — k1)-bit string
e G and H are typically some cryptographic hash functions fixed by the protocol.

To encode,

Step 1. Pad messages with k| zeros to be n — kg bits in length.
Step 2. Generate a random number r with k¢-bit string

Step 3. Expand the k bits of r to n — k¢ bits with G.

Step4. Let

X = m00..0 ® G(r) (1.15)

Step 5. Reduce the n — kg bits of X to k¢ bits with H.
Step 6. Let

Y =r® H(X) (1.16)

Step 7. The output is X||Y where X is shown in the diagram as the leftmost block
and Y as the rightmost block.

To decode,

Step 1’. Recover the random string as

24 1 Introduction
r=Y @ H(X) 1.17)

Step 2°. Recover the message as
m00..0 = X & G(r) (1.18)

The “all-or-nothing” security is from the fact that to recover m, you must recover
the entire X and the entire Y'; X is required to recover r from Y, and r is required
to recover m from X. Since any changed bit of a cryptographic hash completely
changes the result, the entire X and the entire ¥ must both be completely recovered.

OAERP satisfies the following two goals:

* Add an element of randomness which can be used to convert a deterministic
encryption scheme (e.g., traditional RSA) into a probabilistic scheme.

e Prevent partial decryption of ciphertexts (or other information leakage) by
ensuring that an adversary cannot recover any portion of the plaintext without
being able to invert the trapdoor one-way permutation.

References

1. M. Bellare, P. Rogaway, Optimal asymmetric encryption—how to encrypt with RSA, in
Proceedings of Eurocrypt’94, 1994
2. E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1),
3-72 (1991)
3. D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS #1, in Proceedings of the CRYPTO’98, 1998, pp. 1-12
4. D. Boneh, Twenty years of attacks on the RSA cryptosystem. Not. Am. Math. Soc. 46(2),
203-213 (1999)
5. A. Bruen, M. Forcinito, Cryptography, Information Theory, and Error-Correction: A Hand-
book for the 21st Century (Wiley, Newyork, 2011), p. 21
6. D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabili-
ties. J. Cryptol. 10(4), 233-260 (1997)
7. J. Coron, D. Naccache, Security analysis of the Gennaro-Halevi-Rabin signature scheme, in
Proceedings of EUROCRYPT’00, 2000, pp. 91-101
8. J. Daemen, V. Rijmen, AES Proposal: Rijndael (National Institute of Standards and Technol-
ogy, 2013), p.1,
9. D. Davies, S. Murphy, Pairs and triplets of DES S-boxes. J. Cryptol. 8(1), 1-25 (2007)
10. W. Diffie, M. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory 22(6),
644-654 (1976)
11.J. Hastad, On using RSA with low exponent in a public key network, in Proceedings of
CRYPTO’S85, 1986, pp. 403408
12. D. Kahn, The Codebreakers: The Story of Secret Writing (Rev Sub. Scribner, New York, 1996)
13. T. Kelly. The myth of the skytale. Cryptologia 22(3), 244-260 (1998)
14. D. Luciano, G. Prichett, Cryptology: from Caesar ciphers to public-key cryptosystems. Coll.
Math. J. 18(1), 2-17 (1987)
15. M. Matsui, Linear cryptanalysis method for DES cipher, in Proceedings of EUROCRYPT 93,
1994, pp. 386-397

References 25

16. D. Newton, Encyclopedia of Cryptography. Instructional Horizons, Inc (Santa Barbara,
California, 1997), p. 6

17. M. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as Factorization
(MIT Laboratory for Computer Science, Cambridge, 1979)

18. R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21(2), 120-126 (1978)

19. B. Schneier, Applied Cryptography, Protocols, Algorithms, and Source Code in C, 2nd edn.
(Wiley, New York, 1996), p. 267

20. C. Shannon, Communication theory of secrecy systems. Bell Syst. Techn. J. 28(4), 656-715
(1949)

21. M. Urban, The lockade of Ciudad Rodrigo, June to November 1811—The great cipher. In The
Man Who Broke Napoleon’s Codes (Harper Perennial, New York, 2003)

22. H. Williams, A modification of the RSA public-key encryption procedure. IEEE Trans. Inform.
Theor. 26(6), 726-729 (1980)

Chapter 2
Homomorphic Encryption

Abstract Homomorphic encryption is a form of encryption which allows specific
types of computations to be carried out on ciphertexts and generate an encrypted
result which, when decrypted, matches the result of operations performed on the
plaintexts. This is a desirable feature in modern communication system architec-
tures. RSA is the first public-key encryption scheme with a homomorphic property.
However, for security, RSA has to pad a message with random bits before encryption
to achieve semantic security. The padding results in RSA losing the homomorphic
property. To avoid padding messages, many public-key encryption schemes with
various homomorphic properties have been proposed in last three decades. In this
chapter, we introduce basic homomorphic encryption techniques. It begins with
a formal definition of homomorphic encryption, followed by some well-known
homomorphic encryption schemes.

2.1 Homomorphic Encryption Definition

In abstract algebra, a homomorphism is a structure-preserving map between two
algebraic structures, such as groups.

A group is a set, G, together with an operation o (called the group law of G)
that combines any two elements a and b to form another element, denoted a o b.
To qualify as a group, the set and operation, (G, o), must satisfy four requirements
known as the group axioms:

* Closure: For all a, b in G, the result of the operation, a o b, is also in G.

e Associativity: Foralla,b,and cin G, (aob)oc =ao (boc).

¢ Identity element: There exists an element e in G, such that for every element a
in G, the equality e o a = a o e = a holds. Such an element is unique, and thus
one speaks of the identity element.

* Inverse element: For each a in G, there exists an element b in G such thataob =
b oa = e, where e is the identity element.

The identity element of a group G is often written as 1.

The result of an operation may depend on the order of the operands. In other
words, the result of combining element a with element » need not yield the same
result as combining element » with element a; the equation a o b = b o a may not

© Xun Yi, Russell Paulet, Elisa Bertino 2014 27
X. Yi et al., Homomorphic Encryption and Applications, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-12229-8__2

28 2 Homomorphic Encryption

____________ ... --.I,‘g’
-------- f.- - >dfloKfig)
----- »

Fig. 2.1 Group Homomorphism

always be true. This equation always holds in the group of integers under addition,
because a + b = b + a for any two integers (commutativity of addition). Groups
for which the commutativity equation @ o b = b o a always holds are called abelian
groups.

Given two groups (G, ¢) and (H, o), a group homomorphism from (G, ¢) to
(H, o) is a function f : G — H such that for all g and g’ in G it holds that

flgog) = f(g)o f(g) 2.1

Group homomorphism can be illustrated as in Fig. 2.1.

Let (P,C, K, E, D) be an encryption scheme, where P, C are the plaintext and
ciphertext spaces, K is the key space, and E, D are the encryption and decryption
algorithms. Assume that the plaintexts forms a group (P, ¢) and the ciphertexts
forms a group (C, o), then the encryption algorithm E is a map from the group P to
the group C, i.e., Ex : P — C, where k € K is either a secret key (in a secret key
cryptosystem) or a public key (in a public-key cryptosystem).

Forall @ and b in P and k in K, if

Er(a) o Ex(b) = Ex(a o b) (2.2)

the encryption scheme is homomorphic.

In an unpadded RSA [18], assume that the public key pk = (n, e), the plaintexts
form a group (P, -), and the ciphertexts form a group (C,), where - is the modular
multiplication. For any two plaintexts m, m, in P, it holds that

E(my, pk) - E(my, pk) = m{ -m5(mod n)
= (my - my)*(mod n)
= E(m; - my, pk)

Therefore, the unpadded RSA has the homomorphic property. Unfortunately, the
unpadded RSA is insecure.

2.2 Goldwasser—Micali Encryption Scheme 29
2.2 Goldwasser-Micali Encryption Scheme

The Goldwasser—Micali (GM) encryption scheme [7] is a public-key encryption
algorithm developed by Shafi Goldwasser and Silvio Micali in 1982. GM has the
distinction of being the first probabilistic public-key encryption scheme which is
provably secure under standard cryptographic assumptions. However, it is not an
efficient cryptosystem, as ciphertexts may be several hundred times larger than the
initial plaintext. To prove the security properties of the cryptosystem, Goldwasser
and Micali proposed the widely used definition of semantic security.

GM consists of three algorithms: a probabilistic key generation algorithm which
produces a public and a private key, a probabilistic encryption algorithm, and a
deterministic decryption algorithm.

The scheme relies on deciding whether a given value x is a square mod N,
given the factorization (p, g) of N. This can be accomplished using the following

procedure:
Compute
x, = x(mod p) (2.3)
Xg = x(mod q) 2.4)
If
xff_l)/z = 1(mod p) (2.5)
x4V = L(mod q) (2.6)

then x is a quadratic residue mod N .

Key Generation: The modulus used in GM encryption is generated in the same
manner as in the RSA cryptosystem.

Alice generates two distinct large prime numbers p and ¢, such that p = g =
3(mod 4), randomly and independently of each other. Alice computes N = pgq.
She then finds some non-residue a such that

agf’_l)/z = —1(mod p),a((iq_l)/2 = —1(mod q)

The public key consists of (a, N). The secret key is the factorization (p, q).

Encryption: Suppose Bob wishes to send a message m to Alice. Bob first encodes
m as a string of bits (my, -+ ,m,).

For every bit m;, Bob generates a random value b; from the group of units
modulo N, or ged(b;, N) = 1. He outputs the value

¢i = b}-a™ (mod N) 2.7

Bob sends the ciphertext (cy, ¢z, , ¢;) to Alice.

30 2 Homomorphic Encryption

Decryption: Alice receives (cy, ¢z, - , ¢,). She can recover m using the following
procedure:

For each i, using the prime factorization (p, ¢), Alice determines whether the
value c¢; is a quadratic residue; if so, m; = 0, otherwise m; = 1. Alice outputs the
message m = (my,--- ,my).

GM Example: We choose small parameters in this example. In key generation,
we let

p=T74¢q=11
where p = g = 3(mod 4). So
N =pqg=177
Take
a==6
where

672 = _1(mod 7),6"" "2 = _1(mod 11)

The public key is (6, 77) and the private key is (7,11).
To encrypt 3-bit message mmyms = 101. Choose

by =2,by=3,b3=5
and compute
c1 =2%-6' = 24(mod 77)
¢, =3%-6" = 9(mod 77)
c3 =5%-6" = 73(mod 77)

The ciphertext is (24,9,73).
To decrypt the ciphertext, compute

247-D/2 = _1(mod 7)
90=V/2 = 1(mod 7),9""~"/* = 1(mod 11)
730=D/2 = _1(mod 7)

2.2 Goldwasser—Micali Encryption Scheme 31

This shows that 24 and 73 are non-quadratic residue and 9 is quadratic residue,
and thus outputs the plaintext 101.

Homomorphic Property: The GM encryption scheme has a homomorphic prop-
erty, in the sense that if ¢, ¢; are the encryptions of bits mg, m, then cocy(mod N)
will be an encryption of my @ m;, where @ denotes addition modulo 2 (i.e.,
exclusive-OR).

Assume that

co = b5 -a™(mod N),c; = bi-a™ (mod N)
we have

co-c; = (b3-a™)-(b}-a™)(mod N)
= (boby)* - a™ " (mod N)

When mq + m is either O or 1, we have mg + m; = mo @ m,. When my =
m; = 1, my +my; = 2 and coci(mod N) is a quadratic residue and thus it is an
encryption of 0. In this case, we have mo @ m; =1 & 1 = 0 as well.

Security: The GM encryption scheme is a probabilistic encryption [8]. Proba-
bilistic encryption refers to the use of randomness in an encryption algorithm,
so that when encrypting the same message several times it will, in general,
yield different ciphertexts. The term “probabilistic encryption” is typically used
in reference to public-key encryption algorithms; however, various secret key
encryption algorithms achieve a similar property (e.g., block ciphers when used in a
chaining mode such as CBC). To be semantically secure, that is, to hide even partial
information about the plaintext, an encryption algorithm must be probabilistic.

Probabilistic encryption is particularly important when using public-key encryp-
tion. Suppose that the adversary observes a ciphertext and suspects that the plaintext
is either “YES” or “NO.” When a deterministic encryption algorithm is used, the
adversary can simply try encrypting each of his or her guesses under the recipient’s
public key and compare each result to the target ciphertext. To combat this
attack, public-key encryption schemes must incorporate an element of randomness,
ensuring that each plaintext maps into one of a large number of possible ciphertexts.

An intuitive approach to converting a deterministic encryption scheme into
a probabilistic one is to simply pad the plaintext with a random string before
encrypting with the deterministic algorithm, such as padding RSA. Conversely,
decryption involves applying a deterministic algorithm and ignoring the random
padding. However, early schemes which applied this naive approach were broken
due to limitations in some deterministic encryption schemes. Techniques such as
OAEP integrate random padding in a manner that is secure using any trapdoor
permutation.

The GM encryption scheme is semantically secure [8]. Semantic security is
commonly defined by the following game:

32 2 Homomorphic Encryption

* Initialize: The challenger runs the key generation algorithm, gives the public key
pk to a probabilistic polynomial time-bounded (PPT) adversary, but keeps the
private key sk to itself.

* Phase 1: The adversary adaptively asks a number of different encryption queries
C; = E(m;, pk) for m;, wherei = 1,2,--- ,n.

* Challenge: Once the adversary decides that Phase 1 is over, it outputs a pair
of equal length plaintexts (M, M;) on which it wishes to be challenged.
The challenger picks a random bit b € {0, 1} and sends C = E(M,, pk) as
the challenge to the adversary.

* Phase 2: The adversary issues more encryption queries adaptively as in Phase 1.

* Guess: Finally, the adversary outputs a guess b’ € {0, 1} and wins the game if
b =b.

The public-key encryption cryptosystem is semantically secure under chosen-
plaintext attack if the adversary cannot determine which of the two messages was
chosen by the challenger, with probability significantly greater than 1/2 (the success
rate of random guessing).

The GM encryption scheme is semantically secure based on the assumed
intractability of the quadratic residuosity problem modulo a composite N = pg
where p, g are large primes. This assumption states that given (a, N) it is difficult
to determine whether a is a quadratic residue modulo N (i.e., a = b%>(mod N) for
some b). The quadratic residue problem is easily solved given the factorization of N.
The GM encryption scheme leverages this asymmetry by encrypting individual
plaintext bits as either random quadratic residues or non-residues modulo N.
Recipients use the factorization of N as a secret key and decrypt the message by
testing the quadratic residuosity of the received ciphertext values.

Because the GM encryption scheme produces a value of size approximately
|N| to encrypt every single bit of a plaintext, GM encryption results in substantial
ciphertext expansion. To prevent factorization attacks, it is recommended that | N | be
several hundred bits or more. Thus, the scheme serves mainly as a proof of concept,
and more efficient provably secure schemes such as ElGamal encryption scheme
have been developed since.

2.3 ElGamal Encryption Scheme

The ElGamal encryption scheme [4] is a public-key encryption algorithm based on
the Diffie-Hellman key exchange. It was invented by Taher Elgamal in 1985. The
ElGamal encryption scheme is used in the free GNU Privacy Guard software, recent
versions of PGP, and other cryptosystems. The ElGamal encryption scheme can be
defined over any cyclic group G. Its security depends upon the difficulty of a certain
problem in G related to computing discrete logarithms.

The ElGamal encryption scheme consists of three components: the key genera-
tion, the encryption algorithm, and the decryption algorithm.

2.3 ElGamal Encryption Scheme 33

Key Generation: The key generator works as follows:

Alice generates an efficient description of a cyclic group G, of order g, with
generator g.

Alice chooses arandom x € {1,...,q — 1}.

Alice computes

y=g" (2.8)
Alice publishes y along with the description of G, g, g, as her public key. Alice

retains x, as her private key which must be kept secret.

Encryption: The encryption algorithm works as follows:
To encrypt a message m, to Alice under her public key (G, ¢, g, y), Bob chooses
arandom r € {1,...,q — 1}, then computes

=g 2.9)
Bob computes the shared secret
s=y" (2.10)

Bob converts his secret message m, into an element m’ € G.
Bob computes

c=m-s (2.11)

Bob sends the ciphertext (cy, ¢) = (g",m’ - y") to Alice.

Note that one can easily find y”, if one knows m’. Therefore, a new r, is
generated for every message to improve security. For this reason, r, is also called an
ephemeral key.

Decryption: The decryption algorithm works as follows:
To decrypt a ciphertext (cy, ¢;), with her private key x, Alice computes the shared
secret

t=ct (2.12)

and then computes

/

m =cy-t7! (2.13)

which she then converts back into the plaintext message m, where ¢! is the inverse
of ¢ in the group G (e.g., modular multiplicative inverse if G is a subgroup of a
multiplicative group of integers modulo n).

34 2 Homomorphic Encryption

The decryption algorithm produces the intended message, since

—1

co-t (m'-s)-e”

m/ . yr .g—xr

—Xr

zml‘gxr‘g

m/

The ElGamal encryption scheme is probabilistic, meaning that a single plaintext
can be encrypted to many possible ciphertexts, with the consequence that a general
ElGamal encryption produces a 2:1 expansion in size from plaintext to ciphertext.

Encryption under ElGamal requires two exponentiations; however, these expo-
nentiations are independent of the message and can be computed ahead of time if
need be. Decryption only requires one exponentiation.

The division by ¢ can be avoided by using an alternative method for decryption.
To decrypt a ciphertext (cy, ¢3), with Alice’s private key x, Alice computes ¢/ =
ci™" = g™ ¢' is the inverse of 7. This is a consequence of Lagrange’s theorem,
because

[_[/ — gxr .g(q—x)r — (gq)r =1 =1

where 1 is the identity element of G.

Alice then computes m’ = ¢, - t/, by which she then converts back into the
plaintext message m. The decryption algorithm produces the intended message,
since

Cz'l/ —m st = m’-yr-t’ — m’-g”-t/ — m’-(g’)x-t’ — m’-cf-t’ =it =m

ElGamal Example: An example of the EIGamal encryption with small parameters
is given as follows:

At first, Alice generates a prime modulo p and a group generator g which is
between 1 and p — 1:

p = 2879
g = 2585

Alice selects a random number (x) which will be her private key:
x =47
She then calculates

y = g* = 2585 = 2826(mod 2879)

2.3 ElGamal Encryption Scheme 35

Alice’s public key is now (p, g, ¥) and sends them to Bob. The private key x is
known to Alice only.
Bob then creates a message

and then selects a random value
r =265
and calculates the ciphertext (¢, ¢;) where

c1 = g" = 2585% = 319(mod 2879)
e =m-y" =77-2826% = 472(mod 2879)

Alice can decrypt the ciphertext:
cafct = 472/319% = 77(mod 2879).

Homomorphic Property: ElGamal encryption scheme has a homomorphic prop-
erty. Given two encryptions

(ci1,c12) = (g™, miy™), (ca1, ¢22) = (g, may™)

where ry, r, are randomly chosen from {1,2,--- ,g — 1} and m,m, € G, one can
compute

(c11. c12)(ca1, €22) = (c11€21, €12€22)
= (g"g", (m1y")(m2y™))

= (g7, (mima)y" 1)

The resulted ciphertext is an encryption of mm5.

ElGamal Security: The security of the ElGamal scheme depends on the properties
of the underlying group G as well as any padding scheme used on the messages.

If the computational Diffie—-Hellman assumption (CDH) holds in the underlying
cyclic group G, then the ElGamal encryption function is one way. The CDH is
the assumption that a certain computational problem within a cyclic group G is
hard. Consider a cyclic group G of order ¢, the CDH assumption states that, given
(g,g% g") for a randomly chosen generator g and random a, b € {0,--- ,q — 1}, it
is computationally intractable to compute the value g.

If the decisional Diffie—Hellman assumption (DDH) holds in G, then ElGamal
achieves semantic security. Semantic security is not implied by the CDH alone. The
DDH is a computational hardness assumption about a certain problem involving

36 2 Homomorphic Encryption

discrete logarithms in cyclic groups. Consider a (multiplicative) cyclic group G of
order ¢, and with generator g. The DDH assumption states that, given g¢ and g° for
uniformly and independently chosen a, b € Z,, the value g“® “looks like” a random
element in G. This intuitive notion is formally stated by saying that the following
two probability distributions are computationally indistinguishable:

« (g% g%, g%), where a and b are randomly and independently chosen from ZLy;
+ (g% g%, g%, where a, b, ¢ are randomly and independently chosen from Zy.

ElGamal encryption is unconditionally malleable and therefore is not secure
under chosen-ciphertext attack. For example, given an encryption (c, ¢3) of some
(possibly unknown) message m, one can easily construct a valid encryption (¢, 2¢5)
of the message 2m.

To achieve chosen-ciphertext security, the scheme must be further modified, or
an appropriate padding scheme must be used. Depending on the modification, the
DDH assumption may or may not be necessary.

Other schemes related to ElGamal which achieve security against chosen-
ciphertext attacks have also been proposed. The Cramer—Shoup cryptosystem [3]
is secure under chosen-ciphertext attack assuming DDH holds for G. Its proof does
not use the random oracle model. Another proposed scheme is DHAES [1], whose
proof requires an assumption that is weaker than the DDH assumption.

The ElGamal encryption scheme is usually used in a hybrid cryptosystem, i.e.,
the message itself is encrypted using a symmetric cryptosystem and ElGamal is
then used to encrypt the key used for the symmetric cryptosystem. This is because
asymmetric cryptosystems like ElIGamal are usually slower than symmetric ones for
the same level of security, so it is faster to encrypt the symmetric key (which most
of the time is quite small if compared to the size of the message) with EIGamal and
the message (which can be arbitrarily large) with a symmetric cryptosystem.

2.4 Paillier Encryption Scheme

The Paillier encryption scheme [11], named after and invented by Pascal Paillier
in 1999, is a probabilistic public-key algorithm. The problem of computing nth
residue classes is believed to be computationally difficult. The decisional composite
residuosity assumption is the intractability hypothesis upon which this cryptosystem
is based.

The Paillier encryption scheme is composed of key generation, encryption, and
decryption algorithms as follows:

Key Generation: Choose two large prime numbers p and ¢ randomly and
independently of each other, such that

ged(pg, (p—D@g—-1) =1

This property is assured if both primes are of equal length.

2.4 Paillier Encryption Scheme 37
Compute
n=pq.r=lem(p—1.4—1)

where /cm stands for the least common multiple.

Select random integer g where g € Z:Z.

Ensure n divides the order of g by checking the existence of the following
modular multiplicative inverse:

w = (L(g*(mod n*)))" (mod n) (2.14)

where function L is defined as

u—1

L) = (2.15)
Note that the notation a /b does not denote the modular multiplication of a times
the modular multiplicative inverse of b, but rather the quotient of a divided by b.
Finally, the public (encryption) key is (n, g) and the private (decryption) key is
(A, w).
If using p, g of equivalent length, a simpler variant of the above key generation
steps would be to set

g=n+11=9@n).pn=pn"" (modn)

where p(n) = (p — (¢ = D).

Encryption: Let m be a message to be encrypted where m € Z,,.
Select random r where r € Z
Compute ciphertext as

c = g"-r"(mod n?* (2.16)

Decryption: Let ¢ be the ciphertext to decrypt, where ¢ € Z7,
Compute the plaintext message as:

m = L(c*(mod n?)) - u(mod n) 2.17)

As the original paper points out, decryption is “essentially one exponentiation
modulo n-.”

The Paillier encryption scheme exploits the fact that certain discrete logarithms
can be computed easily. For example, by binomial theorem,

X

1+n)' = Z <z)nk =14+nx+ (;C>n2 + higher powers of n

k=0

38 2 Homomorphic Encryption

This indicates that
(14+n)* =1+ nx (mod n?)
Therefore, if
y = (1 4+n)* mod n?
then

-1
Y- (mod n)
n

Thus
L((1 + n)*(mod n®)) = x (mod n)

for any x € Z,.
Therefore, when g = n + 1, we have

L(c*(mod n?) - u = L((g"r")*(mod n?))- 17!
= L((¢"*(mod n*))- 27!
=A-m-A"" = m(mod n)
Paillier Example: An example of the Paillier encryption scheme with small
parameters is shown as follows.

For ease of calculations, the example will choose small primes, to create a
small n. Let

p=T74q9=11
then
n=pqg=7-11=77

Next, an integer g must be selected from Z*,, such that the order of g is a multiple
of n in Z,». If we randomly choose the integer

g = 5652

then all necessary properties, including the yet to be specified condition, are met, as
the order of g is 2310 = 3077 in Z,,». Thus, the public key for the example will be

(n,g) = (77,5652)

2.4 Paillier Encryption Scheme

To encrypt a message

where m € Z,,, choose a random
r=23

where r is a nonzero integer and r € Z,.
Compute

c = g"r"(mod n®)
= 5652* .23 (mod 5929)
= 4624(mod 5929)
To decrypt the ciphertext ¢, compute
A =lcm(6,10) = 30
Define L(u) = (u— 1)/n, compute
k = L(g*(mod n?%))
= L(5652* (mod 5929))
= L(3928)
= (3928 —1)/77
= 3927/77
=51

Compute the inverse of k,

w =k~ (mod n)
= 517" = 74(mod 77)

Compute

m = L(c*modn?) - u(mod n)

= L(4624* (mod 5929)) - 74(mod 77)

= L(4852) - 74(mod 77)
=42

39

40 2 Homomorphic Encryption

Homomorphic Properties: A notable feature of the Paillier scheme is its homo-
morphic properties. Given two ciphertexts E(my, pk) = g™ r!'(mod n*) and
E(my, pk) = g™rj(mod n*), where ry and r, are randomly chosen from ZZ,
we have

e Homomorphic Addition of Plaintexts
The product of two ciphertexts will decrypt to the sum of their corresponding
plaintexts, i.e.,

D(E(my, pk) - E(my, pk) (mod n*)) = m, + ma(mod n)
because
E(my, pk) - E(my, pk) = (g"'r{)(g"*r}) (mod n?)

