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Looking back over the past twelve editions of the text, it is 
interesting to find that the average time period between edi-
tions is about 3.5 years. This thirteenth edition, however, 
will have 5 years between copyright dates clearly indicating 
a need to update and carefully review the content. Since the 
last edition, tabs have been placed on pages that need 
reflection, updating, or expansion. The result is that my 
copy of the text looks more like a dust mop than a text on 
technical material. The benefits of such an approach 
become immediately obvious—no need to look for areas 
that need attention—they are well-defined. In total, I have 
an opportunity to concentrate on being creative rather than 
searching for areas to improve. A simple rereading of mate-
rial that I have not reviewed for a few years will often iden-
tify presentations that need to be improved. Something I 
felt was in its best form a few years ago can often benefit 
from rewriting, expansion, or possible reduction. Such 
opportunities must be balanced against the current scope of 
the text, which clearly has reached a maximum both in size 
and weight. Any additional material requires a reduction in 
content in other areas, so the process can often be a difficult 
one. However, I am pleased to reveal that the page count 
has expanded only slightly although an important array of 
new material has been added.

New to this edition
In this new edition some of the updated areas include the 
improved efficiency level of solar panels, the growing use 
of fuel cells in applications including the home, automo-
bile, and a variety of portable systems, the introduction of 
smart meters throughout the residential and industrial 
world, the use of lumens to define lighting needs, the grow-
ing use of LEDs versus fluorescent CFLs and incandescent 
lamps, the growing use of inverters and converters in every 
phase of our everyday lives, and a variety of charts, graphs, 
and tables. There are some 300 new art pieces in the text, 
27 new photographs, and well over 100 inserts of new 
material throughout the text.

Perhaps the most notable change in this edition is the 
removal of Chapter 26 on System Analysis and the break-
ing up of Chapter 15, Series and Parallel ac Networks, into 
two chapters. In recent years, current users, reviewers, 
friends, and associates made it clear that the content of 
Chapter 26 was seldom covered in the typical associate or 
undergraduate program. If included in the syllabus, the cov-
erage was limited to a few major sections of the chapter. 

Comments also revealed that it would play a very small part 
in the adoption decision. In the dc section of the text, series 
and parallel networks are covered in separate chapters 
because a clear understanding of the concepts in each chap-
ter is critical to understanding the material to follow. It is 
now felt that this level of importance should carry over to 
the ac networks and that Chapter 15 should be broken up 
into two chapters with similar titles to those of the dc por-
tion of the text. The result is a much improved coverage of 
important concepts in each chapter in addition to an 
increased number of examples and problems. In addition, 
the computer coverage of each chapter is expanded to 
include additional procedures and sample printouts.

There is always room for improvement in the problem 
sections. Throughout this new edition, over 200 problems 
were revised, improved, or added to the selection. As in 
previous editions, each section of the text has a corre-
sponding section of problems at the end of each chapter 
that progress from the simple to the more complex. The 
most difficult problems are indicated with an asterisk. In 
an appendix the solutions to odd-numbered selected exer-
cises are provided. For confirmation of solutions to the 
even-numbered exercises, it is suggested that the reader 
consider attacking the problem from a different direction, 
confer with an associate to compare solutions, or ask for 
confirmation from a faculty member who has the solutions 
manual for the text. For this edition, a number of lengthy 
problems are broken up into separate parts to create a step 
approach to the problem and guide the student toward a 
solution.

As indicated earlier, over 100 inserts of revised or new 
material are introduced throughout the text. Examples of 
typical inserts include a discussion of artificial intelligence, 
analog versus digital meters, effect of radial distance on 
Coulomb’s law, recent applications of superconductors, 
maximum voltage ratings of resistors, the growing use of 
LEDs, lumens versus wattage in selecting luminescent 
products, ratio levels for voltage and current division, 
impact of the ground connection on voltage levels, 
expanded coverage of shorts and open circuits, concept of 
0+ and 0-, total revision of derivatives and their impact on 
specific quantities, the effect of multiple sources on the 
application of network theorems and methods, networks 
with both dc and ac sources, T and Pi filters, Fourier trans-
forms, and a variety of other areas that needed to be 
improved or updated.
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Both PSpice and Multisim remain an integral part of 
the introduction to computer software programs. In this 
edition Cadance’s OrCAD version 16.6 (PSpice) is uti-
lized along with Multisim 13.0 with coverage for both 
Windows 7 and Windows 8.1 for each package. As with 
any developing software package, a number of changes are 
associated with the application of each program. However, 
for the range of coverage included in this text, most of the 
changes occur on the front end so the application of each 
package is quite straightforward if the user has worked 
with either program in the past. Due to the expanded use of 
Multisim by a number of institutions, the coverage of Mul-
tisim has been expanded to closely match the coverage of 
the OrCAD program. In total more than 90 printouts are 
included in the coverage of each program. There should be 
no need to consult any outside information on the applica-
tion of the programs. Each step of a program is highlighted 
in boldface roman letters with comment on the how the 
computer will respond to the chosen operation. In general, 
the printouts are used to introduce the power of each soft-
ware package and to verify the results of examples covered 
in the text.

In preparation for each new edition there is an extensive 
search to determine which calculator the text should utilize 
to demonstrate the steps required to obtain a particular 
result. The chosen calculator is Texas Instrument’s TI-89 
primarily because of its ability to perform lengthy calcula-
tions on complex numbers without having to use the time-
consuming step-by-step approach. Unfortunately, the 
manual provided with the calculator is short in its coverage 
or difficult to utilize. However, every effort is made to 
cover, in detail, all the steps needed to perform all the cal-
culations that appear in the text. Initially, the calculator 
may be overpowering in its range of applications and avail-
able functions. However, using the provided text material 
and being patient with the learning process will result in a 
technological tool that can do some amazing things, saving 
time and providing a very high degree of accuracy. One 
should not be discouraged if the TI-89 calculator is not the 
chosen unit for the course or program. Most scientific cal-
culators can perform all the required calculations for this 
text. The time, however, to perform a calculation may be a 
bit longer but not excessively so.

The laboratory manual has undergone some extensive 
updating and expansion in the able hands of Professor 
David Krispinsky. Two new laboratory experiments have 
been added and a number of the experiments have been 
expanded to provide additional experience in the applica-
tion of various meters. The computer sections have also 
been expanded to verify experimental results and to show 
the student how the computer can be considered an addi-
tional piece of laboratory equipment.

Through the years I have been blessed to have Mr. Rex 
Davidson of Pearson Education as my senior editor. His 
contribution to the text in so many important ways is so 

enormous that I honestly wonder if I would be writing a 
thirteenth edition if it were not for his efforts. I have to 
thank Sherrill Redd at Aptara Inc. for ensuring that the flow 
of the manuscript through the copyediting and page proof 
stages was smooth and properly supervised while 
Naomi Sysak was patient and meticulous in the preparation 
of the solutions manual. My good friend Professor Louis 
Nashelsky spent many hours contributing to the computer 
content and preparation of the printouts. It’s been a long 
run—I have a great deal to be thankful for.

The cover design of the US edition was taken from an 
acrylic painting that Sigmund Årseth, a contemporary Nor-
wegian painter, rendered in response to my request for 
cover designs that provided a unique presentation of color 
and light. A friend of the author, he generated an enormous 
level of interest in Norwegian art in the United States 
through a Norwegian art form referred to as rosemaling and 
his efforts in interior decoration and landscape art. All of us 
in the Norwegian community were saddened by his passing 
on 12/12/12. This edition is dedicated to his memory.

Robert Boylestad
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Supplements
To enhance the learning process, a full supplements pack-
age accompanies this text and is available to instructors 
using the text for a course.

Instructor Resources
To access supplementary materials online, instructors need 
to request an access code. Go to www.pearsonglobaleditions. 
com/boylestad.

•	 Instructor’s Resource Manual, containing text solutions.
•	 PowerPoint Lecture Notes.
•	 TestGen, a computerized test bank.

http://www.pearsonglobaleditions.com/boylestad
http://www.pearsonglobaleditions.com/boylestad
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1Introduction

1.1  The Electrical/Electronics Industry

Over the past few decades, technology has been changing at an ever-increasing rate. The pres-
sure to develop new products, improve the performance of existing systems, and create new 
markets will only accelerate that rate. This pressure, however, is also what makes the field so 
exciting. New ways of storing information, constructing integrated circuits, and developing 
hardware that contains software components that can “think” on their own based on data input 
are only a few possibilities.

Change has always been part of the human experience, but it used to be gradual. This is no 
longer true. Just think, for example, that it was only a few years ago that TVs with wide, flat 
screens were introduced. Already, these have been eclipsed by high-definition and 3D models.

Miniaturization has resulted in huge advances in electronic systems. Cell phones that orig-
inally were the size of notebooks are now smaller than a deck of playing cards. In addition, 
these new versions record videos, transmit photos, send text messages, and have calendars, 
reminders, calculators, games, and lists of frequently called numbers. Boom boxes playing 
audio cassettes have been replaced by pocket-sized iPods® that can store 40,000 songs, 
200 hours of video, and 25,000 photos. Hearing aids with higher power levels that are invisi-
ble in the ear, TVs with 1-inch screens—the list of new or improved products continues to 
expand because significantly smaller electronic systems have been developed.

Spurred on by the continuing process of miniaturization is a serious and growing interest 
in artificial intelligence, a term first used in 1955, as a drive to replicate the brain’s function 
with a packaged electronic equivalent. Although only about 3 pounds in weight, a size equiv-
alent to about 2.5 pints of liquid with a power drain of about 20 watts (half that of a 40-watt 
light bulb), the brain contains over 100 billion neurons that have the ability to “fire” 200 times 
a second. Imagine the number of decisions made per second if all are firing at the same time! 
This number, however, is undaunting to researchers who feel that an equivalent brain package 
is a genuine possibility in the next 10 to 15 years. Of course, including emotional qualities 
will be the biggest challenge, but otherwise researchers feel the advances of recent years are 
clear evidence that it is a real possibility. Consider how much of our daily lives is already 

•	Become aware of the rapid growth of the 
electrical/electronics industry over the past 
century.

•	Understand the importance of applying a unit of 
measurement to a result or measurement and to 
ensuring that the numerical values substituted 
into an equation are consistent with the unit of 
measurement of the various quantities.

•	Become familiar with the SI system of units used 
throughout the electrical/electronics industry.

•	Understand the importance of powers of ten and 
how to work with them in any numerical calculation.

•	Be able to convert any quantity, in any system of 
units, to another system with confidence.

Objectives

1
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decided for us with automatic brake control, programmed parallel parking, 
GPS, Web searching, and so on. The move is obviously strong and on its 
way. Also, when you consider how far we have come since the develop-
ment of the first transistor some 67 years ago, who knows what might 
develop in the next decade or two?

This reduction in size of electronic systems is due primarily to an impor-
tant innovation introduced in 1958—the integrated circuit (IC). An inte-
grated circuit can now contain features less than 50 nanometers across. The 
fact that measurements are now being made in nanometers has resulted in 
the terminology nanotechnology to refer to the production of integrated 
circuits called nanochips. To better appreciate the impact of nanometer 
measurements, consider drawing 100 lines within the boundaries of 1 inch. 
Then attempt drawing 1000 lines within the same length. Cutting 
50-nanometer features would require drawing over 500,000 lines in 1 inch. 
The integrated circuit shown in Fig. 1.1 is an intel® CoreTM i7 quad-core 
processor that has 1400 million transistors—a number hard to comprehend. 

(a) (b)

FIG. 1.1 
Intel® Core™ i7 quad-core processer: (a) surface appearance, (b) internal chips.

However, before a decision is made on such dramatic reductions in 
size, the system must be designed and tested to determine if it is worth 
constructing as an integrated circuit. That design process requires engi-
neers who know the characteristics of each device used in the system, 
including undesirable characteristics that are part of any electronic ele-
ment. In other words, there are no ideal (perfect) elements in an electronic 
design. Considering the limitations of each component is necessary to 
ensure a reliable response under all conditions of temperature, vibration, 
and effects of the surrounding environment. To develop this awareness 
requires time and must begin with understanding the basic characteristics 
of the device, as covered in this text. One of the objectives of this text is to 
explain how ideal components work and their function in a network. 
Another is to explain conditions in which components may not be ideal.

One of the very positive aspects of the learning process associated with 
electric and electronic circuits is that once a concept or procedure is clearly 
and correctly understood, it will be useful throughout the career of the 
individual at any level in the industry. Once a law or equation is under-
stood, it will not be replaced by another equation as the material becomes 
more advanced and complicated. For instance, one of the first laws to be 
introduced is Ohm’s law. This law provides a relationship between forces 
and components that will always be true, no matter how complicated the 
system becomes. In fact, it is an equation that will be applied in various 
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forms throughout the design of the entire system. The use of the basic laws 
may change, but the laws will not change and will always be applicable.

It is vitally important to understand that the learning process for cir-
cuit analysis is sequential. That is, the first few chapters establish the 
foundation for the remaining chapters. Failure to properly understand 
the opening chapters will only lead to difficulties understanding the 
material in the chapters to follow. This first chapter provides a brief his-
tory of the field followed by a review of mathematical concepts neces-
sary to understand the rest of the material.

1.2 A  Brief History

In the sciences, once a hypothesis is proven and accepted, it becomes 
one of the building blocks of that area of study, permitting additional 
investigation and development. Naturally, the more pieces of a puzzle 
available, the more obvious is the avenue toward a possible solution. In 
fact, history demonstrates that a single development may provide the 
key that will result in a mushrooming effect that brings the science to a 
new plateau of understanding and impact.

If the opportunity presents itself, read one of the many publications 
reviewing the history of this field. Space requirements are such that only 
a brief review can be provided here. There are many more contributors 
than could be listed, and their efforts have often provided important keys 
to the solution of some very important concepts.

Throughout history, some periods were characterized by what 
appeared to be an explosion of interest and development in particular 
areas. As you will see from the discussion of the late 1700s and the early 
1800s, inventions, discoveries, and theories came fast and furiously. 
Each new concept broadens the possible areas of application until it 
becomes almost impossible to trace developments without picking a par-
ticular area of interest and following it through. In the review, as you read 
about the development of radio, television, and computers, keep in mind 
that similar progressive steps were occurring in the areas of the telegraph, 
the telephone, power generation, the phonograph, appliances, and so on.

There is a tendency when reading about the great scientists, inven-
tors, and innovators to believe that their contribution was a totally indi-
vidual effort. In many instances, this was not the case. In fact, many of 
the great contributors had friends or associates who provided support 
and encouragement in their efforts to investigate various theories. At the 
very least, they were aware of one another’s efforts to the degree possi-
ble in the days when a letter was often the best form of communication. 
In particular, note the closeness of the dates during periods of rapid 
development. One contributor seemed to spur on the efforts of the others 
or possibly provided the key needed to continue with the area of interest.

In the early stages, the contributors were not electrical, electronic, or 
computer engineers as we know them today. In most cases, they were phys-
icists, chemists, mathematicians, or even philosophers. In addition, they 
were not from one or two communities of the Old World. The home coun-
try of many of the major contributors introduced in the paragraphs to follow 
is provided to show that almost every established community had some 
impact on the development of the fundamental laws of electrical circuits.

As you proceed through the remaining chapters of the text, you will 
find that a number of the units of measurement bear the name of major 
contributors in those areas—volt after Count Alessandro Volta, ampere 
after André Ampère, ohm after Georg Ohm, and so forth—fitting recogni-
tion for their important contributions to the birth of a major field of study.
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Time charts indicating a limited number of major developments are pro-
vided in Fig. 1.2, primarily to identify specific periods of rapid development 
and to reveal how far we have come in the last few decades. In essence, the 
current state of the art is a result of efforts that began in earnest some 
250 years ago, with progress in the last 100 years being almost exponential.

As you read through the following brief review, try to sense the grow-
ing interest in the field and the enthusiasm and excitement that must 
have accompanied each new revelation. Although you may find some of 
the terms used in the review new and essentially meaningless, the 
remaining chapters will explain them thoroughly.

The Beginning

The phenomenon of static electricity has intrigued scholars throughout his-
tory. The Greeks called the fossil resin substance so often used to demon-
strate the effects of static electricity elektron, but no extensive study was 
made of the subject until William Gilbert researched the phenomenon in 
1600. In the years to follow, there was a continuing investigation of electro-
static charge by many individuals, such as Otto von Guericke, who devel-
oped the first machine to generate large amounts of charge, and Stephen 
Gray, who was able to transmit electrical charge over long distances on silk 
threads. Charles DuFay demonstrated that charges either attract or repel 
each other, leading him to believe that there were two types of charge—a 
theory we subscribe to today with our defined positive and negative charges.

There are many who believe that the true beginnings of the electrical 
era lie with the efforts of Pieter van Musschenbroek and Benjamin 
Franklin. In 1745, van Musschenbroek introduced the Leyden jar for 
the storage of electrical charge (the first capacitor) and demonstrated 
electrical shock (and therefore the power of this new form of energy). 
Franklin used the Leyden jar some 7 years later to establish that light-
ning is simply an electrical discharge, and he expanded on a number of 
other important theories, including the definition of the two types of 
charge as positive and negative. From this point on, new discoveries and 
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theories seemed to occur at an increasing rate as the number of individu-
als performing research in the area grew.

In 1784, Charles Coulomb demonstrated in Paris that the force 
between charges is inversely related to the square of the distance between 
the charges. In 1791, Luigi Galvani, professor of anatomy at the Univer-
sity of Bologna, Italy, performed experiments on the effects of electric-
ity on animal nerves and muscles. The first voltaic cell, with its ability 
to produce electricity through the chemical action of a metal dissolving 
in an acid, was developed by another Italian, Alessandro Volta, in 1799.

The fever pitch continued into the early 1800s, with Hans Christian 
Oersted, a Danish professor of physics, announcing in 1820 a relation-
ship between magnetism and electricity that serves as the foundation for 
the theory of electromagnetism as we know it today. In the same year, 
a French physicist, André Ampère, demonstrated that there are magnetic 
effects around every current-carrying conductor and that current-carrying 
conductors can attract and repel each other just like magnets. In the 
period 1826 to 1827, a German physicist, Georg Ohm, introduced an 
important relationship between potential, current, and resistance that we 
now refer to as Ohm’s law. In 1831, an English physicist, Michael Faraday, 
demonstrated his theory of electromagnetic induction, whereby a chang-
ing current in one coil can induce a changing current in another coil, 
even though the two coils are not directly connected. Faraday also did 
extensive work on a storage device he called the condenser, which we 
refer to today as a capacitor. He introduced the idea of adding a dielec-
tric between the plates of a capacitor to increase the storage capacity 
(Chapter 10). James Clerk Maxwell, a Scottish professor of natural phi-
losophy, performed extensive mathematical analyses to develop what 
are currently called Maxwell’s equations, which support the efforts of 
Faraday linking electric and magnetic effects. Maxwell also developed 
the electromagnetic theory of light in 1862, which, among other things, 
revealed that electromagnetic waves travel through air at the velocity of 
light (186,000 miles per second or 3 * 108 meters per second). In 1888, 
a German physicist, Heinrich Rudolph Hertz, through experimentation 
with lower-frequency electromagnetic waves (microwaves), substanti-
ated Maxwell’s predictions and equations. In the mid-1800s, Gustav 
Robert Kirchhoff introduced a series of laws of voltages and currents that 
find application at every level and area of this field (Chapters 5 and 6). In 
1895, another German physicist, Wilhelm Röntgen, discovered electro-
magnetic waves of high frequency, commonly called X-rays today.

By the end of the 1800s, a significant number of the fundamental 
equations, laws, and relationships had been established, and various 
fields of study, including electricity, electronics, power generation and 
distribution, and communication systems, started to develop in earnest.

The Age of Electronics

Radio  The true beginning of the electronics era is open to debate and 
is sometimes attributed to efforts by early scientists in applying poten-
tials across evacuated glass envelopes. However, many trace the begin-
ning to Thomas Edison, who added a metallic electrode to the vacuum of 
the tube and discovered that a current was established between the metal 
electrode and the filament when a positive voltage was applied to the 
metal electrode. The phenomenon, demonstrated in 1883, was referred 
to as the Edison effect. In the period to follow, the transmission of radio 
waves and the development of the radio received widespread attention. 
In 1887, Heinrich Hertz, in his efforts to verify Maxwell’s equations, 
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transmitted radio waves for the first time in his laboratory. In 1896, an 
Italian scientist, Guglielmo Marconi (often called the father of the radio), 
demonstrated that telegraph signals could be sent through the air over 
long distances (2.5 kilometers) using a grounded antenna. In the same 
year, Aleksandr Popov sent what might have been the first radio mes-
sage some 300 yards. The message was the name “Heinrich Hertz” in 
respect for Hertz’s earlier contributions. In 1901, Marconi established 
radio communication across the Atlantic.

In 1904, John Ambrose Fleming expanded on the efforts of Edison to 
develop the first diode, commonly called Fleming’s valve—actually the 
first of the electronic devices. The device had a profound impact on the 
design of detectors in the receiving section of radios. In 1906, Lee De 
Forest added a third element to the vacuum structure and created the first 
amplifier, the triode. Shortly thereafter, in 1912, Edwin Armstrong built 
the first regenerative circuit to improve receiver capabilities and then 
used the same contribution to develop the first nonmechanical oscillator. 
By 1915, radio signals were being transmitted across the United States, 
and in 1918 Armstrong applied for a patent for the superheterodyne cir-
cuit employed in virtually every television and radio to permit amplifi-
cation at one frequency rather than at the full range of incoming signals. 
The major components of the modern-day radio were now in place, and 
sales in radios grew from a few million dollars in the early 1920s to over 
$1 billion by the 1930s. The 1930s were truly the golden years of radio, 
with a wide range of productions for the listening audience.

Television  The 1930s were also the true beginnings of the television 
era, although development on the picture tube began in earlier years 
with Paul Nipkow and his electrical telescope in 1884 and John Baird 
and his long list of successes, including the transmission of television 
pictures over telephone lines in 1927 and over radio waves in 1928, and 
simultaneous transmission of pictures and sound in 1930. In 1932, NBC 
installed the first commercial television antenna on top of the Empire 
State Building in New York City, and RCA began regular broadcasting 
in 1939. World War 2 slowed development and sales, but in the mid-
1940s the number of sets grew from a few thousand to a few million. 
Color television became popular in the early 1960s.

Computers  The earliest computer system can be traced back to 
Blaise Pascal in 1642 with his mechanical machine for adding and sub-
tracting numbers. In 1673, Gottfried Wilhelm von Leibniz used the 
Leibniz wheel to add multiplication and division to the range of opera-
tions, and in 1823 Charles Babbage developed the difference engine to 
add the mathematical operations of sine, cosine, logarithms, and several 
others. In the years to follow, improvements were made, but the system 
remained primarily mechanical until the 1930s when electromechanical 
systems using components such as relays were introduced. It was not 
until the 1940s that totally electronic systems became the new wave. It is 
interesting to note that, even though IBM was formed in 1924, it did not 
enter the computer industry until 1937. An entirely electronic system 
known as ENIAC was dedicated at the University of Pennsylvania in 
1946. It contained 18,000 tubes and weighed 30 tons but was several 
times faster than most electromechanical systems. Although other vac-
uum tube systems were built, it was not until the birth of the solid-state 
era that computer systems experienced a major change in size, speed, 
and capability.
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The Solid-State Era

In 1947, physicists William Shockley, John Bardeen, and Walter H. 
Brattain of Bell Telephone Laboratories demonstrated the point-contact 
transistor (Fig. 1.3), an amplifier constructed entirely of solid-state 
materials with no requirement for a vacuum, glass envelope, or 
heater voltage for the filament. Although reluctant at first due to the 
vast amount of material available on the design, analysis, and synthe-
sis of tube networks, the industry eventually accepted this new tech-
nology as the wave of the future. In 1958, the first integrated circuit 
(IC) was developed at Texas Instruments, and in 1961 the first 
commercial integrated circuit was manufactured by the Fairchild 
Corporation.

It is impossible to review properly the entire history of the electrical/ 
electronics field in a few pages. The effort here, both through the dis-
cussion and the time graphs in Fig. 1.2, was to reveal the amazing 
progress of this field in the last 50 years. The growth appears to be 
truly exponential since the early 1900s, raising the interesting ques-
tion, Where do we go from here? The time chart suggests that the next 
few decades will probably contain many important innovative contri-
butions that may cause an even faster growth curve than we are now 
experiencing.

1.3 U nits of Measurement

One of the most important rules to remember and apply when working 
in any field of technology is to use the correct units when substituting 
numbers into an equation. Too often we are so intent on obtaining a 
numerical solution that we overlook checking the units associated with 
the numbers being substituted into an equation. Results obtained, there-
fore, are often meaningless. Consider, for example, the following very 
fundamental physics equation:

	    y = velocity

	    d = distance	 (1.1)
	    t = time

Assume, for the moment, that the following data are obtained for a mov-
ing object:

 d = 4000 ft

 t = 1 min

and y is desired in miles per hour. Often, without a second thought or 
consideration, the numerical values are simply substituted into the equa-
tion, with the result here that

y =
d

t
=

4000 ft

1 min
= 4000 mph

As indicated above, the solution is totally incorrect. If the result is 
desired in miles per hour, the unit of measurement for distance must be 
miles, and that for time, hours. In a moment, when the problem is ana-
lyzed properly, the extent of the error will demonstrate the importance 
of ensuring that

the numerical value substituted into an equation must have the unit 
of measurement specified by the equation.

y =
d

t

FIG. 1.3
The first transistor.

(Reprinted with permission of Alcatel-Lucent USA Inc.)
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The next question is normally, How do I convert the distance and 
time to the proper unit of measurement? A method is presented in Sec-
tion 1.9 of this chapter, but for now it is given that

 1 mi = 5280 ft

 4000 ft = 0.76 mi

 1 min = 1
60 h = 0.017 h

Substituting into Eq. (1.1), we have

y =
d

t
=

0.76 mi

0.017 h
= 44.71 mph

which is significantly different from the result obtained before.
To complicate the matter further, suppose the distance is given in 

kilometers, as is now the case on many road signs. First, we must realize 
that the prefix kilo stands for a multiplier of 1000 (to be introduced in 
Section 1.5), and then we must find the conversion factor between 
kilometers and miles. If this conversion factor is not readily available, we 
must be able to make the conversion between units using the conversion 
factors between meters and feet or inches, as described in Section 1.9.

Before substituting numerical values into an equation, try to mentally 
establish a reasonable range of solutions for comparison purposes. For 
instance, if a car travels 4000 ft in 1 min, does it seem reasonable that the 
speed would be 4000 mph? Obviously not! This self-checking procedure 
is particularly important in this day of the handheld calculator, when 
ridiculous results may be accepted simply because they appear on the 
digital display of the instrument.

Finally,

if a unit of measurement is applicable to a result or piece of data, 
then it must be applied to the numerical value.

To state that y =  44.71 without including the unit of measurement mph 
is meaningless.

Eq. (1.1) is not a difficult one. A simple algebraic manipulation will 
result in the solution for any one of the three variables. However, in light 
of the number of questions arising from this equation, the reader may 
wonder if the difficulty associated with an equation will increase at the 
same rate as the number of terms in the equation. In the broad sense, this 
will not be the case. There is, of course, more room for a mathematical 
error with a more complex equation, but once the proper system of units 
is chosen and each term properly found in that system, there should be 
very little added difficulty associated with an equation requiring an 
increased number of mathematical calculations.

In review, before substituting numerical values into an equation, be 
absolutely sure of the following:

1.	 Each quantity has the proper unit of measurement as defined by 
the equation.

2.	 The proper magnitude of each quantity as determined by the 
defining equation is substituted.

3.	 Each quantity is in the same system of units (or as defined by the 
equation).

4.	 The magnitude of the result is of a reasonable nature when 
compared to the level of the substituted quantities.

5.	 The proper unit of measurement is applied to the result.
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1.4 S ystems of Units

In the past, the systems of units most commonly used were the English 
and metric, as outlined in Table 1.1. Note that while the English system 
is based on a single standard, the metric is subdivided into two interre-
lated standards: the MKS and the CGS. Fundamental quantities of these 
systems are compared in Table 1.1 along with their abbreviations. The 
MKS and CGS systems draw their names from the units of measurement 
used with each system; the MKS system uses Meters, Kilograms, and 
Seconds, while the CGS system uses Centimeters, Grams, and Seconds.

TABLE 1.1
Comparison of the English and metric systems of units.

English Metric SI

MKS CGS

Length:
  Yard (yd)
  (0.914 m)

 
Meter (m)
  (39.37 in.)
  (100 cm)

 
Centimeter (cm)
  (2.54 cm = 1 in.)

