
TE
AM
FL
Y

Team-Fly®

Introduction to 3D
Game Programming
with DirectX® 9.0

Frank D. Luna
Technical review by Rod Lopez

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Luna, Frank D.
Introduction to 3D game programming with DirectX 9.0 / by Frank D. Luna.

p. cm.
ISBN 1-55622-913-5 (pbk.)
1. Computer games--Programming. 2. DirectX. I. Title.
QA76.76.C672L83 2003
794.8'15268--dc21 2003005834

CIP

© 2003, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-913-5

10 9 8 7 6 5 4 3 2 1
0305

DirectX is a registered trademark of Microsoft Corporation in the United States and/or other

countries.

All brand names and product names mentioned in this book are trademarks or service marks

of their respective companies. Any omission or misuse (of any kind) of service marks or

trademarks should not be regarded as intent to infringe on the property of others. The

publisher recognizes and respects all marks used by companies, manufacturers, and

developers as a means to distinguish their products.

All inquiries for volume purchases of this book should be addressed to Wordware
Publishing, Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

To my parents, Frank and Kathryn

iii

This page intentionally left blank.

Contents

Acknowledgments . xv
Introduction . xvii

Part I Mathematical Prerequisites 1
Vectors in 3-Space . 2

Vector Equality . 5
Computing the Magnitude of a Vector. 6
Normalizing a Vector . 7
Vector Addition . 7
Vector Subtraction . 8
Scalar Multiplication . 9
Dot Products . 9
Cross Products . 10

Matrices . 11
Equality, Scalar Multiplication, and Addition. 12
Multiplication . 13
The Identity Matrix . 14
Inverses . 15
The Transpose of a Matrix 15
D3DX Matrices . 16

Basic Transformations . 18
The Translation Matrix . 20
The Rotation Matrices . 21
The Scaling Matrix . 22
Combining Transformations 23
Some Functions to Transform Vectors 25

Planes (Optional) . 25
D3DXPLANE . 26
Point and Plane Spatial Relation 27
Construction . 27
Normalizing a Plane. 28
Transforming a Plane . 29
Nearest Point on a Plane to a Particular Point 29

Rays (Optional) . 30
Rays . 30
Ray/Plane Intersection . 31

Summary . 32

v

Part II Direct3D Fundamentals. 33

Chapter 1 Direct3D Initialization 35
1.1 Direct3D Overview . 35

1.1.1 The REF Device . 36
1.1.2 D3DDEVTYPE . 37

1.2 COM . 37
1.3 Some Preliminaries . 37

1.3.1 Surfaces . 38
1.3.2 Multisampling . 39
1.3.3 Pixel Formats . 40
1.3.4 Memory Pools. 41
1.3.5 The Swap Chain and Page Flipping 42
1.3.6 Depth Buffers . 43
1.3.7 Vertex Processing. 44
1.3.8 Device Capabilities 44

1.4 Initializing Direct3D . 45
1.4.1 Acquiring an IDirect3D9 Interface 46
1.4.2 Checking for Hardware Vertex Processing 47
1.4.3 Filling Out the D3DPRESENT_PARAMETERS
Structure . 48
1.4.4 Creating the IDirect3DDevice9 Interface 50

1.5 Sample Application: Initializing Direct3D 51
1.5.1 d3dUtility.h/cpp . 52
1.5.2 Sample Framework 54
1.5.3 Sample: D3D Init . 54

1.6 Summary . 57

Chapter 2 The Rendering Pipeline. 59
2.1 Model Representation . 60

2.1.1 Vertex Formats . 61
2.1.2 Triangles. 62
2.1.3 Indices . 62

2.2 The Virtual Camera . 63
2.3 The Rendering Pipeline . 64

2.3.1 Local Space . 65
2.3.2 World Space . 65
2.3.3 View Space . 66
2.3.4 Backface Culling . 68
2.3.5 Lighting . 69
2.3.6 Clipping . 69
2.3.7 Projection . 70
2.3.8 Viewport Transform 72
2.3.9 Rasterization . 73

2.4 Summary . 73

vi Contents

Chapter 3 Drawing in Direct3D 75
3.1 Vertex/Index Buffers . 75

3.1.1 Creating a Vertex and Index Buffer 76
3.1.2 Accessing a Buffer’s Memory 78
3.1.3 Retrieving Information about a Vertex and
Index Buffer . 79

3.2 Render States . 80
3.3 Drawing Preparations . 81
3.4 Drawing with Vertex/Index Buffers 82

3.4.1 IDirect3DDevice9::DrawPrimitive. 82
3.4.2 IDirect3DDevice9::DrawIndexedPrimitive 82
3.4.3 Begin/End Scene . 84

3.5 D3DX Geometric Objects 84
3.6 Sample Applications: Triangle, Cube, Teapot,
D3DXCreate* . 85
3.7 Summary . 89

Chapter 4 Color . 91
4.1 Color Representation . 91
4.2 Vertex Colors . 94
4.3 Shading . 94
4.4 Sample Application: Colored Triangle 95
4.5 Summary . 97

Chapter 5 Lighting . 98
5.1 Light Components . 98
5.2 Materials . 99
5.3 Vertex Normals . 101
5.4 Light Sources . 104
5.5 Sample Application: Lighting 107
5.6 Additional Samples . 109
5.7 Summary . 110

Chapter 6 Texturing. 111
6.1 Texture Coordinates . 112
6.2 Creating and Enabling a Texture 113
6.3 Filters . 114
6.4 Mipmaps. 115

6.4.1 Mipmap Filter . 116
6.4.2 Using Mipmaps with Direct3D 116

6.5 Address Modes . 116
6.6 Sample Application: Textured Quad 118
6.7 Summary . 120

Contents vii

Chapter 7 Blending. 121
7.1 The Blending Equation . 121
7.2 Blend Factors . 123
7.3 Transparency . 124

7.3.1 Alpha Channels . 125
7.3.2 Specifying the Source of Alpha 125

7.4 Creating an Alpha Channel Using the DirectX
Texture Tool . 126
7.5 Sample Application: Transparency 127
7.6 Summary . 130

Chapter 8 Stenciling . 131
8.1 Using the Stencil Buffer 132

8.1.1 Requesting a Stencil Buffer 133
8.1.2 The Stencil Test . 133
8.1.3 Controlling the Stencil Test 134

8.1.3.1 Stencil Reference Value 134
8.1.3.2 Stencil Mask 134
8.1.3.3 Stencil Value 135
8.1.3.4 Comparison Operation 135

8.1.3 Updating the Stencil Buffer 135
8.1.4 Stencil Write Mask 137

8.2 Sample Application: Mirrors 137
8.2.1 The Mathematics of Reflection 137
8.2.2 Mirror Implementation Overview 139
8.2.3 Code and Explanation 140

8.2.3.1 Part I . 141
8.2.3.2 Part II . 141
8.2.3.3 Part III . 142
8.2.3.4 Part IV . 143
8.2.3.5 Part V . 143

8.3 Sample Application: Planar Shadows. 144
8.3.1 Parallel Light Shadows 145
8.3.2 Point Light Shadows. 146
8.3.3 The Shadow Matrix 146
8.3.4 Using the Stencil Buffer to Prevent Double
Blending . 147
8.3.5 Code and Explanation 148

8.4 Summary . 150

Part III Applied Direct3D 151

Chapter 9 Fonts. 153
9.1 ID3DXFont . 153

9.1.1 Creating an ID3DXFont 153

viii Contents

9.1.2 Drawing Text . 154
9.1.3 Computing the Frames Rendered Per Second 155

9.2 CD3DFont . 155
9.2.1 Constructing a CD3DFont. 156
9.2.2 Drawing Text . 156
9.2.3 Cleanup . 157

9.3 D3DXCreateText . 157
9.4 Summary . 159

Chapter 10 Meshes Part I . 160
10.1 Geometry Info . 160
10.2 Subsets and the Attribute Buffer 161
10.3 Drawing . 163
10.4 Optimizing . 163
10.5 The Attribute Table . 165
10.6 Adjacency Info . 167
10.7 Cloning . 169
10.8 Creating a Mesh (D3DXCreateMeshFVF) 170
10.9 Sample Application: Creating and Rendering a Mesh . . . 171
10.10 Summary . 177

Chapter 11 Meshes Part II . 178
11.1 ID3DXBuffer. 178
11.2 XFiles . 179

11.2.1 Loading an XFile 180
11.2.2 XFile Materials . 181
11.2.3 Sample Application: XFile 181
11.2.4 Generating Vertex Normals 184

11.3 Progressive Meshes . 185
11.3.1 Generating a Progressive Mesh 186
11.3.2 Vertex Attribute Weights 187
11.3.3 ID3DXPMesh Methods 188
11.3.4 Sample Application: Progressive Mesh 190

11.4 Bounding Volumes. 193
11.4.1 Some New Special Constants 194
11.4.2 Bounding Volume Types 195
11.4.3 Sample Application: Bounding Volumes. 196

11.5 Summary. 198

Chapter 12 Building a Flexible Camera Class 199
12.1 Camera Design . 199
12.2 Implementation Details 201

12.2.1 Computing the View Matrix 201
12.2.1.1 Part 1: Translation 202
12.2.1.2 Part 2: Rotation 203

Contents ix

12.2.1.3 Combining Both Parts 204
12.2.2 Rotation about an Arbitrary Axis 205
12.2.3 Pitch, Yaw, and Roll. 205
12.2.4 Walking, Strafing, and Flying 207

12.3 Sample Application: Camera 209
12.4 Summary. 211

Chapter 13 Basic Terrain Rendering. 212
13.1 Heightmaps . 213

13.1.1 Creating a Heightmap 214
13.1.2 Loading a RAW File 215
13.1.3 Accessing and Modifying the Heightmap 215

13.2 Generating the Terrain Geometry 216
13.2.1 Computing the Vertices 217
13.2.2 Computing the Indices—Defining the Triangles . . 220

13.3 Texturing. 221
13.3.1 A Procedural Approach. 222

13.4 Lighting . 224
13.4.1 Overview . 224
13.4.2 Computing the Shade of a Quad 225
13.4.3 Shading the Terrain 227

13.5 “Walking” on the Terrain 228
13.6 Sample Application: Terrain. 231
13.7 Some Improvements . 233
13.8 Summary. 234

Chapter 14 Particle Systems 235
14.1 Particles and Point Sprites 235

14.1.1 Structure Format 236
14.1.2 Point Sprite Render States. 236
14.1.3 Particles and Their Attributes 238

14.2 Particle System Components 239
14.2.1 Drawing a Particle System. 244
14.2.2 Randomness . 248

14.3 Concrete Particle Systems: Snow, Firework,
Particle Gun . 249

14.3.1 Sample Application: Snow 250
14.3.2 Sample Application: Firework 252
14.3.3 Sample Application: Particle Gun 254

14.4 Summary. 256

Chapter 15 Picking. 257
15.1 Screen to Projection Window Transform 259
15.2 Computing the Picking Ray 260
15.3 Transforming Rays . 261

x Contents

TE
AM
FL
Y

Team-Fly®

15.4 Ray-Object Intersections 262
15.5 Picking Sample . 264
15.6 Summary. 265

Part IV Shaders and Effects 267

Chapter 16 Introduction to the High-Level Shading

Language . 269
16.1 Writing an HLSL Shader 270

16.1.1 Globals . 272
16.1.2 Input and Output Structures 272
16.1.3 Entry Point Function 273

16.2 Compiling an HLSL Shader 275
16.2.1 The Constant Table 275

16.2.1.1 Getting a Handle to a Constant. 275
16.2.1.2 Setting Constants 275
16.2.1.3 Setting the Constant Default Values 278

16.2.2 Compiling an HLSL Shader 278
16.3 Variable Types . 280

16.3.1 Scalar Types . 280
16.3.2 Vector Types . 281
16.3.3 Matrix Types . 282
16.3.4 Arrays. 283
16.3.5 Structures . 283
16.3.6 The typedef Keyword 284
16.3.7 Variable Prefixes 284

16.4 Keywords, Statements, and Casting 285
16.4.1 Keywords . 285
16.4.2 Basic Program Flow 285
16.4.3 Casting . 286

16.5 Operators . 287
16.6 User-Defined Functions 288
16.7 Built-in Functions . 290
16.8 Summary. 292

Chapter 17 Introduction to Vertex Shaders 293
17.1 Vertex Declarations . 294

17.1.1 Describing a Vertex Declaration 295
17.1.2 Creating a Vertex Declaration 297
17.1.3 Enabling a Vertex Declaration 297

17.2 Vertex Data Usages . 298
17.3 Steps to Using a Vertex Shader 300

17.3.1 Writing and Compiling a Vertex Shader 300
17.3.2 Creating a Vertex Shader 300
17.3.3 Setting a Vertex Shader 301

Contents xi

17.3.4 Destroying a Vertex Shader 301
17.4 Sample Application: Diffuse Lighting 301
17.5 Sample Application: Cartoon Rendering 307

17.5.1 Cartoon Shading 308
17.5.2 The Cartoon Shading Vertex Shader Code 309
17.5.3 Silhouette Outlining 311

17.5.3.1 Edge Representation 312
17.5.3.2 Testing for a Silhouette Edge. 313
17.5.3.3 Edge Generation 314

17.5.4 The Silhouette Outlining Vertex Shader Code . . . 315
17.6 Summary. 316

Chapter 18 Introduction to Pixel Shaders 318
18.1 Multitexturing Overview 319

18.1.1 Enabling Multiple Textures 320
18.1.2 Multiple Texture Coordinates 321

18.2 Pixel Shader Inputs and Outputs 322
18.3 Steps to Using a Pixel Shader. 323

18.3.1 Writing and Compiling a Pixel Shader 323
18.3.2 Creating a Pixel Shader 324
18.3.3 Setting a Pixel Shader 324
18.3.4 Destroying a Pixel Shader 325

18.4 HLSL Sampler Objects 325
18.5 Sample Application: Multitexturing in a Pixel Shader . . . 326
18.6 Summary. 333

Chapter 19 The Effects Framework 335
19.1 Techniques and Passes 336
19.2 More HLSL Intrinsic Objects 337

19.2.1 Texture Objects 337
19.2.2 Sampler Objects and Sampler States 337
19.2.3 Vertex and Pixel Shader Objects 338
19.2.4 Strings . 339
19.2.5 Annotations . 339

19.3 Device States in an Effect File 340
19.4 Creating an Effect . 341
19.5 Setting Constants . 342
19.6 Using an Effect . 344

19.6.1 Obtaining a Handle to an Effect 345
19.6.2 Activating an Effect 345
19.6.3 Beginning an Effect 345
19.6.4 Setting the Current Rendering Pass. 346
19.6.5 Ending an Effect 346
19.6.6 Example . 346

xii Contents

19.7 Sample Application: Lighting and Texturing in
an Effect File . 347
19.8 Sample Application: Fog Effect 352
19.9 Sample Application: Cartoon Effect. 355
19.10 EffectEdit . 356
19.11 Summary . 356

Appendix An Introduction to Windows Programming 359
Overview . 360

Resources . 360
Events, the Message Queue, Messages, and the
Message Loop . 360
GUI . 362

Hello World Windows Application 363
Explaining Hello World . 366

Includes, Global Variables, and Prototypes 366
WinMain . 367
WNDCLASS and Registration 368
Creating and Displaying the Window 370
The Message Loop . 372
The Window Procedure 373
The MessageBox Function 375

A Better Message Loop . 375
Summary . 376

Bibliography . 377

Index . 379

Contents xiii

This page intentionally left blank.

Acknowledgments

I would like to thank my technical editor Rod Lopez for putting in the
time to review this book for both accuracy and improvements. I would
also like to thank Jim Leiterman (author of Vector Game Math Processors

from Wordware Publishing) and Hanley Leung (programmer for Kush
Games), who both reviewed portions of this book. Next, I want thank
Adam Hault and Gary Simmons, who both teach the BSP/PVS course at
www.gameinstitute.com, for their assistance. In addition, I want thank
William Chin who helped me out many years ago. Lastly, I want to
thank the staff at Wordware Publishing, in particular, Jim Hill, Wes
Beckwith, Beth Kohler, Heather Hill, Denise McEvoy, and Alan
McCuller.

xv

This page intentionally left blank.

Introduction

This book is an introduction to programming interactive 3D computer
graphics using DirectX 9.0, with an emphasis on game development. It
teaches you the fundamentals of Direct3D, after which you will be able
to go on to learn and apply more advanced techniques. Assumingly,
since you have this book in your hands, you have a rough idea of what
DirectX is about. From a developer’s perspective, DirectX is a set of
APIs (application programming interfaces) for developing multimedia
applications on the Windows platform. In this book we are concerned
with a particular DirectX subset, namely Direct3D. As the name
implies, Direct3D is the API used for developing 3D applications.

This book is divided into four main parts. Part I explains the mathe-
matical tools that will be used throughout this book. Part II covers
elementary 3D techniques, such as lighting, texturing, alpha blending,
and stenciling. Part III is largely about using Direct3D to implement a
variety of interesting techniques and applications, such as picking, ter-
rain rendering, particle systems, a flexible virtual camera, and loading
and rendering 3D models (XFiles). The theme of Part IV is vertex and
pixel shaders, including the effects framework and the new (to DirectX
9.0) High-Level Shading Language. The present and future of 3D game
programming is the use of shaders, and by dedicating an entire part of
the book to shaders, we have an up-to-date and relevant book on mod-
ern graphics programming.

For the beginner, this book is best read front to back. The chapters
have been organized so that the difficulty increases progressively with
each chapter. In this way, there are no sudden jumps in complexity,
leaving the reader lost. In general, for a particular chapter we will use
the techniques and concepts previously developed. Therefore, it is
important that you have mastered the material of a chapter before con-
tinuing. Experienced readers can pick the chapters of interest.

Finally, you may wonder what kinds of games you can develop after
reading this book. The answer to that question is best obtained by
skimming through this book and seeing the types of applications that
are developed. From that you should be able to visualize the types of
games that can be developed based on the techniques taught in this
book and some of your own ingenuity.

xvii

Prerequisites

This book is designed to be an introductory level textbook. However,
that does not imply that it is easy for people with no programming
experience. Readers are expected to be comfortable with algebra, trigo-
nometry, their development environment (e.g., Visual Studio), C++,
and fundamental data structures such as arrays and lists. Being familiar
with Windows programming is also helpful but not imperative; refer to
Appendix A for an introduction to Windows programming.

Required Development Tools

This book uses C++ as its programming language for the sample pro-
grams. To quote the DirectX documentation, “DirectX 9.0 supports
only Microsoft Visual C++ 6.0 and later.” Therefore, as of publication,
in order to write C++ applications using DirectX 9.0, you need either
Visual C++ (VC++) 6.0 or VC++ 7.0 (.NET).

Note: The sample code for this book was compiled and built using
VC++ 7.0. For the most part, it should compile and build on VC++
6.0 also, but be aware of the following difference. In VC++ 7.0 the
following will compile and is legal because the variable cnt is consid-
ered to be local to the for loop.

int main()
{

for(int cnt = 0; cnt < 10; cnt++)
{

std::cout << "hello" << std::endl;
}

for(int cnt = 0; cnt < 10; cnt++)
{

std::cout << "hello" << std::endl;
}
return 0;

}

However, in VC++ 6.0 this will not compile. It gives the error message
error C2374: 'cnt' : redefinition; multiple initialization because in VC++
6.0 the variable cnt is not treated as being local to the for loop.
Therefore, when porting to VC++ 6.0, you may need to make some
minor changes to get it to compile due to this difference.

xviii Introduction

Recommended Hardware

The following hardware recommendations are if you wish to be able to
run the sample programs at an acceptable frame rate; all the samples
can be run using the REF device, which emulates Direct3D functional-
ity in software. Because things are being emulated in software, they
run very slow. We discuss the REF more in Chapter 1.

The sample programs in Part II of this book are fairly basic and
should run on low-end cards, such as the Riva TNT or an equivalent
graphics card. The sample programs in Part III push more geometry
and use some newer features, such as point sprites. For these samples
we recommend a graphics card at the level of a GeForce2. The sample
programs in Part IV use vertex and pixel shaders; therefore, to run
these programs in real time, you will need a graphics card that supports
shaders such as the GeForce3.

Intended Audience

This book was designed with the following three audiences in mind:

� Intermediate level C++ programmers who would like an introduc-
tion to 3D programming using the latest iteration of Direct3D—
Direct3D 9.0

� 3D programmers experienced with an API other than DirectX (e.g.,
OpenGL) who would like an introduction to Direct3D 9.0

� Experienced Direct3D programmers who would like an up-to-date
book covering the latest version of Direct3D, including vertex and
pixel shaders, the High-Level Shading Language, and the effects
framework

Installing DirectX 9.0

To write and execute DirectX 9.0 programs, you need both the DirectX
9.0 runtime and the DirectX 9.0 SDK (Software Development Kit)
installed on your computer. Note that the runtime will be installed
when you install the SDK. The DirectX SDK can be obtained at
http://msdn.microsoft.com/library/default.asp?url=/downloads/list/
directx.asp. The installation is straightforward; however, there is one
important point. When you get to the dialog box, as shown in Figure I.1,
make sure that you select the debug option.

Introduction xix

The debug option installs both the debug and retail builds of the
DirectX DLLs onto your computer, whereas the retail option installs
just the retail DLLs. For development, you want the debug DLLs, since
these DLLs will output Direct3D-related debug information into the
Visual Studio output window when the program is run in debug mode,
which is obviously very useful when debugging DirectX applications.
Figure I.2 shows the debug spew when a Direct3D object hasn’t been
properly released.

Note: Be aware that the debug DLLs are slower than the retail DLLs,
so for shipping applications, use the retail version.

Setting Up the Development Environment

The types of projects that you will want to create for writing DirectX
applications are Win32 Application projects. In VC++ 6.0 and 7.0 you
will also want to specify the directory paths at which the DirectX
header files and library files are located, so VC++ can find these files.
The DirectX header files and library files are located at the paths
D:\DXSDK\Include and D:\DXSDK\Lib, respectively.

xx Introduction

Figure I.2: The
debug spew
resulting from
not releasing a
Direct3D
resource

Figure I.1: For developing
DirectX applications, it is best
to select the debug option so
that you can debug your
DirectX applications easier.

TE
AM
FL
Y

Team-Fly®

Note: The location of the DirectX directory DXSDK on your computer
may differ; it depends on the location that you specified during
installation.

Typically, the DirectX SDK installation will add these paths to VC++
for you. However, in case it doesn’t, you can do it manually as follows:

In VC++ 6.0 go to the menu and select Tools>Options>Direc-

tories and enter the DirectX header file and library paths, as Figure I.3
shows.

In VC++ 7.0 go to the menu and select Tools>Options>Projects

Folder>VC++ Directories and enter the DirectX header and library
paths, as Figure I.4 shows.

Then, in order to build the sample programs, you will need to link the
library files d3d9.lib, d3dx9.lib, and winmm.lib into your project. Note
that winmm.lib isn’t a DirectX library file; it is the Windows multimedia
library file, and we use for its timer functions.

In VC++ 6.0 you can specify the library files to link in by going to
the menu and selecting Project>Settings>Link tab and then entering
the library names, as shown in Figure I.5.

Introduction xxi

Figure I.3: Adding the DirectX include
and library paths to VC++ 6.0

Figure I.4: Adding the
DirectX include and
library paths to VC++
7.0

In VC++ 7.0 you can specify the library files to link in by going to the
menu and selecting Project>Properties>Linker>Input Folder and
then entering the library names, as shown in Figure I.6.

Use of the D3DX Library

Since version 7.0, DirectX has shipped with the D3DX (Direct3D
Extension) library. This library provides a set of functions, classes, and
interfaces that simplify common 3D graphics-related operations, such
as math operations, texture and image operations, mesh operations,
and shader operations (e.g., compiling and assembling). That is to say,
D3DX contains many features that would be a chore to implement on
your own.

xxii Introduction

Figure I.5: Specifying
the library files to link
into the project in
VC++ 6.0

Figure I.6: Spec-
ifying the library
files to link into
the project in
VC++ 7.0

We use the D3DX library throughout this book because it allows us
to focus on more interesting material. For instance, we’d rather not
spend pages explaining how to load various image formats (e.g., .bmp,
.jpeg) into a Direct3D texture interface when we can do it in a single
call to the D3DX function D3DXCreateTextureFromFile. In other
words, D3DX makes us more productive and lets us focus more on
actual content rather than spending time reinventing the wheel.

Other reasons to use D3DX:

� D3DX is general and can be used with a wide range of different
types of 3D applications.

� D3DX is fast (at least as fast as general functionality can be).

� Other developers use D3DX. Therefore, you will most likely
encounter code that uses D3DX. Consequently, whether you
choose to use D3DX or not, you should become familiar with it so
that you can read code that uses it.

� D3DX already exists and has been thoroughly tested. Furthermore,
it becomes more improved and feature rich with each iteration of
DirectX.

Using the DirectX SDK
Documentation and SDK Samples

Direct3D is a huge API, and we cannot hope to cover all of its details in
this one book. Therefore, to obtain extended information, it is impera-
tive that you learn how to use the DirectX SDK documentation. You
can launch the C++ DirectX online documentation by executing the
DirectX9_c file in the \DXSDK\Doc\DirectX9 directory, where DXSDK
is the directory to which you installed DirectX.

The DirectX documentation covers just about every part of the
DirectX API; therefore, it is very useful as a reference, but because the
documentation doesn’t go into much depth, it isn’t the best learning
tool. However, it does get better and better with every new DirectX
version released.

As said, the documentation is primarily useful as a reference. Sup-
pose you come across a DirectX-related type or function (say the
function D3DXMatrixInverse) that you would like more information
on. You simply do a search in the documentation index and get a
description of the object type, or in this case function, as shown in
Figure I.7.

Introduction xxiii

Note: In this book we may direct you to the documentation for fur-
ther details from time to time.

The SDK documentation also contains some introductory tutorials at
the URL \DirectX9_c.chm::/directx/graphics/programmingguide/
tutorialsandsamplesandtoolsandtips/tutorials/tutorials.htm. These tuto-
rials correspond to some of the topics in Part II of this book. Therefore,
we recommend that you study these tutorials at the same time you
read through that part of the book so that you can get alternative expla-
nations and alternative examples.

We would also like to point out the available Direct3D sample pro-
grams that ship with DirectX SDK. The C++ Direct3D samples are
located in the \DXSDK\Samples\C++\Direct3D directory. Each sample
illustrates how to implement a particular effect in Direct3D. These
samples are fairly advanced for a beginning graphics programmer, but
by the end of this book you should be ready to study them. Examination
of the samples is a good “next step” after finishing this book.

Code Conventions

The coding conventions for the sample code are fairly clear-cut. The
only two things worth mentioning are that we prefix member variables
with an underscore. For example:

xxiv Introduction

Figure I.7: A screen
shot of the C++ SDK
documentation viewer

class C
{
public:

// ...define public interface
private:

float _x; // prefix member variables with an underscore.
float _y;
float _z;

};

And global variable and function names begin with a capital letter,
whereas local variable and method names begin with a lowercase letter.
We find this useful for determining variable/function scope.

Error Handling

In general, we don’t do any error handling in the sample programs
because we don’t want to take your attention away from the more
important code that is demonstrating a particular concept or technique.
In other words, we feel the sample code illustrates a concept more
clearly without error-handling code. Keep this in mind if you are using
any of the sample code in your own projects, as you will probably want
to rework it to include error handling.

Clarity

We want to emphasize that the program samples for this book were
written with clarity in mind and not performance. Thus, many of the
samples may be implemented inefficiently. Keep this in mind if you are
using any of the sample code in your own projects, as you may wish to
rework it for better efficiency.

Sample Programs and
Additional Online Supplements

The web site for this book (www.moon-labs.com) plays an integral part
in getting the most out of this book. On the web site you will find the
complete source code for every one of the samples in this book. We
advise readers to study the corresponding sample(s) for each chapter,
either as they read through the chapter or after they have read the
chapter. As a general rule, the reader should be able to implement a
chapter’s sample(s) on his or her own after reading the chapter and
spending some time studying the sample’s source code. In fact, a good
exercise is trying to implement the samples on your own using the
book and sample code as a reference.

Introduction xxv

In addition to sample programs, the web site also contains a mes-
sage board and chat program. We urge readers to communicate with
each other and post questions on topics they do not understand or need
clarification on. In many cases, getting alternative perspectives and
explanations of a concept speeds up the time it takes to comprehend it.

Lastly, we plan to add additional program samples and tutorials to
the web site on topics that we could not fit into this book for one reason
or another. Also, if reader feedback indicates readers are struggling
with a particular concept, additional examples and explanations may be
uploaded to the web site as well.

The companion files can also be downloaded from
www.wordware.com/files/dx9.

xxvi Introduction

Part I

Mathematical
Prerequisites

In this prerequisite part we introduce the mathematical tools that are
used throughout this book. The major theme is the discussion on vec-
tors, matrices, and transformations, which are used in just about every
sample program of this book. Planes and rays are covered as well
because some applications in this book make reference to them; these
sections are considered optional on a first reading.

This discussion is kept light and informal so that the material is
accessible to readers with various math backgrounds. For readers
desiring a more thorough and complete understanding of the topics
covered here, a linear algebra course in a classroom is the best place to
learn these topics thoroughly. Readers who have already studied linear
algebra will find Part I a light read and can use it as a refresher if
necessary.

In addition to the math explanations, we show the D3DX math-
related classes used to model these mathematical objects and the func-
tions used to execute a particular operation.

Objectives

� To learn the geometry and algebra of vectors and their applications
to 3D computer graphics

� To learn about matrices, their algebra, and how we use them to
transform 3D geometry

� To learn how to model planes and rays algebraically and their appli-
cations to 3D graphics

� To become familiar with a subset of the classes and functions pro-
vided by the D3DX library that are used for 3D math operations

1

Vectors in 3-Space

Geometrically, we represent a vector as a directed line segment, as
shown in Figure 1. The two properties of vectors are their length (also
known as the magnitude and the norm) and the direction in which they
point. Thus, vectors are useful for modeling physical quantities that
possess both a magnitude and direction. For example, in Chapter 14 we
implement a particle system. We use vectors to model the velocity and
acceleration of our particles. Other times in 3D computer graphics we
use vectors to model directions only. For instance, we often want to
know the direction in which a ray of light is traveling, the direction a
polygon is facing, or the direction the camera is looking in the 3D
world. Vectors provide a convenient mechanism for describing such
directions in 3-space.

Since location is not a property of vectors, two vectors that have
the same length and point in the same direction are considered equal,
even if they are in different locations. Observe that two such vectors
are parallel to each other. For example, in Figure 1, the vectors u and v

are equal.

Figure 1 shows that vectors can be discussed independently of a partic-
ular coordinate system because the vector itself (directed line segment)
contains the meaningful information—the direction and magnitude.
Introducing a coordinate system does not give the vector meaning;
rather the vector, which inherently contains its meaning, is simply
described relative to that particular system. And as we change coordi-
nate systems we are just describing the same vector relative to differ-
ent systems.

2 Part I

Figure 1: Free vectors defined inde-
pendently of a particular coordinate
system

That said, we move on to learning how we describe vectors relative
to the left-handed rectangular coordinate system. Figure 2 shows a
left-handed system as well as a right-handed system. The difference
between the two is the directions in which the positive z-axis runs. In
the left-handed system, the positive z-axis goes into the page. In the
right-handed system, the positive z-axis comes out of the page.

Because the location of a vector doesn’t change its properties, we can
translate all the vectors parallel to themselves so that their tail coin-
cides with the origin of the coordinate system. When a vector’s tail
coincides with the origin it is in standard position. Thus, when a vector
is in standard position we can describe the vector by specifying the
coordinates of its head point. We call these coordinates the components

of a vector. Figure 3 shows the vectors from Figure 1 described in stan-
dard position.

Note: Because we can describe a vector in standard position by
specifying the coordinates of the vector’s head, as if we are describing
a point, it is easy to confuse points and vectors. To emphasis the differ-
ence between the two, we restate the definition of a point and a
vector. A point describes only a location in the coordinate system,
whereas a vector describes a magnitude and a direction.

Mathematical Prerequisites 3

P
a

rt
I

Figure 2: On the left we
have a left-handed coordi-
nate system. Observe that
the positive z-axis goes
into the page. On the right
we have a right-handed
coordinate system.
Observe that the positive
z-axis comes out of the
page.

Figure 3: Fixed vectors in standard posi-
tion defined relative to a particular
coordinate system. Observe that u and
v now coincide with each other exactly
because they were equal.

We usually denote a vector in lowercase bold but sometimes in upper-
case bold as well. Examples of two-, three-, and four-dimensional
vectors, respectively: u = (ux, uy), N = (Nx, Ny, Nz), c = (cx, cy, cz, cw).

We now introduce four special 3D vectors, which are illustrated in
Figure 4. The first is called the zero vector and has zeros for all of its
components; it is denoted by a bold zero: 0 = (0, 0, 0). The next three
special vectors are referred to as the standard basis vectors for �3.
These vectors, called the i, j, and k vectors, run along the x-, y-, and
z-axis of our coordinate system, respectively, and have a magnitude of
one: i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

Note: A vector with a magnitude of one is called a unit vector.

In the D3DX library, we can use the D3DXVECTOR3 class to represent a
vector in 3-space. Its class definition is:

typedef struct D3DXVECTOR3 : public D3DVECTOR {
public:

D3DXVECTOR3() {};
D3DXVECTOR3(CONST FLOAT *);
D3DXVECTOR3(CONST D3DVECTOR&);
D3DXVECTOR3(FLOAT x, FLOAT y, FLOAT z);

// casting
operator FLOAT* ();
operator CONST FLOAT* () const;

// assignment operators
D3DXVECTOR3& operator += (CONST D3DXVECTOR3&);
D3DXVECTOR3& operator -= (CONST D3DXVECTOR3&);
D3DXVECTOR3& operator *= (FLOAT);
D3DXVECTOR3& operator /= (FLOAT);

// unary operators
D3DXVECTOR3 operator + () const;
D3DXVECTOR3 operator - () const;

// binary operators
D3DXVECTOR3 operator + (CONST D3DXVECTOR3&) const;
D3DXVECTOR3 operator - (CONST D3DXVECTOR3&) const;
D3DXVECTOR3 operator * (FLOAT) const;
D3DXVECTOR3 operator / (FLOAT) const;

4 Part I

Figure 4: The zero vector and the standard basis vectors
for �3TE
AM
FL
Y

Team-Fly®

friend D3DXVECTOR3 operator * (FLOAT,
CONST struct D3DXVECTOR3&);

BOOL operator == (CONST D3DXVECTOR3&) const;
BOOL operator != (CONST D3DXVECTOR3&) const;

} D3DXVECTOR3, *LPD3DXVECTOR3;

Note that D3DXVECTOR3 inherits its component data from
D3DVECTOR, which is defined as:

typedef struct _D3DVECTOR {
float x;
float y;
float z;

} D3DVECTOR;

Like scalar quantities, vectors have their own arithmetic, as you can
see from the mathematical operations that the D3DXVECTOR3 class
defines. Presently you are not expected to know what these methods
do. The following subsections introduce these vector operations as well
as some other D3DX vector utility functions and other important
details about vectors.

Note: Although we are primarily concerned with 3D vectors, we
sometimes work with 2D and 4D vectors in 3D graphics programming.
The D3DX library provides a D3DXVECTOR2 and D3DXVECTOR4 class for
representing 2D and 4D vectors, respectively. Vectors of different
dimensions have the same properties as 3D vectors, namely they
describe magnitudes and directions, only in different dimensions. In
addition, the mathematical operations of vectors can be generalized to
any dimensional vector with the exception of the vector cross product
(see the section titled “Cross Products”), which is only defined in �3.
Thus, with the exception of the cross product, the operations we dis-
cuss for 3D vectors carry over to 2D, 4D, and even n-dimensional
vectors.

Vector Equality

Geometrically, two vectors are equal if they point in the same direction
and have the same length. Algebraically, we say they are equal if they
are of the same dimension and their corresponding components are
equal. For example, (ux, uy, uz) = (vx, vy, vz) if ux = vx, uy = vy, and uz = vz.

In code we can test if two vectors are equal using the overloaded
equals operator:

D3DXVECTOR u(1.0f, 0.0f, 1.0f);
D3DXVECTOR v(0.0f, 1.0f, 0.0f);

if(u == v) return true;

Mathematical Prerequisites 5

P
a

rt
I

Similarly, we can test if two vectors are not equal using the overloaded
not equals operator:

if(u != v) return true;

Note: When comparing floating-point numbers, care must be taken
because, due to floating-point imprecision, two floating-point numbers
that we expect to be equal may differ slightly; therefore, we test if they
are approximately equal. We do this by defining an EPSILON constant,
which is a very small value that we use as a “buffer.” We say two val-
ues are approximately equal if their distance is less than EPSILON. In
other words, EPSILON gives us some tolerance for floating-point
imprecision. The following function illustrates how EPSILON can be
used to test if two floating-point values are equal:

const float EPSILON = 0.001f;
bool Equals(float lhs, float rhs)
{

// if lhs == rhs their difference should be zero
return fabs(lhs - rhs) < EPSILON ? true : false;

}

We do not have to worry about doing this when using the D3DXVEC-

TOR3 class, as its overloaded comparison operations will do this for us,
but comparing floating-point numbers properly is important to know in
general.

Computing the Magnitude of a Vector

Geometrically, the magnitude of a vector is the length of the directed
line segment. Given the components of a vector, we can algebraically
compute its magnitude with the following formula:

(1)

The double vertical bars in u denotes the magnitude of u.

Example: Find the magnitude of the vectors u = (1, 2, 3) and v = (1, 1).

Solution: For u we have:

(2)

Generalizing formula (1) to two dimensions, for v we have:

(3)

Using the D3DX library, we can compute the magnitude of a vector
using the following function:

6 Part I

222

zyx uuu ���u

14941321 222 �������u

211 22 ���v

FLOAT D3DXVec3Length(// Returns the magnitude.
CONST D3DXVECTOR3* pV // The vector to compute the length of.

);

D3DXVECTOR3 v(1.0f, 2.0f, 3.0f);
float magnitude = D3DXVec3Length(&v); // = sqrt(14)

Normalizing a Vector

Normalizing a vector makes a vector’s magnitude equal to one, which is
called a unit vector. We can normalize a vector by dividing each compo-
nent by the vector’s magnitude, as shown here:

We denote a unit vector by putting a hat over it: û.

Example: Normalize the vectors u = (1, 2, 3) and v = (1, 1).

Solution: From equations (2) and (3) we have u � 14 and v � 2, so:

Using the D3DX library, we can normalize a vector using the following
function:

D3DXVECTOR3 *D3DXVec3Normalize(
D3DXVECTOR3* pOut, // Result.
CONST D3DXVECTOR3* pV // The vector to normalize.

);

Note: This function returns a pointer to the result so that it can be
passed as a parameter to another function. For the most part, unless
otherwise stated, a D3DX math function returns a pointer to the result.
We will not explicitly say this for every function.

Vector Addition

We can add two vectors by adding their corresponding components
together; note that the vectors being added must be of the same
dimension:

Mathematical Prerequisites 7

P
a

rt
I

ˆ , ,
yx z

uu u� �
� � � �� �

� �

u
u

u u u u

1 2 3
ˆ , ,

14 14 14 14

� �
� � � �

� �

u
u

1 1
ˆ ,

2 2 2

� �
� � � �

� �

v
v

(, ,)x x y y z zu v u v u v� � � � �u v

Figure 5 illustrates the geometric interpretation of vector addition.

To add two vectors in code, we use the overloaded addition operator:

D3DXVECTOR3 u(2.0f, 0.0f, 1.0f);
D3DXVECTOR3 v(0.0f, -1.0f, 5.0f);

// (2.0 + 0.0, 0.0 + (-1.0), 1.0 + 5.0)
D3DXVECTOR3 sum = u + v; // = (2.0f, -1.0f, 6.0f)

Vector Subtraction

Similar to addition, two vectors are subtracted by subtracting their cor-
responding components. Again, the vectors must be of the same
dimension.

Figure 6 illustrates the geometric interpretation of vector subtraction.

To subtract two vectors in code, we use the overloaded subtraction
operator:

D3DXVECTOR3 u(2.0f, 0.0f, 1.0f);
D3DXVECTOR3 v(0.0f, -1.0f, 5.0f);

D3DXVECTOR3 difference = u - v; // = (2.0f, 1.0f, -4.0f)

8 Part I

Figure 5: Vector addition. Notice how we
translate v parallel to itself so that its tail
coincides with the head of u; then the sum is
the vector originating at the tail of u and
ending at the head of the translated v.

	
 (, ,)x x y y z zu v u v u v� � � � � � � �u v u v

Figure 6: Vector subtraction

As Figure 6 shows, vector subtraction returns a vector from the head of
v to the head of u. If we interpret the components of u and v as the
coordinates of points, we can use vector subtraction to find the vector
from one point to another. This is a very convenient operation because
we will often want to find the vector describing the direction from one
point to another.

Scalar Multiplication

We can multiply a vector by a scalar, as the name suggests, and this
scales the vector. This operation leaves the direction of the vector
unchanged, unless we scale by a negative number, in which case the
direction is flipped (inverted).

	
k ku ku kux y zu � , ,

The D3DXVECTOR3 class provides a scalar multiplication operator:

D3DXVECTOR3 u(1.0f, 1.0f, -1.0f);
D3DXVECTOR3 scaledVec = u * 10.0f; // = (10.0f, 10.0f, -10.0f)

Dot Products

The dot product is one of two products that vector algebra defines. It is
computed as follows:

The above formula does not present an obvious geometric meaning.
Using the law of cosines, we can find the relationship
u v u v� � cos
, which says that the dot product between two vectors
is the cosine of the angle between them scaled by the vectors’ magni-
tudes. Thus, if both u and v are unit vectors, then u · v is the cosine of
the angle between them.

Some useful properties of the dot product:

� If u · v = 0, then u � v.

� If u · v > 0, then the angle,
, between the two vectors is less than
90 degrees.

� If u · v < 0, then the angle,
, between the two vectors is greater
than 90 degrees.

Note: The � symbol means “orthogonal,” which is synonymous with
the term “perpendicular.”

Mathematical Prerequisites 9

P
a

rt
I

svuvuvu zzyyxx ����� vu

We use the following D3DX function to compute the dot product
between two vectors:

FLOAT D3DXVec3Dot(// Returns the result.
CONST D3DXVECTOR3* pV1, // Left sided operand.
CONST D3DXVECTOR3* pV2 // Right sided operand.

);

D3DXVECTOR3 u(1.0f, -1.0f, 0.0f);
D3DXVECTOR3 v(3.0f, 2.0f, 1.0f);

// 1.0*3.0 + -1.0*2.0 + 0.0*1.0
// = 3.0 + -2.0
float dot = D3DXVec3Dot(&u, &v); // = 1.0

Cross Products

The second form of multiplication that vector math defines is the cross
product. Unlike the dot product, which evaluates to a scalar, the cross
product evaluates to another vector. Taking the cross product of two
vectors, u and v, yields another vector, p, that is mutually orthogonal to
u and v. By that we mean p is orthogonal to u, and p is orthogonal to v.
The cross product is computed like so:

In component form:

Example: Find j = k � i = (0, 0, 1) � (1, 0, 0) and verify that j is
orthogonal to both k and i.

10 Part I

[(), (), ()]y z z y z x x z x y y xu v u v u v u v u v u v� � � � � �p u v

)(yzzyx vuvup ��

)(zxxzy vuvup ��

)(xyyxz vuvup ��

Figure 7: Cross product. The vector u � v = p is orthogonal
to both u and v.

Solution:

So, j = (0, 1, 0). Recall from the section titled “Dot Products” that if
u · v = 0, then u � v. Since j · k = 0 and j · i = 0, we know j is orthogo-
nal to both k and i.

We use the following D3DX function to compute the cross product
between two vectors:

D3DXVECTOR3 *D3DXVec3Cross(
D3DXVECTOR3* pOut, // Result.
CONST D3DXVECTOR3* pV1, // Left sided operand.
CONST D3DXVECTOR3* pV2 // Right sided operand.

);

It is obvious from Figure 7 that the vector –p is also mutually orthogo-
nal to both u and v. The order in which we perform the cross product
determines whether we get p or –p as a result. In other words, u � v =
–(v � u). This shows that the cross product is not commutative. You can
determine the vector returned by the cross product by the left hand

thumb rule. (We use a left hand rule because we are using a left-handed
coordinate system. We would switch to the right hand rule if we were
using a right-handed coordinate system.) If you curve the fingers of
your left hand in the direction of the first vector toward the second vec-
tor, your thumb points in the direction of the returned vector.

Matrices

In this section we concentrate on the mathematics of matrices. Their
applications to 3D graphics are explained in the next section.

An m � n matrix is a rectangular array of numbers with m rows and
n columns. The number of rows and columns give the dimension of the
matrix. We identify a matrix entry by specifying the row and column
that it is in using a double subscript, where the first subscript identifies
the row and the second subscript identifies the column. Examples of a 3
� 3 matrix M, a 2 � 4 matrix B, and a 3 � 2 matrix C follow:

Mathematical Prerequisites 11

P
a

rt
I

	
 	
 0)0100(���xj

	
 	
 1)0011(���yj

	
 	
 0)1000(���zj

�
�
�

�

�

�
�
�

�

�
�

333231

232221

131211

mmm

mmm

mmm

M �
�

�
�
�

�
�

24232221

14131211

bbbb

bbbb
B

�
�
�

�

�

�
�
�

�

�
�

3231

2221

1211

cc

cc

cc

C

We generally use uppercase bold letters to denote matrices.
Sometimes a matrix will contain a single row or column. We give

the special names row vector and column vector to describe such matri-
ces. Examples of a row and column vector follow:

When using row or column vectors, we only need a single subscript,
and sometimes we use letters as the subscripts used to identify an
entry in the row or column.

Equality, Scalar Multiplication, and Addition

Refer to the following four matrices throughout this subsection:

� Two matrices are equal if they are of the same dimension and their
corresponding entries are equal. For example, A = C because A

and C have the same dimension and their corresponding entries
are equal. We note that A � B and A � D because either the corre-
sponding entries are not equal or the matrices are of different
dimensions.

� We can multiply a matrix by a scalar by multiplying each entry of
the matrix by the scalar. For example, multiplying D by the scalar k

gives:

If k = 2, we have:

� Two matrices can be added only if they are of the same dimension.
The sum is found by adding the corresponding entries of the two
matrices together. For example:

12 Part I

� �1 2 3 4, , ,v v v v�v

�
�
�

�

�

�
�
�

�

�
�

z

y

x

u

u

u

u

�
�

�
�
�

�
�

�
32

51
A �

�

�
�
�

�
�

�
85

26
B �

�

�
�
�

�
�

�
32

51
C �

�

�
�
�

�
�

�
�

0036

3121
D

	
 	
 	
 	

	
 	
 	
 	
��

�
�
�

�
�

�
�

0036

3121

kkkk

kkkk
kD

	
 	
 	
 	

	
 	
 	
 	
 �

�

�
�
�

�
�

�
��

�

�
�
�

�
�

�
��

00612

6242

02023262

32122212
2DDk

	
 �
�

�
�
�

�
�

��
�

�
�
�

�
����

��
��

�

�
�
�

�
�

��
�

�
�
�

�
�

��
53

77

8352

2561

85

26

32

51
BA

� As with addition, in order to be able to subtract two matrices, they
must have the same dimensions. Matrix subtraction is illustrated
by the following example:

Multiplication

Matrix multiplication is the most important operation that we use with
matrices in 3D computer graphics. Through matrix multiplication we
can transform vectors and combine several transformations together.
Transformations are covered in the next section.

In order to take the matrix product AB, the number of columns of
A must equal the number of rows of B. If that condition is satisfied, the
product is defined. Consider the following two matrices, A and B, of
dimensions 2 � 3 and 3 � 3, respectively:

We see that the product AB is defined because the number of columns
of A equals the number of rows of B. Note that the product BA, found
by switching the order of multiplication, is not defined because the
number of columns of B does not equal the number of rows of A. This
suggests that matrix multiplication is generally not commutative (that
is, AB � BA). We say “generally not commutative” because there are
some instances where matrix multiplication does work out to be
commutative.

Now that we know when matrix multiplication is defined, we can
give its definition as follows: If A is an m � n matrix and B is an n � p

matrix, the product AB is defined and is an m � p matrix C, where the
ijth entry of the product C is found by taking the dot product of the ith

row vector in A with the jth column vector in B:

(4)

where ai denotes the ith row vector in A, and bj denotes the jth column
vector in B.

Mathematical Prerequisites 13

P
a

rt
I

	
 �
�

�
�
�

�
�

�
��

�

�
�
�

�
���

��
��

�

�
�
�

�
�

��
��

�

�
�
�

�
�

��
�

�
�
�

�
�

��
�

�
�
�

�
�

�����
117

35

8352

2561

85

26

32

51

85

26

32

51
BABA

�
�

�
�
�

�
�

232221

131211

aaa

aaa
A

�
�
�

�

�

�
�
�

�

�
�

333231

232221

131211

bbb

bbb

bbb

B

jiijc ba ��

As an example, find the product:

We verify the product is defined because the number of columns of A

equals the number of rows of B. Also note that the resulting matrix is a
2 � 2 matrix. Using formula (4), we have:

As an exercise, verify for this particular example that AB �BA.

A more general example:

The Identity Matrix

There is a special matrix called the identity matrix. The identity matrix
is a square matrix that has zeros for all elements except along the main
diagonal, and the elements along the main diagonal are all ones. For
example, below are 2 � 2, 3 � 3, and 4 � 4 identity matrices:

The identity matrix acts as a multiplicative identity:

MI = IM = M

That is, multiplying a matrix by the identity does not change the
matrix. Further, multiplying with the identity matrix is a particular case
when matrix multiplication is commutative. The identity matrix can be
thought of as the number “1” for matrices.

Example: Verify that multiplying the matrix M �
�

�
�

�

�
�

1 2

0 4
by the 2 � 2

identity matrix results in M.

14 Part I

�
�

�
�
�

�
�
�

�
�
�

�
�

�
12

31

12

14
AB

	
 	
 	
 	

	
 	
 	
 	
 �

�

�
�
�

�
�

��
�

�
�
�

�
����

��
��

�

�
�
�

�
��

��
��

�

�
�
�

�
�
�

�
�
�

�
�

�
50

136

13122112

13142114

12

31

12

14

2212

2111

baba

baba
AB

CAB ��
�

�
�
�

�
����

����
�

�
�
�

�

�

�
�
�

�

�

�
�

�
�
�

�
�

322322221221312321221121

321322121211311321121111

3231

2221

1211

232221

131211

babababababa

babababababa

bb

bb

bb

aaa

aaa

�
�

�
�
�

�
10

01

�
�
�

�

�

�
�
�

�

�

100

010

001

�
�
�
�

�

�

�
�
�
�

�

�

1000

0100

0010

0001

TE
AM
FL
Y

Team-Fly®

Inverses

In matrix math there is not an analog to division but there is a multipli-
cative inverse operation. The following list summarizes the important
information about inverses:

� Only square matrices have inverses; therefore when we speak of
matrix inverses, we assume we are dealing with a square matrix.

� The inverse of an n � n matrix M is an n � n matrix denoted as M–1.

� Not every square matrix has an inverse.

� Multiplying a matrix with its inverse results in the identity matrix:
MM–1 = M–1M = I. Note that matrix multiplication is commutative
when multiplying a matrix with its inverse.

Matrix inverses are useful for solving for other matrices in a matrix

equation. For example, consider the equation p� = pR and suppose that

we know p� and R and wish to solve for p. The first task is to find R–1

(assuming it exists). Once R–1 is known, we can solve for p, like so:

Techniques for finding inverses are beyond the scope of this book, but
they are described in any linear algebra textbook. In the section titled
“Basic Transformations” we give the inverses for the particular matri-
ces that we work with. In the section titled “D3DX Matrices” we learn
about a D3DX function that finds the inverse of a matrix for us.

To conclude this section on inverses we present the following use-
ful property for the inverse of a product: (AB)–1 = B–1 A–1. This
property assumes both A and B are invertible and that they are both
square matrices of the same dimension.

The Transpose of a Matrix

The transpose of a matrix is found by interchanging the rows and col-
umns of the matrix. Thus, the transpose of an m � n matrix is an n �m

matrix. We denote the transpose of a matrix M as MT.

Mathematical Prerequisites 15

P
a

rt
I

	
 	
 	
 	

	
 	
 	
 	
 �

�

�
�
�

�
��

�

�
�
�

�
��

��
��

�

�
�
�

�
�
�

�
�
�

�
40

21

10400140

10210121

10

01

40

21

	

pRp

pIRp

RRpRp

��

��

��

�

�

��

1

1

11

Example: Find the transpose for the following two matrices:

To reiterate, the transposes are found by interchanging the rows and
columns. Thus:

D3DX Matrices

When programming Direct3D applications, we typically use 4 � 4 matri-
ces and 1 � 4 row vectors exclusively. Note that using these two sizes
of matrices implies the following matrix multiplications are defined:

� Vector-matrix multiplication. That is, if v is a 1 � 4 row vector
and T is a 4 � 4 matrix, the product vT is defined and the result is a
1 � 4 row vector.

� Matrix-matrix multiplication. That is, if T is a 4 � 4 matrix and
R is a 4 � 4 matrix, the products TR and RT are defined and both
result in a 4 � 4 matrix. Note that the product TR does not neces-
sarily equal the product RT because matrix multiplication is not
commutative.

To represent 1 � 4 row vectors in D3DX, we typically use the
D3DXVECTOR3 and D3DXVECTOR4 vector classes. Of course,
D3DXVECTOR3 only has three components, not four. However, the
fourth component is typically an understood one or zero (more on this
in the next section).

To represent 4 � 4 matrices in D3DX, we use the D3DXMATRIX
class, defined as follows:

typedef struct D3DXMATRIX : public D3DMATRIX
{
public:

D3DXMATRIX() {};
D3DXMATRIX(CONST FLOAT*);
D3DXMATRIX(CONST D3DMATRIX&);
D3DXMATRIX(FLOAT _11, FLOAT _12, FLOAT _13, FLOAT _14,

FLOAT _21, FLOAT _22, FLOAT _23, FLOAT _24,
FLOAT _31, FLOAT _32, FLOAT _33, FLOAT _34,
FLOAT _41, FLOAT _42, FLOAT _43, FLOAT _44);

16 Part I

�
�

�
�
�

�
�

�
�

463

812
A

�
�
�

�

�

�
�
�

�

�
�

ihg

fed

cba

B

�
�
�

�

�

�
�
�

�

�

�

��

48

61

32
TA

�
�
�

�

�

�
�
�

�

�
�

ifc

heb

gda
TB

// access grants
FLOAT& operator () (UINT Row, UINT Col);
FLOAT operator () (UINT Row, UINT Col) const;

// casting operators
operator FLOAT* ();
operator CONST FLOAT* () const;

// assignment operators
D3DXMATRIX& operator *= (CONST D3DXMATRIX&);
D3DXMATRIX& operator += (CONST D3DXMATRIX&);
D3DXMATRIX& operator -= (CONST D3DXMATRIX&);
D3DXMATRIX& operator *= (FLOAT);
D3DXMATRIX& operator /= (FLOAT);

// unary operators
D3DXMATRIX operator + () const;
D3DXMATRIX operator - () const;

// binary operators
D3DXMATRIX operator * (CONST D3DXMATRIX&) const;
D3DXMATRIX operator + (CONST D3DXMATRIX&) const;
D3DXMATRIX operator - (CONST D3DXMATRIX&) const;
D3DXMATRIX operator * (FLOAT) const;
D3DXMATRIX operator / (FLOAT) const;

friend D3DXMATRIX operator * (FLOAT, CONST D3DXMATRIX&);

BOOL operator == (CONST D3DXMATRIX&) const;
BOOL operator != (CONST D3DXMATRIX&) const;

} D3DXMATRIX, *LPD3DXMATRIX;

The D3DXMATRIX class inherits its data entries from the simpler
D3DMATRIX structure, which is defined as:

typedef struct _D3DMATRIX {
union {

struct {
float _11, _12, _13, _14;
float _21, _22, _23, _24;
float _31, _32, _33, _34;
float _41, _42, _43, _44;

};
float m[4][4];

};
} D3DMATRIX;

Observe that the D3DXMATRIX class has a myriad of useful operators,
such as testing for equality, adding and subtracting matrices, multiply-
ing a matrix by a scalar, casting, and—most importantly—multiplying
two D3DXMATRIXs together. Because matrix multiplication is so impor-
tant, we give a code example of using this operator:

D3DXMATRIX A(…); // initialize A
D3DXMATRIX B(…); // initialize B

Mathematical Prerequisites 17

P
a

rt
I

D3DXMATRIX C = A * B; // C = AB

Another important operator of the D3DXMATRIX class is the parenthe-
sis operator, which allows us to conveniently access entries in the
matrix. Note that when using the parenthesis operator, we index start-
ing into the matrix starting at zero like a C-array. For example, to
access entry ij = 11 of a matrix, we would write:

D3DXMATRIX M;
M(0, 0) = 5.0f; // Set entry ij = 11 to 5.0f.

The D3DX library also provides the following useful functions that set a
D3DXMATRIX to the identity matrix, take the transpose of a
D3DXMATRIX, and find the inverse of a D3DXMATRIX:

D3DXMATRIX *D3DXMatrixIdentity(
D3DXMATRIX *pout // The matrix to be set to the identity.

);

D3DXMATRIX M;
D3DXMatrixIdentity(&M); // M = identity matrix

D3DXMATRIX *D3DXMatrixTranspose(
D3DXMATRIX *pOut, // The resulting transposed matrix.
CONST D3DXMATRIX *pM // The matrix to take the transpose of.

);

D3DXMATRIX A(...); // initialize A
D3DXMATRIX B;
D3DXMatrixTranspose(&B, &A); // B = transpose(A)

D3DXMATRIX *D3DXMatrixInverse(
D3DXMATRIX *pOut, // returns inverse of pM
FLOAT *pDeterminant, // determinant, if required, else pass 0
CONST D3DXMATRIX *pM // matrix to invert

);

The inverse function returns null if the matrix that we are trying to
invert does not have an inverse. Also, for this book we can ignore the
second parameter and set it to 0 every time.

D3DXMATRIX A(...); // initialize A
D3DXMATRIX B;
D3DXMatrixInverse(&B, 0, &A); // B = inverse(A)

Basic Transformations

When programming using Direct3D, we use 4 � 4 matrices to represent
transformations. The idea is this: We set the entries of a 4 � 4 matrix X

to describe a specific transformation. Then we place the coordinates of
a point or the components of a vector into the columns of a 1 � 4 row

18 Part I

vector v. The product vX results in a new transformed vector v�. For
example, if X represented a 10-unit translation on the x-axis and v =

[2, 6, –3, 1], the product vX = v� = [12, 6, –3, 1].
A few things need to be clarified. We use 4 � 4 matrices because

that particular size can represent all the transformations that we need.
A 3 � 3 may at first seem more suitable to 3D. However, there are many
types of transformations that we would like to use that we cannot
describe with a 3 � 3 matrix, such as translations, perspective projec-
tions, and reflections. Remember that we are working with a vector-
matrix product, and so we are limited to the rules of matrix
multiplication to perform transformations. Augmenting to a 4 � 4 matrix
allows us to describe more transformations with a matrix and the
defined vector-matrix multiplication.

We said that we place the coordinates of a point or the components
of a vector into the columns of a 1 � 4 row vector. But our points and
vectors are 3D! Why are we using 1 � 4 row vectors? We must augment
our 3D points/vectors to 4D row vectors in order to make the vector-
matrix product defined—the product of a 1 � 3 row vector and a 4 � 4
matrix is not defined.

So then, what do we use for the fourth component, which, by the
way, we denote as w? When placing points in a 1 � 4 row vector, we set
the w component to 1. This allows translations of points to work cor-
rectly. Because vectors have no location, the translation of vectors is
not defined, and attempting to translate a vector results in a meaning-
less vector. In order to prevent translation on vectors, we set the w

component to 0 when placing vectors into a 1 � 4 row vector. For exam-
ple, the point p = (p1, p2, p3) would be placed in a row vector as
[p1, p2, p3, 1], and the vector v = (v1, v2, v3) would be placed in a row
vector as [v1, v2, v3, 0].

Note: We set w = 1 to allow points to be translated correctly, and
we set w = 0 to prevent translations on vectors. This is made clear
when we examine the actual translation matrix.

Note: The augmented 4D vector is called a homogenous vector and
because homogeneous vectors can describe points and vectors, we use
the term “vector,” knowing that we may be referring to either points or
vectors.

Sometimes a matrix transformation we define changes the w compo-
nent of a vector so that w � 0 and w � 1. Consider the following:

Mathematical Prerequisites 19

P
a

rt
I

� �p �

�

�

�
�
�
�

�

�

�
�
�
�

�p p p p p p1 2 3 1 2 31

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

, , , , , ,� �p3 � p', for p3 � 0

and p3 � 1.

We note that w = p3. When w � 0 and w � 1, we say that we have a vec-
tor in homogeneous space, as opposed to a vector in 3-space. We can map
a vector in homogeneous space back to three dimensions by dividing
each component of the vector by the w component. For example, to
map the vector (x, y, z, w) in homogeneous space to the 3D vector x

we would write:

Going to homogeneous space and then mapping back to 3D space is
used to do perspective projections in 3D graphics programming.

Note: When we write a point (x, y, z) as (x, y, z, 1) we are techni-
cally describing our 3D space on a 4D plane in 4-space, namely the
4D plane w = 1. (Note that a plane in 4D is a 3D space, just like a
plane in 3D is a 2D space.) Thus, when we set w to something else, we
move off the w = 1 plane. In order to get back onto that plane, which
corresponds with our 3D space, we project back onto it by dividing
each component by w.

The Translation Matrix

We can translate the vector (x, y, z, 1) px units
on the x-axis, py units on the y-axis, and pz

units on the z-axis by multiplying it with the
following matrix:

20 Part I

, , , , , , 1 , ,
x y z w x y z x y z

x
w w w w w w w w w w

� � � � � �� � �� � � � � �
� � � � � �

Figure 8: Trans-
lating 12 units on
the x-axis and –10
units on the y-axis

	

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

1

0100

0010

0001

zyx ppp

pT

The D3DX function to build a translation matrix is:

D3DXMATRIX *D3DXMatrixTranslation(
D3DXMATRIX* pOut, // Result.
FLOAT x, // Number of units to translate on x-axis.
FLOAT y, // Number of units to translate on y-axis.
FLOAT z // Number of units to translate on z-axis.

);

Exercise: Let T(p) be a matrix representing a translation transforma-
tion, and let v = [v1, v2, v3, 0] be any vector. Verify vT(p) = v (that is,
verify the vector is not affected by translations if w = 0).

The inverse of the translation matrix is found by simply negating
the translating vector p.

The Rotation Matrices

We can rotate a vector
 radians around the x-, y-, and z-axis using the
following matrices. Note that angles are measured clockwise when
looking down the axis of rotation toward the origin.

The D3DX function to build an x-axis rotation matrix is:

D3DXMATRIX *D3DXMatrixRotationX(
D3DXMATRIX* pOut, // Result.

Mathematical Prerequisites 21

P
a

rt
I

	

�
�
�
�
�

�

�

�
�
�
�
�

�

�

���

����

1

0100

0010

0001

1

zyx ppp

pTT

Figure 9: Rotating
30 degrees coun-
terclockwise
around the z-axis
from our
perspective

	

�
�
�
�

�

�

�
�
�
�

�

�

�
�

1000

0cossin0

0sincos0

0001

��

��

X

FLOAT Angle // Angle of rotation measured in radians.
);

The D3DX function to build a y-axis rotation matrix is:

D3DXMATRIX *D3DXMatrixRotationY(
D3DXMATRIX* pOut, // Result.
FLOAT Angle // Angle of rotation measured in radians.

);

The D3DX function to build a z-axis rotation matrix is:

D3DXMATRIX *D3DXMatrixRotationZ(
D3DXMATRIX* pOut, // Result.
FLOAT Angle // Angle of rotation measured in radians.

);

The inverse of a rotation matrix R is its transpose RT = R–1. Such a
matrix is said to be orthogonal.

The Scaling Matrix

We can scale a vector qx units on the x-axis, qy units on the y-axis, and qz

units on the z-axis by multiplying a vector with the following matrix:

22 Part I

	

�
�
�
�

�

�

�
�
�
�

�

� �

�

1000

0cos0sin

0010

0sin0cos

��

��

Y

	

�
�
�
�

�

�

�
�
�
�

�

�
�

�

1000

0100

00cossin

00sincos

��

��

Z

Figure 10: Scaling
by one-half units
on the x-axis and
two units on the
y-axis

The D3DX function to build a scaling matrix is:

D3DXMATRIX *D3DXMatrixScaling(
D3DXMATRIX* pOut, // Result.
FLOAT sx, // Number of units to scale on the x-axis.
FLOAT sy, // Number of units to scale on the y-axis.
FLOAT sz // Number of units to scale on the z-axis.

);

The inverse of a scaling matrix is found by taking the reciprocal of each
scaling factor:

Combining Transformations

Often we apply a sequence of transformations to a vector. For instance,
we may scale a vector, then rotate it, and finally translate it into its
desired position.

Example: Scale the vector p = [5, 0, 0, 1] by one-fifth on all axes, then
rotate it �/4 radians on the y-axis, and finally translate it 1 unit on the
x-axis, 2 units on the y-axis, and –3 units on the z-axis.

Solution: Note that we must perform a scaling, a y-axis rotation, and a
translation. We set up our transformation matrices S, Ry, T for scaling,
rotating, and translating, respectively, as follows:

Mathematical Prerequisites 23

P
a

rt
I

	

�
�
�
�

�

�

�
�
�
�

�

�

�

1000

000

000

000

z

y

x

q

q

q

qS

1

1
0 0 0

1
0 0 01 1 1

, ,

1
0 0 0

0 0 0 1

x

y

x y z

z

q

q
q q q

q

�

� �
� �
� �
� �

� � � �� �� � � �� �
� � � �

� �
� �
� �� �

S S

1
0 0 0

5

1
0 0 01 1 1

, , 5
5 5 5

1
0 0 0

5

0 0 0 1

� �
� �
� �
� �� � � ��� �
� �� �
� �
� �
� �� �

S

�
�
�
�

�

�

�
�
�
�

�

� �

��
�

�
�
�

�

1000

0707.0707.

0010

0707.0707.

4

�
yR

Applying the sequence of transformations in the order scaling, rotating,
and translating, we obtain:

(5)

One of the key benefits of matrices is that we can use matrix multipli-
cation to combine several transformations into one matrix. For
example, let’s reconsider the example at the beginning of this section.
Let’s combine the three transformation matrices into one matrix repre-
senting all three through matrix multiplication. Note that the order in
which we multiply the transformations is the order that they are
applied.

(6)

Then pQ = [1.707, 2, –3.707, 1].
The ability to combine transformations has performance implica-

tions. Suppose that we need to apply the same scaling, rotation, and
translation transformations to a large set of vectors (a common task in
3D graphics). Instead of applying a sequence of transformations, as we
did in equation (5), per vector, we can combine all three transforma-
tions into one matrix, as we did in equation (6). Then we only have to

24 Part I

	

1 0 0 0

0 1 0 0
1, 2, 3

0 0 1 0

1 2 3 1

� �
� �
� �� �
� �
� �

�� �

T

� �1, 0, 0, 1 �� �pS p

� �.707, 0, .707, 1y
� ��� � �p R p

� �1.707, 2, 3.707, 1�� � �p T

Q

TSR

�

�
�
�
�

�

�

�
�
�
�

�

�

�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�

�

� �

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�

1321

01414.01414.

0010

01414.01414.

1321

0100

0010

0001

1000

0707.0707.

0010

0707.0707.

1000

0
5

1
00

00
5

1
0

000
5

1

y

TE
AM
FL
Y

Team-Fly®

multiply each vector by one matrix that contains all three transforma-
tions combined. This saves a significant amount of vector-matrix
multiplication operations.

Some Functions to Transform Vectors

The D3DX library provides the following two functions for transform-
ing points and vectors, respectively. The D3DXVec3TransformCoord
function transforms points and assumes the fourth component of the
vector is an understood 1. The D3DXVec3TransformNormal function
transforms vectors and assumes the fourth component of the vector is
an understood 0.

D3DXVECTOR3 *D3DXVec3TransformCoord(
D3DXVECTOR3* pOut, // Result.
CONST D3DXVECTOR3* pV, // The point to transform.
CONST D3DXMATRIX* pM // The transformation matrix.

);

D3DXMATRIX T(...); // initialize a transformation matrix
D3DXVECTOR3 p(...); // initialize a point
D3DXVec3TransformCoord(&p, &p, &T); // transform the point

D3DXVECTOR3 *WINAPI D3DXVec3TransformNormal(
D3DXVECTOR3 *pOut, // Result.
CONST D3DXVECTOR3 *pV, // The vector to transform.
CONST D3DXMATRIX *pM // The transformation matrix.

);

D3DXMATRIX T(...); // initialize a transformation matrix
D3DXVECTOR3 v(...); // initialize a vector
D3DXVec3TransformNormal(&v, &v, &T); // transform the vector

Note: The D3DX library also provides D3DXVec3Transform-
CoordArray and D3DXVec3TransformNormalArray for transforming
an array of points and an array of vectors, respectively.

Planes (Optional)

A plane can be described with a vector n and a point on the plane p0.
The vector n is called the plane’s normal vector and is perpendicular to
the plane (see Figure 11).

Mathematical Prerequisites 25

P
a

rt
I

Figure 11: A plane defined by a normal vector
n and a point on the plane p0

In Figure 12 we see that the graph of a plane is all the points p that sat-
isfy the equation.

(7)

When describing a particular plane, the normal n and a known point on
the plane p0 are fixed, so it is typical to write equation (7) as:

(8)

where d = –n �p0.

Note: If the plane’s normal vector n is of unit length, d = –n � p0

gives the shortest signed distance from the origin to the plane.

D3DXPLANE

When representing a plane in code, it suffices to store only the normal
vector n and the constant d. It is useful to think of this as a 4D vector,
which we denote as (n, d). The D3DX library uses the following struc-
ture for a plane:

typedef struct D3DXPLANE
{
#ifdef __cplusplus
public:

D3DXPLANE() {}
D3DXPLANE(CONST FLOAT*);
D3DXPLANE(CONST D3DXFLOAT16*);
D3DXPLANE(FLOAT a, FLOAT b, FLOAT c, FLOAT d);

// casting
operator FLOAT* ();
operator CONST FLOAT* () const;

// unary operators
D3DXPLANE operator + () const;
D3DXPLANE operator - () const;

// binary operators
BOOL operator == (CONST D3DXPLANE&) const;
BOOL operator != (CONST D3DXPLANE&) const;

26 Part I

Figure 12: If p0 is a point on the plane, then
the point p is also on the plane if the vector
formed from (p – p0) is orthogonal to the
plane’s normal vector.

	
 00 ��� ppn

0��� dpn

#endif //__cplusplus
FLOAT a, b, c, d;

} D3DXPLANE, *LPD3DXPLANE;

where a, b, and c form the components of the plane’s normal vector n

and d is the constant d, from equation (8).

Point and Plane Spatial Relation

Equation (8) is primarily useful for testing the location of points relative
to the plane. For example, given the plane (n, d), we can test how a par-
ticular point p is in relation with the plane:

If n �p + d = 0, then p is coplanar with the plane.
If n �p + d > 0, then p is in front of the plane and in the plane’s

positive half-space.
If n �p + d < 0, then p is in back of the plane and in the plane’s

negative half-space.

Note: If the plane’s normal vector n is of unit length, then n � p + d
gives the shortest signed distance from the plane to the point p.

This next D3DX function evaluates n �p + d for a particular plane and
point:

FLOAT D3DXPlaneDotCoord(
CONST D3DXPLANE *pP, // plane.
CONST D3DXVECTOR3 *pV // point.

);

// Test the locality of a point relative to a plane.
D3DXPLANE p(0.0f, 1.0f, 0.0f, 0.0f);

D3DXVECTOR3 v(3.0f, 5.0f, 2.0f);

float x = D3DXPlaneDotCoord(&p, &v);

if(x approximately equals 0.0f) // v is coplanar to the plane.
if(x > 0) // v is in positive half-space.
if(x < 0) // v is in negative half-space.

Note: We say “approximately equals” due to floating-point impreci-
sion. See the note in the section titled “Vector Equality.”

Note: Methods similar to D3DXPlaneDotCoord are D3DXPlaneDot

and D3DXPlaneDotNormal. See the DirectX documentation for details.

Construction

Besides directly specifying the normal and signed distance of a plane,
we can calculate these two components in two ways. Given the normal
n and a known point on the plane p0, we can solve for the d component:

Mathematical Prerequisites 27

P
a

rt
I

The D3DX library provides the following function to perform this
calculation:

D3DXPLANE *D3DXPlaneFromPointNormal(
D3DXPLANE* pOut, // Result.
CONST D3DXVECTOR3* pPoint, // Point on the plane.
CONST D3DXVECTOR3* pNormal // The normal of the plane.

);

The second way that we can construct a plane is by specifying three
points on the plane.

Given the points p0, p1, p2, we can form two vectors on the plane:

From that we can compute the normal of the plane by taking the cross
product of the two vectors on the plane. Remember the left hand thumb
rule.

Then, –(n �p0) = d.
The D3DX library provides the following function to compute a

plane, given three points on the plane:

D3DXPLANE *D3DXPlaneFromPoints(
D3DXPLANE* pOut, // Result.
CONST D3DXVECTOR3* pV1, // Point 1 on the plane.
CONST D3DXVECTOR3* pV2, // Point 2 on the plane.
CONST D3DXVECTOR3* pV3 // Point 3 on the plane.

);

Normalizing a Plane

Sometimes we might have a plane and would like to normalize the nor-
mal vector. At first thought, it would seem that we could just normalize
the normal vector as we would any other vector. But recall that
d = –n �p0 in n �p + d = 0. We see that the length of the normal vector
influences the constant d. Therefore, if we normalize the normal vector,

we must also recalculate d. Note that
d

n

n

n
p0� � � .

28 Part I

d

d

d

���

���

���

0

0

0 0

pn

pn

pn

02

01

ppv

ppu

��

��

vun ��

Thus, we have the following formula to normalize the normal vec-

tor of the plane (n, d):

We can use the following D3DX function to normalize a plane’s normal

vector:

D3DXPLANE *D3DXPlaneNormalize(

D3DXPLANE *pOut, // Resulting normalized plane.

CONST D3DXPLANE *pP // Input plane.

);

Transforming a Plane

Lengyel shows in Mathematics for 3D Game Programming & Computer

Graphics that we can transform a plane (�n, d) by treating it as a 4D vec-

tor and multiplying it by the inverse-transpose of the desired transfor-

mation matrix. Note that the plane’s normal vector must be normalized

first.

We use the following D3DX function to do this:

D3DXPLANE *D3DXPlaneTransform(

D3DXPLANE *pOut, // Result

CONST D3DXPLANE *pP, // Input plane.

CONST D3DXMATRIX *pM // Transformation matrix.

);

Sample code:

D3DXMATRIX T(...); // Init. T to a desired transformation.

D3DXMATRIX inverseOfT;

D3DXMATRIX inverseTransposeOfT;

D3DXMatrixInverse(&inverseOfT, 0, &T);

D3DXMatrixTranspose(&inverseTransposeOfT, &inverseOfT);

D3DXPLANE p(...); // Init. Plane.

D3DXPlaneNormalize(&p, &p); // make sure normal is normalized.

D3DXPlaneTransform(&p, &p, &inverseTransposeOfT);

Nearest Point on a Plane to a Particular Point

Suppose that we have a point p in space and would like to find the point

q on the plane (�n, d) that is closest to p. Note that the plane’s normal

vector is assumed to be of unit length—this simplifies the problem a

bit.

Mathematical Prerequisites 29

P
a

r
t

I

� �1
, ,

d
d

� �
� � �� �

� 	

n

n

n n n

From Figure 13 we can see that q = p + (–k �n), where k is the shortest
signed distance from p to the plane, which is also the shortest signed
distance between the points p and q. Recall that if the plane’s normal
vector n is of unit length, then n �p + d gives the shortest signed dis-
tance from the plane to the point p.