= g™ (i) (mod 1)

= E(my + m,, pk)

The product of a ciphertext with a plaintext raising g will decrypt to the sum
of the corresponding plaintexts, i.e.,

D(E(my, pk) - g"(mod n?)) = m; + my(mod n)
because
E(my, pk)-g™ = (g"r])g™ (mod n®)

= gml"'mzrf (mod n®)

= E(my + ma, pk)

* Homomorphic Multiplication of Plaintexts
An encrypted plaintext raised to the power of another plaintext will decrypt to
the product of the two plaintexts, i.e.,

D(E(my, pk)™(mod n®)) = mym,(mod n)
because

E(my, pk)™ = (g™ r")™ (mod n®)
= g™™(r")" (mod n®)
= E(mymy, pk)

More generally, an encrypted plaintext raised to a constant k will decrypt to
the product of the plaintext and the constant, i.e.,

2.5 Boneh—-Goh—Nissim Encryption Scheme 41

D(E(m,, pk)*(mod n*)) = km\(mod n)

However, given the Paillier encryptions of two messages, there is no known way
to compute an encryption of the product of these messages without knowing the
private key.

Paillier Security: The Paillier encryption scheme provides semantic security
against chosen-plaintext attacks (IND-CPA). The ability to successfully distinguish
the challenge ciphertext essentially amounts to the ability to decide composite
residuosity. The semantic security of the Paillier encryption scheme was proved
under the decisional composite residuosity (DCR) assumption—the DCR problem
is intractable.

The DCR problem states as follows: Given a composite N and an integer z, it is
hard to decide whether z is a N -residue modulo N2 or not, i.e., whether there exists
y such that

z = y"(mod n?*)

Because of the homomorphic properties, the Paillier encryption scheme, how-
ever, is malleable and therefore does not protect against adaptive chosen-ciphertext
attacks (IND-CCA?2). Usually in cryptography the notion of malleability is not
seen as an “advantage,” but under certain applications such as secure electronic
voting and threshold cryptosystems, this property may indeed be necessary.

Paillier and Pointcheval [12] however went on to propose an improved cryptosys-
tem that incorporates the combined hashing of message m with random r. Similar
in intent to the Cramer—Shoup cryptosystem, the hashing prevents an attacker, given
only ¢, from being able to change m in a meaningful way. Through this adaptation
the improved scheme can be shown to be IND-CCA2 secure in the random oracle
model.

2.5 Boneh-Goh-Nissim Encryption Scheme

Boneh—Goh-Nissim encryption scheme [2], BGN scheme by brevity, resembles
the Paillier [11] and the Okamoto—Uchiyama [10] encryption schemes. The BGN
scheme was the first to allow both additions and multiplications with a constant-size
ciphertext. The multiplication is possible due to the fact that pairings can be defined
for elliptic curves.

Let G, G, be additive groups and Gr a multiplicative group, all of prime
order p. Let P € Gy, Q € G, be generators of G and G, respectively.

A pairing is a map

e: Gy xGy —> Gr

for which the following holds:

42 2 Homomorphic Encryption
1. Bilinearity: Ya,b € Z;:

e(P“, Q") =e(P, Q)"

2. Non-degeneracy: e(P, Q) # 1.
3. For practical purposes, e has to be computable in an efficient manner.

In cases when G| = G, = G, the pairing is called symmetric. If, furthermore,
G is cyclic, the map e will be commutative; that is, for any P, O € G , we have

e(P,Q)=e(Q.P)

This is because for a generator g € G , there exist integers p, ¢ such that P = g?
and Q = g9. Therefore

e(P,0)=e(gl g?) =e(g.8)" =e(g?.g") =e(Q,P)

On the basis of pairing, BGN scheme can be described by three algorithms—key
generation, encryption, and decryption algorithms—as follows:

Key Generation: Given a security parameter A € Z%, generate a tuple
(q1,92, G, Gy, e), where g and g, are two distinct large primes, G is a cyclic group
of order q,¢», and e is a pairing mape : G x G — G;. Let N = ¢ q,. Pick up
two random generators g, u from G and set 7 = u%2. Then & is a random generator
of the subgroup of G of order ¢;. The public key is PK = {N, G, Gy, e, g, h}. The
private key SK = ¢q;.

Encryption: Assume the message space consists of integers in the set {0, 1,--- ,
T} with T < g,. We encrypt bits in which case T = 1. To encrypt a message m
using the public key PK, pick a random r from {1, 2,--- , N} and compute

C=g"heG (2.18)

Output C as the ciphertext.

Decryption: To decrypt a ciphertext C using the private key SK = ¢, observe that
C" = (g"h")" = (g")" (2.19)

To recover the message m, it suffices to compute the discrete logarithm of C?' to
the base g?'. Since 0 < m < T, this takes expected time O(«/T) using Pollard’s
Jlambda method [9].

Homomorphic Properties: The BGN scheme is clearly additively homomor-
phic. Let PK = {N, G,Gy,e,g,h} be a public key. Given two ciphertexts
C, =g"h" € G,Cy, = g"h'™ € G of messages my,my € {0,1,---, T} respec-
tively, anyone can create a uniformly distributed encryption of m; 4+ my(mod N)

2.5 Boneh—-Goh—Nissim Encryption Scheme 43

by computing the product
C =CGh (2.20)
for arandom r in {1,2,--- , N — 1}, because
CLCol” = (g™ ") (g™) = gty

is an encryption of m; + my.
More importantly, anyone can multiply two encrypted messages once using the
bilinear map. Let

g1 =el(g,g)

and
hy =e(g,h)

then g is of order N and h; is of order ¢;. There is some (unknown) @ € Z such
that

h = gafh

Suppose that we are given two ciphertexts C; = g"'h™ € G and C; = g"™h™? € G.
To build an encryption of the product mm,(mod N), (1) pick a random r € Zy,
and (2) let

C = €(C1, Cg)h{ € Gy (221)
We have

C =e(Ci,Cyhy
= e(g"h", g™ h")hy
= e(gmTadn gmatedraypr
= e(g, g)(ml+aqzr1)(mz+aq2r2)h;

mima+oaqy(mira+mari+aqariry) ,r
e(g, g)mm q2(mira+mary q212)]’l1

)m1m2 h;+m1r2+mzr1 +aqarira

=e(g. g

where r + mry + myry + aq,rir; is distributed uniformly in Zy. Thus C is a
uniformly distributed encryption of mym,(mod N), but in G rather than G. We
note that the BGN scheme is still additively homomorphic in G;.

44 2 Homomorphic Encryption

BGN Example: We will demonstrate the operation of the BGN scheme with a
small example. First we choose two distinct prime numbers

q1 = 7, q> = 11
and compute the product
N = q19> = 77

Next we construct an elliptic curve group with order N that has an associated
bilinear map e. The equation for the elliptic curve is

y2 =x+x
and is defined over the field F, for some prime ¢ = 3 mod 4. In this example, we set
q =307
Therefore, the curve is supersingular with #(E(q)) = g + 1 = 308 rational points,
which contains a subgroup G with the order N = 77 (=308/4).
Within the group G, we choose two random generators
g = [182,240],u = [28,262]
where these two generators have order N, and compute

h = u?” = [28,262]"" = [99, 120]

where h has order ¢; = 7.
We compute the ciphertext of a message

m =2
Take r = 5 and compute
C = g"h" = [182,240)* @ [99, 120]° = [256,265]
To decrypt we first compute
g = g% =[182,240]" = [146, 60]
and

C? =[256,265]" = [299, 44]

2.5 Boneh—-Goh—Nissim Encryption Scheme 45

Now we find the discrete logarithm by iterating through all the powers of g = g%
as follows:

&' = [146, 60]
&% = [299, 44]
& =[272,206]
gt =[191,151]
& =1[79,171]
8% =1[79,136]
&’ =[191,156]
g% =1[272,101]
&’ =1[299,263]
g0 = [146,247]

Observe that g> = C9'. Therefore, decryption of the ciphertext equals 2, which
is the same as the original message.

BGN Security: The BGN encryption scheme has been proved to be semantically
secure on basis of the subgroup decision problem in [2]. The subgroup decision
(SD) problem is stated as follows.

Given a group G of composite order n = pq, where p, g are distinct (unknown)
primes, and generators g, € G, and g € G, distinguish between whether an
element x is a random element of the subgroup G, or a random element of the
full group G.

Gjosteen [6] has undertaken an extensive survey of such problems, which he calls
subgroup membership problems. For example, the quadratic residuosity problem is
a subgroup membership problem: if we let N = pg be a product of two distinct
primes and define the group G to be the group of elements of Z3, with Jacobi symbol
1, the problem is to determine whether a given element in G lies in the subgroup of
squares in G.

Boneh, Goh, and Nissim [2] defined their SD problem for pairs of groups (G, G)
of composite order N = pqg for which there exists a nondegenerate bilinear map,
or pairing, e : G X G — G;. The problem is to determine whether a given element
x € G is in the subgroup of order p. Note that if g generates G, then e(g, x) is a
challenge element for the same problem in Gy; thus if the SD problem is infeasible
in G, then itis in G; as well.

Freeman [5] developed an abstract framework that encompasses the key
properties of bilinear groups of composite order that are required to construct

46

2 Homomorphic Encryption

secure pairing-based cryptosystems and showed how to use prime-order elliptic
curve groups to construct bilinear groups with the same properties. In particular,
he defined a generalized version of the subgroup decision problem and give explicit
constructions of bilinear groups in which the generalized subgroup decision
assumption follows from the decision Diffie-Hellman assumption, the decision
linear assumption, and/or related assumptions in prime-order groups.

References

1.

10.

11.

12.

M. Abdalla, M. Bellare, P. Rogaway, DHAES: an encryption scheme based on the
Diffie-Hellman problem. Submission to IEEE P1363a, 1998. http://www.di.ens.fr/~mabdalla/
papers/dhes.pdf

. D. Boneh, E. Goh, K. Nissim, Evaluating 2-DNF formulas on ciphertexts, in Proceedings of

Theory of Cryptography, TCC’05, 2005, pp. 325-341

. R. Cramer, V. Shoup, A practical public key cryptosystem provably secure against adaptive

chosen ciphertext attack, in Proceedings of Advances in Cryptology, CRYPTO’98, 1998,
pp. 13-25

. T. ElGamal, A public-key cryptosystem and a signature scheme based on discrete logarithms.

IEEE Trans. Inf. Theory 31(4), 469—472 (1985)

. D.M. Freeman, Converting pairing-based cryptosystems from composite-order groups to

prime-order groups, in Proceedings of Advances in Cryptology, EUROCRYPT’10, 2010,
pp. 44-61

. K. Gjosteen, Subgroup membership problems and public key cryptosystems, Dissertation,

Norwegian University of Science and Technology, 2004

. S. Goldwasser, S. Micali, Probabilistic encryption and how to play mental poker keeping secret

all partial information, in Proceedings of 14th Symposium on Theory of Computing, 1982,
pp. 365-377

. S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270-299 (1984)
. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography. CRC Press,

1996

T. Okamoto, S. Uchiyama, A new public-key cryptosystem as secure as factoring, in Proceed-
ings of Advances in Cryptology, EUROCRYPT’98, 1998, pp. 308-318

P. Paillier, Public key cryptosystems based on composite degree residue classes, Proceedings
of Advances in Cryptology, EUROCRYPT’99, 1999, pp. 223-238

P. Paillier, D. Pointcheval, Efficient public-key cryptosystems provably secure against active
adversaries, in Proceedings of Advances in Cryptology, ASIACRYPT 99, 1999, pp. 165-179

http://www.di.ens.fr/~mabdalla/papers/dhes.pdf
http://www.di.ens.fr/~mabdalla/papers/dhes.pdf

Chapter 3
Fully Homomorphic Encryption

Abstract Homomorphic encryption is a very useful tool with a number of attractive
applications. However, the applications are limited by the fact that only one
operation is possible (usually addition or multiplication in the plaintext space) to
be able to manipulate the plaintext by using only the ciphertext. What would really
be useful is to be able to utilize both addition and multiplication simultaneously.
This would permit more manipulation of the plaintext by modifying the ciphertext.
In fact, this would allow one without the secret key to compute any efficiently
computable function on the plaintext when given only the ciphertext. In this chapter,
we introduce fully homomorphic encryption (FHE) techniques, which allow one to
evaluate both addition and multiplication of plaintext, while remaining encrypted.
The concept of FHE was introduced by Rivest [14] under the name privacy
homomorphisms. The problem of constructing a scheme with these properties
remained unsolved until 2009, when Gentry [6] presented his breakthrough result.
His scheme allows arbitrary computation on the ciphertexts and it yields the correct
result when decrypted. This chapter begins with an introduction of FHE model and
definitions, followed by the construction of FHE scheme over integers.

3.1 Fully Homomorphic Encryption Definition

Fully homomorphic encryption can be considered as ring homomorphism. In
mathematics, a ring is a set R equipped with two operations + and x satisfying
the following eight axioms, called the ring axioms.

R is an abelian group under addition, meaning:

.(@a+b)+c=a+ (b +c)foralla,b,cin R (+ is associative).
. There is an element 0 in R such thata + 0 = @ and 0 4+ @ = a (0 is the additive
identity).
3. For each a in R there exists —a in R such thata + (—a) = (—a) +a = 0 (—a
is the additive inverse of a).
4. a+b =>b+aforalla and b in R (+ is commutative).

N =

R is a monoid under multiplication, meaning:

© Xun Yi, Russell Paulet, Elisa Bertino 2014 47
X. Yi et al., Homomorphic Encryption and Applications, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-12229-8_3

48 3 Fully Homomorphic Encryption

5.(@-b)-c=a-(b-c)foralla,b,cin R (- is associative).
6. There is an element 1 in R suchthata-1 = a and 1-a = a (1 is the multiplicative
identity).

Multiplication distributes over addition:

7.a-(b+c)=(a-b)+ (a-c)foralla,b,c in R (left distributivity).
8. (b+c)-a=(b-a)+ (c-a)foralla,b,cin R (right distributivity).

A ring homomorphism is a function between two rings which respects the
structure. More explicitly, if R and S are two rings, then a ring homomorphism
is a function

f:R—S
such that
fla+b)= f(a)+ f(b) (3.1
fla-b)= f(a)- f(b) (3.2)

for all @ and b in R.
Let us see an example of ring homomorphism. Consider the function

f : Zz — Zz
given by
fx) =x?

where x = O or 1.
First,

fx+y)=@x+y)’=x>+2y+y’=x>+y"= f(x)+ f(»)

where 2xy = 0 because 2 times anything is 0 in Z,.
Next,

fxy) = (xy)* =x*y* = f(x) f(»)

The second equality follows from the fact that Z, is commutative. Thus, f is a
ring homomorphism.

Let (P,C, K, E, D) be a encryption scheme, where P, C are the plaintext and
ciphertext spaces, K is the key space, and E, D are the encryption and decryption
algorithms. Assume that the plaintexts form a ring (P, ®,, ®) and the ciphertexts
form a ring (C, @, ®.); then the encryption algorithm E is a map from the ring P
to the ring C, i.e., E; : P — C, where k € K is either a secret key (in the secret
key cryptosystem) or a public key (in the public-key cryptosystem).

3.2 Overview of Fully Homomorphic Encryption Schemes 49

Forall @ and b in P and k in K, if

Ei(a) ®: Ex(b) = Ei(a @) b) (3.3)
Ek(a) R Er(b) = Ei(a Rp b) (3.4)

the encryption scheme is fully homomorphic.

3.2 Overview of Fully Homomorphic Encryption Schemes

Craig Gentry [6, 7], using lattice-based cryptography, showed the first fully homo-
morphic encryption scheme as announced by IBM on 25 June 2009. His scheme
supports evaluations of arbitrary depth circuits. His construction starts from a
somewhat homomorphic encryption scheme using ideal lattices that is limited to
evaluating low-degree polynomials over encrypted data. It is limited because each
ciphertext is noisy in some sense, and this noise grows as one adds and multiplies
ciphertexts, until ultimately the noise makes the resulting ciphertext indecipherable.
He then shows how to modify this scheme to make it bootstrappable—in particular,
he shows that by modifying the somewhat homomorphic scheme slightly, it can
actually evaluate its own decryption circuit, a self-referential property. Finally, he
shows that any bootstrappable somewhat homomorphic encryption scheme can be
converted into a fully homomorphic encryption through a recursive self-embedding.

In the particular case of Gentry’s ideal-lattice-based somewhat homomorphic
scheme, this bootstrapping procedure effectively “refreshes” the ciphertext by
reducing its associated noise so that it can be used thereafter in more additions and
multiplications without resulting in an indecipherable ciphertext. Gentry based the
security of his scheme on the assumed hardness of two problems: certain worst-case
problems over ideal lattices and the sparse (or low-weight) subset sum problem.

Regarding performance, ciphertexts in Gentry’s scheme remain compact insofar
as their lengths do not depend at all on the complexity of the function that is
evaluated over the encrypted data. The computational time only depends linearly
on the number of operations performed. However, the scheme is impractical for
many applications, because ciphertext size and computation time increase sharply
as one increases the security level. To obtain 2% security against known attacks,
the computation time and ciphertext size are high-degree polynomials in k. Stehle
and Steinfeld [16] reduced the dependence on k substantially. They presented
optimizations that permit the computation to be only quasi-k>° per Boolean gate
of the function being evaluated.

In 2009, Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan
[5] presented a second fully homomorphic encryption scheme, which uses many of
the tools of Gentry’s construction, but which does not require ideal lattices. Instead,
they show that the somewhat homomorphic component of Gentry’s ideal lattice-
based scheme can be replaced with a very simple somewhat homomorphic scheme

50 3 Fully Homomorphic Encryption

that uses integers. The scheme is therefore conceptually simpler than Gentry’s ideal
lattice scheme, but has similar properties with regard to homomorphic operations
and efficiency.

In 2010, Nigel P. Smart and Frederik Vercauteren [15] presented a fully
homomorphic encryption scheme with smaller key and ciphertext sizes. The Smart—
Vercauteren scheme follows the fully homomorphic construction based on ideal
lattices given by Gentry [6]. It also produces a fully homomorphic scheme from a
somewhat homomorphic scheme. For somewhat homomorphic scheme, the public
and the private keys consist of two large integers (one of which shared by both
the public and the private keys), and the ciphertext consists of one large integer.
The Smart—Vercauteren scheme has smaller ciphertext and reduced key size than
Gentry’s scheme based on ideal lattices. Moreover, the scheme also allows efficient
fully homomorphic encryption over any field of characteristic two. However, the
major problem with this scheme is that the key generation method is very slow. This
scheme is still not fully practical.

At the rump session of Eurocrypt 2011, Craig Gentry and Shai Halevi [8]
presented a working implementation of fully homomorphic encryption (i.e., the
entire bootstrapping procedure) together with performance numbers.

Recently, Coron, Naccache, and Tibouchi [4] proposed a technique allowing
to reduce the public-key size of the van Dijk et al. scheme to 600 KB. In April
2013 the HElib [9] was released, via GitHub, to the open source community which
implements the Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic encryption
scheme [1], along with many optimizations to make homomorphic evaluation runs
faster.

3.3 Somewhat Homomorphic Encryption Scheme
over Integers

Although interesting from a theoretical standpoint, the lattice-based construction is
difficult to describe. We now move to a scheme that is easier to understand. It can
be seen as the integer-based version of the lattice version. That is, we can embed
an ideal into an integer ring, and if the parameters are set correctly, the scheme
can be considered secure (against known attacks). As a bonus, the bootstrapping
procedure is easier to understand and describe in greater detail, since it requires
zero background with lattices.

3.3.1 Secret Key Somewhat Homomorphic Encryption

We begin with the description of the secret key integer-based somewhat homomor-
phic encryption scheme [5]. The scheme is surprisingly simple, and we can construct
very complex functionality from it.

3.3 Somewhat Homomorphic Encryption Scheme over Integers 51

Key Generation KeyGen: The secret key is an odd integer, chosen from some
interval p € [2771,27].

Encryption Encrypt(pk,m): To encrypt a bit m € {0, 1}, set the ciphertext as an
integer whose residue mod p has the same parity as the plaintext. Namely, set

c=pqg+2r+m (3.5)

where the integers ¢, r are chosen at random in some other prescribed intervals,
such as 2r is smaller than p/2 in absolute value.

Decryption Decrypt(p, ¢): Given a ciphertext ¢ and the secret key p, output
m = (c(mod p))(mod 2) (3.6)
The decryption equation holds because

(c(mod p))(mod 2) = (pq + 2r + m(mod p))(mod 2)
=2r + m(mod 2)

=m
For example, suppose that p = 17; let us encrypt m = 1 as follows:
c=pg+2r+m=17-24+2-0+1=39

whereg = 2,r = 0.
It is easy to see that

(c(mod p))(mod 2) = (39(mod 17))(mod 2)
= 1(mod 2) =1

Fully Homomorphic Property: Given two ciphertext c; = pq; + 2r; + m; and
c» = pq> + 2ry + my, we have

c1+c=(q1+q2)p +2(r1 + r2) + (Mg + my) 3.7
c1-¢r = (pq1q2 + 2112 4 2211 + miqa + maqi) p
+2(2riry + myry + mory) + myms (3.8)
When
ri+r<p/2

2riry + myry +mory < p/2

52 3 Fully Homomorphic Encryption

G=17+2(1)+0=19

C=2(17)+2(2)+1=39 _
C,+C=58 Let p=17

b 2pl3p14p Sp 6p 7p 8 9 10p

Mp 12p 13p 14p 15p 16p 17p 18p 19p 20p
000000000 @
21p 22p 23p 24p 25p 26p 27p 28p 29p 30p
0000000000
3lp 32p 33p 34p 35p 36p 37p 38p 39 40p
0000000000
41p 42p 43p 44p 45p 46p 47p 48p 49p S50p
0000000000
CT1><C2=741

Fig. 3.1 An example of homomorphic addition and multiplication

we have

(c1 + ca(mod p))(mod 2) = my + m;
(c1 - ca(mod p))(mod 2) = mym,

Therefore, this scheme has the fully homomorphic property.
For example, set p = 17, m; = 0, and m, = 1. Then compute ciphertexts as

ci=p-14+2-1+0=19
cp=p-24+2-24+1=39
where ¢y = 1,1, = 1,9, = 2,r, = 2. Figure 3.1 plots these points on the number

line. In addition to the position of the ciphertexts, it also shows the sum and product.
It is easy to verify that

(c1 + ca(mod p))(mod 2) = (58(mod 17))(mod 2)
T(mod 2)
1=04+1=m; +m,
(741(mod 17))(mod 2)
10(mod 2)

(c1-ca(mod p))(mod 2)

=0=0-1=my-myp

3.3 Somewhat Homomorphic Encryption Scheme over Integers 53

However, when we use the fully homomorphic property to evaluate a Boolean
function f(xi,x,,---,x,) where x; € {0, 1}, given ¢;, the encryption of x;, for
i =1,2,--+,n,itis noticed in Egs. (3.7) and (3.8) that

ry + rp = max(ry,r;)

2r1ry + myry + mory = max(ry, r2)

that is, the size of the noise component r in the resulted ciphertext is increasing with
the number of the additions and multiplications in the Boolean function. Once

ry+r,>p/2
2riry + myry + mory > p/2

the decryption of f(cy,cz,-+-,c¢,) may not be f(xy,x3,--,x,). Therefore, this
scheme can be only used to evaluate low-degree Boolean functions over encrypted
data. This is why this scheme is called somewhat homomorphic encryption scheme.

If we choose r ~ 2", p ~ 2, and q =~ 27", the somewhat encryption scheme
can compute polynomials of degree &~ n before the noise grows too large.

Security: The security of this scheme can be reduced to the hardness of the
approximate integer greatest common divisor (approximate GCD) problem [10].
As an example, we explain this in the more specific and familiar case of greatest
common divisors. If we are given two integers @ and b we can clearly find their
GCD, d say, in polynomial time. If d is in some sense large then it may be possible
to incur some additive error on either of the inputs a and b, or both, and still recover
this GCD. This is what we refer to as an approximate common divisor problem. Of
course if there is too much error incurred on the inputs, the algorithm may well not
be able to discern the GCD d we had initially over some other approximate divisors
d (e.g., they may all leave residues of similar magnitude when dividing a and b).
In this sense, the problem is similar to those found in error correcting codes.

Continuing this error correcting code analogy we can state the problem from
the standpoint of the design of the decoding algorithm, i.e., we wish to create an
algorithm which is given two inputs a¢ and by and bounds X, Y, and M for which
one is assured that d|(ap + xo) and d|(by + yo) for some d > M and xg, yo
satisfying |xo| < X, |yo| < Y . The output of the algorithm should be the common
divisor d, or all of the possible ones if more than one exists.

Howgrave-Graham analyzed the (approximate GCD) problem in [10]. The
problem is believed to be a hard problem in lattice theory.

With a judicious choice of parameters (e.g., r ~ 2v" and g ~ 2”3), the secret
key somewhat homomorphic encryption scheme is even secure.