 
Meter (m)

Mass:
  Slug
  (14.6 kg)

 
Kilogram (kg)
  (1000 g)

 
Gram (g)

 
Kilogram (kg)

Force:
  Pound (lb)
  (4.45 N)

 
Newton (N)
  (100,000 dynes)

 
Dyne

 
Newton (N)

Temperature:
  Fahrenheit (°F)

  a=
9

5
 °C + 32b

 
Celsius or
  Centigrade (°C)

 
a =  

5

9
 (°F - 32)b

 
Centigrade (°C)

 
Kelvin (K)
  K = 273.15 + °C

Energy:
  Foot-pound (ft-lb)
  (1.356 joules)

 
Newton-meter (N•m)
  or joule (J) 
  (0.7376 ft-lb)

 
Dyne-centimeter or erg
  (1 joule = 107 ergs)

 
Joule (J)

Time:
  Second (s)

 
Second (s)

 
Second (s)

 
Second (s)

Understandably, the use of more than one system of units in a world 
that finds itself continually shrinking in size, due to advanced technical 
developments in communications and transportation, would introduce 
unnecessary complications to the basic understanding of any technical 
data. The need for a standard set of units to be adopted by all nations has 
become increasingly obvious. The International Bureau of Weights and 
Measures located at Sèvres, France, has been the host for the General 
Conference of Weights and Measures, attended by representatives from 
all nations of the world. In 1960, the General Conference adopted a sys-
tem called Le Système International d’Unités (International System of 
Units), which has the international abbreviation SI. It was adopted by 
the Institute of Electrical and Electronic Engineers (IEEE) in 1965 and 
by the United States of America Standards Institute (USASI) in 1967 as 
a standard for all scientific and engineering literature.

For comparison, the SI units of measurement and their abbreviations 
appear in Table 1.1. These abbreviations are those usually applied to each 
unit of measurement, and they were carefully chosen to be the most effec-
tive. Therefore, it is important that they be used whenever applicable to 
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ensure universal understanding. Note the similarities of the SI system to 
the MKS system. This text uses, whenever possible and practical, all of 
the major units and abbreviations of the SI system in an effort to sup-
port the need for a universal system. Those readers requiring additional 
information on the SI system should contact the information office of 
the American Society for Engineering Education (ASEE).*

Figure 1.4 should help you develop some feeling for the relative mag-
nitudes of the units of measurement of each system of units. Note in the 
figure the relatively small magnitude of the units of measurement for the 
CGS system.

A standard exists for each unit of measurement of each system. The 
standards of some units are quite interesting.

The meter was originally defined in 1790 to be 1/10,000,000 the dis-
tance between the equator and either pole at sea level, a length preserved 

1 slug
English 1 kg

SI and
MKS

1 g
CGS

1 yd

1 m

1 ftEnglish

English

SI
and MKS

1 yard (yd)  =  0.914 meter (m)  =  3 feet (ft)

Length:

Mass:

1 slug  =  14.6 kilograms

Temperature:

English
(Boiling)

(Freezing)

(Absolute zero)

Fahrenheit Celsius or
Centigrade

Kelvin

– 459.7˚F –273.15˚C 0 K

0˚F

32˚F

212˚F

0˚C

100˚C

273.15 K

373.15 K

SI

MKS
and
CGS

K  =  273.15  +  ˚C

(˚F  –  32˚)˚C  = 5
9
_

˚F  = 9
5 ˚C  +  32˚_

English
1 ft-lb SI and

MKS
1 joule (J)

1 erg (CGS)

1 dyne (CGS)

SI and
MKS
1 newton (N)

1 ft-lb  =  1.356 joules
1 joule  =  107 ergs

1 pound (lb)  =  4.45 newtons (N)
1 newton  =  100,000 dynes (dyn)

1 m  =  100 cm  =  39.37 in.
2.54 cm  =  1 in.

English

CGS 1 cm

1 in.
Actual
lengths

English
1 pound (lb)

Force:

Energy:

1 kilogram  =  1000 g

FIG. 1.4 
Comparison of units of the various systems of units.

*American Society for Engineering Education (ASEE), 1818 N Street N.W., Suite 600, 
Washington, D.C. 20036-2479; (202) 331-3500; http://www.asee.org/.
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on a platinum–iridium bar at the International Bureau of Weights and 
Measures at Sèvres, France.

The meter is now defined with reference to the speed of light in a 
vacuum, which is 299,792,458 m/s.

The kilogram is defined as a mass equal to 1000 times the mass of 
1 cubic centimeter of pure water at 4°C.

This standard is preserved in the form of a platinum–iridium cylinder in 
Sèvres.

The second was originally defined as 1/86,400 of the mean solar day. 
However, since Earth’s rotation is slowing down by almost 1 second 
every 10 years,

the second was redefined in 1967 as 9,192,631,770 periods of the 
electromagnetic radiation emitted by a particular transition of the 
cesium atom.

1.5 S ignificant Figures, Accuracy,  
and Rounding Off

This section emphasizes the importance of knowing the source of a piece 
of data, how a number appears, and how it should be treated. Too often 
we write numbers in various forms with little concern for the format 
used, the number of digits that should be included, and the unit of meas-
urement to be applied.

For instance, measurements of 22.1 in. and 22.10 in. imply different 
levels of accuracy. The first suggests that the measurement was made by 
an instrument accurate only to the tenths place; the latter was obtained 
with instrumentation capable of reading to the hundredths place. The use 
of zeros in a number, therefore, must be treated with care, and the impli-
cations must be understood.

In general, there are two types of numbers: exact and approximate. 
Exact numbers are precise to the exact number of digits presented, just 
as we know that there are 12 apples in a dozen and not 12.1. Through-
out the text, the numbers that appear in the descriptions, diagrams, and 
examples are considered exact, so that a battery of 100 V can be writ-
ten as 100.0 V, 100.00 V, and so on, since it is 100 V at any level of 
precision. The additional zeros were not included for purposes of clar-
ity. However, in the laboratory environment, where measurements are 
continually being taken and the level of accuracy can vary from one 
instrument to another, it is important to understand how to work with 
the results. Any reading obtained in the laboratory should be consid-
ered approximate. The analog scales with their pointers may be diffi-
cult to read, and even though the digital meter provides only specific 
digits on its display, it is limited to the number of digits it can provide, 
leaving us to wonder about the less significant digits not appearing on 
the display.

The precision of a reading can be determined by the number of 
significant figures (digits) present. Significant digits are those integers 
(0 to 9) that can be assumed to be accurate for the measurement being 
made. The result is that all nonzero numbers are considered significant, 
with zeros being significant in only some cases. For instance, the zeros 
in 1005 are considered significant because they define the size of the 
number and are surrounded by nonzero digits. For the number 0.4020, 
the zero to the left of the decimal point is not significant but clearly 
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defines the location of the decimal point. The other two zeros define the 
magnitude of the number and the fourth-place accuracy of the reading.

When adding approximate numbers, it is important to be sure that the 
accuracy of the readings is consistent throughout. To add a quantity 
accurate only to the tenths place to a number accurate to the thousandths 
place will result in a total having accuracy only to the tenths place. One 
cannot expect the reading with the higher level of accuracy to improve 
the reading with only tenths-place accuracy.

In the addition or subtraction of approximate numbers, the entry with 
the lowest level of accuracy determines the format of the solution.

For the multiplication and division of approximate numbers, the 
result has the same number of significant figures as the number with 
the least number of significant figures.

For approximate numbers (and exact numbers, for that matter), there is 
often a need to round off the result; that is, you must decide on the appro-
priate level of accuracy and alter the result accordingly. The accepted pro-
cedure is simply to note the digit following the last to appear in the 
rounded-off form, add a 1 to the last digit if it is greater than or equal to 5, 
and leave it alone if it is less than 5. For example, 3.186 _ 3.19 _ 3.2, 
depending on the level of precision desired. The symbol _ means 
approximately equal to.

EXAMPLE 1.1  Perform the indicated operations with the following 
approximate numbers and round off to the appropriate level of accuracy.

	 a.	 532.6 + 4.02 + 0.036 = 536.656 _ 536.7 (as determined by 532.6)

	 b.	 0.04 + 0.003 + 0.0064 = 0.0494 _ 0.05 (as determined by 0.04)

EXAMPLE 1.2  Round off the following numbers to the hundredths place.

	 a.	 32.419 = 32.42
	 b.	 0.05328 = 0.05

EXAMPLE 1.3  Round off the result 5.8764 to

	 a.	 tenths-place accuracy.
	 b.	 hundredths-place accuracy.
	 c.	 thousandths-place accuracy.

Solution:

	 a.	 5.9
	 b.	 5.88
	 c.	 5.876

For this text the level of accuracy to be carried through a series of 
calculations will be hundredths place. That is, at each stage of a devel-
opment, exercise, or problem, the level of accuracy will be set using 
hundredths-place accuracy. Over a series of calculations this will natu-
rally affect the accuracy of the final result but a limit has to be set or 
solutions will be carried to unwieldy levels.

For instance, let us examine the following product:

(9.64)(0.4896) = 4.68504
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Clearly, we don’t want to carry this level of accuracy through any fur-
ther calculations in a particular example. Rather, using hundredths-place 
accuracy, we will write it as 4.69.

The next calculation may be

(4.69)(1.096) = 5.14024

which to hundredths-place accuracy is 5.14. However, if we had carried 
the original product to its full accuracy, we would have obtained

(4.68504)(1.096) = 5.1348

or, to hundredths-place accuracy, 5.13.
Obviously, 5.13 is the more accurate solution, so there is a loss of 

accuracy using rounded-off results. However, as indicated above, this 
text will round off the final and intermediate results to hundredths place 
for clarity and ease of comparison.

1.6  Powers of Ten

It should be apparent from the relative magnitude of the various units of 
measurement that very large and very small numbers are frequently 
encountered in the sciences. To ease the difficulty of mathematical oper-
ations with numbers of such varying size, powers of ten are usually 
employed. This notation takes full advantage of the mathematical prop-
erties of powers of ten. The notation used to represent numbers that are 
integer powers of ten is as follows:

 1 = 100   1/10 =  0.1 = 10-1

 10 = 101   1/100 =  0.01 = 10-2

 100 = 102   1/1000 =  0.001 = 10-3

 1000 = 103   1/10,000 =  0.0001 = 10-4

In particular, note that 100 = 1, and, in fact, any quantity to the zero 
power is 1 (x0 = 1, 10000 = 1, and so on). Numbers in the list greater 
than 1 are associated with positive powers of ten, and numbers in the list 
less than 1 are associated with negative powers of ten.

A quick method of determining the proper power of ten is to place a 
caret mark to the right of the numeral 1 wherever it may occur; then 
count from this point to the number of places to the right or left before 
arriving at the decimal point. Moving to the right indicates a positive 
power of ten, whereas moving to the left indicates a negative power. For 
example,

10,000.0 � 1 0 , 0 0 0 . � 10�4

0.00001 � 0 . 0 0 0 0 1 � 10�5

1 2 3 4

123445

Some important mathematical equations and relationships pertaining 
to powers of ten are listed below, along with a few examples. In each 
case, n and m can be any positive or negative real number.

	
1

10n = 10-n 
1

10-n = 10n 	 (1.2)

Eq. (1.2) clearly reveals that shifting a power of ten from the denom-
inator to the numerator, or the reverse, requires simply changing the sign 
of the power.
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EXAMPLE 1.4

	 a.	
1

1000
=

1

10 + 3 = 10−3

	 b.	
1

0.00001
=

1

10-5 = 10+5

The product of powers of ten:

	 (10n)(10m) = (10)(n+ m)	 (1.3)

EXAMPLE 1.5

	 a.	 (1000)(10,000) = (103)(104) = 10(3+4) = 107

	 b.	 (0.00001)(100) = (10-5)(102) = 10(-5+2) = 10−3

The division of powers of ten:

	
10n

10m = 10(n-m)	 (1.4)

EXAMPLE 1.6	

	 a.	
100,000

100
=

105

102 = 10(5 - 2) = 103

	 b.	
1000

0.0001
=

103

10-4 = 10(3 - (-4)) = 10(3+ 4) = 107

Note the use of parentheses in part (b) to ensure that the proper sign is 
established between operators.

The power of powers of ten:

	 (10n)m = 10nm	 (1.5)

EXAMPLE 1.7

	 a.	 (100)4 = (102)4 = 10(2)(4) = 108

	 b.	 (1000)-2 = (103)-2 = 10(3)(-2) = 10−6

	 c.	 (0.01) - 3 = (10-2)-3 = 10(-2)(-3) = 106

Basic Arithmetic Operations

Let us now examine the use of powers of ten to perform some basic 
arithmetic operations using numbers that are not just powers of ten. The 
number 5000 can be written as 5 * 1000 = 5 * 103, and the number 
0.0004 can be written as 4 * 0.0001 = 4 * 10-4. Of course, 105 can 
also be written as 1 * 105 if it clarifies the operation to be performed.

Addition and Subtraction  To perform addition or subtraction 
using powers of ten, the power of ten must be the same for each term; 
that is,

	 A * 10n { B * 10n = (A { B) * 10n	 (1.6)



Powers of Ten    29�
S

   I

Eq. (1.6) covers all possibilities, but students often prefer to remember a 
verbal description of how to perform the operation.

Eq. (1.6) states

when adding or subtracting numbers in a power-of-ten format, be 
sure that the power of ten is the same for each number. Then separate 
the multipliers, perform the required operation, and apply the same 
power of ten to the result.

EXAMPLE 1.8

	 a.	  6300 + 75,000 = (6.3)(1000) + (75)(1000)
		   = 6.3 * 103 + 75 * 103

		   = (6.3 + 75) * 103

		   = 81.3 * 103

	 b.	  0.00096 - 0.000086 = (96)(0.00001) - (8.6)(0.00001)
		   = 96 * 10-5 - 8.6 * 10-5

		   = (96 - 8.6) * 10-5

		   = 87.4 * 10-5

Multiplication  In general,

	 (A * 10n)(B * 10m) = (A)(B) * 10n+ m	 (1.7)

revealing that the operations with the power of ten can be separated 
from the operation with the multipliers.

Eq. (1.7) states

when multiplying numbers in the power-of-ten format, first find the 
product of the multipliers and then determine the power of ten for the 
result by adding the power-of-ten exponents.

EXAMPLE 1.9

	 a.	  (0.0002)(0.000007) = [(2)(0.0001)][(7)(0.000001)]
		   = (2 * 10-4)(7 * 10-6)
		   = (2)(7) * (10-4)(10-6)
		   = 14 * 10−10

	 b.	  (340,000)(0.00061) = (3.4 * 105)(61 * 10-5)
		   = (3.4)(61) * (105)(10-5)
		   = 207.4 * 100

		   = 207.4

Division  In general,

	
A * 10n

B * 10m =
A

B
* 10n- m	 (1.8)

revealing again that the operations with the power of ten can be sepa-
rated from the same operation with the multipliers.

Eq. (1.8) states

when dividing numbers in the power-of-ten format, first find the 
result of dividing the multipliers. Then determine the associated 
power for the result by subtracting the power of ten of the 
denominator from the power of ten of the numerator.
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EXAMPLE 1.10

	 a.	
0.00047

0.002
=

47 * 10-5

2 * 10-3 = a 47

2
b * a 10-5

10-3 b = 23.5 * 10-2

	 b.	
690,000

0.00000013
=

69 * 104

13 * 10-8 = a 69

13
b * a 104

10-8 b = 5.31 * 1012

Powers  In general,

	 (A * 10n)m = Am * 10nm	 (1.9)

which again permits the separation of the operation with the power of 
ten from the multiplier.

Eq. (1.9) states

when finding the power of a number in the power-of-ten format, first 
separate the multiplier from the power of ten and determine each 
separately. Determine the power-of-ten component by multiplying the 
power of ten by the power to be determined.

EXAMPLE 1.11

	 a.	  (0.00003)3 = (3 * 10-5)3 = (3)3 * (10-5)3

		   = 27 * 10−15

	 b.	  (90,800,000)2 = (9.08 * 107)2 = (9.08)2 * (107)2

		   = 82.45 * 1014

In particular, remember that the following operations are not the 
same. One is the product of two numbers in the power-of-ten format, 
while the other is a number in the power-of-ten format taken to a power. 
As noted below, the results of each are quite different:

(103)(103) ≠ (103)3

(103)(103) = 106 = 1,000,000

(103)3 = (103)(103)(103) = 109 = 1,000,000,000

1.7  Fixed-Point, Floating-Point, Scientific, 
and Engineering Notation

When you are using a computer or a calculator, numbers generally 
appear in one of four ways. If powers of ten are not employed, numbers 
are written in the fixed-point or floating-point notation.

The fixed-point format requires that the decimal point appear 
in the same place each time. In the floating-point format, the 
decimal point appears in a location defined by the number to be 
displayed.

Most computers and calculators permit a choice of fixed- or floating-
point notation. In the fixed format, the user can choose the level of 
accuracy for the output as tenths place, hundredths place, thousandths 
place, and so on. Every output will then fix the decimal point to one 
location, such as the following examples using thousandths-place 
accuracy:
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1

3
= 0.333  

1

16
= 0.063  

2300

2
= 1150.000

If left in the floating-point format, the results will appear as follows 
for the above operations:

1

3
= 0.333333333333  

1

16
= 0.0625  

2300

2
= 1150

Powers of ten will creep into the fixed- or floating-point notation if the 
number is too small or too large to be displayed properly.

Scientific (also called standard) notation and engineering notation 
make use of powers of ten, with restrictions on the mantissa (multiplier) 
or scale factor (power of ten).

Scientific notation requires that the decimal point appear directly 
after the first digit greater than or equal to 1 but less than 10.

A power of ten will then appear with the number (usually following 
the power notation E), even if it has to be to the zero power. A few 
examples:

1

3
= 3.33333333333E-1  

1

16
= 6.25E-2  

2300

2
= 1.15E3

Within scientific notation, the fixed- or floating-point format can be 
chosen. In the above examples, floating was employed. If fixed is cho-
sen and set at the hundredths-point accuracy, the following will result 
for the above operations:

1

3
= 3.33E-1  

1

16
= 6.25E-2  

2300

2
= 1.15E3

Engineering notation specifies that

all powers of ten must be 0 or multiples of 3, and the mantissa must 
be greater than or equal to 1 but less than 1000.

This restriction on the powers of ten is because specific powers of ten 
have been assigned prefixes that are introduced in the next few para-
graphs. Using scientific notation in the floating-point mode results in the 
following for the above operations:

1

3
= 333.333333333E-3  

1

16
= 62.5E-3  

2300

2
= 1.15E3

Using engineering notation with two-place accuracy will result in the 
following:

1

3
= 333.33E-3  

1

16
= 62.50E-3  

2300

2
= 1.15E3

Prefixes

Specific powers of ten in engineering notation have been assigned pre-
fixes and symbols, as appearing in Table 1.2. They permit easy recogni-
tion of the power of ten and an improved channel of communication 
between technologists.
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EXAMPLE 1.12

	 a.	 1,000,000 ohms = 1 * 106 ohms
		   = 1 megohm = 1 MΩ

	 b.	 100,000 meters  = 100 * 103 meters
		   =  100 kilometers = 100 km

	 c.	 0.0001 second  = 0.1 * 10-3 second
		   =  0.1 millisecond = 0.1 ms

	 d.	 0.000001 farad  = 1 * 10-6 farad
		   = 1 microfarad = 1MF

Here are a few examples with numbers that are not strictly powers of ten.

EXAMPLE 1.13

	 a.	 41,200 m is equivalent to 41.2 * 103 m = 41.2 kilometers =  
41.2 km.

	 b.	 0.00956 J is equivalent to 9.56 * 10-3 J = 9.56 millijoules =  
9.56 mJ.

	 c.	 0.000768 s is equivalent to 768 * 10-6 s = 768 microseconds =  
768 Ms.

	 d.	  
8400 m

0.06
=

8.4 * 103 m

6 * 10-2 = a 8.4

6
b * a 103

10-2 b  m

		   = 1.4 * 105 m = 140 * 103 m = 140 kilometers = 140 km

	 e.	  (0.0003)4 s = (3 * 10-4)4 s = 81 * 10-16 s
		   = 0.0081 * 10-12 s = 0.0081 picosecond = 0.0081 ps

1.8 C onversion Between Levels  
of Powers of Ten

It is often necessary to convert from one power of ten to another. For 
instance, if a meter measures kilohertz (kHz—a unit of measurement 
for the frequency of an ac waveform), it may be necessary to find the 
corresponding level in megahertz (MHz). If time is measured in 

TABLE 1.2

Multiplication Factors SI Prefix SI Symbol

 1 000 000 000 000 000 000 = 1018

 1 000 000 000 000 000 = 1015

 1 000 000 000 000 = 1012

 1 000 000 000 = 109

 1 000 000 = 106

 1 000 = 103

 0.001 = 10-3

 0.000 001 = 10-6

 0.000 000 001 = 10-9

 0.000 000 000 001 = 10-12

 0.000 000 000 000 001 = 10-15

 0.000 000 000 000 000 001 = 10-18

exa

peta

tera

giga

mega

kilo

milli

micro

nano

pico

femto

atto

E

P

T

G

M

k

m

M

n

p

f

a
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milliseconds (ms), it may be necessary to find the corresponding time 
in microseconds(ms) for a graphical plot. The process is not difficult 
if we simply keep in mind that an increase or a decrease in the power 
of ten must be associated with the opposite effect on the multiplying 
factor. The procedure is best described by the following steps:

1.	 Replace the prefix by its corresponding power of ten.
2.	 Rewrite the expression, and set it equal to an unknown multiplier 

and the new power of ten.
3.	 Note the change in power of ten from the original to the new format. 

If it is an increase, move the decimal point of the original multiplier 
to the left (smaller value) by the same number. If it is a decrease, 
move the decimal point of the original multiplier to the right (larger 
value) by the same number.

EXAMPLE 1.14  Convert 20 kHz to megahertz.

Solution:  In the power-of-ten format:

20 kHz = 20 * 103 Hz

The conversion requires that we find the multiplying factor to appear 
in the space below:

20 � 103 Hz � 106 Hz

Increase by 3

Decrease by 3

Since the power of ten will be increased by a factor of three, the 
multiplying factor must be decreased by moving the decimal point three 
places to the left, as shown below:

020. � 0.02
3

and	 20 * 103 Hz = 0.02 * 106 Hz = 0.02 Mhz

EXAMPLE 1.15  Convert 0.01 ms to microseconds.

Solution:  In the power-of-ten format:

0.01 ms = 0.01 * 10 - 3 s

and	 0.01 � 10�3 s � 10�6 s

Decrease by 3

Increase by 3

Since the power of ten will be reduced by a factor of three, the mul-
tiplying factor must be increased by moving the decimal point three 
places to the right, as follows:

0.010  � 10
3

and	 0.01 * 10 - 3 s = 10 * 10 - 6 s = 10 Ms

There is a tendency when comparing -3 to -6 to think that the power 
of ten has increased, but keep in mind when making your judgment 
about increasing or decreasing the magnitude of the multiplier that 10-6 
is a great deal smaller than 10-3.
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EXAMPLE 1.16  Convert 0.002 km to millimeters.

Solution:

0.002 � 103 m � 10�3 m

Decrease by 6

Increase by 6

In this example we have to be very careful because the difference be-
tween +3 and −3 is a factor of 6, requiring that the multiplying factor be 
modified as follows:

0.002000  � 2000
6

and	 0.002 * 103 m = 2000 * 10-3 m = 2000 mm

1.9 C onversion Within and Between 
Systems of Units

The conversion within and between systems of units is a process that 
cannot be avoided in the study of any technical field. It is an operation, 
however, that is performed incorrectly so often that this section was 
included to provide one approach that, if applied properly, will lead to 
the correct result.

There is more than one method of performing the conversion process. 
In fact, some people prefer to determine mentally whether the conver-
sion factor is multiplied or divided. This approach is acceptable for some 
elementary conversions, but it is risky with more complex operations.

The procedure to be described here is best introduced by examining a 
relatively simple problem such as converting inches to meters. Specifi-
cally, let us convert 48 in. (4 ft) to meters.

If we multiply the 48 in. by a factor of 1, the magnitude of the quan-
tity remains the same:

	 48 in. = 48 in.(1)	 (1.10)

Let us now look at the conversion factor for this example:

1 m = 39.37 in.

Dividing both sides of the conversion factor by 39.37 in. results in the 
following format:

1 m

39.37 in.
= (1)

Note that the end result is that the ratio 1 m/39.37 in. equals 1, as it 
should since they are equal quantities. If we now substitute this factor 
(1) into Eq. (1.10), we obtain

48 in.(1) = 48 in.a 1 m

39.37 in.
b

which results in the cancellation of inches as a unit of measure and 
leaves meters as the unit of measure. In addition, since the 39.37 is in the 
denominator, it must be divided into the 48 to complete the operation:

48

39.37
 m = 1.219 m
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Let us now review the method:

1.	 Set up the conversion factor to form a numerical value of (1) with 
the unit of measurement to be removed from the original quantity 
in the denominator.

2.	 Perform the required mathematics to obtain the proper magnitude 
for the remaining unit of measurement.

EXAMPLE 1.17  Convert 6.8 min to seconds.

Solution:  The conversion factor is

1 min = 60 s

Since the minute is to be removed as the unit of measurement, it must 
appear in the denominator of the (1) factor, as follows:

Step 1:	 a 60 s

1 min
b = (1)

Step 2:	  6.8 min (1) = 6.8 mina 60 s

1 min
b = (6.8)(60) s

	  = 408 s

EXAMPLE 1.18  Convert 0.24 m to centimeters.

Solution:  The conversion factor is

1 m = 100 cm

Since the meter is to be removed as the unit of measurement, it must 
appear in the denominator of the (1) factor as follows:

Step 1:	 a 100 cm

1 m
b = 1

Step 2:	  0.24 m(1) = 0.24 ma 100 cm

1 m
b = (0.24)(100) cm

		   = 24 cm

The products (1)(1) and (1)(1)(1) are still 1. Using this fact, we can 
perform a series of conversions in the same operation.

EXAMPLE 1.19  Determine the number of minutes in half a day.

Solution:  Working our way through from days to hours to minutes, 
always ensuring that the unit of measurement to be removed is in the 
denominator, results in the following sequence:

 0.5 daya 24 h

1 day
b a 60 min

1 h
b = (0.5)(24)(60) min

 = 720 min

EXAMPLE 1.20  Convert 2.2 yards to meters.

Solution:  Working our way through from yards to feet to inches to 
meters results in the following:

 2.2 yardsa 3 ft

1 yard
b a 12 in.

1 ft
b a 1 m

39.37 in.
b =

(2.2)(3)(12)

39.37
 m

 = 2.012 m
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The following examples are variations of the above in practical 
situations.

EXAMPLE 1.21  In Europe, Canada, and many other countries, the 
speed limit is posted in kilometers per hour. How fast in miles per hour 
is 100 km/h?

Solution:

a 100 km

h
b (1)(1)(1)(1)

 = a 100 km

h
b a 1000 m

1 km
b a 39.37 in.

1 m
b a 1 ft

12 in.
b a 1 mi

5280 ft
b

=
(100)(1000)(39.37)

(12)(5280)
 
mi

h

= 62.14 mph

Many travelers use 0.6 as a conversion factor to simplify the math 
involved; that is,

 (100 km/h)(0.6) ≅ 60 mph

and	  (60 km/h)(0.6) ≅ 36 mph

EXAMPLE 1.22  Determine the speed in miles per hour of a competitor 
who can run a 4-min mile.

Solution:  Inverting the factor 4 min/1 mi to 1 mi/4 min, we can proceed 
as follows:

a 1 mi

4 min
b a 60 min

4
b =  

60

4
 mi/h = 15 mph

1.10 S ymbols

Throughout the text, various symbols will be employed that you may not 
have had occasion to use. Some are defined in Table 1.3, and others will 
be defined in the text as the need arises.

1.11 C onversion Tables

Conversion tables such as those appearing in Appendix A can be very 
useful when time does not permit the application of methods described 
in this chapter. However, even though such tables appear easy to use, 
frequent errors occur because the operations appearing at the head of the 
table are not performed properly. In any case, when using such tables, 
try to establish mentally some order of magnitude for the quantity to be 
determined compared to the magnitude of the quantity in its original set 
of units. This simple operation should prevent several impossible results 
that may occur if the conversion operation is improperly applied.