Rays (Optional)

Suppose a player in a game that we are working on fires his gun at an
enemy. How would we determine whether the bullet starting from a
particular position and aimed in a direction hit the target? One approach
would be to model the bullet with a ray and model the enemy with a
bounding sphere. (A bounding sphere is simply a sphere that tightly
surrounds an object, thus roughly approximating its volume. Bounding
spheres are explained more in Chapter 11.) Then mathematically we
can determine whether the ray hit the sphere and where. In this sec-
tion we learn how to model rays mathematically.

Rays

A ray can be described with an origin and a direction. The parametric
equation of a ray is:

(9)

30 Part I

Figure 13: The point q on the plane (�n d) near-
est to p. Observe that the shortest signed dis-
tance k from p to the plane is positive, since p
is in the positive half-space of (�n d). If p was
behind the plane, then k < 0.

	
 upp tt �� 0

Figure 14: A ray described by an origin p0

and direction u. We can generate points
on the ray by plugging in scalars for t that
are greater than or equal to zero.

p0 is the origin of the ray, u is the direction of the ray, and t is the
parameter. By plugging in different values for t, we compute different
points on the ray. The parameter t must be in the interval [0, �) to
describe a ray. Values less than zero will generate points behind the ray
(that is, on the line that the ray is on). In fact, if we let t�(–�, �), then
we have a line in 3-space.

Ray/Plane Intersection

Given a ray p(t) = p0 + tu and a plane n �p + d = 0, we would like to
know if the ray intersects the plane and the point of intersection. To do
this, we plug the ray into the plane equations and solve for the parame-
ter t that satisfies the plane equation, giving us the parameter that
yields the intersection point.

Plugging equation (9) into the plane equation:

Plug ray into plane equation

Distributive property

Associative property

Solve for t.

If t is not in the interval [0, �), the ray does not intersect the plane.
If t is in the interval [0, �), the intersection point is found by plug-

ging the parameter that satisfies the plane equation into the ray
equation:

Mathematical Prerequisites 31

P
a

rt
I

	
 0��� dtpn

	
 00 ���� dtupn

00 ����� dtunpn

	
0pnun ����� dt

	
 	
0pnun ����� dt

	

	
un

pn

�

���
� 0d

t

	

	

	

	

u
un

pn
p

un

pn
p

�

���
����

�

�
��
�

�

�

��� 0
0

0 dd

Summary

� Vectors are used to model physical quantities that possess a magni-

tude and direction mathematically. Geometrically, we represent a

vector with a directed line segment. A vector is in standard position

when it is translated parallel to itself so that its tail coincides with

the origin of the coordinate system. A vector in standard position

can be described algebraically by specifying the coordinates of its

head.

� We can use 4 � 4 matrices to represent transformations and 1 � 4

homogeneous vectors to describe points and vectors. The vector-

matrix product of a 1 � 4 row vector and a 4 � 4 transformation

matrix results in a new transformed 1 � 4 row vector. Several trans-

formation matrices can be combined into one transformation matrix

through matrix-matrix multiplication.

� We use 4D homogeneous vectors to represent both vectors and

points. We specify 0 for the w component to denote a vector and 1

for the w component to denote a point. If w � 0 and w � 1, then we

have a vector (x, y, z, w) in homogeneous space that can be

mapped back to 3-space by dividing each component by w:

� Planes divide 3D space into two parts: a positive half-space, which

is the space in front of the plane, and a negative half-space, which is

the space behind the plane. Planes are useful for testing the locality

of points relative to them (in other words, what half-space a point

exists in relative to a particular plane).

� Rays are described parametrically with an origin and direction vec-

tor. Rays are useful for modeling various physical quantities, such

as light rays and projectiles that approximately follow a linear path

such as bullets and rockets.

32 Part I

, , , , , , 1 , ,
x y z w x y z x y z

w w w w w w w w w w

� � � � � �
� �� � � � � �

� 	 � 	 � 	

Part II

Direct3D
Fundamentals

In this part, we study fundamental Direct3D concepts and techniques
that are used throughout the rest of this book. With these fundamentals
mastered, we can move on to writing more interesting applications. A
brief description of the chapters in this part follows.

Chapter 1, “Direct3D Initialization”—In this chapter, we learn what
Direct3D is about and how to initialize it in preparation for 3D drawing.

Chapter 2, “The Rendering Pipeline”—The first theme of this
chapter is to learn, mathematically, how to describe a 3D world and rep-
resent a virtual camera that describes the perspective from which the
world is viewed. The second theme is to learn the steps necessary to
take a 2D “picture” of the 3D world based on what the camera “sees”;
these steps as a whole are referred to as the rendering pipeline.

Chapter 3, “Drawing in Direct3D”—This chapter shows how to
draw 3D geometry in Direct3D. We learn how to store geometric data
in a form that is usable by Direct3D, and we learn the Direct3D draw-
ing commands. In addition, we learn how to configure the way that
Direct3D draws geometry using render states.

Chapter 4, “Color”—In this chapter, we learn how color is repre-
sented in Direct3D and how to apply color to solid 3D geometric
primitives. Finally, we describe two ways that colors specified per ver-
tex can be shaded across a primitive.

Chapter 5, “Lighting”—In this chapter, we learn how to create light
sources and define the interaction between light and surfaces. Lighting
adds to the scene’s realism and helps depict the solid form and volume
of objects.

Chapter 6, “Texturing”—This chapter describes texture mapping.
Texture mapping is a technique used to increase the realism of the
scene by mapping 2D image data onto a 3D primitive. For example,
using texture mapping, we can model a brick wall by applying a 2D
brick wall image onto a 3D rectangle.

33

Chapter 7, “Blending”—In this chapter, we look at a technique
called blending. This technique allows us to implement a number of
special effects—in particular, glass-like transparency.

Chapter 8, “Stenciling”—This chapter describes the stencil buffer,
which, like a stencil, allows us to block pixels from being drawn. To
illustrate the ideas of this chapter, we include thorough discussions on
implementing reflections and planar shadows using the stencil buffer.

34 Part II

TE
AM
FL
Y

Team-Fly®

Chapter 1

Direct3D Initialization

Initialization of Direct3D has historically been a tedious chore. Fortu-
nately, version 8.0 adopted a simplified initialization model, and
Direct3D 9.0 follows that same model. However, the initialization pro-
cess still assumes that the programmer is familiar with basic graphics
concepts and some fundamental Direct3D types. The first few sections
of this chapter address these requirements. With these prerequisites
met, the remainder of the chapter explains the initialization process.

Objectives

� To learn how Direct3D interacts with graphics hardware

� To understand the role that COM plays with Direct3D

� To learn fundamental graphics concepts, such as how 2D images
are stored, page flipping, and depth buffering

� To learn how to initialize Direct3D

� To become familiar with the general structure that the sample
applications of this book employ

1.1 Direct3D Overview

Direct3D is a low-level graphics API (application programming inter-
face) that enables us to render 3D worlds using 3D hardware
acceleration. Direct3D can be thought of as a mediator between the
application and the graphics device (3D hardware). For example, to
instruct the graphics device to clear the screen, the application would
call the Direct3D method IDirect3DDevice9::Clear. Figure 1.1
shows the relationship between the application, Direct3D, and the
hardware.

35

The Direct3D part of Figure 1.1 is the defined set of interfaces and
functions Direct3D exposes to the application/programmer. These
interfaces and functions represent the entire features set that the cur-
rent version of Direct3D supports. Note that just because Direct3D
exposes a feature, it doesn’t imply that available graphics hardware sup-
ports it.

As Figure 1.1 shows, there is an intermediate step between
Direct3D and the graphics device—the HAL (Hardware Abstraction
Layer). Direct3D cannot interact directly with graphics devices because
there are a variety of different cards on the market, and each card has
different capabilities and ways of implementing things. For instance,
two different graphics cards may implement the clear screen operation
differently. Therefore, Direct3D requires device manufacturers to
implement a HAL. The HAL is the set of device-specific code that
instructs the device to perform an operation. In this way Direct3D
avoids having to know the specific details of a device, and its specifica-
tion can be made independent of hardware devices.

Device manufacturers implement all the features that their device
supports into the HAL. Features exposed by Direct3D but not sup-
ported by the device are not implemented into the HAL. Calling a
Direct3D function that is not implemented by the HAL results in fail-
ure, unless it’s a vertex processing operation, in which case the desired
functionality can be emulated in software, if using software vertex pro-
cessing, by the Direct3D runtime. Therefore, when using esoteric
features that are only supported by a minority of devices on the market,
be sure to verify that the device supports the feature (device capabili-
ties are explained in section 1.3.8).

1.1.1 The REF Device

You may wish to write programs that use functionality that Direct3D
exposes but are not implemented on your device. For this purpose,
Direct3D provides a reference rasterizer (known as a REF device),
which emulates the entire Direct3D API in software. This allows you to
write and test code that uses Direct3D features that are not available
on your device. For example, in Part IV of this book, we use vertex and
pixel shaders, which many cards do not support. If your graphics card

36 Chapter 1

Figure 1.1: The relationship between the application, Direct3D, and the hardware

does not support shaders, you can still test the sample code with the
REF device. It is important to understand that the REF device is for
development only. It ships only with the DirectX SDK and cannot be
distributed to end users. In addition, the REF is slow enough that it’s
not practical to use for anything but testing.

1.1.2 D3DDEVTYPE

In code, a HAL device is specified by D3DDEVTYPE_HAL, which is a
member of the D3DDEVTYPE enumerated type. Similarly, a REF device
is specified by D3DDEVTYPE_REF, which is also a member of the
D3DDEVTYPE enumerated type. These types are important to remem-
ber because we will be asked to specify which type to use when
creating our device.

1.2 COM

Component Object Model (COM) is the technology that allows DirectX
to be language independent and have backward compatibility. We usu-
ally refer to a COM object as an interface, which for our purposes can
be thought of and used as a C++ class. Most of the details of COM are
transparent to us when programming DirectX with C++. The only
thing that we must know is that we obtain pointers to COM interfaces
through special functions or the methods of another COM interface; we
do not create a COM interface with the C++ new keyword. In addition,
when we are done with an interface, we call its Release method (all
COM interfaces inherit functionality from the IUnknown COM inter-
face, which provides the Release method) rather than delete it.
COM objects perform their own memory management.

There is, of course, much more to COM, but more detail is not nec-
essary for using DirectX effectively.

Note: COM interfaces are prefixed with a capital I. For example,
the COM interface that represents a surface is called
IDirect3DSurface9.

1.3 Some Preliminaries

The initialization process of Direct3D requires us to be familiar with
some basic graphics concepts and Direct3D types. We introduce these
ideas and types in this section, making the next section that discusses
Direct3D initialization more focused.

Direct3D Initialization 37

P
a

rt
II

1.3.1 Surfaces

A surface is a matrix of pixels that Direct3D uses primarily to store 2D
image data. Figure 1.2 identifies some components of a surface. Note
that while we visualize the surface data as a matrix, the pixel data is
actually stored in a linear array.

The width and height of a surface are measured in pixels. The pitch is
measured in bytes. Furthermore, the pitch may be wider than the
width, depending on the underlying hardware implementation, so you
cannot assume that pitch = width · sizeof(pixelFormat).

In code, we describe surfaces with the IDirect3DSurface9
interface. This interface provides several methods for reading and writ-
ing data directly to a surface as well as a method to retrieve information
about the surface. The most important methods of IDirect3DSur-
face9 are:

� LockRect—This method allows us to obtain a pointer to the sur-
face memory. Then, with some pointer arithmetic, we can read and
write to each pixel in the surface.

� UnlockRect—After you have called LockRect and are done
accessing the surface’s memory, you must unlock the surface by
calling this method.

� GetDesc—This method retrieves a description of the surface by
filling out a D3DSURFACE_DESC structure.

Locking a surface and writing to each pixel can be somewhat confusing
at first, considering the surface pitch, so we have provided the follow-
ing code block that locks a surface and colors each pixel red:

38 Chapter 1

Figure 1.2: A surface

// Assume _surface is a pointer to an IDirect3DSurface9 interface.
// Assumes a 32-bit pixel format for each pixel.

// Get the surface description.
D3DSURFACE_DESC surfaceDesc;
_surface->GetDesc(&surfaceDesc);

// Get a pointer to the surface pixel data.
D3DLOCKED_RECT lockedRect;
_surface->LockRect(

&lockedRect,// pointer to receive locked data
0, // lock entire surface
0); // no lock flags specified

// Iterate through each pixel in the surface and set it to red.
DWORD* imageData = (DWORD*)lockedRect.pBits;
for(int i = 0; i < surfaceDesc.Height; i++)
{

for(int j = 0; j < surfaceDesc.Width; j++)
{

// index into texture, note we use the pitch and divide by
// four since the pitch is given in bytes and there are
// 4 bytes per DWORD.
int index = i * lockedRect.Pitch / 4 + j;

imageData[index] = 0xffff0000; // red
}

}

_surface->UnlockRect();

The D3DLOCKED_RECT structure is defined as:

typedef struct _D3DLOCKED_RECT {
INT Pitch; // the surface pitch
void *pBits; // pointer to the start of the surface memory

} D3DLOCKED_RECT;

Here are a few comments about the surface lock code. The 32-bit pixel
format assumption is important since we cast the bits to DWORDs, which
are 32-bits. This lets us treat every DWORD as representing a pixel.
Also, do not worry about understanding how 0xffff0000 represents
red, as colors are covered in Chapter 4.

1.3.2 Multisampling

Multisampling is a technique used to smooth out blocky-looking images
that can result when representing images as a matrix of pixels. One of
the common uses of multisampling a surface is for full-screen
antialiasing (see Figure 1.3).

Direct3D Initialization 39

P
a

rt
II

The D3DMULTISAMPLE_TYPE enumerated type consists of values that
allow us to specify the level of multisampling of a surface. They are:

� D3DMULTISAMPLE_NONE—Specifies no multisampling

� D3DMULTISAMPLE_1_SAMPLE… D3DMULTISAMPLE_16_

SAMPLE—Specifies multisampling levels from 1 to 16

There is also a quality level associated with the multisampling type.
This is described as a DWORD.

In this book’s sample programs, we do not use multisampling
because it slows down the application too much. If you wish to include
it, remember to use the IDirect3D9::CheckDeviceMultiSam-
pleType method to verify that your graphics device supports the
multisampling type that you wish to use and check for valid quality
levels.

1.3.3 Pixel Formats

We often need to specify the pixel format of Direct3D resources when
we create a surface or texture. The format of a pixel is defined by speci-
fying a member of the D3DFORMAT enumerated type. Some formats
are:

� D3DFMT_R8G8B8—Specifies a 24-bit pixel format where, starting
from the leftmost bit, 8 bits are allocated for red, 8 bits are allo-
cated for green, and 8 bits are allocated for blue

� D3DFMT_X8R8G8B8—Specifies a 32-bit pixel format where, start-
ing from the leftmost bit, 8 bits are not used, 8 bits are allocated for
red, 8 bits are allocated for green, and 8 bits are allocated for blue

� D3DFMT_A8R8G8B8—Specifies a 32-bit pixel format where, start-
ing from the leftmost bit, 8 bits are allocated for alpha, 8 bits are
allocated for red, 8 bits are allocated for green, and 8 bits are allo-
cated for blue

� D3DFMT_A16B16G16R16F—Specifies a 64-bit, floating-point pixel
format. Starting from the leftmost bit, 16 bits are allocated for
alpha, 16 bits are allocated for blue, 16 bits are allocated for green,
and 16 bits are allocated for red.

40 Chapter 1

Figure 1.3: On the left we have a jagged line. On
the right we have a sampled antialiased line, which
is smoother.

� D3DFMT_A32B32G32R32F—Specifies a 128-bit, floating-point
pixel format. Starting from the leftmost bit, 32 bits are allocated for
alpha, 32 bits are allocated for blue, 32 bits are allocated for green,
and 32 bits are allocated for red.

For a complete list of supported pixel formats, look up D3DFORMAT in
the SDK documentation.

Note: The first three formats (D3DFMT_R8G8B8, D3DFMT_X8R8G8B8,
and D3DFMT_A8R8G8B8) are common and supported on most hard-
ware. The floating-point pixel format and some of the other formats
available (see the SDK docs) are not as widely supported. When using
these not-so-widely supported formats, be sure to verify that your card
supports a particular format before using it.

1.3.4 Memory Pools

Surfaces and other Direct3D resources can be placed in a variety of
memory pools. The memory pool is specified by one of the members of
the D3DPOOL enumerated type. The memory pools available are:

� D3DPOOL_DEFAULT—The default memory pool instructs
Direct3D to place the resource in the memory that is best suited
for the resource type and its usage. This may be video memory,
AGP memory, or system memory. Note that resources in the
default pool must be destroyed (released) prior to an IDirect-
3DDevice9::Reset call, and must be reinitialized after the reset
call.

� D3DPOOL_MANAGED—Resources placed in the manage pool are
managed by Direct3D (that is, they are moved to video or AGP
memory as needed by the device automatically). In addition, a
back-up copy of the resource is maintained in system memory.
When resources are accessed and changed by the application, they
work with the system copy. Then, Direct3D automatically updates
them to video memory as needed.

� D3DPOOL_SYSTEMMEM—Specifies that the resource be placed in
system memory

� D3DPOOL_SCRATCH—Specifies that the resource be placed in sys-
tem memory. The difference between this pool and D3DPOOL_
SYSTEMMEM is that these resources must not follow the graphics
device’s restrictions. Consequently, the device cannot access
resources in this pool. But the resources can be copied to and from
each other.

Direct3D Initialization 41

P
a

rt
II

1.3.5 The Swap Chain and Page Flipping

Direct3D maintains a collection of surfaces, usually two or three, called
a swap chain that is represented by the IDirect3DSwapChain9
interface. We do not go into the specifics of this interface since
Direct3D manages it and we rarely need to manipulate it. Instead we
will simply outline the purpose of it.

Swap chains and, more specifically, the technique of page flipping
are used to provide smooth animation between frames. Figure 1.4
shows a swap chain graphically with two surfaces.

In Figure 1.4, the surface in the front buffer slot is the surface that cor-
responds to the image presently being displayed on the monitor. The
monitor does not display the image represented by the front buffer
instantaneously; it takes one-sixtieth of a second on a monitor with a
refresh rate of 60 hertz, for instance. The application’s frame rate is
often out of sync with the monitor’s refresh rate (for example, the
application may be able to render frames faster than the monitor can
display them). However, we do not want to update the contents of the
front buffer with the next frame of animation until the monitor has fin-
ished drawing the current frame, but we do not want to halt our
rendering while waiting for the monitor to finish displaying the con-
tents of the front buffer either. Therefore, we render to an off-screen
surface (back buffer); then when the monitor is done displaying the sur-
face in the front buffer, we move it to the end of the swap chain and the
next back buffer in the swap chain is promoted to be the front buffer.
This process is called presenting. Figure 1.5 shows the swap chain
before and after a presentation.

42 Chapter 1

Figure 1.4: A swap chain with
two surfaces: a front buffer
and a back buffer

Thus, the structure of our rendering code is:

1. Render to back buffer.

2. Present the back buffer.

3. Goto (1).

1.3.6 Depth Buffers

The depth buffer is a surface that does not contain image data but
rather depth information about a particular pixel. There is an entry in
the depth buffer that corresponds to each pixel in the final rendered
image. So if the rendered image had a resolution of 640x480, there
would be 640x480 depth entries.

Figure 1.6 shows a simple scene where some objects partially obscure
the objects behind them. In order for Direct3D to determine which pix-
els of an object are in front of another, it uses a technique called depth

buffering or z-buffering.
Depth buffering works by computing a depth value for each pixel

and performing a depth test. The depth test basically compares the
depths of pixels competing to be written to a particular pixel location.

Direct3D Initialization 43

P
a

rt
II

Figure 1.5: Presenting two
times. When using a swap
chain that contains two sur-
faces, we see that presenting
basically amounts to swapping
the surfaces.

Figure 1.6: A group of objects that partially
obscure each other because one is in front of
another

The pixel with the depth value closest to the camera wins, and that
pixel gets written. This makes sense because the pixel closest to the
camera obscures the pixels behind it.

The format of the depth buffer determines the accuracy of the
depth test. That is, a 24-bit depth buffer is more accurate than a 16-bit
depth buffer. In general, most applications work fine with a 24-bit depth
buffer, although Direct3D also exposes a 32-bit depth buffer.

� D3DFMT_D32—Specifies a 32-bit depth buffer

� D3DFMT_D24S8—Specifies a 24-bit depth buffer with 8 bits
reserved as the stencil buffer

� D3DFMT_D24X8—Specifies a 24-bit depth buffer only

� D3DFMT_D24X4S4—Specifies a 24-bit buffer with 4 bits reserved
for the stencil buffer

� D3DFMT_D16—Specifies a 16-bit depth buffer only

Note: The stencil buffer is a more advanced topic and is explained
in Chapter 8.

1.3.7 Vertex Processing

Vertices are the building blocks for 3D geometry, and they can be pro-
cessed in two different ways, either in software (software vertex

processing) or in hardware (hardware vertex processing). Software vertex
processing is always supported and can always be used. On the other
hand, hardware vertex processing can only be used if the graphics card
supports vertex processing in hardware.

Hardware vertex processing is always preferred since dedicated
hardware is faster than software. Furthermore, performing vertex pro-
cessing in hardware unloads calculations from the CPU, which implies
that the CPU is free to perform other calculations.

Note: Another way of saying a graphics card supports hardware
vertex processing in hardware is to say that the graphics card supports
transformation and lighting calculations in hardware.

1.3.8 Device Capabilities

Every feature that Direct3D exposes has a corresponding data member
or bit in the D3DCAPS9 structure. The idea is to initialize the members
of a D3DCAPS9 instance based on the capabilities of a particular hard-
ware device. Then, in our application, we can check if a device supports
a feature by checking the corresponding data member or bit in the
D3DCAPS9 instance.

44 Chapter 1

TE
AM
FL
Y

Team-Fly®

The following example illustrates this. Suppose we wish to check if
a hardware device is capable of doing vertex processing in hardware (or
in other words, whether the device supports transformation and light-
ing calculations in hardware). By looking up the D3DCAPS9 structure in
the SDK documentation, we find that the bit D3DDEVCAPS_HWTRANS-
FORMANDLIGHT in the data member D3DCAPS9::DevCaps indicates
whether the device supports transformation and lighting calculations in
hardware. Our test then, assuming caps is a D3DCAPS9 instance and
has already been initialized, is:

bool supportsHardwareVertexProcessing;

// If the bit is “on” then that implies the hardware device
// supports it.
if(caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT)
{

// Yes, the bit is on, so it is supported.
supportsHardwareVertexProcessing = true;

}
else
{

// No, the bit is off, so it is not supported.
hardwareSupportsVertexProcessing = false;

}

Note: DevCaps stands for “device capabilities.”

Note: We learn how we initialize a D3DCAPS9 instance based on a
particular hardware device’s capabilities in the next section.

Note: We recommend that you look up the D3DCAPS9 structure in
the SDK documentation and examine the complete list of capabilities
that Direct3D exposes.

1.4 Initializing Direct3D

The following subsections show how to initialize Direct3D. The pro-
cess of initializing Direct3D can be broken down into the following
steps:

1. Acquire a pointer to an IDirect3D9 interface. This interface is
used for finding out information about the physical hardware
devices on a system and creating the IDirect3DDevice9 inter-
face, which is our C++ object that represents the physical
hardware device we use for displaying 3D graphics.

2. Check the device capabilities (D3DCAPS9) to see if the primary dis-
play adapter (primary graphics card) supports hardware vertex

Direct3D Initialization 45

P
a

rt
II

processing or not. We need to know if it can in order to create the
IDirect3DDevice9 interface.

3. Initialize an instance of the D3DPRESENT_PARAMETERS structure.
This structure consists of a number of data members that allow us
to specify the characteristics of the IDirect3DDevice9 interface
that we are going to create.

4. Create the IDirect3DDevice9 object based on an initialized
D3DPRESENT_PARAMETERS structure. As said, the IDirect3D-
Device9 object is our C++ object that represents the physical
hardware device that we use for displaying 3D graphics.

Keep in mind that in this book we use the primary display adapter for
drawing 3D graphics. If your system only has one graphics card, that is
the primary display adapter. If you have more than one graphics card,
then the card you are presently using is the primary display adapter
(e.g., the one displaying the Windows desktop, etc.).

1.4.1 Acquiring an IDirect3D9 Interface

Initialization of Direct3D begins by acquiring a pointer to an
IDirect3D9 interface. This is easily done using a special Direct3D
function, as the following lines of code show:

IDirect3D9* _d3d9;
_d3d9 = Direct3DCreate9(D3D_SDK_VERSION);

The single parameter to Direct3DCreate9 should always be
D3D_SDK_VERSION, which guarantees that the application is built
against the correct header files. If this function fails, it returns a null
pointer.

The IDirect3D9 object is used for two things: device enumera-
tion and creating the IDirect3DDevice9 object. Device enumeration
refers to finding out the capabilities, display modes, formats, and other
information about each graphics device available on the system. For
instance, to create the IDirect3DDevice9 object that represents a
physical device, we need to create it using a configuration of display
modes and formats that the physical device supports. To find such a
working configuration, we must use the IDirect3D9 enumeration
methods.

However, because device enumeration can be quite an involved
task and we want to get up and running as quickly as possible with
Direct3D, we have elected not to perform any enumeration, except for
one check as shown in the next section. In order to safely skip

46 Chapter 1

enumeration, we have chosen a “safe” configuration that almost all
hardware devices will support.

1.4.2 Checking for Hardware Vertex Processing

When we create an IDirect3DDevice9 object to represent the pri-
mary display adapter, we must specify the type of vertex processing to
use with it. We want to use hardware vertex processing if we can, but
because not all cards support hardware vertex processing, we must
check if the card supports it first.

To do this, we must first initialize a D3DCAPS9 instance based on
the capabilities of the primary display adapter. We use the following
method:

HRESULT IDirect3D9::GetDeviceCaps(
UINT Adapter,
D3DDEVTYPE DeviceType,
D3DCAPS9 *pCaps

);

� Adapter—Specifies the physical display adapter that we are going
to get the capabilities of

� DeviceType—Specifies the device type to use (e.g., hardware
device (D3DDEVTYPE_HAL) or software device (D3DDEVTYPE_
REF))

� pCaps—Returns the initialized capabilities structure

Then we can check the capabilities, as we did in section 1.3.8. The fol-
lowing code snippet illustrates this:

// Fill D3DCAPS9 structure with the capabilities of the
// primary display adapter.

D3DCAPS9 caps;
d3d9->GetDeviceCaps(

D3DADAPTER_DEFAULT, // Denotes primary display adapter.
deviceType, // Specifies the device type, usually D3DDEVTYPE_HAL.
&caps); // Return filled D3DCAPS9 structure that contains

// the capabilities of the primary display adapter.

// Can we use hardware vertex processing?
int vp = 0;
if(caps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT)
{

// yes, save in ‘vp’ the fact that hardware vertex
// processing is supported.
vp = D3DCREATE_HARDWARE_VERTEXPROCESSING;

}
else
{

// no, save in ‘vp’ the fact that we must use software
// vertex processing.

Direct3D Initialization 47

P
a

rt
II

vp = D3DCREATE_SOFTWARE_VERTEXPROCESSING;
}

Observe that we save the type of vertex processing that we are going
to use in the variable vp. This is because we are going to need to spec-
ify the vertex processing type that we are going to use later on when
we create the IDirect3DDevice9 object.

Note: The identifiers D3DCREATE_HARDWARE_VERTEXPROCESSING and
D3DCREATE_SOFTWARE_VERTEXPROCESSING are just predefined values
that denote hardware vertex processing and software vertex processing,
respectively.

Tip: When developing applications and using new, special, or
advanced features (in other words, features that are not widely sup-
ported), it is recommended that you always check the device capabilities
(D3DCAPS9) to see if the device supports the particular feature before
using it. Never assume that a feature is available. Also, be aware that the
sample applications in this book generally do not follow this advice — we
generally do not check device capabilities.

Note: If a particular sample application isn’t working, it is most likely
because your hardware doesn’t support the feature that the sample is
using; try switching to the REF device.

1.4.3 Filling Out the D3DPRESENT_PARAMETERS
Structure

The next step in the initialization process is to fill out an instance of the
D3DPRESENT_PARAMETERS structure. This structure is used to spec-
ify some of the characteristics of the IDirect3DDevice9 object that
we are going to create, and is defined as:

typedef struct _D3DPRESENT_PARAMETERS_ {
UINT BackBufferWidth;
UINT BackBufferHeight;
D3DFORMAT BackBufferFormat;
UINT BackBufferCount;
D3DMULTISAMPLE_TYPE MultiSampleType;
DWORD MultiSampleQuality;
D3DSWAPEFFECT SwapEffect;
HWND hDeviceWindow;
BOOL Windowed;
BOOL EnableAutoDepthStencil;
D3DFORMAT AutoDepthStencilFormat;
DWORD Flags;
UINT FullScreen_RefreshRateInHz;
UINT PresentationInterval;

} D3DPRESENT_PARAMETERS;

Note: In the following data member descriptions for the
D3DPRESENT_PARAMETERS structure, we only cover the flags and
options that we feel are the most important to a beginner at this point.

48 Chapter 1

For a description of further flags, options, and configurations, we refer
you to the SDK documentation.

� BackBufferWidth—Width of the back buffer surface in pixels

� BackBufferHeight—Height of the back buffer surface in pixels

� BackBufferFormat—Pixel format of the back buffer (e.g., 32-bit
pixel format: D3DFMT_A8R8G8B8)

� BackBufferCount—The number of back buffers to use. Usually
we specify “1” to indicate that we want only one back buffer.

� MultiSampleType—The type of multisampling to use with the
back buffer. See SDK documentation for details.

� MultiSampleQuality—The quality level of multisampling. See
SDK documentation for details.

� SwapEffect—A member of the D3DSWAPEFFECT enumerated
type that specifies how the buffers in the flipping chain will be
swapped. Specifying D3DSWAPEFFECT_DISCARD is the most
efficient.

� hDeviceWindow—The window handle associated with the device.
Specify the application window onto which you want to draw.

� Windowed—Specify true to run in windowed mode or false for
full-screen mode.

� EnableAutoDepthStencil—Set to true to have Direct3D cre-
ate and maintain the depth/stencil buffer automatically.

� AutoDepthStencilFormat—The format of the depth/stencil
buffer (e.g., 24-bit depth with 8 bits reserved for the stencil buffer:
D3DFMT_D24S8).

� Flags—Some additional characteristics. Specify zero (no flags) or
a member of the D3DPRESENTFLAG set. See the documentation for
a complete list of valid flags. Two common ones are:

� D3DPRESENTFLAG_LOCKABLE_BACKBUFFER—Specifies that
the back buffer can be locked. Note that using a lockable back
buffer can degrade performance.

� D3DPRESENTFLAG_DISCARD_DEPTHSTENCIL—Specifies
that the depth/stencil buffer will be discarded after the next
back buffer is presented. By “discard” we mean just that—the
depth/stencil buffer memory will be discarded or invalid. This
can improve performance.

� FullScreen_RefreshRateInHz—Refresh rate; use the default
refresh rate by specifying D3DPRESENT_RATE_DEFAULT.

Direct3D Initialization 49

P
a

rt
II

� PresentationInterval—A member of the D3DPRESENT set.
See the documentation for a complete list of valid intervals. Two
common ones are:

� D3DPRESENT_INTERVAL_IMMEDIATE—Presents
immediately

� D3DPRESENT_INTERVAL_DEFAULT—Direct3D will choose
the present rate. Usually this is equal to the refresh rate.

An example of filling this structure out is:

D3DPRESENT_PARAMETERS d3dpp;
d3dpp.BackBufferWidth = 800;
d3dpp.BackBufferHeight = 600;
d3dpp.BackBufferFormat = D3DFMT_A8R8G8B8; //pixel format
d3dpp.BackBufferCount = 1;
d3dpp.MultiSampleType = D3DMULTISAMPLE_NONE;
d3dpp.MultiSampleQuality = 0;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.hDeviceWindow = hwnd;
d3dpp.Windowed = false; // fullscreen
d3dpp.EnableAutoDepthStencil = true;
d3dpp.AutoDepthStencilFormat = D3DFMT_D24S8; // depth format
d3dpp.Flags = 0;
d3dpp.FullScreen_RefreshRateInHz = D3DPRESENT_RATE_DEFAULT;
d3dpp.PresentationInterval = D3DPRESENT_INTERVAL_IMMEDIATE;

1.4.4 Creating the IDirect3DDevice9 Interface

With the D3DPRESENT_PARAMETERS filled out, we can create the
IDirect3DDevice9 object with the following method:

HRESULT IDirect3D9::CreateDevice(
UINT Adapter,
D3DDEVTYPE DeviceType,
HWND hFocusWindow,
DWORD BehaviorFlags,
D3DPRESENT_PARAMETERS *pPresentationParameters,
IDirect3DDevice9** ppReturnedDeviceInterface

);

� Adapter—Specifies the physical display adapter that we want the
created IDirect3DDevice9 object to represent

� DeviceType—Specifies the device type to use (e.g., hardware
device (D3DDEVTYPE_HAL) or software device (D3DDEVTYPE_
REF))

� hFocusWindow—Handle to the window that the device will be
associated with. This is typically the window that the device will
draw onto, and for our purposes it is the same handle that we spec-
ify for the data member d3dpp.hDeviceWindow of the
D3DPRESENT_PARAMETERS structure.

50 Chapter 1

� BehaviorFlags—Specify either D3DCREATE_HARDWARE_
VERTEXPROCESSING or D3DCREATE_SOFTWARE_VERTEX-
PROCESSING for this parameter

� pPresentationParameters—Specifies an initialized
D3DPRESENT_PARAMETERS instance that defines some of the
characteristics of the device

� ppReturnedDeviceInterface—Returns the created device

Example call:

IDirect3DDevice9* device = 0;
hr = d3d9->CreateDevice(

D3DADAPTER_DEFAULT, // primary adapter
D3DDEVTYPE_HAL, // device type
hwnd, // window associated with device
D3DCREATE_HARDWARE_VERTEXPROCESSING, // vertex processing type
&d3dpp, // present parameters
&device); // returned created device

if(FAILED(hr))
{

::MessageBox(0, "CreateDevice() - FAILED", 0, 0);
return 0;

}

1.5 Sample Application: Initializing Direct3D

For this chapter’s sample, we initialize a Direct3D application and clear
the screen to black (see Figure 1.7).

Direct3D Initialization 51

P
a

rt
II

Figure 1.7:
Screen shot of
the sample for
this chapter

This sample and all the samples in this book use code from the
d3dUtility.h and d3dUtility.cpp files, which can be found on this chap-
ter’s web page on the book’s web site. These files contain functions
that implement common tasks that every Direct3D application will
need to do, such as creating a window, initializing Direct3D, and enter-
ing the application message loop. By wrapping up these common tasks
in functions, the samples are more focused on the particular chapter’s
topic. In addition, we add useful utility code to these files as we prog-
ress through the book.

1.5.1 d3dUtility.h/cpp

Before we get started on this chapter’s sample, let’s spend some time
getting familiar with the functions provided by d3dUtility.h/cpp. The
d3dUtility.h file looks like this:

// Include the main Direct3DX header file. This will include the
// other Direct3D header files we need.
#include <d3dx9.h>

namespace d3d
{

bool InitD3D(
HINSTANCE hInstance, // [in] Application instance.
int width, int height, // [in] Back buffer dimensions.
bool windowed, // [in] Windowed (true)or

// full screen (false).
D3DDEVTYPE deviceType, // [in] HAL or REF
IDirect3DDevice9** device); // [out] The created device.

int EnterMsgLoop(
bool (*ptr_display)(float timeDelta));

LRESULT CALLBACK WndProc(
HWND hwnd,
UINT msg,
WPARAM wParam,
LPARAM lParam);

template<class T> void Release(T t)
{

if(t)
{

t->Release();
t = 0;

}
}

template<class T> void Delete(T t)
{

if(t)
{

delete t;

52 Chapter 1

t = 0;
}

}
}

� InitD3D—This function initializes a main application window and
implements the Direct3D initialization code discussed in section
1.4. It outputs a pointer to a created IDirect3DDevice9 inter-
face if the function returns successfully. Observe that the parame-
ters allow us to specify the window’s dimensions and whether it
should run in windowed mode or full-screen mode. See the sample
code for further details on its implementation.

� EnterMsgLoop—This function wraps the application message
loop. It takes a pointer to a function that is to be the display func-

tion. The display function is the function that implements the sam-
ple’s drawing code. The message loop function needs to know the
display function so that it can call it and display the scene during
idle processing:

int d3d::EnterMsgLoop(bool (*ptr_display)(float timeDelta))
{

MSG msg;
::ZeroMemory(&msg, sizeof(MSG));

static float lastTime = (float)timeGetTime();

while(msg.message != WM_QUIT)
{

if(::PeekMessage(&msg, 0, 0, 0, PM_REMOVE))
{

::TranslateMessage(&msg);
::DispatchMessage(&msg);

}
else
{

float currTime = (float)timeGetTime();
float timeDelta = (currTime -
lastTime)*0.001f;

ptr_display(timeDelta); // call display function

lastTime = currTime;
}

}
return msg.wParam;

}

The “time” code is used to calculate the time elapsed between calls
to ptr_display, that is, the time between frames.

� Release—This template function is designed as a convenience
function to release COM interfaces and set them to null.

Direct3D Initialization 53

P
a

rt
II

� Delete—This template function is designed as a convenience
function to delete an object on the free store and set the pointer to
null.

� WndProc—The window procedure declaration for the main appli-
cation window

1.5.2 Sample Framework

By sample framework we are referring to the general way that we struc-
ture the sample applications of this book. For each sample we consis-
tently implement three functions, not counting the message procedure
and WinMain. These three functions are used to implement the code
specific to the particular sample. They are:

� bool Setup()—This function is where we set up anything that
needs to be set up for this sample, such as allocating resources,
checking device capabilities, and setting application states.

� void Cleanup()—This function is where we free anything that
we allocated in the Setup function, such as deallocating memory.

� bool Display(float timeDelta)—This function is where
we implement all of our drawing code and code that occurs on a
frame-by-frame basis, such as updating object positions. The
parameter timeDelta is the time elapsed between each frame and
is used to sync animations with the frames per second.

1.5.3 Sample: D3D Init

As stated, the sample application creates and initializes a Direct3D
application, and then clears the screen to black. Note that we make use
of our utility functions to simplify initialization. The complete project
can be found on this chapter’s page on the book’s web site.

Note: This sample closely follows the ideas discussed in Tutorial 1 in
the DirectX SDK documentation. You may wish to read Tutorial 1 after
this chapter to gain a different perspective.

We start out by including d3dUtility.h and instantiating a global variable
for the device:

#include "d3dUtility.h"

IDirect3DDevice9* Device = 0;

Next we implement our framework functions:

bool Setup()
{

54 Chapter 1

TE
AM
FL
Y

Team-Fly®

return true;
}

void Cleanup()
{

}

We don’t have any resources or things to set up in this sample, so the
Setup and Cleanup methods are empty.

bool Display(float timeDelta)
{

if(Device)
{

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0x00000000, 1.0f, 0);

Device->Present(0, 0, 0, 0);// present backbuffer
}
return true;

}

The Display method calls the IDirect3DDevice9::Clear
method, which clears the back buffer and depth/stencil buffer to the
color black and 1.0, respectively. Notice that we only perform the draw-
ing code if the application is not paused. The declaration of
IDirect3DDevice9::Clear is:

HRESULT IDirect3DDevice9::Clear(
DWORD Count,
const D3DRECT* pRects,
DWORD Flags,
D3DCOLOR Color,
float Z,
DWORD Stencil

);

� Count—Number of rectangles in the pRects array

� pRects—An array of screen rectangles to clear. This allows us to
only clear parts of a surface.

� Flags—Specifies which surfaces to clear. We can clear one or
more of the following surfaces:

� D3DCLEAR_TARGET—The render target surface, usually the
back buffer

� D3DCLEAR_ZBUFFER—The depth buffer

� D3DCLEAR_STENCIL—The stencil buffer

� Color—The color we wish to clear the render target to

� Z—The value we wish to set the depth buffer (z-buffer) to

� Stencil—The value we wish to set the stencil buffer to

Direct3D Initialization 55

P
a

rt
II

After the surfaces have been cleared, we present the back buffer by
calling the IDirect3DDevice9::Present method.

The window procedure method handles a couple of events; namely
it allows us to exit the application by pressing the Escape key.

LRESULT CALLBACK d3d::WndProc(HWND hwnd, UINT msg, WPARAM wParam,
LPARAM lParam)

{
switch(msg)
{
case WM_DESTROY:

::PostQuitMessage(0);
break;

case WM_KEYDOWN:
if(wParam == VK_ESCAPE)

::DestroyWindow(hwnd);
break;

}
return ::DefWindowProc(hwnd, msg, wParam, lParam);

}

Finally, WinMain performs the following steps:

1. Initializes the main display window and Direct3D

2. Calls the Setup routine to set up the application

3. Enters the message loop using Display as the display function

4. Cleans up the application and finally releases the IDirect3D-
Device9 object

int WINAPI WinMain(HINSTANCE hinstance,
HINSTANCE prevInstance,
PSTR cmdLine,
int showCmd)

{
if(!d3d::InitD3D(hinstance,

800, 600, true, D3DDEVTYPE_HAL, &Device))
{

::MessageBox(0, "InitD3D() - FAILED", 0, 0);
return 0;

}

if(!Setup())
{

::MessageBox(0, "Setup() - FAILED", 0, 0);
return 0;

}

d3d::EnterMsgLoop(Display);

Cleanup();

Device->Release();

56 Chapter 1

return 0;
}

As you can see, our sample template structure is quite clean with our
utility function handling the window and Direct3D initialization pro-
cesses. For almost every sample program in this book, our task is to fill
out the implementations for the Setup, Cleanup, and Display
functions.

Note: Remember to link in d3d9.lib, d3dx9.lib, and winmm.lib if
you are building these samples on your own.

1.6 Summary

� Direct3D can be thought of as a mediator between the programmer
and the graphics hardware. The programmer calls a Direct3D func-
tion, which in turn, indirectly, has the physical hardware perform
the operation by interfacing with the device’s HAL (Hardware
Abstraction Layer).

� The REF device allows developers to test features that Direct3D
exposes but are not implemented by available hardware.

� Component Object Model (COM) is the technology that allows
DirectX to be language independent and have backward compatibil-
ity. Direct3D programmers don’t need to know the details of COM
and how it works; they only need to know how to acquire COM
interfaces and release them.

� Surfaces are special Direct3D interfaces used to store 2D images.
A member of the D3DFORMAT enumerated type specifies the pixel
format of a surface. Surfaces and other Direct3D resources can be
stored in several different memory pools as is specified by a mem-
ber of the D3DPOOL enumerated type. In addition, surfaces can be
multisampled, which creates a smoother image.

� The IDirect3D9 interface is used to find out information about
the system’s graphics devices. For example, through this interface
we can obtain the capabilities of a device. It is also used to create
the IDirect3DDevice9 interface.

� The IDirect3DDevice9 interface can be thought of as our soft-
ware interface for controlling the graphics device. For instance,
calling the IDirect3DDevice9::Clear method will indirectly
have the graphics device clear the specified surfaces.

Direct3D Initialization 57

P
a

rt
II

� The sample framework is used to provide a consistent interface
that all sample applications in this book follow. The utility code pro-
vided in the d3dUtility.h/cpp files wrap initialization code that every
application must implement. By wrapping this code up, we hide it,
which allows the samples to be more focused on demonstrating the
current topic.

58 Chapter 1

Chapter 2

The Rendering
Pipeline

The primary theme of this chapter is the rendering pipeline. The ren-
dering pipeline is responsible for creating a 2D image given a geometric
description of the 3D world and a virtual camera that specifies the per-
spective from which the world is being viewed.

Objectives

� To find out how we represent 3D objects in Direct3D

� To learn how we model the virtual camera

� To understand the rendering pipeline—the process of taking a geo-
metric description of a 3D scene and generating a 2D image from it.

59

Figure 2.1: The left image shows some objects set up in the 3D world with a
camera positioned and aimed. The image on the right shows the 2D image
created based on what the camera “sees.”

2.1 Model Representation

A scene is a collection of objects or models. An object is represented as
a triangle mesh approximation, as Figure 2.2 illustrates. The triangles of
the mesh are the building blocks of the object that we are modeling. We
use the following terms all interchangeably to refer to the triangles of a
mesh: polygons, primitives and mesh geometry. (Although triangles are
primitives, Direct3D also supports line and point primitives. However,
since lines and points aren’t useful for modeling 3D solid objects, we
omit a discussion of these primitive types. We do discuss some applica-
tions of points in Chapter 14.)

The point where two edges on a polygon meet is a vertex. To describe a
triangle we specify the three point locations that correspond to the
three vertices of the triangle (see Figure 2.3). Then to describe an
object, we specify the triangles that make it up.

60 Chapter 2

Figure 2.2: A terrain approximated
by triangles

Figure 2.3: A triangle defined by its
three vertices

2.1.1 Vertex Formats

The previous definition of a vertex is correct mathematically, but it is
an incomplete definition when used in the context of Direct3D. This is
because a vertex in Direct3D can consist of additional properties
besides a spatial location. For instance, a vertex can have a color prop-
erty as well as a normal property (colors and normals are discussed in
Chapters 4 and 5, respectively). Direct3D gives us the flexibility to con-
struct our own vertex formats; in other words it allows us to define the
components of a vertex.

To create a custom vertex format, we first create a structure that
holds the vertex data that we choose. For instance, below we illustrate
two different kinds of vertex formats; one consists of position and color,
and the second consists of position, normal, and texture coordinates
(see Chapter 6, “Texturing”).

struct ColorVertex
{

float _x, _y, _z; // position
DWORD _color;

};

struct NormalTexVertex
{

float _x, _y, _z; // position
float _nx, _ny, _nz; // normal vector
float _u, _v; // texture coordinates

};

Once we have the vertex structure completed, we need to describe the
way that the vertices are formatted by using a combination of flexible
vertex format (FVF) flags. Using the previous two vertex structures,
we have the following vertex formats:

#define FVF_COLOR (D3DFVF_XYZ | D3DFVF_DIFFUSE)

Put into words, the above says that the vertex structure that corre-
sponds to this vertex format contains a position property and a diffuse
color property.

#define FVF_NORMAL_TEX (D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1)

The above says that the vertex structure that corresponds to this ver-
tex format contains position, normal, and texture coordinate properties.

One restriction that must be taken into consideration is that the
order in which you specify the flexible vertex flags must be the same
order in which you specify the data in the vertex structure.

Look up D3DFVF in the documentation for a complete list of the
available vertex format flags.

The Rendering Pipeline 61

P
a

rt
II

2.1.2 Triangles

Triangles are the basic building blocks of 3D objects. To construct an
object, we create a triangle list that describes the shape and contours of
the object. A triangle list contains the data for each individual triangle
that we wish to draw. For example, to construct a rectangle, we break it
into two triangles, as seen in Figure 2.4, and specify the vertices of
each triangle.

Vertex rect[6] = {v0, v1, v2, // triangle0
v0, v2, v3}; // triangle1

Note: The order in which you specify the vertices of a triangle is
important and called the winding order. See section 2.3.4 for
information.

2.1.3 Indices

Often the triangles that form a 3D object share many of the same verti-
ces, as the rectangle in Figure 2.4 illustrates. Although only two
vertices are duplicated in the rectangle example, the number of dupli-
cate vertices can increase as the detail and complexity of the model
increases. For instance, the cube in Figure 2.5 has eight unique verti-
ces, but many of them would be duplicated to form the triangle list for
the cube.

62 Chapter 2

Figure 2.4: A rectangle built from two
triangles

Figure 2.5: A cube defined by triangles

To solve this problem we introduce the concept of indices. It works like
this: We create a vertex list and an index list. The vertex list consists of
all the unique vertices, and the index list contains values that index into
the vertex list to define how they are to be put together to form trian-
gles. Returning to the rectangle example, the vertex list would be
constructed as follows:

Vertex vertexList[4] = {v0, v1, v2, v3};

Then the index list needs to define how the vertices in the vertex list
are to be put together to form the two triangles.

WORD indexList[6] = {0, 1, 2, // triangle0
0, 2, 3}; // triangle1

Put into words, the indexList definition says to build triangle0 from
elements zero (vertexList[0]), one (vertexList[1]), and two
(vertexList[2]) of the vertex list and build triangle1 from elements
zero (vertexList[0]), two (vertexList[2]), and three
(vertexList[3]) of the vertex list.

2.2 The Virtual Camera

The camera specifies what part of the world the viewer can see and
thus what part of the world for which we need to generate a 2D image.
The camera is positioned and oriented in the world and defines the vol-
ume of space that is visible. Figure 2.6 shows a diagram of our camera
model.

The volume of space is a frustum and defined by the field of view angles
and the near and far planes. The reasons for using a frustum should be
made clear when you consider that your monitor screen is rectangular.
Objects that are not inside this volume cannot be seen and should be

The Rendering Pipeline 63

P
a

rt
II

Figure 2.6: A frustum that
defines the volume of space
that the camera “sees”

discarded from further processing. The process of discarding such data
is called clipping.

The projection window is the 2D area that the 3D geometry inside
the frustum gets projected onto to create the 2D image representation
of the 3D scene. It is important to know that we define the projection
window with the dimensions min = (–1, –1) and max = (1, 1).

To simplify some of the drawings that are to follow in this book, we
make the near plane and projection plane (plane the projection window
lies on) coincide. Also, note that Direct3D defines the projection plane
to be the plane z = 1.

2.3 The Rendering Pipeline

Once we have described our 3D scene geometrically and set up a vir-
tual camera, we have the task of producing a 2D representation of that
scene on the monitor. The series of operations that must be performed
to achieve this is called the rendering pipeline. Figure 2.7 provides a
simplified overview of the pipeline, and the following subsections
explain each stage.

Several of the stages in the pipeline transform geometry from one
coordinate system to another. The transformations are done using
matrices. Direct3D is set up to do the transformation calculations for
us. This is advantageous because the transformations may be done on
the graphics hardware, if the hardware is capable of doing hardware
transformations. To use Direct3D for the transformations, all we must
do is supply the desired transformation matrix that describes the trans-
formation needed to go from one system to the next. We supply a
matrix using the IDirect3DDevice->SetTransform method. This
method takes a parameter describing the transformation type and a
matrix that represents the transformation. For example, from Figure

64 Chapter 2

Figure 2.7: An abridged rendering pipeline

TE
AM
FL
Y

Team-Fly®

2.7, to set the transformation needed to go from local space to world
space, we would write:

Device->SetTransform(D3DTS_WORLD, &worldMatrix);

You see more of this method in the subsequent sections, where we
examine each stage.

2.3.1 Local Space

Local space, or modeling space, is the coordinate system in which we
define an object’s triangle list. Local space is useful because it simpli-
fies the modeling process. Building a model around its own local
coordinate system is easier than building a model directly into the
world. For instance, local space allows us to construct a model without
regard to its position, size, or orientation in relation to other objects in
the world.

2.3.2 World Space

Once we have constructed various models, each residing in their own
local coordinate system, we need to bring them together to form the
scene in one global (world) coordinate system. Objects in local space
are transformed to world space through a process called the world

transform, which usually consists of translations, rotations, and scaling
operations that set the position, orientation, and size of the model in
the world. The world transformation sets up all the objects in the world
in relationship to each other in position, size, and orientation.

The Rendering Pipeline 65

P
a

rt
II

Figure 2.8: A teapot defined around its
own local coordinate system

The world transformation is represented with a matrix and set with
Direct3D using the IDirect3DDevice9::SetTransform method
with D3DTS_WORLD as the transform type. For example, suppose we
want to position a cube at the point (–3, 2, 6) in the world and a sphere
at the point (5, 0, –2). We would write:

// Build the cube world matrix that only consists of a translation.
D3DXMATRIX cubeWorldMatrix;
D3DXMatrixTranslation(&cubeWorldMatrix, -3.0f, 2.0f, 6.0f);
// Build the sphere world matrix that only consists of a translation.
D3DXMATRIX sphereWorldMatrix;
D3DXMatrixTranslation(&sphereWorldMatrix, 5.0f, 0.0f, -2.0f);

// Set the cube’s transformation
Device->SetTransform(D3DTS_WORLD, &cubeWorldMatrix);
drawCube(); // draw the cube

// Now since the sphere uses a different world transformation, we
// must change the world transformation to the sphere’s. If we
// don’t change this, the sphere would be drawn using the previously
// set world matrix – the cube’s.
Device->SetTransform(D3DTS_WORLD, &sphereWorldMatrix);
drawSphere(); // draw the sphere

This is a simplistic example, as the objects would most likely need to
be oriented and scaled as well, but it shows how the world transforma-
tion works.

2.3.3 View Space

In world space the world geometry and the camera are defined relative
to the world coordinate system, as Figure 2.10 shows. However, projec-
tion and other operations are difficult or less efficient when the camera
is at an arbitrary position and orientation in the world. To make things
easier, we transform the camera to the origin of the world system and
rotate it so that the camera is looking down the positive z-axis. All
geometry in the world is transformed along with the camera so that the

66 Chapter 2

Figure 2.9: Several 3D objects described
relative to one world coordinate system

view of the world remains the same. This transformation is called the
view space transformation, and the geometry is said to reside in view
space after this transformation.

The view space transformation matrix can be computed using the fol-
lowing D3DX function:

D3DXMATRIX *D3DXMatrixLookAtLH(
D3DXMATRIX* pOut, // pointer to receive resulting view matrix
CONST D3DXVECTOR3* pEye, // position of camera in world
CONST D3DXVECTOR3* pAt, // point camera is looking at in world
CONST D3DXVECTOR3* pUp // the world’s up vector – (0, 1, 0)

);

The pEye parameter specifies the position where you want the camera
to be in the world. The pAt parameter specifies the point in the world
where you want to aim the camera. The pUp parameter is the vector
that indicates which direction is “up” in the 3D world; this is usually
always the vector coincident with the y-axis—(0, 1, 0).

Example: Suppose we want to position the camera at the point
(5, 3, –10) and have the camera look at the center of the world (0, 0, 0).
We can then build the view transformation matrix by writing:

D3DXVECTOR3 position(5.0f, 3.0f, –10.0f);
D3DXVECTOR3 targetPoint(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 worldUp(0.0f, 1.0f, 0.0f);

D3DXMATRIX V;
D3DXMatrixLookAtLH(&V, &position, &targetPoint, &worldUp);

The view space transformation is set with the IDirect3DDevice9::
SetTransform method with D3DTS_VIEW as the transform type:

Device->SetTransform(D3DTS_VIEW, &V);

The Rendering Pipeline 67

P
a

rt
II

Figure 2.10: The transformation from world space to view space. This transfor-
mation transforms the camera to the origin of the system looking down the
positive z-axis. Notice that the objects in space are transformed along with the
camera so that the camera’s view of the world remains the same.

2.3.4 Backface Culling

A polygon has two sides, and we label one side as the front side and the
other as the back side. In general, the back sides of polygons are never
seen. This is because the majority of objects in a scene are enclosed
volumes, such as boxes, cylinders, tanks, characters, etc., and the cam-
era should never be allowed to enter the solid volume of space inside
the object. Thus, the camera will never see the back sides of the poly-
gons. This is important to know because if we were ever allowed to see
the back side of a polygon, backface culling wouldn’t work.

Figure 2.11 shows an object in view space where the front sides
have an arrow sticking out. A polygon whose front side faces the cam-
era is called a front facing polygon, and a polygon whose front side faces

away from the camera is called a back facing polygon.

Upon examination of Figure 2.11, we can see that the front facing poly-
gons obscure the back facing polygons that are behind them. Direct3D
takes advantage of this by culling (discarding from further processing)
the back facing polygons; this is called backface culling. Figure 2.12
shows the same object after the back faces have been culled. From the
camera’s viewpoint, the same scene will be drawn because the back
faces were obscured anyway and would never have been seen.

68 Chapter 2

Figure 2.12: The scene after back facing
polygons have been culled

Figure 2.11: An object with front facing
and back facing polygons

Of course, in order for this to work, Direct3D needs to know which
polygons are front facing and which are back facing. By default,
Direct3D treats triangles with vertices specified in a clockwise winding
order (in view space) as front facing. Triangles with vertices specified in
counterclockwise winding orders (in view space) are considered back
facing.

Note: Notice that we said in “view space.” This is because when a
triangle is rotated 180 degrees, its winding order is flipped. Thus, a tri-
angle that had a clockwise winding order when it was defined in its
local space might not have a clockwise winding order when it’s trans-
formed to view space due to possible rotations.

If for some reason we are not happy with the default culling behavior,
we can change it by changing the D3DRS_CULLMODE render state.

Device->SetRenderState(D3DRS_CULLMODE, Value);

where Value can be one of the following:

� D3DCULL_NONE—Disables back face culling entirely

� D3DCULL_CW—Triangles with a clockwise wind are culled.

� D3DCULL_CCW—Triangles with a counterclockwise wind are
culled. This is the default state.

2.3.5 Lighting

Light sources are defined in world space but transformed into view
space by the view space transformation. In view space these light
sources are applied to light the objects in the scene to give a more real-
istic appearance. Lighting in the fixed function pipeline is covered in
detail in Chapter 5. Later in Part IV of this book, we implement our
own lighting scheme using the programmable pipeline.

2.3.6 Clipping

At this point we need to cull the geometry that is outside the viewing
volume; this process is called clipping. There are three locations where
a triangle can be with regards to the frustum.

� Completely inside—If the triangle is completely inside the
frustum, it is kept and will move onto the next stage.

� Completely outside—If the triangle is completely outside the
frustum, it is culled.

� Partially inside (partially outside)—If the triangle is partially inside
and partially outside the frustum, the triangle is split into two

The Rendering Pipeline 69

P
a

rt
II

parts. The part inside the frustum is kept, while the part outside is
culled.

Figure 2.13 shows the three possible scenarios.

2.3.7 Projection

In view space we have the task of obtaining a 2D representation of the
3D scene. The process of going from an n dimension to an n – 1 dimen-
sion is called projection. There are many ways of performing a projec-
tion, but we are interested in a particular way called perspective

projection. A perspective projection projects geometry in such a way
that foreshortening occurs. That is, objects farther away from the cam-
era appear smaller than those near the camera. This type of projection
allows us to represent a 3D scene on a 2D image. Figure 2.14 shows a
3D point being projected onto the projection window with a perspective
projection.

The projection transformation defines our viewing volume (frustum)
and is responsible for projecting the geometry in the frustum onto the
projection window. The projection matrix is complex and we omit a

70 Chapter 2

Figure 2.13: Clipping geometry outside
the viewing volume

Figure 2.14: Projection of a
3D point onto the projection
window

derivation of it. Instead we use the following D3DX function, which cre-
ates a projection matrix based on a frustum description.

D3DXMATRIX *D3DXMatrixPerspectiveFovLH(
D3DXMATRIX* pOut, // returns projection matrix
FLOAT fovY, // vertical field of view angle in radians
FLOAT Aspect, // aspect ratio = width / height
FLOAT zn, // distance to near plane
FLOAT zf // distance to far plane

);

The aspect ratio parameter deserves some elaboration. The geometry
on the projection window is eventually transformed to screen space
(see section 2.3.8). The transformation from a square (projection win-
dow) to the screen, which is a rectangle, causes a stretching distortion.
The aspect ratio is simply the ratio between the screen’s two dimen-
sions and is used to correct the distortion caused when mapping from a
square to a rectangle.

aspectRation = screenWidth/screenHeight

The projection matrix is set with the IDirect3DDevice9::Set-
Transform method, passing D3DTS_PROJECTION as the transform
type. The following example creates a projection matrix based on a
frustum with a 90-degree field of view, a near plane with a distance of 1,
and a far plane with a distance of 1000.

D3DXMATRIX proj;
D3DXMatrixPerspectiveFovLH(

&proj, PI * 0.5f, (float)width / (float)height, 1.0, 1000.0f);
Device->SetTransform(D3DTS_PROJECTION, &proj);

Note: The interested reader can read about projection in depth in
3D Computer Graphics, third edition by Alan Watt.

The Rendering Pipeline 71

P
a

rt
II

Figure 2.15: The components of a
frustum

2.3.8 Viewport Transform

The viewport transform is responsible for transforming coordinates on
the projection window to a rectangle on the screen, which we call the
viewport. For games, the viewport is usually the entire screen rectan-
gle. However, it can be a subset of the screen or client area if we are
running in windowed mode. The viewport rectangle is described rela-
tive to the window it resided in and is specified in window coordinates.
Figure 2.16 shows a viewport.

In Direct3D a viewport is represented by the D3DVIEWPORT9 struc-
ture. It is defined as:

typedef struct _D3DVIEWPORT9 {
DWORD X;
DWORD Y;
DWORD Width;
DWORD Height;
DWORD MinZ;
DWORD MaxZ;

} D3DVIEWPORT9;

The first four data members define the viewport rectangle relative to
the window in which it resides. The MinZ member specifies the mini-
mum depth buffer value, and MaxZ specifies the maximum depth buffer
value. Direct3D uses a depth buffer range of zero to one, so MinZ and
MaxZ should be set to those values respectively unless a special effect
is desired.

Once we have filled out the D3DVIEWPORT9 structure, we set the
viewport with Direct3D like so:

D3DVIEWPORT9 vp{ 0, 0, 640, 480, 0, 1 };
Device->SetViewport(&vp);

72 Chapter 2

Figure 2.16: The
viewport rectangle

Direct3D handles the viewport transformation for us automatically, but
for reference the viewport transformation is described with the follow-
ing matrix. The variables are the same as described from the
D3DVIEWPORT9 structure.

2.3.9 Rasterization

After the vertices are transformed to screen coordinates, we have a list
of 2D triangles. The rasterization stage is responsible for computing
the individual pixel color values needed to draw each triangle (see Fig-
ure 2.17).

The rasterization process is very intensive computationally and should
always done by dedicated graphics hardware. The end result of the
rasterization stage is the 2D image that is displayed by the monitor.

2.4 Summary

� 3D objects are represented as triangle meshes—a list of triangles
that approximates the shape and contours of the object.

� The virtual camera is modeled as a frustum. The volume of space
inside the frustum is what the camera “sees.”

� 3D objects are defined in local space and are then all brought into
one world space system. To facilitate projection, culling, and other
operations, the objects are then transformed to view space, where
the camera is positioned at the origin and looking down the positive

The Rendering Pipeline 73

P
a

rt
II

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

��

�

�

1
22

000

00
2

0

000
2

MinZ
Height

Y
Width

X

MinZMaxZ

Height

Width

Figure 2.17: A screen triangle
being rasterized

z-axis. Once in view space, the objects are projected to the projec-
tion window. The viewport transformation transforms the geome-
try on the projection window to the viewport. Finally, the
rasterization stage computes the individual pixel colors of the final
2D image.

74 Chapter 2

TE
AM
FL
Y

Team-Fly®

Chapter 3

Drawing in Direct3D

In the last chapter we learned the concepts of creating and rendering a
scene. In this chapter we put that into practice and learn how to draw
some geometric objects in Direct3D. The Direct3D interfaces and
methods covered in this chapter are of some importance, for they are
used throughout the rest of this book.

Objectives

� To find out how vertex and index data is stored in Direct3D

� To discover how to change the way geometry is rendered using
render states

� To learn how to render a scene

� To learn how to create more complex 3D shapes using the
D3DXCreate* functions

3.1 Vertex/Index Buffers

Vertex and index buffers are similar interfaces and share similar meth-
ods; therefore we cover them together. A vertex buffer is simply a
chunk of contiguous memory that contains vertex data. Similarly, an
index buffer is a chunk of contiguous memory that contains index data.
We use vertex and index buffers to hold our data over arrays because
vertex and index buffers can be placed in video memory. Rendering
data from video memory is done much faster than rendering data in
system memory.

In code, a vertex buffer is represented by the IDirect3DVer-
texBuffer9 interface and an index buffer is represented by the
IDirect3DIndexBuffer9 interface.

75

3.1.1 Creating a Vertex and Index Buffer

We can create a vertex and index buffer with the following two
methods:

HRESULT IDirect3DDevice9::CreateVertexBuffer(
UINT Length,
DWORD Usage,
DWORD FVF,
D3DPOOL Pool
IDirect3DVertexBuffer9** ppVertexBuffer,
HANDLE* pSharedHandle

);

HRESULT IDirect3DDevice9::CreateIndexBuffer(
UINT Length,
DWORD Usage,
D3DFORMAT Format,
D3DPOOL Pool,
IDirect3DIndexBuffer9** ppIndexBuffer,
HANDLE* pSharedHandle

);

The majority of the parameters are identical for both methods, so let’s
cover the parameters of both methods together.

� Length—The number of bytes to allocate for the buffer. If we
wanted a vertex buffer to have enough memory to store eight ver-
tices, we would set this parameter to 8 * sizeof(Vertex),
where Vertex is our vertex structure.

� Usage—Specifies some additional properties about how the buffer
is used. This value can be zero, indicating no additional properties,
or a combination of one or more of the following flags:

� D3DUSAGE_DYNAMIC—Setting this flag makes the buffer
dynamic. See the notes on static and dynamic buffers on the
following page.

� D3DUSAGE_POINTS—This flag specifies that the buffer will
hold point primitives. Point primitives are covered in “Particle
Systems” in Chapter 14. This flag is used only for vertex
buffers.

� D3DUSAGE_SOFTWAREPROCESSING—Vertex processing is
done in software.

� D3DUSAGE_WRITEONLY—Specifies that the application will
only write to the buffer. This allows the driver to place the
buffer in the best memory location for write operations. Note
that reading from a buffer created with this flag will result in an
error.

76 Chapter 3

� FVF—The flexible vertex format of the vertices that is stored in
the vertex buffer

� Pool—The memory pool in which the buffer is placed

� ppVertexBuffer—Pointer to receive the created vertex buffer

� pSharedHandle—Not used; set to zero

� Format—Specifies the size of the indices; use D3DFMT_INDEX16
for 16-bit indices or use D3DFMT_INDEX32 for 32-bit indices. Note
that not all devices support 32-bit indices; check the device
capabilities.

� ppIndexBuffer—Pointer to receive the created index buffer

Note: A buffer created without the D3DUSAGE_DYNAMIC flag is called
a static buffer. Static buffers are generally placed in video memory
where its contents can be processed most efficiently. However, the
trade-off of making a buffer static is that writing to and reading from
the memory of a static buffer is inherently slow because accessing
video memory is slow. For this reason we use static buffers to hold
static data (data that will not need to be changed (accessed) very fre-
quently). Terrains and city buildings are examples of good candidates
for static buffers because the terrain and building geometry will usually
not change during the course of the application. Static buffers should
be filled with geometry at application initialization time and never at
run time.

Note: A buffer created with the D3DUSAGE_DYNAMIC flag is called a
dynamic buffer. Dynamic buffers are generally placed in AGP memory
where its memory can be updated quickly. Dynamic buffers are not
processed as quickly as static buffers because the data must be trans-
ferred to video memory before rendering, but the benefit of dynamic
buffers is that they can be updated reasonably fast (fast CPU writes).
Therefore, if you need to update the contents of a buffer frequently, it
should be made dynamic. Particle systems are good candidates for
dynamic buffers because they are animated, and thus their geometry
is usually updated every frame.

Note: Reading video memory and AGP memory from your applica-
tion is very slow. Therefore, if you need to read your geometry at run
time, it is best to keep a local system memory copy and then read from
that.

The following example creates a static vertex buffer that has enough
memory to hold eight vertices of type Vertex.

IDirect3DVertexBuffer9* vb;
_device->CreateVertexBuffer(

8 * sizeof(Vertex),
0,
D3DFVF_XYZ,
D3DPOOL_MANAGED,

Drawing in Direct3D 77

P
a

rt
II

&vb,
0);

This next code example shows how to create a dynamic index buffer
that has enough memory to hold 36 16-bit indices.

IDirect3DIndexBuffer9* ib;
_device->CreateIndexBuffer(

36 * sizeof(WORD),
D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY,
D3DFMT_INDEX16,
D3DPOOL_MANAGED,
&ib,
0);

3.1.2 Accessing a Buffer’s Memory

To access the memory of a vertex/index buffer, we need to get a pointer
to its internal memory contents. We obtain a pointer to its contents by
using the Lock method. It is important to unlock the buffer when we
are done accessing it. Once we have a pointer to the memory, we can
read and write information to it.

Note: If the vertex/index buffer was created with the usage flag
D3DUSAGE_WRITEONLY, you must not read from the buffer. Doing so
will result in a failed read.

HRESULT IDirect3DVertexBuffer9::Lock(
UINT OffsetToLock,
UINT SizeToLock,
BYTE** ppbData,
DWORD Flags

);
HRESULT IDirect3DIndexBuffer9::Lock(

UINT OffsetToLock,
UINT SizeToLock,
BYTE** ppbData,
DWORD Flags

);

The parameters for both methods are exactly the same.

� OffsetToLock—Offset, in bytes, from the start of the buffer to
the location to begin the lock. See Figure 3.1.

78 Chapter 3

Figure 3.1: The Offset

ToLock and SizeToLock

parameters specify the
block of memory to lock.
Specifying zero for both of
these parameters is a
shortcut to lock the entire
buffer.

� SizeToLock—Number of bytes to lock

� ppbData—A pointer to the start of the locked memory

� Flags—Flags describing how the lock is done. This can be zero or
a combination of one or more of the following flags:

� D3DLOCK_DISCARD—This flag is used only for dynamic buff-
ers. It instructs the hardware to discard the buffer and return a
pointer to a newly allocated buffer. This is useful because it
allows the hardware to continue rendering from the discarded
buffer while we access the newly allocated buffer. This pre-
vents the hardware from stalling.

� D3DLOCK_NOOVERWRITE—This flag is used only for dynamic
buffers. It states that you are only going to append data to a
buffer. That is, you will not overwrite any memory that is cur-
rently being rendered. This is beneficial because it allows the
hardware to continue rendering at the same time you add new
data to the buffer.

� D3DLOCK_READONLY—This flag states that you are locking
the buffer only to read data and that you won’t be writing to it.
This allows for some internal optimizations.

Flags D3DLOCK_DISCARD and D3DLOCK_NOOVERWRITE address the
fact that a portion of the buffer’s memory could be in use (being ren-
dered) at the time of a lock call. If circumstances allow these flags to be
used, they prevent a rendering stall when locking, which otherwise
would occur.

The following example shows how the Lock method is commonly
used. Note how we call the Unlock method when we are done.

Vertex* vertices;
_vb->Lock(0, 0, (void**)&vertices, 0); // lock the entire buffer

vertices[0] = Vertex(-1.0f, 0.0f, 2.0f); // write vertices to
vertices[1] = Vertex(0.0f, 1.0f, 2.0f); // the buffer
vertices[2] = Vertex(1.0f, 0.0f, 2.0f);

_vb->Unlock(); // unlock when you’re done accessing the buffer

3.1.3 Retrieving Information about a Vertex and Index
Buffer

Sometimes we need to get information about the vertex/index buffer.
The following example demonstrates the methods used to obtain such
information:

Drawing in Direct3D 79

P
a

rt
II

D3DVERTEXBUFFER_DESC vbDescription;
_vertexBuffer->GetDesc(&vbDescription); // get vb info

D3DINDEXBUFFER_DESC ibDescription;
_indexBuffer->GetDesc(&ibDescription); // get ib info

The D3DVERTEXBUFFER_DESC and D3DINDEXBUFFER_DESC struc-
tures are defined as follows:

typedef struct _D3DVERTEXBUFFER_DESC {
D3DFORMAT Format;
D3DRESOURCETYPE Type;
DWORD Usage;
D3DPOOL Pool;
UINT Size;
DWORD FVF;

} D3DVERTEXBUFFER_DESC;

typedef struct _D3DINDEXBUFFER_DESC {
D3DFORMAT Format;
D3DRESOURCETYPE Type;
DWORD Usage;
D3DPOOL Pool;
UINT Size;

} D3DINDEXBUFFER_DESC;

3.2 Render States

Direct3D encapsulates a variety of rendering states that affect how
geometry is rendered. Render states have default values, so you only
need to change them if your application requires something other than
the default. A render state stays in effect until you change the particu-
lar state again. To set a render state, we use the following method:

HRESULT IDirect3DDevice9::SetRenderState(
D3DRENDERSTATETYPE State, // the state to change
DWORD Value // value of the new state

);

For example, in this chapter’s samples we are going to render our
objects in wireframe mode. Therefore, we set the following render
state:

_device->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME);

Note: Look up D3DRENDERSTATETYPE in the DirectX SDK to see all
the possible render states.

80 Chapter 3

3.3 Drawing Preparations

Once we have created a vertex buffer and, optionally, an index buffer,
we are almost ready to render its contents, but there are three steps
that must be taken first.

1. Set the stream source. Setting the stream source hooks up a vertex
buffer to a stream that essentially feeds geometry into the render-
ing pipeline.

The following method is used to set a stream source:

HRESULT IDirect3DDevice9::SetStreamSource(
UINT StreamNumber,
IDirect3DVertexBuffer9* pStreamData,
UINT OffsetInBytes,
UINT Stride

);

� StreamNumber—Identifies the stream source to which we are
hooking the vertex buffer. In this book we do not use multiple
streams; thus we always use stream zero.

� pStreamData—A pointer to the vertex buffer that we want to
hook up to the stream

� OffsetInBytes—An offset from the start of the stream,
measured in bytes, that specifies the start of the vertex data to
be fed into the rendering pipeline. To set this parameter to
something besides zero, check if your device supports it by
checking the D3DDEVCAPS2_STREAMOFFSET flag in the
D3DCAPS9 structure.

� Stride—Size in bytes of each element in the vertex buffer
that we are attaching to the stream

For example, suppose vb is a vertex buffer that has been filled with
vertices of type Vertex:

_device->SetStreamSource(0, vb, 0, sizeof(Vertex));

2. Set the vertex format. This is where we specify the vertex format
of the vertices that we use in subsequent drawing calls.

_device->SetFVF(D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1);

3. Set the index buffer. If we are using an index buffer, we must set
the index buffer that is used in subsequent drawing operations.
Only one index buffer can be used at a time; therefore if you need
to draw an object with a different index buffer, you must switch to
the other. The following code sets an index buffer:

_device->SetIndices(_ib); // pass copy of index buffer pointer

Drawing in Direct3D 81

P
a

rt
II

3.4 Drawing with Vertex/Index Buffers

After we have created our vertex/index buffers and done our prepara-
tion work, we can draw our geometry, which sends the geometry
through the rendering pipeline using either DrawPrimitive or
DrawIndexedPrimitive. These methods obtain the vertex info from
the vertex streams and the index info from the currently set index
buffer.

3.4.1 IDirect3DDevice9::DrawPrimitive

This method is used to draw primitives that do not use index info.

HRESULT IDirect3DDevice9::DrawPrimitive(
D3DPRIMITIVETYPE PrimitiveType,
UINT StartVertex,
UINT PrimitiveCount

);

� PrimitiveType—The type of primitive that we are drawing. For
instance, we can draw points and lines in addition to triangles.
Since we are using a triangle, use D3DPT_TRIANGLELIST for this
parameter.

� StartVertex—Index to an element in the vertex streams that
marks the starting point from which to begin reading vertices. This
parameter gives us the flexibility to only draw certain portions of a
vertex buffer.

� PrimitiveCount—The number of primitives to draw

Example:

// draw four triangles.
_device->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 4);

3.4.2 IDirect3DDevice9::DrawIndexedPrimitive

This method is used to draw primitives using index info.

HRESULT IDirect3DDevice9::DrawIndexedPrimitive(
D3DPRIMITIVETYPE Type,
INT BaseVertexIndex,
UINT MinIndex,
UINT NumVertices,
UINT StartIndex,
UINT PrimitiveCount

);

� Type—The type of primitive that we are drawing. For instance, we
can draw points and lines in addition to triangles. Since we are
using a triangle, use D3DPT_TRIANGLELIST for this parameter.