54 3 Fully Homomorphic Encryption
3.3.2 Public-Key Somewhat Homomorphic Encryption

The secret key somewhat homomorphic encryption needs the secret key p to encrypt
a message. Now we describe a public-key somewhat homomorphic encryption
scheme [5] that allows encryption without the knowledge of the secret p.

Parameters: The scheme has many parameters, controlling the number of integers
in the public key and the bit-length of the various integers. Specifically, we use the
following four parameters (all polynomial in the security parameter A):

y is the bit-length of the integers in the public key;

n is the bit-length of the secret key (which is the hidden approximate GCD of all
the public-key integers);

p is the bit-length of the noise (i.e., the distance between the public-key elements
and the nearest multiples of the secret key);

7 is the number of integers in the public key.

These parameters must be set under some constraints [5]. A convenient parameter
set to keep in mindis p = 4,0’ = 24,7 = O(A?),y = O(A°),and t = y + A.
The setting results in a scheme with complexity O(A!).

Key Generation KeyGen(A): Choose a random 7-bit odd integer p as the private
key. Using the private key, generate the public key as

Xi = pqi + 1 3.9
where ¢; € Z([0,2”/p) and r; € Z()(—2",2F) are chosen randomly, for
i = 0,1,---, 7. Relabel so that x; is the largest. Restart unless x; is odd and
xo(mod p) is even. The public key is

Pk =< X0, X2, , X >

Encryption Encrypt(pk,m): Given m € {0, 1} and the public key pk, choose

a random subset S € {1,2,---,7} and a random integer r € (27, 2"/), and
output
c= (m+2r+22xi)(mod Xo) (3.10)
ies

Decryption Decrypt(sk, ¢): Given the ciphertext ¢ and the private key p, output
m = (c(mod p))(mod 2) (3.11)

Recall that

c(mod p) =c —p-[c/p]

3.3 Somewhat Homomorphic Encryption Scheme over Integers 55

where [a] denotes the rounding to the nearest integer. As p is odd, we can instead
decrypt using the formula

m = (c—p-[c/p])(mod 2)
= (c(mod 2)) ® ([c/p](mod 2)) (3.12)

where p(mod 2) = 1.

Example. Let the secret key be p = 10001. Based on p, we construct the public
key as follows.
Set

[90. 91,92, q3] = [36,27,34,6]
[ro»rl»r23r3] = [8957472]

We then compute the public key pk as the vector
[x0, X1, X2, X3] = [360044, 270032, 340038, 60008]

where x; = ¢; p + r; and X, is the largest.

We now encrypt two messages m; = 0,m, = 1 using a random subset of the
public key. Suppose that the subset is S = [1, 3]. We select a random integer r = 31
and encrypt m as:

Ccq =m1+2-r+2-2x,~
i€eS
=042-31+2-(270032 + 60008)
= 660142

For the sake of compactness, it is useful to reduce the ciphertext by x(as
¢} = c1(mod xo) = 300098(mod 360044)

We encrypt m, using the same process. We set ¥ = 11 and S = [2, 3].
Co =m2+2-r+2-2xi
ies
14+2-11+2-(340038 + 60008)
800115

Again, for the sake of compactness, we reduce the ciphertext by x, as

¢, = ca(mod xp) = 80027(mod 360044)

56 3 Fully Homomorphic Encryption

As expected, these ciphertexts are decrypted correctly as shown by the following
equations:

¢} = 300098 = 68(mod p) = 0(mod 2)
¢y = 80027 = 19(mod p) = 1(mod 2)

In addition,

¢} 4 ¢4 = 300098 + 80027 = 87(mod p) = 1(mod 2) =0+ 1
¢} - ¢ = 300098 - 80027 = 1292(mod p) = 0(mod 2) = 0- 1

Correctness: van Dijk et al. [5] provided the proof of correctness for the public-
key somewhat homomorphic encryption scheme by some lemmas as follows.

Lemma 3.1 ([5]). Let (sk, pk) be output by KeyGen(A). Let ¢ = Encrypt(pk, m)

form € {0,1}. Thenc = a-p+ (2b+m) for some integers a and b with |2b+m| <
72013,

Proof ([5]). By definition, c = m + 2r +), Xi(mod xo). Since |xo| > |x;| for
i=1,2,---, 1, we have that

c= <m+2r+2xi)~|—k-x0

i€esS

for some |k| < 7.
For every i, there exist integers ¢; and r; with |r;| < 2° such that x; = ¢;-p+2r;.
We have

C=P'<k610+2qi>+<m+2r+k-2r0+22r,»)

i€S i€S

Regarding the rightmost term, its parity is the same as m, and its absolute value
is at most (41 4 3)2° < 12° 13, O

For a mod-2 arithmetic circuit (composed of mod-2 Add and Mult gates), let us
consider its generalization to the integers, i.e., the same circuits with the Add and
Mult gates applied to integers rather than to bits. A permitted circuit [5] is defined
as one where for any & > 1 and any set of integer inputs all less than 2%’ +2) in
absolute value, it holds that the generalized circuit’s output has absolute value at
most 24014

Lemma 3.2 ([5]). Let (sk, pk) be output by KeyGen(A). Let C be a permitted
circuit with t inputs and one output. For i € {1,2,--- ,t} and m; € {0,1}. Let
¢; = Encrypt(pk,m;) and m = C(my,my,--- ,m;) and ¢ = C'(cy, ¢z, ,¢;)

3.3 Somewhat Homomorphic Encryption Scheme over Integers 57

where C' is the generalized circuit corresponding to C. Thenc = a- p + (2b + m)
for some integers a and b with |2b + m| < p/8.

Proof ([5]). Generally, we have
C'(cr e, ,c;) € C'2by +my,-++ ,2b, +m;) + pZ

So C'2by + my,---,2b, + m;)(mod p) has the same parity as m =
C(my,my,--- ,m;). We also have that

C'by +my,-+ ,2b, +m,) <2/16 < p/8

by the definition of permitted circuits, since |2b; 4+ m;| < t2°73 by Lemma 3.1. O

Based on Lemmas 3.1 and 3.2, we can see that for any permitted circuit C and
any encryptions of inputs to that circuit, the integer output by the evaluation is of
the form

c=a-p+ 2b+m)
with
126 4+ m| < p/8
where m is the plaintext that ¢ is supposed to encrypt. Accordingly, we have
(c(mod p))(mod 2) = (2b + m)(mod 2) = m

Therefore, the public-key somewhat homomorphic encryption scheme can cor-
rectly evaluate any permitted circuit.

The definition of the permitted circuit is rather indirect. In particular, this
definition does not give a good picture of what a permitted circuit looks like.
By the triangle inequality, a k-fan-in Add gate clearly increases the magnitude of
the integers by at most a factor of k. However, a 2-fan-in Mult gate may square
the magnitude of the integers—i.e., double their bit-lengths. So, clearly, the main
bottleneck is the multiplicative depth of the circuit, or the degree of the multivariate
polynomial computed by the circuit.

Lemma 3.3 ([5]). Let C be a Boolean circuit with t inputs and C* be the asso-
ciated integer circuit (where Boolean gates are replaced with integer operations).
Let f(x1,X2,-+ ,X;) be the multivariate polynomial computed by C* and d be its
degree. If | f| - (2P t2)4 < 21=* (where | f | is the £1 normal of the coefficient vector
of f), then C is a permitted circuit.

58 3 Fully Homomorphic Encryption

In particular, the somewhat homomorphic encryption scheme can handle f as
long as

n—4—log|f|
pr+2

d <

Security: Like the secret key homomorphic encryption scheme, the security
of the public-key somewhat homomorphic encryption scheme is also based on
approximate-GCD problem.

Consider the approximate-GCD instance {xg, x1,--- , X;} where x; = pq; + r;.
Known attacks on the approximate-GCD problem for two numbers include brute-
forcing the reminders, continued fractions, and Howgrave-Graham’s approximate-
GCD algorithm [10].

A simple brute-force attack is to try to guess r| and r, and verify the guess with
a GCD computation. Specifically, for r|, r; € (27°,2°), set

/ / / / / / /
X, =X —71,Xy = X3 — 1y, p = GCD(x}, X3)

If p’ has 7 bits, output p’ as a possible solution. The solution p will definitely be
found by this technique, and for the parameter choices, where p is much smaller
than 7, the solution is likely to be unique. The running time of the attack is
approximately 2%°.

Attacks for arbitrarily large values of ¢ include lattice-based algorithms for
simultaneous Diophantine approximate [11], Nguyen and Stern’s orthogonal lattice
[13], and extensions of Coppersmith’s method to multivariate polynomials [2].

3.4 Fully Homomorphic Encryption Scheme over Integers

In this section, we describe the construction of a fully homomorphic encryption
scheme given by van Dijk [5]. It is built on the somewhat homomorphic encryption
scheme described in the last section and squashing the decryption circuit.

3.4.1 Squashed Encryption

Let «, 6, ® be three more parameters, which are a function of A. We set k =
yn/p',0 = A, and ® = w(x - log). For a secret key sk* = p and public key
pk* from the original somewhat homomorphic scheme, we add to the public key a
set y = {y1,¥2,--- , Yo} of rational numbers in [0,2) with k bits of precision, such
that there is a sparse subset S C {1,2,---, ®} of size 6§ with

3.4 Fully Homomorphic Encryption Scheme over Integers 59
> yi~1/p(mod 2)
ieS

Now the secret key is replaced by the indicator vector of the subset S. The
encryption scheme is modified by van Dijk [5] as follows.

Key Generation KeyGen(A): Generate sk* = p and pk™ as before. Set x, =

[2¢/ p], choose at random a ®-bit vector (s, 52, , Sg) with Hamming weight
O,andlet S ={i :5; = 1}.
Choose at random integer #; € Z N [0,2T1),i = 1,2,---,©, subject to the

condition that
Z”i = x,(mod PARES)
ieS

Sety; = u; /2 and y = {y1, y2,-*- , Yo }. Hence, each y; is a positive number
smaller than 2, with « bits of precision after the binary point. Also we have

> yilmod 2) = (1/p) — A,
ies
for some |A,| < 27 because
dovi=Y ui/2f
= ies
= (x, + -2 20
=x,/2"+0a-2
=[2/pl/2“+ -2
1/p—A/2)+a-2
1/p—A,(mod 2)

where |A] < 1.
Output the secret key sk = S and the public key {pk, y}.
Encryption Encrypt(pk, c*): Given a ciphertext ¢*, fori € {1,2,--- , ®}, set

7z =c*-yi(mod 2)

keeping only n = [log 8] + 3 bits of precision after the binary point for each z;.
Output both ¢* and z = {z1, 22, -+ , 26}

Decryption Decrypt(sk, c*, z): Given the ciphertext ¢*, z and the private key p,
output

60 3 Fully Homomorphic Encryption

m = <c* - [ZZI}) (mod 2) (3.13)

i€esS

Correctness: van Dijk et al. [5] provided the proof of correctness for the squashed
encryption by the following lemma.

Lemma 3.4 ([S]). The squashed encryption scheme is correct for permitted poly-
nomials. Moreover, for every ciphertext (c*,z) that is generated by evaluating a
permitted polynomial, it holds that)", s;z; is within 1/4 of an integer.

Proof ([5]). Fix public and secret keys, generated with respect to security parameter
A with y = {y1,¥2,--, ye} the rational numbers in the public key and S =

{i 1 s; = 1} the secret key bits. Recall that the y; were chosen so that
D iesyilmod 2) = (1/p) — A, where |A,| <27 |

Fix a permitted polynomial P (xy,x3,--- ,X;), given ¢ ciphertexts ¢y, ¢z, , ¢y,
letc* = P(cy,ca,--- ,¢;), we need to establish that

[c*/p] = |:ZsiZi:| (mod 2)

where z; is computed as ¢* - y;(mod 2) with only [logy] 4 3 bits of precision after
the binary point, so ¢* - y;(mod 2) = z; — A; with |A;| < 1/166. We have

(c*/p)— ZSiZ[(ﬂ’lOd 2) =(c*/p) — Zs,-(c* “yi) + Zs,-A[(mod 2)
= (C*/p) —C*Zs,-y,- + Zs,-A,-(mod 2)
=(c*/p)—c*(/p—A4, + ZSiAi(MOd 2)

=c*-A,+) siAi(mod 2)
i

To establish the claim, observe that |), s;A;] < 6 - ﬁ = 1/16. Regarding
c* - A,, recall that the output ciphertext ¢* is obtained by evaluating the polynomial
P on the input ciphertexts ¢; (as if P was an integer polynomial). By the definition
of a permuted polynomial, for any o > 1, if P’s inputs have magnitude at most
2¢('+2) jts output has magnitude at most 2*"~%_In particular, when P’s inputs
are “fresh” ciphertext, which have magnitude at most 27, P’s output ciphertext ¢*
has magnitude at most 2V (7=9/(?+2) < 24 Thus, |c* - A,| < 1/16. Together,
we have ¢* - A, + >, 5iA;(mod 2) that has magnitude at most 1/8 and therefore

[¢*/ pl = [X; sizil(mod 2).

3.4 Fully Homomorphic Encryption Scheme over Integers 61

By definition, since ¢* is a valid ciphertext output by a permitted polynomial, the
value ¢*/p is within 1/8 of an integer. Together, it holds that), s;z; is within 1/4
of an integer.

Security: Like the original somewhat encryption scheme, the security of the
squashed encryption scheme is still based on the approximate-GCD problem.
Besides it, putting the hint y = {y;, y2,--- , Yo} in the public key induces another
computational assumption, related to the sparse subset sum problem (SSSP) used
by Gentry [6], and studied previously (sometimes under the name “low-weight”
knapsack) in the context of server-aided cryptography [12] and in connection to
Chor—Rivest cryptosystem [13].

The subset sum problem is an important problem in complexity theory and
cryptography. The problem is this: given a set of integers, is there a nonempty
subset whose sum is zero? For example, given the set {—7, —3, —2, 5, 8}, the answer
is yes because the subset {—3, —2, 5} sums to zero. The problem is NP-complete.
An equivalent problem is this: given a set of integers and an integer s, does any
nonempty subset sum to s? Subset sum can also be thought of as a special case of
the knapsack problem.

Known attacks on the problem can be easily avoided by choosing 6 large enough
to avoid brute-force attacks (and improvements using time-space trade-off) and
choosing ® to be larger than w(log A) times the bit-length of the rational numbers
in the public key (which have length k).

Example. Let the secret key be p = 10001. Set k = 24 and
x, = [2%/p] = 1678
and choose at random 9-bit vector with Hamming weight 3, s = {0,0,1,0,0,1,0, 1,

0}, and let S = {3,6,8}. Choose at random integers u; € Z N [0,225), i =
1,2,---,9as follows:

u; = 281782
uy = 1892147
uz = 589103
us = 487403
us = 491831
us = 1093482
u7 = 293813

ug = 31873525
ug = 5718711

62 3 Fully Homomorphic Encryption
where

E Ui = us + ug + ug
i€eS

589103 + 1093482 + 31873525
1678 = x,(mod 2*)

Set y; = u;/2%,i =1,2,---,9 as follows:

yi = 0.0167955
y2 = 0.1127807
ys = 0.0351133
ys = 0.0290515
ys = 0.0293154
y6 = 0.0651766
y7 = 0.0175126
ys = 1.8998101
yo = 0.3408617

where
Z)’i =y3+Yys+)8
=
= 0.0351133 + 0.0651766 + 1.8998101
= 2.0001 ~ 1/p(mod 2)
Given a ciphertext ¢* = 300098 which is the encryption of 0, to re-encrypt c*,
we compute z; = ¢* - y;(mod 2),i =1,2,---,9 as follows:
71 = 0.295959
22 = 1.2625086
73 = 1.4311034

z4 = 0.297047
75 = 1.4929092
z6 = 1.3673068

1.4962348

27

3.4 Fully Homomorphic Encryption Scheme over Integers 63

zs = 1.2113898
29 = 1.9144466

Letz = {71, 22, - , 29}; the re-encryption takes the form of (c*, z).
For decryption, we compute

c* - |:ZZi:| = 30098 — [z3 + z6 + 23]

ieS
= 300098 — [1.4311034 + 1.3673068 + 1.2113898]
= 300098 — [4.0098]
= 300094 = O(mod 2)

The decryption result is the same as the original plaintext bit 0.

3.4.2 Bootstrappable Encryption

Now let us construct homomorphic encryption for circuits of any depth from
somewhat homomorphic encryption, which is capable of evaluating just a little more
than its own decryption circuit.

Definition 3.5 (Augmented Decryption Circuit [5]). Let ¢ be an encryption
scheme, where decryption is implemented by a circuit that depends only on the
security parameter.

For a given value of the security parameter A, the set of augmented decryption
circuits consists of two circuits; both take as input a secret key and two cipher-
texts:

* The circuit decrypts both ciphertext and adds the resulting plaintext bits mod 2;
* The circuit decrypts both ciphertext and multiplies the resulting plaintext bits
mod 2.

Definition 3.6 (Bootstrappable Encryption [5]). Let € be a homomorphic encryp-
tion scheme. We say that € is bootstrappable if its augmented decryption circuits are
permitted circuits for every value of the security parameter A.

Theorem 3.7 ([S]). The squashed encryption scheme € is bootstrappable.

The details of the theorem proof can be found in [5].

To reduce the ciphertext size during evaluation, van Dijk et al. [5] added to the
public key more elements of the form x; = ¢/ p + 2r; where r; is chosen as usual
from the interval (277, 2”) but ¢; are chosen much larger than for the other public-
key elements. Specifically, fori =0, 1,--- ,y, set

64 3 Fully Homomorphic Encryption

qi €ZN RVt p 2T p)r € ZN (27P,2°),x{ =2(q - p+ri)

thus getting x/ € [27+ 2v+i+1],

During evaluation, every time we have a ciphertext that grows beyond 27, we
reduce its first modulo x;, then modulo x;_l and so on all the way down to x, at
which point we again have a ciphertext of bit-length no more than y.

Recall that a single operation at most doubles the bit-length of the ciphertext.
Hence after any one operation the ciphertext cannot be larger than 2x; and therefore
the sequence of modular reductions involves only small multiples of the x/, which
means that it only adds a small amount of noise.

It is not clear to what extent adding these larger integers to the public key
influences the security of the scheme.

Fully homomorphic encryption (FHE) allows a worker to perform implicit
additions and multiplications on plaintext values while exclusively manipulating
encrypted data. The fully homomorphic scheme proceeds in several steps. First,
one constructs a somewhat homomorphic encryption scheme, which only supports
a limited number of multiplications: ciphertexts contain some noise that becomes
larger with successive homomorphic multiplications, and only ciphertexts whose
noise size remains below a certain threshold can be decrypted correctly. The second
step is to squash the decryption procedure associated with an arbitrary ciphertext so
that it can be expressed as a low-degree polynomial in the secret key bits. Then,
the key idea, called bootstrapping, consists of homomorphically evaluating this
decryption polynomial on encryptions of the secret key bits, resulting in a different
ciphertext associated with the same plaintext, but with possibly reduced noise. This
refreshed ciphertext can then be used in subsequent homomorphic operations. By
repeatedly refreshing ciphertexts, the number of homomorphic operations becomes
unlimited, resulting in a fully homomorphic encryption scheme.

Theorem 3.8 ([6]). There is a (efficient, explicit) transformation that given a
description of a bootstrapped encryption scheme € and a parameter d = d(A)
where A is the security parameter, output a description of another encryption scheme
€D such that €9 is homomorphic for all circuits of depth up to d.

3.4.3 Implementation

A fully homomorphic encryption scheme [5] that uses only simple integer arithmetic
is described as above. The primary open problem is to improve the efficiency of
the scheme, to the extent that it is possible while preserving the hardness of the
approximate-GCD problem.

Gentry and Halevi [8] implemented the Gentry’s fully homomorphic encryption
scheme [6]. The performance can be found in [8].

Coron et al. [3] extended the fully homomorphic encryption scheme over the
integers of van Dijk et al. (DGHYV) [5] to batch fully homomorphic encryption,

References 65

Table 3.1 Parameters of batch DGHV scheme

Instance |A | £ o |n yx107° |1 @) pk size
Toy 42 10 |26 988 |0.29 188 150 | 647kB
Small 52 | 37 |41 1,558 | 1.6 661 555 | 13.3MB
Medium |62 | 138 |56 2,128 |8.5 2,410 |2,070 | 304 MB
Large 72 |531 |71 2,698 |39 8,713 |7,965 | 5.6GB

Table 3.2 Performance of batch DGHV scheme
Instance | KeyGen | Encrypt | Decrypt | Mult Expand | Recrypt

Toy 0.06s 0.02s Os 0.003s | 0.007s 0.11s
Small 1.74s 0.23s 0.02s 0.025s |0.08s 1.10s
Medium | 73s 3.67s 045s 0.16s | 1.60s 11.9s
Large 3493's 61s 9.8s 0.72s | 28s 1725

i.e., to a scheme that supports encrypting and homomorphically processing a vector
of plaintext bits as a single ciphertext. They also implemented the batch DGHV
scheme, based on a C++ implementation using the GMP library. Tables 3.1 and 3.2
list concrete key sizes and timings for their batch DGHV scheme.

For all security levels, n = 4 and 6 = 15. In addition, £ is the length of the

vector for parallel processing.

References

1.

11.

Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) fully homomorphic encryption without
bootstrapping, in Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ITCS’12, 2012, pp. 309-325

. D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabili-

ties. J. Cryptol. 10(4), 233-260 (1997)

. J.S. Coron, T. Lepoint, M. Tibouchi, Batch fully homomorphic encryption over the integers, in

Proceedings of Advances in Cryptology, EUROCRYPT’13, 2013, pp. 315-335

J.S. Coron, D. Naccache, M. Tibouchi, Public key compression and modulus switching for
fully homomorphic encryption over the integers, in Proceedings of Advances in Cryptology,
EUROCRYPT’12, 2012, pp. 446464

. M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan, Fully homomorphic encryption over the

integers, in Proceedings of Advances in Cryptology, EUROCRYPT’10, 2010, pp. 24-43

. C. Gentry, Fully homomorphic encryption using ideal lattices, in Proceedings of STOC’09,

2009, pp. 169-178

. C. Gentry, Fully Homomorphic Encryption Using Ideal Lattices. PhD thesis, 2009
. C. Gentry, S. Halevi, Implementing Gentry fully-homomorphic encryption scheme, in Pro-

ceedings of Advances in Cryptology, EUROCRYPT’11, 2011, pp.129-148

. S. Halevi, An implementation of homomorphic encryption. http://github.com/shaih/HELib
. N. Howgrave-Graham, Approximate integer common divisors, in Proceedings of Cryptology

and Latticed, CaLC’01, 2001, pp. 51-66
J.C. Lagarias, The computational complexity of simultaneous diophantine approximation
problems. SIAM J. Comput. 14(1), 196-209 (1985)

http://github.com/shaih/HELib

66 3 Fully Homomorphic Encryption

12. P.Q. Nguyen, I. Shparlinski, On the insecurity of a server-aided RSA protocol, in Proceedings
of Advances in Cryptology, ASTACRYPT 01, 2001, pp. 21-35

13. P.Q. Nguyen, J. Stern, Adapting density attacks to low-weight knapsacks, in Proceedings of
Advances in Cryptology, ASTACRYPT 05, 2005, pp. 41-58

14. R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2), 120-126 (1978)

15. N. Smart, F. Vercauteren, Fully homomorphic encryption with relatively small key and
ciphertext sizes, in Proceedings of PKC’10, 2010, pp. 420443

16. D. Stehle, R. Steinfeld, Faster fully homomorphic encryption, in Proceedings of Advances in
Cryptology, ASIACRYPT’10, 2010, pp. 377-394

Chapter 4
Remote End-to-End Voting Scheme

Abstract Recently, remote voting systems have gained popularity and have been
used for government elections and referendums in the United Kingdom, Estonia, and
Switzerland as well as municipal elections in Canada and party primary elections
in the United States and France. Current remote voting schemes assume either the
voter’s personal computer is trusted or the voter is not physically coerced. In this
chapter, we describe a remote end-to-end voting scheme [23], in which the voter’s
choice remains secret even if the voter’s personal computer is infected by malware
or the voter is physically controlled by the adversary. Based on homomorphic
encryption, the overhead for tallying in such scheme is linear in the number of
candidates. Thus, such scheme is practical for elections at a large scale, such as
general elections.

4.1 Introduction

Essentially, an end-to-end voting system can be envisioned as a decryption network
composed of a collection of election authorities. The network takes as input a
collection of encrypted ballots (posted publicly by voters) in one end and outputs
in another end the tally of votes (posted publicly by the authorities) with a
mathematical proof that the encrypted ballots were decrypted properly and that the
votes were unmodified. Informally, an end-to-end voting system achieves integrity
if any voter can verify that his or her ballot is included unmodified in a collection of
ballots, and the public can verify that the collection of ballots produces the correct
final tally, and the system keeps privacy if no voter can demonstrate how he or she
voted to any third party.

So far, there have been two main categories of end-to-end voting schemes—
polling station voting schemes and remote voting schemes.

Polling station voting schemes, such as [1,11,17,20,22], build their security on an
untappable channel implemented as a private voting booth at a polling place, where
a voter can cast his or her ballot in private. Thus, risk of voter coercion and vote
buying can be greatly mitigated. These schemes require a voter to vote in person at
a polling station on election days. This may not be convenient for those voters who
have no access to any polling station on election days, e.g., overseas citizens and
military voters.