For example, consider the following from such a conversion table:

To convert from

Miles
  

To

Meters
  

Multiply by

1.609 * 103

TABLE 1.3

Symbol Meaning

≠ Not equal to    6.12 ≠ 6.13
7 Greater than    4.78 7 4.20

W Much greater than    840 W 16
6 Less than    430 6 540

V Much less than    0.002 V 46
Ú Greater than or equal to    x Ú y is

satisfied for y = 3 and x 7 3  
or x = 3

… Less than or equal to    x … y is satis-
fied for y = 3 and x 6 3 or x = 3

_ Appoximately equal to 
3.14159 _ 3.14

Σ Sum of    Σ(4 + 6 + 8) = 18
|| Absolute magnitude of    | a | = 4, 

where a = -4 or +4
6 Therefore    x = 14 6 x = {2
K By definition  

Establishes a relationship between 
two or more quantities

a:b Ratio defined by 
a

b

a:b = c:d Proportion defined by 
a

b
=

c

d
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A conversion of 2.5 mi to meters would require that we multiply 2.5 by 
the conversion factor; that is,

2.5 mi(1.609 * 103) = 4.02 : 103 m

A conversion from 4000 m to miles would require a division process:

4000 m

1.609 * 103 = 2486.02 * 10-3 = 2.49 mi

In each of the above, there should have been little difficulty realizing 
that 2.5 mi would convert to a few thousand meters and 4000 m would 
be only a few miles. As indicated above, this kind of anticipatory think-
ing will eliminate the possibility of ridiculous conversion results.

1.12 C alculators

In most texts, the calculator is not discussed in detail. Instead, students 
are left with the general exercise of choosing an appropriate calculator 
and learning to use it properly on their own. However, some discussion 
about the use of the calculator is needed to eliminate some of the impos-
sible results obtained (and often strongly defended by the user—because 
the calculator says so) through a correct understanding of the process by 
which a calculator performs the various tasks. Time and space do not 
permit a detailed explanation of all the possible operations, but the fol-
lowing discussion explains why it is important to understand how a cal-
culator proceeds with a calculation and that the unit cannot accept data 
in any form and still generate the correct answer.

TI-89 Calculator

Although the calculator chosen for this text is one of the more expen-
sive, a great deal of thought went into its choice. The TI-89 calculator 
was used in the previous edition and, before preparing the manuscript 
for this 13th edition, a study was made of the calculators available today. 
In all honesty, some of the cheapest calculators on the market can per-
form the necessary functions required in this text. However, the time it 
will take to perform some of the basic operations required in the ac sec-
tion of this text may result in a high level of frustration because it takes 
so long to do a simple analysis. The TI-89 has the ability to significantly 
reduce the time required and number of operations needed to complete 
the same analysis and, therefore, was chosen for this edition also. How-
ever, it is certainly possible that your instructor is recommending a dif-
ferent calculator for the course or your chosen field. In such situations 
there is no doubt your professor has balanced the needs of the course 
with the financial obligations you face and has suggested a calculator 
that will perform very well.

For those using the TI-89 calculator, there will be times when it seems 
to require more steps than you expected to perform a simple task. How-
ever, be assured that as you work through the content of this text you will 
be very pleased with the performance of the calculator. Bear in mind that 
the TI-89 has capabilities that could be very helpful in other areas of study 
such as mathematics and physics. In addition, it is tool that will serve you 
well not only in your college years but in your future career as well.

When using any calculator for the first time, the unit must be set up to 
provide the answers in a desired format. Following are the steps needed 
to set up the TI-89 calculator correctly. 

FIG. 1.5
Texas Instruments TI-89 calculator.

(Don Johnson Photo)
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Initial Settings  In the following sequences, the arrows within the 
square indicate the direction of the scrolling required to reach the desired 
location. The scrolling may continue for a number of levels but eventu-
ally the desired heading will appear on the screen.

Notation  The first sequence sets the engineering notation (Section 1.7) 
as the choice for all answers. It is particularly important to take note that 
you must select the ENTER key twice to ensure the process is set in 
memory.

ON HOME  MODE  Exponential Format 

Engineering ENTER  ENTER

Accuracy Level  Next, the accuracy level can be set to two places as 
follows:

 MODE  Display Digits  3:FIX 2 ENTER ENTER

Approximate Mode  For all solutions, the solution should be in dec-
imal form to second-place accuracy. If this is not set, some answers will 
appear in fractional form to ensure the answer is EXACT (another 
option). This selection is made with the following sequence:

 MODE   F2   Exact/Approx  3: APPROXIMATE ENTER ENTER

Clear Screen  To clear the screen of all entries and results, use the 
following sequence:

F1  8: Clear Home ENTER

Clear Current Entries  To delete the sequence of current entries at 
the bottom of the screen, select the CLEAR key.

Turn Off  To turn off the calculator, apply the following sequence:

2ND  ON

Calculator Fundamentals

Order of Operations  Although setting the correct format and accu-
rate input is important, improper results occur primarily because users 
fail to realize that no matter how simple or complex an equation, the 
calculator performs the required operations in a specific order.

This is a fact that is true for any calculator you may use. The content 
below is for the majority of commercially available calculators.

Consider the operation

8

3 + 1
which is often entered as

8 3 + 1 ENTER  =
8

3
+ 1 = 2.67 + 1 = 3.67

This is incorrect (2 is the answer).
The calculator will not perform the addition first and then the division. 

In fact, addition and subtraction are the last operations to be performed in 
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any equation. It is therefore very important that you carefully study and 
thoroughly understand the next few paragraphs in order to use the calcu-
lator properly.

1.	 The first operations to be performed by a calculator can be set 
using parentheses ( ). It does not matter which operations are 
within the parentheses. The parentheses simply dictate that this 
part of the equation is to be determined first. There is no limit to 
the number of parentheses in each equation—all operations within 
parentheses will be performed first. For instance, for the example 
above, if parentheses are added as shown below, the addition will 
be performed first and the correct answer obtained:

8
(3 + 1)

= 8 ( 3 + 1 ) ENTER = 2.00

2.	 Next, powers and roots are performed, such as x2, 1x, and so on.
3.	 Negation (applying a negative sign to a quantity) and single-key 

operations such as sin, tan−1, and so on, are performed.
4.	 Multiplication and division are then performed.
5.	 Addition and subtraction are performed last.

It may take a few moments and some repetition to remember the 
order, but at least you are now aware that there is an order to the opera-
tions and that ignoring them can result in meaningless results.

EXAMPLE 1.23  Determine A9

3

Solution:

2ND  1    (   9 3 ) ENTER = 1.73

In this case, the left bracket is automatically entered after the square 
root sign. The right bracket must then be entered before performing the 
calculation.

For all calculator operations, the number of right brackets must 
always equal the number of left brackets.

EXAMPLE 1.24  Find

3 + 9

4

Solution:  If the problem is entered as it appears, the incorrect answer 
of 5.25 will result.

3  +  9   4  ENTER = 3 +
9

4
= 5.25

Using brackets to ensure that the addition takes place before the division 
will result in the correct answer as shown below:

(   3   +   9   )     4   ENTER

=
(3 + 9)

4
=

12

4
= 3.00
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EXAMPLE 1.25  Determine

1

4
+

1

6
+

2

3

Solution:  Since the division will occur first, the correct result will be 
obtained by simply performing the operations as indicated. That is,

1     4   +   1     6   +   2  

3   ENTER =
1

4
+

1

6
+

2

3
= 1.08

Powers of Ten  The EE  key is used to set the power of ten of a num-
ber. Setting up the number 2200 = 2.2 * 103 requires the following 
keypad selections:

2  
.

  2   EE   3   ENTER = 2.20E3

Setting up the number 8.2 * 10-6 requires the negative sign (2) 
from the numerical keypad. Do not use the negative sign from the math-
ematical listing of 4, 3, 2, and 1. That is,

8   .   2   EE   (�)   6   ENTER = 8.20E-6

EXAMPLE 1.26  Perform the addition 6.3 * 103 + 75 * 103 and 
compare your answer with the longhand solution of Example 1.8(a).

Solution:

6   .   3   EE   +   7   5   EE

3   ENTER = 81.30E3

which confirms the results of Example 1.8(a).

EXAMPLE 1.27  Perform the division (69 * 104)>(13 * 10-8) and 
compare your answer with the longhand solution of Example 1.10(b).

Solution:

6   9   EE   4     1   3   EE   (�)   8

ENTER = 5.31E12

which confirms the results of Example 1.10(b).

EXAMPLE 1.28  Using the provided format of each number, perform 
the following calculation in one series of keypad entries:

(0.004)(6 * 10-4)

(2 * 10-3)2 = ?

Solution:

(   (   0   .   0   0   4   )     (

6   EE   (�)   4   )   )     2   EE   (�)

3  

<

  2   ENTER = 600.00E-3 = 0.6
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Brackets were used to ensure that the calculations were performed in 
the correct order. Note also that the number of left brackets equals the 
number of right brackets.

1.13 C omputer Analysis

The use of computers in the educational process has grown exponen-
tially in the past decade. Very few texts at this introductory level fail to 
include some discussion of current popular computer techniques. In fact, 
the very accreditation of a technology program may be a function of the 
depth to which computer methods are incorporated in the program.

There is no question that a basic knowledge of computer methods is 
something that the graduating student must learn in a two-year or four-
year program. Industry now requires students to be proficient in the use 
of a computer.

Two general directions can be taken to develop the necessary com-
puter skills: the study of computer languages or the use of software 
packages.

Languages

There are several languages that provide a direct line of communication 
with the computer and the operations it can perform. A language is a set 
of symbols, letters, words, or statements that the user can enter into the 
computer. The computer system will “understand” these entries and will 
perform them in the order established by a series of commands called a 
program. The program tells the computer what to do on a sequential, line-
by-line basis in the same order a student would perform the calculations in 
longhand. The computer can respond only to the commands entered by the 
user. This requires that the programmer understand fully the sequence of 
operations and calculations required to obtain a particular solution. A 
lengthy analysis can result in a program having hundreds or thousands of 
lines. Once written, the program must be checked carefully to ensure that 
the results have meaning and are valid for an expected range of input vari-
ables. Some of the popular languages applied in the electrical/electronics 
field today include C++, QBASIC, Java, and FORTRAN. Each has its 
own set of commands and statements to communicate with the computer, 
but each can be used to perform the same type of analysis.

Software Packages

The second approach to computer analysis—software packages—
avoids the need to know a particular language; in fact, the user may not 
be aware of which language was used to write the programs within the 
package. All that is required is a knowledge of how to input the network 
parameters, define the operations to be performed, and extract the 
results; the package will do the rest. However, there is a problem with 
using packaged programs without understanding the basic steps the pro-
gram uses. You can obtain a solution without the faintest idea of either 
how the solution was obtained or whether the results are valid or way off 
base. It is imperative that you realize that the computer should be used as 
a tool to assist the user—it must not be allowed to control the scope and 
potential of the user! Therefore, as we progress through the chapters of 
the text, be sure that you clearly understand the concepts before turning 
to the computer for support and efficiency.



42    Introduction �
S

   I

Each software package has a menu, which defines the range of 
application of the package. Once the software is entered into the com-
puter, the system will perform all the functions appearing in the menu, 
as it was preprogrammed to do. Be aware, however, that if a particular 
type of analysis is requested that is not on the menu, the software pack-
age cannot provide the desired results. The package is limited solely to 
those maneuvers developed by the team of programmers who devel-
oped the software package. In such situations the user must turn to 
another software package or write a program using one of the languages 
listed above.

In broad terms, if a software package is available to perform a particu-
lar analysis, then that package should be used rather than developing new 
routines. Most popular software packages are the result of many hours of 
effort by teams of programmers with years of experience. However, if the 
results are not in the desired format, or if the software package does not 
provide all the desired results, then the user’s innovative talents should be 
put to use to develop a software package. As noted above, any program 
the user writes that passes the tests of range and accuracy can be consid-
ered a software package of his or her authorship for future use.

The two software packages to be used in this text will be introduced 
in Chapter 4. Although both are designed to analyze electric circuits, 
there are sufficient differences between the two to warrant covering each 
approach. However, you are not required to obtain both programs in 
order to proceed with the content of this text. The primary reason for 
including the programs is simply to introduce each and demonstrate how 
each can support the learning process. In most cases, sufficient detail has 
been included to allow use of the software package to perform the exam-
ples provided, although it would certainly be helpful to have someone to 
turn to if questions arise. In addition, the literature supporting the pack-
ages has improved dramatically in recent years and should be available 
through your bookstore or a major publisher.

Problems

Note: More difficult problems are denoted by an asterisk 
(*) throughout the text.

Section 1.2  A Brief History

	 1.	 Visit your local library (at school or home) and describe the 
extent to which it provides literature and computer support 
for the technologies—in particular, electricity, electronics, 
electromagnetics, and computers.

	 2.	 Choose an area of particular interest in this field and write a 
very brief report on the history of the subject.

	 3.	 Choose an individual of particular importance in this field 
and write a very brief review of his or her life and important 
contributions.

Section 1.3  Units of Measurement

	 4.	 a.	 In a recent Tour de France time trial, a participant traveled 
60.5 mi in a time trial in 2 h, 15 min. What was his average 
speed in mph?

	b.	 What is the speed in km/h?

	 5.	 In most countries outside the United States speed is meas-
ured in kilometers per hour (km/h) rather than miles per 
hour (mph). Although the exact conversion from km/h to 
mph is 0.57, a conversion factor of 0.6 is generally used 
because it is easier to remember. For the reverse conversion 
a factor of 1.7 is normally used. Perform the following con-
versions using the approximate conversion factors.
	a.	 What is the speed in mph of an automobile on the German 

Autobahn traveling at 160 km/h?
	b.	 What is the speed in km/h of a motorcycle traveling at 

70 mph in the United States?

	 6.	 How long in seconds will it take a car traveling at 80 mph to 
travel the length of a football field (100 yd)?

	*7.	 A pitcher has the ability to throw a baseball at 95 mph.
	a.	 How fast is the speed in ft/s?
	b.	 How long does the hitter have to make a decision about 

swinging at the ball if the plate and the mound are sepa-
rated by 60 ft?

	c.	 If the batter wanted a full second to make a decision, 
what would the speed in mph have to be?
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Section 1.4  Systems of Units

	 8.	 Are there any relative advantages associated with the metric 
system compared to the English system with respect to 
length, mass, force, and temperature? If so, explain.

	 9.	 Which of the four systems of units appearing in Table 1.1 
has the smallest units for length, mass, and force? When 
would this system be used most effectively?

	*10.	 Which system of Table 1.1 is closest in definition to the SI 
system? How are the two systems different? Why do you 
think the units of measurement for the SI system were cho-
sen as listed in Table 1.1? Give the best reasons you can 
without referencing additional literature.

	11.	 What is room temperature (68°F) in the MKS, CGS, and SI 
systems?

	12.	 How many foot-pounds of energy are associated with 4000 J?

	13.	 In Europe the height of a man or woman is measured in 
centimeters and his or her weight in kilograms.
	a.	 What is the weight in pounds (lb) of a man who weighs 

70.8 kg?
	b.	 What is the weight in kg of a woman who weighs 145 lb?
	c.	 What is the height of a man in cm who is 6 ft tall?
	d.	 In Norway, the average height of a man is 179.9 cm. 

What is his height in feet and inches?

	14.	 Throughout the world, the majority of countries use the 
centigrade scale rather than the Fahrenheit scale. This can 
cause problems for travelers not familiar with what to 
expect at certain temperature levels. To alleviate this prob-
lem, the following approximate conversion is typically 
used:

°F = 2(°C) + 30°

		  Comparing to the exact formula of °F =
9

5
°C + 32°, we 

		  find the ratio 9/5 is approximated to equal 2, and the tem-
perature of 32° is changed to 30° simply to make the num-
bers easier to work with and slightly compensate for the 
fact that 2(°C) is more than 9/5(°C).
	a.	 The temperature of 20°C is commonly accepted as normal 

room temperature. Using the approximate formula, deter-
mine (in your head) the equivalent Fahrenheit temperature.

	b.	 Use the exact formula and determine the equivalent 
Fahrenheit temperature for 20°C.

	c.	 How do the results of parts (a) and (b) compare? Is the 
approximation valid as a first estimate of the Fahrenheit 
temperature?

	d.	 Repeat parts (a) and (b) for a high temperature of 30°C 
and a low temperature of 5°C.

Section 1.5  Significant Figures, Accuracy,  
and Rounding Off

	15.	 Write the following numbers to tenths-place accuracy.
	a.	 14.6026	 b.	 056.0420
	c.	 1,046.06	 d.	 1/16
	e.	 p

	16.	 Repeat Problem 15 using hundredths-place accuracy.

	17.	 Repeat Problem 15 using thousandths-place accuracy.

Section 1.6  Powers of Ten

	18.	 Express the following numbers as powers of ten to hundredths-
place accuracy:
	a.	 10,000	 b.	 1,000,000
	c.	 1000	 d.	 0.001
	e.	 1	 f.	 0.1

	19.	 Using only those powers of ten listed in Table 1.2, express 
the following numbers in what seems to you the most logical 
form for future calculations:
	a.	 15,000	 b.	 0.005
	c.	 2,400,000	 d.	 60,000
	e.	 0.00040200	 f.	 0.0000000002

	20.	 Perform the following operations to hundredths-place 
accuracy:
	a.	 4300 + 47,000
	b.	 8 * 104 + 4.6 * 105

	c.	 0.6 * 10-3 - 6 * 10-6

	d.	 2.6 * 103 + 60,000 * 10-3 - 500

	21.	 Perform the following operations:
	a.	 (1000)(10000)	 b.	 (0.001)(100)
	c.	 (102)(107)	 d.	 (100)(0.000001)
	e.	 (1028)(10,000,000)	 f.	 (10,000)(10210) (1026)

	22.	 Perform the following operations to hundredths-place 
accuracy:
	a.	 (50,000) (0.002)
	b.	 2200 * 0.002
	c.	 (0.000082) (1.2 * 106)
	d.	 (30 * 10-4) (0.004) (7 * 108)

	23.	 Perform the following operations:

	a.	
100

10,000
	 b.	

0.010

1000

	c.	
10,000

0.001
	 d.	

0.0000001

100

	e.	
1038

0.000100
	 f.	

(100)1/2

0.01
	24.	 Perform the following operations to hundredths-place 

accuracy:

	a.	
4000

0.00008
	 b.	

0.006

6 * 106

	c.	
0.000440

0.00005
	 d.	

88 * 1018

8 * 10-8

	25.	 Perform the following operations:
	a.	 (100)3	 b.	 (0.0001)1/2

	c.	 (10,000)8	 d.	 (0.00000010)9

	26.	 Perform the following operations to hundredths-place 
accuracy:
	a.	 (400)2

	b.	 (6 * 10-4)4

	c.	 (0.005) (3 * 10-4)2

	d.	 ((2 * 10-4) (0.8 * 105) (0.005 * 106))3

	27.	 Perform the following operations to hundredths-place 
accuracy:

	a.	
(300)2(100)

3 * 104 	 b.	 [(40,000)2] [(20)-3]

	c.	
(60,000)2

(0.02)2 	 d.	
(0.000027)1/3

200,000
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	e.	
[(4000)2][300]

2 * 10-4

	f.	 [(0.000016)1/2] [(100,000)5] [0.02]

	 *g.	
[(0.003)3][0.00007]-2[(160)2]

[(200)(0.0008)]-1/2  (a challenge)

Section 1.7  Fixed-Point, Floating-Point, Scientific, 
and Engineering Notation

	28.	 Write the following numbers in scientific and engineering 
notation to hundredths place:
	a.	 20.46	 b.	 50,420
	c.	 0.000674	 d.	 000.0460

	29.	 Write the following numbers in scientific and engineering 
notation to tenths place:
	a.	 5 * 10-2

	b.	 0.45 * 10 + 2

	c.	 1/32
	d.	 p

	30.	 Perform the following operations and leave the answer in 
engineering notation:
	a.	 (8 * 10-3)(4 * 105) =
	b.	 (70 * 106)(0.04 * 103) =
	c.	 (0.002 * 107)(600 * 105)>(5 * 104) =
	d.	 (6.2 * 104)2(82 * 10-3)>(4.02 * 103) =

Section 1.8  Conversion between Levels of Powers 
of Ten

	31.	 Fill in the blanks of the following conversions:
	a.	 6 * 104 = ______ * 106

	b.	 0.4 * 10-3 = ______ * 10-6

	c.	 50 * 105 = ______ * 103 = ______ * 106

	 		  = ______ * 109

	d.	 12 * 10-7 = ______ * 10-3 = ______ * 10-6

	 		  = ______ * 10-9

	32.	 Perform the following conversions:
	a.	 0.06 s to milliseconds
	b.	 4000 ms to milliseconds
	c.	 0.08 ms to microseconds
	d.	 6400 ps to microseconds
	e.	 100 * 104 mm to kilometers

Section 1.9  Conversion within and between 
Systems of Units

	33.	 Perform the following conversions to tenths-place accuracy:
	a.	 1.5 min to seconds
	b.	 2 * 10-2 h to seconds
	c.	 0.05 s to microseconds
	d.	 0.16 m to millimeters
	e.	 0.00000012 s to nanoseconds
	f.	 4 * 108 s to days

	34.	 Perform the following metric conversions to tenths-place 
accuracy:
	a.	 80 mm to centimeters
	b.	 60 cm to kilometers
	c.	 12 * 10-3 m to micrometers
	d.	 60 sq cm (cm2) to square meters (m2)

	35.	 Perform the following conversions between systems to 
hundredths-place accuracy:
	a.	 100 in. to meters
	b.	 4 ft to meters
	c.	 6 lb to newtons
	d.	 60,000 dyn to pounds
	e.	 150,000 cm to feet
	f.	 0.002 mi to meters (5280 ft = 1 mi)

	36.	 What is a mile in feet, yards, meters, and kilometers?

	37.	 Convert 60 mph to meters per second.

	38.	 How long would it take a runner to complete a 15-km race 
if a pace of 8.5 min/mi were maintained?

	39.	 Quarters are about 1 in. in diameter. How many would be 
required to stretch from one end of a football field to the 
other (100 yd)?

	40.	 Compare the total time required to drive a long, tiring day 
of 500 mi at an average speed of 60 mph versus an average 
speed of 70 mph. Is the time saved for such a long trip 
worth the added risk of the higher speed?

	 *41.	 Find the distance in meters that a mass traveling at 800 cm/s 
will cover in 0.048 h.

	 *42.	 Each spring there is a race up 86 floors of the 102-story 
Empire State Building in New York City. If you were able 
to climb 2 steps/second, how long would it take in minutes 
to reach the 86th floor if each floor is 14 ft high and each 
step is about 9 in.?

	 *43.	 The record for the race in Problem 42 is 10.22 min. What 
was the racer’s speed in min/mi for the race?

	 *44.	 If the race of Problem 42 were a horizontal distance, how 
long would it take a runner who can run 5-min miles to 
cover the distance? Compare this with the record speed of 
Problem 43. Did gravity have a significant effect on the 
overall time?

Section 1.11  Conversion Tables

	45.	 Using Appendix A, determine the number of
	a.	 Btu in 5 J of energy.
	b.	 cubic meters in 24 oz of a liquid.
	c.	 seconds in 1.4 days.
	d.	 pints in 1 m3 of a liquid.

Section 1.12  Calculators

Perform the following operations using a single sequence of cal-
culator keys:

	46.	 6 (4 * 2 + 8) =

	47.	
42 + 6

5

3
=

	48.	 B52 + a2

3
b

2

=

	49.	 cos 21.87° =

	 *50.	 tan-1  
3

4
=

	 *51.	 A 400

62 + 10
5

=
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	 *52.	
8.2 * 10-3

0.04 * 103  (in engineering notation) =

	 *53.	
(0.06 * 105)(20 * 103)

(0.01)2   (in engineering notation) =

	 *54.	
4 * 104

2 * 10-3 + 400 * 10-5
+

1

2 * 10-6

(in engineering notation) =

Section 1.13  Computer Analysis

	55.	 Investigate the availability of computer courses and com-
puter time in your curriculum. Which languages are com-
monly used, and which software packages are popular?

	56.	 Develop a list of three popular computer languages, includ-
ing a few characteristics of each. Why do you think some 
languages are better for the analysis of electric circuits than 
others?

Glossary

Artificial intelligence  A broad term for any technological effort 
to replicate the brain’s functions.

Cathode-ray tube (CRT)  A glass enclosure with a relatively 
flat face (screen) and a vacuum inside that will display the 
light generated from the bombardment of the screen by 
electrons.

CGS system  The system of units employing the Centimeter, 
Gram, and Second as its fundamental units of measure.

Difference engine  One of the first mechanical calculators.
Edison effect  Establishing a flow of charge between two ele-

ments in an evacuated tube.
Electromagnetism  The relationship between magnetic and 

electrical effects.
Engineering notation  A method of notation that specifies that 

all powers of ten used to define a number be multiples of 3 
with a mantissa greater than or equal to 1 but less than 1000.

ENIAC  The first totally electronic computer.
Fixed-point notation  Notation using a decimal point in a par-

ticular location to define the magnitude of a number.
Fleming’s valve  The first of the electronic devices, the diode.
Floating-point notation  Notation that allows the magnitude 

of a number to define where the decimal point should be 
placed.

Integrated circuit (IC)  A subminiature structure containing a 
vast number of electronic devices designed to perform a par-
ticular set of functions.

Joule (J)  A unit of measurement for energy in the SI or MKS 
system. Equal to 0.7378 foot-pound in the English system and 
107 ergs in the CGS system.

Kelvin (K)  A unit of measurement for temperature in the SI sys-
tem. Equal to 273.15 + °C in the MKS and CGS systems.

Kilogram (kg)  A unit of measure for mass in the SI and MKS 
systems. Equal to 1000 grams in the CGS system.

Language  A communication link between user and computer to 
define the operations to be performed and the results to be 
displayed or printed.

Leyden jar  One of the first charge-storage devices.
Menu  A computer-generated list of choices for the user to deter-

mine the next operation to be performed.
Meter (m)  A unit of measure for length in the SI and MKS systems. 

Equal to 1.094 yards in the English system and 100 centimeters 
in the CGS system.

MKS system  The system of units employing the Meter, Kilo-
gram, and Second as its fundamental units of measure.

Nanotechnology  The production of integrated circuits in which 
the nanometer is the typical unit of measurement.

Newton (N)  A unit of measurement for force in the SI and MKS 
systems. Equal to 100,000 dynes in the CGS system.

Pound (lb)  A unit of measurement for force in the English sys-
tem. Equal to 4.45 newtons in the SI or MKS system.

Program  A sequential list of commands, instructions, and so on, 
to perform a specified task using a computer.

Scientific notation  A method for describing very large and very 
small numbers through the use of powers of ten, which 
requires that the multiplier be a number between 1 and 10.

Second (s)  A unit of measurement for time in the SI, MKS, 
English, and CGS systems.

SI system  The system of units adopted by the IEEE in 1965 
and the USASI in 1967 as the International System of Units 
(Système International d’Unités).

Slug  A unit of measure for mass in the English system. Equal to 
14.6 kilograms in the SI or MKS system.

Software package  A computer program designed to perform 
specific analysis and design operations or generate results in a 
particular format.

Static electricity  Stationary charge in a state of equilibrium.
Transistor  The first semiconductor amplifier.
Voltaic cell  A storage device that converts chemical to electrical 

energy.
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2.1  Introduction

Now that the foundation for the study of electricity/electronics has been established, the con-
cepts of voltage and current can be investigated. The term voltage is encountered practically 
every day. We have all replaced batteries in our flashlights, answering machines, calculators, 
automobiles, and so on, that had specific voltage ratings. We are aware that most outlets in 
our homes are 120 volts. Although current may be a less familiar term, we know what hap-
pens when we place too many appliances on the same outlet—the circuit breaker opens due to 
the excessive current that results. It is fairly common knowledge that current is something 
that moves through the wires and causes sparks and possibly fire if there is a “short circuit.” 
Current heats up the coils of an electric heater or the burners of an electric stove; it generates 
light when passing through the filament of a bulb; it causes twists and kinks in the wire of an 
electric iron over time; and so on. All in all, the terms voltage and current are part of the 
vocabulary of most individuals.

In this chapter, the basic impact of current and voltage and the properties of each are intro-
duced and discussed in some detail. Hopefully, any mysteries surrounding the general charac-
teristics of each will be eliminated, and you will gain a clear understanding of the impact of 
each on an electric/electronics circuit.

2.2  Atoms and their Structure

A basic understanding of the fundamental concepts of current and voltage requires a degree of 
familiarity with the atom and its structure. The simplest of all atoms is the hydrogen atom, 
made up of two basic particles, the proton and the electron, in the relative positions shown in 
Fig. 2.1(a). The nucleus of the hydrogen atom is the proton, a positively charged particle.

The orbiting electron carries a negative charge equal in magnitude to the positive charge 
of the proton.

•	Become aware of the basic atomic structure of 
conductors such as copper and aluminum and 
understand why they are used so extensively in 
the field.