82 Chapter 3

� BaseVertexIndex—A base number to be added to the indices
used in this call. See the following note.

� MinIndex—The minimum index value that will be referenced

� NumVertices—The number of vertices that will be referenced in
this call

� StartIndex—Index to an element in the index buffer that marks
the starting point from which to begin reading indices

� PrimitiveCount—The number of primitives to draw

Example:

_device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0, 8, 0, 12);

Note: The BaseVertexIndex parameter deserves some explana-
tion. Refer to Figure 3.2 during this explanation.

The local index buffers reference vertices in the corresponding local
vertex buffer. However, suppose that we want to combine the vertices
of the sphere, box, and cylinder into one global vertex buffer. For each
object we would have to recompute the indices to index correctly into
the global vertex buffer. The new indices are computed by adding an
offset value that specifies the start of the object’s vertices in the global
vertex buffer to each index. Note that the offset is measured in verti-
ces, not bytes.

Rather than having to compute the indices relative to where the
object is in the global vertex buffer ourselves, Direct3D allows us to
pass in a vertex-offset value through the BaseVertexIndex parameter.
Direct3D will then recompute the indices internally.

Drawing in Direct3D 83

P
a

rt
II

Figure 3.2: Separately defined ver-
tex buffers merged into one global
vertex buffer

3.4.3 Begin/End Scene

The last bit of information to mention is that all drawing methods must
be called inside an IDirect3DDevice9::BeginScene and
IDirect3DDevice9::EndScene pair. For example, we would write:

_device->BeginScene();
_device->DrawPrimitive(...);

_device->EndScene();

3.5 D3DX Geometric Objects

Building 3D objects by constructing each triangle in code is tedious.
Fortunately, the D3DX library provides some methods to generate the
mesh data of simple 3D objects for us.

The D3DX library provides the following six mesh creation
functions:

� D3DXCreateBox

� D3DXCreateSphere

� D3DXCreateCylinder

� D3DXCreateTeapot

� D3DXCreatePolygon

� D3DXCreateTorus

All six are used similarly and use the D3DX mesh data structure
ID3DXMesh as well as the ID3DXBuffer interface. These interfaces
are covered in Chapters 10 and 11. For now, we ignore their details and
concentrate on using them in the simplest way.

HRESULT D3DXCreateTeapot(
LPDIRECT3DDEVICE9 pDevice, // device associated with the mesh
LPD3DXMESH* ppMesh, // pointer to receive mesh
LPD3DXBUFFER* ppAdjacency // set to zero for now

);

84 Chapter 3

Figure 3.3: Objects created and
rendered using the D3DXCreate*

functions

TE
AM
FL
Y

Team-Fly®

An example of using the D3DXCreateTeapot function:

ID3DXMesh* mesh = 0;
D3DXCreateTeapot(_device, &mesh, 0);

Once we have generated the mesh data, we can draw it using the
ID3DXMesh::DrawSubset method. This method takes one parame-
ter, which identifies a subset of the mesh. The meshes generated by
the above D3DXCreate* functions create a mesh with only one subset,
so zero can be specified for this parameter. An example of rendering the
mesh:

_device->BeginScene();
mesh->DrawSubset(0);

_device->EndScene();

When you are done with the mesh, you must release it:

_mesh->Release();
_mesh = 0;

3.6 Sample Applications: Triangle,
Cube, Teapot, D3DXCreate*

There are four samples located in this chapter’s directory in the book’s
companion files, which can be downloaded from the book’s web site.

� Triangle—This very simple application demonstrates how to create
and render a triangle in the wireframe mode.

� Cube—A little more advanced than the triangle sample, this appli-
cation renders a spinning wireframe cube.

� Teapot—This application uses the D3DXCreateTeapot function
to create and render a spinning teapot.

� D3DXCreate—This application creates and renders several differ-
ent kinds of 3D objects that can be created with the D3DXCreate*
functions.

Let’s briefly discuss the implementation of the Cube sample. You can
study the others on your own.

The sample application draws and renders a cube, as shown in Fig-
ure 3.4. The project and complete source code for this sample can be
found on this chapter’s web page.

Drawing in Direct3D 85

P
a

rt
II

First we instantiate the following two global variables to hold the ver-
tex and index data of our cube:

IDirect3DVertexBuffer9* VB = 0;
IDirect3DIndexBuffer9* IB = 0;

In addition, we instantiate two constant global variables that define the
resolution of our screen:

const int Width = 800;
const int Height = 600;

We then define our vertex structure and the flexible vertex format of
that structure. The vertex structure in this sample holds only vertex
position information:

struct Vertex
{

Vertex(){}
Vertex(float x, float y, float z)
{

_x = x; _y = y; _z = z;
}
float _x, _y, _z;
static const DWORD FVF;

};
const DWORD Vertex::FVF = D3DFVF_XYZ;

Let’s move on to the framework functions. The Setup function creates
the vertex and index buffers, locks them, writes the vertices that make
up the cube to the vertex buffer, and writes the indices that define the
triangles of the cube. It then moves the camera a few units back so that
it can see the cube that will be rendered at the origin of the world.
Then it sets the projection transform. Finally, it sets the fill mode ren-
der state to wireframe mode:

bool Setup()
{

86 Chapter 3

Figure 3.4 A screen shot
from the CubeApp sample

// create vertex and index buffers
Device->CreateVertexBuffer(

8 * sizeof(Vertex),
D3DUSAGE_WRITEONLY,
Vertex::FVF,
D3DPOOL_MANAGED,
&VB,
0);

Device->CreateIndexBuffer(
36 * sizeof(WORD),
D3DUSAGE_WRITEONLY,
D3DFMT_INDEX16,
D3DPOOL_MANAGED,
&IB,
0);

// fill the buffers with the cube data
Vertex* vertices;
VB->Lock(0, 0, (void**)&vertices, 0);

// vertices of a unit cube
vertices[0] = Vertex(-1.0f, -1.0f, -1.0f);
vertices[1] = Vertex(-1.0f, 1.0f, -1.0f);
vertices[2] = Vertex(1.0f, 1.0f, -1.0f);
vertices[3] = Vertex(1.0f, -1.0f, -1.0f);
vertices[4] = Vertex(-1.0f, -1.0f, 1.0f);
vertices[5] = Vertex(-1.0f, 1.0f, 1.0f);
vertices[6] = Vertex(1.0f, 1.0f, 1.0f);
vertices[7] = Vertex(1.0f, -1.0f, 1.0f);

VB->Unlock();

// define the triangles of the cube:
WORD* indices = 0;
IB->Lock(0, 0, (void**)&indices, 0);

// front side
indices[0] = 0; indices[1] = 1; indices[2] = 2;
indices[3] = 0; indices[4] = 2; indices[5] = 3;

// back side
indices[6] = 4; indices[7] = 6; indices[8] = 5;
indices[9] = 4; indices[10] = 7; indices[11] = 6;

// left side
indices[12] = 4; indices[13] = 5; indices[14] = 1;
indices[15] = 4; indices[16] = 1; indices[17] = 0;

// right side
indices[18] = 3; indices[19] = 2; indices[20] = 6;
indices[21] = 3; indices[22] = 6; indices[23] = 7;

// top
indices[24] = 1; indices[25] = 5; indices[26] = 6;
indices[27] = 1; indices[28] = 6; indices[29] = 2;

Drawing in Direct3D 87

P
a

rt
II

// bottom
indices[30] = 4; indices[31] = 0; indices[32] = 3;
indices[33] = 4; indices[34] = 3; indices[35] = 7;

IB->Unlock();

// position and aim the camera
D3DXVECTOR3 position(0.0f, 0.0f, -5.0f);
D3DXVECTOR3 target(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 up(0.0f, 1.0f, 0.0f);
D3DXMATRIX V;
D3DXMatrixLookAtLH(&V, &position, &target, &up);

Device->SetTransform(D3DTS_VIEW, &V);

// set projection matrix
D3DXMATRIX proj;
D3DXMatrixPerspectiveFovLH(

&proj,
D3DX_PI * 0.5f, // 90 - degree
(float)Width / (float)Height,
1.0f,
1000.0f);

Device->SetTransform(D3DTS_PROJECTION, &proj);

// set the render states
Device->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME);

return true;
}

The Display method has two tasks; it must update the scene and then
render it. Since we want to spin the cube, we are going to increment an
angle every frame that specifies how much the cube is to rotate that
frame. By incrementing it every frame, the cube will be slightly more
rotated every frame, making it look like it is spinning. Notice that we
use the world transformation to actually orient the cube. Then we draw
the cube using the IDirect3DDevice9::DrawIndexedPrimitive
method.

bool Display(float timeDelta)
{

if(Device)
{

//
// spin the cube:
//
D3DXMATRIX Rx, Ry;

// rotate 45 degrees on x-axis
D3DXMatrixRotationX(&Rx, 3.14f / 4.0f);

// incremement y-rotation angle each frame
static float y = 0.0f;
D3DXMatrixRotationY(&Ry, y);

88 Chapter 3

y += timeDelta;

// reset angle to zero when angle reaches 2*PI
if(y >= 6.28f)

y = 0.0f;

// combine rotations
D3DXMATRIX p = Rx * Ry;

Device->SetTransform(D3DTS_WORLD, &p);

//
// draw the scene:
//
Device->Clear(0, 0,

D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0xffffffff, 1.0f, 0);

Device->BeginScene();

Device->SetStreamSource(0, VB, 0, sizeof(Vertex));
Device->SetIndices(IB);
Device->SetFVF(Vertex::FVF);
Device->DrawIndexedPrimitive(D3DPT_TRIANGLELIST,

0, 0, 8, 0, 12);

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;

}

Finally, we clean up any memory that we have allocated. This means
releasing the vertex and index buffer interfaces:

void Cleanup()
{

d3d::Release<IDirect3DVertexBuffer9*>(VB);
d3d::Release<IDirect3DIndexBuffer9*>(IB);

}

3.7 Summary

� Vertex data is stored in the IDirect3DVertexBuffer9 inter-
face. Similarly, index data is stored in the IDirect3DIndex-
Buffer9 interface. The reason for using vertex/index buffers is
that the data can be stored in video memory.

� Geometry that is static (that is, does not need to be updated every
frame) should be stored in a static vertex/index buffer. On the other
hand, geometry that is dynamic (that is, does need to get updated
every frame) should be stored in a dynamic vertex/index buffer.

Drawing in Direct3D 89

P
a

rt
II

� Render states are states that the device maintains that affect how
geometry is rendered. Render states remain in effect until changed,
and the current values are applied to the geometry of any subse-
quent drawing operations. All render states have initial default
values.

� To draw the contents of a vertex buffer and an index buffer you
must:

� Call IDirect3DDevice9::SetStreamSource and hook the
vertex buffer that you wish to draw from to a stream.

� Call IDirect3DDevice9::SetFVF to set the vertex format
of the vertices to render.

� If you are using an index buffer, call IDirect3DDevice9::
SetIndices to set the index buffer.

� Call either IDirect3DDevice9::DrawPrimitive or
IDirect3DDevice9::DrawIndexedPrimitive in
between an IDirect3DDevice9::BeginScene and
IDirect3DDevice9::EndScene pair.

� Using the D3DXCreate* functions, we can create the geometry of
more complex 3D objects, such as spheres, cylinders, and teapots.

90 Chapter 3

Chapter 4

Color

In the last chapter we rendered the objects in the scene using lines to
form wireframe meshes. In this chapter we learn how to render solid
objects with color.

Objectives

� To learn how color is described in Direct3D

� To understand how colors are shaded across a triangle

4.1 Color Representation

In Direct3D, colors are described with an RGB triplet. That is, we spec-
ify the amount of red, green, and blue color. The additive mixing of
these three components determines the final color. By using a combina-
tion of red, green, and blue, we can represent millions of colors.

We use two different types of structures to hold the RGB data. The
first is the D3DCOLOR type, which is actually typedefed as a DWORD
and is 32 bits. The bits in the D3DCOLOR type are divided into four 8-bit
sections, where each section stores the intensity of a color component.
Figure 4.1 shows the distribution.

Since each color component gets a byte of memory, the intensity of the
color can range from 0-255. Values near 0 specify a low intensity, and
values near 255 specify a strong intensity.

91

Figure 4.1: A 32-bit color, where a byte is
allocated for each primary color component
red, green, and blue. A fourth byte is allo-
cated for the alpha component.

Note: Do not worry about the alpha component now; it is used for
alpha blending—the topic of Chapter 7.

Specifying each component and then inserting it into the proper posi-
tion in the D3DCOLOR type will require some bit operations. Direct3D
provides a macro that performs this for us called D3DCOLOR_ARGB.
There is one parameter for each color component and the alpha compo-
nent. Each parameter must be in the range 0-255 and is used like so:

D3DCOLOR brightRed = D3DCOLOR_ARGB(255, 255, 0, 0);
D3DCOLOR someColor = D3DCOLOR_ARGB(255, 144, 87, 201);

Alternatively, we can use the D3DCOLOR_XRGB macro, which is similar
but does not take the alpha parameter; rather, it sets the alpha to 0xff
(255).

#define D3DCOLOR_XRGB(r,g,b) D3DCOLOR_ARGB(0xff,r,g,b)

Another way to store a color in Direct3D is with the D3DCOLORVALUE
structure. With this structure we use a floating-point value to measure
the intensity of each component. The range measures from 0 to 1—0
being no intensity and 1 being full intensity.

typedef struct _D3DCOLORVALUE {
float r; // the red component, range 0.0-1.0
float g; // the green component, range 0.0-1.0
float b; // the blue component, range 0.0-1.0
float a; // the alpha component, range 0.0-1.0

} D3DCOLORVALUE;

Alternatively, we can use the D3DXCOLOR structure, which contains the
same data members as D3DCOLORVALUE but provides useful construc-
tors and overloaded operators, making color manipulations easy. In
addition, since they can contain the same data members, we can cast
back and fourth between the two. D3DXCOLOR is defined as:

typedef struct D3DXCOLOR
{
#ifdef __cplusplus
public:

D3DXCOLOR() {}
D3DXCOLOR(DWORD argb);
D3DXCOLOR(CONST FLOAT *);
D3DXCOLOR(CONST D3DXFLOAT16 *);
D3DXCOLOR(CONST D3DCOLORVALUE&);
D3DXCOLOR(FLOAT r, FLOAT g, FLOAT b, FLOAT a);

// casting
operator DWORD () const;

operator FLOAT* ();
operator CONST FLOAT* () const;

92 Chapter 4

operator D3DCOLORVALUE* ();
operator CONST D3DCOLORVALUE* () const;

operator D3DCOLORVALUE& ();
operator CONST D3DCOLORVALUE& () const;

// assignment operators
D3DXCOLOR& operator += (CONST D3DXCOLOR&);
D3DXCOLOR& operator -= (CONST D3DXCOLOR&);
D3DXCOLOR& operator *= (FLOAT);
D3DXCOLOR& operator /= (FLOAT);

// unary operators
D3DXCOLOR operator + () const;
D3DXCOLOR operator - () const;

// binary operators
D3DXCOLOR operator + (CONST D3DXCOLOR&) const;
D3DXCOLOR operator - (CONST D3DXCOLOR&) const;
D3DXCOLOR operator * (FLOAT) const;
D3DXCOLOR operator / (FLOAT) const;

friend D3DXCOLOR operator * (FLOAT, CONST D3DXCOLOR&);

BOOL operator == (CONST D3DXCOLOR&) const;
BOOL operator != (CONST D3DXCOLOR&) const;

#endif //__cplusplus
FLOAT r, g, b, a;

} D3DXCOLOR, *LPD3DXCOLOR;

Note: Observe that the D3DCOLORVALUE and the D3DXCOLOR struc-
ture both have four floating-point components. This leads to the
common notation of treating a color as a 4D vector (r, g, b, a). Color
vectors are added, subtracted, and scaled just like regular vectors. On
the other hand, dot and cross products do not make sense for color
vectors, but component-wise multiplication does make sense for col-
ors. Thus, the color-color multiplication operator in the D3DXCOLOR

class performs component-wise multiplication. The symbol � denotes
component-wise multiplication, and it is defined as:
(c1, c2, c3, c4) � (k1, k2, k3, k4) = (c1k1, c2k2, c3k3, c4k4).

We now update our d3dUtility.h file with the following global color
constants:

namespace d3d
{

.

.

.
const D3DXCOLOR WHITE(D3DCOLOR_XRGB(255, 255, 255));
const D3DXCOLOR BLACK(D3DCOLOR_XRGB(0, 0, 0));
const D3DXCOLOR RED(D3DCOLOR_XRGB(255, 0, 0));
const D3DXCOLOR GREEN(D3DCOLOR_XRGB(0, 255, 0));
const D3DXCOLOR BLUE(D3DCOLOR_XRGB(0, 0, 255));

Color 93

P
a

rt
II

const D3DXCOLOR YELLOW(D3DCOLOR_XRGB(255, 255, 0));
const D3DXCOLOR CYAN(D3DCOLOR_XRGB(0, 255, 255));
const D3DXCOLOR MAGENTA(D3DCOLOR_XRGB(255, 0, 255));

}

4.2 Vertex Colors

The color of a primitive is determined by the color of the vertices that
make it up. Therefore, we must add a color member to our vertex data
structure. Note that a D3DCOLORVALUE type cannot be used here
because Direct3D expects a 32-bit value to describe the color of a ver-
tex. (Acually, by using a vertex shader we could use 4D color vectors
for the vertex color, and thereby gain 128-bit color, but that is getting
ahead of ourselves for now. Vertex shaders are covered in Chapter 17.)

struct ColorVertex
{

float _x, _y, _z;
D3DCOLOR _color;
static const DWORD FVF;

}
const DWORD ColorVertex::FVF = D3DFVF_XYZ | D3DFVF_DIFFUSE;

4.3 Shading

Shading occurs during rasterization and specifies how the vertex colors
are used to compute the pixel colors that make up the primitive. There
are two shading modes that are presently used: flat shading and
Gouraud shading.

With flat shading, the pixels of a primitive are uniformly colored by
the color specified in the first vertex of the primitive. So the triangle
formed by the following three vertices would be red, since the first ver-
tex color is red. The colors of the second and third vertices are ignored
with flat shading.

ColorVertex t[3];
t[0]._color = D3DCOLOR_XRGB(255, 0, 0);
t[1]._color = D3DCOLOR_XRGB(0, 255, 0);
t[2]._color = D3DCOLOR_XRGB(0, 0, 255);

Flat shading tends to make objects appear blocky because there is no
smooth transition from one color to the next. A much better form of
shading is called Gouraud shading (also called smooth shading). With
Gouraud shading, the colors at each vertex are interpolated linearly
across the face of the primitive. Figure 4.2 shows a red flat shaded tri-
angle and a triangle colored using Gouraud shading.

94 Chapter 4

TE
AM
FL
Y

Team-Fly®

Like many things in Direct3D, the shading mode is controlled through
the Direct3D state machine.

// set flat shading
Device->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);

// set Gouraud shading
Device->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD);

4.4 Sample Application: Colored Triangle

The sample program for this chapter demonstrates a triangle colored
using flat shading and a triangle colored using Gouraud shading. It ren-
ders the image shown in Figure 4.2. First we add the following global
variables:

D3DXMATRIX World;
IDirect3DVertexBuffer9* Triangle = 0;

We include a D3DXMATRIX that is used to store the world transforma-
tion of the triangles that we are going to draw. The Triangle variable
is the vertex buffer that stores the vertex data of a triangle. Notice that
we only have to store the geometry of one triangle because we can
draw it multiple times at different positions in the world using the
world matrix.

The Setup method creates the vertex buffer and fills it with the
data of a triangle with colored vertices. The first vertex in the triangle
is full-intensity red (255), the second is full-intensity green (255), and
the third is full-intensity blue (255). Finally, we disable lighting for this
sample. Notice that this sample uses the new ColorVertex structure,
as explained in section 4.2.

Color 95

P
a

rt
II

Figure 4.2: On the left is a
triangle colored red with flat
shading. On the right is a
triangle with vertex colors
red, green, and blue; notice
that with Gouraud shading,
the vertex colors are inter-
polated across the triangle.

bool Setup()
{

// create vertex buffer
Device->CreateVertexBuffer(

3 * sizeof(ColorVertex),
D3DUSAGE_WRITEONLY,
ColorVertex::FVF,
D3DPOOL_MANAGED,
&Triangle,
0);

// fill the buffers with the triangle data
ColorVertex* v;
Triangle->Lock(0, 0, (void**)&v, 0);

v[0] = ColorVertex(-1.0f, 0.0f, 2.0f, D3DCOLOR_XRGB(255, 0,
0));

v[1] = ColorVertex(0.0f, 1.0f, 2.0f, D3DCOLOR_XRGB(0, 255,
0));

v[2] = ColorVertex(1.0f, 0.0f, 2.0f, D3DCOLOR_XRGB(0, 0,
255));

Triangle->Unlock();

// set projection matrix
D3DXMATRIX proj;
D3DXMatrixPerspectiveFovLH(

&proj,
D3DX_PI * 0.5f, // 90 - degree
(float)Width / (float)Height,
1.0f,
1000.0f);

Device->SetTransform(D3DTS_PROJECTION, &proj);

// set the render states
Device->SetRenderState(D3DRS_LIGHTING, false);

return true;
}

Then, the Display function draws Triangle twice in two different
positions and with different shade modes. The position of each triangle
is controlled with the world matrix—World.

bool Display(float timeDelta)
{

if(Device)
{

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0xffffffff, 1.0f, 0);

Device->BeginScene();

Device->SetFVF(ColorVertex::FVF);
Device->SetStreamSource(0, Triangle, 0, sizeof(ColorVertex));

96 Chapter 4

// draw the triangle to the left with flat shading
D3DXMatrixTranslation(&World, -1.25f, 0.0f, 0.0f);
Device->SetTransform(D3DTS_WORLD, &World);

Device->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_FLAT);
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 1);

// draw the triangle to the right with gouraud shading
D3DXMatrixTranslation(&World, 1.25f, 0.0f, 0.0f);
Device->SetTransform(D3DTS_WORLD, &World);

Device->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_GOURAUD);
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 1);

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;

}

4.5 Summary

� Colors are described by specifying an intensity of red, green, and
blue. The additive mixing of these three colors at different intensi-
ties allows us to describe millions of colors. In Direct3D, we can
use the D3DCOLOR, the D3DCOLORVALUE, or the D3DXCOLOR type
to describe a color in code.

� We sometimes treat a color as a 4D vector (r, g, b, a). Color vectors
are added, subtracted, and scaled just like regular vectors. On the
other hand, dot and cross products do not make sense for color vec-
tors, but component-wise multiplication does make sense for col-
ors. The symbol � denotes component-wise multiplication, and it is
defined as: (c1, c2, c3, c4) � (k1, k2, k3, k4) = (c1k1, c2k2, c3k3, c4k4).

� We specify the color of each vertex, and then Direct3D uses the
current shade mode to determine how these vertex colors are used
to compute the pixel colors of the triangle during rasterization.

� With flat shading, the pixels of a primitive are uniformly colored by
the color specified in the first vertex of the primitive. With Gouraud
shading, the colors at each vertex are interpolated linearly across
the face of the primitive.

Color 97

P
a

rt
II

Chapter 5

Lighting

To enhance the realism of our scenes, we can add lighting. Lighting also
helps to depict the solid form and volume of objects. When using light-
ing, we no longer specify vertex colors ourselves; rather, Direct3D
runs each vertex through its lighting engine and computes a vertex
color based on defined light sources, materials, and the orientation of
the surface with regard to the light sources. Computing the vertex col-
ors based on a lighting model results in a more natural scene.

Objectives

� To learn the light sources that Direct3D supports and types of light
that these sources emit

� To understand how we define light to interact with the surface that
it strikes

� To find out how we can mathematically describe the direction a tri-
angle is facing so that we can determine the angle at which a light
ray strikes the triangle

5.1 Light Components

In the Direct3D lighting model, the light emitted by a light source con-
sists of three components, or three kinds of light.

� Ambient Light—This kind of light models light that has reflected
off other surfaces and is used to brighten up the overall scene. For
example, parts of objects are often lit, to a degree, even though
they are not in direct sight of a light source. These parts get lit
from light that has bounced off other surfaces. Ambient light is a
hack used to roughly, and cheaply, model this reflected light.

� Diffuse Light—This type of light travels in a particular direction.
When it strikes a surface, it reflects equally in all directions.
Because diffuse light reflects equally in all directions, the reflected
light will reach the eye no matter the viewpoint, and therefore we
do not need to take the viewer into consideration. Thus, the diffuse

98

lighting equation needs only to consider the light direction and the
attitude of the surface. This kind of light will be your general light
that emits from a source.

� Specular Light—This type of light travels in a particular direc-
tion. When it strikes a surface, it reflects harshly in one direction,
causing a bright shine that can only be seen from some angles.
Since the light reflects in one direction, clearly the viewpoint, in
addition to the light direction and surface attitude, must be taken
into consideration in the specular lighting equation. Specular light
is used to model light that produces highlights on objects, such as
the bright shine created when light strikes a polished surface.

Specular lighting requires more computations than the other types of
light; therefore, Direct3D provides the option to turn it off. In fact, by
default it is turned off; to enable specular lighting you must set the
D3DRS_SPECULARENABLE render state.

Device->SetRenderState(D3DRS_SPECULARENABLE, true);

Each type of light is represented by a D3DCOLORVALUE structure or
D3DXCOLOR, which describes the color of the light. Here are some
examples of several light colors:

D3DXCOLOR redAmbient(1.0f, 0.0f, 0.0f, 1.0f);
D3DXCOLOR blueDiffuse(0.0f, 0.0f, 1.0f, 1.0f);
D3DXCOLOR whiteSpecular(1.0f, 1.0f, 1.0f, 1.0f);

Note: The alpha values in the D3DXCOLOR class are ignored when
used for describing light colors.

5.2 Materials

The color of an object we see in the real world is determined by the
color of light that the object reflects. For instance, a red ball is red
because it absorbs all colors of light except red light. The red light is
reflected from the ball and makes it into our eyes, and we therefore see
the ball as red. Direct3D models this same phenomenon by having us
define a material for an object. The material allows us to define the per-
centage at which light is reflected from the surface. In code a material
is represented with the D3DMATERIAL9 structure.

typedef struct _D3DMATERIAL9 {
D3DCOLORVALUE Diffuse, Ambient, Specular, Emissive;
float Power;

} D3DMATERIAL9;

� Diffuse—Specifies the amount of diffuse light this surface
reflects

Lighting 99

P
a

rt
II

� Ambient—Specifies the amount of ambient light this surface
reflects

� Specular—Specifies the amount of specular light this surface
reflects

� Emissive—This component is used to add to the overall color of
the surface, making it appear brighter like its giving off its own
light.

� Power—Specifies the sharpness of specular highlights; the higher
this value, the sharper the highlights

As an example, suppose we want a red ball. We would define the ball’s
material to reflect only red light and absorb all other colors of light:

D3DMATERIAL9 red;
::ZeroMemory(&red, sizeof(red));
red.Diffuse = D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f); // red
red.Ambient = D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f); // red
red.Specular = D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f); // red
red.Emissive = D3DXCOLOR(0.0f, 0.0f, 0.0f, 1.0f); // no emission
red.Power = 5.0f;

Here we set the green and blue components to 0, indicating that the
material reflects 0% of these colored lights. We set the red component
to 1 indicating that the material reflects 100% red light. Notice that we
have the ability to control the color of light reflected for each type of
light (ambient, diffuse, and specular light).

Also notice that if we define a light source that emits only blue-
colored light, it would fail to light the ball because the blue light would
be completely absorbed and zero red light would be reflected. An object
appears black when it absorbs all light. Similarly, an object is white
when it reflects 100% red, green, and blue light.

Because it is somewhat tedious to manually fill out a material
structure, we add the following utility function and global material con-
stants to the d3dUtility.h/cpp files:

D3DMATERIAL9 d3d::InitMtrl(D3DXCOLOR a, D3DXCOLOR d,
D3DXCOLOR s, D3DXCOLOR e, float p)

{
D3DMATERIAL9 mtrl;
mtrl.Ambient = a;
mtrl.Diffuse = d;
mtrl.Specular = s;
mtrl.Emissive = e;
mtrl.Power = p;
return mtrl;

}

namespace d3d
{

100 Chapter 5

.

.

.
D3DMATERIAL9 InitMtrl(D3DXCOLOR a, D3DXCOLOR d,

D3DXCOLOR s, D3DXCOLOR e, float p);

const D3DMATERIAL9 WHITE_MTRL = InitMtrl(WHITE, WHITE,
WHITE, BLACK, 8.0f);

const D3DMATERIAL9 RED_MTRL = InitMtrl(RED, RED,
RED, BLACK, 8.0f);

const D3DMATERIAL9 GREEN_MTRL = InitMtrl(GREEN, GREEN,
GREEN, BLACK, 8.0f);

const D3DMATERIAL9 BLUE_MTRL = InitMtrl(BLUE, BLUE,
BLUE, BLACK, 8.0f);

const D3DMATERIAL9 YELLOW_MTRL = InitMtrl(YELLOW, YELLOW,
YELLOW, BLACK, 8.0f);

}

Note: An excellent paper on color theory, lighting, and how the
human eye perceives color is available at http://www.adobe.com/
support/techguides/color/colortheory/main.html.

A vertex structure does not have a material property; rather, a current
material must be set. To set the current material, we use the
IDirect3DDevice9::SetMaterial(CONST D3DMATERIAL9*

pMaterial) method.
Suppose that we want to render several objects with different

materials; we would write the following:

D3DMATERIAL9 blueMaterial, redMaterial;

...// set up material structures

Device->SetMaterial(&blueMaterial);
drawSphere(); // blue sphere

Device->SetMaterial(&redMaterial);
drawSphere(); // red sphere

5.3 Vertex Normals

A face normal is a vector that describes the direction a polygon is facing
(see Figure 5.1).

Lighting 101

P
a

rt
II

Figure 5.1: The face normal of a surface

Vertex normals are based on the same idea, but rather than specifying
the normal per polygon, we specify them for each vertex that forms the
polygon (see Figure 5.2).

Direct3D needs to know the vertex normals so that it can determine
the angle at which light strikes a surface, and since lighting calculations
are done per vertex, Direct3D needs to know the surface orientation
(normal) per vertex. Note that the vertex normal isn’t necessarily the
same as the face normal. Sphere/circle approximations are good exam-
ples of objects where the vertex normals are not the same as the
triangle normals (see Figure 5.3).

To describe the vertex normal of a vertex, we must update our vertex
structure:

struct Vertex
{

float _x, _y, _z;
float _nx, _ny, _nz;
static const DWORD FVF;

}
const DWORD Vertex::FVF = D3DFVF_XYZ | D3DFVF_NORMAL;

Notice that we have removed the color member that was used in the
last chapter. This is because we are using lighting to compute the col-
ors of our vertices.

For simple objects such as cubes and spheres, we can see the ver-
tex normals by inspection. For more complex meshes, we need a more
mechanical method. Suppose a triangle is formed by the vertices p0, p1,

102 Chapter 5

Figure 5.2: The vertex normals of a surface

Figure 5.3: An example where vertex normals are dif-
ferent from the face normal. The bolder vectors denote
the vertex normals, while the lighter vectors denote the
face normals.

and p2, and we need to compute the vertex normal for each of the verti-
ces n0, n1, and n2.

The simplest approach, and the approach we illustrate, is to find the
face normal of the triangle that the three vertices form and use the face
normal as the vertex normals. First compute two vectors that lie on the
triangle:

Then the face normal is:

Since each vertex normal is the same as the face normal:

Below is a C function that computes the face normal of a triangle from
three vertex points on the triangle. Note that this function assumes
that the vertices are specified in a clockwise winding order. If they are
not, the normal will point in the opposite direction.

void ComputeNormal(D3DXVECTOR3* p0,
D3DXVECTOR3* p1,
D3DXVECTOR3* p2,
D3DXVECTOR3* out)

{
D3DXVECTOR3 u = *p1 - *p0;
D3DXVECTOR3 v = *p2 - *p0;

D3DXVec3Cross(out, &u, &v);
D3DXVec3Normalize(out, out);

}

Using face normals as vertex normals does not produce smooth results
when approximating curved surfaces with triangles. A better method
for finding a vertex normal is normal averaging. To find the vertex nor-
mal vn of a vertex v, we find the face normals for all the triangles in the
mesh that share vertex v. Then vn is given by averaging all of these
face normals. Here’s an example to illustrate. Suppose three triangles,
whose face normals are given by n0, n1, and n2, share the vertex v.
Then vn is given by averaging the face normals:

During the transformation stages, it is possible for vertex normals to
become non-normal. Therefore, it is best to be safe and have Direct3D

Lighting 103

P
a

rt
II

vpp

upp

��

��

02

01

vun ��

nnnn ��� 210

	
210
3

1
nnnv ���n

renormalize all of your normals after the transformation stages by
enabling the D3DRS_NORMALIZENORMALS render state:

Device->SetRenderState(D3DRS_NORMALIZENORMALS, true);

5.4 Light Sources

Direct3D supports three types of light sources.

� Point lights—This light source has a position in world space and
emits light in all directions.

� Directional lights—This light source has no position but shoots
parallel rays of light in the specified direction.

� Spot lights—This type of light source is similar to a flashlight; it
has a position and shines light through a conical shape in a particu-
lar direction. The cone is characterized by two angles,
 and �. The
angle
 describes an inner cone, and � describes the outer cone.

104 Chapter 5

Figure 5.4: A point light

Figure 5.5: Directional light

Figure 5.6: A spotlight

TE
AM
FL
Y

Team-Fly®

In code a light source is represented with the D3DLIGHT9 structure.

typedef struct _D3DLIGHT9 {
D3DLIGHTTYPE Type;
D3DCOLORVALUE Diffuse;
D3DCOLORVALUE Specular;
D3DCOLORVALUE Ambient;
D3DVECTOR Position;
D3DVECTOR Direction;
float Range;
float Falloff;
float Attenuation0;
float Attenuation1;
float Attenuation2;
float Theta;
float Phi;

} D3DLIGHT9;

� Type—Defines the type of light that we are making and can be one
of the following three types: D3DLIGHT_POINT, D3DLIGHT_
SPOT, D3DLIGHT_DIRECTIONAL

� Diffuse—The color of diffuse light that this source emits

� Specular—The color of specular light that this source emits

� Ambient—The color of ambient light that this source emits

� Position—A vector describing the world position of the light
source. This value is meaningless for directional lights.

� Direction—A vector describing the world direction that the light
is traveling. This value is not used for point lights.

� Range—The maximum range that the light can travel before it
“dies.” This value cannot be greater than FLT MAX_ and has no
effect on directional lights.

� Falloff—This value is used only for spotlights. It defines how
the light’s intensity weakens from the inner cone to the outer cone.
This value is generally set to 1.0f.

� Attenuation0, Attenuation1, Attenuation2—The attenua-
tion variables are used to define how the intensity of light weakens
over distance. These variables are only used for point and spot
lights. The attenuation0 variable defines a constant falloff,
attenuation1 defines the linear falloff, and attenuation2
defines the quadratic falloff. Calculated using this formula, where D

is distance from light source and
A0, A1, A2 correspond to Attenu-
ation 0, 1, and 2.

� Theta—Used for spotlights only; specifies inner cone angle in
radians.

� Phi—Used for spotlights only; specifies outer cone angle in radians.

Lighting 105

P
a

rt
II

Attenuation =
1

0 1 2
2A A D A D� � � �

Like initializing a D3DMATERIAL9 structure, initializing a D3DLIGHT9
structure can also be tedious when you only want a simple light. We
add the following functions to the d3dUtility.h/cpp files to initialize sim-
ple lights:

namespace d3d
{
.
.
.
D3DLIGHT9 InitDirectionalLight(D3DXVECTOR3* direction,

D3DXCOLOR* color);

D3DLIGHT9 InitPointLight(D3DXVECTOR3* position,
D3DXCOLOR* color);

D3DLIGHT9 InitSpotLight(D3DXVECTOR3* position,
D3DXVECTOR3* direction,
D3DXCOLOR* color);

}

The implementation of these functions is straightforward. We will only
show the implementation of InitDirectionalLight. The others
are similar:

D3DLIGHT9 d3d::InitDirectionalLight(D3DXVECTOR3* direction,
D3DXCOLOR* color)

{
D3DLIGHT9 light;
::ZeroMemory(&light, sizeof(light));

light.Type = D3DLIGHT_DIRECTIONAL;
light.Ambient = *color * 0.4f;
light.Diffuse = *color;
light.Specular = *color * 0.6f;
light.Direction = *direction;

return light;
}

Then to create a directional light that runs parallel with the x-axis in
the positive direction and emits white light, we would write:

D3DXVECTOR3 dir(1.0f, 0.0f, 0.0f);
D3DXCOLOR c = d3d::WHITE;
D3DLIGHT9 dirLight = d3d::InitDirectionalLight(&dir, &c);

After we have initialized a D3DLIGHT9 instance, we need to register
with an internal list of lights that Direct3D maintains. We do this like
so:

Device->SetLight(
0, // element in the light list to set, range is 0-maxlights
&light);// address of the D3DLIGHT9 structure to set

106 Chapter 5

Once a light is registered, we can turn it on and off using what this next
example illustrates:

Device->LightEnable(
0, // the element in the light list to enable/disable
true); // true = enable, false = disable

5.5 Sample Application: Lighting

The sample for this chapter creates the scene shown in Figure 5.7. It
demonstrates how to specify vertex normals, how to create a material,
and how to create and activate a directional light. Note that in this sam-
ple program we do not make use of the d3dUtility.h/cpp material and
light functionality code because we want to show how it is done manu-
ally first. However, the rest of the samples in this book do use the
material and light utility code.

The steps for adding light to a scene are:

1. Enable lighting.

2. Create a material for each object and set the material before ren-
dering the corresponding object.

3. Create one or more light sources, set the light sources, and enable
them.

4. Enable any additional lighting states, such as specular highlights.

First we instantiate a global vertex buffer that stores the pyramid’s
vertices:

IDirect3DVertexBuffer9* Pyramid = 0;

The Setup function contains all the code relevant to this chapter, so
we omit the other functions to save space. It implements the previously
discussed steps to add lighting to a scene. The Setup method starts by

Lighting 107

P
a

rt
II

Figure 5.7: Screen shot from
the LitPyramid sample

enabling lighting, which isn’t necessary because it’s enabled by default
(but it doesn’t hurt either).

bool Setup()
{

Device->SetRenderState(D3DRS_LIGHTING, true);

Next, we create the vertex buffer, lock it, and specify the vertices that
form triangles of the pyramid. The vertex normals were precomputed
using the algorithm covered in section 5.3. Notice that while the trian-
gles share vertices, they do not share normals; thus it is not very
advantageous to use an index list for this object. For example, all the
triangles share the peak point (0, 1, 0); however, for each triangle, the
peak vertex normal points in a different direction.

Device->CreateVertexBuffer(
12 * sizeof(Vertex),
D3DUSAGE_WRITEONLY,
Vertex::FVF,
D3DPOOL_MANAGED,
&Pyramid,
0);

// fill the vertex buffer with pyramid data
Vertex* v;
Pyramid->Lock(0, 0, (void**)&v, 0);

// front face
v[0] = Vertex(-1.0f, 0.0f, -1.0f, 0.0f, 0.707f, -0.707f);
v[1] = Vertex(0.0f, 1.0f, 0.0f, 0.0f, 0.707f, -0.707f);
v[2] = Vertex(1.0f, 0.0f, -1.0f, 0.0f, 0.707f, -0.707f);

// left face
v[3] = Vertex(-1.0f, 0.0f, 1.0f, -0.707f, 0.707f, 0.0f);
v[4] = Vertex(0.0f, 1.0f, 0.0f, -0.707f, 0.707f, 0.0f);
v[5] = Vertex(-1.0f, 0.0f, -1.0f, -0.707f, 0.707f, 0.0f);

// right face
v[6] = Vertex(1.0f, 0.0f, -1.0f, 0.707f, 0.707f, 0.0f);
v[7] = Vertex(0.0f, 1.0f, 0.0f, 0.707f, 0.707f, 0.0f);
v[8] = Vertex(1.0f, 0.0f, 1.0f, 0.707f, 0.707f, 0.0f);

// back face
v[9] = Vertex(1.0f, 0.0f, 1.0f, 0.0f, 0.707f, 0.707f);
v[10] = Vertex(0.0f, 1.0f, 0.0f, 0.0f, 0.707f, 0.707f);
v[11] = Vertex(-1.0f, 0.0f, 1.0f, 0.0f, 0.707f, 0.707f);

Pyramid->Unlock();

After we have generated the vertex data of our object, we describe how
the object interacts with light by describing its materials. In this sam-
ple, the pyramid reflects white lights, emits no light, and produces
some highlights.

108 Chapter 5

D3DMATERIAL9 mtrl;
mtrl.Ambient = d3d::WHITE;
mtrl.Diffuse = d3d::WHITE;
mtrl.Specular = d3d::WHITE;
mtrl.Emissive = d3d::BLACK;
mtrl.Power = 5.0f;

Device->SetMaterial(&mtrl);

Second to last, we create and enable a directional light. The directional
light rays run parallel to the x-axis in the positive direction. The light
emits strong white diffuse light (dir.Diffuse = WHITE), weak
white specular light (dir.Specular = WHITE * 0.3f), and a
medium amount of white ambient light (dir.Ambient = WHITE *

0.6f).

D3DLIGHT9 dir;
::ZeroMemory(&dir, sizeof(dir));
dir.Type = D3DLIGHT_DIRECTIONAL;
dir.Diffuse = d3d::WHITE;
dir.Specular = d3d::WHITE * 0.3f;
dir.Ambient = d3d::WHITE * 0.6f;
dir.Direction = D3DXVECTOR3(1.0f, 0.0f, 0.0f);

Device->SetLight(0, &dir);
Device->LightEnable(0, true);

Finally, we set the state to renormalize normals and enable specular
highlights.

Device->SetRenderState(D3DRS_NORMALIZENORMALS, true);
Device->SetRenderState(D3DRS_SPECULARENABLE, true);

// ... code to set up the view matrix and projection matrix
// omitted

return true;
}

5.6 Additional Samples

Three additional samples are included for this chapter in the companion
files. They use the D3DXCreate* functions to create the 3D objects
that compose the scene. The D3DXCreate* functions create vertex
data with the format D3DFVF_XYZ | D3DFVF_NORMAL. In addition
these functions compute the vertex normals of each mesh for us. The
additional samples demonstrate how to use directional lights, point
lights, and spot lights. Figure 5.8 shows a screen shot from the direc-
tional light sample.

Lighting 109

P
a

rt
II

5.7 Summary

� Direct3D supports three light source models: directional lights,
point lights, and spot lights. Light sources emit three types of light:
ambient light, diffuse light, and specular light.

� The material of a surface defines how light interacts with the sur-
face that it strikes (that is, how much light is reflected and
absorbed, thus determining the color of the surface).

� Vertex normals are used to define the orientation of a vertex. They
are used so that Direct3D can determine the angle at which a ray of
light strikes the vertex. In some cases, the vertex normal is equal
to the normal of the triangle that it forms, but this is not usually the
case when approximating smooth surfaces (e.g., spheres,
cylinders).

110 Chapter 5

Figure 5.8: A screen shot
from the DirectionalLight
sample

Chapter 6

Texturing

Texture mapping is a technique that allows us to map image data onto a
triangle; this capability allows us to increase the details and realism of
our scene significantly. For example, we can build a cube and turn it
into a crate by mapping a crate texture to each side (see Figure 6.1).

In Direct3D a texture is represented with the IDirect3DTexture9
interface. A texture is a matrix of pixels similar to a surface but can be
mapped to triangles.

Objectives

� To learn how to specify the part of a texture that gets mapped to
the triangle

� To find out how to create textures

� To learn how textures can be filtered to create a smoother image

111

Figure 6.1:
A cube with a crate
texture

6.1 Texture Coordinates

Direct3D uses a texture coordinate system that consists of a u-axis that
runs horizontally and a v-axis that runs vertically. A pair of u, v coordi-
nates identifies an element on the texture called a texel. Notice that the
v-axis is positive in the “down” direction (see Figure 6.2).

Also, notice the normalized coordinate interval, [0, 1], which is used
because it gives Direct3D a fixed range to work with textures of vari-
ous dimensions.

For each 3D triangle, we want to define a corresponding triangle on
the texture that is to be mapped to the 3D triangle (see Figure 6.3).

112 Chapter 6

Figure 6.2: The texture coordinate sys-
tem, sometimes called texture space

Figure 6.3: On the left is a triangle in 3D space, and on the right we define a
2D triangle on the texture that is going to be mapped onto the 3D triangle.

To do this, we modify our vertex structure once again and add a pair of
texture coordinates that identifies a vertex on the texture.

struct Vertex
{

float _x, _y, _z;
float _nx, _ny, _nz;
float _u, _v; // texture coordinates

static const DWORD FVF;
};
const DWORD Vertex::FVF = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1;

Observe that we have added D3DFVF_TEX1 to our vertex format
description, which says that our vertex structure contains one pair of
texture coordinates.

Now every triangle built from three Vertex objects also defines a
corresponding texture triangle from the texture coordinates.

Note: Although we specify a corresponding texture triangle to a 3D
triangle, the texture isn’t mapped until the rasterization stage where
the 3D triangle has been transformed to screen space.

6.2 Creating and Enabling a Texture

Texture data is usually read from an image file stored on disk and
loaded into an IDirect3DTexture9 object. To do this, we can use the
following D3DX function:

HRESULT D3DXCreateTextureFromFile(
LPDIRECT3DDEVICE9 pDevice, // device to create the texture
LPCSTR pSrcFile, // filename of image to load
LPDIRECT3DTEXTURE9* ppTexture // ptr to receive the created texture

);

This function can load any of the following image formats: BMP, DDS,
DIB, JPG, PNG, and TGA.

For example, to create a texture from an image called stone-
wall.bmp, we would write the following:

IDirect3Dtexture9* _stonewall;
D3DXCreateTextureFromFile(_device, "stonewall.bmp", &_stonewall);

To set the current texture, we use the following method:

HRESULT IDirect3DDevice9::SetTexture(
DWORD Stage, // A value in the range 0-7 identifying the texture

// stage – see note on Texture Stages
IDirect3DBaseTexture9* pTexture // ptr to the texture to set

);

Texturing 113

P
a

rt
II

Example:

Device->SetTexture(0, _stonewall);

Note: In Direct3D, you can set up to eight textures that can be com-
bined to create a more detailed image. This is called multitexturing.
We do not use multitexturing in this book until Part IV; therefore we
always set the textures stage to 0, for now.

To disable a texture at a particular texturing stage, set pTexture to 0.
For instance, if we don’t want to render an object with a texture, we
would write:

Device->SetTexture(0, 0);
renderObjectWithoutTexture();

If our scene has triangles that use different textures, we would have to
do something similar to the following code:

Device->SetTexture(0, _tex0);
drawTrisUsingTex0();

Device->SetTexture(0, _tex1);
drawTrisUsingTex1();

6.3 Filters

As mentioned previously, textures are mapped to triangles in screen
space. Usually, the texture triangle is not the same size as the screen
triangle. When the texture triangle is smaller than the screen triangle,
the texture triangle is magnified to fit. When the texture triangle is
larger than the screen triangle, the texture triangle is minified to fit. In
both cases, distortion will occur. Filtering is a technique Direct3D uses
to help smooth out these distortions.

Direct3D provides three different types of filters; each one pro-
vides a different level of quality. The better the quality, the slower it is,
so you must make the trade-off between quality and speed. Texture fil-
ters are set with the IDirect3DDevice9::SetSamplerState
method.

� Nearest point sampling—This is the default filtering method and
produces the worst-looking results, but it is also the fastest to com-
pute. The following code sets nearest point sampling as the
minification and magnification filter:

Device->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_POINT);
Device->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT);

� Linear filtering—This type of filtering produces fairly good
results and can be done very fast on today’s hardware. It is

114 Chapter 6

TE
AM
FL
Y

Team-Fly®

recommended that you use linear filtering as a minimum. The fol-
lowing code sets linear filtering as the minification and magnifica-
tion filter:

Device->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);

� Anisotropic filtering—This type of filtering produces the best
results but also takes the longest to compute. The following code
sets anisotropic filtering as the minification and magnification filter:

Device->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_
ANISOTROPIC);

Device->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_
ANISOTROPIC);

When using anisotropic filtering, we must also set the D3DSAMP_
MAXANISOTROPY level, which determines the quality of the anisotropic
filtering. The higher this value, the better the results. Check the
D3DCAPS9 structure for the valid range that your device supports. The
following code sets this value to 4:

Device->SetSamplerState(0, D3DSAMP_MAXANISOTROPY, 4);

6.4 Mipmaps

As said in section 6.3, the triangle on the screen is usually not the same
size as the texture triangle. In an effort to make the size difference less
drastic, we can create a chain of mipmaps for a texture. The idea is to
take a texture and create a series of smaller lower resolution textures
but customize the filtering for each of these levels so it preserves the
detail that is important for us (see Figure 6.4).

Texturing 115

P
a

rt
II

Figure 6.4: A chain of mipmaps; notice that each successive mipmap is
half the size of the previous mipmap.

6.4.1 Mipmap Filter

The mipmap filter is used to control how Direct3D uses the mipmaps.
You can set the mipmap filter by writing:

Device->SetSamplerState(0, D3DSAMP_MIPFILTER, Filter);

where Filter is one of the following three options:

� D3DTEXF_NONE—Disables mipmapping

� D3DTEXF_POINT—By using this filter, Direct3D will choose the
mipmap level that is closest in size to the screen triangle. Once
that level is chosen, Direct3D will filter that level based on the
specified min and mag filters.

� D3DTEXF_LINEAR—By using this filter, Direct3D will take the two
closest mipmap levels, filter each level with the min and mag fil-
ters, and linearly combine these two levels to form the final color
values.

6.4.2 Using Mipmaps with Direct3D

Using mipmaps with Direct3D is easy. If the device supports mipmaps,
D3DXCreateTextureFromFile will generate a mipmap chain for
you. In addition, Direct3D automatically selects the mipmap that
matches the screen triangle the best. So mipmapping is pretty much
used and set up automatically.

6.5 Address Modes

Previously, we stated that texture coordinates must be specified in the
range [0, 1]. Technically, that is not correct; they can go outside that
range. The behavior for texture coordinates that go outside the [0, 1]
range is defined by the Direct3D address mode. There are four types of
address modes: wrap, border color, clamp, and mirror, which are illus-
trated in Figures 6.5, 6.6, 6.7, and 6.8, respectively.

116 Chapter 6

Figure 6.5:
Wrap mode

In these figures, the texture coordinates for the four unique quad verti-
ces are defined as (0, 0), (0, 3), (3, 0), and (3, 3). From the three in both
the u-axis and v-axis direction, the quad is subdivided into a 3 � 3 area
matrix. If, for instance, you wanted the texture to be tiled 5 � 5 across
the quad, you would specify the wrap address mode and texture coordi-
nates (0, 0), (0, 5), (5, 0), and (5, 5).

The following code snippet taken from the AddressModes sample
illustrates how the four address modes are set:

// set wrap address mode
if(::GetAsyncKeyState('W') & 0x8000f)
{

Device->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP);
Device->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);

}

// set border color address mode
if(::GetAsyncKeyState('B') & 0x8000f)
{

Device->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_BORDER);
Device->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_BORDER);
Device->SetSamplerState(0, D3DSAMP_BORDERCOLOR, 0x000000ff);

}

// set clamp address mode
if(::GetAsyncKeyState('C') & 0x8000f)
{

Device->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_CLAMP);

Texturing 117

P
a

rt
II

Figure 6.6:
Border
color mode

Figure 6.7:
Clamp
mode

Figure 6.8:
Mirror mode

Device->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_CLAMP);
}

// set mirror address mode
if(::GetAsyncKeyState('M') & 0x8000f)
{

Device->SetSamplerState(0, D3DSAMP_ADDRESSU, D3DTADDRESS_MIRROR);
Device->SetSamplerState(0, D3DSAMP_ADDRESSV, D3DTADDRESS_MIRROR);

}

6.6 Sample Application: Textured Quad

The sample for this chapter demonstrates how to texture a quad and
set a texture filter (see Figure 6.9). A mipmap chain is created automat-
ically with the D3DXCreateTextureFromFile function if the device
supports mipmapping.

Note: There are two additional samples on the web page for this
chapter. One sample textures a cube with the crate texture, as shown
in Figure 6.1. The second demonstrates texture address modes.

The tasks required for adding textures to a scene are:

1. Construct the vertices of the objects with the texture coordinates
specified.

2. Load a texture into an IDirect3DTexture9 interface using the
D3DXCreateTextureFromFile function.

3. Set the minification, magnification, and mipmap filters.

4. Before you draw an object, set the texture that is associated with
the object with IDirect3DDevice9::SetTexture.

118 Chapter 6

Figure 6.9:
A screen shot of a
textured quad taken
from the TexQuad
sample

We begin by instantiating several global variables; one is the vertex
buffer that stores the vertices of the quad and the other is the texture
that we map to the quad:

IDirect3DVertexBuffer9* Quad = 0;
IDirect3DTexture9* Tex = 0;

The Setup routine is fairly straightforward; we construct a quad from
two triangles with texture coordinates defined. We then load the bitmap
file dx5_logo.bmp into an IDirect3DTexture9 interface. Next we
enable the texture using the SetTexture method. Finally, we set the
minification and magnification filters to linear filtering, and we also set
the mipmap filter to D3DTEXF_POINT:

bool Setup()
{

Device->CreateVertexBuffer(
6 * sizeof(Vertex),
D3DUSAGE_WRITEONLY,
Vertex::FVF,
D3DPOOL_MANAGED,
&Quad,
0);

Vertex* v;
Quad->Lock(0, 0, (void**)&v, 0);

// quad built from two triangles, note texture coordinates:
v[0] = Vertex(-1.0f, -1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f);
v[1] = Vertex(-1.0f, 1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f);
v[2] = Vertex(1.0f, 1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f);

v[3] = Vertex(-1.0f, -1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f);
v[4] = Vertex(1.0f, 1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f);
v[5] = Vertex(1.0f, -1.0f, 1.25f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f);

Quad->Unlock();

// Load texture data.
D3DXCreateTextureFromFile(

Device,
"dx5_logo.bmp",
&Tex);

// Enable the texture.
Device->SetTexture(0, Tex);

// Set texture filters.
Device->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_POINT);

// set projection matrix
D3DXMATRIX proj;
D3DXMatrixPerspectiveFovLH(

Texturing 119

P
a

rt
II

&proj,
D3DX_PI * 0.5f, // 90 - degree
(float)Width / (float)Height,
1.0f,
1000.0f);

Device->SetTransform(D3DTS_PROJECTION, &proj);

// don't use lighting for this sample
Device->SetRenderState(D3DRS_LIGHTING, false);

return true;
}

We can now render our quad as normal, and the currently set texture is
mapped to it:

bool Display(float timeDelta)
{

if(Device)
{

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0xffffffff, 1.0f, 0);

Device->BeginScene();

Device->SetStreamSource(0, Quad, 0, sizeof(Vertex));
Device->SetFVF(Vertex::FVF);

// Draw primitives using presently enabled texture.
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 2);

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;

}

6.7 Summary

� Texture coordinates are used to define a triangle on the texture
that gets mapped to the 3D triangle.

� We can create textures from image files stored on disk using the
D3DXCreateTextureFromFile function.

� We can filter textures by using the minification, magnification, and
mipmap filter sampler states.

� Address modes define what Direct3D is supposed to do with tex-
ture coordinates outside the [0, 1] range. For example, should the
texture be tiled, mirrored, clamped, etc.?

120 Chapter 6

Chapter 7

Blending

In this chapter we examine a technique called blending that allows us to
blend (combine) pixels that we are currently rasterizing with pixels that
have been previously rasterized to the same pixel locations. In other
words, we blend primitives over previously drawn primitives. This
technique allows us to achieve a variety of effects (in particular,
transparency).

Objectives

� To understand how blending works and how to use it

� To learn about the different blend modes that Direct3D supports

� To find out how the alpha component can be used to control the
transparency of a primitive

7.1 The Blending Equation

Consider Figure 7.1, where we have a red teapot drawn in front of a
wooden crate background.

121

Figure 7.1: An opaque
teapot

Suppose that we want to draw the teapot with a level of transparency
so that we could see the background crate through the teapot (see Fig-
ure 7.2).

How would we accomplish this? As we are rasterizing the teapot’s tri-
angles on top of the crate, we need to combine the pixel colors being
computed for the teapot with the pixel colors of the crate in such a way
that the crate shows through the teapot. The idea of combining the
pixel values that are currently being computed (source pixel) with the
pixel values previously written (destination pixel) is called blending.
Note that the effect of blending is not limited to ordinary glass-like
transparency. We have a variety of options that specify how the colors
are combined, as seen in section 7.2.

It is important to realize that the triangles currently being
rasterized are blended with the pixels that were previously written to
the back buffer. In the example figures, the crate image is drawn first so
that the crate’s pixels are on the back buffer. We then draw the teapot
so that the teapot’s pixels are blended with the crate’s pixels. Thus, the
following rule should be followed when using blending:

Rule: Draw objects that do not use blending first. Then sort the
objects that use blending by their distance from the camera; this is
most efficiently done if the objects are in view space so that you can
sort simply by the z-component. Finally, draw the objects that use
blending in a back-to-front order.

The following formula is used to blend two pixel values:

OutputPixel = SourcePixel � SourceBlendFactor + DestPixel �DestBlendFactor

122 Chapter 7

Figure 7.2: A transpar-
ent teapot

Each of the above variables is a 4D color vector (r, g, b, a), and the �
symbol denotes component-wise multiplication.

� OutputPixel—The resulting blended pixel

� SourcePixel—The pixel currently being computed that is to be
blended with the pixel on the back buffer

� SourceBlendFactor—A value in the interval [0, 1] that specifies the
percent of the source pixel to use in the blend

� DestPixel—The pixel currently on the back buffer

� DestBlendFactor—A value in the interval [0, 1] that specifies the
percent of the destination pixel to use in the blend

The source and destination blend factors let us modify the original
source and destination pixels in a variety of ways, allowing for different
effects to be achieved. Section 7.2 covers the predefined values that can
be used.

Blending is disabled by default; you can enable it by setting the
D3DRS_ALPHABLENDENABLE render state to true:

Device->SetRenderState(D3DRS_ALPHABLENDENABLE, true);

Tip: Blending is not a cheap operation and should only be enabled
for the geometry that needs it. When you are done rendering that
geometry, you should disable alpha blending. Also try to batch trian-
gles that use blending and render them at once so that you can avoid
turning blending on and off multiple times per frame.

7.2 Blend Factors

By setting different combinations of source and destination blend fac-
tors, you can create dozens of different blending effects. Experiment
with different combinations to see what they do. You can set the source
blend factor and the destination blend factor by setting the D3DRS_
SRCBLEND and D3DRS_DESTBLEND render states, respectively. For
example, we can write:

Device->SetRenderState(D3DRS_SRCBLEND, Source);
Device->SetRenderState(D3DRS_DESTBLEND, Destination);

where Source and Destination can be one of the following blend
factors:

� D3DBLEND_ZERO—blendFactor=(0, 0, 0, 0)

� D3DBLEND_ONE—blendFactor=(1, 1, 1, 1)

� D3DBLEND_SRCCOLOR—blendFactor=(rs, gs, bs, as)

Blending 123

P
a

rt
II

� D3DBLEND_INVSRCCOLOR—blendFactor=(1 – rs, 1 – gs, 1 – bs,
1 – as)

� D3DBLEND_SRCALPHA—blendFactor=(as, as, as, as)

� D3DBLEND_INVSRCALPHA—blendFactor=(1 – as, 1 – as, 1 – as,
1 – as)

� D3DBLEND_DESTALPHA—blendFactor=(ad, ad, ad, ad)

� D3DBLEND_INVDESTALPHA—blendFactor=(1 – ad, 1 – ad, 1 – ad,
1 – ad)

� D3DBLEND_DESTCOLOR—blendFactor=(rd, gd, bd, ad)

� D3DBLEND_INVDESTCOLOR—blendFactor=(1 – rd, 1 – gd, 1 – bd,
1 – ad)

� D3DBLEND_SRCALPHASAT—blendFactor=(f, f, f, 1), where
f=min(as, 1 – ad)

� D3DBLEND_BOTHINVSRCALPHA—This blend mode sets the
source blend factor to (1 – as, 1 – as, 1 – as, 1 – as) and the destina-
tion blend factor to (as, as, as, as). This blend mode is only valid for
D3DRS_SRCBLEND.

The default values for the source blend factor and destination blend fac-
tor are D3DBLEND_SRCALPHA and D3DBLEND_INVSRCALPHA,
respectively.

7.3 Transparency

In previous chapters we ignored the alpha component of a vertex color
and material because it was not needed then, as it is primarily used in
blending. However, the alpha components from each vertex color are
shaded across the face of the triangle just as the colors are, but rather
than determining the pixels’ colors, it determines the pixels’ alpha
component.

The alpha component is mainly used to specify the level of trans-
parency of a pixel. Assuming that we have reserved 8 bits for the alpha
component for each pixel, the valid interval of values for the alpha com-
ponent would be [0, 255], where [0, 255] corresponds to [0%, 100%]
opacity. Thus, pixels with a black (0) alpha value are completely trans-
parent, pixels with a gray alpha value of (128) are 50% transparent, and
pixels with a white alpha value of (255) are completely opaque.

In order to make the alpha component describe the level of trans-
parency of the pixels, we must set the source blend factor to
D3DBLEND_SRCALPHA and the destination blend factor to

124 Chapter 7

TE
AM
FL
Y

Team-Fly®

D3DBLEND_INVSRCALPHA. These values also happen to be the default
blend factors.

7.3.1 Alpha Channels

Instead of using the alpha components computed from shading, we can
obtain alpha info from a texture’s alpha channel. The alpha channel is an
extra set of bits reserved for each texel that stores an alpha component.
When the texture is mapped to a primitive, the alpha components in the
alpha channel are also mapped, and they become the alpha components
for the pixels of the textured primitive. Figure 7.3 shows an image rep-
resentation of an 8-bit alpha channel.

Figure 7.4 shows the result of rendering a textured quad with an alpha
channel specifying the parts that are transparent.

7.3.2 Specifying the Source of Alpha

By default, if the currently set texture has an alpha channel, the alpha is
taken from the alpha channel. If no alpha channel is present, the alpha is
obtained from the vertex color. However, you can specify which source
to use (diffuse color or alpha channel) with the following render states:

// compute alpha from diffuse colors during shading
Device->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE);
Device->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);

// take alpha from alpha channel

Blending 125

P
a

rt
II

Figure 7.3: An 8-bit grayscale map representing
the alpha channel of a texture

Figure 7.4: A tex-
tured quad, where
the alpha channel
specifies the
transparency of
the quad

Device->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
Device->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);

7.4 Creating an Alpha Channel
Using the DirectX Texture Tool

The most common image file formats do not store alpha information. In
this section we show you how to create a DDS file with an alpha chan-
nel using the DirectX Texture tool. A DDS file is an image format
specifically designed for DirectX applications and textures. DDS files
can be loaded into textures using D3DXCreateTextureFromFile
just as BMP and JPG files can be. The DirectX Texture tool is located
in the \Bin\DXUtils folder of your root DXSDK directory.

Open the DirectX Texture tool and the crate.jpg file located in this
chapter’s sample folder. The crate is automatically loaded in as a 24-bit
RGB texture with 8 bits of red, 8 bits of green, and 8 bits of blue per
pixel. We need to augment this texture to a 32-bit ARGB texture,
reserving an extra 8-bit slot for the alpha channel. Select Format from
the menu and choose Change Surface Format. A dialog box pops up,
as shown in Figure 7.5. Select the A8 R8 G8 B8 format and press OK.

This creates an image with a 32-bit color depth for each pixel with 8
bits for the alpha channel, 8 bits for red, 8 bits for green, and 8 bits for
blue. Our next task is to load data into the alpha channel. We load the
8-bit grayscale map shown in Figure 7.3 into the alpha channel. Select
File from the menu, and then choose Open Onto Alpha Channel Of

This Texture. A dialog box pops up asking you to locate the image file
that contains the data you want to load into the alpha channel. Select

126 Chapter 7

Figure 7.5: Changing the
format of the texture

the alphachannel.bmp file that is located in this chapter’s texAlpha
sample folder. Figure 7.6 shows the program after the alpha channel
data has been inserted.

Now save the texture with the name of your choice; we used the name
cratewalpha.dds.

7.5 Sample Application: Transparency

The sample application draws a transparent teapot on top of a crate
background—the same one shown in Figure 7.2. The alpha is taken
from the material in this example. The application allows you to
increase/decrease the alpha component interactively by pressing the A
and S keys. The A key increases the alpha component; the S key
decreases it.

The steps required to use blending are:

1. Set the blend factors D3DRS_SRCBLEND and D3DRS_DESTBLEND.

2. If using the alpha component, specify the source (material or alpha
channel).

3. Enable the alpha blending render state.

For this sample, we instantiate the following self-explanatory global
variables:

ID3DXMesh* Teapot = 0; // the teapot
D3DMATERIAL9 TeapotMtrl; // the teapot’s material

IDirect3DVertexBuffer9* BkGndQuad = 0; // background quad - crate
IDirect3DTexture9* BkGndTex = 0; // crate texture
D3DMATERIAL9 BkGndMtrl; // background material

Blending 127

P
a

rt
II

Figure 7.6: Resulting texture
with an alpha channel

The Setup method sets up many things; we have omitted most of the
code that is not relevant to this chapter. With regard to blending, the
Setup method specifies the source that the alpha should be taken
from. In this example we instruct the alpha to be taken from the diffuse
component of the material. Notice that we set the teapot material’s
diffuse alpha component to 0.5, indicating that the teapot should be ren-
dered at 50% transparency. We also set the blend factors here as well.
Take note that we do not enable alpha blending in this method. The rea-
son is that the alpha blending stage takes up additional processing and
should only be used on the geometry that needs it. For instance, in this
sample only the teapot needs to be rendered with alpha blending
enabled—the quad does not. Therefore, we enable alpha blending in the
Display function.

bool Setup()
{

TeapotMtrl = d3d::RED_MTRL;
TeapotMtrl.Diffuse.a = 0.5f; // set alpha to 50% opacity
BkGndMtrl = d3d::WHITE_MTRL;

D3DXCreateTeapot(Device, &Teapot, 0);

...// Create background quad snipped

...// Light and texture setup snipped

// use alpha in material's diffuse component for alpha
Device->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_DIFFUSE);
Device->SetTextureStageState(0, D3DTSS_ALPHAOP,

D3DTOP_SELECTARG1);

// set blending factors so that alpha
// component determines transparency
Device->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
Device->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);

...// view/projection matrix setup snipped

return true;
}

In the Display function, we check to see if the A or S key was pressed
and respond by increasing or decreasing the material’s alpha value.
Notice that the method ensures that the alpha value does not go out-
side the interval [0, 1]. We then render the background quad. Finally,
we enable alpha blending, render the teapot with alpha blending
enabled, and then disable alpha blending.

bool Display(float timeDelta)
{

if(Device)

128 Chapter 7

{
//
// Update
//

// increase/decrease alpha via keyboard input
if(::GetAsyncKeyState('A') & 0x8000f)

TeapotMtrl.Diffuse.a += 0.01f;
if(::GetAsyncKeyState('S') & 0x8000f)

TeapotMtrl.Diffuse.a -= 0.01f;

// force alpha to [0, 1] interval
if(TeapotMtrl.Diffuse.a > 1.0f)

TeapotMtrl.Diffuse.a = 1.0f;
if(TeapotMtrl.Diffuse.a < 0.0f)

TeapotMtrl.Diffuse.a = 0.0f;

//
// Render
//

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0xffffffff, 1.0f, 0);

Device->BeginScene();

// Draw the background
D3DXMATRIX W;
D3DXMatrixIdentity(&W);
Device->SetTransform(D3DTS_WORLD, &W);
Device->SetFVF(Vertex::FVF);
Device->SetStreamSource(0, BkGndQuad, 0, sizeof(Vertex));
Device->SetMaterial(&BkGndMtrl);
Device->SetTexture(0, BkGndTex);
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 2);

// Draw the teapot
Device->SetRenderState(D3DRS_ALPHABLENDENABLE, true);

D3DXMatrixScaling(&W, 1.5f, 1.5f, 1.5f);
Device->SetTransform(D3DTS_WORLD, &W);
Device->SetMaterial(&TeapotMtrl);
Device->SetTexture(0, 0);
Teapot->DrawSubset(0);

Device->SetRenderState(D3DRS_ALPHABLENDENABLE, false);

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;

}

Blending 129

P
a

rt
II

Note: On the web page for this chapter, there is another sample
called texAlpha that demonstrates alpha blending using a texture’s
alpha channel. Code-wise, the only difference is that we specify to
take the alpha component from the texture rather than the material.

// use alpha channel in texture for alpha
Device->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
Device->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);

The application loads a DDS file that contains an alpha channel and
was created using the DX Tex Tool, as explained in section 7.4.

7.6 Summary

� Alpha blending allows combining the pixels of the primitive cur-
rently being rasterized with the pixel values previously written at
the same locations on the back buffer.

� The blend factors allow us to control how the source and destina-
tion pixels are blended together.

� Alpha information can come from the diffuse component of the
primitive’s material alpha channel of the primitive’s texture.

130 Chapter 7

Chapter 8

Stenciling

This chapter brings us to the study of the stencil buffer and is the con-
clusion of Part II of this text. The stencil buffer is an off-screen buffer
that we can use to achieve special effects. The stencil buffer has the
same resolution as the back buffer and depth buffer so that the ijth pixel
in the stencil buffer corresponds with the ijth pixel in the back buffer
and depth buffer. As the name suggests, the stencil buffer works as a
stencil and allows us to block rendering to certain parts of the back
buffer.

For instance, when implementing a mirror, we simply need to
reflect a particular object across the plane of the mirror; however, we
only want to draw the reflection into a mirror. We can use the stencil
buffer to block the rendering of the reflection unless it is in a mirror.
Figure 8.1 should make this clear.

The stencil buffer is a small part of Direct3D and is controlled through
a simple interface. Like blending, the simple interface offers a flexible
and powerful set of capabilities. Learning to use the stencil buffer

131

Figure 8.1: Here we have a tea-
pot being reflected without using
the stencil buffer (a). We see that
the reflected teapot is always ren-
dered no matter if it is in front of
the mirror or a wall. Using the
stencil buffer, we can block the
reflected teapot from being ren-
dered unless it is being drawn in
the mirror (b).

effectively is best done by studying existing applications. Once you
understand a few applications of the stencil buffer, you will have a
better idea of how it can be applied for your own specific needs. For this
reason, this chapter puts a special emphasis on the study of two specific
applications using stencils (in particular, implementing mirrors and pla-
nar shadows).

Objectives

� To gain an understanding of how the stencil buffer works, how to
create a stencil buffer, and how we can control the stencil buffer

� To learn how to implement mirrors and using the stencil buffer to
prevent reflections from being drawn to non-mirror surfaces

� To discover how to render shadows and prevent “double blending”
by using the stencil buffer

8.1 Using the Stencil Buffer

To use the stencil buffer, we must first request one when we initialize
Direct3D and then we must enable it. We describe requesting a stencil
buffer in section 8.1.1. To enable the stencil buffer, we must set the
D3DRS_STENCILENABLE render state and specify true. To disable
the stencil buffer, we specify false for the D3DRS_STENCILENABLE
render state. The following code snippet enables the stencil buffer and
then disables it:

Device->SetRenderState(D3DRS_STENCILENABLE, true);

... // do stencil work

Device->SetRenderState(D3DRS_STENCILENABLE, false);

Aside: Although not used in this book, DirectX 9.0 has added a
two-sided stencil feature that speeds up shadow volume rendering by
reducing the number of rendering passes required to draw the shadow
volume. See the SDK documentation for details.

We can clear the stencil buffer to a default value using the
IDirect3DDevice9::Clear method. Recall that this is the same
method used to clear the back buffer and depth buffer as well.

Device->Clear(0, 0,
D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER | D3DCLEAR_STENCIL,
0xff000000, 1.0f, 0);

Note that we have added D3DCLEAR_STENCIL to the third argument,
indicating that we want to clear the stencil buffer as well as the target

132 Chapter 8

(back buffer) and depth buffer. Argument six is used to specify the
value to clear the stencil buffer to; in this example we clear it to 0.

Note: Using the stencil buffer can be considered a “free” operation
in modern hardware if you are already using depth buffering, accord-
ing to the NVIDIA presentation Creating Reflections and Shadows Using
Stencil Buffers by Mark J. Kilgard.

8.1.1 Requesting a Stencil Buffer

A stencil buffer can be created at the time that we create the depth
buffer. When specifying the format of the depth buffer, we can specify
the format of the stencil buffer at the same time. In actuality, the stencil
buffer and depth buffer share the same off-screen surface buffer, but a
segment of memory in each pixel is designated to each particular buffer.
For instance, consider the following three depth/stencil formats:

� D3DFMT_D24S8—This format says to create a 32-bit depth/stencil
buffer and designate 24 bits per pixel to the depth buffer and 8 bits
per pixel to the stencil buffer.

� D3DFMT_D24X4S4—This format says to create a 32-bit
depth/stencil buffer and designate 24 bits per pixel to the depth
buffer and 4 bits per pixel to the stencil buffer. Four of the bits will
not be used.

� D3DFMT_D15S1—This format says to create a 16-bit depth/stencil
buffer and designate 15 bits per pixel to the depth buffer and 1 bit
per pixel to the stencil buffer.

Note that there are formats that do not allocate any bits to the stencil
buffer. For example, the D3DFMT_D32 format says to create a 32-bit
depth buffer only.

Also, the support for stenciling varies among the various graphics
cards. Some cards may not support an 8-bit stencil buffer, for example.

8.1.2 The Stencil Test

As previously stated, we can use the stencil buffer to block rendering to
certain areas of the back buffer. The decision to block a particular pixel
from being written is decided by the stencil test, which is given by the
following expression:

(ref & mask) ComparisonOperation (value & mask)

The stencil test is performed for every pixel, assuming stenciling is
enabled, and takes two operands:

Stenciling 133

P
a

rt
II

� A left hand side operand (LHS=ref&mask) that is determined by
ANDing an application-defined stencil reference value (ref) with an
application-defined masking value (mask).

� A right hand side (RHS = value&mask) that is determined by
ANDing the entry in the stencil buffer for the particular pixel that
we are testing (value) with an application-defined masking value
(mask).

The stencil test then compares the LHS with the RHS, as specified by
the comparison operation. The entire expression evaluates to a Boolean
(true or false) value. We write the pixel to the back buffer if the test
evaluates to true (passes). If the test evaluates to false (fails), we block
the pixel from being written to the back buffer. And of course, if a pixel
isn’t written to the back buffer, it isn’t written to the depth buffer
either.

8.1.3 Controlling the Stencil Test

To give us flexibility, Direct3D allows us to control the variables used in
the stencil test. In other words, we get to specify the stencil reference
value, the mask value, and even the comparison operation. Though we
do not get to explicitly set the stencil value, we do have some control
over what values get written to the stencil buffer (in addition to clear-
ing the stencil buffer).

8.1.3.1 Stencil Reference Value

The stencil reference value ref is zero by default, but we can change it
with the D3DRS_STENCILREF render state. For example, the following
code sets the stencil reference value to one:

Device->SetRenderState(D3DRS_STENCILREF, 0x1);

Note that we tend to use hexadecimal because it makes it easier to see
the bit alignment of an integer, and this is useful to see when doing
bit-wise operations, such as ANDing.

8.1.3.2 Stencil Mask

The stencil masking value mask is used to mask (hide) bits in both the
ref and value variables. The default mask is 0xffffffff, which
doesn’t mask any bits. We can change the mask by setting the
D3DRS_STENCILMASK render state. The following example masks the
16 high bits:

Device->SetRenderState(D3DRS_STENCILMASK, 0x0000ffff);

134 Chapter 8

TE
AM
FL
Y

Team-Fly®

Note: If you do not understand this talk of bits and masking, it most
likely means that you need to brush up on your binary, hexadecimal,
and bit-wise operations.