© Xun Yi, Russell Paulet, Elisa Bertino 2014 67
X. Yi et al., Homomorphic Encryption and Applications, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-12229-8__4

68 4 Remote End-to-End Voting Scheme

Remote voting schemes, such as [4, 7, 10, 15], allow people to cast their votes
over the Internet, most likely through a Web browser, from home, or possibly any
other location where they have Internet access. While voting of this kind is hoped
to encourage higher voter turnout and makes accurate accounting for votes easier,
it also carries the potential of making abuse easier to perform, especially at a large
scale [15]. One challenge to remote voting is how to prevent voter coercion and vote
buying because the behavior of a voter casting a ballot remotely can be physically
controlled by an adversary. Another challenge is how to ensure the remote personal
computer by which a voter casts his or her vote is trusted because malware can
endanger integrity of the elections as well as privacy of the voter [16].

The first voting scheme was introduced by Chaum [4], based on a mix network,
where a collection of tally authorities take as input a collection of encrypted votes
and output a collection of plain votes according to a secret permutation. This scheme
allows each voter to make sure his or her vote was counted, while preserving the
privacy of the vote as long as at least one tally authority is honest. In order to
improve efficiency in tallying, Cohen (Benaloh) and Fischer [8] proposed a voting
scheme, based on a homomorphic encryption E, where E(x)E(y) = E(x + y) for
any x and y in its domain. The basic idea is for each voter to encrypt his or her vote
using a public-key homomorphic encryption function. The encrypted votes are then
summed using homomorphic property without decrypting them. Finally, a collection
of tallying authorities cooperate to decrypt the final tally. This scheme also preserves
the privacy of votes as long as at least one tally authority is honest. In order to
provide with unconditional privacy of votes, Fujioka et al. [10] proposed a voting
scheme, based on blind signature, where a signer can digitally sign a document
without knowing what was signed. The basic idea is that the voter has his or her
ballot blindly signed by the voting authority and later publishes the ballot using an
anonymous channel. Current voting schemes are based on either mix network, or
homomorphic encryption, or blind signature.

The notion of receipt-freeness was first introduced by Benaloh and Tuinstra [2]
to model the security of a voting scheme against voter coercion and vote buying. A
voting scheme is receipt-freeness if a voter cannot prove to an attacker that he or
she voted in a particular manner, even if the voter wishes to do so. Receipt-freeness
voting schemes, such as [2, 13,21], assume the existence of a private voting booth
to isolate the voter from the coercer at the moment he or she casts his or her vote.
Remote voting schemes are required to be coercion resistant where the voter can
be physically controlled by the adversary during voting. A rigorous definition for
coercion resistance was given by Juels et al. [15]. This model considers a powerful
adversary who can demand coerced voters to vote in a particular manner, abstain
from voting, or even disclose their secret keys. A voting scheme is coercion resistant
if it is infeasible for the adversary to determine if a coerced voter compiles with
the demands. Intuitively, coercion resistance implies receipt-freeness which itself
implies privacy.

A coercion-resistant remote voting scheme was demonstrated by Juels et al.
[15]. The basic idea is that each voter casts his or her ballot together with a
secret credential, both encrypted by the public keys of the tally authorities. After

4.1 Introduction 69

a collection of encrypted ballots are mixed with a mix network such as [12, 14, 18],
the validity of ballots (i.e., the validity of credentials) is checked blindly against
the voter roll and only valid ballots are decrypted and counted. This scheme does
not require an untappable channel for a voter to cast his or her ballot, but instead
assumes an untappable channel for a voter to obtain a secret credential from the
registrars during registration (potentially using post mail).

Current coercion-resistant remote voting schemes, such as Juels et al.’s scheme
[15] and its variants [7], require public-key encryptions on the side of the voter.
Thus, they require the voter to trust the personal computer actually casting the ballot
on his or her behalf. Considering that the voter’s personal computer can be infected
by malware that may reveal the voter’s preferences or even change the encrypted
ballot cast by the voter, Kutylowski and Zagorski [16] recently proposed a remote
voting scheme, a combination of paper-based voting schemes Punchscan [5] and
ThreeBallot [20]. The basic idea is that a voter makes a complete ballot by laying
a ballot and a coding card side by side. Each voter is issued exactly one ballot by
the election authority and she or he can get a coding card from any proxy. This
scheme preserves privacy of votes if both authorities do not collude. Even if the
voter’s personal computer is infected by viruses, his or her choice remains secret.
This scheme does not allow a voter to prove how he or she voted unless vote casting
is physically supervised by an adversary.

Current remote voting schemes assume either the voter’s personal computer is
trusted to cast a vote or the voter is not physically controlled by the adversary. In
this chapter, we describe a remote voting scheme [23], in which the voter’s choice
remains secret even if the voter’s personal computer is infected by malware or
the voter is physically controlled by the adversary. The presentation is based on
the paper by Yi and Okamoto [23].

The approach by Yi and Okamoto is motivated by the most efficient voting
scheme by Hirt and Sako [13] based on homomorphic encryption. The main
difference between the approach by Hirt and Sako and the one presented in the
chapter is that Hirt and Sako assume the availability of an untappable channel
between the voter and the authorities during voting while the approach described
in this chapter requires the untappable channel during voter registration only.

Consider an election where the candidates are {C;, C,, - , C,. } and the choice
for each candidate is either “Yes” or “No”’; their basic idea can be described
as follows. First of all, a voter V; generates a public/private key pair for digital
signature scheme on his or her own device. During registration, V; presents himself
or herself to a registrar’s office, where he or she is allowed privately to input n¢
references r; ; (€ {1,—1}) on a trusted entry device (like setting PIN number in
a bank branch), which, in turn, encrypts each g'*/ with the public keys of tally
authorities according to ElGamal encryption scheme [9] where g is a generator
of a cyclic group G and then posts on a public bulletin board the ciphertexts
E(g"/) = (Ai;,B; ;) (each corresponds to one candidate C;) along with the
voter’s public key. During voting, V; posts on the public bulletin board his or her
ballot composed of 8; € {1,—1} (j = 1,2,---,n¢) and his or her signature on
it, where 8; = 1 if the choice of V) is the same as his or her reference r; ; and

70 4 Remote End-to-End Voting Scheme

B; = —1 otherwise. During tallying, the tallying authorities sum (4; ; bi B j Biy
for each candidate C; and then cooperate to decrypt the final tally.

Compared to most of existing remote voting schemes, the scheme described in
this chapter has three merits as follows: (1) no encryption is needed during voting
and the ballot cast by a voter is “plain”; thus, any voter can verify that his or her
ballot is included unmodified; (2) no mix network is needed during tallying and the
tallying overhead is linear in the number of candidates; therefore it is practical for
elections at a large scale; (3) verifiability remains even if all election authorities are
corrupt.

In addition, this scheme allows a voter repeatedly to refresh his or her references
remotely after he or she registers and to use refresh references for a new election.
Privacy is built on voter registration protected by a untappable channel.

4.2 Remote End-to-End Voting

4.2.1 Participating Parties

Assume that there exists a publicly readable, insert-only bulletin board (B5) on
which public information (e.g., public keys, ballots, and final tally) is posted. No
one can overwrite or erase existing data on 558. The public (including voters) can
read the contents of B3 anytime.

Normally, the remote voting scheme involves three types of participants as
follows:

» Registrar (R) authorizes voters for an election by posting each voter’s identity
and public information on BB.

* Voters (Vi, Va,--+,V,,) are the entities participating in the election adminis-
trated by R.
 Tallying authorities (77,72, , Tn;) process ballots, jointly count votes, and

publish the final tally.

4.2.2 Basic Remote Voting Scheme

We now introduce a basic remote voting scheme, where there is only one candidate,
and the choice of the election is either “Yes” or “No.”

Setup: The scheme is built on ElGamal (homomorphic and threshold) encryp-
tion scheme (ES) [9], the modified ElGamal signature scheme (SS) [19], the
non-interactive zero-knowledge reencryption proof (ReencPf) [3, 13], and the
non-interactive zero-knowledge equal discrete logarithm proof (EgDlog) [6], over
a group G of a large prime order ¢ with a generator g.

4.2 Remote End-to-End Voting 71

Let the choices of the election be C = {1, —1}, where 1, —1 stand for “Yes” and
“No,” respectively.

Let the list of tallying authorities be 7 = {71, 72, -+ , Tn, }- Each 7; randomly
chooses a private key TSK; = ¢; from Z; and computes the public key

TPK; = g" “.1)

Let TSK = {t1,t5,--- ,ty;} and TPK = {g", g",---,g"r}. Let h be chosen
from a family of collision-resistant hash functions.

At last, the registrar posts 2 = {R, ES, SS, ReencPf, EqDlog, (G, ¢, g), 1, C,
T, TPK,V} on the public bulletin board BB.

Registration: Before registration, each voter }; generates a public/private key pair
(sk; = x;, pk; = g*7) for the signature scheme SS on his or her own device and
prints out the public key pk; and the hash value & (pk;) on paper. The purpose of
using a hash function is to facilitate human checking.

To vote, a voter V; presents himself or herself to a registrar’s office, where V; is
allowed privately to press Yes or No button on a trusted entry device, which, in turn,
encrypts g or g~ ! accordingly, and then prints out the hash value 4 (R;) on a slip,
where R; = (A;, B;) is an encryption of either g or g7!. Let

nr Yi
ri=1A4; =g" B =g(l_[TPK,)

=1

if press Yes, and let

nr Yi
ri=—1,4=g" B =g (1‘[TPK,)
t=1

if press No, where y; is randomly chosen by the device from Z;". Therefore, R;
is an encryption of g’’. The voter V; needs to remember his or her reference r;.
Having seen i(R;) on the slip, the voter V; is allowed to confirm his or her choice
by pressing “Confirm” or “Cancel” button on the device, like [1, 16].

If V; presses “Cancel,” the device prints out r;, y;, R; on the slip for V; to check
if 7; is his or her choice. In this case, the staff in the registrar’s office tears off the slip
and provides a handwriting signature on it. }; either keeps the slip for anyone later
to check or inserts the slip into a locked box placed in the registrar’s office for the
election inspector with key later to check. Then the registration restarts. Note that
anyone can check if R; on the slip is computed correctly with r;, y;, TPK without
the knowledge of private keys of tallying authorities.

If the voter V; presses “Confirm,” the device scans his or her identity (denoted
as V; as well) from his or her identity card and his or her public key pk; from his
or her paper and then computes the hash value 4 (pk;) and prints out V;, h(pk;) on
the slip. The voter needs to check if the hash value i (pk;) on the slip is the same as

72 4 Remote End-to-End Voting Scheme

that on his or her paper. At last, the device provides non-interactive zero-knowledge
reencryption proof P; (using ReencPf) that R; is a reencryption of either (1, g) or
(1,g7"), posts V;, pki. h(pk;), R;,h(R;), P; on BB, and then erases r;, y; from its
memory. The staff tears off the slip with 2(R;), V;, h(pk;), provides a handwriting
signature on it, and then hands it to the voter.

Let the list of registered voters be V = {V;,Vs,---,V,,}. For each V;, there is
a row

Vi, pki, h(pki), Ri, h(R;), P;)

on BB.

Voting: The registrar R announces the candidate on BS. Each V; chooses his or
her vote v; from C = {1, —1} and determines B; as follows: If v; = r;, then §; = 1.
If v; # r;, then B; = —1. Note that }V; remembers his or her reference r;.

Next, V; generates a signature on f; (using SS) as follows:

Si=g" (4.2)
Ty = (H(Bi. Si) — Six:)8; ™' (mod q) 4.3)
where §; is randomly chosen from Z;, H is a hash function, and x; is the private
key of V;. Note that a time stamp may be included in the message to be signed to

prevent replaying attacks.
Then, V; constructs a ballot

bi =1{Bi.Si,. Ti}
and casts it to R, which, in turn, posts b; next to V; on BB if
¢S = piisfi (4.4)

The voter V; checks if b; on BB is the same as that he or she casts.
Tallying: To tally all valid ballots posted on BB, T performs the following steps:

1. Combining: Based on the homomorphic property of ElGamal encryption
scheme, all valid ballots {b;};., on BB can be combined as follows:

ny

Xr =]]4" (4.5)
i=1
ny

Yr =[] B" (4.6)

i=1

4.2 Remote End-to-End Voting 73

2. Decrypting: Following the threshold ElGamal encryption scheme, each tally
authority 7; computes

X; = X 4.7)

and posts X; on BB. With {X;}"Y one can compute

i=1

ny ny ny
Yr 1—[Xi_l — l_[griﬂi — ngvi =g¥™,

i=1 i=1 i=1
where y, n are the numbers of “Yes” and “No” and
y+n=ny (4.8)

Since ny is a small number relative to ¢, y can be determined from g2~V =
g¥7™ by exhaustively searching y from 1 to ny. At last, T release a tally

X = (y,n)

on BB.
3. Proving: 7;,72,:--, Ty, jointly provide a multiparty non-interactive zero-
knowledge proof P (using EqDlog) that

nr ur
[[7Pk; = g=i=" (4.9)
i=1

nT

g VY = x =" (4.10)

have the equal discrete logarithm and then post the proof P next to X on BB.

Verifying: During registration, each voter V; is able to check if his or her public
key pk; and ciphertext R; are posted on BB correctly on the basis of hash values
h(pk;) and h(R;) on his or her registration slip. In addition, V; is able to detect if
the entry device in the registrar’s office cheats by pressing “Cancel” and checking if
r; on the test slip is his or her choice and if R; on the test slip is computed correctly
by himself or herself or with the help of someone later. During voting, each voter
V; is able to check whether §; (either 1 or -1) in the ballot b; = {B;, S;, T; } posted
on BB is his or her choice even if the computer of V; is infected by malware.
During registration, the election inspector is able to detect if the entry device
cheats voters by collecting all test slips with the handwriting signatures of the
registrar from the test box and checking if all ciphertexts are computed correctly.
During voting, the public (including the voters) is able to verify if each R; is an
encryption of either g or g~! based on the non-interactive zero-knowledge proof P;,
and check if each ballot b; is valid with the signature (S;, 7;) of V;. During tallying,

74 4 Remote End-to-End Voting Scheme

the public can check if all valid ballots are combined and decrypted correctly based
on the non-interactive zero-knowledge proof P.

Remark. The basic scheme can fit a two-candidate election trivially.

4.2.3 General Remote Voting Scheme

The basic remote voting scheme can be used to build a general remote voting
scheme, where there is a list of candidates C = {C}, Cs,--- , C,.}, and the choice
for each candidate is either “Yes” or “No.”

Setup: Same as the basic scheme, the registrar R posts 2 = {R,ES,SS,
ReencPf, EqDlog, (G, ¢, g).h,C, T, TPK, V} on the public bulletin board B5.

Registration: For registration, a voter V; presents himself or herself with his or her
printed public key pk; and hash value h(pk;) to the registrar’s office, where V; is
allowed privately to enter an integer

ro=ain @02+ a2 (“.11)

where a; ; is either O or 1, into a trusted entry device, which, in turn, encrypts a
series of g and g~! according to a; ;. The ciphertext R; ; = (4, ;, B; ;) and

_ | (g7, g(IT;L, TPK,)") ifa;; =0

(4;;.Bi ;) = L o B
(g7, g 'qLL, TPKy)") ifa;; =1

where y; ; is randomly chosen by the device from Z;‘. Then the device prints out the

hash value 2(R;) on a slip, where R; = {R; ; }_’;Czl. The voter V; needs to remember

his or her reference r; (like a PIN number). If the number of candidates is large, V;

may write down r; on a note privately.

Having seen A (RR;) on the slip, V; decides whether to confirm r;. If not, the device
prints out r;, {y; }_’;Czl and R; on the slip. In this case, the staff in the registrar’s
office tears off the slip and provides a handwriting signature on it. V; either keeps
the slip for anyone later to check or inserts the slip into a locked box placed in
the registrar’s office for the election inspector with key later to check. Then the
registration restarts. Otherwise, the device scans the identity V; and the public key
pk; and prints out V;, h(pk;) on the slip for V; to check. At last, the device provides
anon-interactive zero-knowledge reencryption proofs IP; (using ReencPf) that each
ciphertext in R; is a reencryption of either (1, g) or (1, g7'), and erases r;, a; ;. ¥:,;
from its memory, and posts

Vi, pki, h(pki),R;, h(R;),P;

4.2 Remote End-to-End Voting 75

on BB. The staff tears off the slip with A(R;), V;, h(pk;), provides a handwriting
signature on it, and then hands it to the voter.

Voting: The registrar R announces the list of candidates C = {C, Cy,--- , Cy.}
on BB.

For each candidate C; (j = 1,2,--- ,nc), a voter V; chooses his or her vote
v;,j from {1, —1} and determines B; ; as follows: If v; ; = (—1)“/, then B; ; = 1.
If v j # (=1)%7, then B; ; = —1. Note that V; remembers his or her reference

ro= a4 24 A2
Next, V; generates a signature on {f; 1, Bi 2, , Binc } as follows:

S; = g% (4.12)
T, = (HBit, Bins-++ Bine> Si) — Sixi)8: ' (mod q) (4.13)

where §; is randomly chosen from Z;‘ and Xx; is the private key of V;.
Then, V; constructs a ballot

bi = {pi;}i<), Si. Ti}

and casts it to R, which, in turn, posts b; next to V; on BB if
gH(ﬂi.l.ﬂi.z,"'.ﬂi.nC.Si) — pklfgi SiTi (4.14)

The voter V; checks if b; on BB is the same as that he or she casts.

Tallying: To tally all valid ballots posted on BB for each candidate C; (j =
1,2,--- ,n¢), T performs the following steps:

1. Combining: 7 combines all valid ballots on BB for the candidate C; as follows:

ny
X =]]4i;" (4.15)
i=1
ny
Yr; =[] Bi;" (4.16)

i=1

2. Decrypting: Each tally authority 7; computes X; ; = Xr,;" and posts X; ; on
BB. By {X; ;}:L,. one can compute

ny ny ny
Yr; -l_[Xi,j_l = Hgﬁf»f(_l)“"’ = Hgvi-i =gV

i=1 i=1 i=1

where y;,n; are the numbers of “Yes” and “No” for the candidate C; and y; +
n; = ny. Then y; can be determined from g¥i™" = g¥i™" by exhaustively
searching y; from 1 to ny. At last, T release a tally

X; = (y;.n;)
for the candidate C; on BBS.

76 4 Remote End-to-End Voting Scheme

3. Proving: Tallying authorities 77,73, --- , 7T, jointly provide a multiparty non-
interactive zero-knowledge proof Pc; (using EqDIog) that

nr

HTPK,. = gXitil 4.17)
i=1
gy TVYr; = XTJZ:'LI:,- (4.18)

have the equal discrete logarithm and then post the proof Pc; next to X; on BB.
Verifying: Same as the basic voting scheme.

Remark. The general scheme can fit an m out of n selection election (where
m < n), in which m candidates are elected from n candidates Cy, C,,--- ,C,, as
long as we ranky; —n; (i = 1,2,--- ,n¢) after tallying. In addition, the general
scheme can be extended to a ranked election. For example, considering a ranked
election with 4 candidates C;, C;, C3, C4, a voter can rank them by 4 preferences
(+,+),(+,-),(—,+), and (—,—). To implement this, each voter presets two
ciphertexts R; 1, R; j» on BB for each candidate C;. After voting, two columns
of ciphertexts for C; are tallied, respectively, and the tallying result for C; can be
2(yj1—mj1)+(yj2—nj,), where (y; . n;) is the tallying result of the kth column
of the ciphertexts for C;.

4.2.4 Voter Reference Refresh

In the basic and general remote voting schemes, the reference of a voter can be used
for one election only. For a new election, the voter may go to the registrar’s office
to reset his or her reference as the registration described above or refresh his or her
reference online as follows.

For the basic scheme, when the voter V; refreshes his or her reference r; (€
{1, —1}), whose ciphertext on BB is R; = (A;, B;), he or she randomly chooses j;
from {1, —1} while his or her computer randomly chooses p; from Z;" and computes

nr Pi
R, = (4}, B]) = (g" A", (]—[TPK,) B!") (4.19)

t=1

where R/ is an encryption of g'i# and the refresh reference r/ = r; ;. Next the
computer of V; provides a non-interactive zero-knowledge reencryption proof P/
that R} is a reencryption of either (4;, B;) or (A;!, B7"!) and generates a signature
on R/ as follows:

4.2 Remote End-to-End Voting 77

S/ = g% (4.20)
T/ = (H(R..S!) — 8/x:)8," ' (mod q) 421

where 8/ is randomly chosen from Z(}" and x; is the private key of V;. At last, V;
posts

(RL.S.. T/, P)

next to V; on BB.

Remark. If an adversary coerces a voter V; to compute R, with y; and p; chosen by
himself or herself, he or she is uncertain of the refresh reference r/ = r; jt; because
he or she is uncertain of the original reference r;. In case the registrar obtains r;, y;
during the registration of V;, the registrar is uncertain of the refresh reference r/ =
r;)4; because he or she is uncertain of y;.

For the general scheme, when the voter V; refreshes his or her reference r; (=
ai1+ai224-+--a;pc 2mc=1y where a; j € {0,1}), he or she randomly chooses

Mils» Rine from {1, —1}, while his or her computer chooses random numbers
Pil, Pi2s " s Pine from ZZ and computes
nr pi.j nc
R; = {(4] ;. B{)}}<, = { <gp,._, A7 (H TPI@) B!“"”’) (4.22)
t=1 j=1
where R is the set of the encryptions of
(glf«lll(_l)ai‘] , gui.z(—l)ai‘z ,oee, ghinc (=1)*inc)
and the refresh reference
;o ’ / nc—l1
r=a;,+a;2+ - +a;,.2 (4.23)
where
L= iy (=)™
/o L]
a; ; = — (4.24)

Next V; provides a non-interactive zero-knowledge reencryption proof P} that each

(A} ;. B} ;) in IR} is areencryption of either (4; ;, B; ;) or (Aif}, B;jl) and generates

a signature on R! as follows:

S/ = g (4.25)
T/ = (H®R,, S!)) — 8/x))8] " (mod q) (4.26)

78 4 Remote End-to-End Voting Scheme

where §; is randomly chosen from Z[’; and x; is the private key of V;. At last, V;
posts (R, S/, T/, IP;) next to V; on BB.

Remark. As a voter V; is able to test if the entry device in the registrar’s office is
cheating during the registration, V; is able to test if his or her computer is cheating
during voter reference refresh by sending test data to the election inspector by post.

4.3 Conclusion and Discussion

In this chapter, we have described an Internet voting system [23]. While the
overhead for tallying in Juels et al.’s remote voting system [15] is quadratic in the
number of voters, the overhead for tallying in the Internet voting system described
in this chapter is only O(ny) which is linear in the number of voters. Therefore,
the system is practical for elections at a large scale, such as general elections.
In addition, Juels et al.’s remote voting system [15] is not verifiable in the sense
that an adversary, who has corrupted all tallying authorities, is able to forge valid
ballots without being detected. The Internet voting system in this chapter overcomes
this drawback. Even if the adversary corrupts all election authorities, the adversary
is unable to forge any valid ballot in the system. At last, a voter in the Internet
voting system does not need to encrypt his or her ballot during voting. The ballot is
in a form of plaintext. Therefore, even if the voter’s personal computer is infected
by malware, any modification on the voter’s ballot can be detected by the voter.
Furthermore, his or her vote choice remains secret because his or her final vote is a
combination of his or her ballot and his or her reference which is encrypted during
registration and posted on the bulletin board.

References

1. J. Benaloh, Ballot casting assurance via voter-initiated poll station auditing, in Proceedings of
Electronic Voting Technology Workshop (EVT’07), 2007

2. J. Benaloh, D. Tuinstra. Receipt-free secret-ballot elections (extended abstract), in Proceedings
of 26th ACM STOC’94, 1994, pp. 544-553

3. M. Blum, A.D. Santis, S. Micali, G. Persiano, Non-interactive zero-knowledge. SIAM
J. Comput. 6, 1084-1118 (1991)

4. D. Chaum, Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.

ACM 24(2), 84-88 (1981)

. D. Chaum, Punchscan, 2005, http://www.punchscan.org.

6. D. Chaum, T.P. Pedersen, Wallet databases with observers, in Proceedings of CRYPTO’92,
1992, pp. 89-105

7. M.R. Clarkson, S. Chong, A.C. Myers, Civitas: A secure remote voting system, in Proceedings
of SP’08, 2008, pp. 354-368

8. J.D. Cohen (Benaloh) M.J. Fischer, A robust and verifiable cryptographically secure election
scheme, in Proceedings of FOCS’85, pp. 372-382, 1985.

V)]

http://www.punchscan.org

References 79

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19

20.

21.

22.

23.

T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Infor. Theo. 31, 469-472 (1985)

A. Fujioka, T. Okamoto, K. Ohta, A practical secret voting scheme for large scale elections, in
Proceedings of AUSCRYPT 92, pp. 244-251, 1992.

R.W. Gardner, S. Garera, A.D. Rubin, Coercion resistant end-to-end voting, Proceedings of
FC’09, 2009, pp. 344-361

P. Golle, M. Jakobsson, A. Juels P. Syverson, Universal re-encryption for mixnets, in
Proceedings of CT-RSA’04, 2004, pp. 163-178

M. Hirt, K. Sako, Efficient receipt-free voting based on homomorphic encryption, in Proceed-
ings of EUROCRYPT’00, 2000, pp. 539-556

M. Jakobsson, A. Juels, R. Rivest, Making mix nets robust for electronic voting by randomized
partial checking, in Proceedings of USENIX’02, 2002, pp. 339-353

A. Juels, D. Catalano, M. Jakobsson, Coercion-resistant electronic election, in Proceedings of
WPES’05, 2005, pp. 61-70

M. Kutylowski, F. Zagorski, Scratch, click & vote: E2E voting over the Internet. NIST End-to-
End Voting System Workshop, 2009.

