INTERNATIONAL ISO/IEC
STANDARD 14882

First edition
1998-09-01

Programming languages — C++

Langages de programmation — C++

Processed and adopted by ASC X3 and approved by ANSI
as an American National Standard.

Date of ANSI Approval: 7/27/98

Published by American National Standards Institute,
11 West 42nd Street, New York, New York 10036

Copyright (11998 by Information Technology Industry Council
(ITI). All rights reserved.

These materials are subject to copyright claims of International
Standardization Organization (ISO), International
Electrotechnical Commission (IEC), American National
Standards Institute (ANSI), and Information Technology
Industry Council (ITI). Not for resale. No part of this
publication may be reproduced in any form, including an
electronic retrieval system, without the prior written permission
of ITI. All requests pertaining to this standard should be
submitted to ITI, 1250 Eye Street NW, Washington, DC 20005.

Printed in the United States of America

Reference number
ISO/IEC 14882:1998(E)

ISO/IEC 14882:1998(E)

Contents

T B = 11 011 (o] o PO PO P P PP PPPPPPPP
I T A= (0 U] 0 0= o | S PP PPTPTPRR
1.3.2 diagNOSHIC MESSAGE ... ueeeieeeeiitiii e ettt e e ettt e e e et e e e e e s st b e e e e e e s aab b b e e e e e e aanrreeeeessanreneeaeeaae
R R o 1Y/ g - T 41 Todh 1Y/ 1= 2 PP
R || B (o] g =T o] foTo | =T o W TP O PP OO PPUPPPPPN
1.3.5 implementation-defined behavior
1.3.6 iMPleMENtAtioN [MITS........u i e eeeeeeaaa e e e e e e e s
1.3.7 locale-specific behavior
1.3.8 MUIIDYIE CHAIACTETeeiiiiiiiee e+ —— s
RSN o= 1= 0 41T (T OO PP PPPRPTPPPN
L1.3.10 SIONMAIUIE ...ttt e ettt ettt e e e e e e ea e e e e e e e e e e e e e et s meemeeee—————— et et e e e eeeeeeens
I Tt S - L1 ol 1 01T PO PPT T PPUPPPPPN
1.3.12 undefined DENAVION.........ooiiiiiiie e s
1.3.13 UNSPECIfICEA DENAVION.......eiiiiiiieii e e e e
1.3.14 Well-TOrMEd PrOGIaM...c.c..eieiiieei ittt ettt e ettt e e s s bbbt e e sanne e e e e aeareeeee s

1.4 Implementation COMPIIANCEoooiiiiieiee e e et e e e e e e e mmmeeeeeeeeeeeeeees 3
1.5 Structure of this International Standard.............c.ccueiiiiiiiiii e 4
G V01 = 1o = o o PP 4
1.7 The C++ mMemory MOUEIcooi it er e et e e e e e e enneeenaeneeeeeeees 4
1.8 The C++ 0DJECE MOUEL.... ...t e et e e e e e o e

R I e (o To = T g I =Y =T otV (o] o O PP PPPPPTPPI 5

by an

© ISO/IEC ISO/IEC 14882:1998(E)

1.10 ACKNOWIBAGMENTS ...ttt e ettt e e e e e e e e s s bab b e e et e e e mmmmmnneeeaaeeeeaeeeas 8
2 LeXiCal CONVENTIONSeiiiiiiiiiiee ittt ettt s et e e e st e e e e sk et e e s e s bb et e e sas s emmmmmmnemnnmt e s s snreeee s 9
2.1 Phases Of tranSIatioNc.eeeiiiiiiiiiieiiiee ettt mmmmmmnnnenn s 9
A A O o= - (o1 (=] T £ PP PO PPPPPPR 10
AR T B {0 = o] g IS=To [=T ol S RO R TP 11
2.4 PreproCeSSING TOKENSuuiiiiiiiiaa ittt e e e e e e ettt e e e e e e e e e s s e annbbbbeeeeeeaaeeaaaannnnrneeaaaaeas 11
2.5 AREINALIVE TOKENS ...t e e e eensmmmenenr e e e e e 12
2.8 TOKEINS. ..ttt ettt ettt ekt e et e e e h e e e e R b et e e e e bR et e e+ s s —— 11t e e a1 1nn 12
A A ©7o 1 011 01=T o TP PP PPPPP 12
2.8 HEAUEI NMAMES.....eiiiiiiiiete ettt e ettt e e e st et e e s st et e e e s ek b e et e e s aabbe e e e s aeeemneeesaeansrreeeeeaan 13
2.9 PreproCesSiNg NUIMDEISiiiiiiiiii ittt et e e e e e e s et e ettt e e e e e e e e s s s s bbbt e e e e e s smmmmmmmmmmmmmens e e 13
P2 O I [(=T o 1] 1T £ SO TSP PPPPPPPTPPN 13
P T) YA (o 3PP 14
2.12 Operators and PUNCIUALOISoooiuuiiiiii e eie e e ettt e e e e e e e e s bbb e e e e e e e e e e e s s seemeemennnnmmnns s 15
N G T I =T =1L O OSSP PP PPPPPPPP 15
P I I A [(=To L= Tl 11 (= = | PO 15
2.13.2 CharaCter IEIaAlSouieieeeiitiee ettt e e e e e s eemne e e e e e nnnes 16
P B e B o (o = 11 Vo I 11 (= = | PP PP PR 18
2.13.4 String literals

2.13.5 BOOICAN NEIAISeeeiiiiiiiee ettt s——— 19
I = T] ol oo g [ol=T o TP TSR 21
3.1 Declarations and definitioNScceiiiiiiiiiiiiiiie ettt e seeeeamneeeee e aae 21
3.2 ONE AEfiNItION TUIEeeiiii et e st e s s e e e e e eemne e e e e e nnnes 22

3.3 Declarative regions and scopes
3.3.1 POint Of dECIAratioNccoiiiiiiiiiiiiiiiee e

TR I A o Tor- | BT oo] o[- ISP
3.3.3 FUNCLION PrOtOTYPE SCOPE ...utitiiiiiiiiee e ittt e e ettt e e e e e e e e e s bbbt e e e e e e« e+« ++ 2O
3.3.4 Function scope

3.3.5 NAIMESPACE SCOP ...t e e e e et ettt ettt ettt e e e e e e e e e e e e aaaeaeeeeteeeeee s mmmmemmmemmmnmmn e e es 27
TR N G I O - TSR o LT OPPTPP 27
TR T A N =10 o L= o 1o 1 o PSP PTUPTRR 28
G =0 ¢ T (o To) (U | o F SRR 29
3.4.1 Unqualified NAME IOOKUPoeiiiiiiiiite ettt e e e e e+ s e £ £ o 29
3.4.2 Argument-dependent NAME [0OKUPuuiiiiiiiiii e e eeeeenas 32

3.4.3 Qualified NAME I0OKUP ...ccoiiiiitie et e e e+ — 33

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.3. 1 ClasS MEMDEISttt e e e e e e s ettt et e e e e e aeaa e e e e e nnnbeenees
3.4.3.2 NaMESPACE MEMDEISuutiiiiiiiiaeie ittt e e e e e e e e e e e e aaabbbeeeeeeeaeas
3.4.4 Elaborated type SPECITIEISeeiiiiieiiieie et —
3.4.5 ClasS MEMDEI ACCESSuuiiiiiiiiiiaiii ittt e e e e e s et r e e e e e e e e e e e e e aansnreeeeeeas

3.4.6 Using-directives and namespace ali@Sesoooviruuriiiiiiiiiieeeiiniiiiiiiieeee e e B0,
3.5 Program and INKAQGEcooo ittt a e e ee et e e s 41
3.6 Start and tEIMINALION.oiiiiiii ettt e e e e st b e e e e s ssnamneeeeeeemereeeeeaae 43
3.6.1 Main function

3.6.2 Initialization of NON-10CAl ODJECESeeiiiiiii e 44
GG TRC I =140 111 0 F= 1o PO T OO PP PPPPRP 45
T A S (o] = o [0 [0 = 14 (o] o TP PPTUUT PR 45
3.7.1 Static STOrage UIALIONcoiii ittt e e e e et e e e e e e smmmmmmmmee et a2 46
3.7.2 AUutomMatiC StOrage AUIALION.eiiiii ettt e e e e e e et e e e e e e e e e nnnneeeeeas 46
3.7.3 DynamicC StOrage QUIALIONuueiiiiiiaeie ittt e e e e e e e e e e s bbb e s e ee e e s 46
3.7.3.1 AllOCAtiON fUNCHIONS.uiiiiiiiiiiiie ettt e s e

3.7.3.2 Deallocation functions

3.7.4 Duration Of SUD-0DJECES.uuiiiiiiiii et e e
R I @ o] [=Tox o 1 {1 110 =PSRRI 48
IR T Y/ o 1T T TR OO O PPPPPPPPPPP 51
3.9.1 Fundamental types .53
e I @70 o] e To 10 o I 1Y o= TP 54
3.9.3 CV-QUANTIEIS <.ttt et e e e e e e et b ettt et 222 1111t e e 55
.10 LVAIUES @NU TVAIUESoeiieiiiiiiie ettt e et e e e st e smmmmmm s e 55
4 STANAArd CONVEISIONSeiiiieiiitieiee ettt ettt e e sttt e s aab et e e skt et e e s aabb e et e e s nbe et e e s memammmnmnnennn s srree s 57
4.1 LVAlUE-TO-IVAIUE CONVEISION ...eeiiiiiiiiie ettt e ettt e ettt e et e e e skt e e e s aa b b e e e e e s s s e s s 1 57
4.2 Array-t0-POINTET CONVEISIONuuiiiiiiiiie ettt e e e e e e e e e e atabbebe e e e e aaa e e e s s s aanbebbeeeeeeeeeasaammmnnnaaeeaean 58
4.3 FUNCLION-tO-POINTEI CONVEISIONciiiiiiiiiiiiiitiitie et e e e e e ettt e e e e e e e s e s s abe b e ee e e e e e e s cmmmmmmmmeeee e e 58
4.4 QuUAIfICAtION CONVEISIONSuuuiiiiiiiiiieieie i e e e e e e e e ee e e e et et ettt s s e s e s e s eeeeeeees smmmmmmmmmmm———s e seees 58
I [a1 (=T o [ie= U o (o] a1] 1To] o 1< PP PURRTP 59
4.6 Floating POiNt PrOMOLIONuuiiiiiiiiii ettt e et e e e e e e e e e e s aanbbb e e e e aeeaaaaeeeaassaannnes 59
A7 INtEGral CONVEISIONS ..ottt ittt e ettt ettt e e e e e e e e e o e hba bbbttt et e e e e e e s e s annbbbbsmmmnneeeneeaaaaaaeesanan 60
4.8 Floating POINt CONVEISIONS......coiiiiitiiiie et e e e e ettt ettt e e e e e e e e e bbb bt et e e e e e e e e e s e meeeeasaammmmm e snnes 60
4.9 Floating-integral CONVEISIONScooiiiiiiiiiiei et e ettt e e e e e e e st b be e e e e aa e e s s eenaeeeeaaaann e e s 60
4.10 POINTEI CONMVEISIONSciuttitteiiitieee ettt ete e s sttt e e st bee e e e s s be et e e sk be et e e s aasbe et e e sasse s emmmmmneeeanmmns s snree s 60
4.11 Pointer to MEMDEr CONVEISIONSccoiiiiiiiiiiiiiiiie et e e sarne e e e sanee 61

© ISO/IEC ISO/IEC 14882:1998(E)

4.12 Boolean conversions .61
I {0 (=11 (0] L PP PP 63
5.1 PriMary @XPIrESSIONSciiiueuiiiietetettae e e e ettt e ettt e e ae e e s e s s ababbeeeeeeaaaaeaeaasannbsb e et emmmmmmmmmmmmms s e e e 64
5.2 POSHIX EXPIESSIONSeiieiiieiiiiiee e ittt et e e e e e e e ettt et e e e e e e e e s aababbe et eeeeaaessaaammmnnaeeneessaannenes 66
O R 10 o 1Yol 1] 1] o [PPSR 66
5.2.2 FUNCHON CAIl ...ttt ettt e e e e e e s e r e e e e e e e e e e e e e e annnbeeeees 66
5.2.3 Explicit type conversion (functional NOtAtioN)ooiiiiiiiiiiiiiieie e 68

5.2.4 PSeUAO deSIrUCIOr CAll......cooiiiiiiiiee et mmmmmeneeeeean e e 68
5.2.5 ClasS MEMDEI ACCESSuuuiiiiiiiiiiiii ittt e e e e st e et e e e e e e e e e s aensnreeeeees 68
5.2.6 Increment and ECIEMENT........ciiii ittt e e e e e st e e e e s e e emmmmneeeeee s 69
5.2.7 DYNAIMIC CASE .ciiiiiiiiiiitiet ettt ettt e e e e e e e ettt e e e e e e e e e e e aan bt e b et e e s mmmmmmeeaneeneeeeaeeeaeas 70
5.2.8 TYPe identifiCatiONcooii ittt e e emnnnn e 71
I IS - 1ol o7 1] PR STUPRPP 72
5.2.10 REINTEIPIEE CAST ...eeiiiiiiieiei ittt ettt e e e e e e s ettt e e e e e e e e e e s s e mneeeeeeeaaanteeeaeee e s 73
0 B R ©70] o[- o1 1) S PP UPPPPPPPRPRPN 74
SRR I U] F= 1 V= 4 o1 (=TT (o] LU PP 76
R J0 R UL F= 1 0] 0[] €= 10] £ T OO P TP PUPPPUPPPPPUPPPPINE 76
5.3.2 Increment and ECIEMENTcciiii ittt e e e e e e e e e e e e e e smmmmneeeeee s 77
RS TR B S 4= o | ISP PPURPPPT 77
IR 20 S N[PSSP P P PPPPPPPP 78
RS T B = [(PP PPURTPPR 81

5.4 Explicit type conversion (Cast NOLAION)cooiiiiiiiiiiiiiiiiee e —— O 2

5.5 Pointer-to-member OPEIratOrSu ittt e e e e e e bbb e s mmmmmneeee e 83
5.6 MUILIPIICALIVE OPEIALOISciiiiiieeei ettt ettt e e e e e e e ettt e et e e e e e e e s mmmmmemeeeem e e e e e e e s 83
I A o [LAY =0 o 1=T = (o] £SO P U 84
R IS a1 10 0] o1=] =1 (o] (=TT PPUPUUUPRPN 85
5.9 RElatiONAl OPEIALOIScoiiiiiiiiiiiie ettt ettt e e e e e e e e bbbttt e e e e e e e e e e s e ansreeaeeaaaaaaaaaannree 85
5.10 EQUALILY OPEIATOISueteeiiiiie ettt ettt e et e e e e e e s et b et e e e e e e e e e e s e memeeeeaaannn s e sennree 86
5.11 BitWIiSEAND OPEIALOLueeettieeeeeiaaeeee e e aaitttbeeeeeeeaaaaassaaaaabbebeeeeaaaaaaeasaanebsbeeseeaaaaaseesaansnsssmnn 87.....
5.12 BitwWiSE XCIUSIVER OPEIALONceiiiiii ettt e e e ettt et e e e e e e s et bebe e e e e aae e e s e e aanbbbbeaneeeaaaaaans
5.13 BitwiSe INCIUSIVEDR OPEIALONceiiiiieeiieiiiiiteet it ee e e e e e e ettt et e e e e e e e e e s et bbbt e eeaaaeaesseaannbbbbeaneeeaaaaaaas
5.14 LOQICAIAND OPEIALONeeietiiieeiiaaee e ittt ettt et e e e e e e s et beee e et e aaeaasasaannbabeeaeaeeaaeaessaannnsssmmnn 87.....
N LI Moo [or=1 @] = o] o T=T 7= 1 (o] (O PP U TSP 88..
5.16 CONAItIONAl OPEIALOTceiiiiiiieit ittt ettt e e e et e e e e e e e e e e 4 ——— 1121+ 88
5.17 ASSIGNMENT OPEIALOIS ...eeeeiiiiieeeeieiiitttie et e e e e e e e e e bbb e e e et e e aeaaaaaaanbbebeeeeaeeaae s s mm——— e 89

ISO/IEC 14882:1998(E) © ISO/IEC

N RS I Of0] 1 410 4T We] 0[] =1 o (P PP PP PP 90

5.19 CONSIANT XPIESSIONSuteeiiiiiaeeeaiiaiiititteeetaaaa e e e e e aaatabbeeeeeeaaaaaaaaaaansbabeeeeeeeaaessaaanmmeneeanaeasaannns 90

B STALEIMENLS ...ttt ettt e e e e e e e e e e e e e e s eaeaeeeaeeenann e e e e e e e e e aeeas 93

6.1 Labeled StAtEMENTot et et e e e e e e e bbbt e s ——— 93

6.2 EXPresSsion STALEIMENT ...ttt ettt e e e e e e e et b b mmnnneeeeeeeeaaaaens 93

6.3 Compound statement OF DIOCK ...t e ee e 93

6.4 SeleCiON STAIEMENTS.ciiiiii ittt e e e e e ettt e e et e e e e e e s e e eee e e e mmmen s beeeees 94
B.4.1 ThEl SEAEMENT ...t ettt e e e e e e ettt r e et e e e e e e s e e s bbb beeeemmnnaeaaeas 95

6.4.2 ThesWItCh STAIEMENToooii et e e e e e eeeaaaaas 95.........
6.5 IEration STAIEMENTSoiiiii ittt e e et e e e e e e e e e e s s nneeeeeaeeaaanteeeaee e e s 95
6.5.1 Thewhile StateMENT.......cooi it e e e e e e bbb e e e e e e e e e aean 96.....
6.5.2 ThEIO SAIEMIENT ...ttt ettt e e e e e e s e bbbttt e e e e e e e s e e e anbabbeeeemmnnaeeaeas 96

6.5.3 THEOr SEAIEIMENL......eiiiiiiii ittt e e e e e e r e e e e e e e e e e e s e nnbbbbeeeeeeaeaeaaeaan 97..

6.6 JUMP STALEIMIENLS ...ttt e e e e e et ettt et e ettt et be b e bbb s s e e s e e e e e e e e e aaaeseeeeneeeenbnsnnnnnnas 97
6.6.1 Thebreak StateMENT.......cooi it e e e e e e e e e e e bbb e e e e eeaaaeeaean 97.....
6.6.2 ThECONLNUE SEALEIMENT.....eiiiiiii ittt e et e e e e e e e e e e bbbt ee e e e e aaaeeeesaaanbnbbebneeaaaaaeaeasannns 98
6.6.3 Thereturn STAIEMENToooi ittt e e e e e e e e e s bbb e e aeeeaaaaan 98.........
6.6.4 ThegOto SEALEIMENTttt e e e e e e e e e bbbt e e e e e e e e e e e e s e nnnnbana 98....

6.7 Declaration STAIEIMENTei ittt e e e e e e et e et e e e smmmmmmmmeeeent e e e e s 98

6.8 AMDIQUILY FESOIULION ...ttt e e e e e e et e e e« et £ 2222220 99

7 Declarations 101

A S o 1T 1T €S PP TP 102
7.1.1 StOrage Class SPECIIEISueiiiiiiiiiie ettt e et e e e e e e nnneeeeeaaeeas 103
7.1.2 FUNCHON SPECITIEIS ..ttt ettt e e e e e e e e e et meeeemnnmnnn e 104
7.1.3 Theatypedef — SPECITIEI. ... et e e e e e e e e e e e e e e aabeeees 5. 10
7.1.4 TheTEeNd SPECITIEI ... et e e e e e e e e e e 106.....
A I B/ o[RS o[- T o= £ TP 106
7151 TREV-QUAITIEIS ...ttt e e e e e e ettt e e e e e e e e e e e babbeseeeeeaaaeeeaaanns 107
7.1.5.2 SIimple type SPECITIEIS ...

7.1.5.3 Elaborated type specifiers

7.2 Enumeration deClarationsooiieeiiiiii e e st e e et e s esi s s srae e e s e s s s« 0+ L 1O

7.3 NAIMESPACES ...oeeieieiittititeaa e e e e e e e e e e e e e e e et ettt ettt e atastetebbe b abaa e o e sa e e e e e eeeaeeaaaaeesennenennnnnssnnnnnnns 112
7.3.1 NamespPace AefiNITIONooiiiiiiiiiiee e e e e e e e e e s rmmneeeeeeeeeaaaeees 112
7.3.1.1 UNNAMEA NAMESPACESeeeeeiiaeaeeaieiaititteeetataaaaaaaaaasatbebeeeataaaaaaaaaaanbabbsseeeeeeessmmmmmmmeeeeeeas 113
7.3.1.2 Namespace member definitioNSoo e e 113
7.3.2 NAMESPACE AlIAS ... eeeeeiiiiiee ettt et e e e e e e e st e bt et e e e e e e e e e s sannnneeaeaeaaaaaeaaans 115
7.3.3 Theusing deClarationccuuuiiiiiiiiiie et a e e e e e e e e 115.....
7.3.4 USING QIFECHIVE ...ceiiieiiie ittt ettt e e e e e e e ettt et e e e e e e e e e s e ababbeeeeeaaaeeesaansbnbeeeeeeas 120
7.4 TheaSM AECIATALIONc.viiiie ittt ettt e ekt e e st e e e s abbe et e e s anbe e e e e s smmnnnenn 123

Vi

© ISO/IEC ISO/IEC 14882:1998(E)

7.5 Linkage specifications 123
R D= Tol Fo T = 1o £ T PP T RO 127
S T R Y/ o [N 0 T= 1 41T ST P PP PP URPPTPRR TSP PPPPRP 128
8.2 AMDIQUILY FESOIULION ...ttt e e e e et e ¢ et £ 22222+ 128
8.3 Meaning Of AECIATALONSc..uuiieiiiiiiiee ettt e e e e e e e e s eeeeaeaaaeeeeaaannnes 130
8.3.1 Pointers

B.3.2 REIBIEINCES. ..ttt ettt e e e e e e e e e e ettt ¢ s—— 111111 132
8.3.3 POINtErs 10 MEMDEIScoiiiiiiii e e e e e e e e e eeammmmmmmm e 133
S TR J S Y £ 1=\ S PP PP U U U TR TP

8.3.5 FUNCLIONS......oiiiiiiiiiie ettt
8.3.6 Default arguments

S I 0o (o [0 To =11 T (T o F T 140
R I [L1 (= 1 V4=] TR
8.5.1 Aggregates

8.5.2 CRATACTET AITAYS .eeiiiieieiei ittt e et e ettt et e e e e e e e e e s e bab b et e e et eeae e e e e s aas s s s m— 111 1 146
R R T = (= (=] (=] (o1 147
LS T O = oY <Y 149
LS T N O F= 1130 4 T= 10 1 (ST 149
O T O F= 1S3 1 4 =11 1] 0 =T £ 151
L R I\, (=1 0 o 1= {1 (o2 (1] F 153
9.3.1 Nonstatic MEMDBDEr fFUNCLIONSciii it e e e e e e e st e e s abe s seemmmmnnmmnaas 154
0.3.2 TRENIS POINTET ..ttt et e e e e e e s e s bbb e et e e e e e e e e e s aaannnbbebeeeemnnnes 155.
L I Y = 1[0 1 4 1< 0 4] 0 T=T £ 156
9.4.1 StatiC MEMDET FUNCLIONS ... civeiiiie ettt e e e e e e et e e et s e e st s sstas s e sesmnnssnnnnnaneees 157
L I ST 7=\ 1 (o3 F=1 t= W 1 1] 1 1 01T £ 157
LRSI 1 T T0] o 1T 158
L T I =11 =] [0 [T 159
9.7 Nested Class UECIATALIONSuuiiiei it e e e et e e et e e st e e e eta e s s st mmmnemmmmnammmesess 160
9.8 LOCAl ClasS HECIATALIONSu.iiiiiie i e e et e e e e e s e e e st e e eata e s eaas s mmmmmmmmmmmmmte e e 161
0.9 NESIEA tYPE NAIMES ...ttt e e e e e e e e b bbbt e e e e e ae e e e s e s e nbbbbaeeeaaeaeeeeaaanrnreees 161
O N B =Y 1Y/ To (o1 F= YT 163
10.1 Multiple base classes .164
10.2 Member NAME I0OKUPttt e e e e e s e bbb et e e e s ammmmmmmmmmmneeae 165
T10.3 VIMTUAI FUNCLIONS ...ttt ettt ettt e e e e e et e e et e e s e b e e e s aa s ee e s s sm——— 1 e e 168

Vii

ISO/IEC 14882:1998(E) © ISO/IEC

10.4 Abstract classes 172
11 MEMDEr ACCESS CONIOIuiiiiiiiiiiii ettt ettt e st e e s st e e s mememmmmmnneen e s 175
L11.1 ACCESS SPECITIBIS i ei ittt ettt et e e e e e ettt e e e e e e e e e s s abe b e e e e e exammmmmmmmmmne s nnnree 176
11.2 Accessibility of base classes and base class members...........cooooiiiii 177..........
11.3 ACCESS TECIAIALIONSceiiiiiiiiiie ettt e et e e st e e e s aabb e e e e s memmmmmmmnnnn e e n 178
L1.4 FHIENOS «oeeeeeeeiitteee ettt ettt e e e ettt e e e ea b et e e e ok e et e e e ek R e et e+ 1a st ¢ — 1111111 179
11.5 ProteCted MEMDEI ACCESSuviieiiiiiiiee ittt ettt et e et e e s e e s e b e e e s e e e e e emmeneeeans 182
11.6 ACCESS t0 VIrtUAI FUNCLIONS.eiieiiiiiiie ettt e et e—— 183
A Y [W] 1] o] F= = ol od L PP 183
11.8 INESEEA CIASSESeeiiieiiiieee ettt e e et e e e st b e e e e s s e e eeeemeeeeaereeeesane 184
12 Special MemDBDer FUNCHONS.uu et e et emmmmmmm e s 185
D R o T 1 1 U1 o] = OO T PPPT 185
12.2 TEMPOFAIY ODJECLSeeeiiiiiiiee ettt ettt et e e e e e e s e bbb be e e e e e e e e e s e s annnnneeeaaaaaeeaaannns 187
12.3 COMNVEISIONS ...utteeeeeiittiee ettt e e e ekttt e e e sab et e e e okt e e e e aab e et e e e ek b et e e e e aa b b et e e e aabb e e e e e e aanrneeessannrreeeesanns 188
12.3.1 CoNVErsion DY CONSIIUCTON ..ottt e e e e e e e e emm e e e e e e eeeenes 189
12.3.2 CONVEISION TUNCHIONSeiiiieeiiiie ettt ettt et e et e e e e e neeeamnneneee s 190
D B T 1 (DTt (o] = PP PR 191
12,5 FFEE STOME .oiiiiiiiiiiie ittt et e e e e e et e e e e e e e e e e e e e e s 194
i I [011 (= 14 L1 (o] IO PP OPPPTPON 195
12.6.1 EXPHCIt INFHANZALIONveeiiiiiieee et e e e e e emmmmmmmeeenr e e e e e e s 196
12.6.2 Initializing bases and MEMDEISuiiiiiiiii e mmeees 197

12.7 Construction and deSIUCTIONiiieuieiiieeeee e e e e e et e e eei e e sanesssnneeessn s e e s s s 200

12.8 CopYiNg ClasS ODJECLS ..ot e e e e e e e e s e b e e b e e 203
RS B @)Y= 4 (o= To [T o EO SRR 209
13.1 Overloadable decClarations............cuiiiiiiiieiiiiie e e e 209
13.2 Declaration MatChINGcoei ittt e e e e e e e e e e eeeesaammmmmm s eee 211
13.3 OVErload FESOIULIONcociiiiiiiiei ittt e e et e e e e mmman e 212
13.3.1 Candidate functions and argument lIStScooiiiiiiiiiiii e e 213
13.3.1.1 FUNCHON CAII SYNTAX ...ttt ettt e e e e e e e e e s e eae e s e mmcmmmmmmmmmmm e 214
13.3.1.1.1 Call to NAME FUNCHION. ... tiieiieiiieeie ettt e eeeeesmneenee s 214
13.3.1.1.2 Call t0 ObJECt Of ClASS LYPEveeeiiieieeee it e e e e e 215
13.3.1.2 OpPEerators iN EXPIrESSIONSciiitaa et e i iiiiittiteeettaaaaaaaeaaaaaabbeteeeaaaaaaasasaaasbsbseseeessmammmmmmmmneeess 216

viii

© ISO/IEC ISO/IEC 14882:1998(E)

13.3.1.3 Initialization DY CONSIIUCTONuuiiiiiiiiei e eeeeeeemmmm e 218
13.3.1.4 Copy-initialization of class by user-defined CONVErsioN............cccccceieiiiiniiiiiiiiieeeceeeee 18........ 2
13.3.1.5 Initialization by conversion fUNCHONc..uuuiiiiiiiia e 218
13.3.1.6 Initialization by conversion function for direct reference binding ..., 219
13.3.2 Viable fUNCHIONSeeiieiiieee ettt et e e e e e s annn e e e s nnne s

13.3.3 Best Viable FUNCLONoviiiiiiiiiee e

13.3.3.1 Implicit CONVErSION SEQUENCEScceiiiiiiiiiitiieee e e e e e e ettt e e e e e e e e e e eneebeeee s

13.3.3.1.1 Standard conversion sequences
13.3.3.1.2 User-defined conversion sequences
13.3.3.1.3 Ellipsis conversion sequences

13.3.3.1.4 ReferenCe DINGINGeeeiiiiii e et e
13.3.3.2 Ranking implicit CONVErSiON SEQUENCES.......c.ooiiuuiiiiiiieeiaaa e e ettt ee e e e e e e e aabebeeeeaeas 224...
13.4 Address of overloaded fUNCHIONeeiiiiiiiiie e mneeeean 226
RS RS IN O V7T o [oF-To [<To Mol o1=] = 1o 1= TP PP TP P 227
R T R U] F- T VA o] o 1=T £ (0] (= T TP 228
13.5.2 BINAIY OPEIATOIS. ... ittt et e e e e ettt e e e e e e e e e et bbb ettt e eeaaeeaesaanabbebeeeeeaennaeeaaaaaaesasaanns 229
L13.5.3 ASSIGNIMENT ...ttt et oottt e e e e e e e e s s e aab bbb e e e e e e e e e e e s e e mmmeeaaaaannnn s nnreee

13.5.4 Function call
13.5.5 Subscripting

13.5.6 ClasS MEMDEI BCCESSuvvviiiiiiiiiee et e e sttt e e e st e e s st e e e s s b b e e e e s sabre e e e s ssbeeessaanrneeenann 230
13.5.7 Increment and dECTEMENT........coiuiiiii ettt e e eemmmmeeeenenes 230
13.6 BUII-IN OPEIALOIS ...cooiiiiiiiet ettt e ettt e e e e e e e e e e e s bt e beeaeeeeaaaaeeaeeeaannnnnes 231
I =T 0] o] P =T S P T T STRUPPPPRR 235
14.1 TemPlate PArAMELEIScooi ittt ettt e e e e e e e e e e bbb et e e e e e e e e e e s s e annbeneaeeaeaaasaaannes 236
14.2 Names of template SPecCialiZations...........cc..uuiiiiiiiiie e 238
14.3 TemPlate arQUMENTS.uuiiiiiiiiae ettt e e e e e e e et e e et e e e e e e s s s aabbbbeeeeeeaeaesmnnnaeeaaeaaan e es 239
14.3.1 Template tyPe ArQUMENTSue ittt e e e e e e e e et e e e e e e e e e e s e s anbbbeeeeeeeaaeeesaaannnnees 241
14.3.2 Template NON-tYPE ArgUIMENTSeiiiiiiiiieiiiiiiitie et e e e e e e e e e et ee e e e e e e e e e e s e s aanebe b e s eesaanmmnnae 242
14.3.3 Template template argUmENTS........cccooeiiiiiiiiiiiiiiiiiee e e e e o2 3
14.4 TYPE EQUIVAIENCE ...ccei ittt e e e e e ettt et et e e e e e e s e e nn bbbt e e e e e e e e e emmneaeaeeas 244
14.5 Template deClaratioNScooii i e e e e a2 —— 244
14.5.1 Class templates

14.5.1.1 Member functions oOf Class teMPIALES. ... 245.
14.5.1.2 Member classes of class templates

14.5.1.3 Static data members of Class teMPIAES........ooiii i 2.4.6...
14.5.2 Member templates

L14.5.3 FFENAS ..eeiiiiiiiiiie ettt et e e e e s s e e st e

14.5.4 Class template partial SPeCIaliZAtiONScoiiiiiiiiiiiiiii e 250
14.5.4.1 Matching of class template partial specializationsccccooiiiiiiiiiiiiiee e, 252......
14.5.4.2 Partial ordering of class template specializations ... 252....
14.5.4.3 Members of class template specializations ... 253....
14.5.5 FUNCLON tEMPIALESttt e e e e e e e e e s bbbt e e eeeammmmmmmmmn e 254
14.5.5.1 Function template oVerloadingciioi i e 254
14.5.5.2 Partial ordering of function temMPIates ... 256

ISO/IEC 14882:1998(E) © ISO/IEC

14.6 NAME rESOIULION ...eeeiiiiiiee ettt e et e e s e e e e s ab e e e e s aeemmneeas
14.6.1 Locally declared names
G B LT o1 oo [T o [F= T o PP TP
T R B 1T o 1T 0 To (=] 11 0[S PR TP PRSP
14.6.2.2 Type-dependent @XPrESSIONSuuuuiiiiiiiiaa e iiteitiee e e et e e e e e e s e aaabee e e eeaaae e e s e e annrnreeaeeeas
14.6.2.3 Value-dependent EXPIrESSIONSccuiu ittt e e e e e ettt e et e e e e e e e s e aeibbebeeeeeeeeeeaeaeas
14.6.2.4 Dependent template arguments .
14.6.3 NON-0EPENAENT NAIMES. ..ot i ittt ettt et e e e e e e e ab bt r et e e e e e e e e e s om———

14.6.4 Dependent NAME FESOIULIONc.iiiiiiiiiieiiii et e e et e e e e e e e e e s eeb bbb e e e e e s smmmmmmmmmnnes

14.6.4.1 Point Of INSTANTIALIONccoiiiiiiie it eemmme e e e

14.6.4.2 Candidate fUNCLIONSuuiiiiiiiiiii et e s eeenmmmneeeene e s

14.6.5 Friend names declared within a class template..............oooiiiiiiiieee e 266.....
14.7 Template instantiation and SPeCialiZation.............ccoui it mmeeeeeeas 267
14.7.1 IMPlCIt INSTANTIATION ...coiiiii i e e e e e e e e e e e e eeeeeae e e e e e e s 268
14.7.2 EXPlCIt INSTANTIATION ...ttt e e e e e e et e £ 222222 271
14.7.3 EXPlCit SPECIAIIZALIONcceiii it e e e eaann e 272

14.8 Function template specializations..............eueiiiiiiiiiiie e

14.8.1 Explicit template argument SPECIfICALIONccoiiiiiiiiiiiiiiie e -

14.8.2 Template argument deAUCTIONcc.uuiiiiiiiiiie et e e e e asneeeeeas

14.8.2.1 Deducing template arguments from a function call...............cccccceiiiiiiiniii

14.8.2.2 Deducing template arguments taking the address of a function template

14.8.2.3 Deducing conversion function template arguments............cocuuviiiieiiiieeen e 3o 28
14.8.2.4 Deducing template arguments from a tyPecooeieoiiiiiiiiiiee e 283......
14.8.3 OVErload reSOIULIONcuuviiieiiiiiiie ettt e st e s memmmmeeeeemm s 288

15 EXCePtion NANAING ..coooiiiii ettt e e e e e e e ettt ¢ e £ 2221+ 291

15.1 TRrOWING AN @XCEPLIONeeiiiiiieiee ittt e e e e e ettt e e e e e e e e s s e aaabbe b e e eeeeaaee e e seeeeeaaaaannn e s 292

15.2 ConsStructors and dESIIUCTOIS.ueiiiiiiiiieee ittt e ettt e et e et e et e e e s b e e emmneeeeeannens 294

15.3 HaNdliNG &N ©XCEPLONeeiiiiiiieieiit ettt et e e e e e e s e e e e e e e e e e e e e s rnnnrnneeeeeeas 294

15.4 EXCeption SPECITICAIONSuuiiiiiiiiiii ittt e et mmmmmmneeeeee e 296

15.5 SPECIAI FUNCHIONS.....ciiiiii ittt e ettt e e e e e e e e e s seb e b s memmmmmmmmm s s ebbe e 298
15.5.1 Theerminate() FUNCHION e e e e e e 298
15.5.2 Thaunexpected() fUNCHONooiiii e e e e 299
15.5.3 Theauncaught_exception() FUNCHON ... 299

15.6 EXCEPLIONS ANU ACCESS .. uuuiiiiiiaieeiiiiiiiitiiiee e et e e e e e s s sttt teeeeaaae e e s s s snnbbnbeeeeeeses s s s 20 2 D D

16 PreproCesSiNgG AIFECHVESuuiiiiiiiiiiiie ettt e ettt e e e e e e e e e e s e aae e s s e mmcmmmmmmmmmmm e 301
16.1 ConditioNal INCIUSIONeiiiiiiiiiee et e st e e e e e emne e e e e e 302
16.2 SOUICE fil@ INCIUSION ...ccoiiiiieiei ettt e e s e e e e eenreeeeean 303
G B\ ool (o N =T o] F= (o =T 0 1= o | PSPPSR 304
16.3.1 Argument SUDSTIEULIONuuiiiiiiiiiii ittt s e 305
GRS N I 0 1< 2 o T o= = 1o S PP UUPU U 305
16.3.3 TREHH OPEIALON ...ttt ettt et e e e e e e s e e e bbb et e e e e aaaeaesaesannbabbe e e e s ammmmmmn 306

© ISO/IEC ISO/IEC 14882:1998(E)

16.3.4 Rescanning and further replaCement...............eeiiiiiii i 306.
16.3.5 Scope of Macro definitioNSoooii i 306
16.4 LINE CONIOL...iiieiiee ittt ettt ettt e s s et e e s ab et e e s e ss e mmmmnennmmm b e e e e e e nnres 308
16.5 EITOrN AIFECHVEeeiiiiiiiee ettt et e e sttt e e e eeeemneene e e s annnneee s 308
16.6 Pragma QIiFECHIVEcoo ettt e e e e e e e e e e s aab bbb e e e e e e e eaaaeeeaaaannnnrneeees 308
16.7 NUILAIFECLIVE ..ottt e e e e e e s bbb et e e s emmmmmmmnnet e e e 308

16.8 Predefined MaCIO NAMESoiiieiiiiee et e e e et e s s st e s e st e s eean e s o s s « S 0D

A o] =1 VA 10 To [o 1o T o PR 311
A R B = {1 T1 1o o O PPPURTTRN 311
17.1.1 arbitrary-poSitioNal SIrEAIMooiiiiiiiiee e e e e e e e e eeeeeeannn s 311
O o = L T = PP TPTT TR
17.1.3 character container type

17.1.4 cOMPAKISON FUNCLION ...ttt e e e e e e et e e e e mmmmmmneeeeeeeeeas
17.1.5 COMPONENT......ciiiiiiiieiieeetttaie bttt e e s e e e e e e e e e e e te et et eeeeeeeeeaebsbebabb e e e e e e aaaaaaaeeaaaaaaaaaaaaaes
17.1.6 default DENAVIOL ... e

17.2.7 handler FUNCHONcooiiiiii et e e e

17.1.8 iostream class templates

17.2.9 MOAIfIEr TUNCLIONeiiiiii ittt et e e e e a2 e 1 e £ 22222
A KO B o o] [=Tod K] = (TP RRPTU PR
17.1.11 narrow-oriented i0StrEamM ClASSESuuiiiii ittt e e eeeeeeeenna 312
0 TV O S T PO PP PP PP PPPPPPR 312
17.1.13 0ODSEIVET fUNCHON ...ttt e et e e e e e eeeeeeaaaaeea e nnes 312
17.1.14 replacement FUNCHION. i e e e e s e emmmmneeaaee s 312
17.1.15 reqUIred DENAVION ... e e e e e e e 312
17.1.16 repOSItIONEAl SIFEAIMttt e e ettt e e e e e e e e e e bbbt e e e e eeeammmmmmmmmnn s ene 313
17.0.27 reSerVed fUNCHON. .. .eeiiiii ettt e e e e e e e e e s nnnneeeeaaaaaeasnnes 313
A T 1 = 11 £ o = TP PPPTUPPPRPN 313

17.1.19 wide-oriented IOStrEaM CIASSESuuiiveeiiiite e e e e s s—— L O

2 o (o [1 1 0] g F=1 Io (=1 {1 1 (0] 1 313
17.3 Method of description (INfOrM@atiVE)uuiiiiiiiiiee e 313
17.3.1 Structure of @aCh SUDCIAUSE.............oiiiiiei e e ——— L3
D17.3. 1.1 SUMMIAIY ..ottt e e s e oo oo o2 e e e e e e e e eeee e et e eeeeesss bbb babnb e e aaeeaeaaaaaaeeeeeennes

17.3.1.2 Requirements
17.3.1.3 Specifications

g TN T S O o] - 1 YT P PRSP
17.3.2 OtheI CONVENTIONSuviiieei ittt ettt et e e e st et e e e e st e e e e e e et b et e e smne e e e eeamneeesnnnes 315
17.3.2.1 TYPE AESCHIPLIONS ...ceiiieiee ettt e ettt e e e e e e s e e bbbt et e e e e e e e s e s aannnneeeeaaaaaeaaaannns 315
17.3.2.1.1 ENUMEIALEA LY PES. ..o e ittt ettt e e e ettt et e e e e e e s ettt et e e e e e e e e e s e s annnbbbeeeeaaaaeeeaaanees 316
R B A =111 4 F= 1] [1 0= TSP PPPPPPP 316
17.3.2.1.3 CharaCter SEOUENCES......cetiiie ettt ettt e e e e e e et et e et e e aa e e s s s aanbbebeeeee et e seeaammmmnanaeeeess 317
R T I Tt R =Y (= IR 1 o LTS 317
17.3.2.1.3.2 MURIDYEIE SIINGS ...ttt e e e e e e e e e e s e e e e e e e e e e e e e nnnes 318
17.3.2.1.3.3 Wide-CharaCter SEQUENCES.ccciiiiiiiiiiiiitie ettt ettt e e e e e e e e e e e eeeenas 318
17.3.2.2 Functions within classes

17.3.2.3 PrivVate MEMDEIS ...ttt s e b e e st emmmmmennmmmmn e

Xi

ISO/IEC 14882:1998(E) © ISO/IEC

17.4 Library-wide reqUIFEIMENTSueiiiiiiiiiiii ettt ettt e e e e et e e e e e e e e e e e s nne e b e e« o £
17.4.1 Library contents and organization

N O R I [o = A 0] (=T | £ PP
L17.4.1.2 HEAUEIS ..ceieiiteiee ettt ettt e e st e e e et e e e e sk b e et e o4 s mmmmmmmmnnnnnn e
17.4.1.3 Freestanding iIMpPIemMENtatioNSccuuiiiiiiiiiiie e e e s eemmmnneeees
17.4.2 USING the IBFArY ..o e e e e e e e
L17.4.2. 1 HEAUEIS ..ottt ettt e e skttt e e s bbbt e e s st e et e e s s emmmmmmmnnnnnn e
O W | 1 <= To [TSP
17.4.3 Constraints on programs

17.4.3.1 RESEIVEA NAIMESeiiiiieiiiiiiie ettt et e st e et e s st e e s st e e e e e nanree e e
17.4.3.1.1 MACIO NAIMESiiiiiiiiieiieiie ettt e e e e e e s s e e e e te e e s s et e bbb b e e e e e e s s s—
17.4.3.1.2 GlODAI NAIMES ...t s——
17.4.3.1.3 External linkage
e Tt N S Y/ o 1L T PP ST TP ST RPN
L17.4.3.2 HEAUEIS ...ceieiitiiie ettt ettt ettt e et e e e e e e e s st et e e s emmmmmmmn e e
17.4.3.3 DEINVEA CIASSESoeeiiiiiiiiiiiei ittt ettt e e st e e e st e e e s st b e e e e s mmmmmmmmmnnnn e e a
17.4.3.4 Replacement FUNCHIONS.oo ittt e e e e e e e e e meeeeeeennnnnne s
17.4.3.5 HaNAIEr FUNCLONS.oiiiiiiiiii ettt et e st e e mmmmemnmmmmnn e

17.4.3.6 Other functions
17.4.3.7 FUNCHON ArQUIMEINTSeiiiiiiiiiiiie e e e ettt et e e e e e e e et e et et e e e e e e e e s e s annb b b e e e e s £+

17.4.3.8 RequUIred Paragraph..... ...ttt e e e e e raeaee s
17.4.4 Conforming iMPIeMENTALIONScciiiiiiiiiiee e e e e e e eeeeeeeeeaas
o R o 1= Y= To =Y £ PP PP PSR
17.4.4.2 Restrictions on Macro defiNitiONScoieiiiiiiiiiii e e e e e eeeanas
o e T €1 (o] o = I {01 o3 1o 1= T PO RUPRt
o V1Y 0 o 1= g 10 T 10 F PO
17.4.45 REENIMANCYoiiiiiieiei ettt a s o et e e e e e e e e e e e aeeee e et et eeaaebebsbebabb s emmmmmmmmmmmmmmeeeeeeeees
17.4.4.6 Protection WIithin ClASSES........cciiiiiiiiiie ittt e e e e e e e e vt smmmmm e
17.4.4.7 DEMNVEA CIASSES .uuniieiiiiiiii ettt ettt e e e e ettt tee e e e e e e et e e e e e e e esban s e mmmmnnn

17.4.4.8 Restrictions on exception handling

18 Language SUPPOIt IBFAIYcooi e 327

L. L TP S ittt oo oo e e e e e e e e et e ettt et tebe b e annnn o —————— 11111 327

18.2 IMpIemeNntation PrOPEITIEScc.uieeiiiiieeie ettt e e e e e e e e e e e e e s e e s nbnbeeeeeaeaaaaeeaans 328
18.2.1 NUMETIC IMILS ..eeeiiieiiieeeee ettt et s st e e s e mmmmmnnenmn e 328
18.2.1.1 Template claggimeric_IIMILS oo 328
18.2.1.2 numeric_limits 00 T=T 0] 0= £ SRS 329
18.2.1.3 Typdloat_roUNd_StYlE oo e e e e e e e 333
18.2.1.4 Typdloat_denorm_StYle e e e e 334
18.2.1.5 numeric_limits SPECIANIZATIONS ...ceiiiiiiiii et e e 334
S O | o] - TV PSR UPPURTRRN 335

18.3 Start and terMINALION.ueiie ittt e e e et e e e e e e e e 336

18.4 DynamiC MemOry MANAGEIMENTceiiiii ittt eta e e e e e e e artbetteeeeaaaa e e s e s aanbbbbeeeeeeeaaessaammnnes 337
18.4.1 Storage allocation and dealloCationooi it 337
18.4.1.1 SINGIE-0DJECT FOMMSt e e e e e e e e s e s mmmmmmmmmmmm e 337
18.4.1.2 Array forms

18.4.1.3 PlaCemENt fOMMS ...oeiiiiiiiiii ittt e e e ettt e e e e e e o2 —— 339
18.4.2 Storage allOCAtION EITOISueiiiiiiaieeiiiiiiiiiie et e e e e eriiiieeee e e e e e e e e s s nnnsee e e e e <<« SA 0
18.4.2.1 Clasbad_alloc
18.4.2.2 Typ@eW _NandIEr ...ttt e e e e e e e e e e e e e e e e nan e ee s 340

Xii

© ISO/IEC ISO/IEC 14882:1998(E)

18.4.2.3 Set_ NEW_haNAIEr .o e e e e e e et et e e e e et aaaaaaaas 341
18.5 TypPe identifiCAtION . .ccoii ettt e e e e et e e 341
SR T R O = 11 Y7 o T T 1| (o TP PR PR 341
ST A O 1= 1. 7= (o [o 1) AR 342
18.5.3 ClasPad _tyPeid ..o e e e e e e e e e e e e aaaaaaaaan 342
18.6 EXCEPLiON NANAING ...cooiiiiieeeeee et e e e e e e e e e ¢ s s 343
T R O = 11 el 1[0] TP PRPTT PR 343
18.6.2 Violatingexception-SpecCIfiCatiONS ..ot 344
18.6.2.1 ClasBad_eXCEPLON ...uiiiiiiiiiiiii ettt e et e e e s aab e e e s s b e e e e e s b e e e e s anrereeean 344
18.6.2.2 Typeainexpected _handler .o 345
18.6.2.3 SEL_UNEXPECIEA et e ettt e e e oo oo e bbbttt e et e e e e e e s s e s aab b bbb e et e e eaaa e e e s e annnbbanneeaaaaaens 345
18.6.2.4 UNEXPECIEA ...eeeieiiiieiiee ettt e e oottt e e e e e e e e e s e bbb b e e e e e e aaaaeeesaaannnbbbbeeeeaaaaeaeanan ST 34
18.6.3 AbNOrmal termMINALIONccciiiiiiieeeitii et e st e e st e s smmmneeeeamn e 345
18.6.3.1 Typderminate_handler e a e 345
S R T = A (=1 0 11T = 345
18.6.3.3 TEIMINALIE .oiiiiiiiiiiiie ettt e et e e e e et e e e e st e e e e e e s ek b e e e e e s aabbe e e e e aanbeeeeessnrreeeeean 345......
18.6.4 UNCAUGNT _EXCEPLION oottt e e e e e e e e e s s bbb bbb e e e e e e e e e e e e e s annbbbbeneeeaaaaaaas 346
18.7 Other FUNLIME SUPPOITeeieiiieeiteeee e ettt et e e e e e e e e e e abe b et e e e e e e e e e s e s aaaabbebeeeeeeeeaaaaesaaaaaannne 346

I DI T- To | g (015 (oS [] o] = U oYU UUPTPTUTPT 349

19.1 EXCEPLION CIASSES ... ittt e oottt ettt e e e e e e e ettt et e e e e e e e e e s s nnbbb b e e e s S mmmmnn e e 349
T R O = 11 o o (o =T () (TR 349
S I O = 1= o ' = 1T =Y o PPN 350
19.1.3 Clasivalid_argUMENT ...ttt e et e e e e e e e e e e s e b bbb e e e e e e e aaeeeesaannnbnbeees 350
19.1.4 Clastengti BrrOr ettt a e e e e e e e e e e an e ee s 350
19.1.5 ClasS®UL_Of FANGE oottt e e et e e et e e e e e e s e e aanb bbb e e e e e e aaae e e e s nnnnbneeeeas 351
S T O = 1o 0T o] ¢ T TE =Y o PSS 351
T N O = 11 = g (o L= =T (o] PP 351
19.1.8 Clas®VErflOW _BITOI oo e e e e e e e e e e e e e et et e e e e e e e e e e s e s e s eeeaaaaaaaeees 351
19.1.9 ClasSINAErflOW _BITOF ..ottt et e e e e e e e et e e e e e e e e e e s e s annrebaeneeeas 352
S T N T 41 [o] £ £ O PO PSP OPPPPPON 352

19.3 EITOr NUMDETS ...ttt e et e e e e e sme e e e e e e e annreas 352

20 General ULIHHES DFAIYooi ittt s 22111 353

20.1 REOUITBIMENTSetiiiiiiiiiee ettt e e e et ettt ettt e e e e e e e s s s bbb beeeeeaeaeaesesanssneemeeaaaaannne e e e e e e s

20.1.1 EQqUality COMPAIISONcciiiiiiiitietee et e e ettt e e e e e e s e e e bbb bt e e e e e e aaeeaese e nnss meamammmmmmmmeeees

20.1.2 Less than comparison

20.1.3 COPY CONSIIUCTION ...ttt ee e ettt e e e e e e ettt e e e e e e e e e s s bbb b e be e e e e e s mmmmneeaaeeanaeeeeas

20.1.4 Default CONSIMUCTION.cicuureiieiiiiiie ettt s e e

20.1.5 Allocator requirements

20.2 ULIIEY COMPONENTS. ... etieiiieee ettt e e e ettt et e e e e e e s e s e bbb e e e e e e eaaeeessasannnnnneeaeeaaaaaaens 357
A R O o 1= - 1 (] £ TP U T U PU PP UTT 357
20.2.2 PAIIS ..eeeeee ittt e e e Rt e e e e b et e e e anb et Ammmmmnn————— et nre s 358
20.3 FUNCHON ODJECES ...ttt ettt et e e e e e e e s e e e e e e e e s mmmmeeeaeeeaeeeeeee e s 359
PO Tt R = - LT TP PP PPP PRI 361

Xiii

ISO/IEC 14882:1998(E) © ISO/IEC

20.3.2 ArithmEtiC OPEIALIONSeeiiiiiiiiiie ettt e e e e e ettt e e e e e e e e e s e e anab e s e s s e

20.3.3 COMPAIISONS ..ceiiiiieieiiiett ettt e e e e e e e e ettt et e e aa e e e e e e e bbb beeeeeeeaaaeeesaaannnbss b e seeemaammmmmmmne s e e e nns

LI I S Moo [or=1 Mo o1=] = 14 (0] o 1S PP

{0 RC Ro T A\ (= To = 1o £ PR PPUURUPUPUPPPPPPURON

20.3.6 BINEIS e b e ——— e

20.3.6.1 Template clagénderlst

20.3.6.2 DINOLST ittt e e et e e e e e e e e e e e b e e e e e e bt e e e e anrre e e s mnnean

20.3.6.3 Template ClafBNAer2nd ... e a e 364
20.3.6.4 DINOZ2NA ..ot e e e e e e e e e e e e bt e e e e b re e e mneean 365.
20.3.7 Adaptors for pointers t0 fUNCLIONScooiiiiiiiiiiiiee e mmmmmmneees 365
20.3.8 Adaptors for pointers t0 MEMDETSuiiiiiiiiiia e e e eeeeeeeeas 366

AR S |V =T 0 0T oY PP 368
20.4.1 The default @lIOCALONuvieieiiiiieee ettt e et e e s memmmmmmmnnen e e e 368
20.4.1.1 allocator MNEIMDEIS ...ttt e e et e e e et b e e e e e st et e e s e b b et e e e e st b e e e e e annres 369
20.4.1.2 allocator OIODAIS ..t aaaa e 370
O e Yy (o] = (o [11=T = () PO 370
20.4.3 TempPOrary DUFTEIS ...t e e e eeeee e mmmmm e 371
20.4.4 Specialized algorithmSeeiiiii e e e e e e e 371
20.4.4.1 UNINItIAlIZEA_COPY oottt ettt e e e e e e e e et r e e e e e e e e e e e e ann e aeaeeaas 371
20.4.4.2 uninitialized_fill e e e e e e e e e e e e e aaara—— 372
20.4.4.3 uninitialized_fill_ N e —————— 372
20.4.5 Template CIASBITO P oottt e e e e e e e s e s bbb bbbt e e et e e e e e e e e e annbbbbaeeeeaaaaaaaas 372
20.4.5.1 AULO_PIF CONSIIUCTOIS. ...uttttitititieae e e e e e e e e e e e e e e e e et et et e eeeeetatbebe b bbb s e s e s e e e e e e e e aaeaaaaaeeeeeeeeennnnnnes 373
20.4.5.2 AULO_PIr MEMDEIS ...ttt ettt e e e e e e e et b b be e e e e e e e e e e e e s e nnnbeeneees 373
20.4.5.3 QULO_PIF CONVEISIONS ..ceiiiiiiiiiiiiitteete ittt e e e e e et ettt et e e e e e e e e s s e b abbeee e et aeaaeeesaaaannbebbeeeeaaaaaeaesaaannnes 374
PO I G R O I o] - o OO 374

20.5 DAte AN tIMEeeiiiiiiiiiiee ettt e e st e e e s bt e e s ab b e e e e s s b b e e e e e e nne e e e e e nnneeee s 375

21 SHANGS DFAIY ettt et e e e e e e e bbbttt e mmmmmmmmnaen e eeeeeaaaeeas 377

A I R O F= T = Tod (=] 1 = PP TSP PRPP PN 377
21.1.1 Character traitS rEQUIFEIMENTSeiiiiieiieiiiiiittiie et e e e e e e e e e e e e e e e e e s e s aaababbeeeeaaaaaaeaaans 377
21.1.2 HraitS tYPEAETS ...t a e e e e eeeeeeaaaan e anee 379
21.1.3 char_traits SPECIANIZATIONS ...ttt et e e e e e e e e e e e e aaane 379
21.1.3.1 struct char_traitSKCRar> e a e e 379
21.1.3.2 struct char_traitSSWChar 1> e 380
21,2 SHNG CIASSESeeeeiiiiieiei ittt e e e e e e e e ettt e e e e e e e e e e s e s rmmmeemamnmnn s nnne 381

21.3 Template ClagsasiC SIINQG .ooiiiiiiiiiii et e e e e e e e e e e e e e e e s s nanbbreeeeeaaaaaeas 383
21.3.1 basic_string (o0] 4151 11 o1 (0] £ P UTT TP 387
21.3.2 basic_string [1CT =100 U] o] olo] o AF TR PPPPURPTN 390
21.3.3 basic_string (o= 10 L= Lol | VTP PUTTTT 390
21.3.4 basic_string CIEIMEBNT ACCESS ... tteeeeeeie e ettt ettt e e e e e e e s e st bbb e e e e e e e e e e e e e aaannenee 391
21.3.5 basic_string MOGITIEIS ..t e e e e e e e e e e e e e nbaeeees 392
21.3.5.1 DaSIC_SHNQIIOPEIAtOr+t= ittt e b e et e e e e e e s e e s bbb beeeeeeaaae e e e s e aannnbbbaeeeaaaaans 392
21.3.5.2 DaSIC_StrNG:iaPPENA oo e e e e e e e e e e b b e et e e aaaaeaeeaaanne 392
21.3.5.3 DASIC_SHNQGIIASSION oottt et e e e e e e s s e ab bbb e e e e e e e e e e e s e s e nnbbbreereeaaaaeeaeaannne 393
21.3.5.4 DASIC_SHINQIINSEIT oottt e e e e e e e e s e et ab bbb e e et e e e e e e e s e s e nnbabeeeeeeaaaaeeeeaaannes 393
21.3.5.5 DASIC_SIINQIIBIASE cieiiiiiiiiiitie et e e ettt e et e e e e e e e s s e bbb b b e e eeaaeae e e e e aaanbnbbereeeeaaaaeaeaaaaans 394
21.3.5.6 DaASIC_SHNG:ITEPIACE oo et e e e e e e e e e e e e eeaaeas 395
21.3.5.7 DASIC_SIINQIICOPY ceeiiiiiiiieiea e ettt e et e e e e e e e s s e aabe b ettt e eeaaeaaesaanbabbeseeeeaaaaaeeaaaannnbnbaneeeaas 396

Xiv

© ISO/IEC ISO/IEC 14882:1998(E)

21.3.5.8 DASIC_SIINQIISWAD eeiiiiiiiiiaiia ettt e et e e e e e e e s e s aabe b et eeeaeaaeaassaanbsbbeeeeeeaaaaeeeaaaannnbnbaneeeaas 397
21.3.6 basic_string Sl o 0] 1= = 110] o 1S TP PUTTPT 397
21.3.6.1 basiC_StNG:fiNG et e e e e e e aea s 397
21.3.6.2 basiC_String:irfiNd oo r e e e e e e e e e aaa 398
21.3.6.3 basic_string::find_firSt_Of s 398
21.3.6.4 basic_string::find_1ast_0f e 399
21.3.6.5 basic_string::find_first_Not_Of 399
21.3.6.6 basic_string::find_last_NOt_Of e 400
21.3.6.7 DASIC_SHNGIISUDSIT ettt e e e e e e e e s e r e e e e e e e e e e e aaannes 400
21.3.6.8 DASIC_SINQIICOMPAIE coiiiiiiiiiiiit et e e e e e e e e e e e e e s e s e ab bbb e e e e e e aaaaeeeaaannbbebeeeeaaas 400
21.3.7 basic_string NON-MEeMDBDEr TUNCLIONSuiiiiiiiiii e 401
A N J 0 R o 0[] =1 (0] & T TP 401......