8.1.3.3 Stencil Value

As stated previously, this is the value in the stencil buffer for the cur-
rent pixel that we are stencil testing. For example, if we are performing
the stencil test on the ijth pixel, then value will be the value in the ijth

entry of the stencil buffer. We cannot explicitly set individual stencil
values, but recall that we can clear the stencil buffer. In addition we can
use the stencil render states to control what gets written to the stencil
buffer. The stencil-related render states are covered shortly.

8.1.3.4 Comparison Operation

We can set the comparison operation by setting the D3DRS_STENCIL-
FUNC render state. The comparison operation can be any member of
the D3DCMPFUNC enumerated type:

typedef enum _D3DCMPFUNC {
D3DCMP_NEVER = 1,
D3DCMP_LESS = 2,
D3DCMP_EQUAL = 3,
D3DCMP_LESSEQUAL = 4,
D3DCMP_GREATER = 5,
D3DCMP_NOTEQUAL = 6,
D3DCMP_GREATEREQUAL = 7,
D3DCMP_ALWAYS = 8,
D3DCMP_FORCE_DWORD = 0x7fffffff

} D3DCMPFUNC;

� D3DCMP_NEVER—The stencil test never succeeds.

� D3DCMP_LESS—The stencil test succeeds if LHS < RHS.

� D3DCMP_EQUAL—The stencil test succeeds if LHS = RHS.

� D3DCMP_LESSEQUAL—The stencil test succeeds if LHS RHS.

� D3DCMP_GREATER—The stencil test succeeds if LHS > RHS.

� D3DCMP_NOTEQUAL—The stencil test succeeds if LHS �RHS.

� D3DCMP_GREATEREQUAL—The stencil test succeeds if LHS !
RHS.

� D3DCMP_ALWAYS—The stencil test always succeeds.

8.1.3 Updating the Stencil Buffer

In addition to deciding whether to write or block a particular pixel from
being written to the back buffer, we can define how the stencil buffer
entry should be updated based on three possible cases:

Stenciling 135

P
a

rt
II

� The stencil test fails for the ijth pixel. We can define how to update
the ijth entry in the stencil buffer in response to this case by setting
the D3DRS_STENCILFAIL render state:

Device->SetRenderState(D3DRS_STENCILFAIL, StencilOperation);

� The depth test fails for the ijth pixel. We can define how to update
the ijth entry in response to this case by setting the D3DRS_STEN-
CILZFAIL render state:

Device->SetRenderState(D3DRS_STENCILZFAIL, StencilOperation);

� The depth test and stencil test succeed for the ijth pixel. We can
define how to update the ijth entry in response to this case by set-
ting the D3DRS_STENCILPASS render state:

Device->SetRenderState(D3DRS_STENCILPASS, StencilOperation);

where StencilOperation can be one of the following predefined
constants:

� D3DSTENCILOP_KEEP—Specifies to not change the stencil
buffer (that is, keep the value currently there)

� D3DSTENCILOP_ZERO—Specifies to set the stencil buffer
entry to zero

� D3DSTENCILOP_REPLACE—Specifies to replace the stencil
buffer entry with the stencil reference value

� D3DSTENCILOP_INCRSAT—Specifies to increment the stencil
buffer entry. If the incremented value exceeds the maximum
allowed value, we clamp the entry to that maximum.

� D3DSTENCILOP_DECRSAT—Specifies to decrement the sten-
cil buffer entry. If the decremented value is less than zero, we
clamp the entry to zero.

� D3DSTENCILOP_INVERT—Specifies to invert the bits of the
stencil buffer entry

� D3DSTENCILOP_INCR—Specifies to increment the stencil
buffer entry. If the incremented value exceeds the maximum
allowed value, we wrap to zero.

� D3DSTENCILOP_DECR—Specifies to decrement the stencil
buffer entry. If the decremented value is less than zero, we
wrap to the maximum allowed value.

136 Chapter 8

8.1.4 Stencil Write Mask

In addition to the mentioned stencil render states, we can set a write

mask that will mask off bits of any value that we write to the stencil
buffer. We can set the write mask with the D3DRS_STENCILWRITE-
MASK render state. The default value is 0xffffffff. The following example
masks the top 16 bits:

Device->SetRenderState(D3DRS_STENCILWRITEMASK, 0x0000ffff);

8.2 Sample Application: Mirrors

Many surfaces in nature serve as mirrors and allow us to see object
reflections in those mirrors. This section describes how we can simu-
late mirrors for our 3D applications. Note that for simplicity we reduce
the task of implementing mirrors to planar surfaces only. For instance,
a shiny car can display a reflection; however, a car’s body is smooth,
round, and not planar. Instead, we render reflections such as those that
are displayed in a shiny marble floor or those that are displayed in a
mirror hanging on a wall—in other words, mirrors that lie on a plane.

Implementing mirrors programmatically requires us to solve two
problems. First, we must learn how to reflect an object about an arbi-
trary plane so that we can draw the reflection correctly. Second, we
must only display the reflection in a mirror. That is, we must somehow
“mark” a surface as a mirror, and then as we are rendering we only
draw the reflected object if it is in a mirror. Refer to Figure 8.1, which
first introduced this concept.

The first problem is easily solved with some vector geometry. We
can solve the second problem with the stencil buffer. The next two sub-
sections explain the solutions to these problems individually. The third
subsection ties them together and reviews the relevant code for the
first sample application for this chapter—Mirrors.

8.2.1 The Mathematics of Reflection

We now show how to compute the reflection point v� = (v�x, v�y, v�z) of a
point v = (vx, vy, vz) about an arbitrary plane �n p� �+d 0. Refer to Fig-

ure 8.2 throughout this discussion.

Stenciling 137

P
a

rt
II

From the “Planes” section in Part I, we know that q = v – k �n, where k

is the shortest signed distance from v and the plane. It follows then
that the reflection of v about the plane (�n, d) is given by:

We can represent this transformation from v to v� with the following
matrix:

The D3DX library provides the following function to create the reflec-
tion matrix as shown by R about an arbitrary plane:

D3DXMATRIX *D3DXMatrixReflect(
D3DXMATRIX *pOut, // The resulting reflection matrix.
CONST D3DXPLANE *pPlane // The plane to reflect about.

);

Since we are on the topic of reflection transformations, let’s present the
matrices representing three other special case reflection transforma-
tions. They are the reflections about the three standard coordinate
planes—the yz plane, xz plane, and xy plane—and are represented by
the following three matrices, respectively:

138 Chapter 8

Figure 8.2: Reflection about an arbitrary
plane. Note that k is the shortest signed
distance from v to the plane and k is posi-
tive in this figure since v lies in the positive
half-space of the plane.

nvv ˆ2k���

	
nvnv ˆˆ2 d����

	
� �nnvnv ˆˆˆ2 d����

�
�
�
�
�

�

�

�
�
�
�
�

�

�

���

����

����

����

�

1222

01222

02122

02212

dndndn

nnnnnn

nnnnnn

nnnnnn

zyx

zzzyzx

yzyyyx

xzxyxx

R

To reflect a point across the yz plane, we simply take the opposite of
the z-component. Similarly, to reflect a point across the xz plane, we
take the opposite of the y-component. Finally, to reflect a point across
the xy plane, we take the opposite of the z-component. These reflec-
tions are readily seen by observing the symmetry on each of the
standard coordinate planes.

8.2.2 Mirror Implementation Overview

When implementing a mirror, an object is only reflected if it is in front
of a mirror. However, we don’t want to test spatially if an object is in
front of a mirror, as it could get complicated. Therefore, to simplify
things, we always reflect the object and render it no matter where it is.
But this introduces problems seen in Figure 8.1 at the beginning of this
chapter. Namely, the object’s (a teapot in this case) reflection is ren-
dered into surfaces that are not mirrors (like the walls for example). We
can solve this problem using the stencil buffer because the stencil
buffer allows us to block rendering to certain areas on the back buffer.
Thus, we can use the stencil buffer to block the rendering of the
reflected teapot if it is not being rendered into the mirror. The following
outline briefly explains the steps of how this can be accomplished:

1. Render the entire scene as normal—the floor, walls, mirror, and
teapot—but not the teapot’s reflection. Note that this step does not
modify the stencil buffer.

2. Clear the stencil buffer to 0. Figure 8.3 shows the back buffer and
stencil buffer up to this point.

Stenciling 139

P
a

rt
II

�
�
�
�

�

�

�
�
�
�

�

��

�

1000

0100

0010

0001

yzR

�
�
�
�

�

�

�
�
�
�

�

�
�

�

1000

0100

0010

0001

xzR

�
�
�
�

�

�

�
�
�
�

�

�

�
�

1000

0100

0010

0001

xyR

Figure 8.3: The scene
rendered to the back
buffer and the stencil
buffer cleared to zero.
The light gray on the
stencil buffer denotes
pixels cleared to zero.

3. Render the primitives that make up the mirror into the stencil

buffer only. Set the stencil test to always succeed, and specify that
the stencil buffer entry should be replaced with 1 if the test passes.
Since we are only rendering the mirror, all the pixels in the stencil
buffer will be 0 except for the pixels that correspond to the mir-
ror—they will have a 1. Figure 8.4 shows the updated stencil buffer.
Essentially, we are marking the pixels of the mirror in the stencil
buffer.

4. Now we render the reflected teapot to the back buffer and stencil
buffer. But recall that we only render to the back buffer if the sten-
cil test passes. This time we set the stencil test to only succeed if
the value in the stencil buffer is a 1. In this way, the teapot is only
rendered to areas that have a 1 in their corresponding stencil buffer
entry. Since the areas in the stencil buffer that correspond to the
mirror are the only entries that have a 1, the reflected teapot is
only rendered into the mirror.

8.2.3 Code and Explanation

The code relevant to this sample lies in the RenderMirror function,
which first renders the mirror primitives to the stencil buffer and then
renders the reflected teapot only if it is being rendered into the mirror.
We walk through the RenderMirror function almost line by line and
explain what is occurring and, more importantly, why.

If you are using the steps outlined in section 8.2.2 to serve as an
overall guide to the code, note that we are starting at step 3 since steps
1 and 2 have nothing to do with the stencil buffer. Also be aware that
we are discussing the rendering of the mirror through this explanation.

Note that we divide this explanation up into parts for no other rea-
son than to offer a more modular discussion.

140 Chapter 8

Figure 8.4: Rendering
the mirror to the sten-
cil buffer, essentially
marking the pixels in
the stencil buffer that
correspond to the mir-
ror. The black on the
stencil buffer denotes
pixels set to 1.

8.2.3.1 Part I

We begin by enabling the stencil buffer and setting the related render
states:

void RenderMirror()
{
Device->SetRenderState(D3DRS_STENCILENABLE, true);
Device->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
Device->SetRenderState(D3DRS_STENCILREF, 0x1);
Device->SetRenderState(D3DRS_STENCILMASK, 0xffffffff);
Device->SetRenderState(D3DRS_STENCILWRITEMASK,0xffffffff);
Device->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP);
Device->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);
Device->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);

This is fairly straightforward. We set the stencil comparison operation
to D3DCMP_ALWAYS, which specifies that the stencil test will always
pass.

If the depth test fails, we specify D3DSTENCILOP_KEEP, which
indicates to not update the stencil buffer entry. That is, we keep its cur-
rent value. We do this because if the depth test fails, it means the pixel
is obscured. Therefore, we do not want to render part of the reflection
to a pixel that is obscured.

We also specify D3DSTENCILOP_KEEP if the stencil test fails. But
this isn’t really necessary here, since the test never fails because we
specified D3DCMP_ALWAYS. However, we change the comparison oper-
ation in just a bit, so setting the stencil fail render state is required
eventually; we just do it now.

If the depth and stencil tests pass, we specify D3DSTENCILOP_
REPLACE, which replaces the stencil buffer entry with the stencil refer-
ence value—0x1.

8.2.3.2 Part II

This next block of code renders the mirror, but only to the stencil
buffer. We can stop writes to the depth buffer by setting the D3DRS_
ZWRITEENABLE and specifying false. We can prevent updating the back
buffer with blending and setting the source blend factor to D3DBLEND_
ZERO and the destination blend factor to D3DBLEND_ONE. Plugging
these blend factors into the blending equation, we show that the back
buffer is left unchanged:

Stenciling 141

P
a

rt
II

	
 	

	

� � � �

� �

�

0, 0, 0, 0 1, 1, 1, 1

0, 0, 0, 0

FinalPixel sourcePixel DestPixel

DestPixel

DestPixel

// disable writes to the depth and back buffers
Device->SetRenderState(D3DRS_ZWRITEENABLE, false);
Device->SetRenderState(D3DRS_ALPHABLENDENABLE, true);
Device->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
Device->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);

// draw the mirror to the stencil buffer
Device->SetStreamSource(0, VB, 0, sizeof(Vertex));
Device->SetFVF(Vertex::FVF);
Device->SetMaterial(&MirrorMtrl);
Device->SetTexture(0, MirrorTex);
D3DXMATRIX I;
D3DXMatrixIdentity(&I);
Device->SetTransform(D3DTS_WORLD, &I);
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 18, 2);

// re-enable depth writes
Device->SetRenderState(D3DRS_ZWRITEENABLE, true);

8.2.3.3 Part III

At this point, the pixels in the stencil buffer that correspond to the visi-
ble pixels of the mirror have an entry on 0x1, thus marking the area
where the mirror has been rendered. We now prepare to render the
reflected teapot. Recall that we only want to render the reflection into
pixels that correspond to the mirror. We can do this easily now that we
have marked those pixels in the stencil buffer.

We set the following render states:

Device->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_EQUAL);
Device->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_KEEP);

With a new comparison operation set, we get the following stencil test:

(ref & mask == (value & mask)
(0x1 & 0xffffffff) == (value & 0xffffffff)

(0x1)== (value & 0xffffffff)

This shows that the stencil test only succeeds if value = 0x1. Since
value is only 0x1 in areas of the stencil buffer that correspond to the
mirror, the test only succeeds if we are rendering to those areas. Thus,
the reflected teapot is only drawn into the mirror and is not drawn into
other surfaces.

Note that we have changed the D3DRS_STENCILPASS render
state to D3DSTENCILOP_KEEP, which simply says to keep the value in
the stencil buffer if the test passed. Therefore, in this next rendering
pass, we do not change the values in the stencil buffer (all controls are
D3DSTENCILOP_KEEP). We are only using the stencil buffer to mark
the pixels that correspond to the mirror.

142 Chapter 8

8.2.3.4 Part IV

The next part of the RenderMirror function computes the matrix that
positions the reflection in the scene:

// position reflection
D3DXMATRIX W, T, R;
D3DXPLANE plane(0.0f, 0.0f, 1.0f, 0.0f); // xy plane
D3DXMatrixReflect(&R, &plane);

D3DXMatrixTranslation(&T,
TeapotPosition.x,
TeapotPosition.y,
TeapotPosition.z);

W = T * R;

Notice that we first translate to where the non-reflection teapot is posi-
tioned. Then, once positioned there, we reflect across the xy plane.
This order of transformation is specified by the order in which we mul-
tiply the matrices.

8.2.3.5 Part V

We are almost ready to render the reflected teapot. However, if we ren-
der it now, it will not be displayed. Why? Because the reflected teapot’s
depth is greater than the mirror’s depth, and thus the mirror primitives
technically obscure the reflected teapot. To get around this, we clear
the depth buffer:

Device->Clear(0, 0, D3DCLEAR_ZBUFFER, 0, 1.0f, 0);

Not all problems are solved, however. If we simply clear the depth
buffer, the reflected teapot is drawn in front of the mirror and things do
not look right. What we want to do is clear the depth buffer in addition
to blending the reflected teapot with the mirror. In this way, the
reflected teapot looks like it is “in” the mirror. We can blend the
reflected teapot with the mirror with the following blending equation:

Since the source pixel will be from the reflected teapot and the destina-
tion pixel will be from the mirror, we can see from this equation how
they will be blended together. In code we have:

Device->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_DESTCOLOR);
Device->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ZERO);

Stenciling 143

P
a

rt
II

	
� � � �

� �

0, 0, 0, 0FinalPixel sourcePixel destPixel DestPixel

sourcePixel destPixel

Finally, we are ready to draw the reflected teapot:

Device->SetTransform(D3DTS_WORLD, &W);
Device->SetMaterial(&TeapotMtrl);
Device->SetTexture(0, 0);

Device->SetRenderState(D3DRS_CULLMODE, D3DCULL_CW);
Teapot->DrawSubset(0);

Recall from section 8.2.3.4 that W correctly transforms the reflected
teapot into its appropriate position in the scene. Also, observe that we
change the backface cull mode. We must do this because when an
object is reflected, its front faces will be swapped with its back faces;
however, the winding order will not be changed. Thus, the “new” front
faces will have a winding order that indicates to Direct3D that they are
back facing. Similarly, the “new” back-facing triangles will have a wind-
ing order that indicates to Direct3D that they are front facing.
Therefore, to correct this, we must change our backface culling
condition.

Cleaning up, we disable blending and stenciling and restore the
usual cull mode:

Device->SetRenderState(D3DRS_ALPHABLENDENABLE, false);
Device->SetRenderState(D3DRS_STENCILENABLE, false);
Device->SetRenderState(D3DRS_CULLMODE, D3DCULL_CCW);

} // end RenderMirror()

8.3 Sample Application: Planar Shadows

Shadows aid in our perception of where light is being emitted in a scene
and ultimately makes the scene more realistic. In this section we show
how to implement planar shadows—that is, shadows that lie on a plane
(see Figure 8.5).

144 Chapter 8

Figure 8.5: A screen shot
taken from this chapter’s
sample application.
Notice the teapot’s
shadow on the floor.

TE
AM
FL
Y

Team-Fly®

Note that these types of shadows are a quick hack, and although they
enhance the scene, they aren’t as realistic as shadow volumes. Shadow
volumes are an advanced concept that we feel is best left out of an
introductory book. However, it is worth mentioning that the DirectX
SDK has a sample program that demonstrates shadow volumes.

To implement planar shadows, we must first find the shadow that
an object casts to a plane and model it geometrically so that we can ren-
der it. This can easily be done with some 3D math. We then render the
polygons that describe the shadow with a black material at 50% trans-
parency. Rendering the shadow like this can introduce some artifacts,
namely “double blending,” which we explain in a few sections. We
employ the stencil buffer to prevent double blending from occurring.

8.3.1 Parallel Light Shadows

Figure 8.6 shows the shadow that an object casts with respect to a par-
allel light source. The light ray from a parallel light, with direction L,
through any vertex p is given by r(t) = p + tL. The intersection of the
ray r(t) with the plane n �p + d = 0 gives s. The set of intersection
points found by shooting r(t) through each of the object’s vertices with
the plane defines the geometry of the shadow. An intersection point s is
easily found with a ray/plane intersection test:

Plugging r(t) into the plane equation n �p + d = 0

Solving for t

Stenciling 145

P
a

rt
II

Figure 8.6: The shadow cast with
respect to a parallel light source

	
 0���� dtLpn

	

	

Ln

pn

pnLn

Lnpn

�
���

�

�����

�����

d
t

dt

dt

Then:

8.3.2 Point Light Shadows

Figure 8.7 shows the shadow that an object casts with respect to a point
light source whose position is described by the point L. The light ray
from a point light through any vertex p is given by r(t) = p + t(p – L).
The intersection point of the ray r(t) with the plane n �p + d = 0 gives
s. The set of intersection points found by shooting r(t) through each of
the object’s vertices with the plane defines the geometry of the shadow.
s can be solved for using the same technique (plane/ray intersection)
used in section 8.3.1.

Note: Notice that L serves different purposes for point and parallel
lights. For point lights we use L to define the position of the point light.
For parallel lights we use L to define the direction of the parallel light
rays.

8.3.3 The Shadow Matrix

Notice from Figure 8.6 that for a parallel light, the shadow is essentially
a parallel projection of the object onto the plane n �p + d = 0 in the
specified light direction. Similarly, Figure 8.7 shows that for a point
light, the shadow is essentially a perspective projection of the object
onto the plane n �p + d = 0 from the viewpoint of the light source.

We can represent the transformation from a vertex p to its projec-
tion s with the plane n �p + d = 0 with a matrix. Moreover, we can
represent both an orthogonal projection and a perspective projection
with the same matrix using some ingenuity.

146 Chapter 8

L
Ln

pn
ps ��

�
��

�
�
���

��
d

Figure 8.7: The shadow cast with respect
to a point light source

Let (nx, ny, nz, d) be a 4D vector representing the coefficients of the
general plane equation describing the plane that we wish to cast the
shadow onto. Let L = (Lx, Ly, Lz, Lw) be a 4D vector describing either
the direction of a parallel light or the location of a point light. We use
the w coordinate to denote which:

1. If w = 0, then L describes the direction of the parallel light.

2. If w = 1, then L describes the location of the point light.

Assuming the normal of the plane is normalized, we let k = (nx, ny, nz,
d) � (Lx, Ly, Lz, Lw) = nxLx + nyLy + nzLz + dLw.

Then we represent the transformation from a vertex p to its projection
s with the following shadow matrix:

Because it’s been done elsewhere and not of significant importance to
us, we do not show how to derive this matrix. However, for the inter-
ested reader, we refer you to Chapter 6, “Me and My (Fake) Shadow,”
of Jim Blinn’s Corner: A Trip Down the Graphics Pipeline, which shows
how this matrix can be derived.

The D3DX library provides the following function to build the
shadow matrix given the plane that we wish to project the shadow to
and a vector describing a parallel light if w = 0 or a point light if w = 1:

D3DXMATRIX *D3DXMatrixShadow(
D3DXMATRIX *pOut,
CONST D3DXVECTOR4 *pLight, // L
CONST D3DXPLANE *pPlane // plane to cast shadow onto

);

8.3.4 Using the Stencil Buffer to Prevent Double
Blending

When we flatten out the geometry of an object onto the plane to
describe its shadow, it is possible that two or more of the flattened tri-
angles will overlap. When we render the shadow with transparency
(using blending), these areas that have overlapping triangles will get
blended multiple times and thus appear darker. Figure 8.8 shows this.

Stenciling 147

P
a

rt
II

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

�

�

�

�

kdLdLdLdL

LnkLnLnLn

LnLnkLnLn

LnLnLnkLn

wzyx

wzzzyzxy

wyzyyyxy

wxzxyxxx

S

We can solve this problem using the stencil buffer. We set the stencil
test to only accept pixels the first time they are rendered. That is, as
we render the shadow’s pixels to the back buffer, we mark the corre-
sponding stencil buffer entries. Then, if we attempt to write a pixel to
an area that has already been rendered to (marked in the stencil buffer),
the stencil test will fail. In this way, we prevent writing overlapping pix-
els and therefore avoid double blending artifacts.

8.3.5 Code and Explanation

The following code explanation is taken from the Shadow sample in the
companion files. The code relevant to this sample lies in the
RenderShadow function. Note that we assume the stencil buffer has
already been cleared to zero.

We begin by setting the stencil render states. We set the stencil
comparison function to D3DCMP_EQUAL and the D3DRS_STENCILREF
render state to 0x0, thereby specifying to render the shadow to the
back buffer if the corresponding entry in the stencil buffer equals 0x0.

Since the stencil buffer is cleared to zero (0x0), this will always be
true the first time we write a particular pixel of the shadow; but
because we set D3DRS_STENCILPASS to D3DSTENCILOP_INCR, the
test will fail if we try to write to a pixel that we have already written to.
The pixel’s stencil entry will have been incremented to 0x1 the first
time it was written to, and thus the stencil test will fail if we try to

148 Chapter 8

Figure 8.8: Notice the “black” areas of the
shadow in (a). These correspond to areas
where parts of the flattened teapot over-
lap, causing a “double blend.” Image (b)
shows the shadow rendered correctly
without double blending.

write to it again. Hence, we avoid overwriting a pixel and thus avoid
double blending.

void RenderShadow()
{
Device->SetRenderState(D3DRS_STENCILENABLE, true);
Device->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_EQUAL);
Device->SetRenderState(D3DRS_STENCILREF, 0x0);
Device->SetRenderState(D3DRS_STENCILMASK, 0xffffffff);
Device->SetRenderState(D3DRS_STENCILWRITEMASK, 0xffffffff);
Device->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_KEEP);
Device->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_KEEP);
Device->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_INCR);

Next, we compute the shadow transformation and translate the shadow
into the appropriate place in the scene.

// compute the transformation to flatten the teapot into
// a shadow.
D3DXVECTOR4 lightDirection(0.707f, -0.707f, 0.707f, 0.0f);
D3DXPLANE groundPlane(0.0f, -1.0f, 0.0f, 0.0f);

D3DXMATRIX S;
D3DXMatrixShadow(&S, &lightDirection, &groundPlane);

D3DXMATRIX T;
D3DXMatrixTranslation(&T, TeapotPosition.x, TeapotPosition.y,

TeapotPosition.z);

D3DXMATRIX W = T * S;
Device->SetTransform(D3DTS_WORLD, &W);

Lastly, we set a black material at 50% transparency, disable depth test-
ing, render the shadow, and then clean up by re-enabling the depth
buffer and disabling alpha blending and stencil testing. We disable the
depth buffer to prevent z-fighting, which is a visual artifact that occurs
when two different surfaces have the same depth values in the depth
buffer; the depth buffer doesn’t know which should be in front of the
other, and an annoying flicker occurs. Because the shadow and floor lie
on the same plane, z-fighting between them will most likely occur. By
rendering the floor first and the shadow after with depth testing dis-
abled, we guarantee our shadow will be drawn over the floor.

Note: An alternative method for preventing z-fighting is to use the
Direct3D depth bias mechanism. See the D3DRS_DEPTHBIAS and
D3DRS_SLOPESCALEDEPTHBIAS render states in the SDK documenta-
tion for details.

Device->SetRenderState(D3DRS_ALPHABLENDENABLE, true);
Device->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
Device->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);

Stenciling 149

P
a

rt
II

D3DMATERIAL9 mtrl = d3d::InitMtrl(d3d::BLACK, d3d::BLACK,
d3d::BLACK, d3d::BLACK, 0.0f);

mtrl.Diffuse.a = 0.5f; // 50% transparency.

// Disable depth buffer so that z-fighting doesn't occur when we
// render the shadow on top of the floor.
Device->SetRenderState(D3DRS_ZENABLE, false);

Device->SetMaterial(&mtrl);
Device->SetTexture(0, 0);
Teapot->DrawSubset(0);

Device->SetRenderState(D3DRS_ZENABLE, true);

Device->SetRenderState(D3DRS_ALPHABLENDENABLE, false);
Device->SetRenderState(D3DRS_STENCILENABLE, false);

}//end RenderShadow()

8.4 Summary

� The stencil buffer and depth buffer share the same surface and are
therefore created at the same time. We specify the format of the
depth/stencil surface using the D3DFORMAT types.

� Stenciling is used to block certain pixels from being rasterized. As
we have seen in this chapter, this ability is useful for implementing
mirrors and shadows among other applications.

� We can control stenciling operations and how the stencil buffer is
updated through the D3DRS_STENCIL* render states.

� Some other applications that can be implemented with the stencil
buffer:

� Shadow volumes

� Dissolves and fades

� Visualizing depth complexity

� Outlines and silhouettes

� Constructive solid geometry

� Fixing z-fighting caused by coplanar geometry

150 Chapter 8

Part III

Applied Direct3D

In this part, we focus on applying Direct3D to implement several 3D
applications, demonstrating techniques such as terrain rendering, parti-
cle systems, picking, and building a flexible 3D camera. In addition, we
spend some time further exploring the D3DX library (in particular, the
mesh-related components). A brief description of the chapters in this
part follows.

Chapter 9, “Fonts”—During a game we often need to display tex-
tual information to the user. This chapter discusses three ways that we
can generate and output text in Direct3D.

Chapter 10, “Meshes Part I”—This chapter thoroughly explains
the data and methods of the D3DX mesh interface ID3DXMesh.

Chapter 11, “Meshes Part II”—In this chapter, we continue our
study of the D3DX mesh-related interfaces and functions. We learn
about .X files and how to load and render them. In addition, we exam-
ine the progressive mesh interface ID3DXPMesh. The chapter also
shows how to compute the bounding box and bounding sphere of a
mesh.

Chapter 12, “Building a Flexible Camera Class”—In this chapter,
we design and implement a flexible camera class that has six degrees of
freedom. This camera is suited for flight simulators and first-person
shooters.

Chapter 13, “Basic Terrain Rendering”—This chapter shows how
to create, texture, light, and render 3D terrains. Furthermore, we show
how to smoothly “walk” the camera over the terrain so that it looks
like we are walking on the terrain.

Chapter 14, “Particle Systems”—In this chapter, we learn how to
model systems that consist of many small particles that all behave in a
similar manner. For example, particle systems can be used to model
falling snow and rain, the sparks of an explosion, puffs of smoke, rocket
trails, and even the bullets of a gun.

151

Chapter 15, “Picking”—This chapter shows how to determine the
particular 3D object that the user has selected with the mouse. Picking
is often a necessity in 3D games and applications where the user inter-
acts with the 3D world with the mouse.

152 Part III

Chapter 9

Fonts

During a game we often need to display textual information to the user.
This chapter discusses three ways that we can generate and output
text in Direct3D. Each way has a corresponding sample application on
the web page for this chapter and in the companion files.

Objectives

� To learn how to render text using the ID3DXFont interface

� To learn how to render text using the CD3DFont class

� To learn how to calculate the number of frames rendered per
second

� To learn how to create and render 3D text using the
D3DXCreateText function

9.1 ID3DXFont

The D3DX library provides the ID3DXFont interface that can be used
to draw text in a Direct3D application. This interface uses GDI inter-
nally to draw the text, and so we take a performance hit using this
interface. However, ID3DXFont can handle complex fonts and format-
ting because it uses GDI.

9.1.1 Creating an ID3DXFont

We can create an ID3DXFont interface using the D3DXCreateFont-
Indirect function.

HRESULT D3DXCreateFontIndirect(
LPDIRECT3DDEVICE9 pDevice, // device to be associated with

// the font
CONST LOGFONT* pLogFont, // LOGFONT structure describing

// the font
LPD3DXFONT* ppFont // return the created font

);

153

The following code snippet shows how to use this function:

LOGFONT lf;
ZeroMemory(&lf, sizeof(LOGFONT));
lf.lfHeight = 25; // in logical units
lf.lfWidth = 12; // in logical units
lf.lfWeight = 500; // boldness, range 0(light) - 1000(bold)
lf.lfItalic = false;
lf.lfUnderline = false;
lf.lfStrikeOut = false;
lf.lfCharSet = DEFAULT_CHARSET;
strcpy(lf.lfFaceName, "Times New Roman"); // font style

ID3DXFont* font = 0;
D3DXCreateFontIndirect(Device, &lf, &font);

Observe that first we must fill out a LOGFONT structure to describe the
kind of font we want to create.

Note: Alternatively, you can use the D3DXCreateFont function to
obtain a pointer to an ID3DXFont interface.

9.1.2 Drawing Text

Once we have obtained a pointer to an ID3DXFont interface, drawing
text is a simple matter of calling the ID3DXFont::DrawText method.

INT ID3DXFont::DrawText(
LPCSTR pString,
INT Count,
LPRECT pRect,
DWORD Format,
D3DCOLOR Color

);

� pString—Pointer to the string to draw

� Count—Number of characters in the string. We can specify –1 if
the string is null terminating.

� pRect—Pointer to a RECT structure that defines the area on the
screen to which the text is to be drawn

� Format—Optional flags that specify how the text should be for-
matted; see the SDK documentation for details.

� Color—The text color

Example:

Font->DrawText(
"Hello World", // String to draw.
-1, // Null terminating string.
&rect, // Rectangle to draw the string in.
DT_TOP | DT_LEFT, // Draw in top-left corner of rect.
0xff000000); // Black.

154 Chapter 9

TE
AM
FL
Y

Team-Fly®

9.1.3 Computing the Frames Rendered Per Second

The ID3DXFont and CFont samples for this chapter compute and dis-
play the frames rendered per second (FPS). This section explains how
to compute the FPS.

First we instantiate the following three global variables:

DWORD FrameCnt; // The number of frames that have occurred.
float TimeElapsed; // The time that has elapsed so far.
float FPS; // The frames rendered per second.

We compute the FPS every one second; this gives us a good average.
In addition, it keeps the FPS the same for one second, giving us enough
time to read it before it changes again.

So every frame we increment FrameCnt and add the time elapsed
from the last frame to TimeElapsed:

FrameCnt++;
TimeElapsed += timeDelta;

where timeDelta is the time it took between frames.
After one second has passed, we can compute the FPS with the fol-

lowing formula:

FPS = (float)FrameCnt / TimeElapsed;

We then reset FrameCnt and TimeElapsed and begin averaging the
FPS for the next second. Here is the code put together:

void CalcFPS(float timeDelta)
{

FrameCnt++;
TimeElapsed += timeDelta;

if(TimeElapsed >= 1.0f)
{

FPS = (float)FrameCnt / TimeElapsed;

TimeElapsed = 0.0f;
FrameCnt = 0;

}
}

9.2 CD3DFont

The DirectX SDK provides some useful utility code located in the
\Samples\C++\Common folder of your DXSDK root directory. Among
that code is the CD3DFont class, which renders text using textured tri-
angles and Direct3D. Since CD3DFont uses Direct3D for rendering
instead of GDI, it is much faster than ID3DXFont. However,
CD3DFont does not support the complex fonts and formatting that

Fonts 155

P
a

rt
II

I

ID3DXFont does. If you’re after speed and only need a simple font, the
CD3DFont class is the way to go.

To use the CD3DFont class, you need to add the following files to
your application: d3dfont.h, d3dfont.cpp, d3dutil.h, d3dutil.cpp, dxutil.h,
and dxutil.cpp. These files can be found in the Include and Src folders
located in the previously mentioned Common folder.

9.2.1 Constructing a CD3DFont

To create a CD3DFont instance, we simply instantiate it like a normal
C++ object; below is the constructor prototype:

CD3DFont(const TCHAR* strFontName, DWORD dwHeight, DWORD
dwFlags=0L);

� strFontName—A null-terminated string that specifies the type-
face name of the font

� dwHeight—The height of the font

� dwFlags—Optional creation flags; you can set this parameter to
zero or use a combination of the following flags; D3DFONT_BOLD,
D3DFONT_ITALIC, D3DFONT_ZENABLE.

After we have instantiated a CD3DFont object, we must call the follow-
ing methods (in the order shown) that initialize the font:

Font = new CD3DFont("Times New Roman", 16, 0); // instantiate
Font->InitDeviceObjects(Device);
Font->RestoreDeviceObjects();

9.2.2 Drawing Text

Now that we have constructed and initialized a CD3DFont object, we
are ready to draw some text. Text drawing is done with the following
method:

HRESULT CD3DFont::DrawText(FLOAT x, FLOAT y, DWORD dwColor,
const TCHAR* strText, DWORD dwFlags=0L);

� x—The x-coordinate in screen space of where to begin drawing the
text

� y—The y-coordinate in screen space of where to begin drawing the
text

� dwColor—The color of the text

� strText—Pointer to the string to draw

� dwFlags—Optional rendering flags; you can set this parameter to
0 or use a combination of the following: D3DFONT_CENTERED,
D3DFONT_TWOSIDED, D3DFONT_FILTERED.

156 Chapter 9

Example:

Font->DrawText(20, 20, 0xff000000, “Hello, World”);

9.2.3 Cleanup

Before deleting a CD3DFont object, we must call some cleanup rou-
tines first, as the following code snippet illustrates:

Font->InvalidateDeviceObjects();
Font->DeleteDeviceObjects();
delete Font;

9.3 D3DXCreateText

This last function is used for creating 3D meshes of text. Figure 9.1
shows the 3D text mesh that the FontMesh3D sample of this chapter
renders.

The function is prototyped as:

HRESULT D3DXCreateText(
LPDIRECT3DDEVICE9 pDevice,
HDC hDC,
LPCTSTR pText,
FLOAT Deviation,
FLOAT Extrusion,
LPD3DXMESH* ppMesh,
LPD3DXBUFFER* ppAdjacency,
LPGLYPHMETRICSFLOAT pGlyphMetrics

);

This function returns D3D_OK on success.

� pDevice—The device to be associated with the mesh

� hDC—A handle to a device context that contains a description of
the font that we are going to use to generate the mesh

Fonts 157

P
a

rt
II

I
Figure 9.1: 3D text
created with the
D3DXCreateText function

� pText—Pointer to a null-terminating string specifying the text to
create a mesh of

� Deviation—Maximum chordal deviation from TrueType font out-
lines. This value must be greater than or equal to 0. When this
value is 0, the chordal deviation is equal to one design unit of the
original font.

� Extrusion—The depth of the font measured in the negative
z-axis direction

� ppMesh—Returns the created mesh

� ppAdjacency—Returns the created mesh’s adjacency info. Spec-
ify null if you don’t need this.

� pGlyphMetrics—A pointer to an array of LPGLYPHMETRICS-
FLOAT structures that contain the glyph metric data. You can set
this to 0 if you are not concerned with glyph metric data.

The following example code shows how to create a 3D mesh of text
using this function.

// Obtain a handle to a device context.
HDC hdc = CreateCompatibleDC(0);

// Fill out a LOGFONT structure that describes the font’s properties.
LOGFONT lf;
ZeroMemory(&lf, sizeof(LOGFONT));

lf.lfHeight = 25; // in logical units
lf.lfWidth = 12; // in logical units
lf.lfWeight = 500; // boldness, range 0(light) - 1000(bold)
lf.lfItalic = false;
lf.lfUnderline = false;
lf.lfStrikeOut = false;
lf.lfCharSet = DEFAULT_CHARSET;
strcpy(lf.lfFaceName, "Times New Roman"); // font style

// Create a font and select that font with the device context.
HFONT hFont;
HFONT hFontOld;
hFont = CreateFontIndirect(&lf);
hFontOld = (HFONT)SelectObject(hdc, hFont);

// Create the 3D mesh of text.
ID3DXMesh* Text = 0;
D3DXCreateText(_device, hdc, "Direct3D", 0.001f, 0.4f, &Text, 0, 0);

// Reselect the old font, and free resources.
SelectObject(hdc, hFontOld);
DeleteObject(hFont);
DeleteDC(hdc);

158 Chapter 9

Then you can render the 3D text mesh by simply calling the mesh’s
DrawSubset method:

Text->DrawSubset(0);

9.4 Summary

� Use the ID3DXFont interface to render text when you need to
support complex fonts and formatting. This interface uses GDI
internally to render text and therefore takes a performance hit.

� Use CD3DFont to render simple text quickly. This class uses tex-
tured triangles and Direct3D to render text and is therefore much
faster than ID3DXFont.

� Use D3DXCreateText to create a 3D mesh of a string of text.

Fonts 159

P
a

rt
II

I

Chapter 10

Meshes Part I

We have already worked with the ID3DXMesh interface using the
D3DXCreate* routines; in this chapter we examine this interface in
more detail. This chapter is largely a survey of the data and methods
related to the ID3DXMesh interface.

Take note that the ID3DXMesh interface inherits the majority of its
functionality from its parent, ID3DXBaseMesh. This is important to
know because other mesh interfaces such as ID3DXPMesh (progres-
sive mesh) also inherit from ID3DXBaseMesh. Therefore the topics
covered in this chapter are also relevant when working with other
mesh types.

Objectives

� To learn the internal data organization of an ID3DXMesh object

� To learn how to create an ID3DXMesh

� To learn how to optimize an ID3DXMesh

� To learn how to render an ID3DXMesh

10.1 Geometry Info

The ID3DXBaseMesh interface contains a vertex buffer that stores the
vertices of the mesh and an index buffer that defines how these verti-
ces are put together to form the triangles of the mesh. We can get a
pointer to these buffers using the following methods:

HRESULT ID3DXMesh::GetVertexBuffer(LPDIRECT3DVERTEXBUFFER9* ppVB);
HRESULT ID3DXMesh::GetIndexBuffer(LPDIRECT3DINDEXBUFFER9* ppIB);

Here is an example of how these methods are used:

IDirect3DVertexBuffer9* vb = 0;
Mesh->GetVertexBuffer(&vb);

IDirect3DIndexBuffer9* ib = 0;
Mesh->GetIndexBuffer(&ib);

160

Note: For your information only, the ID3DXMesh interface supports
indexed triangle lists only as its primitive type.

Alternatively, if we just want to lock the buffers to read or write to
them, we can use this next pair of methods. Note that these methods
lock the entire vertex/index buffer.

HRESULT ID3DXMesh::LockVertexBuffer(DWORD Flags, BYTE** ppData);
HRESULT ID3DXMesh::LockIndexBuffer(DWORD Flags, BYTE** ppData);

The Flags parameter describes how the lock is done. Locking flags for
a vertex/index buffer is explained in Chapter 3 where we first intro-
duced buffers. The ppData argument is the address of a pointer that is
to point to the locked memory when the function returns.

Remember to call the appropriate unlock method when you are
done with the lock:

HRESULT ID3DXMesh::UnlockVertexBuffer();
HRESULT ID3DXMesh::UnlockIndexBuffer();

Below is a list of additional ID3DXMesh methods used to obtain geome-
try-related information:

� DWORD GetFVF();—Returns a DWORD describing the vertex for-
mat of the vertices

� DWORD GetNumVertices();—Returns the number of vertices
in the vertex buffer

� DWORD GetNumBytesPerVertex();—Returns the number of
bytes per vertex

� DWORD GetNumFaces();—Returns the number of faces (trian-
gles) in the mesh

10.2 Subsets and the Attribute Buffer

A mesh consists of one or more subsets. A subset is a group of triangles
in the mesh that can all be rendered using the same attribute. By attrib-

ute we mean material, texture, and render states. Figure 10.1 illustrates
how a mesh representing a house may be divided into several subsets.

Meshes Part I 161

P
a

rt
II

I

Figure 10.1: A
house broken up
into subsets

We label each subset by specifying a unique positive integer value for
that subset. This value can be any number that can be stored in a
DWORD. For instance, in Figure 10.1 we labeled the subsets 0, 1, 2, and
3.

Each triangle in the mesh is given an attribute ID that specifies the
subset in which the triangle lives. For example, from Figure 10.1, the
triangles that make up the floor of the house would have an attribute ID
of 0 to indicate that they live in subset 0. Similarly, the triangles that
make up the walls of the house have an attribute ID equal to 1 to indi-
cate that they live in subset 1.

The attribute IDs for the triangles are stored in the mesh’s attrib-

ute buffer, which is a DWORD array. Since each face has an entry in the
attribute buffer, the number of elements in the attribute buffer is equal
to the number of faces in the mesh. The entries in the attribute buffer
and the triangles defined in the index buffer have a one-to-one corre-
spondence; that is, entry i in the attribute buffer corresponds with
triangle i in the index buffer. Triangle i is defined by the following three
indices in the index buffer:

A = i �3
B = i �3 + 1
C = i �3 + 2

Figure 10.2 shows this correspondence:

162 Chapter 10

Figure 10.2: The correspondence between the triangles defined
in the index buffer and the entries in the attribute buffer. We
see that triangle 0 exists in subset 0, triangle 1 exists in subset
4, and triangle n exists in subset 2.

We can access the attribute buffer by locking it, as this next code snip-
pet illustrates:

DWORD* buffer = 0;
Mesh->LockAttributeBuffer(lockingFlags, &buffer);

// Read or write to attribute buffer...

Mesh->UnlockAttributeBuffer();

10.3 Drawing

The ID3DXMesh interface provides the DrawSubset(DWORD
AttribId) method to draw the triangles of a particular subset speci-
fied by the AttribId argument. For instance, to draw all the triangles
that live in subset 0, we would write:

Mesh->DrawSubset(0);

To draw the entire mesh, we must draw all the subsets of the mesh. It
is convenient to label subsets in the order 0, 1, 2, …, n – 1, where n is
the number of subsets, and have a corresponding material and texture
array, such that index i refers to the material and texture associated
with subset i. This allows us to render the entire mesh using a simple
loop:

for(int i = 0; i < numSubsets; i++)
{

Device->SetMaterial(mtrls[i]);
Device->SetTexture(0, textures[i]);
Mesh->DrawSubset(i);

}

10.4 Optimizing

The vertices and indices of a mesh can be reorganized to render the
mesh more efficiently. When we do this, we say that we are optimizing
a mesh, and we use the following method to do this:

HRESULT ID3DXMesh::OptimizeInplace(
DWORD Flags,
CONST DWORD* pAdjacencyIn,
DWORD* pAdjacencyOut,
DWORD* pFaceRemap,
LPD3DXBUFFER* ppVertexRemap

);

Meshes Part I 163

P
a

rt
II

I

� Flags—Optimization flags that tell the method what kind of
optimizations to perform. These can be one or more of the
following:

� D3DXMESHOPT_COMPACT—Removes unused indices and ver-
tices from the mesh

� D3DXMESHOPT_ATTRSORT—Sorts the triangles by attribute
and generates an attribute table. This allows DrawSubset to
be more efficient (see section 10.5).

� D3DXMESHOPT_VERTEXCACHE—Increases vertex cache rate
hits

� D3DXMESHOPT_STRIPREORDER—Reorganizes the indices so
that triangle strips can be as long as possible

� D3DXMESHOPT_IGNOREVERTS—Optimizes index info only;
ignore vertices

Note: The D3DXMESHOPT_VERTEXCACHE and D3DXMESHOPT_

STRIPREORDER flags cannot be used together.

� pAdjacencyIn—Pointer to the adjacency array of the
non-optimized mesh

� pAdjacencyOut—Pointer to a DWORD array to be filled with the
adjacency info of the optimized mesh. The array must have
ID3DXMesh::GetNumFaces() * 3 elements. If you do not need
this info, pass 0.

� pFaceRemap—Pointer to a DWORD array to be filled with the face
remap info. The array should be of size ID3DXMesh::GetNum-
Faces(). When a mesh is optimized, its faces may be moved
around in the index buffer. The face remap info tells where the orig-
inal faces have moved to; that is, the ith entry in pFaceRemap holds
the face index identifying where the ith original face has moved. If
you do not need this info, pass 0.

� ppVertexRemap—Address of a pointer to an ID3DXBuffer (see
section 11.1) that will be filled with the vertex remap info. This
buffer should contain ID3DXMesh::GetNumVertices() verti-
ces. When a mesh is optimized, its vertices may be moved around
in the vertex buffer. The vertex remap info tells where the original
vertices have moved; that is, the ith entry in ppVertexRemap
holds the vertex index identifying where the ith original vertex has
moved. If you do not need this info, pass 0.

164 Chapter 10

TE
AM
FL
Y

Team-Fly®

Example call:

// Get the adjacency info of the non-optimized mesh.
DWORD adjacencyInfo[Mesh->GetNumFaces() * 3];
Mesh->GenerateAdjacency(0.0f, adjacencyInfo);

// Array to hold optimized adjacency info.
DWORD optimizedAdjacencyInfo[Mesh->GetNumFaces() * 3];

Mesh->OptimizeInplace(
D3DXMESHOPT_ATTRSORT |
D3DXMESHOPT_COMPACT |
D3DXMESHOPT_VERTEXCACHE,
adjacencyInfo,
optimizedAdjacencyInfo,
0,
0);

A similar method is the Optimize method, which outputs an opti-
mized version of the calling mesh object rather than actually optimizing
the calling mesh object.

HRESULT ID3DXMesh::Optimize(
DWORD Flags,
CONST DWORD* pAdjacencyIn,
DWORD* pAdjacencyOut,
DWORD* pFaceRemap,
LPD3DXBUFFER* ppVertexRemap,
LPD3DXMESH* ppOptMesh // the optimized mesh to be output

);

10.5 The Attribute Table

When a mesh is optimized with the D3DXMESHOPT_ATTRSORT flag,
the geometry of the mesh is sorted by its attribute so that the geome-
try of a particular subset exists as a contiguous block in the
vertex/index buffers (see Figure 10.3).

Meshes Part I 165

P
a

rt
II

I

In addition to sorting the geometry, the D3DXMESHOPT_ATTRSORT
optimization builds an attribute table. The attribute table is an array of
D3DXATTRIBUTERANGE structures. Each entry in the attribute table
corresponds to a subset of the mesh and specifies the block of memory
in the vertex/index buffers, where the geometry for the subset resides.
The D3DXATTRIBUTERANGE structure is defined as:

typedef struct _D3DXATTRIBUTERANGE {
DWORD AttribId;
DWORD FaceStart;
DWORD FaceCount;
DWORD VertexStart;
DWORD VertexCount;

} D3DXATTRIBUTERANGE;

� AttribId—The subset ID

� FaceStart—An offset into the index buffer (FaceStart * 3)
identifying the start of the triangles that are associated with this
subset

� FaceCount—The number of faces (triangles) in this subset

� VertexStart—An offset into the vertex buffer identifying the
start of the vertices that are associated with this subset.

� VertexCount—The number of vertices in this subset

We can easily see the members of the D3DXATTRIBUTERANGE struc-
ture at work graphically in Figure 10.3. The attribute table for the mesh
in Figure 10.3 would have three entries—one to correspond with each
subset.

166 Chapter 10

Figure 10.3: Notice that the geometry and attribute buffer
are sorted by attribute such that the geometry of a particu-
lar subset is contiguous. We can now easily mark where the
geometry of one subset begins and ends. Note that every
“Tri” block in the index buffer represents three indices.

With the attribute table built, rendering a subset can be done very
efficiently, for only a quick lookup in the attribute table is required to
find all the geometry of a particular subset. Note that without an attrib-
ute table, rendering a subset requires a linear search of the entire
attribute buffer to find the geometry that exists in the particular subset
that we are drawing.

To access the attribute table of a mesh, we use the following
method:

HRESULT ID3DXMesh::GetAttributeTable(
D3DXATTRIBUTERANGE* pAttribTable,
DWORD* pAttribTableSize

);

This method can do two things: It can return the number of attributes
in the attribute table or it can fill an array of D3DXATTRIBUTERANGE
structures with the attribute data.

To get the number of elements in the attribute table, we pass in 0
for the first argument:

DWORD numSubsets = 0;
Mesh->GetAttributeTable(0, &numSubsets);

Once we know the number of elements, we can fill a D3DXATTRI-
BUTERANGE array with the actual attribute table by writing:

D3DXATTRIBUTERANGE table = new D3DXATTRIBUTERANGE [numSubsets];
Mesh->GetAttributeTable(table, &numSubsets);

We can directly set the attribute table using the ID3DXMesh::Set-
AttributeTable method. The following example sets an attribute
table with 12 subsets:

D3DXATTRIBUTERANGE attributeTable[12];

// ...fill attributeTable array with data

Mesh->SetAttributeTable(attributeTable, 12);

10.6 Adjacency Info

For certain mesh operations, such as optimizing, it is necessary to
know the triangles that are adjacent to a given triangle. A mesh’s adja-

cency array stores this information.
The adjacency array is a DWORD array, where each entry contains

an index identifying a triangle in the mesh. For example, an entry i

refers to the triangle formed by indices:

Meshes Part I 167

P
a

rt
II

I

A = i �3
B = i �3 + 1
C = i �3 + 2

Note that an entry of ULONG_MAX = 4294967295 as its value indi-
cates that the particular edge does not have an adjacent triangle. We
can also use –1 to denote this because assigning –1 to a DWORD results
in ULONG_MAX. To see this, recall that a DWORD is an unsigned 32-bit
integer.

Since each triangle has three edges, it can have up to three adja-
cent triangles (see Figure 10.4).

Therefore, the adjacency array must have (ID3DXBaseMesh::Get-
NumFaces() * 3) elements—three possible adjacent triangles for
every triangle in the mesh.

Many of the D3DX mesh creation functions can output the adja-
cency info, but the following method can also be used:

HRESULT ID3DXMesh::GenerateAdjacency(
FLOAT fEpsilon,
DWORD* pAdjacency

);

� fEpsilon—An epsilon value specifying when two points are close
enough in distance that they should be treated as the same. For
instance, if the distance between two points is less than epsilon, we
treat them as the same.

� pAdjacency—A pointer to an array of DWORDs that is to be filled
with the adjacency info

168 Chapter 10

Figure 10.4: We see that
each triangle has three
entries in the adjacency
array that identify the trian-
gles adjacent to it. For
instance, Tri: 1 has two
adjacent triangles (Tri: 0

and Tri: 2). Thus for Tri:
1 there is a 0, 2, and –1 in
its corresponding adjacency
entries specifying that Tri:
0 and Tri: 2 are adjacent.
The –1 indicates that one
edge of Tri: 1 doesn’t have
an adjacent triangle.

Example:

DWORD adjacencyInfo[Mesh->GetNumFaces() * 3];
Mesh->GenerateAdjacency(0.001f, adjacencyInfo);

10.7 Cloning

Sometimes we need to copy the data from one mesh to another. This is
accomplished with the ID3DXBaseMesh::CloneMeshFVF method.

HRESULT ID3DXMesh::CloneMeshFVF(
DWORD Options,
DWORD FVF,
LPDIRECT3DDEVICE9 pDevice,
LPD3DXMESH* ppCloneMesh

);

� Options—One or more creation flags that are used to create the
cloned mesh. See the D3DXMESH enumerated type in the SDK doc-
umentation for a complete list of option flags. Some common flags
are:

� D3DXMESH_32BIT—The mesh will use 32-bit indices.

� D3DXMESH_MANAGED—The mesh will be placed in the man-
aged memory pool.

� D3DXMESH_WRITEONLY—The mesh’s data will only be writ-
ten to and not read from.

� D3DXMESH_DYNAMIC—The mesh’s buffers will be made
dynamic.

� FVF—The flexible vertex format with which to create the cloned
mesh

� pDevice—The device to be associated with the cloned mesh

� ppCloneMesh—Outputs the cloned mesh

Notice that this method allows the creation options and flexible vertex
format of the destination mesh to be different from those of the source
mesh. For example, suppose we have a mesh that has the flexible ver-
tex format D3DFVF_XYZ and we would like to create a clone but with a
vertex format of D3DFVF_XYZ | D3DFVF_NORMAL. We would write:

// assume _mesh and device are valid
ID3DXMesh* clone = 0;
Mesh->CloneMeshFVF(

Mesh->GetOptions(), // use same options as source mesh
D3DFVF_XYZ | D3DFVF_NORMAL,// specify clones FVF
Device,
&clone);

Meshes Part I 169

P
a

rt
II

I

10.8 Creating a Mesh (D3DXCreateMeshFVF)

Thus far, we have created mesh objects using the D3DXCreate* func-
tions. However, we can also create an “empty” mesh using the
D3DXCreateMeshFVF function. By empty mesh, we mean that we
specify the number of faces and vertices that we want the mesh to be
able to hold; then D3DXCreateMeshFVF allocates the appropriately
sized vertex, index, and attribute buffers. Once we have the mesh’s
buffers allocated, we manually fill in the mesh’s data contents (that is,
we must write the vertices, indices, and attributes to the vertex buffer,
index buffer, and attribute buffer, respectively).

As said, to create an empty mesh we use the D3DXCreateMesh-
FVF function:

HRESULT D3DXCreateMeshFVF(
DWORD NumFaces,
DWORD NumVertices,
DWORD Options,
DWORD FVF,
LPDIRECT3DDEVICE9 pDevice,
LPD3DXMESH* ppMesh

);

� NumFaces—The number of faces the mesh will have. This must
be greater than zero.

� NumVertices—The number of vertices the mesh will have. This
must be greater than zero.

� Options—One or more creation flags that will be used to create
the mesh. See the D3DXMESH enumerated type in the SDK docu-
mentation for a complete list of option flags. Some common flags
are:

� D3DXMESH_32BIT—The mesh will use 32-bit indices.

� D3DXMESH_MANAGED—The mesh will be placed in the man-
aged memory pool.

� D3DXMESH_WRITEONLY—The mesh’s data will only be writ-
ten to and not read from.

� D3DXMESH_DYNAMIC—The mesh’s buffers will be made
dynamic.

� FVF—The flexible vertex format of the vertices stored in this
mesh

� pDevice—The device associated with the mesh

� ppMesh—Outputs the created mesh

170 Chapter 10

The sample application, reviewed in the next section, gives a concrete
example of how to create a mesh using this function and manually fill in
the mesh’s data contents.

Alternatively, you can create an empty mesh with the D3DX-
CreateMesh function. Its prototype is:

HRESULT D3DXCreateMesh(
DWORD NumFaces,
DWORD NumVertices,
DWORD Options,
CONST LPD3DVERTEXELEMENT9* pDeclaration,
LPDIRECT3DDEVICE9 pDevice,
LPD3DXMESH* ppMesh

);

The parameters are similar to D3DXCreateMeshFVF, except for the
fourth. Instead of specifying the FVF, we specify an array of D3DVER-
TEXELEMENT9 structures that describe the format of the vertices. For
now, we leave it to the reader to investigate the D3DVERTEXELEMENT9
structure; however, the following related function is worth mentioning:

HRESULT D3DXDeclaratorFromFVF(
DWORD FVF, // input format
D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]//output format

);

Note: D3DVERTEXELEMENT9 is discussed in Chapter 17.

This function outputs an array of D3DVERTEXELEMENT9 structures
given an FVF as input. Note that MAX_FVF_DECL_SIZE is defined as:

typedef enum {
MAX_FVF_DECL_SIZE = 18

} MAX_FVF_DECL_SIZE;

10.9 Sample Application:
Creating and Rendering a Mesh

The sample application for this chapter renders a mesh of a box (see
Figure 10.5).

Meshes Part I 171

P
a

rt
II

I

It demonstrates most of the functionality that we have discussed in this
chapter, including the following operations:

� Creating an empty mesh

� Filling the mesh with the geometry of a cube

� Specifying the subset in which each face of the mesh exists

� Generating the adjacency info of the mesh

� Optimizing the mesh

� Drawing the mesh

Note that we omit irrelevant code from the discussion of the sample.
You can find the complete source code in the companion files. This
sample is called D3DXCreateMeshFVF.

In addition, to facilitate debugging and investigating the compo-
nents of a mesh, we implement the following functions that dump its
internal contents to file:

void dumpVertices(std::ofstream& outFile, ID3DXMesh* mesh);
void dumpIndices(std::ofstream& outFile, ID3DXMesh* mesh);
void dumpAttributeBuffer(std::ofstream& outFile, ID3DXMesh* mesh);
void dumpAdjacencyBuffer(std::ofstream& outFile, ID3DXMesh* mesh);
void dumpAttributeTable(std::ofstream& outFile, ID3DXMesh* mesh);

The names of these functions describe their actions. Since the imple-
mentations of these functions are straightforward, we omit a discussion
of them here (see the source code in the companion files). However, we
do show an example of dumpAttributeTable later in this section.

To begin our review of the sample, we instantiate the following
global variables:

ID3DXMesh* Mesh = 0;
const DWORD NumSubsets = 3;

172 Chapter 10

Figure 10.5: Screen shot of a
cube created and rendered
as an ID3DXMesh object

IDirect3DTexture9* Textures[3] = {0, 0, 0};// texture for each subset

std::ofstream OutFile; // used to dump mesh data to file

Here we have instantiated a pointer to a mesh that we create later. We
also define the number of subsets that the mesh will have—three. In
this example, each subset is rendered with a different texture; the array
Textures contains a texture for each subset, such that the ith index in
the texture array is associated with the ith subset of the mesh. Finally,
the variable OutFile is used to output the contents of the mesh to a
text file. We pass this object to the dump* functions.

The majority of the work for this sample takes place in the Setup
function. We first create an empty mesh:

bool Setup()
{
HRESULT hr = 0;

hr = D3DXCreateMeshFVF(
12,
24,
D3DXMESH_MANAGED,
Vertex::FVF,
Device,
&Mesh);

Here we allocate a mesh with 12 faces and 24 vertices, the amount
needed to describe a box.

At this point, the mesh is empty, so we need to write the vertices
and indices that describe a box to the vertex buffer and index buffer,
respectively. Locking the vertex/index buffer and manually writing the
data easily accomplishes this:

// Fill in vertices of a box
Vertex* v = 0;
Mesh->LockVertexBuffer(0, (void**)&v);

// fill in the front face vertex data
v[0] = Vertex(-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f);
v[1] = Vertex(-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f);
.
.
.
v[22] = Vertex(1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f);
v[23] = Vertex(1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f);

Mesh->UnlockVertexBuffer();

Meshes Part I 173

P
a

rt
II

I

// Define the triangles of the box
WORD* i = 0;
Mesh->LockIndexBuffer(0, (void**)&i);

// fill in the front face index data
i[0] = 0; i[1] = 1; i[2] = 2;
i[3] = 0; i[4] = 2; i[5] = 3;
.
.
.
// fill in the right face index data
i[30] = 20; i[31] = 21; i[32] = 22;
i[33] = 20; i[34] = 22; i[35] = 23;

Mesh->UnlockIndexBuffer();

Once the geometry of the mesh has been written, we must not forget
to specify the subset in which each triangle exists. Recall that the
attribute buffer stores the subset to which each triangle in the mesh
belongs. In this sample, we specify that the first four triangles defined
in the index buffer exist in subset 0, the next four triangles exist in sub-
set 1, and the last four triangles (12 total) exist in subset 2. We express
this in code as follows:

DWORD* attributeBuffer = 0;
Mesh->LockAttributeBuffer(0, &attributeBuffer);

for(int a = 0; a < 4; a++) // triangles 1-4
attributeBuffer[a] = 0; // subset 0

for(int b = 4; b < 8; b++) // triangles 5-8
attributeBuffer[b] = 1; // subset 1

for(int c = 8; c < 12; c++) // triangles 9-12
attributeBuffer[c] = 2; // subset 2

Mesh->UnlockAttributeBuffer();

Now we have a created mesh that contains valid data. We could render
the mesh at this point, but let’s optimize it first. Note that for a trivial
box mesh, nothing is really gained by optimizing the mesh data, but
nonetheless we get practice using the ID3DXMesh interface methods.
In order to optimize a mesh, we first need to compute the adjacency
info of the mesh:

std::vector<DWORD> adjacencyBuffer(Mesh->GetNumFaces() * 3);
Mesh->GenerateAdjacency(0.0f, &adjacencyBuffer[0]);

Then we can optimize the mesh, as shown here:

hr = Mesh->OptimizeInplace(
D3DXMESHOPT_ATTRSORT |
D3DXMESHOPT_COMPACT |
D3DXMESHOPT_VERTEXCACHE,

174 Chapter 10

TE
AM
FL
Y

Team-Fly®

&adjacencyBuffer[0],
0, 0, 0);

At this point, setting up the mesh is complete and we are ready to ren-
der it. But there is one last block of code in the Setup function that is
relevant. It uses the previously mentioned dump* functions to output
the internal data contents of the mesh to file. Being able to examine the
data of a mesh helps for debugging and learning the structure of the
mesh.

OutFile.open("Mesh Dump.txt");

dumpVertices(OutFile, Mesh);
dumpIndices(OutFile, Mesh);
dumpAttributeTable(OutFile, Mesh);
dumpAttributeBuffer(OutFile, Mesh);
dumpAdjacencyBuffer(OutFile, Mesh);

OutFile.close();

...Texturing loading, setting render states, etc., snipped

return true;
} // end Setup()

For example, the dumpAttributeTable function writes the attribute
table’s data to file. It is implemented as follows:

void dumpAttributeTable(std::ofstream& outFile, ID3DXMesh* mesh)
{
outFile << "Attribute Table:" << std::endl;
outFile << "----------------" << std::endl << std::endl;

// number of entries in the attribute table
DWORD numEntries = 0;

mesh->GetAttributeTable(0, &numEntries);

std::vector<D3DXATTRIBUTERANGE> table(numEntries);

mesh->GetAttributeTable(&table[0], &numEntries);

for(int i = 0; i < numEntries; i++)
{
outFile << "Entry " << i << std::endl;
outFile << "------" << std::endl;

outFile << "Subset ID: " << table[i].AttribId << std::endl;
outFile << "Face Start: " << table[i].FaceStart << std::endl;
outFile << "Face Count: " << table[i].FaceCount << std::endl;
outFile << "Vertex Start: " << table[i].VertexStart << std::endl;
outFile << "Vertex Count: " << table[i].VertexCount << std::endl;
outFile << std::endl;
}

Meshes Part I 175

P
a

rt
II

I

outFile << std::endl << std::endl;
}

The following text comes from the Mesh Dump.txt file for this sample
application and corresponds to the data written by dumpAttribute-
Table.

Attribute Table:

Entry 0

Subset ID: 0
Face Start: 0
Face Count: 4
Vertex Start: 0
Vertex Count: 8

Entry 1

Subset ID: 1
Face Start: 4
Face Count: 4
Vertex Start: 8
Vertex Count: 8

Entry 2

Subset ID: 2
Face Start: 8
Face Count: 4
Vertex Start: 16
Vertex Count: 8

We can see that this matches the data that we specified for the mesh—
three subsets with four triangles per subset. We advise you to examine
the entire output Mesh Dump.txt file for this sample. It can be found in
this sample’s folder in the companion files.

Finally, we can easily render the mesh using the following code;
essentially we just loop through each subset, set the associated texture,
and then draw the subset. This is easy since we specified the subsets in
the order 0, 1, 2, …, n – 1, where n is the number of subsets.

bool Display(float timeDelta)
{

if(Device)
{

//...update frame code snipped

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0x00000000, 1.0f, 0);

Device->BeginScene();

for(int i = 0; i < NumSubsets; i++)

176 Chapter 10

{
Device->SetTexture(0, Textures[i]);
Mesh->DrawSubset(i);

}

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;

}

10.10 Summary

� A mesh contains a vertex, index, and attribute buffer. The vertex
and index buffer hold the geometry of the mesh (vertices and trian-
gles). The attribute buffer contains a corresponding entry for each
triangle and specifies the subset to which a triangle belongs.

� A mesh can be optimized with the OptimizeInplace or Opti-
mize method. Optimization reorganizes the geometry of the mesh
to make rendering more efficient. Optimizing a mesh with
D3DXMESHOPT_ATTRSORT generates an attribute table. An attrib-
ute table allows the mesh to render an entire subset using a simple
lookup into the attribute table.

� The adjacency info of a mesh is a DWORD array that contains three
entries for every triangle in the mesh. The three entries corre-
sponding to a particular triangle specify the triangles that are adja-
cent to that triangle.

� We can create an empty mesh using the D3DXCreateMeshFVF
function. We can then write valid data to the mesh using the appro-
priate locking methods (LockVertexBuffer, LockIndexBuf-
fer, and LockAttributeBuffer).

Meshes Part I 177

P
a

rt
II

I

Chapter 11

Meshes Part II

In this chapter we continue our study of the mesh-related interfaces,
structures, and functions provided by the D3DX library. With the foun-
dation built in the last chapter, we can move on to more interesting
techniques, such as loading and rendering complex 3D models stored
on disk and controlling the level of detail of our meshes through the
progressive mesh interface.

Objectives

� To learn how to load the data of an XFile into an ID3DXMesh object

� To gain an understanding of the benefits of using progressive
meshes and how to use the progressive mesh interface—
ID3DXPMesh

� To learn about bounding volumes, why they are useful, and how to
create them using the D3DX functions

11.1 ID3DXBuffer

A small reference to the ID3DXBuffer interface was made in the last
chapter, but we didn’t elaborate on it. We see this interface throughout
our utilization of the D3DX library, and therefore a brief overview of
this interface is called for.

The ID3DXBuffer interface is a generic data structure that D3DX
uses to store data in a contiguous block of memory. It has only two
methods:

� LPVOID GetBufferPointer();—Returns a pointer to the start
of the data

� DWORD GetBufferSize();—Returns the size of the buffer in
bytes

To keep the structure generic, it uses a void pointer. This means that it
is up to us to realize the type of data being stored. For example,
D3DXLoadMeshFromX uses an ID3DXBuffer to return the adjacency

178

info of a mesh. Since adjacency info is stored as a DWORD array, we have
to cast the buffer to a DWORD array when we wish to use the adjacency
info from the buffer.

Examples:

DWORD* info =(DWORD*)adjacencyInfo->GetBufferPointer();
D3DXMATERIAL* mtrls = (D3DXMATERIAL*)mtrlBuffer->GetBufferPointer();

Since an ID3DXBuffer is a COM object, it must be released when you
are done with it to avoid a memory leak:

adjacencyInfo->Release();
mtrlBuffer->Release();

We can create an empty ID3DXBuffer using the following function:

HRESULT D3DXCreateBuffer(
DWORD NumBytes, // Size of the buffer, in bytes.
LPD3DXBUFFER *ppBuffer // Returns the created buffer.

);

The following example creates a buffer that can hold four integers:

ID3DXBuffer* buffer = 0;
D3DXCreateBuffer(4 * sizeof(int), &buffer);

11.2 XFiles

Thus far, we have worked with simple geometric objects, such as
spheres, cylinders, cubes, etc., using the D3DXCreate* functions. If
you have attempted to construct your own 3D object by manually speci-
fying the vertices, you have, no doubt, found it quite tedious. To
alleviate this tiresome task of constructing the data of 3D objects, spe-
cial applications called 3D modelers have been developed. These
modelers allow the user to build complex and realistic meshes in a
visual and interactive environment with a rich tool set, making the
entire modeling process much easier. Examples of popular modelers
used for game development are 3DS Max (www.discreet.com),
LightWave 3D (www.newtek.com), and Maya (www.aliaswave-
front.com).

These modelers, of course, can export the created mesh data
(geometry, materials, animations, and other possible useful data) to a
file. Thus, we could write a file reader to extract the mesh data and use
it in our 3D applications. This is certainly a viable solution. However,
an even more convenient solution exists. There is a particular mesh file
format called the XFile format (with the extension .X). Many 3D model-
ers can export to this format and there exist converters that can

Meshes Part II 179

P
a

rt
II

I

convert other popular mesh file formats to .X. Now, what makes XFiles
convenient is that they are a DirectX defined format, and therefore the
D3DX library readily supports XFiles. That is, the D3DX library pro-
vides functions for loading and saving XFiles. Thus, we avoid having to
write our own file loading/saving routines if we use this format.

Note: You can download the DirectX9 SDK Extra—Direct3D Tools
package from MSDN at http://www.msdn.microsoft.com/ to get some
already made .X exporters for popular 3D modelers like 3DS Max,
LightWave, and Maya.

11.2.1 Loading an XFile

We use the following function to load the mesh data stored in an XFile.
Note that this method creates an ID3DXMesh object and loads the geo-
metric data of the XFile into it.

HRESULT D3DXLoadMeshFromX(
LPCSTR pFilename,
DWORD Options,
LPDIRECT3DDEVICE9 pDevice,
LPD3DXBUFFER *ppAdjacency,
LPD3DXBUFFER *ppMaterials,
LPD3DXBUFFER* ppEffectInstances,
PDWORD pNumMaterials,
LPD3DXMESH *ppMesh

);

� pFilename—The filename of the XFile to load

� Options—One or more creation flags that are used to create the
mesh. See the D3DXMESH enumerated type in the SDK documenta-
tion for a complete list of option flags. Some common flags are:

� D3DXMESH_32BIT—The mesh will use 32-bit indices.

� D3DXMESH_MANAGED—The mesh will be placed in the man-
aged memory pool.

� D3DXMESH_WRITEONLY—The mesh’s data will only be writ-
ten to and not read from.

� D3DXMESH_DYNAMIC—The mesh’s buffers will be made
dynamic.

� pDevice—The device to be associated with the mesh

� ppAdjacency—Returns an ID3DXBuffer containing a DWORD
array that describes the adjacency info of the mesh

� ppMaterials—Returns an ID3DXBuffer containing an array of
D3DXMATERIAL structures that contains the material data for this
mesh. We cover the mesh materials in the following section.

180 Chapter 11

� ppEffectInstances—Returns an ID3DXBuffer containing an
array of D3DXEFFECTINSTANCE structures. We ignore this param-
eter for now by specifying 0.

� pNumMaterials—Returns the number of materials for the mesh
(that is, the number of elements in the D3DXMATERIAL array out-
put by ppMaterials).

� ppMesh—Returns the created ID3DXMesh object filled with the
XFile geometry

11.2.2 XFile Materials

Argument seven of D3DXLoadMeshFromX returns the number of
materials that the mesh contains, and argument five returns an array of
D3DXMATERIAL structures containing the material data. The D3DX-
MATERIAL structure is defined as follows:

typedef struct D3DXMATERIAL {
D3DMATERIAL9 MatD3D;
LPSTR pTextureFilename;

} D3DXMATERIAL;

It is a simple structure; it contains the basic D3DMATERIAL9 structure
and a pointer to a null-terminating string that specifies the associative
texture filename. An XFile doesn’t embed the texture data; rather it
embeds the filename, which is then used as a reference to the image
file that contains the actual texture data. Thus, after we load an XFile
with D3DXLoadMeshFromX, we must load the texture data given the
texture filenames. We show how to do this in the next section.

It is worth noting that the D3DXLoadMeshFromX function loads
the XFile data so that the ith entry in the returned D3DXMATERIAL
array corresponds with the ith subset. Thus, the subsets are labeled in
the order 0, 1, 2, …, n – 1, where n is the number of subsets and mate-
rials. This allows the mesh to be rendered as a simple loop that iterates
through each subset and renders it.

11.2.3 Sample Application: XFile

We now show the relevant code to the first sample of this chapter
called XFile. The sample loads an .x file called bigship1.x that was taken
from the media folder of the DirectX SDK. The complete source code
can be found in the companion files. Figure 11.1 shows a screen shot of
the sample.

Meshes Part II 181

P
a

rt
II

I

This sample uses the following global variables:

ID3DXMesh* Mesh = 0;
std::vector<D3DMATERIAL9> Mtrls(0);
std::vector<IDirect3DTexture9*> Textures(0);

Here we have an ID3DXMesh object that is used to store the mesh data
that we load from the XFile. We also have a vector of materials and tex-
tures that we use to hold the mesh’s materials and textures.

We begin by implementing our standard Setup function. First, we
load the XFile:

bool Setup()
{
HRESULT hr = 0;

//
// Load the XFile data.
//
ID3DXBuffer* adjBuffer = 0;
ID3DXBuffer* mtrlBuffer = 0;
DWORD numMtrls = 0;

hr = D3DXLoadMeshFromX(
"bigship1.x",
D3DXMESH_MANAGED,
Device,
&adjBuffer,
&mtrlBuffer,
0,
&numMtrls,
&Mesh);

if(FAILED(hr))
{

182 Chapter 11

Figure 11.1: A
screen shot taken
from the XFile
sample

::MessageBox(0, "D3DXLoadMeshFromX() - FAILED", 0, 0);
return false;

}

After we have loaded the XFile data, we must iterate through the
D3DXMATERIAL array and load any textures that the mesh references:

//
// Extract the materials, load textures.
//

if(mtrlBuffer != 0 && numMtrls != 0)
{

D3DXMATERIAL* mtrls=(D3DXMATERIAL*)mtrlBuffer->
GetBufferPointer();

for(int i = 0; i < numMtrls; i++)
{

// the MatD3D property doesn't have an ambient value
// set when it’s loaded, so set it now:
mtrls[i].MatD3D.Ambient = mtrls[i].MatD3D.Diffuse;

// save the ith material
Mtrls.push_back(mtrls[i].MatD3D);

// check if the ith material has an associative
// texture
if(mtrls[i].pTextureFilename != 0)
{

// yes, load the texture for the ith subset
IDirect3DTexture9* tex = 0;
D3DXCreateTextureFromFile(

Device,
mtrls[i].pTextureFilename,
&tex);

// save the loaded texture
Textures.push_back(tex);

}
else
{

// no texture for the ith subset
Textures.push_back(0);

}
}

}
d3d::Release<ID3DXBuffer*>(mtrlBuffer); // done w/ buffer

.

. // Snipped irrelevant code to this chapter (e.g., setting up lights,

. // view and projection matrices, etc.)