T. Moran, M. Naor, Split-ballot voting: everlasting privacy with distributed trust, in Proceed-
imgs of CCS’07, 2007, pp. 246-255

A. Neff, A verifiable secret shuffle and its application to e-voting, in Proceedings of CCS’01,
2001, pp. 116-125

. D. Pointcheval, J. Stern. Security proofs for signature schemes, in Proceedings of EURO-

CRYPT’96, 1996, pp. 387-398

R.L. Rivest, W.D. Smith, Three voting protocols: Threeballot, VAV, and twin, in Proceedings
of Electronic Voting Technology Workshop (EVT’07), 2007, pp. 16-16

K. Sako, J. Kilian, Receipt-free mix-type voting scheme-a practical solution to the implemen-
tation of a voting booth, in Proceedings of EUROCRYPT’95, 1995, pp. 393-403

V. Teague, K. Ramchen, L. Naish. Coercion-resistant tallying for STV voting, in Proceedings
of Electronic Voting Technology Workshop (EVT’08), 2008

X. Yi, E. Okamoto, Practical Internet voting system. J. Netw. Comput. Appl. 36(1), 378-387
(2013)

Chapter 5
Nearest Neighbor Queries with Location
Privacy

Abstract In mobile communication, spatial queries pose a serious threat to user
location privacy because the location of a query may reveal sensitive information
about the mobile user. In this chapter, we consider k nearest neighbor (kNN) queries
where the mobile user queries the location-based service (LBS) provider about k
nearest points of interest (POIs) on the basis of his or her current location. We
described a solution given by Yi et al. [22] for the mobile user to preserve his or
her location privacy in kNN queries. The solution is built on the Paillier public-
key cryptosystem [11] and can provide both location privacy and data privacy. In
particular, the solution allows the mobile user to retrieve one type of POlIs, for
example, k nearest car parks, without revealing to the LBS provider what type of
points is retrieved. For a cloaking region with n x n cells and m types of points, the
total communication complexity for the mobile user to retrieve a type of k nearest
POIs is O(n + m) while the computation complexities of the mobile user and the
LBS provider are O(n + m) and O(n?m), respectively. Compared with existing
solutions for kNN queries with location privacy, these solutions are more efficient.

5.1 Introduction

The embedding of positioning capabilities (e.g., GPS) in mobile devices facilitates
the emergence of location-based services (LBSs), which are considered as the next
“killer application” in the wireless data market. LBS allows clients to query a
service provider (such as Google or Bing Maps) in a ubiquitous manner, in order
to retrieve detailed information about points of interest (POIs) in their vicinity
(e.g., restaurants, hospitals, etc.).

The LBS provider processes spatial queries on the basis of the location of the
mobile user. Location information collected from mobile users, knowingly and
unknowingly, can reveal far more than just a user’s latitude and longitude. Knowing
where a mobile user is can mean knowing what he/she is doing: attending a religious
service or a support meeting, visiting a doctor’s office, shopping for an engagement
ring, carrying out non-work-related activities in office, or spending an evening at the
corner bar. It might reveal that he or she is interviewing for a new job or “out” him
or her as a participant at a gun rally or a peace protest. It can mean knowing with

© Xun Yi, Russell Paulet, Elisa Bertino 2014 81
X. Yi et al., Homomorphic Encryption and Applications, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-12229-8_5

82 5 Nearest Neighbor Queries with Location Privacy

whom he/she spends time and how often. When location data are aggregated it can
reveal his/her regular habits and routines—and when he or she deviates from them.

A 2010 survey conducted for Microsoft in the United Kingdom, Germany, Japan,
the United States, and Canada found that 94 % of consumers who had used LBSs
considered them valuable, but the same survey found that 52 % were concerned
about potential loss of privacy.'

In this chapter, we consider k nearest neighbor (kNN) queries where the mobile
user queries the LBS provider about k nearest POIs. In general, the mobile user
needs to submit his or her location to the LBS provider which then finds out and
returns to the user the k nearest POIs by comparing the distances between the mobile
user’s location and POIs nearby. This reveals the mobile user’s location to the LBS
provider.

There have been numerous techniques that can provide a certain degree of
location privacy. These techniques mainly include

¢ Information access control [10,23];

¢ Mix zone [2];

e k-Anonymity [1,3,9]

e “Dummy” locations [8, 16,21];

* Geographic data transformation [6, 7, 19,20];

¢ Private information retrieval (PIR) [4, 5, 12—14].

Localtion-based service queries based on access control, mix zone, and k-
anonymity require the service provider or the middleware that maintains all user
locations. They are vulnerable to misbehavior of the third party. They offer little
protection when the service provider/middleware is owned by an untrusted party.
There have been private data inadvertently disclosed over the Internet in the past.

k-Anonymity is initially used for identity privacy protection. It is generally
inadequate for location privacy protections, where the notion of distance between
locations is important (unlike distances between identities). The effect of LBS
queries based on k-anonymity depends heavily on the distribution and density of
the mobile users, which, however, are beyond the control of the location privacy
technique.

Location-based service queries based on dummy locations require the mobile
user randomly to choose a set of fake locations, to send the fake locations to the
LBS, and to receive the false reports from the LBS over the mobile network. This
incurs both computation and communication overhead in mobile devices. For the
purpose of efficiency, the mobile user may choose fewer fake locations, but the LBS
provider can restrict the user in a small subspace of the total domain, leading to
weak privacy.

Location-based service queries based on geographic data transformation are
prone to access pattern attacks [18] because the same query always returns the same
encoded results. For example, the LBS may observe the frequencies of the returned

Thttp://www.microsoft.com/security/resources/research.aspx#LBS.

http://www.microsoft.com/security/resources/research.aspx#LBS.

5.1 Introduction 83

ciphertexts. Having knowledge about the context of the database, it can match the
most popular plaintext POI with the most frequently returned ciphertext and, thus,
unravel information about the query.

Location-based service queries based on PIR provide strong cryptographic
guarantees, but are often computationally and communicationally expensive. To
improve efficiency, trusted hardware was employed to perform PIR for LBS queries
[12]. This technique is built on hardware-aided PIR [17], which assumes that a
trusted third party (TTP) initializes the system by setting the secret key and the
permutation of the database. Like LBS queries based on access control, mix zone,
and k-anonymity, this technique is vulnerable to misbehavior of the third party.

It is a challenge to give practical solutions for kNN queries with location privacy
on the basis of PIR.

In this chapter, we describe some solutions for kNN queries by Yi et al. [22] on
the basis of PIR with the Paillier public-key cryptosystem [11]. Yi et al.’s work has
three main contributions as follows:

e Current PIR-based LBS queries [4, 5, 13, 14] usually require two stages. In the
first stage, the mobile user retrieves the index of his or her location from the LBS
provider. In the second stage, the mobile user retrieves the POIs according to the
index from the LBS provider. To simplify the process, Yi et al. give a solution
for KNN queries which needs one stage only, i.e., the mobile user sends his or
her location (encrypted) to the LBS provider and receives the k nearest POIs
(encrypted) from the LBS provider.

e Current PIR-based LBS queries only allow the mobile user to find out k nearest
POIs regardless of the type of POIs. For the first time, Yi et al. take into account
the type of POIs in kNN queries and give a solution for the mobile user to find
out k nearest PIOs of the same type without revealing to LBS provider what type
of POIs he or she is interested in.

* Current PIR-based LBS queries all need to fix a cloaking region based on which
the LBS provider generates the responses to the mobile user’s queries. If the
cloaking region is large, the LBS queries are inefficient. If the cloaking region is
small, the LBS queries have weak privacy. Yi et al. give a solution for the mobile
user to specify a large public cloaking region but let the LBS provider generate
the responses actually based on a small private cloaking region repeatedly.

For a cloaking region with n x n cells and m types of points, assume that the
mobile user wishes to retrieve a type of k nearest POIs at his or her location, the
total communication complexity is O(n + m) while the computation complexities
of the mobile user and the LBS provider are O(n 4+ m) and O(n’m), respectively.
Compared with previous solutions for kNN queries with location privacy, this
solution is more efficient.

84 5 Nearest Neighbor Queries with Location Privacy

5.2 Private k Nearest Neighbor Queries

5.2.1 Security Model

The security model considers an LBS scenario in mobile environments, as shown in
Fig. 5.1, where there exist the mobile user, the LBS provider, the base station and
satellites, each playing a different role.

* The mobile user sends location-based queries to the LBS provider and receives
LBS from the provider.

* The LBS provider provides LBSs to the mobile user.

* The base station bridges the mobile communications between the mobile user
and the LBS provider.

» Satellites provide the location information to the mobile user.

We assume that the mobile user can acquire his or her location from satellites
anonymously, and the base station and the LBS provider do not collude to compro-
mise the user location privacy or there exists an anonymous channel such as Tor?
for the mobile user to send queries to and receive services from the LBS provider.
The model focuses on user location privacy protection against the LBS provider
and a kNN query protocol (where k is fixed) is composed of three algorithms as
follows:

1. Query Generation (QG): Taking as input a cloaking region CR with n x n cells
and m distinct types of POIs, the location (i, j) of the mobile user, and the type
t of POIs; the mobile user outputs a query Q (containing CR) and a secret s,
denoted as (Q,s) = QG(CR,n,m, (i, j),1).

2. Response Generation (RG): Taking as input the query Q and the location-based
database D of POlIs; the LBS provider outputs a response R, denoted as R =

£
N/)
i

Mobile User Base Station LBS Provider

Fig. 5.1 Location-based service

Zhttps://www.torproject.org/.

https://www.torproject.org/.

5.2 Private k Nearest Neighbor Queries 85

‘I) (Q:S)=QG(CR:nrm:{iJ]rt} 2) R=RG(Q,D)
Q
e
R
@0
3) kNN=RR(R,s)
Mobile User LBS Provider

Fig. 5.2 Private kNN query

3. Response Retrieval (RR): Taking as input the response R and the secret s of the
mobile user; the mobile user outputs k nearest POIs of the type ¢, denoted as
kNN = RR(R,s).

A private KNN query protocol can be illustrated in Fig.5.2 and is correct if
kNN = RR(R, s) outputs k nearest POIs of the type ¢ corresponding to the cell at
@i, j), where (Q,s) = QG(CR,n,m, (i, j),t) and R = RG(Q, D).

The security of a private KNN query protocol involves data privacy and location
privacy. Intuitively, the LBS provider S wishes to release only the k nearest POIs
of one type to the mobile user I/ each time when the user sends a kNN query.
Meanwhile, the mobile user U does not wish to reveal to the LBS provider his or
her location (7, j) and the type ¢ of POIs he or she is interested in.

Formally, data privacy can be defined with a game as follows.

Given a user location (7, j) where 1 < i, j < n and one type ¢ of POIs, consider
the following game between an adversary (the user) A and a challenger C. The game
consists of the following steps:

1. The adversary chooses any two distinct cloaking regions CR; and CR; with
n x n cells such that k nearest POIs of the type ¢ in the cell (i, j) are same. The
adversary generates a query Q to retrieve the k nearest POIs of the type ¢ in the
cell (i, j) and sends O, CR,, CR; to the challenger C.

2. The challenger C chooses a random bit b € {0, 1}, and runs the Response
Generation algorithm RG to obtain R, = RG(Q(CRy), D), and then sends
R, back to A.

3. The adversary A can experiment with the code of R; in an arbitrary non-black-
box way. If the adversary can retrieve the k nearest POIs of the type ¢ in the cell
(i, j) from Ry, he or she outputs b’ € {0, 1}.

The adversary wins the game if &' = b and loses otherwise. We define the
adversary A’s advantage in this game to be

Adv (k) = |Pr(y’ = b) —1/2],

86 5 Nearest Neighbor Queries with Location Privacy

where k is the security parameter.

Definition 5.1 (Data Privacy Definition). In a kNN query protocol, the LBS
provider has data privacy if for any probabilistic polynomial time (PPT) adversary
A, we have that Adv 4(k) is a negligible function, where the probability is taken
over coin-tosses of the challenger and the adversary.

Remark. Data privacy ensures that the response distributions on the user’s view are
computationally indistinguishable for any two cloaking regions CR; and CR;, such
that the k nearest POIs of the type ¢ in the cell (i, j) in the two cloaking regions
are the same. This means that a computationally bounded user does not receive
information about more than one cell in the cloaking region CR.

Next, we formally define location privacy with a game as follows.

Given a cloaking region CR with n x n cells and m types of POIs, consider the
following game between an adversary (the LBS provider) A and a challenger C.
The game consists of the following steps:

1. The adversary A chooses two distinct tuples (io, jo, %) and (i1, ji,#;), where
(ip, j») represents the cell and ¢, stands for the type of POIs, from the cloaking
region CR and sends them to the challenger C.

2. The challenger C chooses a random bit b € {0,1} and executes the Query
Generation (QG) to obtain (Qp,s) = QG(CR,n,m, (ip, j), t») and then sends
Q) back to the adversary A.

3. The adversary A can experiment with the code of Q; in an arbitrary non-black-
box way and finally outputs a bit b’ € {0, 1}.

The adversary wins the game if »* = b and loses otherwise. We define the
adversary A’s advantage in this game to be

Adv_4(k) = |Pr(y’ = b) —1/2|

where k is the security parameter.

Definition 5.2 (Location Privacy Definition). In a kNN query protocol, the user
has location privacy if for any probabilistic polynomial time (PPT) adversary A,
we have that Adv 4 (k) is a negligible function, where the probability is taken over
coin-tosses of the challenger and the adversary.

Remark. Location privacy ensures that the server cannot determine the location of
the mobile user in the cloaking region CR and the type of POIs with the KNN query
from the mobile user.

Based on the model, we describe some constructions of private kNN query
protocol by Yi et al. [22] which allows the mobile user to find k nearest POIs from
a cloaking region. These solutions are built on the Paillier homomorphic encryption
scheme [11] and the Rabin encryption scheme [15].

5.2 Private k Nearest Neighbor Queries 87
5.2.2 Private kNN Queries Without Data Privacy

First of all, we describe a basic construction of kNN query protocol without
considering data privacy of the LBS provider. We assume that there is only one
type of POIs and so we ignore the type of POIs and ¢ in the model in this case.

Initially, the LBS provider divides the location-based database D (a geographic
map) into cells with the same size, for example, 1 km width and 1 km length. Based
on the center of each cell, the LBS provider collects k nearest POIs, Py, P,,---, Pk
as shown in Fig. 5.3 and each point is represented by a tuple (x, y), where x and y
are the latitude and longitude of the point, respectively. For each cell (i, j), the LBS
provider keeps k nearest POIs, represented as a stream of bits, denoted as an integer
d; j. We assume M = max(d; ;), i.e., the longest record.

Remark. Because the LBS provider collects k nearest POIs according to the center
of each cell (i.e., the red points shown in Fig. 5.3), the LBS provider responds the
same k nearest POIs to the two mobile users within the same cell no matter where
the two mobile users are in the cell. For the mobile user located near the border
of two cells, he or she may query two cells or even four cells around his or her
location and then find out k nearest POIs among the query responses. The purpose
of this method is to avoid privately comparing distances, which is hard to do without
revealing the location of the user.

We assume that the mobile user I/ wishes to find k nearest POIs around his or her
location. To do so, the user I/ chooses a cloaking region CR with n xn cells, where U
is located in the cell (7, j), and runs the kNN query protocol with the LBS provider
S, composed of three algorithms, Query Generation (QG), Response Generation
(RG), and Response Retrieval (RR), as described in Algorithms 1-3.

INENEE
\ .tﬂ:\). .
ERE
L (“é::l)@

0 1 2 3 4 5 6

Fig. 5.3 k Nearest POIs for cells

88 5 Nearest Neighbor Queries with Location Privacy

Algorithm 1 Query Generation (user)
Input: CR,n,(i,j)
Output: Q,s
1: Randomly choose two large primes p, g such that N = pg > M.
2: Let sk = {p,q} and pk = {g, N}, where g is chosen from Zy> and its order is a nonzero
multiple of N.
3: Foreach ¢ € {1,2,--- ,n}, pick a random integer r;, € Z

*

2+ compute

o = Encrypt(l, pk) = g'rY (mod N?) ift=i
C 7 Encrypt(0, pk) = g (mod N?) otherwise

where the encryption algorithm is described in the Paillier cryptosystem.
4: Let Q = {CR,n,c1,cp,*++ ,Cu, pk}, s = sk.
5: return Q,s

Algorithm 2 Response Generation RG (server)
Input: D,Q ={CR,n,ci,¢z,*** ,cn, (g, N)}
Output: R = {C,Cy, -+ ,C,}
1: Based on CR and n, compute R = {C},C,,--- ,C,} where fory = 1,2,--- ,n,

n
¢, =[] e (mod N?)
=1

2: return R

Algorithm 3 Response Retrieval RR (user)

Input: R ={C,,Cy,-++,C,}.sk =
Output: d
1: Compute

d = Decrypt(Cj, sk),

where the decryption algorithm is described in the Paillier cryptosystem.
2: return d

Remark. The CR may be specified by the coordinates (x, y) of an origin point and
the order n of a square grid. The cell which contains the origin point is labeled as
(1,1). The CR covers the square grid from the cell (1,1) to the cell (n, n).

Remark. In Algorithm 3, when the mobile user receives the response, he or she can
ignore Cy (£ # j) and receive C; only because only C; contains the information
about the k nearest POIs in the cell (i, j).

Theorem 5.3 (Correctness). The kNN query protocol without considering data
privacy of the LBS provider (Algorithms 1-3) is correct. In other words, for any
cloaking region CR with n x n and the index i, j ofacell (1 <i,j <n), we have

5.2 Private k Nearest Neighbor Queries 89

Algorithm 4 Query Generation (user)
Input: CR,n,(i,j)
Output: Q,s
1: Randomly choose two large primes p, g such that N = pg > M.
2: Let sk = {p,q} and pk = {g, N}, where g is chosen from Zy> and its order is a nonzero
multiple of N.
3: Foreach ¢ € {1,2,---,n}, pick a random integer r;, € Z;z, compute

o = Encrypt(l, pk) = g'rY (mod N?) ift=i
C 7 Encrypt(0, pk) = g (mod N?) otherwise

*

4: Pick arandom integer r € Zy,,

compute
¢ = Encrypt(j, pk) = ¢/r" (mod N?)

5: Let Q = {CR,n,c1,cs,**+ ,cn.C, pk}, s = sk.
6: return Q,s

d,‘,j = RR(R, S),

where d; ; stands for k nearest POIs for the cell (i, j), (Q,s) = QG(CR,n, (i, j)),
R =RG(D, Q).

Proof. Based on Algorithms 1-3, we have

n n N
C; = HCZ” = gdis (H rf”) (mod N?),
=1 =1

which is a Paillier encryption of d; ;. Therefore, we have d; ; = Decrypt(C;,sk)
= RR(R, sk) and the theorem is proved. O

5.2.3 Private kNN Queries with Data Privacy

In the kNN query protocol without considering data privacy of the LBS provider,
C = g% ([T, rfl‘j)N(mad N?) and thus the mobile user is able to obtain the
k nearest POIs in cells (i, y) for y = 1,2,--- ,n. Therefore, it does not have data
privacy which requires that the mobile user retrieves the k nearest POIs for one cell
only per query.

Now we describe a construction of the kNN query protocol by Yi et al. [22],
composed of Algorithms 4-6, which provides data privacy for the LBS provider.

Theorem 5.4 (Correctness). The kNN query protocol with data privacy (Algo-
rithms 4-6) is correct. In other words, for any cloaking region CR with n x n and
the index i, j ofacell (1 <i,j <n),

90 5 Nearest Neighbor Queries with Location Privacy

Algorithm 5 Response Generation RG (server)
Input: D,Q ={CR,n,c1,¢z,*** ,cn,c,(g,N)}
Output: R = {C|,Cs,:++.Cy}
1: Based on CR and n, compute R = {C;,C,,--- ,C,} where fory = 1,2,--- ,n,

n 2
¢, = (e/g" [et mod N2,

=1

where w, is randomly chosen from Z},.
2: return R

Algorithm 6 Response Retrieval RR (user)
Input: R = {C;,Cs,-+-,C,}.5k =

Output: d

1: Compute

C; = PaillierDecrypt(C;,sk),

where the decryption algorithm is described in the Paillier cryptosystem.
2: Compute

d = RabinDecrypt(C;, sk),

where the decryption algorithm is described in the Rabin cryptosystem.
3: return d

d,',j = RR(R, S)

holds, where d; ; stands for k nearest POIs, (Q,s) = QG(CR,n,(i,j)), R =
RG(D, Q).

Proof. Based on Algorithms 4-6, we have

"oaz
C; = (c/g"] et mod N?)
=1

N
nod?,
= g% (rwf 1_[ree") (mod N?),
t=1
which is a Paillier encryption of df ;(mod N). Therefore, we have

C} = Paillier Decrypt(C;,sk) = di%j (mod N)

which is the Rabin encryption of d; ;. At last, we have

5.2 Private k Nearest Neighbor Queries 91
d;i.j = RabinDecrypt(C;, sk) = RR(R,s)

and the theorem is proved. O

Remark. For any y,

N
n
2 .)) d? .
C)/ — gdi.yg(]_y)"‘/y (rwl’ | | r(l'j)
(=1

When y # j, C, is not a Paillier encryption of dfy because of g/ =" This
means that the mobile user cannot obtain k nearest POIs for the cell (i, y) when
y # j.In addition, we use the Rabin encryption df ; instead of d; ; in the Response
Generation to prevent the mobile user from retrieving the nearest POIs for the cell
(£, j) when £ # i.If we encode d; ; rather than dﬁ j» a malicious user may retrieve
a linear equation of d j,d> j,-+- ,d, ; by including more than one encryption of
1 in the list of ¢y, ¢z, -+, ¢,. The linear relation may disclose more than one d; ;
to the user. By Rabin encryption, the user can only retrieve a nonlinear equation
of dij,d>j, -+ ,d, if there are more than one encryption of 1 in the list of

€1,¢2,+++ , ¢y. From the nonlinear equation, it is hard to retrieve any d; ;.

5.2.4 Private kNN Queries Based on POI Type

Now we take the POI type in kNN query into account. Slightly different from the
initialization phase in the kNN query protocol without data privacy, based on the
center of each cell, the LBS provider collects k nearest POIs, Py, P,,---, Py and
each point is represented by a tuple (x, y,), where x and y are the latitude and
longitude of the point, respectively, and 7 is the type of the points. Examples of POI
types includes:

¢ Churches, schools

* Post offices, shops, postboxes, telephone boxes
¢ Pubs

* Car parks

* Speed cameras

¢ Tourist attractions

We assume that POI types are coded into 1,2, --- ,m which is published to the
public. For each cell (i, j) and each POI type ¢, the LBS keeps k nearest POIs
of type ¢, represented by a stream of bits, denoted as an integer d; ;,. We assume
M = max(d; ;).

Assume that the mobile user U located in the cell (i, j) wishes to find k nearest
POIs of the type ¢; the kNN query protocol based on POI type is composed of
Algorithms 7-9.

92 5 Nearest Neighbor Queries with Location Privacy

Algorithm 7 Query Generation (user)

Input: CR,n,m, (i, j),t
Output: Q,s
1: Randomly choose two large primes py, g; such that Ny = p;q; > M.
2: Randomly choose two large primes p», ¢, such that Ny = p,q,, where N, 12 <N, < Nl4 .
3: Let ski = {p1.q1}. ska = {p2.q2}, pk1 = {g1, N1}, pka = {g2, N2}, where g, is chosen
from Zy,» and its order is a nonzero multiple of Ny and g5 is chosen from Z;,> and its order
is a nonzero multiple of N,.
4: Foreach{ € {1,2,--- ,m}, pick a random integer ry € Zj\‘/lz, compute

E(1, pky) = gi'r)" (mod N,*) if =1

= E(0, pky) = gloréN' (mod Ni?) otherwise
5: Foreach £ € {1,2,--- ,n}, pick a random integer r(f € Z;z, compute

o = VEQLpky) = @' (mod N?) ift =i

¢ E(0, pky) = gzorl’}v2 (mod N»%) otherwise

6: Pick a random integer r € Z7, ,, compute

*
N227

¢ = E(j, pka) = g2/ r"*(mod N>?)

7: Let Q = {CR,n.m,c1,¢2,**+ ,Cm.Cl.Choow+ ,C). ¢, pky, pka}, s = {sky, ska}.
8: return Q,s

Algorithm 8 Response Generation RG (server)

Input: D,Q = {CR.m,n,ci,cz,** ,Cm,C}, ¢4, . Cp, ¢, pki, pka)
Output: R = {C{,Cy,-++,C,}
1: Based on CR and m, for each cell (¢, B) in CR, compute

m
d2
Cop = l_[cf‘“(mod N%)
=1
2: Based on CR and 1, compute R = {C;, C,,-+ ,C,}, where for 8 € {1,2,--- ,n},
n 5
Cp = (e/g" [] el%s tmod N?).
a=1

where wg is randomly chosen from Zy,
3: return R

Theorem 5.5 (Correctness). The kNN query protocol based on POI type
(Algorithms 7-9) is correct. In other words, for any cloaking region CR with
n x n and m types of POIs, and the index i, j of acell (1 <i,j < n)anda typet
of POIs, we have

5.2 Private k Nearest Neighbor Queries 93

Algorithm 9 Response Retrieval RR (user)
Input: R ={C;,Cy,---,C,},sk

Output: d

1: Compute

C,/' = PaillierDecrypt(C;,sky).

where the decryption algorithm is described in the Paillier cryptosystem.
2: Compute

C; = RabinDecrypt(Cj, ska).

where the decryption algorithm is described in the Rabin cryptosystem.
3: Compute

C/” = PaillierDecrypt(C],sky).
4: Compute
d = RabinDecrypt(C}", sk).