A R T o o 1< =1 0] TP PP 2. 40
A I J eC o o 1< =1 (0] £ TP TP TP TR 2. 40
A N T 0 Ao 0[] =1 (0] S TP TR 403......

A R T A ST o] o 1< =1 (0] T TP 403......

A I T A S B0 o 1= =1 (0] S TP TP PTTPT 3. 40
A N T o] o 1< =1 (0] T PP TP 4. 40
A I T 8 T | o BT P PU P 404
21.3.7.9 INSEITErs @nd EXIFACIONSuuveeieiiiiietee ittt e e st e e st e e e st e e s s b e e e s e aab e e e enneeeeeeanrees 404

21.4 Null-terminated SEqUENCE ULIITIESoooiiiiiiiiiieeii e e e e e e e e 405

22 LOCANZAtION DAY ...ttt e e e e e e e e e e b e e e eeeee et e e e e e e e an 409

22,1 LOCAIES ...ttt e e e e

22.1.1 Classocale

22.1.1.1 10CAIE TYPES eeeeeiiieieiei ittt ettt e e e e ettt e e e e e e e e e e e baa b e e teeaeaaaeee e e annas] 412...
2200 T O R Y/ o o o= 1 [T o= 1 (=T [o] VPP UP RO 412
22.1.1.1.2 ClasCale:fatat = oo 414
22.1.1.1.3 ClaslCale:iid oo 414
22.1.1.2 locale coNSIruCtOrS and AESIIUCTONcceiiiuieeieeiiiieie e e it e et e et e et e e e s sb e e e s nneeeee e e 415
22.1.1.3 10CAIE MEMDEIS ...ttt e e e e e s 416........
22.1.1.4 10CAIE OPEIALOIS ...euiiiiiiiiieiee e ettt e e et eee e e e e e e s e s snnnreeeeeeeeeeeeeeeennneene a0
22.1.1.5 locale StatiC MEMDEIScoiiiiiiiie et e e e e e G........ 41
22.1.2 10CAIE GIODAIS ..o e e e e e e e e eaaas 417.
22.1.3 CONVENIENCE INTEITACESceieiiiriiiie ittt ettt et e e st e e s s b eeenaeennnenae s 417
22.1.3.1 Character ClasSIfiCatIONcuuriieiiiiiiiee it e e e smne e e e e 417
22.1.3.2 CharaCter CONVEISIONSuutieiiiiiieee ittt e sttt e e st e e s st e e e e et e e s sbre et e s snneeeeeaannneeess 417
22.2 StandartbCale CAtBOOIIES.uu e ittt ettt e e e e e e e s e bbb e e e e e e e e e e e e e e e annnbareeeeeeas 418
22.2.1 TRECIYPE CALBYOIY oeeieeiiiiiiiiiititt ettt e e e e e e ettt e et e e e e e e s e s s abbbbeeeeeeaaaeeesaaannnbsbeeeeaaaaaaaansd 418.......
22.2.1.1 TemPIAte CIASEYPE ...eeeiiiiiiiiiaeiee ittt ettt et e e e e e et e e e e e e e e e e e ab b ba e e e aaaaaaaaean 418
22.2.1.1.1 CLYPE MEMDEIS ... ettt ettt e e e e e e e s e bbb e e e e e e e e e e e e e e nnbnbaeeeeeas 419........
22.2.1.1.2 ctype Virtual FUNCLIONSooiiiiiiiiie et e e e e e eenrn e eeee] 0......42
22.2.1.2 Template clagsype _DYName ... 421
22.2.1.3 ctype SPECIAlIZALIONSttt ettt e e e e e e e e e e 422.....
22.2.1.3.1 CLyPE<CRAr> ESIIUCLONuuuieiiiiiee ittt ettt e e e e e e e e e et e e e e e e e e e e e e s e nnnbeeeeees 423
22.2.1.3.2 ctype<char> MEMDEISe e e e e 423
22.2.1.3.3 ctype<char> StatiC MEMDEIScoiiiiiee e e e e e 424
22.2.1.3.4 ctype<char> Virtual fUNCHONS............uiiiiiiiii e 424
22.2.1.4 Class CLYPOYNAMECNAPcoiiiiiiitie ittt e e ettt e e e e e e e e e s et b abeeeeaaaaeaaaan 425
22.2.1.5 Template CIASHUECVL ...t e e e e e e e e e e e s e s bbb e e eeeaaaaaeeas 425
22.2.1.5.1 COUBCVE MEIMDEIS ... ettt e et e e s e b e e e e b b e e e s anbre e e e e nnnnes 426

XV

ISO/IEC 14882:1998(E) © ISO/IEC

22.2.1.5.2 codecvt Virtual fUNCHIONSccoiiiiiiieiiiiiie ettt et e e e ee e aees 427
22.2.1.6 Template clag®decvt DYNAME ... 429
22.2.2 THE NUMEIIC CALEGOIY ...eetieiiiiieeaiie ittt et e e e e e e e et bbbt e e e e e e e e e s s e e snbbebaeeeeeae s smmmmmmmeeemeen oo« 429
22.2.2.1 Template CIASBIM_ QOcouiiiiiiiiit et e e e e e e e et e e e e e e e e e e e e snbbb e e eeeaaaaaaaas 429
22.2.2.1.1 NUM_QEL MEIMDEIS .. ittt ettt et e e e e e e e s e e ab b bt et e e et e e e e e e s e s annbbbbeeeeeaaaaeeeeaaannnbeeeeees 431
22.2.2.1.2 num_get Virtual FUNCLIONSoooiiiiiiiiee et e e e e e e eeeeaaeas 431
22.2.2.2 Template CIASBIM_PULooiiii ittt e e e e e e e e s s bbb e e e e et e e e e e e e e e annbbbbaeeeeaaaaaaaas 433
22.2.2.2.1 NUM_PUL MEIMDEIS ...ttt ettt et e e e e e e e s e e bbb b ee et e et e e e e e e s e s aanbbbbeeeeeeaaaeeeesaannnbenneees 434
22.2.2.2.2 nuM_PUt VIrtUal FUNCLIONScooiiiiiiiie e e e e e e e eeeeea e s 434
22.2.3 The numeric punctuation faCetococuuiiiiiiiiiiie e D 3 T
22.2.3.1 Template CIaSBIMPUNCEcoooiiiiiiiiiieii et e e e e e e e e e b bbb e e e e e e e e e e e e s e e annnbbeaeeeeaaaaeaaaaan 437
22.2.3.1.1 NUMPUNCE MEMIDEIS ...ttt e e e e e e ettt e et e e e e e e s e e aabb b e beeeeaaaeeesassnnsbnbaeeeeaas 438
22.2.3.1.2 numMpUNCt VIrtUAl FUNCHONSeuiiiiiiiiii it e et e e e e e e e e e e e nnes 439
22.2.3.2 Template ClassImMpPUNCt_DYNAME ooiiiiiiiiiii e 439
22.2.4 The COllate CAtBOOIY .. oottt ettt ettt e e e e e e e e e e s e bbb e e e e e e emmmmne e e e s 439
22.2.4.1 Template CIaSBIIAtE oooiiiiii e a e e e e e e 439
22.2.4.1.1 COllate MEMDEISot e e e e 440
22.2.4.1.2 collate Virtual fUNCHIONSocoiiiiiiieiiiiiei ettt e e e e e e aees 440
22.2.4.2 Template clagdllate DYyName ... 441
22.2.5 THE HIME CAEOOIYueeeiiiiieiiiaae e ettt et e e e e e e e bbbt e e et e e e e e e e s e annbbbbe e et eeeeseaaannnnneeeaeaaaens 441
22.2.5.1 Template ClasiBNe_gEL ooiiiiiiiiiieiii et 441
22.2.5.1.1 tiIMe_get MEMDEISottt e et e e e e e e s et bbb et e e e e e e e e e e e annbbnraeeeaeas 442
22.2.5.1.2 time_get VIrtUal fFUNCHONSuiiiiiiiiiiee et e e e e e e e e e e 443
22.2.5.2 Template clagisne_get_bDyname ... 444
22.2.5.3 Template ClasiBNe_PUL ooiiiiiiiiiieie et s e e e e e e 444
22.2.5.3.1 tIME_PUL MEMDEIS ...ttt e ettt e et e e e e e e s e aab b bbb e e eeeaaeaesasannbbnbaeeeeeas 445
22.2.5.3.2 time_put VIrtUAl fFUNCHONSuuiiiiiiiii it r e e e e e e e e e e 445
22.2.5.4 Template clasisne_put_DYName ... 445
22.2.6 The MONELANY CAtEUOIYcoiiueeiieiieeeiaae e e e i ettt ettt e e e e e e e e s s e bbb be e e e eeeaaaaeeaaasnsbe s s mmmmmmmmmmmmmmn e 446
22.2.6.1 Template CIASBONEY Ouiiiiiiiiieiai ittt e et e e e e e e e e e e s aab bbb e e e e e e e e e e e e s e e nnnbeeeeees 446
22.2.6.1.1 MONEY gL MEIMDEIS ...ciiiiiiiiiiitt ettt e e e e e e ettt e e e e e e e e e s e bt beaeeeaaaaaaaeaeanans 446
22.2.6.1.2 money_get Virtual FUNCHONSuuiiiiiiiiiiaeii e e e e e e e e e e e e e e as 446
22.2.6.2 Template CIASBONEY PULueiiiiiiiiei ittt e e e e e e e e e e e e e e s bbbt e e eeeeaaaaeeesaaannnbeeeeees 448
22.2.6.2.1 MONEY _PUL MEIMDEIS ...ciiiiiiiiiiiitt ettt e e e e e e e ettt e e e e e e e e e e s e anabbebeeeaaaaaeaeaaannns 448
22.2.6.2.2 money_put Virtual FUNCHIONSuuiiiiiiiiiii et a e e e e e e e e e e e 448
22.2.6.3 Template CIaSBONEYPUNCE uiiiiiiiiiiei ittt et e e e e e e e e e e s s bbb b e eeeeeeaaaeeesaaannnnes 449
22.2.6.3.1 MONEYPUNCE MEMDEISuuiiiiiiiiiiee ettt e e e e e e ettt e e e e e e e e e s e aaabbbbeeeeaaaeeesessannnnbennees 450
22.2.6.3.2 moneypunct Virtual FUNCLIONSuiiiiiii et e e 450
22.2.6.4 Template clags0neypUNC_DYNAIMEoooiiiiiiiiiiiiiiii e a e 451
22.2.7 The message retrieval Category........ooocuuuiiiiiiiiiiaeeeeeiiiiieiee et e e e e eesirereeeee e e e e s mmmmmmeeeee DD 2
22.2.7.1 TempPlate CIaSBESSAGES ...ciiiii ittt e e e e e ettt et e e ae e e e e e s e bbb beeeeeeeaaaaeesaaannbbebeeeeaaaaaaaaaas 452
22.2.7.1.1 mMESSAQES MEMIDEIS ...ttt e ettt e e e e e e e e e s bbb ettt e et e e e e e e s e e aaaabbebeeeeaaaeaesasannnbbnbaeeeeaas 452
22.2.7.1.2 messages VIrtUal fFUNCHONSuuiiiiiiiiaa ettt e e r e e e e e e e e e e anes 453
22.2.7.2 Template clag8essages DYNAME ... 453
22.2.8 Program-defined fACELScooi i e s 453

22.3 C LIDrAry LOCAIESeeeeeiiiiieeii ittt ettt e e e e e e e e e e e mne e e e e e eaaaasseereees 457

23 CONtAINEIS IDFAIY ..ot e e ee s e e e e s 459

23.1 CONtAINET FEQUITBIMENTS .. .etieiieieeeee e eitttteee e et e e e e e e e s e s aababbeeeeeeaaaaeasaaaasnsbsbeeeeee e e s s £ 15 459
P22 T0 O R S 1= To [D[] o [0l TSP U PP UU TR 462
23.1.2 ASSOCIAIVE CONTAINEISeiiieiiiieiitiee ettt e e st e et e e st e e e s ab et e e s asb b e e e s smmmeeenmmmnnns e 464

XVi

© ISO/IEC ISO/IEC 14882:1998(E)

A T S 1= o [U 1] o (o] TP TTUPRPT 467
23.2.1 Template CIASERQUEeeeiiiiiiiiii ettt et e e e e e e e et e et e e e e e e e e e e s bnnbreereeaaaaaeas 470
23.2.1.1 deque constructors, copy, and aSSIGNIMENTcoiiiiiiiiiiiiei e re e e e e e e 472
23.2.1.2 dEQUE CAPACITY ..eeeiiiieieiieiiitttie ettt e e ettt et e e e e e e s s e e bbbttt e e e e aaaeeasaaanbnbeseeeeeaaaeeesaamnnns 473..
23.2.1.3 deque MOAIfIEIScuiiiiiieii et e e e e e e e nnrrnneeee e e e e e e e Bl B
23.2.1.4 deque specialized algorithMsooiiiiiiii e e e 473
23.2.2 Template CIAaBl ... e e e e e e e e e areaaaaaaa e e an 474
23.2.2.1 list constructors, COPY, anNd aSSIGNMENT......c.oiiiiuiiiiiiiiee e ettt e e e e e e e e e e e s rreeeaaaeeeeaaaaans 476
A I | G o o I- Lo | YO PTUUT TP 477
23.2.2.3 1list MOIIEIS ..eeeiiiiiiiii ettt e e e e L
23.2.2.4 1liSt OPEIAtIONSeeieiiiieeiieee e ettt et e e e e e e s ereebeeee e e e e e e e e s s eennnrnsseeeeaeeeessessnnnsss il L
23.2.2.5 list specialized algorithms ... d Do 4
A TR B O o] 4] =11 g [=T = To F= 1 1 (o] £= PP 479
23.2.3.1 TeMPIALE CIASEIEUEeeeeiiiiiaiieaiiit ettt e ettt e e e e e e e e e s e bbbt e e e e e e e e e e e s e e annbbbbaeeeaaaaaeaanan 479
23.2.3.2 Template CIagBiority QUEUE ..ottt e e ettt e e e e e e e e e e s s absbbe e e eeaaaaaeeaaanaas 480
23.2.3.2.1 priority_queue (oTo] 0153 {1 (od (o] £ TP PP U TP 481
23.2.3.2.2 priority_queue (01T 001 0= £ TP P PP PPPPPPRTPT 481
23.2.3.3 TemMPIAte CIASEACK oociiiiiiiiiiitiiie ettt 481
23.2.4 Template CIASBCION ..ottt e e ettt et e e e e e e s s e e aab bbb e e et e e e e e e e e e e annbebeeeeeeas 482
23.2.4.1 vector constructors, copy, and aSSIGNMENTeiiiiiiiiiiiiiiiie e e e e e e e e e aebeeeees 484
A I Y [Tor (o] g o T T- (o1 1 YT PP RP TR 485....
23.2.4.3 VECIOr MOGIfIEIS. ..cciiiiiiiiee ittt e s snree e snneeee e 48D
23.2.4.4 vector specialized algorithms ... 486
23.2.5 ClasFeCtOr<hOOI> ..o e b r e e e e e ab e e e e e 486
23.3 ASSOCIALIVE CONMTAINEISeeiiiiitiiiee ettt e e ettt e st e e e ekt e e e e st et e e e st b e e e e e anbr e e e e s smeeeeeeemneeeseees 488

P T T N = 00T o] Fo (ol = T 3 F= T o PP PPP TR 490
23.3.1.1 mapconstructors, copy, and aSSIGNMIENTcc..uuiiiiiiieiie et e e e e e e e ereeeaaaaaeeaaaannene 492
23.3.1.2 MAPEIEMENT ACCESS .. .oiiiiiietiee et e e e e e ettt et e e e e e e e s e ab et bt et e e e e e e e e s e aababbeseeeeaaaeeesaaanan 493....
23.3.1.3 MAPOPEIALIONS ...eeeeiiiieeiie ittt et e e e e e e et be et e e e e e e e e s e s e aabbbeeeeeeeaaaaeesaaansnbsnseeeeee s s st 493
23.3.1.4 mapspecialized algorithmscoiiiiiiiiii e 24930
23.3.2 Template CIaSBUIIMAD ...oooiiiiii e e e e e e e e e e e e enb bbb e e eeeeaaaaeeas 493
23.3.2.1 MUIIMAP CONSIIUCTOIS.ueeitiiiieetee e e ettt e e e e e e et ettt e et e e e e e e e e e aannbbebeeeeaeaaeeeesaaannnnreeneees 496
23.3.2.2 MUIIMAP OPEFALIONSoiiiiieiiiiiiet ettt e ettt et e e e e e e e e e s e ba b bete e e et e aaaaeaaaannbebbeeeeaaaaaaaesaannnnes 496
23.3.2.3 multimap specialized algorithimsoooiiiiiii e 496
23.3.3 TEMPIALE CIASEL ..eeeiiiiiiiiii ittt ettt e e e e ettt et e e e e e e e s e e e nb bbb e et e e e e e e e e e e e ananneaeees 496
23.3.3.1 set constructors, copy, and aSSIGNMIENTo.uuuiiiiiiieiie et e e e e e e e e ereeeaaaaeeeesaannene 498
23.3.3.2 set specialized algorithmscoiiiiiiiiiie e ineeeeeeeeeee e A9
23.3.4 Template CIaSBUILISEL ...t e e e e e e e e e e e bbb be e e e e e aaaaeeas 499
23.3.4.1 MUILISEL CONSITUCTONS. .. eieiiitietieiitt et e ettt e et et e e s e e s et e e e et e e e s e anbre e e e s anbn e e e e e nnnnes 501
23.3.4.2 multiset specialized algorthMSooiiiiiii e 501
23.3.5 Template ClagBISEt ..o e e e e e e e e p e ee s 502
23.3.5.1 DItSEL CONSIIUCTONSeiiiiiiiiiieiiiie ittt s e e s e b e e e ann e e s e e 503.......
23.3.5.2 DItSEt MEMDEIS ... e e s 504........
PG TR B TRC B o[(1= A o] o= = 1o £ TP PP TP 5086......

P | (T =1 (o] (=311 o] = o PP 509

24.1 [erator rEQUIFEIMEINTS ..ottt eee e e e e ettt e et e e e e e e e e e ab bbbttt e e e e e e e e s e s s nnbbbbeeeaaaeeeeeaaansenreees 509
2 I A o 01U |1 (=] = (] £ PP PPUPT 510
24.1.2 OULPUL IEEFALOTSeteeeeiiieeee e ettt e e e e e e e e e ettt et e e e e e e e e e aanbbebe et e e e eae e e e s mmmmeememann e e e e e e e s 511
24.1.3 FOIWAND IEEIALOISueiiieiitiiiie ittt e ettt ettt e e st e e st e e s sb bt e e s esb b e e e s mmeeeemmmmnnee e e e e nn e 512
24.1.4 BidireCtional IIEralOrScuueieeiiiiiiie ettt e et e e e e s s eee e 513
24.1.5 RANAOM GCCESS ITBIALOIS. .. eeeiiitiiiee ittt e ettt e e et e e et e st e e s st e e e e s e anb e s smmmmeemmmmmnen 513

XVii

ISO/IEC 14882:1998(E)

24.2 Headeckiterator>

24.3

Iterator primitives

© ISO/IEC

e T N 1 (=] = (0] g (= 11 £ F T PPPTRTTRR

24.3.2 BASIC IEEIALONeeiiiieieie ittt ettt e et e e e e e e s e e e e e e e e e

24.3.3 Standard iterator tags

24.3.4 ITEratOr OPEIALIONScii ittt et e e e ettt et e e e e e e e e e e bbbt ettt e eeaaaaeesaaannnbbnsreaeeeaaaaaeaaaaaanns

24.4 Predefined IBIratOrS e ettt e e e e e e et e et e e ae e mnnnaeeae s 519
24.4.1 REVEISE ITEIALOIS ...ttt it e e e e ettt et e e e e e e s s e e b bt be e et e e eaaa e e e s e anns b e s s e ¢ s £ £+ 519
24.4.1.1 Template Clag8Verse_IEratOr ..o e 520
24.4.1.2 reverse_iterator FEQUITEIMEBNESteieieiiee e ettt e sanb bbb e e eeaeaaaeaeas 521
24.4.1.3 reverse_iterator (o] 0= = 1110] o L TP PP TR 521
24.4.1.3.1 reverse_iterator (o701 0 153 1 11 (o1 (o | USRS 521
24.4.1.3.2 CONVEISION ..ttt ei ettt ettt e e e e e e ettt ettt e e e e e e s e s e abbabe et e eeeaaeeeesaaasnsbbnnneneeeaaaaaeesaaaanns 521

P S G JiC Ao o 1= = 0] o T TP P TP TP 1. 52
24.4.1.3.4 OPEIALOI- oottt e e e e e e e e e ee e ettt ettt ettt eete b e b aba b a e a e e e e e e e aaaaaaaas 522
24.4.1.3.5 OPEIAIOIF T oottt et e e e e e e et e ettt e et e et e et re b e b a b b e e e e e e aaaaaaaaas 522
P N o R S B 0[] = 0] T TP TP URPPPPPPPP 522
P N o G T (o o 1= = 0] & TP TP TPTTPP 2. 52
N T R TR Ao 0[] = (0] & T TP PP URPPPRPPPP 522
P N R TR Ao o 1= = 0] TP TP TP PP 3. 52
P S e T KO o] o 1= = (] PP PP PP PP PR TR 523
2 I T B R 0T o 1= =1 (o | PP PP PP 523
P N T I o 1= = 1 (] PP U PP TU PP PTTRTRR 523
P S N T G B o] o 1= = 1 0] £ OO PTPUTUPPURPPPRPRPRIN 523
P G T A o o 1= = 1 (] P PP PP PP U PP PT TR 523
P R G T RS o] o 1= = 1 0] PP P PP PTTUPPURPPPTPRPRIN 523
P G T NS o] 1= = 1 (0] PP PP PP U PP PRTRTRRR 524
P N T A o o 1= = 1 (0] £ P PP PP PP TP P PR TR 524
P S G T R B o] o 1= = 1 0] TP P PP PTTUPPURPPPRPRPRIN 524
P N G T R B o] o 1= = 1 (] o TP P PP PTTUPPURPPPTPRPRIN 524
2 | 011 4 1 (=T = 1 (0] €3S U T PPUPT 524
24.4.2.1 Template clafBCK_INSErt_iteratOr oo 525
24.4.2.2 back insert_iterator (o]0 1=] = 1110] o IS TP TP 525
24.4.2.2.1 back insert_iterator (o700 1)1 £ U o3 (o (USSP 525
24.4.2.2.2 back_insert_iteratOr:iOperator= oo a e 525
24.4.2.2.3 back_insert_iterator:i0perator* e e 525
24.4.2.2.4 back_insert_iterator:i0perator++ e 525
N Ny S Y o Y- (ot G 1 1= 1 (= TR 526
24.4.2.3 Template clagont_iNSert_iterator oo 526
24.4.2.4 front_insert_iterator OPEIALIONS ...ttt ettt e e e e e e e e e e e e e e e e e e aannes 526
24.4.2.4.1 front_insert_iterator [oT0] 0 Y1 £ U o3 (o (SR 526
24.4.2.4.2 front_insert_iterator:iOPErator= e 526
24.4.2.4.3 front_insert_iterator:i0PErator® e 526
24.4.2.4.4 front_insert_iterator:i0perator++ e 527
24.4.2.4.5 TrONt INSEIMEI oot e e e e e e e e e e e ettt et et et e aeee et e e e e — s s e seseaeaaaaaaaeaaaeseeeeeeenrenes 527
24.4.25 Template CIa8ISert IHErator = ..o e e e e e e e e e e e e 527
24.4.2.6 insert_iterator (o] 01=] = 11 [0] o ST TP PEPPT TP 527
24.4.2.6.1 insert_iterator [oT0] 11 1 1 U 1 (o (USRS 527
24.4.2.6.2 InsSert_iteratoriOPeratOr= i e e e e e e e e e e e e e anns 527
24.4.2.6.3 InSert_iteratoriOperatOr® e e e e e e e e e e 528
24.4.2.6.4 Insert_iterator:iOperatort+ e e e e 528
Y N G SR | 01T 1 (= S PP PUPTTT 528.......

XVviii

© ISO/IEC ISO/IEC 14882:1998(E)

SR [=T= 10 1 (] £ (0] £ PSPPSR PPN 528
2451 Template Clagstream_IteratOr ..o 528
24.5.1.1 istream_iterator CONSLruCtors and deSIIUCLOruuiieiiie i e 529
24.5.1.2 istream_iterator (o] o< = 1110] o < PP TR 529
24.5.2 Template Clagstream _QteratOr oo a e e e 530
24.5.2.1 ostream_iterator CONSLructors and deSIIUCLOruuuiiiiiie i e 531
24.5.2.2 ostream_iterator (o] o< = 1110] o < PP TR 531
24.5.3 Template clagstreambuf _ITErator oo 531
24.5.3.1 Template clagstreambuf iterator:proXy o 532
24.5.3.2 istreambuf _iterator LoT0] 1S 11U T3 (o] £ 533
24.5.3.3 istreambuf iterator:i0perators e 533
24.5.3.4 istreambuf_iterator:i0perator++ e 533
24.5.3.5 istreambuf_iterator:equal e 533
T N SR o] o[=1 (0] TP TP TTPP 3. 53
A T Y o] o 1< =1 0] £ TP PP 4. 53
24.5.4 Template clagsstreambuf_Iterator ..o 534
24.5.4.1 ostreambuf_iterator o7] 1S 11U 11 (o] £ 534
24.5.4.2 ostreambuf_iterator (o]0 1=] = 1110] o SRR PUPRPRTP 534

25 AIGOItNMS TIBFAIYeeiiieiiiii ettt e e e e e e e e e rbe e e ee e e e e e e e e e aans 537

25.1 Non-modifying SEQUENCE OPEIaALIONSueiiiiiiaaeeiiiiiiiiiieeee e e e e e e e e e eee e e e e e e e e s e banreneeees 545
25.1.1 Foreach
AT A | 1 o PP PSSR O PP PPPPP
25.1.3 FING ENG..coiiiiiiiiiiiee ettt e e e et s

25.1.4 Find First
25.1.5 AJACENT FING ...ceeieiiiiiiii ettt e e e e e e e e e e e e e e e e e an 547
25.1.6 Count
P T A Y 11 1 = (o] o [OOSR 547
25.1.8 EQUAL ..eeeieeeee et —— e 548
25.1.9 SEAICI ..o e et e e e e e e e e e e aeeeaaaaaateaeeeeaaaaens 548

T R ©7o T oV SO PPR 549
25.2.2 SWAP witiiiiuiiiiee e ittt e e et e e e e — e e e e b e e e e et ——e e e e it ta—aeeaattataee e e tbeeee e s annaammnnena e e anraeeeeeins 549
25.2.3
25.2.4
25.2.5
25.2.6
25.2.7
25.2.8
25.2.9
A T KO B = o] = | (T 553
25.2.11 RaANAOM SNUFIE ..couvee et e e e e e e aae e e e eeraans 553
25.2. 12 PaArtiliONS c.ue ettt e e et et eeeee ettt ——— e rann 554

25.3 Sorting and related OPEIatiONScooiii ittt e e e e e e e e e e e e e e anaans 554
AT T S To) 1 o PP U SO 555
P T T 001 o | A TSP ST U PP 555
25.3.1.2 StADIE _SOM oo e eaaaaaeaaaaaaeaeeaeerraraarar————_ 555
25.3.1.3 PAIIAl SOOIt e et e e e e e e b et et e e e e e e e e e e bbb beareaaaaaaeeeaaaaane 555
25.3.1.4 PArtiAl_SOIM _COPY ceeiiiiiiiii ittt e ettt e e e e e e e e e st bbb et e e e e e e e e e e e e annbaarreeeaaaaaas 556
25.3.2 NN @lEMENT....co et e e st memmmmneeeen e s 556
25.3.3 BiINAIY SEAICKeeiiiiiiiii ettt a e e e e e r e e e e e e e e e e an 556

XiX

ISO/IEC 14882:1998(E) © ISO/IEC

AT T 70 N (0111 =Y o To 11 T PRSP 556
AT T B2 ¥ [o] o= gl o To 18] o o [N UTTPTR PP 557
AR T e B = To [=V I = o T T PP UTTPTR PR 557
25.3.3.4 DINAIY_SEAICN ittt et e e e e e e e e e bbbt e e e e e e e e e e e e bbeaeeeaaaaaaea e s 557
25.3.4 Merge .558
25.3.5 Set operations 0N SOMEd SITUCTUIEScooiiiiiiiiiiiiieee ettt e e e e e e e e 558
25.3.5.1 INCIUAES oottt e ek e e e e e e e e e e e nn 559....
AT TR YA~ =Y A U o] To TS 559......
25.3.5.3 SEL INEISECHION oo e e e e e e e e —————————————— 559
25.3.5.4 Set_diffErENCE oo e a e e e e e e e e e e e e e e e e ar e —————— 560
25.3.5.5 set_symmetric_differenCe oo 560
25.3.6 HEAP OPEIALIONSuuiiiiiiiiiiee ettt e e e e ettt e e e e e e e e e s aaa b et et et e e e e+ e £ £ £ 55 560
25.3.6.1 push_heap

25.3.6.2 pop_heap

25.3.6.3 MAKE NEAP «.iiii it e et e e e e e e e e e e e naaaaeen b561......
AT N G = To | A =T o PP UUUP PPN b561......
25.3.7 Minimum and MaXIMUMoooiueeeeeiiieee et e e e s brr e e s s abrr e e e s asbee e e s s s mmmm—— 562
25.3.8 Lexicographical comparison562
25.3.9 Permutation gENEIALOIScciii ittt e e e e e e et e e e e e e e e e e s e anbb b e e e e e e e e e e e eaannnnnneeeas 563

A O [1o] = Ty A= 1o [o] 111 11 0T PP PR TTOP 563

26 NUMEIICS DAY ..ottt e e ettt e e e e e e e e s bbb e s s mmmneeeeeeaaeaaeaaaaan 565

26.1 NUMETIC tYPE rEQUITEIMENTSuutiiiiiiiiiae e e ettt e e e e e e e s et eb et eeeeaaae e e e e e aanssb e e s emmmmmmmmmmmmmne s 565

26.2 COMPIEX NUMDEBIS ..ttt et e e e e ettt e et e e e e e e e s e s aanbb bbb e e ee s ammmmmmmmmmeneasae 566
26.2.1 HeadekCOMPIEXS> SYNOPSISuviriiiiiiiieiiiii ittt e e e e e e e e ettt e et e e e e e e e s s s aabbbbeeeeaeaaaaeessaannnbeneees 566
26.2.2 Template CIASIMPIEXooiiiiiiii ettt e e e e e ettt e e e e e e e e s e s aanbbebeeeeaaaaaeaaeaann 567
26.2.3 compleX SPeCIAlIZAIONScoiiiiiiiiiee ettt e e e e et 569.......
26.2.4 complex mMemDBDEr FUNCHIONS.uiiiiiiiie et e e e e e e e e e e e e e seeeeeees 570
26.2.5 COMPIEX MEMDEI OPEIAIOIS. .. i i ittt e e e oottt e e e e e e e e e e bbbt et e e e e e e e e e s s e annbbbbeeeeaaaaeeeaaanns 570
26.2.6 complex NON-MeMDEr OPEIALIONScooiiiiiiiiiieiie e e ettt e e e e e e e e e b e e e e e e aa e e e e e s annbebeeeeeeas 571
26.2.7 compleX ValUE OPEIALIONSeeiiiiiiiiaiiiiititt et e et e e e e e e e e e s e st bb e e eeeaeaaeeeeaaannnes 2. 57
26.2.8 complexX tranSCENUENTAISuuiiiiiiiiiii it e e e e e e e e e e e e e e e aannnes 13 5
26.3 NUIMEIIC AITAYS ... et tieiuitttteteeeeea e e e e e e ettt et et e e aa e e s e e e ababbeeeeeeeaaaeaesaasnbbbeseeeeeesmmmmnemaaaaaeeeeeeeaesn 574
26.3.1 Headekvalarray> SYNOPSIS . ccceiiiiuuitiiiieiiaaae e e e e ettt be e et et e e e e e e e s e s ab bt be et e aaaaaaeesaaannbbebeeaeaaaaaaaaaan 574
26.3.2 Template CIASBUAITAY ...oooiiiiiiiii et e et e et e e e e e e e e e bbb e e e e e e aaaaaeas 577
26.3.2.1 VAlArray CONSIIUCTOIS. . ..uuuuetieiiiiiaeae e ettt et e e e e e e e s e e bbb e et e et e e e e e e s e s annnbbbbeeeeaeaaeeeesaaannnnreeneees 578
26.3.2.2 Valarray ASSIONMIENTcoiiiiiiiiiii et e e ettt e e e e e e e e e e bbbt et e et e e e e e e e e aa b e b e e et e e e e e e e e e annnrareees 579
26.3.2.3 valarray EIEMENT ACCESScoiiiiiiiiieiie ettt e e e e e e bbbttt e e e e e e e e e e e an bbb b reeeeaaaaaaaaaaaas 580
26.3.2.4 valarray SUDSEL OPEIALIONSuiiiiiiiiiieiii ittt e e ettt e e e e e e e e e s s anab bbb e eeeaaaaaeaeeannnnes 580
26.3.2.5 valarray UNAIY OPEIALOIScciiiie ittt ee e e e e e e ettt e e e e e e e e s e e aabbebeeeeaaaaaasseaanbbbbenaeeeaaaaaans 580
26.3.2.6 valarray computed aSSIGNIMENTcoiiii ittt e e e e e e e e e e e e e e e e e e e s annbeeeees 581
26.3.2.7 valarray member fUNCLIONSooiiiiiie e e e e e e e e e ee e 581
26.3.3 valarray NoN-MembBDer OPEratiONScoooi ittt e e e e e e e e ebaeeees 583
26.3.3.1 valarray DINArY OPEIALOISccoiiiiiiiiiiiee ettt e aanbbnreeeeaeas 583
26.3.3.2 valarray 10QICAl OPEIALOISceiiiiiieii ittt e e e e e e e e e bbb et e e e e e e e e e e s e annnbeeeeees 584
26.3.3.3 valarray tranSCENAENTAIS. ittt e e e e e e e e e e e bbb e e e e e e e e e e e e aans 585
26.3.4 ClASSIICO oot e e e e e e s b e 585...
26.3.4.1 SlICE CONSIIUCTOIS ...ueiiiiiitieeee ittt ettt et et e e ettt e e e et et e e e e b bt e e e e anbn e e e e e annn e 585.....
26.3.4.2 SliCe ACCESS FUNCHIONSeveiieeiiiiee e ettt ettt et e e e e e anneas 586........
26.3.5 Template ClasdiCe_array ..ot a e e e e e e e e e e e e e aaaaes 586

XX

© ISO/IEC ISO/IEC 14882:1998(E)

26.3.5.1 slice_array (oT0] 4 1S3 1 (1 o3 (o) £ TP U TP TSP 587
26.3.5.2 slice_array LRSS0 o]0 1] o | PP PUPUT TR 587
26.3.5.3 slice_array COMPULEd ASSIGNMENT ...ttt e e e e e e e e e e e e e e enneeeeeees 587
26.3.5.4 slice_array L FUNCHION .. e e 587
26.3.6 ThEYSHCE ClaSS ...ttt e e e e e e e e e b e e e e 587.......
26.3.6.1 gSlICE CONSITUCIOIS oottt et e e e e e e e e bbbt et e e e e e e e e e s e nbnbbebeeeeaaaaeeeaeanns 588
26.3.6.2 gSliCE ACCESS FUNCLIONSttt e e e e e e e e e e e e e 9........ 58
26.3.7 Template ClaBliCE_AITAY .oooiiiiiiiiii ettt e e e e e e e e e e eeaeas 589
26.3.7.1 gslice_array (oT0] 4153 1 (1 o3 (o) £ TP PR PP TP 589
26.3.7.2 gslice_array RIS o]0 1] o PP ETTP TR 590
26.3.7.3 gslice_array computed asSignmeNnt e 590
26.3.7.4 gslice_array T FUNCHION. .. 590
26.3.8 Template ClIaSBASK _AITAY eeiiiiiiiaiiiiiite ettt e e e e e e e e e e e s bbb e e e e e e e e e e e e s aaennnreneeees 590
26.3.8.1 MASK_Array CONSIIUCTONSuuetttiiiaeeaiaiiiittteeeeeteaae e e e e e atbebeeeeeeaeaaaaeaaaaannbbsaeeeeaaaaaesessannnnsbeneeees 591
26.3.8.2 mMaSK_array ASSIGNIMENTcouiiiii ittt et et e e e e e e s e s e bbb e eeeeeaaaaaeeaaaannnbabeeeeaeaaans 591
26.3.8.3 mask_array computed aSSIGNMENT.........uuiiiiiiiiaiii ittt e e e e e e e e e aeeb e s eeeaaaaaeas 591
26.3.8.4 mask_array il FUNCHIONoooiiii e e e e e e 592
26.3.9 Template ClasBAIrECt_AIrAY ..eieiiiiiiiiiii i e e e e e e e s e e e e e e e e e e e e e e s annnnes 592
26.3.9.1 indirect_array [oTo] 4 1S3 1 (1 o3 (o) £ NPT 592
26.3.9.2 indirect_array = RIS o 10 11T o ST P PTTP TP 593
26.3.9.3 indirect_array COMPULEd ASSIGNMENTuviiiiiiiieee ettt e e e e e e 593
26.3.9.4 indirect_array L FUNCHION .. 593
26.4 Generalized NUMETIC OPEIALIONSeiiiiiiieiiiiiiiititi et et e e e e et e e e e e e e e e e s e aanbbe e eeeaaeaeeaaaan 593
26.4.1 ACCUMUIBLE ...coviiiiiiiie ettt e e e e s snnree s

26.4.2 INNEI PrOTUCT........uiiiiiiiieie ettt e e e e e e e e aanb e e eeaaae s

26.4.3 Partial SUMooiiiiiiiiee et een

26.4.4 Adjacent difference

R T O I o - o OO 596

27 INPUYOULPUL TIDFAIY ...ttt e e ettt e ¢ e £ 2222211 n 599

27.1 |OSIrEAMS FEQUIFEIMEINTSutiiiiiiieiee e ettt et e e e e e e e e e et bbb et eeeeaaaeaesaaananbebbeeeeaeaaaaeeeaaaaannrnes 599
27.1.1 IMBUE LIMITATIONSeeiiiiitiiie ettt e et e e s st e e e e s asnrn e e e s sanneeeeeeans 599
27.1.2 Positioning TYPe LIMITATIONSeiiiiiiiiiiiiiiiiiiiee e ee e e e e e e e e e e e 599

27.2 FOrward deCIarationsS.coiuriiieriiiiie ettt e et e st e e e st e e e rme e e e e e e e e enrees 599

27.3 Standard i0Stream ODJECESuuiiiiiiiiie it e e e e 602
27.3.1 NAIrOW Stream ODJECESuiiiiiiiiiiiii ittt cr— 602
27.3.2 Wide stream objects .603

27.4 10StreamS DASE CIASSES.......ueeiiiiiiiiii ettt e stk e eeamnn e e e e 604
A S R Y/ o1 F PP PR 604
A N A O T 1. o LT o - U = PPN 605
A S R 1Y/ o1 L F PP PP PPPUPPTOTN 607
27.4.2.1.1 Clas®ms_base:faillUre . e 607
27.4.2.1.2 Typ@os _base:fMiags . 607
27.4.2.1.3 Typ@0S _DASEIlOSIAIE oo a e e e e e 608
27.4.2.1.4 Typ@oS _base:OPeNMOUE ...t e e e e e e e s e r e e e e e e e e e e e e ananes 609
27.4.2.1.5 Typ@0S base:iSEEKAIr oo a e e e 609
27.4.2.1.6 Clas®ms _base:INit e a e e e e e e e e e e 609
27.4.2.2 ios_base fmtflags State FUNCLIONS ... 610

XXi

ISO/IEC 14882:1998(E) © ISO/IEC

27.4.2.3 ios_base locale 118 11 o 1 611
27.4.2.4 10S_base StaliC MEMDEISuuuui i e e e e e e e e e e e e e eeeeeeeeeeasenaraens 611
27.4.2.5 10S_base StOrage fUNCHONS........ciiiiii it e e e e e e 611
27.4.2.6 10S_DASE CAlDACKSooeieieiieiiic e a e e e e e e e e e e aaaaaan 612
27.4.2.7 10S_base CONSLUCIOIS/UESIIUCTOIS ...uuuuuuruiiiiieieieii i i et e e eeeeeee e e e e e e e e e e e e aaaaeas 612
27.4.3 TemPIate CIASBOSuiiiiiiiiiiiai ittt e e e e e e e e et e e e e e e e e e s b e aeeraaaaaaea e s 612
27.4.3.1 fPOS MEIMDEIS ...ttt e e e e e e e e e s e aanbesseeeeaaaee e e e s s] 612..
27.4.3.2 TPOS TEOUIMEIMENTSeeiiiiiiaiee ettt et e e e e e e e ettt e e e e ea e e e e e s aanbabbeeeeeeaaaeeasaaannseseesannn 612....
27.4.4 Template CIagBASIC 10S eiiiiiiiiiiii ettt e e e e e e e et e e e e e e e e e e e e ann e aeaeeeas 613
27.4.4.1 DASIC_I0S CONSITUCIONSciiiiiiiieeiiieitiiiit e ss eeeeeeeeets b s b a e aaseaeseeeaaaaaaaaseees 614
27.4.4.2 MemMDEr fUNCHONScoiiiii ettt ettt e e e e e e e st e esammmmmmmmeeee 615
27.4.4.3 basic_ios iostate flags FUNCLIONSeeeiiii e 616
27.4.5 10S_Dase MANIPUIALOISuueiiiiiiiiie it e e e e e e sttt e e e e e e e e e e e e annnbnbeneeeeas 617
27.4.5.1 fmtflagsS MANIPUIALOTSeiiiiiiiiiii ettt e e e e e e e e e e e e e e e e e s e e aanneeeeeees 617
27.4.5.2 adjustfield MANIPUIBLOTS ..ttt e et e e e e e e e e e e e s nnebeeeees 618
27.4.5.3 basefield MaNIPUIALOTScooii i a e e e e e e e e e e e as 619
27.4.5.4 floatfield MANIPUIRLOTS ... e e e e e e e s e e nab b eeeaaaaeas 619
27.5 SUEAM DUTEIS ...t e e e e e e e e e e e eee s 619
27.5.1 Stream bUffer reqUIrEMENTSooii i e e mmmmeeeeeeeeas 620
27.5.2 Template clagmsic_streambuf<charT traits> 620
27.5.2.1 basic_streambuf (oT0] 0 1S 11U T3 (o] PSSR

27.5.2.2 basic_streambuf public member functions

27.5.2.2.1 LOCAIES ...ttt ettt e e e e e e e b e b e et e et neeeeeeeaaaaae e e e s aaanae
27.5.2.2.2 Buffer management and positioning
27.5.2.2.3 GOLAIBA ...ceiieeeiiititet et e e e e e ettt s— 1
27.5.2.2.4 Putback
27.5.2.25 Putarea
27.5.2.3 basic_streambuf

A T T R € 1= B | (=T W= (o ol 1T P
27.5.2.3.2 PULAIEEA GCCESS . .ouuniiiiii et e et e et et e e et e e e ettt e e et e ettt e e eeta e e etan s ennnaaannnnaannnsseran
27.5.2.4 basic_streambuf VIrtUal FUNCLIONS ..uueeeicce e
27.5.2. 4.1 LOCAIES .. .ottt ettt et e e e ettt e e e e e et e e e e e e et e e e e e ettt e e eannn————————tanaaaaees

27.5.2.4.2 Buffer management and positioning
27.5.2.4.3 GOLAICA ...ceieiietiiiitet ettt e e e oo e ettt ettt et s——
27.5.2.4.4 Putback
275.2.45 Putarea

27.6 Formatting and ManipUIBLOIScoiiiiiiiei et e 629
27.6.1 INPUL SEIEAMSottt e et e e e e e e e e ae e e et et eeeeeeeeesebe bbbt bt se s s s e s 630
27.6.1.1 Template ClafBSIC_ISIrEAM ..o e e e e e e e eeeeeas 630
27.6.1.1.1 basic_istream foTo] 1Y 1 £ U T3 (o 3SR 632
27.6.1.1.2 ClasBasiC_IStreamiISENIIY oot e e et e e s e e 632
27.6.1.2 Formatted iNPUL FUNCLIONScoiiiiiiiie e e e e e e e e e e e e 633
27.6.1.2.1 COMMON FEOUINEIMENTS. ...eeiiiiiiiiiiititieieeeee e e e e e s e aetbete e et e e aa e e e s s e anbbbeeeeeaaaaaeaesaaaaannnsnnees 633
27.6.1.2.2 ArthMEtIC EXIFACIONS. .. .uiiiiiiitiiee ettt e et e s e s mne e e e enreas 633
27.6.1.2.3 DaSIC_IStream:iOPErator™> it e e e e e e e s e s s bbb e e e et e e e e e e e s e e annrereees 634

27.6.1.3 Unformatted input fUNCLIONSoooiiiiii e O O D
27.6.1.4 Standardasic_istream manipulator
27.6.1.5 Template ClafBSIC_IOSIIEAMeiiiiiiii it e e e e e e e e e e e e e e e e e anaas
27.6.1.5.1 basic_iostream [oT0] 1)1 £ U o3 (o =R UPPP
27.6.1.5.2 basic_iostream [0 1=1S] 1 (1 T (o RSP
27.6.2 OULPUL SIFRAIMIS ...ttt e e et e e e e e et et et e ettt ettt et e e e bbbt e e e e oo e 22 e 22222 e e s o——
27.6.2.1 Template ClafBSIC_OSIIEAM ..ot e e e e e e e s e e eeeeas

XXii

© ISO/IEC ISO/IEC 14882:1998(E)

27.6.2.2 DaSiC_OSLream CONSITUCIONS.........ciiiiiiieiiieieiiitit e s e e s e e e e e e e e e e e e e e ee e et e e e e eeeeeestererranann e as 642
27.6.2.3 ClasbasiC_OSIrEAMIISENIIY .ooiiiiiiiiieee ittt e e e s st e e s et e e e e e s nrr e e e s annees 642
27.6.2.4 basic_ostream SEEK MEMDEIScciiiiiii i e e e e e e e e e e e e e e e 643
27.6.2.5 Formatted outpUt FUNCHIONSuuiiiiiiiiiia e
27.6.2.5.1 COMMON FrEOUINEMENTS. ...cciiiiieaieiiiiiiiitteeeet e e e e e e e aibebee e e e e e e e e e e e e s annnbebeeeeeeas

27.6.2.5.2 ArithmetiC INSEITEIS ...cooiiiiiieee et a e

27.6.2.5.3 basic_ostream::operator<<

27.6.2.5.4 Character inserter template fUNCHONSccooiiiiiiiiiiiii e e 645
27.6.2.6 Unformatted output FUNCHONSuuiiiiiiiiiiaii e mmneees 645
27.6.2.7 Standardasic_ostream = mManipUIAtOrSocuiiiiiiiiiiiie e 646
27.6.3 Standard MaNIPUIALOLSooiiiiiiiiiiiiie et e e e e e e e s s rb e e e e e s mmmmmeeeeeeee s 646
27.7 SHING-DASEA SIIEAMSttt e e e e e et e e e e ea e e e e e mmnnne e e s 648
27.7.1 Template clagmsiC_Stringbuf oo 649
27.7.1.1 basic_stringbuf [of0] 4153 1 (1 od (o) 1= J U PRTPTPP 650
27.7.1.2 MemDEr fUNCHONScoiiiii ettt e e e e e e e e s e st e eesemmmmmmmmeeee 650
27.7.1.3 Overridden Virtual fFUNCHONSuuiiiiiiiiiiiii e eee e e e enes 651
27.7.2 Template clagsmsiC_IStHNGSIrEAM ..o 653
27.7.2.1 basic_istringstream CONSEIUCTOS ..ttt e e e e e e et e e e e e e e e e e e eaans 653
27.7.2.2 MemMDEr fUNCHONScoiiiii ettt e et e e e e e e e e et e eesnmmmmmmmmeeee 654
27.7.3 Clas®asiC_OSHNGSIIEAM ..ottt e e e e re e et e e e e e e e s e e anbabbeareeaaaaeaeaaaanns 654
27.7.3.1 basic_ostringstream CONSEIUCTOS ..ttt e e e e e e et e e e e e e e e e e e eaans 655
27.7.3.2 MemMDEr fUNCHONScoiiiiieee ettt e e e e e e e e e st e eesemmmmmmmm e 655
27.7.4 Template clagmsiC_StNGSIrEAM oo a e 655
27.7.5 basiCSrINGSrEamM CONSIIUCTONSuuitiiiiiiiieae ettt e e e e e e e e e e e st eeeeeeeaaae e e s e s aanbnneeseeeas 656.......
27.7.6 MemDEr fUNCHONS ..ottt e e e e e e st e b mmmmmmmmmmmm e 656
27.8 File-DASEA SIMEAMS ...ttt e e e e e e e e e bbb e e et e e e e e e e eeeaaannnneneeees 657
27.8.1 FlE SIrEAIMS ...ttt et e e e e e e s e bbb ettt e e e ae e e e e s aannnreeeeeeaaaeeesaannnnes 657
27.8.1.1 Template clagmsic_filebuf e 657
27.8.1.2 basic_filebuf (oT0] 1S 1 £ U1 (o] 670U 658
27.8.1.3 MemDer fUNCHONScoiiiie ettt et e e e e e e s et e mmmmmmmm e 659
27.8.1.4 Overridden Virtual fFUNCHONSuuiiiiiiiiiai e e e e eanes 660
27.8.1.5 Template claf@sSIC_IfSIrEAM ..o e e e 662
27.8.1.6 basic_ifstream [oT0] 1S 11U T3 (o] SRS 663
27.8.1.7 MemDEr fUNCHONScoiiiiie ettt et e e e e e e e e et e eeeemmmmmmmm e 663
27.8.1.8 Template ClafBmSIC_OfSIIEAM ..o e e e e e e e 664
27.8.1.9 basic_ofstream [oT0] 1S 11U T3 (o] SRS 664
27.8.1.10 MemDBer fUNCHONScoiiieie ettt e e e e e e e e e e bbb mmnneeeaeeeeeeas 665
27.8.1.11 Template claBRSIC_FSIrEAM ..o s 665
27.8.1.12 basic_fstream Lod0] 0151 11U 11 (0] £ TSRS 666
27.8.1.13 Member functions

27.8.2 C LIBAIY filES ...t e e e e e e ——— e
Annex A (informative) Grammar SUMIMATYccoiaaaaaiiiiiuuiiiiieetaaaaaaaasaasesieseeeeeeaasessaaannsesss 66.7...

F N (= Yo (o < TP PPPTP 667
A2 LeXiCal CONVENTIONScoiiiiiiiiiieie ettt et e e e e e e ettt et e e e e e e e e s s bbb e e e eeeeeaaaaeaaaesaaannns 667

YN B = - TS (o oo g [o =T o £ TP T TR 671
YN o] (=151 (o] E U PPPRP 671

XXiii

ISO/IEC 14882:1998(E) © ISO/IEC

Y I = 1] 1 01T 0 £ PO TPPPPPPPPP 674
YN R B L= Tol - T - Vi [o] E PP UU RPN 675
F N A B L= Tol I 1= (o] £ TP 677
YN S B O - 11T ST PRPP PP 679
ALD DEIVEA ClASSES. ..o it iiii ittt ettt et e e e e oo e ettt et e e e e e e e e e s e e abbbbeaeeeeeeaaaeeaeaaasaannnrees 680
A.10 Special membDer fUNCLIONSooiii e e eeeea s 680
YN R O 1V =T ¢ 0= To [T TP PPPTUPPTRIN 680
ALL2 TOMIPIALES ... ettt et e e e e e — ettt e e e e e e s e a s ————— 1111111 681
A.13 EXCePtioN NANAING ...oooiiiiii et e e e e e e e e e e e e e e e e 681
A.14 PreproCeSSING QIMBCHVES.ttt e e e e e et e e e e e e e e e e s s asbbe b e e s et 682
Annex B (informative) Implementation qUaNTItIESeuiiiiiiiiiiiiie e 685..
Annex C (informative) CompatiDilityeeeiiiiiiiii e eeeenneeee 687
C.l G aAnd ISO C ..ottt ettt e st et e et —
C.1.1 Clause 2: lexiCal CONVENTIONS........coii ittt e e e e e et e e e e s smmmmmmmmnneeees
C.1.2 ClausSe 3: DASIC CONCEPLS ..eeeiiiieeiiiiiiiitiet ittt e e e e e e ettt e e e e e e e e s et bbb e e e e e e e e s smmmmmmeeeemeenn e«
C.1.3 ClaUSE 5: EXPIrESSIONSeeeiiiiieeiie ittt et et e e e e e e e e e bbb beeeeaaaaeeaasaabaebeseeeetaaaesssanmmnneeaeeeaaassnes
C.1.4 ClauSe B: STAIEIMENTSccii ittt e e e e e ettt et e e e e e e e s e e e aeseeeeeeeaaammnne e e s
C.1.5 Clause 7: eCIaratiOnsc.uueiiiiiiiiiae ittt e e et e e e e e e e e e s e s annb e e s e mmmmmmmmmmmmm e
C.1.6 ClauSE 8: UECIAIALOISuuueeiiiiiaae ittt e e e e ettt e e e e e e e e s s bbbb b e e e e e e e s mmmnneeeeeaaaeeeeees
C.L.7 ClAUSE O: ClASSES. .. .utteeeiiiieiee ettt e e e e e ettt et e e e e e e e s e e aaa b bbbaeeeeeeee s eaaammmmeneaeeeesaannn

C.1.8 Clause 12: special member functions .
C.1.9 Clause 16: preprocessing dir€CHVEScoiivuiiiiiiiiieeee et DD B

C.2 StaNdArd C lIDIArYooooeeee et e e e e e e e e e st e s ¢ c—

C.2.1 ModificationS t0 NEATEISuiiiiiiiiiieie e e e mmnneeeaeeeeeeas

C.2.2 Modifications to definitions

O R Y/ o 1< Y o] =V PP PUP TP 8....... 69
C.2.2.2 HeaderiSOBA6.N> .ot b e 699
C.2.2.3 IMACTANULL ...ttt ettt sttt ekt e e bt e ekt e e sab e e e sabe e e sabeeesnbemns 699....
C.2.3 Modifications t0 AECIArAtIONScciiiii ittt e e e 699
C.2.4 Modifications t0 DENAVIONuuiiiiiiiiie e e e e e e e e e e 699
C.2.4.1 Macrmffsetof(type , member-designator)oooicceuiiiiiieiee e 699
C.2.4.2 Memory allocation FUNCHONSoooiiiiiiiiiiie e e e emmmmmmmneen 699
Annex D (normative) Compatibility fEatUreseeeeiiiiii e 701

D.1 POSHiX INCIEMENT OPEIALONccii i ittt e e e e e e e e e e e e e e eeeeeeeaeaannn s 701

D.2 SEAC KEYWOIT ...ttt e e e et e e e e e e e e e e s nnnreeeeeaaaeeaeas 701

D.3 ACCESS UECIAIALIONSetetiiiiiiiie ettt et et e e e e e e e e bbb e e e e e e e e e s emmmmmmmeemenent 22 e 701

XXV

© ISO/IEC ISO/IEC 14882:1998(E)

D.4 Implicit conversion from CONSE STHNGSoooiiiiiiiiiiiieii e e e e e e e e e e e 701
D.5 Standard C library NEAErS...........uuuiiiiiiiiieee e e s 701
D.6 Old I0SIrEAMS MEMDEISeeiiiiiiee ettt e e et e e et e e e st e s e eaa e e seas s s memmmmmm—————— 701

[I A of o =Y Gl 1 (<Y1 0 PP 4 0 1
[A A O F= 1Y £ €Y 1 (Y= 10 01 01U T
D.7.1.1 strstreambuf (o701 41511 €1 (01 (0] £
[2 A |V 1Y 0 0] o Y=Y B] T3 (0

D.7.1.3 strstreambuf overridden virtual functions
[A O F= 1o 3] 153 1 (=T 1 [UPPPSPPRR
D.7.2.1 istrstream (oT0] 11511 41 (1 (0] £ UPRTRUPPION

D.7.2.2 Member fUNCHONSoiiiiiiece ettt e et e e e e eees

(D IR T O F= TS 91511 65) 1 £=Y= 11 1 E OO RPPUPPPR

D.7.3.1 OSIISIrEAM CONSIIUCTOISiitiieeii et e et e e e e e et e e e et e e e e et e e saaa e e et e eeatn e eannneeeran
D.7.3.2 MembBEr fUNCHONSuuiiiiiieeeie et e e e e e ettt e e e e e e e st s sm——_

D.7.4 Classtrstream
D.7.4.1 SISIIEAIM CONSIIUCTONS ...oiitiiiiiii et e et e e et e e et e e et e e et e e e et e e eaan e e et e e eatneessaneeetnaaeannnaees 711
D.7.4.2 SUSIIEAM AESITUCTON ..uuueiieiiiiii et e e e et e e e e e e et e e e e e s eeba e eeeeeesaaan e eeeeerananss 712
D.7.4.3 SIUSIEAM OPEIALIONSeiiiiiiiiiiei i e ettt e e e e e e e ettt ettt e e e e e e s e s s ababbeeeeeeaaaeaeeaaaaannbnbeneeeeas 712

XXV

ISO/IEC 14882:1998(E) © ISO/IEC

Foreword

ISO (the International Organization for Standardization) and IEC (the Inter-
national Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with
ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the
joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

International Standard ISO/IEC 14882 was prepared by Joint Technical
Committee ISO/IEC JTC 1,Information technology Subcommittee SC 22,
Programming languages, their environments and system software interfaces

Annexes D and E form an integral part of this International Standard. Annexes A
to C are for information only.