.

return true;
} // end Setup()

Meshes Part II 183

P
a

rt
II

I

In the Display function we rotate the mesh slightly every frame so
that it spins. The mesh can be rendered trivially using a simple loop
since the subsets are labeled in the order 0, 1, 2, …, n – 1, where n is
the number of subsets:

bool Display(float timeDelta)
{

if(Device)
{

//
// Update: Rotate the mesh.
//

static float y = 0.0f;
D3DXMATRIX yRot;
D3DXMatrixRotationY(&yRot, y);
y += timeDelta;

if(y >= 6.28f)
y = 0.0f;

D3DXMATRIX World = yRot;

Device->SetTransform(D3DTS_WORLD, &World);

//
// Render
//

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0xffffffff, 1.0f, 0);

Device->BeginScene();

for(int i = 0; i < Mtrls.size(); i++)
{

Device->SetMaterial(&Mtrls[i]);
Device->SetTexture(0, Textures[i]);
Mesh->DrawSubset(i);

}

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;

}

11.2.4 Generating Vertex Normals

It is possible that an XFile does not contain vertex normal data. If this
is the case, it may be necessary to compute the vertex normals manu-
ally so that we can use lighting. We briefly outlined how to do this way
back in Chapter 5. However, now that we know about the ID3DXMesh

184 Chapter 11

TE
AM
FL
Y

Team-Fly®

interface and its parent ID3DXBaseMesh, we can use the following
function to generate vertex normals for any mesh:

HRESULT D3DXComputeNormals(
LPD3DXBASEMESH pMesh, // Mesh to compute normals of.
const DWORD *pAdjacency // Input adjacency info.

);

This function generates the vertex normals by using normal averaging.
If adjacency info is provided, then duplicated vertices are disregarded. If
adjacency info is not provided, then duplicated vertices have normals
averaged from the faces that reference them. It is important to realize
that the mesh we pass in for pMesh must have a vertex format that
contains the D3DFVF_NORMAL flag.

Note that if an XFile does not contain vertex normal data, the
ID3DXMesh object created from D3DXLoadMeshFromX does not have
the D3DFVF_NORMAL flag specified in its vertex format. Therefore,
before we can use D3DXComputeNormals, we have to clone the mesh
and specify a vertex format for the cloned mesh that includes
D3DFVF_NORMAL. The following example demonstrates this:

// does the mesh have a D3DFVF_NORMAL in its vertex format?
if (!(pMesh->GetFVF() & D3DFVF_NORMAL))
{

// no, so clone a new mesh and add D3DFVF_NORMAL to its format:
ID3DXMesh* pTempMesh = 0;
pMesh->CloneMeshFVF(

D3DXMESH_MANAGED,
pMesh->GetFVF() | D3DFVF_NORMAL, // add it here
Device,
&pTempMesh);

// compute the normals:
D3DXComputeNormals(pTempMesh, 0);

pMesh->Release(); // get rid of the old mesh
pMesh = pTempMesh; // save the new mesh with normals

}

11.3 Progressive Meshes

Progressive meshes, represented by the ID3DXPMesh interface, allow
us to simplify a mesh by applying a sequence of edge collapse transfor-

mations (ECT). Each ECT removes one vertex and one or two faces.
Because each ECT is invertible (its inverse is called a vertex split), we
can reverse the simplification process and restore the mesh to its exact
original state. This, of course, means that we cannot obtain a mesh
more detailed then the original; we can only simplify and then reverse

Meshes Part II 185

P
a

rt
II

I

those simplification operations. Figure 11.2 shows a mesh at three dif-
ferent levels of detail (LOD): high, medium, and low.

The idea of progressive meshes is analogous to using mipmaps for tex-
tures. When texturing, we noticed that it was wasteful to use a
high-resolution texture for a small, far-away primitive where the extra
detail would go unnoticed. The same goes for meshes; a small, far-away
mesh does not need as high a triangle count as a large, close-up mesh
because the extra triangle detail for the small mesh would go unno-
ticed. Thus, we would end up spending time rendering a high triangle
count model when a simpler low triangle count model would suffice.

One way that we can use progressive meshes is to adjust the LOD
of a mesh based on its distance from the camera. That is, as the dis-
tance decreases, we would add detail (triangles) to the mesh, and as the
distance increased we would remove detail.

Note that we do not discuss how progressive meshes can be imple-
mented; rather we show how to use the ID3DXPMesh interface. For
those readers interested in the implementation details, you can find the
original progressive mesh papers at Hugues Hoppe’s web site:
http://research.microsoft.com/~hoppe/.

11.3.1 Generating a Progressive Mesh

We can create an ID3DXPMesh object using the following function:

HRESULT D3DXGeneratePMesh(
LPD3DXMESH pMesh,
CONST DWORD *pAdjacency,
CONST LPD3DXATTRIBUTEWEIGHTS pVertexAttributeWeights,
CONST FLOAT *pVertexWeights,
DWORD MinValue,
DWORD Options,
LPD3DXPMESH *ppPMesh

);

� pMesh—An input mesh that contains the data of the mesh from
which we want to generate a progressive mesh

186 Chapter 11

Figure 11.2: A mesh shown at three different resolutions

� pAdjacency—Pointer to a DWORD array that contains the adja-
cency info of pMesh

� pVertexAttributeWeights—Pointer to a D3DXATTRIBUTE-
WEIGHTS array of size pMesh->GetNumVertices(), where the
ith entry corresponds with the ith vertex in pMesh and specifies its
attribute weight. The attribute weights are used to determine the
chance that a vertex is removed during simplification. You can pass
in null for this parameter and a default vertex attribute weight will
be used for each vertex. See section 11.3.2 for more information on
attribute weights and the D3DXATTRIBUTEWEIGHTS structure.

� pVertexWeights—Pointer to a float array of size pMesh->
GetNumVertices(), where the ith entry corresponds to the ith

vertex in pMesh and specifies its vertex weight. The higher a ver-
tex weight, the less chance it has of being removed during simplifi-
cation. You can pass in null for this parameter and a default vertex
weight of 1.0 will be used for each vertex.

� MinValue—The minimum vertices or faces (determined by the
next parameter—Options) we want to simplify down to. Note that
this value is a request, and depending on vertex/attribute weights
the resulting mesh might not match this value.

� Options—Exactly one member of the D3DXMESHSIMP enumer-
ated type:

� D3DXMESHSIMP_VERTEX—Specifies that the previous param-
eter MinValue refers to vertices

� D3DXMESHSIMP_FACE—Specifies that the previous parameter
MinValue refers to faces

� ppPMesh—Returns the generated progressive mesh

11.3.2 Vertex Attribute Weights

typedef struct _D3DXATTRIBUTEWEIGHTS {
FLOAT Position;
FLOAT Boundary;
FLOAT Normal;
FLOAT Diffuse;
FLOAT Specular;
FLOAT Texcoord[8];
FLOAT Tangent;
FLOAT Binormal;

} D3DXATTRIBUTEWEIGHTS;

The vertex weight structure allows us to specify a weight for each pos-
sible component of a vertex. A value of 0.0 would indicate that the
component carries no weight. The higher the weights for the vertex

Meshes Part II 187

P
a

rt
II

I

components, the less likely the vertex will be removed in simplifica-
tion. The default weights are as follows:

D3DXATTRIBUTEWEIGHTS AttributeWeights;
AttributeWeights.Position = 1.0;
AttributeWeights.Boundary = 1.0;
AttributeWeights.Normal = 1.0;
AttributeWeights.Diffuse = 0.0;
AttributeWeights.Specular = 0.0;
AttributeWeights.Tex[8] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

The default weights are recommended, unless the application has a sig-
nificant reason not to use them.

11.3.3 ID3DXPMesh Methods

The ID3DXPMesh interface inherits from the ID3DXBaseMesh inter-
face. It therefore has all the functionality of the previously studied
ID3DXMesh, as well as the following (but not limited to) additional
methods:

� DWORD GetMaxFaces(VOID);—Returns the maximum number
of faces that the progressive mesh can be set to have

� DWORD GetMaxVertices(VOID);—Returns the maximum
number of vertices that the progressive mesh can be set to have

� DWORD GetMinFaces(VOID);—Returns the minimum number
of faces that the progressive mesh can be set to have

� DWORD GetMinVertices(VOID);—Returns the minimum num-
ber of vertices that the progressive mesh can be set to have

� HRESULT SetNumFaces(DWORD Faces);—This method allows
us to set the number of faces that we want the mesh to be simpli-
fied/complexified to. For example, suppose that the mesh presently
has 50 faces and we want to simplify it to 30 faces; we would write:

pmesh->SetNumFaces(30);

Note that after the adjustment the number of faces of the mesh
may differ by one from the number desired. If Faces is less than
GetMinFaces(), it is clamped to GetMinFaces(). Similarly, if
Faces is greater than GetMaxFaces(), it is clamped to
GetMaxFaces().

� HRESULT SetNumVertices(DWORD Vertices);—This
method allows us to set the number of vertices that we want the
mesh to be simplified/complexified to. For example, suppose the
mesh presently has 20 vertices and we want to add detail to it by
increasing the vertex count to 40 vertices; we would write:

188 Chapter 11

pmesh->SetNumVertices(40);

Note that the number of vertices of the mesh, after the adjustment,
may differ by one from the number desired. If Vertices is less
than GetMinVertices(), it is clamped to GetMinVertices().
Similarly, if Vertices is greater than GetMaxVertices(), it is
clamped to GetMaxVertices().

� HRESULT TrimByFaces(

DWORD NewFacesMin,

DWORD NewFacesMax,

DWORD *rgiFaceRemap, // Face remap info.

DWORD *rgiVertRemap // Vertex remap info.

);

This method allows us to set a new face count minimum and maxi-
mum, as specified by the arguments NewFacesMin and
NewFacesMax, respectively. Note that the new minimum and max-
imum must be in the present face minimum and maximum interval;
that is, it must be in [GetMinFaces(), GetMaxFaces()]. The
function also returns face and vertex remap information. See sec-
tion 10.4 for a description of remap information.

� HRESULT TrimByVertices(

DWORD NewVerticesMin,

DWORD NewVerticesMax,

DWORD *rgiFaceRemap, // Face remap info.

DWORD *rgiVertRemap // Vertex remap info.

);

This method allows us to set a new vertex count minimum and
maximum as specified by the arguments NewVerticesMin and
NewVerticesMax, respectively. Note that the new minimum and
maximum must be in the present vertex minimum and maximum
interval; that is, it must be in [GetMinVertices(), GetMax-
Vertices()]. The function also returns face and vertex remap
information. See section 10.4 for a description of remap
information.

Note: Of particular interest are the methods SetNumFaces and
SetNumVertices, for these methods are the ones that allow us to
adjust the LOD of the mesh.

Meshes Part II 189

P
a

rt
II

I

11.3.4 Sample Application: Progressive Mesh

The Progressive Mesh sample is similar to the XFile sample, except for
the fact that the mesh we create and render is a progressive mesh and
thus represented by the ID3DXPMesh interface. We allow the user to
change the resolution of the progressive mesh interactively via key-
board input. You can add faces to the mesh by pressing the A key, and
you can remove faces from the mesh by pressing the S key.

The global variables used in the sample are almost the same as
those used in the XFile sample, but we add an additional variable to
store the progressive mesh:

ID3DXMesh* SourceMesh = 0;
ID3DXPMesh* PMesh = 0; // progressive mesh
std::vector<D3DMATERIAL9> Mtrls(0);
std::vector<IDirect3DTexture9*> Textures(0);

Recall that to generate a progressive mesh we must pass in a “source”
mesh that contains the data we want to create a progressive mesh of.
Thus, we first load the XFile data into an ID3DXMesh object
SourceMesh and then generate the progressive mesh:

bool Setup()
{
HRESULT hr = 0;

// ...Load XFile data into SourceMesh snipped.
//
// ...Extracting materials and textures snipped.

Since the code to do this is exactly the same as it was in the XFile sam-
ple, we have omitted it. Once we have a source mesh, we can generate
the progressive mesh as follows:

//
// Generate the progressive mesh.
//

hr = D3DXGeneratePMesh(
SourceMesh,
(DWORD*)adjBuffer->GetBufferPointer(), // adjacency
0, // default vertex attribute weights
0, // default vertex weights
1, // simplify as low as possible
D3DXMESHSIMP_FACE, // simplify by face count
&PMesh);

d3d::Release<ID3DXMesh*>(SourceMesh); // done w/ source mesh
d3d::Release<ID3DXBuffer*>(adjBuffer); // done w/ buffer

if(FAILED(hr))
{

190 Chapter 11

::MessageBox(0, "D3DXGeneratePMesh() - FAILED", 0, 0);
return false;

}

Note that while we request to simplify the mesh down to one face, this
will usually not occur due to vertex/attribute weights; however, speci-
fying 1 will reduce the mesh to its lowest resolution.

At this point, the progressive mesh has been generated but if we
render it now, it will be rendered at its lowest resolution. Because we
want to initially render the mesh at full resolution, we set it to:

// set to original (full) detail
DWORD maxFaces = PMesh->GetMaxFaces();
PMesh->SetNumFaces(maxFaces);

In the Display function, we test for an A keypress and an S keypress
and handle the input accordingly:

bool Display(float timeDelta)
{
if(Device)
{

//
// Update: Mesh resolution.
//

// Get the current number of faces the pmesh has.
int numFaces = PMesh->GetNumFaces();

// Add a face, note the SetNumFaces() will automatically
// clamp the specified value if it goes out of bounds.
if(::GetAsyncKeyState('A') & 0x8000f)
{

// Sometimes we must add more than one face to invert
// an edge collapse transformation because of the internal
// implementation details of the ID3DXPMesh interface. In
// other words, adding one face may possibly result in a
// mesh with the same number of faces as before. Thus to
// increase the face count we may sometimes have to add
// two faces at once.
PMesh->SetNumFaces(numFaces + 1);
if(PMesh->GetNumFaces() == numFaces)

PMesh->SetNumFaces(numFaces + 2);
}

// Remove a face, note the SetNumFaces() will automatically
// clamp the specified value if it goes out of bounds.
if(::GetAsyncKeyState('S') & 0x8000f)

PMesh->SetNumFaces(numFaces - 1);

This is straightforward, but notice that when adding a face we must
sometimes add two faces in order to invert an edge collapse
transformation.

Meshes Part II 191

P
a

rt
II

I

To conclude, we can render an ID3DXPMesh object the same way
that we render an ID3DXMesh object. In addition, we also outline the
mesh’s triangles in yellow by drawing the mesh in wireframe mode
with a yellow material. We do this so that we can see the individual tri-
angles being added and removed by the progressive mesh when we
adjust the LOD.

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0xffffffff, 1.0f, 0);

Device->BeginScene();

for(int i = 0; i < Mtrls.size(); i++)
{

Device->SetMaterial(&Mtrls[i]);
Device->SetTexture(0, Textures[i]);
PMesh->DrawSubset(i);

// draw wireframe outline
Device->SetMaterial(&d3d::YELLOW_MTRL);
Device->SetRenderState(D3DRS_FILLMODE, D3DFILL_WIREFRAME);
PMesh->DrawSubset(i);
Device->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);

}

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;
} // end Display

192 Chapter 11

Figure 11.3: A
screen shot of the
Progressive Mesh
sample

11.4 Bounding Volumes

Sometimes we want to compute a bounding volume of a mesh. Two
common examples of the bounding volumes used are spheres and
boxes. Other examples are cylinders, ellipsoids, lozenges, and capsules.
Figure 11.4 shows a mesh with a bounding sphere and the same mesh
with a bounding box. For this section we work only with bounding
boxes and bounding spheres.

Bounding boxes/spheres are often used to speed up visibility tests and
collision tests, among other things. For example, we can say that a
mesh is not visible if its bounding box/sphere is not visible. A box/
sphere visibility test is much cheaper than individually testing the visi-
bility of each triangle in the mesh. For a collision example, suppose that
a missile is fired in the scene and we want to determine if the missile
hit an object in the scene. Since the objects are made up of triangles,
we could iterate through each triangle of each object and test if the mis-
sile (modeled mathematically by a ray) hit a triangle of the object. This
approach would require many ray/triangle intersection tests—one for
each triangle of each object in the scene. A more efficient approach
would be to compute the bounding box/sphere of each mesh and then
do one ray/box or ray/sphere intersection test per object. We can then
say that the object is hit if the ray intersected its bounding volume.
This is a fair approximation; if more precision is necessary, we can use
the ray/box or ray/sphere to quickly reject objects that are obviously
not going to be hit and then apply a more precise test to objects that
have a good chance of being hit. Objects that have a good chance of
being hit are objects whose bounding volumes were hit.

The D3DX library provides functions to calculate the bounding
sphere of a mesh and the bounding box of a mesh. These functions take
an array of vertices as input to compute the bounding sphere or box.

Meshes Part II 193

P
a

rt
II

I

Figure 11.4: A mesh
rendered with its
bounding sphere
and bounding box.
A sphere can be
defined by its center
point and radius. A
box can be defined
by its minimum and
maximum points.

These functions are designed to be flexible and can work with various
vertex formats.

HRESULT D3DXComputeBoundingSphere(
LPD3DXVECTOR3 pFirstPosition,
DWORD NumVertices,
DWORD dwStride,
D3DXVECTOR3* pCenter,
FLOAT* pRadius

);

� pFirstPosition—A pointer to a vector in the first vertex of an
array of vertices that describes the position of the vertex

� NumVertices—The number of vertices in the vertex array

� dwStride—The size of each vertex in bytes. This is needed
because a vertex structure may have additional information such as
a normal vector and texture coordinates that is not needed for the
bounding sphere function, and the function needs to know how
much data to skip over to get to the next vertex position.

� pCenter—Returns the center of the bounding sphere

� pRadius—Returns the radius of the bounding sphere

HRESULT D3DXComputeBoundingBox(
LPD3DXVECTOR3 pFirstPosition,
DWORD NumVertices,
DWORD dwStride,
D3DXVECTOR3* pMin,
D3DXVECTOR3* pMax

);

The first three parameters are exactly the same as the first three in
D3DXComputeBoundingSphere. The last two parameters are used to
return the bounding box’s minimum and maximum point, respectively.

11.4.1 Some New Special Constants

Let’s introduce two constants that prove useful throughout the rest of
this book. We add these to the d3d namespace:

namespace d3d
{

...

const float INFINITY = FLT_MAX;
const float EPSILON = 0.001f;

The INFINITY constant is simply used to represent the largest num-
ber that we can store in a float. Since we can’t have a float bigger
than FLT_MAX, we can conceptualize it as infinity, which makes for
more readable code that signifies ideas of infinity. The EPSILON

194 Chapter 11

TE
AM
FL
Y

Team-Fly®

constant is a small value we define such that we consider any number
smaller than it equal to zero. This is necessary because due to floating-
point imprecision, a number that should really be zero may be off
slightly. Thus, comparing it to zero would fail. We therefore test if a
floating-point variable is zero by testing if it’s less than EPSILON. The
following function illustrates how EPSILON can be used to test if two
floating-point values are equal:

bool Equals(float lhs, float rhs)
{

// if lhs == rhs their difference should be zero
return fabs(lhs - rhs) < EPSILON ? true : false;

}

11.4.2 Bounding Volume Types

To facilitate work with bounding spheres and bounding volumes, it is
natural to implement classes representing each. We implement such
classes now in the d3d namespace:

struct BoundingBox
{

BoundingBox();

bool isPointInside(D3DXVECTOR3& p);

D3DXVECTOR3 _min;
D3DXVECTOR3 _max;

};

struct BoundingSphere
{

BoundingSphere();

D3DXVECTOR3 _center;
float _radius;

};

d3d::BoundingBox::BoundingBox()
{

// infinite small bounding box
_min.x = d3d::INFINITY;
_min.y = d3d::INFINITY;
_min.z = d3d::INFINITY;

_max.x = -d3d::INFINITY;
_max.y = -d3d::INFINITY;
_max.z = -d3d::INFINITY;

}

bool d3d::BoundingBox::isPointInside(D3DXVECTOR3& p)
{

// is the point inside the bounding box?
if(p.x >= _min.x && p.y >= _min.y && p.z >= _min.z &&

Meshes Part II 195

P
a

rt
II

I

p.x <= _max.x && p.y <= _max.y && p.z <= _max.z)
{

return true;
}
else
{

return false;
}

}

d3d::BoundingSphere::BoundingSphere()
{

_radius = 0.0f;
}

11.4.3 Sample Application: Bounding Volumes

The Bounding Volumes sample located in this chapter’s folder in the
companion files demonstrates using D3DXComputeBoundingSphere
and D3DXComputeBoundingBox. The program loads an XFile and
computes its bounding sphere and mesh. It then creates two
ID3DXMesh objects, one to model the bounding sphere and one to
model the bounding box. The mesh corresponding to the XFile is then
rendered with either the bounding sphere or bounding box displayed
(see Figure 11.5). The user can switch between displaying the bound-
ing sphere and bounding box mesh by pressing the Spacebar.

The sample is pretty straightforward, and we will leave it to you to
study the source code. The two functions we implement that are of
interest to this discussion compute the bounding sphere and bounding
box of a specific mesh:

196 Chapter 11

Figure 11.5: A
screen shot of the
Bounding Volumes
sample. Note that
transparency using
alpha blending is
used to make the
bounding sphere
transparent.

bool ComputeBoundingSphere(
ID3DXMesh* mesh, // mesh to compute bounding sphere for
d3d::BoundingSphere* sphere) // return bounding sphere

{
HRESULT hr = 0;

BYTE* v = 0;
mesh->LockVertexBuffer(0, (void**)&v);

hr = D3DXComputeBoundingSphere(
(D3DXVECTOR3*)v,
mesh->GetNumVertices(),
D3DXGetFVFVertexSize(mesh->GetFVF()),
&sphere->_center,
&sphere->_radius);

mesh->UnlockVertexBuffer();

if(FAILED(hr))
return false;

return true;
}

bool ComputeBoundingBox(
ID3DXMesh* mesh, // mesh to compute bounding box for
d3d::BoundingBox* box) // return bounding box

{
HRESULT hr = 0;

BYTE* v = 0;
mesh->LockVertexBuffer(0, (void**)&v);

hr = D3DXComputeBoundingBox(
(D3DXVECTOR3*)v,
mesh->GetNumVertices(),
D3DXGetFVFVertexSize(mesh->GetFVF()),
&box->_min,
&box->_max);

mesh->UnlockVertexBuffer();

if(FAILED(hr))
return false;

return true;
}

Notice that the cast (D3DXVECTOR3*)v assumes the vertex position
component is stored first in the vertex structure that we are using.
Also notice that we can use the D3DXGetFVFVertexSize function to
get the size of a vertex structure given the flexible vertex format
description.

Meshes Part II 197

P
a

rt
II

I

11.5 Summary

� We can construct complex triangle meshes using 3D modeling pro-
grams and either export or convert them to XFiles. Then, using the
D3DXLoadMeshFromX function, we can load the mesh data in an
XFile into an ID3DXMesh object that we can use in our
applications.

� Progressive meshes, represented by the ID3DXPMesh interface,
can be used to control the level of detail of a mesh; that is, we can
adjust the detail of the mesh dynamically. This is useful because we
will often want to adjust the detail of the mesh based on how prom-
inent it is in the scene. For example, a mesh closer to the viewer
should be rendered with more detail than a mesh far away from the
viewer.

� We can compute the bounding sphere and bounding box using the
D3DXComputeBoundingSphere and D3DXComputeBounding-
Box functions, respectively. Bounding volumes are useful because
they approximate the volume of a mesh and can therefore be used
to speed up calculations related to the volume of space that a mesh
occupies.

198 Chapter 11

Chapter 12

Building a Flexible
Camera Class

Thus far, we have used the D3DXMatrixLookAtLH function to com-
pute a view space transformation matrix. This function is particularly
useful for positioning and aiming a camera in a fixed position, but its
user interface is not so useful for a moving camera that reacts to user
input. This motivates us to develop our own solution. In this chapter
we show how to implement a Camera class that gives us better control
of the camera than the D3DXMatrixLookAtLH function and is particu-
larly suitable for flight simulators and games played from the first-
person perspective.

Objective

� To learn how to implement a flexible Camera class that can be
used for flight simulators and games played from the first-person
perspective

12.1 Camera Design

We define the position and orientation of the camera relative to the
world coordinate system using four camera vectors: a right vector, up vec-

tor, look vector, and position vector, as Figure 12.1 illustrates. These
vectors essentially define a local coordinate system for the camera
described relative to the world coordinate system. Since the right, up,
and look vectors define the camera’s orientation in the world, we some-
times refer to all three as the orientation vectors. The orientation
vectors must be orthonormal. A set of vectors is orthonormal if they are
mutually perpendicular to each other and of unit length. The reason we
make this restriction is because later we insert the orientation vectors
into the rows of a matrix, and a matrix where the row vectors are
orthonormal means the matrix is orthogonal. Recall that an orthogonal

199

matrix has the property that its inverse equals its transpose. This is
useful later in section 12.2.1.2.

With these four vectors describing the camera, we would like our cam-
era to be able to perform the following six operations:

� Rotate around the right vector (pitch)

� Rotate around the up vector (yaw)

� Rotate around the look vector (roll)

� Strafe along the right vector

� Fly along the up vector

� Move along the look vector

Through these six operations, we are able to move along three axes
and rotate around three axes, giving us a flexible six degrees of free-
dom. The following Camera class definition reflects our description of
data and desired methods:

class Camera
{
public:

enum CameraType { LANDOBJECT, AIRCRAFT };

Camera();
Camera(CameraType cameraType);
~Camera();

void strafe(float units); // left/right
void fly(float units); // up/down
void walk(float units); // forward/backward

void pitch(float angle); // rotate on right vector
void yaw(float angle); // rotate on up vector
void roll(float angle); // rotate on look vector

200 Chapter 12

Figure 12.1: The camera vectors defining the
position and orientation of the camera rela-
tive to the world

void getViewMatrix(D3DXMATRIX* V);
void setCameraType(CameraType cameraType);
void getPosition(D3DXVECTOR3* pos);
void setPosition(D3DXVECTOR3* pos);
void getRight(D3DXVECTOR3* right);
void getUp(D3DXVECTOR3* up);
void getLook(D3DXVECTOR3* look);

private:
CameraType _cameraType;
D3DXVECTOR3 _right;
D3DXVECTOR3 _up;
D3DXVECTOR3 _look;
D3DXVECTOR3 _pos;

};

One thing shown in this class definition that we haven’t discussed is
the CameraType enumerated type. Presently, our camera supports
two types of camera models, a LANDOBJECT model and an AIRCRAFT
model. The AIRCRAFT model allows us to move freely through space
and gives us six degrees of freedom. However, in some games, such as
a first-person shooter, people can’t fly; therefore we must restrict
movement on certain axes. Specifying LANDOBJECT for the camera
type has these restrictions carried out, as you can see in the following
section.

12.2 Implementation Details

12.2.1 Computing the View Matrix

We now show how the view matrix transformation can be computed
given the camera vectors. Let p = (px, py, pz), r = (rx, ry, rz), u = (ux, uy,
uz), and d = (dx, dy, dz) be the position, right, up, and look vectors,
respectively.

Recall that in Chapter 2 we said that the view space transformation
transforms the geometry in the world so that the camera is centered at
the origin and axis aligned with the major coordinate axes (see Figure
12.2).

Building a Flexible Camera Class 201

P
a

rt
II

I

Therefore, we want a transformation matrix V such that:

� pV = (0, 0, 0)—The matrix V transforms the camera to the origin.

� rV = (1, 0, 0)—The matrix V aligns the right vector with the world
x-axis.

� uV = (0, 1, 0)—The matrix V aligns the up vector with the world
y-axis.

� dV = (0, 0, 1)—The matrix V aligns the look vector with the world
z-axis.

We can divide the task of finding such a matrix into two parts: 1) a
translation part that takes the camera’s position to the origin and 2) a
rotation part that aligns the camera vectors with the world’s axes.

12.2.1.1 Part 1: Translation

The translation that takes p to the origin is easily given by –p, since
p – p = 0. So we can describe the translation part of the view transfor-
mation with the following matrix:

202 Chapter 12

Figure 12.2: The transformation from world space to view space. This
transformation transforms the camera to the origin of the system looking
down the positive z-axis. Notice that the objects in space are transformed
along with the camera so that the camera’s view of the world remains the
same.

�
�
�
�
�

�

�

�
�
�
�
�

�

�

���

�

1

0100

0010

0001

zyx ppp

T

12.2.1.2 Part 2: Rotation

Aligning all three of the camera vectors with the world’s axes requires
a little more work. We need a 3 � 3 rotation matrix A that aligns the
right, up, and look vectors with the world’s x-, y-, and z-axis, respec-
tively. Such a matrix would satisfy the following three systems of
equations:

� �rA �

�

�

�
�
�

�

�

�
�
�
�r r r

a a a

a a a

a a a

x y z, ,
00 01 02

10 11 12

20 21 22

1� �, 0, 0

� �uA �

�

�

�
�
�

�

�

�
�
�
�u u u

a a a

a a a

a a a

x y z, ,
00 01 02

10 11 12

20 21 22

0� �, 1, 0

� �dA �

�

�

�
�
�

�

�

�
�
�
�d d d

a a a

a a a

a a a

x y z, ,
00 01 02

10 11 12

20 21 22

0� �, 0, 1

Note: We work with 3 � 3 matrices here because we do not need
homogeneous coordinates to represent rotations. Later we augment
back to our usual 4 � 4 matrix.

Since these three systems have the same coefficient matrix A, we can
solve them all at once. We rewrite them together as:

BA �

�

�

�
�
�

�

�

�
�
�

r r r

u u u

d d d

a a a

a a a

a

x y z

x y z

x y z

00 01 02

10 11 12

20 21 22

1 0 0

0 1 0

0 0 1a a

�

�

�
�
�

�

�

�
�
�
�

�

�

�
�
�

�

�

�
�
�

We can solve for A in a variety of ways, but we immediately see that A

is the inverse of B because BA = BB–1 = I. Because B is an orthogo-
nal matrix (its row vectors are an orthonormal basis), we know that its
inverse is its transpose. Thus, the transformation that aligns the orien-
tation vectors with the world’s axes is:

B B A� � � �

�

�

�
�
�

�

�

�
�
�

1 T

r u d

r u d

r u d

x x x

y y y

z z z

Building a Flexible Camera Class 203

P
a

rt
II

I

12.2.1.3 Combining Both Parts

Finally, augmenting A to a 4 � 4 matrix and combining the translation
part with the rotation part yields the view transformation matrix V:

We build this matrix in the Camera::getViewMatrix method:

void Camera::getViewMatrix(D3DXMATRIX* V)
{

// Keep camera's axes orthogonal to each other:
D3DXVec3Normalize(&_look, &_look);

D3DXVec3Cross(&_up, &_look, &_right);
D3DXVec3Normalize(&_up, &_up);

D3DXVec3Cross(&_right, &_up, &_look);
D3DXVec3Normalize(&_right, &_right);

// Build the view matrix:
float x = -D3DXVec3Dot(&_right, &_pos);
float y = -D3DXVec3Dot(&_up, &_pos);
float z = -D3DXVec3Dot(&_look, &_pos);

(*V)(0, 0) = _right.x;
(*V)(0, 1) = _up.x;
(*V)(0, 2) = _look.x;
(*V)(0, 3) = 0.0f;

(*V)(1, 0) = _right.y;
(*V)(1, 1) = _up.y;
(*V)(1, 2) = _look.y;
(*V)(1, 3) = 0.0f;

(*V)(2, 0) = _right.z;
(*V)(2, 1) = _up.z;
(*V)(2, 2) = _look.z;
(*V)(2, 3) = 0.0f;

(*V)(3, 0) = x;
(*V)(3, 1) = y;
(*V)(3, 2) = z;
(*V)(3, 3) = 1.0f;

}

You may wonder what the first few lines of the method are for. After
several rotations, the camera’s axes can become non-orthogonal to
each other due to floating-point errors. Therefore, every time this func-
tion is called, we recompute the up and right vectors with respect to

204 Chapter 12

V

dpuprp

TA �

�
�
�
�

�

�

�
�
�
�

�

�

������

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

���

�

1

0

0

0

1000

0

0

0

1

0100

0010

0001

zzz

yyy

xxx

zzz

yyy

xxx

zyx

dur

dur

dur

dur

dur

dur

ppp

TE
AM
FL
Y

Team-Fly®

the look vector to ensure that they are all mutually orthogonal to each
other. A new orthogonal up vector is found by up = look � right. Then a
new orthogonal right vector is found with right = up � look.

12.2.2 Rotation about an Arbitrary Axis

To implement our camera rotation methods, we need to be able to
rotate around an arbitrary axis. The D3DX library provides the follow-
ing function for just that purpose:

D3DXMATRIX *D3DXMatrixRotationAxis(
D3DXMATRIX *pOut, // returns rotation matrix
CONST D3DXVECTOR3 *pV, // axis to rotate around
FLOAT Angle // angle, in radians, to rotate

);

For example, suppose we want to rotate �/2 radians around the axis
defined by the vector (0.707, 0.707, 0). We would write:

D3DXMATRIX R;
D3DXVECTOR3 axis(0.707f, 0.707f, 0.0f);
D3DXMatrixRotationAxis(&R, &axis, D3DX_PI / 2.0f);

A derivation of the matrix D3DXMatrixRotationAxis builds can be
found in Eric Lengyel’s Mathematics for 3D Game Programming &

Computer Graphics.

12.2.3 Pitch, Yaw, and Roll

Because the orientation vectors describe the orientation of the camera
relative to the world coordinate system, we must figure out how we
update them when we pitch, yaw, and roll. This is actually very easy.
Consider Figures 12.4, 12.5, and 12.6, which show the camera pitching,
yawing, and rolling, respectively.

Building a Flexible Camera Class 205

P
a

rt
II

I

Figure 12.3: Rotations about an arbitrary axis
defined by the vector A

We see that when we pitch, we need to rotate the up and look vectors
around the right vector by the specified rotation angle. Similarly, we
see that when we yaw, we need to rotate the look and right vectors
around the up vector by the specified rotation angle. Finally, we see
that when we roll, we need to rotate the up and right vectors around
the look vector by the specified rotation angle.

We now see why the D3DXMatrixRotationAxis function is nec-
essary, as any of these three vectors that we rotate around may have an
arbitrary orientation in the world.

The implementations for the pitch, yaw, and roll methods follow
what we have just discussed. However, there are some restrictions that
we make for LANDOBJECTs. In particular, it doesn’t look and feel right
for a land object to yaw when tilted or for it to roll. Therefore, for
LANDOBJECTs we rotate around the world’s y-axis rather than the

206 Chapter 12

Figure 12.4: Pitch, or rotation about
the camera’s right vector

Figure 12.5: Yaw, or rotation about
the camera’s up vector

Figure 12.6: Roll, or rotation about
the camera’s look vector

camera’s up vector in the yaw method, and we disable rolling for land
objects completely. Keep in mind that you can alter the Camera class to
suit your application; we offer only an example.

The code for the pitch, yaw, and roll methods is implemented as
follows:

void Camera::pitch(float angle)
{

D3DXMATRIX T;
D3DXMatrixRotationAxis(&T, &_right, angle);

// rotate _up and _look around _right vector
D3DXVec3TransformCoord(&_up,&_up, &T);
D3DXVec3TransformCoord(&_look,&_look, &T);

}

void Camera::yaw(float angle)
{

D3DXMATRIX T;

// rotate around world y (0, 1, 0) always for land object
if(_cameraType == LANDOBJECT)

D3DXMatrixRotationY(&T, angle);

// rotate around own up vector for aircraft
if(_cameraType == AIRCRAFT)

D3DXMatrixRotationAxis(&T, &_up, angle);

// rotate _right and _look around _up or y-axis
D3DXVec3TransformCoord(&_right,&_right, &T);
D3DXVec3TransformCoord(&_look,&_look, &T);

}

void Camera::roll(float angle)
{

// only roll for aircraft type
if(_cameraType == AIRCRAFT)
{

D3DXMATRIX T;
D3DXMatrixRotationAxis(&T, &_look, angle);

// rotate _up and _right around _look vector
D3DXVec3TransformCoord(&_right,&_right, &T);
D3DXVec3TransformCoord(&_up,&_up, &T);

}
}

12.2.4 Walking, Strafing, and Flying

When we refer to walking, we mean moving in the direction that we are
looking (that is, along the look vector). Strafing is moving side to side
from the direction we are looking, which is of course moving along the
right vector. Finally, we say that flying is moving along the up vector. To
move along any of these axes, we simply add a vector that points in the

Building a Flexible Camera Class 207

P
a

rt
II

I

same direction as the axis that we want to move along to our position
vector (see Figure 12.7).

As with the rotations, we need to set some restrictions on moving for
land objects. For example, LANDOBJECTs shouldn’t be able to get air-
borne by either flying on their up vector or moving forward if they’re
looking up or by strafing at a tilt. Therefore, we restrict movement to
the xz plane. However, because LANDOBJECTs can change their eleva-
tion by climbing stairs or a hill, for example, we expose the
Camera::setPosition method, which allows you to manually posi-
tion your camera to a desired height and position.

The code that implements the walk, strafe, and fly methods
follows:

void Camera::walk(float units)
{

// move only on xz plane for land object
if(_cameraType == LANDOBJECT)

_pos += D3DXVECTOR3(_look.x, 0.0f, _look.z) * units;

if(_cameraType == AIRCRAFT)
_pos += _look * units;

}

void Camera::strafe(float units)
{

// move only on xz plane for land object
if(_cameraType == LANDOBJECT)

_pos += D3DXVECTOR3(_right.x, 0.0f, _right.z) * units;

if(_cameraType == AIRCRAFT)
_pos += _right * units;

}

208 Chapter 12

Figure 12.7: Moving along
the camera’s orientation
vectors

void Camera::fly(float units)
{

if(_cameraType == AIRCRAFT)
_pos += _up * units;

}

12.3 Sample Application: Camera

This chapter’s sample program creates and renders the scene shown in
Figure 12.8. You are free to fly around this scene using input from the
keyboard. The following keys are implemented:

� W/S—Walk forward/backward

� A/D—Strafe left/right

� R/F—Fly up/down

� Up/Down arrow keys—Pitch

� Left/Right arrow keys—Yaw

� N/M—Roll

The implementation of the sample is trivial, since all the work is inside
the Camera class, which we have already discussed. We handle user
input in the Display function accordingly. Keep in mind that we have
instantiated the camera object TheCamera at the global scope. Also
notice that we move the camera with respect to the time change
(timeDelta); this keeps us moving at a steady speed independent of
the frame rate.

bool Display(float timeDelta)
{

if(Device)
{

Building a Flexible Camera Class 209

P
a

rt
II

I

Figure 12.8: A screen
shot of the camera
sample program for
this chapter

//
// Update: Update the camera.
//

if(::GetAsyncKeyState('W') & 0x8000f)
TheCamera.walk(4.0f * timeDelta);

if(::GetAsyncKeyState('S') & 0x8000f)
TheCamera.walk(-4.0f * timeDelta);

if(::GetAsyncKeyState('A') & 0x8000f)
TheCamera.strafe(-4.0f * timeDelta);

if(::GetAsyncKeyState('D') & 0x8000f)
TheCamera.strafe(4.0f * timeDelta);

if(::GetAsyncKeyState('R') & 0x8000f)
TheCamera.fly(4.0f * timeDelta);

if(::GetAsyncKeyState('F') & 0x8000f)
TheCamera.fly(-4.0f * timeDelta);

if(::GetAsyncKeyState(VK_UP) & 0x8000f)
TheCamera.pitch(1.0f * timeDelta);

if(::GetAsyncKeyState(VK_DOWN) & 0x8000f)
TheCamera.pitch(-1.0f * timeDelta);

if(::GetAsyncKeyState(VK_LEFT) & 0x8000f)
TheCamera.yaw(-1.0f * timeDelta);

if(::GetAsyncKeyState(VK_RIGHT) & 0x8000f)
TheCamera.yaw(1.0f * timeDelta);

if(::GetAsyncKeyState('N') & 0x8000f)
TheCamera.roll(1.0f * timeDelta);

if(::GetAsyncKeyState('M') & 0x8000f)
TheCamera.roll(-1.0f * timeDelta);

// Update the view matrix representing the cameras
// new position/orientation.
D3DXMATRIX V;
TheCamera.getViewMatrix(&V);
Device->SetTransform(D3DTS_VIEW, &V);

//
// Render
//

Device->Clear(0, 0,
D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0x00000000, 1.0f, 0);

Device->BeginScene();

d3d::DrawBasicScene(Device, 1.0f);

210 Chapter 12

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;

}

Note: We have updated the d3d namespace with a new function
called DrawBasicScene. The function draws the scene in Figure 12.8.
We have added it to the d3d namespace because it is convenient to
have one function that sets up a basic scene so that in later samples
we can concentrate on the code that the sample illustrates rather than
irrelevant drawing code. Its declaration in d3dUtility.h is as follows:

// Function references "desert.bmp" internally. This file must
// be in the working directory.
bool DrawBasicScene(

IDirect3DDevice9* device, // Pass in 0 for cleanup.
float scale); // uniform scale

The first time the function is called with a valid device pointer it sets up
the geometry internally; therefore it is recommended that you call this
function first in the Setup function. To clean up the internal geometry,
call the function in the Cleanup routine, but pass null for the device
pointer. Since this function doesn’t implement anything that we haven’t
seen, we leave it to you to examine the code, which can be found in
this chapter’s folder in the companion files. Make a note that the func-
tion loads the image desert.bmp as a texture. This file can be found in
this sample’s folder.

12.4 Summary

� We describe the position and orientation of our camera in the world
coordinate system by maintaining four vectors: a right vector, an up
vector, a look vector, and a position vector. With this description,
we can easily implement a camera with six degrees of freedom,
giving a flexible camera interface that works well for flight simula-
tors and games played from the first-person perspective.

Building a Flexible Camera Class 211

P
a

rt
II

I

Chapter 13

Basic Terrain
Rendering

A terrain mesh is really nothing more than a triangle grid, as Figure
13.1.a shows, but with the heights of each vertex in the grid specified in
such a way that the grid models a smooth transition from mountain to
valley, simulating a natural terrain (Figure 13.1.b). And of course, we
apply a nice texture showing sandy beaches, grassy hills, and snowy
mountains (Figure 13.1.c).

This chapter walks you through implementing the Terrain class. This
class uses a brute force approach. By that we mean it simply stores the
entire terrain vertex/index data and then renders it. For games requir-
ing a small terrain, this approach is workable with modern graphics
cards that support hardware vertex processing. However, for games
requiring larger terrains, you have to do some kind of level of detail or
culling because the enormous amount of geometry data needed to
model such huge terrains is overwhelming for a brute force approach.

212

Figure 13.1: (a) A triangle grid. (b) A triangle grid with smooth height transi-
tions. (c) A lit and textured terrain that is a screen shot from the sample we cre-
ate in this chapter.

Objectives

� To learn how to generate height info for the terrain that results in
smooth transitions of mountains and valleys, simulating a natural
terrain

� To understand how to generate the vertex and triangle data for a
terrain

� To learn a technique that we can use to texture and light the terrain

� To discover a way to keep the camera planted on the terrain so that
walking or running on the terrain is simulated

13.1 Heightmaps

We use a heightmap to describe the hills and valleys of our terrain. A
heightmap is an array where each element specifies the height of a par-
ticular vertex in the terrain grid. (An alternate implementation might
have a heightmap entry for each square world unit.) We usually think of
a heightmap as a matrix so that each element has a one-to-one corre-
spondence with each vertex in the terrain grid.

When we store our heightmaps on disk, we usually allocate a byte
of memory for each element in heightmap, so the height can range from
0 to 255. The range 0 to 255 is enough to preserve the transition
between heights of our terrain, but in our application we may need to
scale out of the 0 to 255 range in order to match the scale of our 3D
world. For example, if our unit of measure in the 3D world is feet, then
0 to 255 does not give us enough values to represent anything interest-
ing. For this reason, when we load the data into our applications we
allocate an integer (or float) for each height element. This allows us to
scale well outside the 0 to 255 range to match any scale necessary.

One of the possible graphical representations of a heightmap is a
grayscale map, where darker values reflect portions of the terrain with
low altitudes and whiter values reflect portions of the terrain with
higher altitudes. Figure 13.2 shows a grayscale map.

Basic Terrain Rendering 213

P
a

rt
II

I

13.1.1 Creating a Heightmap

Heightmaps can be generated either procedurally or in an image editor
such as Adobe Photoshop. Using an image editor is probably the easiest
way to go, and it allows you to create the terrain interactively and visu-
ally as you want it. In addition, you can take advantage of your image
editor features, such as filters, to create interesting heightmaps. Figure
13.3 shows a pyramid-type heightmap created in Adobe Photoshop
using the editing tools. Note that we specify a grayscale map when cre-
ating the image.

Once you have finished drawing your heightmap, you need to save it as
an 8-bit RAW file. RAW files simply contain the bytes of the image one
after another. This makes it very easy to read the image into our appli-
cations. Your software may ask you to save the RAW file with a header.
Specify no header.

214 Chapter 13

Figure 13.2: A heightmap as a grayscale

Figure 13.3: A
grayscale image
created in Adobe
Photoshop

TE
AM
FL
Y

Team-Fly®

Note: You do not have to use the RAW format to store your height
information; you can use any format that meets your needs. The RAW
format is just one example of a format that we can use. We decided to
use the RAW format because many popular image editors can export
to that format and it is very easy to read the data in a RAW file into the
application. The samples in this chapter use 8-bit RAW files.

13.1.2 Loading a RAW File

Since a RAW file is nothing more than a contiguous block of bytes, we
can easily read in the block with this next method. Note that the vari-
able _heightmap is a member of the Terrain class and defined as:

std::vector<int> _heightmap;

bool Terrain::readRawFile(std::string fileName)
{

// A height for each vertex
std::vector<BYTE> in(_numVertices);

std::ifstream inFile(fileName.c_str(), std::ios_base::binary);

if(inFile == 0)
return false;

inFile.read(
(char*)&in[0], // buffer
in.size());// number of bytes to read into buffer

inFile.close();

// copy BYTE vector to int vector
_heightmap.resize(_numVertices);
for(int i = 0; i < in.size(); i++)

_heightmap[i] = in[i];

return true;
}

Observe that we copy the vector of bytes to a vector of integers; we do
this so that we can scale the height values outside the [0, 255] interval.

The only restriction of this method is that the RAW file being read
in must have at least as many bytes as there are vertices in the terrain.
Therefore, if you are reading in a 256x256 RAW file, you must con-
struct the terrain with, at most, 256x256 vertices.

13.1.3 Accessing and Modifying the Heightmap

The Terrain class provides the following two methods to access and
modify an entry in the heightmap:

int Terrain::getHeightmapEntry(int row, int col)
{

return _heightmap[row * _numVertsPerRow + col];

Basic Terrain Rendering 215

P
a

rt
II

I

}

void Terrain::setHeightmapEntry(int row, int col, int value)
{

_heightmap[row * _numVertsPerRow + col] = value;
}

These methods allow us to refer to an entry by row and column and
hide the way we must index a linear array when using it to describe a
matrix.

13.2 Generating the Terrain Geometry

Figure 13.4 shows some properties of a terrain, vocabulary, and special
points that we refer to. We define the size of our terrain by specifying
the number of vertices per row, the number of vertices per column, and
the cell spacing. We pass these values into the constructor of the Ter-
rain class. In addition, we also pass the device associated with the
terrain, a string identifying the filename that the heightmap data is con-
tained in, and a height scale value that is used to scale the heightmap
elements.

class Terrain
{
public:

Terrain(
IDirect3DDevice9* device,
std::string heightmapFileName,
int numVertsPerRow,
int numVertsPerCol,
int cellSpacing, // space between cells
float heightScale); // value to scale heights by

... methods snipped

216 Chapter 13

Figure 13.4: Properties of the trian-
gle grid labeled. The dots along the
grid lines are vertices.

private:
...device/vertex buffer etc snipped

int _numVertsPerRow;
int _numVertsPerCol;
int _cellSpacing;

int _numCellsPerRow;
int _numCellsPerCol;
int _width;
int _depth;
int _numVertices;
int _numTriangles;

float _heightScale;
};

See the source code in the companion files for the complete class defi-
nition of Terrain; it is too big to include here.

From the values passed into the constructor, we can compute these
other variables of the terrain as:

_numCellsPerRow = _numVertsPerRow - 1;
_numCellsPerCol = _numVertsPerCol - 1;
_width = _numCellsPerRow * _cellSpacing;
_depth = _numCellsPerCol * _cellSpacing;
_numVertices = _numVertsPerRow * _numVertsPerCol;
_numTriangles = _numCellsPerRow * _numCellsPerCol * 2;

Also, the vertex structure of our terrain is defined as:

struct TerrainVertex
{

TerrainVertex(){}
TerrainVertex(float x, float y, float z, float u, float v)
{

_x = x; _y = y; _z = z; _u = u; _v = v;
}
float _x, _y, _z;
float _u, _v;

static const DWORD FVF;
};
const DWORD Terrain::TerrainVertex::FVF = D3DFVF_XYZ | D3DFVF_TEX1;

Note that TerrainVertex is a nested class inside the Terrain class.
This was done because TerrainVertex is not needed outside the
Terrain class.

13.2.1 Computing the Vertices

Refer to Figure 13.4 during this discussion. To compute the vertices of
our triangle grid, we are simply going to begin generating vertices at
start and then go row by row generating vertices until we reach end,
leaving a gap defined by the cell spacing between the vertices. This will

Basic Terrain Rendering 217

P
a

rt
II

I

give us our x- and z-coordinate, but what about the y-coordinate? The
y-coordinate is easily obtained by finding the corresponding entry in
the loaded heightmap data structure.

Note: This implementation uses one large vertex buffer to hold all
of the vertices for the entire terrain. This can be problematic due to
hardware limitations. For example, there is a maximum primitive count
limit and maximum vertex index limit that is set for the 3D device.
Check the MaxPrimitiveCount and MaxVertexIndex members of the
D3DCAPS9 structure to see what your particular device’s limits are. Sec-
tion 13.7 discusses a solution to the problems of using one vertex
buffer.

To compute the texture coordinates, consider Figure 13.5, which gives
us a simple scenario allowing us to see that the (u, v) texture coordi-
nate that corresponds to the terrain vertex at (i, j) is given by:

And where:

Finally, the code to generate the vertices:

bool Terrain::computeVertices()
{

HRESULT hr = 0;

hr = _device->CreateVertexBuffer(
_numVertices * sizeof(TerrainVertex),
D3DUSAGE_WRITEONLY,

218 Chapter 13

Figure 13.5: The correspondence
between the terrain vertices and the
texture vertices

ementSizevCoordIncriv

ementSizeuCoordIncrju

��

��

snumCellRow
ementSizevCoordIncr

snumCellCol
ementSizeuCoordIncr

1

1

�

�

TerrainVertex::FVF,
D3DPOOL_MANAGED,
&_vb,
0);

if(FAILED(hr))
return false;

// coordinates to start generating vertices at
int startX = -_width / 2;
int startZ = _depth / 2;

// coordinates to end generating vertices at
int endX = _width / 2;
int endZ = -_depth / 2;

// compute the increment size of the texture coordinates
// from one vertex to the next.
float uCoordIncrementSize = 1.0f / (float)_numCellsPerRow;
float vCoordIncrementSize = 1.0f / (float)_numCellsPerCol;

TerrainVertex* v = 0;
_vb->Lock(0, 0, (void**)&v, 0);

int i = 0;
for(int z = startZ; z >= endZ; z -= _cellSpacing)
{

int j = 0;
for(int x = startX; x <= endX; x += _cellSpacing)
{

// compute the correct index into the vertex buffer
// and heightmap based on where we are in the nested
// loop.
int index = i * _numVertsPerRow + j;

v[index] = TerrainVertex(
(float)x,
(float)_heightmap[index],
(float)z,
(float)j * uCoordIncrementSize,
(float)i * vCoordIncrementSize);

j++; // next column
}
i++; // next row

}

_vb->Unlock();

return true;
}

Basic Terrain Rendering 219

P
a

rt
II

I

13.2.2 Computing the Indices—Defining the Triangles

To compute the indices of the triangle grid, we simply iterate through
each quad, starting in the upper left and ending in the lower right of
Figure 13.4, and compute the two triangles that make up that quad.

The trick is to come up with the general formulas to compute the two
triangles of the ijth quad. Using Figure 13.6 to develop our general for-
mulas, we find that for quad (i, j):

The code to generate the indices:

bool Terrain::computeIndices()
{

HRESULT hr = 0;

hr = _device->CreateIndexBuffer(
_numTriangles * 3 * sizeof(WORD), // 3 indices per triangle
D3DUSAGE_WRITEONLY,
D3DFMT_INDEX16,
D3DPOOL_MANAGED,
&_ib,
0);

if(FAILED(hr))
return false;

WORD* indices = 0;
_ib->Lock(0, 0, (void**)&indices, 0);

// index to start of a group of 6 indices that describe the
// two triangles that make up a quad

220 Chapter 13

Figure 13.6: A quad’s vertices

	
" #jrRownumVertsPeijrRownumVertsPeijrRownumVertsPeiABC ���������$ 11

	
 	
" #1111 �����������$ jrRownumVertsPeijrRownumVertsPeijrRownumVertsPeiCBD

int baseIndex = 0;

// loop through and compute the triangles of each quad
for(int i = 0; i < _numCellsPerCol; i++)
{

for(int j = 0; j < _numCellsPerRow; j++)
{

indices[baseIndex] = i * _numVertsPerRow + j;
indices[baseIndex + 1] = i * _numVertsPerRow +

j + 1;
indices[baseIndex + 2] = (i+1) * _numVertsPerRow + j;

indices[baseIndex + 3] = (i+1) * _numVertsPerRow + j;
indices[baseIndex + 4] = i * _numVertsPerRow +

j + 1;
indices[baseIndex + 5] = (i+1) * _numVertsPerRow +

j + 1;

// next quad
baseIndex += 6;

}
}

_ib->Unlock();

return true;
}

13.3 Texturing

The Terrain class provides two ways to texture the terrain. The obvi-
ous way is to simply load a previously made texture file and use that.
The following method implemented by the Terrain class loads a tex-
ture from the file into the _tex data member, which is a pointer to an
IDirect3DTexture9 interface. Internally, the Terrain::draw
method sets _tex before rendering the terrain.

bool loadTexture(std::string fileName);

At this point in the book its implementation should be straightforward
to you. It is:

bool Terrain::loadTexture(std::string fileName)
{

HRESULT hr = 0;

hr = D3DXCreateTextureFromFile(
_device,
fileName.c_str(),
&_tex);

if(FAILED(hr))
return false;

Basic Terrain Rendering 221

P
a

rt
II

I

return true;
}

13.3.1 A Procedural Approach

An alternative way to texture the terrain is to compute the texture pro-
cedurally; that is, we create an “empty” texture and compute the color
of each texel in code based on some defined parameter(s). In our exam-
ple, the parameter will be the height of the terrain.

We generate the texture procedurally in the Terrain::genTex-
ture method. It first creates an empty texture using the D3DXCre-
ateTexture method. Then we lock the top level (remember a texture
has mipmaps and can have multiple levels). From there we iterate
through each texel and color it. We color the texel based on the approx-
imate height of the quad to which it corresponds. The idea is to have
lower altitudes of the terrain colored a sandy beach color, medium alti-
tudes colored as grassy hills, and the high altitudes colored as snowy
mountains. We define the approximate height of the quad as the height
of the upper-left vertex of the quad.

Once we have a color for each texel, we want to darken or brighten
each texel based on the angle at which sunlight (modeled by a direc-
tional light) strikes the cell to which the texel corresponds. This is
done in the Terrain::lightTerrain method, whose implementa-
tion is covered in the next section.

The Terrain::genTexture method concludes by computing the
texels of the lower mipmap levels. This is done using the D3DXFil-
terTexture function. The code to generate the texture:

bool Terrain::genTexture(D3DXVECTOR3* directionToLight)
{

// Method fills the top surface of a texture procedurally. Then
// lights the top surface. Finally, it fills the other mipmap
// surfaces based on the top surface data using
// D3DXFilterTexture.

HRESULT hr = 0;

// texel for each quad cell
int texWidth = _numCellsPerRow;
int texHeight = _numCellsPerCol;

// create an empty texture
hr = D3DXCreateTexture(

_device,
texWidth, texHeight, // dimensions
0, // create a complete mipmap chain
0, // usage - none
D3DFMT_X8R8G8B8, // 32-bit XRGB format
D3DPOOL_MANAGED, // memory pool

222 Chapter 13

&_tex);

if(FAILED(hr))
return false;

D3DSURFACE_DESC textureDesc;
_tex->GetLevelDesc(0 /*level*/, &textureDesc);

// make sure we got the requested format because our code
// that fills the texture is hard coded to a 32-bit pixel depth.
if(textureDesc.Format != D3DFMT_X8R8G8B8)

return false;

D3DLOCKED_RECT lockedRect;
_tex->LockRect(0/*lock top surface*/, &lockedRect,

0 /* lock entire tex*/, 0/*flags*/);

// fill the texture
DWORD* imageData = (DWORD*)lockedRect.pBits;
for(int i = 0; i < texHeight; i++)
{

for(int j = 0; j < texWidth; j++)
{
D3DXCOLOR c;

// get height of upper-left vertex of quad.
float height = (float)getHeightmapEntry(i, j)/_heightScale;

// set the color of the texel based on the height
// of the quad it corresponds to.
if((height) < 42.5f) c = d3d::BEACH_SAND;
else if((height) < 85.0f) c = d3d::LIGHT_YELLOW_GREEN;
else if((height) < 127.5f) c = d3d::PUREGREEN;
else if((height) < 170.0f) c = d3d::DARK_YELLOW_GREEN;
else if((height) < 212.5f) c = d3d::DARKBROWN;
else c = d3d::WHITE;

// fill locked data, note we divide the pitch by four
// because the pitch is given in bytes and there are
// 4 bytes per DWORD.
imageData[i * lockedRect.Pitch / 4 + j] = (D3DCOLOR)c;
}

}

_tex->UnlockRect(0);

// light the terrain
if(!lightTerrain(directionToLight))
{

::MessageBox(0, "lightTerrain() - FAILED", 0, 0);
return false;

}

// fill mipmaps
hr = D3DXFilterTexture(

_tex,// texture to fill mipmap levels
0, // default palette

Basic Terrain Rendering 223

P
a

rt
II

I

0, // use top level as source for lower levels
D3DX_DEFAULT); // default filter

if(FAILED(hr))
{

::MessageBox(0, "D3DXFilterTexture() - FAILED", 0, 0);
return false;

}

return true;
}

Note that the color constant variables BEACH_SAND, etc., are defined in
d3dUtility.h.

13.4 Lighting

The Terrain::genTexture method makes a call to Terrain::
lightTerrain that, as the name implies, lights the terrain to enhance
the realism. Since we already computed the colors of the terrain tex-
ture, we only need to compute a shade factor that brightens or darkens
areas of the terrain with respect to a defined light source. In this sec-
tion we examine such a technique. You may wonder why we are
lighting the terrain and not letting Direct3D do it. There are three ben-
efits to doing the calculations ourselves:

� We save memory by not having to store vertex normals.

� Since terrains are static and we won’t be moving the light either,
we can precalculate the lighting, thus eliminating the processing
time it would take for Direct3D to light the terrain in real time.

� We get some math practice, familiarity with a basic lighting con-
cept, and practice using Direct3D functions.

13.4.1 Overview

The lighting technique we use to compute the shade of the terrain is
one of the most basic and is commonly known as diffuse lighting. We
define a parallel light source that we described by specifying the direc-
tion to the light, which is in the opposite direction of the light rays
being emitted by the parallel light source. So, for example, if we wanted
the light rays to fall straight down from the sky in the direction
lightRaysDirection = (0, –1, 0), then the direction to the parallel light is
given as the opposite direction: directionToLight = (0, 1, 0). Note that
we make the light vector a unit vector.

224 Chapter 13

TE
AM
FL
Y

Team-Fly®

Note: Although specifying the direction the light rays are emitted
from a light source is perhaps more intuitive, specifying the direction to
the light is better suited for the diffuse lighting calculation.

Then for each quad in the terrain, we calculate the angle between the
light vector �L and the quad’s surface normal �N.

In Figure 13.7 we see that as angles get larger, the quad faces more
and more away from the light source, thus receiving less light. On the
other hand, as angles get smaller, the quad faces more and more toward
the light source, thus receiving more light. Also, notice that once the
angle between the light vector and the normal is greater than 90
degrees, the surface receives no light.

Using the angular relationships between the light vector and the sur-
face normal, we can construct a shading scalar in the interval [0, 1] that
determines how much light a surface receives. Using this shading sca-
lar, a large angle is represented by a scalar close to zero. When a color
is multiplied by this shading scalar that is close to zero, it is darkened,
which is the desired result. On the opposite end, multiplying by a shad-
ing scalar that represents a small angle is closer to one, and thus keeps
the color close to its original brightness.

13.4.2 Computing the Shade of a Quad

The direction to the light source is given as a normalized vector that
we call �L in this discussion. In order to calculate the angle between �L

and the quad’s normal vector �N, we first need to find �N. This is a trivial
application of the cross product. But first we must find two non-zero
and non-parallel vectors that are coplanar with the quad. There are two
such vectors, u and v, in Figure 13.8:

Basic Terrain Rendering 225

P
a

rt
II

I

Figure 13.7: Angles between the
light vector �L and the surface nor-
mal �N determine how much light
the surface is receiving. In (a) we
see an angle less than 90
degrees. In (b) we see an angle
greater than 90 degrees. Observe
that the surface receives zero light
because the light rays (emitting in
the opposite direction of �L) strike
the back of the surface.

With u and v, the quad’s normal N is found by N = u � v. Of course we

want N to be normalized:

To find the angle between �L and �N, recall that the dot product of two

unit vectors in 3-space is the cosine of the angle between the two

vectors:

The scalar s is in the interval [–1, 1]. Because values for s in [–1, 0) cor-

respond to angles between �L and �N greater than 90 degrees, which in

Figure 13.7 receive no light, we clamp s to 0 if it’s in [–1, 0):

float cosine = D3DXVec3Dot(&n, directionToLight);

if(cosine < 0.0f)

cosine = 0.0f;

Now, with s clamped for angles greater than 90 degrees, s becomes our

shading scalar from [0, 1] exactly because as the angle between �L and �N

increases from 0 degrees to 90 degrees, s goes from 1 to 0. This gives

us the desired functionality described in section 13.4.1.

The shade factor for a particular quad is computed by the Ter-

rain::computeShade method. It takes as parameters the row and

column identifying the quad and the direction of our parallel light

source.

226 Chapter 13

Figure 13.8: Computing two vectors
coplanar with a quad

� �� �u , , 0y ycellSpacing b a

� �� � �v 0, ,y yc a cellSpacing

N

N
N �ˆ

s��NL ˆˆ

float Terrain::computeShade(int cellRow, int cellCol,
D3DXVECTOR3* directionToLight)

{
// get heights of three vertices on the quad
float heightA = getHeightmapEntry(cellRow, cellCol);
float heightB = getHeightmapEntry(cellRow, cellCol+1);
float heightC = getHeightmapEntry(cellRow+1, cellCol);

// build two vectors on the quad
D3DXVECTOR3 u(_cellSpacing, heightB - heightA, 0.0f);
D3DXVECTOR3 v(0.0f, heightC - heightA, -_cellSpacing);

// find the normal by taking the cross product of two
// vectors on the quad.
D3DXVECTOR3 n;
D3DXVec3Cross(&n, &u, &v);
D3DXVec3Normalize(&n, &n);

float cosine = D3DXVec3Dot(&n, directionToLight);

if(cosine < 0.0f)
cosine = 0.0f;

return cosine;
}

13.4.3 Shading the Terrain

Once we know how to shade a particular quad, we can shade all the
quads in the terrain. We simply iterate through each quad, compute the
shade value of that quad, and then scale the quad’s corresponding texel
color by that shade. This darkens quads that receive less light. The fol-
lowing snippet of code shows the important part of the Terrain::
lightTerrain method:

DWORD* imageData = (DWORD*)lockedRect.pBits;
for(int i = 0; i < textureDesc.Height; i++)
{

for(int j = 0; j < textureDesc.Width; j++)
{

int index = i * lockedRect.Pitch / 4 + j;

// get current color of cell
D3DXCOLOR c(imageData[index]);

// shade current cell
c *= computeShade(i, j, lightDirection);;

// save shaded color
imageData[index] = (D3DCOLOR)c;

}
}

Basic Terrain Rendering 227

P
a

rt
II

I

13.5 “Walking” on the Terrain

After we have constructed a terrain, we would like the ability to move
the camera so that it simulates us walking on the terrain. That is, we
need to adjust the camera’s height (y-coordinate) depending on the part
of the terrain that we are standing on. In order to do this we first need
to find the cell we are in given the x- and z-coordinates of the camera’s
position. The Terrain::getHeight function does this; it takes the
camera’s x- and z-coordinates as parameters and returns the height the
camera needs to be set to in order for it to be on the terrain. Let’s now
walk through its implementation.

float Terrain::getHeight(float x, float z)
{

// Translate on xz-plane by the transformation that takes
// the terrain START point to the origin.
x = ((float)_width / 2.0f) + x;
z = ((float)_depth / 2.0f) - z;

// Scale down by the transformation that makes the
// cellspacing equal to one. This is given by
// 1 / cellspacing since cellspacing * 1 / cellspacing = 1.
x /= (float)_cellSpacing;
z /= (float)_cellSpacing;

We first translate by the transformation that takes the start point of the
terrain to the origin. Next, we scale by the inverse of the cell spacing
variable; this scaling sets the cell spacing to 1. Then we switch to a
new frame of reference where the positive z-axis points “down.” Of
course, there is no code that changes the frame of reference, but it is
now understood that +z goes down. Figure 13.9 shows these steps
graphically.

We see that our changed coordinate system matches the ordering of a
matrix. That is, the upper-left corner is at the origin, the column count
increases in the right direction, and the row count increases in the

228 Chapter 13

Figure 13.9: The ter-
rain grid before and
after translating start
to the origin, making
the cell spacing equal
to 1 and flipping the
z-axis

down direction. Thus, by Figure 13.9 and knowing the cell spacing is
equal to 1, we can immediately see that the row and column of the cell
we are in is given by:

float col = ::floorf(x);
float row = ::floorf(z);

In other words, column equals the integer part of x, and row equals the
integer part of z. Also recall that the floor(t) function gives the greatest
integer t.

Now that we know the cell we are in will grab the heights of the
four vertices that form the cell we are in:

// A B
// *—-*
// | / |
// *—-*
// C D

float A = getHeightmapEntry(row, col);
float B = getHeightmapEntry(row, col+1);
float C = getHeightmapEntry(row+1, col);
float D = getHeightmapEntry(row+1, col+1);

At this point, we know the cell we are in and we know the heights of
the four vertices of that cell. Now we need to find the height
(y-coordinate) of the cell at the particular x- and z-coordinates at which
the camera is located. This is a little tricky since the cell can be slanted
in a couple of directions; see Figure 13.10.

In order to find the height, we need to know which triangle of the cell
we are in. Recall that our cells are rendered as two triangles. To find
the triangle we are in, we are going to take the cell we are in and trans-
late it so that its upper-left vertex is at the origin.

Since col and row describe the position of the upper-left vertex of
the cell we are in, we must translate by –col on the x-axis and –row
on the z-axis. Translating our x- and z-coordinates gives:

Basic Terrain Rendering 229

P
a

rt
II

I

Figure 13.10: The height y-coordinate of
the cell at the particular x- and
z-coordinates of the camera’s position

float dx = x - col;
float dz = z - row;

Figure 13.11 shows our cell after this translation.

Then, if dx < 1.0 – dx we are in the “upper” triangle $v0v1v2. Other-
wise, we are in the “lower” triangle $v0v2v3 (see Figure 13.10).

Now we explain how to find the height if we are in the “upper” tri-
angle. The process is similar for the “lower” triangle, and of course the
code for both follows shortly. To find the height if we are in the “upper”
triangle, we construct two vectors, u = (cellSpacing, B – A, 0) and v =
(0, C – A, – cellSpacing), on the sides of the triangle and originating at
the terminal point of the vector q = (qx, A, qz) as Figure 13.12.a shows.
Then we linearly interpolate along u by dx, and we linearly interpolate
along v by dz. Figure 13.12.b illustrates these interpolations. The
y-coordinate of the vector (q + dxu + dzv) gives the height based on
the given x- and z-coordinates; recall the geometric interpretation of
vector addition to see this.

Note that since we are only concerned about the interpolated height
value, we can just interpolate the y-components and ignore the other
components. Thus, the height is obtained by the sum A + dxuy + dzvy.

230 Chapter 13

Figure 13.11:
The cell we are
in before and
after we trans-
late by the
translation that
takes the cell’s
upper-left vertex
to the origin

Figure 13.12:
(a) Computing
two vectors on
the adjacent
and opposite
sides of the tri-
angle. (b) The
height is found
by linearly inter-
polating down u
by dx and then
by linearly inter-
polating down v
by dz.

Thus, the conclusion of the Terrian::getHeight code is:

if(dz < 1.0f - dx) // upper triangle ABC
{

float uy = B - A; // A->B
float vy = C - A; // A->C

height = A + d3d::Lerp(0.0f, uy, dx) +
d3d::Lerp(0.0f, vy, dz);

}
else // lower triangle DCB
{

float uy = C - D; // D->C
float vy = B - D; // D->B

height = D + d3d::Lerp(0.0f, uy, 1.0f - dx) +
d3d::Lerp(0.0f, vy, 1.0f - dz);

} return height;
}

The Lerp function is basic linear interpolation along a 1D line and is
implemented as:

float d3d::Lerp(float a, float b, float t)
{

return a - (a*t) + (b*t);
}

13.6 Sample Application: Terrain

The sample for this chapter creates a terrain given a RAW file contain-
ing the heightmap data, textures the terrain, and lights it. In addition,
we can walk on the terrain using the arrow keys. Note that in the fol-
lowing functions, non-relevant code has been omitted; a place where
code has been omitted is denoted by ellipses (…). Also, depending on
your hardware, the sample may run slow; try using a smaller terrain.

First we add the following global variables representing our terrain,
camera, and frames per second counter:

Terrain* TheTerrain = 0;
Camera TheCamera(Camera::LANDOBJECT);

FPSCounter* FPS = 0;

Then the framework functions:

bool Setup()
{

D3DXVECTOR3 lightDirection(0.0f, -1.0f, 0.0f);
TheTerrain = new Terrain(Device, "coastMountain256.raw",

256, 256, 10, 1.0f);
TheTerrain->genTexture();
TheTerrain->lightTerrain(&directionToLight);

Basic Terrain Rendering 231

P
a

rt
II

I

...

return true;
}

void Cleanup()
{

d3d::Delete<Terrain*>(TheTerrain);
d3d::Delete<FPSCounter*>(FPS);

}

bool Display(float timeDelta)
{

if(Device)
{
//

// Update the scene:
//
...[snipped input checking]

// Walking on the terrain: Adjust camera’s height so we
// are standing 5 units above the cell point we are
// standing on.
D3DXVECTOR3 pos;
TheCamera.getPosition(&pos);

float height = TheTerrain->getHeight(pos.x, pos.z);

pos.y = height + 5.0f;

TheCamera.setPosition(&pos);

D3DXMATRIX V;
TheCamera.getViewMatrix(&V);
Device->SetTransform(D3DTS_VIEW, &V);

//
// Draw the scene:
//
Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,

0xff000000, 1.0f, 0);
Device->BeginScene();

D3DXMATRIX I;
D3DXMatrixIdentity(&I);

if(TheTerrain)
TheTerrain->draw(&I, false);

if(FPS)
FPS->render(0xffffffff, timeDelta);

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;

}

232 Chapter 13

13.7 Some Improvements

The implementation of the Terrain class loaded all the vertex data
into one huge vertex buffer. It can be advantageous in both speed and
scalability to divide the geometry of the terrain among multiple vertex
buffers. This brings us to the question: “What size vertex buffer is
best?” The answer depends on the target hardware. Therefore, you
must experiment!

Because dividing up the terrain geometry into many smaller vertex
buffers is largely an exercise in indexing into matrix-like data struc-
tures and data management and doesn’t introduce any new concepts,
we omit a detailed discussion of it. Briefly, you basically break your ter-
rain into a matrix of what we will call “blocks.” Each block covers a
rectangular area of the terrain. In addition, each block contains the
geometry (in its own vertex/index buffers) of the terrain that falls
inside the block’s area. Then each block is responsible for drawing its
portion of the terrain that it contains.

Alternatively, you can load the terrain geometry into one big
ID3DXMesh interface. Then use the D3DX function D3DXSplitMesh
to divide the terrain mesh into multiple smaller ones. D3DXSplitMesh
is prototyped as:

void D3DXSplitMesh(
const LPD3DXMESH pMeshIn,
const DWORD *pAdjacencyIn,
const DWORD MaxSize,
const DWORD Options,
DWORD *pMeshesOut,
LPD3DXBUFFER *ppMeshArrayOut,
LPD3DXBUFFER *ppAdjacencyArrayOut,
LPD3DXBUFFER *ppFaceRemapArrayOut,
LPD3DXBUFFER *ppVertRemapArrayOut

);

This function takes an input source mesh and splits it into multiple
smaller meshes. The pMeshIn parameter is a pointer to the mesh that
we want to divide up, and pAdjacencyIn is a pointer to its adjacency
array. The MaxSize parameter is used to specify the maximum vertex
count allowed for the resulting meshes. The Options flag is used to
specify the creation options/flags of the resulting meshes. The
pMeshesOut parameter returns the number of created meshes being
returned in the ppMeshArrayOut array buffer. The last three parame-
ters are optional (specify null to ignore them) and return arrays of
adjacency information, face remap info, and vertex remap info for each
of the created meshes.

Basic Terrain Rendering 233

P
a

rt
II

I

13.8 Summary

� We can model terrains using triangle grids with different height
values that create mountains and valleys, simulating a terrain.

� A heightmap is the data set that contains the height values for the
vertices of the terrain.

� We can texture the terrain using an image on disk as the texture or
by generating a texture procedurally.

� We light the terrain by computing a shade factor for each quad that
specifies how bright/dark it should be. The shade factor is deter-
mined by the angle at which the light strikes the quad.

� To have the camera “walk” over the terrain, we need to find the tri-
angle that we are standing on. Then we compute two vectors on
the adjacent and opposite sides of the triangle. The height is then
found by linearly interpolating on each of these vectors using the x-
and z-coordinates in a normalized cell with an upper-left vertex at
the origin as parameters.

234 Chapter 13

TE
AM
FL
Y

Team-Fly®

Chapter 14

Particle Systems

Many natural phenomena consist of many small particles that all
behave in a similar manner (for example, flakes of snow falling, sparks
from a firework, and the “bullets” a futuristic space gun emits). Particle
systems are used to model such phenomena.

Objectives

� To learn the attributes that we give to a particle and how we
describe a particle in Direct3D

� To design a flexible particle system base class that includes attrib-
utes and methods general to all particle systems

� To model three concrete particle systems, namely snow, an explo-
sion, and a particle gun

14.1 Particles and Point Sprites

A particle is a very small object that is usually modeled as a point math-
ematically. It follows then that a point primitive (D3DPT_POINTLIST of
D3DPRIMITIVETYPE) would be a good candidate to display particles.
However, point primitives are rasterized as a single pixel. This does not
give us much flexibility, as we would like to have particles of various
sizes and even map entire textures to these particles. Before Direct3D
8.0, the way to get around the limitations of point primitives was to not
use them at all. Instead, programmers would use a billboard to display a
particle. A billboard is a quad whose world matrix orients it so that it
always faces the camera.

Direct3D 8.0 introduced a special point primitive called a point

sprite that is most applicable to particle systems. Unlike ordinary point
primitives, point sprites can have textures mapped to them and can
change size. Unlike billboards, we can describe a point sprite by a sin-
gle point; this saves memory and processing time because we only
have to store and process one vertex over the four needed to store a
billboard (quad).

235

14.1.1 Structure Format

We use the following vertex structure to describe the location and color
of our particles:

struct Particle
{

D3DXVECTOR3 _position;
D3DCOLOR _color;
static const DWORD FVF;

};
const DWORD Particle::FVF = D3DFVF_XYZ | D3DFVF_DIFFUSE;

The structure simply stores the position of the particle and its color.
Depending on your application needs, you could also store a set of tex-
ture coordinates. We discuss texturing the point sprites in the next
section.