•	Understand how the terminal voltage of a battery 
or any dc supply is established and how it creates 
a flow of charge in the system.

•	Understand how current is established in a circuit 
and how its magnitude is affected by the charge 
flowing in the system and the time involved.

•	Become familiar with the factors that affect the 
terminal voltage of a battery and how long a 
battery will remain effective.

•	Be able to apply a voltmeter and ammeter correctly 
to measure the voltage and current of a network.

Objectives

Voltage and CurrentVoltage and Current 22

e
I

V
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In all other elements, the nucleus also contains neutrons, which are 
slightly heavier than protons and have no electrical charge. The helium 
atom, for example, has two neutrons in addition to two electrons and two 
protons, as shown in Fig. 2.1(b). In general,

the atomic structure of any stable atom has an equal number of 
electrons and protons.

Different atoms have various numbers of electrons in concentric 
orbits called shells around the nucleus. The first shell, which is closest to 
the nucleus, can contain only two electrons. If an atom has three elec-
trons, the extra electron must be placed in the next shell. The number of 
electrons in each succeeding shell is determined by 2n2, where n is the 
shell number. Each shell is then broken down into subshells where the 
number of electrons is limited to 2, 6, 10, and 14 in that order as you 
move away from the nucleus.

Copper is the most commonly used metal in the electrical/electronics 
industry. An examination of its atomic structure will reveal why it has 
such widespread application. As shown in Fig. 2.2, it has 29 electrons in 
orbits around the nucleus, with the 29th electron appearing all by itself 
in the 4th shell. Note that the number of electrons in each shell and 

+

Electron

Nucleus

Proton

–

(a) Hydrogen atom

+
+

–

–

Protons

Electron
Nucleus

Neutrons

Electron

(b) Helium atom

FIG. 2.1
Hydrogen and helium atoms.
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FIG. 2.2
The atomic structure of copper.
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subshell is as defined above. There are two important things to note in 
Fig. 2.2. First, the 4th shell, which can have a total of 2n2 = 21422 = 32 
electrons, has only one electron. The outermost shell is incomplete and, 
in fact, is far from complete because it has only one electron. Atoms 
with complete shells (that is, a number of electrons equal to 2n2) are usu-
ally quite stable. Those atoms with a small percentage of the defined 
number for the outermost shell are normally considered somewhat 
unstable and volatile. Second, the 29th electron is the farthest electron 
from the nucleus. Opposite charges are attracted to each other, but the 
farther apart they are, the less the attraction. In fact, the force of attrac-
tion between the nucleus and the 29th electron of copper can be deter-
mined by Coulomb’s law developed by Charles Augustin Coulomb 
(Fig. 2.3) in the late 18th century:

	 F = k 
Q1Q2

r 2
  

(newtons, N)	 (2.1)

where F is in newtons (N), k = a constant = 9.0 * 109 N # m2>C2, Q1 
and Q2 are the charges in coulombs (a unit of measure discussed in the 
next section), and r is the distance between the two charges in meters.

At this point, the most important thing to note is that the distance 
between the charges appears as a squared term in the denominator. First, 
the fact that this term is in the denominator clearly reveals that as it 
increases, the force will decrease. However, since it is a squared term, 
the force will drop dramatically with distance. This relationship where a 
parameter of interest has a squared term in the denominator occurs fre-
quently in this and related fields, so we will take a closer look at its 
impact. Defining k′ = kQ1Q2, Eq. (2.1) will become the following:

F =
kQ1Q2

r2 =
k′
r2

For very small distances between charges, the force of attraction or 
repulsion will be very high.
Consider r = 0.3 m. The resulting force is

F =
k′
r2 =

k′
(0.3)2 ≅ 11.1k′

For r = 1 m:

F =
k′
r2 =

k′
(1)2 = k′

For r = 2 m:

F =
k′
r2 =

k′
(2)2 =

k′
4

= 0.25k′

and for r = 10 m:

F =
k′
r2 =

k′
(10)2 =

k′
100

= 0.01k′

A plot of force versus distance is provided as Fig. 2.4. Clearly the 
squared term in the denominator has a dramatic effect on the level of 
attraction or repulsion between two charges. The result, therefore, is that 
the force of attraction between the 29th electron and the nucleus is sig-
nificantly less than that between an electron in the first shell and the 

French (Angoulème, Paris)
(1736–1806) Scientist and Inventor  

Military Engineer, West Indies

Attended the engineering school at Mézières, the 
first such school of its kind. Formulated Coulomb’s 
law, which defines the force between two electrical 
charges and is, in fact, one of the principal forces in 
atomic reactions. Performed extensive research on 
the friction encountered in machinery and windmills 
and the elasticity of metal and silk fibers.

FIG. 2.3
Charles Augustin Coulomb.

INTERFOTO/Alamy

 r (m)

11.1

1021

1.0

0
0.25

0.3

F
 kQ1Q2 

 =  k�
 r2  r2 

F(k�)

 k�
100

=

FIG. 2.4
Demonstrating the impact of a squared term in  

the denominator of an expression.
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nucleus. The result is that the 29th electron is loosely bound to the 
atomic structure and with a little bit of pressure from outside sources 
could be encouraged to leave the parent atom.

If this 29th electron gains sufficient energy from the surrounding 
medium to leave the parent atom, it is called a free electron. In 1 cubic 
in. of copper at room temperature, there are approximately 1.4 * 1024 
free electrons. Expanded, that is 1,400,000,000,000,000,000,000,000 
free electrons in a 1–in. square cube. The point is that we are dealing 
with enormous numbers of electrons when we talk about the number of 
free electrons in a copper wire—not just a few that you could leisurely 
count. Further, the numbers involved are clear evidence of the need to 
become proficient in the use of powers of ten to represent numbers and 
use them in mathematical calculations.

Other metals that exhibit the same properties as copper, but to a dif-
ferent degree, are silver, gold, and aluminum, and some rarer metals 
such as tungsten. Additional comments on the characteristics of conduc-
tors are in the following sections.

2.3  Voltage

If we separate the 29th electron in Fig. 2.2 from the rest of the atomic 
structure of copper by a dashed line as shown in Fig. 2.5(a), we create 
regions that have a net positive and negative charge as shown in Fig. 
2.5(b) and (c). For the region inside the dashed boundary, the number of 
protons in the nucleus exceeds the number of orbiting electrons by 1, so 
the net charge is positive as shown in both figures. This positive region 
created by separating the free electron from the basic atomic structure is 
called a positive ion. If the free electron then leaves the vicinity of the 
parent atom as shown in Fig. 2.5(d), regions of positive and negative 
charge have been established.

This separation of charge to establish regions of positive and negative 
charge is the action that occurs in every battery. Through chemical 
action, a heavy concentration of positive charge (positive ions) is estab-
lished at the positive terminal, with an equally heavy concentration of 
negative charge (electrons) at the negative terminal.

In general,

every source of voltage is established by simply creating a separation 
of positive and negative charges.

It is that simple: If you want to create a voltage level of any magnitude, 
simply establish regions of positive and negative charge. The more the 
required voltage, the greater is the quantity of positive and negative charge.

In Fig. 2.6(a), for example, a region of positive charge has been 
established by a packaged number of positive ions, and a region of nega-
tive charge by a similar number of electrons, separated by a distance r. 
Since it would be inconsequential to talk about the voltage established 
by the separation of a single electron, a package of electrons called a 
coulomb (C) of charge was defined as follows:

One coulomb of charge is the total charge associated with 
6.242 : 1018 electrons.

Conversely, the negative charge associated with a single electron is

Qe =
1

6.242 * 1018 C = 0.1602 * 10-18 C

(b)

+ –

(c)

+ –

(d)

Positive ion Free electron

–

–

–

–

– –

–
– –

–

–
–

– –

– – – –
–

–

––
–

–

–
– – –

–

–

–

(a)

+

+

Positive region equal
in charge to the
isolated electron

FIG. 2.5
Defining the positive ion.
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In Fig. 2.6(b), if we take a coulomb of negative charge near the sur-
face of the positive charge and move it toward the negative charge, we 
must expend energy to overcome the repulsive forces of the larger nega-
tive charge and the attractive forces of the positive charge. In the process 
of moving the charge from point a to point b in Fig. 2.6(b),

if a total of 1 joule (J) of energy is used to move the negative charge 
of 1 coulomb (C), there is a difference of 1 volt (V) between the two 
points.

The defining equation is

	 V =
W

Q
  

 V = volts (V)
W = joules (J)

 Q = coulombs (C)
	 (2.3)

Take particular note that the charge is measured in coulombs, the 
energy in joules, and the voltage in volts. The unit of measurement, 
volt, was chosen to honor the efforts of Alessandro Volta, who first 
demonstrated that a voltage could be established through chemical 
action (Fig. 2.7).

If the charge is now moved all the way to the surface of the larger 
negative charge as shown in Fig. 2.6(c), using 2 J of energy for the whole 
trip, there are 2 V between the two charged bodies. If the package of 
positive and negative charge is larger, as shown in Fig. 2.6(d), more 
energy will have to be expended to overcome the larger repulsive forces 
of the large negative charge and attractive forces of the large positive 
charge. As shown in Fig. 2.6(d), 4.8 J of energy were expended, resulting 
in a voltage of 4.8 V between the two points. We can therefore conclude 
that it would take 12 J of energy to move 1 C of negative charge from the 
positive terminal to the negative terminal of a 12 V car battery.

Through algebraic manipulations, we can define an equation to 
determine the energy required to move charge through a difference in 
voltage:

	 W = QV     ( joules, J) 	 (2.4)

(a)

r

–

–

(b) (c)

b

a1 V

1 coulomb
of charge

1 joule
of energy

–

–
1 coulomb of charge

2 joules of energy

2 V

(d)

–

–

4.8 V

1 coulomb of charge

4.8 joules of energy

+

–

+

–

+

–

+

–

FIG. 2.6
Defining the voltage between two points.

Italian (Como, Pavia)
(1745–1827) Physicist  

Professor of Physics,  
Pavia, Italy

Began electrical experiments at the age of 18 work-
ing with other European investigators. Major contri-
bution was the development of an electrical energy 
source from chemical action in 1800. For the first 
time, electrical energy was available on a continuous 
basis and could be used for practical purposes. 
Developed the first condenser, known today as the 
capacitor. Was invited to Paris to demonstrate the 
voltaic cell to Napoleon. The International Electrical 
Congress meeting in Paris in 1881 honored his 
efforts by choosing the volt as the unit of measure 
for electromotive force.

FIG. 2.7
Count Alessandro Volta.
Bilwissedition Ltd. & Co. 

KG/Alamy

so that

	 Qe = 1.602 * 10-19 C 	 (2.2)
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Finally, if we want to know how much charge was involved, we use

	 Q =
W

V
    (coulombs, C)	 (2.5)

EXAMPLE 2.1	 Find the voltage between two points if 60 J of energy 
are required to move a charge of 20 C between the two points.

Solution:  Eq. (2.3): V =
W

Q
=

60 J

20 C
= 3 V

EXAMPLE 2.2	 Determine the energy expended moving a charge of 
50 mC between two points if the voltage between the points is 6 V.

Solution:  Eq. (2.4):

W = QV = (50 * 10-6 C)(6 V) = 300 * 10-6 J = 300 MJ

There are a variety of ways to separate charge to establish the desired 
voltage. The most common is the chemical action used in car batteries, 
flashlight batteries, and, in fact, all portable batteries. Other sources use 
mechanical methods such as car generators and steam power plants or 
alternative sources such as solar cells and windmills. In total, however, 
the sole purpose of the system is to create a separation of charge. In the 
future, therefore, when you see a positive and a negative terminal on 
any type of battery, you can think of it as a point where a large concen-
tration of charge has gathered to create a voltage between the two 
points. More important is to recognize that a voltage exists between two 
points—for a battery between the positive and negative terminals. 
Hooking up just the positive or the negative terminal of a battery and 
not the other would be meaningless.

Both terminals must be connected to define the applied voltage.

As we moved the 1 C of charge in Fig. 2.6(b), the energy expended 
would depend on where we were in the crossing. The position of the 
charge is therefore a factor in determining the voltage level at each point 
in the crossing. Since the potential energy associated with a body is 
defined by its position, the term potential is often applied to define volt-
age levels. For example, the difference in potential is 4 V between the 
two points, or the potential difference between a point and ground is 
12 V, and so on.

The electron volt

A unit of energy sometimes applied in a number of physics oriented 
investigations is the electron volt.

It is the level of energy required to move an electron through a poten-
tial difference of 1 volt.

Applying the basic energy equation,

 W = QV
 = (1.602 * 10-19 C)(1 volt)
 = 1.602 * 10-19 J
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and

	 1 eV = 1.602 * 10-19 J 	 (2.6)

Conversely,

1 J =
1

1.602 * 10-19 eV
and

	 1 J = 2.24 * 1018 eV 	 (2.7)

2.4 C urrent

The question, “Which came first—the chicken or the egg?” can be 
applied here also because the layperson has a tendency to use the terms 
current and voltage interchangeably as if both were sources of energy. It 
is time to set things straight:

The applied voltage is the starting mechanism—the current is a 
reaction to the applied voltage.

In Fig. 2.8(a), a copper wire sits isolated on a laboratory bench. If we 
cut the wire with an imaginary perpendicular plane, producing the circu-
lar cross section shown in Fig. 2.8(b), we would be amazed to find that 
there are free electrons crossing the surface in both directions. Those 
free electrons generated at room temperature are in constant motion in 
random directions. However, at any instant of time, the number of elec-
trons crossing the imaginary plane in one direction is exactly equal to 
that crossing in the opposite direction, so the net flow in any one direc-
tion is zero. Even though the wire seems dead to the world sitting by 
itself on the bench, internally, it is quite active. The same would be true 
for any other good conductor.

e–
e–e–

e–e
–e–

(b)

Imaginary plane

Perpendicular
surface cut by
plane

(a)

Isolated copper wire

Perpendicular plane
for Fig. 2.8(b)

FIG. 2.8
There is motion of free carriers in an isolated piece of copper wire, but  

the flow of charge fails to have a particular direction.

Now, to make this electron flow do work for us, we need to give it a 
direction and be able to control its magnitude. This is accomplished by 
simply applying a voltage across the wire to force the electrons to move 
toward the positive terminal of the battery, as shown in Fig. 2.9. The 
instant the wire is placed across the terminals, the free electrons in the 
wire drift toward the positive terminal. The positive ions in the copper 
wire simply oscillate in a mean fixed position. As the electrons pass 
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through the wire, the negative terminal of the battery acts as a supply of 
additional electrons to keep the process moving. The electrons arriving 
at the positive terminal are absorbed, and through the chemical action of 
the battery, additional electrons are deposited at the negative terminal to 
make up for those that left.

To take the process a step further, consider the configuration in 
Fig. 2.10, where a copper wire has been used to connect a light bulb to 
a battery to create the simplest of electric circuits. The instant the 
final connection is made, the free electrons of negative charge drift 
toward the positive terminal, while the positive ions left behind in the 
copper wire simply oscillate in a mean fixed position. The flow of 
charge (the electrons) through the bulb heats up the filament of the 
bulb through friction to the point that it glows red-hot and emits the 
desired light.

e–e–

e–

Copper wire

Battery terminals

Chemical
action

V
e–

e–
e–

e–

FIG. 2.9
Motion of negatively charged electrons in a copper wire when placed across 

battery terminals with a difference in potential of volts (V).

Ielectron
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Iconventional

e

e

e

e

Chemical
activity

Battery

e

e

e

Imaginary plane

e

ee

e
e

e

FIG. 2.10
Basic electric circuit.

In total, therefore, the applied voltage has established a flow of elec-
trons in a particular direction. In fact, by definition,

if 6.242 : 1018 electrons (1 coulomb) pass through the imaginary 
plane in Fig. 2.10 in 1 second, the flow of charge, or current, is said 
to be 1 ampere (A).
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The unit of current measurement, ampere, was chosen to honor the 
efforts of André Ampère in the study of electricity in motion (Fig. 2.11).

Using the coulomb as the unit of charge, we can determine the cur-
rent in amperes from the following equation:

	 I =
Q

t   

  I = amperes (A)
Q = coulombs (C)
 t = time (s)

	 (2.8)

The capital letter I was chosen from the French word for current, 
intensité. The SI abbreviation for each quantity in Eq. (2.8) is provided 
to the right of the equation. The equation clearly reveals that for equal 
time intervals, the more charge that flows through the wire, the larger is 
the resulting current.

Through algebraic manipulations, the other two quantities can be 
determined as follows:

	 Q = It
  

(coulombs, C)	 (2.9)

and

	 t =
Q

l
    (seconds, s)	 (2.10)

EXAMPLE 2.3	 The charge flowing through the imaginary surface in 
Fig. 2.10 is 0.16 C every 64 ms. Determine the current in amperes.

Solution:  Eq. (2.8):

I =
Q

t
=

0.16 C

64 * 10-3 s
=

160 * 10-3 C

64 * 10-3 s
= 2.50 A

EXAMPLE 2.4	 Determine how long it will take 4 * 1016 electrons to 
pass through the imaginary surface in Fig. 2.10 if the current is 5 mA.

Solution:  Determine the charge in coulombs:

 4 * 1016 electrons a 1 C

6.242 * 1018 electrons
b = 0.641 * 10-2 C

 = 6.41 mC

Eq. (2.10): t =
Q

I
=

6.41 * 10-3 C

5 * 10-3A
= 1.28 s

In summary, therefore,

the applied voltage (or potential difference) in an electrical/
electronics system is the “pressure” to set the system in motion, and 
the current is the reaction to that pressure.

A mechanical analogy often used to explain this is the simple garden 
hose. In the absence of any pressure, the water sits quietly in the hose 
with no general direction, just as electrons do not have a net direction in 
the absence of an applied voltage. However, release the spigot, and the 
applied pressure forces the water to flow through the hose. Similarly, 
apply a voltage to the circuit, and a flow of charge or current results.

French (Lyon, Paris)
(1775–1836)  
Mathematician and Physicist  
Professor of Mathematics,  
École Polytechnique, Paris

On September 18, 1820, introduced a new field of 
study, electrodynamics, devoted to the effect of elec-
tricity in motion, including the interaction between 
currents in adjoining conductors and the interplay of 
the surrounding magnetic fields. Constructed the 
first solenoid and demonstrated how it could behave 
like a magnet (the first electromagnet). Suggested 
the name galvanometer for an instrument designed 
to measure current levels.

FIG. 2.11
André Marie Ampère.

Nickolae/Fotolia
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A second glance at Fig. 2.10 reveals that two directions of charge 
flow have been indicated. One is called conventional flow, and the 
other is called electron flow. This text discusses only conventional 
flow for a variety of reasons; namely, it is the most widely used at edu-
cational institutions and in industry, it defines the direction of the arrow 
in the design of all electronic device symbols, and it is the popular 
choice for all major computer software packages. The flow controversy 
is a result of an assumption made at the time electricity was discovered 
that the positive charge was the moving particle in metallic conductors. 
Be assured that the choice of conventional flow will not create great 
difficulty and confusion in the chapters to follow. Once the direction of 
I is established, the issue is dropped and the analysis can continue with-
out confusion.

Safety Considerations

It is important to realize that even small levels of current through the 
human body can cause serious, dangerous side effects. Experimental 
results reveal that the human body begins to react to currents of only a 
few milliamperes. Although most individuals can withstand currents up 
to perhaps 10 mA for very short periods of time without serious side 
effects, any current over 10 mA should be considered dangerous. In 
fact, currents of 50 mA can cause severe shock, and currents of over 
100 mA can be fatal. In most cases, the skin resistance of the body 
when dry is sufficiently high to limit the current through the body to 
relatively safe levels for voltage levels typically found in the home. 
However, if the skin is wet due to perspiration, bathing, and so on, or if 
the skin barrier is broken due to an injury, the skin resistance drops 
dramatically, and current levels could rise to dangerous levels for the 
same voltage shock. In general, therefore, simply remember that water 
and electricity don’t mix. Granted, there are safety devices in the home 
today [such as the ground fault circuit interrupt (GFCI) breaker, dis-
cussed in Chapter 4] that are designed specifically for use in wet areas 
such as the bathroom and kitchen, but accidents happen. Treat electric-
ity with respect—not fear.

2.5  Voltage Sources

The term dc, used throughout this text, is an abbreviation for direct cur-
rent, which encompasses all systems where there is a unidirectional 
(one direction) flow of charge. This section reviews dc voltage supplies 
that apply a fixed voltage to electrical/electronics systems.

The graphic symbol for all dc voltage sources is shown in Fig. 2.12. 
Note that the relative length of the bars at each end define the polarity of 
the supply. The long bar represents the positive side; the short bar, the 
negative. Note also the use of the letter E to denote voltage source. It 
comes from the fact that

an electromotive force (emf) is a force that establishes the flow of 
charge (or current) in a system due to the application of a difference 
in potential.

In general, dc voltage sources can be divided into three basic types: 
(1) batteries (chemical action or solar energy), (2) generators (electro-
mechanical), and (3) power supplies (rectification—a conversion pro-
cess to be described in your electronics courses).

E 12 V

FIG. 2.12
Standard symbol for a dc voltage source.
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Batteries

General Information  For the layperson, the battery is the most 
common of the dc sources. By definition, a battery (derived from the 
expression “battery of cells”) consists of a combination of two or more 
similar cells, a cell being the fundamental source of electrical energy 
developed through the conversion of chemical or solar energy. All cells 
can be divided into the primary or secondary types. The secondary is 
rechargeable, whereas the primary is not. That is, the chemical reaction 
of the secondary cell can be reversed to restore its capacity. The two 
most common rechargeable batteries are the lead-acid unit (used primar-
ily in automobiles) and the nickel–metal hydride (NiMH) battery (used 
in calculators, tools, photoflash units, shavers, and so on). The obvious 
advantages of rechargeable units are the savings in time and money of 
not continually replacing discharged primary cells.

All the cells discussed in this chapter (except the solar cell, which 
absorbs energy from incident light in the form of photons) establish a 
potential difference at the expense of chemical energy. In addition, each 
has a positive and a negative electrode and an electrolyte to complete the 
circuit between electrodes within the battery. The electrolyte is the con-
tact element and the source of ions for conduction between the terminals.

Primary Cells (Nonrechargeable)  The popular alkaline primary 
battery uses a powdered zinc anode (+); a potassium (alkali metal) 
hydroxide electrolyte; and a manganese dioxide/carbon cathode (-) as 
shown in Fig. 2.13(a). In Fig. 2.13(b), note that for the cylindrical types 
(AAA, AA, C, and D), the voltage is the same for each, but the ampere-
hour (Ah) rating increases significantly with size. The ampere-hour rat-
ing is an indication of the level of current that the battery can provide for 
a specified period of time (to be discussed in detail in Section 2.6). In 
particular, note that for the large, lantern-type battery, the voltage is only 
4 times that of the AAA battery, but the ampere-hour rating of 52 Ah is 
almost 42 times that of the AAA battery.

Metal spur

Positive cover:
plated steel

Electrolyte:
potassium
hydroxide/water

Cathode:
manganese
dioxide and
carbon

Separator:
nonwoven
fabric

Metal washer

Current collector:
brass pin

Can: steel

Metalized plastic
film label

Anode:
powdered zinc

Seal: nylon

Inner cell cover:
steel

Negative cover:
plated steel

(a)  

6 V
26 Ah

D cell
18 Ah

C cell
8350 mAh

AA cell
1.5 V

2850 mAh

9 V
625 mAh

AAA cell
1.5 V

1250 mAh

AAAA cell
1.5 V

600 mAh

(b)

FIG. 2.13
Alkaline primary cells: (a) Cutaway of cylindrical cell; (b) Various types of primary cells.

[(b) photo by Robert Boylestad]
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Another type of popular primary cell is the lithium battery, shown in 
Fig. 2.14. Again, note that the voltage is the same for each, but the size 
increases substantially with the ampere-hour rating and the rated drain 
current. It is particularly useful when low temperature is encountered.

In general, therefore,

for batteries of the same type, the size is dictated primarily by the 
standard drain current or ampere-hour rating, not by the terminal 
voltage rating.

Secondary Cells (Rechargeable)

Lead–Acid:  The 12 V of Fig. 2.15, typically used in automobiles, 
has an electrolyte of sulfuric acid and electrodes of spongy lead (Pb) 
and lead peroxide (PbO2). When a load is applied to the battery termi-
nals, there is a transfer of electrons from the spongy lead electrode to 
the lead peroxide electrode through the load. This transfer of electrons 

3 V
165 mAh

Standard drain:
30 µA

3 V
1000 mAh

Standard drain:
200 µA

3 V
1200 mAh

Standard drain:
2.5 mA

3 V
5000 mAh

Standard drain:
150 mA

FIG. 2.14
Lithium primary batteries.

Cells (each 2.1 V)

Extrusion-fusion
intercell connection

Positive terminal

Separator
envelope

Electrolyte
reservoir

Negative terminal

Wrought
lead–calcium grid

Heat-sealed cover

FIG. 2.15
Maintenance-free 12 V (actually 12.6 V) lead-acid battery.

(Clive Streeter/DK Images)
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will continue until the battery is completely discharged. The discharge 
time is determined by how diluted the acid has become and how heavy 
the coating of lead sulfate is on each plate. The state of discharge of a 
lead storage cell can be determined by measuring the specific gravity 
of the electrolyte with a hydrometer. The specific gravity of a substance 
is defined to be the ratio of the weight of a given volume of the sub-
stance to the weight of an equal volume of water at 4°C. For fully 
charged batteries, the specific gravity should be somewhere between 
1.28 and 1.30. When the specific gravity drops to about 1.1, the battery 
should be recharged.

Since the lead storage cell is a secondary cell, it can be recharged at 
any point during the discharge phase simply by applying an external dc 
current source across the cell that passes current through the cell in a 
direction opposite to that in which the cell supplied current to the load. 
This removes the lead sulfate from the plates and restores the concentra-
tion of sulfuric acid.

The output of a lead storage cell over most of the discharge phase is 
about 2.1 V. In the commercial lead storage batteries used in automo-
biles, 12.6 V can be produced by six cells in series, as shown in Fig. 
2.15. In general, lead-acid storage batteries are used in situations where 
a high current is required for relatively short periods of time. At one 
time, all lead-acid batteries were vented. Gases created during the dis-
charge cycle could escape, and the vent plugs provided access to replace 
the water or electrolyte and to check the acid level with a hydrometer. 
The use of a grid made from a wrought lead–calcium alloy strip, rather 
than the lead–antimony cast grid commonly used, has resulted in main-
tenance-free batteries, shown in Fig. 2.15. The lead–antimony structure 
was susceptible to corrosion, overcharge, gasing, water usage, and self-
discharge. Improved design with the lead–calcium grid has either elimi-
nated or substantially reduced most of these problems.

It would seem that with so many advances in technology, the size and 
weight of the lead–acid battery would have decreased significantly in 
recent years, but even today it is used more than any other battery in 
automobiles and all forms of machinery. However, things are beginning 
to change with interest in nickel–metal hydride and lithium-ion batter-
ies, which both pack more power per unit size than the lead–acid variety. 
Both will be described in the sections to follow.

Nickel–Metal Hydride (NiMH):  The nickel–metal hydride 
rechargeable battery has been receiving enormous interest and develop-
ment in recent years. The Toyota Prius and two other hybrids would use 
NiMH batteries rather than the lead–acid variety. For applications such 
as flashlights, shavers, portable televisions, power drills, and so on, 
rechargeable batteries such as the nickel–metal hydride (NiMH) batter-
ies shown in Fig. 2.16 are often the secondary batteries of choice. These 
batteries are so well made that they can survive over 1000 charge/dis-
charge cycles over a period of time and can last for years.

It is important to recognize that if an appliance calls for a recharge-
able battery such as a NiMH battery, a primary cell should not be used. 
The appliance may have an internal charging network that would be 
dysfunctional with a primary cell. In addition, note that NiMH batteries 
are about 1.2 V per cell, whereas the common primary cells are typi-
cally 1.5 V per cell.

There is some ambiguity about how often a secondary cell should be 
recharged. Generally, the battery can be used until there is some indica-
tion that the energy level is low, such as a dimming light from a 
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flashlight, less power from a drill, or a signal from low-battery indicator. 
Keep in mind that secondary cells do have some “memory.” If they are 
recharged continuously after being used for a short period of time, they 
may begin to believe they are short-term units and actually fail to hold the 
charge for the rated period of time. In any event, always try to avoid a 
“hard” discharge, which results when every bit of energy is drained from 
a cell. Too many hard-discharge cycles will reduce the cycle life of the 
battery. Finally, be aware that the charging mechanism for nickel– 
cadmium cells is quite different from that for lead–acid batteries. The 
nickel–cadmium battery is charged by a constant–current source, with 
the terminal voltage staying fairly steady through the entire charging 
cycle. The lead–acid battery is charged by a constant voltage source, per-
mitting the current to vary as determined by the state of the battery. The 
capacity of the NiMH battery increases almost linearly throughout most 
of the charging cycle. Nickel–cadmium batteries become relatively warm 
when charging. The lower the capacity level of the battery when charg-
ing, the higher is the temperature of the cell. As the battery approaches 
rated capacity, the temperature of the cell approaches room temperature.