XXVi

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 14882:1998(E)

Programming languages— C++

1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for implementations of ther@yramming language.

The first such requirement is that they implement the language, and so this International Standard also
defines @+. Other requirements and relaxations of the first requirement appear at various places within
this International Standard.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:199@Programming languages- C (1.2). In addition to the facilities provided by C+€

provides additional data types, classes, templates, exceptions, namespaces, inline functions, operator over-
loading, function name overloading, references, free store management operators, and additional library

facilities.

1.2 Normative references [intro.refs]

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of IEC
and I1SO maintain registers of currently valid International Standards.

— ISO/IEC 2382 (all parts)nformation technology- Vocabulary
— ISO/IEC 9899:1990Programming languages- C
— ISO/IEC 9899/Amd.1:199Frogramming languages C, AMENDMENT 1: C Integrity

— ISO/IEC 10646-1:1993nformation technology— Universal Multiple-Octet Coded Character Set
(UCS) — Part 1: Architecture and Basic Multilingual Plane

The library described in clause 7 of ISO/IEC 9899:1990 and clause 7 of ISO/IEC 9899/Amd.1:1995 is here-
inafter called thé&tandard C Librar;})

1.3 Definitions [intro.defs]

For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following
definitions apply. 17.1 defines additional terms that are used only in clauses 17 through 27.

Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

1.3.1 argument [defns.argument]

an expression in the comma-separated list bounded by the parentheses in a function call expression, a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like
macro invocation, the operand tfrow , or an expressiontype-id or template-naméan the comma-
separated list bounded by the angle brackets in a template instantiation. Also knovactaglaargument

or actual parameter

1) with the qualifications noted in clauses 17 through 27, and in C.2, the Standard C library is a subset of the Stditatarg.C

ISO/IEC 14882:1998(E) © ISO/IEC

1.3.2 diagnostic message 1 General

1.3.2 diagnostic message [defns.diagnostic]
a message belonging to an implementation-defined subset of the implementation’s output messages.

1.3.3 dynamic type [defns.dynamic.type]
the type of the most derived object (1.8) to which the Ivalue denoted by an Ivalue expressionEréens. [
ple: if a pointer (8.3.1p whose static type iointer to clas8” is pointing to an object of clag} derived
from B (clause 10), the dynamic type of the expressoiis “D.” References (8.3.2) are treated similarly.]
The dynamic type of an rvalue expression is its static type.

1.3.4 ill-formed program [defns.ill.formed]
input to a @+ implementation that is not a well-formed program (1.3.14).

1.3.5 implementation-defined behavior [defns.impl.defined]
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation shall document.

1.3.6 implementation limits [defns.impl.limits]
restrictions imposed upon programs by the implementation.

1.3.7 locale-specific behavior [defns.locale.specific]
behavior that depends on local conventions of nationality, culture, and language that each implementation
shall document.

1.3.8 multibyte character [defns.multibyte]
a sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment. The extended character set is a superset of the basic character set (2.2).

1.3.9 parameter [defns.parameter]
an object or reference declared as part of a function declaration or definition, or in the catch clause of an
exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-
separated list bounded by the parentheses immediately following the macro name in a function-like macro
definition; or atemplate-parameterParameters are also knowrfasnal argumentsr formal parameters

1.3.10 signature [defns.signature]

the information about a function that participates in overload resolution (13.3): the types of its parameters
and, if the function is a class member, threqualifiers (if any) on the function itself and the class in which

the member function is declar@dThe signature of a template function specialization includes the types of
its template arguments (14.5.5.1).

1.3.11 static type [defns.static.type]

the type of an expression (3.9), which type results from analysis of the program without considering execu-
tion semantics. The static type of an expression depends only on the form of the program in which the
expression appears, and does not change while the program is executing.

1.3.12 undefined behavior [defns.undefined]

behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this
International Standard imposes no requirements. Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behaWote:[permissible unde-

fined behavior ranges from ignoring the situation completely with unpredictable results, to behaving during
translation or program execution in a documented manner characteristic of the environment (with or with-
out the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a
diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are

) Function signatures do not include return type, because that does not participate in overload resolution.

© ISO/IEC ISO/IEC 14882:1998(E)

1 General 1.3.12 undefined behavior

required to be diagnosed. |

1.3.13 unspecified behavior [defns.unspecified]
behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occtdstejusually, the range of possible
behaviors is delineated by this International Standard.]

1.3.14 well-formed program [defns.well.formed]
a Cr+ program constructed according to the syntax rules, diagnosable semantic rules, and the One Defini-
tion Rule (3.2).

1.4 Implementation compliance [intro.compliance]

The set ofdiagnosable rulexonsists of all syntactic and semantic rules in this International Standard
except for those rules containing an explicit notation ‘thatdiagnostic is requirédr which are described
as resulting irfundefined behavidr.

Although this International Standard states only requirements-¢rintplementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or execu-
tion of programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming implemen-
tation shall, within its resource limits, accept and correctly extdiret program.

— If a program contains a violation of any diagnosable rule, a conforming implementation shall issue at
least one diagnostic message, except that

— If a program contains a violation of a rule for which no diagnostic is required, this International Stan-
dard places no requirement on implementations with respect to that program.

For classes and class templates, the library clauses specify partial definitions. Private members (clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library clauses.

For functions, function templates, objects, and values, the library clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library clauses.

The names defined in the library have namespace scope (7.3)+ &ka@slation unit (2.1) obtains access
to these names by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). The implementa-
tion provides definitions for standard library entities, as necessary, while combining translation units to
form a complete €+ program (2.1).

Two kinds of implementations are defindtbstedand freestanding For a hosted implementation, this
International Standard defines the set of available libraries. A freestanding implementation is one in which
execution may take place without the benefit of an operating system, and has an implementation-defined set
of libraries that includes certain language-support libraries (17.4.1.3).

A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this International Standard. Having done so, how-
ever, they can compile and execute such programs.

3)«Correct executiohcan include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

ISO/IEC 14882:1998(E) © ISO/IEC

1.5 Structure of this International Standard 1 General

1.5 Structure of this International Standard [intro.structure]

Clauses 2 through 16 describe ther@rogramming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifica-
tions.

Clauses 17 through 27 (thibrary clause$ describe the Standard-€library, which provides definitions
for the following kinds of entities: macros (16.3), values (clause 3), types (8.1, 8.3), templates (clause 14),
classes (clause 9), functions (8.3.5), and objects (clause 7).

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of€since its first published description, and explains in detail the
differences between+@ and C. Certain features of-€exist solely for compatibility purposes; Annex D
describes those features.

Finally, Annex E says what characters are valid in universal-character nanteside@ifiers (2.10).

Throughout this International Standard, each example is introducH&xgmple’ and terminated by]".
Each note is introduced ByNote! and terminated bY]". Examples and notes may be nested.

1.6 Syntax notation [syntax]

In the syntax notation used in this International Standard, syntactic categories are indicttiéd tipe,

and literal words and characters donstantwidth type. Alternatives are listed on separate lines
except in a few cases where a long set of alternatives is presented on one line, marked by thenphrase
of.” An optional terminal or nonterminal symbol is indicated by the subsayt so

{ expressiop), }
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:

— X-nameis a use of an identifier in a context that determines its meaning ¢ags-nametypedef-
name.

— X-id is an identifier with no context-dependent meaning (gualified-id).

— X-seqis one or moreX’s without intervening delimiters (e.gleclaration-seqs a sequence of declara-
tions).

— X-listis one or moreX’s separated by intervening commas (esgpression-lists a sequence of expres-
sions separated by commas).

1.7 The G+ memory model [intro.memory]

The fundamental storage unit in the4Gnemory model is thbyte. A byte is at least large enough to con-

tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is callddwherder bit; the most
significant bit is called thhigh-orderbit. The memory available to a-€ program consists of one or more
sequences of contiguous bytes. Every byte has a unique address.

[Note:the representation of types is described in 3.9.]

1.8 The G+ object model [intro.object]

The constructs in a#@ program create, destroy, refer to, access, and manipulate objectshjehis a

region of storage.Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do.] An object is created bgédinition (3.1), by anew-expressiol5.3.4) or by the
implementation (12.2) when needed. The properties of an object are determined when the object is created.
An object can have mame(clause 3). An object hasstéorage duratior(3.7) which influences itbfetime

(3.8). An object has gype(3.9). The ternobject typerefers to the type with which the object is created.

© ISO/IEC ISO/IEC 14882:1998(E)

1 General 1.8 The G+ object model

Some objects angolymorphic(10.3); the implementation generates information associated with each such
object that makes it possible to determine that object’s type during program execution. For other objects,
the interpretation of the values found therein is determined by the typeefgressioa (clause 5) used to
access them.

Objects can contain other objects, caltedb-objects A sub-object can be member sub-objedB.2), a
base class sub-objeftlause 10), or an array element. An object that is not a sub-object of any other object
is called acomplete object

For every objeck, there is some object callfie complete object af, determined as follows:
— If x is a complete object, thenis the complete object af.
— Otherwise, the complete objectofs the complete object of the (unique) object that contains

If a complete object, a data member (9.2), or an array element is of class type, its type is considered the
most derivedtlass, to distinguish it from the class type of any base class subobject; an object of a most
derived class type is calledhaost derived object

Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class sub-objects may have zero size. An object%itmto&g) shall occupy
contiguous bytes of storage.

[Note: C++ provides a variety of built-in types and several ways of composing new types from existing
types (3.9).]

1.9 Program execution [intro.execution]

The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementa-
tions. In particular, they need not copy or emulate the structure of the abstract machine. Rather, conform-
ing implementations are required to emulate (only) the observable behavior of the abstract machine as
explained below)

Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for examplsizeof(int)). These constitute the parameters of the abstract
machine. Each implementation shall include documentation describing its characteristics and behavior in
these respects. Such documentation shall define the instance of the abstract machine that corresponds to
that implementation (referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). Where possible, this Interna-
tional Standard defines a set of allowable behaviors. These define the nondeterministic aspects of the
abstract machine. An instance of the abstract machine can thus have more than one possible execution
sequence for a given program and a given input.

Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer)N¢te:this International Standard imposes no requirements on the behavior
of programs that contain undefined behavior.]

A conforming implementation executing a well-formed program shall produce the same observable behav-

ior as one of the possible execution sequences of the corresponding instance of the abstract machine with
the same program and the same input. However, if any such execution sequence contains an undefined
operation, this International Standard places no requirement on the implementation executing that program

*) The acronym POD stands fgplain old datd.

This provision is sometimes called thes-if’ rule, because an implementation is free to disregard any requirement of this Interna-
tional Standard as long as the resulissfthe requirement had been obeyed, as far as can be determined from the observable behavior
of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce tligmhii$ wvsdak
and that no side effects affecting the observable behavior of the program are produced.

10

11

12

13

ISO/IEC 14882:1998(E) © ISO/IEC

1.9 Program execution 1 General

with that input (not even with regard to operations preceding the first undefined operation).

The observable behavior of the abstract machine is its sequence of reads and voit¢eto data and
calls to library 1/0 function®)

Accessing an object designated bydatile Ivalue (3.10), modifying an object, calling a library 1/10
function, or calling a function that does any of those operations aidakffectswhich are changes in the

state of the execution environment. Evaluation of an expression might produce side effects. At certain
specified points in the execution sequence cakgiience pointsall side effects of previous evaluations

shall be complete and no side effects of subsequent evaluations shall have tak@n place.

Once the execution of a function begins, no expressions from the calling function are evaluated until execu-
tion of the called function has complefad.

When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects with
type other tharvolatile sig_atomic_t are unspecified, and the value of any object not of
volatile sig_atomic_t that is modified by the handler becomes undefined.

An instance of each object with automatic storage duration (3.7.2) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous evaluations are complete and
subsequent evaluations have not yet occurred.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
messages actually appear prior to a program waiting for input. What constitutes an interactive device is
implementation-defined.

[Note: more stringent correspondences between abstract and actual semantics may be defined by each
implementation.]

A full-expressionis an expression that is not a subexpression of another expression. If a language construct
is defined to produce an implicit call of a function, a use of the language construct is considered to be an
expression for the purposes of this definition.

[Note: certain contexts in € cause the evaluation of a full-expression that results from a syntactic con-
struct other thaexpressior{5.18). For example, in 8.5 one syntaxifatializer is

(expression-list)

but the resulting construct is a function call upon a constructor functioremptiession-lisas an argument
list; such a function call is a full-expression. For example, in 8.5, another syntaitifdizer is

= initializer-clause

but again the resulting construct might be a function call upon a constructor function witbs@ranent-
expressioras an argument; again, the function call is a full-expression.]

) an implementation can offer additional library 1/0 functions as an extension. Implementations that do so should tretitas#ls to
functions as “observable behavior” as well.

Note that some aspects of sequencing in the abstract machine are unspecified; the preceding restriction upon sideesffiects appli
that particular execution sequence in which the actual code is generated. Also note that when a call to a library |/€@tumction
the side effect is considered complete, even though some external actions implied by the call (such as the I/O itsdif\aaonet
ggeted yet.

In other words, function executions do not interleave with each other.

14

15

16
17

18

© ISO/IEC ISO/IEC 14882:1998(E)

1 General 1.9 Program execution

[Note:the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that
defines the default argument.]

[Note:operators can be regrouped according to the usual mathematical rules only where the operators really
are associative or commutativeror example, in the following fragment

int a, b;

T

a=a+32760+b+5;
the expression statement behaves exactly the same as

a=(((a+32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of (dne S2760) is
next added td, and that result is then added to 5 which results in the value assigne®toa machine in
which overflows produce an exception and in which the range of values representablénby &n
[-32768,+32767], the implementation cannot rewrite this expression as

a=((a+b)+32765);

since if the values foa andb were, respectively;-32754 and-15, the suma + b would produce an
exception while the original expression would not; nor can the expression be rewritten either as

a=((a+ 32765) + b);
or
a=(a+(b+32765));

since the values foa and b might have been, respectively, 4 anfl or —17 and 12. However on a
machine in which overflows do not produce an exception and in which the results of overflows are
reversible, the above expression statement can be rewritten by the implementation in any of the above ways
because the same result will occur.]

There is a sequence point at the completion of evaluation of each fuII-eprr@ssion

When calling a function (whether or not the function is inline), there is a sequence point after the evaluation
of all function arguments (if any) which takes place before execution of any expressions or statements in
the function body. There is also a sequence point after the copying of a returned value and before the exe-
cution of any expressions outside the functfén Several contexts in4@ cause evaluation of a function

call, even though no corresponding function call syntax appears in the translatiorEnaip[e:evalua-

tion of anew expression invokes one or more allocation and constructor functions; see 5.3.4. For another
example, invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax
appears.] The sequence points at function-entry and function-exit (as described above) are features of the
function calls as evaluated, whatever the syntax of the expression that calls the function might be.

In the evaluation of each of the expressions
a&&b
allb
a?b:c
a,b

using the built-in meaning of the operators in these expressions (5.14, 5.15, 5.16, 5.18), there is a sequence

) Overloaded operators are never assumed to be associative or commutative.

As specified in 12.2, after the "end-of-full-expression" sequence point, a sequence of zero or more invocations of destructor f
tions for temporary objects takes place, usually in reverse order of the construction of each temporary object.

The sequence point at the function return is not explicitly specified in ISO C, and can be considered redundant with sequence
points at full-expressions, but the extra clarity is importantif. Gn Cr+, there are more ways in which a called function can termi-
nate its execution, such as the throw of an exception.

ISO/IEC 14882:1998(E) © ISO/IEC

1.9 Program execution 1 General

point after the evaluation of the first expresé?dn

1.10 Acknowledgments [intro.ack]

The G+ programming language as described in this International Standard is based on the language as
described in Chapter R (Reference Manual) of Strousip:G+ Programming Languagésecond edi-

tion, Addison-Wesley Publishing Company, ISBN2D1-53992-6, copyright © 1991 AT&T). That, in

turn, is based on the C programming language as described in Appendix A of Kernighan andTRgcBie:
Programming Languag@Prentice-Hall, 1978, ISBN-013-110163-3, copyright © 1978 AT&T).

Portions of the library clauses of this International Standard are based on work by P.J. Plauger, which was
published asThe Draft Standard €+ Library (Prentice-Hall, ISBN 613-117003-1, copyright © 1995
P.J. Plauger).

All rights in these originals are reserved.

%) The operators indicated in this paragraph are the built-in operators, as described in clause 5. When one of these @mpgrators is
loaded (clause 13) in a valid context, thus designating a user-defined operator function, the expression designateis\eoftatation
and the operands form an argument list, without an implied sequence point between them.

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions [lex]

The text of the program is kept in units calkwlrce filesin this International Standard. A source file
together with all the headers (17.4.1.2) and source files included (16.2) via the preprocessing directive
#include , less any source lines skipped by any of the conditional inclusion (16.1) preprocessing direc-
tives, is called #@ranslation unit [Note:a C-+ program need not all be translated at the same time.]

[Note: previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (3.5) by (for example) calls to functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce an
executable program. (3.5).]

2.1 Phases of translation [lex.phases]
The precedence among the syntax rules of translation is specified by the foIIowinglﬁ)nases.

1 Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. Trigraph
sequences (2.3) are replaced by corresponding single-character internal representations. Any source file
character not in the basic source character set (2.2) is replaced by the universal-character-name that des-
ignates that character. (An implementation may use any internal encoding, so long as an actual
extended character encountered in the source file, and the same extended character expressed in the
source file as a universal-character-name (i.e. usingi¥»XX notation), are handled equivalently.)

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. If, as a result, a character sequence that
matches the syntax of a universal-character-name is produced, the behavior is undefined. If a source
file that is not empty does not end in a new-line character, or ends in a new-line character immediately
preceded by a backslash character, the behavior is undefined.

3 The source file is decomposed into preprocessing tokens (2.4) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or partial com-
ment™’. Each comment is replaced by one space character. New-line characters are retained. Whether
each nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is implementation-defined. The process of dividing a source file's characters into pre-
processing tokens is context-dependefixample:see the handling of within a#include prepro-
cessing directive.]

4 Preprocessing directives are executed and macro invocations are expanded. If a character sequence that
matches the syntax of a universal-character-name is produced by token concatenation (16.3.3), the
behavior is undefined. #include preprocessing directive causes the named header or source file to
be processed from phase 1 through phase 4, recursively.

5 Each source character set member, escape sequence, or universal-character-name in character literals
and string literals is converted to a member of the execution character set (2.13.2, 2.13.4).

6 Adjacent ordinary string literal tokens are concatenated. Adjacent wide string literal tokens are concate-
nated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is

13) Implementations must behave as if these separate phases occur, although in practice different phases might be folded together.
14)A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token thsiarégmuir
minating sequence of characters, such heaer-namehat is missing the closiny or >. A partial comment would arise from a
source file ending with an unclos&d comment.

ISO/IEC 14882:1998(E) © ISO/IEC

2.1 Phases of translation 2 Lexical conventions

converted into a token. (2.6). The resulting tokens are syntactically and semantically analyzed and
translated. Note: Source files, translation units and translated translation units need not necessarily be
stored as files, nor need there be any one-to-one correspondence between these entities and any external
representation. The description is conceptual only, and does not specify any particular implementation.

]

8 Translated translation units and instantiation units are combined as folMmts: Jome or all of these
may be supplied from a library.] Each translated translation unit is examined to produce a list of
required instantiations. Npte: this may include instantiations which have been explicitly requested
(14.7.2).] The definitions of the required templates are located. It is implementation-defined whether
the source of the translation units containing these definitions is required to be avaldike.af
implementation could encode sufficient information into the translated translation unit so as to ensure
the source is not required here.] All the required instantiations are performed to prtaicgation
units [Note:these are similar to translated translation units, but contain no references to uninstantiated
templates and no template definitions.] The program is ill-formed if any instantiation fails.

9 All external object and function references are resolved. Library components are linked to satisfy exter-
nal references to functions and objects not defined in the current translation. All such translator output
is collected into a program image which contains information needed for execution in its execution
environment.

2.2 Character sets [lex.charset]

The basic source character sebnsists of 96 characters: the space character, the control characters repre-
senting horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical chaPicters:

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
{MIH#O)<>% ;. 2%+ - [N &~ 1=\

Theuniversal-character-nameonstruct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

The character designated by the universal-character-iaNNNNNNNE that character whose character

short name in ISO/IEC 10646 NNNNNNNNhe character designated by the universal-character-name
\uNNNN s that character whose character short name in ISO/IEC 1068608\NNN If the hexadecimal

value for a universal character name is less than 0x20 or in the range O0x7F-0x9F (inclusive), or if the uni-
versal character name designates a character in the basic source character set, then the program is ill-
formed.

The basic execution character sahd thebasic execution wide-character s&all each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and car-
riage return, plus aull character(respectivelynull wide charactey, whose representation has all zero bits.

For each basic execution character set, the values of the members shall be non-negative and distinct from
one another. Thexecution character seind theexecution wide-character sate supersets of the basic
execution character set and the basic execution wide-character set, respectively. The values of the members
of the execution character sets are implementation-defined, and any additional members are locale-specific.

Bl The glyphs for the members of the basic source character set are intended to identify characters from the subset of KBO/IEC 106
which corresponds to the ASCII character set. However, because the mapping from source file characters to the soursetcharacter
(described in translation phase 1) is specified as implementation-defined, an implementation is required to documentdiow the ba
source characters are represented in source files.

10

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions 2.3 Trigraph sequences

2.3 Trigraph sequences [lex.trigraph]

Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (trigraph sequencés$ is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences

Urigraph replacementU trigraph replacement trigraph replacemgnt

O ??= # 2?2 [27 { 0
0 22/ \ 2?)] 278 } O
g ?? N 32! | 225 - H

[Example:

??=define arraycheck(a,b) a??(b??) ??1??! b??(a??)
becomes

#define arraycheck(a,b) a[b] || b[a]
—end example

No other trigraph sequence exists. E&chihat does not begin one of the trigraphs listed above is not
changed.

2.4 Preprocessing tokens [lex.pptoken]

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

Each preprocessing token that is converted to a token (2.6) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

A preprocessing tokeis the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token &eader namesdentifiers preprocessing numbersharacter

literals, string literals preprocessing-op-or-pun@nd single non-white-space characters that do not lexi-

cally match the other preprocessing token categories! lbraa" character matches the last category, the
behavior is undefined. Preprocessing tokens can be separatdutbyspacethis consists of comments

(2.7), orwhite-space characterspace, horizontal tab, new-line, vertical tab, and form-feed), or both. As
described in clause 16, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space can appear within a preprocess-
ing token only as part of a header name or between the quotation characters in a character literal or string
literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token, even if that would
cause further lexical analysis to fail.

[Example:The program fragmerEx is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as the pair of preprocessingltaketsx might
produce a valid expression (for exampleixf were a macro defined ad). Similarly, the program frag-
mentlE1 is parsed as a preprocessing number (one that is a valid floating literal token), wheth&risr not

a macro name.]

11

ISO/IEC 14882:1998(E) © ISO/IEC

2.4 Preprocessing tokens 2 Lexical conventions

[Example:The program fragment+++++y is parsed ag ++ ++ +y |, which, ifx andy are of built-in
types, violates a constraint on increment operators, even though the parse ++ y might yield a
correct expression.]

2.5 Alternative tokens [lex.digraph]

Alternative token representations are provided for some operators and pun%:%ators

In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spellinjd). The set of alternative tokens is defined in Table 2.

Table 2—alternative tokens

Lhlternative primary U alternative primaryc! alternative prima@

o <% { O and && and_eq &= 0

O %> } Obitor | or_ldq |= g

H < [Hor Il xor_Hq N= H

o >] [Jxor n npt ! 0

U %: # Ucompl ~ nét_eq I= g

& £ H il

0 %:%: #i @ltand & 0 0O
2.6 Tokens [lex.token]

token:

identifier

keyword

literal

operator

punctuator

There are five kinds of tokens: identifiers, keywords, IiteJr%?Isnperators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectiwdiye spac®), as described
below, are ignored except as they serve to separate tokénte: $ome white space is required to separate
otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters.]

2.7 Comments [lex.comment]

The character® start a comment, which terminates with the charaétersThese comments do not nest.

The character§ start a comment, which terminates with the next new-line character. If there is a form-
feed or a vertical-tab character in such a comment, only white-space characters shall appear between it and
the new-line that terminates the comment; no diagnostic is requixede: The comment charactefs ,

/¥ , and*/ have no special meaning within/a comment and are treated just like other characters. Simi-

larly, the comment charactefs and/* have no special meaning within*a comment.]

10) These includédigraphg and additional reserved words. The témigraph (token consisting of two characters) is not perfectly
descriptive, since one of the alternative preprocessing-toké¥s%s and of course several primary tokens contain two characters.
Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially kriwigrashs.

17 Thus the'stringized values (16.3.2) of and<: will be different, maintaining the source spelling, but the tokens can otherwise be
freely interchanged.

18) Literals include strings and character and numeric literals.

12

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions 2.8 Header names

2.8 Header names [lex.header]

header-name:
<h-char-sequence
" g-char-sequence

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except
new-line and>

g-char-sequence:
g-char
g-char-sequence g-char

g-char:
any member of the source character set except
new-line and'

Header name preprocessing tokens shall only appear wittimclude preprocessing directive (16.2).
The sequences in both formstefader-name are mapped in an implementation-defined manner to headers
or to external source file names as specified in 16.2.

If either of the characters or \, or either of the character sequentesor // appears in a-char-
sequ?gce)r a h-char-sequengeor the character' appears in d&-char-sequengehe behavior is unde-
fined.

2.9 Preprocessing numbers [lex.ppnumber]

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-numbetre sign
pp-numbelE sign
pp-number.

Preprocessing number tokens lexically include all integral literal tokens (2.13.1) and all floating literal
tokens (2.13.3).

A preprocessing number does not have a type or a value; it acquires both after a successful conversion (as
part of translation phase 7, 2.1) to an integral literal token or a floating literal token.

2.10 Identifiers [lex.name]

identifier:
nondigit
identifier nondigit
identifier digit

N)Thus, sequences of characters that resemble escape sequences cause undefined behavior.

13

ISO/IEC 14882:1998(E) © ISO/IEC

2.10 Identifiers 2 Lexical conventions

nondigit one of
universal-character-name
_abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

one of
0123456789

digit:

An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an iden-
tifier shall designate a character whose encoding in ISO 10646 falls into one of the ranges specified in
Annex E. Upper- and lower-case letters are different. All characters are sigrﬁ'ﬂ)cant.

In addition, some identifiers are reserved for use-byi@plementations and standard libraries (17.4.3.1.2)
and shall not be used otherwise; no diagnostic is required.

2.11 Keywords [lex.key]

The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated
as keywords in phase 7):

Table 3—keywords

Casm do if return typedef §
uto double inline short typeid E
ool dynamic_cast int signed typename 0

break else long sizeof union 0

Ctase enum mutable static unsigned O

Ltatch explicit namespace static_cast using g
har export new struct virtual E

class extern operator switch void 0

rconst false private template volatile 0

Ctonst_cast float protected this wchar_t O

Ltontinue for public throw while g
efault friend register true E

[delete goto reinterpret_cast try 0

Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.5) are
reserved and shall not be used otherwise:

Table 4—alternative representations

Cand

ot eq or

and_eq bitand bitor not

or_eq xor

compl
xor_eq

o

“on systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used in form-
ing valid external identifiers. For example, some otherwise unused character or sequence of characters may be usedetauencode th

in a universal-character-name. Extended characters may produce a long external identifier,dmesGiot place a translation limit

on significant characters for external identifiers. Hr+Cupper- and lower-case letters are considered different for all identifiers,
including external identifiers.

14

© ISO/IEC

2 Lexical conventions

2.12 Operators and punctuators

ISO/IEC 14882:1998(E)

2.12 Operators and punctuators

[lex.operators]

The lexical representation of+€ programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc one of

] #
< > <% %> %:
new delete ? .: .
+ - * / %
| = < > +=
A= &= |= << >>
<= >= && Il ++
and and_eq bitand bitor compl
or or_eq xor Xor_eq

#Ht
%:%:

*

not

)
& [~
*= = %=
<<= == 1=
, ->* ->
not_eq

Eachpreprocessing-op-or-puris converted to a single token in translation phase 7 (2.1).

2.13 Literals
There are several kinds of Iiter&l@.

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

2.13.1 Integer literals

integer-literal:
decimal-literal integer-suffix,
octal-literal integer-suffix,
hexadecimal-literal integer-suffjx

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
012345867

[lex.literal]

[lex.icon]

“The term literar generally designates, in this International Standard, those tokens that arecradktedntsin ISO C.

15

ISO/IEC 14882:1998(E) © ISO/IEC

2.13.1 Integer literals 2 Lexical conventions

hexadecimal-digit: one of
01234567829
abocdef

A B CDEF

integer-suffix:
unsigned-suffix long-suffjx
long-suffix unsigned-suffjx

unsigned-suffix:one of
u u

long-suffix: one of
I L

An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have a
prefix that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence of
digits is the most significant. Aecimalinteger literal (base ten) begins with a digit other thand con-

sists of a sequence of decimal digits. @datal integer literal (base eight) begins with the d@ji&and con-

sists of a sequence of octal dig%'?%A hexadecimainteger literal (base sixteen) begins with or 0X and

consists of a sequence of hexadecimal digits, which include the decimal digits and tha kbiteughf

andA throughF with decimal values ten through fifteerExfample:the number twelve can be writtd2,

014, orOXC.]

The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represeinted:long int ; if the value cannot be repre-
sented as bong int , the behavior is undefined. If it is octal or hexadecimal and has no suffix, it has the
first of these types in which its value can be represeimed; unsigned int ,long int , unsigned

long int . If it is suffixed byu or U, its type is the first of these types in which its value can be repre-
senteduunsigned int , unsigned long int . If it is suffixed byl orL, its type is the first of these
types in which its value can be representedg int , unsigned long int . If it is suffixed byul ,

lu,uL, Lu, Ul,IU, UL orLU, its type isunsigned long int .

A program is ill-formed if one of its translation units contains an integer literal that cannot be represented
by any of the allowed types.

2.13.2 Character literals [lex.ccon]

character-literal:
' c-char-sequence
L’ c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quoté, backslash , or new-line character
escape-sequence
universal-character-name

“2)The digits8 and9 are not octal digits.

16

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions 2.13.2 Character literals

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequencene of
LS S VAR
\a \b \f \n \r \t W

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotesx’as, ioptionally preceded by
the letterl, as inL'x’ . A character literal that does not begin witlis an ordinary character literal, also
referred to as a narrow-character literal. An ordinary character literal that contains &-shgtdas type
char , with value equal to the numerical value of the encoding of-ttearin the execution character set.
An ordinary character literal that contains more thanmaokaris amulticharacter literal A multicharac-
ter literal has typent and implementation-defined value.

A character literal that begns with the lettersuch ad.’x’ , is a wide-character literal. A wide-character
literal has typewchar_t .) The value of a wide-character literal containing a simgtdhar has value
equal to the numerical value of the encoding ofctleharin the execution wide-character set. The value of
a wide-character literal containing multimechais is implementation-defined.

Certain nongraphic characters, the single quotide double quoté, the question marR, and the back-
slash\ , can be represented according to Table 5.

Table 5—escape sequences

Lhew-line NL(LF) \n O
orizontal tab HT \t g
[yertical tab VT \v 0
backspace BS \b 0
Ctarriage return CR \r O
Lorm feed FF \f g
lert BEL \a g
ackslash \ Vg
[Question mark ? \? 0
Csingle quote ’ \ O
Ldouble quote " * U
ctal number 000 \ooo g
ex number hhh \xhhh

The double quoté and the question mark, can be represented as themselves or by the escape sequences
\" and\? respectively, but the single quoteand the backslash shall be represented by the escape
sequences and\\ respectively. If the character following a backslash is not one of those specified, the
behavior is undefined. An escape sequence specifies a single character.

Z‘S)They are intended for character sets where a character does not fit into a single byte.

17

ISO/IEC 14882:1998(E) © ISO/IEC

2.13.2 Character literals 2 Lexical conventions

The escapgoooconsists of the backslash followed by one, two, or three octal digits that are taken to spec-
ify the value of the desired character. The estag#hh consists of the backslash followed hyollowed

by one or more hexadecimal digits that are taken to specify the value of the desired character. There is no
limit to the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a
character literal is implementation-defined if it falls outside of the implementation-defined range defined
for char (for ordinary literals) owchar_t (for wide literals).

A universal-character-name is translated to the encoding, in the execution character set, of the character
named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. Note: in translation phase 1, a universal-character-name is introduced whenever an
actual extended character is encountered in the source text. Therefore, all extended characters are described
in terms of universal-character-names. However, the actual compiler implementation may use its own
native character set, so long as the same results are obtained.]

2.13.3 Floating literals [lex.fcon]

floating-literal:
fractional-constant exponent-pggtfloating-suffixy
digit-sequence exponent-part floating-siffix

fractional-constant:
digit-sequencg, . digit-sequence
digit-sequence.

exponent-part:
e sign,, digit-sequence
E sign,, digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
fl FL

A floating literal consists of an integer part, a decimal point, a fraction pagtpak, an optionally signed

integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be omitted; either the
decimal point or the lettee (or E) and the exponent (not both) can be omitted. The integer part, the
optional decimal point and the optional fraction part formdigmificant partof the floating literal. The
exponent, if present, indicates the power of 10 by which the significant part is to be scaled. If the scaled
value is in the range of representable values for its type, the result is the scaled value if representable, else
the larger or smaller representable value nearest the scaled value, chosen in an implementation-defined
manner. The type of a floating literaldsuble unless explicitly specified by a suffix. The suffixesind

F specifyfloat , the suffixed andL specifylong double . If the scaled value is not in the range of
representable values for its type, the program is ill-formed.

18

© ISO/IEC ISO/IEC 14882:1998(E)

2 Lexical conventions 2.13.3 Floating literals
2.13.4 String literals [lex.string]
string-literal:

" s-char-sequengg’
L" s-char-sequengg’

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quot&, backslash , or new-line character
escape-sequence
universal-character-name

A string literal is a sequence of characters (as defined in 2.13.2) surrounded by double quotes, optionally
beginning with the lettelr, as in"..." orL".." . A string literal that does not begin withis an ordi-

nary string literal, also referred to as a narrow string literal. An ordinary string literal hasatyag ofn

const char " andstatic storage duration (3.7), whengs the size of the string as defined below, and is
initialized with the given characters. A string literal that begins Wjteuch ad "asdf' , is a wide string

literal. A wide string literal has typ&array ofn const wchar_t " and has static storage duration, where

nis the size of the string as defined below, and is initialized with the given characters.

Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-
defined. The effect of attempting to modify a string literal is undefined.

In translation phase 6 (2.1), adjacent narrow string literals are concatenated and adjacent wide string literals
are concatenated. If a narrow string literal token is adjacent to a wide string literal token, the behavior is
undefined. Characters in concatenated strings are kept distixetmple:

"\XA" "B"

contains the two charactekgA’ and’B’ after concatenation (and not the single hexadecimal character
XAB').]

After any necessary concatenation, in translation phase 7°({Q'1), is appended to every string literal so
that programs that scan a string can find its end.

Escape sequences and universal-character-names in string literals have the same meaning as in character lit-
erals (2.13.2), except that the single quois representable either by itself or by the escape seqtience

and the double quoteshall be preceded by\a In a narrow string literal, a universal-character-name may

map to more than orehar element due tenultibyte encoding The size of a wide string literal is the total

number of escape sequences, universal-character-names, and other characters, plus one for the terminating
L"\O' . The size of a narrow string literal is the total number of escape sequences and other characters,
plus at least one for the multibyte encoding of each universal-character-name, plus one for the terminating
O’

2.13.5 Boolean literals [lex.bool]

boolean-literal:
false
true

The Boolean literals are the keywoffdise andtrue . Such literals have tygwmol . They are not Ival-
ues.

19

ISO/IEC 14882:1998(E)

20

(Blank page)

© ISO/IEC

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3 Basic concepts

3 Basic concepts [basic]

[Note: this clause presents the basic concepts of #el@hguage. It explains the difference between an
objectand anameand how they relate to the notion oflgalue It introduces the concepts oflaclaration

and adefinitionand presents+3's notion oftype scope linkage andstorage duration The mechanisms

for starting and terminating a program are discussed. Finally, this clause presents the fundamental types of
the language and lists the ways of construatimmpoundypes from these.

This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses. |

An entityis a value, object, subobject, base class subobject, array element, variable, function, instance of a
function, enumerator, type, class member, template, or namespace.

A nameis a use of an identifier (2.10) that denotes an entitglml (6.6.4, 6.1). Avariableis introduced
by the declaration of an object. The variable’s name denotes the object.

Every name that denotes an entity is introduced dbgctaration Every name that denotes a label is intro-
duced either by goto statement (6.6.4) orlabeled-statemen{6.1).

Some names denote types, classes, enumerations, or templates. In general, it is necessary to determine
whether or not a name denotes one of these entities before parsing the program that contains it. The process
that determines this is calledme lookug3.4).

Two names arthe saméf

— they are identifiers composed of the same character sequence; or

— they are the names of overloaded operator functions formed with the same operator; or

— they are the names of user-defined conversion functions formed with the same type.

An identifier used in more than one translation unit can potentially refer to the same entity in these transla-
tion units depending on the linkage (3.5) of the identifier specified in each translation unit.

3.1 Declarations and definitions [basic.def]

A declaration (clause 7) introduces names into a translation unit or redeclares names introduced by previous
declarations. A declaration specifies the interpretation and attributes of these names.

A declaration is aefinition unless it declares a function without specifying the function’s body (8.4), it
contains theextern specifier (7.1.1) or dinkage-specificatio%"') (7.5) and neither amitializer nor a
function-body it declares a static data member in a class declaration (9.4), it is a class name declaration
(9.1), or it is aypedef declaration (7.1.3), asing-declaration(7.3.3), or ausing-directivg(7.3.4).

24) Appearing inside the braced-enclositlaration-sedn alinkage-specificatiomloes not affect whether a declaration is a defini-
tion.

21

ISO/IEC 14882:1998(E)

3.1 Declarations and definitions

[Example:all but one of the following are definitions:

int a;
extern constintc =1;
int f(int x) { return x+a; }
struct S {int a; intb; };
struct X {

int x;

static int y;

X0: x(0) {}

int Xy = 1;

enum { up, down };
namespace N {intd; }
namespace N1 = N;

X anX;

1
1

1

whereas these are just declarations:

externint a;

extern const int c;
int f(int);

struct S;

typedef int Int;
extern X anotherX;
using N::d;

—end example

[Note:in some circumstances;+€ implementations implicitly define the default constructor (12.1), copy

I
1
1
1
I
I
)

definesa

definesc

defined and definex

definesS, S::a , andS::b
definesX

defines nonstatic data member
declares static data membgr
defines a constructor of

definesX:y
definesup and down
definesNand N::d
definesN1
definesanX

declaresa
declaresc
declaresf
declaresS
declaresint
declaresanotherX
declaresN::d

© ISO/IEC

3 Basic concepts

constructor (12.8), assignment operator (12.8), or destructor (12.4) member fundiarsple:given

I

string s the standard library class (clause 21)

the implementation will implicitly define functions to make the definitio€@quivalent to

struct C {
string s;

3

int main()

{
Ca;
Cb=a;
b =a;

}

struct C {
string s;
CO:sO{}

C(const C& x): s(x.s) {}
C& operator=(const C& x) { s = x.s; return *this; }

~C({}
k

—end example—end not¢

[Note:a class name can also be implicitly declared bglaborated-type-specifi€B.3.1).]

A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).

3.2 One definition rule

No translation unit shall contain more than one definition of any variable, function, class type, enumeration

type or template.

22

[basic.def.odr]

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.2 One definition rule

An expression ipotentially evaluatedinless either it is the operand of #ieeof operator (5.3.3), oritis

the operand of theypeid operator and does not designate an Ivalue of polymorphic class type (5.2.8).
An object or non-overloaded functionusedif its name appears in a potentially-evaluated expression. A
virtual member function is used if it is not pure. An overloaded function is used if it is selected by overload
resolution when referred to from a potentially-evaluated expresdimte:fthis covers calls to named func-

tions (5.2.2), operator overloading (clause 13), user-defined conversions (12.3.2), allocation function for
placement new (5.3.4), as well as non-default initialization (8.5). A copy constructor is used even if the call
is actually elided by the implementation.] An allocation or deallocation function for a class is used by a
new expression appearing in a potentially-evaluated expression as specified in 5.3.4 and 12.5. A dealloca-
tion function for a class is used by a delete expression appearing in a potentially-evaluated expression as
specified in 5.3.5 and 12.5. A copy-assignment function for a class is used by an implicitly-defined copy-
assignment function for another class as specified in 12.8. A default constructor for a class is used by
default initialization as specified in 8.5. A constructor for a class is used as specified in 8.5. A destructor
for a class is used as specified in 12.4.

Every program shall contain exactly one definition of every non-inline function or object that is used in that
program; no diagnostic required. The definition can appear explicitly in the program, it can be found in the
standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8).
An inline function shall be defined in every translation unit in which it is used.

Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the
class type to be completeEample:the following complete translation unit is well-formed, even though it
never definex:

struct X; I declareX as a struct type
struct X* x1; I useXin pointer formation
X* X2; 1 useX in pointer formation

—end examplig Note:the rules for declarations and expressions describe in which contexts complete class
types are required. A class typenust be complete if:

— an object of typd is defined (3.1, 5.3.4), or
— an Ivalue-to-rvalue conversion is applied to an Ivalue referring to an object of t4pb), or
— an expression is converted (either implicitly or explicitly) to tyqelause 4, 5.2.3, 5.2.7, 5.2.9, 5.4), or

— an expression that is not a null pointer constant, and has type otheoitiagn , is converted to the
type pointer tal or reference td@ using an implicit conversion (clause 4ynamic_cast (5.2.7) or
astatic_cast (5.2.9), or

— a class member access operator is applied to an expression Bf(5/geb), or

— thetypeid operator (5.2.8) or theizeof operator (5.3.3) is applied to an operand of fiper
— a function with a return type or argument type of type defined (3.1) or called (5.2.2), or

— an Ivalue of typd is assigned to (5.17).]

There can be more than one definition of a class type (clause 9), enumeration type (7.2), inline function
with external linkage (7.1.2), class template (clause 14), non-static function template (14.5.5), static data
member of a class template (14.5.1.3), member function template (14.5.1.1), or template specialization for
which some template parameters are not specified (14.7, 14.5.4) in a program provided that each definition
appears in a different translation unit, and provided the definitions satisfy the following requirements.
Given such an entity namé&xdefined in more than one translation unit, then

— each definition oD shall consist of the same sequence of tokens; and

— in each definition oD, corresponding names, looked up according to 3.4, shall refer to an entity defined
within the definition ofD, or shall refer to the same entity, after overload resolution (13.3) and after
matching of partial template specialization (14.8.3), except that a hame can refeorist a object
with internal or no linkage if the object has the same integral or enumeration type in all definiiipns of

23

ISO/IEC 14882:1998(E) © ISO/IEC

3.2 One definition rule 3 Basic concepts

and the object is initialized with a constant expression (5.19), and the value (but not the address) of the
object is used, and the object has the same value in all definitinsuod

— in each definition oD, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function, or to
a function defined within the definition &f and

— in each definition oD, a default argument used by an (implicit or explicit) function call is treated as if
its token sequence were present in the definitidp; diiat is, the default argument is subject to the three
requirements described above (and, if the default argument has sub-expressions with default arguments,
this requirement applies recursivety).

— if Dis a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly
defined in every translation unit where it is used, and the implicit definition in every translation unit
shall call the same constructor for a base class or a class meribgEahmple:

/I translation unit 1:
struct X {
X(int);
X(int, int);

I3

X:X(int=0){}

class D: public X { };

D d2; /I X(int) called byD()

/I translation unit 2:
struct X {
X(int);
X(int, int);
2
X:X(int=0,int=0){}
class D: public X { }; 1 X(@int, int) called byD();
/I D() ’s implicit definition
/I violates the ODR

—end examplelf Dis a template, and is defined in more than one translation unit, then the last four
requirements from the list above shall apply to names from the template’s enclosing scope used in the
template definition (14.6.3), and also to dependent names at the point of instantiation (14.6.2). If the
definitions of D satisfy all these requirements, then the program shall behave as if there were a single
definition of D. If the definitions oD do not satisfy these requirements, then the behavior is undefined.

3.3 Declarative regions and scopes [basic.scope]

Every name is introduced in some portion of program text caltstkarative regiopwhich is the largest

part of the program in which that namevalid, that is, in which that name may be used as an unqualified
name to refer to the same entity. In general, each particular name is valid only within some possibly dis-
contiguous portion of program text called $isope To determine the scope of a declaration, it is some-
times convenient to refer to tipetential scopef a declaration. The scope of a declaration is the same as

its potential scope unless the potential scope contains another declaration of the same name. In that case,
the potential scope of the declaration in the inner (contained) declarative region is excluded from the scope
of the declaration in the outer (containing) declarative region.

29)8 3.6 describes how default argument names are looked up.

24

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.3 Declarative regions and scopes

[Examplein
intj = 24,
int main()
inti=j,j;
j=42
}
the identifierj is declared twice as a hame (and used twice). The declarative region of therfaisides
the entire example. The potential scope of theffils¢gins immediately after thatand extends to the end
of the program, but its (actual) scope excludes the text betweeratid the} . The declarative region of
the second declaration pf(thej immediately before the semicolon) includes all the text betyesrd} ,
but its potential scope excludes the declaration.ofhe scope of the second declaratiof d the same
as its potential scope.]

The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence offaend specifier (11.4), certain uses of thkaborated-type-specifigf3.3.1), and
using-directive (7.3.4) alter this general behavior.

Given a set of declarations in a single declarative region, each of which specifies the same unqualified
name,

— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name and
the other declarations shall all refer to the same object or enumerator, or all refer to functions and func-
tion templates; in this case the class hame or enumeration name is hidden (R@&§&%)a famespace
name or a class template name must be unique in its declarative region (7.3.2, clause 14).]

[Note:these restrictions apply to the declarative region into which a name is introduced, which is not neces-

sarily the same as the region in which the declaration occurs. In partielalborated-type-specifisr

(3.3.1) and friend declarations (11.4) may introduce a (possibly not visible) name into an enclosing hame-

space; these restrictions apply to that region. Local extern declarations (3.5) may introduce a name into the
declarative region where the declaration appears and also introduce a (possibly not visible) name into an
enclosing namespace; these restrictions apply to both regions.]

[Note:the name lookup rules are summarized in 3.4.]

3.3.1 Point of declaration [basic.scope.pdecl]

The point of declaratiorfor a hame is immediately after its complete declarator (clause 8) and before its
initializer (if any), except as noted belowExample:

intx =12;
{intx=x;}

Here the seconx is initialized with its own (indeterminate) value.]

[Note: a nonlocal nhame remains visible up to the point of declaration of the local name that hides it.
[Example:

constint i=2;
{int ifi]; }
declares a local array of two integers.]]
The point of declaration for an enumerator is immediately aftenitsnerator-definition [Example:

constintx=12;
{enum {x=x};}

Here, the enumerataris initialized with the value of the constantnamely 12.]

25

ISO/IEC 14882:1998(E) © ISO/IEC

3.3.1 Point of declaration 3 Basic concepts

After the point of declaration of a class member, the member name can be looked up in the scope of its
class. Note:this is true even if the class is an incomplete class. For example,

struct X {
enumE{z=16};
int b[X::z]; 1 OK
I8
—end not¢

The point of declaration of a class first declared ielaborated-type-specifiés as follows:

— for anelaborated-type-specifief the form
class-key identifier;

the elaborated-type-specifiedeclares thédentifier to be aclass-naman the scope that contains the
declaration, otherwise

— for anelaborated-type-specifiaf the form
class-key identifier

if the elaborated-type-specifies used in thelecl-specifier-se@r parameter-declaration-clausef a
function defined in namespace scope, ittentifier is declared as alass-nameén the namespace that
contains the declaration; otherwise, except as a friend declaratiodetiifer is declared in the small-
est non-class, non-function-prototype scope that contains the declaratiote: if the elaborated-
type-specifiedesignates an enumeration, itlentifier must refer to an already declamgum-name If
the identifier in the elaborated-type-specifieis a qualified-id it must refer to an already declared
class-namer enum-name See 3.4.4. |

[Note:friend declarations refer to functions or classes that are members of the nearest enclosing namespace,
but they do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope
and object declarations with tlegtern specifier at block scope refer to delarations that are members of

an enclosing namespace, but they do not introduce new names into that scope.]

[Note: For point of instantiation of a template, see 14.7.1.]

3.3.2 Local scope [basic.scope.local]

A name declared in a block (6.3) is local to that block. Its potential scope begins at its point of declaration
(3.3.1) and ends at the end of its declarative region.

The potential scope of a function parameter name in a function definition (8.4) begins at its point of decla-
ration. If the function has fainction try-blockthe potential scope of a parameter ends at the end of the last
associated handler, else it ends at the end of the outermost block of the function definition. A parameter
name shall not be redeclared in the outermost block of the function definition nor in the outermost block of
any handler associated withuaction try-block .

The name in &atch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

Names declared in tHer-init-statementand in theconditionof if , while , for , andswitch statements
are local to théf , while , for , orswitch statement (including the controlled statement), and shall not
be redeclared in a subsequent condition of that statement nor in the outermost block (oif fosttte-
ment, any of the outermost blocks) of the controlled statement; see 6.4.

3.3.3 Function prototype scope [basic.scope.proto]

In a function declaration, or in any function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest
enclosing function declarator.

26

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.3.4 Function scope

3.3.4 Function scope [basic.funscope]

Labels (6.1) havéunction scopeand may be used anywhere in the function in which they are declared.
Only labels have function scope.

3.3.5 Namespace scope [basic.scope.namespace]

The declarative region ofrmamespace-definitiois its namespace-bodyThe potential scope denoted by an
original-namespace-names the concatenation of the declarative regions established by each of the
namespace-definitioria the same declarative region with tbaginal-namespace-nameEntities declared

in anamespace-bodyre said to benember®f the namespace, and nhames introduced by these declarations

into the declarative region of the namespace are saidrteebder namesf the namespace. A namespace
member name has namespace scope. Its potential scope includes its hamespace from the name’s point of
declaration (3.3.1) onwards; and for earding-directive(7.3.4) that nominates the member’'s namespace,

the member’s potential scope includes that portion of the potential scopeusfripedirectivethat follows

the member’s point of declarationEample:

namespace N {
inti;
int g(int a) { return a; }
int j();
void q();
}
namespace {int I=1; }
/I the potential scope ¢fis from its point of declaration
/I to the end of the translation unit

namespace N {

int g(char a) 1 overloadsN::g(int)
return |+a; I | is from unnamed namespace
}
int i; Il error: duplicate definition
int j(); 1l OK: duplicate function declaration
int j() 1l OK: definition ofN::j()
{
return g(i); I calls N::g(int)
}
int q(); I error: different return type
}
—end example

A namespace member can also be referred to after thecope resolution operator (5.1) applied to the
name of its namespace or the name of a namespace which nominates the member's namasgiage in a
directive;see 3.4.3.2.

A name declared outside all named or unnamed namespaces (7.3), blocks (6.3), function declarations
(8.3.5), function definitions (8.4) and classes (clause 9)glasl namespace scopealso calledglobal

scop@. The potential scope of such a name begins at its point of declaration (3.3.1) and ends at the end of
the translation unit that is its declarative region. Names declared in the global namespace scope are said to
beglobal.

3.3.6 Class scope [basic.scope.class]
The following rules describe the scope of names declared in classes.

1) The potential scope of a name declared in a class consists not only of the declarative region following
the name’s declarator, but also of all function bodies, default arguments, and consttoictor

27

ISO/IEC 14882:1998(E) © ISO/IEC

3.3.6 Class scope 3 Basic concepts

initializersin that class (including such things in nested classes).

2) AnameNused in a clasS shall refer to the same declaration in its context and when re-evaluated in the
completed scope @&. No diagnostic is required for a violation of this rule.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the pro-
gram is ill-formed, no diagnostic is required.

4) A name declared within a member function hides a declaration of the same name whose scope extends
to or past the end of the member function’s class.

5) The potential scope of a declaration that extends to or past the end of a class definition also extends to
the regions defined by its member definitions, even if the members are defined lexically outside the
class (this includes static data member definitions, nested class definitions, member function definitions
(including the member function body and, for constructor functions (12.1), the ctor-initializer (12.6.2))
and any portion of the declarator part of such definitions which follows the identifier, including a
parameter-declaration-clausend any default arguments (8.3.6FExgmple:

typedefint c;

enum{i=1}
class X {
char V[i]; 1 error: i refers to::i
/I but when reevaluated }::i
int () { return sizeof(c); } i OK: X::c
char c;
enum{i=2}
b
typedef char* T,;
struct Y {
T a; 1 error: T refers to:: T

/I but when reevaluated ¥.:T
typedeflong T,;
T b;
5

typedef int I;
class D {
typedef I [; 1 error, even though no reordering involved

2
—end example
The name of a class member shall only be used as follows:
— in the scope of its class (as described above) or a class derived (clause 10) from its class,

— after the. operator applied to an expression of the type of its class (5.2.5) or a class derived from its
class,

— after the-> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its class,

— after the:: scope resolution operator (5.1) applied to the name of its class or a class derived from its
class.

3.3.7 Name hiding [basic.scope.hiding]

A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class (10.2).

A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumer-
ator declared in the same scope. If a class or enumeration name and an object, function, or enumerator are

28

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.3.7 Name hiding

declared in the same scope (in any order) with the same name, the class or enumeration name is hidden
wherever the object, function, or enumerator name is visible.

In a member function definition, the declaration of a local name hides the declaration of a member of the
class with the same name; see 3.3.6. The declaration of a member in a derived class (clause 10) hides the
declaration of a member of a base class of the same name; see 10.2.

During the lookup of a name qualified by a hamespace name, declarations that would otherwise be made
visible by ausing-directivecan be hidden by declarations with the same name in the namespace containing
theusing-directivesee (3.4.3.2).

If a name is in scope and is not hidden it is said taidible

3.4 Name lookup [basic.lookup]

The name lookup rules apply uniformly to all names (includypgdef-nameé7.1.3), namespace-names

(7.3) andclass-name$9.1)) wherever the grammar allows such names in the context discussed by a partic-
ular rule. Name lookup associates the use of a name with a declaration (3.1) of that name. Name lookup
shall find an unambiguous declaration for the name (see 10.2). Name lookup may associate more than one
declaration with a name if it finds the name to be a function name; the declarations are said to form a set of
overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded. The
access rules (clause 11) are considered only once name lookup and function overload resolution (if applica-
ble) have succeeded. Only after name lookup, function overload resolution (if applicable) and access
checking have succeeded are the attributes introduced by the name’s declaration used further in expression
processing (clause 5).

A name“looked up in the context of an expressianlooked up as an unqualified name in the scope where
the expression is found.

Because the name of a class is inserted in its class scope (clause 9), the name of a class is also considered a
member of that class for the purposes of name hiding and lookup.

[Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are dis-
cussed in 3.3.]

3.4.1 Unqualified name lookup [basic.lookup.unqual]

In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program is ill-formed.

The declarations from the namespace nominated bgirsg-directivebecome visible in a namespace
enclosing thaising-directive see 7.3.4. For the purpose of the unqualified name lookup rules described in
3.4.1, the declarations from the namespace nominated hysihg-directiveare considered members of
that enclosing namespace.

The lookup for an unqualified name used aspbstfix-expressioof a function call is described in 3.4.2.
[Note: for purposes of determining (during parsing) whether an expressiopdstfix-expressioffor a

function call, the usual name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpre-
tation of an expression. For example,

typedef int f;

struct A {
friend void f(A &);
operator int();
void g(A a) {
f(a);
}
I8
The expressiofia) is acast-expressiopquivalent tdnt(a) . Because the expression is not a function

29

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.1 Unqualified name lookup 3 Basic concepts

call, the argument-dependent name lookup (3.4.2) does not apply and the friend furctiohfound.]

A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
before its use in global scope.

A name used in a user-declared namespace outside of the definition of any function or class shall be
declared before its use in that namespace or before its use in a namespace enclosing its namespace.

A name used in the definition of a functfShthat is a member of namespadééwhere, only for the pur-

pose of expositior\ could represent the global scope) shall be declared before its use in the block in which
it is used or in one of its enclosing blocks (6.3) or, shall be declared before its use in naiespéideis

a nested namespace, shall be declared before its use inNisentlosing namespaces.

[Example:

namespace A {
namespace N {
void f();
}

}

void A:N:f() {
i=5;
/I The following scopes are searched for a declaratian: of
/I 1) outermost block scope Af:N::f , before the use of
/I 2) scope of namespabk
/I 3) scope of namespage
/I 4) global scope, before the definitionAafN::f

}

—end example

A name used in the definition of a classutside of a member function body or nested class defifftion
shall be declared in one of the following ways:

— before its use in classor be a member of a base clasX¢10.2), or

— if Xis a nested class of clag$9.7), before the definition of in Y, or shall be a member of a base class
of Y (this lookup applies in turn tg's enclosing classes, starting with the innermost enclosing 3@33),
or

— if Xis a local class (9.8) or is a nested class of a local class, before the definition &finlasblock
enclosing the definition of clas§ or

— if Xiis a member of namespaldeor is a nested class of a class that is a membérafis a local class
or a nested class within a local class of a function that is a memNgebefore the definition of clasé
in namespachl or in one ofN's enclosing namespaces.

[Example:

namespace M {
class B {};
}

20) This refers to unqualified names following the function declarator; such a name may be used as a type or as a default argument
name in theparameter-declaration-clauser may be used in the function body.

This refers to unqualified names following the class name; such a name may be usedse-tlauser may be used in the class
de;inition.

This lookup applies whether the definitionXfis nested withirY’s definition or whetheiX's definition appears in a namespace
scope enclosiny’s definition (9.7).

30

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.4.1 Unqualified name lookup

namespace N {
class Y : public M::B {
class X {
int al[i];

h

/I The following scopes are searched for a declaratian of
/I 1) scope of clasN::Y::X , before the use of

/I 2) scope of clasN::Y , before the definition dfi::Y:: X

/I 3) scope oN::Y ’s base clas$/::B

/I 4) scope of namespabk before the definition dfi::Y

/I 5) global scope, before the definitionf

—end examplig Note:when looking for a prior declaration of a class or function introducedfigral

declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2.]
[Note:3.3.6 further describes the restrictions on the use of names in a class definition. 9.7 further describes
the restrictions on the use of names in nested class definitions. 9.8 further describes the restrictions on the
use of names in local class definitions.]