It is possible to add a floating-point variable to the Particle
structure to specify the size of the particle. We must add the D3DFVF_
PSIZE flag to our flexible vertex format to reflect this addition. Having
each particle maintain its own size is useful because it allows us to
specify and change the size of a particle on an individual basis. How-
ever, most graphics cards do not support controlling the size of the
particle this way so we avoid it. (Check the D3DFVFCAPS_PSIZE bit in
the FVFCaps member of the D3DCAPS9 structure to verify.) Instead,
we control the particle size with render states, as you soon see. An
example of a vertex structure with a size member:

struct Particle
{

D3DXVECTOR3 _position;
D3DCOLOR _color;
float _size;
static const DWORD FVF;

};
const DWORD Particle::FVF = D3DFVF_XYZ | D3DFVF_DIFFUSE |
D3DFVF_PSIZE;

We note that it is possible to obtain per-particle size manipulation
through a vertex shader, even if D3DFVFCAPS_PSIZE is not supported.
Vertex shaders are covered in Part IV of this text.

14.1.2 Point Sprite Render States

The behavior of point sprites is largely controlled through render
states. Let’s review these render states now.

� D3DRS_POINTSPRITEENABLE—A Boolean value. The default
value is false.

236 Chapter 14

� True specifies that the entire currently set texture should be
mapped to the point sprite.

� False specifies that the texel specified by the texture coordi-
nate of the point sprite (if it has a texture coordinate in the ver-
tex structure) should be used to texture the point sprite.

_device->SetRenderState(D3DRS_POINTSPRITEENABLE, true);

� D3DRS_POINTSCALEENABLE—A Boolean value. The default value
is false.

� True specifies that the point size will be interpreted as view
space units. View space units simply refer to 3D points in cam-
era space. The point sprite’s size will then be scaled accord-
ingly, depending on how far away it is, like other objects so that
particles farther away will appear smaller than particles close
to the camera.

� False specifies that the point size will be interpreted as screen
space units. Screen space units are pixel units on the screen.
So if you specify false and, for example, set the size of the point
sprite to 3, the point sprite will be 3x3 pixels in area on the
screen.

_device->SetRenderState(D3DRS_POINTSCALEENABLE, true);

� D3DRS_POINTSIZE—Used to specify the size of the point sprites.
This value is either interpreted as the point sprite’s size in view
space or in screen space, depending on how the D3DRS_POINT-
SCALEENABLE state is set. The following code snippet sets the
point size to 2.5 units:

_device->SetRenderState(D3DRS_POINTSIZE, d3d::FtoDw(2.5f));

The function d3d::FtoDw is a function that we have added to the
d3dUtility.h/cpp files that casts a float to a DWORD. We must do this
because the general call to IDirect3DDevice9::SetRender-
State expects a DWORD value and not a float.

DWORD d3d::FtoDw(float f)
{

return *((DWORD*)&f);
}

� D3DRS_POINTSIZE_MIN—Specifies the minimum size that a
point sprite can be. Here is an example of setting the minimum to
0.2:

_device->SetRenderState(D3DRS_POINTSIZE_MIN, d3d::FtoDw(0.2f));

Particle Systems 237

P
a

rt
II

I

� D3DRS_POINTSIZE_MAX—Specifies the maximum size that a
point sprite can be. Here is an example of setting the maximum to
5.0:

_device->SetRenderState(D3DRS_POINTSIZE_MAX, d3d::FtoDw(5.0f));

� D3DRS_POINTSCALE_A, D3DRS_POINTSCALE_B, D3DRS_
POINTSCALE_C—These three constants control how a point
sprite’s size changes with distance—the distance being the dis-
tance from the point sprite to the camera.

Direct3D uses the following formula to calculate the final size of a point
sprite based on distance and these constants:

where:

� FinalSize: The final size of the point sprite after the distance
calculations

� ViewportHeight: The height of the viewport

� Size: Corresponds to the value specified by the D3DRS_POINT-
SIZE render state

� A, B, C: Correspond to the values specified by D3DRS_POINT-
SCALE_A, D3DRS_POINTSCALE_B, and D3DRS_POINTSCALE_C,
respectively

� D: The distance of the point sprite in view space to the camera’s
position. Since the camera is positioned at the origin in view space,
this value is D x y z� � �2 2 2 , where (x, y, z) is the position of
the point sprite in view space.

The following code sets the point sprite distance constants so that the
point sprites will get smaller with distance:

_device->SetRenderState(D3DRS_POINTSCALE_A, d3d::FtoDw(0.0f));
_device->SetRenderState(D3DRS_POINTSCALE_B, d3d::FtoDw(0.0f));
_device->SetRenderState(D3DRS_POINTSCALE_C, d3d::FtoDw(1.0f));

14.1.3 Particles and Their Attributes

A particle consists of many more attributes than its position and color;
for instance, a particle has a certain velocity. However, these additional
attributes are not needed to render the particle. Therefore, we keep the
data needed to render a particle and particle attributes in separate
structures. When we are creating, destroying, and updating particles,

238 Chapter 14

	
 	
2

1

DCDBA
SizeightViewportHeFinalSize

��
���

we work with the attributes; then when we are ready to render, we
copy the position and color over to the Particle structure.

The attributes of a particle are specific to the particular kind of par-
ticle system that we are modeling. However, we can generalize a bit
and come up with common attributes. The following example structure
contains some common particle attributes. Most systems won’t need
all of these, and some systems may need additional attributes not
listed.

struct Attribute
{

D3DXVECTOR3 _position;
D3DXVECTOR3 _velocity;
D3DXVECTOR3 _acceleration;
float _lifeTime;
float _age;
D3DXCOLOR _color;
D3DXCOLOR _colorFade;
bool _isAlive;

};

� _position—The position of the particle in world space

� _velocity—The velocity of the particle, which we usually mea-
sure in units per second

� _acceleration—The acceleration of the particle, which we usu-
ally measure in units per second

� _lifeTime—How long the particle can live before it dies. For
instance, we might kill a laser beam particle after a certain period
of time.

� _age—The current age of the particle

� _color—The color of the particle

� _colorFade—How the color of the particle fades over time

� _isAlive—True if the particle is alive, false if it has died

14.2 Particle System Components

A particle system is a collection of particles and is responsible for main-
taining and displaying these particles. The particle system keeps track
of global properties that affect all particles in the system, such as the
size of the particles, the location that the particles originate from, the
texture to apply to the particles, etc. Functionality-wise, the particle
system is responsible for updating, displaying, killing, and creating
particles.

Particle Systems 239

P
a

rt
II

I

Although different concrete particle systems have different behav-
ior, we can generalize and find some basic properties that all particle
systems share. We put these common properties into an abstract
PSystem base class, which is the parent to all of our concrete particle
systems. Let’s review the PSystem class now:

class PSystem
{
public:

PSystem();
virtual ~PSystem();

virtual bool init(IDirect3DDevice9* device, char* texFileName);
virtual void reset();
virtual void resetParticle(Attribute* attribute) = 0;
virtual void addParticle();
virtual void update(float timeDelta) = 0;

virtual void preRender();
virtual void render();
virtual void postRender();

bool isEmpty();
bool isDead();

protected:
virtual void removeDeadParticles();

protected:
IDirect3DDevice9* _device;
D3DXVECTOR3 _origin;
d3d::BoundingBox _boundingBox;
float _emitRate;
float _size;
IDirect3DTexture9* _tex;
IDirect3DVertexBuffer9* _vb;
std::list<Attribute> _particles;
int _maxParticles;

DWORD _vbSize;
DWORD _vbOffset;
DWORD _vbBatchSize;

};

Selected data members:

� _origin—The origin of the system. This is where particles in the
system originate.

� _boundingBox—The bounding box is used for systems in which
we want to limit the volume where the particles can go. For exam-
ple, suppose we want a snow system to only fall in the volume sur-
rounding a high mountain peak; we would define the bounding box
to cover this volume, and particles going outside this volume would
be killed.

240 Chapter 14

� _emitRate—The rate at which new particles are added to the
system. This is usually measured in particles per second.

� _size—The size of all the particles in the system

� _particles—A list of particle attributes in the system. We work
with this list to create, destroy, and update particles. When we are
ready to draw the particles, we copy a portion of the list nodes to
the vertex buffer and draw the particles. Then we copy another
batch and draw the particles, and we repeat this process until all
the particles have been drawn. This is an oversimplification; we
explain the drawing process in detail in section 14.2.1.

� _maxParticles—The maximum number of particles that the
system is allowed to have at a given time. For instance, if particles
are being created faster than they are being destroyed, we end up
with a huge amount of particles over time. This member helps us
avoid that scenario.

� _vbSize—The number of particles that our vertex buffer can hold
at a given time. This value is independent of the number of parti-
cles in the actual particle system.

Note: The data member _vbOffset and _vbBatchSize are used to
render the particle system. We defer a discussion of them until section
14.2.1.

Methods:

� PSystem / ~PSystem—The constructor initializes default values
and the destructor releases device interfaces (vertex buffer,
texture).

� init—This method does Direct3D device-dependent initialization
work, such as creating the vertex buffer to store the point sprites
and creating the texture. The vertex buffer creation contains some
flags that we have discussed but haven’t used until now:

hr = device->CreateVertexBuffer(
_vbSize * sizeof(Particle),
D3DUSAGE_DYNAMIC | D3DUSAGE_POINTS | D3DUSAGE_WRITEONLY,
Particle::FVF,
D3DPOOL_DEFAULT,
&_vb,
0);

� Notice that we are using a dynamic vertex buffer. This is
because we will need to update our particles every frame,
which means we will need to access the vertex buffer’s mem-
ory. Recall that accessing a static vertex buffer is unacceptably
slow; we therefore use a dynamic vertex buffer.

Particle Systems 241

P
a

rt
II

I

� Observe that we use the D3DUSAGE_POINTS flag, which spec-
ifies that the vertex buffer will hold point sprites.

� Take note that the vertex buffer size is predefined by _vbSize
and has nothing to do with the number of particles in the sys-
tem. That is, _vbSize will rarely equal the number of particles
in the system. This is because we render the particle system in
batches and not all at once. We explain the rendering process in
section 14.2.1.

� We use the default memory pool instead of the usual managed
memory pool because dynamic vertex buffers cannot be placed
in the managed memory pool.

� reset—This method resets the attributes of every particle in the
system:

void PSystem::reset()
{

std::list<Attribute>::iterator i;
for(i = _particles.begin(); i != _particles.end(); i++)
{

resetParticle(&(*i));
}

}

� resetParticle—This method resets the attributes of a particle.
How a particle’s attributes should be reset is dependent upon the
specifics of a particular particle system. Therefore, we make this
method abstract to force the subclass to implement it.

� addParticle—This method adds a particle to the system. It uses
the resetParticle method to initialize the particle before adding
it to the list:

void PSystem::addParticle()
{

Attribute attribute;

resetParticle(&attribute);

_particles.push_back(attribute);
}

� update—This method updates all the particles in the system.
Since the implementation of such a method is dependent upon the
specifics of a particular particle system, we declare this method
abstract to force the subclass to implement it.

� render—This method displays all the particles in the system. The
implementation is quite involved, and we devote subsection 14.2.1
to a discussion of it.

242 Chapter 14

� preRender—Used to set initial render states that must be set
before rendering. Since this can vary from system to system, we
make it virtual. The default implementation is as follows:

void PSystem::preRender()
{
_device->SetRenderState(D3DRS_LIGHTING, false);
_device->SetRenderState(D3DRS_POINTSPRITEENABLE, true);
_device->SetRenderState(D3DRS_POINTSCALEENABLE, true);
_device->SetRenderState(D3DRS_POINTSIZE, d3d::FtoDw(_size));
_device->SetRenderState(D3DRS_POINTSIZE_MIN, d3d::FtoDw(0.0f));

// control the size of the particle relative to distance
_device->SetRenderState(D3DRS_POINTSCALE_A, d3d::FtoDw(0.0f));
_device->SetRenderState(D3DRS_POINTSCALE_B, d3d::FtoDw(0.0f));
_device->SetRenderState(D3DRS_POINTSCALE_C, d3d::FtoDw(1.0f));

// use alpha from texture
_device->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_

TEXTURE);
_device->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_

SELECTARG1);

_device->SetRenderState(D3DRS_ALPHABLENDENABLE, true);
_device->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
_device->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);

}

Note that we have enabled alpha blending so that the currently set
texture’s alpha channel specifies the transparency of the texture’s
pixels. We use this for a variety of effects; one in particular is to
obtain particles that are not rectangular shaped, as the texture is.
For instance, to obtain a round “snowball-looking” particle, we use
a plain white texture with an alpha channel that is black with a
white circle. Thus, only a round white circle will be displayed
rather than a rectangular white texture.

� postRender—Used to restore any render states that a particular
particle system might have set. Since this can vary from system to
system, we make it virtual. The default implementation is as
follows:

void PSystem::postRender()
{
_device->SetRenderState(D3DRS_LIGHTING, true);
_device->SetRenderState(D3DRS_POINTSPRITEENABLE, false);
_device->SetRenderState(D3DRS_POINTSCALEENABLE, false);
_device->SetRenderState(D3DRS_ALPHABLENDENABLE, false);

}

� isEmpty—True if there are no particles in the current system, and
false otherwise

Particle Systems 243

P
a

rt
II

I

� isDead—True if every particle in the system is dead, and false
otherwise. Note that every particle being dead doesn’t imply that
the system is empty. Empty means that we have no particles in the
system. Dead means that we have particles in the system, but they
are all marked dead.

� removeDeadParticles—Searches the attribute list _particle
and removes any dead particles from the list:

void PSystem::removeDeadParticles()
{

std::list<Attribute>::iterator i;

i = _particles.begin();

while(i != _particles.end())
{

if(i->_isAlive == false)
{

// erase returns the next iterator, so no need
// to incrememnt to the next one ourselves.
i = _particles.erase(i);

}
else
{

i++; // next in list
}

}
}

Remark: This method is usually called in a subclass’s update
method to remove any particles that have been killed (marked as
dead). However, for some particle systems, it may be advantageous to
recycle dead particles rather than remove them. That is, instead of
allocating and deallocating particles from the list as they are born and
killed, we simply reset a dead particle to create a new one. The snow
system we implement in section 14.3 demonstrates this technique.

14.2.1 Drawing a Particle System

Since the particle system is dynamic, we need to update the particle in
the system every frame. An intuitive but inefficient approach to render-
ing the particle system is as follows:

� Create a vertex buffer large enough to hold the maximum number
of particles.

For each frame:
A. Update all particles.
B. Copy all living particles to the vertex buffer.
C. Draw the vertex buffer.

244 Chapter 14

TE
AM
FL
Y

Team-Fly®

This approach works, but it is not the most efficient. For one, the ver-
tex buffer must be big enough to hold all the particles in the system.
But more significant is that the graphics card is idling while we copy all
the particles from the list to the vertex buffer (step B). For example,
suppose our system has 10,000 particles; first we need a vertex buffer
that can hold 10,000 particles, which is quite a bit of memory. In addi-
tion the graphics card will sit and do nothing until all 10,000 particles in
the list are copied to the vertex buffer and we call DrawPrimitive.
This scenario is a good example of the CPU and graphics card not work-
ing together.

A better approach (and the approach that the Point Sprite sample
on the SDK uses) goes something like this:

Note: This is a simplified description, but it illustrates the idea. It
assumes that we will always have 500 particles to fill an entire seg-
ment, which in reality doesn’t happen because we are constantly
killing and creating particles so the number of particles existing varies
from frame to frame. For example, suppose we only have 200 particles
left to copy over and render in the current frame. Because 200 parti-
cles won’t fill an entire segment, we handle this scenario as a special
case in the code. This scenario can only happen on the last segment
being filled for the current frame because if it’s not the last segment,
that implies there must be at least 500 particles to move onto the next
segment.

� Create a fair-sized vertex buffer (say, one that can hold 2,000 parti-
cles). We then divide the vertex buffer into segments; as an exam-
ple, we set the segment size to 500 particles.

Then create the global variable i = 0 to keep track of the segment
that we’re in.

For each frame:
A. Update all particles.
B. Until all living particles have been rendered:

1. If the vertex buffer is not full, then:
a. Lock segment i with the D3DLOCK_NOOVER-
WRITE flag.

b. Copy 500 particles to segment i.
2. If the vertex buffer is full, then:

Particle Systems 245

P
a

rt
II

I

Figure 14.1: Vertex buffer with segments labeled

a. Start at the beginning of the vertex buffer: i = 0.
b. Lock segment i with the D3DLOCK_DISCARD

flag.
c. Copy 500 particles to segment i.

3. Render segment i.
4. Next segment: i++

Remark: Recall that our vertex buffer is dynamic, and therefore we
can take advantage of the dynamic locking flags D3DLOCK_NOOVER-
WRITE and D3DLOCK_DISCARD. These flags allow us to lock parts of the
vertex buffer that are not being rendered while other parts of the ver-
tex buffer are being rendered. For instance, suppose that we are
rendering segment 0; using the D3DLOCK_NOOVERWRITE flag, we can
lock and fill segment 1 while we are rendering segment 0. This pre-
vents a rendering stall that otherwise would incur.

This approach is more efficient. First, we have reduced the size of the
vertex buffer needed. Secondly, the CPU and graphics card are now
working in unison; that is, we copy a small batch of particles to the ver-
tex buffer (CPU work), and then we draw the small batch (graphics card
work). Then we copy the next batch of particles to the vertex buffer
and draw that batch. This continues until all the particles have been
rendered. As you can see, the graphics card is no longer sitting idle
waiting for the entire vertex buffer to be filled.

We now turn our attention to the implementation of this rendering
scheme. To facilitate the rendering of a particle system using this
scheme, we use the following data members of the PSystem class:

� _vbSize—The number of particles that our vertex buffer can hold
at a given time. This value is independent of the number of parti-
cles in the actual particle system.

� _vbOffset—This variable marks the offset (measured in parti-
cles, not bytes) into the vertex buffer into which we should begin
copying the next batch of particles. For instance, if batch one
resides in entries 0 to 499 of the vertex buffer, the offset to start
copying batch two would be 500.

� _vbBatchSize—The number of particles that we define to be in a
batch.

We now present the code for the rendering method:

void PSystem::render()
{
if(!_particles.empty())
{

// set render states
preRender();

246 Chapter 14

_device->SetTexture(0, _tex);
_device->SetFVF(Particle::FVF);
_device->SetStreamSource(0, _vb, 0, sizeof(Particle));

// start at beginning if we're at the end of the vb
if(_vbOffset >= _vbSize)

_vbOffset = 0;

Particle* v = 0;

_vb->Lock(
_vbOffset * sizeof(Particle),
_vbBatchSize * sizeof(Particle),
(void**)&v,
_vbOffset ? D3DLOCK_NOOVERWRITE : D3DLOCK_DISCARD);

DWORD numParticlesInBatch = 0;

//
// Until all particles have been rendered.
//
std::list<Attribute>::iterator i;
for(i = _particles.begin(); i != _particles.end(); i++)
{

if(i->_isAlive)
{

//
// Copy a batch of the living particles to the
// next vertex buffer segment
//
v->_position = i->_position;
v->_color = (D3DCOLOR)i->_color;
v++; // next element;

numParticlesInBatch++; //increase batch counter

// is this batch full?
if(numParticlesInBatch == _vbBatchSize)
{

//
// Draw the last batch of particles that was
// copied to the vertex buffer.
//
_vb->Unlock();

_device->DrawPrimitive(
D3DPT_POINTLIST,
_vbOffset,
_vbBatchSize);

//
// While that batch is drawing, start filling the
// next batch with particles.
//

// move the offset to the start of the next batch

Particle Systems 247

P
a

rt
II

I

_vbOffset += _vbBatchSize;

// don't offset into memory thats outside the vb's
// range. If we're at the end, start at the beginning.
if(_vbOffset >= _vbSize)

_vbOffset = 0;

_vb->Lock(
_vbOffset * sizeof(Particle),
_vbBatchSize * sizeof(Particle),
(void**)&v,
_vbOffset ? D3DLOCK_NOOVERWRITE :

D3DLOCK_DISCARD);

numParticlesInBatch = 0; // reset for new batch
}//end if

}//end if
}//end for

_vb->Unlock();

// it’s possible that the LAST batch being filled never
// got rendered because the condition
// (numParticlesInBatch == _vbBatchSize) would not have
// been satisfied. We draw the last partially filled batch now.

if(numParticlesInBatch)
{

_device->DrawPrimitive(
D3DPT_POINTLIST,
_vbOffset,
numParticlesInBatch);

}

// next block
_vbOffset += _vbBatchSize;

postRender();

}//end if
}// end render()

14.2.2 Randomness

There is a sort of randomness to the particles of a system. For exam-
ple, if we are modeling snow, we do not want all the snowflakes to fall in
exactly the same way. We want them to fall in a similar way but not
exactly the same way. To facilitate the randomness functionality
required for particle systems, we add the following two functions to the
d3dUtility.h/cpp files.

This first function returns a random float in the interval [lowBound,
highBound]:

248 Chapter 14

float d3d::GetRandomFloat(float lowBound, float highBound)
{

if(lowBound >= highBound) // bad input
return lowBound;

// get random float in [0, 1] interval
float f = (rand() % 10000) * 0.0001f;

// return float in [lowBound, highBound] interval.
return (f * (highBound - lowBound)) + lowBound;

}

This next function outputs a random vector in the box defined by its
minimum point min and maximum point max.

void d3d::GetRandomVector(
D3DXVECTOR3* out,
D3DXVECTOR3* min,
D3DXVECTOR3* max)

{
out->x = GetRandomFloat(min->x, max->x);
out->y = GetRandomFloat(min->y, max->y);
out->z = GetRandomFloat(min->z, max->z);

}

Note: Remember to seed the random number generator using
srand().

14.3 Concrete Particle Systems:
Snow, Firework, Particle Gun

Now let’s derive several concrete particle systems from PSystem.
These systems have been kept simple by design for illustration pur-
poses and do not take advantage of all the flexibility that the PSystem
class provides. We implement Snow, Firework, and Particle Gun sys-
tems. These systems’ names pretty much sum up the system that they
model. The Snow system models falling snowflakes. The Firework sys-
tem models an explosion that looks like a firework. The Particle Gun
system fires particles out from the camera’s position in the direction
that the camera is looking based on a keypress; this makes it look like
we are firing “particle bullets” and could be used as a foundation for a
gun system in a game.

Note: As usual, the complete code projects illustrating these sys-
tems can be found in the companion files for this chapter.

Particle Systems 249

P
a

rt
II

I

14.3.1 Sample Application: Snow

The Snow system’s class is defined as:

class Snow : public PSystem
{
public:

Snow(d3d::BoundingBox* boundingBox, int numParticles);
void resetParticle(Attribute* attribute);
void update(float timeDelta);

};

Remark: Notice how simple the interface is for the Snow system
because the parent class takes care of most of the work. In fact, all
three of the particle systems that we implement in this section have
simple interfaces and are relatively easy to implement.

The constructor takes a pointer to a bounding box structure and the
number of particles the system will have. The bounding box describes
the volume that the snowflakes will fall in. If the snowflakes go outside
this volume, they are killed and respawned. This way, the Snow system
always has the same amount of particles active. The constructor is
implemented as follows:

Snow::Snow(d3d::BoundingBox* boundingBox, int numParticles)
{

_boundingBox = *boundingBox;
_size = 0.8f;
_vbSize = 2048;
_vbOffset = 0;
_vbBatchSize = 512;

250 Chapter 14

Figure 14.2: A
screen shot of
the Snow sample

for(int i = 0; i < numParticles; i++)
addParticle();

}

Also notice that we specify the size of the vertex buffer, the batch size,
and the starting offset.

The resetParticle method creates a snowflake with a random
x- and z-coordinate position inside the bounding box and sets the
y-coordinate to be equal to the top of the bounding box. It then gives
the snowflakes a velocity so that the snowflakes fall downward and
slightly toward the left. The snowflakes are colored white:

void Snow::resetParticle(Attribute* attribute)
{

attribute->_isAlive = true;

// get random x, z coordinate for the position of the snowflake.
d3d::GetRandomVector(

&attribute->_position,
&_boundingBox._min,
&_boundingBox._max);

// no randomness for height (y-coordinate). Snowflake
// always starts at the top of bounding box.
attribute->_position.y = _boundingBox._max.y;

// snowflakes fall downward and slightly to the left
attribute->_velocity.x = d3d::GetRandomFloat(0.0f, 1.0f)*-3.0f;
attribute->_velocity.y = d3d::GetRandomFloat(0.0f, 1.0f)*-10.0f;
attribute->_velocity.z = 0.0f;

// white snowflake
attribute->_color = d3d::WHITE;

}

The update method updates the position of the particle and then tests
if the particle has gone outside the system’s bounding box. If it has
gone outside the bounding box, we respawn it.

void Snow::update(float timeDelta)
{

std::list<Attribute>::iterator i;
for(i = _particles.begin(); i != _particles.end(); i++)
{

i->_position += i->_velocity * timeDelta;

// is the point outside bounds?
if(_boundingBox.isPointInside(i->_position) == false)
{

// nope so kill it, but we want to recycle dead
// particles, so respawn it instead.
resetParticle(&(*i));

}
}

}

Particle Systems 251

P
a

rt
II

I

14.3.2 Sample Application: Firework

The Firework system’s class is defined as:

class Firework : public PSystem
{
public:

Firework(D3DXVECTOR3* origin, int numParticles);
void resetParticle(Attribute* attribute);
void update(float timeDelta);
void preRender();
void postRender();

};

The constructor takes a pointer to the origin of the system and the
number of particles that the system has. In this case, the origin of the
system refers to where the firework will explode.

The resetParticle method initializes a particle at the origin of
the system and creates a random velocity in a sphere. Each particle in
the Firework system is given a random color. Finally, we define that the
particle will live for two seconds.

void Firework::resetParticle(Attribute* attribute)
{

attribute->_isAlive = true;
attribute->_position = _origin;

D3DXVECTOR3 min = D3DXVECTOR3(-1.0f, -1.0f, -1.0f);
D3DXVECTOR3 max = D3DXVECTOR3(1.0f, 1.0f, 1.0f);

d3d::GetRandomVector(
&attribute->_velocity,
&min,
&max);

252 Chapter 14

Figure 14.3: A
screen shot of
the Firework
sample

// normalize to make spherical
D3DXVec3Normalize(

&attribute->_velocity,
&attribute->_velocity);

attribute->_velocity *= 100.0f;

attribute->_color = D3DXCOLOR(
d3d::GetRandomFloat(0.0f, 1.0f),
d3d::GetRandomFloat(0.0f, 1.0f),
d3d::GetRandomFloat(0.0f, 1.0f),
1.0f);

attribute->_age = 0.0f;
attribute->_lifeTime = 2.0f; // lives for 2 seconds

}

The update method updates the position of each particle and kills par-
ticles that have aged past their specified lifetime. Notice that the
system doesn’t remove dead particles. We do this because when we
want to create a new firework, we can simply reset an existing dead
firework system. This saves us from having to create and destroy parti-
cles frequently.

void Firework::update(float timeDelta)
{

std::list<Attribute>::iterator i;

for(i = _particles.begin(); i != _particles.end(); i++)
{

// only update living particles
if(i->_isAlive)
{

i->_position += i->_velocity * timeDelta;

i->_age += timeDelta;

if(i->_age > i->_lifeTime) // kill
i->_isAlive = false;

}
}

}

The Firework system uses different blend factors when rendering. Fur-
ther, it disables writes to the depth buffer. We can easily change the
blend factors and depth write from the default by overriding the
PSystem::preRender and PSystem::postRender methods. The
overridden implementations:

void Firework::preRender()
{

PSystem::preRender();

_device->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
_device->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);

Particle Systems 253

P
a

rt
II

I

// read, but don't write particles to z-buffer
_device->SetRenderState(D3DRS_ZWRITEENABLE, false);

}

void Firework::postRender()
{

PSystem::postRender();

_device->SetRenderState(D3DRS_ZWRITEENABLE, true);
}

Notice that both of the methods call the parent version. In this way, we
can still reuse some of the functionality of the parent while making
minimal specific changes to the Firework system.

14.3.3 Sample Application: Particle Gun

The Particle Gun system’s class is defined as:

class ParticleGun : public PSystem
{
public:

ParticleGun(Camera* camera);
void resetParticle(Attribute* attribute);
void update(float timeDelta);

private:
Camera* _camera;

};

The constructor takes a pointer to the camera. This is because the sys-
tem needs to know the position and direction of the camera whenever
it creates a new particle.

254 Chapter 14

Figure 14.4: A
screen shot of
the Laser (Parti-
cle Gun) sample

TE
AM
FL
Y

Team-Fly®

The resetParticle method sets the position of the particle to
the current camera position and sets the velocity of the particle to the
direction that the camera is looking times one hundred units. In this
way, the “bullets” will fire in the direction we are looking. We color the
particles green.

void ParticleGun::resetParticle(Attribute* attribute)
{

attribute->_isAlive = true;

D3DXVECTOR3 cameraPos;
_camera->getPosition(&cameraPos);

D3DXVECTOR3 cameraDir;
_camera->getLook(&cameraDir);

// change to camera position
attribute->_position = cameraPos;
attribute->_position.y -= 1.0f; // slightly below camera so it’s

// like we're carrying gun

// travels in the direction the camera is looking
attribute->_velocity = cameraDir * 100.0f;

// green
attribute->_color = D3DXCOLOR(0.0f, 1.0f, 0.0f, 1.0f);

attribute->_age = 0.0f;
attribute->_lifeTime = 1.0f; // lives for 1 seconds

}

The update method updates the position of the particle and kills the
particle if it has aged to death. Afterward, we search the particle list
and remove any dead particles.

void ParticleGun::update(float timeDelta)
{

std::list<Attribute>::iterator i;

for(i = _particles.begin(); i != _particles.end(); i++)
{

i->_position += i->_velocity * timeDelta;

i->_age += timeDelta;

if(i->_age > i->_lifeTime) // kill
i->_isAlive = false;

}
removeDeadParticles();

}

Particle Systems 255

P
a

rt
II

I

14.4 Summary

� Point sprites are a convenient and flexible way to display particles.
They can change size and be textured. Furthermore, a single ver-
tex can describe them.

� A particle system maintains a collection of particles and is respon-
sible for creating, destroying, updating, and displaying particles.

� Some other particle system ideas that you can implement are:
smoke, rocket trail, fountain/sprinkler, fire, lightning, explosion,
and rain.

256 Chapter 14

Chapter 15

Picking

Suppose that the user clicked the screen point s = (x, y). From Figure
15.1 we can see that the user has picked the teapot. However, the appli-
cation cannot immediately determine that the teapot was picked given
just s. Therefore, we must come up with a technique to calculate this.
We call this technique picking.

One thing that we know about the teapot and its relationship with s

is that the teapot was projected to the area surrounding s. More cor-
rectly, it was projected to the area surrounding the point p on the
projection window that corresponds to the screen point s. Since this
problem relies on the relationship between a 3D object and its projec-
tion, we gain some insights by examining Figure 15.2.

257

Figure 15.1:
The user picking
the teapot

In Figure 15.2 we see that if we shoot a picking ray, originating at the
origin, through p, we will intersect the object whose projection sur-
rounds p, namely the teapot. Therefore, once we compute the picking
ray, we can iterate through each object in the scene and test if the ray
intersects it. The object that the ray intersects is the object that was
picked by the user, which again is the teapot in this example.

The above example is specific to s and the teapot. Generally, we
have an arbitrary clicked screen point. We then compute the picking ray
and iterate through each object in the scene, testing if the ray inter-
sects it. The object that the ray intersects is the object that was picked
by the user. However, it is possible that the ray would not intersect any
objects. For instance, in Figure 15.1, if the user doesn’t pick one of the
five objects but clicks the white background, the picking ray would not
intersect any of the objects. Thus, we conclude that if the ray doesn’t
intersect any of the objects in the scene, then we, the user, didn’t pick
an object, but rather the background of the screen or something we are
not interested in.

Picking is applicable to all sorts of games and 3D applications. For
example, players often interact with various objects in the world by
clicking on them with the mouse. The player may click on an enemy to
fire a projectile at the enemy or click on an item to pick up. In order for
the game to respond appropriately, it needs to know the object that was
picked (was it an enemy or item?) and its location in 3D space (where
should the projectile be fired or where should the player move to pick
up the item?). Picking allows us to answer these questions.

258 Chapter 15

Figure 15.2:
A ray shooting
through p will
intersect the object
whose projection
surrounds p. Note
that the point p on
the projection win-
dow corresponds to
the clicked screen
point s.

Objectives

� To learn how to implement the picking algorithm and understand
how it works. We break picking down into the following four steps:

� Given the clicked screen point s, find its corresponding point
on the projection window, namely p.

� Compute the picking ray, that is, the ray originating at the ori-
gin that shoots through p.

� Transform the picking ray and the models into the same space.

� Determine the object that the picking ray intersects. The inter-
sected object corresponds to the picked screen object.

15.1 Screen to Projection Window Transform

The first task is to transform the screen point to the projection window.
The viewport transformation matrix is:

Transforming a point p = (px, py, pz) on the projection window by the
viewport transformation yields the screen point s = (sx, sy):

Recall that the z-coordinate after the viewport transformation is not
stored as part of the 2D image but is stored in the depth buffer.

In our situation we are initially given the screen point s, and we
need to find p. Solving for p, we obtain:

Picking 259

P
a

rt
II

I

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

��

�

�

1
22

000

00
2

0

000
2

MinZ
Height

Y
Width

X

MinZMaxZ

Height

Width

22

22

Height
Y

Height
ps

Width
X

Width
ps

yy

xx

���
�

�
�
�

���

���
�

�
�
�

��

Height

HeightYs
p

Width

WidthXs
p

y

y

x
x

���
�

��
�

22

22

Assuming the X and Y members of the viewport are 0, which is usually
the case, we can simply go a step further and get:

By definition, the projection window coincides with the z = 1 plane;
therefore pz = 1.

However, we are not done. The projection matrix scales the points
on the projection window to simulate different fields of views. To
reclaim the point values before this scaling, we must transform the
points by the inverse of the scaling operations. Let P be the projection
matrix, and since entries P00 and P11 of a transformation matrix scale
the x and y coordinates of a point, we get:

15.2 Computing the Picking Ray

Recall that a ray can be represented by the parametric equation p(t) =
p0 + tu, where p0 is the origin of the ray describing its position and u

is a vector describing its direction.
From Figure 15.2 we can see that the origin of the ray is also the

origin of the view space, so p0 = (0, 0, 0). If p is the point on the projec-
tion window to shoot the ray through, the direction vector u is given
by: u = p – p0 = (px, py, 1) – (0, 0, 0) = p.

The following method computes the picking ray in view space
given the x and y coordinates of the clicked point from screen space:

d3d::Ray CalcPickingRay(int x, int y)
{

float px = 0.0f;
float py = 0.0f;

D3DVIEWPORT9 vp;
Device->GetViewport(&vp);

260 Chapter 15

1

1
2

1
2

�

�
��

�

�
�

�

z

y

y

x
x

p

Height

s
p

Width

s
p

1

1
1

2

1
1

2

11

00

�

��
�

�
��
�

�
��
�

�
��
�

�
�

�
�

��
�

�
��
�

�
��
�

�
��
�

�
��

z

y

x

p

ightviewPortHe

y
p

dthviewportWi

x
p

P

P

D3DXMATRIX proj;
Device->GetTransform(D3DTS_PROJECTION, &proj);

px = (((2.0f*x) / vp.Width) - 1.0f) / proj(0, 0);
py = (((-2.0f*y) / vp.Height) + 1.0f) / proj(1, 1);

d3d::Ray ray;
ray._origin = D3DXVECTOR3(0.0f, 0.0f, 0.0f);
ray._direction = D3DXVECTOR3(px, py, 1.0f);

return ray;
}

where Ray is defined as:

struct Ray
{

D3DXVECTOR3 _origin;
D3DXVECTOR3 _direction;

};

We update the d3dUtility.h file and d3d namespace by adding Ray to it.

15.3 Transforming Rays

The picking ray we computed in the previous section is described in
view space. In order to perform a ray-object intersection test, the ray
and the objects must be in the same coordinate system. Rather than
transform all the objects into view space, it is often easier to transform
the picking ray into world space or even an object’s local space.

We can transform a ray r(t) = p0 + tu by transforming its origin p0

and direction u by a transformation matrix. Note that the origin is
transformed as a point and the direction is treated as a vector. The pick-
ing sample for this chapter implements the following function to
transform a ray:

void TransformRay(d3d::Ray* ray, D3DXMATRIX* T)
{

// transform the ray's origin, w = 1.
D3DXVec3TransformCoord(

&ray->_origin,
&ray->_origin,
T);

// transform the ray's direction, w = 0.
D3DXVec3TransformNormal(

&ray->_direction,
&ray->_direction,
T);

// normalize the direction
D3DXVec3Normalize(&ray->_direction, &ray->_direction);

}

Picking 261

P
a

rt
II

I

The D3DXVec3TransformCoord and D3DXVec3TransformNormal
functions take 3D vectors as parameters, but observe that with the
D3DXVec3TransformCoord function there is an understood w = 1
for the fourth component. Conversely, with the D3DXVec3Trans-
formNormal function there is an understood w = 0 for the fourth
component. Thus, we can use D3DXVec3TransformCoord to trans-
form points, and we can use D3DXVec3TransformNormal to
transform vectors.

15.4 Ray-Object Intersections

After we have the picking ray and the objects in the same coordinate
system, we are ready to test which object the ray will hit. Since we rep-
resent objects as triangle meshes, one approach would be the following.
For each object in the scene, iterate through its triangle list and test if
the ray intersects one of the triangles. If it does, it must have hit the
object that the triangle belongs to.

However, performing a ray intersection test for every triangle in
the scene adds up in computation time. A faster method, albeit less
accurate, is to approximate each object with a bounding sphere. Then
we can perform a ray intersection test with each bounding sphere, and
the sphere that gets intersected specifies the object that got picked.

Note: The picking ray may intersect multiple objects. However, the
object closest to the camera is the object that was picked, since the
closer object would have obscured the object behind it.

Given the center point c and the radius r of a sphere, we can test if a
point p is on the sphere using the following implicit equation:

where p is a point on the sphere if the equation is satisfied. See Figure
15.3.

262 Chapter 15

0��� rcp

Figure 15.3: The length of the vector formed
by p – c, denoted by �p – c�, is equal to the
radius of the sphere if p lies on the sphere.
Note that we use a circle in the figure for
simplicity, but the idea extends to three
dimensions.

To determine if and where a ray p(t) = p0 + tu intersects a sphere, we
plug the ray into an implicit sphere equation and solve for the parame-
ter t that satisfies the sphere equation, giving us the parameter that
yields the intersection point(s).

Plugging the ray into the sphere equation:

. . . from which we obtain the quadratic equation:

where A = u · u, B = 2(u · (p0 – c)), and C = (p0 – c) · (p0 – c) – r2. If u

is normalized, then A = 1.
Assuming u is normalized, we solve for t0 and t1:

Figure 15.4 shows the possible results for t0 and t1 and shows what
these results mean geometrically.

The following method returns true if the ray passed in intersects the
sphere passed in. It returns false if the ray misses the sphere:

bool PickApp::raySphereIntersectionTest(Ray* ray,
BoundingSphere* sphere)

{
D3DXVECTOR3 v = ray->_origin - sphere->_center;

Picking 263

P
a

rt
II

I

	
 0��� rt cp

0
0

���� rt cup

0
2 ��� CBtAt

2

4
2

0

CBB
t

���
�

2

4
2

1

CBB
t

���
�

Figure 15.4: a) The ray misses the sphere; both t0 and t1 will result in
imaginary solutions. b) The ray is in front of the sphere; both t0 and t1
will be negative. c) The ray is inside the sphere; one of the solutions
will be positive and one will be negative. The positive solution yields
the single intersection point. d) The ray intersects the sphere; both t0
and t1 are positive. e) The ray is tangent to the sphere, in which case
the solutions are positive and t0 = t1.

float b = 2.0f * D3DXVec3Dot(&ray->_direction, &v);
float c = D3DXVec3Dot(&v, &v) – (sphere->_radius * sphere->

_radius);

// find the discriminant
float discriminant = (b * b) - (4.0f * c);

// test for imaginary number
if(discriminant < 0.0f)

return false;

discriminant = sqrtf(discriminant);

float s0 = (-b + discriminant) / 2.0f;
float s1 = (-b - discriminant) / 2.0f;

// if a solution is >= 0, then we intersected the sphere
if(s0 >= 0.0f || s1 >= 0.0f)

return true;

return false;
}

Of course, we have seen BoundingSphere already, but for conve-
nience we show its definition again here:

struct BoundingSphere
{

BoundingSphere();

D3DXVECTOR3 _center;
float _radius;

};

15.5 Sample Application: Picking

264 Chapter 15

Figure 15.5:
Screen shot of this
chapter’s sample

TE
AM
FL
Y

Team-Fly®

Figure 15.5 shows a screen shot of the sample application for this chap-
ter. The teapot moves around the screen, and you can try to click on it
with the mouse. If you click on the bounding sphere of the teapot, a
message box will pop up indicating that you hit it. We handle the mouse
click event by testing for a WM_LBUTTONDOWN message:

case WM_LBUTTONDOWN:

// compute the ray in view space given the clicked screen point
d3d::Ray ray = CalcPickingRay(LOWORD(lParam), HIWORD(lParam));

// transform the ray to world space
D3DXMATRIX view;
Device->GetTransform(D3DTS_VIEW, &view);

D3DXMATRIX viewInverse;
D3DXMatrixInverse(&viewInverse, 0, &view);

TransformRay(&ray, &viewInverse);

// test for a hit
if(RaySphereIntTest(&ray, &BSphere))

::MessageBox(0, "Hit!", "HIT", 0);

break;

15.6 Summary

� Picking is the technique used to determine the 3D object that cor-
responds to the 2D projected object displayed on the screen that
the user clicked on with the mouse.

� The picking ray is found by shooting a ray, originating at the origin
of the view space, through the point on the projection window that
corresponds to the clicked screen point.

� We can transform a ray r(t) = p0 + tu by transforming its origin p0

and direction u by a transformation matrix. Note that the origin is
transformed as a point (w = 1) and the direction is treated as a vec-
tor (w = 0).

� To test if the ray has intersected an object, we can test if the ray
intersected a triangle that composes the object or test if the ray
intersects a bounding volume of the object, such as a bounding
sphere.

Picking 265

P
a

rt
II

I

This page intentionally left blank.

Part IV

Shaders and Effects

Thus far, we have achieved a desired effect by altering the configuration
of device states such as transforms, lights, textures, and render states.
Although the various supported configurations provide us with some
flexibility, we are still limited to predefined fixed operations (hence the
name “fixed function pipeline”).

The primary theme of this part is vertex and pixel shaders, which
replace sections of the fixed function pipeline with a custom program
that we implement, called a shader. Shaders are completely programma-
ble and allow us to implement techniques that are not defined in the
fixed function pipeline. Consequently, the number of techniques that we
have available at our disposal has greatly increased. The programmable
sections of the rendering pipeline are commonly referred to as the pro-

grammable pipeline. A brief description of the chapters in this part
follows.

Chapter 16, “Introduction to the High-Level Shading Language”—
In this chapter we explore the High-Level Shading Language (HLSL),
which is the language we use to write vertex and pixel shader pro-
grams in this book.

Chapter 17, “Introduction to Vertex Shaders”—This chapter
explains what vertex shaders are and how to create and use them in
Direct3D. The chapter illustrates vertex shaders by explaining the
implementation of a cartoon styled shading technique.

Chapter 18, “Introduction to Pixel Shaders”—This chapter
explains what pixel shaders are and how to create and use them in
Direct3D. The chapter concludes by showing how to implement
multitexturing using a pixel shader.

Chapter 19, “The Effects Framework”—In this chapter, we discuss
the Direct3D effects framework. The chapter describes the purpose of
the effects framework, the structure and syntax of effect files, how to
create effect files, and how to use effect files in Direct3D applications.

267

This page intentionally left blank.

Chapter 16

Introduction to the
High-Level Shading
Language

In this chapter we describe the High-Level Shading Language (HLSL),
which we use to program vertex and pixel shaders over the next three
chapters. Briefly, vertex and pixel shaders are small custom programs
we write, executed on the graphics card’s GPU (graphics processing
unit), that replace a portion of the fixed function pipeline. By replacing a
section of the fixed function pipeline with our own custom shader pro-
gram, we obtain a huge amount of flexibility in the graphical effects that
we can achieve. We are no longer limited to predefined “fixed”
operations.

In order to write shader programs, we need a language to write
them in. In DirectX 8.x, shaders were written in a low-level shader
assembly language. Fortunately, we no longer have to write shaders in
assembly language, as DirectX 9 has supplied a High-Level Shading
Language that we can use to write shaders. Using HLSL over assembly
language to write shader programs has the same advantages as using a
high-level language, like C++, over assembly language to write appli-
cations, namely:

� Increased productivity—Writing programs in a high-level language
is faster and easier than writing them in a low-level language. We
can spend more time focusing on algorithms rather than coding.

� Improved readability—Programs in a high-level language are easier
to read, which implies programs written in a high-level language
are easier to debug and maintain.

� The compilers, more often than not, generate more efficient
assembly code than hand-written assembly code.

269

� Using the HLSL compiler, we can compile our code to any available
shader version. Using the assembly language, we would have to
port the code for each desired version.

HLSL is also very similar to C and C++ syntax, thus there is a very
short learning curve.

Finally, you will need to switch to the REF device for the shader
samples if your graphics card does not support vertex and pixel
shaders. Using the REF device means the shader samples run very
slowly, but they still display the correct results, allowing us to verify
that our code is correct.

Note: Vertex shaders can be emulated in software with software
vertex processing — D3DCREATE_SOFTWARE_VERTEX-
PROCESSING.

Objectives

� To learn how to write and compile an HLSL shader program

� To learn how to communicate data from the application to the
shader program

� To become familiar with the syntax, types, and built-in functions of
HLSL

16.1 Writing an HLSL Shader

We can write the code to our HLSL shaders directly into our application
source files as a long character string. However, it is more convenient
and modular to separate the shader code from the application code. For
this reason, we write our shaders in Notepad and save them as regular
ASCII text files. Then we use the D3DXCompileShaderFromFile
function (section 16.2.2) to compile our shaders.

As an introduction, the following is a simple vertex shader written
in HLSL that was saved to a text file generated in Notepad called
Transform.txt. The complete project can be found in the companion
files under the title Transform. This vertex shader transforms the ver-
tices by a combined view and projection matrix and sets the diffuse
color component of the vertex to blue.

Note: This sample uses a vertex shader as an example, but do not
worry about what a vertex shader is supposed to do yet, as they are
covered in the next chapter. For now, the objective is to familiarize
yourself with the syntax and format of an HLSL program.

270 Chapter 16

///
//
// File: transform.txt
//
// Author: Frank D. Luna (C) All Rights Reserved
//
// System: AMD Athlon 1800+ XP, 512 DDR, Geforce 3, Windows XP,
// MSVC++ 7.0
//
// Desc: Vertex shader that transforms a vertex by the view and
// projection transformation, and sets the vertex color to blue.
//
///

//
// Globals
//

// Global variable to store a combined view and projection
// transformation matrix. We initialize this variable
// from the application.
matrix ViewProjMatrix;

// Initialize a global blue color vector.
vector Blue = {0.0f, 0.0f, 1.0f, 1.0f};

//
// Structures
//

// Input structure describes the vertex that is input
// into the shader. Here the input vertex contains
// a position component only.
struct VS_INPUT
{

vector position : POSITION;
};

// Output structure describes the vertex that is
// output from the shader. Here the output
// vertex contains a position and color component.
struct VS_OUTPUT
{

vector position : POSITION;
vector diffuse : COLOR;

};

//
// Main Entry Point, observe the main function
// receives a copy of the input vertex through
// its parameter and returns a copy of the output
// vertex it computes.
//

VS_OUTPUT Main(VS_INPUT input)
{

// zero out members of output

Introduction to the High-Level Shading Language 271

P
a

rt
IV

VS_OUTPUT output = (VS_OUTPUT)0;

// transform to view space and project
output.position = mul(input.position, ViewProjMatrix);

// set vertex diffuse color to blue
output.diffuse = Blue;

//Output the projected and colored vertex.
return output;

}

16.1.1 Globals

First we instantiate two global variables:

matrix ViewProjMatrix;
vector Blue = {0.0f, 0.0f, 1.0f, 1.0f};

The first variable, ViewProjMatrix, is of the type matrix, which is a
4 � 4 matrix type that is built into the HLSL. This variable stores a
combined view and projection matrix, such that it describes both trans-
formations. This way we only have to do one vector-matrix multiplica-
tion instead of two. Notice that nowhere in the shader source code do
we initialize this variable. That is because we set it through the applica-
tion source code—not the shader. Communication from the application
to the shader program is a frequently required operation and is
explained in section 16.2.1.

The second variable, Blue, is of the built-in type vector, which is
a 4D vector. We simply initialize its components to the color blue, treat-
ing it as an RGBA color vector.

16.1.2 Input and Output Structures

After the global variables are declared, we define two special struc-
tures, which we call the input and output structures. For vertex
shaders, these structures define the vertex data that our shader inputs
and outputs, respectively.

struct VS_INPUT
{

vector position : POSITION;
};

struct VS_OUTPUT
{

vector position : POSITION;
vector diffuse : COLOR;

};

Note: The input and output structures for pixel shaders define pixel
data.

272 Chapter 16

In this sample, the vertex that we input into our vertex shader contains
only a position component. The vertex that our shader outputs contains
a position component and a color component.

The special colon syntax denotes a semantic, which is used to spec-
ify the usage of the variable. This is similar to the flexible vertex
format (FVF) of a vertex structure. For example, in VS_INPUT, we
have the member:

vector position : POSITION;

The syntax “: POSITION” says that the vector position is used to
describe the position of the input vertex. As another example, in
VS_OUTPUT we have:

vector diffuse : COLOR;

Here “: COLOR” says that the vector diffuse is used to describe the
color of the output vertex. We talk more about the available usage iden-
tifiers in the next two chapters on vertex and pixel shaders.

Note: From a low-level perspective, the semantic syntax associates
a variable in the shader with a hardware register. That is, the input
variables are associated with the input registers, and the output vari-
ables are associated with the output variables. For example, the
position member of VS_INPUT is connected to the vertex input posi-
tion register. Similarly, diffuse is connected with a particular vertex
output color register.

16.1.3 Entry Point Function

As with a C++ program, every HLSL program has an entry point. In
our sample shader, we call our entry point function Main; however, that
name is not mandatory. The shader’s entry point function name can be
any valid function name. The entry point function must have an input
structure parameter, which is used to pass the input vertex into our
shader. The entry point function must also return an output structure
instance, which is used to output the manipulated vertex from our
shader.

VS_OUTPUT Main(VS_INPUT input)
{

Note: In actuality, it isn’t mandatory to use input and output struc-
tures. For example, you will sometimes see syntax similar to the
following used, particularly with pixel shaders:

float4 Main(in float2 base : TEXCOORD0,
in float2 spot : TEXCOORD1,
in float2 text : TEXCOORD2) : COLOR

{

Introduction to the High-Level Shading Language 273

P
a

rt
IV

...
}

The parameters are inputs into the shader; in this example we are
inputting three texture coordinates. The shader returns a single color
as output, which is denoted by the : COLOR syntax following the func-
tion signature. This definition is equivalent to:

struct INPUT
{

float2 base : TEXCOORD0;
float2 spot : TEXCOORD1;
float2 text : TEXCOORD2;

};

struct OUTPUT
{

float4 c : COLOR;
};

OUTPUT Main(INPUT input)
{
...
}

The body of the entry point function is responsible for computing the
output vertex given the input vertex. The shader in this example sim-
ply transforms the input vertex to view space and projection space, sets
the vertex color to blue, and returns the resulting vertex. First we
instantiate a VS_OUTPUT instance and set all of its members to 0.

VS_OUTPUT output = (VS_OUTPUT)0; // zero out all members

Then our shader transforms the input vertex position by the
ViewProjMatrix variable using the mul function, which is a built-in
function that can do both vector-matrix multiplication and matrix-
matrix multiplication. We save the resulting transformed vector in the
position member of the output instance:

// transform and project
output.position = mul(input.position, ViewProjMatrix);

Next we set the diffuse color member of output to Blue:

// set vertex diffuse color to blue
output.diffuse = Blue;

Finally, we return our resulting vertex:

return output;
}

274 Chapter 16

TE
AM
FL
Y

Team-Fly®

16.2 Compiling an HLSL Shader

16.2.1 The Constant Table

Every shader has a constant table that is used to store its variables.
The D3DX library provides our application access to a shader’s con-
stant table through the ID3DXConstantTable interface. Via this
interface we can set variables in the shader source code from our appli-
cation’s code.

We now describe an abridged list of the methods that ID3DXCon-
stantTable implements. For a complete list, see the Direct3D
documentation.

16.2.1.1 Getting a Handle to a Constant

In order to set a particular variable in a shader from our application
code, we need a way to refer to it. We can refer to a variable in the
shader from our application with a D3DXHANDLE. The following method
returns a D3DXHANDLE to a variable in the shader when given its name:

D3DXHANDLE ID3DXConstantTable::GetConstantByName(
D3DXHANDLE hConstant, // scope of constant
LPCSTR pName // name of constant

);

� hConstant—A D3DXHANDLE that identifies the parent structure
in which the variable that we want a handle to lives. For example, if
we wanted to get a handle to a single data member of a particular
structure instance, we would pass in the handle to the structure
instance here. If we are obtaining a handle to a top-level variable,
we can pass 0 for this parameter.

� pName—The name of the variable in the shader source code that
we want to obtain a handle to

For example, if the name of the variable in the shader is ViewProj-
Matrix and it was a top level parameter, we would write:

// Get a handle to the ViewProjMatrix variable in the shader.
D3DXHANDLE h0;
h0 = ConstTable->GetConstantByName(0, "ViewProjMatrix");

16.2.1.2 Setting Constants

Once our application has a D3DXHANDLE that refers to a particular vari-
able in the shader code, we can set that variable from our application
using the ID3DXConstantTable::SetXXX methods, where the XXX
is replaced by a type name to indicate the type of variable being set. For

Introduction to the High-Level Shading Language 275

P
a

rt
IV

example, if the variable that we wish to set is a vector array, the
method name would be SetVectorArray.

The general syntax of the ID3DXConstantTable::SetXXX
methods is of the form:

HRESULT ID3DXConstantTable::SetXXX(
LPDIRECT3DDEVICE9 pDevice,
D3DXHANDLE hConstant,
XXX value

);

� pDevice—Pointer to the device that is associated with the con-
stant table

� hConstant—A handle that refers to the variable that we are
setting

� value—The value that we are setting the variable to, where XXX
is replaced with the variable type name we are setting. For some
types (bool, int, float), we pass a copy of the value, and for
other types (vectors, matrices, structures), we pass a
pointer to the value.

When we set arrays, the SetXXX method takes an additional fourth
parameter that specifies the number of elements in the array. For
example, the method to set an array of 4D vectors is prototyped as:

HRESULT ID3DXConstantTable::SetVectorArray(
LPDIRECT3DDEVICE9 pDevice, // associated device
D3DXHANDLE hConstant, // handle to shader variable
CONST D3DXVECTOR4* pVector, // pointer to array
UINT Count // number of elements in array

);

The following list describes the types that we can set with the
ID3DXConstantTable interface. Assume that we have a valid device
(Device) and a valid handle to the variable that we are setting
(handle).

� SetBool—Used to set a Boolean value. Sample call:

bool b = true;
ConstTable->SetBool(Device, handle, b);

� SetBoolArray—Used to set a Boolean array. Sample call:

bool b[3] = {true, false, true};
ConstTable->SetBoolArray(Device, handle, b, 3);

� SetFloat—Used to set a float. Sample call:

float f = 3.14f;
ConstTable->SetFloat(Device, handle, f);

276 Chapter 16

� SetFloatArray—Used to set a float array. Sample call:

float f[2] = {1.0f, 2.0f};
ConstTable->SetFloatArray(Device, handle, f, 2);

� SetInt—Used to set an integer. Sample call:

int x = 4;
ConstTable->SetInt(Device, handle, x);

� SetIntArray—Used to set an integer array. Sample call:

int x[4] = {1, 2, 3, 4};
ConstTable->SetIntArray(Device, handle, x, 4);

� SetMatrix—Used to set a 4 � 4 matrix. Sample call:

D3DXMATRIX M(…);
ConstTable->SetMatrix(Device, handle, &M);

� SetMatrixArray—Used to set a 4 � 4 matrix array. Sample call:

D3DXMATRIX M[4];

// ...Initialize matrices

ConstTable->SetMatrixArray(Device, handle, M, 4);

� SetMatrixPointerArray—Used to set an array of 4 � 4 matrix
pointers. Sample call:

D3DXMATRIX* M[4];

// ...Allocate and initialize matrix pointers

ConstTable->SetMatrixPointerArray(Device, handle, M, 4);

� SetMatrixTranspose—Used to set a transposed 4 � 4 matrix.
Sample call:

D3DXMATRIX M(…);
D3DXMatrixTranspose(&M, &M);
ConstTable->SetMatrixTranspose(Device, handle, &M);

� SetMatrixTransposeArray—Used to set an array of 4 � 4
transposed matrices. Sample call:

D3DXMATRIX M[4];

// ...Initialize matrices and transpose them.

ConstTable->SetMatrixTransposeArray(Device, handle, M, 4);

� SetMatrixTransposePointerArray—Used to set an array of
pointers to 4 � 4 transposed matrices. Sample call:

D3DXMATRIX* M[4];

// ...Allocate,initialize matrix pointers and transpose them.

ConstTable->SetMatrixTransposePointerArray(Device, handle, M, 4);

Introduction to the High-Level Shading Language 277

P
a

rt
IV

� SetVector—Used to set a variable of type D3DXVECTOR4. Sam-
ple call:

D3DXVECTOR4 v(1.0f, 2.0f, 3.0f, 4.0f);
ConstTable->SetVector(Device, handle, &v);

� SetVectorArray—Used to set a variable that is a vector array.
Sample call:

D3DXVECTOR4 v[3];

// ...Initialize vectors

ConstTable->SetVectorArray(Device, handle, v, 3);

� SetValue—Used to set an arbitrarily sized type, such as a struc-
ture. In the sample call, we use SetValue to set a D3DXMATRIX:

D3DXMATRIX M(…);
ConstTable->SetValue(Device, handle, (void*)&M, sizeof(M));

16.2.1.3 Setting the Constant Default Values

This next method simply sets the constants to their default values,
which are the values they are initialized with when they are declared.
This method should be called once during application setup.

HRESULT ID3DXConstantTable::SetDefaults(
LPDIRECT3DDEVICE9 pDevice

);

� pDevice—Pointer to the device that is associated with the con-
stant table

16.2.2 Compiling an HLSL Shader

We can compile a shader, which we have saved to a text file, using the
following function:

HRESULT D3DXCompileShaderFromFile(
LPCSTR pSrcFile,
CONST D3DXMACRO* pDefines,
LPD3DXINCLUDE pInclude,
LPCSTR pFunctionName,
LPCSTR pTarget,
DWORD Flags,
LPD3DXBUFFER* ppShader,
LPD3DXBUFFER* ppErrorMsgs,
LPD3DXCONSTANTTABLE* ppConstantTable

);

278 Chapter 16

� pSrcFile—Name of the text file that contains the shader source
code that we want to compile

� pDefines—This parameter is optional, and we specify null for it
in this book.

� pInclude—Pointer to an ID3DXInclude interface. This inter-
face is designed to be implemented by the application so that we
can override default include behavior. In general, the default behav-
ior is fine and we can ignore this parameter by specifying null.

� pFunctionName—A string specifying the name of the entry point
function. For example, if the shader’s entry point function were
called Main, we would pass “Main” for this parameter.

� pTarget—A string specifying the shader version to compile the
HLSL source code to. Valid vertex shader versions are: vs_1_1,
vs_2_0, vs_2_sw. Valid pixel shader versions are: ps_1_1, ps_1_2,
ps_1_3, ps_1_4, ps_2_0, ps_2_sw. For example, if we wanted to
compile our vertex shader to version 2.0, we would pass vs_2_0 for
this parameter.

Remark: The ability to compile to different shader versions is one of
the major benefits of using HLSL over assembly language. With HLSL
we can almost instantly port a shader to a different version by simply
recompiling to the desired target. Using assembly, we would have to
port the code by hand.

� Flags—Optional compiling flags; specify 0 for no flags. Valid
options are:

� D3DXSHADER_DEBUG—Instructs the compiler to write debug
information

� D3DXSHADER_SKIPVALIDATION—Instructs the compiler not
to do any code validation. This should only be used when you
are using a shader that is known to work.

� D3DXSHADER_SKIPOPTIMIZATION—Instructs the compiler
not to perform any code optimization. In practice this would
only be used in debugging, where you would not want the com-
piler to alter the code in any way.

� ppShader—Returns a pointer to an ID3DXBuffer that contains
the compiled shader code. This compiled shader code is then used
as a parameter to another function to actually create the ver-
tex/pixel shader.

� ppErrorMsgs—Returns a pointer to an ID3DXBuffer that con-
tains a string of error codes and messages

Introduction to the High-Level Shading Language 279

P
a

rt
IV

� ppConstantTable—Returns a pointer to an ID3DXConstant-
Table that contains the constant table data for this shader

Here is an example call of D3DXCompileShaderFromFile:

//
// Compile shader
//

ID3DXConstantTable* TransformConstantTable = 0;
ID3DXBuffer* shader = 0;
ID3DXBuffer* errorBuffer = 0;

hr = D3DXCompileShaderFromFile(
"transform.txt", // shader filename
0,
0,
"Main", // entry point function name
"vs_2_0", // shader version to compile to
D3DXSHADER_DEBUG, // debug compile
&shader,
&errorBuffer,
&TransformConstantTable);

// output any error messages
if(errorBuffer)
{

::MessageBox(0, (char*)errorBuffer->GetBufferPointer(), 0, 0);
d3d::Release<ID3DXBuffer*>(errorBuffer);

}

if(FAILED(hr))
{

::MessageBox(0, "D3DXCreateEffectFromFile() - FAILED", 0, 0);
return false;

}

16.3 Variable Types

Note: In addition to the types that are described in the following
sections, HLSL also has some built-in object types (e.g., texture object).
However, since these object types are primarily used only in the effects
framework, we defer a discussion of them until Chapter 19.

16.3.1 Scalar Types

HLSL supports the following scalar types:

� bool—True or false value. Note that HLSL provides the true and
false keywords.

� int—32-bit signed integer

� half—16-bit floating-point number

280 Chapter 16

� float—32-bit floating-point number

� double—64-bit floating-point number

Note: Some platforms might not support int, half, and double. If
this is the case, these types are emulated using float.

16.3.2 Vector Types

HLSL has the following built-in vector types:

� vector—A 4D vector where each component is of type float

� vector<T, n>—An n-dimensional vector, where each component
is of scalar type T. The dimension n must be between 1 and 4. Here
is an example of a 2D double vector:

vector<double, 2> vec2;

We can access a component of a vector using an array subscript syntax.
For example, to set the ith component of a vector vec, we would write:

vec[i] = 2.0f;

In addition, we can access the components of a vector vec as we would
access the members of a structure, using the defined component names
x, y, z, w, r, g, b, and a.

vec.x = vec.r = 1.0f;
vec.y = vec.g = 2.0f;
vec.z = vec.b = 3.0f;
vec.w = vec.a = 4.0f;

The names r, g, b, and a refer to exactly the same component as the
names x, y, z, and w, respectively. When using vectors to represent col-
ors, the RGBA notation is more desirable since it reinforces the fact
that the vector is representing a color.

Alternatively, we can use these other predefined types that repre-
sent a 2D, 3D, and 4D vector, respectively:

float2 vec2;
float3 vec3;
float4 vec4;

Consider the vector u = (ux, uy, uz, uw) and suppose we want to copy
the components of u to a vector v such that v = (ux, uy, uy, uw). The
most immediate solution would be to individually copy each component
of u over to v as necessary. However, HLSL provides a special syntax
for doing these kinds of out-of-order copies called swizzles:

vector u = {1.0f, 2.0f, 3.0f, 4.0f};
vector v = {0.0f, 0.0f, 5.0f, 6.0f};

v = u.xyyw; // v = {1.0f, 2.0f, 2.0f, 4.0f}

Introduction to the High-Level Shading Language 281

P
a

rt
IV

When copying vectors, we do not have to copy every component over.
For example, we can copy over only the x- and y-components, as this
code snippet illustrates:

vector u = {1.0f, 2.0f, 3.0f, 4.0f};
vector v = {0.0f, 0.0f, 5.0f, 6.0f};

v.xy = u; // v = {1.0f, 2.0f, 5.0f, 6.0f}

16.3.3 Matrix Types

HLSL has the following built-in matrix types:

� matrix—A 4 � 4 matrix, where each entry is of type float

� matrix<T, m, n>—An m � n matrix, where each entry is of sca-
lar type T. The matrix dimensions m and n must be between 1 and
4. Here is an example of an 2 � 2 integer matrix:

matrix<int, 2, 2> m2x2;

Alternatively, we can define an m � n matrix, where m and n are
between 1 and 4, using the following syntax:

floatmxn matmxn;

Examples:

float2x2 mat2x2;
float3x3 mat3x3;
float4x4 mat4x4;
float2x4 mat2x4;

Note: The types need not be only float—we can use other types.
For instance we can use integers and write:

int2x2 i2x2;
int2x2 i3x3;
int2x2 i2x4;

We can access an entry in a matrix using a double array subscript syn-
tax. For example, to set the ijth entry of a matrix M, we would write:

M[i][j] = value;

In addition, we can refer to the entries of a matrix M as we would access
the members of a structure. The following entry names are defined:

One-based:

M._11 = M._12 = M._13 = M._14 = 0.0f;
M._21 = M._22 = M._23 = M._24 = 0.0f;
M._31 = M._32 = M._33 = M._34 = 0.0f;
M._41 = M._42 = M._43 = M._44 = 0.0f;

282 Chapter 16

Zero-based:

M._m00 = M._m01 = M._m02 = M._m03 = 0.0f;
M._m10 = M._m11 = M._m12 = M._m13 = 0.0f;
M._m20 = M._m21 = M._m22 = M._m23 = 0.0f;
M._m30 = M._m31 = M._m32 = M._m33 = 0.0f;

Sometimes we want to refer to a particular row vector in a matrix. We
can do so using a single array subscript syntax. For example, to refer to
the ith row vector in a matrix M, we would write:

vector ithRow = M[i]; // get the ith row vector in M

Note: We can initialize variables in HLSL using the following two
types of syntax:

vector u = {0.6f, 0.3f, 1.0f, 1.0f};
vector v = {1.0f, 5.0f, 0.2f, 1.0f};

Or, equivalently, using a constructor style syntax:

vector u = vector(0.6f, 0.3f, 1.0f, 1.0f);
vector v = vector(1.0f, 5.0f, 0.2f, 1.0f);

Some other examples:

float2x2 f2x2 = float2x2(1.0f, 2.0f, 3.0f, 4.0f);
int2x2 m = {1, 2, 3, 4};
int n = int(5);
int a = {5};
float3 x = float3(0, 0, 0);

16.3.4 Arrays

We can declare an array of a particular type using familiar C++ syntax.
For example:

float M[4][4];
half p[4];
vector v[12];

16.3.5 Structures

Structures are defined exactly as they are in C++. However, struc-
tures in HLSL cannot have member functions. Here is an example of a
structure in HLSL:

struct MyStruct
{

matrix T;
vector n;
float f;
int x;
bool b;

};

Introduction to the High-Level Shading Language 283

P
a

rt
IV

MyStruct s; // instantiate
s.f = 5.0f; // member access

16.3.6 The typedef Keyword

The HLSL typedef keyword functions exactly the same as it does in
C++. For example, we can give the name point to the type vec-
tor<float, 3> using the following syntax:

typedef vector<float, 3> point;

Then instead of writing:

vector<float, 3> myPoint;

. . .we can just write:

point myPoint;

Here are two more examples that show how to use the typedef key-
word with a constant type and an array:

typedef const float CFLOAT;
typedef float point2[2];

16.3.7 Variable Prefixes

The following keywords can prefix a variable declaration:

� static—If a global variable is prefixed with the static keyword,
it means that it is not to be exposed outside the shader. In other
words, it is local to the shader. If a local variable is prefixed with the
static keyword, it has the same behavior as a static local vari-
able in C++. That is, it is initialized once when the function is first
executed, and it maintains its value throughout all calls of the func-
tion. If the variable is not initialized, it is automatically initialized to
0.

static int x = 5;

� uniform—If a variable is prefixed with the uniform keyword, it
means the variable is initialized outside the shader, by the C++
application for instance, and input into the shader.

� extern—If a variable is prefixed with the extern keyword it
means the variable can be accessed outside the shader, by the
C++ application for instance. Only global variables can be prefixed
with the extern keyword. Non-static global variables are extern
by default.

� shared—If a variable is prefixed with the shared keyword, it
hints to the effects framework (see Chapter 19) that the variable

284 Chapter 16

TE
AM
FL
Y

Team-Fly®

will be shared across multiple effects. Only global variables can be
prefixed with the shared keyword.

� volatile—If a variable is prefixed with the volatile keyword,
it hints to the effects framework (see Chapter 19) that the variable
will be modified often. Only global variables can be prefixed with
the volatile keyword.

� const—The const keyword in HLSL has the same meaning it
has in C++. That is, if a variable is prefixed with the const key-
word, then that variable is constant and cannot be changed.

const float pi = 3.14f;

16.4 Keywords, Statements, and Casting

16.4.1 Keywords

For reference, here is a list of the keywords that HLSL defines:

asm bool compile const decl do

double else extern false float for

half if in inline inout int

matrix out pass pixelshader return sampler

shared static string struct technique texture

true typedef uniform vector vertexshader void

volatile while

This next set displays identifiers that are reserved and unused but may
become keywords in the future:

auto break case catch char class

const_cast continue default delete dynamic_cast enum

explicit friend goto long mutable namespace

new operator private protected public register

reinterpret_cast short signed sizeof static_cast switch

template this throw try typename union

unsigned using virtual

16.4.2 Basic Program Flow

HLSL supports many familiar C++ statements for selection, repeti-
tion, and general program flow. The syntax of these statements is
exactly like C++.

Introduction to the High-Level Shading Language 285

P
a

rt
IV

The Return statement:

return (expression);

The If and If…Else statements:

if(condition)
{

statement(s);
}

if(condition)
{

statement(s);
}
else
{

statement(s);
}

The for statement:

for(initial; condition; increment)
{

statement(s);
}

The while statement:

while(condition)
{

statement(s);
}

The do. . .while statement:

do
{

statement(s);
}while(condition);

16.4.3 Casting

HLSL supports a very flexible casting scheme. The casting syntax in
HLSL is the same as in the C programming language. For example, to
cast a float to a matrix, we write:

float f = 5.0f;
matrix m = (matrix)f;

For the examples in this book, you will be able to deduce the meaning
of the cast from the syntax. However, if you want more detailed infor-
mation on the supported casts, in the DirectX SDK documentation,
under the Contents tab, see DirectX Graphics\Reference\Shader Refer-
ence\High Level Shading Language\Type.

286 Chapter 16

16.5 Operators

HLSL supports many familiar C++ operators. With a few exceptions
noted below, they are used exactly the same way as they are in C++.
The following table lists the HLSL operators:

[] . > < <= >=
!= == ! && || ?:
+ += – –= * *=
/ /= % %= ++ ––
= () ,

Although the operators’ behavior is very similar to C++, there are
some differences. First of all, the modulus % operator works on both
integer and floating-point types. In order to use the modulus operator,
both the left side value and right side value must have the same sign
(e.g., both sides must be positive or negative).

Secondly, observe that many of the HLSL operations work on a per
component basis. This is due to the fact that vectors and matrices are
built into the language and these types consist of several components.
By having the operations work on a component level, operations such
as vector/matrix addition, vector/matrix subtraction, and vector/matrix
equality tests can be done using the same operators that we use for
scalar types. See the following examples.

Note: The operators behave as expected for scalars (that is, in the
usual C++ way).

vector u = {1.0f, 0.0f, -3.0f, 1.0f};
vector v = {-4.0f, 2.0f, 1.0f, 0.0f};

// adds corresponding components
vector sum = u + v; // sum = (-3.0f, 2.0f, -2.0f, 1.0f)

Incrementing a vector increments each component:

// before increment: sum = (-3.0f, 2.0f, -2.0f, 1.0f)

sum++; // after increment: sum = (-2.0f, 3.0f, -1.0f, 2.0f)

Multiplying vectors component-wise:

vector u = {1.0f, 0.0f, -3.0f, 1.0f};
vector v = {-4.0f, 2.0f, 1.0f, 0.0f};

// multiply corresponding components
vector sum = u * v; // product = (-4.0f, 0.0f, -3.0f, 0.0f)

Comparison operators are also done per component and return a vector
or matrix where each component is of type bool. The resulting

Introduction to the High-Level Shading Language 287

P
a

rt
IV

“bool” vector contains the results of each compared component. For
example:

vector u = { 1.0f, 0.0f, -3.0f, 1.0f};
vector v = {-4.0f, 0.0f, 1.0f, 1.0f};

vector b = (u == v); // b = (false, true, false, true)

Finally, we conclude by discussing variable promotions with binary
operations:

� For binary operations, if the left side and right side differ in dimen-
sion, the side with the smaller dimension is promoted (cast) to
have the same dimension as the side with the larger dimension. For
example, if x is of type float and y is of type float3, in the
expression (x + y) the variable x is promoted to float3 and the
expression evaluates to a value of type float3. The promotion is
done using the defined cast. In this case we are casting scalar-to-
vector; therefore, after x is promoted to float3, x = (x, x,

x), as the scalar-to-vector cast defines. Note that the promotion is
not defined if the cast is not defined. For example, we can’t pro-
mote float2 to float3 because there exists no such defined
cast.

� For binary operations, if the left side and right side differ in type,
then the side with the lower type resolution is promoted (cast) to
have the same type as the side with the higher type resolution. For
example, if x is of type int and y is of type half, in the expres-
sion (x + y) the variable x is promoted to a half and the expres-
sion evaluates to a value of type half.

16.6 User-Defined Functions

Functions in HLSL have the following properties:

� Functions use a familiar C++ syntax.

� Parameters are always passed by value.

� Recursion is not supported.

� Functions are always inlined.

Furthermore, HLSL adds some extra keywords that can be used with
functions. For example, consider the following function written in
HLSL:

bool foo(in const bool b, // input bool
out int r1, // output int
inout float r2) // input/output float

{

288 Chapter 16

if(b) // test input value
{

r1 = 5; // output a value through r1
}
else
{

r1 = 1; // output a value through r1
}

// since r2 is inout we can use it as an input
// value and also output a value through it
r2 = r2 * r2 * r2;

return true;
}

The function is almost identical to a C++ function except for the in,
out, and inout keywords.

� in—Specifies that the argument (particular variable that we pass
into a parameter) should be copied to the parameter before the
function begins. It is not necessary to explicitly specify a parameter
as in because a parameter is in by default. For example, the fol-
lowing are equivalent:

float square(in float x)
{

return x * x;
}

Without explicitly specifying in:

float square(float x)
{

return x * x;
}

� out—Specifies that the parameter should be copied to the argu-
ment when the function returns. This is useful for returning values
through parameters. The out keyword is necessary because HLSL
doesn’t allow us to pass by reference or pass a pointer. We note
that if a parameter is marked as out, the argument is not copied to
the parameter before the function begins. In other words, an out
parameter can only be used to output data—it can’t be used for
input.

void square(in float x, out float y)
{

y = x * x;
}

Here we input the number to be squared through x and return the
square of x through the parameter y.

Introduction to the High-Level Shading Language 289

P
a

rt
IV

� inout—Shortcut that denotes a parameter as both in and out.
Specify inout if you wish to use a parameter for both input and
output.

void square(inout float x)
{

x = x * x;
}

Here we input the number to be squared through x and also return
the square of x through x.

16.7 Built-in Functions

HLSL has a rich set of built-in functions that are useful for 3D graphics.
The following table is an abridged list of them. In the next two chapters
we will get practice using some of these functions. For now, just get
familiar with them.