Lithium-ion (Li-ion):  The battery receiving the most research and 
development in recent years is the lithium-ion battery. It carries more 
energy in a smaller space than either the lead–acid or NiMH rechargea-
ble batteries. Its range of applications includes computers, a host of con-
sumer products, power tools, and recently the sleek Tesla roadster with 
its battery pack composed of more than 6800 3.7 V Li-ion cells the size 
of a typical AA battery. It can travel some 265 miles but the battery pack 
costs between $10,000 and $15,000. Another problem is shelf life. Once 
manufactured, these batteries begin to slowly die even though they may 
go through normal charge/discharge cycles, which makes them similar 
to a normal primary cell, so lifetime is a major concern.

The very popular iPhone 4S appearing in Fig. 2.17 has a 3.7 V, 
5.45 Wh lithium-ion polymer battery as its power source. Note that it 
takes about 40% by volume of the internal structure and contributes a 
great deal to its weight. 

Industry is aware of the numerous positive characteristics of this 
power source and is pouring research money in at a very high rate. Recent 

D cell
1.2 V

2500 mAh
@ 500 mA

C cell
1.2 V

2500 mAh
@ 500 mA

AA cell
1.2 V

2300 mAh
@ 460 mA

AAA cell
1.2 V

700 mAh
@ 140 mA

FIG. 2.16
Nickel–metal hydride (NiMH) rechargeable batteries.

(photo by Robert Boylestad)

Camera lens

Volume control

Charging port

3.7 V, 5.3 Wh
Lithium-ion
polymer
battery

FIG. 2.17
iPhone 4S.

(STANCA SANDA/Alamy)
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use of nanotechnology and microstructures along with improved design 
has alleviated many of the concerns regarding safety and longevity.

Solar Cell

The use of solar cells as part of the effort to generate “clean” energy has 
grown exponentially in the last few years. At one time the cost and the 
low conversion efficiencies were the main stumbling blocks to wide-
spread use of the solar cell. However, the company Nanosolar has sig-
nificantly reduced the cost of solar panels by using a printing process 
that uses a great deal less of the expensive silicon material in the manu-
facturing process. Whereas the cost of generating solar electricity is 
about 15 to 25 ¢/kWh, compared to an average of 12 ¢/kWh using a 
local utililty, this new printing process has had a significant impact on 
reducing the cost level. Another factor that will reduce costs is the 
improving level of efficiency being obtained by manufacturers. At one 
time the accepted efficiency level of conversion was between 10% and 
14%. Recently, however, the company Semprius, Inc., set a new record 
for commercially available solar panels with a 35.5% efficiency level—
almost twice the typical commercial level. The Fraunhofer Institute for 
Solar Energy Systems in Germany reached a laboratory level of 44.7% 
conversion efficiency. The two factors that affect the cost the most are 
the cost of the materials and the efficiency level. Silicon is the most fre-
quently used material but it is expensive. Recent trends have been to find 
improved materials and to try innovative maneuvers like staking the 
cells or imbedding lenses to focus the incident light. In general, it 
appears that there is a strong thrust to make solar cells a very important 
option for generating clean energy in the near future. Given that the 
maximum available wattage on an average bright, sunlit day is 
100  mW/cm2, the efficiency is an important element in any future plans 
for the expansion of solar power. At 10% to 14% efficiency the maxi-
mum available power from a 1@m2 panel (approximately 3′ * 3′) would 
be 100 to 140 W. However, if the efficiency could be raised to 30%, the 
return could exceed 300 W per panel. When we consider the wide range 
of appliances that can be run on 300 W or less, this is a significant 
improvement.

Even though the efficiency may not be as high as desired, the impor-
tant thing to remember when it comes to solar energy is that there is no 
cost associated with providing the energy in the first place. It is ready to 
be used and, hopefully, will never end. In cold climates with snow cover 
and long cloudy days, one might wonder about the feasibility or logic in 
installing solar panels. However, take a look at the fishing/hunting lodge 
in Fig. 2.18(a) located in northern Maine with twelve 265 W solar panels 
that provide a total of 3.18 kW under optimum conditions. Consider how 
many appliances, required in a camp of this kind, can operate with a 
power source of this magnitude. Keep in mind that the bank of 16 batter-
ies will store unused energy on the sunny days for times when there is 
cloud cover or the panels are covered with snow. The system includes a 
solar charger and a 6 kW inverter to convert the dc to ac. During a recent 
visit, the owners revealed that the system works so well that they only 
turn on the generator about once a month for 3–5 hours, which usually 
occurs when a few rainy days coincide with a large group that uses the 
lodge late into the evening. They figure that they save about $3500 a year 
on diesel and maintenance costs. Most importantly the solar system per-
mits the use of the kitchen, laundry, and lights later in the evening, 
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whereas with the generator as their sole source of power the supply of 
electricity normally ended at 10 p.m.

The basic system operates as shown in Fig. 2.18(b). The solar panels 
(1) convert sunlight into dc electric power. An inverter (2) converts the 
dc power into the standard ac power for use in the home (6). The batter-
ies (3) can store energy from the sun for use if there is insufficient sun-
light or a power failure. At night or on dark days when the demand 
exceeds the solar panel and battery supply, the generators (4) can pro-
vide power to the appliances (6) through a special hookup in the electri-
cal panel (5).

There is no question that the use of solar panels is growing by leaps 
and bounds in recent years as manufacturers provide panels that meet 
the physical requirements of a wide range of applications. Consider the 

FIG. 2.18
Red River Camps in Portage, Maine: (a) twelve 265 W panels on roof; (b) system operations.

[(a) Courtesy of Red River Camps]

(a)

(b)
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EarthRoamer vehicle pictured in Fig. 2.19 designed to permit travel to 
all points of the globe. It has three panels of 240 W each to provide a 
total of 720 W of power that can be stored in a battery system with a 
510 Ah capacity. The panels are obviously of a durability and strength to 
permit traveling in some of the harshest conditions.

Generators

The dc generator is quite different from the battery, both in construc-
tion (Fig. 2.20) and in mode of operation. When the shaft of the genera-
tor is rotating at the nameplate speed due to the applied torque of some 
external source of mechanical power, a voltage of rated value appears 
across the external terminals. The terminal voltage and power-handling 
capabilities of the dc generator are typically higher than those of most 
batteries, and its lifetime is determined only by its construction. Com-
mercially used dc generators are typically 120 V or 240 V. For the pur-
poses of this text, the same symbols are used for a battery and a generator.

Power Supplies

The dc supply encountered most frequently in the laboratory uses the 
rectification and filtering processes as its means toward obtaining a 
steady dc voltage. Both processes will be covered in detail in your basic 
electronics courses. In total, a time-varying voltage (such as ac voltage 
available from a home outlet) is converted to one of a fixed magnitude. 
A dc laboratory supply of this type is shown in Fig. 2.21.

Most dc laboratory supplies have a regulated, adjustable voltage out-
put with three available terminals, as indicated horizontally at the bot-
tom of Fig 2.21 and vertically in Fig 2.22(a). The symbol for ground or 

FIG. 2.19
EarthRoamer XV-LT.

(Courtesy of Earth Roamer)

“Output”
voltage

Applied
torque

“Input”

120 V

FIG. 2.20
dc generator.

FIG. 2.21
A 0 V to 60 V, 0 to 1.5 A digital display  

dc power supply.
(Courtesy of B+K Precision.)
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zero potential (the reference) is also shown in Fig. 2.22(a). If 10 V 
above ground potential are required, the connections are made as shown 
in Fig. 2.22(b). If 15 V below ground potential are required, the connec-
tions are made as shown in Fig. 2.22(c). If connections are as shown in 
Fig. 2.22(d), we say we have a “floating” voltage of 5 V since the refer-
ence level is not included. Seldom is the configuration in Fig. 2.22(d) 
used since it fails to protect the operator by providing a direct low-
resistance path to ground and to establish a common ground for the 
system. In any case, the positive and negative terminals must be part of 
any circuit configuration.

Fuel Cells

One of the most exciting developments in recent years has been the 
steadily rising interest in fuel cells as an alternative energy source. Fuel 
cells are now being used in small stationary power plants, transportation 
(buses), and a wide variety of applications where portability is a major 
factor, such as the space shuttle. Millions are now being spent in an 
effort to design affordable fuel-cell vehicles.

Fuel cells have the distinct advantage of operating at efficiencies of 
70% to 80% rather than the typical 20% to 25% efficiency of current 
internal combustion engine of today’s automobiles. They also have few 
moving parts, produce little or no pollution, generate very little noise, 
and use fuels such as hydrogen and oxygen that are readily available. 
Fuel cells are considered primary cells (of the continuous-feed variety) 
because they cannot be recharged. They hold their characteristics as 
long as the fuel (hydrogen) and oxygen are supplied to the cell. The only 
by-products of the conversion process are small amounts of heat (which 
is often used elsewhere in the system design), water (which may also be 
reused), and negligible levels of some oxides, depending on the compo-
nents of the process. Overall, fuel cells are environmentally friendly.

The operation of the fuel cell is essentially opposite to that of the 
chemical process of electrolysis. Electrolysis is the process whereby 
electric current is passed through an electrolyte to break it down into its 
fundamental components. An electrolyte is any solution that will permit 
conduction through the movement of ions between adjoining electrodes. 
For instance, passing current through water results in a hydrogen gas by 

(–15 V)

Gnd (0 V)

Jumper

15 V
15 V

Jumper

10 V

5 V

10 V

5 V

(+10 V)

(“Floating”)

(a)

(c)

(b)

(d)

FIG. 2.22
dc laboratory supply: (a) available terminals; (b) positive voltage with respect to (w.r.t.) 

ground; (c) negative voltage w.r.t. ground; (d) floating supply.
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the cathode (negative terminal) and oxygen gas at the anode (positive 
terminal). In 1839, Sir William Grove believed this process could be 
reversed and demonstrated that the proper application of the hydrogen 
gas and oxygen results in a current through an applied load connected to 
the electrodes of the system. The first commercial unit was used in a 
tractor in 1959, followed by an energy pack in the 1965 Gemini pro-
gram. In 1996, the first small power plant was designed, and today it is 
an important component of the shuttle program.

The basic components of a fuel cell are depicted in Fig. 2.23(a) with 
details of the construction in Fig. 2.23(b). Hydrogen gas (the fuel) is 
supplied to the system at a rate proportional to the current required by 
the load. At the opposite end of the cell, oxygen is supplied as needed. 
The net result is a flow of electrons through the load and a discharge of 
water with a release of some heat developed in the process. The amount 
of heat is minimal, although it can also be used as a component in the 
design to improve the efficiency of the cell. The water (very clean) can 
simply be discharged or used for other applications such as cooling in 
the overall application. If the source of hydrogen or oxygen is removed, 
the system breaks down. The flow diagram of the system is relatively 
simple, as shown in Fig. 2.23(a). In an actual cell, shown in Fig. 2.23(b), 
the hydrogen gas is applied to a porous electrode called the anode that is 
coated with a platinum catalyst. The catalyst on the anode serves to 
speed up the process of breaking down the hydrogen atom into positive 
hydrogen ions and free electrons. The electrolyte between the electrodes 
is a solution or membrane that permits the passage of positive hydrogen 
ions but not electrons. Facing this wall, the electrons choose to pass 
through the load and light up the bulb, while the positive hydrogen ions 
migrate toward the cathode. At the porous cathode (also coated with the 
catalyst), the incoming oxygen atoms combine with the arriving hydro-
gen ions and the electrons from the circuit to create water (H2O) and 
heat. The circuit is, therefore, complete. The electrons are generated and 
then absorbed. If the hydrogen supply is cut off, the source of electrons 
is shut down, and the system is no longer an operating fuel cell.

In some fuel cells, either a liquid or molten electrolyte membrane is 
used. Depending on which the system uses, the chemical reactions will 
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Fuel cell (a) components; (b) basic construction.
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change slightly but not dramatically from that described above. The 
phosphoric acid fuel cell is a popular cell using a liquid electrolyte, 
while the PEM uses a polymer electrolyte membrane. The liquid or 
molten type is typically used in stationary power plants, while the mem-
brane type is favored for vehicular use.

The output from a single fuel cell is a low-voltage, high-current dc 
output. Stacking the cells in series or parallel increases the output volt-
age or current level.

For a number of years buses, trucks, motorcycles, forklifts, and many 
other vehicles have been running on fuel-cell technology. However, it was 
not until the summer of 2008 that Honda offered the FCX Clarity automo-
bile, the first to be available for consumer use. The basic components of the 
vehicle are pointed out in Fig. 2.24. Basically, it is an electric car because 
there is no combustion and the source of power is the lithium batteries that 
are charged by the fuel cells. As long as oxygen and hydrogen are fed to the 
fuel cells, a dc voltage will be generated by the fuel cell to charge or main-
tain the voltage. This voltage is fed to an inverter, which in turn will pro-
vide the ac power for the drivetrain. Note in Fig. 2.24 that the vehicle also 
has the unique ability to capture braking energy and turn it into energy 
stored by a high-output battery for supplemental use. The fuel-cell car cur-
rently has a range of about 300 miles on a full hydrogen tank with fueling 
times as low as 3 minutes to match that of a typical gasoline tank. Of course, 
the most pleasing characteristic of the vehicle is that the only discharge is 
some residual water that can be used for cooling. In addition, sealed batter-
ies will eventually deteriorate but fuel cells have a longer life because the 
“chemicals” (oxygen and hydrogen) are continually being replaced.

Hydrogen Storage Tank

Stores hydrogen gas 
compressed at extremely
high pressure to increase
driving rangePower Control Unit

Governs the flow of
electricity 

Electric Motor

Propels the vehicle much more
quietly, smoothly, and
efficiently than an internal
combustion engine and
requires less maintenance 

Fuel-Cell Stack 

Converts hydrogen gas
and oxygen into 
electricity to power the
electric motor 

High-Output Battery

Stores energy generated
from regenerative braking
and provides supplemental
power to the electric motor

FIG. 2.24
Honda FCX Clarity fuel-cell automobile.
(Courtesy of American Honda Motor Co. Inc.)

2.6  Ampere-Hour Rating

The most important piece of data for any battery (other than its voltage 
rating) is its ampere-hour (Ah) rating. You have probably noted in the 
photographs of batteries in this chapter that both the voltage and the 
ampere-hour rating have been provided for each battery.
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The ampere-hour (Ah) rating provides an indication of how long a 
battery of fixed voltage will be able to supply a particular current.

A battery with an ampere-hour rating of 100 will theoretically provide 
a current of 1 A for 100 hours, 10 A for 10 hours, or 100 A for 1 hour. 
Quite obviously, the greater the current, the shorter is the time. An equa-
tion for determining the length of time a battery will supply a particular 
current is the following:

	 Life (hours) =
ampere@hour (Ah) rating

amperes drawn (A)
	 (2.11)

EXAMPLE 2.5  How long will a 9 V transistor battery with an ampere-
hour rating of 520 mAh provide a current of 20 mA?

Solution:  Eq. (2.11): Life =
520 mAh

20 mA
=

520

20
 h = 26 h

EXAMPLE 2.6  How long can a 1.5 V flashlight battery provide a cur-
rent of 250 mA to light the bulb if the ampere-hour rating is 16 Ah?

Solution:  Eq. (2.11): Life =
16 Ah

250 mA
=

16

250 * 10-3 h = 64 h

2.7  Battery Life Factors

The previous section made it clear that the life of a battery is directly 
related to the magnitude of the current drawn from the supply. However, 
there are factors that affect the given ampere-hour rating of a battery, so 
we may find that a battery with an ampere-hour rating of 100 can supply 
a current of 10 A for 10 hours but can supply a current of 100 A for only 
20 minutes rather than the full 1 hour calculated using Eq. (2.11). In 
other words,

the capacity of a battery (in ampere-hours) will change with change 
in current demand.

This is not to say that Eq. (2.11) is totally invalid. It can always be 
used to gain some insight into how long a battery can supply a particu-
lar current. However, be aware that there are factors that affect the 
ampere-hour rating. Just as with most systems, including the human 
body, the more we demand, the shorter is the time that the output level 
can be maintained. This is clearly verified by the curves in Fig. 2.25 for 
the Eveready Energizer D cell. As the constant-current drain increased, 
the ampere-hour rating decreased from about 18 Ah at 25 mA to around 
12 Ah at 300 mA.

Another factor that affects the ampere-hour rating is the temperature of 
the unit and the surrounding medium. In Fig. 2.26, the capacity of the 
same battery plotted in Fig. 2.25 shows a peak value near the common 
room temperature of 68°F. At very cold temperatures and very warm tem-
peratures, the capacity drops. Clearly, the ampere-hour rating will be pro-
vided at or near room temperature to give it a maximum value, but be 
aware that it will drop off with an increase or decrease in temperature. 
Most of us have noted that the battery in a car, radio, two-way radio, flash-
light, and so on seems to have less power in really cold weather. It would 
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seem, then, that the battery capacity would increase with higher tempera-
tures—which, however, is not always the case. In general, therefore,

the ampere-hour rating of a battery will decrease from the room-
temperature level with very cold and very warm temperatures.

Another interesting factor that affects the performance of a battery is 
how long it is asked to supply a particular voltage at a continuous drain 
current. Note the curves in Fig. 2.27, where the terminal voltage dropped 
at each level of drain current as the time period increased. The lower the 
current drain, the longer it could supply the desired current. At 100 mA, 
it was limited to about 100 hours near the rated voltage, but at 25 mA, it 
did not drop below 1.2 V until about 500 hours had passed. That is an 
increase in time of 5:1, which is significant. The result is that

the terminal voltage of a battery will eventually drop (at any level of 
current drain) if the time period of continuous discharge is too long.
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2.8 C onductors and Insulators

Different wires placed across the same two battery terminals allow dif-
ferent amounts of charge to flow between the terminals. Many factors, 
such as the density, mobility, and stability characteristics of a material, 
account for these variations in charge flow. In general, however,

conductors are those materials that permit a generous flow of 
electrons with very little external force (voltage) applied.

In addition,

good conductors typically have only one electron in the valence (most 
distant from the nucleus) ring.

Since copper is used most frequently, it serves as the standard of 
comparison for the relative conductivity in Table 2.1. Note that alu-
minum, which has seen some commercial use, has only 61% of the con-
ductivity level of copper. The choice of material must be weighed 
against the cost and weight factors, however.

Insulators are those materials that have very few free electrons and 
require a large applied potential (voltage) to establish a measurable 
current level.

A common use of insulating material is for covering current- 
carrying wire, which, if uninsulated, could cause dangerous side 
effects. Power line workers wear rubber gloves and stand on rubber 
mats as safety measures when working on high-voltage transmission 
lines. A few different types of insulators and their applications appear 
in Fig. 2.28.

Be aware, however, that even the best insulator will break down (per-
mit charge to flow through it) if a sufficiently large potential is applied 
across it. The breakdown strengths of some common insulators are listed 
in Table 2.2. According to this table, for insulators with the same geo-
metric shape, it would require 270>3 = 9 times as much potential to 
pass current through rubber as through air and approximately 67 times 
as much voltage to pass current through mica as through air.
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FIG. 2.27
Terminal voltage versus discharge time for specific drain currents for an Energizer® D cell.

TABLE 2.1
Relative conductivity of various materials.

Metal Relative Conductivity (%)

Silver 105
Copper 100
Gold 70.5
Aluminum 61
Tungsten 31.2
Nickel 22.1
Iron 14
Constantan 3.52
Nichrome 1.73
Calorite 1.44

TABLE 2.2
Breakdown strength of some common insulators.

Material
Average Breakdown 

Strength (kV/cm)

Air 30
Porcelain 70
Oils 140
Bakelite® 150
Rubber 270
Paper (paraffin-coated) 500
Teflon® 600
Glass 900
Mica 2000
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2.9 S emiconductors

Semiconductors are a specific group of elements that exhibit 
characteristics between those of insulators and those of conductors.

The prefix semi, included in the terminology, has the dictionary defini-
tion of half, partial, or between, as defined by its use. The entire elec-
tronics industry is dependent on this class of materials since the 
electronic devices and integrated circuits (ICs) are constructed of semi-
conductor materials. Although silicon (Si) is the most extensively 
employed material, germanium (Ge) and gallium arsenide (GaAs) are 
also used in many important devices.

Semiconductor materials typically have four electrons in the 
outermost valence ring.

Semiconductors are further characterized as being photoconductive 
and having a negative temperature coefficient. Photoconductivity is a 
phenomenon in which the photons (small packages of energy) from inci-
dent light can increase the carrier density in the material and thereby the 
charge flow level. A negative temperature coefficient indicates that the 
resistance (a characteristic to be described in detail in the next chapter) 
decreases with an increase in temperature (opposite to that of most con-
ductors). A great deal more will be said about semiconductors in the 
chapters to follow and in your basic electronics courses.

2.10  Ammeters and Voltmeters

It is important to be able to measure the current and voltage levels of an 
operating electrical system to check its operation, isolate malfunctions, 
and investigate effects impossible to predict on paper. As the names 
imply, ammeters are used to measure current levels; voltmeters, the 
potential difference between two points. If the current levels are usually 
of the order of milliamperes, the instrument will typically be referred to 
as a milliammeter, and if the current levels are in the microampere range, 
as a microammeter. Similar statements can be made for voltage levels. 
Throughout the industry, voltage levels are measured more frequently 
than current levels, primarily because measurement of the former does 
not require that the network connections be disturbed.

(b) (c)(a)

FIG. 2.28
Various types of insulators and their applications. (a) Fi-Shock extender insulator; 

(b) Fi-Shock corner insulator; (c) Fi-Shock screw-in post insulator.
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The potential difference between two points can be measured by sim-
ply connecting the leads of the meter across the two points, as indicated 
in Fig. 2.29. An up-scale reading is obtained by placing the positive lead 
of the meter to the point of higher potential of the network and the com-
mon or negative lead to the point of lower potential. The reverse connec-
tion results in a negative reading or a below-zero indication.

Ammeters are connected as shown in Fig. 2.30. Since ammeters meas-
ure the rate of flow of charge, the meter must be placed in the network 
such that the charge flows through the meter. The only way this can be 
accomplished is to open the path in which the current is to be measured 
and place the meter between the two resulting terminals. For the configu-
ration in Fig. 2.30, the voltage source lead (+) must be disconnected 
from the system and the ammeter inserted as shown. An up-scale reading 
will be obtained if the polarities on the terminals of the ammeter are such 
that the current of the system enters the positive terminal.

The introduction of any meter into an electrical/electronic system 
raises a concern about whether the meter will affect the behavior of the 
system. This question and others will be examined in Chapters 5 and 6 
after additional terms and concepts have been introduced. For the 
moment, let it be said that since voltmeters and ammeters do not have 
internal components, they will affect the network when introduced for 
measurement purposes. The design of each, however, is such that the 
impact is minimized.

There are instruments designed to measure just current or just voltage 
levels. However, the most common laboratory meters include the volt-
ohm-milliammeter (VOM) and the digital multimeter (DMM), shown in 
Figs. 2.31 and 2.32, respectively. Both instruments measure voltage and 
current and a third quantity, resistance (introduced in the next chapter). 
The VOM uses an analog scale, which requires interpreting the position 
of a pointer on a continuous scale, while the DMM provides a display of 
numbers with decimal-point accuracy determined by the chosen scale.

The use of an analog continuous scale can take some practice, but 
analog scales still appear so frequently that one must become adept at 
reading the scale correctly. The laboratory experience is probably the 
best opportunity to practice the reading of such a scale, but for the 
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FIG. 2.29
Voltmeter connection for an up-scale (+ ) reading.
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FIG. 2.30
Ammeter connection for an up-scale (+ ) reading.

FIG. 2.31
Volt-ohm-milliammeter (VOM)  

analog meter.
(Andrew Scheck/Fotolia)

FIG. 2.32
Digital multimeter (DMM).

(Courtesy of Fluke  
Corporation)
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moment let us try to interpret the reading of the VOM shown in Fig. 
2.33. First, you will note that the pointer passes over a number of scales. 
If reading the resistance (Chapter 3) of a resistive element, the top scale 
is used. If the meter is set on R * 1, the resistance should be read as 
indicated. If the meter is set on R * 10, the result must be increased by 
a factor of ten. Assuming R * 1 for our current discussion, we must 
first notice that the resistance scale increases from the right to the left. 
The pointer appears to be right over the heavy bar between 2 and 5. 
Since there are three distinct regions between the numbers 2 and 5, the 
first bar to the left of 2 must signify 3 and the next bar 4 to complete the 
sequence from 2 to 5. The needle is right over the bar representing 4 so 
the reading is obviously 4 ohms.

If the meter were set to read dc voltages, the band below the top 
resistance scale must be used. Now this scale increases from left to right 
with 250 V being the maximum voltage if the meter is set on V * 1. For 
this scale the pointer is between 150 and 200 V. If we count the divisions 
between the two numbers, we find there are 10 divisions. If we divide 
the difference in voltage by the number of divisions, we obtain 
50 V>10 div. or 5 V per division. Counting from 150 V up, we find the 
pointer is 7.5 divisions above the 150 V level. The result is that the read-
ing is at 150V + (7.5 div.)(5 V>div.) = 150 V + 37.5 V = 187.5 V. 
It is a bit of struggle to make a simple reading but this is the process one 
should be able to perform with a high degree of confidence. If ac (Chap-
ter 13) voltages were being measured on the V * 1 scale, then the red ac 
scale below the dc scale must be used. Again, the scale increases from 
left to right with the pointer between the 6 and 8 volt levels. Because 
the heavy bar between them must represent 7 V, the five divisions 
between 7 and 8 V must have divisions of 1 V>5 div. = 0.2 V>div. The 
pointer is very close to 2.5 divisions above 7 V, so the reading is approx-
imately 7 V + (2.5 div.)(0.2 V>div.) = 7 V + 0.5 V = 7.5 V. Now in 
this case the pointer is really just to the right of the halfway point 
between the two bars, so the reading is closer to 7.55 V.

With all the extra effort required to read analog scales, why do we 
use them at all if we have digital meters that can read to hundredths-
place accuracy? We do so because there are times when analog meters 
have characteristics that make them more efficient and safer to use. Con-
sider the airline pilot and the huge dashboard in the cockpit with a range 
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of meters to monitor. The majority of the meters are analog and not dig-
ital. The reason for this choice is over time the mind can scan a range of 
meters and establish the correct position of each pointer in memory and, 
if one seems out of whack, it can be quickly identified. This task is not 
so easy if facing you are 20 digital meters with all kinds of numbers. In 
addition a swinging or bouncing pointer can quickly be identified. The 
pointer also quickly shows whether the undesirable movement is up or 
down—again not so easy when you have to remember the numbers asso-
ciated with a stable condition.

As indicated above, the laboratory experience will provide practice in 
the use of both types of instruments.

2.11  Applications

Throughout the text, Applications sections such as this one have been 
included to permit a further investigation of terms, quantities, or sys-
tems introduced in the chapter. The primary purpose of these Applica-
tions is to establish a link between the theoretical concepts of the text 
and the real, practical world. Although the majority of components 
that appear in a system may not have been introduced (and, in fact, 
some components will not be examined until more advanced studies), 
the topics were chosen very carefully and should be quite interesting to 
a new student of the subject matter. Sufficient comment is included to 
provide a surface understanding of the role of each part of the system, 
with the understanding that the details will come at a later date. Since 
exercises on the subject matter of the Applications do not appear at the 
end of the chapter, the content is designed not to challenge the student 
but rather to stimulate his or her interest and answer some basic ques-
tions such as how the system looks inside, what role specific elements 
play in the system, and, of course, how the system works. In essence, 
therefore, each Applications section provides an opportunity to begin 
to establish a practical background beyond simply the content of the 
chapter. Do not be concerned if you do not understand every detail of 
each application. Understanding will come with time and experience. 
For now, take what you can from the examples and then proceed with 
the material.