A name used in the definition of a function that is a member functior‘??bo%)classx shall be declared in
one of the following ways:

— before its use in the block in which it is used or in an enclosing block (6.3), or
— shall be a member of cla¥sor be a member of a base clasX¢10.2), or

— if Xis a nested class of clagg9.7), shall be a member ¥f or shall be a member of a base clas¥ of
(this lookup applies in turn t@'s enclosing classes, starting with the innermost enclosing 89&158),

— if Xis a local class (9.8) or is a nested class of a local class, before the definition &finlasblock
enclosing the definition of clas§ or

— if Xiis a member of namespaldeor is a nested class of a class that is a membérafis a local class
or a nested class within a local class of a function that is a membkbefore the member function
definition, in namespadd or in one ofN's enclosing namespaces.

[Example:

class B{};
namespace M {
namespace N {
class X : public B {
void f();
2
}

}

void M::N::X::f() {
i=16;

}

I That is, an unqualified name following the function declarator; such a name may be used as a type or as a default argiiment name
the parameter-declaration-clauser may be used in the function body, or, if the function is a constructor, may be used in the expres-
sion of amem-initializer

This lookup applies whether the member function is defined within the definition ofXlaissshether the member function is
defined in a namespace scope encloXisglefinition.

31

10

11

12

13

14

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.1 Unqualified name lookup 3 Basic concepts

/I The following scopes are searched for a declaration of

/I 1) outermost block scope Mif:N::X::f , before the use of
Il 2) scope of clashl::N:: X

/I 3) scope oM::N::X ’s base clas8

/I 4) scope of namespab&:N

/I 5) scope of namespabé

/I 6) global scope, before the definition\f:N::X::f

—end exampleg Note:9.3 and 9.4 further describe the restrictions on the use of names in member function
definitions. 9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8 fur-
ther describes the restrictions on the use of names in local class definitions.]

Name lookup for a name used in the definition dfiend function (11.4) defined inline in the class
granting friendship shall proceed as described for lookup in member function definitions friérnde
function is not defined in the class granting friendship, name lookup ifriémel function definition
shall proceed as described for lookup in namespace member function definitions.

In afriend declaration naming a member function, a name used in the function declarator and not part of
atemplate-argumerinh atemplate-idis first looked up in the scope of the member function’s class. If it is
not found, or if the name is part oftemplate-argumenin atemplate-id the look up is as described for
unqualified names in the definition of the class granting friendskparpple:

struct A {
typedef int AT,;
void f1(AT);
void f2(float);
I8
struct B {
typedef float BT;
friend void A::fL(AT); // parameter type i&\::AT
friend void A::f2(BT); // parameter type i8::BT
I3
—end example

During the lookup for a name used as a default argument (8.3.6) in a fyretaoneter-declaration-clause

or used in thexpressiorof a meme-initializerfor a constructor (12.6.2), the function parameter names are
visible and hide the names of entities declared in the block, class or namespace scopes containing the func-
tion declaration. Nlote: 8.3.6 further describes the restrictions on the use of names in default arguments.
12.6.2 further describes the restrictions on the use of namesartiaitializer.]

A name used in the definition ofsdatic = data member of class (9.4.2) (after thequalified-id of the
static member) is looked up as if the name was used in a member funchon[bte: 9.4.2 further
describes the restrictions on the use of names in the definitiostati@a data member.]

A name used in the handler fofumction-try-block(clause 15) is looked up as if the name was used in the
outermost block of the function definition. In particular, the function parameter names shall not be rede-
clared in theexception-declaratiomor in the outermost block of a handler for flumction-try-block

Names declared in the outermost block of the function definition are not found when looked up in the scope
of a handler for théunction-try-block [Note:but function parameter names are found.]

[Note:the rules for name lookup in template definitions are described in 14.6.]

3.4.2 Argument-dependent name lookup [basic.lookup.koenig]

When an unqualified name is used aspbstfix-expressiom a function call (5.2.2), other namespaces not
considered during the usual unqualified lookup (3.4.1) may be searched, and namespace-scope friend func-
tion declarations (11.4) not otherwise visible may be found. These modifications to the search depend on
the types of the arguments (and for template template arguments, the namespace of the template argument).

32

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.4.2 Argument-dependent name lookup

For each argument tygein the function call, there is a set of zero or more associated namespaces and a set

of zero or more associated classes to be considered. The sets of hamespaces and classes is determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names andsing-declaratios used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If Tis a fundamental type, its associated sets of namespaces and classes are both empty.

— If T is a class type, its associated classes are the class itself and its direct and indirect base classes. Its
associated namespaces are the namespaces in which its associated classes are defined.

— If T is a union or enumeration type, its associated namespace is the namespace in which it is defined. If
it is a class member, its associated class is the member’s class; else it has no associated class.

— If Tis a pointer tdJ or an array ofJ, its associated namespaces and classes are those associdted with

— If T is a function type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If Tis a pointer to a member function of a clxs#ts associated namespaces and classes are those asso-
ciated with the function parameter types and return type, together with those associated with

— If Tis a pointer to a data member of clXséts associated namespaces and classes are those associated
with the member type together with those associatedXvith

— If T is atemplate-id its associated namespaces and classes are the namespace in which the template is
defined; for member templates, the member template’s class; the namespaces and classes associated
with the types of the template arguments provided for template type parameters (excluding template
template parameters); the namespaces in which any template template arguments are defined; and the
classes in which any member templates used as template template arguments are Nefieatbnf
type template arguments do not contribute to the set of associated namespaces.]

If the ordinary unqualified lookup of the name finds the declaration of a class member function, the associ-
ated namespaces and classes are not considered. Otherwise the set of declarations found by the lookup of
the function name is the union of the set of declarations found using ordinary unqualified lookup and the set
of declarations found in the namespaces and classes associated with the argumeiigpgsde: [

namespace NS {
classT{};
void f(T);
}
NS::T parm;
int main() {
f(parm); 1 OK: callsNS::f

—end example

When considering an associated namespace, the lookup is the same as the lookup performed when the asso-
ciated namespace is used as a qualifier (3.4.3.2) except that:

— Any using-directive in the associated namespace are ignored.

— Any namespace-scope friend functions declared in associated classes are visible within their respective
namespaces even if they are not visible during an ordinary lookup (11.4).

3.4.3 Qualified name lookup [basic.lookup.qual]

The name of a class or namespace member can be referred to aftersttepe resolution operator (5.1)
applied to anested-name-specifi¢ghat hominates its class or namespace. During the lookup for a name
preceding the: scope resolution operator, object, function, and enumerator names are ignored. If the
name found is not aelass-naméclause 9) onamespace-namg.3.1), the program is ill-formed Ekam-

ple:

33

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.3 Qualified name lookup 3 Basic concepts
class A {
public:
static int n;
I3
int main()
int A;
A:n=42; 1 OK
Ab; 1 ill-formed: A does not name a type
}
—end example
[Note: Multiply qualified names, such d$1::N2::N3::n , can be used to refer to members of nested

classes (9.7) or members of nested namespaces. |

In a declaration in which thdeclarator-id is a qualified-id names used before thyialified-id being
declared are looked up in the defining namespace scope; names followinmlified-id are looked up in
the scope of the member’s class or namespdoaniple:

class X {};

class C{
class X {};
static const int number = 50;
static X arr[number];

I3
X C::arr[numberf; I ill-formed:
/I equivalent to::X C::arr[C::number];
/I not to: C::X C::arr[C::numberl];
—end example

A name prefixed by the unary scope operator(5.1) is looked up in global scope, in the translation unit

where it is used. The name shall be declared in global namespace scope or shall be a name whose declara-
tion is visible in global scope because afsing-directivg(3.4.3.2). The use of allows a global name to

be referred to even if its identifier has been hidden (3.3.7).

If a pseudo-destructor-nam.2.4) contains anested-name-specifiethe type-name are looked up as
types in the scope designated byksted-name-specifiein aqualified-id of the form:

T optNEsted-name-specifier class-name
where thenested-name-specifidesignates a namespace scope, andjuakfied-id of the form:
I optNEsted-name-specifier class-name- class-name
theclass-nams are looked up as types in the scope designated bgshed-name-specifiefExample:

struct C {

typedef int [;
3
typedef int I1, 12;
extern int* p;

extern int* q;
p->C::1::~1(); I | is looked up in the scope Gf

g->11::~12(); 1 12 is looked up in the scope of
/I the postfix-expression

34

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.4.3 Qualified name lookup

struct A {

~A(;
I3
typedef A AB;
int main()

AB *p;
p->AB::~AB(); 1 explicitly calls the destructor fok
}

—end examplg Note:3.4.5 describes how name lookup proceeds after therd-> operators.]

3.4.3.1 Class members [class.qual]

If the nested-name-specifieff a qualified-id nominates a class, the name specified aftenésted-name-
specifieris looked up in the scope of the class (10.2), except for the cases listed below. The name shall rep-
resent one or more members of that class or of one of its base classes (clauNet&03. cJass member

can be referred to usingcualified-id at any point in its potential scope (3.3.6).] The exceptions to the
name lookup rule above are the following:

— a destructor name is looked up as specified in 3.4.3;

— a conversion-type-iaf an operator-function-idis looked up both in the scope of the class and in the
context in which the entingostfix-expressionccurs and shall refer to the same type in both contexts;

— the template-argumentsf a template-idare looked up in the context in which the enfi@stfix-
expressiornccurs.

A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed hy tloperator.

3.4.3.2 Namespace members [namespace.qual]

If the nested-name-specifief a qualified-id nominates a namespace, the name specified afteretied-
name-specifieris looked up in the scope of the namespace, except thaei@ate-argumentsf a
template-idare looked up in the context in which the enpiostfix-expressionccurs.

GivenX::m (whereXis a user-declared namespace), or given (where X is the global namespace), let
S be the set of all declarations ofin X and in the transitive closure of all namespaces nominated by
using-directive in X and its used namespaces, except disatg-directive are ignored in any namespace,
including X, directly containing one or more declarationstofNo namespace is searched more than once
in the lookup of a name. B is the empty set, the program is ill-formed. Otherwis§ lilas exactly one
member, or if the context of the reference ismg-declaratiorn(7.3.3),S is the required set of declarations
of m Otherwise if the use ahis not one that allows a unique declaration to be chosenSrdhe program
is ill-formed. [Example:
int x;
namespace Y {
void f(float);
void h(int);
}

namespace Z {
void h(double);
}

35

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.3.2 Namespace members 3 Basic concepts

namespace A {
using namespace Y,
void f(int);
void g(int);
inti;

}

namespace B {
using namespace Z;
void f(char);
int i

}

namespace AB {
using namespace A,
using namespace B;

void g();
}
void h()
AB::g(); I g is declared directly irAB,
/I thereforeSis { AB::g() }andAB:g() ischosen
AB::f(1); I f is not declared directly idAB so the rules are
/I applied recursively té\ andB;
/I namespacy is not searched and::f(float)
Il is not considered;
/I Sis { A:f(int) , B::f(char) } and overload
/I resolution chooseA::f(int)
AB::f(’c); I as above but resolution chooggsf(char)
AB::x++; /i x is not declared directly ilB, and
/I is not declared irA or B, so the rules are
/I applied recursively t&¥ andZ,
/I Sis{} so the program is ill-formed
AB:i++; /i i is not declared directly idB so the rules are
/I applied recursively té\ andB,
Il Sis{A:i ,B:i }sothe useis ambiguous
/I and the program is ill-formed
AB::h(16.8); 1 h is not declared directly iB and
/I not declared directly i\ or B so the rules are
/I applied recursively t&Y andZ,
/I Sis{Y:h(int) , Z::h(double) } and overload
/I resolution choose&::h(double)
}

The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
For example:

namespace A {
int a;
}

namespace B {
using namespace A,
}

namespace C {
using namespace A,
}

36

© ISO/IEC

3 Basic concepts

namespace BC {
using namespace B;
using namespace C;

}

void f()
{

}

BC::a++;

namespace D {
using A::a;
}

namespace BD {
using namespace B;
using namespace D;

void g()
{

BD::a++;

}

1

1

ISO/IEC 14882:1998(E)

3.4.3.2 Namespace members

OK:Sis{A:a ,Aza }

OK:Sis{A:a ,A:a }

Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;
}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A,

}

void f()

{
Aat+,
B::at++;
A:b++;
B::b++;

}

—end example

I
I
I
I

OK: a declared directly i\, Sis { A::a

OK: bothA andB searched (oncef is
OK: b declared directly irB, Sis { B::b

}
OK: bothA andB searched (oncef is { A::
{B:

}

a }
b}

During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of

the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same object, the same enumerator or a set of functions, the non-type name hides the
class or enumeration name if and only if the declarations are from the same namespace; otherwise (the dec-
larations are from different namespaces), the program is ill-forntednjple:

namespace A {
struct x { };
int x;
inty;

37

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.3.2 Namespace members 3 Basic concepts

namespace B {
structy {};
}

namespace C {
using namespace A,
using namespace B;

inti=C:x; i OK, A::x (of typeint)
intj=C:y; 1l ambiguousA:y orB:y
}
—end example

In a declaration for a namespace member in whichdgwarator-id is a qualified-id given that the
qualified-idfor the namespace member has the form

nested-name-specifier unqualified-id
theunqualified-idshall name a member of the namespace designated bgdtezl-name-specifiefExam-
ple:

namespace A {
namespace B {
void f1(int);
}

using namespace B;

}
void A:fi(int) { } I ill-formed, f1 is not a member d&

—end exampleHowever, in such namespace member declarationsieted-name-specifienay rely on
using-directive to implicitly provide the initial part of theested-name-specifiefExample:

namespace A {
namespace B {
void f1(int);
}

}

namespace C {
namespace D {
void f1(int);
}

}

using namespace A,
using namespace C::D;
void B::f1(int){} 1 OK, definedA::B::f1(int)

—end example

3.4.4 Elaborated type specifiers [basic.lookup.elab]

An elaborated-type-specifianay be used to refer to a previously declarieds-namer enum-nameven
though the name has been hidden by a non-type declaration (3.3.73la3$v@amer enum-namén the
elaborated-type-specifienay either be a simpldentiferor be agualified-id

If the name in theslaborated-type-specifigs a simpleidentifer, and unless thelaborated-type-specifier
has the following form:

class-key identifier;

theidentifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If
this name lookup finds typedef-namethe elaborated-type-specifigs ill-formed. If theelaborated-type-
specifierrefers to anenum-namend this lookup does not find a previously declasedm-namethe

38

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.4.4 Elaborated type specifiers

elaborated-type-specifieis ill-formed. If the elaborated-type-specifierefers to anclass-nameand this
lookup does not find a previously declamass-nameor if theelaborated-type-specifidras the form:

class-key identifier;
theelaborated-type-specifiés a declaration that introduces ttlass-names described in 3.3.1.

If the name is a@ualified-id the name is looked up according its qualifications, as described in 3.4.3, but
ignoring any non-type names that have been declared. If this name lookup fiyyisdaf-namethe
elaborated-type-specifias ill-formed. If this name lookup does not find a previously declatass-name

or enum-nametheelaborated-type-specifies ill-formed. [Example:

struct Node {

struct Node* Next; 1 OK: Refers td\ode at global scope
struct Data* Data; I OK: Declares typdata
/I at global scope and membBata
b
struct Data {
struct Node* Node; I OK: Refers td\Node at global scope
friend struct ::Glob; // error: Glob is not declared
/I cannot introduce a qualified type (7.1.5.3)
friend struct Glob; 1 OK: Refers to (as yet) undeclar&dob
/I at global scope.
A
b
struct Base {
struct Data; I OK: Declares nesteData
struct ::Data* thatData; 1! OK: Refers ta:Data
struct Base::Data* thisData; 1 OK: Refers to nestebata
friend class ::Data; i OK: global Data is a friend
friend class Data; 1 OK: nestedData is a friend
struct Data { /* ... */ }; 1 Defines nestebata
struct Data; Il OK: Redeclares nestddiata
h
struct Data; I OK: Redeclare®ata at global scope
struct ::Data; I error: cannot introduce a qualified type (7.1.5.3)
struct Base::Data; 1 error: cannot introduce a qualified type (7.1.5.3)
struct Base::Datum; I error: Datum undefined
struct Base::Data* pBase; 1 OK: refers to nestebata

—end example

3.4.5 Class member access [basic.lookup.classref]

In a class member access expression (5.2.5), if thre -> token is immediately followed by ddentifier

followed by a<, the identifier must be looked up to determine whethex tisethe beginning of a template
argument list (14.2) or a less-than operator. The identifier is first looked up in the class of the object
expression. If the identifier is not found, it is then looked up in the context of the mrgifex-expression

and shall name a class or function template. If the lookup in the class of the object expression finds a tem-
plate, the name is also looked up in the context of the grustfix-expressioand

— if the name is not found, the name found in the class of the object expression is used, otherwise

— if the name is found in the context of the enfiostfix-expressioand does not name a class template,
the name found in the class of the object expression is used, otherwise

— if the name found is a class template, it must refer to the same entity as the one found in the class of the
object expression, otherwise the program is ill-formed.

39

ISO/IEC 14882:1998(E) © ISO/IEC

3.4.5 Class member access 3 Basic concepts

If the id-expressionn a class member access (5.2.5) isiaqualified-id and the type of the object expres-
sion is of a class typ€ (or of pointer to a class tyf8, theunqualified-idis looked up in the scope of class
C. If the type of the object expression is of pointer to scalar typentpealified-idis looked up in the con-
text of the completpostfix-expressian

If the unqualified-idis “type-namgeand the type of the object expression is of a classQype of pointer to

a class typ€), thetype-names looked up in the context of the entrestfix-expressioand in the scope of
classC. Thetype-nameshall refer to alass-name If type-nameas found in both contexts, the name shall
refer to the same class type. If the type of the object expression is of scalar typpethames looked
up in the scope of the completestfix-expressian

If the id-expressionn a class member access gualified-id of the form

the class-name-or-namespace-nafakowing the. or-> operator is looked up both in the context of the
entirepostfix-expressioand in the scope of the class of the object expression. If the name is found only in
the scope of the class of the object expression, the name shall refdas$s-aame If the name is found

only in the context of the entingostfix-expressignthe name shall refer to dass-nameor namespace-
name If the name is found in both contexts, ttlass-name-or-namespace-nastall refer to the same
entity. [Note: the result of looking up thelass-name-or-namespace-naimenot required to be a unique
base class of the class type of the object expression, as long as the entity or entities nanpdalifjettie

id are members of the class type of the object expression and are not ambiguous according to 10.2.

struct A {
int a;
I3
struct B: virtual A { };
struct C: B{ };
struct D: B{ };
struct E: public C, public D { };
struct F: public A { };

void f() {
Ee;
e.B:a=0; 1 OK, only onéA::a in E
Ff;
fAra=1; I OK, A::a is a member of
}
—end not¢

If the qualified-idhas the form

theclass-name-or-namespace-naim#ooked up in global scope aslass-namer namespace-name

If the nested-name-specifieontains a clasemplate-id(14.2), itstemplate-argumestare evaluated in the
context in which the entingostfix-expressionccurs.

If the id-expressions aconversion-function-idits conversion-type-icghall denote the same type in both
the context in which the entipostfix-expressionccurs and in the context of the class of the object expres-
sion (or the class pointed to by the pointer expression).

3.4.6 Using-directives and namespace aliases [basic.lookup.udir]

When looking up anamespace-namia a using-directiveor namespace-alias-definitipronly namespace
names are considered.

40

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.5 Program and linkage

3.5 Program and linkage [basic.link]

A programconsists of one or moteanslation units(clause 2) linked together. A translation unit consists
of a sequence of declarations.

translation-unit:
declaration-seg,

A name is said to hadinkagewhen it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name haaxternal linkagethe entity it denotes can be referred to by names from scopes of

other translation units or from other scopes of the same translation unit.

— When a name hasternal linkage the entity it denotes can be referred to by names from other scopes in

the same translation unit.

— When a name haw linkage the entity it denotes cannot be referred to by names from other scopes.

A name having namespace scope (3.3.5) has internal linkage if it is the name of

an object, reference, function or function template that is explicitly dedtagd or,

an object or reference that is explicitly declaoeshst and neither explicitly declareeixtern nor
previously declared to have external linkage; or

a data member of an anonymous union.

A name having namespace scope has external linkage if it is the name of

an object or reference, unless it has internal linkage; or
a function, unless it has internal linkage; or

a named class (clause 9), or an unnamed class defined in a typedef declaration in which the class has the
typedef name for linkage purposes (7.1.3); or

a named enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (7.1.3); or

an enumerator belonging to an enumeration with external linkage; or
a template, unless it is a function template that has internal linkage (clause 14); or

a namespace (7.3), unless it is declared within an unnamed namespace.

In addition, a member function, static data member, class or enumeration of class scope has external link-
age if the name of the class has external linkage.

The name of a function declared in block scope, and the name of an object declared by a block scope
extern declaration, have linkage. If there is a visible declaration of an entity with linkage having the
same name and type, ignoring entities declared outside the innermost enclosing namespace scope, the block
scope declaration declares that same entity and receives the linkage of the previous declaration. If there is
more than one such matching entity, the program is ill-formed. Otherwise, if no matching entity is found,
the block scope entity receives external linkage.

41

ISO/IEC 14882:1998(E) © ISO/IEC

3.5 Program and linkage 3 Basic concepts

[Example:
static void f();
static inti=0;) 1
void g() {
extern void f(); 1 internal linkage
inti; 1! 2:i has no linkage
{
extern void f(); 1 internal linkage
extern int i; I 3: external linkage
}
}

There are three objects namieth this program. The object with internal linkage introduced by the decla-
ration in global scope (lin#l), the object with automatic storage duration and no linkage introduced by
the declaration on lin#2 , and the object with static storage duration and external linkage introduced by

the declaration on lin&é3 .]

When a block scope declaration of an entity with linkage is not found to refer to some other declaration,
then that entity is a member of the innermost enclosing hamespace. However such a declaration does not

introduce the member name in its namespace scépanple:

namespace X {

void p()
q0Q; 1 error: q not yet declared
extern void q(); I g is a member of namespaxe
}
void middle()
q(); 1 error: q not yet declared
}
void q() {/* ... */} 1 definition ofX::q
}
void gq() {/*... */ } 1 some other, unrelategl
—end example

Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.2) has no linkage. A name with no linkage (notably, the name of a class or enumeration declared

in a local scope (3.3.2)) shall not be used to declare an entity with linkage. If a declaration uses a typedef

name, it is the linkage of the type name to which the typedef refers that is consitieauple:

void f()
{
struct A {intx; }; I no linkage
extern A a; 1! ill-formed
typedef A B;
extern B b; Il ill-formed
}

—end exampleThis implies that names with no linkage cannot be used as template arguments (14.3).

Two names that are the same (clause 3) and that are declared in different scopes shall denote the same

object, reference, function, type, enumerator, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the same
translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

42

10

11

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.5 Program and linkage

— when both names denote functions, the function types are identical for purposes of overloading; and
— when both names denote function templates, the signatures (14.5.5.1) are the same.

After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations referring to a given object or function shall be identical, except that declara-
tions for an array object can specify array types that differ by the presence or absence of a major array
bound (8.3.4). A violation of this rule on type identity does not require a diagnostic.

[Note:linkage to non-&+ declarations can be achieved usinmkage-specificatior7.5).]
3.6 Start and termination [basic.start]

3.6.1 Main function [basic.start.main]

A program shall contain a global function call®din , which is the designated start of the program. It is
implementation-defined whether a program in a freestanding environment is required to defire a
function. [Note:in a freestanding environment, start-up and termination is implementation-defined; start-
up contains the execution of constructors for objects of namespace scope with static storage duration; termi-
nation contains the execution of destructors for objects with static storage duration.]

An implementation shall not predefine tirain function. This function shall not be overloaded. It shall
have a return type of typat , but otherwise its type is implementation-defined. All implementations
shall allow both of the following definitions ofiain :

intmain() {/*...*/}
and
int main(int argc, char* argv[]) { /* ... */ }

In the latter formargc shall be the number of arguments passed to the program from the environment in
which the program is run. Hrgc is nonzero these arguments shall be suppliegrgw[0] through
argv[argc-1] as pointers to the initial characters of null-terminated multibyte strings (NTMBSSs)
(17.3.2.1.3.2) an@rgv[0] shall be the pointer to the initial character of a NTMBS that represents the
name used to invoke the program '6r. The value ofargc shall be nonnegative. The value of
argv[argc] shall be 0. Note:it is recommended that any further (optional) parameters be added after
argv . |

The function main shall not be used (3.2) within a program. The linkage (3.5)mein is
implementation-defined. A program that declamesin to beinline or static is ill-formed. The
namemain is not otherwise reservedExample:member functions, classes, and enumerations can be
calledmain , as can entities in other namespaces.]

Calling the function
void exit(int);

declared in<cstdlib> (18.3) terminates the program without leaving the current block and hence with-
out destroying any objects with automatic storage duration (12.4Xxitlf is called to end a program dur-
ing the destruction of an object with static storage duration, the program has undefined behavior.

A return statement imain has the effect of leaving the main function (destroying any objects with auto-
matic storage duration) and calliegit with the return value as the argument. If control reaches the end
of main without encountering eeturn statement, the effect is that of executing

return O;

43

ISO/IEC 14882:1998(E) © ISO/IEC

3.6.2 Initialization of non-local objects 3 Basic concepts

3.6.2 Initialization of non-local objects [basic.start.init]

The storage for objects with static storage duration (3.7.1) shall be zero-initialized (8.5) before any other
initialization takes place. Zero-initialization and initialization with a constant expression are collectively
calledstatic initialization all other initialization idynamic initialization Objects of POD types (3.9) with

static storage duration initialized with constant expressions (5.19) shall be initialized before any dynamic
initialization takes place. Objects with static storage duration defined in namespace scope in the same
translation unit and dynamically initialized shall be initialized in the order in which their definition appears

in the translation unit. Note: 8.5.1 describes the order in which aggregate members are initialized. The
initialization of local static objects is described in 6.7.]

An implementation is permitted to perform the initialization of an object of namespace scope with static
storage duration as a static initialization even if such initialization is not required to be done statically, pro-
vided that

— the dynamic version of the initialization does not change the value of any other object of namespace
scope with static storage duration prior to its initialization, and

— the static version of the initialization produces the same value in the initialized object as would be pro-
duced by the dynamic initialization if all objects not required to be initialized statically were initialized
dynamically.

[Note: as a consequence, if the initialization of an obggi refers to an objeobvbj2 of namespace
scope with static storage duration potentially requiring dynamic initialization and defined later in the same
translation unit, it is unspecified whether the valuelg? used will be the value of the fully initialized

obj2 (becausebj2 was statically initialized) or will be the value obj2 merely zero-initialized. For
example,

inline double fd() { return 1.0; }

extern double d1;

double d2 = d1, I unspecified:
/I may be statically initialized t6.0 or
/I dynamically initialized td..0

double d1 = fd(); i may be initialized statically t.0

—end not¢

It is implementation-defined whether or not the dynamic initialization (8.5, 9.4, 12.1, 12.6.1) of an object of
namespace scope is done before the first statememhiof. If the initialization is deferred to some point
in time after the first statement wfain , it shall occur before the first use of any function or object defined
in the same translation unit as the object to be initiaﬁ%ékExampIe:
/I — File 1-
#include "a.h"
#include "b.h"
B b;
A:A

}
/I — File 2—

#include "a.h"
Aa;

b.Use();

S an object defined in namespace scope having initialization with side-effects must be initialized even if it is not used (3.7.1)

44

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.6.2 Initialization of non-local objects

/I — File 3—
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

}

It is implementation-defined whether eitheeror b is initialized beforemain is entered or whether the
initializations are delayed untd is first used inmain. In particular, ifa is initialized beforemain is
entered, it is not guaranteed thatvill be initialized before it is used by the initialization af that is,
beforeA::A is called. If, howevera is initialized at some point after the first statementnain , b will
be initialized prior to its use iA::A .]

If construction or destruction of a non-local static object ends in throwing an uncaught exception, the result
is to callterminate (18.6.3.3).

3.6.3 Termination [basic.start.term]

Destructors (12.4) for initialized objects of static storage duration (declared at block scope or at namespace
scope) are called as a result of returning fromin and as a result of callingxit (18.3). These objects

are destroyed in the reverse order of the completion of their constructor or of the completion of their
dynamic initialization. If an object is initialized statically, the object is destroyed in the same order as if the
object was dynamically initialized. For an object of array or class type, all subobjects of that object are
destroyed before any local object with static storage duration initialized during the construction of the sub-
objects is destroyed.

If a function contains a local object of static storage duration that has been destroyed and the function is
called during the destruction of an object with static storage duration, the program has undefined behavior
if the flow of control passes through the definition of the previously destroyed local object.

If a function is registered withtexit (see<cstdlib> , 18.3) then following the call texit , any

objects with static storage duration initialized prior to the registration of that function shall not be destroyed
until the registered function is called from the termination process and has completed. For an object with
static storage duration constructed after a function is registerechteiti , then following the call to

exit , the registered function is not called until the execution of the object’'s destructor has completed. If
atexit is called during the construction of an object, the complete object to which it belongs shall be

destroyed before the registered function is called.

Calling the function
void abort();
declared in<cstdlib> terminates the program without executing destructors for objects of automatic or
static storage duration and without calling the functions passaedxi()
3.7 Storage duration [basic.stc]

Storage duration is the property of an object that defines the minimum potential lifetime of the storage con-
taining the object. The storage duration is determined by the construct used to create the object and is one
of the following:

— static storage duration
— automatic storage duration

— dynamic storage duration

45

ISO/IEC 14882:1998(E) © ISO/IEC

3.7 Storage duration 3 Basic concepts

Static and automatic storage durations are associated with objects introduced by declarations (3.1) and
implicitly created by the implementation (12.2). The dynamic storage duration is associated with objects
created wittoperator new (5.3.4).

The storage class specifiatatic andauto are related to storage duration as described below.

The storage duration categories apply to references as well. The lifetime of a reference is its storage dura-
tion.

3.7.1 Static storage duration [basic.stc.static]

All objects which neither have dynamic storage duration nor are localdtatie storage duration The
storage for these objects shall last for the duration of the program (3.6.2, 3.6.3).

If an object of static storage duration has initialization or a destructor with side effects, it shall not be elimi-
nated even if it appears to be unused, except that a class object or its copy may be eliminated as specified in
12.8.

The keywordstatic can be used to declare a local variable with static storage durabiome: p.7
describes the initialization of locatatic variables; 3.6.3 describes the destruction of Istatic
variables.]

The keywordstatic applied to a class data member in a class definition gives the data member static
storage duration.

3.7.2 Automatic storage duration [basic.stc.auto]

Local objects explicitly declare@uto or register or not explicitly declaredtatic ~ or extern have
automatic storage durationThe storage for these objects lasts until the block in which they are created
exits.

[Note:these objects are initialized and destroyed as described in 6.7.]

If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed
before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unused,
except that a class object or its copy may be eliminated as specified in 12.8.

3.7.3 Dynamic storage duration [basic.stc.dynamic]

Objects can be created dynamically during program execution (1.9), nsmgxpressian (5.3.4), and
destroyed usingelete-expressi@an(5.3.5). A @+ implementation provides access to, and management of,
dynamic storage via the globallocation functionsoperator new and operator new[] and the
globaldeallocation functionsperator delete andoperator delete[]

The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (18.4.1)++Aptbgram shall provide at most one
definition of a replaceable allocation or deallocation function. Any such function definition replaces the
default version provided in the library (17.4.3.4). The following allocation and deallocation functions
(18.4) are implicitly declared in global scope in each translation unit of a program

void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[](std::size_t) throw(std::bad_alloc);
void operator delete(void*) throw();

void operator delete[](void*) throw();

These implicit declarations introduce only the function nawmsratornew , operator new(] ,
operator delete , operator delete]] . [Note: the implicit declarations do not introduce the
namesstd , std::bad_alloc , andstd::size_t , or any other names that the library uses to declare
these names. Thushaw-expressigrielete-expressioor function call that refers to one of these functions
without including the heademew> is well-formed. However, referring &id , std::bad_alloc , and
std::size_t is ill-formed unless the name has been declared by including the appropriate header.]

46

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.7.3 Dynamic storage duration

Allocation and/or deallocation functions can also be declared and defined for any class (12.5).

Any allocation and/or deallocation functions defined inta& frogram shall conform to the semantics spec-
ified in 3.7.3.1 and 3.7.3.2.

3.7.3.1 Allocation functions [basic.stc.dynamic.allocation]

An allocation function shall be a class member function or a global function; a program is ill-formed if an
allocation function is declared in a namespace scope other than global scope or declared static in global
scope. The return type shall Beid* . The first parameter shall have typee_t (18.1). The first
parameter shall not have an associated default argument (8.3.6). The value of the first parameter shall be
interpreted as the requested size of the allocation. An allocation function can be a function template. Such
a template shall declare its return type and first parameter as specified above (that is, template parameter
types shall not be used in the return type and first parameter type). Template allocation functions shall have
two or more parameters.

The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall
return the address of the start of a block of storage whose length in bytes shall be at least as large as the
requested size. There are no constraints on the contents of the allocated storage on return from the alloca-
tion function. The order, contiguity, and initial value of storage allocated by successive calls to an alloca-
tion function is unspecified. The pointer returned shall be suitably aligned so that it can be converted to a
pointer of any complete object type and then used to access the object or array in the storage allocated (until
the storage is explicitly deallocated by a call to a corresponding deallocation function). If the size of the
space requested is zero, the value returned shall not be a null pointer value (4.10). The results of derefer-
encing a pointer returned as a request for zero size are undéfined.

An allocation function that fails to allocate storage can invoke the currently instediedhandler
(18.4.2.2), if any. Note: A program-supplied allocation function can obtain the address of the currently
installednew_handler using theset new_handler function (18.4.2.3).] If an allocation function
declared with an emptgxception-specificatio(ll5.4),throw() , fails to allocate storage, it shall return a
null pointer. Any other allocation function that fails to allocate storage shall only indicate failure by throw-
ing an exception of clasdd::bad_alloc (18.4.2.1) or a class derived frastd::bad_alloc

A global allocation function is only called as the result of a new expression (5.3.4), or called directly using
the function call syntax (5.2.2), or called indirectly through calls to the functions in+thest@ndard
library. [Note:in particular, a global allocation function is not called to allocate storage for objects with
static storage duration (3.7.1), for objects of tyyee_info (5.2.8), for the copy of an object thrown by
athrow expression (15.1).]

3.7.3.2 Deallocation functions [basic.stc.dynamic.deallocation]

Deallocation functions shall be class member functions or global functions; a program is ill-formed if deal-
location functions are declared in a namespace scope other than global scope or declared static in global
scope.

Each deallocation function shall returaid and its first parameter shall beid* . A deallocation func-

tion can have more than one parameter. If a didsss a member deallocation function narapdrator

delete with exactly one parameter, then that function is a usual (non-placement) deallocation function. If
classT does not declare such aperatordelete but does declare a member deallocation function
namedoperator delete with exactly two parameters, the second of which has $yhesize t

(18.1), then this function is a usual deallocation function. Similarly, if a €l&wes a member deallocation
function namedperatordelete][] with exactly one parameter, then that function is a usual (non-
placement) deallocation function. If cla¥sdoes not declare such aperatordelete]] but does
declare a member deallocation function naropdratordelete[] with exactly two parameters, the

32) The intent is to haveperator new() implementable by callinghalloc() orcalloc() , so the rules are substantially the
same. &+ differs from C in requiring a zero request to return a non-null pointer.

47

ISO/IEC 14882:1998(E) © ISO/IEC

3.7.3.2 Deallocation functions 3 Basic concepts

second of which has typsd::size_t , then this function is a usual deallocation function. A dealloca-

tion function can be an instance of a function template. Neither the first parameter nor the return type shall
depend on a template parameteéMote:that is, a deallocation function template shall have a first parameter

of typevoid* and a return type ofoid (as specified above).] A deallocation function template shall
have two or more function parameters. A template instance is never a usual deallocation function, regard-
less of its signature.

The value of the first argument supplied to one of the deallocation functions provided in the standard
library may be a null pointer value; if so, the call to the deallocation function has no effect. Otherwise, the
value supplied toperator delete(void*) in the standard library shall be one of the values returned

by a previous invocation of eitheperatornew(size_t) or operatornew(size_t,const

std::nothrow_t&) in the standard library, and the value supplied tperator
delete[](void*) in the standard library shall be one of the values returned by a previous invocation of
eitheroperator new[](size_t) or operator new[](size_t, const std::nothrow_t&)

in the standard library.

If the argument given to a deallocation function in the standard library is a pointer that is not the null
pointer value (4.10), the deallocation function shall deallocate the storage referenced by the pointer, render-
ing invalid all pointers referring to any part of theallocated storage The effect of using an invalid

pointer value (including passing it to a deallocation function) is undefifled.

3.7.4 Duration of sub-objects [basic.stc.inherit]

The storage duration of member subobjects, base class subobjects and array elements is that of their com-
plete object (1.8).

3.8 Object Lifetime [basic.life]

The lifetime of an object is a runtime property of the object. The lifetime of an object ofTtygegins
when:

— storage with the proper alignment and size for fypeobtained, and

— if Tis a class type with a non-trivial constructor (12.1), the constructor call has completed.
The lifetime of an object of typ€ ends when:

— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or

— the storage which the object occupies is reused or released.

[Note: the lifetime of an array object or of an object of type (3.9) starts as soon as storage with proper size
and alignment is obtained, and its lifetime ends when the storage which the array or object occupies is
reused or released. 12.6.2 describes the lifetime of base and member subobjects.]

The properties ascribed to objects throughout this International Standard apply for a given object only dur-
ing its lifetime. Note:in particular, before the lifetime of an object starts and after its lifetime ends there
are significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. Also, the
behavior of an object under construction and destruction might not be the same as the behavior of an object
whose lifetime has started and not ended. 12.6.2 and 12.7 describe the behavior of objects during the con-
struction and destruction phases.]

A program may end the lifetime of any object by reusing the storage which the object occupies or by
explicitly calling the destructor for an object of a class type with a non-trivial destructor. For an object of a
class type with a non-trivial destructor, the program is not required to call the destructor explicitly before
the storage which the object occupies is reused or released; however, if there is no explicit call to the
destructor or if edelete-expressio(b.3.5) is not used to release the storage, the destructor shall not be
implicitly called and any program that depends on the side effects produced by the destructor has undefined

33)0on some implementations, it causes a system-generated runtime fault.

48

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.8 Object Lifetime

behavior.

Before the lifetime of an object has started but after the storage which the object will occupy has been allo-
cated® or, after the lifetime of an object has ended and before the storage which the object occupied is
reused or released, any pointer that refers to the storage location where the object will be or was located
may be used but only in limited ways. Such a pointer refers to allocated storage (3.7.3.2), and using the
pointer as if the pointer were of typeid* , is well-defined. Such a pointer may be dereferenced but the
resulting Ivalue may only be used in limited ways, as described below. If the object will be or was of a
class type with a non-trivial destructor, and the pointer is used as the operaddletieaexpressigrthe

program has undefined behavior. If the object will be or was of a non-POD class type, the program has
undefined behavior if:

— the pointer is used to access a non-static data member or call a non-static member function of the object,
or

— the pointer is implicitly converted (4.10) to a pointer to a base class type, or

— the pointer is used as the operand dftatic_cast (5.2.9) (except when the conversion is to
void* , ortovoid* and subsequently whar* , orunsigned char*).

— the pointer is used as the operand dfimamic_cast (5.2.7). Example:

struct B {
virtual void f();
void mutate();
virtual ~B();

I3

struct D1 : B { void f(); };
struct D2 : B { void f(); };

void B::mutate() {

new (this) D2; 1 reuses storage ends the lifetime dthis
f0; 1l undefined behavior
... = this; 1l OK, this points to valid memory
}
void g() {
void* p = malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) D1;
pb->mutate();
&pb; /I OK: pb points to valid memory
void* q = pb; I OK: pb points to valid memory
pb->f(); I undefined behavior, lifetime b has ended
}
—end example

Similarly, before the lifetime of an object has started but after the storage which the object will occupy has
been allocated or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any Ivalue which refers to the original object may be used but only in limited ways.
Such an Ivalue refers to allocated storage (3.7.3.2), and using the properties of the Ivalue which do not
depend on its value is well-defined. If an Ivalue-to-rvalue conversion (4.1) is applied to such an Ivalue, the
program has undefined behavior; if the original object will be or was of a non-POD class type, the program
has undefined behavior if:

— the Ivalue is used to access a non-static data member or call a non-static member function of the object,
or

3% Eor example, before the construction of a global object of non-POD class type (12.7).

49

ISO/IEC 14882:1998(E) © ISO/IEC

3.8 Object Lifetime 3 Basic concepts

— the Ivalue is implicitly converted (4.10) to a reference to a base class type, or

— the Ivalue is used as the operand efadic_cast (5.2.9) (except when the conversion is ultimately
tochar& orunsigned char&), or

— the Ivalue is used as the operand diyaamic_cast (5.2.7) or as the operandtypeid

If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can be
used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the original object was a most derived object (1.8) of fypad the new object is a most derived object
of typeT (that is, they are not base class subobjecEjahple:

struct C {
int i
void f();
const C& operator=(const C&);
I3
const C& C::operator=(const C& other)
{
if (this != &other) {
this->~C(); 1 lifetime of*this ends
new (this) C(other); I new object of typ€ created
f0; I well-defined
}
return *this;
}
Cc1,;
Ccz;
cl =c2; 1 well-defined
c1.f(); 1 well-defined;c1 refers to a new object of tyji
—end example

If a program ends the lifetime of an object of typwith static (3.7.1) or automatic (3.7.2) storage duration

and if T has a non-trivial destructSP,) the program must ensure that an object of the original type occupies
that same storage location when the implicit destructor call takes place; otherwise the behavior of the pro-
gram is undefined. This is true even if the block is exited with an exceplsample:

class T{};
struct B {

~B();
k

void h() {
B b;
new (&b) T;
} /I undefined behavior at block exit

—end example

39) that is, an object for which a destructor will be called implieitBither either upon exit from the block for an object with auto-
matic storage duration or upon exit from the program for an object with static storage duration.

50

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.8 Object Lifetime

Creating a new object at the storage location tltaingt object with static or automatic storage duration
occupies or, at the storage location that sudoresst object used to occupy before its lifetime ended
results in undefined behaviorExample:

struct B {
B(;
~BO:
I3

const B b;

void h() {
b.~B();
new (&b) const B; 1 undefined behavior

}
—end example

3.9 Types [basic.types]

[Note:3.9 and the subclauses thereof impose requirements on implementations regarding the representation
of types. There are two kinds of types: fundamental types and compound types. Types describe objects
(1.8), references (8.3.2), or functions (8.3.5).]

For any complete POD object tyfpewhether or not the object holds a valid value of fjpthe underlying
bytes (1.7) making up the object can be copied into an arrelyanf or unsigned char 35)If the con-

tent of the array ofhar orunsigned char is copied back into the object, the object shall subsequently
hold its original value. Example:

#define N sizeof(T)
char buf[N];

T obj; 1l obj initialized to its original value
memcpy(buf, &obj, N); 1 between these two callsriiemcpy,

/I obj might be modified
memcpy(&obj, buf, N); 1 at this point, each subobjectaldj of scalar type

/I holds its original value
—end example

For any POD typd, if two pointers tal' point to distinctT objectsobjl andobj2 , if the value ofobj1
is copied intoobj2 , using thememcpylibrary function,obj2 shall subsequently hold the same value as
objl . [Example:
T* tlp;
T* t2p;
/I provided that2p points to an initialized object ...

memcpy(tlp, t2p, sizeof(T)); I at this point, every subobject of POD typétitp contains
/I the same value as the corresponding subobjettPm

—end example

Theobject representationf an object of typd is the sequence &f unsigned char objects taken up by

the object of typd, whereN equalssizeof(T) . Thevalue representationf an object is the set of bits

that hold the value of type. For POD types, the value representation is a set of bits in the object represen-
tation that determineswalue which is one discrete element of an implementation-defined set of JAlues.

Object types havalignment requirement&3.9.1, 3.9.2). Thalignmentof a complete object type is an
implementation-defined integer value representing a number of bytes; an object is allocated at an address
that meets the alignment requirements of its object type.

30) By using, for example, the library functions (17.4.Tr@mcpyor memmove
The intent is that the memory model af#ds compatible with that of ISO/IEC 9899 Programming Language C.

51

10

11

ISO/IEC 14882:1998(E) © ISO/IEC

3.9 Types 3 Basic concepts

A class that has been declared but not defined, or an array of unknown size or of incomplete element type,
is an incompletely-defined object tyB@.Incompletely-defined object types and the void types are incom-
plete types (3.9.1). Objects shall not be defined to have an incomplete type.

A class type (such dglass X ") might be incomplete at one point in a translation unit and complete later

on; the typé‘class X ” is the same type at both points. The declared type of an array object might be an
array of incomplete class type and therefore incomplete; if the class type is completed later on in the trans-
lation unit, the array type becomes complete; the array type at those two points is the same type. The
declared type of an array object might be an array of unknown size and therefore be incomplete at one point
in a translation unit and complete later on; the array types at those two pairay 6f unknown bound of

T” and“array of NT") are different types. The type of a pointer to array of unknown size, or of a type
defined by aypedef declaration to be an array of unknown size, cannot be compl&gdmple:

class X; 1 Xis an incomplete type
extern X* xp; I Xp is a pointer to an incomplete type
extern int arrf]; I the type of arr is incomplete
typedef int UNKA[]; 1 UNKAis an incomplete type
UNKA* arrp; 1 arrp is a pointer to an incomplete type
UNKA** arrpp;
void foo()
{
Xp++; /I ill-formed: Xis incomplete
arrp++; 1 ill-formed: incomplete type
arrpp++; Il OK: sizeofUNKA¥*is known
}
struct X { inti; }; 1 now X is a complete type
int arr[10]; I now the type dodirr is complete
X X;
void bar()
{
Xp = &X; I OK; type is “pointer toxX”
arrp = &arr; Il ill-formed: different types
Xp++; /I OK: Xis complete
arrp++; 1 ill-formed: UNKAcan't be completed
}
—end example

[Note: the rules for declarations and expressions describe in which contexts incomplete types are prohib-
ited.]

An object typds a (possibly cv-qualified) type that is not a function type, not a reference type, and not a
void type.

Arithmetic types (3.9.1), enumeration types, pointer types, and pointer to member types (3.%2), and
qualifiedversions of these types (3.9.3) are collectively calledar types Scalar types, POD-struct types,
POD-union types (clause 9), arrays of such typescarglialifiedversions of these types (3.9.3) are collec-
tively calledPOD types

If two typesT1 andT2 are the same type, thdil and T2 arelayout-compatiblaypes. Note: Layout-
compatible enumerations are described in 7.2. Layout-compatible POD-structs and POD-unions are
described in 9.2.]

3%) The size and layout of an instance of an incompletely-defined object type is unknown.

52

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.9.1 Fundamental types

3.9.1 Fundamental types [basic.fundamental]

Objects declared as charactezkar) shall be large enough to store any member of the implementation’s
basic character set. If a character from this set is stored in a character object, the integral value of that char-
acter object is equal to the value of the single character literal form of that character. It is implementation-
defined whether ahar object can hold negative values. Characters can be explicitly deualzsigghed

or signed . Plainchar , signed char , andunsigned char are three distinct types. éhar , a

signed char , and arunsigned char occupy the same amount of storage and have the same align-
ment requirements (3.9); that is, they have the same object representation. For character types, all bits of
the object representation participate in the value representation. For unsigned character types, all possible
bit patterns of the value representation represent numbers. These requirements do not hold for other types.
In any particular implementation, a plachar object can take on either the same values as a
signed char or anunsigned char ; which one is implementation-defined.

There are fousigned integer type$signed char , “short int " Mint ", and“long int " In this
list, each type provides at least as much storage as those preceding it in the lisht Fddiave the natu-
ral size suggested by the architecture of the execution envirofimetite other signed integer types are
provided to meet special needs.

For each of the signed integer types, there exists a corresponding (but diffiexggtjed integer type
“unsigned char ", “unsigned short int , “unsigned int , and “unsigned long

int, " each of which occupies the same amount of storage and has the same alignment requirements (3.9)
as the corresponding signed integer f)?ﬂ)ethat is, each signed integer type has the same object represen-
tation as its corresponding unsigned integer type. The range of nonnegative valsigmed antegetype

is a subrange of the correspondintsigned integetype, and the value representation of each correspond-

ing signed/unsigned type shall be the same.

Unsigned integers, declaredsigned , shall obey the laws of arithmetic moduld\&heren is the num-
ber of bits in the value representation of that particular size of in‘f@ger.

Typewchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.1.1yvchgpet shall have the same
size, signedness, and alignment requirements (3.9) as one of the other integral types, uatied\itag

type

Values of typebool are eithettrue or false 42) [Note:there are nsigned , unsigned , short , or
long bool types or values.] As described beldwpl values behave as integral types. Values of type
bool participate in integral promotions (4.5).

Typesbool , char , wchar_t , and the signed and unsigned integer types are collectively azkenal
typesfm’)A synonym for integral type isteger type The representations of integral types shall define val-
ues by use of a pure binary numeration systerfExample:this International Standard permits 2's com-
plement, 1's complement and signed magnitude representations for integral types. |

There are thre#oating pointtypes:float , double , andlong double . The typedouble provides
at least as much precisionf&sat , and the typdong double provides at least as much precision as
double . The set of values of the tyfleat is a subset of the set of values of the tgpable ; the set

D that is, large enough to contain any value in the rangdTofMIN andINT_MAX, as defined in the headeclimits>

See 7.1.5.2 regarding the correspondence between types and the sequgpeespetifies that designate them.

This implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resultingtemnsigned i
ger type is reduced modulo the number that is one greater than the largest value that can be represented by the resdtinteunsig

er type.

%2) Using abool value in ways described by this International Standard as “undefined,” such as by examining the value of an unini-
tialized automatic variable, might cause it to behave as if is néitleer norfalse .

Therefore, enumerations (7.2) are not integral; however, enumerations can be proniated unsigned int , long , or
unsigned long , as specified in 4.5.

A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by sus@ssive bit
additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the higbast posit
(Adapted from théAmerican National Dictionary for Information Processing Systgms

53

10

ISO/IEC 14882:1998(E) © ISO/IEC

3.9.1 Fundamental types 3 Basic concepts

of values of the typdouble is a subset of the set of values of the tgpey double . The value repre-
sentation of floating-point types is implementation-defindategral and floating types are collectively
calledarithmetictypes. Specializations of the standard temptat@eric_limits (18.2) shall specify
the maximum and minimum values of each arithmetic type for an implementation.

Thevoid type has an empty set of values. Thé& type is an incomplete type that cannot be completed.

It is used as the return type for functions that do not return a value. Any expression can be explicitly con-
verted to typecv void (5.4). An expression of typeoid shall be used only as an expression statement
(6.2), as an operand of a comma expression (5.18), as a second or third operafilld), as the operand

of typeid , or as the expression in a return statement (6.6.3) for a function with the retwnoitype

[Note: even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types. |

3.9.2 Compound types [basic.compound]
Compound types can be constructed in the following ways:
— arraysof objects of a given type, 8.3.4;

— functions which have parameters of given types and retoid or references or objects of a given
type, 8.3.5;

— pointersto void or objects or functions (including static members of classes) of a given type, 8.3.1;
— referencedo objects or functions of a given type, 8.3.2;

— classescontaining a sequence of objects of various types (clause 9), a set of types, enumerations and
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities
(clause 11);

— unions which are classes capable of containing objects of different types at different times, 9.5;

— enumerationswhich comprise a set of named constant values. Each distinct enumeration constitutes a
differentenumerated type&.2;

— pointers to non-statf® class memberswvhich identify members of a given type within objects of a
given class, 8.3.3.

These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4,
8.3.5, and 8.3.2.

A pointer to objects of typ€ is referred to as ‘gointer toT.” [Example:a pointer to an object of typet

is referred to aSpointer toint " and a pointer to an object of classs called & pointer toX.” | Except for

pointers to static members, text referring pointer$ does not apply to pointers to members. Pointers to
incomplete types are allowed although there are restrictions on what can be done with them (3.9). The
value representation of pointer types is implementation-defined. Pointers to cv-qualified and cv-
unqualified versions (3.9.3) of layout-compatible types shall have the same value representation and align-
ment requirements (3.9).

Objects of cv-qualified (3.9.3) or cv-unqualified typeid* (pointer to void), can be used to point to
objects of unknown type. Awoid* shall be able to hold any object pointer. A cv-qualified or cv-
unqualified (3.9.3yoid* shall have the same representation and alignment requirements as a cv-qualified
or cv-unqualifiecchar* .

#°) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.

54

© ISO/IEC ISO/IEC 14882:1998(E)

3 Basic concepts 3.9.3 CV-qualifiers

3.9.3 CV-qualifiers [basic.type.qualifier]

A type mentioned in 3.9.1 and 3.9.2 isvaunqualified type Each type which is a cv-unqualified complete

or incomplete object type or iwid (3.9) has three corresponding cv-qualified versions of its type: a
const-qualifiedversion, avolatile-qualifiedversion, and @onst-volatile-qualifiedrersion. The ternobject
type(1.8) includes the cv-qualifiers specified when the object is created. The presersznsf aspeci-

fier in adecl-specifier-segleclares an object @onst-qualified object typesuch object is called eonst

object The presence of aolatile specifier in adecl-specifier-segleclares an object ofolatile-
qualified object typesuch object is called wlatile object The presence of bottv-qualifiersin a decl-
specifier-seqleclares an object abnst-volatile-qualified object typsuch object is called @nst volatile

object The cv-qualified or cv-unqualified versions of a type are distinct types; however, they shall have
the same representation and alignment requirements4? .9).

A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is com-
pounded. Any cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4).

Each non-static, non-mutable, non-reference data member of a const-qualified class object is const-
qualified, each non-static, non-reference data member of a volatile-qualified class object is volatile-

qualified and similarly for members of a const-volatile class. See 8.3.5 and 9.3.2 regarding cv-qualified

function types.

There is a (partial) ordering on cv-qualifiers, so that a type can be saidnréev-qualifiedhan another.
Table 6 shows the relations that constitute this ordering.

Table 6—relations onconst and volatile

Lho cv-qualifier < const N

o cv-qualifier < volatile E
ho cv-qualifier < const volatile 0
O const < const volatile 0
g volatile < const volatile B

In this International Standard, the notatmn(or cvl, cv2, etc.), used in the description of types, represents

an arbitrary set of cv-qualifiers, i.e., one afofist }, {volatile 1}, {const, volatile }, or the

empty set. Cv-qualifiers applied to an array type attach to the underlying element type, so the notation
“cvT,” whereT is an array type, refers to an array whose elements are so-qualified. Such array types can
be said to be more (or less) cv-qualified than other types based on the cv-qualification of the underlying ele-
ment types.

3.10 Lvalues and rvalues [basic.lval]

Every expression is either &ralueor anrvalue

An Ivalue refers to an ob;ect or function. Some rvalue expressithtse of class or cv-qualified class
type—also refer to object"s.)

[Note: some built-in operators and function calls yield Ivalugsxample:if E is an expression of pointer
type, then*E is an Ivalue expression referring to the object or function to whigloints. As another
example, the function

int& ();

yields an Ivalue, so the cdf) is an Ivalue expression.]]

“®)The same representation and alignment requirements are meant to imply interchangeability as arguments to functionggeturn valu
from functions, and members of unions.

Expressions such as invocations of constructors and of functions that return a class type refer to objects, and the iomplementat
can invoke a member function upon such objects, but the expressions are not Ivalues.

55

10

11

12

13

14

15

ISO/IEC 14882:1998(E) © ISO/IEC

3.10 Lvalues and rvalues 3 Basic concepts

[Note: some built-in operators expect Ilvalue operandsample:built-in assignment operators all expect

their left hand operands to be Ivalues.] Other built-in operators yield rvalues, and some expect them.
[Examplethe unary and binary operators expect rvalue arguments and yield rvalue results.] The discus-
sion of each built-in operator in clause 5 indicates whether it expects Ivalue operands and whether it yields
an Ivalue.]

The result of calling a function that does not return a reference is an rvalue. User defined operators are
functions, and whether such operators expect or yield Ivalues is determined by their parameter and return

types.

An expression which holds a temporary object resulting from a cast to a nonreference type is an rvalue (this
includes the explicit creation of an object using functional notation (5.2.3)).

Whenever an Ivalue appears in a context where an rvalue is expected, the lvalue is converted to an rvalue;
see 4.1,4.2, and 4.3.

The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of Ival-
ues and rvalues in other significant contexts.

Class rvalues can have cv-qualified types; non-class rvalues always have cv-unqualified types. Rvalues
shall always have complete types orvto@ type; in addition to these types, Ivalues can also have incom-
plete types.

An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can
also be used to modify its referent under certain circumstanEgample:a member function called for an
object (9.3) can modify the object.]

Functions cannot be modified, but pointers to functions can be modifiable.

A pointer to an incomplete type can be modifiable. At some point in the program when the pointed to type
is complete, the object at which the pointer points can also be modified.

The referent of @onst -qualified expression shall not be modified (through that expression), except that if
it is of class type and hagrautable component, that component can be modified (7.1.5.1).

If an expression can be used to modify the object to which it refers, the expression imodifeable A
program that attempts to modify an object through a nonmodifiable Ivalue or rvalue expression is ill-
formed.

If a program attempts to access the stored value of an object through an Ivalue of other than one of the fol-
lowing types the behavior is undefirté

— the dynamic type of the object,
— a cv-qualified version of the dynamic type of the object,
— atype that is the signed or unsigned type corresponding to the dynamic type of the object,

— atype that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type of
the object,

— an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union),

— atype that is a (possibly cv-qualified) base class type of the dynamic type of the object,

— achar orunsigned char type.

*S)The intent of this list is to specify those circumstances in which an object may or may not be aliased.

56

© ISO/IEC ISO/IEC 14882:1998(E)

4 Standard conversions [conv]

Standard conversions are implicit conversions defined for built-in types. Clause 4 enumerates the full set of
such conversions. Atandard conversion sequenisea sequence of standard conversions in the following
order:

— Zero or one conversion from the following set: Ivalue-to-rvalue conversion, array-to-pointer conversion,
and function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating point promotion, integral
conversions, floating point conversions, floating-integral conversions, pointer conversions, pointer to
member conversions, and boolean conversions.

— Zero or one qualification conversion.

[Note: a standard conversion sequence can be empty, i.e., it can consist of no conversions.] A standard
conversion sequence will be applied to an expression if necessary to convert it to a required destination

type.
[Note:expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’'s requirements for its operands dictate the destina-
tion type (clause 5).

— When used in the condition of &n statement or iteration statement (6.4, 6.5). The destination type is
bool .

— When used in the expression ofwitch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a func-
tion call and use as the expression iretrn statement). The type of the entity being initialized is
(generally) the destination type. See 8.5, 8.5.3.

—end not¢

An expressiore can beimplicitly convertedto a typeT if and only if the declaratiohT t=e; " is well-

formed, for some invented temporary variablé8.5). The effect of the implicit conversion is the same as
performing the declaration and initialization and then using the temporary variable as the result of the con-
version. The result is an IvalueTifis a reference type (8.3.2), and an rvalue otherwise. The expression

is used as an Ivalue if and only if the initialization uses it as an Ivalue.