5: return d

d,',j’l = RR(R, Sk)

holds, where d; j, stands for k nearest POIs of the type t in the cell (i, j), and
(Q,sk) =QG(CR,n,m, (i, j),t), R=RG(D, Q).

Proof. Following the proof of Theorem 2, we can prove that

W
C/ =Cij=]]c " (mod N*).
=1

dz.
In fact, C; ; = gd"zﬁ (TToe;)M (mod N}) which is a Paillier encryption of
d?;,(mod N,). Therefore, we have

C_/’»" = diz’j., (mod N),

which is the Rabin encryption of d; ;. At last, we have d; j;, = RabinDecrypt
(C/",sk1) = RR(R, s) and the theorem is proved.]

94 5 Nearest Neighbor Queries with Location Privacy

Algorithm 10 Private cloaking region request (user)
Input: CR,A,i,j
Output: Q,s
1: Randomly choose two large primes py, g; such that Ny = p;q; > M.
2: Randomly choose two large primes p,, g, such that N, = p,q,, where N 12 <N, < Nl4 .
3: Let sky = {p1.q1}. ska = {p2.q2}, pk1 = {g1, N1}, pka = {g2, N2}, where g, is chosen
from Z > and its order is a nonzero multiple of N and g5 is chosen from Z,> and its order
is a nonzero multiple of N,.
4: Foreach{ € {1,2,---, A}, pick a random integer r; € Z

*

N2 compute

E(1, pky) = gi'r) (mod Ny?) if€ =i
, =

E(0, pky) = glor[N' (mod N\?) otherwise

5: Foreach £ € {1,2,---, A}, pick a random integer rl' € Z"[:/2, compute

’

o = VE(Lpka) = g2'r " (mod N?) i £ = j
-

E(0, pky) = gzorl’N2 (mod N»?) otherwise

6: Let Q = {CR, A,c1,¢2,-+ ,ca,c],¢h, -+, pky, pka}, s = {sky, sko}.
7: return Q,s

5.2.5 Private Cloaking Region

In the kNN query protocols, the mobile user needs to specify a cloaking region CR
in his or her query Q. If the CR is too large, the kNN query will be inefficient.
However, if the CR is too small, the KNN query has weak location privacy.

To facilitate the KNN query protocols, we describe a solution by Yi et al. [22] for
the mobile user to specify a (small) private cloaking region (encrypted) in a (big)
public cloaking region. After that, the mobile user and the LBS provider can run the
kNN query protocols over the private cloaking region repeatedly.

Assume that the public cloaking region CR contains Ax A small cloaking regions
CRypgp(@=12,---,A,8=12,---,A). Without loss of generality, we assume
that each small CR,, g contains A data elements, dy g, fory = 1,2, , A, although
the small CR, g can be further divided into n x n cells later.

Assume that the mobile user wishes to specify a private cloaking region CR; ;
(encrypted); the private cloaking region protocol is composed of Algorithm 10,
by which the mobile user generates a request for private cloaking region, and
Algorithm 11, by which the LBS provider generates the private cloaking region
(encrypted) for the mobile user.

Before we describe the private cloaking region generation algorithm, we intro-
duce a notation as follows:

CR d d d
c. B — (C a,B,1 ¢ .2 eee L C aﬂ./\)

i i 0T ’ * i

5.2 Private k Nearest Neighbor Queries 95

Algorithm 11 Private cloaking region generation (server)

Input: D,Q ={CR,A,c1,¢2,"** ,ca,cl, b, ,Ch, Dk, pka}

Output: R
1: Based on CR and A, CR is divided into small cloaking regions CR, g where 1 < o, 8 < A.
2: Forp =1,2,--+, A, compute

CRg = ¢\ “Rpc,CRep oo \CRas,

3: Compute
R = c{CRICQCRz “'C/ACRA.
4: return R
and
(Cfloz./fi‘l ’ ;ia,ﬁ.z e C;la,m)(cju’,ﬁ'.l ’ C;’a/'ﬂ/’z, e Cja/./j/,x)
_ (Cidaﬁ.l C;l'a/.ﬁ’.l ’ lela.ﬁ.zc;la/.ﬂ/z’ . Cidaﬁ.x C;la/,ﬁ’.l)

In Algorithm 11, the output R (i.e., the encrypted private cloaking region)
contains A data elements.

Theorem 5.6. In Algorithms 10 and 11, R is the encryption of private cloaking
region CR; ;.

Proof. In Algorithms 10 and 11, assume that CRg = (Cp1,Cgp,--- ,Cp) and
R=(C,C;,---,Cy);thenfory =1,2,---, A, we have

A

Cpy =[] /""" = 1% (rp,)V (mod Ny),
=1

which is a Paillier encryption of d; g, with g1, N;. In addition, fory = 1,2,--- |,
we have

A
C, = [1ci = 57 ()" (mod Ny,
{=1

which is a Paillier encryption of C;, with g», N». This means PaillierDecrypt
= C;, and PaillierDecrypt(C;,,ski) = d;j, fory = 1,2,---, 1 and the
theorem is proved. O

Remark. If the LBS provider has sufficient storage, it can keep the private cloaking
region (PCR) for the time being. The PCR is encrypted and only the mobile user can
decrypt. The LBS provider still knows the POI types of data elements in the PCR,
but it has no idea where PCR is located. Therefore, the mobile user does not need to

96 5 Nearest Neighbor Queries with Location Privacy

hide his or her location within the PCR in his or her query and only needs to embed
the POI type ¢ in his or her query in the same way as Algorithm 1. In addition, the
user can repeatedly query the different cells in the PCR.

5.3 Performance Analysis

Now we analyze the performance of the three KNN query protocols and the private
cloaking region protocol by Yi et al. [22]. In the performance analysis, we consider
the computation of modular exponentiations (exp.) and ignore the computation of
modular multiplications and squares because the latter is much cheaper than the
former. We also ignore the process of key generation because it can be precomputed.

5.3.1 Protocol Performance

In the kNN query protocol without data privacy (Algorithms 1-3), the mobile user
needs to compute n Paillier encryptions (about n exp.) in Algorithm 1 and 1 Paillier
decryption (about 2 exp.) in Algorithm 3. So the total computation complexity of the
mobile user is about O(n) exp. In Algorithm 2, the LBS provider needs to compute
n? exp. and the total computation complexity of the LBS provider is O(n?) exp. In
addition, the communication complexity is 2n log, N bits.

In the kNN query protocol with data privacy (Algorithms 4-6), the mobile user
needs to compute n + 1 Paillier encryptions (about n exp.) in Algorithm 4 and 1
Paillier decryption and 1 Rabin decryption (about 3 exp.) in Algorithm 6. So the
total comp. complexity of the user is about O(n) exp. In Algorithm 5, the LBS
provider needs to compute (2 + n)n exp. and the total comp. complexity of the LBS
provider is O(n?) exp. In addition, the comm. complexity is 21 log, N bits.

In the kNN query protocol based on POI type (Algorithms 7-9), the mobile
user needs to compute n 4+ m + 1 Paillier encryptions (about n 4+ m exp.) in
Algorithm 7 and 2 Paillier decryption and 2 Rabin decryption (about 6 exp.) in
Algorithm 9. So the total computation complexity of the mobile user is about O(2n)
exp. In Algorithm 8, the LBS provider needs to compute mn? + (n + 2)n exp. and
the total computation complexity of the LBS provider is O(mn?) exp. In addition,
the communication complexity is (2n + m) log, N bits.

Table 5.1 shows the performance of the above three protocols.

In addition, in the private cloaking region protocol (Algorithms 10-11),
the mobile user needs to compute 2A Paillier encryptions (about 2A exp.) in
Algorithm 10 while the LBS provider needs to compute AA? exp., and the
communication complexity is 2A log, N. After generation of the private cloaking
region, the mobile user can repeatedly query it with O(1) (without POI type) or
O(m) (with POI type) computation and communication complexities.

5.4 Conclusion and Discussion 97

Table 5.1 Performance of the KNN query protocols
Component | Algorithms 1-3 | Algorithms 4-6 | Algorithms 7-9

User comp. O(n) O(n) O(n + m)
Server comp. | O(n?) o(n?) O(mn?)
Comm. 2nlogy, N 2nlogy, N (2n + m)log, N

Table 5.2 Performance comparison (stage 1/stage 2)

Component | Ghinita et al. Paulet et al. Proposed protocol
User comp. 0(n?)/0(n) O(1) / generate G, g,q | O(n)
and solve discrete log
Server comp. | O(n?)/0(n?) 0(n)/0(n?) 0n?)
Comm. n2log, N/2nlog, N | 2nlog, N/O(1) 2nlog, N

5.3.2 Performance Comparison

We now compare the kNN query protocol with data privacy with PIR-based LBS
query protocols [4,5, 13, 14] in Table 5.2. All these protocols do not consider POI
type in their queries. We assume the cloaking region has n x n cells.

From Table 5.2, we can see that the Ghinita et al. and Paulet et al. protocols
both have two stages while the protocol has one stage only. The performance of
the protocol is better than the Ghinita et al. protocol in terms of user and server
computation complexities and communication complexity. In addition, the Paulet
et al. protocol and the protocol have almost the same server computation and
communication complexities. The mobile user in the protocol needs to compute
much less than the Paulet et al. protocol. In stage 2, the Paulet et al. protocol needs
to generate a group G, a generator g, and a prime g for each query and compute
a discrete logarithm ¢; = log, h,. This process takes more time than computing
n exp.

5.4 Conclusion and Discussion

In this chapter, we have described the private KNN solution of Yi et al. [22]. Their
solution is composed of three private KNN query protocols and one private cloaking
region protocol. To analyze the security of the solutions, Yi et al. defined a security
model for private kNN queries and performed security analysis on their solution in
[22]. The security analysis has shown that the solutions ensure both location privacy
in the sense that the user does not reveal any information about his or her location to
the LBS provider and data privacy in the sense that the LBS provider releases to the
user only k nearest POIs per query. The performance analysis has shown that their
protocols are more efficient than the past solutions.

98 5 Nearest Neighbor Queries with Location Privacy
References
1. B. Bamba, L. Liu, P. Pesti, T. Wang, Supporting anonymous location queries in mobile

10.

11.

12.

13.

14.

15.

16.

17.

20.

environments with PrivacyGrid, in Proceedings of the 17th International Conference on World
Wide Web, WWW’08, 2008, pp. 237-246

. A.R. Beresford, F. Stajano, Location privacy in pervasive computing. IEEE Pervasive Comput.

2(1), 46-55 (2003)

. C.Y. Chow, M.F. Mokbel, X. Liu, A peer-to-peer spatial cloaking algorithm for anonymous

location-based services, in Proceedings of the 14th Annual International Symposium on
Advances in Geographic Information Systems, ACM GIS’06, 2006, pp. 171-178

. G. Ghinita, P. Kalnis, S. Skiadopoulos, PRIVE: Anonymous location-based queries in dis-

tributed mobile systems, in Proceedings of the 16th International Conference on World Wide
Web, WWW’07, 2007, pp. 371-380

. G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, K.-L. Tan, Private queries in location-

based services: anonymizers are not necessary, in Proceedings of International Conference on
Management of Data, SIGMOD’08, 2008, pp. 121-132

. H. Hu, J. Xu, C. Ren, B. Choi, Processing private queries over untrusted data cloud through

privacy homomorphism, in Proceedings of IEEE 27th International Conference on Data
Engineering, ICDE’11, 2011, pp. 601-612

. A. Khoshgozaran, C. Shahabi, Blind evaluation of nearest neighbor queries using space

transformation to preserve location privacy, in Proceedings of Advances in Spatial and
Temporal Databases, SSTD’07, 2007, pp. 239-257

. H. Kido, Y. Yanagisawa, T. Satoh, An anonymous communication technique using dummies

for location-based services, in Proceedings of International Conference on Pervasive Services,
ICPS’05, 2005, pp. 88-97

. ML.E. Mokbel, C.-Y. Chow, W.G. Aref, The new casper: query processing for location services

without compromising privacy, in Proceedings of the 32nd International Conference on Very
Large Data Bases, VLDB’06, 2006, pp. 763-774

G. Myles, A. Friday, N. Davies, Preserving privacy in environments with location-based
applications. IEEE Pervasive Comput. 2(1), 56-64 (2003)

P. Paillier, Public key cryptosystems based on composite degree residue classes, in Proceedings
of Advances in Cryptology, EUROCRYPT’99, 1999, pp. 223-238

S. Papadopoulos, S. Bakiras, D. Papadias, Nearest neighbor search with strong location privacy,
in Proceedings of the VLDB’ 10, 2010, pp. 619-629

R. Paulet, M. Golam Kaosar, X. Yi, E. Bertino, Privacy-preserving and content-protecting
location based queries, in Proceedings of IEEE 28th International Conference on Data
Engineering ICDE’12, 2012, pp. 44-53

R. Paulet, M. Golam Kaosar, X. Yi, E. Bertino, Privacy-preserving and content-protecting
location based queries. IEEE Trans. Knowl. Data Eng. 26(5), 1200-1210 (2014)

M. Rabin, Digitalized signatures and public-key functions as intractable as factorization.
(Massachusetts Institute of Technology, Cambridge, 1979)

P. Shankar, V. Ganapathy, L. Iftode, Privately querying location-based services with sybilquery,
in Proceedings of the 11th International Conference on Ubiquitous Computing, Ubicomp’09,
2009, pp. 3140

S. Wang, X. Ding, R.H. Deng, F. Bao, Private information retrieval using trusted hardware, in
Proceedings of Computer Security, ESORICS’ 06, 2006, pp. 49-64

. P. Williams, R. Sion, Usable PIR, in Proceedings of 15th Annual Network and Distributed

System Security Symposium, NDSS 08, 2008

. W.K. Wong, D.W. Cheung, B. Kao, N. Mamoulis, Secure kNN computation on encrypted

databases, in Proceedings of International Conference on Management of Data, SIGMOD’09,
2009, pp. 139-152

B. Yao, F. Li, X. Xiao, Secure nearest neighbor revisited, in Proceedings of IEEE 29th
International Conference on Data Engineering, ICDE’13, 2013, pp. 733-744

References 99

21. M.L. Yiu, C. Jensen, X. Huang, H. Lu, SpaceTwist: Managing the trade-offs among location
privacy, query performance, and query accuracy in mobile systems, in Proceedings of IEEE
24th International Conference on Data Engineering, ICDE’08, 2008, pp. 366375

22. X. Yi, R. Paulet, E. Bertino, V. Varadharajan, Practical k nearest neighbor queries with location
privacy, in Proceedings of IEEE 30th International Conference on Data Engineering, ICDE’ 14,
2014, pp. 640-651

23. M. Youssef, V. Atluri, N.R. Adam, Preserving mobile customer privacy: An access control
system for moving objects and custom profiles, in Proceedings of the 6th MDM’05, 2005, pp.
67-76

Chapter 6
Private Searching on Streaming Data

Abstract Private searching on streaming data is a process to dispatch to a public
server a program, which searches streaming sources of data without revealing
searching criteria and then sends back a buffer containing the findings. From an
Abelian group homomorphic encryption, the searching criteria can be constructed
by only simple combinations of keywords, e.g., disjunction of keywords. The recent
breakthrough in fully homomorphic encryption has allowed one to construct
arbitrary searching criteria theoretically. In this chapter, we consider a new private
query suggested by Yi et al. [23], which searches for documents from streaming
data on the basis of keyword frequency, such that the frequency of a keyword is
required to be higher or lower than a given threshold. This form of query can
help us in finding more relevant documents. Based on the state-of-the-art fully
homomorphic encryption techniques, we describe disjunctive, conjunctive, and
complement constructions for private threshold queries based on keyword frequency
given by Yi et al. [23]. Combining the basic constructions, we also describe
their generic construction for arbitrary private threshold queries based on keyword
frequency.

6.1 Introduction

The problem of private searching on streaming data was first introduced by
Ostrovsky and Skeith [15]. It was motivated by one of the tasks of the intelligence
community, that is, how to collect potentially useful information from huge volumes
of streaming data flowing through a public server. However, that data which is
potentially useful and raises a red flag is often classified and satisfies secret search
criteria. The challenge is thus how to keep the search criteria classified even if the
program residing in the public server falls into the adversary’s hands. This problem
has many applications for the purpose of intelligence gathering. For example, in
airports one can use this technique to find if any of hundreds of passenger lists has
a name from a possible list of terrorists and, if so, to find his/hers itinerary without
revealing the secret terrorists’ list.

The first solution for private searching on streaming data was given by Ostrovsky
and Skeith [15, 16]. It was built on the concept of public-key program obfuscation,
where an obfuscator compiles a given program f from a complexity class C into

© Xun Yi, Russell Paulet, Elisa Bertino 2014 101
X. Yi et al., Homomorphic Encryption and Applications, SpringerBriefs
in Computer Science, DOI 10.1007/978-3-319-12229-8_6

102 6 Private Searching on Streaming Data

a pair of algorithms (F, Dec), such that Dec(F(x)) = f(x) for any input x and
it is impossible to distinguish for any polynomial time adversary which f from C
was used to produce a given code for F'. The basic idea can be briefly described as
follows.

Assume that the public dictionary of potential keywords is D = {wy,w,---,
wp|}. To search for documents containing one or more of classified keywords
K = {ki,ky,--- kig)} C D, the client generates a public/private key pair of a
public-key cryptosystem and constructs a program F, composed of an encrypted
dictionary £(D) from K and a buffer B which will store matching documents. Then
the client dispatches the program F to a public server, where F filters streaming
documents and stores the encryptions of matching documents in the buffer B.
After the buffer B returns, the client decrypts the buffer and retrieves the matching
documents. Because both the keywords and the buffer are encrypted, the search
criteria are kept classified to the public.

On the basis of this idea, several solutions for private searching on streaming data
have been proposed in literature as follows:

1. Ostrovsky and Skeith [15, 16] gave two solutions for private searching on
streaming data. One is based on the Paillier cryptosystem [18] and allows to
search for documents satisfying a disjunctive condition k| V k v --- V k||, i.e.,
containing one or more classified keywords. Another is based on the Boneh et al.
cryptosystem [3] and can search for documents satisfying (k1; V ki V -+ Vv
kg,) A (kat V ko Vv -V k) ,|), an AND of two sets of keywords.

2. Bethencourt, Song, and Water [1,2] also gave a solution to search for documents
satisfying a condition ky Vv k V --- V k|g. Like the idea of [17], an encrypted
dictionary is used. However, rather than using one large buffer and attempting to
avoid collisions like [15], Bethencourt et al. stored the matching documents in
three buffers and retrieved them by solving linear systems.

3. Yi et al. [24] proposed a solution to search for documents containing more than
t out of n keywords, so-called (¢, n) threshold searching, without increasing the
dictionary size. The solution is built on the state-of-the-art fully homomorphic
encryption (FHE) technique and the buffer keeps at most m matching documents
without collisions. Searching for documents containing one or more classified
keywords like [1,2, 15, 16] can be achieved by (1, n) threshold searching.

The existing solutions for private searching on streaming data have not consid-
ered keyword frequency, the number of times that keyword is used in a document.
Search engines like Google, Yahoo, and AltaVista display results based on secret
algorithms. Although we do not know the equations, we believe that these are based
mainly on keyword frequency and link popularity.

In this chapter, we describe protocols [23] for a new private query, which searches
for documents from streaming data based on keyword frequency, such that a number
of times that a keyword appears in a matching document is required to be higher or
lower than a given threshold. For example, find documents containing keywords
ki,ks,--- , k, such that the frequency of the keyword k; i = 1,2,---,n) in the
document is higher (or lower) than ¢;. The protocol takes the lower case into account

6.2 Overview of Private Searching on Streaming Data 103

because terms that appear too frequently are often not very useful as they may not
allow one to retrieve a small subset of documents from the streaming data.

This form of query can help one in finding more relevant documents, but it cannot
be implemented with traditional homomorphic encryption schemes. Based on fully
homomorphic encryption, disjunctive, conjunctive, and complement constructions
have been given by Yi et al. [23] for private threshold queries based on keyword
frequency: (1) The disjunctive construction allows one to search for documents
satisfying a condition such as (f (k1) > t1) V (f(ky) =) vV --- Vv (f(ky) = t,),
where f(k;) denotes the frequency of the keyword k; and #; is a given threshold.
(2) The conjunctive construction allows to search for documents satisfying a
condition such as (f(k1) > 1) A (ftkz) =) A - A (flky) = t,).
(3) There are two complement constructions. The disjunctive complement construc-
tion allows one to search for documents satisfying a condition such as (f(k;) >
L) VoV (ki) = t,) VY —(fky) = t) VeV =(fiky,) = 8,), e,
(flhki) = 1) V-V (flhi,) = 1,) v (k) <)V -V (fk;,) < 1,),
where — stands for complement and 7, + n, = n. The conjunctive complement
construction allows one to search for documents satisfying a condition such as
(f(kiy) = ti) Ao AN (fkiy) = 5,) A=(f(kj) = 8) Ao A (fkG,,) = 8,,),
Lew (f(ki) = t) Ao A (flhiy) 2 8,0 A flkj) < 1) Ao A (FKG,) < 15,).

Furthermore, by combining the above basic constructions, Yi et al. [23] intro-
duced the generic construction for arbitrary threshold query based on keyword
frequency.

Like Yi et al.’s solution for the (¢, n) threshold query [24], the solutions [23]
described here encrypt the thresholds, compare them with the ciphertexts, and store
a matching document into the buffer by constructing an encryption of (L, £) linear
code of the document. Unlike the (¢, n) threshold query solution [24] where only one
threshold ¢ is encrypted and enclosed to the searching program, the solutions [23]
described here encrypt the frequency threshold for each keyword because different
keywords may have different frequency thresholds.

6.2 Overview of Private Searching on Streaming Data

In 2005, Ostrovsky and Skeith [15, 16] gave the first solution for private searching
on streaming data as follows.

Assume that the public dictionary of potential keywords is D = {wy,wy,---,
wip|}. To construct a program searching for documents containing one or more of
classified keywords K = {ki,ks,--- . kjx|} C D, the client generates a pair of
public and private keys (pk, sk) for a homomorphic encryption scheme &£, such
as the Paillier cryptosystem [18], and produces an array of ciphertexts £(D) =
{c1,¢2,+++ ,c|p|}, one for each keyword w; € D, such that if w; € K, then ¢; =
Epk(1) and ¢; = & (0) otherwise. In addition, the client constructs a buffer B
with ym boxes, each of them is initialized with two ciphertexts (€, (0), £,k (0)),
where m is the upper bound on the number of matching documents the buffer can
accommodate and m /2" should be negligible.

104 6 Private Searching on Streaming Data

To perform private searching for keywords, Ostrovsky and Skeith segmented
the streaming data S into streaming documents {M;, M>,---}, each of which is
composed of a number of words, and filtered one at a time. To process a document
M;, the server, which is provided with D, (D), B, computes d; = Hw,-eM,- cj =
Epk(IM; N K|) and ¢; = diMi = Ep(M; - |M; N KJ), then copies (d;, e;) into y
randomly chosen boxes in the buffer B by multiplying corresponding ciphertexts.
If Mi N K = @, this step will add an encryption of 0 to each box, having no
effect on the corresponding plaintext. If M; N K # @, the matching document
can be retrieved by computing M; = Dy (e;)/Dsk (d;) after the buffer returns. If
two different matching documents are ever added to the same buffer box, a collision
will occur and both copies will be lost. To avoid the loss of matching documents, the
buffer size has to be sufficiently large so that each matching document can survive
in at least one buffer box with overwhelming probability.

In 2009, Bethencourt et al. [1, 2] proposed a different approach for retrieving
matching documents from the buffer. Like the idea of [15], an encrypted dictionary
is used, and no-matching documents have no effect on the contents of the buffer.
However, rather than using one large buffer and attempting to avoid collisions,
Bethencourt, Song, and Water stored the matching documents in three buffers—the
data buffer I, the count buffer C, and the matching indices buffer I, and retrieved
them by solving linear systems.

Bethencourt et al.’s solution is able to process ¢ documents {M;, M5, --- , M}
of streaming data. For each document M;, the server computes d; and e; as the
Ostrovsky—Skeith protocol and copies d; and ¢; randomly over approximately half
of the locations across the buffers C and F, respectively. A pseudorandom function
g(i, j) is used to determine with probability 1/2 whether d; (or ¢;) is copied
into a given location j. In addition, the server copies d; into a fixed number of
locations in the buffer I. This is done by using essentially the standard procedure
for updating a Bloom filter. Specifically, k hash functions A1, h,, - -+ , hj are used to
select the k locations. The locations of I that d; is multiplied into are taken to be
hi(i), ha(i), -+ hye ().