Note: For further reference, the complete list of the built-in HLSL
functions can be found in the DirectX documentation, under the Con-
tents tab, then DirectX Graphics\Reference\Shader Reference\High
Level Shader Language\Intrinsic Functions.

Function Description

abs(x) Returns |x|.

ceil(x) Returns the smallest integer ! x.

clamp(x, a, b) Clamps x to the range [a, b] and returns the
result.

cos(x) Returns the cosine of x, where x is in radians.

cross(u, v) Returns u�v.

degrees(x) Converts x from radians to degrees.

determinant(M) Returns the determinant det(M).

distance(u, v) Returns the distance v u� between the points u
and v.

dot(u, v) Returns u � v.

floor(x) Returns the greatest integer x.

length(v) Returns v .

lerp(u, v, t) Linearly interpolates between u and v based on
the parameter t �[0, 1].

log(x) Returns ln(x).

log10(x) Returns log10(x).

log2(x) Returns log2(x).

290 Chapter 16

Function Description

max(x, y) Returns x if x ! y, else returns y.

min(x, y) Returns x if x, x y else returns y.

mul(M, N) Returns the matrix product MN. Note that the
matrix product MN must be defined. If M is a
vector, it is treated as a row vector so that the
vector-matrix product is defined. Likewise, if N is
a vector it is treated as a column vector so that
the matrix-vector product is defined.

normalize(v) Returns v/ v .

pow(b, n) Returns bn.

radians(x) Converts x from degrees to radians.

reflect(v, n) Computes the reflection vector given the incident
vector v and the surface normal n.

refract(v, n, eta) Computes the refraction vector given the incident
vector v, the surface normal n, and the ratio of
the two indices of refraction of the two materials
eta. Look up Snell’s law in a physics book or on
the Internet for information on refraction.

rsqrt(x) Returns 1/ x.

saturate(x) Returns clamp(x, 0.0, 1.0).

sin(x) Returns the sine of x, where x is in radians.

sincos(in x, out s, out c) Returns the sine and cosine of x, where x is in
radians.

sqrt(x) Returns x.

tan(x) Returns the tangent of x, where x is in radians.

transpose(M) Returns the transpose MT.

Most of the functions are overloaded to work with all the built-in types
for which the function makes sense. For instance, abs makes sense for
all scalar types and so is overloaded for all of them. As another exam-
ple, the cross product cross only makes sense for 3D vectors, so it is
only overloaded for 3D vectors of any type (e.g., 3D vectors of ints,
floats, doubles etc.). On the other hand, linear interpolation, lerp,
makes sense for scalars, and 2D, 3D, and 4D vectors and therefore is
overloaded for all types.

Note: If you pass in a non-scalar type into a “scalar” function, that
is, a function that traditionally operates on scalars (e.g., cos(x)), the
function will act per component. For example, if you write:

float3 v = float3(0.0f, 0.0f, 0.0f);

v = cos(v);

Introduction to the High-Level Shading Language 291

P
a

rt
IV

Then the function will act per component: 	
v � cos cos cos(), (), ()x y z .

The following examples show how some of these intrinsic functions
might be called:

float x = sin(1.0f); // sine of 1.0f radian.
float y = sqrt(4.0f); // square root of 4.

vector u = {1.0f, 2.0f, -3.0f, 0.0f};
vector v = {3.0f, -1.0f, 0.0f, 2.0f};
float s = dot(u, v); // compute dot product of u and v.

float3 i = {1.0f, 0.0f, 0.0f};
float3 j = {0.0f, 1.0f, 0.0f};
float3 k = cross(i, j); // compute cross product of i and j.

matrix<float, 2, 2> M = {1.0f, 2.0f, 3.0f, 4.0f};
matrix<float, 2, 2> T = transpose(M); // compute transpose

16.8 Summary

� We write HLSL programs in ASCII text files and compile them in
our applications using the D3DXCompileShaderFromFile
function.

� The ID3DXConstantTable interface allows us to set variables in
the shader program from our application. This communication is
necessary because variables used by the shader can change on a
frame-to-frame basis. For example, if the view matrix changes in
the application, we need to update the shader’s view matrix vari-
able with the new view matrix. We can do this update with the
ID3DXConstantTable.

� For each shader, we must define an input and output structure that
describes the format of the data that the shader inputs and outputs,
respectively.

� Every shader has an entry point function that takes an input struc-
ture parameter that is used to pass input data into the shader. In
addition, every shader returns an output structure instance that is
used to output data from the shader.

292 Chapter 16

Chapter 17

Introduction to Vertex
Shaders

A vertex shader is a program executed on the graphics card’s GPU that
replaces the transformation and lighting stage in the fixed function
pipeline. (This is not 100 percent true, as vertex shaders can be emu-
lated in software by the Direct3D runtime if the hardware does not
support vertex shaders.) Figure 17.1 illustrates the section in the pipe-
line that the vertex shader replaces.

From Figure 17.1 we see that vertices are input into the vertex shader
in local coordinates and the vertex shader must output lit (colored) ver-
tices in homogeneous clip space. (We didn’t delve into the details of the
projection transformation in this book for simplicity reasons. But the
space to which the projection matrix transforms vertices is called
homogeneous clip space. Therefore, to transform a vertex from local
space to homogenous clip space, we must apply the following sequence
of transformations: world transformation, view transformation, and pro-
jection transformation, which are done by the world matrix, view
matrix, and projection matrix, respectively.) For point primitives, a ver-
tex shader can also be used to manipulate the vertex size per vertex.

Because a vertex shader is a custom program that we write (in
HLSL), we obtain a huge amount of flexibility in the graphical effects
we can achieve. For example, with vertex shaders we can use any

293

Figure 17.1:
The vertex
shader replaces
the lighting and
transformation
stage of the fixed
function pipeline.

lighting algorithm that can be implemented in a vertex shader. We are
no longer limited to Direct3D’s fixed lighting algorithm. Furthermore,
the ability to manipulate a vertex’s position has a variety of applications
as well, such as cloth simulation, point size manipulation for particle
systems, and vertex blending/morphing. In addition, our vertex data
structures are more flexible and can contain much more data in the pro-
grammable pipeline than they could in the fixed function pipeline.

Vertex shaders are still a relatively new feature, and many cards do
not support them, especially the newer vertex shader versions that
were released with DirectX 9. You can test the vertex shader version
that your graphics card supports by checking the VertexShader-
Version member of the D3DCAPS9 structure and the macro
D3DVS_VERSION. The following code snippet illustrates this:

// If the device’s supported version is less than version 2.0
if(caps.VertexShaderVersion < D3DVS_VERSION(2, 0))

// Then vertex shader version 2.0 is not supported on this
// device.

We see that the two parameters of D3DVS_VERSION take the major
and minor version number, respectively. Currently, the D3DXCompile-
ShaderFromFile function supports vertex shader versions 1.1 and
2.0.

Objectives

� To learn how we define the components of our vertex structure in
the programmable pipeline

� To learn about the different usages for vertex components

� To learn how to create, set, and destroy a vertex shader

� To learn how to implement a cartoon rendering effect using a ver-
tex shader

17.1 Vertex Declarations

Thus far, we have been using a flexible vertex format (FVF) to describe
the components of our vertex structure. However, in the programmable
pipe, our vertex data can contain much more data than can be
expressed with an FVF. Therefore, we usually use the more descriptive
and powerful vertex declaration.

294 Chapter 17

TE
AM
FL
Y

Team-Fly®

Note: We can still use an FVF with the programmable pipeline if the
format of our vertex can be described by it. However, this is for conve-
nience only, as the FVF will be converted to a vertex declaration
internally.

17.1.1 Describing a Vertex Declaration

We describe a vertex declaration as an array of D3DVERTEXELEMENT9
structures. Each element in the D3DVERTEXELEMENT9 array describes
one component of the vertex. So if your vertex structure has three
components (e.g., position, normal, color), then the corresponding ver-
tex declaration will be described by an array of three D3DVERTEXELE-
MENT9 structures. The D3DVERTEXELEMENT9 structure is defined as:

typedef struct _D3DVERTEXELEMENT9 {
BYTE Stream;
BYTE Offset;
BYTE Type;
BYTE Method;
BYTE Usage;
BYTE UsageIndex;

} D3DVERTEXELEMENT9;

� Stream—Specifies the stream with which the vertex component is
associated

� Offset—The offset, in bytes, to the start of the vertex component
relative to the vertex structure of which it is a member. For exam-
ple, if the vertex structure is:

struct Vertex
{

D3DXVECTOR3 pos;
D3DXVECTOR3 normal;

};

. . .The offset of the component pos is 0 since it’s the first compo-
nent. The offset of the component normal is 12 because
sizeof(pos) == 12. In other words, the component normal
starts at byte 12 relative to Vertex.

� Type—Specifies the data type. This can be any member of the
D3DDECLTYPE enumerated type; see the documentation for a com-
plete list. Some commonly used types are:

� D3DDECLTYPE_FLOAT1—A floating-point scalar

� D3DDECLTYPE_FLOAT2—A 2D floating-point vector

� D3DDECLTYPE_FLOAT3—A 3D floating-point vector

� D3DDECLTYPE_FLOAT4—A 4D floating-point vector

Introduction to Vertex Shaders 295

P
a

rt
IV

� D3DDECLTYPE_D3DCOLOR—A D3DCOLOR type that is
expanded to the RGBA floating-point color vector (r g b a),
with each component normalized to the interval [0, 1].

� Method—Specifies the tessellation method. We consider this
parameter advanced, and thus we use the default method, which is
specified by the identifier D3DDECLMETHOD_DEFAULT.

� Usage—Specifies the planned use for the vertex component. For
example, is it going to be a position vector, normal vector, texture
coordinate, etc.? Valid usage identifiers are of the D3DDECLUSAGE
enumerated type:

typedef enum _D3DDECLUSAGE {
D3DDECLUSAGE_POSITION = 0, // Position.
D3DDECLUSAGE_BLENDWEIGHTS = 1, // Blending weights.
D3DDECLUSAGE_BLENDINDICES = 2, // Blending indices.
D3DDECLUSAGE_NORMAL = 3, // Normal vector.
D3DDECLUSAGE_PSIZE = 4, // Vertex point size.
D3DDECLUSAGE_TEXCOORD = 5, // Texture coordinates.
D3DDECLUSAGE_TANGENT = 6, // Tangent vector.
D3DDECLUSAGE_BINORMAL = 7, // Binormal vector.
D3DDECLUSAGE_TESSFACTOR = 8, // Tessellation factor.
D3DDECLUSAGE_POSITIONT = 9, // Transformed position.
D3DDECLUSAGE_COLOR = 10, // Color.
D3DDECLUSAGE_FOG = 11, // Fog blend value.
D3DDECLUSAGE_DEPTH = 12, // Depth value.
D3DDECLUSAGE_SAMPLE = 13 // Sampler data.

} D3DDECLUSAGE;

The D3DDECLUSAGE_PSIZE type is used to specify a vertex point
size. This is used for point sprites so that we can control the size
on a per vertex basis. A vertex declaration with a D3DDECLUSAGE_
POSITIONT member implies that the vertex has already been
transformed, which instructs the graphics card to not send this ver-
tex through the vertex processing stages (transformation and
lighting).

Note: A few of these usage types are not covered in this book, such
as BLENDWEIGHTS, BLENDINDICES, TANGENT, BINORMAL, and
TESSFACTOR.

� UsageIndex—Used to identify multiple vertex components of the
same usage. The usage index is an integer in the interval [0, 15].
For example, suppose that we have three vertex components of the
usage D3DDECLUSAGE_NORMAL. We would specify a usage index
of 0 for the first, a usage index of 1 for the second, and a usage
index of 2 for the third. In this way we can identify each particular
normal by its usage index.

296 Chapter 17

Example vertex declaration description: Suppose the vertex format we
want to describe consists of a position vector and three normal vectors.
The vertex declaration would be specified as:

D3DVERTEXELEMENT9 decl[] =
{
{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_
POSITION, 0},

{0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_
NORMAL, 0},

{0, 24, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_
NORMAL, 1},

{0, 36, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_
NORMAL, 2},

D3DDECL_END()
};

The D3DDECL_END macro is used to initialize the last vertex element
in the D3DVERTEXELEMENT9 array. Also, observe the usage index
labels for the normal vectors.

17.1.2 Creating a Vertex Declaration

Once you have described a vertex declaration as a D3DVERTEXELE-
MENT9 array, we can obtain a pointer to an IDirect3DVertex-
Declaration9 interface using the method:

HRESULT IDirect3DDevice9::CreateVertexDeclaration(
CONST D3DVERTEXELEMENT9* pVertexElements,
IDirect3DVertexDeclaration9** ppDecl

);

� pVertexElements—Array of D3DVERTEXELEMENT9 structures
describing the vertex declaration we want created

� ppDecl—Used to return a pointer to the created IDirect3D-
VertexDeclaration9 interface

Example call, where decl is a D3DVERTEXELEMENT9 array:

IDirect3DVertexDeclaration9* _decl = 0;
hr = _device->CreateVertexDeclaration(decl, &_decl);

17.1.3 Enabling a Vertex Declaration

Recall that flexible vertex formats are a convenience feature and inter-
nally get converted to vertex declarations. Thus, when using vertex
declarations directly, we no longer call:

Device->SetFVF(fvf);

We instead call:

Device->SetVertexDeclaration(_decl);

Introduction to Vertex Shaders 297

P
a

rt
IV

where _decl is a pointer to an IDirect3DVertexDeclaration9
interface.

17.2 Vertex Data Usages

Consider the vertex declaration:

D3DVERTEXELEMENT9 decl[] =
{
{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_
POSITION, 0},

{0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_
NORMAL, 0},

{0, 24, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_
NORMAL, 1},

{0, 36, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_
NORMAL, 2},

D3DDECL_END()
};

We need a way to define a map from the elements of the vertex declara-
tion to the data members of the vertex shader’s input structure. We
define this map in the input structure by specifying a semantic
(: usage-type[usage-index]) for each data member. The seman-
tic identifies an element in the vertex declaration by its usage type and
usage index. The vertex element identified by a data member’s seman-
tic is the element that gets mapped to that data member. For example,
an input structure for the previous vertex declaration is:

struct VS_INPUT
{

vector position : POSITION;
vector normal : NORMAL0;
vector faceNormal1 : NORMAL1;
vector faceNormal2 : NORMAL2;

};

Note: If we leave off the usage index, it implies usage index zero.
For example, POSITION is the same thing as POSITION0.

Here element 0 in decl, identified by usage POSITION and usage
index 0, is mapped to position. Element 1 in decl, identified by
usage NORMAL and usage index 0, is mapped to normal. Element 2 in
decl, identified by usage NORMAL and usage index 1, is mapped to
faceNormal1. Element 3 in decl, identified by usage NORMAL and
usage index 2, is mapped to faceNormal2.

298 Chapter 17

The supported vertex shader input usages are:

� POSITION[n]—Position

� BLENDWEIGHTS[n]—Blend weights

� BLENDINDICES[n]—Blend indices

� NORMAL[n]—Normal vector

� PSIZE[n]—Vertex point size

� DIFFUSE[n]—Diffuse color

� SPECULAR[n]—Specular color

� TEXCOORD[n]—Texture coordinates

� TANGENT[n]—Tangent vector

� BINORMAL[n]—Binormal vector

� TESSFACTOR[n]—Tessellation factor

Where n is an optional integer in the range [0, 15].

Note: Again, a few of these usage types are not covered in this
book, such as BLENDWEIGHTS, TANGENT, BINORMAL, BLENDINDICES,
and TESSFACTOR.

In addition, for the output structure, we must specify what each mem-
ber is to be used for. For example, should the data member be treated
as a position vector, color, texture coordinate, etc.? The graphics card
has no idea, unless you explicitly tell it. This is also done with the
semantic syntax:

struct VS_OUTPUT
{

vector position : POSITION;
vector diffuse : COLOR0;
vector specular : COLOR1;

};

The supported vertex shader output usages are:

� POSITION—Position

� PSIZE—Vertex point size

� FOG—Fog blend value

� COLOR[n]—Vertex color. Observe that multiple vertex colors can
be output, and these colors are blended together to produce the
final color.

� TEXCOORD[n]—Vertex texture coordinates. Observe that multiple
texture coordinates can be output.

where n is an optional integer in the interval [0, 15].

Introduction to Vertex Shaders 299

P
a

rt
IV

17.3 Steps to Using a Vertex Shader

The following list outlines the steps necessary to create and use a ver-
tex shader.

1. Write and compile the vertex shader.

2. Create an IDirect3DVertexShader9 interface to represent the
vertex shader based on the compiled shader code.

3. Enable the vertex shader with the IDirect3DDevice9::
SetVertexShader method.

Of course, we have to destroy the vertex shader when we are done
with it. The next subsections go into these steps in more detail.

17.3.1 Writing and Compiling a Vertex Shader

First, we must write a vertex shader program. In this book we write
our shaders in HLSL. Once the shader code is written, we compile the
shader using the D3DXCompileShaderFromFile function, as
described in section 16.2.2. Recall that this function returns a pointer to
an ID3DXBuffer that contains the compiled shader code.

17.3.2 Creating a Vertex Shader

Once we have the compiled shader code, we can obtain a pointer to an
IDirect3DVertexShader9 interface, which represents a vertex
shader, using the following method:

HRESULT IDirect3DDevice9::CreateVertexShader(
const DWORD *pFunction,
IDirect3DVertexShader9** ppShader

);

� pFunction—Pointer to compiled shader code

� ppShader—Returns a pointer to an IDirect3DVertexShader9
interface

For example, suppose the variable shader is an ID3DXBuffer that
contains the compiled shader code. Then to obtain an IDirect3DVer-
texShader9 interface, we would write:

IDirect3DVertexShader9* ToonShader = 0;
hr = Device->CreateVertexShader(

(DWORD*)shader->GetBufferPointer(),
&ToonShader);

300 Chapter 17

Note: To reiterate, the D3DXCompileShaderFromFile is the func-
tion that would return the compiled shader code (shader).

17.3.3 Setting a Vertex Shader

After we have obtained a pointer to an IDirect3DVertexShader9
interface that represents our vertex shader, we can enable it using the
following method:

HRESULT IDirect3DDevice9::SetVertexShader(
IDirect3DVertexShader9* pShader

);

The method takes a single parameter where we pass a pointer to the
vertex shader that we wish to enable. To enable the shader we created
in section 17.3.2, we would write:

Device->SetVertexShader(ToonShader);

17.3.4 Destroying a Vertex Shader

As with all Direct3D interfaces, to clean them up we must call their
Release method when we are finished with them. Continuing to use
the vertex shader we created in section 17.3.2, we have:

d3d::Release<IDirect3DVertexShader9*>(ToonShader);

17.4 Sample Application: Diffuse Lighting

As a warm-up to creating and using vertex shaders, we write a vertex
shader that does standard diffuse lighting per vertex with a directional
(parallel) light source. As a recap, diffuse lighting calculates the amount
of light that a vertex receives based on the angle between the vertex
normal and the light vector (which points in the direction of the light
source). The smaller the angle, the more light the vertex receives, and
the larger the angle, the less light the vertex receives. If the angle is
greater than or equal to 90 degrees, the vertex receives no light. Refer
back to section 13.4.1 for a more complete description of the diffuse
lighting algorithm.

We begin by examining the vertex shader code.

// File: diffuse.txt
// Desc: Vertex shader that does diffuse lighting.

//
// Global variables we use to hold the view matrix, projection matrix,
// ambient material, diffuse material, and the light vector that
// describes the direction to the light source. These variables are
// initialized from the application.
//

Introduction to Vertex Shaders 301

P
a

rt
IV

matrix ViewMatrix;
matrix ViewProjMatrix;

vector AmbientMtrl;
vector DiffuseMtrl;

vector LightDirection;

//
// Global variables used to hold the ambient light intensity (ambient
// light the light source emits) and the diffuse light
// intensity (diffuse light the light source emits). These
// variables are initialized here in the shader.
//

vector DiffuseLightIntensity = {0.0f, 0.0f, 1.0f, 1.0f};
vector AmbientLightIntensity = {0.0f, 0.0f, 0.2f, 1.0f};

//
// Input and Output structures.
//

struct VS_INPUT
{

vector position : POSITION;
vector normal : NORMAL;

};

struct VS_OUTPUT
{

vector position : POSITION;
vector diffuse : COLOR;

};

//
// Main
//

VS_OUTPUT Main(VS_INPUT input)
{

// zero out all members of the output instance.
VS_OUTPUT output = (VS_OUTPUT)0;

//
// Transform position to homogeneous clip space
// and store in the output.position member.
//
output.position = mul(input.position, ViewProjMatrix);

//
// Transform lights and normals to view space. Set w
// components to zero since we're transforming vectors
// here and not points.
//
LightDirection.w = 0.0f;

302 Chapter 17

input.normal.w = 0.0f;
LightDirection = mul(LightDirection, ViewMatrix);
input.normal = mul(input.normal, ViewMatrix);

//
// Compute cosine of the angle between light and normal.
//
float s = dot(LightDirection, input.normal);

//
// Recall that if the angle between the surface and light
// is greater than 90 degrees the surface receives no light.
// Thus, if the angle is greater than 90 degrees we set
// s to zero so that the surface will not be lit.
//
if(s < 0.0f)

s = 0.0f;

//
// Ambient light reflected is computed by performing a
// component-wise multiplication with the ambient material
// vector and the ambient light intensity vector.
//
// Diffuse light reflected is computed by performing a
// component-wise multiplication with the diffuse material
// vector and the diffuse light intensity vector. Further
// we scale each component by the shading scalar s, which
// shades the color based on how much light the vertex received
// from the light source.
//
// The sum of both the ambient and diffuse components give
// us our final vertex color.
//

output.diffuse = (AmbientMtrl * AmbientLightIntensity) +
(s * (DiffuseLightIntensity * DiffuseMtrl));

return output;
}

Now that we have looked at the actual vertex shader code, let’s shift
gears and look at the application code. The application has the following
relevant global variables:

IDirect3DVertexShader9* DiffuseShader = 0;
ID3DXConstantTable* DiffuseConstTable = 0;

ID3DXMesh* Teapot = 0;

D3DXHANDLE ViewMatrixHandle = 0;
D3DXHANDLE ViewProjMatrixHandle = 0;
D3DXHANDLE AmbientMtrlHandle = 0;
D3DXHANDLE DiffuseMtrlHandle = 0;
D3DXHANDLE LightDirHandle = 0;

D3DXMATRIX Proj;

Introduction to Vertex Shaders 303

P
a

rt
IV

We have variables to represent the vertex shader and its constant table.
We have a teapot mesh variable, followed by a set of D3DXHANDLEs
whose variable names describe the variable they refer to.

The Setup function performs the following tasks:

� Creates the teapot mesh

� Compiles the vertex shader

� Creates the vertex shader based on the compiled code

� Obtains handles to several variables in the shader program through
the constant table

� Initializes several of the shader variables through the constant
table

Note: For this application our vertex structure does not require any
additional components that a flexible vertex format cannot describe.
Therefore, we use a flexible vertex format instead of a vertex declara-
tion for this sample. Recall that a flexible vertex format description gets
converted to a vertex declaration internally.

bool Setup()
{

HRESULT hr = 0;

//
// Create geometry:
//

D3DXCreateTeapot(Device, &Teapot, 0);

//
// Compile shader
//

ID3DXBuffer* shader = 0;
ID3DXBuffer* errorBuffer = 0;

hr = D3DXCompileShaderFromFile(
"diffuse.txt",
0,
0,
"Main", // entry point function name
"vs_1_1",
D3DXSHADER_DEBUG,
&shader,
&errorBuffer,
&DiffuseConstTable);

// output any error messages
if(errorBuffer)
{

::MessageBox(0, (char*)errorBuffer->GetBufferPointer(), 0, 0);
d3d::Release<ID3DXBuffer*>(errorBuffer);

304 Chapter 17

TE
AM
FL
Y

Team-Fly®

}

if(FAILED(hr))
{

::MessageBox(0, "D3DXCompileShaderFromFile() - FAILED", 0, 0);
return false;

}

//
// Create shader
//

hr = Device->CreateVertexShader(
(DWORD*)shader->GetBufferPointer(),
&DiffuseShader);

if(FAILED(hr))
{

::MessageBox(0, "CreateVertexShader - FAILED", 0, 0);
return false;

}

d3d::Release<ID3DXBuffer*>(shader);

//
// Get Handles
//

ViewMatrixHandle = DiffuseConstTable->GetConstantByName(
0, "ViewMatrix");

ViewProjMatrixHandle = DiffuseConstTable->GetConstantByName(
0, "ViewProjMatrix");

AmbientMtrlHandle = DiffuseConstTable->GetConstantByName(
0, "AmbientMtrl");

DiffuseMtrlHandle = DiffuseConstTable->GetConstantByName(
0, "DiffuseMtrl");

LightDirHandle = DiffuseConstTable->GetConstantByName(
0, "LightDirection");

//
// Set shader constants:
//

// Light direction:
D3DXVECTOR4 directionToLight(-0.57f, 0.57f, -0.57f, 0.0f);
DiffuseConstTable->SetVector(Device, LightDirHandle,

&directionToLight);

// Materials:
D3DXVECTOR4 ambientMtrl(0.0f, 0.0f, 1.0f, 1.0f);
D3DXVECTOR4 diffuseMtrl(0.0f, 0.0f, 1.0f, 1.0f);
DiffuseConstTable->SetVector(Device,AmbientMtrlHandle,&ambientMtrl);
DiffuseConstTable->SetVector(Device,DiffuseMtrlHandle,&diffuseMtrl);
DiffuseConstTable->SetDefaults(Device);

Introduction to Vertex Shaders 305

P
a

rt
IV

// Compute projection matrix.
D3DXMatrixPerspectiveFovLH(

&Proj, D3DX_PI * 0.25f,
(float)Width / (float)Height, 1.0f, 1000.0f);

return true;
}

The Display function is quite simple. It tests for user input and
updates the view matrix accordingly. However, because we perform the
view matrix transformation in the shader, we must also update the view
matrix variable within the shader. We do this using the constant table:

bool Display(float timeDelta)
{

if(Device)
{

//
// Update view matrix code snipped...
//

D3DXMATRIX V;
D3DXMatrixLookAtLH(&V, &position, &target, &up);

DiffuseConstTable->SetMatrix(Device, ViewMatrixHandle, &V);

D3DXMATRIX ViewProj = V * Proj;
DiffuseConstTable->SetMatrix(Device, ViewProjMatrixHandle,

&ViewProj);

//
// Render
//

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0xffffffff, 1.0f, 0);

Device->BeginScene();

Device->SetVertexShader(DiffuseShader);

Teapot->DrawSubset(0);

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;

}

Also observe that we enable the vertex shader that we wish to use
right before the DrawSubset call.

Cleaning up is done as expected; we simply release the allocated
interfaces:

void Cleanup()
{

d3d::Release<ID3DXMesh*>(Teapot);

306 Chapter 17

d3d::Release<IDirect3DVertexShader9*>(DiffuseShader);
d3d::Release<ID3DXConstantTable*>(DiffuseConstTable);

}

17.5 Sample Application: Cartoon Rendering

As a second vertex shader sample, let’s write two vertex shaders that
shade and outline a mesh in such a way that it appears as a cartoon-
style drawing. Figure 17.2 illustrates this:

Introduction to Vertex Shaders 307

P
a

rt
IV

Figure 17.2: (a) Objects
shaded using cartoon shad-
ing (note the sharp transition
between shades). (b) To
enhance the cartoon effect,
the silhouette edges are out-
lined. (c) Objects shaded
using standard diffuse
lighting.

Note: Cartoon rendering is a particular kind of non-photorealistic
rendering, sometimes called stylistic rendering.

Although cartoon rendering isn’t for all games, such as violent first-
person shooters, it can enhance the atmosphere of some types of
games when you want to impart a cartoonish feel. Furthermore, car-
toon rendering is pretty easy to implement and allows us to
demonstrate vertex shaders nicely.

We break cartoon rendering into two steps.

1. Cartoon drawings typically have few shading intensity levels with
an abrupt transition from one shade to the next; we refer to this as
cartoon shading. In Figure 17.2.a we see that the meshes are
shaded using exactly three shading intensities (bright, medium,
dark) and the transition between them is abrupt—unlike Figure
17.2.c, which has a smooth transition from light to dark.

2. Cartoon drawings also typically have their silhouette edges out-
lined, as Figure 17.2.b shows.

Both steps require their own vertex shader.

17.5.1 Cartoon Shading

To implement cartoon shading, we take the same approach as Lander
describes in his article “Shades of Disney: Opaquing a 3D World” fea-
tured in the March 2000 issue of Game Developer Magazine. It works
like this: We create a grayscale luminance texture that contains the dif-
ferent shade intensities we desire. Figure 17.3 shows the texture that
we use in the sample program.

Then in the vertex shader we perform the standard diffuse calculation
dot product to determine the cosine of the angle between the vertex
normal �N and the light vector �L, which is used to determine how much
light the vertex receives:

s � �� �L N

308 Chapter 17

Figure 17.3: Shade texture holds the shade intensi-
ties we use. Observe the abrupt transitions between
shades and that the texture shade intensity must
increase from left to right.

If s < 0, that implies the angle between the light vector and vertex nor-
mal is greater than 90 degrees, which implies that the surface receives
no light. Therefore, if s < 0, we let s = 0. So s�[0, 1].

Now, in the usual diffuse lighting model, we use s to scale our color
vector such that the vertex colors are darkened based on the amount of
light that they receive:

diffuseColor s r g b a� (, , ,)

However, this will result in a smooth transition from light to dark
shades. This is the opposite of what we desire for cartoon shading. We
want an abrupt transition between a few different shades (around two
to four shades works well for cartoon rendering).

Instead of using s to scale the color vector, we are going to use it as
the u texture coordinate for the luminance texture that we spoke of
earlier—the one depicted in Figure 17.3.

Note: The scalar s is of course a valid texture coordinate since
s � [0, 1], which is the usual texture coordinate interval.

In this way the vertices won’t be shaded smoothly but rather abruptly.
For example, the luminance texture might be divided into three shades,
as Figure 17.4 shows.

Then values of s�[0, 0.33] are shaded using shade 0, values of s�(0.33,
0.66] are shaded using shade 1, and values of s�(0.66, 1] are shaded
using shade 2. Of course, the transition from one of these shades to the
next is abrupt, giving us the desired effect.

Note: We turn off texture filtering for cartoon shading as well
because the filtering attempts to smooth out the shade transitions. This
is undesirable since we want abrupt transitions.

17.5.2 The Cartoon Shading Vertex Shader Code

We now present the vertex shader for cartoon shading. The primary
task of the shader is merely to compute and set the texture coordinate
based on s � �� �L N. Observe that in the output structure, we have added
a data member to store the computed texture coordinate. Also note that
we still output the color of the vertex, though we don’t modify it, and

Introduction to Vertex Shaders 309

P
a

rt
IV

Figure 17.4: The shade used
depends on the interval the tex-
ture coordinate falls in.

when the color is combined with the luminance texture, it appears
shaded.

// File: toon.txt
// Desc: Vertex shader that lights geometry so it appears to be
// drawn in a cartoon style.

//
// Globals
//

extern matrix WorldViewMatrix;
extern matrix WorldViewProjMatrix;

extern vector Color;

extern vector LightDirection;

static vector Black = {0.0f, 0.0f, 0.0f, 0.0f};

//
// Structures
//

struct VS_INPUT
{

vector position : POSITION;
vector normal : NORMAL;

};

struct VS_OUTPUT
{

vector position : POSITION;
float2 uvCoords : TEXCOORD;
vector diffuse : COLOR;

};

//
// Main
//

VS_OUTPUT Main(VS_INPUT input)
{

// zero out each member in output
VS_OUTPUT output = (VS_OUTPUT)0;

// transform vertex position to homogenous clip space
output.position = mul(input.position, WorldViewProjMatrix);

//
// Transform lights and normals to view space. Set w
// components to zero since we're transforming vectors.
// Assume there are no scalings in the world
// matrix as well.
//
LightDirection.w = 0.0f;

310 Chapter 17

input.normal.w = 0.0f;
LightDirection = mul(LightDirection, WorldViewMatrix);
input.normal = mul(input.normal, WorldViewMatrix);

//
// Compute the 1D texture coordinate for toon rendering.
//
float u = dot(LightDirection, input.normal);

//
// Clamp to zero if u is negative because u
// negative implies the angle between the light
// and normal is greater than 90 degrees. And
// if that is true then the surface receives
// no light.
//
if(u < 0.0f)

u = 0.0f;

//
// Set other tex coord to middle.
//
float v = 0.5f;

output.uvCoords.x = u;
output.uvCoords.y = v;

// save color
output.diffuse = Color;

return output;
}

A couple of remarks:

� We assume the world matrix doesn’t do any scaling because if it
does, it can mess up the length and direction of a vector that multi-
plies it.

� We always set the v texture coordinate to the middle of the texture.
This implies that we are using only a single horizontal line in the
texture, which implies we could use a 1D luminance texture
instead of a 2D one. However, both 1D and 2D textures work. For
the sample we have used a 2D texture over a 1D texture for no
particular reason.

17.5.3 Silhouette Outlining

To complete the cartoon effect, we need to outline the silhouette edges.
This is a bit more involved than cartoon shading.

Introduction to Vertex Shaders 311

P
a

rt
IV

17.5.3.1 Edge Representation

We represent an edge of a mesh as a quad (built from two triangles)—
see Figure 17.5.

We choose quads for a couple of reasons: We can easily change the
thickness of the edge by adjusting the dimensions of the quad, and we
can render degenerate quads to hide certain edges, namely edges that
are not silhouette edges. In Direct3D we build a quad out of two trian-
gles. A degenerate quad is a quad built from two degenerate triangles. A
degenerate triangle is a triangle with zero area or, in other words, a trian-
gle defined by three vertices that lie on the same line (collinear). If we
pass a degenerate triangle into the rendering pipeline, nothing is dis-
played for that triangle. This is useful because if we wish to hide a
particular triangle we can simply degenerate it without actually remov-
ing it from our triangle list (vertex buffer). Recall that we only want to
display the silhouette edges—not every edge of the mesh.

When we first create an edge, we specify its four vertices so that it
is degenerate (Figure 17.6), which means the edge will be hidden (not
displayed when rendered).

Note that for the two vertices v0 and v1 in Figure 17.6, we set their ver-
tex normal vector to the zero vector. Then when we feed the edge
vertices into the vertex shader, the shader will test if a vertex is on a
silhouette edge; if it is, then the vertex shader will offset the vertex
position in the direction of the vertex normal by some scalar. Observe
then that the vertices with a zero normal vector will not be offset.

312 Chapter 17

Figure 17.5: A quad to represent an edge

Figure 17.6: Degenerate quad describing the edge
shared by the two triangles

Thus, we end up with a non-degenerate quad to represent the silhou-
ette edge, as Figure 17.7 shows.

Remark: If we didn’t set the vertex normals of vertices v0 and v1 to
the zero vector, then those vertices would have been offset as well. But
if we offset all four of the vertices describing a silhouette edge, then
we have only translated the degenerate quad. By keeping vertices v0

and v1 fixed and only offsetting vertices v2 and v3 we regenerate the
quad.

17.5.3.2 Testing for a Silhouette Edge

An edge is a silhouette edge if the two faces, face0 and face1, sharing
that edge face in different directions relative to the viewing direction.
That is, if one face is front facing and the other face is back facing, then
the edge is a silhouette edge. Figure 17.8 gives an example of a silhou-
ette edge and a non-silhouette edge.

It follows then that in order to test if a vertex is on a silhouette edge,
we must know the normal vectors of face0 and face1 on a per vertex
basis. Our edge vertex data structure reflects this:

struct VS_INPUT
{

vector position : POSITION;
vector normal : NORMAL0;
vector faceNormal1 : NORMAL1;
vector faceNormal2 : NORMAL2;

};

Introduction to Vertex Shaders 313

P
a

rt
IV

Figure 17.7: Vertices v2 and v3 on a silhouette edge
being offset in the direction of their vertex normals n2

and n3 respectively. Observe that vertices v0 and v1

remain in their fixed position since their vertex nor-
mals equal the zero vector, thus no offset occurs for
them. In this way the quad is successfully regenerated
to represent the silhouette edge.

Figure 17.8: In (a), one face
that shares the edge
defined by the vertices v0

and v1 is front facing and
the other face that shares
the edge is back facing, thus
the edge is a silhouette
edge. In (b), the faces that
share the edge defined by
v0 and v1 are both front fac-
ing, and therefore the edge
is not a silhouette edge.

The first two components are straightforward, but we see two addi-
tional normal vectors, namely faceNormal1 and faceNormal2.
These vectors describe the two face normals of the faces that share the
edge the vertex lies on, namely face0 and face1.

The actual mathematics of testing if a vertex is on a silhouette
edge is as follows. Assume we are in view space. Let v be a vector from
the origin to the vertex we are testing—Figure 17.8. Let n0 be the face
normal for face0 and let n1 be the face normal for face1. Then the vertex
is on a silhouette edge if the following inequality is true:

(1) 	
	
v n v n� � %0 1 0

Inequality (1) is true if the signs of the two dot products differ, making
the left-hand side negative. Recalling the properties of the dot product,
the signs of the two dot products being different implies that one face is
front facing and the other is back facing.

Now, consider the case where an edge only has one triangle sharing
it, as in Figure 17.9, whose normal will be stored in faceNormal1.

We define such an edge to always be a silhouette edge. To ensure that
the vertex shader processes such edges as silhouette edges, we let
faceNormal2 = –faceNormal1. Thus, the face normals face in
opposite directions and inequality (1) will be true, indicating the edge is
a silhouette edge.

17.5.3.3 Edge Generation

Generating the edges of a mesh is trivial; we simply iterate through
each face in the mesh and compute a quad (degenerate, as in Figure
17.6) for each edge on the face.

Note: Each face has three edges since there are three edges to a
triangle.

For the vertices of each edge, we also need to know the two faces that
share the edge. One of the faces is the triangle the edge is on. For
instance, if we’re computing an edge of the ith face, then the ith face

314 Chapter 17

Figure 17.9: The edge defined by vertices v0 and
v1 has only one face sharing it.

TE
AM
FL
Y

Team-Fly®

shares that edge. The other face that shares the edge can be found
using the mesh’s adjacency info.

17.5.4 The Silhouette Outlining Vertex Shader Code

We now present the vertex shader for rendering the silhouette edges.
The primary task of the shader is to determine if the vertex passed in
is on a silhouette edge. If it is, the vertex shader offsets the vertex by
some defined scalar in the direction of the vertex normal.

// File: outline.txt
// Desc: Vertex shader renders silhouette edges.

//
// Globals
//

extern matrix WorldViewMatrix;
extern matrix ProjMatrix;

static vector Black = {0.0f, 0.0f, 0.0f, 0.0f};

//
// Structures
//

struct VS_INPUT
{

vector position : POSITION;
vector normal : NORMAL0;
vector faceNormal1 : NORMAL1;
vector faceNormal2 : NORMAL2;

};

struct VS_OUTPUT
{

vector position : POSITION;
vector diffuse : COLOR;

};

//
// Main
//

VS_OUTPUT Main(VS_INPUT input)
{

// zero out each member in output
VS_OUTPUT output = (VS_OUTPUT)0;

// transform position to view space
input.position = mul(input.position, WorldViewMatrix);

// Compute a vector in the direction of the vertex
// from the eye. Recall the eye is at the origin
// in view space - eye is just camera position.

Introduction to Vertex Shaders 315

P
a

rt
IV

vector eyeToVertex = input.position;

// transform normals to view space. Set w
// components to zero since we're transforming vectors.
// Assume there are no scalings in the world
// matrix as well.
input.normal.w = 0.0f;
input.faceNormal1.w = 0.0f;
input.faceNormal2.w = 0.0f;

input.normal = mul(input.normal, WorldViewMatrix);
input.faceNormal1 = mul(input.faceNormal1, WorldViewMatrix);
input.faceNormal2 = mul(input.faceNormal2, WorldViewMatrix);

// compute the cosine of the angles between
// the eyeToVertex vector and the face normals.
float dot0 = dot(eyeToVertex, input.faceNormal1);
float dot1 = dot(eyeToVertex, input.faceNormal2);

// if cosines are different signs (positive/negative)
// then we are on a silhouette edge. Do the signs
// differ?
if((dot0 * dot1) < 0.0f)
{

// yes, then this vertex is on a silhouette edge,
// offset the vertex position by some scalar in the
// direction of the vertex normal.
input.position += 0.1f * input.normal;

}

// transform to homogeneous clip space
output.position = mul(input.position, ProjMatrix);

// set outline color
output.diffuse = Black;

return output;
}

17.6 Summary

� Using vertex shaders, we can replace the transformation and light-
ing stages of the fixed function pipeline. By replacing this fixed pro-
cess with our own program (vertex shader), we can obtain a huge

amount of flexibility in the graphical effects that we can achieve.

� Vertex declarations are used to describe the format of our vertices.
They are similar to flexible vertex formats (FVF) but are more
flexible and allow us to describe vertex formats that FVF cannot
describe. Note that if our vertex can be described by an FVF, we
can still use them; however, internally they are converted to vertex
declarations.

316 Chapter 17

� For input, usage semantics specify how vertex components are
mapped from the vertex declaration to variables in the HLSL pro-
gram. For output, usage semantics specify what a vertex compo-
nent is going to be used for (e.g., position, color, texture coordinate,
etc.).

Introduction to Vertex Shaders 317

P
a

rt
IV

Chapter 18

Introduction to Pixel
Shaders

A pixel shader is a program executed on the graphics card’s GPU during
the rasterization process for each pixel. (Unlike vertex shaders,
Direct3D will not emulate pixel shader functionality in software.) It
essentially replaces the multitexturing stage of the fixed function pipe-
line and gives us the ability to manipulate individual pixels directly and
access the texture coordinate for each pixel. This direct access to pixels
and texture coordinates allows us to achieve a variety of special effects,
such as multitexturing, per pixel lighting, depth of field, cloud simula-
tion, fire simulation, and sophisticated shadowing techniques.

You can test the pixel shader version that your graphics card sup-
ports by checking the PixelShaderVersion member of the
D3DCAPS9 structure and the macro D3DPS_VERSION. The following
code snippet illustrates this:

// If the device’s supported version is less than version 2.0
if(caps.PixelShaderVersion < D3DPS_VERSION(2, 0))

// Then pixel shader version 2.0 is not supported on this device.

Objectives

� To obtain a basic understanding of the concepts of multitexturing

� To learn how to write, create, and use pixel shaders

� To learn how to implement multitexturing using a pixel shader

318

18.1 Multitexturing Overview

Multitexturing is perhaps the simplest of the techniques that can be
implemented using a pixel shader. Furthermore, since pixel shaders
replace the multitexturing stage, it follows then that we should have a
basic understanding of what the multitexturing stage is and does. This
section presents a concise overview of multitexturing.

When we originally discussed texturing back in Chapter 6, we
omitted a discussion on multitexturing in the fixed function pipeline for
two reasons: First, multitexturing is a bit of an involved process, and
we considered it an advanced topic at the time. Additionally, the fixed
function multitexturing stage is replaced by the new and more powerful
pixel shaders; therefore it made sense not to spend time on the out-
dated fixed function multitexturing stage.

The idea behind multitexturing is somewhat related to blending. In
Chapter 7 we learned about blending the pixels being rasterized with
the pixels that were previously written to the back buffer to achieve a
specific effect. We extend this same idea to multiple textures. That is,
we enable several textures at once and then define how these textures
are to be blended together to achieve a specific effect. A common use
for multitexturing is to do lighting. Instead of using Direct3D’s lighting
model in the vertex processing stage, we use special texture maps
called light maps, which encode how a surface is lit. For example, sup-
pose we wish to shine a spotlight on a large crate. We could define a
spotlight as a D3DLIGHT9 structure, or we could blend together a tex-
ture map representing a crate and a light map representing the
spotlight as Figure 18.1 illustrates.

Introduction to Pixel Shaders 319

P
a

rt
IV

Figure 18.1: Rendering a crate lit by a
spotlight using multitexturing. Here
we combine the two textures by multi-
plying the corresponding texels
together.

Note: As with blending in Chapter 7, the resulting image depends
on how the textures are blended. In the fixed function multitexturing
stage, the blending equation is controlled through texture render
states. With pixel shaders we can write the blend function program-
matically in code as a simple expression. This allows us to blend the
textures in any way we want. We elaborate on blending the textures
when we discuss the sample application for this chapter.

Blending the textures (two in this example) to light the crate has two
advantages over Direct3D’s lighting:

� The lighting is precalculated into the spotlight light map. There-
fore, the lighting does not need to be calculated at run time, which
saves processing time. Of course, the lighting can only be precalcu-
lated for static objects and static lights.

� Since the light maps are precalculated, we can use a much more
accurate and sophisticated lighting model than Direct3D’s model.
(Better lighting results in a more realistic scene.)

Remark: The multitexturing stage is typically used to implement a
full lighting engine for static objects. For example, we might have a
texture map that holds the colors of the object, such as a crate texture
map. Then we may have a diffuse light map to hold the diffuse surface
shade, a separate specular light map to hold the specular surface
shade, a fog map to hold the amount of fog that covers a surface, and
a detail map to hold small, high frequency details of a surface. When
all these textures are combined, it effectively lights, colors, and adds
details to the scene using only lookups into precalculated textures.

Note: The spotlight light map is a trivial example of a very basic
light map. Typically, special programs are used to generate light maps
given a scene and light sources. Generating light maps goes beyond
the scope of this book. For the interested reader, Alan Watt and Fabio
Policarpo describe light mapping in 3D Games: Real-time Rendering
and Software Technology.

18.1.1 Enabling Multiple Textures

Recall that textures are set with the IDirect3DDevice9::Set-
Texture method and sampler states are set with the IDirect3D-
Device9::SetSamplerState method, which are prototyped as:

HRESULT IDirect3DDevice9::SetTexture(
DWORD Stage, // specifies the texture stage index
IDirect3DBaseTexture9 *pTexture

);

HRESULT IDirect3DDevice9::SetSamplerState(
DWORD Sampler, // specifies the sampler stage index
D3DSAMPLERSTATETYPE Type,

320 Chapter 18

DWORD Value
);

Note: A particular sampler stage index i is associated with the ith

texture stage. That is, the ith sampler stage specifies the sampler states
for the ith set texture.

The texture/sampler stage index identifies the texture/sampler stage to
which we wish to set the texture/sampler. Thus, we can enable multiple
textures and set their corresponding sampler states by using different
stage indices. Previously in this book, we always specified 0, denoting
the first stage because we only used one texture at a time. So for exam-
ple, if we need to enable three textures, we use stages 0, 1, and 2 like
this:

// Set first texture and corresponding sampler states.
Device->SetTexture(0, Tex1);
Device->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

// Set second texture and corresponding sampler states.
Device->SetTexture(1, Tex2);
Device->SetSamplerState(1, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(1, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(1, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

// Set third texture and corresponding sampler states.
Device->SetTexture(2, Tex3);
Device->SetSamplerState(2, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(2, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(2, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

This code enables Tex1, Tex2, and Tex3 and sets the filtering modes
for each texture.

18.1.2 Multiple Texture Coordinates

Recall from Chapter 6 that for each 3D triangle, we want to define a
corresponding triangle on the texture that is to be mapped to the 3D
triangle. We did this by adding texture coordinates to each vertex.
Thus, every three vertices defining a triangle defined a corresponding
triangle on the texture.

Since we are now using multiple textures, for every three vertices
defining a triangle we need to define a corresponding triangle on each
of the enabled textures. We do this by adding extra sets of texture coor-
dinates to each vertex—one set for, and that corresponds with, each
enabled texture. For instance, if we are blending three textures
together, then each vertex must have three sets of texture coordinates

Introduction to Pixel Shaders 321

P
a

rt
IV

that index into the three enabled textures. Thus, a vertex structure for
multitexturing with three textures would look like this:

struct MultiTexVertex
{

MultiTexVertex(float x, float y, float z,
float u0, float v0,
float u1, float v1,
float u2, float v2)

{
_x = x; _y = y; _z = z;
_u0 = u0; _v0 = v0;
_u1 = u1; _v1 = v1;
_u2 = u2; _v2 = v2;

}

float _x, _y, _z;
float _u0, _v0; // Texture coordinates for texture at stage 0.
float _u1, _v1; // Texture coordinates for texture at stage 1.
float _u2, _v2; // Texture coordinates for texture at stage 2.

static const DWORD FVF;
};
const DWORD MultiTexVertex::FVF = D3DFVF_XYZ | D3DFVF_TEX3;

Observe that the flexible vertex format flag D3DFVF_TEX3 is specified
denoting the vertex structure contains three sets of texture coordi-
nates. The fixed function pipeline supports up to eight sets of texture
coordinates. To use more than eight, you must use a vertex declaration
and the programmable vertex pipeline.

Note: In the newer pixel shader versions, we can use one texture
coordinate set to index into multiple textures, thereby removing the
need for multiple texture coordinates. Of course this assumes the
same texture coordinates are used for each texture stage. If the texture
coordinates for each stage are different, then we will still need multi-
ple texture coordinates.

18.2 Pixel Shader Inputs and Outputs

Two things are input into a pixel shader: colors and texture coordinates.
Both are per pixel.

Note: Recall that vertex colors are interpolated across the face of a
primitive.

A per pixel texture coordinate is simply the (u, v) coordinates that
specify the texel in the texture that is to be mapped to the pixel in
question. Direct3D computes both colors and texture coordinates per
pixel, from vertex colors and vertex texture coordinates, before enter-
ing the pixel shader. The number of colors and texture coordinates

322 Chapter 18

input into the pixel shader depends on how many colors and texture
coordinates were output by the vertex shader. For example, if a vertex
shader outputs two colors and three texture coordinates, then Direct3D
will calculate two colors and three texture coordinates per pixel and
input them into the pixel shader. We map the input colors and texture
coordinates to variables in our pixel shader program using the semantic
syntax. Using the previous example, we would write:

struct PS_INPUT
{

vector c0 : COLOR0;
vector c1 : COLOR1;
float2 t0 : TEXCOORD0;
float2 t1 : TEXCOORD1;
float2 t2 : TEXCOORD2;

};

For output, a pixel shader outputs a single computed color value for the
pixel:

struct PS_OUTPUT
{

vector finalPixelColor : COLOR0;
};

18.3 Steps to Using a Pixel Shader

The following list outlines the steps necessary to create and use a pixel
shader.

1. Write and compile the pixel shader.

2. Create an IDirect3DPixelShader9 interface to represent the
pixel shader based on the compiled shader code.

3. Enable the pixel shader with the IDirect3DDevice9::Set-
PixelShader method.

Of course, we have to destroy the pixel shader when we are done with
it. The next few subsections go into these steps in more detail.

18.3.1 Writing and Compiling a Pixel Shader

We compile a pixel shader the same way that we compile a vertex
shader. First, we must write a pixel shader program. In this book, we
write our shaders in HLSL. Once the shader code is written we com-
pile the shader using the D3DXCompileShaderFromFile function, as
described in section 16.2. Recall that this function returns a pointer to
an ID3DXBuffer that contains the compiled shader code.

Introduction to Pixel Shaders 323

P
a

rt
IV

Note: Since we are using pixel shaders, we will need to remember
to change the compile target to a pixel shader target (e.g., ps_2_0)
instead of a vertex shader target (e.g., vs_2_0). The compile targets
are specified through a parameter of the D3DXCompileShader-

FromFile function. See section 16.2 for details.

18.3.2 Creating a Pixel Shader

Once we have the compiled shader code, we can obtain a pointer to an
IDirect3DPixelShader9 interface, which represents a pixel shader,
using the following method:

HRESULT IDirect3DDevice9::CreatePixelShader(
CONST DWORD *pFunction,
IDirect3DPixelShader9** ppShader

);

� pFunction—Pointer to compiled shader code

� ppShader—Returns a pointer to an IDirect3DPixelShader9
interface

For example, suppose the variable shader is an ID3DXBuffer that
contains the compiled shader code. Then to obtain an IDirect3D-
PixelShader9 interface, we would write:

IDirect3DPixelShader9* MultiTexPS = 0;
hr = Device->CreatePixelShader(

(DWORD*)shader->GetBufferPointer(),
&MultiTexPS);

Note: To reiterate, the D3DXCompileShaderFromFile is the func-
tion that would return the compiled shader code (shader).

18.3.3 Setting a Pixel Shader

After we have obtained a pointer to an IDirect3DPixelShader9
interface that represents our pixel shader, we can enable it using the
following method:

HRESULT IDirect3DDevice9::SetPixelShader(
IDirect3DPixelShader9* pShader

);

The method takes a single parameter where we pass a pointer to the
pixel shader that we wish to enable. To enable the shader we created in
section 18.3.2, we would write:

Device->SetPixelShader(MultiTexPS);

324 Chapter 18

TE
AM
FL
Y

Team-Fly®

18.3.4 Destroying a Pixel Shader

As with all Direct3D interfaces, to clean them up we must call their
Release method when we are finished with them. Continuing to use
the pixel shader we created in section 18.3.2, we have:

d3d::Release<IDirect3DPixelShader9*>(MultiTexPS);

18.4 HLSL Sampler Objects

Textures are sampled in a pixel shader using the special tex*-related
intrinsic functions of HLSL.

Note: Sampling refers to indexing a texel for a pixel based on tex-
ture coordinates for the pixel and the sampler states (texture filter
states).

See section 16.7 for details on these functions. In general, these func-
tions require us to specify two things:

� The (u, v) texture coordinates used to index into the texture

� The particular texture we want to index into

The (u, v) texture coordinates are, of course, given as input into the
pixel shader. The particular texture that we want to index into is identi-
fied in the pixel shader by a special HLSL object called a sampler. We
can think of a sampler object as an object that identifies a texture and
sampler stage. For example, suppose that we were using three texture
stages, which implies we need to be able to refer to each of these
stages in the pixel shader. In the pixel shader, we would write:

sampler FirstTex;
sampler SecondTex;
sampler ThirdTex;

Direct3D will associate each of these sampler objects with a unique
texture stage. Then in the application we find out the stage that a sam-
pler object corresponds with and set the appropriate texture and
sampler states for that stage. The following code illustrates how the
application would set the texture and sampler states for FirstTex:

// Create texture:
IDirect3DTexture9* Tex;
D3DXCreateTextureFromFile(Device, "tex.bmp", &Tex);
.
.
.
// Get handle to constant:
FirstTexHandle = MultiTexCT->GetConstantByName(0, "FirstTex");

Introduction to Pixel Shaders 325

P
a

rt
IV

// Get a description of the constant:
D3DXCONSTANT_DESC FirstTexDesc;
UINT count;
MultiTexCT->GetConstantDesc(FirstTexHandle, &FirstTexDesc, &count);
.
.
.
// Set texture/sampler states for the sampler FirstTex. We identify
// the stage FirstTex is associated with from the
// D3DXCONSTANT_DESC::RegisterIndex member:
Device->SetTexture(FirstTexDesc.RegisterIndex,

Tex);

Device->SetSamplerState(FirstTexDesc.RegisterIndex,
D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);

Device->SetSamplerState(FirstTexDesc.RegisterIndex,
D3DSAMP_MINFILTER, D3DTEXF_LINEAR);

Device->SetSamplerState(FirstTexDesc.RegisterIndex,
D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

Note: Alternatively, instead of using the sampler type, you can use
the more specific and strongly typed sampler1D, sampler2D,
sampler3D, and samplerCube types. These types are more type safe
and ensure that they are only used with the appropriate tex* func-
tions. For example, a sampler2D object can only be used with tex2D*

functions. Similarly, a sampler3D object can only be used with tex3D*

functions.

18.5 Sample Application:
Multitexturing in a Pixel Shader

The sample application for this chapter demonstrates multitexturing
using a pixel shader. The sample will texture a quad based on the
“result” in Figure 18.2 by blending together a crate texture, a spotlight
texture, and a texture that contains the string “Pixel Shader Sample.”

326 Chapter 18

Figure 18.2: Combining
the textures. Let b, s, and t
be the colors of corre-
sponding texels from the
crate texture, spotlight tex-
ture, and text texture,
respectively. We define
how these colors are com-
bined as c = b � s + t,
where � denotes compo-
nent-wise multiplication.

This sample can be done without using pixel shaders. However, it is
easy and straightforward to implement this application, and it allows us
to demonstrate how to write, create, and use pixel shaders without get-
ting distracted by the algorithm of some special effect.

Although we are only using three textures at once in this sample, it
is worthwhile to go over the number of sampler objects that can be
used with each pixel shader version. In other words, how many tex-
tures we can use at once depends on the pixel shader version that we
use.

� Pixel shader versions ps_1_1 to ps_1_3 support up to four texture
samples.

� Pixel shader version ps_1_4 supports up to six texture samples.

� Pixel shader versions ps_2_0 to ps_3_0 support up to 16 texture
samples.

The pixel shader for multitexturing with two textures is implemented
as follows:

//
// File: ps_multitex.txt
//
// Desc: Pixel shader that does multitexturing.
//

//
// Globals
//

sampler BaseTex;
sampler SpotLightTex;
sampler StringTex;

//
// Structures
//

struct PS_INPUT
{

float2 base : TEXCOORD0;
float2 spotlight : TEXCOORD1;
float2 text : TEXCOORD2;

};

struct PS_OUTPUT
{

vector diffuse : COLOR0;
};

//
// Main
//

Introduction to Pixel Shaders 327

P
a

rt
IV

PS_OUTPUT Main(PS_INPUT input)
{

// zero out members of output
PS_OUTPUT output = (PS_OUTPUT)0;

// sample appropriate textures
vector b = tex2D(BaseTex, input.base);
vector s = tex2D(SpotLightTex, input.spotlight);
vector t = tex2D(StringTex, input.text);

// combine texel colors
vector c = b * s + t;

// increase the intensity of the pixel slightly
c += 0.1f;

// save the resulting pixel color
output.diffuse = c;

return output;
}

First the pixel shader declares three sampler objects, one for each
texture that we are blending. Next the input and output structures are
defined. Notice that we don’t have any color values input into the pixel
shader; this is because we are using the textures exclusively for color-
ing and lighting; that is, BaseTex holds the color of our surface and
SpotLightTex is our light map. The pixel shader outputs a single
color value that specifies the color that we have computed for this par-
ticular pixel.

The Main function samples the three textures using the tex2D
function. That is, it fetches the texel from each texture that is to be
mapped to the pixel that we are currently computing based on the spec-
ified texture coordinates and sampler object. We then combine the
texel colors with the statement c = b * s + t. Next we brighten
the overall pixel color a bit by adding 0.1f to each component. Finally,
we save the resulting pixel color and return it.

Now that we have looked at the actual pixel shader code, we shift
gears and look at the application code. The application has the following
relevant global variables:

IDirect3DPixelShader9* MultiTexPS = 0;
ID3DXConstantTable* MultiTexCT = 0;

IDirect3DVertexBuffer9* QuadVB = 0;

IDirect3DTexture9* BaseTex = 0;
IDirect3DTexture9* SpotLightTex = 0;
IDirect3DTexture9* StringTex = 0;

328 Chapter 18

D3DXHANDLE BaseTexHandle = 0;
D3DXHANDLE SpotLightTexHandle = 0;
D3DXHANDLE StringTexHandle = 0;

D3DXCONSTANT_DESC BaseTexDesc;
D3DXCONSTANT_DESC SpotLightTexDesc;
D3DXCONSTANT_DESC StringTexDesc;

The vertex structure for the multitexturing sample is defined as:

struct MultiTexVertex
{

MultiTexVertex(float x, float y, float z,
float u0, float v0,
float u1, float v1,
float u2, float v2)

{
_x = x; _y = y; _z = z;
_u0 = u0; _v0 = v0;
_u1 = u1; _v1 = v1;
_u2 = u2, _v2 = v2;

}

float _x, _y, _z;
float _u0, _v0;
float _u1, _v1;
float _u2, _v2;

static const DWORD FVF;
};
const DWORD MultiTexVertex::FVF = D3DFVF_XYZ | D3DFVF_TEX3;

Observe that it contains three sets of texture coordinates.
The Setup function performs the following tasks:

� Fills the vertex buffer representing the quad

� Compiles the pixel shader

� Creates the pixel shader

� Loads the textures

� Sets the projection matrix and disables lighting

� Gets handles to the sampler objects

� Gets descriptions of the sampler objects

bool Setup()
{
HRESULT hr = 0;

//
// Create quad geometry.
//

Device->CreateVertexBuffer(
6 * sizeof(MultiTexVertex),
D3DUSAGE_WRITEONLY,

Introduction to Pixel Shaders 329

P
a

rt
IV

MultiTexVertex::FVF,
D3DPOOL_MANAGED,
&QuadVB,
0);

MultiTexVertex* v = 0;
QuadVB->Lock(0, 0, (void**)&v, 0);

v[0] = MultiTexVertex(-10.0f, -10.0f, 5.0f,
0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f);

v[1] = MultiTexVertex(-10.0f, 10.0f, 5.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);

v[2] = MultiTexVertex(10.0f, 10.0f, 5.0f,
1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f);

v[3] = MultiTexVertex(-10.0f, -10.0f, 5.0f,
0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f);

v[4] = MultiTexVertex(10.0f, 10.0f, 5.0f,
1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f);

v[5] = MultiTexVertex(10.0f, -10.0f, 5.0f,
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f);

QuadVB->Unlock();

//
// Compile shader
//

ID3DXBuffer* shader = 0;
ID3DXBuffer* errorBuffer = 0;

hr = D3DXCompileShaderFromFile(
"ps_multitex.txt",
0,
0,
"Main", // entry point function name
"ps_1_1",
D3DXSHADER_DEBUG,
&shader,
&errorBuffer,
&MultiTexCT);

// output any error messages
if(errorBuffer)
{

::MessageBox(0, (char*)errorBuffer->GetBufferPointer(), 0, 0);
d3d::Release<ID3DXBuffer*>(errorBuffer);

}

if(FAILED(hr))
{

::MessageBox(0, "D3DXCompileShaderFromFile() - FAILED", 0, 0);
return false;

}

//
// Create Pixel Shader

330 Chapter 18

//
hr = Device->CreatePixelShader(

(DWORD*)shader->GetBufferPointer(),
&MultiTexPS);

if(FAILED(hr))
{

::MessageBox(0, "CreateVertexShader - FAILED", 0, 0);
return false;

}

d3d::Release<ID3DXBuffer*>(shader);

//
// Load textures.
//

D3DXCreateTextureFromFile(Device, "crate.bmp", &BaseTex);
D3DXCreateTextureFromFile(Device, "spotlight.bmp", &SpotLightTex);
D3DXCreateTextureFromFile(Device, "text.bmp", &StringTex);

//
// Set projection matrix
//

D3DXMATRIX P;
D3DXMatrixPerspectiveFovLH(

&P, D3DX_PI * 0.25f,
(float)Width / (float)Height, 1.0f, 1000.0f);

Device->SetTransform(D3DTS_PROJECTION, &P);

//
// Disable lighting.
//

Device->SetRenderState(D3DRS_LIGHTING, false);

//
// Get handles
//

BaseTexHandle = MultiTexCT->GetConstantByName(0, "BaseTex");
SpotLightTexHandle = MultiTexCT->GetConstantByName(0, "SpotLightTex");
StringTexHandle = MultiTexCT->GetConstantByName(0, "StringTex");

//
// Set constant descriptions:
//

UINT count;

MultiTexCT->GetConstantDesc(
BaseTexHandle,
&BaseTexDesc,
&count);

MultiTexCT->GetConstantDesc(

Introduction to Pixel Shaders 331

P
a

rt
IV

SpotLightTexHandle,
&SpotLightTexDesc,
&count);

MultiTexCT->GetConstantDesc(
StringTexHandle,
&StringTexDesc,
&count);

MultiTexCT->SetDefaults(Device);

return true;
}

The Display function sets the pixel shader, enables the two textures,
and sets their corresponding sampler states before rendering the quad.

bool Display(float timeDelta)
{
if(Device)
{

// ...camera update code snipped

//
// Render
//

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0xffffffff, 1.0f, 0);

Device->BeginScene();

// set the pixel shader
Device->SetPixelShader(MultiTexPS);
Device->SetFVF(MultiTexVertex::FVF);
Device->SetStreamSource(0, QuadVB, 0, sizeof(MultiTexVertex));

// base tex
Device->SetTexture(BaseTexDesc.RegisterIndex, BaseTex);
Device->SetSamplerState(BaseTexDesc.RegisterIndex,

D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(BaseTexDesc.RegisterIndex,

D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(BaseTexDesc.RegisterIndex,

D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

// spotlight tex
Device->SetTexture(SpotLightTexDesc.RegisterIndex, SpotLightTex);
Device->SetSamplerState(SpotLightTexDesc.RegisterIndex,

D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(SpotLightTexDesc.RegisterIndex,

D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
Device->SetSamplerState(SpotLightTexDesc.RegisterIndex,

D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

// string tex
Device->SetTexture(StringTexDesc.RegisterIndex, StringTex);
Device->SetSamplerState(StringTexDesc.RegisterIndex,

D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);

332 Chapter 18

Device->SetSamplerState(StringTexDesc.RegisterIndex,
D3DSAMP_MINFILTER, D3DTEXF_LINEAR);

Device->SetSamplerState(StringTexDesc.RegisterIndex,
D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

// draw the quad
Device->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 2);

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;
}

Of course we must remember to free our allocated interfaces in the
Cleanup function:

void Cleanup()
{

d3d::Release<IDirect3DVertexBuffer9*>(QuadVB);

d3d::Release<IDirect3DTexture9*>(BaseTex);
d3d::Release<IDirect3DTexture9*>(SpotLightTex);
d3d::Release<IDirect3DTexture9*>(StringTex);

d3d::Release<IDirect3DPixelShader9*>(MultiTexPS);
d3d::Release<ID3DXConstantTable*>(MultiTexCT);

}

18.6 Summary

� Pixel shaders replace the multitexturing stage of the fixed function
pipeline. Furthermore, pixel shaders give us the ability to modify
pixels on an individual basis in any way that we choose and access
texture data, thereby empowering us to implement many special
effects that could not be achieved in the fixed function pipeline.

� Multitexturing is the process of enabling several textures at once
and blending them together to produce a desired result. Multi-
texturing is typically used to implement a complete lighting engine
for static geometry.

� The HLSL intrinsic sampler objects identify a particular tex-
ture/sampler stage. A sampler object is used to refer to a tex-
ture/sampler stage from the pixel shader.

Introduction to Pixel Shaders 333

P
a

rt
IV

Note: Once you understand how to implement vertex and pixel
shaders, you need some ideas of effects that can be implemented
using them. The best way to get ideas of effects that can be achieved
with vertex and pixel shaders is to study existing effects. The book
Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks edited by
Wolfgang Engel, also from Wordware Publishing, is a good start, as
are Nvidia’s and ATI’s developer sites, http://developer.nvidia.com/
and are http://ati.com/developer/index.html, respectively. In addition,
we recommend CG: The Cg Tutorial by Randima Fernando and Mark J.
Kilgard. This book is an excellent tutorial to programmable 3D graph-
ics using the high-level graphics language Cg, which is practically the
same as Direct3D’s HLSL.

334 Chapter 18

TE
AM
FL
Y

Team-Fly®

Chapter 19

The Effects Framework

A rendering effect is typically composed of the following components: a
vertex and/or pixel shader, a list of device states that need to be set,
and one or more rendering passes. Furthermore, it is often desirable to
have a fallback mechanism for rendering effects on different grades of
graphics hardware (that is, to have several versions of an effect avail-
able that implements the same effect or attempts to implement the
same effect as closely as possible, using the capabilities of different
grades of hardware). It is clear that all these necessary tasks are associ-
ated with one effect. Therefore, it is a logical step to try to encapsulate
these tasks into one unit.

The Direct3D effects framework provides such a mechanism for
encapsulating tasks related to rendering effects in an effect file. Imple-
menting effects in effect files has a couple of advantages. For one thing,
it allows us to change the implementation of an effect without having to
recompile the application source code. This makes the process of
updating an effect, whether it is to fix a bug, make a simple enhance-
ment, or take advantage of the latest 3D hardware feature, easier.
Secondly, it encapsulates all the components of an effect in one file.

This chapter guides you through the necessary information and
steps to writing and creating an effect file. We note that effect files can
be written in any ASCII file format just like our HLSL programs.

Objectives

� To gain an understanding of the structure and organization of an
effect file

� To find out about some additional intrinsic objects in HLSL

� To learn how device states are specified in an effect file

� To learn how to create and use an effect

� To gain some experience working with the effects framework by
studying some sample programs

335

19.1 Techniques and Passes

An effect file consists of one or more techniques. A technique is a partic-
ular way of rendering some special effect. So in other words, an effect
file provides one or more different ways of rendering the same special
effect. Why the need for several different implementations of the same
effect? Well, some hardware might not support a particular implemen-
tation of an effect. Therefore, it is necessary to implement several
versions of the same effect targeting different levels of hardware.

Note: For example, we might implement two versions of an effect,
one implemented with shaders and one implemented with the fixed
pipeline. In this way, users who have cards that support shaders can
take advantage of the shader implementation, while those who do not
can still use the fixed pipeline.

Being able to implement all versions of an effect in one effect file gives
us more complete encapsulation of the overall effect, which is one of
the goals of the effects framework—encapsulation.

Each technique contains one or more rendering passes. A rendering

pass encapsulates the device states, samplers, and/or shaders used to
render the geometry for that particular pass.

Note: An effect is not limited to use with the programmable pipe-
line only. For example, they can be used for the fixed function pipeline
for controlling device states, such as lights, materials, and textures.

The reason for multiple passes is because some special effects are
achieved by rendering the same geometry multiple times but with dif-
ferent device states, shaders, etc., for each particular pass. For
example, recall that in Chapter 8 we had to render the same geometry
multiple times per frame with different device states each time to
achieve the reflection effect.

As an example, here is a skeleton of an effect file with two tech-
niques, where the first technique consists of one pass and the second
technique consists of two passes:

// effect.txt
...
technique T0
{

// first and only pass for this technique
pass P0
{

...[specify pass device states, shaders, samplers, etc.]
}

}

336 Chapter 19

technique T1
{

// first pass
pass P0
{

...[specify pass device states, shaders, samplers, etc.]
}
// second pass
pass P1
{

...[specify pass device states, shaders, samplers, etc.]
}

}

19.2 More HLSL Intrinsic Objects

There are some additional built-in object types in HLSL. We didn’t
cover them earlier because they’re used primarily in the effects
framework.

19.2.1 Texture Objects

The HLSL intrinsic texture type represents an IDirect3DTex-
ture9 object. By using texture objects we can associate the texture
for a particular sampler stage directly in the effect file. Texture
objects have the following data members that can be accessed:

� type—The type of texture (e.g., 2D, 3D)

� format—The pixel format of the texture

� width—The width of the texture in pixels

� height—The height of the texture in pixels

� depth—The depth (if a 3D volume texture) of the texture in pixels

Aside: So far we have only used textures to store image data, but
as you get into more advanced techniques, you will find that textures
are used to hold arbitrary table info. In other words, textures are just
tables of data; they don’t have to contain image data necessarily. For
example, in bump mapping we use what is called a normal map,
which is a texture that contains normal vectors at each entry.

19.2.2 Sampler Objects and Sampler States

We discussed the sampler object in Chapter 18; however, the effects
framework exposes the new sampler_state keyword. Using the
sampler_state keyword, we can initialize a sampler object (that is,
set the texture and sampler states for that sampler object directly
within an effect file). The following example illustrates this:

The Effects Framework 337

P
a

rt
IV

Texture Tex;

sampler S0 = sampler_state
{

Texture = (Tex);
MinFilter = LINEAR;
MagFilter = LINEAR;
MipFilter = LINEAR;

};

Here we have associated the texture Tex with the texture stage that
S0 corresponds with and also set the sampler states for the sampler
stage that S0 corresponds with. We have set all this directly and cleanly
in the effect file!

19.2.3 Vertex and Pixel Shader Objects

The vertexshader and pixelshader HLSL intrinsic types repre-
sent vertex and pixel shaders, respectively. They are used in the effects
framework to refer to the particular vertex and/or pixel shader that is
to be used for a particular rendering pass. A vertexshader and/or
pixelshader type can be set from the application through the
ID3DXEffect interface with the ID3DXEffect::SetVertex-
Shader and ID3DXEffect::SetPixelShader methods, respec-
tively. For example, let Effect be a valid ID3DXEffect object, let VS
be a valid IDirect3DVertexShader9 object, and let VSHandle be a
D3DXHANDLE that refers to a vertexshader object in the effect file;
then we can initialize the vertex shader that VSHandle refers to by
writing:

Effect->SetVertexShader(VSHandle, VS);

We look at SetVertexShader and SetPixelShader more when we
examine how to set variables in the effect file from the application.

Alternatively, we can write the vertex and/or pixel shader directly
into the effect file. Then using a special compiling syntax, we can set a
shader variable. The following example illustrates how to initialize a
pixelshader variable ps.

// Define Main:
OUTPUT Main(INPUT input){...}

// Compile Main:
pixelshader ps = compile ps_2_0 Main();

Observe that after the compile keyword we specify the version name,
followed by the shader’s entry point function. Note that when using this
style to initialize a vertex/pixel shader object, the entry point function
must be defined in the effect file.

338 Chapter 19

Finally, we associate a shader with a particular pass, as follows:

// Define Main:
OUTPUT Main(INPUT input){...}

// Compile Main:
vertexshader vs = compile vs_2_0 Main();

pass P0
{

// Set ‘vs’ as the vertex shader for this pass.
vertexshader = (vs);

...
}

Or more compactly as:

pass P0
{

// Set the vertex shader whose entry point is “Main()” as the
// vertex shader for this pass.
vertexShader = compile vs_2_0 Main();

...
}

Note: It is worth mentioning, so that you are at least aware of it,
that you can initialize a vertexshader and pixelshader type using
this syntax:

vertexshader vs = asm { /*assembly instructions go here */ };
pixelshader ps = asm { /*assembly instructions go here */ };

This syntax is used if you are writing your shaders in the assembly
language.

19.2.4 Strings

Finally, there is a string object that can be used as shown here:

string filename = "texName.bmp";

Although string types are not used by any functions in HLSL, they
can be read by the application. This way, we can further encapsulate
references to data files that an effect uses, such as texture filenames
and XFile names.

19.2.5 Annotations

In addition to the semantic syntax we have already discussed, an anno-
tation may be attached to variables. Annotations are not used by HLSL,
but they can be accessed by the application through the effects frame-
work. They merely serve to attach a “note” to a variable that the
application might want associated with that variable. Annotations are

The Effects Framework 339

P
a

rt
IV

added with the <annotation> syntax. The following line illustrates
this:

texture tex0 < string name = "tiger.bmp"; >;

The annotation in this example is <string name =

"tiger.bmp";>. This associates a string with the variable tex0,
namely the filename that stores the texture data. Clearly, annotating a
texture with its corresponding filename can be beneficial.

Annotations can be retrieved using the following method:

D3DXHANDLE ID3DXEffect::GetAnnotationByName(
D3DXHANDLE hObject,
LPCSTR pName

);

pName is the name of the annotation we want a handle to and hObject
is the handle to the parent block the annotation is in, such as a tech-
nique, pass, or structure block. Once we have a handle to the annota-
tion, we can get info about it by using ID3DXEffect::GetPara-
meterDesc to fill out a D3DXCONSTANT_DESC structure. See the
DirectX SDK documentation for details.

19.3 Device States in an Effect File

Usually, to execute an effect correctly, we must set device states, such
as render states, texture states, materials, lights, and textures. To sup-
port the ability to encapsulate a complete effect in one file, the effects
framework allows us to set device states in the effect file. Device states
are set inside a rendering pass block, and the syntax looks like this:

State = Value;

For the complete list of states, search for “states” in the index of the
DirectX SDK documentation, or from the Contents tab of the SDK, see
DirectX Graphics\Reference\Effect Reference\Effect Format\States.