[Note: For user-defined types, user-defined conversions are considered as well; see 12.3. In general, an
implicit conversion sequence (13.3.3.1) consists of a standard conversion sequence followed by a user-
defined conversion followed by another standard conversion sequence.

There are some contexts where certain conversions are suppressed. For example, the Ivalue-to-rvalue con-
version is not done on the operand of the uapperator. Specific exceptions are given in the descrip-
tions of those operators and contexts.]

4.1 Lvalue-to-rvalue conversion [conv.lval]

An Ivalue (3.10) of a non-function, non-array typean be converted to an rvalue. Tifis an incomplete

type, a program that necessitates this conversion is ill-formed. If the object to which the Ivalue refers is not
an object of typd and is not an object of a type derived frépor if the object is uninitialized, a program

that necessitates this conversion has undefined behavidris l& non-class type, the type of the rvalue is

the cv-unqualified version af. Otherwise, the type of the rvalu€lis 49)

) 1n G++ class rvalues can have cv-qualified types (because they are objects). This differs from ISO C, in which non-lvalues never
have cv-qualified types.

57

ISO/IEC 14882:1998(E) © ISO/IEC

4.1 Lvalue-to-rvalue conversion 4 Standard conversions

The value contained in the object indicated by the Ivalue is the rvalue result. When an Ivalue-to-rvalue con-
version occurs within the operand sifeof (5.3.3) the value contained in the referenced object is not
accessed, since that operator does not evaluate its operand.

[Note:See also 3.10.]

4.2 Array-to-pointer conversion [conv.array]

An Ivalue or rvalue of typéarray ofNT” or “array of unknown bound &f’ can be converted to an rvalue
of type“ pointer toT.” The result is a pointer to the first element of the array.

A string literal (2.13.4) that is not a wide string literal can be converted to an rvalue dfpgipéer to

char ”; a wide string literal can be converted to an rvalue of tyménter towchar_t ”. In either case,

the result is a pointer to the first element of the array. This conversion is considered only when there is an
explicit appropriate pointer target type, and not when there is a general need to convert from an Ivalue to an
rvalue. Note:this conversion is deprecated. See Annex D.] For the purpose of ranking in overload reso-
lution (13.3.3.1.1), this conversion is considered an array-to-pointer conversion followed by a qualification
conversion (4.4). Example: "abc" is converted tdpointer toconst char ” as an array-to-pointer con-
version, and then ttpointer tochar ” as a qualification conversion.]

4.3 Function-to-pointer conversion [conv.func]

An Ivalue of function typ& can be converted to an rvalue of tyjpeinter toT.” The result is a pointer to
the function>®

[Note: See 13.4 for additional rules for the case where the function is overloaded.]

4.4 Qualification conversions [conv.qual]

An rvalue of typé‘pointer tocvlT” can be converted to an rvalue of typminter tocv2T” if “cv2T” is
more cv-qualified thaticvlT.”

An rvalue of typée‘pointer to member oX of typecvlT” can be converted to an rvalue of typeinter to
member ofX of typecv2T” if “cv2T” is more cv-qualified thatcvlT.”

[Note: Function types (including those used in pointer to member function types) are never cv-qualified
(8.3.5).]

A conversion can add cv-qualifiers at levels other than the first in multi-level pointers, subject to the fol-
lowing rules>
Two pointer types T1 and T2 asenilar if there exists a typ@ and integen >0 such that:

T1 is cvy o pointer tocvy ; pointerto - - - cvy n_; pointer tocvy , T
and

T2 is cv, o pointer tocv, ; pointerto - - - cv, 51 pointer tocv, , T
where eacley; ; is const , volatile , const volatile , or nothing. The n-tuple of cv-qualifiers
after the first in a pointer type, e.gv; 1, Cvy 5, - -, CVy, in the pointer type T1, is called tloe-

qualification signatureof the pointer type. An expression of typ& can be converted to tyge if and
only if the following conditions are satisfied:

— the pointer types are similar.
— for everyj >0, if const is incv, ; thenconst isincv, ;, and similarly forvolatile

— ifthecvy j andcv, ; are different, thekonst is in everycv, , for 0<k<j.

Y This conversion never applies to nonstatic member functions because an Ivalue that refers to a nonstatic member funbgon cannot
gtlnained.
)These rules ensure that const-safety is preserved by the conversion.

58

© ISO/IEC ISO/IEC 14882:1998(E)
4 Standard conversions 4.4 Qualification conversions
[Note:if a program could assign a pointer of type to a pointer of typeonst T** (that is, if line//1

below was allowed), a program could inadvertently modifgrast object (as it is done on ling). For
example,

int main() {
const char c ='c’;
char* pc;
const char** pcc = &pc; I 1: not allowed
*pcce = &c;
*pc ="C’; I 2: modifies aconst object
}
—end not¢

A multi-level pointer to member type, orraulti-level mixedpointer and pointer to member type has the
form:

cvoPy tocvyPy to -+ - cv,_4P,-;tOCv, T

whereP; is either a pointer or pointer to member and wlleig not a pointer type or pointer to member
type.

Two multi-level pointer to member types or two multi-level mixed pointer and pointer to member types T1
and T2 aresimilar if there exists a typ&€ and integen >0 such that:

Tl is CV]_,OPO to CV1‘1P1 to --- CV1,n—1Pn—1 to CVin T
and
T2 is CV2,0PO to CV2‘1P1 to --- CV2’n_1Pn_1 to CVon T
For similar multi-level pointer to member types and similar multi-level mixed pointer and pointer to mem-
ber types, the rules for adding cv-qualifiers are the same as those used for similar pointer types.
4.5 Integral promotions [conv.prom]

An rvalue of typechar , signed char , unsigned char , short int , or unsigned short
int can be converted to an rvalue of type if int can represent all the values of the source type; other-
wise, the source rvalue can be converted to an rvalue ofibgdgned int

An rvalue of typewchar_t (3.9.1) or an enumeration type (7.2) can be converted to an rvalue of the first
of the following types that can represent all the values of its underlying itype:unsigned int
long , orunsigned long

An rvalue for an integral bit-field (9.6) can be converted to an rvalue ofinypdf int can represent all

the values of the bit-field; otherwise, it can be convertathiigned int if unsigned int can rep-
resent all the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the
bit-field has an enumerated type, it is treated as any other value of that type for promotion purposes.

An rvalue of typebool can be converted to an rvalue of type , with false becoming zero antiue
becoming one.

These conversions are callietegral promotions

4.6 Floating point promotion [conv.fpprom]
An rvalue of typdloat can be converted to an rvalue of tyjmeible . The value is unchanged.

This conversion is calleffbating point promotion

59

ISO/IEC 14882:1998(E) © ISO/IEC

4.7 Integral conversions 4 Standard conversions

4.7 Integral conversions [conv.integral]

An rvalue of an integer type can be converted to an rvalue of another integer type. An rvalue of an enumer-
ation type can be converted to an rvalue of an integer type.

If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2 wheren is the number of bits used to represent the unsigned tyNeje:[In a two’s
complement representation, this conversion is conceptual and there is no change in the bit pattern (if there
is no truncation).]

If the destination type is signed, the value is unchanged if it can be represented in the destination type (and
bit-field width); otherwise, the value is implementation-defined.

If the destination type isool , see 4.12. If the source typebisol , the valudalse is converted to zero
and the valu¢rue is converted to one.

The conversions allowed as integral promotions are excluded from the set of integral conversions.

4.8 Floating point conversions [conv.double]

An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source
value can be exactly represented in the destination type, the result of the conversion is that exact representa-
tion. If the source value is between two adjacent destination values, the result of the conversion is an
implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

The conversions allowed as floating point promotions are excluded from the set of floating point conver-
sions.

4.9 Floating-integral conversions [conv.fpint]

An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion trun-
cates; that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be
represented in the destination typbdlofe: If the destination type isool , see 4.12.]

An rvalue of an integer type or of an enumeration type can be converted to an rvalue of a floating point
type. The result is exact if possible. Otherwise, it is an implementation-defined choice of either the next
lower or higher representable valuéofe: loss of precision occurs if the integral value cannot be repre-
sented exactly as a value of the floating type.] If the source tyjm®is, the valudalse is converted to

zero and the valuieue is converted to one.

4.10 Pointer conversions [conv.ptr]

A null pointer constants an integral constant expression (5.19) rvalue of integer type that evaluates to
zero. A null pointer constant can be converted to a pointer type; the resulhidltheinter valueof that

type and is distinguishable from every other value of pointer to object or pointer to function type. Two null
pointer values of the same type shall compare equal. The conversion of a null pointer constant to a pointer
to cv-qualified type is a single conversion, and not the sequence of a pointer conversion followed by a qual-
ification conversion (4.4).

An rvalue of type“pointer tocvT,” whereT is an object type, can be converted to an rvalue of type
“pointer tocvvoid .” The result of converting ‘gointer tocvT” to a“pointer tocvvoid ” points to the
start of the storage location where the object of fypesides, as if the object is a most derived object (1.8)
of typeT (that is, not a base class subobject).

An rvalue of typé'pointer tocvD,” whereD s a class type, can be converted to an rvalue of“{ypmter

to cvB,” whereB is a base class (clause 10)f If B is an inaccessible (clause 11) or ambiguous (10.2)
base class db, a program that necessitates this conversion is ill-formed. The result of the conversion is a
pointer to the base class sub-object of the derived class object. The null pointer value is converted to the
null pointer value of the destination type.

60

© ISO/IEC ISO/IEC 14882:1998(E)

4 Standard conversions 4.11 Pointer to member conversions

4.11 Pointer to member conversions [conv.mem]

A null pointer constant (4.10) can be converted to a pointer to member type; the resutiLils tiember

pointer valueof that type and is distinguishable from any pointer to member not created from a null pointer
constant. Two null member pointer values of the same type shall compare equal. The conversion of a null
pointer constant to a pointer to member of cv-qualified type is a single conversion, and not the sequence of
a pointer to member conversion followed by a qualification conversion (4.4).

An rvalue of type'pointer to member dB of typecvT,” whereB is a class type, can be converted to an
rvalue of type‘pointer to member d of typecvT,” whereDis a derived class (clause 10)BfIf Bis an
inaccessible (clause 11), ambiguous (10.2) or virtual (10.1) base clasa pfogram that necessitates this
conversion is ill-formed. The result of the conversion refers to the same member as the pointer to member
before the conversion took place, but it refers to the base class member as if it were a member of the
derived class. The result refers to the membdbsninstance oB. Since the result has tygpointer to

member oD of typecv T,” it can be dereferenced wittDeobject. The result is the same as if the pointer to
member oB were dereferenced with tlgesub-object oD. The null member pointer value is converted to

the null member pointer value of the destination %e.

4.12 Boolean conversions [conv.bool]

An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of
type bool . A zero value, null pointer value, or null member pointer value is convertiadst ; any
other value is converted taue .

°2) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appéars inverte
compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, clause 10). This imers&sary to

ensure type safety. Note that a pointer to member is not a pointer to object or a pointer to function and the rules imnscofivers
such pointers do not apply to pointers to members. In particular, a pointer to member cannot be conwaitdd to a

61

ISO/IEC 14882:1998(E)

62

(Blank page)

© ISO/IEC

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5 Expressions

5 Expressions [expr]

[Note: Clause 5 defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects.

Operators can be overloaded, that is, given meaning when applied to expressions of class type (clause 9) or
enumeration type (7.2). Uses of overloaded operators are transformed into function calls as described in
13.5. Overloaded operators obey the rules for syntax specified in clause 5, but the requirements of operand
type, Ivalue, and evaluation order are replaced by the rules for function call. Relations between operators,
such ast+a meaninga+=1, are not guaranteed for overloaded operators (13.5), and are not guaranteed for
operands of typbool . —end not¢

Clause 5 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for bdt-in operators that is, for operators applied to

types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to con-
vert the operands to types appropriate for the built-in operator. If a built-in operator is selected, such con-
versions will be applied to the operands before the operation is considered further according to the rules in
clause 5; see 13.3.1.2, 13.6.

Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-

vidual expressions, and the order in which side effects take place, is unsp?éa:ﬁed/veen the previous

and next sequence point a scalar object shall have its stored value modified at most once by the evaluation
of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored.
The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full

expression; otherwise the behavior is undefinékample:

i = V[i++]; 1 the behavior is unspecified

1=7, i++, i++; /i i become®

i=++i+1; 1 the behavior is unspecified

i=i+1; 1 the value of is incremented
—end example

If during the evaluation of an expression, the result is not mathematically defined or not in the range of rep-
resentable values for its type, the behavior is undefined, unless such an expression is a constant expression
(5.19), in which case the program is ill-formedNofe: most existing implementations of-€ignore inte-

ger overflows. Treatment of division by zero, forming a remainder using a zero divisor, and all floating
point exceptions vary among machines, and is usually adjustable by a library function.]

If an expression initially has the typeeference ta™ (8.3.2, 8.5.3), the type is adjusted'® prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sion is an Ivalue.

An expression designating an object is calledlgject-expressian

Whenever an lvalue expression appears as an operand of an operator that expects an rvalue for that operand,
the Ivalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversions are
applied to convert the expression to an rvaludot¢: because cv-qualifiers are removed from the type of

an expression of non-class type when the expression is converted to an rvalue, an lvalue expression of type
const int can, for example, be used where an rvalue expression ahtypis required.]

23 The precedence of operators is not directly specified, but it can be derived from the syntax.

63

ISO/IEC 14882:1998(E) © ISO/IEC

5 Expressions 5 Expressions

Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called thesual arithmetic conversionwhich are defined as follows:

— If either operand is of typeng double , the other shall be convertediemg double .

— Otherwise, if either operand d®uble , the other shall be converteddouble .

— Otherwise, if either operandfipat , the other shall be convertedftoat

— Otherwise, the integral promotions (4.5) shall be performed on both opéf‘énds.

— Then, if either operand imsigned long the other shall be convertedunsigned long .

— Otherwise, if one operand id@ng int and the otheunsigned int , then if along int can rep-
resent all the values of amsigned int , theunsigned int shall be converted tolang int ;
otherwise both operands shall be convertaghtigned long int

— Otherwise, if either operandlisng , the other shall be convertedidmg .
— Otherwise, if either operand umsigned , the other shall be converteduosigned
[Note: otherwise, the only remaining case is that both operandstarg

The values of the floating operands and the results of floating expressions may be represented in greater
precision and range than that required by the type; the types are not changeosa%ereby.

5.1 Primary expressions [expr.prim]
Primary expressions are literals, names, and names qualified by the scope resolution:pperator

primary-expression:
literal
this
(expression)
id-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id

A literal is a primary expression. Its type depends on its form (2.13). A string literal is an Ivalue; all other
literals are rvalues.

The keywordthis names a pointer to the object for which a nonstatic member function (9.3.2) is invoked.
The keywordhis shall be used only inside a nonstatic class member function body (9.3) or in a construc-
tor mem-initializer(12.6.2). The type of the expression is a pointer to the function’s class (9.3.2), possibly
with cv-qualifiers on the class type. The expression is an rvalue.

The operator:: followed by anidentifier, a qualified-id or an operator-function-idis a primary-
expression Its type is specified by the declaration of the identifigralified-id, or operator-function-id
The result is the entity denoted by the identifggualified-id, or operator-function-id The result is an
Ivalue if the entity is a function or variable. The identifignalified-id or operator-function-idshall have

;g) As a consequence, operands of tgpel , wchar_t , or an enumerated type are converted to some integral type.
)The cast and assighment operators must still perform their specific conversions as described in 5.4, 5.2.9 and 5.17.

64

10

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.1 Primary expressions

global namespace scope or be visible in global scope becaussingalirective(7.3.4). Note:the use of
allows a type, an object, a function, an enumerator, or a namespace declared in the global namespace to
be referred to even if its identifier has been hidden (3.4.3).]

A parenthesized expression is a primary expression whose type and value are identical to those of the
enclosed expression. The presence of parentheses does not affect whether the expression is an Ivalue. The
parenthesized expression can be used in exactly the same contexts as those where the enclosed expression
can be used, and with the same meaning, except as otherwise indicated.

An id-expressioris a restricted form of primary-expression [Note: anid-expressiorcan appear after
and-> operators (5.2.5).]

An identifier is anid-expressiorprovided it has been suitably declared (clause Kptd: for operator-
function-ics, see 13.5; foconversion-function-is] see 12.3.2; folemplate-id, see 14.2. Alass-name
prefixed by~ denotes a destructor; see 12.4. Within the definition of a nonstatic member function, an
identifier that names a nonstatic member is transformed to a class member access expression (9.3.1).] The
type of the expression is the type of thentifier. The result is the entity denoted by the identifier. The
result is an Ivalue if the entity is a function, variable, or data member.
qualified-id:
it optNested-name-specifielemplate , unqualified-id

identifier

operator-function-id

template-id

nested-name-specifier:
class-or-namespace-name nested-name-specifigy
class-or-namespace-nametemplate nested-name-specifier

class-or-namespace-name:
class-name
namespace-name

A nested-name-specifiginat names a class, optionally followed by the keywendplate (14.8.1), and

then followed by the name of a member of either that class (9.2) or one of its base classes (clause 10), is a
qualified-idt 3.4.3.1 describes name lookup for class members that apppelified-ids The result is the
member. The type of the result is the type of the member. The result is an Ivalue if the member is a static
member function or a data membeNofe: a class member can be referred to usingiaified-id at any

point in its potential scope (3.3.6).] Whatlass-name: class-namés used, and the twoass-name

refer to the same class, this notation names the constructor (12.1). &Missreame: ~ class-names

used, the twalass-nams shall refer to the same class; this notation names the destructor (hNawg:.a[
typedef-naméhat names a class ickass-namég7.1.3). Except as thidentifierin the declarator for a con-
structor or destructor definition outside of a classmber-specificatiofl2.1, 12.4), aypedef-namehat

names a class may be used gualified-idto refer to a constructor or destructor.]

A nested-name-specifitihhat names a namespace (7.3), followed by the name of a member of that name-
space (or the name of a member of a namespace made visihlsihg-@irective) is aqualified-id 3.4.3.2
describes name lookup for namespace members that appealtified-ids The result is the member. The

type of the result is the type of the member. The result is an Ivalue if the member is a function or a vari-
able.

In a qualified-id, if the id-expressions a conversion-function-idits conversion-type-ighall denote the
same type in both the context in which the emjiralified-id occurs and in the context of the class denoted
by thenested-name-specifier

An id-expressiorthat denotes a nonstatic data member or nonstatic member function of a class can only be
used:

— as part of a class member access (5.2.5) in which the object-expression refers to the member’s class or a
class derived from that class, or

65

11

ISO/IEC 14882:1998(E) © ISO/IEC

5.1 Primary expressions 5 Expressions

— to form a pointer to member (5.3.1), or
— in the body of a nonstatic member function of that class or of a class derived from that class (9.3.1), or
— in amem-initializerfor a constructor for that class or for a class derived from that class (12.6.2).

A template-idshall be used as amqualified-idonly as specified in 14.7.2, 14.7, and 14.5.4.

5.2 Postfix expressions [expr.post]

Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expressior] expression]
postfix-expression(expression-ligf,)
simple-type-specifie expression-ligf,)
typename i1, nested-name-specifier identifigr expression-ligf,)
typename :: ,,; nested-name-specifigmplate ,,, template-id (expression-ligf,)
postfix-expression template id-expression
postfix-expression-> template ,; id-expression
postfix-expression pseudo-destructor-name
postfix-expression> pseudo-destructor-name
postfix-expressiont++
postfix-expression-
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list, assignment-expression

pseudo-destructor-name:
I opt Nested-name-specifigrtype-name:: ~ type-name
I opt Nested-name-specifieslemplate template-id:: ~ type-name
it opt Nested-name-specifigy ~ type-name

5.2.1 Subscripting [expr.sub]

A postfix expression followed by an expression in square brackets is a postfix expression. One of the
expressions shall have the tyfointer toT” and the other shall have enumeration or integral type. The
result is an Ivalue of typ€Tl.” The type“T” shall be a completely-defined object tyri%]'he expression

E1[E2] is identical (by definition) ta((E1)+(E2)) . [Note:see 5.3 and 5.7 for detailsofand+ and

8.3.4 for details of arrays. |

5.2.2 Function call [expr.call]

There are two kinds of function call: ordinary function call and member furr?aicgﬁ) call. A function

call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For an ordinary function call, the postfix

expression shall be either an Ivalue that refers to a function (in which case the function-to-pointer standard
conversion (4.3) is suppressed on the postfix expression), or it shall have pointer to function type. Calling a
function through an expression whose function type has a language linkage that is different from the

2%)This is true even if the subscript operator is used in the following common iiq6j: .
A static member function (9.4) is an ordinary function.

66

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.2.2 Function call

language linkage of the function type of the called function’s definition is undefined (7.5). For a member
function call, the postfix expression shall be an implicit (9.3.1, 9.4) or explicit class member access (5.2.5)
whoseid-expressions a function member name, or a pointer-to-member expression (5.5) selecting a func-
tion member. The first expression in the postfix expression is then calletjéut expressigrand the call

is as a member of the object pointed to or referred to. In the case of an implicit class member access, the
implied object is the one pointed to thys . [Note:a member function call of the forff) is interpreted

as (*this).f() (see 9.3.1).] If a function or member function name is used, the name can be over-
loaded (clause 13), in which case the appropriate function shall be selected according to the rules in 13.3.
The function called in a member function call is normally selected according to the static type of the object
expression (clause 10), but if that functiorvigual and is not specified usingaualified-id then the

function actually called will be the final overrider (10.3) of the selected function in the dynamic type of the
object expressionNote: the dynamic type is the type of the object pointed or referred to by the current
value of the object expression. 12.7 describes the behavior of virtual function calls when the object-
expression refers to an object under construction or destruction.]

If no declaration of the called function is visible from the scope of the call the program is ill-formed.

The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type shall be a com-
plete object type, a reference type or the tyqd .

When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8, 12.1) with its corresponding
argument. When a function is called, the parameters that have object type shall have completely-defined
object type. INote: this still allows a parameter to be a pointer or reference to an incomplete class type.
However, it prevents a passed-by-value parameter to have an incomplete class type.] During the initial-
ization of a parameter, an implementation may avoid the construction of extra temporaries by combining
the conversions on the associated argument and/or the construction of temporaries with the initialization of
the parameter (see 12.2). The lifetime of a parameter ends when the function in which it is defined returns.
The initialization and destruction of each parameter occurs within the context of the calling function.
[Example:the access of the constructor, conversion functions or destructor is checked at the point of call in
the calling function. If a constructor or destructor for a function parameter throws an exception, the search
for a handler starts in the scope of the calling function; in particular, if the function calleduresien-

try-block (clause 15) with a handler that could handle the exception, this handler is not considered.] The
value of a function call is the value returned by the called function except in a virtual function call if the
return type of the final overrider is different from the return type of the statically chosen function, the value
returned from the final overrider is converted to the return type of the statically chosen function.

[Note:a function can change the values of its non-const parameters, but these changes cannot affect the val-
ues of the arguments except where a parameter is of a reference type (8.3.2); if the reference is to a const-
qualified type,const_cast is required to be used to cast away the constness in order to modify the
argument’s value. Where a parameter iscofist reference type a temporary object is introduced if
needed (7.1.5, 2.13, 2.13.4, 8.3.4, 12.2). In addition, it is possible to modify the values of nonconstant
objects through pointer parameters.]

A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the ellipsis, 8.3.5) than the number of parameters in the function definition (8.4).
[Note:this implies that, except where the ellipsis () is used, a parameter is available for each argument.

]

When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invokiagarg (18.7). The lvalue-to-rvalue (4.1),
array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the argument
expression. After these conversions, if the argument does not have arithmetic, enumeration, pointer,
pointer to member, or class type, the program is ill-formed. If the argument has a non-POD class type
(clause 9), the behavior is undefined. If the argument has integral or enumeration type that is subject to the
integral promotions (4.5), or a floating point type that is subject to the floating point promotion (4.6), the
value of the argument is converted to the promoted type before the call. These promotions are referred to

67

10

ISO/IEC 14882:1998(E) © ISO/IEC

5.2.2 Function call 5 Expressions

as thedefault argument promotions

The order of evaluation of arguments is unspecified. All side effects of argument expression evaluations
take effect before the function is entered. The order of evaluation of the postfix expression and the argu-
ment expression list is unspecified.

Recursive calls are permitted, except to the function nanazéa (3.6.1).

A function call is an Ivalue if and only if the result type is a reference.

5.2.3 Explicit type conversion (functional notation) [expr.type.conv]

A simple-type-specifief7.1.5) followed by a parenthesizegdpression-listonstructs a value of the speci-

fied type given the expression list. If the expression list is a single expression, the type conversion expres-
sion is equivalent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If
the simple-type-specifiespecifies a class type, the class type shall be complete. If the expression list speci-
fies more than a single value, the type shall be a class with a suitably declared constructor (8.5, 12.1), and
the expressioi(x1, X2, ...) is equivalent in effect to the declaratidri(x1, x2, ...); for

some invented temporary variablewith the result being the value tofas an rvalue.

The expressio() , whereT is a simple-type-specifier (7.1.5.2) for a non-array complete object type or
the (possibly cv-qualified) void type, creates an rvalue of the specified type, whose value is determined by
default-initialization (8.5; no initialization is done for theid() case). Note:if T is a non-class type

that iscv-qualified the cv-qualifiers are ignored when determining the type of the resulting rvalue
(3.10).]
5.2.4 Pseudo destructor call [expr.pseudo]

The use of gseudo-destructor-nanadter a dot. or arrow-> operator represents the destructor for the
non-class type named bype-name The result shall only be used as the operand for the function call oper-
ator () , and the result of such a call has tymd . The only effect is the evaluation of tpestfix-
expressiorbefore the dot or arrow.

The left hand side of the dot operator shall be of scalar type. The left hand side of the arrow operator shall
be of pointer to scalar type. This scalar type is the object type. The type designatedpbguithe-
destructor-nameshall be the same as the object type. Furthermore, theypesnams in a pseudo-
destructor-namef the form

T optNESted-name-specifigrtype-name.: ~ type-name

shall designate the same scalar type. dhenqualified versions of the object type and of the type desig-
nated by thepseudo-destructor-nanshall be the same type.

5.2.5 Class member access [expr.ref]

A postfix expression followed by a dot or an arrow> , optionally followed by the keywortétmplate
(14.8.1), and then followed by darexpressionis a postfix expression. The postfix expression before the
dot or arrow is evaluategtﬁ) the result of that evaluation, together with tHeexpressiondetermine the
result of the entire postfix expression.

For the first option (dot) the type of the first expression ¢ibhject expressigrshall be"class objeét (of a
complete type). For the second option (arrow) the type of the first expressigoifiter expressionshall
be“pointer to class objet{of a complete type). In these cases,ithexpressiorshall name a member of

the class or of one of its base classdsoté: because the name of a class is inserted in its class scope
(clause 9), the name of a class is also considered a nested member of that blass.3]4.5 describes

how names are looked up after theand-> operators. |

98] This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, fibtlexample
id-expressiomenotes a static member.

68

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.2.5 Class member access

If E1 has the typépointer to clas,” then the expressioB1->E2 is converted to the equivalent form
(*(E1)).E2 ; the remainder of 5.2.5 will address only the first option Eabt)Abbreviatingobject-
expression.id-expressi@sE1.E2 , then the type and Ivalue properties of this expression are determined as
follows. In the remainder of 5.2.5(represents eithezonst or the absence afonst ; vq represents
eithervolatile or the absence afolatile . cvrepresents an arbitrary set of cv-qualifiers, as defined

in 3.9.3.

If E2 is declared to have typeeference tal”, thenE1l.E2 is an Ivalue; the type d&1.E2 is T. Other-
wise, one of the following rules applies.

— If E2 is a static data member, and the typ&sfis T, thenE1.E2 is an lvalue; the expression desig-
nates the named member of the class. The tygd &2 isT.

— If E2 is a non-static data member, and the typglfs “cql vqlX’, and the type oE2 is “cq2 vg2T”,
the expression designates the named member of the object designated by the first expré&skisn. If
an Ivalue, theiic1.E2 is an Ivalue. Let the notatiomg12stand for thé union’ of vqlandvqg2; that is,
if vqlorvqz2is volatile , thenvql2is volatile . Similarly, let the notatioreql2 stand for the
“union’ of cqlandcqz that is, ifcqlor cqg2is const , thencql2is const . If E2 is declared to be a
mutable member, then the type &1.E2 is“vql2T”. If E2 is not declared to berautable mem-
ber, then the type &1.E2 is“cql2 vql2T”.

— If E2 is a (possibly overloaded) member function, function overload resolution (13.3) is used to deter-
mine whetheE1.E2 refers to a static or a non-static member function.

— If it refers to a static member function, and the typeEdfis “function of (parameter type list)
returningT”, thenE1.E2 is an Ivalue; the expression designates the static member function. The
type of E1.E2 is the same type as that B2, namely“function of (parameter type list) returning
T

— Otherwise, ifE1.E2 refers to a non-static member function, and the typE2fs “function of
(parameter type listpv returning T”, thenE1.E2 is not an Ivalue. The expression designates a
non-static member function. The expression can be used only as the left-hand operand of a member
function call (9.3). [Note: any redundant set of parentheses surrounding the expression is ignored
(5.1).] The type oE1.E2 is“function of (parameter type listy returningT”.

— If E2is a nested type, the expressiohE?2 is ill-formed.

— If E2 is a member enumerator, and the typé@fis T, the expressiok1.E2 is not an Ivalue. The
type ofE1.E2 isT.

[Note:“class objectscan be structures (9.2) and unions (9.5). Classes are discussed in clause 9.]

5.2.6 Increment and decrement [expr.post.incr]

The value obtained by applying a postfix is the value that the operand had before applying the operator.
[Note: the value obtained is a copy of the original value] The operand shall be a modifiable Ivalue. The
type of the operand shall be an arithmetic type or a pointer to a complete object type. After the result is
noted, the value of the object is modified by addirtg it, unless the object is of typeol , in which case

it is set totrue . [Note:this use is deprecated, see annex D.] The result is an rvalue. The type of the
result is the cv-unqualified version of the type of the operand. See also 5.7 and 5.17.

The operand of postfix is decremented analogously to the postfixoperator, except that the operand
shall not be of typbool . [Note:For prefix increment and decrement, see 5.3.2.]

Y Note that ifE1 has the typépointer to clasX’, then(*(E1)) is an Ivalue.

69

ISO/IEC 14882:1998(E) © ISO/IEC

5.2.7 Dynamic cast 5 Expressions
5.2.7 Dynamic cast [expr.dynamic.cast]
The result of the expressiatynamic_cast<T>(v) is the result of converting the expressioto type

T. T shall be a pointer or reference to a complete class tyggoorter tocvvoid . Types shall not be
defined in adynamic_cast . Thedynamic_cast operator shall not cast away constness (5.2.11).

If Tis a pointer typey shall be an rvalue of a pointer to complete class type, and the result is an rvalue of
typeT. If T is a reference type, shall be an Ivalue of a complete class type, and the result is an Ivalue of
the type referred to bY.

If the type ofv is the same as the required result type (which, for convenience, will be Ralhethis
description), or it is the same BRexcept that the class object typeRiis more cv-qualified than the class
object type inv, the result iz (converted if necessary).

If the value ofv is a null pointer value in the pointer case, the result is the null pointer value & type

If Tis“pointer tocvlB” andv has typé‘pointer tocv2 D’ such thaB is a base class &, the result is a
pointer to the uniqu® sub-object of thé object pointed to by. Similarly, if T is “reference tacvl B’

andv has typé‘'cv2D’ such thaB is a base class @, the result is an Ivalue for the uni&ﬂ)eB sub-object

of the D object referred to by. In both the pointer and reference cased, shall be the same cv-
gualification as, or greater cv-qualification thau2, andB shall be an accessible unambiguous base class
of D. [Example:

struct B {};
struct D : B {};
void foo(D* dp)

B* bp = dynamic_cast<B*>(dp); 1 equivalent td3* bp = dp;
}
—end example
Otherwisey shall be a pointer to or an Ivalue of a polymorphic type (10.3).

If T is “pointer tocvvoid ,” then the result is a pointer to the most derived object pointedvo Bther-
wise, a run-time check is applied to see if the object pointed or referred/todnybe converted to the type
pointed or referred to by.

The run-time check logically executes as follows:

— If, in the most derived object pointed (referred) tovhy points (refers) to aublic base class sub-
object of aT object, and if only one object of tydeis derived from the sub-object pointed (referred) to
by v, the result is a pointer (an Ivalue referring) to thabject.

— Otherwise, ifv points (refers) to public base class sub-object of the most derived object, and the
type of the most derived object has an unambigpobsic base class of typg, the result is a pointer
(an Ivalue referring) to th€ sub-object of the most derived object.

— Otherwise, the run-time cheéils.

The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast to
reference type throwsad_cast (18.5.2).

%) The most derived object (1.8) pointed or referred to lbgn contain otheB objects as base classes, but these are ignored.

70

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.2.7 Dynamic cast

[Example:

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};

void g()
{
D d;
B* bp = (B*)&d; Il cast needed to break protection
A* ap = &d; 1l public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); 1 fails
ap = dynamic_cast<A*>(bp); 1 fails
bp = dynamic_cast<B*>(ap); I fails
ap = dynamic_cast<A*>(&d); 1 succeeds
bp = dynamic_cast<B*>(&d); 1 fails
}

class E : public D, public B {};
class F : public E, public D {};

void h()
{
F f
A* ap =&f; I succeeds: finds unique
D* dp = dynamic_cast<D*>(ap); I fails: yieldsO
/I f has twoD sub-objects
E* ep = (E"ap; i ill-formed:
/I cast from virtual base
E* epl = dynamic_cast<E*>(ap); I succeeds
}

—end example[Note: 12.7 describes the behavior ofilgnamic_cast applied to an object under con-
struction or destruction.]

5.2.8 Type identification [expr.typeid]
The result of aypeid expression is an Ivalue of static typenststd::type_info (18.5.1) and
dynamic typeconststd::type_info or const namewhere nameis an implementation-defined
class derived fronstd::type_info which preserves the behavior described in 1838 The lifetime

of the object referred to by the Ivalue extends to the end of the program. Whether or not the destructor is
called for thetype_info object at the end of the program is unspecified.

Whentypeid is applied to an Ivalue expression whose type is a polymorphic class type (10.3), the result
refers to dype_info object representing the type of the most derived object (1.8) (that is, the dynamic
type) to which the Ivalue refers. If the lvalue expression is obtained by applying thet umagyator to a
pointelﬁz) and the pointer is a null pointer value (4.10), typeid expression throws thead_typeid

exception (18.5.3).

Whentypeid is applied to an expression other than an Ivalue of a polymorphic class type, the result
refers to aype_info object representing the static type of the expression. Lvalue-to-rvalue (4.1), array-
to-pointer (4.2), and function-to-pointer (4.3) conversions are not applied to the expression. If the type of
the expression is a class type, the class shall be completely-defined. The expression is not evaluated.

Whentypeid is applied to aype-id the result refers totgpe_info object representing the type of the
type-id If the type of thetype-idis a reference type, the result of typeid expression refers to a
type_info object representing the referenced type. If the type diyffeeidis a class type or a reference
to a class type, the class shall be completely-defined. Types shall not be defindglpe-ide

1) The recommended name for such a clasgtisnded_type_info
If p is an expression of pointer type, thgn, (*p) , *(p) ., ((*p)) .*((p)) ,and so on all meet this requirement.

71

ISO/IEC 14882:1998(E) © ISO/IEC

5.2.8 Type identification 5 Expressions

The top-level cv-qualifiers of the Ivalue expression ortyipe-idthat is the operand ¢fpeid are always
ignored. Example:

classD{... }

D d1;

const D d2;

typeid(dl) == typeid(d2); I yieldstrue

typeid(D) == typeid(const D); 1 yieldstrue

typeid(D) == typeid(d2); I yieldstrue

typeid(D) == typeid(const D&); 1 yieldstrue
—end example

If the headektypeinfo> (18.5.1) is not included prior to a usetgbeid , the program is ill-formed.

[Note:12.7 describes the behaviortgpeid applied to an object under construction or destruction.]

5.2.9 Static cast [expr.static.cast]

The result of the expressistatic_cast<T>(v) is the result of converting the expressioto typeT.
If T is a reference type, the result is an Ivalue; otherwise, the result is an rvalue. Types shall not be defined
in astatic_cast . Thestatic_cast operator shall not cast away constness (5.2.11).

An expressione can be explicitly converted to a typE using a static_cast of the form
static_cast<T>(e) if the declaratiorf T t(e); " is well-formed, for some invented temporary vari-
ablet (8.5). The effect of such an explicit conversion is the same as performing the declaration and initial-
ization and then using the temporary variable as the result of the conversion. The result is anllalae if
reference type (8.3.2), and an rvalue otherwise. The expressfonsed as an lvalue if and only if the
initialization uses it as an Ivalue.

Otherwise, thestatic_cast shall perform one of the conversions listed below. No other conversion
shall be performed explicitly usingstatic_cast

Any expression can be explicitly converted to typevoid .” The expression value is discardetlofe:

however, if the value is in a temporary variable (12.2), the destructor for that variable is not executed until
the usual time, and the value of the variable is preserved for the purpose of executing the destructor.] The
Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the expression.

An Ivalue of type“cvlB", whereB is a class type, can be cast to typeference tav2D’, whereD is a
class derived (clause 10) fraBy if a valid standard conversion frdpointer toD’ to “ pointer toB” exists
(4.10),cv2is the same cv-qualification as, or greater cv-qualification ttel,andB is not a virtual base
class ofD. The result is an Ivalue of typev2D.” If the Ivalue of type'cvlB” is actually a sub-object of
an object of typd), the Ivalue refers to the enclosing object of tipeOtherwise, the result of the cast is
undefined. Example:

struct B {};

struct D : public B {};
Dd;

B &br =d;

static_cast<D&>(br); 1 produces Ivalue to the origindl object
—end example

The inverse of any standard conversion sequence (clause 4), other than the Ivalue-to-rvalue (4.1), array-to-
pointer (4.2), function-to-pointer (4.3), and boolean (4.12) conversions, can be performed explicitly using
static_cast subject to the restriction that the explicit conversion does not cast away constness (5.2.11),
and the following additional rules for specific cases:

72

10

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.2.9 Static cast

A value of integral type can be explicitly converted to an enumeration type. The value is unchanged if the
integral value is within the range of the enumeration values (7.2). Otherwise, the resulting enumeration
value is unspecified.

An rvalue of typé‘pointer tocv1B”, whereB is a class type, can be converted to an rvalue of‘fypater
tocv2D’, whereDis a class derived (clause 10) fr@nif a valid standard conversion frétpointer toD”’

to “pointer toB” exists (4.10)cv2is the same cv-qualification as, or greater cv-qualification thak,and

B is not a virtual base class bf The null pointer value (4.10) is converted to the null pointer value of the
destination type. If the rvalue of tyfgeointer tocvl B” points to aB that is actually a sub-object of an
object of typeD, the resulting pointer points to the enclosing object of Bp©therwise, the result of the
cast is undefined.

An rvalue of typée‘pointer to member db of typecv1T” can be converted to an rvalue of tyeinter to

member ofB of typecv2T”, whereB is a base class (clause 10)Ofif a valid standard conversion from
“pointer to member d8 of typeT” to “pointer to member db of typeT” exists (4.11), andv2is the same
cv-qualification as, or greater cv-qualification tham;l_Gg) The null member pointer value (4.11) is con-
verted to the null member pointer value of the destination type. If Blasatains the original member, or

is a base or derived class of the class containing the original member, the resulting pointer to member
points to the original member. Otherwise, the result of the cast is undefiMetk: dlthough clas8 need

not contain the original member, the dynamic type of the object on which the pointer to member is derefer-
enced must contain the original member; see 5.5.]

An rvalue of typé'pointer tocv void ” can be explicitly converted to a pointer to object type. A value of
type pointer to object converted ‘tpointer tocvvoid " and back to the original pointer type will have its
original value.

5.2.10 Reinterpret cast [expr.reinterpret.cast]

The result of the expressioginterpret_cast<T>(v) is the result of converting the expressioto

typeT. If T is a reference type, the result is an Ivalue; otherwise, the result is an rvalue and the lvalue-to-
rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the
the expressiow. Types shall not be defined inrainterpret_cast . Conversions that can be per-
formed explicitly usingreinterpret_cast are listed below. No other conversion can be performed
explicitly usingreinterpret_cast

Thereinterpret_cast operator shall not cast away constned¢ot¢: see 5.2.11 for the definition of
“casting away constness”. Subject to the restrictions in this section, an expression may be cast to its own
type using aeinterpret_cast operator. |

The mapping performed hinterpret_cast is implementation-defined.Npte: it might, or might
not, produce a representation different from the original value.]

A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined\ote:it is intended to be unsurprising to those who know the addressing structure
of the underlying machine.]

A value of integral type or enumeration type can be explicitly converted to a pe(f?rnepointer converted
to an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type
will have its original value; mappings between pointers and integers are otherwise implementation-defined.

A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type (8.3.5) that is not the same as the type used in the
definition of the function is undefined. Except that converting an rvalue of pgieter toT1” to the type
“pointer toT2” (whereT1 and T2 are function types) and back to its original type yields the original
pointer value, the result of such a pointer conversion is unspecifiede:gee also 4.10 for more details of

93 Eunction types (including those used in pointer to member function types) are never cv-qualified; see 8.3.5 .
Converting an integral constant expression (5.19) with value zero always yields a null pointer (4.10), but convertingegher exp
sions that happen to have value zero need not yield a null pointer.

73

10

ISO/IEC 14882:1998(E) © ISO/IEC

5.2.10 Reinterpret cast 5 Expressions

pointer conversions. |

A pointer to an object can be explicitly converted to a pointer to an object of differer?tr’)(ﬁ)e:ept that

converting an rvalue of typgointer toT1” to the type'pointer toT2” (whereT1 andT2 are object types
and where the alignment requirementd @fare no stricter than those ®1) and back to its original type
yields the original pointer value, the result of such a pointer conversion is unspecified.

The null pointer value (4.10) is converted to the null pointer value of the destination type.

An rvalue of type"pointer to member oK of type T1” can be explicitly converted to an rvalue of type
“pointer to member of of typeT2” if T1 andT2 are both function types or both object tyB@sThe null
member pointer value (4.11) is converted to the null member pointer value of the destination type. The
result of this conversion is unspecified, except in the following cases:

— converting an rvalue of typ&ointer to member functidnto a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting an rvalue of tyggointer to data member &fof typeT1” to the typ€e‘pointer to data mem-
ber ofY of typeT2” (where the alignment requirementsi@ are no stricter than those 1) and back
to its original type yields the original pointer to member value.

An Ivalue expression of typEl can be cast to the typeeference td2” if an expression of typépointer

to T1” can be explicitly converted to the typpointer toT2” using areinterpret_cast . Thatis, a
reference cast reinterpret_cast<T&>(X) has the same effect as the conversion
reinterpret_cast<T>(&x) with the built-in& and* operators. The result is an Ivalue that refers

to the same object as the source Ivalue, but with a different type. No temporary is created, no copy is made,
and constructors (12.1) or conversion functions (12.3) are not &led.

5.2.11 Const cast [expr.const.cast]

The result of the expressi@onst_cast<T>(v) is of typeT. If T is a reference type, the result is an
Ivalue; otherwise, the result is an rvalue and, the Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are performed on the expressidypes shall not be
defined in aconst_cast . Conversions that can be performed explicitly usingst_cast are listed

below. No other conversion shall be performed explicitly usomgst_cast

[Note: Subject to the restrictions in this section, an expression may be cast to its own type using a
const_cast operator.]

For two pointer type31 andT2 where

T1 is cvy o pointer tocvy ; pointerto - - - cvy n_; pointertocvy , T
and

T2 is cv, o pointer tocv, ; pointerto - - - cv, 51 pointer tocv, , T

whereT is any object type or theoid type and wherev, , andcv, may be different cv-qualifications,
an rvalue of typel'l may be explicitly converted to the tyg@ using aconst_cast . The result of a
pointerconst_cast refers to the original object.

An Ivalue of type T1 can be explicitty converted to an Ivalue of type2 using the cast
const_cast<T2&> (whereT1l andT2 are object types) if a pointer Tl can be explicitly converted to
the type pointer td2 using aconst_cast . The result of a referen@®nst_cast refers to the origi-
nal object.

%) The types may have different cv-qualifiers, subject to the overall restrictionriiaterpret_cast cannot cast away const-
ess.

)Tl andT2 may have different cv-qualifiers, subject to the overall restriction theihterpret_cast cannot cast away const-
SS.

)This is sometimes referred to at/pe pun

n
6

ne
67

74

10

11

12

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.2.11 Const cast

For aconst_cast involving pointers to data members, multi-level pointers to data members and multi-
level mixed pointers and pointers to data members (4.4), the rulesrfstr cast are the same as those
used for pointers; thtmembet aspect of a pointer to member is ignored when determining where the cv-
qualifiers are added or removed by thenst cast . The result of a pointer to data member
const_cast refers to the same member as the original (uncast) pointer to data member.

A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

[Note: Depending on the type of the object, a write operation through the pointer, Ivalue or pointer to data
member resulting from eonst_cast that casts away a const-qualifi€rmay produce undefined behav-
ior (7.1.5.1).]

The following rules define the process knowncasting away constnessn these ruledn andXn repre-
sent types. For two pointer types:

X1lisTlevy 1 * -+ cvyny * where T1 is not a pointer type
X2 isT2cvy 1 * -+ cvyy * where T2 is not a pointer type
K is min(N,M)

casting fromX1 to X2 casts away constness if, for a non-pointer fiypleere does not exist an implicit con-
version (clause 4) from:

Tevy (n-k+1) ¥ CVi,(N-Kk+2) * " " CViN ¥

to

TeVo M-k+1) * CVo,(m-k+2) ¥ "+ CVom *

Casting from an Ivalue of typEl to an Ivalue of typd2 using a reference cast casts away constness if a
cast from an rvalue of tyggointer toT1” to the type pointer toT2” casts away constness.

Casting from an rvalue of typ@ointer to data member &fof typeT1” to the type‘pointer to data mem-
ber of Y of type T2” casts away constness if a cast from an rvalue of ‘tgpater toT1” to the type
“pointer toT2” casts away constness.

For multi-level pointer to members and multi-level mixed pointers and pointer to members (4.4), the
“membet aspect of a pointer to member level is ignored when determiningdhst cv-qualifier has
been cast away.

[Note: some conversions which involve only changes in cv-qualification cannot be done using
const_cast. For instance, conversions between pointers to functions are not covered because such
conversions lead to values whose use causes undefined behavior. For the same reasons, conversions
between pointers to member functions, and in particular, the conversion from a pointer to a const member
function to a pointer to a non-const member function, are not covered.]

08) const_cast is not limited to conversions that cast away a const-qualifier.

75

ISO/IEC 14882:1998(E) © ISO/IEC

5.2.11 Const cast 5 Expressions

5.3 Unary expressions [expr.unary]
Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & o+ - | ~

5.3.1 Unary operators [expr.unary.op]

The unary* operator performéndirection the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an Ivalue referring to the object or function to
which the expression points. If the type of the expressidpadmter toT,” the type of the result {5T.”

[Note:a pointer to an incomplete type (other tieavoid) can be dereferenced. The Ivalue thus obtained
can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to an
rvalue, see 4.1.]

The result of the unar& operator is a pointer to its operand. The operand shall be an Ivalugialifeed-
id. In the first case, if the type of the expressiofili§ the type of the result Ipointer toT.” In particular,
the address of an object of tyfe/ T” is “pointer tocv T,” with the same cv-qualifiers. Forcaalified-id
if the member is a static member of tyié, the type of the result is platpointer toT.” If the member is
a nonstatic member of cla€of typeT, the type of the result ipointer to member aflass C of type
T.” [Example:

struct A {inti; };
structB: A{};
.. &B:i ... I has typant A::*

—end examplg[Note: a pointer to member formed fronnautable nonstatic data member (7.1.1) does
not reflect themutable specifier associated with the nonstatic data member.]

A pointer to member is only formed when an expl&iis used and its operand isqaalified-id not
enclosed in parenthesesNdte: that is, the expressio&(qualified-id) , Where thequalified-id is
enclosed in parentheses, does not form an expression of“pgieter to membet. Neither does
qualified-id , because there is no implicit conversion froqualified-id for a nonstatic member func-
tion to the typé pointer to member functidras there is from an Ivalue of function type to the typainter

to functio (4.3). Nor is &unqualified-id a pointer to member, even within the scope of the
unqualified-ids class.]

The address of an object of incomplete type can be taken, but if the complete type of that object is a class
type that declaresperator&() as a member function, then the behavior is undefined (and no diagnostic
is required). The operand &fshall not be a bit-field.

The address of an overloaded function (clause 13) can be taken only in a context that uniquely determines
which version of the overloaded function is referred to (see 13\@te{since the context might determine
whether the operand is a static or nonstatic member function, the context can also affect whether the expres-
sion has typé&pointer to functioh or “pointer to member functich]

The operand of the unatyoperator shall have arithmetic, enumeration, or pointer type and the result is the
value of the argument. Integral promotion is performed on integral or enumeration operands. The type of
the result is the type of the promoted operand.

76

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.3.1 Unary operators

The operand of the unaryoperator shall have arithmetic or enumeration type and the result is the negation
of its operand. Integral promotion is performed on integral or enumeration operands. The negative of an
unsigned quantity is computed by subtracting its value frbnwBeren is the number of bits in the pro-
moted operand. The type of the result is the type of the promoted operand.

The operand of the logical negation operatois implicitly converted tabool (clause 4); its value is
true if the converted operandfalse andfalse otherwise. The type of the resultisol .

The operand of shall have integral or enumeration type; the result is the one’s complement of its operand.
Integral promotions are performed. The type of the result is the type of the promoted operand. There is an
ambiguity in theunary-expressiorX() , whereX is aclass-name The ambiguity is resolved in favor of
treating~ as a unary complement rather than treati¥@s referring to a destructor.

5.3.2 Increment and decrement [expr.pre.incr]

The operand of prefix+ is modified by addindl, or set totrue if it is bool (this use is deprecated).

The operand shall be a modifiable Ivalue. The type of the operand shall be an arithmetic type or a pointer
to a completely-defined object type. The value is the new value of the operand; it is an Ivalig ndt

of typebool , the expression+x is equivalent toc+=1. [Note:see the discussions of addition (5.7) and
assignment operators (5.17) for information on conversions. |

The operand of prefix- is modified by subtractind. The operand shall not be of typeol . The
requirements on the operand of prefix and the properties of its result are otherwise the same as those of
prefix ++. [Note:For postfix increment and decrement, see 5.2.6.]

5.3.3 Sizeof [expr.sizeof]

Thesizeof operator yields the number of bytes in the object representation of its operand. The operand

is either an expression, which is not evaluated, or a parenthégieedl Thesizeof operator shall not

be applied to an expression that has function or incomplete type, or to an enumeration type before all its
enumerators have been declared, or to the parenthesized name of such types, or to an Ivalue that designates

a bit-field. sizeof(char) , Sizeof(signed char) andsizeof(unsigned char) arel; the
result ofsizeof applied to any other fundamental type (3.9.1) is implementation-defiiate:jn par-
ticular, sizeof(bool) and sizeof(wchar _t) are implementation-defineec?.)] [Note: See 1.7 for

the definition ofbyteand 3.9 for the definition afbject representatian]

When applied to a reference or a reference type, the result is the size of the referenced type. When applied
to a class, the result is the number of bytes in an object of that class including any padding required for
placing objects of that type in an array. The size of a most derived class shall be greater than zero (1.8).
The result of applyingizeof to a base class subobject is the size of the base clagé))tymben applied

to an array, the result is the total number of bytes in the array. This implies that the size of anrarray of
elements is times the size of an element.

Thesizeof operator can be applied to a pointer to a function, but shall not be applied directly to a func-
tion.

The Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the operand eizeof

Types shall not be defined irszeof expression.

The result is a constant of typsize t . [Note: size_t is defined in the standard header
<cstddef> (18.1).]

0Y) sizeof(bool) is not required to bi.
The actual size of a base class subobject may be less than the result of aipdygihg to the subobject, due to virtual base
classes and less strict padding requirements on base class subobjects.

77

ISO/IEC 14882:1998(E) © ISO/IEC

5.3.4 New 5 Expressions

5.3.4 New [expr.new]

The new-expressioattempts to create an object of type-id(8.1) ornew-type-idto which it is applied.

The type of that object is ttadlocated type This type shall be a complete object type, but not an abstract
class type or array thereof (1.8, 3.9, 10.Notp: because references are not objects, references cannot be
created bynew-expressia] [Note: thetype-idmay be a cv-qualified type, in which case the object cre-
ated by thenew-expressiohas a cv-qualified type.]

new-expression:
i1 opt NEW new-placemepy new-typ_e-id new-?n_it?alﬁzg;;t
T opt NEW new-placemegy, (type-id) new-initializeg,

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaraggr

new-declarator:
ptr-operator new-declaratgy;
direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator[constant-expression

new-initializer:
(expression-ligf,)

Entities created by aew-expressiohave dynamic storage duration (3.7.3)ofe: the lifetime of such an

entity is not necessarily restricted to the scope in which it is created.] If the entity is a non-array object, the
new-expressioreturns a pointer to the object created. If it is an arraynéleexpressioreturns a pointer

to the initial element of the array.

The new-type-idn a new-expressiors the longest possible sequenceneiv-declaratos. [Note: this pre-
vents ambiguities between declarator operaors [, and their expression counterpartsExgmple:

new int * i; I syntax error: parsed a@ew int*) i
1 not as(new int)*i

The* is the pointer declarator and not the multiplication operator.]
[Note: parentheses inrmew-type-idf anew-expressionan have surprising effectsEfample:
new int(*[10])(); I error

is ill-formed because the binding is
(new int) (*[10D)0); " error

Instead, the explicitly parenthesized version ofrtbe operator can be used to create objects of compound
types (3.9.2):

new (int (*[10])());
allocates an array df0 pointers to functions (taking no argument and returimng).]]
Thetype-specifier-seghall not contain class declarations, or enumeration declarations.

When the allocated object is an array (that isdilect-new-declaratosyntax is used or theew-type-icbr
type-id denotes an array type), timew-expressiolyields a pointer to the initial element (if any) of the
array. Note:bothnew int andnew int[10] have typent* and the type ofiew int[i][10] is
int (*)[10] o

78

10

11

12

13

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.3.4 New

Every constant-expressiom a direct-new-declaratoishall be an integral constant expression (5.19) and
evaluate to a strictly positive value. Th&pressionn a direct-new-declaratoishall have integral type

(3.9.1) with a non-negative valueEXample:if n is a variable of typént , thennew float[n][5] is
well-formed (becausa is the expressionof a direct-new-declaratg; but new float[5][n] is ill-
formed (becausa is not aconstant-expression If n is negative, the effect afew float[n][5] is
undefined.]

When the value of thexpressiornn adirect-new-declaratois zero, the allocation function is called to allo-
cate an array with no elements. The pointer returned byeheexpressioms non-null. Note: If the
library allocation function is called, the pointer returned is distinct from the pointer to any other object.]

A new-expressiombtains storage for the object by calling @location function(3.7.3.1). If thenew-
expressiorterminates by throwing an exception, it may release storage by calling a deallocation function
(3.7.3.2). If the allocated type is a non-array type, the allocation function’s naper&or new and

the deallocation function’s nameaperator delete . If the allocated type is an array type, the alloca-
tion function's name is operator new[] and the deallocation function's name is
operator delete[] . [Note:an implementation shall provide default definitions for the global alloca-

tion functions (3.7.3, 18.4.1.1, 18.4.1.2). A+4Jprogram can provide alternative definitions of these func-
tions (17.4.3.4) and/or class-specific versions (12.5).]

If the new-expressiobegins with a unary. operator, the allocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a classTyprearray thereof, the allocation function’s
name is looked up in the scopeTof If this lookup fails to find the name, or if the allocated type is not a
class type, the allocation function’s name is looked up in the global scope.

A new-expressiopasses the amount of space requested to the allocation function as the first argument of
type std::size_t . That argument shall be no less than the size of the object being created; it may be
greater than the size of the object being created only if the object is an array. For aolags a@ind
unsigned char , the difference between the result of tieav-expressioand the address returned by the
allocation function shall be an integral multiple of the most stringent alignment requirement (3.9) of any
object type whose size is no greater than the size of the array being crédied.Because allocation
functions are assumed to return pointers to storage that is appropriately aligned for objects of any type, this
constraint on array allocation overhead permits the common idiom of allocating character arrays into which
objects of other types will later be placed.]

The new-placemensyntax is used to supply additional arguments to an allocation function. If used, over-
load resolution is performed on a function call created by assembling an argument list consisting of the
amount of space requested (the first argument) and the expressionsi@wthpacemenpart of thenew-
expressior(the second and succeeding arguments). The first of these arguments Is&etytpe and the
remaining arguments have the corresponding types of the expressionsewtpcement

[Example:

— new T results in a call obperator new(sizeof(T)) ,

— new(2,f) T results in a call obperator new(sizeof(T),2,f) ,

— new T[5] results in a call obperator new[](sizeof(T)*5+x) , and
— new(2,f) T[5] results in a call obperator new[](sizeof(T)*5+y,2,f)

Here,x andy are non-negative unspecified values representing array allocation overhead; the result of the

new-expressiowill be offset by this amount from the value returnedopgrator new(] . This over-
head may be applied in all arrayew-expressia) including those referencing the library function
operator new[](std::size_t, void*) and other placement allocation functions. The amount

of overhead may vary from one invocatiomefv to another.]

[Note:unless an allocation function is declared with an eragteption-specificatio(l5.4),throw() , it
indicates failure to allocate storage by throwingaal alloc exception (clause 15, 18.4.2.1); it returns a
non-null pointer otherwise. If the allocation function is declared with an emtgption-specificatign

79

14

15

16

17

18

19

20

ISO/IEC 14882:1998(E) © ISO/IEC

5.3.4 New 5 Expressions

throw() , it returns null to indicate failure to allocate storage and a non-null pointer otherwise.] If the
allocation function returns null, initialization shall not be done, the deallocation function shall not be called,
and the value of theew-expressioshall be null.

[Note:when the allocation function returns a value other than null, it must be a pointer to a block of storage

in which space for the object has been reserved. The block of storage is assumed to be appropriately
aligned and of the requested size. The address of the created object will not necessarily be the same as that
of the block if the object is an array.]

A new-expressiothat creates an object of tyfenitializes that object as follows:
— If the new-initializeris omitted:

— If T is a (possibly cv-qualified) non-POD class type (or array thereof), the object is default-
initialized (8.5) If T is a const-qualified type, the underlying class type shall have a user-declared
default constructor.