Flashlight

Although the flashlight uses one of the simplest of electrical circuits, a 
few fundamentals about its operation do carry over to more sophisti-
cated systems. First, and quite obviously, it is a dc system with a lifetime 
totally dependent on the state of the batteries and bulb. Unless it is the 
rechargeable type, each time you use it, you take some of the life out of 
it. For many hours, the brightness will not diminish noticeably. Then, 
however, as it reaches the end of its ampere-hour capacity, the light 
becomes dimmer at an increasingly rapid rate (almost exponentially). 
The standard two-battery flashlight is shown in Fig. 2.34(a) with its 
electrical schematic in Fig. 2.34(b). Each 1.5 V battery has an ampere-
hour rating of about 18 as indicated in Fig. 2.13. The single-contact min-
iature flange-base bulb is rated at 2.5 V and 300 mA with good brightness 
and a lifetime of about 30 hours. Thirty hours may not seem like a long 
lifetime, but you have to consider how long you usually use a flashlight 
on each occasion. If we assume a 300 mA drain from the battery for the 
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bulb when in use, the lifetime of the battery, by Eq. (2.11), is about 
60 hours. Comparing the 60-hour lifetime of the battery to the 30-hour 
life expectancy of the bulb suggests that we normally have to replace 
bulbs more frequently than batteries.

However, most of us have experienced the opposite effect. We can 
change batteries two or three times before we need to replace the bulb. 
This is simply one example of the fact that one cannot be guided solely 
by the specifications of each component of an electrical design. The 
operating conditions, terminal characteristics, and details about the 
actual response of the system for short and long periods of time must 
be considered. As mentioned earlier, the battery loses some of its power 
each time it is used. Although the terminal voltage may not change 
much at first, its ability to provide the same level of current drops with 
each usage. Further, batteries slowly discharge due to “leakage cur-
rents” even if the switch is not on. The air surrounding the battery is not 
“clean” in the sense that moisture and other elements in the air can 
provide a conduction path for leakage currents through the air through 
the surface of the battery itself, or through other nearby surfaces, and 
the battery eventually discharges. How often have we left a flashlight 
with new batteries in a car for a long period of time only to find the 
light very dim or the batteries dead when we need the flashlight the 
most? An additional problem is acid leaks that appear as brown stains 
or corrosion on the casing of the battery. These leaks also affect the life 
of the battery. Further, when the flashlight is turned on, there is an ini-
tial surge in current that drains the battery more than continuous use for 
a period of time. In other words, continually turning the flashlight on 
and off has a very detrimental effect on its life. We must also realize 
that the 30 hour rating of the bulb is for continuous use, that is, 300 mA 
flowing through the bulb for a continuous 30 hours. Certainly, the fila-
ment in the bulb and the bulb itself will get hotter with time, and this 
heat has a detrimental effect on the filament wire. When the flashlight 
is turned on and off, it gives the bulb a chance to cool down and regain 
its normal characteristics, thereby avoiding any real damage. Therefore, 
with normal use we can expect the bulb to last longer than the 30 hours 
specified for continuous use.

Even though the bulb is rated for 2.5 V operation, it would appear 
that the two batteries would result in an applied voltage of 3 V, which 
suggests poor operating conditions. However, a bulb rated at 2.5 V can 
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FIG. 2.34
(a) Eveready® D cell flashlight; (b) electrical schematic of flashlight of part (a).
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easily handle 2.5 V to 3 V. In addition, as was pointed out in this chap-
ter, the terminal voltage drops with the current demand and usage. Under 
normal operating conditions, a 1.5 V battery is considered to be in good 
condition if the loaded terminal voltage is 1.3 V to 1.5 V. When it drops 
to the range from 1 V to 1.1 V, it is weak, and when it drops to the range 
from 0.8 V to 0.9 V, it has lost its effectiveness.

Be aware that the total supplied voltage of 3 V will be obtained 
only if the batteries are connected as shown in Fig. 2.34(b). Acciden-
tally placing the two positive terminals together will result in a total 
voltage of 0 V, and the bulb will not light at all. For the vast majority 
of systems with more than one battery, the positive terminal of one 
battery will always be connected to the negative terminal of another. 
For all low-voltage batteries, the end with the nipple is the positive 
terminal, and the end with the flat end is the negative terminal. In 
addition, the flat or negative end of a battery is always connected to 
the battery casing with the helical coil to keep the batteries in place. 
The positive end of the battery is always connected to a flat spring 
connection or the element to be operated. If you look carefully at the 
bulb, you will find that the nipple connected to the positive end of 
the battery is insulated from the jacket around the base of the bulb. 
The jacket is the second terminal of the battery used to complete the 
circuit through the on/off switch.

If a flashlight fails to operate properly, the first thing to check is the 
state of the batteries. It is best to replace both batteries at once. A system 
with one good battery and one nearing the end of its life will result in 
pressure on the good battery to supply the current demand, and, in fact, 
the bad battery will actually be a drain on the good battery. Next, check 
the condition of the bulb by checking the filament to see whether it has 
opened at some point because a long-term, continuous current level 
occurred or because the flashlight was dropped. If the battery and bulb 
seem to be in good shape, the next area of concern is the contacts 
between the positive terminal and the bulb and the switch. Cleaning both 
with emery cloth often eliminates this problem.

12 V Car Battery Charger

Battery chargers are a common household piece of equipment used to 
charge everything from small flashlight batteries to heavy-duty, marine, 
lead–acid batteries. Since all are plugged into a 120 V ac outlet such as 
found in the home, the basic construction of each is quite similar. In 
every charging system, a transformer (Chapter 23) must be included to 
cut the ac voltage to a level appropriate for the dc level to be estab-
lished. A diode (also called rectifier) arrangement must be included to 
convert the ac voltage, which varies with time, to a fixed dc level such 
as described in this chapter. Diodes and/or rectifiers will be discussed 
in detail in your first electronics course. Some dc chargers also include 
a regulator to provide an improved dc level (one that varies less with 
time or load). The car battery charger, one of the most common, is 
described here.

The outside appearance and the internal construction of a Sears 
2 A>10 A AMP Manual Battery Charger are provided in Fig. 2.35. Note 
in Fig. 2.35(b) that the transformer (as in most chargers) takes up most 
of the internal space. The additional air space and the holes in the casing 
are there to ensure an outlet for the heat that will develop due to the 
resulting current levels.
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The schematic in Fig. 2.36 includes all the basic components of the 
charger. Note first that the 120 V from the outlet are applied directly 
across the primary of the transformer. The charging rate of 2 A or 10 A 
is determined by the switch, which simply controls how many windings 
of the primary will be in the circuit for the chosen charging rate. If the 
battery is charging at the 2 A level, the full primary will be in the circuit, 
and the ratio of the turns in the primary to the turns in the secondary will 
be a maximum. If it is charging at the 10 A level, fewer turns of the pri-
mary are in the circuit, and the ratio drops. When you study transform-
ers, you will find that the voltage at the primary and secondary is directly 
related to the turns ratio. If the ratio from primary to secondary drops, 
the voltage drops also. The reverse effect occurs if the turns on the sec-
ondary exceed those on the primary.

The general appearance of the waveforms appears in Fig. 2.36 for the 
10 A charging level. Note that so far, the ac voltage has the same wave 
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Electrical schematic for the battery charger of Fig. 2.35.
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shape across the primary and secondary. The only difference is in the 
peak value of the waveforms. Now the diodes take over and convert the 
ac waveform, which has zero average value (the waveform above equals 
the waveform below), to one that has an average value (all above the 
axis) as shown in the same figure. For the moment simply recognize that 
diodes are semiconductor electronic devices that permit only conven-
tional current to flow through them in the direction indicated by the 
arrow in the symbol. Even though the waveform resulting from the 
diode action has a pulsing appearance with a peak value of about 18 V, 
it charges the 12 V battery whenever its voltage is greater than that of 
the battery, as shown by the shaded area. Below the 12 V level, the bat-
tery cannot discharge back into the charging network because the diodes 
permit current flow in only one direction.

In particular, note in Fig. 2.35(b) the large plate that carries the cur-
rent from the rectifier (diode) configuration to the positive terminal of 
the battery. Its primary purpose is to provide a heat sink (a place for the 
heat to be distributed to the surrounding air) for the diode configuration. 
Otherwise, the diodes would eventually melt down and self-destruct due 
to the resulting current levels. Each component of Fig. 2.36 has been 
carefully labeled in Fig. 2.35(b) for reference.

When current is first applied to a battery at the 10 A charge rate, the 
current demand as indicated by the meter on the face of the instrument 
may rise to 11 A or almost 12 A. However, the level of current decreases 
as the battery charges until it drops to a level of 2 A or 3 A. For units 
such as this that do not have an automatic shutoff, it is important to dis-
connect the charger when the current drops to the fully charged level; 
otherwise, the battery becomes overcharged and may be damaged. A 
battery that is at its 50% level can take as long as 10 hours to charge, so 
don’t expect it to be a 10-minute operation. In addition, if a battery is in 
very bad shape with a lower-than-normal voltage, the initial charging 
current may be too high for the design. To protect against such situa-
tions, the circuit breaker opens and stops the charging process. Because 
of the high current levels, it is important that the directions provided 
with the charger be carefully read and applied.

The 50 A option on the face of the charger is for starting situations. 
This option can be used for limited periods of time if the battery voltage 
is too low. It can only be used for 10-second periods spaced by 3-minute 
periods for cooldown of the charger and battery.

Answering Machines/Phones dc Supply

A wide variety of systems in the home and office receive their dc oper-
ating voltage from an ac/dc conversion system plugged right into a 
120 V ac outlet. Laptop computers, answering machines/phones, radios, 
clocks, cellular phones, CD players, and so on, all receive their dc 
power from a packaged system such as shown in Fig. 2.37. The conver-
sion from ac to dc occurs within the unit, which is plugged directly into 
the outlet. The dc voltage is available at the end of the long wire, which 
is designed to be plugged into the operating unit. As small as the unit 
may be, it contains basically the same components as in the battery 
charger in Fig. 2.35.

In Fig. 2.38, you can see the transformer used to cut the voltage down 
to appropriate levels (again the largest component of the system). Note 
that two diodes establish a dc level, and a capacitive filter (Chapter 10) 
is added to smooth out the dc as shown. The system can be relatively 

FIG. 2.37
Answering machine/phone 9 V dc supply.
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small because the operating current levels are quite small, permitting the 
use of thin wires to construct the transformer and limit its size. The 
lower currents also reduce the concerns about heating effects, permitting 
a small housing structure. The unit in Fig. 2.38, rated at 9 V at 200 mA, 
is commonly used to provide power to answering machines/phones. Fur-
ther smoothing of the dc voltage is accomplished by a regulator built 
into the receiving unit. The regulator is normally a small IC chip placed 
in the receiving unit to separate the heat that it generates from the heat 
generated by the transformer, thereby reducing the net heat at the outlet 
close to the wall. In addition, its placement in the receiving unit reduces 
the possibility of picking up noise and oscillations along the long wire 
from the conversion unit to the operating unit, and it ensures that the full 
rated voltage is available at the unit itself, not a lesser value due to losses 
along the line.

2.12 C omputer Analysis

In some texts, the procedure for choosing a dc voltage source and plac-
ing it on the schematic using computer methods is introduced at this 
point. This approach, however, requires students to turn back to this 
chapter for the procedure when the first complete network is installed 
and examined. Therefore, the procedure is introduced in Chapter 4 when 
the first complete network is examined, thereby localizing the material 
and removing the need to reread this chapter and Chapter 3.

Transformer

Capacitor

Diodes (2)

120 V ac plug

9 V dc output

FIG. 2.38
Internal construction of the 9 V dc supply  

in Fig. 2.37.

Problems

Section 2.2  Atoms and Their Structure

	 1.	 a.	� The numbers of orbiting electrons in aluminum and sil-
ver are 13 and 47, respectively. Draw the electronic 
configuration for each, and discuss briefly why each is a 
good conductor.

	 b.	 Using the Internet, find the atomic structure of gold and 
explain why it is an excellent conductor of electricity.

	 2.	 Find the force of attraction in newtons between the charges 
Q1 and Q2 in Fig. 2.39 when

	 a.	 r = 1 m
	 b.	 r = 3 m
	 c.	 r = 10 m
	 d.	 Did the force drop off quickly with an increase in  

distance?

1 C 2 C

Q1 Q2r

FIG. 2.39
Problem 2.

	*3.	 Find the force of repulsion in newtons between Q1 and Q2 
in Fig. 2.40 when

	 a.	 r = 1 ft
	 b.	 r = 10 ft
	 c.	 r = 100 yd
	 d.	 Comment on the change in magnitude of the force as the 

distance between the charges was dramatically increased.

8   C 40   C

Q1 Q2r

mm

FIG. 2.40
Problem 3.

	*4.	 a.	� Plot the force of attraction (in newtons) versus separa-
tion (in inches) between two unlike charges of 2 mC. 
Use a range of 1 in. to 10 in. in 1 in. increments. Com-
ment on the shape of the curve. Is it linear or nonlinear? 
What does it tell you about plotting a function whose 
magnitude is affected by a squared term in the denomi-
nator of the equation?

	 b.	 Using the plot of part (a), find the force of attraction at 
a 2.5 in. separation.

	 c.	 Calculate the force of attraction with a 2.5 in. separation 
and compare with the result of part (b).

	*5.	 For two similar charges the force F1 exists for a separation 
of r meters. If the distance is increased to 2r, find the new 
level of force F2 in terms of the original force and the dis-
tance involved.

	*6.	 Determine the distance between two charges of 30 mC if the 
force between the two charges is 4.5 * 104 N.

	*7.	 Two charged bodies Q1 and Q2, when separated by a dis-
tance of 2 m, experience a force of repulsion equal to 1.8 N.

	 a.	 What will the force of repulsion be when they are 10 m 
apart?

	 b.	 If the ratio Q1>Q2 = 1>2, find Q1 and Q2 (r = 10 m).
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Section 2.3  Voltage

	 8.	 What is the voltage between two points if 3.4 J of energy 
are required to move 12 mC between the two points?

	 9.	 If the potential difference between two points is 60 V, how 
much energy is expended to bring 8 mC from one point to 
the other?

	10.	 Find the charge in coulombs that requires 400 mJ of energy 
to be moved through a potential difference of 40 mV.

	11.	 How much charge passes through a radio battery of 9 V if 
the energy expended is 620 mJ?

	*12.	 a.	� How much energy in electron volts is required to move 
1 trillion (1 million million) electrons through a poten-
tial difference of 40 V?

	 b.	 How many joules of energy does the result of part (a) 
represent?

	 c.	 Compare results (a) and (b). What can you say about the 
use of joules and electron volts as a unit of measure. 
Under what conditions should they be applied?

Section 2.4 C urrent

	13.	 Find the current in amperes if 96 mC of charge pass through 
a wire in 8.4 s.

	14.	 If 600 C of charge pass through a wire in 4 min, find the 
current in amperes.

	15.	 If a current of 40 mA exists for 1.2 min, how many cou-
lombs of charge have passed through the wire?

	16.	 How many coulombs of charge pass through a lamp in 1.2 
min if the current is constant at 250 mA?

	17.	 If the current in a conductor is constant at 2 mA, how much 
time is required for 6 mC to pass through the conductor?

	18.	 If 21.847 * 10+18 electrons pass through a wire in 12 s, 
find the current.

	19.	 How many electrons pass through a conductor in 5 min and 
30 s if the current is 4 mA?

	20.	 Will a fuse rated at 1 A “blow” if 86 C pass through it in 
1.2 min?

	*21.	 If 0.92 * 10+16 electrons pass through a wire in 50 ms, find 
the current.

	*22.	 Which would you prefer?
	 a.	 A penny for every electron that passes through a wire in 

0.01 ms at a current of 2 mA, or
	 b.	 A dollar for every electron that passes through a wire in 

1.5 ns if the current is 100 mA.

	*23.	 If a conductor with a current of 300 mA passing through it 
converts 60 J of electrical energy into heat in 40 s, what is 
the potential drop across the conductor?

	*24.	 Charge is flowing through a conductor at the rate of  
420 C/min. If 742 J of electrical energy are converted  
to heat in 30 s, what is the potential drop across the  
conductor?

	*25.	 The potential difference between two points in an electric 
circuit is 24 V. If 0.8 J of energy were dissipated in a 
period of 6 ms, what would the current be between the 
two points?

Section 2.6  Ampere-Hour Rating

	26.	 What current will a battery with an Ah rating of 180 theo-
retically provide for 40 h?

	27.	 What is the Ah rating of a battery that can provide 0.64 A 
for 80 h?

	28.	 For how many hours will a battery with an Ah rating of 72 
theoretically provide a current of 1.80 A?

	29.	 A standard 12 V car battery has an ampere-hour rating of 
45 Ah, whereas a heavy-duty battery has a rating of 75 Ah. 
How would you compare the energy levels of each and the 
available current for starting purposes?

	30.	 At what current drain does the ampere-hour rating of the 
Energizer D Cell of Fig. 2.25 drop to 75% of its value at 
25 mA?

	31.	 What is the percentage loss in ampere-hour rating from 
room temperature to freezing for the Energizer D Cell of 
Fig. 2.26?

	32.	 Using the graph of Fig. 2.27, how much longer can you 
maintain 1.2 V at a discharge rate of 25 mA compared to 
discharging at 100 mA?

	*33.	 A portable television using a 12 V, 4 Ah rechargeable bat-
tery can operate for a period of about 8 h. What is the aver-
age current drawn during this period? What is the energy 
expended by the battery in joules?

Section 2.8 C onductors and Insulators

	34.	 Discuss two properties of the atomic structure of copper 
that make it a good conductor.

	35.	 Explain the terms insulator and breakdown strength.

	36.	 List three uses of insulators not mentioned in Section 2.8.

	37.	 a.	� Using Table 2.2, determine the level of applied voltage 
necessary to establish conduction through 1>2 in. of 
air.

	 b.	 Repeat part (a) for 1>2 in. of rubber.
	 c.	 Compare the results of parts (a) and (b).

Section 2.9 S emiconductors

	38.	 What is a semiconductor? How does it compare with a con-
ductor and an insulator?

	39.	 Consult a semiconductor electronics text and note the 
extensive use of germanium and silicon semiconductor 
materials. Review the characteristics of each material.

Section 2.10  Ammeters and Voltmeters

	40.	 What are the significant differences in the way ammeters 
and voltmeters are connected?

	41.	 Compare analog and digital scales:
	 a.	 Which are you more comfortable with? Why?
	 b.	 Which can usually provide a higher degree of accuracy?
	 c.	 Can you think of any advantages of the analog scale 

over a digital scale? Be aware that the majority of scales 
in a plane’s cockpit or in the control room of major 
power plants are analog.

	 d.	 Do you believe it is necessary to become proficient in 
reading analog scales? Why?
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Free electron  An electron unassociated with any particular 
atom, relatively free to move through a crystal lattice structure 
under the influence of external forces.

Fuel cell  A nonpolluting source of energy that can establish cur-
rent through a load by simply applying the correct levels of 
hydrogen and oxygen.

Insulators  Materials in which a very high voltage must be 
applied to produce any measurable current flow.

Neutron  The particle having no electrical charge found in the 
nucleus of the atom.

Nucleus  The structural center of an atom that contains both pro-
tons and neutrons.

Positive ion  An atom having a net positive charge due to the loss 
of one of its negatively charged electrons.

Potential difference  The algebraic difference in potential (or 
voltage) between two points in an electrical system.

Potential energy  The energy that a mass possesses by virtue of 
its position.

Primary cell  Sources of voltage that cannot be recharged.
Proton  The particle of positive polarity found in the nucleus of 

an atom.
Rectification  The process by which an ac signal is converted to 

one that has an average dc level.
Secondary cell  Sources of voltage that can be recharged.
Semiconductor  A material having a conductance value between 

that of an insulator and that of a conductor. Of significant 
importance in the manufacture of electronic devices.

Solar cell  Sources of voltage available through the conversion 
of light energy (photons) into electrical energy.

Specific gravity  The ratio of the weight of a given volume of a 
substance to the weight of an equal volume of water at 4°C.

Volt (V)  The unit of measurement applied to the difference in 
potential between two points. If 1 joule of energy is required 
to move 1 coulomb of charge between two points, the differ-
ence in potential is said to be 1 volt.

Voltage  The term applied to the difference in potential between 
two points as established by a separation of opposite charges.

Voltmeter  An instrument designed to read the voltage across an 
element or between any two points in a network.

Glossary

Ammeter  An instrument designed to read the current through 
elements in series with the meter.

Ampere (A)  The SI unit of measurement applied to the flow of 
charge through a conductor.

Ampere-hour (Ah) rating  The rating applied to a source of 
energy that will reveal how long a particular level of current 
can be drawn from that source.

Cell  A fundamental source of electrical energy developed 
through the conversion of chemical or solar energy.

Conductors  Materials that permit a generous flow of electrons 
with very little voltage applied.

Conventional flow  The movement of charge through a conduc-
tor defined by the positive charge.

Copper  A material possessing physical properties that make it 
particularly useful as a conductor of electricity.

Coulomb (C)  The fundamental SI unit of measure for charge. It 
is equal to the charge carried by 6.242 * 1018 electrons.

Coulomb’s law  An equation defining the force of attraction or 
repulsion between two charges.

Current  The flow of charge resulting from the application of a dif-
ference in potential between two points in an electrical system.

dc current source  A source that will provide a fixed current 
level even though the load to which it is applied may cause its 
terminal voltage to change.

dc generator  A source of dc voltage available through the turn-
ing of the shaft of the device by some external means.

Direct current (dc)  Current having a single direction (unidirec-
tional) and a fixed magnitude over time.

Electrolysis  The process of passing a current through an electro-
lyte to break it down into its fundamental components.

Electrolytes  The contact element and the source of ions between 
the electrodes of the battery.

Electron  The particle with negative polarity that orbits the 
nucleus of an atom.

Electron flow  The movement of charge through a conductor 
defined by the negative charge.

Electron volt  A unit of energy defined by the movement of an 
electron through a potential difference of one volt.
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3.1  Introduction

In the previous chapter, we found that placing a voltage across the simplest of circuits results 
in a flow of charge through the circuit. The question remains, however, What determines the 
level of current that results when a particular voltage is applied? Why is the current heavier in 
some circuits than in others? The answers lie in the fact that there is an opposition to the flow 
of charge in the system that depends on the components of the circuit. This opposition to the 
flow of charge through an electrical circuit, called resistance, has the units of ohms and uses 
the Greek letter omega (Ω) as its symbol. The graphic symbol for resistance, which resem-
bles the cutting edge of a saw, is provided in Fig. 3.1.

•	 Become familiar with the parameters that 
determine the resistance of an element and be 
able to calculate the resistance from the given 
dimensions and material characteristics.

•	 Understand the effects of temperature on the 
resistance of a material and how to calculate the 
change in resistance with temperature.

•	 Develop some understanding of superconductors 
and how they can affect future development in the 
industry.

•	 Become familiar with the broad range of 
commercially available resistors and how to 
read the value of each from the color code or 
labeling.

•	 Become aware of a variety of elements such as 
thermistors, photoconductive cells, and varistors 
and how their terminal resistance is controlled.

Objectives

3

R

FIG. 3.1
Resistance symbol and notation.

This opposition, due primarily to collisions and friction between the free electrons and 
other electrons, ions, and atoms in the path of motion, converts the supplied electrical energy 
into heat that raises the temperature of the electrical component and surrounding medium. 
The heat you feel from an electrical heater is simply due to current passing through a high-
resistance material.

Each material with its unique atomic structure reacts differently to pressures to establish 
current through its core. Conductors that permit a generous flow of charge with little external 
pressure have low resistance levels, while insulators have high resistance characteristics.

R

G



82    Resistance

R

G

3.2 R esistance: Circular Wires

The resistance of any material is due primarily to four factors:

1.	 Material
2.	 Length
3.	 Cross-sectional area
4.	 Temperature of the material

As noted in Section 3.1, the atomic structure determines how easily a 
free electron will pass through a material. The longer the path through 
which the free electron must pass, the greater is the resistance factor. 
Free electrons pass more easily through conductors with larger cross-
sectional areas. In addition, the higher the temperature of the conductive 
materials, the greater is the internal vibration and motion of the compo-
nents that make up the atomic structure of the wire, and the more diffi-
cult it is for the free electrons to find a path through the material.

The first three elements are related by the following basic equation 
for resistance:

	  r = CM@Ω/ft at T = 20°C
	  l = feet 	 (3.1)
	  A = area in circular mils (CM)

with each component of the equation defined by Fig. 3.2.
The material is identified by a factor called the resistivity, which uses the 

Greek letter rho (r) as its symbol and is measured in CM@Ω/ft. Its value at a 
temperature of 20°C (room temperature = 68°F) is provided in Table 3.1 
for a variety of common materials. Since the larger the resistivity, the greater 
is the resistance to setting up a flow of charge, it appears as a multiplying 
factor in Eq. (3.1); that is, it appears in the numerator of the equation. It is 
important to realize at this point that since the resistivity is provided at a 
particular temperature, Eq. (3.1) is applicable only at room temperature. The 
effect of higher and lower temperatures is considered in Section 3.4.

Since the resistivity is in the numerator of Eq. (3.1),

the higher the resistivity, the greater is the resistance of a conductor

as shown for two conductors of the same length in Fig. 3.3(a).
Further,

the longer the conductor, the greater is the resistance

since the length also appears in the numerator of Eq. (3.1). Note Fig. 3.3(b).
Finally,

the greater the area of a conductor, the less is the resistance

because the area appears in the denominator of Eq. (3.1). Note Fig. 3.3(c).

R = r 
l

A
T  (°C)

A

Material (  )

l

r

FIG. 3.2
Factors affecting the resistance of a conductor.

TABLE 3.1
Resistivity (r) of various materials.

Material R (CM@Ω/ft)@20°C

Silver 9.9
Copper 10.37
Gold 14.7
Aluminum 17.0
Tungsten 33.0
Nickel 47.0
Iron 74.0
Constantan 295.0
Nichrome 600.0
Calorite 720.0
Carbon 21,000.0

R 1 Copper

R 2 Iron

R 1 Copper

R 2 Copper

R 1 Copper

R 2 Copper

(b)

R2 > R1

l1>

R2 > R1

(c)(a)

R2 > R1

12 >l2 A2>A1r r

FIG. 3.3
Cases in which R2 7 R1. For each case, all remaining parameters that control the resistance  

level are the same.
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Circular Mils (CM)

In Eq. (3.1), the area is measured in a quantity called circular mils 
(CM). It is the quantity used in most commercial wire tables, and thus it 
needs to be carefully defined. The mil is a unit of measurement for length 
and is related to the inch by

	  1 mil =
1

 1000
 in.

or	  1000 mils = 1 in.

In general, therefore, the mil is a very small unit of measurement for 
length. There are 1000 mils in an inch, or 1 mil is only 1/1000 of an inch. 
It is a length that is not visible with the naked eye, although it can be 
measured with special instrumentation. The phrase milling used in steel 
factories is derived from the fact that a few mils of material are often 
removed by heavy machinery such as a lathe, and the thickness of steel 
is usually measured in mils.

By definition,

a wire with a diameter of 1 mil has an area of 1 CM

as shown in Fig. 3.4.
An interesting result of such a definition is that the area of a circular 

wire in circular mils can be defined by the following equation:

	 ACM = (dmils)
2� (3.2)

Verification of this equation appears in Fig. 3.5, which shows that a wire 
with a diameter of 2 mils has a total area of 4 CM, and a wire with a 
diameter of 3 mils has a total area of 9 CM.

Remember, to compute the area of a wire in circular mils when the 
diameter is given in inches, first convert the diameter to mils by simply 
writing the diameter in decimal form and moving the decimal point three 
places to the right. For example,

1

8
 in. = 0.125 in. = 125 mils

	

Then the area is determined by

ACM = (dmils)
2 = (125 mils)2 = 15,625 CM

Sometimes when you are working with conductors that are not circu-
lar, you will need to convert square mils to circular mils, and vice versa. 
Applying the basic equation for the area of a circle and substituting a 
diameter of 1 mil results in

A =
pd2

4
=

p

4
 (1 mil)2 =

p

4
 sq mils K 1 CM

from which we can conclude the following:

	 1 CM =
p

4
 sq mils	 (3.3)

or	 1 sq mil =
4
p

 CM� (3.4)

3 places

by definition

1 mil

1 circular mil (CM)1 square mil

FIG. 3.4
Defining the circular mil (CM).

A = (2 mils)2 = 4 CM

1 2
3

4
3

A = (3 mils)2 = 9 CM

21

4

5

7 8

6 9

d = 2 mils d = 3 mils

FIG. 3.5
Verification of Eq. (3.2): ACM = (dmils)

2.
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EXAMPLE 3.1  What is the resistance of a 100 ft length of copper wire 
with a diameter of 0.020 in. at 20°C?