To retrieve the matching documents, Bethencourt, Song, and Water decrypted
three buffers F, C,T to F',C’,T’ at first. For each of the indices i € {1,2,..,t},
hi(i),hy(i),- -+, hi(i) are computed and the corresponding locations in I’ are
checked. If all these locations are nonzero, i is added into the list of potential
matching indices, denoted as {iy,is,--- ,i¢}. The values of ¢ = {o;,, s, , i, },
where «;; = |M;; N K], are then determined by solving the system of linear
equations A - ¢ = C'T, where A = (g(j,i)) is an |C| x iy matrix. As last step, the
content of the matching documents M' = {M;,, M;,,--- , M;,} are determined by
solving the system of linear equations A - diag(c) - M'T = F'T.

The advantage of Bethencourt et al.’s approach [1, 2], compared to Ostrovsky
et al’s solution [15], is that buffer collisions do not matter because matching
documents can be retrieved by solving linear systems. Consequently, the buffer
size does not need to be sufficiently large in order to maintain a high probability
of recovering all matching documents. In fact, the buffer size becomes optimal, i.e.,

6.2 Overview of Private Searching on Streaming Data 105

O(m). However, Bethencourt et al.’s approach has a drawback as well. To determine
the ordinal numbers of potential matching documents in the decrypted buffer T,
Bethencourt, Song, and Water had to check each of the indices i € {1,2,---,¢} of
the data stream. Therefore, the buffer recovering has a running-time proportional to
the size of the data stream, i.e., O(m>37® + ¢ log(t /m)). This does not fit the model
given by Ostrovsky et al. in [15, 16], in which the buffer is decrypted at the cost
which is independent of the stream size.

The idea of private searching for documents containing one or more of keywords
can be modified to construct more complicated queries. For example, a query
composed of at most a A AND operations can be performed simply by changing
the dictionary D to a dictionary D’ containing all |D|* A-tuples of words in D,
which of course comes at a polynomial blow-up of program size.

Using results by Boneh et al. [3], Ostrovsky and Skeith [15, 16] gave a solution
for private queries involving an AND of two sets of keywords without increasing
the program size. Their basic idea of searching for documents M such that (M N
K| # @) A (M N K, # @), where K;, K, are two sets of potential keywords, is
to construct two arrays of ciphertexts C; = {cf, cf,--- ,ch‘} (¢ = 1,2), where

cf is the encryption of 1 if w; € K, and 0O otherwise. To process a document M,
the program computes v, =]_[ijM cf = Ep(IM N K¢l) (¢ = 1,2) and then
v = e(vy,v,), where e is a bilinear map. If (M N K; # @) A (M N K, # @) is true,
v is an encryption of a nonzero element and O otherwise. Then, M is encrypted by
replacing 1 with v and 0 with an encryption of 0 and the ciphertext is copied into y
randomly chosen boxes in the buffer B.

Ostrovsky and Skeith [17] showed that the general methods used here to
create protocols for searching on streaming data (which are based essentially upon
manipulating homomorphic encryption) cannot be extended to perform conjunctive
queries beyond what has been accomplished as above. More specifically, if one
builds a protocol based on an Abelian group homomorphic encryption, then no
conjunctive (of more than one term) can be performed without increasing (super-
linearly) the dictionary size. It seems that to make progress in significantly extending
the query semantics will likely require fundamentally different approaches to the
problem, unless major developments are made in the design of homomorphic
encryption scheme.

Gentry [7-10] using lattice-based cryptography constructed the first fully homo-
morphic encryption scheme. In the same year, Dijk et al. [6] presented a second fully
homomorphic encryption scheme. In 2010, Smart et al. [20] presented a refinement
of Gentry’s scheme giving smaller key and ciphertext sizes. Recent breakthrough
in fully homomorphic encryption makes it possible to perform more complicated
private queries on streaming data.

In 2012, based on fully homomorphic encryption technique, Yi et al. [24]
provided a construction of the searching criteria for private (¢,n) threshold query
on streaming data, which searches for documents containing more than ¢ out of n
keywords, without increasing the dictionary size. Like the idea of [15], an encrypted
dictionary £(D) = {ci,¢2, -+ ,¢|p|}, where correspondences to n keywords are

106 6 Private Searching on Streaming Data

encryptions of 1 and 0 otherwise, is used. Besides it, an encryption of the threshold
t (< |D|), denoted as &, (2), is attached to the program. To process a document
M;, the program computes d; = ije m; €j = Ep((M; N K|) and compares
|M; N K| with ¢ using d; and £, () on the basis of the fully homomorphic property.
It outputs a ciphertext o, which is an encryption of 0 if |[M; N K| > ¢ and an
encryption of 1 otherwise. Then M; is encrypted by replacing 1 with o + 1 and 0
with an encryption of 0. The encryption of a matching document is stored into the
buffer by constructing an encryption of (L, £) linear code of the document, where £
and L are the plain document size and the plain buffer size, respectively, and then
position-wise adding the code into the buffer. To keep up to m matching documents,
the buffer size only needs to be m{k (= Lk), where k is a security parameter. In
addition, the computational decoding cost is O(m{k?) independent of the streaming
size. Furthermore, the buffer can keep at most 7z matching documents. In case there
are more than m matching documents in the streaming data, the buffer stores the
first m matching documents and throws the rest away. Thus, the buffer collision is
no longer an issue.

6.3 Preliminaries

6.3.1 Integer Addition with FHE

In general, a fully homomorphic encryption scheme £ has the following properties:

Emy) + E(my) = E(my & my),
E(m)E(mz) = E(mymy),
for any my, m, € {0, 1}.
Based on the above two properties, given £(m;) and £ (m-), we can construct
g(}’l’ll /\I’Vlz) = 5(1’111)5(7]’[2),
E(my vV my) = E(my) + E(my) + E(my)E(my),
for any my,m, € {0, 1}.

For a positive integer M = (mm;,---my), (a binary expression), we write
EM) = (E(my),E(m2), .-+, E(my)). Given E(My) = (E(x1).E(x2). -+, E(xe))
and E(M3) = (E(»1),E2), -+ ,E(ye)), we can construct E(M + M,) as follows:

Assume that (x;x2 -+ X¢)p + (V1y2°+- Ye)» = (2021 *+ - 2¢)» Where zg is the carry
bit. On the basis of the digital circuit for binary integer addition [19], we have

Cim1 = X;yi V (xi @ yi)ci

Zi =X Dy D

6.3 Preliminaries 107

fori =4£,---,2,1, where ¢, = O0and zp = ¢yp. Duetoa vV = (¢ & B) & («f),
one can compute
E(ai—1) = Ex)EWyi) = E(xi @ yi)
Ebi—1) = (E(xi) + EiE(ci) = E((xi @ yi)ei)
E(ci—1) = (E(ai—1) + E(bi—1)) + E(ai—1)E(bi-1)
= &((ai—1 ® bi—1) ® a;—1bi—1)
E@) =Ex) + &) + &) =E(xi @ yi @)

fori = 4£,---,2,1, then let £(zo) = E(co) and E(M; + M>) = (E(z0),E(z1), -+,
E(z¢)). We define £(M,) B E(M,) = E(M, + M,).

6.3.2 Integer Comparison with FHE

In particular, given £(M;) and £(M,) where M, and M, are two positive integers,
we can compare M| with M, by computing

EM)BEM,) =EM, +—M>)

where M| and —M, are two’s complements of M, and —M5>, respectively. Two’s
complement system is the most common method of representing signed integers on
computers (please refer to [12, 13,22]).

If M, > M,;, the most significant bit of ‘M, + =M, is 0 and 1 otherwise.

Given E(M) = (E(my),E(my), -+ ,E(my)), we have

E(M) = (£(0),E(m1), E(my), -+, E(my)),
E(=M) = (E(1),E(m1) +1,E(m2) + 1,-+- ,E(me) + 1) BE(L).

6.3.3 Binary Linear Codes

An [n, k] binary linear code C of length n and dimension k is a k-dimensional
subspace of F;' according to [14]. A generator matrix for C is a k x n matrix

aip diz ++: Qin
G — dap dpp ++* dp

QA1 A2+« dkn

108 6 Private Searching on Streaming Data

where a;; € F,, such that C = {(b1,bs,--- ,by)G|b; € F>}. The matrix G
corresponds to a map Ff — FJ expanding a message (b1, ba, -+ , by) of length
k to an n-bit string.

We say that binary linear codes Cy, Cy, - -+ , Cy, are orthogonal if C;NC; = @ and

¢; -¢; = 0 for any two codewords ¢; € C;andc; € C; (i, j =1,2,--- ,m,i # j),
where “-” stands for the dot product operation. In case where m = n/k, there exist
m simple orthogonal binary linear codes C;, C,,--- , C,,. The generator matrix of
Cl' is

eei10+4-0--00---0
G = eei01+-0---00---0
.00++1---00---0
where the element at (j, (i — 1)k + j) (fori =1,2,--- ;mand j =1,2,--- ,k)is
1 and otherwise 0.

6.4 Definitions

Definitions for general private queries were given in [15,16]. In this chapter, slightly
different definitions are given based on the paper by Yi et al. [23].

Like the streaming model given in [15, 16], we consider a universe of words
W = {0, 1}* and a dictionary D C W with |D| < co. We think of a document M
just to be an ordered, finite sequence of words in W and a stream of documents S
just to be any sequence of documents. We define a set of keywords to be any subset
KcD.

Definition 6.1. A query Q over a set of keywords K, denoted as Ok, is a logical
expression of keywords in K.

Definition 6.2. Given a document M and a query Qg, we define Qg (M) = 1 if
M matches the query Qg and Qg (M) = 0 otherwise.

Definition 6.3. For a query Qg, a private query protocol is composed of the
following probabilistic polynomial time algorithms:

1. KeyGen(k): Takes a security parameter k and generates a pair of public and
secret keys (pk, sk).

2. FilterGen(D, Qk, pk): Takes a dictionary D, a query Qg, the public key pk,
and generates a program F.

3. FilterExec(S, F, pk,m): Takes a stream of documents S, F searches for any
document M € S such that Qx(M) = 1 (processing one document at a
time), encrypts each matching document with the public key pk, keeps up to
m encrypted matching document in a buffer B, and finally outputs an encrypted
buffer B.

6.4 Definitions 109

: Public

Server ! FYYETVERYEUVLVL VERVERAEreee '
« Private '
: 5 : (Phsk) |

: j . Query | Client :
: ¢ :
: M, : s .
: ! : ? T
: E s -~ l %

Response pk]
— E 1

Fig. 6.1 Model for private searching on streaming data

4. BufferDec(B, sk): Decrypts the encrypted buffer B, produced by F as above,
using the private key sk and outputs a plain buffer B*, a collection of the
matching documents from S.

Based on Definition 6.3, the model for privacy searching on stream data can be
illustrated in Fig. 6.1.

Definition 6.4 (Correctness of Private Query Protocol). Let F = FilterExec(S,
F, pk,m), where D is a dictionary, Qk is a query over keywords K, (pk,sk) =
KeyGen(k), and m is an upper bound on the number of matching documents; we
say that a private query protocol is correct if the following holds: Let F run on any
document stream S, B = F(S), B* = BufferDec(B, sk).

1. (Compiled Program Conciseness) | F| = O(|D])

2. (Output Conciseness) |B| = O(m)

3. (Search Completeness) If [{M € S|Qx(M) = 1}| < m, then
B* = {M e S|Qx(M) = 1}.

4. (Collision Freeness) If |{M € S|Qx(M) = 1}| > m, then
IB*N{M € S|Qx(M) = 1}| = m.

where the probabilities are taken over all coin-tosses of F, FilterGen, and KeyGen.

Definition 6.5 (Privacy). Fix a dictionary D. Consider the following game
between an adversary 4, and a challenger C. The game consists of the following
steps:

110 6 Private Searching on Streaming Data

Table 6.1 Notations Symbol | Explanation

D Dictionary of possible keywords

|D| Number of possible keywords in D

w; Word in the dictionary and documents

K Set of classified keywords

ki Classified keyword

n Number of classified keywords

Ok Logical expression of keywords in K

F Filter program

M, M; Document in the streaming data

d Maximal number of words in a document
B Buffer to store matching documents

m Maximal number of matching documents in B

(pk, sk) | Public/private key pair
Epk(b) | Encryption of a bit b using pk
Dk (c) | Decryption of a ciphertext ¢ using sk

0,1 Encryptions of 0 and 1 using pk

|C| Size of the ciphertext

fki) Frequency of keyword k; in a document
t; Frequency threshold of keyword k;

Wi Encryption of frequency threshold #;

t Two’s complement of an integer ¢

H Homomorphic addition of integers

=() Complement of a condition

1. The challenger C first runs KeyGen(k) to obtain a pair of public and secret keys
(pk, sk) and then sends pk and m, the upper bound on the number of matching
documents, to A.

2. The adversary A chooses two queries for two sets of keywords, Qok,, Qik,, with
Ky, K; C D and sends them to C.

3. The challenger C chooses a random bit b € {0, 1} and executes FilterGen(D,
Opk, . pk) to create Fp, the filtering program for the query Oy, , and then sends
F), back to A.

4. The adversary A(Fj, pk, m) can experiment with code of F}, in an arbitrary non-
black-box way and finally output ’ € {0, 1}.

The adversary wins the game if & = b and loses otherwise. We define the
adversary A’s advantage in this game to be Adv4(k) = |Pr(b’ = b) — 1/2|.
We say that a private query protocol is semantically secure if for any probabilistic
polynomial time (PPT) adversary A, we have that Adv 4 (k) is a negligible function,
where the probability is taken over coin-tosses of the challenger and the adversary.

In the rest of this chapter, we will use the notations as listed in Table 6.1.

6.5 Private Threshold Query Based on Keyword Frequency 111

6.5 Private Threshold Query Based on Keyword Frequency

6.5.1 Disjunctive Threshold Query

Formally, a disjunctive threshold query over keywords K = {k;,k,,--- ,k,} can be
expressed as

Qk = (fk)) =2t) vV (fky) =) V-V (f(ky) > 1)

where f(k;) (1 <i < n)is the frequency of the keyword k; in the document and ¢,
is the given threshold. It is easy to see

Lemma 6.6 ([23]). Given a document M, a disjunctive threshold query Qg (M) =
1 if and only if there exists i such that f(k;) > t;.

Following the model described in Sect. 6.4, the protocol for disjunc-
tive threshold queries is composed of four algorithms KeyGen, FilterGen,
FilterExec, and BufferDec. The construction is based on a fully homomorphic
encryption scheme and can be formally presented as follows.

Key Generation
KeyGen(k): Run the key generation algorithm for the underlying fully homomor-
phic encryption scheme to produce the private key sk and the public key pk.

Filter Program Generation
FilterGen(D, Qk, pk): This algorithm outputs a filter program F for disjunctive
threshold query Qg based on keyword frequency.

Assume that the public dictionary D = {wy, w2,--- ,w|p|}, keywords K = {kj,
ka,+++ ky} C D,d = [log, |M|] where |M| stands for the maximal number
of words the document M may contain, then F consists of the dictionary D,
disjunctive query sign (denoted as 00), and an array of ciphertexts

A

D = {‘2)15 v’{)25“' 7‘2}|D|}7
where w; = €, (t;) and

- frequency threshold for k; ifw; =k; € K
P24 —1 ifw, ¢ K

Remark. Because the document M contains at most 2¢ — 1 words, the frequency of
any word in M is less than 2¢ — 1. In practice, a document which repeats a word
for 2¢ — 1 times is unusual. We do not consider this special case in this chapter. We
set the frequent threshold of a non-keyword as 2¢ — 1 so that its frequency in M is
never more than the threshold.

112 6 Private Searching on Streaming Data

Assume t; = (apair---aiq)p where a;; € {0,1}, then w; = Ep(t;) =
(Epilain), Epk(ain), -+, Epk(aiq)). The array of ciphertexts D contains n encryp-
tions of frequency thresholds and | D| — n encryptions of 2¢ — 1.

Filter Program Execution

FilterExec(S, F, pk,m): This algorithm outputs an encrypted buffer B keeping
up to m matching documents.

First of all, the program F constructs a data buffer B with m{ boxes, each of them
is initialized with £, (0), where £ is the size of the document. Next, F' constructs a
base buffer G with m boxes, which are initialized with (€, (0), -+ , £, (0), £pic (1)).

Remark. The data buffer B is used to store the matching documents and the base
buffer G is used to ensure the first m matching documents are stored in B without
collision.

In addition, the program F constructs the encryption of the two’s complement of
—t; (denoted as —f;) with w; = Epi(1;), that is,

Epp (=) = (Epr (1), Epran) + 1,+++ , Epr(aia) + 1) B Epic(1)

The leftmost bit of the two’s complement of a negative integer is 1 and 0
otherwise.

Upon receiving an input document M = (mm;---my), from the stream
S, in order to determine if M is a matching document or not, the program
F homomorphically compute a ciphertext &,i(co) such that M is a matching
document if ¢y = 1 and O otherwise. It proceeds with the following steps:

1. (Word Collection) The program F first collects
H = {w;, f(w;j)lw; € M N D}

where f(w;) is the frequency of w; in the document M .

Remark. H is the set of common words in the document M and the dictionary
D and their frequencies in M.

Next, F constructs the encryption of the two’s complement of f(w;) =
(bi1biz - -+ big)p, denoted as f(w;), for each w; € H, that is,

Epk (fWi)) = (Epr(0), Epr (bin), Epic (bin), -+ . Epic (bia))
Remark. Because f(w;) < 2¢ — 1, we only consider the encryptions of the d
bits and one sign bit.

2. (Frequency Comparison) For each w; € H, the program F homomorphically
compares the frequency f(w;) and the frequency threshold #; by computing

6.5 Private Threshold Query Based on Keyword Frequency 113

Epk (f(wi) + —1;)
= Epr(f(wi) B Epr (—11)
= (gpk(ci()),5pk(ci1)a5pk(ci2)v"' sgpk(cid))

from which only &, (c;o) is extracted. In two’s complement system, if ¢;o = 0,
then f(w;) > t; and otherwise f(w;) < t;.
Next, the program F' computes

Eprleo) = Ep(\/ (cio® 1) ©.1)

wieﬁ

by repeatedly using £k (cio V' §) = Epi(cio) + Epk (8) + Epi (cio)Epi (5).

If ¢¢ = 1, then there exists i such that ¢c;o & 1 = 1 (i.e,, ¢c;o = 0 and
fwi) > 1;). Ifw; ¢ K,thent; = 2? —1 and it is impossible that f(w;) > 29 —1.
This means that w; € K and f(w;) > t;. According to Lemma 6.6, M is a
matching document.

Ifco =0,thenciod1 =0(G.e.,cio=1and f(W,‘) <t)forallw; e M ND.
According to Lemma 6.6, M is not a matching document.

3. (Document Storing) Assume that the state of the base buffer G is (g, &m—1,* - ,
£1), where g; is an encryption of either O or 1, the program F constructs an
encrypted £ x L generator matrix G for an [L, £] binary linear code as follows:

~

&
0

o> O

R

 ém .
A A~

20 G-

o> O

0 ---

G- g1
00210 0 --2n

where L = m{ and the element at @, (G—-—DL+1i) (fori = 1,2,---,¢ and

j=12,--- ,m)is gfj and otherwise 0 (an encryption of 0).

To store the encryption of the document M into the data buffer B, the program
F computes

M = Ep(co)Epk(M)G
= (Epr(comy), -+, Epr(come))G
and position-wise adds the result into the data buffer B, denoted as
B=B+M
If ¢o = 1, then M, the encryption of the binary linear code of the matching

document M, is kept in the data buffer B. If ¢y = 0, then M is the encryption of
0, which has no effect on the data buffer B.

114 6 Private Searching on Streaming Data

4. In order to avoid collision when storing next matching document into the data
buffer B, the program F updates the base buffer G by homomorphically shifting
Epk(1) in the base buffer G by one position to the left if M is a matching
document and 0 position otherwise. This is done by computing

G =G 8 Epu(c)G

where G is treated as the encryption of an m-bit integer and replacing G with G’.

Remark. Initially, G = (£, (0), -+, £,k (0), Epr(1)). If ¢g = 0, the buffer does
not change. Only when ¢y = 1, the buffer is updated by shifting £, (1) one
position to the left. We only consider the encryptions of the right m bits. After
shifting m times, the buffer becomes the encryptions of all zeros. The buffer
contains at most one encryption of 1 all the time.

Buffer Decryption

BufferDec(B, sk): Using the secret key sk, the algorithm decrypts the encrypted
data buffer B, sent back by the filter program F, one box at a time. Assume that
the decrypted data buffer is (mm - - - m’), where L = m¢, then the set of matching
documents is

B* =AM = (mipyy - mi)pIM #0.i =0,1.-- . m—1}

Correctness: The filter program F is composed of D (the dictionary) and D
(the encryption of the frequency thresholds). The size of D is |D|dk, where k is
the security parameter. Therefore, the size of the filter program |F| = O(|D|).

The data buffer B has m{ boxes (where £ is the size of the document), each keeps
a ciphertext of one bit. The size of the buffer |B| = mfk = O(m).

We need to show that if the number of matching documents is less than or equal
to m, then B* = {M € S|Qk(M) = 1} (search completeness) and otherwise we
have [B* N {M € S|Qg(M) = 1}| = m (collision freeness).

Assume that the matching documents in the stream S = {M|, M,,--- ,} are
{M;,, M;,,---}. Initially, the data buffer B = (€,£(0), Epx (0), -+, £k (0)), the base
buffer G = (€, (0), -, Epx (0), Epx (1)), and the generator matrix

10--0---00---0
01-+-0---00---0

6

>
o>
—_ .
(e}
>

where 1 and 0 are encryptions of 1 and 0, respectively.

For a non-matching document M, we have ¢¢ = 0 and thus M =
Epk () Epk (M)G = (Epi(0), Epi (0), -+, Epi (0)), the data buffer B = B + M =
B and the base buffer G’ = G H £,k (co)G = G, which means that the content of B
and G do not change.

6.5 Private Threshold Query Based on Keyword Frequency 115

When the filter program F deals with the matching document M;, (1 <
j < m), we have ¢g = 1 and the state of the base buffer G is evolved from
(Epi(0), - -+, Epi (0), Epr (1)) by shifting &, (1) to the left j — 1 positions because
there are j — 1 matching documents before M;, . Therefore, the generator matrix

> =
—_> O
> O
o> O
> O
o> O

[en))
[en))
p— >
[
(e}
[«>)3

and A{ij = gpk(co)gpk(Mij)G = (Epk(o)v Tt Epk(Mi/)7 Tty 5pk(0)) and B =
B+ M, = (Ep(Miy), -+, Epp(Mi;), Epk (M), Epic (0), - -+, Epi (0)). After that,
the base buffer G is updated to G B €,k (co)G = GHG, i.e., shifting £,; (1) further
to the left by one position.

In case when the filter program F deals with the matching document M;;
(j > m), although ¢y = 1, the base buffer G contains the encryptions of all
zeros and so does the generator matrix G. Therefore, Mi 5 = Epk(c)Epk (M) G =
(Epi(0), Epi(0), -+, Epr(0)) and B = B + ll;lij = B. This means the matching
document M;; (j > m) has no effect on the data buffer B.

In summary, both search completeness and collision freeness are true.

6.5.2 Conjunctive Threshold Query

Formally, a conjunctive threshold query over keywords K = {ky,k»,--- ,k,} can
be expressed as

Qk = (fk)) =t)) A(flky) =) A== A(fkn) > 1)

where f(k;) (1 <i < n)is the frequency of the keyword k; in the document and ¢,
is the given threshold. It is easy to see

Lemma 6.7 ([23]). Given a document M, a conjunctive threshold query
Qx(M) = 1lifand only if f(k;) > t; for1 <i <n.

Following the model described in Sect. 6.4, the protocol of conjunc-
tive threshold query is composed of four algorithms KeyGen, FilterGen,
FilterExec, andBufferDec. The conjunctive construction can be formally
presented as follows.

Key Generation
KeyGen(k): Run the key generation algorithm for the underlying fully homomor-
phic encryption scheme to produce the private key sk and the public key pk.

116 6 Private Searching on Streaming Data

Filter Program Generation
FilterGen(D, Qk, pk): This algorithm outputs a filter program F for conjunctive
threshold query Qg based on keyword frequency.

Assume that the public dictionary D = {wy,wy,--- ,w|p|}, keywords K =
{ki,ka, .-+ ,kn} C D,d = [log, |M|] where |M | stands for the maximal number
of words the document M can contain, then F consists of the dictionary D,
conjunctive query sign (denoted as 01), and an array of ciphertexts

A

D = {‘A/‘}l’wZ"“ 7‘2}|D|}a
where w; = £,¢(#;) and

= frequency threshold for k; ifw; =k; € K
o ifw, ¢ K

Remark. Because the document M contains at most 2¢ — 1 words, both #; and
t =), ck!i must be less than 24 — 1. We set the frequent threshold of a non-
keyword as 0 so that its frequency is always more than the threshold.

Assume t; = (a,-la,-z .. 'aid)b where ajj € {O, 1}, then ",{/i = Cpk (li) =
(Eprlain), Eprl@in), -+, Epk(aia)). The array of ciphertexts contains n encryptions
of frequency thresholds and | D| — n encryptions of 0.

Filter Program Execution

FilterExec(S, F, pk, m): This algorithm outputs an encrypted buffer B keeping
up to m matching documents.