— Otherwise, the object created has indeterminate valug.islfa const-qualified type, or a (possibly
cv-qualified) POD class type (or array thereof) containing (directly or indirectly) a member of
const-qualified type, the program is ill-formed;

— If the new-initializeris of the form() , default-initialization shall be performed (8.5);

— If the new-initializeris of the form éxpression-ligtandT is a class type, the appropriate constructor is
called, usingexpression-lisas the arguments (8.5);

— If the new-initializeris of the form éxpression-ligtandT is an arithmetic, enumeration, pointer, or
pointer-to-member type arekpression-listomprises exactly one expression, then the object is initial-
ized to the (possibly converted) value of the expression (8.5);

— Otherwise thaew-expressiois ill-formed.

If the new-expressionreates an object or an array of objects of class type, access and ambiguity control are
done for the allocation function, the deallocation function (12.5), and the constructor (12.1). If the new
expression creates an array of objects of class type, access and ambiguity control are done for the destructor
(12.4).

If any part of the object initialization described abNeerminates by throwing an exception and a suitable
deallocation function can be found, the deallocation function is called to free the memory in which the
object was being constructed, after which the exception continues to propagate in the conteméwf the
expression If no unambiguous matching deallocation function can be found, propagating the exception
does not cause the object's memory to be freBitef: This is appropriate when the called allocation func-
tion does not allocate memory; otherwise, it is likely to result in a memory leak.]

If the new-expressiobegins with a unary. operator, the deallocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class Type an array thereof, the deallocation
function’s name is looked up in the scopd oflf this lookup fails to find the name, or if the allocated type
is not a class type or array thereof, the deallocation function’s name is looked up in the global scope.

A declaration of a placement deallocation function matches the declaration of a placement allocation func-
tion if it has the same number of parameters and, after parameter transformations (8.3.5), all parameter
types except the first are identical. Any non-placement deallocation function matches a non-placement
allocation function. If the lookup finds a single matching deallocation function, that function will be called;
otherwise, no deallocation function will be called.

If a new-expressionalls a deallocation function, it passes the value returned from the allocation function

call as the first argument of typmid* . If a placement deallocation function is called, it is passed the
same additional arguments as were passed to the placement allocation function, that is, the same arguments
as those specified with thieew-placemensyntax. If the implementation is allowed to make a copy of any

L This may include evaluatingreew-initializerand/or calling a constructor.

80

21

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.3.4 New

argument as part of the call to the allocation function, it is allowed to make a copy (of the same original
value) as part of the call to the deallocation function or to reuse the copy made as part of the call to the allo-
cation function. If the copy is elided in one place, it need not be elided in the other.

Whether the allocation function is called before evaluating the constructor arguments or after evaluating the
constructor arguments but before entering the constructor is unspecified. It is also unspecified whether the
arguments to a constructor are evaluated if the allocation function returns the null pointer or exits using an
exception.

5.3.5 Delete [expr.delete]

Thedelete-expressionperator destroys a most derived object (1.8) or array createddw-expressian

delete-expression:
il opt delete cast-expression
i op delete [1] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The operand shall have a pointer
type, or a class type having a single conversion function (12.3.2) to a pointer type. The result has type
void .

If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned
conversion function, and the converted operand is used in place of the original operand for the remainder of
this section. In either alternative, if the value of the operardktlgfte is the null pointer the operation

has no effect. In the first alternativde{ete objeqt the value of the operand délete shall be a pointer

to a non-array object or a pointer to a sub-object (1.8) representing a base class of such an object (clause
10). If not, the behavior is undefined. In the second alternatdleté array, the value of the operand of

delete shall be the pointer value which resulted from a previous area\yexpressioﬁz) If not, the

behavior is undefined.Note:this means that the syntax of tihelete-expressiomust match the type of the

object allocated by new, not the syntax of tlesv-expressian] [Note: a pointer to aonst type can be

the operand of @elete-expressigrit is not necessary to cast away the constness (5.2.11) of the pointer
expression before it is used as the operand alelete-expression|

In the first alternativedelete objedt if the static type of the operand is different from its dynamic type, the
static type shall be a base class of the operand’s dynamic type and the static type shall have a virtual
destructor or the behavior is undefined. In the second alterndeletd array if the dynamic type of the

object to be deleted differs from its static type, the behavior is undéfthed.

The cast-expressioin a delete-expressioshall be evaluated exactly once. If tihelete-expressionalls

the implementation deallocation function (3.7.3.2), and if the operand of the delete expression is not the
null pointer constant, the deallocation function will deallocate the storage referenced by the pointer thus
rendering the pointer invalid.Npte: the value of a pointer that refers to deallocated storage is indetermi-
nate. |

If the object being deleted has incomplete class type at the point of deletion and the complete class has a
non-trivial destructor or a deallocation function, the behavior is undefined.

The delete-expressiowill invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of the completion of their constructor; see 12.6.2).

Thedelete-expressiowill call a deallocation functiorf3.7.3.2).

[Note: An implementation provides default definitions of the global deallocation functions
operator delete() for non-arrays (18.4.1.1) armperator delete[]() for arrays (18.4.1.2).
A C++ program can provide alternative definitions of these functions (17.4.3.4), and/or class-specific

") For non-zero-length arrays, this is the same as a pointer to the first element of the array createtetwyekatessionZero-
length arrays do not have a first element.
This implies that an object cannot be deleted using a pointer ofdygli'e because there are no objects of typigl .

81

ISO/IEC 14882:1998(E) © ISO/IEC

5.3.5 Delete 5 Expressions

versions (12.5).] When the keywaddlete in adelete-expressiois preceded by the unary operator,
the global deallocation function is used to deallocate the storage.

Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

5.4 Explicit type conversion (cast notation) [expr.cast]

The result of the expressidii) cast-expressiois of typeT. The result is an Ivalue if is a reference
type, otherwise the result is an rvaludlofe:if T is a hon-class type that ¢s-qualified the cv-qualifiers
are ignored when determining the type of the resulting rvalue; see 3.10.]

An explicit type conversion can be expressed using functional notation (5.2.3), a type conversion operator
(dynamic_cast, static_cast, reinterpret_cast, const_cast), or thecastnotation.

cast-expression:
unary-expression
(type-id) cast-expression

Types shall not be defined in casts.

Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.
The conversions performed by

— aconst_cast (5.2.11),

— astatic_cast (5.2.9),

— astatic_cast followed by aconst_cast

— areinterpret_cast (5.2.10), or

— areinterpret_cast followed by aconst_cast

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and
behaviors apply. If a conversion can be interpreted in more than one of the ways listed above, the interpre-
tation that appears first in the list is used, even if a cast resulting from that interpretation is ill-formed. If a
conversion can be interpreted in more than one waysttia cast followed by aconst_cast , the
conversion is ill-formed. Example:

struct A {};
struct 11 : A {};
struct 12 : A {};
struct D : 11, 12 {};
A *foo(D *p){
return (A*)(p); I ill-formed static_cast interpretation
}

—end example

The operand of a cast using the cast notation can be an rvalue tpoypier to incomplete class type

The destination type of a cast using the cast notation cépdieter to incomplete class typeln such

cases, even if there is a inheritance relationship between the source and destination classes, whether the
static_cast orreinterpret_cast interpretation is used is unspecified.

In addition to those conversions, the followistatic_cast and reinterpret_cast operations
(optionally followed by aconst_cast operation) may be performed using the cast notation of explicit
type conversion, even if the base class type is not accessible:

— a pointer to an object of derived class type or an Ivalue of derived class type may be explicitly converted
to a pointer or reference to an unambiguous base class type, respectively;

— a pointer to member of derived class type may be explicitly converted to a pointer to member of an
unambiguous non-virtual base class type;

82

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.4 Explicit type conversion (cast notation)

— a pointer to an object of non-virtual base class type, an Ivalue of non-virtual base class type, or a pointer
to member of non-virtual base class type may be explicitly converted to a pointer, a reference, or a
pointer to member of a derived class type, respectively.

5.5 Pointer-to-member operators [expr.mptr.oper]

The pointer-to-member operaters and.* group left-to-right.

pm-expression:
cast-expression
pm-expression* cast-expression
pm-expression>* cast-expression

The binary operator binds its second operand, which shall be of typginter to member of” (where

T is a completely-defined class type) to its first operand, which shall be ofTctassf a class of which

is an unambiguous and accessible base class. The result is an object or a function of the type specified by
the second operand.

The binary operator>* binds its second operand, which shall be of typ@nter to member of” (where

T is a completely-defined class type) to its first operand, which shall be dfpgpeer toT” or “pointer to

a class of whiclT is an unambiguous and accessible base tl@ks. result is an object or a function of the
type specified by the second operand.

If the dynamic type of the object does not contain the member to which the pointer refers, the behavior is
undefined.

The restrictions orv-qualification, and the manner in which thequalifiers of the operands are combined
to produce thev-qualifiers of the result, are the same as the ruleBIdE2 given in 5.2.5. [Note:it is not
possible to use a pointer to member that refersrtmmble member to modify &onst class object.
For example,

struct S {
mutable int i;
2
const S cs;
int S::* pm = &S::i; 1 pm refers tanutable memberS::i
cs.*pm = 88; 1 ill-formed: cs is aconst object

]

If the result of.* or->* is a function, then that result can be used only as the operand for the function
call operato() . [Example:

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted fity to_mfct for the object pointed to bgtr_to_obj .] The

result of a.* expression is an Ivalue only if its first operand is an Ivalue and its second operand is a
pointer to data member. The result of-ah expression is an Ivalue only if its second operand is a pointer

to data member. If the second operand is the null pointer to member value (4.11), the behavior is unde-
fined.

5.6 Multiplicative operators [expr.mul]
The multiplicative operators, / , and%group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expressiorf pm-expression
multiplicative-expression’ pm-expression
multiplicative-expressiorfo pm-expression

83

ISO/IEC 14882:1998(E) © ISO/IEC

5.6 Multiplicative operators 5 Expressions

The operands df and/ shall have arithmetic or enumeration type; the operanéissball have integral or
enumeration type. The usual arithmetic conversions are performed on the operands and determine the type
of the resuilt.

The binary* operator indicates multiplication.

The binary/ operator yields the quotient, and the bin¥gperator yields the remainder from the division

of the first expression by the second. If the second operahoidis zero the behavior is undefined; oth-
erwise(a/b)*b + a%b is equal toa. If both operands are nonnegative then the remainder is nonnega-
tive; if not, the sign of the remainder is implementation-deﬁf}?ed

5.7 Additive operators [expr.add]

The additive operators and- group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic or enumeration type.

additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression multiplicative-expression

For addition, either both operands shall have arithmetic or enumeration type, or one operand shall be a
pointer to a completely defined object type and the other shall have integral or enumeration type.

For subtraction, one of the following shall hold:
— both operands have arithmetic or enumeration type; or

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely defined
object type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral or
enumeration type.

The result of the binary operator is the sum of the operands. The result of the binapgrator is the dif-
ference resulting from the subtraction of the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expressiorP points to the-th element of an array object, the expressi#)sN (equivalently,N+(P))

and (P)-N (whereN has the valu@) point to, respectively, thetn-th andi—n-th elements of the array

object, provided they exist. Moreover, if the expres$tgoints to the last element of an array object, the
expressionP)+1 points one past the last element of the array object, and if the expr@gsiams one

past the last element of an array object, the exprefQiph points to the last element of the array object.

If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.

When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defingudrdsf_t in the<cstddef> header (18.1). As

with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressioRsand Q point to, respectively, theth andj-th elements of an

array object, the expressidi)-(Q) has the value—j provided the value fits in an object of type

2) According to work underway toward the revision of ISO C, the preferred algorithm for integer division follows the rulesmefined
the ISO Fortran standard, ISO/IEC 1539:1991, in which the quotient is always rounded toward zero.

84

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.7 Additive operators

ptrdiff_t . Moreover, if the expressidn points either to an element of an array object or one past the
last element of an array object, and the expre<3ipoints to the last element of the same array object, the
expression(Q)+1)-(P) has the same value §€)-(P))+1 and as-((P)-((Q)+1)) , and has

the value zero if the expressiéhpoints one past the last element of the array object, even though the
expressio{Q)+1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is l?rriheﬁned.

If the value 0 is added to or subtracted from a pointer value, the result compares equal to the original
pointer value. If two pointers point to the same object or function or both point one past the end of the
same array or both are null, and the two pointers are subtracted, the result compares equal to the value 0
converted to the typgtrdiff t

5.8 Shift operators [expr.shift]

The shift operators< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

The operands shall be of integral or enumeration type and integral promotions are performed. The type of
the result is that of the promoted left operand. The behavior is undefined if the right operand is negative, or
greater than or equal to the length in bits of the promoted left operand.

The value ofEl << E2 is E1 (interpreted as a bit pattern) left-shiftE@ bit positions; vacated bits are
zero-filled. IfE1 has an unsigned type, the value of the resi#tlisnultiplied by the quantity 2 raised to
the powerE2, reduced modul&JLONG_MAX+if E1 has type unsigned long)INT_MAX+1 otherwise.
[Note:the constantLONG_MAZNdUINT_MAXare defined in the headeclimits>).]

The value ofEl >> E2 is E1 right-shiftedE2 bit positions. IfE1 has an unsigned type orEfl has a
signed type and a nonnegative value, the value of the result is the integral part of the quBlietivided

by the quantity 2 raised to the powe2. If E1 has a signed type and a negative value, the resulting value
is implementation-defined.

5.9 Relational operators [expr.rel]

The relational operators group left-to-right. Example: a<b<c means (a<b)<c and not
(a<b)&&(b<c) .]

relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<=shift-expression
relational-expression>=shift-expression

The operands shall have arithmetic, enumeration or pointer type. The operétss than)> (greater
than),<= (less than or equal to), and (greater than or equal to) all yiefldlse ortrue . The type of
the result idool .

) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this schemeathaingeg
of the expression added to or subtracted from the converted pointer is first multiplied by the size of the object origtedltp pand
the resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference betivasarctee
pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the program)
just after the end of the object in order to satisfy‘tivee past the last elem&mequirements.

85

ISO/IEC 14882:1998(E) © ISO/IEC

5.9 Relational operators 5 Expressions

The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. Pointer
conversions (4.10) and qualification conversions (4.4) are performed on pointer operands (or on a pointer
operand and a null pointer constant) to bring them to toenposite pointer typelf one operand is a null
pointer constant, the composite pointer type is the type of the other operand. Otherwise, if one of the
operands has typgointer tocvl void ”, then the other has tyggointer tocv2 T and the composite
pointer type is‘pointer tocvl2void ", wherecv12is the union otvlandcv2 Otherwise, the composite
pointer type is a pointer type similar (4.4) to the type of one of the operands, with a cv-qualification signa-
ture (4.4) that is the union of the cv-qualification signatures of the operand tyy@s: this implies that
any pointer can be compared to a null pointer constant and that any object pointer can be compared to a
pointer to (possibly cv-qualifiedjoid .] [Example:

void *p;

const int *q;

int **pi;

const int *const *pci;

void ct()

{

p<=gq; 1 Both converted teonst void * before comparison
pi <= pci; 1 Both converted toonst int *const * before comparison

}

—end examplePointers to objects or functions of the same type (after pointer conversions) can be com-
pared, with a result defined as follows:

— If two pointersp andq of the same type point to the same object or function, or both point one past the
end of the same array, or are both null, therq andp>=q both yieldtrue andp<q andp>qg both
yield false

— If two pointersp andq of the same type point to different objects that are not members of the same
object or elements of the same array or to different functions, or if only one of them is null, the results
of p<q, p>q, p<=q, andp>=q are unspecified.

— If two pointers point to nonstatic data members of the same object, or to subobjects or array elements of
such members, recursively, the pointer to the later declared member compares greater provided the two
members are not separated byaaness-specifidabel (11.1) and provided their class is not a union.

— If two pointers point to nonstatic data members of the same object separatealchgssispecifidabel
(11.1) the result is unspecified.

— If two pointers point to data members of the same union object, they compare equal (after conversion to
void* , if necessary). If two pointers point to elements of the same array or one beyond the end of the
array, the pointer to the object with the higher subscript compares higher.

— Other pointer comparisons are unspecified.

5.10 Equality operators [expr.eq]

equality-expression:
relational-expression
equality-expression==relational-expression
equality-expression=relational-expression

The== (equal to) and thé= (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-valueNetula<p

==c<d istrue whenever<b andc<d have the same truth-value.] Pointers to objects or functions of
the same type (after pointer conversions) can be compared for equality. Two pointers of the same type
compare equal if and only if they are both null, both point to the same object or function, or both point one
past the end of the same array.

86

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.10 Equality operators

In addition, pointers to members can be compared, or a pointer to member and a null pointer constant.
Pointer to member conversions (4.11) and qualification conversions (4.4) are performed to bring them to a
common type. If one operand is a null pointer constant, the common type is the type of the other operand.
Otherwise, the common type is a pointer to member type similar (4.4) to the type of one of the operands,
with a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand
types. Note:this implies that any pointer to member can be compared to a null pointer constant.] If both
operands are null, they compare equal. Otherwise if only one is null, they compare unequal. Otherwise if
either is a pointer to a virtual member function, the result is unspecified. Otherwise they compare equal if
and only if they would refer to the same member of the same most derived object (1.8) or the same subob-
ject if they were dereferenced with a hypothetical object of the associated clasExgraple:

struct B {

int f();
I3
structL:B{};
structR: B {};
structD: L, R{};

int (B::*pb)() = &B::f;

int (L::*pl)() = pb;

int (R::*pr)() = pb;

int (D::*pdl)() = pl;

int (D::*pdr)() = pr;

bool x = (pdl == pdr); I false

—end example

5.11 BitwiseAND operator [expr.bit.and]

and-expression:
equality-expression
and-expression& equality-expression

The usual arithmetic conversions are performed; the result is the biiwaseinction of the operands. The
operator applies only to integral or enumeration operands.

5.12 Bitwise exclusiveR operator [expr.xor]

exclusive-or-expression:
and-expression
exclusive-or-expressiot and-expression

The usual arithmetic conversions are performed; the result is the bitwise exadasfuaction of the
operands. The operator applies only to integral or enumeration operands.

5.13 Bitwise inclusiveOR operator [expr.or]

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expressior] exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inchrsifemction of its
operands. The operator applies only to integral or enumeration operands.

5.14 LogicalAND operator [expr.log.and]

logical-and-expression:
inclusive-or-expression
logical-and-expression&& inclusive-or-expression

87

ISO/IEC 14882:1998(E) © ISO/IEC

5.14 LogicalAND operator 5 Expressions

The && operator groups left-to-right. The operands are both implicitly converted tdtyge (clause 4).
The result igrue if both operands areue andfalse otherwise. Unlike&, && guarantees left-to-right
evaluation: the second operand is not evaluated if the first opertaiskis .

The result is @ool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

5.15 LogicalOR operator [expr.log.or]
logical-or-expression:

logical-and-expression
logical-or-expression|| logical-and-expression

The || operator groups left-to-right. The operands are both implicitly convertbddb (clause 4). It
returnstrue if either of its operands isue , andfalse otherwise. Unlikg , || guarantees left-to-
right evaluation; moreover, the second operand is not evaluated if the first operand evaluses to

The result is ool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

5.16 Conditional operator [expr.cond]

conditional-expression:
logical-or-expression
logical-or-expression? expression: assignment-expression

Conditional expressions group right-to-left. The first expression is implicitly convertambto (clause 4).

It is evaluated and if it ifue , the result of the conditional expression is the value of the second expres-
sion, otherwise that of the third expression. All side effects of the first expression except for destruction of
temporaries (12.2) happen before the second or third expression is evaluated. Only one of the second and
third expressions is evaluated.

If either the second or the third operand has type (possibly cv-qualifiéd]), then the Ivalue-to-rvalue
(4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second
and third operands, and one of the following shall hold:

— The second or the third operand (but not both)tlr@aw-expressiorfl5.1); the result is of the type of
the other and is an rvalue.

— Both the second and the third operands have \gjk ; the result is of typ&oid and is an rvalue.
[Note:this includes the case where both operandthanev-expressiosn |

Otherwise, if the second and third operand have different types, and either has (possibly cv-qualified) class
type, an attempt is made to convert each of those operands to the type of the other. The process for deter-
mining whether an operand expressitihof type T1 can be converted to match an operand expregsion

of typeT2 is defined as follows:

— If E2 is an IvalueE1 can be converted to maté&?® if E1 can be implicitly converted (clause 4) to the
type “reference tar2”, subject to the constraint that in the conversion the reference must bind directly
(8.5.3) toE1L.

— If E2is an rvalue, or if the conversion above cannot be done:

— if E1 andE2 have class type, and the underlying class types are the same or one is a base class of
the otherE1 can be converted to maté&i? if the class off 2 is the same type as, or a base class of,
the class ofT1l, and the cv-qualification of2 is the same cv-qualification as, or a greater cv-
qualification than, the cv-qualification afl. If the conversion is applie&1 is changed to an
rvalue of typeT2 that still refers to the original source class object (or the appropriate subobject
thereof). Note:that is, no copy is made.]

— Otherwise (i.e., iE1 or E2 has a nonclass type, or if they both have class types but the underlying

88

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.16 Conditional operator

classes are not either the same or one a base class of thekitlean): be converted to maté? if
E1 can be implicitly converted to the type that expres&mnvould have ifE2 were converted to an
rvalue (or the type it has, H2 is an rvalue).

Using this process, it is determined whether the second operand can be converted to match the third
operand, and whether the third operand can be converted to match the second operand. If both can be con-
verted, or one can be converted but the conversion is ambiguous, the program is ill-formed. If neither can
be converted, the operands are left unchanged and further checking is performed as described below. If
exactly one conversion is possible, that conversion is applied to the chosen operand and the converted
operand is used in place of the original operand for the remainder of this section.

If the second and third operands are Ivalues and have the same type, the result is of that type and is an
Ivalue.

Otherwise, the result is an rvalue. If the second and third operand do not have the same type, and either has
(possibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be
applied to the operands (13.3.1.2, 13.6). If the overload resolution fails, the program is ill-formed. Other-
wise, the conversions thus determined are applied, and the converted operands are used in place of the orig-
inal operands for the remainder of this section.

Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are per-
formed on the second and third operands. After those conversions, one of the following shall hold:

— The second and third operands have the same type; the result is of that type.

— The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions
are performed to bring them to a common type, and the result is of that type.

— The second and third operands have pointer type, or one has pointer type and the other is a null pointer
constant; pointer conversions (4.10) and qualification conversions (4.4) are performed to bring them to
their composite pointer type (5.9). The result is of the composite pointer type.

— The second and third operands have pointer to member type, or one has pointer to member type and the
other is a null pointer constant; pointer to member conversions (4.11) and qualification conversions
(4.4) are performed to bring them to a common type, whose cv-qualification shall match the cv-
qualification of either the second or the third operand. The result is of the common type.

5.17 Assignment operators [expr.ass]

There are several assignment operators, all of which group right-to-left. All require a modifiable Ivalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an Ivalue.

assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
throw-expression

assignment-operator one of
= *= [= Op= += = >>= <<= &= "= |:

In simple assignment], the value of the expression replaces that of the object referred to by the left
operand.

If the left operand is not of class type, the expression is implicitly converted (clause 4) to the cv-unqualified
type of the left operand.

If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined
by the copy assignment operator (12.8, 13.5.3).

89

ISO/IEC 14882:1998(E) © ISO/IEC

5.17 Assignment operators 5 Expressions

[Note: For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).]

When the left operand of an assignment operator denotes a referéhcthéooperation assigns to the
object of typel denoted by the reference.

The behavior of an expression of the foril op= E2 is equivalent toE1=E1 op E2 except thaEl is
evaluated only once. In= and-=, E1 shall either have arithmetic type or be a pointer to a possibly cv-
qualified completely defined object type. In all other caBésshall have arithmetic type.

If the value being stored in an object is accessed from another object that overlaps in any way the storage of
the first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the
behavior is undefined.

5.18 Comma operator [expr.comma]

The comma operator groups left-to-right.

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. The Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conver-
sions are not applied to the left expression. All side effects (1.9) of the left expression, except for the
destruction of temporaries (12.2), are performed before the evaluation of the right expression. The type and
value of the result are the type and value of the right operand; the result is an Ivalue if its right operand is.

In contexts where comma is given a special meankgarple:in lists of arguments to functions (5.2.2)
and lists of initializers (8.5)] the comma operator as described in clause 5 can appear only in parentheses.
[Example:

f(a, (t=3, t+2), c);

has three arguments, the second of which has the yalpe

5.19 Constant expressions [expr.const]

In several places,+G requires expressions that evaluate to an integral or enumeration constant: as array
bounds (8.3.4, 5.3.4), aase expressions (6.4.2), as bit-field lengths (9.6), as enumerator initializers (7.2),
as static member initializers (9.4.2), and as integral or enumeration non-type template arguments (14.3).

constant-expression:
conditional-expression

An integral constant-expressiotan involve only literals (2.13), enumeratotsnst variables or static

data members of integral or enumeration types initialized with constant expressions (8.5), non-type tem-
plate parameters of integral or enumeration typessesf expressions. Floating literals (2.13.3) can
appear only if they are cast to integral or enumeration types. Only type conversions to integral or enumera-
tion types can be used. In particular, excemibeof expressions, functions, class objects, pointers, or
references shall not be used, and assignment, increment, decrement, function-call, or comma operators shall
not be used.

Other expressions are consideramhstant-expressi@nonly for the purpose of non-local static object
initialization (3.6.2). Such constant expressions shall evaluate to one of the following:

— a null pointer value (4.10),

— a null member pointer value (4.11),
— an arithmetic constant expression,
— an address constant expression,

— a reference constant expression,

90

© ISO/IEC ISO/IEC 14882:1998(E)

5 Expressions 5.19 Constant expressions

— an address constant expression for a complete object type, plus or minus an integral constant expression,
or

— a pointer to member constant expression.

An arithmetic constant expressi@hall have arithmetic or enumeration type and shall only have operands
that are integer literals (2.13.1), floating literals (2.13.3), enumerators, character literals (2.13.2) and
sizeof expressions (5.3.3). Cast operators in an arithmetic constant expression shall only convert arith-
metic or enumeration types to arithmetic or enumeration types, except as part of an operasidgofthe
operator.

An address constant expressiizna pointer to an Ivalue designating an object of static storage duration, a
string literal (2.13.4), or a function. The pointer shall be created explicitly, using the&oasrator, or

implicitly using a non-type template parameter of pointer type, or using an expression of array (4.2) or
function (4.3) type. The subscripting operdior and the class member acces&nd-> operators, th&

and* unary operators, and pointer casts (exdgpemic_cast s, 5.2.7) can be used in the creation of an
address constant expression, but the value of an object shall not be accessed by the use of these operators.
If the subscripting operator is used, one of its operands shall be an integral constant expression. An expres-
sion that designates the address of a member or base class of a non-POD class object (clause 9) is not an
address constant expression (12.7). Function calls shall not be used in an address constant expression, even
if the function isinline and has a reference return type.

A reference constant expressi@nan lvalue designating an object of static storage duration, a non-type
template parameter of reference type, or a function. The subscripting oferatioe class member access

and-> operators, th& and* unary operators, and reference casts (except those invoking user-defined
conversion functions (12.3.2) and excdphamic_cast s (5.2.7)) can be used in the creation of a refer-
ence constant expression, but the value of an object shall not be accessed by the use of these operators. If
the subscripting operator is used, one of its operands shall be an integral constant expression. An lvalue
expression that designates a member or base class of a non-POD class object (clause 9) is not a reference
constant expression (12.7). Function calls shall not be used in a reference constant expression, even if the
function isinline and has a reference return type.

A pointer to member constant expressitiall be created using the un&pperator applied to qualified-
id operand (5.3.1), optionally preceded by a pointer to member cast (5.2.9).

91

ISO/IEC 14882:1998(E)

92

(Blank page)

© ISO/IEC

© ISO/IEC ISO/IEC 14882:1998(E)

6 Statements 6 Statements
6 Statements [stmt.stmt]
Except as indicated, statements are executed in sequence.
statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block
6.1 Labeled statement [stmt.label]

A statement can be labeled.

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the targgttof.aThe

scope of a label is the function in which it appears. Labels shall not be redeclared within a function. A
label can be used ingoto statement before its definition. Labels have their own name space and do not
interfere with other identifiers.

Case labels and default labels shall occur only in switch statements.

6.2 Expression statement [stmt.expr]

Expression statements have the form

expression-statement:
expressiog;]Ot ;

The expression is evaluated and its value is discarded. The Ivalue-to-rvalue (4.1), array-to-pointer (4.2),
and function-to-pointer (4.3) standard conversions are not applied to the expression. All side effects from
an expression statement are completed before the next statement is executed. An expression statement with
the expression missing is called a null statemeNbtd: Most statements are expression statements

usually assignments or function calls. A null statement is useful to carry a label just bejord theom-

pound statement and to supply a null body to an iteration statement sushiles astatement (6.5.1).]

6.3 Compound statement or block [stmt.block]

So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called“block’) is provided.

compound-statement:
{ statement-seg }

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (38t€]:a declaration is atatemen(6.7).]

93

ISO/IEC 14882:1998(E) © ISO/IEC

6.4 Selection statements 6 Statements

6.4 Selection statements [stmt.select]

Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statementelse statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator assignment-expression

In clause 6, the terrsubstatemermefers to the containestatemenbr statemerd that appear in the syntax
notation. The substatement is@ection-statemeifboth substatements, in tbése form of theif state-
ment) implicitly defines a local scope (3.3). If the substatement in a selection-statement is a single state-
ment and not @ompound-statemerit,is as if it was rewritten to be a compound-statement containing the
original substatement.Ekample:

if (x)

inti;

can be equivalently rewritten as

if (x) {
int i
}

Thus after théf statement, is no longer in scope.]

The rules forconditiors apply both teselection-statemesitand to thdor andwhile statements (6.5).
Thedeclaratorshall not specify a function or an array. Thpe-specifier-seghall not contairtypedef
and shall not declare a new class or enumeration.

A name introduced by a declaration incandition (either introduced by thé&ype-specifier-se@r the
declaratorof the condition) is in scope from its point of declaration until the end of the substatements con-
trolled by the condition. If the name is re-declared in the outermost block of a substatement controlled by
the condition, the declaration that re-declares the name is ill-fornesdmpple:

if (int x = f()) {

int x; 1 ill-formed, redeclaration ok
}
else {
int x; 1! ill-formed, redeclaration ok
}
—end example

The value of a&onditionthat is an initialized declaration in a statement other thawiteh statement is

the value of the declared variable implicitly converted to typel . If that conversion is ill-formed, the
program is ill-formed. The value ofanditionthat is an initialized declaration insavitch statement is

the value of the declared variable if it has integral or enumeration type, or of that variable implicitly con-
verted to integral or enumeration type otherwise. The valueohditionthat is an expression is the value

of the expression, implicitly converted bmol for statements other thawitch ; if that conversion is
ill-formed, the program is ill-formed. The value of the condition will be referred to as sfitif@ycondi-

tion” where the usage is unambiguous.

If a conditioncan be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

94

© ISO/IEC ISO/IEC 14882:1998(E)

6 Statements 6.4.1 Theif statement

6.4.1 Theif statement [stmt.if]

If the condition (6.4) yielddrue the first substatement is executed. If #ise part of the selection
statement is present and the condition yidddse |, the second substatement is executed. In the second
form of if statement (the one includirise 7) if the first substatement is also &n statement then that
innerif statement shall contain aise part. ®)

6.4.2 Theswitch statement [stmt.switch]

Theswitch statement causes control to be transferred to one of several statements depending on the value
of a condition.

The condition shall be of integral type, enumeration type, or of a class type for which a single conversion
function to integral or enumeration type exists (12.3). If the condition is of class type, the condition is con-
verted by calling that conversion function, and the result of the conversion is used in place of the original
condition for the remainder of this section. Integral promotions are performed. Any statement within the
switch statement can be labeled with one or more case labels as follows:

case constant-expression

where theconstant-expressioshall be an integratonstant-expressionThe integral constant-expression
(5.19) is implicitly converted to the promoted type of the switch condition. No two of the case constants in
the same switch shall have the same value after conversion to the promoted type of the switch condition.

There shall be at most one label of the form

default :
within aswitch statement.

Switch statements can be nestedase ordefault label is associated with the smallest switch enclos-

ing it.

When theswitch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if thdeéaidta label,

control passes to the statement labeled by the default label. If no case matches and if thuerfaist no
then none of the statements in the switch is executed.

case anddefault labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, semk , 6.6.1. Note: usually, the substatement that is the
subject of a switch is compound acase anddefault labels appear on the top-level statements con-
tained within the (compound) substatement, but this is not required. Declarations can appear in the sub-
statement of awitch-statement]

6.5 Iteration statements [stmt.iter]

Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditiq, ; expressiog,) statement

for-init-statement:
expression-statement
simple-declaration

[Note:afor-init-statemenends with a semicolon.]

"®)1n other words, thelse is associated with the nearest un-eli§ed

95

ISO/IEC 14882:1998(E) © ISO/IEC

6.5 lteration statements 6 Statements

2 The substatement in d@eration-statemenimplicitly defines a local scope (3.3) which is entered and exited
each time through the loop.

3 If the substatement in an iteration-statement is a single statement antbnqi@und-statemerit,is as if it
was rewritten to be a compound-statement containing the original statefeampe:

while (--x >=0)
int i
can be equivalently rewritten as
while (--x >=0) {

inti;
}
Thus after thevhile statement is no longer in scope.]
4 [Note: The requirements otonditiors in iteration statements are described in 6-4end not¢
6.5.1 Thewhile statement [stmt.while]
1 In the while statement the substatement is executed repeatedly until the value of the condition (6.4)

becomedalse . The test takes place before each execution of the substatement.

2 When the condition of a while statement is a declaration, the scope of the variable that is declared extends
from its point of declaration (3.3.1) to the end of the whiisgement A while statement of the form

while (T t=x) statement

is equivalent to

label:
{ /I start of condition scope
Tt=x;
if (0 {
statement
goto label;
}
} /I end of condition scope

The object created in a condition is destroyed and created with each iteration of th&ia@opplé:

struct A {
int val;
A(int i) : val(i) {}
~AQ{}
operator bool() { return val !=0; }
3
inti=1;
while (A a=1i){
...
i=0;
}

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds
and once for the condition that fails.]

6.5.2 Thedo statement [stmt.do]
1 The expression is implicitly converteditool ; if that is not possible, the program is ill-formed.
2 In the do statement the substatement is executed repeatedly until the value of the expression becomes

false . The test takes place after each execution of the statement.

96

© ISO/IEC ISO/IEC 14882:1998(E)

6 Statements 6.5.3 Théor statement

6.5.3 Thefor statement [stmt.for]

Thefor statement

for (for-init-statement conditiqf, ; expressiog,) statement

is equivalent to

{
for-init-statement
while (condition) {
statement
expression;
}
}

except that names declared in fbeinit-statementre in the same declarative-region as those declared in
the condition and except that eontinue in statementnot enclosed in another iteration statement) will
executeexpressiorbefore re-evaluatingondition [Note: Thus the first statement specifies initialization

for the loop; the condition (6.4) specifies a test, made before each iteration, such that the loop is exited
when the condition becoméslse ; the expression often specifies incrementing that is done after each
iteration. |

Either or both of the condition and the expression can be omitted. A missidgionmakes the implied
while clause equivalent thile(true)

If the for-init-statements a declaration, the scope of the name(s) declared extends to the endoof the
statement [Example:

inti=42;

int a[10];

for (inti=0;i<10; i++)
afi] = i;

intj=i Il j =42

—end example

6.6 Jump statements [stmt.jump]

Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressiog, ;
goto identifier ;

On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objects with
automatic storage duration (3.7.2) (named objects or temporaries) that are declared in that scope, in the
reverse order of their declaration. Transfer out of a loop, out of a block, or back past an initialized variable
with automatic storage duration involves the destruction of variables with automatic storage duration that
are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). Note: However, the program can be terminated (by calémd() or abort() (18.3), for
example) without destroying class objects with automatic storage duration.]

6.6.1 Thebreak statement [stmt.break]

Thebreak statement shall occur only in #&eration-statementr aswitch statement and causes termi-
nation of the smallest enclosiitgration-statemenor switch statement; control passes to the statement
following the terminated statement, if any.

97

ISO/IEC 14882:1998(E) © ISO/IEC

6.6.2 Thecontinue statement 6 Statements

6.6.2 Thecontinue statement [stmt.cont]

Thecontinue statement shall occur only in &aration-statemenand causes control to pass to the loop-
continuation portion of the smallest enclositggation-statementthat is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {
{ {
...
P })
contin: ; contin: ; contin: ;
} } while (foo); }

acontinue not contained in an enclosed iteration statement is equivalgatdo contin

6.6.3 Thereturn statement [stmt.return]
A function returns to its caller by theturn statement.

A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return typeoid , a constructor (12.1), or a destructor (12.4). A return statement with an
expression of non-void type can be used only in functions returning a value; the value of the expression is
returned to the caller of the function. The expression is implicitly converted to the return type of the func-
tion in which it appears. A return statement can involve the construction and copy of a temporary object
(12.2). Flowing off the end of a function is equivalent tetarn with no value; this results in undefined
behavior in a value-returning function.

A return statement with an expression of typevoid " can be used only in functions with a return type
of cvvoid; the expression is evaluated just before the function returns to its caller.

6.6.4 Thegoto statement [stmt.goto]

Thegoto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier shall be a label (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]
A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
block-declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

Variables with automatic storage duration (3.7.2) are initialized each timedt#waration-statemenis
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A pro-
gram that jump7s7) from a point where a local variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has POD type (3.9) and is declared without an
initializer (8.5).

") The transfer from the condition ofmitch ~ statement to aase label is considered a jump in this respect.

98

© ISO/IEC ISO/IEC 14882:1998(E)

6 Statements 6.7 Declaration statement

[Example:

void f()

{
1

goto Ix; I ill-formed: jump into scope &t
1

Xa=1;
1

goto ly; I OK, jump implies destructor
/I call for a followed by construction
/I again immediately following labé)

}
—end example

The zero-initialization (8.5) of all local objects with static storage duration (3.7.1) is performed before any
other initialization takes place. A local object of POD type (3.9) with static storage duration initialized with
constant-expressianis initialized before its block is first entered. An implementation is permitted to per-
form early initialization of other local objects with static storage duration under the same conditions that an
implementation is permitted to statically initialize an object with static storage duration in namespace scope
(3.6.2). Otherwise such an object is initialized the first time control passes through its declaration; such an
object is considered initialized upon the completion of its initialization. If the initialization exits by throw-
ing an exception, the initialization is not complete, so it will be tried again the next time control enters the
declaration. If control re-enters the declaration (recursively) while the object is being initialized, the behav-
ior is undefined. Example:

int foo(int i)

{
static int s = foo(2*i); 1l recursive call- undefined
return i+1;

}
—end example

The destructor for a local object with static storage duration will be executed if and only if the variable was
constructed. Nlote: 3.6.3 describes the order in which local objects with static storage duration are
destroyed.]

6.8 Ambiguity resolution [stmt.ambig]

There is an ambiguity in the grammar involviegpression-statementinddeclaratiors: An expression-
statementvith a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from aleclarationwhere the firstleclaratorstarts with & . In those cases ttstatements a
declaration [Note: To disambiguate, the whofgatementmight have to be examined to determine if it is
anexpression-statemeat adeclaration This disambiguates many exampleExdgmple:assumingT is a
simple-type-specifidi7.1.5),

T(@)->m=7, Il expression-statement
T(a)++; Il expression-statement
T(a,5)<<c; /i expression-statement
T(*d)(int); I declaration
T(e)[5]; Il declaration
ThH={12} " declaration
T(*g)(double(3)); I declaration

In the last example abovg, which is a pointer t@, is initialized todouble(3) . This is of course ill-
formed for semantic reasons, but that does not affect the syntactic anakysisl example

99

2

ISO/IEC 14882:1998(E)

6.8 Ambiguity resolution

The remaining cases adeclaratiors. [Example:

class T {

I
public:

T0;

T(int);

T(int, int);
I
T(a); 1
T(*b)); 1"
T(c)=7; 1
T(d),e,f=3; I
externint h;
T(9)(h,2); 1

—end example —end not¢

© ISO/IEC

6 Statements

declaration
declaration
declaration
declaration

declaration

The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement,
beyond whether they atgpe-name or not, is not generally used in or changed by the disambiguation.
Class templates are instantiated as necessary to determine if a qualified naype-isaane Disambigua-

tion precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If,
during parsing, a name in a template parameter is bound differently than it would be bound during a trial
parse, the program is ill-formed. No diagnostic is requirdtbtd: This can occur only when the name is

declared earlier in the declaration.Example:
struct T1 {

T1 operator()(int x) { return T1(x); }

int operator=(int x) { return x; }
Ti(int) {}

struct T2 {T2(int)}{} };
int a, (*(*b)(T2))(int), c, d;

T2 will be declared as

a variable of typd'l

but this will not allow

the last part of the
declaration to parse
properly since it depends
on T2 being a type-name

void f() {
/I disambiguation requires this to be parsed
/I as a declaration
T1(a) = 3,
T2(4), I
((b)(T2(c))(int(d)); //
I
1
I
I
I
}

—end example

100

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations [dcl.dcl]

Declarations specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-seg; init-declarator-list,; ;

[Note: asm-definitiom are described in 7.4, anidkage-specificatios are described in 7.5Function-
definitions are described in 8.4 artémplate-declaration are described in clause 1&amespace-
definitions are described in 7.3.Lising-declaratios are described in 7.3.3 anting-directive are
described in 7.3.4.] Th@mple-declaration

decl-specifier-seg, init-declarator-list, ;

is divided into two partsdecl-specifies, the components of gecl-specifier-segare described in 7.1 and
declaratoss, the components of amit-declarator-list are described in clause 8.

A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in clause 7 about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration thathataested within scopes nested within the declaration.

In asimple-declarationthe optionalinit-declarator-listcan be omitted only when declaring a class (clause

9) or enumeration (7.2), that is, when ttexl-specifier-seqontains either alass-specifieranelaborated-
type-specifiewith aclass-key9.1), or anenum-specifier In these cases and whenevetass-specifieor
enum-specifieis present in thelecl-specifier-segthe identifiers in these specifiers are among the names
being declared by the declaration ¢&ss-namesenum-namesor enumeratorsdepending on the syntax).

In such cases, and except for the declaration of an unnamed bit-field (9d®¢ltspecifier-seghall intro-

duce one or more names into the program, or shall redeclare a name introduced by a previous declaration.
[Example:

enum{}; 1 ill-formed
typedef class { }; I ill-formed

—end example

101

ISO/IEC 14882:1998(E) © ISO/IEC

7 Declarations 7 Declarations

Each init-declarator in the init-declarator-list contains exactly on&eclarator-id which is the name
declared by thanit-declaratorand hence one of the names declared by the declaratiortypehspecifiers
(7.1.5) in thedecl-specifier-se@nd the recursivdeclaratorstructure of thenit-declarator describe a type
(8.3), which is then associated with the name being declared byttdeclarator.

If the decl-specifier-seqontains theypedef specifier, the declaration is calledypedef declaratioand
the name of eachit-declarator is declared to be gpedef-namesynonymous with its associated type
(7.1.3). If thedecl-specifier-seqcontains notypedef specifier, the declaration is calledfanction
declarationif the type associated with the name is a function type (8.3.5) aobject declaratiorother-
wise.

Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make dunction-definition An object declaration, however, is also a definition unless it contains
theextern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

Only in function declarations for constructors, destructors, and type conversions dacltbpecifier-seq
be omitted’®

7.1 Specifiers [dcl.spec]
The specifiers that can be used in a declaration are
decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-segj; decl-specifier

The longest sequence aécl-specifies that could possibly be a type name is taken addblespecifier-seq

of adeclaration The sequence shall be self-consistent as described bélaample:

typedef char* Pc;
static Pc; I error: name missing

Here, the declaratiostaticPc is ill-formed because no name was specified for the static variable of
typePc. To get a variable callgdc, atype-specifie(other tharconst orvolatile) has to be present

to indicate that theypedef-namé°c is the name being (re)declared, rather than being part adetle
specifiersequence. For another example,

void f(const Pc); I void f(char* const) (notconst char*)
void g(const int Pc); 1l void g(const int)

—end example

[Note: sincesigned , unsigned , long , andshort by default implyint , atype-nameappearing after
one of those specifiers is treated as the name being (re)declaxaangle:

void h(unsigned Pc); 1 void h(unsigned int)
void k(unsigned int Pc); I void k(unsigned int)

—end example—end not¢

’B)The“implicit int” rule of C is no longer supported.

102

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.1 Specifiers

7.1.1 Storage class specifiers [dcl.stc]
The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

At most onestorage-class-specifieshall appear in a givethecl-specifier-seqIf a storage-class-specifier
appears in @ecl-specifier-segthere can be ntypedef specifier in the saméecl-specifier-seand the
init-declarator-list of the declaration shall not be empty (except for global anonymous unions, which shall
be declaredstatic (9.5)). The storage-class-specifieapplies to the name declared by eauit-
declaratorin the list and not to any names declared by other specifiestorage-class-specifieshall not

be specified in an explicit specialization (14.7.3) or an explicit instantiation (14.7.2) directive.

Theauto orregister specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the named object has automatic storage duration (3.7.2). An
object declared without storage-class-specifieat block scope or declared as a function parameter has
automatic storage duration by defaullofe: hence, theuto specifier is almost always redundant and not
often used; one use alito is to distinguish aleclaration-statemerftom anexpression-stateme(s.8)
explicitly. —end noté¢

A register specifier has the same semantics aawtn specifier together with a hint to the implemen-
tation that the object so declared will be heavily usétbtd: the hint can be ignored and in most imple-
mentations it will be ignored if the address of the object is takem®nd notg

The static specifier can be applied only to names of objects and functions and to anonymous unions
(9.5). There can be matatic function declarations within a block, nor agtatic ~ function parame-

ters. Astatic specifier used in the declaration of an object declares the object to have static storage
duration (3.7.1). Astatic specifier can be used in declarations of class members; 9.4 describes its effect.
For the linkage of a name declared witktatic ~ specifier, see 3.5.

Theextern specifier can be applied only to the names of objects and functionsexidra specifier
cannot be used in the declaration of class members or function parameters. For the linkage of a name
declared with aextern specifier, see 3.5.

A name declared in a namespace scope withetirage-class-specifidras external linkage unless it has
internal linkage because of a previous declaration and provided it is not dedastd. Objects declared
const and not explicitly declareéxtern have internal linkage.

The linkages implied by successive declarations for a given entity shall agree. That is, within a given
scope, each declaration declaring the same object name or the same overloading of a function name shall
imply the same linkage. Each function in a given set of overloaded functions can have a different linkage,
however. Example:

static char* f(); I f() has internal linkage

char* f() 1l f() still has internal linkage
{rF..*}

char* g(); 1 g() has external linkage

static char* g() 1l error: inconsistent linkage
{rF..*}

void h();

inline void h(); 1 external linkage

inline void 1();

void 1(); 1 external linkage

103

ISO/IEC 14882:1998(E) © ISO/IEC

7.1.1 Storage class specifiers 7 Declarations

inline void m();
extern void m(); I external linkage

static void n();

inline void n(); 1 internal linkage

static int a; 1! a has internal linkage

int a; 1 error: two definitions
static int b; 1l b has internal linkage
extern int b; 1! b still has internal linkage
int c; 1! ¢ has external linkage
static int c; I error: inconsistent linkage
extern int d; 1 d has external linkage
static int d; 1l error: inconsistent linkage

—end example

The name of a declared but undefined class can be use@&xtean declaration. Such a declaration can
only be used in ways that do not require a complete class tifgample:

struct S;

extern S a;
extern S f();
extern void g(S);

void h()
{
g(a); 1 error: Sis incomplete
f(); 1 error: Sis incomplete
}

—end exampleThe mutable specifier can be applied only to names of class data members (9.2) and
cannot be applied to names declaoetst or static , and cannot be applied to reference members.
[Example:

class X {
mutable constint* p; // OK
mutable int* constq; // ill-formed
h
—end example

Themutable specifier on a class data member nullifieast specifier applied to the containing class
object and permits modification of the mutable class member even though the rest of the cbjest is
(7.1.5.1).

7.1.2 Function specifiers [dcl.fct.spec]

Function-specifiergan be used only in function declarations.

function-specifier:
inline
virtual
explicit

A function declaration (8.3.5, 9.3, 11.4) with iafine specifier declares ainline function The inline

specifier indicates to the implementation that inline substitution of the function body at the point of call is
to be preferred to the usual function call mechanism. An implementation is not required to perform this
inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules for

104

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.1.2 Function specifiers

inline functions defined by 7.1.2 shall still be respected.

A function defined within a class definition is an inline function. Tiiime specifier shall not appear
on a block scope function declaratioh.

An inline function shall be defined in every translation unit in which it is used and shall have exactly the
same definition in every case (3.2Ndte: a call to the inline function may be encountered before its defi-
nition appears in the translation unit.] If a function with external linkage is declared inline in one transla-
tion unit, it shall be declared inline in all translation units in which it appears; no diagnostic is required. An
inline function with external linkage shall have the same address in all translation urststicA

local variable in arexterninline function always refers to the same object. A string literal in an
extern inline function is the same object in different translation units.

Thevirtual specifier shall only be used in declarations of nonstatic class member functions that appear
within amember-specificatioaf a class declaration; see 10.3.

The explicit specifier shall be used only in declarations of constructors within a class declaration; see
12.3.1.

7.1.3 Thetypedef specifier [dcl.typedef]

Declarations containing thaecl-specifietypedef declare identifiers that can be used later for naming
fundamental (3.9.1) or compound (3.9.2) types. fiipedef specifier shall not be used infanction-
definition (8.4), and it shall not be combined irlecl-specifier-segvith any other kind of specifier except
atype-specifier

typedef-name:

identifier

A name declared with thgpedef specifier becomestgpedef-nameWithin the scope of its declaration,
atypedef-namés syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in clause 8. typedef-namés thus a synonym for another type. typedef-nameloes
not introduce a new type the way a class declaration (9.1) or enum declaratiorEcadspl¢:after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the typadaftance isint ; that ofmetricp is “pointer toint .”]

In a given scope, ypedef specifier can be used to redefine the name of any type declared in that scope
to refer to the type to which it already referExgmple:

typedef structs {/* ... */ } s;
typedefint [;

typedef int [;

typedef I [;

—end example

In a given scope, typedef specifier shall not be used to redefine the name of any type declared in that
scope to refer to a different typeEXample:

class complex { /* ... */ };
typedef int complex; 1 error: redefinition

—end exampleSimilarly, in a given scope, a class or enumeration shall not be declared with the same
name as #ypedef-naméhat is declared in that scope and refers to a type other than the class or enumera-
tion itself. [Example:

) The inline keyword has no effect on the linkage of a function.

105

ISO/IEC 14882:1998(E) © ISO/IEC

7.1.3 Thetypedef specifier 7 Declarations

typedef int complex;
class complex { /* ... */ }; 1 error: redefinition

—end example

A typedef-naméhat names a class ickass-namg9.1). If atypedef-namés used following thelass-key

in an elaborated-type-specifigf7.1.5.3) or in theclass-headof a class declaration (9), or is used as the
identifierin the declarator for a constructor or destructor declaration (12.1, 12.4), the program is ill-formed.
[Example:

struct S {
SO:;
~S();
h

typedef struct S T;

Sa=T(); I OK
struct T * p; I error

—end example

If the typedef declaration defines an unnamed class (or enum), thgdadef-nameeclared by the decla-
ration to be that class type (or enum type) is used to denote the class type (or enum type) for linkage pur-
poses only (3.5). Bxample:

typedef struct { } *ps, S; 1l Sis the class name for linkage purposes

—end example[Note: if the typedef-namés used where alass-namgor enum-namgis required, the
program is ill-formed. For example,

typedef struct {
S(); 1 error: requires a return type becauSdas
/I an ordinary member function, not a constructor
1S
—end not¢
7.1.4 Thefriend specifier [dcl.friend]

Thefriend specifier is used to specify access to class members; see 11.4.

7.1.5 Type specifiers [dcl.type]
The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier
As a general rule, at most otype-specifieiis allowed in the completdecl-specifier-segf a declaration
The only exceptions to this rule are the following:

— const or volatile can be combined with any othéype-specifier However, redundant cv-
qualifiers are prohibited except when introduced through the use of typedefs (7.1.3) or template type
arguments (14.3), in which case the redundant cv-qualifiers are ignored.

— signed orunsigned can be combined witbhar , long , short , orint .
— short orlong can be combined witimt .

— long can be combined wittlouble .

106

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.1.5 Type specifiers

At least ondype-specifiethat is not av-qualifieris required in a declaration unless it declares a construc-
tor, destructor or conversion functibf.

[Note: class-specifisrandenum-specifiex are discussed in clause 9 and 7.2, respectively. The remaining
type-specifies are discussed in the rest of this section.]

7.1.5.1 Thecv-qualifiers [dcl.type.cv]

There are twav-qualifiers const andvolatile . If a cv-qualifier appears in aecl-specifier-segthe
init-declarator-list of the declaration shall not be emptyNote: 3.9.3 describes how cv-qualifiers affect
object and function types.]

An object declared in namespace scope with a const-qualified type has internal linkage unless it is explic-
itly declaredextern or unless it was previously declared to have external linkage. A variable of const-
qualified integral or enumeration type initialized by an integral constant expression can be used in integral
constant expressions (5.19Ndte: as described in 8.5, the definition of an object or subobject of const-
qualified type must specify an initializer or be subject to default-initialization.]

A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it is
treated as if it does; a const-qualified access path cannot be used to modify an object even if the object ref-
erenced is a non-const object and can be modified through some other acceddqtathy-flualifiers are
supported by the type system so that they cannot be subverted without casting (5.2.11).]

Except that any class member declaraedable (7.1.1) can be modified, any attempt to modifyoast
object during its lifetime (3.8) results in undefined behavior.

[Example:
constintci = 3; 1 cv-qualified (initialized as required)
ci=4; i ill-formed: attempt to modifgonst
inti=2; 1 not cv-qualified
const int* cip; 1 pointer toconst int
cip = &i; I OK: cv-qualified access path to unqualified
*Cip = 4; I ill-formed: attempt to modify through ptr tmnst
int* ip;
ip = const_cast<int*>(cip); 1 cast needed to converbnst int* toint*
*ip = 4; 1 defined:*ip points toi , a noneonst object
const int* ciq = new const int (3); 1 initialized as required
int* iq = const_cast<int*>(ciq); I cast required
*iq = 4; I undefined: modifies eonst object

For another example

class X {
public:
mutable int i;
int j;
3
class Y {
public:
X X;
Y0);

8Y) There is no special provision fordecl-specifier-sethat lacks aype-specifieor that has aype-specifiethat only specifiegv-
qualifiers. The"implicit int” rule of C is no longer supported.

107

ISO/IEC 14882:1998(E)

7.1.5.1 Thecv-qualifiers

const Yy,

Y. X0+ I
Y. X+ I
Y* p = const_cast<Y*>(&y); 1
p->x.i = 99; 1
p->X.j = 99; i

—end example

If an attempt is made to refer to an object defined with a volatile-qualified type through the use of an Ivalue

© ISO/IEC

7 Declarations

well-formed:mutable member can be modified
ill-formed: const -qualified member modified
cast away const-ness ypf

well-formed:mutable member can be modified
undefined: modifies aonst member

with a non-volatile-qualified type, the program behaviour is undefined.

[Note: volatile

inC.]

7.1.5.2 Simple type specifiers

The simple type specifiers are

The simple-type-specifisrspecify either a previously-declared user-defined type or one of the fundamental
types (3.9.1). Table 7 summarizes the valid combinatiossrgile-type-specifisrand the types they spec-

ify.

simple-type-specifier:

is a hint to the implementation to avoid aggressive optimization involving the object
because the value of the object might be changed by means undetectable by an implementation. See 1.9 for
detailed semantics. In general, the semantie®latile

are intended to be the same itt@s they are

[dcl.type.simple]

I opt Nested-name-specifigrtype-name
I opt hested-name-specifieslemplate template-id

char
wchar_t
bool
short
int

long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

108

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.1.5.2 Simple type specifiers

Table 7—simple-type-specifierand the types they specify

[Specifier(s) U Type
ype-name othe type named
rchar 0“char ”
Cunsigned char O“unsigned char ”
Lsigned char U“signed char ”
ool “bool ”
cunsigned 0 unsignedint "
runsigned int “unsigned int "
Ckigned O%int "
Lsigned int U“int »
nt “int "

cunsigned short int
runsigned short
Cunsigned long int
Lunsigned long

B“unsigned short int
[1“unsigned short int
0"“unsigned long int
U“unsigned long int

igned long int D“Iong int "
Csigned long O‘longint "
rlong int O“longint ”
(ong O“longint ”
Lsigned short int U“shortint ”

igned short “short int "
cshortint “short int ”
short “short int "
Owvchar_t O“wchar_t "
Hloat U«float ”

ouble O double

ong double ‘long double "
[void 0“void ”

OOooOoOoOooooooooooooooooooooooood

When multiplesimple-type-specifierare allowed, they can be freely intermixed with otthecl-specifiers
in any order. It is implementation-defined whether bit-fields and objeathaf type are represented as
signed or unsigned quantities. Téigned specifier forcexhar objects and bit-fields to be signed; it is
redundant with other integral types.

7.1.5.3 Elaborated type specifiers [dcl.type.elab]

elaborated-type-specifier:
class-key:: o, nested-name-specifigridentifier
enum:: ., nested-name-specifigyidentifier
typename :: ,; nested-name-specifier identifier
typename :: ,; nested-name-specifiegmplate , template-id

If an elaborated-type-specifiés the sole constituent of a declaration, the declaration is ill-formed unless it
is an explicit specialization (14.7.3), an explicit instantiation (14.7.2) or it has one of the following forms:

class-key identifier;

friend class-key identifier;
friend class-key ::identifier;
friend class-key nested-name-specifier identifier

3.4.4 describes how name lookup proceeds foridleetifier in an elaborated-type-specifier If the
identifier resolves to a&lass-namer enum-namgtheelaborated-type-specifientroduces it into the decla-
ration the same waysample-type-specifiantroduces itaype-name If the identifier resolves to aypedef-

109

ISO/IEC 14882:1998(E) © ISO/IEC

7.1.5.3 Elaborated type specifiers 7 Declarations

nameor a templatdype-parameterthe elaborated-type-specifigs ill-formed. [Note: this implies that,
within a class template with a templéagpe-parametel, the declaration

friend class T;

is ill-formed.] If name lookup does not find a declaration for the namegltimrated-type-specifias
ill-formed unless it is of the simple forwlass-key identifiein which case thédentifier is declared as
described in 3.3.1.