Solution: 

 r = 10.37 
CM@Ω

ft
 and 0.020 in. = 20 mils

 ACM = (dmils)
2 = (20 mils)2 = 400 CM

 R = r 
l

A
=

(10.37 CM@Ω/ft)(100 ft)

400 CM
 R = 2.59 �

EXAMPLE 3.2  An undetermined number of feet of wire have been 
used from the 500′ spool of wire in Fig. 3.6. Find the length of the 
remaining copper wire if the diameter is 1/16 in. and the resistance is 
0.8 Ω.

Solution: 

 r = 10.37 CM@Ω/ft and 
1

16
 in. = 0.0625 in. = 62.5 mils

 ACM = (dmils)
2 = (62.5 mils)2 = 3906.25 CM

 R = r 
l

A
1 l =

RA
r

=
(0.8 Ω)(3906.25 CM)

10.37 
CM@Ω

ft

=
3125

10.37

 l = 301.35 ft

EXAMPLE 3.3  What is the resistance of a copper bus-bar, as used in 
the power distribution panel of a high-rise office building, with the 
dimensions indicated in Fig. 3.7?

Solution: 

 5.0 in. = 5000 mils

 
1

2
 in. = 500 mils

 A = (5000 mils)(500 mils) = 2.5 * 106 sq mils

 = 2.5 * 106 sq mils a 4/p CM

1 sq mil
b

 A = 3.183 * 106 CM

ACMg
R = r 

l

A
=

(10.37 CM@Ω/ft)(3 ft)

3.183 * 106 CM
=

31.11

3.183 * 106

R = 9.774 : 10-6 �
(quite small, 0.000009774 Ω ≅ 0 Ω)

You will learn in the following chapters that the lower the resist-
ance of a conductor, the lower are the losses in conduction from the 
source to the load. Similarly, since resistivity is a major factor in 
determining the resistance of a conductor, the lower the resistivity, 

0.8

+

RT

FIG. 3.6
Example 3.2.

(Don Johnson Photo)

3 ft

5 in.

1/2 in.

FIG. 3.7
Example 3.3.
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the lower is the resistance for the same-size conductor. It would 
appear from Table 3.1 that silver, copper, gold, and aluminum would 
be the best conductors and the most common. In general, there are 
other factors, however, such as malleability (ability of a material to 
be shaped), ductility (ability of a material to be drawn into long, thin 
wires), temperature sensitivity, resistance to abuse, and, of course, 
cost, that must all be weighed when choosing a conductor for a par-
ticular application.

In general, copper is the most widely used material because it is 
quite malleable, ductile, and available; has good thermal characteris-
tics; and is less expensive than silver or gold. It is certainly not cheap, 
however. Contractors always ensure that the copper wiring has been 
removed before leveling a building because of its salvage value. Alu-
minum was once used for general wiring because it is cheaper than cop-
per, but its thermal characteristics created some difficulties. The heating 
due to current flow and the cooling that occurred when the circuit was 
turned off resulted in expansion and contraction of the aluminum wire 
to the point where connections eventually loosened, resulting in dan-
gerous side effects. Aluminum is still used today, however, in areas 
such as integrated circuit manufacturing and in situations where the 
connections can be made secure. Silver and gold are, of course, much 
more expensive than copper or aluminum, but the cost is justified for 
certain applications. Silver has excellent plating characteristics for sur-
face preparations, and gold is used quite extensively in integrated cir-
cuits. Tungsten has a resistivity three times that of copper, but there are 
occasions when its physical characteristics (durability, hardness) are 
the overriding considerations.

3.3  Wire Tables

The wire table was designed primarily to standardize the size of wire 
produced by manufacturers. As a result, the manufacturer has a larger 
market, and the consumer knows that standard wire sizes will always 
be available. The table was designed to assist the user in every way 
possible; it usually includes data such as the cross-sectional area in 
circular mils, diameter in mils, ohms per 1000 feet at 20°C, and weight 
per 1000 feet.

The American Wire Gage (AWG) sizes are given in Table 3.2 for 
solid, round copper wire. A column indicating the maximum allowable 
current in amperes, as determined by the National Fire Protection Asso-
ciation, has also been included. The most commonly used appear in 
boldface.

The chosen sizes have an interesting relationship:

The area is doubled for every drop in 3 gage numbers and increased 
by a factor of 10 for every drop of 10 gage numbers.

Examining Eq. (3.1), we note also that doubling the area cuts the 
resistance in half, and increasing the area by a factor of 10 decreases 
the resistance of 1/10 the original, everything else kept constant.

The actual sizes of some of the gage wires listed in Table 3.2 are 
shown in Fig. 3.8 with a few of their areas of application. A few exam-
ples using Table 3.2 follow.
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TABLE 3.2
American Wire Gage (AWG) sizes.

AWG # Area (CM)
�/1000 ft 
at 20°C

Maximum 
Allowable  

Current for RHW 
Insulation (A)*

(4/0)  0000 211,600 0.0490  230
(3/0)  000 167,810 0.0618  200
(2/0)  00 133,080 0.0780  175
(1/0)  0 105,530 0.0983  150

 1 83,694 0.1240  130
 2 66,373 0.1563  115
 3 52,634 0.1970  100
 4 41,742 0.2485  85
5 33,102 0.3133  —
 6 26,250 0.3951  65
7 20,816 0.4982  —
 8 16,509 0.6282  50
9 13,094 0.7921  —

 10 10,381 0.9989  30
11 8,234.0 1.260  —
 12 6,529.9 1.588  20
13 5,178.4 2.003  —
 14 4,106.8 2.525  15
15 3,256.7 3.184
16 2,582.9 4.016
17 2,048.2 5.064
18 1,624.3 6.385
19 1,288.1 8.051
20 1,021.5 10.15
21 810.10 12.80
22 642.40 16.14
23 509.45 20.36
24 404.01 25.67
25 320.40 32.37
26 254.10 40.81
27 201.50 51.47
28 159.79 64.90
29 126.72 81.83
30 100.50 103.2
31 79.70 130.1
32 63.21 164.1
33 50.13 206.9
34 39.75 260.9
35 31.52 329.0
36 25.00 414.8
37 19.83 523.1
38 15.72 659.6
39 12.47 831.8
40 9.89 1049.0

*Not more than three conductors in raceway, cable, or direct burial.
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EXAMPLE 3.4  Find the resistance of 650 ft of #8 copper wire (T =
20°C).

Solution:  For #8 copper wire (solid), Ω/1000 ft at 20°C = 0.6282 Ω, 
and

650 fta 0.6282 Ω
1000 ft

b = 0.41 �

EXAMPLE 3.5  What is the diameter, in inches, of a #12 copper wire?

Solution:  For #12 copper wire (solid), A = 6529.9 CM, and

 dmils = 1ACM = 16529.9 CM ≅ 80.81 mils

 d ≅ 0.08 in. (or close to 1>12 in.)

EXAMPLE 3.6  For the system in Fig. 3.9, the total resistance of each 
power line cannot exceed 0.025 Ω, and the maximum current to be 
drawn by the load is 95 A. What gage wire should be used?

Solution: 

R = r 
l

A
1 A = r 

l

R
=

(10.37 CM@Ω/ft)(100 ft)

0.025 Ω
= 41,480 CM

Using the wire table, we choose the wire with the next largest area, 
which is #4, to satisfy the resistance requirement. We note, however, 
that 95 A must flow through the line. This specification requires that 
#3 wire be used since the #4 wire can carry a maximum current of only 
85 A.

D = 0.365 in. ≅ 1/3 in.

00

Power distribution

Stranded
for increased
flexibility

D = 0.0808 in. ≅ 1/12 in. D = 0.064 in. ≅ 1/16 in.

12 14

Lighting, outlets,
general home use

D = 0.013 in. ≅ 1/75 in.

28

Telephone, instruments

D = 0.032 in. ≅ 1/32 in. D = 0.025 in. = 1/40 in.

20 22

Radio, television

FIG. 3.8
Popular wire sizes and some of their areas of application.

Solid round copper wire

Input

100 ft

Load

FIG. 3.9
Example 3.6.
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3.4 T emperature Effects

Temperature has a significant effect on the resistance of conductors, 
semiconductors, and insulators.

Conductors

Conductors have a generous number of free electrons, and any introduc-
tion of thermal energy will have little impact on the total number of free 
carriers. In fact, the thermal energy only increases the intensity of the 
random motion of the particles within the material and makes it increas-
ingly difficult for a general drift of electrons in any one direction to be 
established. The result is that

for good conductors, an increase in temperature results in an 
increase in the resistance level. Consequently, conductors have a 
positive temperature coefficient.

The plot in Fig. 3.10(a) has a positive temperature coefficient.

Semiconductors

In semiconductors, an increase in temperature imparts a measure of ther-
mal energy to the system that results in an increase in the number of free 
carriers in the material for conduction. The result is that

for semiconductor materials, an increase in temperature results in a 
decrease in the resistance level. Consequently, semiconductors have 
negative temperature coefficients.

The thermistor and photoconductive cell discussed in Sections 3.12 
and 3.13, respectively, are excellent examples of semiconductor devices 
with negative temperature coefficients. The plot in Fig. 3.10(b) has a 
negative temperature coefficient.

Insulators

As with semiconductors, an increase in temperature results in a 
decrease in the resistance of an insulator. The result is a negative 
temperature coefficient.

Inferred Absolute Temperature (Ti)

Fig. 3.11 reveals that for copper (and most other metallic conductors), 
the resistance increases almost linearly (in a straight-line relationship) 

(a)

Temperature

R

0

Temperature
coefficient

(b)

Temperature

R

0

Temperature
coefficient

FIG. 3.10
Demonstrating the effect of a positive and a negative 

temperature coefficient on the resistance of a 
conductor.

R1

T1 T2 °C0°C–234.5°C–273.15°C

Absolute zero x

Inferred absolute zero

R2
R

y

FIG. 3.11
Effect of temperature on the resistance of copper.
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with an increase in temperature. Since temperature can have such a 
pronounced effect on the resistance of a conductor, it is important 
that we have some method of determining the resistance at any tem-
perature within operating limits. An equation for this purpose can be 
obtained by approximating the curve in Fig. 3.11 by the straight 
dashed line that intersects the temperature scale at -234.5°C. 
Although the actual curve extends to absolute zero (-273.15°C, or 0 K), 
the straight-line approximation is quite accurate for the normal oper-
ating temperature range. At two temperatures T1 and T2, the resist-
ance of copper is R1 and R2, respectively, as indicated on the curve. 
Using a property of similar triangles, we may develop a mathemati-
cal relationship between these values of resistance at different tem-
peratures. Let x equal the distance from -234.5°C to T1 and y the 
distance from -234.5°C to T2, as shown in Fig. 3.11. From similar 
triangles,

x

R1
=

y

R2

or	
234.5 + T1

R1
=

234.5 + T2

R2
� (3.5)

The temperature of -234.5°C is called the inferred absolute tempera-
ture (Ti) of copper. For different conducting materials, the intersection 
of the straight-line approximation occurs at different temperatures. A 
few typical values are listed in Table 3.3.

The minus sign does not appear with the inferred absolute tempera-
ture on either side of Eq. (3.5) because x and y are the distances from 
-234.5°C to T1 and T2, respectively, and therefore are simply magni-
tudes. For T1 and T2 less than zero, x and y are less than -234.5°C, and 
the distances are the differences between the inferred absolute tempera-
ture and the temperature of interest.

Eq. (3.5) can easily be adapted to any material by inserting the 
proper inferred absolute temperature. It may therefore be written as 
follows:

	
� Ti � + T1

R1
=

� Ti � + T2

R2
	 (3.6)

where � Ti �  indicates that the inferred absolute temperature of the mate-
rial involved is inserted as a positive value in the equation. In general, 
therefore, associate the sign only with T1 and T2.

EXAMPLE 3.7  If the resistance of a copper wire is 50 Ω at 20°C, what 
is its resistance at 100°C (boiling point of water)?

Solution:  Eq. (3.5):

 
234.5°C + 20°C

50 Ω
=

234.5°C + 100°C
R2

 R2 =
(50 Ω)(334.5°C)

254.5°C
= 65.72 �

TABLE 3.3
Inferred absolute temperatures (Ti).

Material °C

Silver -243
Copper −234.5
Gold -274
Aluminum -236
Tungsten -204
Nickel -147
Iron -162
Nichrome -2,250
Constantan -125,000
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EXAMPLE 3.8  If the resistance of a copper wire at freezing (0°C) is 
30 Ω, what is its resistance at -40°C?

Solution:  Eq. (3.5):

 
234.5°C + 0

30 Ω
=

234.5°C - 40°C
R2

 R2 =
(30 Ω)(194.5°C)

234.5°C
= 24.88 �

EXAMPLE 3.9  If the resistance of an aluminum wire at room tempera-
ture (20°C) is 100 mΩ (measured by a milliohmmeter), at what tempera-
ture will its resistance increase to 120 mΩ?

Solution:  Eq. (3.5):

 236°C + 20°C
100 mΩ

=
236°C + T2

120 mΩ

and	  T2 = 120 mΩ a 256°C
100 mΩ

b - 236°C

 T2 = 71.2°C

Temperature Coefficient of Resistance

There is a second popular equation for calculating the resistance of a 
conductor at different temperatures. Defining

	 a20 =
1

� Ti � + 20°C
   (Ω/°C/Ω)	 (3.7)

as the temperature coefficient of resistance at a temperature of 20°C 
and R20 as the resistance of the sample at 20°C, we determine the resist-
ance R1 at a temperature T1 by

	 R1 = R20[1 + a20(T1 - 20°C)]	 (3.8)

The values of a20 for different materials have been evaluated, and a few 
are listed in Table 3.4. Eq. (3.8) can be derived by applying the roles for 
similar triangles to the plot of Fig. 3.11.

Eq. (3.8) can be written in the following form:

	 a20 =
a R1 - R20

T1 - 20°C
b

R20
=

∆R

∆T

R20
	 (3.9)

from which the units of Ω/°C/Ω for a20 are defined.
Since ∆R/∆T  is the slope of the curve in Fig. 3.11, we can conclude 

that

the higher the temperature coefficient of resistance for a material, the 
more sensitive is the resistance level to changes in temperature.

Referring to Table 3.4, we find that copper is more sensitive to tem-
perature variations than is silver, gold, or aluminum, although the differ-
ences are quite small. The slope defined by a20 for constantan is so small 
that the curve is almost horizontal.

TABLE 3.4 
Temperature coefficient of resistance for various 

conductors at 20°C.

Material
Temperature 

Coefficient (A20)

Silver 0.0038
Copper 0.00393
Gold 0.0034
Aluminum 0.00391
Tungsten 0.005
Nickel 0.006
Iron 0.0055
Constantan 0.000008
Nichrome 0.00044
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Since R20 of Eq. (3.8) is the resistance of the conductor at 20°C and 
T1 - 20°C is the change in temperature from 20°C, Eq. (3.8) can be 
written in the following form:

	 R = r 
l

A
 [l + a20 ∆T ]	 (3.10)

providing an equation for resistance in terms of all the controlling 
parameters.

PPM/°c
For resistors, as for conductors, resistance changes with a change in tem-
perature. The specification is normally provided in parts per million per 
degree Celsius (PPM/°C), providing an immediate indication of the sen-
sitivity level of the resistor to temperature. For resistors, a 5000 PPM 
level is considered high, whereas 20 PPM is quite low. A 1000 PPM/°C 
characteristic reveals that a 1° change in temperature results in a change 
in resistance equal to 1000 PPM, or 1000/1,000,000 = 1/1000 of its 
nameplate value—not a significant change for most applications. How-
ever, a 10° change results in a change equal to 1/100 (1%) of its name-
plate value, which is becoming significant. The concern, therefore, lies 
not only with the PPM level but also with the range of expected tem-
perature variation.

In equation form, the change in resistance is given by

	 ∆R =
Rnominal

106  (PPM)(∆T)	 (3.11)

where Rnominal is the nameplate value of the resistor at room temperature 
and ∆T  is the change in temperature from the reference level of 20°C.

EXAMPLE 3.10  For a 1 kΩ carbon composition resistor with a PPM 
of 2500, determine the resistance at 60°C.

Solution: 

 ∆R =
1000 Ω

106 (2500)(60°C - 20°C)

 = 100 Ω

and	  R = Rnominal + ∆R = 1000 Ω + 100 Ω
 = 1100 �

3.5 T ypes of Resistors

Fixed Resistors

Resistors are made in many forms, but all belong in either of two 
groups: fixed or variable. The most common of the low-wattage, fixed-
type resistors is the film resistor shown in Fig. 3.12. It is constructed by 
depositing a thin layer of resistive material (typically carbon, metal, or 
metal oxide) on a ceramic rod. The desired resistance is then obtained 
by cutting away some of the resistive material in a helical manner to 
establish a long, continuous band of high-resistance material from one 
end of the resistor to the other. In general, carbon-film resistors have a 
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beige body and a lower wattage rating. The metal-film resistor is typi-
cally a stronger color, such as brick red or dark green, with higher watt-
age ratings. The metal-oxide resistor is usually a softer pastel color, 
such as rating powder blue shown in Fig. 3.12(b), and has the highest 
wattage rating of the three. 

When you search through most electronics catalogs or visit a local 
electronics dealer to purchase resistors, you will find that the most 
common resistor is the film resistor. In years past, the carbon compo-
sition resistor in Fig. 3.13 was the most common, but fewer and fewer 
companies are manufacturing this variety, with its range of applica-
tions reduced to applications in which very high temperatures and 
inductive effects (Chapter 11) can be a problem. Its resistance is 
determined by the carbon composition material molded directly to 
each end of the resistor. The high-resistivity characteristics of carbon 
(r = 21,000 CM@Ω/ft) provide a high-resistance path for the current 
through the element. 

For a particular style and manufacturer, the size of a resistor 
increases with the power or wattage rating.

The concept of power is covered in detail in Chapter 4, but for the 
moment recognize that increased power ratings are normally associ-
ated with the ability to handle higher current and temperature levels. 
Fig. 3.14 depicts the actual size of thin-film, metal-oxide resistors in 
the 1/4 W to 5 W rating range. All the resistors in Fig. 3.14 are 1 MΩ, 
revealing that

the size of a resistor does not define its resistance level.

A variety of other fixed resistors are depicted in Fig. 3.15. The wire-
wound resistors of Fig. 3.15(a) are formed by winding a high-resistance 
wire around a ceramic core. The entire structure is then baked in a 
ceramic cement to provide a protective covering. Wire-wound resistors 
are typically used for larger power applications, although they are also 
available with very small wattage ratings and very high accuracy.

Fig. 3.15(c) and (g) are special types of wire-wound resistors with a 
low percent tolerance. Note, in particular, the high power ratings for 
the wire-wound resistors for their relatively small size. Figs. 3.15(b),  
(d), and (f) are power film resistors that use a thicker layer of film 
material than used in the variety shown in Fig. 3.12. The chip resistors 

(a)

Wire lead
connected
to continuous
thin-film
path of resistive
material Spiral trimmed

grooves

End cap

Molded
insulating
casing

Ceramic core
Thin film of

high-resistance metal

FIG. 3.12
Film resistors: (a) construction; (b) types.

(b)

Carbon-film (1/2 W)

Metal-film (2 W)

Metal-oxide film (2 W)

Leads

Color bands
Insulation
material

Resistance material
(Carbon composition)

(a)

(b)

FIG. 3.13
Fixed-composition resistors: (a) construction;  

(b) appearance.

ACTUAL SIZE

5 W

3 W

1 W

1 2 W/

1 4 W/

FIG. 3.14
Fixed metal-oxide resistors of different wattage ratings.
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in Fig. 3.15(f) are used where space is a priority, such as on the surface 
of circuit board. Units of this type can be less than 1/16 in. in length or 
width, with thickness as small as 1/30 in., yet they can still handle 
0.5 W of power with resistance levels as high as 1000 MΩ—clear evi-
dence that size does not determine the resistance level. The fixed resis-
tor in Fig. 3.15(c) has terminals applied to a layer of resistor material, 
with the resistance between the terminals a function of the dimensions 
of the resistive material and the placement of the terminal pads.

100 MΩ, 0.75 W
Precision power film resistor

(d)

1 kΩ bussed (all connected
on one side) single

in-line resistor network
(e)

25 kΩ, 5 W
Silicon-coated, wire-wound resistor

(g)

22 kΩ, 1 W
Surface mount thick-film chip

resistors with gold
electrodes

(f)

Resistive
material

Terminals

Bakelite (insulator)
coating

Electrodes (Terminals)

Ceramic base

Resistive
material

Tinned
alloy
terminals

Vitreous
enamel
coating

Even
uniform
winding

High-strength
welded terminal

Resilient
mounting
brackets

Strong
ceramic
core

Welded resistance
wire junction

Wire-wound resistors

(a)

1 kΩ, 25 W

Aluminum-housed, chassis-mount
resistor–precision wire-mount

(c)

470 Ω, 35 W
Thick-film power resistor

(b)

2 kΩ, 8 W

100 Ω, 25 W

FIG. 3.15
Various types of fixed resistors.
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Maximum Voltage Rating

In addition to a wattage rating, every resistor has a maximum voltage 
rating. Both must be considered with the use of any resistor in any appli-
cation. In some cases the maximum voltage rating may seem so high 
from typical operating voltages that the power rating is the only one of 
any consequence. Consider, however, a commercially available carbon 
composition resistor rated for 1 W, a 10% tolerance, and a maximum 
voltage rating of 500 V available in resistor values from 2.2 Ω to 1 MΩ. 
Keep in mind that the complete line of resistors with this 1 W power rat-
ing and maximum voltage rating all have the same size and construction. 
Internally, of course, the resistive material is altered to provide the 
desired resistance, but the external appearance is the same. Within this 
series of resistors, a 10 ohm resistor would need only 3.16 V applied 
across it to reach the 1 W rating. The calculations surrounding this con-
clusion will be discussed in Chapter 4. Certainly, the 3.16 V is magni-
tudes smaller than the rated voltage of 500 V and it may never be 
necessary to worry about this rating. However, we would also find that if 
we were using a 250 kΩ resistor from the package of resistors it would 
require 500 V to reach the 1 W power dissipation level. In fact any resis-
tor between 250 kΩ and 1 MΩ would require more than the rated 500 V 
to dissipate a power level of 1 W. For the 1 MΩ resistor, the power dis-
sipated at 500 V is only 1>4 W. The result, therefore, is that the applied 
voltage is a very important factor because it is related to the maximum 
power dissipation capabilities of the resistor. Furthermore, if the applied 
voltage exceeds the maximum rated value, the resistive qualities of the 
resistor may deteriorate, high surface currents may develop, arcing may 
occur, or the resistor itself may open or cause a short circuit.

Variable Resistors

Variable resistors, as the name implies, have a terminal resistance that 
can be varied by turning a dial, knob, screw, or whatever seems appro-
priate for the application. They can have two or three terminals, but most 
have three terminals. If the two- or three-terminal device is used as a 
variable resistor, it is usually referred to as a rheostat. If the three-terminal 
device is used for controlling potential levels, it is then commonly called 
a potentiometer. Even though a three-terminal device can be used as a 
rheostat or a potentiometer (depending on how it is connected), it is typi-
cally called a potentiometer when listed in trade magazines or requested 
for a particular application.

The symbol for a three-terminal potentiometer appears in Fig. 3.16(a). 
When used as a variable resistor (or rheostat), it can be hooked up in one 
of two ways, as shown in Figs. 3.16(b) and (c). In Fig. 3.16(b), points a 

(d)

R

(c)

a
R

Rab

b, c

(b)

R
a c

b
Rab

(a)

R b

a

c

FIG. 3.16
Potentiometer: (a) symbol; (b) and (c) rheostat connections; (d) rheostat symbol.
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and b are hooked up to the circuit, and the remaining terminal is left 
hanging. The resistance introduced is determined by that portion of the 
resistive element between points a and b. In Fig. 3.16(c), the resistance 
is again between points a and b, but now the remaining resistance is 
“shorted-out” (effect removed) by the connection from b to c. The uni-
versally accepted symbol for a rheostat appears in Fig. 3.16(d).

Most potentiometers have three terminals in the relative positions 
shown in Fig. 3.17. The knob, dial, or screw in the center of the housing 
controls the motion of a contact that can move along the resistive element 
connected between the outer two terminals. The contact is connected to 
the center terminal, establishing a resistance from movable contact to 
each outer terminal.

The internal construction of the potentiometer is provided in 
Fig. 3.17(b). The resistive element is typically carbon or wire-wound. The 
center leg (b) is connected to the moveable arm (in blue) through the Philips 
screw without making contact with the moveable arm. Terminal c is con-
nected directly to the bottom right of the resistive material without making 
contact with the moveable arm. The resistance between terminals c and b is 
then the major part of the resistive material as shown in Figs. 3.17(b) and 
3.17(c). Contact is made at the point indicated by the dot in the moveable 
arm. The resistance between terminals b and a is then the smaller portion of 
the resistive material as shown in both figures. The contact point has the 
full range of the resistive material to control the level of resistance between 
the three points of the potentiometer. 

The resistance between the outside terminals a and c in Fig. 3.17 is 
always fixed at the full rated value of the potentiometer, regardless of 
the position of the wiper arm b.

In other words, the resistance between terminals a and c in Fig. 3.18(a) 
for a 1 MΩ potentiometer will always be 1 MΩ, no matter how we turn 
the control element and move the contact. In Fig. 3.18(a), the center 
contact is not part of the network configuration.

The resistance between the wiper arm and either outside terminal can 
be varied from a minimum of 0 Ω to a maximum value equal to the 
full rated value of the potentiometer.

a
b

c

Rotating
shaft

(a)

FIG. 3.17
Potentiometer: (a) External, (b) Internal,  

(c) Circuit equivalent.
(Don Johnson Photo)

a b

(b) (c)

c a b c

   
a b

(b) (c)

c a b c

(b)

0.250

+

0.750

+

1 M�
b

a

c

(a)

1 M� b

a

c

1.000

+

FIG. 3.18
Resistance components of a potentiometer: (a) between outside terminals;  

(b) between wiper arm and each outside terminal.
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In Fig. 3.18(b), the wiper arm has been placed 1/4 of the way down from 
point a to point c. The resulting resistance between points a and b will 
therefore be 1/4 of the total, or 250 kΩ (for a 1 MΩ potentiometer), and 
the resistance between b and c will be 3/4 of the total, or 750 kΩ.

The sum of the resistances between the wiper arm and each outside 
terminal equals the full rated resistance of the potentiometer.

This is demonstrated in Fig. 3.18(b), where  250 kΩ + 750 kΩ = 1 MΩ. 
Specifically,

	 Rac = Rab + Rbc	 (3.12)

Therefore, as the resistance from the wiper arm to one outside contact 
increases, the resistance between the wiper arm and the other outside 
terminal must decrease accordingly. For example, if Rab of a 1 kΩ 
potentiometer is 200 Ω, then the resistance Rbc must be 800 Ω. If Rab is 
further decreased to 50 Ω, then Rbc must increase to 950 Ω, and so on.

The molded carbon composition potentiometer is typically applied in 
networks with smaller power demands, and it ranges in size from 20 Ω 
to 22 MΩ (maximum values). A miniature trimmer (less than 1/4 in. in 
diameter) appears in Fig. 3.19(a), and a variety of potentiometers that 
use a cermet resistive material appear in Fig. 3.19(b). The contact point 
of the three-point wire-wound resistor in Fig. 3.19(c) can be moved to 
set the resistance between the three terminals.

(a)     (b)     (c)

FIG. 3.19
Variable resistors: (a) 4 mm (≈5/32 in.) trimmer; (b) conductive plastic and cermet elements;  

(c) three-point wire-wound resistor.

a

Vab

c

Vbc

R b

FIG. 3.20
Potentiometer control of voltage levels.

When the device is used as a potentiometer, the connections are as 
shown in Fig. 3.20. It can be used to control the level of Vab, Vbc, or both, 
depending on the application. Additional discussion of the potentiome-
ter in a loaded situation can be found in later chapters.

3.6 C olor Coding and Standard  
Resistor Values

A wide variety of resistors, fixed or variable, are large enough to have 
their resistance in ohms printed on the casing. Some, however, are too 
small to have numbers printed on them, so a system of color coding is 
used. For the thin-film resistor, four, five, or six bands may be used. The 
four-band scheme is described. Later in this section the purpose of the 
fifth and sixth bands will be described.
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For the four-band scheme, the bands are always read from the end 
that has a band closest to it, as shown in Fig. 3.21. The bands are num-
bered as shown for reference in the discussion to follow.

The first two bands represent the first and second digits, respectively.

They are the actual first two numbers that define the numerical value of 
the resistor.

The third band determines the power-of-ten multiplier for the first 
two digits (actually the number of zeros that follow the second digit 
for resistors greater than 10 Ω).

The fourth band is the manufacturer’s tolerance, which is an indica-
tion of the precision by which the resistor was made.