Consider the FillMode state. If you look it up as just mentioned
in the SDK, it says the values are the same values as D3DFILLMODE
without the D3DFILL_ prefix. If we look up D3DFILLMODE in the SDK
documentation we find the values: D3DFILL_POINT, D3DFILL_WIRE-
FRAME, and D3DFILL_SOLID. Thus, for the effect file we omit the
prefix and obtain the following valid assignment values for the state
FillMode: POINT, WIREFRAME, and SOLID. For example, we would
write the following in the effect file:

FillMode = WIREFRAME;
FillMode = POINT;
FillMode = SOLID;

340 Chapter 19

Note: In the subsequent sections we will set several device states in
the example programs. For the most part, the meaning of the state
can be deduced from its name, but if you want more elaborate details,
see the SDK documentation.

19.4 Creating an Effect

An effect is represented by the ID3DXEffect interface, which we cre-
ate with the following D3DX function:

HRESULT D3DXCreateEffectFromFile(
LPDIRECT3DDEVICE9 pDevice,
LPCSTR pSrcFile,
CONST D3DXMACRO* pDefines,
LPD3DXINCLUDE pInclude,
DWORD Flags,
LPD3DXEFFECTPOOL pPool,
LPD3DXEFFECT* ppEffect,
LPD3DXBUFFER *ppCompilationErrors

);

� pDevice—The device to be associated with the created
ID3DXEffect object

� pSrcFile—Name of the text file (the effect file) that contains the
effect source code we want to compile

� pDefines—This parameter is optional, and we specify null for it
in this book.

� pInclude—Pointer to an ID3DXInclude interface. This inter-
face is designed to be implemented by the application so that we
can override default include behavior. In general, the default behav-
ior is fine, and we can ignore this parameter by specifying null.

� Flags—Optional flags for compiling the shaders in the effect file;
specify 0 for no flags. Valid options are:

� D3DXSHADER_DEBUG—Instructs the compiler to write debug
information

� D3DXSHADER_SKIPVALIDATION—Instructs the compiler not
to do any code validation. This should only be used when you
are using a shader that is known to work.

� D3DXSHADER_SKIPOPTIMIZATION—Instructs the compiler
not to perform any code optimization. In practice this would
only be used in debugging, where you would not want the com-
piler to alter the code in any way.

� pPool—Optional pointer to an ID3DXEffectPool interface that
is used to define how effect parameters are shared across other

The Effects Framework 341

P
a

rt
IV

effect instances. In this book we specify null for this parameter,
indicating that we do not share parameters between effect files.

� ppEffect—Returns a pointer to an ID3DXEffect interface rep-
resenting the created effect

� ppCompilationErrors—Returns a pointer to an ID3DXBuffer
that contains a string of error codes and messages

Here is an example call of D3DXCreateEffectFromFile:

//
// Create effect.
//

ID3DXEffect* Effect = 0;
ID3DXBuffer* errorBuffer = 0;
hr = D3DXCreateEffectFromFile(

Device, // associated device
"effect.txt", // source filename
0, // no preprocessor definitions
0, // no ID3DXInclude interface
D3DXSHADER_DEBUG, // compile flags
0, // don't share parameters
&Effect, // return result
&errorBuffer); // return error strings

// output any error messages
if(errorBuffer)
{

::MessageBox(0, (char*)errorBuffer->GetBufferPointer(), 0, 0);
d3d::Release<ID3DXBuffer*>(errorBuffer);

}

if(FAILED(hr))
{

::MessageBox(0, "D3DXCreateEffectFromFile() - FAILED", 0, 0);
return false;

}

19.5 Setting Constants

As with vertex and pixel shaders, we need to initialize variables in the
effect source code from the application source code. However, instead
of using a constant table, as we did with vertex and pixel shaders, the
ID3DXEffect interface has intrinsic methods for setting variables. We
are not going to list all the methods for setting different types of vari-
ables here because there are too many of them to simply relist—see
the DirectX SDK documentation for the complete list. Here is an
abridged listing:

342 Chapter 19

HRESULT ID3DXEffect::SetFloat(

D3DXHANDLE hParameter,

FLOAT f

);

Sets a floating-point variable in
the effect file identified by
hParameter to the value f

HRESULT ID3DXEffect::SetMatrix(

D3DXHANDLE hParameter,

CONST D3DXMATRIX* pMatrix

);

Sets a matrix variable in the effect
file identified by hParameter to the
value pointed to by pMatrix

HRESULT ID3DXEffect::SetString(

D3DXHANDLE hParameter,

CONST LPCSTR pString

);

Sets a matrix variable in the effect
file identified by hParameter to the
value pointed to by pString

HRESULT ID3DXEffect::SetTexture(

D3DXHANDLE hParameter,

LPDIRECT3DBASETEXTURE9 pTexture

);

Sets a texture variable in the effect
file identified by hParameter to the
value pointed to by pTexture

HRESULT ID3DXEffect::SetVector(

D3DXHANDLE hParameter,

CONST D3DXVECTOR4* pVector

);

Sets a vector variable in the effect
file identified by hParameter to the
value pointed to by pVector

HRESULT ID3DXEffect::SetVertexShader(

D3DXHANDLE hParameter,

LPDIRECT3DVERTEXSHADER9

pVertexShader

);

Sets a vertex shader variable in
the effect file identified by
hParameter to the value pointed
to by pVertexShader

HRESULT ID3DXEffect::SetPixelShader(

D3DXHANDLE hParameter,

LPDIRECT3DPIXELSHADER9 pPShader

);

Sets a pixel shader variable in the
effect file identified by hParameter

to the value pointed to by
pPShader

We obtain handles to variables (also called effect parameters) using the
following method:

D3DXHANDLE ID3DXEffect::GetParameterByName(
D3DXHANDLE hParent, // scope of variable – parent structure
LPCSTR pName // name of variable

);

Its signature is the same as the ID3DXConstantTable::GetCon-
stantByName method. Namely, the first parameter is a D3DXHANDLE
that identifies the parent structure in which the variable we want a han-
dle to lives. For global variables that have no parent structure, we
specify null. The second parameter is the name of the variable as it
appears in the effect file.

P
a

rt
IV

The Effects Framework 343

As an example, let’s show how to set some variables in the effect
file:

// some data to set
D3DXMATRIX M;
D3DXMatrixIdentity(&M);

D3DXVECTOR4 color(1.0f, 0.0f, 1.0f, 1.0f);

IDirect3DTexture9* tex = 0;
D3DXCreateTextureFromFile(Device, "shade.bmp", &tex);

// get handles to parameters
D3DXHANDLE MatrixHandle = Effect->GetParameterByName(0, "Matrix");
D3DXHANDLE MtrlHandle = Effect->GetParameterByName(0, "Mtrl");
D3DXHANDLE TexHandle = Effect->GetParameterByName(0, "Tex");

// set parameters
Effect->SetMatrix(MatrixHandle, &M);
Effect->SetVector(MtrlHandle, &color);
Effect->SetTexture(TexHandle, tex);

Note: There are corresponding ID3DXEffect::Get* methods for
each ID3DXEffect::Set* method that can be used to retrieve the
value of a variable in the effect file. For example, to get a variable that
is a matrix type, we would use this function:

HRESULT ID3DXEffect::GetMatrix(
D3DXHANDLE hParameter,
D3DXMATRIX* pMatrix

);

See the DirectX SDK documentation for a list of all methods.

19.6 Using an Effect

In this section and its subsections, we show how to use an effect once it
has been created. The following steps summarize the overall process:

1. Obtain a handle to the technique in the effect file you wish to use.

2. Activate the desired technique.

3. Begin the currently active technique.

4. For each rendering pass in the active technique, render the desired
geometry. Recall that techniques may consist of several rendering
passes, and we must render the geometry once for each pass.

5. End the currently active technique.

344 Chapter 19

TE
AM
FL
Y

Team-Fly®

19.6.1 Obtaining a Handle to an Effect

The first step to using a technique is to obtain a D3DXHANDLE to that
technique. A handle to a technique can be obtained using this method:

D3DXHANDLE ID3DXEffect::GetTechniqueByName(
LPCSTR pName // Name of the technique.

);

Note: In practice, an effect file typically contains several techniques,
where each is designed for a particular set of hardware capabilities.
Therefore, the application normally runs some capability tests on the
system to determine its hardware and then selects the best technique
based on those tests. See ID3DXEffect::ValidateTechnique in the
following section.

19.6.2 Activating an Effect

Once the handle to the desired technique has been obtained, we must
activate that technique. This is done with the following method:

HRESULT ID3DXEffect::SetTechnique(
D3DXHANDLE hTechnique // Handle to the technique to set.

);

Note: Before activating a technique you will want to validate it with
the current device. That is, you will want to ensure that the hardware
supports the features the technique uses and the configuration of fea-
tures the technique uses. You can use the following method to do so:

HRESULT ID3DXEffect::ValidateTechnique(
D3DXHANDLE hTechnique // Handle to the technique to validate.

);

Recall that an effect file may have several techniques, each attempting
to implement a particular effect using different hardware features,
hoping that the implementation of at least one technique will work on
the user’s system. For an effect, you will want to iterate through each
technique and run it through ID3DXEffect::ValidateTech-
nique so that you can verify which techniques are supported and
which ones are not, and then act appropriately.

19.6.3 Beginning an Effect

To render geometry using an effect, we must surround the drawing
function calls between the ID3DXEffect::Begin and ID3DXEffect
::End methods. These functions essentially enable and disable the
effect, respectively.

HRESULT ID3DXEffect::Begin(
UINT* pPasses,
DWORD Flags

);

The Effects Framework 345

P
a

rt
IV

� pPasses—Returns the number of passes in the currently active
technique

� Flags—Any one of the following flags:

� Zero (0)—Instructs the effect to save the current device
states and shader states and then restore them after the effect
is finished (when ID3DXEffect::End is called). This is use-
ful because the effect file can change the states, and it may be
desirable to restore the states prior to beginning the effect.

� D3DXFX_DONOTSAVESTATE—Instructs the effect to not save
and restore device states (excludes shader states)

� D3DXFX_DONOTSAVESHADERSTATE—Instructs the effect to
not save and restore shader states

19.6.4 Setting the Current Rendering Pass

Before we can render any geometry using an effect, we must specify
the rendering pass to use. Recall that a technique consists of one or
more rendering passes, where each pass encapsulates different device
states, samplers, and/or shaders that are to be used for that pass. The
rendering pass is specified with the following method:

HRESULT ID3DXEffect::Pass(
UINT iPass // Index identifying the pass.

);

The rendering passes for a technique are labeled as 0…n-1 for n

passes. Thus, we can iterate through each pass using a simple for loop
and render the geometry for that pass. Section 19.6.6 shows an
example.

19.6.5 Ending an Effect

Finally, after we have rendered the geometry for each pass, we disable
or end the effect with ID3DXEffect::End:

HRESULT ID3DXEffect::End(VOID);

19.6.6 Example

The following code snippet illustrates the above five steps necessary to
use an effect:

// In effect file:
technique T0
{

pass P0
{
...

346 Chapter 19

}
}
====================================

// In application source code:

// Get technique handle.
D3DXHANDLE hTech = 0;
hTech = Effect->GetTechniqueByName("T0");

// Activate technique.
Effect->SetTechnique(hTech);

// Begin the active technique.
UINT numPasses = 0;
Effect->Begin(&numPasses, 0);

// For each rendering pass.
for(int i = 0; i < numPasses; i++)
{

// Set the current pass.
Effect->Pass(i);

// Render the geometry for the ith pass.
Sphere->Draw();

}
// End the effect.
Effect->End();

19.7 Sample Application: Lighting and
Texturing in an Effect File

As a warm-up, let’s create an effect file that handles lighting and textur-
ing a 3D model. The sample runs entirely in the fixed function pipeline,
implying that the effects framework is not limited to effects that use
shaders. Figure 19.1 shows a screen shot of the Lighting and Texturing
sample.

The Effects Framework 347

P
a

rt
IV

Figure 19.1: Screen shot
from the Lighting and
Texturing sample. The
texture, material, and
lighting states are speci-
fied inside the effect file.

The effect file is implemented as follows:

//
// File: light_tex.txt
//
// Desc: Effect file that handles device states for lighting
// and texturing a 3D model.
//

//
// Globals
//

matrix WorldMatrix;
matrix ViewMatrix;
matrix ProjMatrix;

texture Tex;

//
// Sampler
//

// Associated the texture ‘Tex’ with the texture stage ‘S0’
// corresponds with and also set the sampler states for the sampler
// stage ‘S0’ corresponds with.
sampler S0 = sampler_state
{

Texture = (Tex);
MinFilter = LINEAR;
MagFilter = LINEAR;
MipFilter = LINEAR;

};

//
// Effect
//

technique LightAndTexture
{

pass P0
{

//
// Set misc. render states.

pixelshader = null; // No pixel shader.
vertexshader = null; // No vertex shader.
fvf = XYZ | Normal | Tex1; // Flexible vertex format
Lighting = true; // Enable lighting.
NormalizeNormals = true; // Renormalize normals.
SpecularEnable = false; // Disable specular highlights.

//
// Set transformation states

WorldTransform[0] = (WorldMatrix);
ViewTransform = (ViewMatrix);

348 Chapter 19

ProjectionTransform = (ProjMatrix);

//
// Set a light source at light index 0. We fill out all the
// components for light[0] because the Direct3D
// documentation recommends filling out all components
// for best performance.

LightType[0] = Directional;
LightAmbient[0] = {0.2f, 0.2f, 0.2f, 1.0f};
LightDiffuse[0] = {1.0f, 1.0f, 1.0f, 1.0f};
LightSpecular[0] = {0.0f, 0.0f, 0.0f, 1.0f};
LightDirection[0] = {1.0f, -1.0f, 1.0f, 0.0f};
LightPosition[0] = {0.0f, 0.0f, 0.0f, 0.0f};
LightFalloff[0] = 0.0f;
LightRange[0] = 0.0f;
LightTheta[0] = 0.0f;
LightPhi[0] = 0.0f;
LightAttenuation0[0] = 1.0f;
LightAttenuation1[0] = 0.0f;
LightAttenuation2[0] = 0.0f;

// Finally, enable the light:

LightEnable[0] = true;

//
// Set material components. This is like calling
// IDirect3DDevice9::SetMaterial.

MaterialAmbient = {1.0f, 1.0f, 1.0f, 1.0f};
MaterialDiffuse = {1.0f, 1.0f, 1.0f, 1.0f};
MaterialEmissive = {0.0f, 0.0f, 0.0f, 0.0f};
MaterialPower = 1.0f;
MaterialSpecular = {1.0f, 1.0f, 1.0f, 1.0f};

//
// Hook up the sampler object ‘S0’ to sampler stage 0,
// which is given by Sampler[0].

Sampler[0] = (S0);
}

}

In this effect file we are primarily setting device states, as covered in
section 19.3. For instance, we set a light source and a material directly
in the effect file. Furthermore, we specify transformation matrices and
the texture and sampler states to apply. These specified states are then
applied to any geometry that is rendered using technique LightAnd-
Texture and rendering pass P0.

Note: Observe that to refer to variables in an effect file, we must
enclose them in parentheses. For example, to refer to matrix variables,
we had to write (WorldMatrix), (ViewMatrix), and (ProjMatrix).
Leaving the parentheses off is illegal.

The Effects Framework 349

P
a

rt
IV

Since most of the necessary grunt work is done in the effect file, such
as setting lights, materials, and textures, the application code is simply
a matter of creating the effect and enabling it. The sample has the fol-
lowing relevant global variables:

ID3DXEffect* LightTexEffect = 0;

D3DXHANDLE WorldMatrixHandle = 0;
D3DXHANDLE ViewMatrixHandle = 0;
D3DXHANDLE ProjMatrixHandle = 0;
D3DXHANDLE TexHandle = 0;

D3DXHANDLE LightTexTechHandle = 0;

This is nothing interesting—just an ID3DXEffect pointer and some
handles. The LightTexTechHandle is a handle to a technique, hence
the substring “Tech” in its name.

The Setup function performs three primary steps: creates the
effect, obtains handles to effect parameters and to the technique we are
going to use, and initializes some of the effect parameters. Its abridged
implementation is as follows:

bool Setup()
{
HRESULT hr = 0;

//
// ...[Load XFile Snipped]
//

//
// Create effect.
//

ID3DXBuffer* errorBuffer = 0;
hr = D3DXCreateEffectFromFile(

Device, // associated device
"light_tex.txt", // effect filename
0, // no preprocessor definitions
0, // no ID3DXInclude interface
D3DXSHADER_DEBUG, // compile flags
0, // don't share parameters
&LightTexEffect, // return effect interface pointer
&errorBuffer); // return error messages

// output any error messages
if(errorBuffer)
{

::MessageBox(0, (char*)errorBuffer->GetBufferPointer(), 0, 0);
d3d::Release<ID3DXBuffer*>(errorBuffer);

}

if(FAILED(hr))
{

350 Chapter 19

::MessageBox(0, "D3DXCreateEffectFromFile() - FAILED", 0, 0);
return false;

}

//
// Save Frequently Accessed Parameter Handles
//

WorldMatrixHandle=LightTexEffect->GetParameterByName(0,
"WorldMatrix");

ViewMatrixHandle =LightTexEffect->GetParameterByName(0, "ViewMatrix");
ProjMatrixHandle =LightTexEffect->GetParameterByName(0, "ProjMatrix");
TexHandle =LightTexEffect->GetParameterByName(0, "Tex");

LightTexTechHandle =
LightTexEffect->GetTechniqueByName("LightAndTexture");

//
// Set effect parameters
//

// Matrices
D3DXMATRIX W, P;

D3DXMatrixIdentity(&W);
LightTexEffect->SetMatrix(WorldMatrixHandle, &W);

D3DXMatrixPerspectiveFovLH(
&P, D3DX_PI * 0.25f, // 45 - degree
(float)Width / (float)Height,
1.0f, 1000.0f);

LightTexEffect->SetMatrix(ProjMatrixHandle, &P);

// Texture:
IDirect3DTexture9* tex = 0;
D3DXCreateTextureFromFile(Device, "Terrain_3x_diffcol.jpg", &tex);

LightTexEffect->SetTexture(TexHandle, tex);

d3d::Release<IDirect3DTexture9*>(tex);

return true;
}

The Display function is straightforward and performs the steps out-
lined in section 19.6:

bool Display(float timeDelta)
{
if(Device)
{

//
// ...[Camera update snipped]
//

// set the new updated view matrix

The Effects Framework 351

P
a

rt
IV

LightTexEffect->SetMatrix(ViewMatrixHandle, &V);

//
// Activate the technique and render
//

Device->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,
0xffffffff, 1.0f, 0);

Device->BeginScene();

// set the technique to use
LightTexEffect->SetTechnique(LightTexTechHandle);

UINT numPasses = 0;
LightTexEffect->Begin(&numPasses, 0);

for(int i = 0; i < numPasses; i++)
{

LightTexEffect->Pass(i);

for(int j = 0; j < Mtrls.size(); j++)
{

Mesh->DrawSubset(j);
}

}
LightTexEffect->End();

Device->EndScene();
Device->Present(0, 0, 0, 0);

}
return true;
}

19.8 Sample Application: Fog Effect

One of the topics we regret not devoting a chapter to is Direct3D fog.
Fog effects add a new level of realism to the scene and can be used to
simulate certain types of weather conditions. Furthermore, fog can
greatly diminish far-clip plane visual artifacts.

Although we can’t give it the attention it deserves, we do squeeze
in a brief fog sample here. Although we do not go into detail, we do
show and explain the Direct3D code, which is fairly intuitive.

Direct3D fog is part of the fixed function pipeline, as is controlled
through render states. The following effect file sets the necessary fog
states for vertex fog.

Note: Direct3D also supports pixel fog (also called table fog), which
is more accurate than vertex fog.

//
// File: fog.txt
//

352 Chapter 19

// Desc: Effect file that handles device states for linear vertex fog.
//

technique Fog
{

pass P0
{

//
// Set misc render states.

pixelshader = null;
vertexshader = null;
fvf = XYZ | Normal;
Lighting = true;
NormalizeNormals = true;
SpecularEnable = false;

//
// Fog states

FogVertexMode = LINEAR; // Linear fog function.
FogStart = 50.0f; // Fog starts 50 units

// away from viewpoint.
FogEnd = 300.0f; // Fog ends 300 units

// away from viewpoint.

FogColor = 0x00CCCCCC;// Gray colored fog.
FogEnable = true; // Enable vertex fog.

}
}

As you can see, linear vertex fog can be controlled through five simple
render states:

� FogVertexMode—Specifies the fog function to use for vertex fog.
The fog function specifies how the fog increases with distance, as
naturally fog is less thick near the viewpoint and becomes thicker
as the distance increases. Valid assignment types are LINEAR, EXP,
and EXP2. These functions are defined as:

LINEAR fog function: f
end d

end start
�

�
�

EXP fog function: f
e d density

�
1

()

EXP2 fog function: f
e d density

�
1

2(())

(d is the distance from the viewpoint.)

Note: If you use the EXP or EXP2 fog functions, you do not need to
set FogStart and FogEnd because they are not used in these types of
fog functions; instead you must set the fog density render state (e.g.,
FogDensity = someFloatType;).

The Effects Framework 353

P
a

rt
IV

� FogStart—Marks the starting depth at which objects will begin
to be fogged

� FogEnd—Marks the ending depth at which objects will stop being
fogged

Note: FogStart and FogEnd essentially define the depth interval
(from the viewpoint) that objects must be in to be fogged.

� FogColor—A DWORD or D3DCOLOR value type that describes the
fog’s color

� FogEnable—Specify true to enable vertex fog or false to dis-
able vertex fog

Any geometry that we render using the fog.txt effect will have fog
applied to it. In this way, we can control which objects get fogged and
which ones don’t. This is useful for only fogging certain areas. For
example, generally if it is foggy outside, the insides of houses are not
foggy. On the same note, certain parts of a geographic region may be
foggy, but other parts may not be. Figure 19.2 shows screen shots taken
from this section’s sample program called Fog Effect.

354 Chapter 19

Figure 19.2: Screen shots from the
Fog Effect sample. In this sample
we use a linear fog function, and
the fog render states are specified
inside an effect file.

TE
AM
FL
Y

Team-Fly®

19.9 Sample Application: Cartoon Effect

The two effect file samples that we have shown so far did not use
shaders. Because shaders are typically an important part of special
effects, we want to show at least one example of them together. The
sample CartoonEffect implements the cartoon shader as discussed in
Chapter 17, but this time using the effects framework. Following is an
abridged version of the effect file:

//
// File: tooneffect.txt
//
// Desc: Cartoon shader in an effect file.
//

extern matrix WorldMatrix;
extern matrix ViewMatrix;
extern matrix ProjMatrix;
extern vector Color;
extern vector LightDirection;
static vector Black = {0.0f, 0.0f, 0.0f, 0.0f};
extern texture ShadeTex;

struct VS_INPUT
{

vector position : POSITION;
vector normal : NORMAL;

};
struct VS_OUTPUT
{

vector position : POSITION;
float2 uvCoords : TEXCOORD;
vector diffuse : COLOR;

};

// Cartoon Shader Function:
VS_OUTPUT Main(VS_INPUT input)
{

...[Implementation omitted for brevity.]
}

sampler ShadeSampler = sampler_state
{

Texture = (ShadeTex);
MinFilter = POINT; // no filtering for cartoon shading
MagFilter = POINT;
MipFilter = NONE;

};

technique Toon
{

pass P0
{

// Set P0’s vertex shader.
vertexShader = compile vs_1_1 Main();

The Effects Framework 355

P
a

rt
IV

// Hook up the sampler object to sampler stage 0.
Sampler[0] = (ShadeSampler);

}
}

We note that the cartoon shader functions are defined inside the effect
file, and we specify the shader to use for a particular pass using the
syntax vertexShader = compile vs_1_1 Main(); in the pass
block. Device states are set as usual in the effect file.

19.10 EffectEdit

Before we conclude this chapter, we want to mention the EffectEdit
program that ships with the DirectX SDK. It can be found in the
\DXSDK\Samples\C++\Direct3D\Bin folder. Figure 19.3 shows a
screen shot.

The EffectEdit program is useful for testing and writing effect files. We
recommend that you spend some time exploring this tool.

19.11 Summary

� Effect files encapsulate a complete effect, including possible hard-
ware fallbacks for hardware with different capabilities and render-
ing passes. The effects framework is desirable because we can
change effect files without recompiling source code and because it
allows us to encapsulate an effect, making everything modular.
Effect files can be used without shaders; that is, it is perfectly accept-
able to make an effect file that uses the fixed function pipeline.

356 Chapter 19

Figure 19.3: A screen shot
of the EffectEdit program
that ships with the DirectX
SDK

� A technique is a particular implementation of a special effect.
Typically, an effect file will consist of several techniques that all
implement the same effect but in different ways. Each implementa-
tion will utilize the capabilities of a specific generation of hardware.
Thus, the application can choose the technique that is most fitting
for the target hardware. For example, to implement multitexturing,
we might define two techniques—one that uses pixel shaders and
one that uses the fixed function pipeline. In this way, users with a
pixel shader-capable 3D card can use the pixel shader technique,
and users with a 3D card that does not support pixel shaders can
still execute the effect in the fixed function version.

� A technique consists of one or more rendering passes. A rendering
pass consists of the device states and shaders used to render the
geometry for that particular pass. Multiple rendering passes are
necessary because some special effects require the same geometry
to be rendered several times, each time with different device states
and/or shaders.

The Effects Framework 357

P
a

rt
IV

This page intentionally left blank.

Appendix

An Introduction to
Windows
Programming

To use the Direct3D API (application programming interface), it is nec-
essary to create a Windows (Win32) application with a main window,
upon which we render our 3D scenes. This appendix serves as an intro-
duction to writing Windows applications using the native Win32 API.
Loosely, the Win32 API is a set of low-level functions and structures
exposed to us in the C programming language that enables our applica-
tion and the Windows operating system (OS) to communicate with each
other. For example, to notify Windows to show a particular window, we
use the Win32 API function ShowWindow.

Windows programming is a huge subject, and this appendix intro-
duces only what is necessary for us to use Direct3D. For readers
interested in learning more about Windows programming with the
Win32 API, the book Programming Windows (now in its fifth edition) by
Charles Petzold is the standard text on the subject. Another invaluable
resource when working with Microsoft technologies is the MSDN
library, which is usually included with Microsoft’s Visual Studio but can
also be read online at www.msdn.microsoft.com. In general, if you come
upon a Win32 function or structure that you would like to know more
about, go to MSDN and search for that function or structure. Often in
this appendix we direct you to look up a function or structure on MSDN
for more elaborate details.

Objectives

� To learn and understand the event-driven programming model used
in Windows programming

� To learn the minimal code necessary to create a Windows applica-
tion that is necessary to use Direct3D

359

Note: To avoid confusion, we use a capital W to refer to Windows
the OS, and we use a lowercase w to refer to a particular window run-
ning in Windows.

Overview

As the name suggests, one of the primary themes of Windows pro-
gramming is programming windows. Many of the components of a
Windows application are windows, such as the main application window,
menus, toolbars, scroll bars, buttons, and other dialog controls. There-
fore, a Windows application typically consists of several windows.
These next few subsections provide a concise overview of Windows
programming concepts that we should be familiar with before beginning
a more complete discussion.

Resources

In Windows, several applications can run concurrently. Therefore, hard-
ware resources such as CPU cycles, memory, and even the monitor
screen must be shared among multiple applications. In order to prevent
chaos from ensuing due to several applications accessing/modifying
resources without any organization, Windows applications do not have
direct access to hardware. One of the main jobs of Windows is to man-
age the presently instantiated applications and handle the distribution
of resources among them. Thus, in order for our application to do
something that might affect another running application, it must go
through Windows. For example, to display a window, you must call
ShowWindow; you cannot write to video memory directly.

Events, the Message Queue, Messages, and the
Message Loop

A Windows application follows an event-driven programming model.
Typically, a Windows application sits and waits (an application can per-
form idle processing—that is, perform a certain task when no events
are occurring) for something to happen—an event. An event can be gen-
erated in a number of ways; some common examples are keypresses,
mouse clicks, and when a window is created, resized, moved, closed,
minimized, maximized, or becomes visible.

When an event occurs, Windows sends a message to the application
for which the event occurred and adds the message to the application’s
message queue, which is simply a priority queue that stores messages

360 Appendix

for an application. The application constantly checks the message
queue for messages in a message loop, and when it receives one it dis-
patches it to the window procedure of the particular window that the
message is for. (Remember that an application can contain several win-
dows within it.) The window procedure is a special function that is
associated with each window of the application. (Every window has a
window procedure, but several windows can share the same window
procedure. Therefore, we don’t necessarily have to write a window pro-
cedure for each window.) The window procedure is a function we
implement that handles specific messages. For instance, we may want
to destroy a window when the Escape key is pressed. In our window
procedure we would write:

case WM_KEYDOWN:
if(wParam == VK_ESCAPE)

::DestroyWindow(MainWindowHandle);
return 0;

The messages that a window doesn’t handle are usually forwarded to a
default window procedure, which then handles the message.

To summarize, the user or an application does something to gener-
ate an event. The OS finds the application that the event was targeted
toward, and it sends that application a message in response. The mes-
sage is then added to the application’s message queue. The application
is constantly checking its message queue for messages. When it
receives a message, the application dispatches it to the window proce-
dure associated with the window for which the message is targeted.
Finally, the window procedure executes instructions in response to the
message.

Figure 1 summarizes the event-driven programming model.

An Introduction to Windows Programming 361

A
p

p
e

n
d

ix

GUI

Most Windows programs present a GUI (graphical user interface) that
users can work from. A typical Windows application has one main win-
dow, a menu, a toolbar, and perhaps some other controls. Figure 2
shows and identifies some common GUI elements. For Direct3D game
programming, we do not need a fancy GUI. In fact, all we need is a main
window, where the client area is used to render our 3D worlds.

362 Appendix

Figure 1: The
event-driven pro-
gramming model

Figure 2: A typical Win-
dows application GUI. The
client area is the entire
large white space of the
application. Typically, this
area is where the user
views most of the pro-
gram’s output. When we
program our Direct3D
applications, we render our
3D scenes into the client
area of a window.

Hello World Windows Application

Below is the code to a fully functional yet simple Windows program.
Follow the code as best you can. The next section explains the code a
bit at a time. It is recommended that you create a project with your
development tool, type the code in by hand, compile it, and execute it
as an exercise. Note that you must create a Win32 Application Project,
not a Win32 Console Application Project.

///
//
// File: hello.cpp
//
// Author: Frank D. Luna (C) All Rights Reserved
//
// System: AMD Athlon 1800+ XP, 512 DDR, Geforce 3, Windows XP,
// MSVC++ 7.0
//
// Desc: Demonstrates creating a Windows application.
//
///

// Include the windows header file, this has all the
// Win32 API structures, types, and function declarations
// we need to program Windows.
#include <windows.h>

// The main window handle. This is used to identify
// the main window we are going to create.
HWND MainWindowHandle = 0;

// Wraps the code necessary to initialize a Windows
// application. Function returns true if initialization
// was successful, else it returns false.
bool InitWindowsApp(HINSTANCE instanceHandle, int show);

// Wraps the message loop code.
int Run();

// The window procedure, handles events our window
// receives.
LRESULT CALLBACK WndProc(HWND hWnd,

UINT msg,
WPARAM wParam,
LPARAM lParam);

// Windows equivalant to main()
int WINAPI WinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,
PSTR pCmdLine,
int nShowCmd)

{
// First we create and initialize our Windows
// application. Notice we pass the application
// hInstance and the nShowCmd from WinMain as

An Introduction to Windows Programming 363

A
p

p
e

n
d

ix

// parameters.
if(!InitWindowsApp(hInstance, nShowCmd))
{

::MessageBox(0, "Init - Failed", "Error", MB_OK);
return 0;

}

// Once our application has been created and
// initialized we enter the message loop. We
// stay in the message loop until a WM_QUIT
// message is received, indicating the application
// should be terminated.
return Run(); // enter message loop

}

bool InitWindowsApp(HINSTANCE instanceHandle, int show)
{

// The first task to creating a window is to describe
// its characteristics by filling out a WNDCLASS
// structure.
WNDCLASS wc;

wc.style = CS_HREDRAW | CS_VREDRAW;
wc.lpfnWndProc = WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = instanceHandle;
wc.hIcon = ::LoadIcon(0, IDI_APPLICATION);
wc.hCursor = ::LoadCursor(0, IDC_ARROW);
wc.hbrBackground =

static_cast<HBRUSH>(::GetStockObject(WHITE_BRUSH));
wc.lpszMenuName = 0;
wc.lpszClassName = "Hello";

// Then we register this window class description
// with Windows so that we can create a window based
// on that description.
if(!::RegisterClass(&wc))
{

::MessageBox(0, "RegisterClass - Failed", 0, 0);
return false;

}

// With our window class description registered, we
// can create a window with the CreateWindow function.
// Note, this function returns a HWND to the created
// window, which we save in MainWindowHandle. Through
// MainWindowHandle we can reference this particular
// window we are creating.
MainWindowHandle = ::CreateWindow(

"Hello",
"Hello",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,

364 Appendix

TE
AM
FL
Y

Team-Fly®

0,
0,
instanceHandle,
0);

if(MainWindowHandle == 0)
{

::MessageBox(0, "CreateWindow - Failed", 0, 0);
return false;

}

// Finally we show and update the window we just created.
// Observe we pass MainWindowHandle to these functions so
// that these functions know what particular window to
// show and update.
::ShowWindow(MainWindowHandle, show);
::UpdateWindow(MainWindowHandle);

return true;
}

int Run()
{

MSG msg;
::ZeroMemory(&msg, sizeof(MSG));

// Loop until we get a WM_QUIT message. The
// function GetMessage will only return 0 (false)
// when a WM_QUIT message is received, which
// effectively exits the loop.
while(::GetMessage(&msg, 0, 0, 0))
{

// Translate the message, and then dispatch it
// to the appropriate window procedure.
::TranslateMessage(&msg);
::DispatchMessage(&msg);

}

return msg.wParam;
}

LRESULT CALLBACK WndProc(HWND windowHandle,
UINT msg,
WPARAM wParam,
LPARAM lParam)

{
// Handle some specific messages:
switch(msg)
{

// In the case the left mouse button was pressed,
// then display a message box.

case WM_LBUTTONDOWN:
::MessageBox(0, "Hello, World", "Hello", MB_OK);
return 0;

// In the case the escape key was pressed, then

An Introduction to Windows Programming 365

A
p

p
e

n
d

ix

// destroy the main application window, which is
// identified by MainWindowHandle.

case WM_KEYDOWN:
if(wParam == VK_ESCAPE)

::DestroyWindow(MainWindowHandle);
return 0;

// In the case of a destroy message, then
// send a quit message, which will terminate
// the message loop.

case WM_DESTROY:
::PostQuitMessage(0);
return 0;

}

// Forward any other messages we didn't handle
// above to the default window procedure.
return ::DefWindowProc(windowHandle,

msg,
wParam,
lParam);

}

Explaining Hello World

Let’s examine the code from top to bottom, stepping into any function
that gets called along the way. Refer back to the Hello World code list-
ing throughout these subsections.

Includes, Global Variables, and Prototypes

The first thing we do is include the windows.h header file. By including
the windows.h file, we obtain the structures, types, and function decla-
rations needed for using the basic elements of the Win32 API.

#include <windows.h>

366 Appendix

Figure 3: A screen
shot of the above
program. Note that
the message box
appears when you
press the left mouse
button in the win-
dow’s client area.

The second statement is an instantiation of a global variable of type
HWND. This stands for “handle to a window.” In Windows programming,
we often use handles to refer to objects maintained internally by Win-
dows. In this sample, we use an HWND to refer to our main application
window maintained by Windows. We need to hold onto the handles of
our windows because many calls to the API require that we pass in the
handle of the window that we want the API call to act on. For example,
the call UpdateWindow takes one argument that is of type HWND that
is used to specify the window to update. If we didn’t pass in a handle to
it, the function wouldn’t know what window to update.

HWND MainWindowHandle = 0;

The next three lines are function declarations. Briefly, InitWindows-
App creates and initializes our main application window, Run encapsu-
lates the message loop for our application, and WndProc is our main
window’s window procedure. We examine these functions in more
detail when we come to the point where they are called.

bool InitWindowsApp(HINSTANCE instanceHandle, int show);
int Run();
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

WinMain

WinMain is the Windows equivalent to the main function in normal
C++ programming. WinMain is prototyped as follows:

int WINAPI WinMain(
HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow

);

� hInstance—Handle to the current application instance. It serves
as a way of identifying and referring to this application. Remember
that there may be several Windows applications running concur-
rently, so it is useful to be able to refer to each one.

� hPrevInstance—Not used in 32-bit Win32 programming and is 0

� lpCmdLine—The command line argument string used to run the
program

� nCmdShow—Specifies how the application window should be dis-
played. Some common commands that show the window in its cur-
rent size and position, maximized, and minimized, respectively, are
SW_SHOW, SW_SHOWMAXIMIZED, and SW_SHOWMINIMIZED. See
the MSDN library for a complete list of show commands.

An Introduction to Windows Programming 367

A
p

p
e

n
d

ix

If WinMain succeeds, it should return the wParam member of the
WM_QUIT message. If the function exits without entering the message
loop, it should return 0. The WINAPI identifier is defined as:

#define WINAPI __stdcall

This specifies the calling convention of the function, which means how
the function arguments get placed on the stack.

Note: In the signature of WinMain in the Hello World sample, we
use the type PSTR as the third argument instead of LPSTR. This is
because with 32-bit Windows there are no longer “long pointers.”
PSTR is simply a char pointer (e.g., char*).

WNDCLASS and Registration

Inside WinMain, we call the function InitWindowsApp. As you can
guess, this function does all the initialization of our program. Let’s jump
into this function and examine it. InitWindowsApp returns either
true or false—true if the initialization was a success, false if something
went wrong. In the WinMain definition, we pass a copy of our applica-
tion instance to InitWindowsApp as well as the show command
variable. Both are obtained from the WinMain parameter list.

if(!InitWindowsApp(hInstance, nShowCmd))

The first task at hand in initialization of a window is to describe our
window and register it with Windows. We describe our window with
the WNDCLASS data structure. Its definition:

typedef struct _WNDCLASS {
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HANDLE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCTSTR lpszMenuName;
LPCTSTR lpszClassName;

} WNDCLASS;

� style—Specifies the class style. In our example, we use
CS_HREDRAW combined with CS_VREDRAW. These two bit flags
indicate that the window is to be repainted when either the hori-
zontal or vertical window size is changed. For the complete list of
the various styles with description, see the MSDN library.

wc.style = CS_HREDRAW | CS_VREDRAW;

368 Appendix

� lpfnWndProc—Pointer to the window procedure function. This is
how you associate your window procedure function with a window.
Thus, the windows that are created based on the same WNDCLASS
instance share the same window procedure. The window procedure
function is explained in the section titled “The Window
Procedure.”

wc.lpfnWndProc = WndProc;

� cbClsExtra and cbWndExtra—These are extra memory slots
that you can use for your own purpose. Our Hello World program
does not require any extra space and therefore sets both of these
to 0.

wc.cbClsExtra = 0;
wc.cbWndExtra = 0;

� hInstance—This field is a handle to our application instance.
Recall that the application instance handle is originally passed in
through WinMain.

wc.hInstance = instanceHandle;

� hIcon—Here you specify a handle to an icon to use for the win-
dows created using this window class. There are several built-in
icons to choose from. See the MSDN library for details.

wc.hIcon = ::LoadIcon(0, IDI_APPLICATION);

� hCursor—Similar to hIcon, here you specify a handle to a cursor
to use when the cursor is over the window’s client area. Again,
there are several built-in cursors. See the MSDN library for details.

wc.hCursor = ::LoadCursor(0, IDC_ARROW);

� hbrBackground—This field is used to specify the background
color of the client area of the window. In our sample code we call
the function GetStockObject, which returns a handle to a brush
of the color that we specified. See the MSDN library for other
types of built-in brushes.

wc.hbrBackground =
static_cast<HBRUSH>(::GetStockObject(WHITE_BRUSH));

� lpszMenuName—Specifies the window’s menu. We have no menu
in our application, so we set this to 0.

wc.lpszMenuName = 0;

� lpszClassName—Specifies the name of the window class struc-
ture that we are creating. This can be anything you want. In our
application, we named it “Hello.” The name is simply used to iden-
tify the class structure so that we can reference it later.

An Introduction to Windows Programming 369

A
p

p
e

n
d

ix

wc.lpszClassName = "Hello";

Once we have described our window, we need to register it with Win-
dows. This is done with the RegisterClass function that takes a
pointer to a WNDCLASS structure. This function returns 0 upon failure.

if(!::RegisterClass(&wc))

Creating and Displaying the Window

After we have registered a WNDCLASS variable with Windows, we can
create a window based on that class description. We can refer to the
WNDCLASS structure that describes the window that we want to create
by the class name we gave it—lpszClassName. The function we use
to create a window is the CreateWindow function, which is declared
as follows:

HWND CreateWindow(
LPCTSTR lpClassName,
LPCTSTR lpWindowName,
DWORD dwStyle,
int x,
int y,
int nWidth,
int nHeight,
HWND hWndParent,
HMENU hMenu,
HANDLE hInstance,
LPVOID lpParam

);

� lpClassName—The name (C string) of the registered WNDCLASS
structure that describes the window that we want to create. Pass in
the class name of the WNDCLASS we want to use for the creation of
this window.

� lpWindowName—The name (C string) that we want to give our
window; this is also the name that appears in the window’s caption
bar.

� dwStyle—Defines the style of the window. WS_OVERLAPPED-
WINDOW, which we use in the Hello World sample, is a combination
of several flags: WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX.
The names of these flags describe the characteristics of the win-
dow that they produce. See the MSDN library for the complete list
of styles.

� x—The x position at the top-left corner of the window relative to
the screen

370 Appendix

� y—The y position at the top-left corner of the window relative to
the screen

� nWidth—The width of the window in pixels

� nHeight—The height of the window in pixels

� hWndParent—Handle to a window that is to be the parent of this
window. Our window has no relationship with any other windows;
therefore we set this value to 0.

� hMenu—A handle to a menu. Hello World has no menu and speci-
fies 0 for this argument.

� hInstance—Handle to the application with which the window
will be associated.

� lpParam—A pointer to user-defined data

Note: When we specify the (x, y) coordinates of the window’s posi-
tion, they are relative to the upper-left corner of the screen. Also, the
positive x-axis runs to the right as usual, but the positive y-axis runs
downward. Figure 4 shows this coordinate system, which is called
screen coordinates or screen space.

CreateWindow returns a handle to the window that it creates (an
HWND). If the creation failed, the handle will have the value of 0.
Remember that the handle is a way to refer to the window, which is
managed by Windows. Many of the API calls require an HWND so that
they know what window to act on.

The last two function calls in the InitWindowsApp function have
to do with displaying the window. First we call ShowWindow and pass
in the handle of our newly created window so that Windows knows
what window to show. We also pass in an integer value that defines how
the window is to be initially shown (minimized, maximized, etc.). This
value should be nShowCmd, which is an argument of WinMain. You can
hardcode this value in, but it is not recommended. After showing the
window, we should refresh it. UpdateWindow does this; it takes one
argument that is a handle to the window we wish to update.

::ShowWindow(MainWindowHandle, show);
::UpdateWindow(MainWindowHandle);

An Introduction to Windows Programming 371

A
p

p
e

n
d

ix

Figure 4: Screen space

If we made it this far in InitWindowsApp, then the initialization is
complete; we return true to indicate everything went successfully.

The Message Loop

Having successfully completed initialization, we can begin the heart of
the program, the message loop. In Hello World, we have wrapped the
message loop in a function called Run.

int Run()
{

MSG msg;
::ZeroMemory(&msg, sizeof(MSG));

while(::GetMessage(&msg, 0, 0, 0))
{

::TranslateMessage(&msg);
::DispatchMessage(&msg);

}
return msg.wParam;

}

The first thing done in Run is an instantiation of a variable called msg of
type MSG, which is the message structure that represents a Windows
message. Its definition is as follows:

typedef struct tagMSG {
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;

� hwnd—Identifies the window the message is for

� message—A predefined constant value identifying the message
(e.g., WM_QUIT)

� wParam—Extra information about the message. This is dependent
upon the specific message.

� lParam—Extra information about the message. This is dependent
upon the specific message.

� time—The time the message was posted

� pt—The (x, y) coordinates of the mouse cursor in screen coordi-
nates when the message was posted

Next we enter the message loop. GetMessage will always return true
unless a WM_QUIT message is posted; therefore, the loop continues
until a WM_QUIT message is received. The GetMessage function

372 Appendix

retrieves a message from the message queue and fills in the members
of our MSG structure. If GetMessage returns true, then two more
functions get called: TranslateMessage and DispatchMessage.
TranslateMessage has Windows perform some keyboard transla-
tions, specifically virtual key messages to character messages.
DispatchMessage finally dispatches the message to the appropriate
window procedure.

The Window Procedure

We mentioned previously that the window procedure is where we write
the code we want to execute in response to a message that our window
receives. In Hello World, we name the window procedure WndProc. It
is prototyped as:

LRESULT CALLBACK WndProc(
HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam

);

This function returns an integer of type LRESULT (which is a long)
identifying the success or failure of the function. The CALLBACK identi-
fier specifies that the function is a callback function, which means that
Windows will be calling this function externally. As you can see from
the Hello World source code, we never explicitly call the window proce-
dure ourselves—Windows calls it for us when the window needs to
process a message.

The window procedure has four parameters in its signature:

� hwnd—Identifies the window the message is for

� uMsg—A predefined value that identifies the particular message.
For example, a quit message is defined as WM_QUIT. The prefix
WM stands for “Window Message.” There are over a hundred pre-
defined window messages. See the MSDN library for details.

� wParam—Extra information about the message, which is depend-
ent upon the specific message

� lParam—Extra information about the message, which is depend-
ent upon the specific message

Our window procedure handles three messages: the WM_LBUTTON-
DOWN, WM_KEYDOWN, and WM_DESTROY messages. A WM_LBUTTON-

DOWN message is sent when the user clicks the left mouse button on
the window’s client area. A WM_KEYDOWN message is sent when a key
is pressed. A WM_DESTROY message is sent when the window is being

An Introduction to Windows Programming 373

A
p

p
e

n
d

ix

destroyed. Our code is quite simple; when we receive a WM_LBUTTON-
DOWN message, we display a message box that prints out “Hello,
World”:

case WM_LBUTTONDOWN:
::MessageBox(0, "Hello, World", "Hello", MB_OK);
return 0;

When our window gets a WM_KEYDOWN message, we test what key was
pressed. The wParam passed into the window procedure specifies the
virtual key code of the specific key that was pressed. Think of virtual
key codes as an identifier for a particular key. The Windows header files
have a list of virtual key code constants that we can use to then test for
a particular key (for example, to test if the Escape key was pressed, we
use the virtual key code constant VK_ESCAPE).

Note: Remember, the wParam and lParam parameters are used to
specify extra information about a particular message. For the WM_KEY-

DOWN message, the wParam specifies the virtual key code of the specific
key that was pressed. The MSDN library will specify the information
that the wParam and lParam parameters carry for each Windows
message.

case WM_KEYDOWN:
if(wParam == VK_ESCAPE)

::DestroyWindow(MainWindowHandle);
return 0;

When our window gets destroyed, we post a quit message (which ter-
minates the message loop).

case WM_DESTROY:
::PostQuitMessage(0);
return 0;

At the end of our window procedure, we call the DefWindowProc
function. This function is a default window procedure. In our Hello
World application, we only handle three messages; we use the default
behavior specified in DefWindowProc for all the other messages that
we receive but don’t necessarily need to handle ourselves. For exam-
ple, Hello World can be minimized, maximized, resized, and closed.
This functionality is provided to us through the default window proce-
dure, as we do not handle the window messages to perform this
functionality. Note that DefWindowProc is a Win32 API function.

374 Appendix

TE
AM
FL
Y

Team-Fly®

The MessageBox Function

There is one last API function that we have not yet covered, and that is
the MessageBox function. This function is a very handy way to provide
the user with information and get some quick input. The declaration for
the MessageBox function looks like this:

int MessageBox(
HWND hWnd, // Handle of owner window, may specify null.
LPCTSTR lpText, // Text to put in the message box.
LPCTSTR lpCaption, // Text to put for the title of the message

// box.
UINT uType // Style of the message box.

);

The return value for the MessageBox function depends on the type of
message box. See the MSDN library for a list of possible return values
and styles.

A Better Message Loop

Games are very different applications than traditional Windows applica-
tions, such as office type applications and web browsers. Games are not
typically event driven in the usual sense, and they must be updated
constantly. For this reason, when we actually start writing our 3D pro-
grams we will, for the most part, not deal with Windows messages.
Therefore, we will want to modify the message loop so that if there is a
message, we will process it. But if there is not a message, then we
want to run our game code. Our new message loop is as follows:

int Run()
{

MSG msg;

while(true)
{

if(::PeekMessage(&msg, 0, 0, 0, PM_REMOVE))
{

if(msg.message == WM_QUIT)
break;

::TranslateMessage(&msg);
::DispatchMessage(&msg);

}
else

// run game code
}
return msg.wParam;

}

An Introduction to Windows Programming 375

A
p

p
e

n
d

ix

After we instantiate msg, we enter into an endless loop. We first call
the API function PeekMessage, which checks the message queue for a
message. See MSDN for the argument descriptions. If there is a mes-
sage, it returns true and we handle the message. If PeekMessage
returns false, then we handle our own specific game code.

Summary

� To use Direct3D, we must create a Windows application that has a
main window onto which we can render our 3D scenes. Further-
more, for games we create a special message loop that checks for
messages, and if there are messages, it processes them; otherwise
it executes our game logic.

� Several Windows applications can be running concurrently; there-
fore Windows must manage resources between them and direct
messages to the applications that they were intended for. Messages
are sent to an application’s message queue when an event
(keypress, mouse click, timer, etc.) has occurred for that
application.

� Every Windows application has a message queue where the mes-
sages that an application receives are stored. The application’s
message loop constantly checks the queue for messages and dis-
patches them to their intended window procedure. Note that a sin-
gle application can have several windows within it.

� The window procedure is a special callback function we implement
that Windows calls when a window in our application receives a
message. In the window procedure, we write the code that we want
to be executed when a window in our application receives a partic-
ular message. Messages that we do not specifically handle are for-
warded to a default window procedure for default handling.

376 Appendix

Bibliography

Angel, Edward. Interactive Computer Graphics: A Top-Down Approach

with OpenGL. 2nd ed. Addison-Wesley, 2000.

Blinn, Jim. Jim Blinn’s Corner: A Trip Down the Graphics Pipeline, pp.
53-61. San Francisco: Morgan Kaufmann Publishers, Inc., 1996.

Eberly, David H. 3D Game Engine Design. San Francisco: Morgan
Kaufmann Publishers, Inc., 2001.

Engel, Wolfgang F., ed. Direct3D ShaderX: Vertex and Pixel Shader Tips

and Tricks. Plano, Texas: Wordware Publishing, 2002.

Fraleigh and Beauregard. Linear Algebra. 3rd ed. Addison-Wesley, 1995.

Kilgard, Mark J. “Creating Reflections and Shadows Using Stencil
Buffers,” Game Developers Conference, NVIDIA slide presentation,
1999. (http://developer.nvidia.com/docs/IO/1407/ATT/stencil.ppt)

Lander, Jeff. “Shades of Disney: Opaquing a 3D World.” Game Developer

Magazine, March 2000.

Lengyel, Eric. Mathematics for 3D Game Programming & Computer

Graphics. Hingham, Mass.: Charles River Media, Inc., 2002.

Microsoft Corporation. Microsoft DirectX 9.0 SDK documentation.
Microsoft Corporation, 2002.

Möller, Tomas, and Eric Haines. Real-TimeRendering. 2nd ed. Natick,
Mass.: A K Peters, Ltd., 2002.

Mortenson, M.E. Mathematics for Computer Graphics Applications. 2nd
ed. New York: Industrial Press, Inc., 1999.

Petzold, Charles. Programming Windows. 5th ed. Redmond, Wash.:
Microsoft Press, 1999.

Prosise, Jeff. Programming Windows with MFC. 2nd ed. Redmond,
Wash.: Microsoft Press, 1999.

Savchenko, Sergei. 3D Graphics Programming: Games and Beyond, pp.
153-156, 253-294. Sams Publishing, 2000.

van der Burg, John. “Building an Advanced Particle System.”
Gamasutra, June 2000. (http://www.gamasutra.com/fea-
tures/20000623/vanderburg_01.htm)

377

Watt, Alan, and Fabio Policarpo. 3D Games: Real-time Rendering and

Software Technology. Addison-Wesley, 2001.

Watt, Alan. 3D Computer Graphics. 3rd ed. Addison-Wesley, 2000.

Weinreich, Gabriel. Geometrical Vectors, pp. 1-11. Chicago: The Univer-
sity of Chicago Press, 1998.

Wilt, Nicholas. Object-Oriented Ray Tracing in C++, pp. 56-58. New
York: John Wiley & Sons, Inc., 1994.

378 Bibliography

Index

2D array, see matrix
2D representation, 70
3D modelers, 179
3D Studio MAX, 179

A

abs function, 290
addition, see matrix and vectors
address modes, 116-117

border color, 116
clamp, 116
mirror, 116
wrap, 116

Adobe Photoshop, 214
alpha

blending, see blending
channels, 125
sources, 125-126

ambient lighting, 98
angle between two vectors, 9
anisotropic filtering, 115
antialiasing, 39
anticommutative

cross products, 10
matrix multiplication 13

aspect ratio, 71
attenuation, 105

B

back buffer, 42
back-facing polygons, 68
backface culling, 68-69
billboard, 235
blending, 121-123

destination blend, 123-124
factors, 123-124
formula, 122
source blend, 123-124

bool variable type, 280
border color, see address modes
bounding

box structure, 195
sphere structure, 195
volumes, 193-194

C

callback function, 373
camera, 63-64, 199-201

look vector 199-200
right vector, 199-200
up vector, 67, 199-200
vectors, 199

cartoon
shading, 308-309
vertex shader, 309-311

CD3DFont, 155-156
creating, 156
drawing, 156-157

ceil function, 290
clamp, see address modes
clamp function, 290
clipping, 64, 69-70
color

ranges, 91-92
representation, 91-92
RGBA vector, 93
shade modes, 94-95

column vector, 12
COM, 37
combining transformations, 23-25
const variable prefix, 285
constants, see ID3DXConstantTable
coordinate systems, 3
cos function, 290
CreateWindow function, 370-371
cross function, 290

379

D

D3DBLEND, 123-124
D3DCAPS9, 44
D3DCLEAR_* flags, 55
D3DCMPFUNC, 135
D3DCOLOR, 91
D3DCOLOR_ARGB macro, 92
D3DCOLOR_XRGB macro, 92
D3DCOLORVALUE, 92
D3DCULL, 69
D3DDECLMETHOD, 296
D3DDECLTYPE, 295-296
D3DDECLUSAGE, 296
D3DDEVTYPE, 37
D3DFORMAT, 40-41
D3DFVF, 61
D3DINDEXBUFFER_DESC, 80
D3DLIGHT9, 105-106
D3DLIGHTTYPE, 105
D3DLOCK flags, 79
D3DLOCK_DISCARD, 79, 246
D3DLOCK_NOOVERWRITE, 79, 246
D3DLOCK_READONLY, 79
D3DLOCKED_RECT, 39
D3DMATERIAL9, 99
D3DMATRIX, 17
D3DMULTISAMPLE_TYPE, 40
D3DPOOL, 41-42
D3DPRESENT, 50
D3DPRESENT_PARAMETERS, 48-50
D3DPRESENTFLAG, 49
D3DPRIMITIVETYPE, 82
D3DRENDERSTATETYPE, 80
D3DRS_ALPHABLENDENABLE, 123
D3DRS_DESTBLEND, 123
D3DRS_FILLMODE, 80
D3DRS_LIGHTING, 108
D3DRS_MAXANISOTROPY, 115
D3DRS_NORMALIZENORMALS, 104
D3DRS_POINTSCALE_A, 238
D3DRS_POINTSCALE_B, 238
D3DRS_POINTSCALE_C, 238
D3DRS_POINTSIZE_MAX, 238
D3DRS_POINTSIZE_MIN, 237
D3DRS_POINTSPRITEENABLE, 236

D3DRS_POINTSPRITESCALE-
ENABLE, 237

D3DRS_POINTSPRITESIZE, 237
D3DRS_SHADEMODE, 95
D3DRS_SPECULARENABLE, 99
D3DRS_SRCBLEND, 123
D3DRS_STENCILENABLE, 132
D3DRS_STENCILFAIL, 136
D3DRS_STENCILMASK, 134
D3DRS_STENCILPASS, 136
D3DRS_STENCILREF, 134
D3DRS_STENCILWRITEMASK, 137
D3DRS_STENCILZFAIL, 136
D3DRS_ZENABLE, 150
D3DRS_ZWRITEENABLE, 141
D3DSAMP_ADDRESSU, 117
D3DSAMP_ADDRESSV, 117
D3DSAMP_MAGFILTER, 114-115
D3DSAMP_MINFILTER, 114-115
D3DSAMP_MIPFILTER, 116
D3DSHADEMODE, 95
D3DSTENCILOP_*, 136
D3DSWAPEFFECT, 49
D3DTEXF_LINEAR, see

D3DTEXTUREFILTERTYPE
D3DTEXF_NONE, see

D3DTEXTUREFILTERTYPE
D3DTEXF_POINT, see

D3DTEXTUREFILTERTYPE
D3DTEXTUREADDRESS, 116
D3DTEXTUREFILTERTYPE, 114
D3DTS_PROJECTION, 71
D3DTS_VIEW, 67
D3DTS_WORLD, 66
D3DTSS_ALPHAARG1, 125
D3DTSS_ALPHAOP, 125
D3DUSAGE flags, 76
D3DVECTOR, 5
D3DVERTEXBUFFER_DESC, 80
D3DVERTEXELEMENT9, 295
D3DVIEWPORT9, 72
D3DX Library, xxii
D3DXATTRIBUTERANGE, 166
D3DXATTRIBUTEWEIGHTS, 187-188
D3DXCOLOR, 92-93

380 Index

D3DXCompileShaderFromFile, 278-279
D3DXComputeBoundingBox, 194
D3DXComputeBoundingSphere, 194
D3DXComputeNormals, 185
D3DXCreate*, 84-85
D3DXCreateBuffer, 179
D3DXCreateEffectFromFile, 341
D3DXCreateMesh, 171
D3DXCreateMeshFVF, 170
D3DXCreateText, 157-159
D3DXCreateTexture, 222
D3DXCreateTextureFromFile, 113
D3DXDeclaratorFromFVF, 171
D3DXFilterTexture, 223
D3DXGeneratePMesh, 186
D3DXHANDLE, 275
D3DXLoadMeshFromX, 180
D3DXMATERIAL, 181
D3DXMATRIX, 16-17
D3DXMatrixIdentity, 18
D3DXMatrixInverse, 18
D3DXMatrixLookAtLH, 67
D3DXMatrixPerspectiveFovLH, 71
D3DXMatrixReflect, 138
D3DXMatrixRotationAxis, 205
D3DXMatrixRotationX, 21
D3DXMatrixRotationY, 22
D3DXMatrixRotationZ, 22
D3DXMatrixScaling, 23
D3DXMatrixShadow, 147
D3DXMatrixTranslation, 21
D3DXMatrixTranspose, 18
D3DXMESH, 169
D3DXMESHOPT, 164
D3DXPLANE, 26-27
D3DXPlaneDotCoord, 27
D3DXPlaneFromPointNormal, 28
D3DXPlaneFromPoints, 28
D3DXPlaneNormalize, 29
D3DXPlaneTransform, 29
D3DXSHADER_DEBUG, 279
D3DXSHADER_SKIPOPTIMIZATION,

279
D3DXSHADER_SKIPVALIDATION,

279

D3DXSplitMesh, 233
D3DXVec3Cross, 11
D3DXVec3Dot, 10
D3DXVec3Length, 7
D3DXVec3Normalize, 7
D3DXVec3TransformCoord, 25
D3DXVec3TransformNormal, 25
D3DXVECTOR3, 4-5
D3DXVECTOR4, 16
DefWindowProc function, 374
degenerate

quad, 312
triangle, 312

degrees function, 290
depth bias, 149
depth buffer, 43-44

enabling/disabling, 150
enabling/disabling writes to, 141
formats, 44

determinant function, 290
device capabilities, checking, 44-45
device enumeration, 46
diffuse lighting, 98, 224-228
diffuse lighting vertex shader, 301-303
Direct3D

initialization, 54-57
overview 35-36
pipeline, 64-65

Direct3DCreate9, 46
directional lights, 104
DirectX 9.0

documentation, xxiii
installing, xix-xx

DispatchMessage function, 373
distance function, 290
do…while loop, 286
dot function, 290
double blending, 147-148
double variable type, 281
drawing preparations, 81
DX Texture Tool, 126-127
dynamic index buffer, see index buffer
dynamic vertex buffer, see vertex buffer

Index 381

E

effect file, 335
annotations, 339-340
creating, 341-342
device states, 340-341
enabling, 344-347
parameters/constants, 342-344
passes, 336-337
pixel shader objects, 338-339
sampler states, 337-338
string objects, 339
techniques, 336-337
texture objects, 337
vertex shader objects, 338-339

EffectEdit, 356
EPSILON, 6, 194
event-driven programming model, 360
extern variable prefix, 284

F

face normal, 101
face remap, 164
falloff, 105
filtering, 114
flat shading, 94
flexible vertex formats, see D3DFVF
float variable type, 281
float*x* variable type, 282
float2 variable type, 281
float3 variable type, 281
float4 variable type, 281
floating-point formats, see D3DFORMAT
floor function, 229, 290
fog, 352-353
fonts, see CD3DFont, D3DXCreateText,

and ID3DXFont
for loop, 286
foreshortening, 70
frames rendered per second, 155
front buffer, 42
front-facing polygons, 68
frustum, 63-64

G

GetMessage function, 373
global space, see world space
Gouraud shading, 94
GUI, 362

H

HAL, 36
half variable type, 280
handle

to application, see HINSTANCE
to brush, see HBRUSH
to cursor, see HCURSOR
to HLSL variable, see D3DXHANDLE
to icon, see HICON
to menu, see HMENU
to window, see HWND

hardware abstraction layer, see HAL
hardware vertex processing, see vertex

processing
HBRUSH, 369
HCURSOR, 369
heightmaps, 213-214

creating, 214-215
loading, 215

HICON, 369
High-Level Shading Language, see HLSL
HINSTANCE, 367
HLSL, 269-270

array types, 283
casting, 286
constants, see ID3DXConstantTable
entry point, 273-274
functions, 288-290
input/output structures, 272-273
intrinsic functions, 290-291
keywords, 285
matrix types, 282-283
operators, 287-288
scalar types, 280-281
semantics, 273
statements, 285-286
structures, 283-284
typedef keyword, 284
variable prefixes, 284-285

382 Index

vector types, 281-282
writing a shader, 270-272

HMENU, 371
homogeneous coordinates, 19
homogeneous vector, 19
HWND, 367

I

ID3DXBuffer, 178-179
ID3DXBuffer::GetBufferPointer, 178
ID3DXBuffer::GetBufferSize, 178
ID3DXConstantTable, 275
ID3DXConstantTable::GetConstant-

ByName, 275
ID3DXConstantTable::Set*, 275-278
ID3DXCreateFontIndirect, 153
ID3DXEffect::Begin, 345
ID3DXEffect::End, 346
ID3DXEffect::GetTechniqueByName,

345
ID3DXEffect::Pass, 346
ID3DXEffect::Set*, 343
ID3DXEffect::SetTechnique, 345
ID3DXEffect::ValidateTechnique, 345
ID3DXFont, 153

creating, 153-154
drawing, 154-155

ID3DXInclude, 279
ID3DXMesh, 84-85, 160

adjacency info, 167-169
attribute, 161
attribute buffer, 162
attribute ID, 162
attribute table, 165-167
cloning, 169
creating, 170-171
data, 160-163
drawing, 163
optimizing, 163-165
subsets, 161

ID3DXMesh::CloneMeshFVF, 169
ID3DXMesh::DrawSubset, 163
ID3DXMesh::GenerateAdjacency, 168
ID3DXMesh::GetAttributeTable, 167
ID3DXMesh::GetFVF, 161

ID3DXMesh::GetIndexBuffer, 160
ID3DXMesh::GetNumBytesPerVertex,

161
ID3DXMesh::GetNumFaces, 161
ID3DXMesh::GetNumVertices, 161
ID3DXMesh::GetVertexBuffer, 160
ID3DXMesh::LockIndexBuffer, 161
ID3DXMesh::LockVertexBuffer, 161
ID3DXMesh::Optimize, 165
ID3DXMesh::OptimizeInplace, 163
ID3DXMesh::UnlockIndexBuffer, 161
ID3DXMesh::UnlockVertexBuffer, 161
ID3DXPMesh, 185

creating, 186-188
methods, 188-189

ID3DXPMesh::GetMaxFaces, 188
ID3DXPMesh::GetMaxVertices, 188
ID3DXPMesh::GetMinFaces, 188
ID3DXPMesh::GetMinVertices, 188
ID3DXPMesh::SetNumFaces, 188
ID3DXPMesh::SetNumVertices, 188
ID3DXPMesh::TrimByFaces, 189
ID3DXPMesh::TrimByVertices, 189
IDirect3D9, 45
IDirect3D9::CheckDeviceMultiSample-

Type, 40
IDirect3D9::GetDeviceCaps, 47
IDirect3DDevice9, 45-46
IDirect3DDevice9::BeginScene, 84
IDirect3DDevice9::Clear, 55
IDirect3DDevice9::CreateDevice, 50-51
IDirect3DDevice9::CreateIndexBuffer,

78
IDirect3DDevice9::CreatePixelShader,

324
IDirect3DDevice9::CreateVertexBuffer,

77
IDirect3DDevice9::CreateVertex-

Declaration, 297
IDirect3DDevice9::CreateVertexShader,

300
IDirect3DDevice9::DrawIndexed-

Primitive, 82
IDirect3DDevice9::DrawPrimitive, 82
IDirect3DDevice9::EndScene, 84

Index 383

IDirect3DDevice9::LightEnable, 107
IDirect3DDevice9::Present, 55-56
IDirect3DDevice9::SetFVF, 81
IDirect3DDevice9::SetIndices, 81
IDirect3DDevice9::SetLight, 106
IDirect3DDevice9::SetMaterial, 101
IDirect3DDevice9::SetPixelShader, 324
IDirect3DDevice9::SetRenderState, 80
IDirect3DDevice9::SetSamplerState, 114
IDirect3DDevice9::SetStreamSource, 81
IDirect3DDevice9::SetTexture, 113
IDirect3DDevice9::SetTextureStage-

State, 125-126
IDirect3DDevice9::SetTransform, 64-66
IDirect3DDevice9::SetVertex-

Declaration, 297-298
IDirect3DDevice9::SetVertexShader, 301
IDirect3DDevice9::SetViewport, 72
IDirect3DIndexBuffer9, 75
IDirect3DIndexBuffer9::GetDesc, 80
IDirect3DIndexBuffer9::Lock, 78
IDirect3DPixelShader9, 323
IDirect3DSurface9, 38
IDirect3DSurface9::LockRect, 38
IDirect3DSwapChain9, 42
IDirect3DTexture9, 111
IDirect3DVertexBuffer9, 75
IDirect3DVertexBuffer9::GetDesc, 80
IDirect3DVertexBuffer9::Lock, 78
IDirect3DVertexShader9, 300
if…else statement, 286
in keyword, 289
identity, see matrix
index buffer, 75

creating, 76-77
dynamic, 77
locking, 78-79
static, 77

indices, triangle, 62-63
INFINITY, 194
inout keyword, 290
int variable type, 280
intersections

ray and plane, 31
ray and sphere, 262-264

inverse, see matrix
IUnknown::Release, 37

L

left-handed coordinate system, 3
length function, 290
lerp function, 290
level of detail, 185
light and object interaction, 100
light components, 98
light maps, 319
light sources, 104
lighting, 69

ambient, 98
diffuse, 98, 224-228
specular, 99

LightWave 3D, 179
linear filtering, 114
linear interpolation, 231
local space, 65
lock flags, 79
log function, 290
log10 function, 290
log2 function, 290
LOGFONT, 154
LPARAM, 372-373
luminance texture, 314

M

magnification, 114
materials, 99-101

emissive, 100
power, 100

matrix, 11-12
addition, 12-13
D3DMATRIX class, see D3DMATRIX
D3DXMATRIX class, see

D3DXMATRIX
equality, 12
functions, see D3DXMatrix*
identity, 14-15
inverse, 15
matrix-matrix multiplication, 16
multiplication, 13-14
multiplication operator, 18

384 Index

TE
AM
FL
Y

Team-Fly®

scalar multiplication, 12
transformation, 18-20
transpose, 15-16
variable type, 282
vector-matrix multiplication, 16

max function, 291
MaxPrimitiveCount, 218
MaxVertexIndex, 218
Maya, 179
memory pools, D3DPOOL, see

D3DPOOL
meshes, see ID3DXMesh
message loop, 361, 372-373

for games, 375-376
message queue, 360-361
MessageBox function, 375
min function, 291
minification, 114
mipmap filters, 116
mipmaps, see textures
mirror, see address modes
model, 60
model space, see local space
MSG structure, 372
mul function, 291
multiple texture coordinates, 321-322
multisampling, 39-40
multitexturing, 319-321

N

nearest point sampling, 114
normal averaging, 103
normalize function, 291
normalizing

plane, see planes
vector, see vectors

O

object, see model
object space, see local space
orthogonal, 9
orthogonal matrix, 22
orthonormal, 199
out keyword, 289

P

page flipping, 42
parameters, setting, see effect file
particle attributes, 238-239
particle systems, 259

class, 240-248
firework, 252-254
particle gun, 254-255
rendering, 244-248
snow, 250-251

PeekMessage function, 376
perspective projection, 70
picking, 257-258

pick ray, 260-261
pitch, 200, 205-206
pixel formats, see D3DFORMAT
pixel shader, 318

creating, 324
destroying, 325
enabling, 324
inputs and outputs, 322-323
samplers, 325-326
version, 318

planes, 25
construction, 27-28
D3DXPLANE class, see

D3DXPLANE
functions, see D3DXPlane*
intersection, see intersections
nearest point to, 29-30
normal, 25
normalizing, 28-29
point and plane spatial relation, 27
transforming, 29

POINT, 372
point lights, 104
point sprite render states, 236-238
point sprites, 235
points, 3
position vector, camera, 199-200
pow function, 291
presenting, 42-43
primary display adapter, 46
primitives, 60
progressive meshes, see ID3DXPMesh

Index 385

projection, 70-71
plane, 64
transform, 71
window, 64

R

radians function, 291
randomness, 248-249
range, light, 105
rasterization, 73
RAW file format, 214-215
ray, 30-31

intersections, see intersections
rectangular array, see matrix
REF, 36-37
reference rasterizer, see REF
reflect function, 291
reflection, 137-139
refract function, 291
RegisterClass function, 370
Release function, 53
render states, 80
rendering pipeline, 64-65
rendering preparations, see drawing

preparations
resources, Windows, 360
right-handed coordinate system, 3
roll, 200, 205-206
rotation around an axis, 205
rotation matrices, 21-22
row vector, 12
rsqrt function, 291

S

sample framework, 54
sampler objects, see pixel shader
saturate function, 291
scalar multiplication, see matrix and

vectors
scaling matrix, 22-23
scene, 60
screen space, 371
shader description, 267
shadows, planar, 144-147
shared variable prefix, 284-285

ShowWindow function, 371
silhouette edge outlining vertex shader,

315-316
silhouette edges, 313-314
sin function, 291
sincos function, 291
software vertex processing, see vertex

processing
specular lighting, 99
sphere and ray intersection, see intersec-

tions
spotlights, 104
sqrt function, 291
srand function, 249
standard basis vectors, 4
standard position of vectors, 3
static index buffer, see index buffer
static variable prefix, 284
static vertex buffer, see vertex buffer
stencil buffer, 131-132

comparison operations, 135
formats, 133
mask, 134
reference, 134
render states, 136
test formula, 133
update operations, 136
using, 132-133
write mask, 137

stream sources, 81
subtraction, see matrix and vectors
surface pitch, 38
surfaces, 38

D3DLOCKED_RECT, see

D3DLOCKED_RECT
swap chain, 42

T

tan function, 291
terrains, 212

class data, 216-217
generating grid, 217-221
grid properties, 216
lighting, 224-227
texturing, 221-224

386 Index

walking on, 228-231
textures,

address modes, see address modes
coordinates, 112
creating, 113
enabling, 113
filters, 114-115
mapping, 111
mipmaps, 115

transformations,
combining, 23-25
matrix, 18-20
projection, 71
rays, 261-262
screen to projection window, 259-260
view, 67
viewport, 73
world, 64-66

TranslateMessage function, 373
translation matrix, 20-21
transparency, 124-125
transpose, see matrix
transpose function, 291
triangle mesh, 60
triangles, 60

U

uniform variable prefix, 284
UpdateWindow function, 371
uv-coordinates, 112

V

vectors, 2
addition, 7-8
components, 3
coordinate system independence, 2
cross product, 10-11
D3DVECTOR class, see

D3DVECTOR
D3DXVECTOR3 class, see

D3DXVECTOR3
dot product, 9-10
equality, 5-6
functions, see D3DXVec3*
magnitude, 6-7

normalizing, 7
scalar multiplication, 9
subtraction, 8-9
variable type, 281
vector-matrix multiplication, 16

velocity, 2, 239
vertex, 60
vertex buffer, 75

creating, 76-77
dynamic, 77
locking, 78-79
static, 77

vertex data usages, 298-299
vertex declaration, 294-297

creating, 297
enabling, 297-298

vertex formats, see D3DFVF
vertex normals, 102-103
vertex processing, 44

hardware, 44
software, 44

vertex remap, 164
vertex shader, 293-294

creating, 300-301
destroying, 301
enabling, 301
version, 294

vertex weights, 187-188
view space, 66-67
view transform, 67
view transformation, 201-205
viewport, 72
viewport matrix, 73
virtual key code, 374
Visual Studio, setting up, xx
volatile variable prefix, 285

W

while loop, 286
Win32 API, 359
winding order, 69
window coordinates, see screen space
window message, 360
window procedure, 361, 373-374
window styles, 370

Index 387

Windows programming, 359
header file, 366
model, 362

WinMain function, 367-368
WM_DESTROY, 374
WM_KEYDOWN, 374
WM_LBUTTONDOWN, 374
WNDCLASS, 368-370
world space, 65
world transform, 64-66
WPARAM, 372-373
wrap, see address modes

X

XFiles, 179
loading, 180-181
materials, 181

Y

yaw, 200, 205-206

Z

z-buffer, 43-44
zero vector, 4
z-fighting, 149

388 Index

Looking for more?Looking for more?

Check out Wordware’s market-leading Game Developer’s
Library featuring the following new releases.

LightWave 3D 7 Character
Animation
1-55622-901-1 • $49.95
7½ x 9¼ • 360 pp.

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: dx9-9135

Wireless Game Development in
C/C++ with BREW
1-55622-905-4 • $49.95
6 x 9 • 416 pp.

Game Development and
Production
1-55622-951-8 • $49.95
6 x 9 • 432 pp.

Game Design Foundations
1-55622-973-9 • $39.95
6 x 9 • 400 pp.

Vector Game Math Processors
1-55622-921-6 • $59.95
6 x 9 • 528 pp.

LightWave 3D 7.5 Lighting
1-55622-354-4 • $69.95
6 x 9 • 496 pp.

Java 1.4 Game Programming
1-55622-963-1 • $59.95
6 x 9 • 672 pp.

Learn FileMaker Pro 6
1-55622-974-7 • $39.95
6 x 9 • 504 pp.

FileMaker Pro 6 Developer’s Guide to

XML/XSL
1-55622-043-X • $49.95
6 x 9 • 416 pp.

Advanced FileMaker Pro 6 Web

Development
1-55622-860-0 • $59.95
6 x 9 • 464 pp.

Advanced 3D Game
Programming with DirectX 9.0
1-55622-968-2 • $59.95
6 x 9 • 552 pp.

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

	sample.pdf
	sterling.com
	Welcome to Sterling Software