Theclass-keyor enum keyword present in thelaborated-type-specifieshall agree in kind with the decla-
ration to which the name in thelaborated-type-specifierefers. This rule also applies to the form of
elaborated-type-specifighat declares alass-namer friend class since it can be construed as referring
to the definition of the class. Thus, in aglborated-type-specifiethe enum keyword shall be used to
refer to an enumeration (7.2), thaion class-keyshall be used to refer to a union (clause 9), and either
theclass orstruct class-keyshall be used to refer to a class (clause 9) declared usictptise or
struct class-key

7.2 Enumeration declarations [dcl.enum]

An enumeration is a distinct type (3.9.1) with named constants. Its name becoemsranamewithin
its scope.

enum-name:
identifier

enum-specifier:

enum identifier,,, { enumerator-lisf, }

enumerator-list:
enumerator-definition
enumerator-list, enumerator-definition

enumerator-definition:
enumerator
enumerator=constant-expression

enumerator:
identifier

The identifiers in arenumerator-listare declared as constants, and can appear wherever constants are
required. Anenumerator-definitiorwith = gives the associategnumeratorthe value indicated by the
constant-expression The constant-expressioshall be of integral or enumeration type. If the first
enumeratorhas noinitializer, the value of the corresponding constant is zero.eumerator-definition
without aninitializer gives theenumeratorthe value obtained by increasing the value of the previous
enumeratoby one.

[Example:

enum{a, b,c=0};
enum {d, e, f=e+2 };

definesa, ¢, andd to be zerob ande to bel, andf to be3.]

The point of declaration for an enumerator is immediately aftenitsnerator-definition [Example:

const int x = 12;
{enum {x=x}1}

Here, the enumerataris initialized with the value of the constantnamely 12.]

Each enumeration defines a type that is different from all other types. Following the closing brace of an
enum-specifiereach enumerator has the type of its enumeration. Prior to the closing brace, the type of
each enumerator is the type of its initializing value. If an initializer is specified for an enumerator, the

110

10

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.2 Enumeration declarations

initializing value has the same type as the expression. If no initializer is specified for the first enumerator,
the type is an unspecified integral type. Otherwise the type is the same as the type of the initializing value
of the preceding enumerator unless the incremented value is not representable in that type, in which case
the type is an unspecified integral type sufficient to contain the incremented value.

The underlying typeof an enumeration is an integral type that can represent all the enumerator values
defined in the enumeration. It is implementation-defined which integral type is used as the underlying type
for an enumeration except that the underlying type shall not be larganthammless the value of an enu-
merator cannot fit in amt or unsigned int . If the enumerator-lisis empty, the underlying type is

as if the enumeration had a single enumerator with value 0. The vatizeof() applied to an enu-
meration type, an object of enumeration type, or an enumerator, is the valaeod() applied to the
underlying type.

For an enumeration wheeg,, is the smallest enumerator a@g,, is the largest, the values of the enumer-
ation are the values of the underlying type in the rdmgeto b,,.x, Whereb,;, andb,,, are, respectively,
the smallest and largest values of the smallest bit-field that canestgrand e« * It is possible to
define an enumeration that has values not defined by any of its enumerators.

Two enumeration types are layout-compatible if they have the sadszlying type

The value of an enumerator or an object of an enumeration type is converted to an integer by integral pro-
motion (4.5). Example:

enum color { red, yellow, green=20, blue };

color col = red,;

color* cp = &col;

if (*cp == blue) I

makescolor a type describing various colors, and then declemksas an object of that type, and as a
pointer to an object of that type. The possible values of an object octjpe arered , yellow ,
green , blue ; these values can be converted to the integral values20, and21. Since enumerations
are distinct types, objects of typelor can be assigned only values of tyjwdor

colorc=1; 1 error: type mismatch,
/I no conversion fronrmt to color

inti = yellow; I OK: yellow converted to integral valug
/I integral promotion

—end example

An expression of arithmetic or enumeration type can be converted to an enumeration type explicitly. The
value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the result-
ing enumeration value is unspecified.

The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immedi-
ately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and

(3.4). An enumerator declared in class scope can be referred to using the class member access operators
(:: ,. (dot) and-> (arrow)), see 5.2.5.Example:

class X {
public:
enum direction { left="", right="r' };
int f(int i)
{return i==left ? 0 : i==right 71 :2;}

8 0on a two’s-complement machink,,,, is the smallest value greater than or equal to @ias{é,,,) —1,ab e ..)) of the form
2M - 1; b, is zero ife,;, is non-negative and(b,,,+ 1) otherwise.

111

ISO/IEC 14882:1998(E) © ISO/IEC

7.2 Enumeration declarations 7 Declarations

void g(X* p)
{

direction d; 1 error: direction not in scope
inti;
i = p->f(left); 1 error: left not in scope
i = p->f(X::right); I OK
i = p->f(p->left); 1 OK
..
}
—end example
7.3 Namespaces [basic.namespace]

A namespace is an optionally-named declarative region. The name of a namespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative
regions, the definition of a namespace can be split over several parts of one or more translation units.

A name declared outside all named namespaces, blocks (6.3) and classes (clause 9) has global namespace
scope (3.3.5).

7.3.1 Namespace definition [namespace.def]

The grammar for aamespace-definitiois

namespace-name:
original-namespace-name
namespace-alias
original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier{ namespace-body

extension-namespace-definition:
namespace original-namespace-namg namespace-body

unnamed-namespace-definition:
namespace { namespace-body

namespace-body:
declaration-seg

Theidentifierin anoriginal-namespace-definitioghall not have been previously defined in the declarative
region in which theoriginal-namespace-definitiomppears. Theadentifier in an original-namespace-
definition is the name of the namespace. Subsequently in that declarative region, it is treated as an
original-namespace-name

The original-namespace-narria anextension-namespace-definitishall have previously been defined in
anoriginal-namespace-definitioim the same declarative region.

Everynamespace-definitioghall appear in the global scope or in a namespace scope (3.3.5).

112

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.1 Namespace definition

Because aamespace-definitiocontainsdeclarationsin its namespace-bodind anamespace-definitiois
itself adeclaration it follows thatnamespace-definitiorcan be nested.Ekample:

namespace Outer {

inti;

namespace Inner {
void f() {i++;} I Outer::i
inti;
void g() {i++; } 1 Inner::i

}

}
—end example

7.3.1.1 Unnamed namespaces [namespace.unnamed]

An unnamed-namespace-definitibehaves as if it were replaced by
namespace unique {/* empty body */}

using namespace unique;
namespace unique { namespace-body

where all occurrences ohique in a translation unit are replaced by the same identifier and this identifier
differs from all other identifiers in the entire progrg?'?\[Example:

namespace { inti; } I unique::i
void f() {i++;} 1 unique::i++

namespace A {
namespace {

inti; 1! A uniquei
int j; I A:: uniquej
}
void g() { i++; } 1 Al uniquei++
}
using namespace A;
void h() {
i++; 1 error: unique:i - or Al uniquei
A+ 1! A uniquei
j++; i A:: uniquej
}
—end example

The use of thetatic keyword is deprecated when declaring objects in a namespace scope (see annex D);
theunnamed-namespagpeovides a superior alternative.

7.3.1.2 Namespace member definitions [namespace.memdef]

Members of a namespace can be defined within that namesgaeanile:

namespace X {
void f() { /* ... */ }
}

—end example

Members of a named namespace can also be defined outside that namespace by explicit qualification
(3.4.3.2) of the name being defined, provided that the entity being defined was already declared in the
namespace and the definition appears after the point of declaration in a namespace that encloses the

82) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their
translation unit and therefore can never be seen from any other translation unit.

113

ISO/IEC 14882:1998(E) © ISO/IEC

7.3.1.2 Namespace member definitions 7 Declarations

declaration’s namespaceExample:

namespace Q {
namespace V {

void f();
}
void Vif() { /* ... */ } 1 OK
void V::gO) {/* ... */ } I error: g() is not yet a member df
namespace V {
void g();
}
}
namespace R {
void Q::V:g() { /* ... */'} 1 error: Rdoesn’t enclos®
}
—end example

Every name first declared in a namespace is a member of that namespafréentf a declaration in a
non-local class first declares a class or funéfibihe friend class or function is a member of the innermost
enclosing namespace. The name of the friend is not found by simple name lookup until a matching declara-
tion is provided in that namespace scope (either before or after the class declaration granting friendship). If
a friend function is called, its name may be found by the name lookup that considers functions from name-
spaces and classes associated with the types of the function arguments (3.4.2). When looking for a prior
declaration of a class or a function declared &% ead , scopes outside the innermost enclosing name-
space scope are not considerdgxample:

/I Assumd andg have not yet been defined.

void h(int);
namespace A {
class X {
friend void f(X); I A:f isafriend
class Y {
friend void g(); 1 A:g is afriend
friend void h(int); 1l A:h isafriend
/I ::h not considered
2
2
/I A:f ,A:g andA:h are not visible here
X X;
void g() { f(x); } 1 definition ofA::g
void f(X) { /* ... *} 1 definition ofA::f
void h(int) { /* ... */ } I definition ofA::h
/I A=zf ,A:g andA:h are visible here and known to be friends
}
using A::x;
void h()
{
A::f(x);
Az X::f(x); I error: f is not a member dk:: X
A:X:Y:g(); 1 error: g is not a member dk:: X::Y
}
—end example

83 this implies that the name of the class or function is unqualified.

114

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.2 Namespace alias

7.3.2 Namespace alias [namespace.alias]

A namespace-alias-definitiasieclares an alternate name for a namespace according to the following gram-
mar:

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
2 opt NESted-name-specifigrnamespace-name

Theidentifierin anamespace-alias-definitias a synonym for the name of the namespace denoted by the
qualified-namespace-specifi@nd becomes aamespace-alias[Note: when looking up anamespace-
namein anamespace-alias-definitioponly namespace names are considered, see 3.4.6. |

In a declarative region, amespace-alias-definitiozan be used to redefinenamespace-aliadeclared in
that declarative region to refer only to the namespace to which it already ré&rasngle:the following
declarations are well-formed:

namespace Company_with_very_long_name {/* ... */ }

namespace CWVLN = Company_with_very long_name;

namespace CWVLN = Company_with_very_long_name; I OK: duplicate
namespace CWVLN = CWVLN;

—end example

A namespace-nama namespace-aliashall not be declared as the name of any other entity in the same
declarative region. Aamespace-namdefined at global scope shall not be declared as the name of any
other entity in any global scope of the program. No diagnostic is required for a violation of this rule by
declarations in different translation units.

7.3.3 Theusing declaration [namespace.udecl]

A using-declaratiorintroduces a name into the declarative region in whichusiireg-declaratiorappears.
That name is a synonym for the name of some entity declared elsewhere.

using-declaration:
using typename . i oy nested-name-specifier unqualified:id
using :: unqualified-id;

The member name specified iuging-declarations declared in the declarative region in which tlseng-
declarationappears. Nlote: only the specified name is so declared; specifying an enumeration name in a
using-declaratiordoes not declare its enumerators inubimg-declaratiors declarative region.]

Everyusing-declaratioris adeclarationand amember-declaratioand so can be used in a class definition.
[Example:

struct B {
void f(char);
void g(char);
enumE{e};
union {int x; };
I3
struct D : B {
using B::f;
void f(int) { f('c’); } I calls B::f(char)
void g(int) { g(c’); } I recursively calldD::g(int)
2

115

ISO/IEC 14882:1998(E) © ISO/IEC

7.3.3 Theusing declaration 7 Declarations

—end example

A using-declaratiorused as anember-declaratioshall refer to a member of a base class of the class being
defined, shall refer to a member of an anonymous union that is a member of a base class of the class being
defined, or shall refer to an enumerator for an enumeration type that is a member of a base class of the class
being defined. Example:

class C{
int g();

2

class D2 : public B {
using B::f; 1! OK: Bis a base ob2
using B::e; I OK: e is an enumerator of ba&®
using B::x; 1 OK: x is a union member of bage
using C::g; I error: Cisn't a base 0D2

I3
—end example[Note: since constructors and destructors do not have namessngdeclarationcannot
refer to a constructor or a destructor for a base class. Since specializations of member templates for conver-
sion functions are not found by name lookup, they are not considered wikamaleclaratiorspecifies a
conversion function (14.5.2).] If an assignment operator brought from a base class into a derived class
scope has the signature of a copy-assignment operator for the derived class (12shgtdeclaration
does not by itself suppress the implicit declaration of the derived class copy-assignment operator; the
copy-assignment operator from the base class is hidden or overridden by the implicitly-declared copy-
assignment operator of the derived class, as described below.

A using-declaratiorshall not name template-id [Example:

class A {

public:
template <class T> void f(T);
template <class T> struct X { };

class B : public A {

public:
using A::f<double>; 1 ill-formed
using A::X<int>; i ill-formed
h
—end example

A using-declaratiorfor a class member shall berember-declaration[Example:

struct X {
inti;
static int s;
3
void f()
{
using X::i; I error: X::i is a class member
/I and this is not a member declaration.
using X::s; 1 error: X::s is a class member
/I and this is not a member declaration.
}
—end example

Members declared byusing-declaratiorcan be referred to by explicit qualification just like other member
names (3.4.3.2). Inasing-declarationa prefix:: refers to the global namespac&xample:

116

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.3 Thaising declaration
void f();
namespace A {
void g();
}
namespace X {
using ::f; 1 global f
using A::g; 1l Asg
}
void h()
{
X::f(); I calls ::f
X::9(); 1 callsA::g
—end example

A using-declaratioris adeclarationand can therefore be used repeatedly where (and only where) multiple
declarations are allowedExample:

namespace A {

inti;
}
namespace Al {
using A:i;
using Ai; 1! OK: double declaration
}
void f()
{
using A:i;
using A:i; I error: double declaration
}
class B {
public:
int i
b
class X : public B {
using B::i;
using B::i; I error: double member declaration
|3
—end example

The entity declared by asing-declaratiorshall be known in the context using it according to its definition
at the point of thaising-declaration Definitions added to the namespace afterusiag-declarationare
not considered when a use of the name is mdgeanjple:

namespace A {
void f(int);
}

using A:f; 1 f is a synonym foA::f ;
/I thatis, forA::f(int)
namespace A {
void f(char);
}

117

10

11

ISO/IEC 14882:1998(E)

7.3.3 Theusing declaration

void foo()
f(a); 1
} I
void bar()
{
using A::f; I
1
f(a’); I

© ISO/IEC

7 Declarations

callsf(int)

even thouglf(char) exists.

f is a synonym foA:f ;
that is, forA::f(int) andA::f(char)
callsf(char)

—end example[Note: partial specializations of class templates are found by looking up the primary class
template and then considering all partial specializations of that templateusifigedeclaratiornames a
class template, partial specializations introduced afteushry-declaratiorare effectively visible because

the primary template is visible (14.5.4).]

Since ausing-declarationis a declaration, the restrictions on declarations of the same name in the same
declarative region (3.3) also applyusing-declaratios. [Example:

namespace A {
int x;
}

namespace B {
int i
struct g {};
struct x { };
void f(int);
void f(double);
void g(char); I

}

void func()

{ - -
inti;
using B::i; 1/
void f(char);
using B::f; 1
f(3.5); I
using B::g;
g(a); 1
struct g g1; 1
using B::x;
using A::x; 1!
X =99; 1l
struct x x1; 1

}

—end example

If a function declaration in namespace scope or block scope has the same name and the same parameter

OK: hidesstruct g

error: i declared twice

OK: eachf is a function
calls B::f(double)

calls B::g(char)
g1 has class typ8::g

OK: hidesstruct B::x
assigns tA::x
x1 has class typ8::x

types as a function introduced byuaing-declaration the program is ill-formed. Note: two using-
declaratiors may introduce functions with the same name and the same parameter types. If, for a call to an
unqualified function name, function overload resolution selects the functions introduced byssugeh

declaratiors, the function call is ill-formed.

118

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.3 Thaising declaration

[Example:

namespace B {
void f(int);
void f(double);

}
namespace C {
void f(int);
void f(double);
void f(char);
}
void h()
{
using B::f; I B::f(int) andB::f(double)
using C::f; 1 C::f(int) , C::f(double) , andC::f(char)
fCh"); I calls C::f(char)
f(1); I error: ambiguousB::f(int) or C::f(int) ?
void f(int); 1 error:
Il f(int) conflicts withC::f(int) andB::f(int)
}

—end exampl]

12 When ausing-declaratiorbrings names from a base class into a derived class scope, member functions in
the derived class override and/or hide member functions with the same name and parameter types in a base
class (rather than conflicting) Example:

struct B {
virtual void f(int);
virtual void f(char);

void g(int);
void h(int);
I3
struct D : B {
using B::f;
void f(int); 1 OK: D::f(int) overridesB::f(int) ;
using B::g;
void g(char); i OK
using B::h;
void h(int); I OK: D::h(int) hidesB::h(int)
2
void k(D* p)
p->f(1); Il calls D::f(int)
p->f(’'a’); i calls B::f(char)
p->g(1); /i calls B::g(int)
p->g('a); Il calls D::g(char)
}

—end example[Note: two using-declaratios may introduce functions with the same name and the same
parameter types. If, for a call to an unqualified function name, function overload resolution selects the
functions introduced by sualsing-declaratios, the function call is ill-formed.]

13 For the purpose of overload resolution, the functions which are introducedidiggadeclarationinto a
derived class will be treated as though they were members of the derived class. In particular, the implicit
this parameter shall be treated as if it were a pointer to the derived class rather than to the base class.
This has no effect on the type of the function, and in all other respects the function remains a member of the
base class.

119

14

15

16

ISO/IEC 14882:1998(E) © ISO/IEC

7.3.3 Theusing declaration 7 Declarations

All instances of the name mentioned inising-declaratiorshall be accessible. In particular, if a derived

class uses asing-declaratiorto access a member of a base class, the member name shall be accessible. If
the name is that of an overloaded member function, then all functions named shall be accessible. The base
class members mentioned bwsing-declaratiorshall be visible in the scope of at least one of the direct

base classes of the class whereu$iag-declaratioris specified. Note: because asing-declaratiordes-

ignates a base class member (and not a member subobject or a member function of a base class subobject),
ausing-declaratiorcannot be used to resolve inherited member ambiguities. For example,

struct A {int x(); };
struct B: A {};

struct C : A {
using A:x;
int x(int);

b

structD: B, C{
using C::x;
int x(double);

b

int f(D* d) {
return d->x(); Il ambiguousB::x or C::x

}

]

The alias created by thising-declaratiorhas the usual accessibility fomember-declaration[Example:

class A {
private:
void f(char);
public:
void f(int);
protected:
void g();
I3
class B : public A {
using A::f; I error: A::f(char) is inaccessible
public:
using A::g; 1 B::g is a public synonym faok::g
2
—end example

[Note:use ofaccess-declarationd 1.3) is deprecated; memhgsing-declaratios provide a better alterna-
tive.]

7.3.4 Using directive [namespace.udir]

using-directive:
using namespace :: opt Nested-name-specifigrnamespace-name ;

A using-directiveshall not appear in class scope, but may appear in namespace scope or in block scope.
[Note:when looking up aamespace-narmia a using-directive only namespace names are considered, see
3.4.6.]

A using-directivespecifies that the names in the hominated namespace can be used in the scope in which
the using-directiveappears after thasing-directive During unqualified name lookup (3.4.1), the names
appear as if they were declared in the nearest enclosing namespace which containsubioiy-thective

and the nominated namespacBote:in this context; contain§ means'contains directly or indirectly]

120

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.4 Using directive

A using-directivedoes not add any members to the declarative region in which it appesasnle:

namespace A {
inti;
namespace B {
namespace C {
inti;
}

using namespace A::B::C;
void f1() {
i=5; /i OK, C::ii visible inB and hidesA::i
}
}

namespace D {
using namespace B;
using namespace C;

void f2() {
i=5; 1 ambiguousB::C::i orAsxi ?
}
}
void f3() {
i=5; I usesA:i
}
}
void f4() {
i=5; I ill-formed; neitheri is visible
}

]

The using-directiveis transitive: if a scope containsuaing-directivethat nominates a second namespace
that itself containsising-directivs, the effect is as if thesing-directive from the second namespace also
appeared in the first. Ekample:

namespace M {
int i
}

namespace N {
inti;
using namespace M;

}
void f()

using namespace N;

i=7; 1l error: bothM::i andN:i are visible
}

121

ISO/IEC 14882:1998(E) © ISO/IEC

7.3.4 Using directive 7 Declarations

For another example,

namespace A {

inti;
}
namespace B {
inti;
int j;
namespace C {
namespace D {
using namespace A,
intj;
int k;
inta=i; I B::ii hidesA:i
}
using namespace D;
int k = 89; I no problem yet
intl=k; 1 ambiguousC::k orD:k
intm =1; /! B:i hidesA:i
intn=j; 1 D:;j hidesB:;j
}
}

—end example

If a namespace is extended byeatended-namespace-definitiafter ausing-directivefor that namespace
is given, the additional members of the extended namespace and the members of namespaces nominated by
using-directive in theextended-namespace-definiticem be used after tlextended-namespace-definition

If name lookup finds a declaration for a name in two different namespaces, and the declarations do not
declare the same entity and do not declare functions, the use of the name is ill-foYiotedin particular,

the name of an object, function or enumerator does not hide the name of a class or enumeration declared in
a different namespace. For example,

namespace A {
class X {};
extern "C" intg();
extern "C++" int h();

}
namespace B {
void X(int);
extern "C" intg();
extern "C++" int h();
}

using namespace A,
using namespace B;

void f() {
X(1); I error: nameX found in two namespaces
a(); I okay: namey refers to the same entity
h(); 1 error: nameh found in two namespaces
}
—end not¢

During overload resolution, all functions from the transitive search are considered for argument matching.
The set of declarations found by the transitive search is unordédetk: iin particular, the order in which
namespaces were considered and the relationships among the namespaces impliadity-divective

do not cause preference to be given to any of the declarations found by the search.] An ambiguity exists if
the best match finds two functions with the same signature, even if one is in a namespace reachable through
using-directive in the namespace of the otfi&r.

84) During name lookup in a class hierarchy, some ambiguities may be resolved by considering whether one member hides the other

122

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.3.4 Using directive

[Example:

namespace D {

int d1;

void f(char);
}

using namespace D;

intdi; 1 OK: no conflict withD::d1

namespace E {

int e;
void f(int);

}

namespace D { 1l namespace extension
int d2;
using namespace E;
void f(int);

}

void f()

{
dl++; /I error: ambiguous:dl orD:dl ?
dl++ 1l OK
D:d1++; 1! OK
d2++; /I OK:D:d2
et++; /I OK:E:e
f(1); 1 error: ambiguousD::f(int) or E::f(int) ?
f(a’); I OK: D::f(char)

}

—end example
7.4 Theasmdeclaration [dcl.asm]

An asm declaration has the form

asm-definition:
asm (string-literal) ;

The meaning of ansm declaration is implementation-defined\dte: Typically it is used to pass informa-
tion through the implementation to an assembler.]

7.5 Linkage specifications [dcl.link]

All function types, function names, and variable names hdaeguage linkage [Note: Some of the prop-

erties associated with an entity with language linkage are specific to each implementation and are not
described here. For example, a particular language linkage may be associated with a particular form of rep-
resenting names of objects and functions with external linkage, or with a particular calling convention, etc.
] The default language linkage of all function types, function names, and variable nameddadliage

linkage. Two function types with different language linkages are distinct types even if they are otherwise
identical.

Linkage (3.5) betweent@ and non-&+ code fragments can be achieved usifigkage-specification

along some paths (10.2). There is no such disambiguation when considering the set of names found as a result afsfatipwing
directives.

123

ISO/IEC 14882:1998(E) © ISO/IEC

7.5 Linkage specifications 7 Declarations

linkage-specification:
extern string-literal { declaration-seg }
extern string-literal declaration

The string-literal indicates the required language linkage. The meaning of sthag-literal is
implementation-defined. Ainkage-specificatiorwith a string that is unknown to the implementation is
ill-formed. When thestring-literal in alinkage-specificatiomames a programming language, the spelling
of the programming language’s name is implementation-defingdte{it is recommended that the spel-
ling be taken from the document defining that language, for exafAgde(not ADA andFortran or
FORTRANdepending on the vintage). The semantics of a language linkage other+thar C are
implementation-defined.]

Every implementation shall provide for linkage to functions written in the C programming lant@age,
and linkage to €+ functions,"C++" . [Example:

complex sqgrt(complex); 1 C++ linkage by default
extern "C" {
double sqrt(double); 1 C linkage
}
—end example

Linkage specifications nest. When linkage specifications nest, the innermost one determines the language
linkage. A linkage specification does not establish a scopéinkAge-specificatiorshall occur only in
namespace scope (3.3). Idirkage-specificationthe specified language linkage applies to the function
types of all function declarators, function names, and variable names introduced by the declaration(s).
[Example:
extern "C" void f1(void(*pf)(int));
/I the namdl and its function type have C language

/I linkage;pf is a pointer to a C function
extern "C" typedef void FUNC();

FUNC f2; /I the namd2 has G+ language linkage and the
/I function’s type has C language linkage

extern "C" FUNC f3; i the name of functiof8 and the function’s type
/I have C language linkage

void (*pf2)(FUNC*); 1 the name of the variablgf2 has G+ linkage and

/I the type opf2 is pointer to @+ function that
/I takes one parameter of type pointer to C function

—end exampleA C language linkage is ignored for the names of class members and the member function
type of class member functionsEample:

extern "C" typedef void FUNC_c();

class C{
void mf1(FUNC_c*); 1 the name of the functionfl and the member
/I function’s type have+3 language linkage; the
/I parameter has type pointer to C function
FUNC_c mf2; 1! the name of the functionf2 and the member
/I function’s type have®3- language linkage
static FUNC_c* q; 1 the name of the data memlzghas G-+ language
/I linkage and the data member’s type is pointer to
/I C function
I3

124

© ISO/IEC ISO/IEC 14882:1998(E)

7 Declarations 7.5 Linkage specifications
extern "C" {
class X {
void mf(); 1 the name of the functionf and the member
/I function’s type have®- language linkage
void mf2(void(*)()); Il the name of the functionf2 has G+ language

/I linkage; the parameter has type pointer to
/I C function

}
—end example

If two declarations of the same function or object specify diffeliakage-specificatios (that is, the
linkage-specificatios of these declarations specify differstring-literals), the program is ill-formed if the
declarations appear in the same translation unit, and the one definition rule (3.2) applies if the declarations
appear in different translation units. Except for functions with [ihkage, a function declaration without

a linkage specification shall not precede the first linkage specification for that function. A function can be
declared without a linkage specification after an explicit linkage specification has been seen; the linkage
explicitly specified in the earlier declaration is not affected by such a function declaration.

At most one function with a particular name can have C language linkage. Two declarations for a function
with C language linkage with the same function name (ignoring the namespace names that qualify it) that
appear in different namespace scopes refer to the same function. Two declarations for an object with C lan-
guage linkage with the same name (ignoring the namespace names that qualify it) that appear in different
namespace scopes refer to the same objbictte{because of the one definition rule (3.2), only one defini-

tion for a function or object with C linkage may appear in the program; that is, such a function or object
must not be defined in more than one namespace scope. For example,

namespace A {
extern "C" int f();
extern "C"int g() { return 1; }
extern "C" int h();

}
namespace B {
extern "C" int f(); I A:xf andB:f refer
/I to the same function
extern "C"intg() { return 1; } i ill-formed, the functiony

/I with C language linkage
/I has two definitions

}

int A::f() { return 98; } i definition for the functior
/I with C language linkage
extern "C" int h() { return 97; }
/I definition for the functiorn
/I with C language linkage
/I A::h and::h refer to the same function

—end not¢

Except for functions with internal linkage, a function first declared linkage-specificatiorbehaves as a
function with external linkage.Example:

extern "C" double f();
static double f(); 1 error

is ill-formed (7.1.1).] The form ofinkage-specificatiorthat contains a braced-enclosgeklaration-seq
does not affect whether the contained declarations are definitions or not (3.1); the ftinkagé-
specificationdirectly containing a single declaration is treated aext@rn specifier (7.1.1) for the pur-
pose of determining whether the contained declaration is a definiio@mple:

125

ISO/IEC 14882:1998(E) © ISO/IEC

7.5 Linkage specifications 7 Declarations

extern "C"int i; 1! declaration

extern "C" {
int i Il definition
}

—end exampleA linkage-specificatiomirectly containing a single declaration shall not specify a storage

class. Example:

extern "C" static void f(); 1 error

—end example

[Note:because the language linkage is part of a function type, when a pointer to C function (for example) is
dereferenced, the function to which it refers is considered a C function.]

Linkage from G+ to objects defined in other languages and to objects definedtifr@n other languages

is implementation-defined and language-dependent. Only where the object layout strategies of two lan-
guage implementations are similar enough can such linkage be achieved.

126

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators [dcl.decl]

A declarator declares a single object, function, or type, within a declaration.initfteclarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeg,,

The two components of @declarationare the specifiersdécl-specifier-seq7.1) and the declaratoriif-
declarator-lis). The specifiers indicate the type, storage class or other properties of the objects, functions
or typedefs being declared. The declarators specify the names of these objects, functions or typedefs, and
(optionally) modify the type of the specifiers with operators such @®inter to) and) (function return-

ing). Initial values can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

Eachinit-declaratorin a declaration is analyzed separately as if it was in a declaration b%}self.
Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clausg¢ cv-qualifier-seg, exception-specificatiop
direct-declarator [constant-expressigg]
(declarator)

ptr-operator:
* cv-qualifier-segy
&
i1 optNested-name-specifier cv-qualifier-segqy,

89 A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T D1,D2,...Dn;

is usually equvalent to

T D1, TD2;..TDn;

where T is a decl-specifier-se@nd eachDi is a init-declarator The exception occurs when a name introduced by one of the
declaratorshides a type name used by ith&-specifiers so that when the santgl-specifiersare used in a subsequent declaration,
they do not have the same meaning, as in

struct S{... };
S ST, I declare two instances sfruct S

which is not equivalent to
structS{... };

S S;
S T 1l error

127

ISO/IEC 14882:1998(E) © ISO/IEC

8 Declarators 8 Declarators

cv-qualifier-seq:
cv-qualifier cv-qualifier-seg

cv-qualifier:
const
volatile

declarator-id:
id-expression
I opt NESted-name-specifigrtype-name

A class-naméhas special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operatof5.1, 12.1, 12.4).

8.1 Type names [dcl.name]

To specify type conversions explicitly, and as an argumesnizebf , new, ortypeid , the name of a
type shall be specified. This can be done witppe-id which is syntactically a declaration for an object or
function of that type that omits the name of the object or function.
type-id:
type-specifier-seq abstract-declaraggr

type-specifier-seq:
type-specifier type-specifier-sgg

abstract-declarator:
ptr-operator abstract-declaratgy
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratqy,
_ (parameter-declaration-clause cv_-qualifier-seqptexception-specificatiqg[
direct-abstract-declaratqg, [constant-expressigy]
(abstract-declarator)

It is possible to identify uniquely the location in thiestract-declaratomwhere the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. Example:

int 1 int i

int * I int *pi

int *[3] 1 int *p[3]

int (*)[3] 1 int (*p3i)[3]

int *() 1 int *f()

int (*)(double) 1 int (*pf)(double)

name respectively the typémt ,” “pointer toint |,
int)" “function of (no parameters) returning pointerirto ,

returningint ."”]

array of 3 pointers tint ,” “pointer to array of 3
" and “pointer to a function ofdouble)

A type can also be named (often more easily) by ustppeadef(7.1.3).

8.2 Ambiguity resolution [dcl.ambig.res]

The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, the choice is between a function declaration
with a redundant set of parentheses around a parameter name and an object declaration with a function-style
cast as the initializer. Just as for the ambiguities mentioned in 6.8, the resolution is to consider any con-
struct that could possibly be a declaration a declaratiblotef a declaration can be explicitly disam-
biguated by a nonfunction-style cast, by=ato indicate initialization or by removing the redundant

128

© ISO/IEC

8 Declarators

ISO/IEC 14882:1998(E)

8.2 Ambiguity resolution

parentheses around the parameter namexdrple:

struct S {
S(int);
I3
void foo(double a)
{
S w(int(a));
S x(int());
S y((int)a);
S z =int(a);
}
—end example

1

1
1

function declaration
function declaration
object declaration
object declaration

The ambiguity arising from the similarity between a function-style cast &mkadcan occur in different
contexts. The ambiguity appears as a choice between a function-style cast expression and a declaration of a
type. The resolution is that any construct that could possiblytipgeaidin its syntactic context shall be

considered &ype-id

[Example:

#include <cstddef>
char *p;

void *operator new(size_t, int);

void foo() {

const int x = 63;
new (int(*p)) int;
new (int(*[x]));

}

For another example,

template <class T>
struct S {
T *p;
I3
S<int()> x;
S<int(1)>y;
For another example,

void foo()

{
sizeof(int(1));
sizeof(int());

}

For another example,

void foo()

{
(int(1));
(int())1;

—end example

1

I
1

1
1

new-placement expression
new type-id

type-id
expression (ill-formed)

expression
type-id (ill-formed)

expression
type-id (ill-formed)

Another ambiguity arises in@arameter-declaration-clausa a function declaration, or intgpe-idthat is

the operand of sizeof ortypeid operator, when type-nameés nested in parentheses. In this case, the
choice is between the declaration of a parameter of type pointer to function and the declaration of a parame-
ter with redundant parentheses arounddéelarator-id The resolution is to consider thge-nameas a
simple-type-specifiaather than aeclarator-id [Example:

129

ISO/IEC 14882:1998(E) © ISO/IEC

8.2 Ambiguity resolution 8 Declarators
classC{};
void f(int(C)) { } 1 void f(int (*fp)(C «¢) {}
/I not:void f(int C);
int g(C);
void foo() {
f(1); 1 error: cannot convert to function pointer
f(9); 1 OK
}
For another example,
classC{};
void h(int *(C[10])); 1 void h(int *(*_fp)(C _parm[10]));
/I not:void h(int *C[10]);
—end example
8.3 Meaning of declarators [dcl.meaning]

A list of declarators appears after an optional (clauste@)specifier-se@7.1). Each declarator contains
exactly onedeclarator-id it names the identifier that is declared. Tdexpressiorof adeclarator-idshall

be a simpladentifier except for the declaration of some special functions (12.3, 12.4, 13.5) and for the dec-
laration of template specializations or partial specializations (14.®%echarator-idshall not be qualified

except for the definition of a member function (9.3) or static data member (9.4) or nested class (9.7) outside
of its class, the definition or explicit instantiation of a function, variable or class member of a namespace
outside of its namespace, or the definition of a previously declared explicit specialization outside of its
namespace, or the declaration of a friend function that is a member of another class or namespace (11.4).
When thedeclarator-idis qualified, the declaration shall refer to a previously declared member of the class
or namespace to which the qualifier refers, and the member shall not have been introducssihy a
declaration in the scope of the class or namespace nominated bydbied-name-specifiesf the
declarator-id [Note:if the qualifier is the globat scope resolution operator, teclarator-idrefers to a

name declared in the global namespace scope.] In the qualdarator-idfor a class or namespace
member definition that appears outside of the member’s class or namespaestadename-specifishall

not name any of the namespaces that enclose the member’s defiritkample:

namespace A {
struct B {
void f();

\;oid A:B:f() {} I ill-formed: the declarator must not be
/I qualified withA::
}

—end example

An auto , static , extern ,register , mutable ,friend ,inline ,virtual , ortypedef spec-
ifier applies directly to eactieclarator-idin ainit-declarator-list the type specified for eacteclarator-id
depends on both thdecl-specifier-seqnd itsdeclarator.

Thus, a declaration of a particular identifier has the form
TD

whereT is adecl-specifier-seandD s a declarator. Following is a recursive procedure for determining the
type specified for the containeéclarator-idby such a declaration.

First, thedecl-specifier-sedetermines a type. In a declaration
TD

thedecl-specifier-seq determines the typ€el.” [Example:in the declaration

130

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.3 Meaning of declarators

int unsigned i;

the type specifiersit unsigned determine the typtunsigned int " (7.1.5.2).]

In a declaratiodm DwhereDis an unadorned identifier the type of this identifiefTs’

In a declaratiom DwhereD has the form
(D1)

the type of the containatkclarator-idis the same as that of the contaidegdlarator-idin the declaration
TD1

Parentheses do not alter the type of the embedeedrator-id but they can alter the binding of complex
declarators.

8.3.1 Pointers [dcl.ptr]
In a declaratiom DwhereD has the form
* cv-qualifier-segy, D1

and the type of the identifier in the declaratioB®1 is “derived-declarator-type-Ilist,” then the type of the
identifier of D is “derived-declarator-type-list cv-qualifier-sgmpinter toT.” The cv-qualifiels apply to the
pointer and not to the object pointed to.

[Examplethe declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;

inti, *p, *const cp = &i;
declareci , a constant integepc, a pointer to a constant integepc, a constant pointer to a constant
integer,ppc, a pointer to a pointer to a constant integeran integerp, a pointer to integer; anth, a
constant pointer to integer. The valuecdf cpc , andcp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed ¢p byExamples of some correct operations are

i=ci;
*Cp = ci;
pc++;
pc = cpc;
pc=p;
ppC = &pc;

Examples of ill-formed operations are
ci=1; 1 error
Ci++; I error
*pc = 2; 1l error
cp = &ci; /i error
cpc++; 1 error
p = pc; I error
ppc = &p; I error

Each is unacceptable because it would either change the value of an object dealstredr allow it to be
changed through a cv-unqualified pointer later, for example:

*ppc = &ci; 1l OK, but would make point toci ...
/I ... because of previous error
*p = 5; i clobberci
—end example

See also 5.17 and 8.5.

131

ISO/IEC 14882:1998(E) © ISO/IEC

8.3.1 Pointers 8 Declarators

[Note:there are no pointers to references; see 8.3.2. Since the address of a bit-field (9.6) cannot be taken, a
pointer can never point to a bit-field.]

8.3.2 References [dcl.ref]
In a declaratiom DwhereD has the form
& D1

and the type of the identifier in the declaratioB1 is “derived-declarator-type-Ilist,” then the type of the
identifier of Dis “derived-declarator-type-ligeference td.” Cv-qualified references are ill-formed except
when the cv-qualifiers are introduced through the use of a typedef (7.1.3) or of a template type argument
(14.3), in which case the cv-qualifiers are ignoreexample:in

typedef int& A;
const A aref = 3; I ill-formed;
/I nonconst reference initialized with rvalue

the type ofaref is “reference tant ”, not“const reference tant ”.] [Note: a reference can be
thought of as a name of an object.] A declarator that specifies th&rgfpeence tev void” is ill-formed.

[Example:

void f(double& a) { a += 3.14; }
I

double d = 0;

f(d);

declares to be a reference parameteff odo the calf(d) willadd3.14 tod.

int v[20];
I .
int& g(int i) { return v{i]; }
..

93 =7

declares the functiog() to return a reference to an integer$8)=7 will assign7 to the fourth element
of the array. For another example,

struct link {
link* next;

b

link* first;

void h(link*& p) I p is a reference to pointer

p->next = first;

first = p;
p=0;

}

void k()

{

link* q = new link;
h(a);

declareg to be a reference to a pointedittk soh(q) will leave q with the value zero. See also 8.5.3.

]

It is unspecified whether or not a reference requires storage (3.7).

132

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.3.2 References

There shall be no references to references, no arrays of references, and no pointers to references. The decla-
ration of a reference shall contain wmitializer (8.5.3) except when the declaration contains an explicit
extern specifier (7.1.1), is a class member (9.2) declaration within a class declaration, or is the declara-
tion of a parameter or a return type (8.3.5); see 3.1. A reference shall be initialized to refer to a valid object
or function. Note:in particular, a null reference cannot exist in a well-defined program, because the only
way to create such a reference would be to bind it tédhgect obtained by dereferencing a null pointer,

which causes undefined behavior. As described in 9.6, a reference cannot be bound directly to a bit-field.]

8.3.3 Pointers to members [dcl.mptr]

In a declaratiom DwhereD has the form
I optNEsted-name-specifiet cv-qualifier-seg,, D1

and thenested-name-specifiarames a class, and the type of the identifier in the declaratinh is
“derived-declarator-type-lisT,” then the type of the identifier d is “derived-declarator-type-list cv-
qualifier-segpointer to member aflass nested-name-specifier of type

[Example:

class X {
public:
void f(int);
int a;
b

class Y;

int X::* pmi = &X::a;

void (X::* pmf)(int) = &X::f;
double X::* pmd;

char Y::* pmc;

declaregpmi, pmf, pmdandpmcto be a pointer to a memberXbf typeint , a pointer to a member &f
of typevoid(int) , & pointer to a member fof typedouble and a pointer to a member 6fof type
char respectively. The declaration @md is well-formed even thougX has no members of type

double . Similarly, the declaration gdmc is well-formed even thougt is an incomplete typepmi and
pmf can be used like this:
X obj;
n ..
obj.*pmi = 7; I assign7 to an integer
/' member of bj
(obj.*pmf)(7); 1 call a function member afbj
/I with the argument
—end example

A pointer to member shall not point to a static member of a class (9.4), a member with reference type, or
“cvvoid .” [Note:see also 5.3 and 5.5. The tyjmointer to membéris distinct from the typépointer’,

that is, a pointer to member is declared only by the pointer to member declarator syntax, and never by the
pointer declarator syntax. There is‘weference-to-membktype in G+.]

8.3.4 Arrays [dcl.array]

In a declaratiom DwhereD has the form
D1 [constant-expressigg]

and the type of the identifier in the declaratioB1 is “derived-declarator-type-Ilist,” then the type of the
identifier of Dis an array typeT is called the arraglement typethis type shall not be a reference type, the
(possibly cv-qualified) typevoid , a function type or an abstract class type. If ¢bastant-expression

(5.19) is present, it shall be an integral constant expression and its value shall be greater than zero. The
constant expression specifies theundof (humber of elements in) the array. If the value of the constant

133

ISO/IEC 14882:1998(E) © ISO/IEC

8.3.4 Arrays 8 Declarators

expression i\, the array hadN elements numbere@l to N-1, and the type of the identifier @ is
“derived-declarator-type-listirray of N T.” An object of array type contains a contiguously allocated non-
empty set ofN sub-objects of typ&. If the constant expression is omitted, the type of the identifibriof
“derived-declarator-type-lisarray of unknown bound off,” an incomplete object type. The type
“derived-declarator-type-lisarray of NT” is a different type from the typ&lerived-declarator-type-list
array of unknown bound df,” see 3.9. Any type of the forfitv-qualifier-secarray ofN T” is adjusted to
“array ofN cv-qualifier-sedr,” and similarly for*array of unknown bound af.” [Example:

typedef int A[5], AA[2][3];

typedef const A CA, 1 type is “array of 5 const int”

typedef const AA CAA,; I type is “array of 2 array of 3 const int”

—end example[Note: an“array ofN cv-qualifier-sedl” has cv-qualified type; such an array has internal
linkage unless explicitly declarexktern (7.1.5.1) and must be initialized as specified in 8.5.]

An array can be constructed from one of the fundamental types (esaidp), from a pointer, from a
pointer to member, from a class, from an enumeration type, or from another array.

When several'array of specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.
[Note: this elision is useful for function parameters of array types, and when the array is external and the
definition, which allocates storage, is given elsewhere.] Thecfirsétant-expressiocan also be omitted

when the declarator is followed by anitializer (8.5). In this case the bound is calculated from the number

of initial elements (say) supplied (8.5.1), and the type of the identifieDa$ “array ofN T.”

[Example:
float fa[17], *afp[17];

declares an array éibat numbers and an array of pointerdloaat numbers. For another example,
static int x3d[3][5][7];

declares a static three-dimensional array of integers, with reb¥73 In complete detaik3d is an array

of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressiong3d, x3d[i] , x3d[i][j] , X3d[i][j1[k] can reasonably appear in an
expression. |

[Note: conversions affecting Ivalues of array type are described in 4.2. Objects of array types cannot be
modified, see 3.10.]

Except where it has been declared for a class (13.5.5), the subscript dpeiiatotterpreted in such a way
thatE1[E2] is identical to*((E1)+(E2)) . Because of the conversion rules that apphy,tid E1 is an
array ande2 an integer, the&1[E2] refers to th€e2-th member oE1l. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed for multidimensional arrays. Elfis an n-dimensional array of rank
ixjx - .xk, thenE appearing in an expression is converted to a pointer tm al Y-dimensional array
with rankjx - - - xk. If the* operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to-1)-dimensional array, which itself is immediately converted
into a pointer.

[Example:consider
int x[3][5];

Herex is a X5 array of integers. Whenappears in an expression, it is converted to a pointer to (the first

of three) five-membered arrays of integers. In the expres§ion, which is equivalent té(x+i) , x is

first converted to a pointer as described; théin is converted to the type &f which involves multiplying

i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-

ger. |

134

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.3.4 Arrays

[Note: it follows from all this that arrays in#@ are stored row-wise (last subscript varies fastest) and that
the first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.]

8.3.5 Functions [dcl.fct]

In a declaratiom DwhereD has the form

D1 (parameter-declaration-claus¢ cv-qualifier-seg, exception-specificatiop

and the type of the containéeclarator-idin the declaratiom D1 is “derived-declarator-type-list,” the
type of thedeclarator-idin D is “derived-declarator-type-listunction of parameter-declaration-clau¥e
cv-qualifier-seg, returningT”; a type of this form is &unction typgﬁ).

parameter-declaration-clause:
parameter-declaration-ligh; ... op
parameter-declaration-list, ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator assignment-expression
decl-specifier-seq abstract-declaraggr
decl-specifier-seq abstract-declarajgr = assignment-expression

The parameter-declaration-clausdetermines the arguments that can be specified, and their processing,
when the function is called.Npte: the parameter-declaration-clauss used to convert the arguments
specified on the function call; see 5.2.2.] If ferameter-declaration-clause empty, the function takes

no arguments. The parameter [igbid) is equivalent to the empty parameter list. Except for this spe-
cial caseyoid shall not be a parameter type (though types derived Yaich , such axoid* , can). If

the parameter-declaration-claugerminates with an ellipsis, the number of arguments shall be equal to or
greater than the number of parameters specified. Where syntactically cgrrect, ” is synonymous

with “... ”. [Exampleithe declaration

int printf(const char*, ...);
declares a function that can be called with varying numbers and types of arguments.

printf("hello world");
printf("a=%d b=%d", a, b);

However, the first argument must be of a type that can be convertedntgta char* .] [Note:the stan-
dard headekcstdarg> contains a mechanism for accessing arguments passed using the ellipsis (see
5.2.2 and 18.7).]

A single name can be used for several different functions in a single scope; this is function overloading
(clause 13). All declarations for a function with a given parameter list shall agree exactly both in the type
of the value returned and in the number and type of parameters; the presence or absence of the ellipsis is
considered part of the function type. The type of a function is determined using the following rules. The
type of each parameter is determined from its deci-specifier-seqnddeclarator After determining the

type of each parameter, any parameter of tigeay of T" or “function returningT” is adjusted to be

“pointer toT” or “pointer to function returning@,” respectively. After producing the list of parameter

types, several transformations take place upon these types to determine the function typequsiifier

modifying a parameter type is deletedExample: the type void(*)(const int) becomes
void(*)(int) —end exampleSuchcv-qualifiers affect only the definition of the parameter within the

%) As indicated by the syntax, cv-qualifiers are a significant component in function return types.

135

ISO/IEC 14882:1998(E) © ISO/IEC

8.3.5 Functions 8 Declarators

body of the function; they do not affect the function type. dfaage-class-specifianodifies a parameter
type, the specifier is deleted Efample:register char* becomeschar* —end example Such
storage-class-specifigraffect only the definition of the parameter within the body of the function; they do
not affect the function type. The resulting list of transformed parameter types is the furi@mseter

type list

A cv-qualifier-secghall only be part of the function type for a nonstatic member function, the function type
to which a pointer to member refers, or the top-level function type of a function typedef declaration. The
effect of acv-qualifier-segn a function declarator is not the same as adding cv-qualification on top of the
function type, i.e., it does not create a cv-qualified function type. In fact, if at any time in the determination
of a type a cv-qualified function type is formed, the program is ill-formEgarhple:

typedef void F();
struct S {
const F f; I ill-formed:
/I not equivalent tovoid f() const;

I3
—end exampleThe return type, the parameter type list anddhgualifier-seq but not the default argu-
ments (8.3.6) or the exception specification (15.4), are part of the function typt: flinction types are
checked during the assignments and initializations of pointer-to-functions, reference-to-functions, and
pointer-to-member-functions.]

[Examplethe declaration
int fseek(FILE?*, long, int);
declares a function taking three arguments of the specified types, and reiturnifigy1.5).]

If the type of a parameter includes a type of the fopwinter to array of unknown bound ®f or “refer-

ence to array of unknown bound©f the program is ill-formed”) Functions shall not have a return type

of type array or function, although they may have a return type of type pointer or reference to such things.
There shall be no arrays of functions, although there can be arrays of pointers to functions. Types shall not
be defined in return or parameter types. The type of a parameter or the return type for a function declara-
tion that is not a definition may be an incomplete class type.

A typedef of function type may be used to declare a function but shall not be used to define a function (8.4).
[Example:

typedef void F();

F fv; 1 OK: equivalent tovoid fv();
F fv{} 1 ill-formed
void fv() { } i OK: definition offv

—end exampleA typedef of a function type whose declarator includey-gualifier-segshall be used

only to declare the function type for a nonstatic member function, to declare the function type to which a
pointer to member refers, or to declare the top-level function type of another function typedef declaration.
[Example:

typedef int FIC(int) const;

FIC f; 1! ill-formed: does not declare a member function
struct S {
FIC f; I OK
b
FIC S::*pm = &S:f; /i OK

—end example

8/) This excludes parameters of tyfjgr-arr-seq T2” whereT2 is “pointer to array of unknown bound ®f and whereptr-arr-seq
means any sequence ‘@fointer td and“array of derived declarator types. This exclusion applies to the parameters of the function,
and if a parameter is a pointer to function or pointer to member function then to its parameters also, etc.

136

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.3.5 Functions

An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it
names a parameter (sometimes calliedmal argumerif). [Note:in particular, parameter names are also
optional in function definitions and names used for a parameter in different declarations and the definition
of a function need not be the same. If a parameter name is present in a function declaration that is not a
definition, it cannot be used outside of th@rameter-declaration-clausgnce it goes out of scope at the

end of the function declarator (3.3).]

[Examplethe declaration
inti,
*pi,
f0),
*fpi(int),
(*pif)(const char*, const char*);
(*fpif(int))(int);

declares an integér, a pointempi to an integer, a functioh taking no arguments and returning an integer,

a functionfpi taking an integer argument and returning a pointer to an integer, a gfintés a function

which takes two pointers to constant characters and returns an integer, a fipiictiotaking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to compafigi andpif . The binding offpi(int) is *(fpi(int)) , S0 the decla-

ration suggests, and the same construction in an expression requires, the calling of affiinctima then

using indirection through the (pointer) result to yield an integer. In the decldrptf(const

char*, const char*) |, the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then calledNp{e: typedefs are sometimes convenient when the
return type of a function is complex. For example, the fundgdn above could have been declared

typedefint IFUNC(int);
IFUNC* fpif(int);

—end not¢

8.3.6 Default arguments [dcl.fct.default]

If an expression is specified in a parameter declaration this expression is used as a default argument.
Default arguments will be used in calls where trailing arguments are missing.

[Examplethe declaration
void point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments ofttypdt can be called in any
of these ways:

point(1,2); point(1); point();
The last two calls are equivalentgoint(1,4) andpoint(3,4) , respectively.]

A default argument expression shall be specified only inptrameter-declaration-clausef a function
declaration or in demplate-parametefl4.1). If it is specified in @arameter-declaration-clausé shall
not occur within aleclaratoror abstract-declaratoof a parameter-declaratio

For non-template functions, default arguments can be added in later declarations of a function in the same
scope. Declarations in different scopes have completely distinct sets of default arguments. That is, declara-
tions in inner scopes do not acquire default arguments from declarations in outer scopes, and vice versa. In
a given function declaration, all parameters subsequent to a parameter with a default argument shall have
default arguments supplied in this or previous declarations. A default argument shall not be redefined by a
later declaration (not even to the same valuexample:

85) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references,torfunctions
typedef declarations.

137

ISO/IEC 14882:1998(E) © ISO/IEC

8.3.6 Default arguments 8 Declarators

void f(int, int);
void f(int, int = 7);

void h()
(3); I OK, callsf(3, 7)
void f(int = 1, int); I error: does not use default
/I from surrounding scope
}
void m()
void f(int, int); 1 has no defaults
f(4); I error: wrong number of arguments
void f(int, int = 5); 1! OK
f(4); i OK, callsf(4, 5);
void f(int, int = 5); I error: cannot redefine, even to
/I same value
void n()
f(6); 1l OK, callsf(6, 7)
}

—end exampleFor a given inline function defined in different translation units, the accumulated sets of
default arguments at the end of the translation units shall be the same; see 3.2.

A default argument expression is implicitly converted (clause 4) to the parameter type. The default argu-
ment expression has the same semantic constraints as the initializer expression in a declaration of a variable
of the parameter type, using the copy-initialization semantics (8.5). The names in the expression are bound,
and the semantic constraints are checked, at the point where the default argument expression appears.
Name lookup and checking of semantic constraints for default arguments in function templates and in
member functions of class templates are performed as described in 1&¥ainple:in the following

code,g will be called with the valu§1)

inta=1,
int f(int);
int g(int x = f(a)); I default argumentf(::a)
void h() {

a=2;

{

inta=3;

} a()s I g(f(::a))

}

—end examplg Note:in member function declarations, names in default argument expressions are looked
up as described in 3.4.1. Access checking applies to names in default argument expressions as described in
clause 11.]

The default arguments in a member function definition that appears outside of the class definition are added
to the set of default arguments provided by the member function declaration in the class defifn@om |
ple:
class C{
void f(inti = 3);
void g(int i, int j = 99);

138

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.3.6 Default arguments
void C:f(inti=3) 1 error: default argument already
{} I specified in class scope
void C::g(inti = 88, int j) I in this translation unit,
{} I C::g can be called with no argument
—end example

Local variables shall not be used in default argument expressiexample:

void f()

{
int i
extern void g(int x =i); // error
1

}
—end example
The keywordhis shall not be used in a default argument of a member functibaniple:

class A {
void f(A* p = this) {} I error
I3

—end example

Default arguments are evaluated each time the function is called. The order of evaluation of function argu-
ments is unspecified. Consequently, parameters of a function shall not be used in default argument expres-
sions, even if they are not evaluated. Parameters of a function declared before a default argument expres-
sion are in scope and can hide namespace and class member rameplq:

int a;
int f(int a, int b = a); I error: parametera

/I used as default argument
typedef int [;
int g(float I, int b = 1(2)); I error: parameterd found
int h(int a, int b = sizeof(a)); 1 error, parameteia used

/I in default argument

—end exampleSimilarly, a nonstatic member shall not be used in a default argument expression, even if it

is not evaluated, unless it appears as the id-expression of a class member access expression (5.2.5) or unless
it is used to form a pointer to member (5.3.15xdmple:the declaration oK::mem1() in the following

example is ill-formed because no object is supplied for the nonstatic mXrdoeused as an initializer.

int b;
class X {
int a;
int mem1(int i = a); 1 error: nonstatic membea
/I used as default argument
int mem2(int i = b); 1 OK; useX:b
static int b;
I3

The declaration oX::mem2() is meaningful, however, since no object is needed to access the static
memberX::b . Classes, objects, and members are described in clause 9.] A default argument is not part
of the type of a function.Bxample:

139

10

ISO/IEC 14882:1998(E) © ISO/IEC

8.3.6 Default arguments 8 Declarators

int f(int = 0);

void h()

{

intj =1f(1);

int k =f(); I OK, meang(0)
}

int (*pl)(int) = &f;
int (*p2)() = &f; 1 error: type mismatch

—end exampleWhen a declaration of a function is introduced by way o$iag-declaration(7.3.3), any

default argument information associated with the declaration is made known as well. If the function is
redeclared thereafter in the namespace with additional default arguments, the additional arguments are also
known at any point following the redeclaration whereubig-declaratioris in scope.

A virtual function call (10.3) uses the default arguments in the declaration of the virtual function deter-
mined by the static type of the pointer or reference denoting the object. An overriding function in a derived
class does not acquire default arguments from the function it overrigleample:

struct A {
virtual void f(int a = 7);
I3
struct B : public A {
void f(int a);
I3
void m()
{
B* pb = new B;
A* pa = pb;
pa->f(); 1l OK, callspa->B::f(7)
pb->f(); I error: wrong number of arguments fBr:f()
}
—end example
8.4 Function definitions [dcl.fct.def]

Function definitions have the form

function-definition:
decl-specifier-segj; declarator ctor-initializeg, function-body
decl-specifier-seg, declarator function-try-block

function-body:
compound-statement

Thedeclaratorin afunction-definitionshall have the form

D1(parameter-declaration-clausg¢ cv-qualifier-seg,, exception-specificatiqg
as described in 8.3.5. A function shall be defined only in namespace or class scope.
[Example:a simple example of a complete function definition is

int max(int a, int b, int)

{
intm=(a>b)?a:b;
return (m>c¢)? m:c;
}
Hereint is thedecl-specifier-segmax(int a, int b, int c¢) is thedeclarator, {/* ... */ } is

thefunction-body]

140

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.4 Function definitions

A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

A cv-qualifier-seccan be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.3.2. It is part of the function type.

[Note:unused parameters need not be named. For example,
void print(int a, int)
printf("a = %d\n",a);
}

—end not¢

8.5 Initializers [dcl.init]

A declarator can specify an initial value for the identifier being declared. The identifier designates an
object or reference being initialized. The process of initialization described in the remainder of 8.5 applies
also to initializations specified by other syntactic contexts, such as the initialization of function parameters
with argument expressions (5.2.2) or the initialization of return values (6.6.3).
initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , o }

{}

initializer-list:
initializer-clause
initializer-list , initializer-clause

Automatic, register, static, and external variables of namespace scope can be initialized by arbitrary expres-
sions involving literals and previously declared variables and functi@h@niple:
int f(int);
inta=2;
int b = f(a);
int c(b);
—end example
[Note:default argument expressions are more restricted; see 8.3.6.
The order of initialization of static objects is described in 3.6 and 6.7.]
To zero-initializestorage for an object of tydemeans:
— if Tis a scalar type (3.9), the storage is set to the valQg€ziro) converted td;

— if Tis a non-union class type, the storage for each nonstatic data member and each base-class subobject
is zero-initialized;

— if Tis a union type, the storage for its first data mefiber zero-initialized;
— if Tis an array type, the storage for each element is zero-initialized;

— if Tis a reference type, no initialization is performed.

89) This member must not ksatic , by virtue of the requirements in 9.5.

141

10

11

12

ISO/IEC 14882:1998(E) © ISO/IEC

8.5 Initializers 8 Declarators

To default-initializean object of typd means:

— if Tis a non-POD class type (clause 9), the default constructdr i®ocalled (and the initialization is
ill-formed if T has no accessible default constructor);

— if Tis an array type, each element is default-initialized;
— otherwise, the storage for the object is zero-initialized.

A program that calls for default-initialization of an entity of reference type is ill-formed. i$f a cv-
qualified type, the cv-unqualified version @f is used for these definitions of zero-initialization and
default-initialization.