First of all, the program F constructs a data buffer B with m{ boxes, each of
them is initialized with £,4(0). Next, F’ constructs a base buffer G with m boxes,
which are initialized with (£,1(0),---, £€pk(0), Epr(1)). In addition, the program
F constructs the encryption of the two’s complement of —#; (denoted as —¢;) with
wi = Epr(t;), that is,

Epi(=1i) = (Epr (1), Epr(ain) -+ . Eprc(aia)) B Epic (1),

and the encryption of ¢ = Zw,- ek Li with D (please note that t; = 0 when w; & K),
that is,

|ID| A A A ~
i=1Wi = Wi EHW2E‘53W|D|,

and the encryption of the two’s complement of —¢ (denoted as —7) with &, (),
that is,

Epp(=1) = (Epr (1), Epic (@), -+, Epic(a)) B Epr (1).

6.5 Private Threshold Query Based on Keyword Frequency 117

Upon receiving an input document M = (mm;---my); from the stream S,
in order to determine if M is a matching document or not, the program F' homo-
morphically computes a ciphertext £, (co) such that M is a matching document if
co = 1 and O otherwise. It proceeds with the following steps:

1. (Word Collection) The program F first collects
H = {w;, f(w;)lw; € M N D}
where f(w;) is the frequency of w; in the document M. Next, F' constructs the

encryption of the two’s complement of f(w;) = (bithiz---biq)p, denoted as
f(w;), foreach w; € H, that is,

Epk (fWi)) = (Epk (0, Epk (bin) . Epic (bia) -+ . Epk (bia)),

.) !/ — A T
and the encryption of the_ two’s complement of ¢ = Zw,- chli
(B1, B2, , Ba), denoted as ¢/, that is,

Epk() = (Ep(0), Epc (B1), Epic(B2) -+ Epi (Ba)),

Remark. Epc(t') = (Ep(B1). Epi(B2), -+ . Epk(Ba)) can be obtained with
EEW,-e I_}fvi. Because the sum ¢’ is never more than 2¢ — 1, we consider d bits
of ¢/ only.

2. (Frequency Comparison) For each w; € H, the program F homomorphically
compares f(w;) and ¢; by computing
Epk (f(wi) +—1)
= Epe(f(wi)) B Epr(—1;)
= (Epi(cio), Epr(cin), Epr(cin), -+, Epr(cia))

from which only &£,k (c;o) is extracted. If ¢;o = 0, then f(w;) > ¢; and otherwise

Swi) <.
In addition, the program F homomorphically checks if the document M
contains all keywords in K by computing

Epr(t' +=1)
= Ep(t') B Ep(=T)
= (Epkc (¥0): Epk (V1) Epic (¥2), -+ - Epi(Ya))
from which only &£,x(yo) is extracted. If yo = 0, then ¢’ > ¢ and thus t' = ¢

and the document contains all keywords in K. If yo = 1, then ¢ < ¢ and the
document does not contain all keywords in K.

118 6 Private Searching on Streaming Data

Remark. Because t' = 3 pti = 3} cingli = D,exli = 1, the
inequality ¢’ > ¢ means that t' = ¢, H N K = K, and the document contains all
keywords in K. Reversely, the inequality ¢/ < ¢ means that H N K C K and the
document does not contain all keywords in K.

Next, the program F computes

Eprlco) = Ep((ro® 1) /\ (cio ® 1)) (6.2)
W,‘Gﬁ
= (Ep () + Ep (D) [] Eprleio) + Epic (1))
w,-EI:I

Ifco = 1,then yp = 0and ¢;o = O for all w; € H. As discussed above, yp = 0
means H N K = K while cio = 0 for all w; € H means f(w;) = t; for all
w; € H . It is obvious that f(w;) > 0forall w; & K. According to Lemma 6.7,
M is a matching document.

If co = 0and yy = 1, M does not contain all keywords in K. According
to Lemma 6.7, M is not a matching document. If ¢p = 0 and yy = 0, M does
contain all keywords in K, but there exists i such that f(w;) < f;. According to
Lemma 6.7, M is not a matching document.

The rest of the algorithm and the buffer decryption algorithm are the same as
the disjunction threshold query.

The correctness of the conjunctive threshold query can be proved in the same
way as we prove the correctness of the disjunctive threshold query.

6.5.3 Complement Threshold Query

There are two complement constructions for private threshold queries based on
keyword frequency. They are the disjunctive complement and the conjunctive
complement.

6.5.3.1 Disjunctive Complement

Formally, a disjunctive complement threshold query over keywords K =
{ki,k2,---, k,} can be expressed as

Qk = (flki) = ti) v - v (fki,) = ti,,)
vVo(flky) z) v eV =(fk,) = 2,)

6.5 Private Threshold Query Based on Keyword Frequency 119
= (f(ki) = t;) V-V (fki,) = 1)
V(fk) <tj) Vv (flk,) <t,),

where — stands for complement (i.e., negation), {k;,,--- ,k
and n; > 0,1y > 0. Itis easy to see

ke kb = K

i)x]

Lemma 6.8 ([23]). Given a document M, a conjunctive complement query
Qkx (M) = 1 if and only if there exists | such that f(k;) > t; or f(kj) <t,.

The construction for the conjunctive complement query is composed of KeyGen,
FilterGen, FilterExec, and BufferDec, where KeyGen and BufferDec are the
same as the disjunctive threshold query described in Sect. 6.5.1.

Filter Program Generation
FilterGen(D, Qk, pk): This algorithm outputs a filter program F, which consists

of the public dictionary D = {wy,wy,---,w|p|}, disjunctive complement sign
(denoted as 10), an array of ciphertexts D = {Wi,Wo, -+ ,Wip|}, where W; =
gpk (li) and

P frequency threshold for k; ifw;, =k; € K
' 2¢ 1 ifw; € K

. ’\/ _ A Ay A~ Ay
and an array of ciphertexts D’ = {W}, w}, - ’WIDI}’ where W, = £, (s;) and

5 = 1 ifwie{kjl,---,kjnz}
"7 10 otherwise

Remark. The encryptions of sy, s5,--,s, are used to indicate the complement
positions in Qg in private.

Filter Program Execution

FilterExec(S, F, pk,m): This algorithm outputs an encrypted buffer B keeping
up to m matching documents.

The algorithm is the same as the filter program execution in the disjunctive
threshold query described in Sect. 6.5.1. except that F' computes

Epnco) = Ep | \/ (co® 1@ s1) (6.3)

wi GI:I

on the basis of homomorphic properties described in Sect. 6.3.1.

If ¢g = 1, then there exists [such thatc;o ® 1 @ s; = 1 (i.e., cjo ® sy = 0). If
wy € {kiy, -+ ki, }, then s; = 0 and thus ¢;o = 0, which means that f(w;) > 1.
Ifw; € {kj,,--- ,kj, }, thens; = 1 and thus ¢;o = 1, which means that f(w;) < 1.
If w; & K, then s; = 0 and thus ¢;o = 0, which means that f(w;) > ¢ = 2¢ — 1.

120 6 Private Searching on Streaming Data

It is impossible and this event never occurs when ¢y = 1. According to Lemma 6.8,
M is a matching document when ¢y = 1.

Ifco = 0,thenc;o®1ds; = 0C(@e,co®ds; = 1)forallw, € M N D.
Ifw; € {ki, -+ ,k,-”l }, then s; = 0 and thus ¢;o = 1, which means that f(w;) < 1.
Ifw; € {kj,--- ,kjnz}, then s; = 1 and thus ¢;p = 0, which means that f(w;) > 1;.
According to Lemma 6.8, M is not a matching document when ¢y = 0.

Remark. A disjunctive complement query becomes a disjunctive query if letting
s; = 0 for all i. In addition, if letting s; = 1 for all i, a disjunctive complement
query becomes

Qk = (fk) <t)) vV (flk) <tr) V.-V (f(ky) <tn).

6.5.3.2 Conjunctive Complement

Formally, a conjunctive complement threshold query over keywords K =
{ki,kz,---, k,} can be expressed as

Ok = (flky) = ti) NN (flki,) = i,,)
A=(f k) AtV A=(fkj,) > t,,)
= (fki) = t) AoV (flki,) = 8,)
ASf k) <tj) AoV (fkj,) <tj,),

where — stands for complement (i.e., negation), {k;,,--- ,k
andn; > 0, ny > 0. Itis easy to see

kjoooe k) = K

ing s

Lemma 6.9 ([23]). Given a document M, a conjunctive complement query
Qk(M) = 1 if and only if, for any k; € (ki ki,,--- ki, }, f(ki)) > 1, and
forany ki € ik kjy, - kj, b flk) <.

The construction for the conjunctive complement query is composed of KeyGen,

FilterGen, FilterExec, and BufferDec, where KeyGen and BufferDec are the
same as the disjunctive threshold query described in Sect. 6.5.1.

Filter Program Generation
FilterGen(D, Qk, pk): This algorithm outputs a filter program F, which consists

of the public dictionary D = {w;,ws,-+,wp|}, conjunctive complement sign
(denoted as 11), an array of ciphertexts D = {Wi,Wa, -+ ,Wp|}, where w; =
Epi(t;) and

_ | frequency threshold for k; ifw; =k; € K

L .
0 ifw; € K

6.5 Private Threshold Query Based on Keyword Frequency 121
and an array of ciphertexts D’ = Wy, .- ’VAVI/DI}’ where W, = £, (s;) and

o 1 ifWiE{kjl,"',kjnz}
"7 10 otherwise

Filter Program Execution

FilterExec(S, F, pk,m): This algorithm outputs an encrypted buffer B keeping
up to m matching documents.

The algorithm is the same as the filter program execution in the conjunctive
threshold query described in Sect. 6.5.2. except that F' computes

Epr(co) = Ep((o @ 1) /\ (cio ® 1@ 5)) (6.4)
wi€H
= Epo) + Ep (D) T Eprlcio) + Ep(D) +).
W,‘GI‘?

according to homomorphic properties described in Sect. 6.3.1.

Ifco = 1,thenyy = Oandc;o® 1 b s; = 1 (e, cjo + 5, = 0) for all
w; € H. yo = 0 means HNK = K. Ifw € {kip,--- ,k,-nl}, then s; = 0 and
thus ¢;o = 0, which means that f(w;) > 4. If w; € {kj,,--- ,kjnz}, thens; = 1
and thus ¢;o = 1, which means that f(w;) < f;. According to Lemma 6.9, M is a
matching document when ¢y = 1.

If co = 0and Yy = 1, M does not contain all keywords in K. According to
Lemma 6.9, M is not a matching document. If ¢y = 0 and yy = 0, M does contain
all keywords in K, but there exists / such that c;o ® 1 ®s; = 0(.e.,cijo®s; = 1). If
wi € {kip, - ,k,-nl}, then s; = 0 and thus ¢;o = 1, which means that f(w;) < ¢;.
Ifw; € {kj,,--- ,kj, }, thens; = 1 and thus ¢;o = 0, which means that f(w;) > 1.
According to Lemma 6.9, M is a matching document when ¢, = 0.

Remark. A conjunctive complement query becomes a conjunctive query if letting
s; = 0 for all i. In addition, if letting s; = 1 for all i, a disjunctive complement
query becomes

Qk = (fk) <t) A (flk) <) Ao A (flhn) < 1)

6.5.4 Generic Threshold Query

By combining the above basic constructions for private threshold queries based
on keyword frequency, we present the construction for a generic threshold query
without asymptotically increasing the program size as follows.

122 6 Private Searching on Streaming Data

Assume that D is the public dictionary of potential keywords and Q(IQ i =
1,2,---,A) stands for a disjunctive, or conjunctive, or complement query over
keywords K; C D; we consider a generic threshold query

1 2 A
(0%, 0% .0,

where operators in @ belong to {V,A,®} and K; N K; for any i and j is not
necessary to be empty.

The construction for the generic threshold query over keywords K; (i =
1,2,---,1) is composed of KeyGen, FilterGen, FilterExec, and BufferDec,
where KeyGen and BufferDec are the same as the threshold queries described in
Sect. 6.5.1.

Filter Program Generation
FilterGen(D, Q(IQ, Q(,Q, e Qﬁq, pk): This algorithm outputs a filter program F,
which consists of {Fy, F,,--- , F)} where F; = FilterGen(D, Qg'{l) pk).

Filter Program Execution

FilterExec(S, F, pk,m): This algorithm outputs an encrypted buffer B keep-
ing up to m matching documents. Upon receiving an input document M =
(mymy ---my)p from the stream S, the program F proceeds with the following
steps:

1. The program F runs the programs F; to compute Spk(c(()[)) based on
Eq. (6.1)-(6.4).
2. The program F computes

Ep(co) = Epp(@(c", e, e)).

according to homomorphic properties described in Sect. 6.3.1.

If ¢ = 1, M is a matching document. If ¢y = 0, M is not a matching
document.

The rest of the construction is the same as FilterExec of the disjunction
threshold query described in Sect. 6.5.1.

Remark. All kinds of private threshold queries based on keyword frequency can be
expressed as @(Q(Kll), Q(I?Z) RN Q(IQ), where Q(Ig is either disjunctive, conjunctive,
or complement threshold query, and operators in @ belong to {V, A, @}. Therefore,
the solution supports arbitrary private threshold queries.

6.6 Performance Analysis

In the disjunctive construction (Sect. 6.5.1), the client can pre-generates the
public/private key pair. In addition, the client needs to encrypt the frequency of
each classified keyword in the phase of the filter program generation and to decrypt

6.6 Performance Analysis 123

the buffer B to retrieve the matching documents after the buffer returns. If one does
not consider the key generation, the total computation complexity of the client is
O(d|D]) encryptions to generate the program F and O(m{) decryptions to retrieve
the matching documents from the buffer, where | D| is the number of words in the
dictionary D, 29 is the maximal number of words contained in each document, £
is the number of bits of each document, and m is the maximal number of matching
documents in the buffer.

After receiving the filter program F, the server processes each document M;
in three steps. We assume p = |M; N D|. At first, the server needs to compute
Epk(co). The computation complexity of the first step is O(ud) encryptions to
encrypt u frequencies with d bits, O(¢) homomorphic additions of integers with d
bits, O () homomorphic multiplications of bits, and O(x) homomorphic additions
of bits (please refer to Eq. (6.1)). Then, the server needs to add M; into the buffer B
if M; is a matching document or add O into the buffer otherwise. The computation
complexity of the second step is O(m£?) homomorphic multiplications of bits and
O(m{?*) homomorphic addition of bits. At last, the server needs to update the
buffer base G. The computation complexity of the third step is O (m) homomorphic
multiplications of bits and O(1) homomorphic addition of integers with m bits.

The communication complexity of the disjunctive construction is O(d|D||C|)
bits for the query and O(m{|C|) bits for response, where |C| is the size of the
ciphertext.

Unlike the disjunctive construction, the conjunctive construction (Sect. 6.5.2)
needs to compute &,k (yo) and then &, (co). The computation complexity for the
server to compute £,k (o) is O(|D|) homomorphic additions of integers. Although
the two constructions computes &, (co) with two different equations (please refer
to Egs. (6.1) and (6.2)), their complexities for this computation are almost the same.

The disjunctive complement construction (Sect. 6.5.3.1) is different from the dis-
junctive construction in two ways. The query contains an extra array of ciphertexts
to indicate the complement positions in private and the server computes &« (co)
with Eq. (6.3), which is different from Eq. (6.1). The differences do not affect the
computation complexity of the server, but the computation complexity of the client
is increased by O(]|D|) encryptions of bits and the communication complexity is
increased by O(|D||C]) bits on the basis of the performance of the disjunctive
construction.

Similarly, the conjunctive complement construction (Sect. 6.5.3.2) is different
from the conjunctive construction in two ways. The differences do not change
the computation complexity of the server, but the computation complexity of the
client is increased by O(|D|) encryptions of bits and the communication complexity
is increased by O(|D]||C]|) bits on the basis of the conjunctive complement
construction.

The performance of the generic construction (Sect. 6.5.4) depends on the
performance of the underlying basic constructions.

The performance comparison of the threshold query protocols can be summa-
rized in Table 6.2, where enc. and dec. stand for encryption and decryption of bit,
add. and multi. denote the homomorphic addition and multiplication of bits, and
ADD. represents the homomorphic addition of integers.

124 6 Private Searching on Streaming Data

Table 6.2 Performance comparison

Comp. Comp.

complexity complexity Comm.
Protocols (client) (sever, M;) complexity
Disjunctive | O(d|D]) enc. | O(ud) enc. od|Dl|C))

+O(m{) dec. | +O(n) ADD. +0O(ml)

+0O(m? +) multi.
+O(mL? +) add.

Conjunctive | Same as Disjunctive Same as
disjunctive +0O(|D|) ADD. disjunctive
Disjunctive | Disjunctive Same as Disjunctive
complement | +O(|D|) enc. | disjunctive +0(|D||C])
Conjunctive | Disjunctive Same as Disjunctive
complement | +O(|D|) enc. | conjunctive +0(|D||C])

6.7 Conclusion and Discussion

On the basis of the state of the art fully homomorphic encryption techniques,
we describe constructions for disjunctive, conjunctive, and complement threshold
queries based on keyword frequency and then the construction for the generic
threshold query based on keyword frequency given by Yi et al. [23]. These protocols
are semantically secure as long as the underlying fully homomorphic encryption
scheme is semantically secure.

The construction for disjunctive threshold query is able to search for documents
containing at least one of a set of keywords as [1,2, 15, 16] by letting the threshold
t; = 1 forkeyword k; € K. The construction for generic threshold query can search
for documents M such that (M N K; # @) A (M N K; # 0) as [15,16] by letting
Q(I;.) and Q@ be two disjunctive threshold queries with the threshold #; = 1 for

keyword k; € K and (P(Q(Iél), Q%) = Qg}l) A Q(Ig Therefore, their solutions are
special cases of the protocols given by Yi et al. [23]

To improve the performance of the constructions, the ciphertext of a bit in the
final stage of filter program execution can be compressed or post-processed as [6].
In this case, the ciphertext of a bit can have the same size as an RSA modulus
asymptotically.

Theoretically, any search criteria can be constructed with fully homomorphic
encryption scheme in private searching on streaming data. Even if so, different
queries will need different constructions. As long as the underlying fully homo-
morphic encryption scheme is practical, the protocols will be practical. So far, fully
homomorphic encryption schemes are impractical for many applications according
to [11], because ciphertext size and computation time increase sharply as one
increases the security level. Recently, many research efforts have been devoted to
construct efficient fully homomorphic encryption schemes, such as the ones by

References 125

[4, 5, 21]. We believe that the protocols for private threshold queries based on
keyword frequency will be made practical with the performance improvement of
fully homomorphic encryption techniques in the future.

Privacy is gaining increasingly higher attention, and future computing paradigms,
e.g., cloud computing, will only become viable if privacy of users is thoroughly
protected. For example, Google Alerts is a service offered by Google which notifies
its users by e-mail, or as a feed, about the latest Web and news pages of their choice.
As in the case of the AOL search data leak, it is not hard to imagine queries which
could be privacy sensitive. With the private searching solutions, it is possible for
a user to make a filtering program according to the frequencies of some classified
keywords and submit it to Google, which executes the program on all latest Web
and news pages. The program can notify to the user its discovery according to the
search criteria specified by the user. While the program is executed by Google, the
search criteria of the user can be kept confidential to Google.

References

1. J. Bethencourt, D. Song, B. Water, New construction and practical applications for private
streaming searching, in Proceedings of SP’06, 2006, pp. 132-139
2. J. Bethencourt, D. Song, B. Water, New techniques for private stream searching. ACM Trans.
Inform. Syst. Secur. 12(3), 1-32 (2009)
3. D. Boneh, E. Goh, K. Nissim, Evaluating 2-DNF formulas on ciphertexts, in Proceedings
TCC’05, 2005, pp. 325-341
4. Z. Brakerski, C. Gentry, V. Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping, in Proceedings of ITCS’12, 2012, pp. 309-325
5. Z. Brakerski, V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE, in Proceedings of FOCS’11, 2011, pp. 97-106
6. M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan. Fully homomorphic encryption over the
integers, Proceedings of EUROCRYPT’10 2010 pp. 24-43
7. C. Gentry. Fully Homomorphic Encryption Scheme. PhD thesis, Stanford University, 2009
8. C. Gentry, Fully homomorphic encryption using ideal lattices, in Proceedings of STOC’ 09,
2009, pp. 169-178
9. C. Gentry, Computing arbitrary functions of encrypted data. Commun. ACM 53(3), 97-105
(2010)
10. C. Gentry, Toward basing fully homomorphic encryption on worst-case hardness, in Proceed-
ings of CRYPTO’10, 2010, pp. 116-137
11. C. Gentry, S. Halevi, Implementing Gentry’s fully-homomorphic encryption scheme, in
Proceedings nof EUROCRYPT’11, 2011, pp. 129-148
12. D. Harris, S. Harris, Digital Design and Computer Architecture (Morgan Kautmann Publishers,
Massachusetts, 2007)
13. DJ. Lilja, S.S. Sapatnekar, Designing Digital Computer Systems with Verilog (Cambridge
University Press, Cambridge, 2005)
14. S. Ling, C.P. Xing, Coding Theory: A First Course (Cambridge Press, Cambridge, 2004)
15. R. Ostrovsky, W. Skeith, Private searching on streaming data, in Proceedings of CRYPTO’05,
2005, pp. 223-240
16. R. Ostrovsky, W. Skeith, Private searching on streaming data. J. Cryptol. 20(4), 397-430 (2007)
17. R. Ostrovsky, W. Skeith, Algebraic lower bounds for computing on encrypted data. Electronic
Colloquium on Computational Complexity (ECCC), Report No. 22, 2007

126 6 Private Searching on Streaming Data

18. P. Paillier, Public key cryptosystems based on composite degree residue classes, in Proceedings
of EUROCRYPT’99, 1999, pp. 223-238

19. B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs, 2nd edn. (Oxford
University Press, Oxford, 2010)

20. N. Smart, F. Vercauteren, Fully homomorphic encryption with relatively small key and
ciphertext sizes, in Proceedngs of PKC’10, 2010, pp. 420443

21. D. Stehle, R. Steinfeld, Faster fully homomorphic encryption, in Proceedings of ASI-
ACRYPT’10, 2010, pp. 377-394

22. J.F. Wakerly, Digital Design Principles & Practices, 3rd edn. (Prentice Hall, New Jersey, 2000)

23. X. Yi, E. Bertino, J. Vaidya, C. Xing, Private searching on streaming data based on keyword
frequency. IEEE Trans. Dependable Sec. Comput. 11(2), 155-167 (2014)

24. X. Yi, C.P. Xing, Private (t, n) threshold searching on streaming data, in Proceedings of
PASSAT’12, 2012, pp. 676-683

	Preface
	Acknowledgments
	Contents
	1 Introduction
	1.1 Classical Ciphers
	1.1.1 Substitution Ciphers
	1.1.2 Transposition Ciphers
	1.1.3 Product Ciphers

	1.2 Secret Key Encryption
	1.2.1 Secret Key Encryption Model
	1.2.2 Data Encryption Standard
	1.2.3 Advanced Encryption Standard

	1.3 Public-Key Encryption
	1.3.1 Public-Key Encryption Model
	1.3.2 RSA
	1.3.3 Rabin Public-Key Encryption
	1.3.4 Public-Key Cryptography Standards

	References

	2 Homomorphic Encryption
	2.1 Homomorphic Encryption Definition
	2.2 Goldwasser–Micali Encryption Scheme
	2.3 ElGamal Encryption Scheme
	2.4 Paillier Encryption Scheme
	2.5 Boneh–Goh–Nissim Encryption Scheme
	References

	3 Fully Homomorphic Encryption
	3.1 Fully Homomorphic Encryption Definition
	3.2 Overview of Fully Homomorphic Encryption Schemes
	3.3 Somewhat Homomorphic Encryption Scheme over Integers
	3.3.1 Secret Key Somewhat Homomorphic Encryption
	3.3.2 Public-Key Somewhat Homomorphic Encryption

	3.4 Fully Homomorphic Encryption Scheme over Integers
	3.4.1 Squashed Encryption
	3.4.2 Bootstrappable Encryption
	3.4.3 Implementation

	References

	4 Remote End-to-End Voting Scheme
	4.1 Introduction
	4.2 Remote End-to-End Voting
	4.2.1 Participating Parties
	4.2.2 Basic Remote Voting Scheme
	4.2.3 General Remote Voting Scheme
	4.2.4 Voter Reference Refresh

	4.3 Conclusion and Discussion
	References

	5 Nearest Neighbor Queries with Location Privacy
	5.1 Introduction
	5.2 Private k Nearest Neighbor Queries
	5.2.1 Security Model
	5.2.2 Private kNN Queries Without Data Privacy
	5.2.3 Private kNN Queries with Data Privacy
	5.2.4 Private kNN Queries Based on POI Type
	5.2.5 Private Cloaking Region

	5.3 Performance Analysis
	5.3.1 Protocol Performance
	5.3.2 Performance Comparison

	5.4 Conclusion and Discussion
	References

	6 Private Searching on Streaming Data
	6.1 Introduction
	6.2 Overview of Private Searching on Streaming Data
	6.3 Preliminaries
	6.3.1 Integer Addition with FHE
	6.3.2 Integer Comparison with FHE
	6.3.3 Binary Linear Codes

	6.4 Definitions
	6.5 Private Threshold Query Based on Keyword Frequency
	6.5.1 Disjunctive Threshold Query
	6.5.2 Conjunctive Threshold Query
	6.5.3 Complement Threshold Query
	6.5.3.1 Disjunctive Complement
	6.5.3.2 Conjunctive Complement

	6.5.4 Generic Threshold Query

	6.6 Performance Analysis
	6.7 Conclusion and Discussion
	References