The memory occupied by any object of static storage duration shall be zero-initialized at program startup
before any other initialization takes plac&lofe:in some cases, additional initialization is done later.]

An object whose initializer is an empty set of parentheseq)i.eshall be default-initialized.

[Note:since() is not permitted by the syntax fmitializer,
Xa();

is not the declaration of an object of clagsbut the declaration of a function taking no argument and
returning anX. The form() is permitted in certain other initialization contexts (5.3.4, 5.2.3, 12.6.2).]

If no initializer is specified for an object, and the object is of (possibly cv-qualified) non-POD class type (or
array thereof), the object shall be default-initialized; if the object is of const-qualified type, the underlying
class type shall have a user-declared default constructor. Otherwise, if no initializer is specified for an
object, the object and its subobjects, if any, have an indeterminate initiasfq)/,aiMe object or any of its
subobjects are of const-qualified type, the program is ill-formed.

An initializer for a static member is in the scope of the member’s clesaniple:

int a;

struct X {
static int a;
static int b;

2
int X:a=1;
int X::b = a; 1 X:b =X:a
—end example
The form of initialization (using parentheses=9ris generally insignificant, but does matter when the

entity being initialized has a class type; see below. A parenthesized initializer can be a list of expressions
only when the entity being initialized has a class type.

The initialization that occurs in argument passing, function return, throwing an exception (15.1), handling
an exception (15.3), and brace-enclosed initializer lists (8.5.1) is calpsdinitializationand is equivalent
to the form

Tx=a;

The initialization that occurs inew expressions (5.3.4}jtatic_cast expressions (5.2.9), functional
notation type conversions (5.2.3), and base and member initializers (12.6.2) idaliedhitialization
and is equivalent to the form

T x(a);

99 This does not apply to aggregate objects with automatic storage duration initialized with an incomplete braceiretializszd
list; see 8.5.1.

142

13

14

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.5 Initializers

If Tis a scalar type, then a declaration of the form
Tx={a}
is equivalent to

Tx=a;

The semantics of initializers are as follows. Hestination typés the type of the object or reference being
initialized and thesource types the type of the initializer expression. The source type is not defined when
the initializer is brace-enclosed or when it is a parenthesized list of expressions.

— If the destination type is a reference type, see 8.5.3.

— If the destination type is an array of characters or an arnaglwdr_t , and the initializer is a string lit-
eral, see 8.5.2.

— Otherwise, if the destination type is an array, see 8.5.1.
— If the destination type is a (possibly cv-qualified) class type:
— If the class is an aggregate (8.5.1), and the initializer is a brace-enclosed list, see 8.5.1.

— If the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualified ver-
sion of the source type is the same class as, or a derived class of, the class of the destination, con-
structors are considered. The applicable constructors are enumerated (13.3.1.3), and the best one is
chosen through overload resolution (13.3). The constructor so selected is called to initialize the
object, with the initializer expression(s) as its argument(s). If no constructor applies, or the overload
resolution is ambiguous, the initialization is ill-formed.

— Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversion sequences that
can convert from the source type to the destination type or (when a conversion function is used) to a
derived class thereof are enumerated as described in 13.3.1.4, and the best one is chosen through
overload resolution (13.3). If the conversion cannot be done or is ambiguous, the initialization is
ill-formed. The function selected is called with the initializer expression as its argument; if the func-
tion is a constructor, the call initializes a temporary of the destination type. The result of the call
(which is the temporary for the constructor case) is then used to direct-initialize, according to the
rules above, the object that is the destination of the copy-initialization. In certain cases, an imple-
mentation is permitted to eliminate the copying inherent in this direct-initialization by constructing
the intermediate result directly into the object being initialized; see 12.2, 12.8.

— Otherwise, if the source type is a (possibly cv-qualified) class type, conversion functions are considered.
The applicable conversion functions are enumerated (13.3.1.5), and the best one is chosen through over-
load resolution (13.3). The user-defined conversion so selected is called to convert the initializer
expression into the object being initialized. If the conversion cannot be done or is ambiguous, the
initialization is ill-formed.

— Otherwise, the initial value of the object being initialized is the (possibly converted) value of the initial-
izer expression. Standard conversions (clause 4) will be used, if necessary, to convert the initializer
expression to the cv-unqualified version of the destination type; no user-defined conversions are consid-
ered. If the conversion cannot be done, the initialization is ill-formbtbtef an expression of type
“cvl T” can initialize an object of typev2 T” independently of the cv-qualifiecylandcv2

int a;
constintb = a;
intc=b;

—end not¢

143

ISO/IEC 14882:1998(E) © ISO/IEC

8.5.1 Aggregates 8 Declarators

8.5.1 Aggregates [dcl.init.aggr]

An aggregateis an array or a class (clause 9) with no user-declared constructors (12.1), no private or pro-
tected non-static data members (clause 11), no base classes (clause 10), and no virtual functions (10.3).

When an aggregate is initialized timtializer can be annitializer-clauseconsisting of a brace-enclosed,
comma-separated list dfitializers for the members of the aggregate, written in increasing subscript or
member order. If the aggregate contains subaggregates, this rule applies recursively to the members of the
subaggregate.Ekample:

struct A {
int x;
struct B {
inti;
int j;
}b;
ta={1,{2,3}}

initializesa.x with 1,a.b.i with 2,a.b.j with 3.]

An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as
described in 8.5.

An array of unknown size initialized with a brace-encloséghlizer-list containingn initializers, wheren
shall be greater than zero, is defined as hawiagments (8.3.4).Example:

intx[]={1,3,5}
declares and initializes as a one-dimensional array that has three elements since no size was specified and

there are three initializers.] An empty initializer lt shall not be used as the initializer for an array of
unknown bound™)

Static data members are not considered members of the class for purposes of aggregate initialization.
[Example:

struct A {
inti;
static int s;
int j;
ta={1,2}

Here, the second initializer 2 initializag and not the static data memlgers .]

An initializer-list is ill-formed if the number ofnitializers exceeds the number of members or elements to
initialize. [Example:

charcv[4]={'a,’'s’,'d,'f,0}; I error
is ill-formed.]

If there are feweinitializers in the list than there are members in the aggregate, then each member not
explicitly initialized shall be default-initialized (8.5)Example:

struct S {int a; char* b; int c; };

Sss={1, "asdf" };

initializes ss.a with 1, ss.b with "asdf" , andss.c with the value of an expression of the form
int) ,thatis0.]

An initializer for an aggregate member that is an empty class shall have the form of annémprer-list
{}. [Example:

I The syntax provides for empiyitializer-lists, but nonethelessH€ does not have zero length arrays.

144

10

11

12

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.5.1 Aggregates

struct S { };
struct A {
Ss;
inti;
ta={{}.3}
—end exampleAn empty initializer-list can be used to initialize any aggregate. If the aggregate is not an
empty class, then each member of the aggregate shall be initialized with a value of tlé) foi®2.3),
whereT represents the type of the uninitialized member.

If an incomplete or emptinitializer-list leaves a member of reference type uninitialized, the program is
ill-formed.

When initializing a multi-dimensional array, thetializers initialize the elements with the last (rightmost)
index of the array varying the fastest (8.3.4xdmple:

intx[2][2]={3,1,4,2};
initializesx[0][0] to3,x[0][1] to1,x[1][0] to4, andx[1][1]] to2. On the other hand,

float y[4][3] = {
{11{2}{3}{4}
I3
initializes the first column of (regarded as a two-dimensional array) and leaves the rest zero.]

Braces can be elided in amitializer-list as follows. If theinitializer-list begins with a left brace, then the
succeeding comma-separated listrofializers initializes the members of a subaggregate; it is erroneous
for there to be more initializers than members. If, howeverinitializer-list for a subaggregate does not
begin with a left brace, then only enoughializers from the list are taken to initialize the members of the
subaggregate; any remainimitializers are left to initialize the next member of the aggregate of which the
current subaggregate is a membdtxgmple:
float y[4][3] = {
{1,3,5},
{2,4,6},
{3,5,7},
h
is a completely-braced initialization: 1, 3, and 5 initialize the first row of the af@y , namely
y[0][0] ,y[O][1] ,andy[0][2] . Likewise the nexttwo lines initializg1] andy[2] . The initial-
izer ends early and therefoyf8] 's elements are initialized as if explicitly initialized with an expression
of the formfloat() , that is, are initialized witB.0 . In the following example, braces in timitializer-
list are elided; however thaitializer-list has the same effect as the completely-brauiéidlizer-list of the
above example,
float y[4][3] = {
1,3,52,46,3,5 7

I3
The initializer fory begins with a left brace, but the one #§0] does not, therefore three elements from
the list are used. Likewise the next three are taken successivg[¢Jforandy[2] . —end example

All implicit type conversions (clause 4) are considered when initializing the aggregate member with an ini-
tializer from aninitializer-list. If theinitializer can initialize a member, the member is initialized. Other-
wise, if the member is itself a non-empty subaggregate, brace elision is assumedinitidlither is con-
sidered for the initialization of the first member of the subaggregate.

145

13

14

15

ISO/IEC 14882:1998(E) © ISO/IEC

8.5.1 Aggregates 8 Declarators

[Example:

struct A {

int i

operator int();
3
struct B {

Aal, az;

int z;
5
A a;
Bb={4,aa}

Braces are elided around timétializer for b.al.i . b.al.i is initialized with 4,b.a2 is initialized with
a, b.z isinitialized with whatevea.operator int() returns. |

[Note: An aggregate array or an aggregate class may contain members of a class type with a user-declared
constructor (12.1). Initialization of these aggregate objects is described in 12.6.1.]

When an aggregate with static storage duration is initialized with a brace-erioltiaéder-list, if all the

member initializer expressions are constant expressions, and the aggregate is a POD type, the initialization
shall be done during the static phase of initialization (3.6.2); otherwise, it is unspecified whether the initial-
ization of members with constant expressions takes place during the static phase or during the dynamic
phase of initialization.

When a union is initialized with a brace-enclosed initializer, the braces shall only contain an initializer for
the first member of the unionExample:

union u {int a; char* b; };

ua={1}

ub=a;

uc=1; 1 error
ud={0, "asdf" }; /i error
ue={"asdf"}; I error

—end example[Note: as described above, the braces around the initializer for a union member can be
omitted if the union is a member of another aggregate.]

8.5.2 Character arrays [dcl.init.string]

A char array (whether plaichar , signed char , orunsigned char) can be initialized by atring-
literal (optionally enclosed in braces)wahar_t array can be initialized by a widdring-literal (option-
ally enclosed in braces); successive characters ottirg-literal initialize the members of the array.
[Example:

char msg]] = "Syntax error on line %s\n";

shows a character array whose members are initialized \gitting-literal. Note that becausen’ is a
single character and because a traifi@y is appendedsizeof(msg) is25.]

There shall not be more initializers than there are array elemé&xample:
char cv[4] = "asdf"; I error

is ill-formed since there is no space for the implied trailiéy .]

146

© ISO/IEC ISO/IEC 14882:1998(E)

8 Declarators 8.5.2 Character arrays

8.5.3 References [dcl.init.ref]

A variable declared to be B, that is“reference to typd” (8.3.2), shall be initialized by an object, or
function, of typeT or by an object that can be converted inla §Example:

int g(int);

void f()

{ - -
int i;
int&r=1; 1 r refers toi
r=1; 1 the value of becomes 1
int* p = &r; 1 p points toi
int& rr =r; 1 rr refers to what refers to, that is, to
int (&rg)(int) = g; 1 rg refers to the functiog
rg(i); 1 calls functiong
int a[3];
int (&ra)[3] = a; 1l ra refers to the array
ra[l] = i; 1l modifiesa[1]

}

—end example

A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

The initializer can be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
extern specifier is explicitly used.Example:

int& rl; 1! error: initializer missing
extern int& r2; /i OK

—end example

Given types'cvlT1” and“cv2T2,” “cvlT1" is reference-relatedo “cv2T2" if T1 is the same type as

T2, orT1lis a base class d2. “cv1T1” is reference-compatibleith “cv2T2” if T1 is reference-related

to T2 andcvlis the same cv-qualification as, or greater cv-qualification e, For purposes of over-

load resolution, cases for whiatvl is greater cv-qualification thanv2 are identified ageference-
compatible with added qualificatiofsee 13.3.3.2). In all cases where the reference-related or reference-
compatible relationship of two types is used to establish the validity of a reference bindiid,iaradbase

class ofT2, a program that necessitates such a binding is ill-form&tl i an inaccessible (clause 11) or
ambiguous (10.2) base classT@f.

A reference to typécv1T1” is initialized by an expression of typev2T2" as follows:
— If the initializer expression
— is an Ivalue (but is not a bit-field), afdv1T1" is reference-compatible witttv2T2,” or

— has a class type (i.eT,2 is a class type) and can be implicitly converted to an Ivalue of type
“cv3T3,” where“cvlT1” is reference-compatible wittev3T3” 92) (this conversion is selected by
enumerating the applicable conversion functions (13.3.1.6) and choosing the best one through over-
load resolution (13.3)),

then the reference is bound directly to the initializer expression lvalue in the first case, and the reference
is bound to the Ivalue result of the conversion in the second case. In these cases the reference is said to
bind directlyto the initializer expression.Npte:the usual Ilvalue-to-rvalue (4.1), array-to-pointer (4.2),

and function-to-pointer (4.3) standard conversions are not needed, and therefore are suppressed, when
such direct bindings to Ivalues are done.]

I2) This requires a conversion function (12.3.2) returning a reference type.

147

ISO/IEC 14882:1998(E) © ISO/IEC

8.5.3 References 8 Declarators

[Example:
double d = 2.0;
double& rd = d; Il rd refers tod
const double& rcd = d; 1 rcd refers tod
struct A { };
struct B : public A {} b;
A&ra=b; Il ra refers toA sub-object irb
const A& rca = b; /i rca refers toA sub-object irb

—end example

— Otherwise, the reference shall be to a non-volatile const typec(ileshall beconst). [Example:

double& rd2 = 2.0; 1 error: not an lvalue and reference nodnst
int i=2;
double& rd3 = i; 1l error: type mismatch and reference rmonst

—end example

— If the initializer expression is an rvalue, wit2 a class type, anttvlT1” is reference-compatible

with “cv2T2,” the reference is bound in one of the following ways (the choice is implementation-

defined):

— The reference is bound to the object represented by the rvalue (see 3.10) or to a sub-object within
that object.

— A temporary of type‘'cvlT2” [sic] is created, and a constructor is called to copy the entire
rvalue object into the temporary. The reference is bound to the temporary or to a sub-object
within the temporary.

The constructor that would be used to make the copy shall be callable whether or not the copy is
actually done. Example:

struct A { };
struct B : public A { } b;

extern B f();
const A& rca = f(); 1 Either bound to thé sub-object of th& rvalue,

/I or the entireB object is copied and the reference
/I is bound to the A sub-object of the copy

—end example

— Otherwise, a temporary of typevlT1” is created and initialized from the initializer expression
using the rules for a non-reference copy initialization (8.5). The reference is then bound to the tem-
porary. If T1 is reference-related t62, cvl must be the same cv-qualification as, or greater cv-
qualification thangv2 otherwise, the program is ill-formedEfample:

const double& rcd2 = 2; 1 rcd2 refers to temporary with valu20
const volatile int cvi=1;
const int& r = cvi; I error: type qualifiers dropped

—end example

[Note:12.2 describes the lifetime of temporaries bound to references.]

J3) Clearly, if the reference initialization being processed is one for the first argument of a copy constructor call, an iatiglement
must eventually choose the first alternative (binding without copying) to avoid infinite recursion.

148

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes [class]
A class is a type. Its name becometaas-namé9.1) within its scope.
class-name:
identifier
template-id

Class-specifies andelaborated-type-specifis(7.1.5.3) are used to madlass-nams. An object of a class
consists of a (possibly empty) sequence of members and base class objects.

class-specifier:
class-head{ member-specificatiqp, }

class-head:
class-key identifigf, base-clausgy,
class-key nested-name-specifier identifier base-clguse
class-key nested-name-specifiglemplate-id base-claugg

class-key:
class
struct
union

A class-namas inserted into the scope in which it is declared immediately aftecldlse-nameds seen.

The class-namds also inserted into the scope of the class itself. For purposes of access checking, the
inserted class name is treated as if it were a public member nariassAspecifieis commonly referred

to as a class definition. A class is considered defined after the closing braceladstspecifiehas been

seen even though its member functions are in general not yet defined.

Complete objects and member subobjects of class type shall have nonzgﬁ)[siz&e: class objects can

be assigned, passed as arguments to functions, and returned by functions (except objects of classes for
which copying has been restricted; see 12.8). Other plausible operators, such as equality comparison, can
be defined by the user; see 13.5.]

A structureis a class defined with thetass-keystruct ; its members and base classes (clause 10) are pub-

lic by default (clause 11). Anionis a class defined with theass-keynion ; its members are public by

default and it holds only one data member at a time (9Ntef aggregates of class type are described in

8.5.1.] APOD-structis an aggregate class that has no non-static data members of type pointer to member,
non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-defined copy assign-
ment operator and no user-defined destructor. SimilalBOBR-unionis an aggregate union that has no
non-static data members of type pointer to member, non-POD-struct, hon-POD-union (or array of such
types) or reference, and has no user-defined copy assignment operator and no user-defined destructor. A
POD classs a class that is either a POD-struct or a POD-union.

9.1 Class names [class.name]

A class definition introduces a new typ&Expmple:

J%)Base class subobjects are not so constrained.

149

ISO/IEC 14882:1998(E) © ISO/IEC

9.1 Class names 9 Classes

struct X { int a; };
struct Y {inta; };
X al;

Y a2;

int a3;

declares three variables of three different types. This implies that

al = az; 1 error: Y assigned tX
al =a3; 1 error: int assigned tX

are type mismatches, and that

int f(X);

int f(Y);
declare an overloaded (clause 13) funcfin and not simply a single functidf) twice. For the same
reason,

struct S{inta; };
struct S {inta; }; I error, double definition

is ill-formed because it definéstwice.]

A class definition introduces the class name into the scope where it is defined and hides any class, object,

function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a

scope where an object, function, or enumerator of the same name is also declared, then when both declara-
tions are in scope, the class can be referred to only usielglzorated-type-specifi¢B.4.4). Example:

struct stat {
1

b
stat gstat; I use plainstat to
/I define variable
int stat(struct stat*); 1 redeclarestat as function
void f()
{
struct stat* ps; 1 struct prefix needed
/I to namestruct stat
..
stat(ps); I call stat()
..
}

—end exampleA declaration consisting solely otlass-key identifier js either a redeclaration of the
name in the current scope or a forward declaration of the identifier as a class name. It introduces the class
name into the current scopeExample:

structs{inta; };

void g()
{
struct s; 1l hide globalstruct s
/I with a local declaration
s* p; 1 refer to localstruct s
struct s { char* p; };) define localstruct s
struct s; Il redeclaration, has no effect
}

—end examplg Note: Such declarations allow definition of classes that refer to each offxample:

150

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.1 Class names

class Vector;

class Matrix {
I
friend Vector operator*(Matrix&, Vector&);

k

class Vector {
I
friend Vector operator*(Matrix&, Vector&);

h
Declaration ofriend s is described in 11.4, operator functions in 13.5.]]

An elaborated-type-specifi€7.1.5.3) can also be used ayge-specifieas part of a declaration. It differs
from a class declaration in that if a class of the elaborated name is in scope the elaborated name will refer to
it. [Example:

structs{inta; };

void g(int s)
struct s* p = new struct s; I globals
p->a=s; 1! local s
}
—end example

[Note: The declaration of a class name takes effect inmediately aftetethifier is seen in the class defi-
nition orelaborated-type-specifief-or example,

class A * A;

first specifiesA to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated folaiss A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.]

A typedef-namég7.1.3) that names a class islass-namgbut shall not be used in ataborated-type-
specifier see also 7.1.3.

9.2 Class members [class.mem]

member-specification:
member-declaration member-specificatjpn
access-specifier. member-specificatiqp

member-declaration:
decl-specifier-segj, member-declarator-ligf, ;
function-definition ;
T opt NESted-name-specifitemplate ,, unqualified-id ;
using-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator pure-specifigy,
declarator constant-initializey,

identifier,,, : constant-expression

151

10

11

ISO/IEC 14882:1998(E) © ISO/IEC

9.2 Class members 9 Classes

pure-specifier:
=0

constant-initializer:
= constant-expression

Themember-specificatiom a class definition declares the full set of members of the class; no member can

be added elsewhere. Members of a class are data members, member functions (9.3), nested types, and enu-
merators. Data members and member functions are static or nonstatic; see 9.4. Nested types are classes
(9.1, 9.7) and enumerations (7.2) defined in the class, and arbitrary types declared as members by use of a
typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are members of
the class. Except when used to declare friends (11.4) or to introduce the name of a member of a base class
into a derived class (7.3.3,11.3nember-declaration declare members of the class, and each such
member-declaratioshall declare at least one member name of the class. A member shall not be declared
twice in themember-specificatigrexcept that a nested class or member class template can be declared and
then later defined.

A class is considered a completely-defined object type (3.9) (or complete type) at the klaoditige
class-specifier Within the classnember-specificatigrthe class is regarded as complete within function
bodies, default arguments and constructor-initializers (including such things in nested classes). Other-
wise it is regarded as incomplete within its own ctassnber-specification

[Note: a single name can denote several function members provided their types are sufficiently different
(clause 13).]

A member-declaratocan contain @onstant-initializeronly if it declares atatic member (9.4) of inte-
gral or enumeration type, see 9.4.2.

A member can be initialized using a constructor; see 1Nate[see clause 12 for a description of con-
structors and other special member functions. |

A member shall not bauto , extern , orregister

Thedecl-specifier-se¢s omitted in constructor, destructor, and conversion function declarations only. The
member-declarator-listan be omitted only after @ass-specifieran enum-specifieror adecl-specifier-
seqof the formfriend elaborated-type-specifierA pure-specifiershall be used only in the declaration

of a virtual function (10.3).

Nonstatic (9.4) members that are class objects shall be objects of previously defined classes. In partic-
ular, a clasgl shall not contain an object of clads, but it can contain a pointer or reference to an object
of classcl . When an array is used as the type of a nonstatic member all dimensions shall be specified.

Except when used to form a pointer to member (5.3.1), when used in the body of a nonstatic member func-
tion of its class or of a class derived from its class (9.3.1), or when usedeimanitializerfor a construc-

tor for its class or for a class derived from its class (12.6.2), a nonstatic data or function member of a class
shall only be referred to with the class member access syntax (5.2.5).

[Note:the type of a nonstatic member function is an ordinary function type, and the type of a nonstatic data
member is an ordinary object type. There are no special member function types or data member types.]

[Example:A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

h

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

152

12

13

14

15

16

17

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.2 Class members

tnode s, *sp;

declares to be anode andsp to be a pointer to mode . With these declarationsp->count refers
to thecount member of the structure to whislp points;s.left refers to thdeft subtree pointer of
the structures; ands.right->tword[0] refers to the initial character of ttword member of the
right subtree 06.]

Nonstatic data members of a (non-union) class declared without an intereeoggs-specifieare allo-

cated so that later members have higher addresses within a class object. The order of allocation of nonstatic
data members separated by amtess-specifieis unspecified (11.1). Implementation alignment require-
ments might cause two adjacent members not to be allocated immediately after each other; so might
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1).

If Tis the name of a class, then each of the following shall have a name differefit from
— every data member of clags

— every member of claskthat is itself a type;

— every enumerator of every member of cl@ghat is an enumerated type; and

— every member of every anonymous union that is a member offclass

Two POD-struct (clause 9) types are layout-compatible if they have the same number of members, and cor-
responding members (in order) have layout-compatible types (3.9).

Two POD-union (clause 9) types are layout-compatible if they have the same number of members, and cor-
responding members (in any order) have layout-compatible types (3.9).

If a POD-union contains two or more POD-structs that share a common initial sequence, and if the POD-
union object currently contains one of these POD-structs, it is permitted to inspect the common initial part
of any of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

A pointer to a POD-struct object, suitably converted usimgirgerpret_cast , points to its initial
member (or if that member is a bit-field, then to the unit in which it resides) and vice Wdata: There

might therefore be unnamed padding within a POD-struct object, but not at its beginning, as necessary to
achieve appropriate alignment.]

9.3 Member functions [class.mfct]

Functions declared in the definition of a class, excluding those declared frighdh specifier (11.4),
are called member functions of that class. A member function may be destitied in which case itis
a static member function of its class (9.4); otherwise it isaastaticmember function of its class (9.3.1,
9.3.2).

A member function may be defined (8.4) in its class definition, in which case itinéireamember func-

tion (7.1.2), or it may be defined outside of its class definition if it has already been declared but not
defined in its class definition. A member function definition that appears outside of the class definition
shall appear in a namespace scope enclosing the class definition. Except for member function definitions
that appear outside of a class definition, and except for explicit specializations of template member func-
tions (14.7) appearing outside of the class definition, a member function shall not be redeclared.

Aninline member function (whether static or nonstatic) may also be defined outside of its class defini-
tion provided either its declaration in the class definition or its definition outside of the class definition

declares the function asline . [Note: member functions of a class in namespace scope have external

linkage. Member functions of a local class (9.8) have no linkage. See 3.5.]

There shall be at most one definition of a non-inline member function in a program; no diagnostic is
required. There may be more than amiine member function definition in a program. See 3.2 and
7.1.2.

153

ISO/IEC 14882:1998(E) © ISO/IEC

9.3 Member functions 9 Classes

If the definition of a member function is lexically outside its class definition, the member function name
shall be qualified by its class name using:theoperator. Note:a name used in a member function defini-
tion (that is, in theparameter-declaration-clausacluding the default arguments (8.3.6), or in the member
function body, or, for a constructor function (12.1), inmmame-initializer expression (12.6.2)) is
looked up as described in 3.4.EpMample:

struct X {
typedefint T;
static T count;
void f(T);

3

void X:f(T t = count) { }

The member functioh of classX is defined in global scope; the notatignf specifies that the function
f is a member of class and in the scope of cla¥s In the function definition, the parameter typeefers
to the typedef membd@r declared in clasX and the default argumeobunt refers to the static data mem-
bercount declared in clasX.]

A static local variable in a member function always refers to the same object, whether or not the mem-
ber function ignline

Member functions may be mentionediiend declarations after their class has been defined.
Member functions of a local class shall be defined inline in their class definition, if they are defined at all.

[Note:a member function can be declared (but not defined) using a typedef for a function type. The result-
ing member function has exactly the same type as it would have if the function declarator were provided
explicitly, see 8.3.5. For example,

typedef void fv(void);
typedef void fvc(void) const;
struct S {
fv memfuncl; I equivalent tovoid memfuncl(void);
void memfunc2();
fvc memfuncs; 1 equivalent tovoid memfunc3(void) const;
I3

fv S:* pmfvl = &S::memfuncl;
fv S:* pmfv2 = &S::memfunc2;
fvc S::* pmfv3 = &S::memfunc3;

Also see 14.3.]

9.3.1 Nonstatic member functions [class.mfct.nonstatic]

A nonstaticmember function may be called for an object of its class type, or for an object of a class derived
(clause 10) from its class type, using the class member access syntax (5.2.5, 13.3.1.1). A nonstatic member
function may also be called directly using the function call syntax (5.2.2, 13.3.1.1)

— from within the body of a member function of its class or of a class derived from its class, or
— from ameme-initializer(12.6.2) for a constructor for its class or for a class derived from its class.

If a nonstatic member function of a claéss called for an object that is not of tygeor of a type derived
from X, the behavior is undefined.

When anid-expressior(5.1) that is not part of a class member access syntax (5.2.5) and not used to form a
pointer to member (5.3.1) is used in the body of a nonstatic member function oK dasssed in the
mem-initializerfor a constructor of class if name lookup (3.4.1) resolves the name inidhexpressiono

a nonstatic nontype member of clager of a base class of, theid-expressions transformed into a class
member access expression (5.2.5) ugitiis) (9.3.2) as thegpostfix-expressiono the left of the.

operator. The member name then refers to the member of the object for which the function is called. Simi-
larly during name lookup, when amqualified-id(5.1) used in the definition of a member function for
classXresolves to atatic member, an enumerator or a nested type of Xagf a base class of the

154

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.3.1 Nonstatic member functions

unqualified-idis transformed into qualified-id (5.1) in which thenested-name-specifiaames the class of
the member function.Example:

struct thode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* |, thode* r);

2
void tnode::set(char* w, thode* |, tnode* r)
{
count = strlen(w)+1;
if (sizeof(tword)<=count)
perror(“tnode string too long");
strepy(tword,w);
left=1;
right =r;
}
void f(tnode n1, thode n2)
{
nl.set("abc",&n2,0);
n2.set("def",0,0);
}
In the body of the member functidnode::set , the member namessvord , count , left , and
right refer to members of the object for which the function is called. Thus, in the call
nl.set("abc",&n2,0) , tword refers tonl.tword , and in the call n2.set("def",0,0) , it

refers ton2.tword . The functionsstrlen , perror , andstrcpy are not members of the class
tnode and should be declared eIsewh%"?)e].

A nonstatic member function may be declapeast , volatile , or constvolatile . Thesecv-
qualifiers affect the type of thehis pointer (9.3.2). They also affect the function type (8.3.5) of the
member function; a member function declapathst is a constmember function, a member function
declaredvolatile is avolatile member function and a member function declamuakt volatile is
aconst volatilemember function. Example:

struct X {
void g() const;
void h() const volatile;

I3
X::g isaconst member function an{::h is aconst volatile member function.]

A nonstatic member function may be declavethial (10.3) orpure virtual(10.4).

9.3.2 Thethis pointer [class.this]

In the body of a nonstatic (9.3) member function, the keywloisl is a non-lvalue expression whose
value is the address of the object for which the function is called. The tyipis ofin a member function
of a clasXis X*. If the member function is declarednst , the type othis isconst X*, if the mem-
ber function is declaredolatile , the type ofthis is volatile X*, and if the member function is
declarecconst volatile , the type othis isconst volatile X*,

In aconst member function, the object for which the function is called is accessed thrauayista
access path; thereforecanst member function shall not modify the object and its non-static data mem-
bers. Example:

99) See, for examplescstring> (21.4).

155

ISO/IEC 14882:1998(E) © ISO/IEC

9.3.2 Thethis pointer 9 Classes

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } I error

2
int s::f() const { return a; }

The a++ in the body ofs::h s ill-formed because it tries to modify (a part of) the object for which
s:h() s called. This is not allowed ina@nst member function becausigis is a pointer taonst ;
that is,*this hasconst type.]

Similarly, volatile semantics (7.1.5.1) apply wolatile member functions when accessing the
object and its non-static data members.

A cv-qualifiedmember function can be called on an object-expression (5.2.5) only if the object-expression
is as cv-qualified or less-cv-qualified than the member functiBrarple:

void k(s& x, const s& y)

{
x.f0;
x.90);
y.f0;
y.90); I error

}

The cally.g() is ill-formed becausg is const ands::g() is a noneonst member function, that is,
s::g() is less-qualified than the object-expressiony.]

Constructors (12.1) and destructors (12.4) shall not be declzwadt , volatile or const
volatile . [Note: However, these functions can be invoked to create and destroy objects with cv-
qualified types, see (12.1) and (12.4).]

9.4 Static members [class.static]

A data or function member of a class may be declsta&tit in a class definition, in which case it is a
static membeof the class.

A static members of classX may be referred to using tiy@alified-id expressiorK::s ; it is not neces-
sary to use the class member access syntax (5.2.5) to refgiatca member. Astatic member may
be referred to using the class member access syntax, in which cadgettteexpressiois always evalu-
ated. Example:

class process {

public:
static void reschedule();

2

process& g();

void f()

{
process::reschedule(); I OK: no object necessary
g().reschedule(); 1 g() is called

—end examplleA static member may be referred to directly in the scope of its class or in the scope of a
class derived (clause 10) from its class; in this casestétie = member is referred to as ifqualified-id
expression was used, with thested-name-specifief the qualified-id naming the class scope from which

the static member is referenced&Example:

156

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.4 Static members
int g();
struct X {
static int g();
I3
struct Y : X {
static int i;
2
int Y:i=g(); 1 equivalent toY::g();
—end example

If an unqualified-id (5.1) is used in the definition of atatic member following the member's
declarator-id and name lookup (3.4.1) finds that thegualified-idrefers to astatic member, enumera-

tor, or nested type of the member’s class (or of a base class of the member's clasg)yatiGed-idis
transformed into gualified-id expression in which theested-name-specifielames the class scope from
which the member is referenced. The definition stasic = member shall not use directly the names of
the nonstatic members of its class or of a base class of its class (including as operarsizeaff theoper-

ator). The definition of atatic member may only refer to these members to form pointer to members
(5.3.1) or with the class member access syntax (5.2.5).

Static members obey the usual class member access rules (clause 11). When used in the declaration of a
class member, thetatic specifier shall only be used in the member declarations that appear within the
member-specificationf the class declaration.Npte: it cannot be specified in member declarations that
appear in namespace scope. |

9.4.1 Static member functions [class.static.mfct]
[Note:the rules described in 9.3 applystatic =~ member functions.]

[Note:astatic member function does not havehés pointer (9.3.2).] Astatic member function
shall not bevirtual . There shall not bestatic and a nonstatic member function with the same name
and the same parameter types (13.1).stétic member function shall not be declarednst ,
volatile , orconst volatile

9.4.2 Static data members [class.static.data]

A static data member is not part of the subobjects of a class. There is only one coyigitaf a data
member shared by all the objects of the class.

The declaration of atatic data member in its class definition is not a definition and may be of an
incomplete type other than cv-qualifiedid . The definition for astatic ~ data member shall appear in a
namespace scope enclosing the member’s class definition. In the definition at namespace scope, the name
of thestatic data member shall be qualified by its class name using theperator. Thenitializer
expression in the definition ofdatic data member is in the scope of its class (3.3B)ainple:

class process {
static process* run_chain;
static process* running;

h

process* process::running = get_main();
process* process::run_chain = running;

The static data memberun_chain of classprocess is defined in global scope; the notation
process::run_chain specifies that the membain_chain is a member of clagrocess and in
the scope of clagsrocess . In thestatic data member definition, thaitializer expression refers to
thestatic data memberunning of classprocess .]

[Note: once thestatic data member has been defined, it exists even if no objects of its class have been
created. [Example:in the example aboveun_chain andrunning exist even if no objects of class
process are created by the program. 1]

157

ISO/IEC 14882:1998(E) © ISO/IEC

9.4.2 Static data members 9 Classes

If a static data member is ofonst integral orconst enumeration type, its declaration in the class
definition can specify @onstant-initializerwhich shall be an integral constant expression (5.19). In that
case, the member can appear in integral constant expressions within its scope. The member shall still be
defined in a namespace scope if it is used in the program and the namespace scope definition shall not con-
tain aninitializer.

There shall be exactly one definition oftatic =~ data member that is used in a program; no diagnostic is
required; see 3.2. Unnamed classes and classes contained directly or indirectly within unnamed classes
shall not contairstatic ~ data members.Note: this is because there is no mechanism to provide the defi-
nitions for suctstatic ~ data members.]

Static data members of a class in namespace scope have external linkage (3.5). A local class shall not
havestatic data members.

Static data members are initialized and destroyed exactly like non-local objects (3.6.2, 3.6.3).

A static data member shall not lbeutable (7.1.1).

9.5 Unions [class.union]

In a union, at most one of the data members can be active at any time, that is, the value of at most one of
the data members can be stored in a union at any tiN@e:[one special guarantee is made in order to
simplify the use of unions: If a POD-union contains several POD-structs that share a common initial
sequence (9.2), and if an object of this POD-union type contains one of the POD-structs, it is permitted to
inspect the common initial sequence of any of POD-struct members; see 9.2.] The size of a union is suffi-
cient to contain the largest of its data members. Each data member is allocated as if it were the sole mem-
ber of a struct. A union can have member functions (including constructors and destructors), but not virtual
(10.3) functions. A union shall not have base classes. A union shall not be used as a base class. An object
of a class with a non-trivial constructor (12.1), a non-trivial copy constructor (12.8), a non-trivial destructor
(12.4), or a non-trivial copy assignment operator (13.5.3, 12.8) cannot be a member of a union, nor can an
array of such objects. If a union containstatic =~ data member, or a member of reference type, the pro-
gram is ill-formed.

A union of the form
union { member-specificatior} ;

is called an anonymous union; it defines an unnamed object of unnamed typaemher-specificatioof

an anonymous union shall only define non-static data memhdate: hested types and functions cannot

be declared within an anonymous union.] The names of the members of an anonymous union shall be dis-
tinct from the names of any other entity in the scope in which the anonymous union is declared. For the

purpose of name lookup, after the anonymous union definition, the members of the anonymous union are
considered to have been defined in the scope in which the anonymous union is deElarghld:

void f()
{
union {int a; char* p; };
a=1;
1l
p = "Jennifer";

1
}

Herea andp are used like ordinary (nonmember) variables, but since they are union members they have
the same address.]

Anonymous unions declared in a named namespace or in the global namespace shall best@giclared
Anonymous unions declared at block scope shall be declared with any storage class allowed for a block-
scope variable, or with no storage class. A storage class is not allowed in a declaration of an anonymous
union in a class scope. An anonymous union shall not pavate or protected members (clause

11). An anonymous union shall not have function members.

158

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.5 Unions

A union for which objects or pointers are declared is not an anonymous uBxamjle:

union { int aa; char* p; } obj, *ptr = &obj;
aa=1, 1 error
ptr->aa =1; Il OK

The assignment to plaim is ill formed since the member name is not visible outside the union, and even
if it were visible, it is not associated with any particular objectNdté: Initialization of unions with no
user-declared constructors is described in (8.5.1).]

9.6 Bit-fields [class.hit]
A member-declaratoof the form

identifier,, : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. The bit-field attribute is not part

of the type of the class member. Tédmnstant-expressioshall be an integral constant-expression with a
value greater than or equal to zero. The constant-expression may be larger than the number of bits in the
object representation (3.9) of the bit-field’s type; in such cases the extra bits are used as padding bits and do
not participate in the value representation (3.9) of the bit-field. Allocation of bit-fields within a class object

is implementation-defined. Alignment of bit-fields is implementation-defined. Bit-fields are packed into
some addressable allocation uniNofe: bit-fields straddle allocation units on some machines and not on
others. Bit-fields are assigned right-to-left on some machines, left-to-right on others.]

A declaration for a bit-field that omits theentifier declares amnnamedit-field. Unnamed bit-fields are

not members and cannot be initializedNofe: an unnamed bit-field is useful for padding to conform to
externally-imposed layouts.] As a special case, an unnamed bit-field with a width of zero specifies align-
ment of the next bit-field at an allocation unit boundary. Only when declaring an unnamed bit-field may
theconstant-expressidoe a value equal to zero.

A bit-field shall not be a static member. A bit-field shall have integral or enumeration type (3.9.1). It is
implementation-defined whether a plain (neither explicitly signed nor unsigiwed), short , int or

long bit-field is signed or unsigned. Bool value can successfully be stored in a bit-field of any nonzero
size. The address-of operatbshall not be applied to a bit-field, so there are no pointers to bit-fields. A
non-const reference shall not be bound to a bit-field (8.5Mtef if the initializer for a reference of type
const T&is an Ivalue that refers to a bit-field, the reference is bound to a temporary initialized to hold the
value of the bit-field; the reference is not bound to the bit-field directly. See 8.5.3.]

If the valuetrue or false is stored into a bit-field of typbool of any size (including a one bit bit-

field), the originalbool value and the value of the bit-field shall compare equal. If the value of an enu-
merator is stored into a bit-field of the same enumeration type and the number of bits in the bit-field is large
enough to hold all the values of that enumeration type, the original enumerator value and the value of the
bit-field shall compare equalEkample:

enum BOOL { =0, t=1};

struct A {
BOOL b:1;

I3

Aa;

void f() {
a.b=t;
if (a.b==1) 1l shall yieldtrue
{rF..*}%

}

—end example

159

ISO/IEC 14882:1998(E) © ISO/IEC

9.7 Nested class declarations 9 Classes

9.7 Nested class declarations [class.nest]

A class can be defined within another class. A class defined within another is cadlstbdclass. The

name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing Ebesiple:

int x;
inty;
class enclose {
public:
int x;
static int s;
class inner {
void f(int i)
{
int a = sizeof(x); // error: refers toenclose::x
X =i 1l error: assign toenclose::x
s=i 1/ OK: assign teenclose::s
IX = I OK: assign to globak
y=1i I OK: assign to globay
}
void g(enclose* p, int i)
{
p->x =1i; I OK: assign taenclose::x
}
I3
I3
inner* p = 0; 1l error: inner not in scope
—end example

Member functions and static data members of a nested class can be defined in a namespace scope enclosing
the definition of their class.Example:

class enclose {

public:
class inner {
static int x;
void f(int i);
h
b

int enclose::inner::x = 1;
void enclose::inner:f(inti) { /* ... */ }

—end example

If classX is defined in a namespace scope, a nested ¥lassy be declared in cla¥sand later defined in
the definition of classX or be later defined in a nhamespace scope enclosing the definition ofXclass

[Example:

160

© ISO/IEC ISO/IEC 14882:1998(E)

9 Classes 9.7 Nested class declarations
class E {
class I1; I forward declaration of nested class
class 12;
class 11 {}; I definition of nested class
class E::12 {}; 1 definition of nested class
—end example

Like a member function, a friend function (11.4) defined within a nested class is in the lexical scope of that
class; it obeys the same rules for name binding as a static member function of that class (9.4) and has no
special access rights to members of an enclosing class.

9.8 Local class declarations [class.local]

A class can be defined within a function definition; such a class is cdtbedlalass. The name of a local
class is local to its enclosing scope. The local class is in the scope of the enclosing scope, and has the same
access to names outside the function as does the enclosing function. Declarations in a local class can use
only type names, static variablestern variables and functions, and enumerators from the enclosing
scope. Example:

int x;

void f()

{

staticint s ;
int x;
extern int g();

struct local {

intg() {returnx;} // error: x is auto
inth() {returns;} // OK
int k() { return =:x; }// OK
int I() { return g(); } // OK
b
I
}
local* p=0; 1 error: local notin scope
—end example

An enclosing function has no special access to members of the local class; it obeys the usual access rules
(clause 11). Member functions of a local class shall be defined within their class definition, if they are
defined at all.

If classX is a local class a nested claémay be declared in clagsand later defined in the definition of
classX or be later defined in the same scope as the definition ofXla8sclass nested within a local class
is a local class.

A local class shall not have static data members.

9.9 Nested type names [class.nested.type]

Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualificafixample:

161

ISO/IEC 14882:1998(E)

9.9 Nested type names

class X {

public:
typedefint [;
classY {/*...* };
| a;

k

| b; Il
Y c; 1
XY d; 1l
X:le; I

—end example

162

error
error
OK
OK

© ISO/IEC

9 Classes

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes [class.derived]

A list of base classes can be specified in a class definition using the notation:

base-clause:
base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list, base-specifier

base-specifier:
I opt NESted-name-specifigyclass-name
virtual access-specifigy; :: o, N€sted-name-specifigyclass-name
access-specifier virtug), :: ., nested-name-specifigy class-name

access-specifier:
private
protected
public

Theclass-namén abase-specifieshall not be an incompletely defined class (clause 9); this class is called
adirect base clasfor the class being declared. During the lookup for a base class hame, non-type names
are ignored (3.3.7). If the name found is naiass-namgthe program is ill-formed. A cla®®is a base

class of a clasBif it is a direct base class Bfor a direct base class of onel®$ base classes. A class is
anindirectbase class of another if it is a base class but not a direct base class. A class is said to be (directly
or indirectly) derivedfrom its (direct or indirect) base classedlofe: See clause 11 for the meaning of
access-specifier] Unless redefined in the derived class, members of a base class are also considered to be
members of the derived class. The base class members are saiichteribedby the derived class. Inher-

ited members can be referred to in expressions in the same manner as other members of the derived class,
unless their names are hidden or ambiguous (10N¥te[the scope resolution operator (5.1) can be

used to refer to a direct or indirect base member explicitly. This allows access to a hame that has been
redefined in the derived class. A derived class can itself serve as a base class subject to access control; see
11.2. A pointer to a derived class can be implicitly converted to a pointer to an accessible unambiguous
base class (4.10). An Ivalue of a derived class type can be bound to a reference to an accessible unambigu-
ous base class (8.5.3).]

The base-specifier-lisspecifies the type of thease class subobjeatentained in an object of the derived
class type. Example:

class Base {
public:
inta, b, c;

h

class Derived : public Base {
public:

int b;
I3

class Derived?2 : public Derived {
public:
int c;
2
Here, an object of clad3erived2 will have a sub-object of clad3erived which in turn will have a
sub-object of clasBase. |

163

ISO/IEC 14882:1998(E) © ISO/IEC

10 Derived classes 10 Derived classes

The order in which the base class subobjects are allocated in the most derived object (1.8) is unspecified.
[Note: a derived class and its base class sub-objects can be represented by a directed acy@ia@yaph (
where an arrow meariglirectly derived froni. A DAG of sub-objects is often referred to aSsab-object

lattice”

Base

|

Derived

Derived2
The arrows need not have a physical representation in memory. |
[Note:initialization of objects representing base classes can be specified in constructors; see 12.6.2.]

[Note: A base class subobject might have a layout (3.7) different from the layout of a most derived object of
the same type. A base class subobject might have a polymorphic behavior (12.7) different from the poly-
morphic behavior of a most derived object of the same type. A base class subobject may be of zero size
(clause 9); however, two subobjects that have the same class type and that belong to the same most derived
object must not be allocated at the same address (5.10).]

10.1 Multiple base classes [class.mi]

A class can be derived from any number of base claskkete: fhe use of more than one direct base class
is often called multiple inheritance. BExample:

classA{/*..*}
classB {/*...* };
classC{/*...* };
class D : public A, public B, public C { /* ... */ };

—end example

[Note:the order of derivation is not significant except as specified by the semantics of initialization by con-
structor (12.6.2), cleanup (12.4), and storage layout (9.2, 11.1).]

A class shall not be specified as a direct base class of a derived class more thaNaiace.class can be

an indirect base class more than once and can be a direct and an indirect base class. There are limited
things that can be done with such a class. The non-static data members and member functions of the direct
base class cannot be referred to in the scope of the derived class. However, the static members, enumera-
tions and types can be unambiguously referred tBxarnple:

class X {/* ... */ };
class Y : public X, public X { /* ... */ }; I ill-formed

class L { public: int next; /*...* };
class A: publicL{/*...*};
class B : public L {/*...*/ };

class C : public A, public B {void f(); /*...*/}; /I well-formed

class D : public A, public L { void f(); /*...*/}; / well-formed
—end example
A base class specifier that does not contain the keywidrchl , specifies anonvirtual base class. A
base class specifier that contains the keywantdal , specifies avirtual base class. For each distinct

occurrence of a nonvirtual base class in the class lattice of the most derived class, the most derived object
(1.8) shall contain a corresponding distinct base class subobject of that type. For each distinct base class
that is specified virtual, the most derived object shall contain a single base class subobject of that type.
[Example:for an object of class typg, each distinct occurrence of a (non-virtual) base dldassthe class

lattice of C corresponds one-to-one with a distihcsubobject within the object of tyg@ Given the class
Cdefined above, an object of claSsvill have two sub-objects of clagsas shown below.

164

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes 10.1 Multiple base classes

A ;

N

C

In such lattices, explicit qualification can be used to specify which subobject is meant. The body of func-
tion C::f could refer to the membeext of eachL subobject:

void C::f() { A::next = B::next; } 1 well-formed

Without theA:: orB:: qualifiers, the definition o€::f above would be ill-formed because of ambiguity
(10.2).

For another example,

classV {/*...*};

class A : virtual public V { /* ... */ };
class B : virtual public V {/* ... */ };
class C : public A, public B{/* ... */ };

for an objectt of class typeC, a single subobject of typéis shared by every base subobject dhat is
declared to have wrtual base class of typ€. Given the clas€ defined above, an object of claSs
will have one subobject of class as shown below.

N
o

A class can have both virtual and nonvirtual base classes of a given type.

classB {/*...* };

class X : virtual public B { /* ... */ };

class Y : virtual public B {/* ... */ };

class Z : publicB{/*...*/};

class AA : public X, public Y, public Z { /* ... */ };

For an object of clasaA all virtual occurrences of base claBsn the class lattice 0AA correspond to

a singleB subobject within the object of typeA, and every other occurrence of a (non-virtual) base Blass
in the class lattice oAA corresponds one-to-one with a distiBcsubobject within the object of typ®A
Given the clas®\A defined above, classA has two sub-objects of claBs Z's B and the virtuaB shared
by X andY, as shown below.

—end example

10.2 Member name lookup [class.member.lookup]

Member name lookup determines the meaning of a navexgfressiohin a class scope (3.3.6). Name
lookup can result in aambiguity in which case the program is ill-formed. Foridrexpressionname
lookup begins in the class scopethis ; for a qualified-id name lookup begins in the scope of the
nested-name-specifieName lookup takes place before access control (3.4, clause 11).

165

ISO/IEC 14882:1998(E) © ISO/IEC

10.2 Member name lookup 10 Derived classes

The following steps define the result of name lookup in a class s€opéyst, every declaration for the

name in the class and in each of its base class sub-objects is considered. A memliemnameesub-

objectB hidesa member nameé in a sub-objecA if A is a base class sub-object®&f Any declarations

that are so hidden are eliminated from consideration. Each of these declarations that was introduced by a
using-declaratioris considered to be from each sub-objecCdhat is of the type containing the declara-

tion designated by tl“ﬂsing-declaratior?e) If the resulting set of declarations are not all from sub-objects

of the same type, or the set has a nonstatic member and includes members from distinct sub-objects, there is
an ambiguity and the program is ill-formed. Otherwise that set is the result of the lookup.

[Example:
class A {
public:
int a;
int (*b)();
int f();
int f(int);
int g();
I3
class B {
int a;
int b();
public:
int f();
int g;
int h();
int h(int);
I3

class C : public A, public B {};

void g(C* pc)
{

pc->a=1; 1l error: ambiguousA::a orB:a
pc->b(); 1 error: ambiguousA::b or B::b
pc->f(); I error: ambiguousA::f or B::f
pc->f(1); I error: ambiguousA::f or B::f
pc->g(); 1 error: ambiguousA::g or B:g
pc->g =1; I error: ambiguousA::g or B::ig
pc->h(); I OK

pc->h(1); 1l OK

}
—end examplg Example:

struct U { static inti; };
structV: U {};
struct W : U { using U::i; };
struct X : V, W { void foo(); };
void X::foo() {
i 1! findsU::i intwo ways: a8V::i andU:i inV
/' no ambiguity becaudd::i is static

}
—end example

J%) Note thatusing-declaratioa cannot be used to resolve inherited member ambiguities; see 7.3.3.

166

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes 10.2 Member name lookup

If the name of an overloaded function is unambiguously found, overloading resolution (13.3) also takes
place before access control. Ambiguities can often be resolved by qualifying a name with its class name.
[Example:

class A {
public:

int f();
I3

class B {
public:

int f();
2

class C : public A, public B {
int f() { return A::f() + B::(); }
2

—end example

A static member, a nested type or an enumerator defined in a bas& cssinambiguously be found
even if an object has more than one base class subobject &f.typ@o base class subobjects share the
nonstatic member subobjects of their common virtual base clagsesmple:

class V { public: int v; };
class A {
public:
int a;
staticint s
enum{e};

class B : public A, public virtual V {J;
class C : public A, public virtual V {};

class D : public B, public C { };

void f(D* pd)
{

pd->v++; I OK: only onev (virtual)
pd->s++; I OK: only ones (static)
inti = pd->e; 1 OK: only onee (enumerator)
pd->a++; 1 error, ambiguous: twas inD
}
—end example

When virtual base classes are used, a hidden declaration can be reached along a path through the sub-object
lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with
nonvirtual base classes is an ambiguity; in that case there is no unigue instance of the name that hides all
the others. Example:

class V { public: int f(); intx;};
class W { public: int g(); inty;};
class B : public virtual V, public W

{
public:
intf(); intx;
intg(); inty;
5

class C : public virtual V, public W { };

class D : public B, public C { void glorp(); };

167

ISO/IEC 14882:1998(E) © ISO/IEC

10.2 Member name lookup 10 Derived classes

NN
.

The names defined i and the left hand instance Wfare hidden by those B, but the names defined in
the right hand instance ®@¥are not hidden at all.

void D::glorp()
{

X++; /I OK:B:x hidesV:x
f(); I OK: B:f() hidesV::f()
y++ /I error: Bty and C'sW:y
a(); 1 error: B::g() and C'sW:g()
}
—end example

An explicit or implicit conversion from a pointer to or an lvalue of a derived class to a pointer or reference
to one of its base classes shall unambiguously refer to a unique object representing the baksanass. [
ple:

classV{};

class A{};

class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C {};

void g()

Dd;
B* pb = &d;
A* pa = &d; 1 error, ambiguousC's A or B's A?
V* pv = &d; I OK: only oneV sub-object
}

—end example

10.3 Virtual functions [class.virtual]

Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is calledmolymorphic class

If a virtual member functionf is declared in a cladBase and in a clas®erived , derived directly or
indirectly fromBase, a member functiomf with the same name and same parameter |Baas::vf is

declared, therDerived::vf is also virtual (whether or not it is so declared) anavierrideg”

Base::vf . For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
uniquefinal overriderthat overrides that function and every other overrider of that function. The rules for
member lookup (10.2) are used to determine the final overrider for a virtual function in the scope of a
derived class but ignoring names introducedising-declaratios. [Example:

I7) A function with the same name but a different parameter list (clause 13) as a virtual function is not necessarily videalrasid d
override. The use of thértual specifier in the declaration of an overriding function is legal but redundant (has empty semantics).
Access control (clause 11) is not considered in determining overriding.

168

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes 10.3 Virtual functions

struct A {
virtual void f();
I3
struct B : virtual A {
virtual void f();
2

struct C : B, virtual A {
using A::f;

I3
void foo() {
Cc;
c.f(); 1 callsB::f , the final overrider
c.C::f(); 1 callsA:f because of the using-declaration

}
—end example

[Note:a virtual member function does not have to be visible to be overridden, for example,

struct B {
virtual void f();
I3
struct D : B {
void f(int);
2
struct D2 : D {
void f();
2
the functionf(int) in classD hides the virtual functiof() in its base clasB; D::f(int) is not a vir-

tual function. Howeverf() declared in clas®2 has the same name and the same parameter list as
B::f() , and therefore is a virtual function that overrides the fund@ioff) even thougtB::f() is
not visible in clas®2.]

Even though destructors are not inherited, a destructor in a derived class overrides a base class destructor
declared virtual; see 12.4 and 12.5.

The return type of an overriding function shall be either identical to the return type of the overridden func-
tion or covariantwith the classes of the functions. If a functibnf overrides a functioB::f , the
return types of the functions are covariant if they satisfy the following criteria:

— both are pointers to classes or references to cPRses

— the class in the return type Bf:f is the same class as the class in the return type:bf or, is an
unambiguous direct or indirect base class of the class in the return pé ofind is accessible

— both pointers or references have the same cv-qualification and the class type in the returDtype of
has the same cv-qualification as or less cv-qualification than the class type in the returmtyfpe. of

If the return type oD::f differs from the return type d@::f , the class type in the return typelff

shall be complete at the point of declaratiorDaf or shall be the class tyd®@ When the overriding
function is called as the final overrider of the overridden function, its result is converted to the type returned
by the (statically chosen) overridden function (5.2.Bxgmple:

I8) Multi-level pointers to classes or references to multi-level pointers to classes are not allowed.

169

ISO/IEC 14882:1998(E) © ISO/IEC

10.3 Virtual functions 10 Derived classes

class B {};
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();

virtual void vf2();

virtual void vf3();

virtual B* vf4();

virtual B* vf5();

void f();
2
struct No_good : public Base {
D* vf4(); I error: B (base class db) inaccessible
I3
class A;
struct Derived : public Base {
void vf1(); I virtual and override®ase::vf1()
void vf2(int); I not virtual, hidesBase::vf2()
char vf3(); 1 error: invalid difference in return type only
D* vf4(); I OK: returns pointer to derived class
A* vi5(); I error: returns pointer to incomplete class
void f();
k
void g()
{
Derived d;
Base* bp = &d; 1! standard conversion:
/I Derived* to Base*
bp->vfl(); 1 calls Derived::vfl()
bp->vf2(); 1 calls Base::vf2()
bp->f(); I calls Base::f() (not virtual)
B* p = bp->vf4(); i calls Derived::pf() and converts the
/I result toB*
Derived* dp = &d;
D* q = dp->vf4(); 1 calls Derived::pf() and does not
/I convert the result t8*
dp->vf2(); 1 ill-formed: argument mismatch
}
—end example

[Note: the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or reference denoting that object (the static type) (5.2.2).]

[Note: the virtual specifier implies membership, so a virtual function cannot be a nonmember (7.1.2)

function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function declared in one class can be declared a
friend in another class.]

A virtual function declared in a class shall be defined, or declared pure (10.4) in that class, or both; but no
diagnostic is required (3.2).
[Example:here are some uses of virtual functions with multiple base classes:

struct A {
virtual void f();

h

170

10

11

© ISO/IEC ISO/IEC 14882:1998(E)

10 Derived classes 10.3 Virtual functions

struct B1: A{ 1 note non-virtual derivation
void f();
I3

struct B2 : A {
void f();
2

struct D : B1, B2 { 1 D has two separaté sub-objects
b

void foo()

{

D d;
Il A* ap = &d; I would be ill-formed: ambiguous

B1* blp = &d;
A* ap=blp;
D* dp=4&d;
ap->f(); I callsD::B1:f
dp->f(); I ill-formed: ambiguous

}

In classD above there are two occurrences of clasand hence two occurrences of the virtual member
function A::f . The final overrider oB1::A::f is B1::f and the final overrider oB2::A::f is

The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

h

struct VBL1 : virtual A { i note virtual derivation
void f();
3

struct VB2 : virtual A {
void f();
I3

struct Error : VB1, VB2 { 1 ill-formed
5

struct Okay : VB1, VB2 {
void f();
2

BothVB1:f andVB2:f overrideA:f butthere is no overrider of both of them in clgsor . This
example is therefore ill-formed. Cla€kay is well formed, however, becau€kay::f is a final over-
rider.

The following example uses the well-formed classes from above.

struct VB1la : virtual A { 1 does not declaré

k

struct Da : VB1a, VB2 {
2

171

12

ISO/IEC 14882:1998(E) © ISO/IEC

10.3 Virtual functions 10 Derived classes

void foe()

VBla* vblap = new Da;
vblap->f(); 1l callsvVB2::f

—end example
Explicit qualification with the scope operator (5.1) suppresses the virtual call mechaBisamp]e:

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call iD::f really does calB::f and notD::f .]

10.4 Abstract classes [class.abstract]

The abstract class mechanism supports the notion of a general concept, ssbtlapes,aof which only
more concrete variants, suchcxle andsquare , can actually be used. An abstract class can also be
used to define an interface for which