If the fourth band is omitted, the tolerance is assumed to be {20%.
The number corresponding to each color is defined in Fig. 3.22. 

The fourth band will be either {5% or {10% as defined by gold and 
silver, respectively. To remember which color goes with which per-
cent, simply remember that {5% resistors cost more and gold is more 
valuable than silver.

Remembering which color goes with each digit takes a bit of prac-
tice. In general, the colors start with the very dark shades and move 
toward the lighter shades. The best way to memorize is to simply repeat 
over and over that red is 2, yellow is 4, and so on. Simply practice with 
a friend or a fellow student, and you will learn most of the colors in 
short order.

EXAMPLE 3.11  Find the value of the resistor in Fig. 3.23.

Solution:  Reading from the band closest to the left edge, we find that 
the first two colors of brown and red represent the numbers 1 and 2, 
respectively. The third band is orange, representing the number 3 for the 
power of the multiplier as follows:

12 * 103 Ω

resulting in a value of 12 kΩ. As indicated above, if 12 kΩ is written as 
12,000 Ω, the third band reveals the number of zeros that follow the first 
two digits.

Now for the fourth band of gold, representing a tolerance of {5%: 
To find the range into which the manufacturer has guaranteed the resis-
tor will fall, first convert the 5% to a decimal number by moving the 
decimal point two places to the left:

5% 1 0.05
	

Then multiply the resistor value by this decimal number:

0.05(12 kΩ) = 600 Ω

Finally, add the resulting number to the resistor value to determine the 
maximum value, and subtract the number to find the minimum value. 
That is,

 Maximum = 12,000 Ω + 600 Ω = 12.6 kΩ
 Minimum = 12,000 Ω - 600 Ω = 11.4 kΩ

 Range = 11.4 kΩ to 12.6 kΩ

1 2 3 4

FIG. 3.21
Color coding for fixed resistors.

0

1

2

3

4

5

6

7

8

9

±10%
(0.01 multiplier

if 3rd band)

Black

Brown

Red

Orange

Yellow

Green

Blue

Violet

Gray

White

Gold

Silver

Number Color

±5%
(0.1 multiplier

if 3rd band)

FIG. 3.22
Color coding.

FIG. 3.23
Example 3.11.
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The result is that the manufacturer has guaranteed with the 5% gold 
band that the resistor will fall in the range just determined. In other 
words, the manufacturer does not guarantee that the resistor will be ex-
actly 12 kΩ, but rather that it will fall in a range as defined above.

Using the above procedure, the smallest resistor that can be labeled 
with the color code is 10 Ω. However,

the range can be extended to include resistors from 0.1 � to 10 � by 
simply using gold as a multiplier color (third band) to represent 0.1 
and using silver to represent 0.01.

This is demonstrated in the next example.

EXAMPLE 3.12  Find the value of the resistor in Fig. 3.24.

Solution:  The first two colors are gray and red, representing the num-
bers 8 and 2, respectively. The third color is gold, representing a multi-
plier of 0.1. Using the multiplier, we obtain a resistance of

(0.1)(82 Ω) = 8.2 Ω

The fourth band is silver, representing a tolerance of {10%. Converting 
to a decimal number and multiplying through yields

10% = 0.10  and  (0.1)(8.2 Ω) = 0.82 Ω
	

 Maximum = 8.2 Ω + 0.82 Ω = 9.02 Ω
 Minimum = 8.2 Ω - 0.82 Ω = 7.38 Ω

so that	 Range = 7.38 � to 9.02 �

Although it will take some time to learn the numbers associated with 
each color, it is certainly encouraging to become aware that

the same color scheme to represent numbers is used for all the 
important elements of electrical circuits.

Later on, you will find that the numerical value associated with each 
color is the same for capacitors and inductors. Therefore, once learned, 
the scheme has repeated areas of application.

Some manufacturers prefer to use a five-band color code. In such 
cases, as shown in the top portion of Fig. 3.25, three digits are provided 
before the multiplier. The fifth band remains the tolerance indicator. If 
the manufacturer decides to include the temperature coefficient, a sixth 
band will appear as shown in the lower portion of Fig. 3.25, with the 
color indicating the PPM level.

For four, five, or six bands, if the tolerance is less than 5%, the fol-
lowing colors are used to reflect the % tolerances:

brown = t1%, red = t2%, green = t0.5%, blue = t0.25%, 
and violet = t0.1%.

You might expect that resistors would be available for a full range of 
values such as 10 Ω, 20 Ω, 30 Ω, 40 Ω, 50 Ω, and so on. However, this 
is not the case, with some typical commercial values as 27 Ω, 56 Ω, and 
68 Ω. There is a reason for the chosen values, which is best demon-
strated by examining the list of standard values of commercially availa-
ble resistors in Table 3.5. The values in boldface are the most common 
and typically available with 5%, 10%, and 20% tolerances.

FIG. 3.24
Example 3.12.

Temperature coefficient
Brown = 100 PPM
Red = 50 PPM
Orange = 15 PPM
Yellow = 25 PPM
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FIG. 3.25
Five-band color coding for fixed resistors.
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Examining the impact of the tolerance level will help explain the 
choice of numbers for the commercial values. Take the sequence 
47 Ω -68 Ω -100 Ω, which are all available with 20% tolerances. In 
Fig. 3.26(a), the tolerance band for each has been determined and plotted 
on a single axis. Note that with this tolerance (which is all that the manu-
facturer will guarantee), the full range of resistor values is available from 

TABLE 3.5 
Standard values of commercially available resistors.

Ohms 
(�)

Kilohms 
(k�)

Megohms 
(M�)

0.10 1.0 10 100 1000 10 100 1.0 10.0
0.11 1.1 11 110 1100 11 110 1.1 11.0
0.12 1.2 12 120 1200 12 120 1.2 12.0
0.13 1.3 13 130 1300 13 130 1.3 13.0
0.15 1.5 15 150 1500 15 150 1.5 15.0
0.16 1.6 16 160 1600 16 160 1.6 16.0
0.18 1.8 18 180 1800 18 180 1.8 18.0
0.20 2.0 20 200 2000 20 200 2.0 20.0
0.22 2.2 22 220 2200 22 220 2.2 22.0
0.24 2.4 24 240 2400 24 240 2.4
0.27 2.7 27 270 2700 27 270 2.7
0.30 3.0 30 300 3000 30 300 3.0
0.33 3.3 33 330 3300 33 330 3.3
0.36 3.6 36 360 3600 36 360 3.6
0.39 3.9 39 390 3900 39 390 3.9
0.43 4.3 43 430 4300 43 430 4.3
0.47 4.7 47 470 4700 47 470 4.7
0.51 5.1 51 510 5100 51 510 5.1
0.56 5.6 56 560 5600 56 560 5.6
0.62 6.2 62 620 6200 62 620 6.2
0.68 6.8 68 680 6800 68 680 6.8
0.75 7.5 75 750 7500 75 750 7.5
0.82 8.2 82 820 8200 82 820 8.2
0.91 9.1 91 910 9100 91 910 9.1

37.6 � 56.4 � 80 � 120 �

47 � 68 � 100 �

54.4 � 81.6 �

(a)

50.4 � 61.6 �

90 � 110 �

47 � 68 � 100 �

90.2 �73.8 �

(b)

± 10%100 �± 10%47 �

42.3 � 51.7 �

56 � 82 �

61.2 � 74.8 �

± 10%82 �

± 10%56 �

± 20%68 �

± 20%100 �± 20%47 �

± 20%68 �

FIG. 3.26
Guaranteeing the full range of resistor values for the given tolerance: (a) 20%; (b) 10%.
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37.6 Ω to 120 Ω. In other words, the manufacturer is guaranteeing the 
full range, using the tolerances to fill in the gaps. Dropping to the 10% 
level introduces the 56 Ω and 82 Ω resistors to fill in the gaps, as shown 
in Fig. 3.26(b). Dropping to the 5% level would require additional resis-
tor values to fill in the gaps. In total, therefore, the resistor values were 
chosen to ensure that the full range was covered, as determined by the 
tolerances employed. Of course, if a specific value is desired but is not 
one of the standard values, combinations of standard values often result 
in a total resistance very close to the desired level. If this approach is still 
not satisfactory, a potentiometer can be set to the exact value and then 
inserted in the network.

Throughout the text, you will find that many of the resistor values 
are not standard values. This was done to reduce the mathematical 
complexity, which might interfere with the learning process. In the 
problem sections, however, standard values are frequently used to 
ensure that you start to become familiar with the commercial values 
available.

Surface Mount Resistors

In general, surface mount resistors, such as appearing in Fig. 3.15(f), 
are marked in three ways: color coding, three symbols, and two 
symbols.

The color coding is the same as just described earlier in this section 
for through-hole resistors.

The three-symbol approach uses three digits. The first two define the 
first two digits of the value; the last digit defines the power of the power-
of-ten multiplier.

For instance:

 820 is 82 * 100 Ω = 82 Ω
 222 is 22 * 102 Ω = 2200 Ω = 2.2 kΩ
 010 is 1 * 100 Ω = 1 Ω

The two-symbol marking uses a letter followed by a number. The 
letter defines the value as in the following list. Note that all the numbers 
of the commercially available list of Table 3.5 are included.

 A = 1.0
 E = 1.5
 J = 2.2
 N = 3.3
 S = 4.7

 W = 6.8

 B = 1.1
 F = 1.6
 K = 2.4
 P = 3.6
 T = 5.1
 X = 7.5

 C = 1.2
 G = 1.8
 L = 2.7
 Q = 3.9
 U = 5.6
 Y = 8.2

 D = 1.3
 H = 2
 M = 3
 R = 4.3
 V = 6.2
 Z = 9.1

The second symbol is the power of the power-of-ten multiplier.
For example,

 C3 = 1.2 * 103 Ω = 1.2 k�
 T0 = 5.1 * 100 Ω = 5.1 �
 Z1 = 9.1 * 101 Ω = 91 �

Additional symbols may precede or follow the codes and may differ 
depending on the manufacturer. These may provide information on the 
internal resistance structure, power rating, surface material, tapping, and 
tolerance.
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3.7 C onductance

By finding the reciprocal of the resistance of a material, we have a meas-
ure of how well the material conducts electricity. The quantity is called 
conductance, has the symbol G, and is measured in siemens (S) (note 
Fig. 3.27). In equation form, conductance is

	 G =
1

R
  (siemens, S)	 (3.13)

A resistance of 1 MΩ is equivalent to a conductance of 10 - 6 S, and a 
resistance of 10 Ω is equivalent to a conductance of 10 - 1 S. The larger 
the conductance, therefore, the less is the resistance and the greater is the 
conductivity.

In equation form, the conductance is determined by

	 G =
A

rl
  (S)	 (3.14)

indicating that increasing the area or decreasing either the length or the 
resistivity increases the conductance.

EXAMPLE 3.13

	 a.	 Determine the conductance of a 1 Ω, a 50 kΩ, and a 10 MΩ resistor.
	 b.	 How does the conductance level change with increase in resistance?

Solution:  Eq. (3.13):

	 a.	  1Ω: G =
1

R
=

1

1 Ω
= 1 S

 50 kΩ: G =
1

R
=

1

50 kΩ
=

1

50 * 103Ω
= 0.02 * 10 - 3S = 0.02 mS

 10 MΩ: G =
1

R
=

1

10 MΩ
=

1

10 * 106Ω
= 0.1 * 10 - 6S = 0.1 MS

	 b.	 The conductance level decreases rapidly with significant increase in 
resistance levels.

EXAMPLE 3.14  What is the relative increase or decrease in conduc-
tivity of a conductor if the area is reduced by 30% and the length is 
increased by 40%? The resistivity is fixed.

Solution:  Eq. (3.14):

Gi =
1

Ri
=

1
rili
Ai

=
Ai

rili

with the subscript i for the initial value. Using the subscript n for the new 
value, we obtain

	  Gn =
An

rnln
=

0.70Ai

ri(1.4li)
=

0.70

1.4
 

Ai

rili
=

0.70

1.4
 Gi

and	  Gn = 0.5Gi

German (Lenthe, Berlin) 
(1816–92)
Electrical Engineer 
Telegraph Manufacturer, 

Siemens & Halske AG

Developed an electroplating process during a brief 
stay in prison for acting as a second in a duel 
between fellow officers of the Prussian army. 
Inspired by the electronic telegraph invented by Sir 
Charles Wheatstone in 1817, he improved on the 
design and with the help of his brother Carl pro-
ceeded to lay cable across the Mediterranean and 
from Europe to India. His inventions included the 
first self-excited generator, which depended on the 
residual magnetism of its electromagnet rather than 
an inefficient permanent magnet. In 1888 he was 
raised to the rank of nobility with the addition of von 
to his name. The current firm of Siemens AG has 
manufacturing outlets in some 35 countries and sales 
offices in some 125 countries.

FIG. 3.27
Werner von Siemens.
INTERFOTO/Alamy
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3.8 O hmmeters

The ohmmeter is an instrument used to perform the following tasks and 
several other useful functions:

1.	 Measure the resistance of individual or combined elements.
2.	 Detect open-circuit (high-resistance) and short-circuit (low-

resistance) situations.
3.	 Check the continuity of network connections and identify wires of 

a multilead cable.
4.	 Test some semiconductor (electronic) devices.

For most applications, the ohmmeters used most frequently are the 
ohmmeter section of a VOM or DMM. The details of the internal cir-
cuitry and the method of using the meter will be left primarily for a labo-
ratory exercise. In general, however, the resistance of a resistor can be 
measured by simply connecting the two leads of the meter across the 
resistor, as shown in Fig. 3.28. There is no need to be concerned about 
which lead goes on which end; the result is the same in either case since 
resistors offer the same resistance to the flow of charge (current) in 
either direction. If the VOM is used, a switch must be set to the proper 
resistance range, and a nonlinear scale (usually the top scale of the 
meter) must be properly read to obtain the resistance value. The DMM 
also requires choosing the best scale setting for the resistance to be 
measured, but the result appears as a numerical display, with the proper 
placement of the decimal point determined by the chosen scale. When 
measuring the resistance of a single resistor, it is usually best to remove 
the resistor from the network before making the measurement. If this is 
difficult or impossible, at least one end of the resistor must not be con-
nected to the network, otherwise the reading may include the effects of 
the other elements of the system.

If the two leads of the meter are touching in the ohmmeter mode, 
the resulting resistance is zero. A connection can be checked as shown 
in Fig. 3.29 by simply hooking up the meter to either side of the con-
nection. If the resistance is zero, the connection is secure. If it is other 
than zero, the connection could be weak; if it is infinite, there is no 
connection at all.

If one wire of a harness is known, a second can be found as shown in 
Fig. 3.30. Simply connect the end of the known lead to the end of any 
other lead. When the ohmmeter indicates zero ohms (or very low resist-
ance), the second lead has been identified. The above procedure can also 
be used to determine the first known lead by simply connecting the 
meter to any wire at one end and then touching all the leads at the other 
end until a zero ohm indication is obtained.

Preliminary measurements of the condition of some electronic 
devices such as the diode and the transistor can be made using the 
ohmmeter. The meter can also be used to identify the terminals of 
such devices.

�

FIG. 3.28
Measuring the resistance of a single element.

�

FIG. 3.29
Checking the continuity of a connection.

�

FIG. 3.30
Identifying the leads of a multilead cable.
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One important note about the use of any ohmmeter:

Never hook up an ohmmeter to a live circuit!

The reading will be meaningless, and you may damage the instrument. 
The ohmmeter section of any meter is designed to pass a small sensing 
current through the resistance to be measured. A large external current 
could damage the movement and would certainly throw off the calibra-
tion of the instrument. In addition:

Never store a VOM or a DMM in the resistance mode.

If the two leads of the meter touch, the small sensing current could drain 
the internal battery. VOMs should be stored with the selector switch on 
the highest voltage range, and the selector switch of DMMs should be in 
the off position.

3.9 R esistance: Metric Units

The design of resistive elements for various areas of application, includ-
ing thin-film resistors and integrated circuits, uses metric units for the 
quantities of Eq. (3.1) introduced in Section 3.2. In SI units, the resistiv-
ity would be measured in ohm-meters, the area in square meters, and the 
length in meters. However, the meter is generally too large a unit of 
measure for most applications, and so the centimeter is usually employed. 
The resulting dimensions for Eq. (3.1) are therefore

r: ohm@centimeters
l: centimeters
A: square centimeters

The units for r can be derived from

r =
RA

l
=

Ω@cm2

cm
= Ω@cm

The resistivity of a material is actually the resistance of a sample such 
as that appearing in Fig. 3.31. Table 3.6 provides a list of values of r in 
ohm-centimeters. Note that the area now is expressed in square centim-
eters, which can be determined using the basic equation A = pd2>4, 
eliminating the need to work with circular mils, the special unit of meas-
ure associated with circular wires.

EXAMPLE 3.15  Determine the resistance of 100 ft of #28 copper tel-
ephone wire if the diameter is 0.0126 in.

Solution:  Unit conversions:

 l = 100 ft a 12 in.

1 ft
b a 2.54 cm

1 in.
b = 3048 cm

 d = 0.0126 in.a 2.54 cm

1 in.
b = 0.032 cm

Therefore,

A =
pd 2

4
=

(3.1416)(0.032 cm)2

4
= 8.04 * 10-4 cm2

R = r 
l

A
=

(1.723 * 10-6Ω@cm)(3048 cm)

8.04 * 10-4 cm2  ≅ 6.5 �

A  =  1 cm2

l  =  1 cm

FIG. 3.31
Defining r in ohm-centimeters.

TABLE 3.6
Resistivity (r) of various materials.

Material �@cm

Silver
Copper
Gold
Aluminum
Tungsten
Nickel
Iron
Tantalum
Nichrome
Tin oxide
Carbon

1.645 * 10-6

1.723 * 10-6

2.443 * 10-6

2.825 * 10-6

5.485 * 10-6

7.811 * 10-6

12.299 * 10-6

15.54 * 10-6

99.72 * 10-6

250 * 10-6

3500 * 10-6
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Using the units for circular wires and Table 3.2 for the area of a #28 
wire, we find

R = r 
l

A
=

(10.37 CM@Ω/ft)(100 ft)

159.79 CM
 ≅ 6.5 �

EXAMPLE 3.16  Determine the resistance of the thin-film resistor in 
Fig. 3.32 if the sheet resistance Rs (defined by Rs = r>d) is 100 Ω.

Solution:  For deposited materials of the same thickness, the sheet 
resistance factor is usually employed in the design of thin-film resistors.

Eq. (3.1) can be written

R = r 
l

A
= r

l

dw
= ar

d
b a l

w
b = Rs 

l
w

where l is the length of the sample and w is the width. Substituting into 
the above equation yields

R = Rs 
l
w

=
(100 Ω)(0.6 cm)

0.3 cm
= 200 �

as one might expect since l = 2w.

The conversion factor between resistivity in circular mil-ohms per 
foot and ohm-centimeters is the following:

r (Ω@cm) = (1.662 * 10-7) * (value in CM@Ω/ft)

For example, for copper, r = 10.37 CM@Ω/ft:

 r (Ω@cm) = 1.662 * 10-7 (10.37 CM@Ω/ft)

 = 1.723 * 10-6 Ω@cm

as indicated in Table 3.6.
The resistivity in an integrated circuit design is typically in ohm-

centimeter units, although tables often provide r in ohm-meters or 
microhm-centimeters. Using the conversion technique of Chapter 1, we 
find that the conversion factor between ohm-centimeters and ohm-
meters is the following:

1.723 * 10-6Ω@ cm c 1 m

100 cm
d =

1

100
[1.723 * 10-6]Ω@m

or the value in ohm-meters is 1/100 the value in ohm-centimeters, and

	 r(Ω@m) = a 1

100
b * (value in Ω@cm)	 (3.15)

Similarly,

	 r(mΩ@cm) = (106) * (value in Ω@cm)	 (3.16)

For comparison purposes, typical values of r in ohm-centimeters for 
conductors, semiconductors, and insulators are provided in Table 3.7.

In particular, note the power-of-ten difference between conductors 
and insulators (1021)—a difference of huge proportions. There is a sig-
nificant difference in levels of r for the list of semiconductors, but the 
power-of-ten difference between the conductor and insulator levels is at 
least 106 for each of the semiconductors listed.

ρ
0.3 cm

0.6 cm

d

FIG. 3.32
Thin-film resistor. Example 3.16.
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3.10 T he Fourth Element—The Memristor

In May 2008 researchers at Hewlett Packard Laboratories led by Dr. 
Stanley Williams had an amazing announcement—the discovery of the 
“missing” link in basic electronic circuit theory called a memristor 
(memory resistor), shown in Fig. 3.33. Up to this point the basic pas-
sive elements of circuit theory were the resistor, the capacitor, and the 
inductor, with the last two to be introduced later in this text. The pres-
ence of this fourth element was postulated in a seminal 1971 paper in the 
IEEE Transactions on Circuit Theory by Leon Chua of the University of 
California at Berkeley. However, it was not until this announcement that 
the device was actually constructed and found to function as predicted. 
Many attempts were made to build a memristor through the years, but it 
was not until work was done at the nanometer scale that success was 
obtained. It turns out that the smaller the structure, the more prominent is 
the memristance response. The level of memristance at the nanometer scale 
is a million times stronger than at the micrometer scale and is almost unde-
tectable at the millimeter scale. However, this property can work to the 
advantage of current IC designs that are already in the nanometer range. 

The four basic circuit quantities of charge, current, voltage, and mag-
netic flux can be related in six ways. Three relations derive from the 
basic elements of the resistor, the capacitor, and the inductor. The resis-
tor provides a direct relationship between current and voltage, the capac-
itor provides a relationship between charge and voltage, and the inductor 
provides a relationship between current and magnetic flux. That leaves 
the relationship between the magnetic field and the charge moving 
through an element. Chua sought a device that would define the relation-
ship between magnetic flux and charge similar to that between the volt-
age and current of a resistor.

In general, Chua was looking for a device whose resistance would be 
a function of how much charge has passed through it. In Chapter 11 the 
relationship between the movement of charge and the surrounding mag-
netic field will be described in keeping with the need to find a device 
relating charge flow and the surrounding magnetic field.

The memristor is a device whose resistance increases with 
increase in the flow of charge in one direction and decreases as the 
flow of charge decreases in the reverse direction. Furthermore, and 
vastly important, it maintains its new resistance level when the exci-
tation has been removed.

This behavior in the nanometer range was discovered using the semi-
conductor titanium dioxide (TiO2), which is a highly resistive material 
but can be doped with other materials to make it very conductive. In this 
material the dopants move in response to an applied electric field and 
drift in the direction of the resulting current. Starting out with a memris-
tor with dopants only one side and pure TiO2 on the other, one can apply 
a biasing voltage to establish a current in the memristor. The resulting 

TABLE 3.7
Comparing levels of r in Ω@cm.

Conductor (�@cm) Semiconductor (�@cm) Insulator (�@cm)

Copper 1.723 * 10-6 Ge 50 In general: 1015

Si 200 * 103

GaAs 70 * 106

(a)

FIG. 3.33
(a) An image of a circuit with 17 memristors 

captured by an atomic force microscope. Each 
memristor is composed of two layers of titanium 

dioxide sandwiched between a lower common wire 
and its own upper wire. As a voltage is applied 

across a memristor, the small signal resistance of one 
of the titanium dioxide layers is changed, which in 

turn is used as a method to register data. (b) symbol.
[(a) Copyright © 2014 Hewlett-Packard Development 

Company, L.P. Reproduced with Permission.]

(b)
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current will cause the dopants to move to the pure side and reduce the 
resistance of the element. The greater the flow of charge, the lower is the 
resulting resistance. In other words, as mentioned, TiO2 has a high 
resistance, and on moving the dopants into the pure TiO2, the resistance 
drops. The entire process of moving the dopants is due to the applied 
voltage and resulting motion of charge. Reversing the biasing voltage 
reverses the direction of current flow and brings the dopants back to the 
other side, thereby letting the TiO2 return to its high-resistance state; on 
the surface this seems rather simple and direct.

An analog often applied to describe the action of a memristor is the 
flow of water (analogous to charge) through a pipe. In general, the resist-
ance of a pipe to the flow of water is directly related to the diameter of 
the pipe: the smaller the pipe, the greater is the resistance, and the larger 
the diameter, the lower is the resistance. For the analogy to be appropri-
ate in describing the action of a memristor, the diameter of the pipe must 
also be a function of the speed of the water and its direction. Water flow-
ing in one direction will cause the pipe to expand and reduce the resist-
ance. The faster the flow, the greater is the diameter. For water flowing 
in the opposite direction, the faster the flow, the smaller is the diameter 
and the greater is the resistance. The instant the flow of water is stopped 
in either direction, the pipe keeps its new diameter and resistance.

There are 17 memristors in Fig. 3.33 lined up in a row, each with a 
width of about 50 nm. Each has a bottom wire connected to one side of 
the device and a top wire connected to the opposite side through a net-
work of wires. Each will then exhibit a resistance depending on the 
direction and magnitude of the charge through each one. The current 
choice for the electronic symbol is also provided in Fig. 3.33. It is simi-
lar in design to the resistor symbol but also markedly different. Recent 
advances in the field have resulted in 3 nm memristors.

Thus, we have a memory device that will have a resistance dependent 
on the direction and level of charge flowing through it. Remove the flow 
of charge, and it maintains its new resistance level. The impact of such a 
device is enormous—computers would remember the last operation and 
display when they were turned off. Come back in a few hours or days 
and the display would be exactly as you left it. The same would be true 
for any system working through a range of activities and applications—
instant startup exactly where you left off.

Current research efforts involving memristors include their use in 
nonvolatile random-access memories (NVRAM) resulting in operating 
speeds close to 1/10 that of dynamic random-access memories (DRAMs). 
Also, due to the memory characteristics, there are efforts to mimic the 
neural activities of the brain, which could also lead to advances in robot 
design. Recent efforts to replicate the thinking process of a cat’s brain 
have resulted in a growing interest in memristors acting as synapses that 
control the decision-making process based on past actions. Memristors 
are also used in the design of cross-latch transistors, which have higher 
switching speeds, use less energy, and are smaller in size.

3.11 S uperconductors

What are superconductors? Why is their development so important? In a 
nutshell,

superconductors are conductors of electric charge that, for all 
practical purposes, have zero resistance.
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In a conventional conductor, electrons travel at average speeds of 
about 1000 mi/s (they can cross the United States in about 3 seconds), 
even though Einstein’s theory of relativity suggests that the maximum 
speed of information transmission is the speed of light, or 186,000 mi/s. 
The relatively slow speed of conventional conduction is due to collisions 
with atoms in the material, repulsive forces between electrons (like 
charges repel), thermal agitation that results in indirect paths due to the 
increased motion of the neighboring atoms, impurities in the conductor, 
and so on. In the superconductive state, there is a pairing of electrons, 
denoted the Cooper effect, in which electrons travel in pairs and help 
each other maintain a significantly higher velocity through the medium. 
In some ways this is like “drafting” by competitive cyclists or runners. 
There is an oscillation of energy between partners or even “new” part-
ners (as the need arises) to ensure passage through the conductor at the 
highest possible velocity with the least total expenditure of energy.

Even though the concept of superconductivity first surfaced in 1911, 
it was not until 1986 that the possibility of superconductivity at room 
temperature became a renewed goal of the research community. For 
over 70 years, superconductivity could be established only at tempera-
tures colder than 23 K. (Kelvin temperature is universally accepted as 
the unit of measurement for temperature for superconductive effects. 
Recall that K = 273.15° + °C, so a temperature of 23 K is -250°C, or 
-418°F.) In 1986, however, physicists Alex Muller and George Bednorz 
of the IBM Zurich Research Center found a ceramic material—lanthanum 
barium copper oxide—that exhibited superconductivity at 30 K. This dis-
covery introduced a new direction to the research effort and spurred others 
to improve on the new standard. (In 1987, both scientists received the 
Nobel prize for their contribution to an important area of development.)

In just a few short months, Professors Paul Chu of the University of 
Houston and Man Kven Wu of the University of Alabama raised the 
temperature to 95 K using a superconductor of yttrium barium copper 
oxide. The result was a level of excitement in the scientific community 
that brought research in the area to a new level of effort and investment. 
The major impact of this discovery was that liquid nitrogen (boiling 
point of 77 K) rather than liquid helium (boiling point of 4 K) could now 
be used to bring the material down to the required temperature. The 
result is a tremendous saving in the cooling expense since liquid nitro-
gen is at least ten times less expensive than liquid helium. Pursuing the 
same direction, some success has been achieved at 125 K and 162 K 
using a thallium compound (unfortunately, however, thallium is a very 
poisonous substance).

Fig. 3.34 illustrates how the discovery in 1986 of using a ceramic 
material in superconductors led to rapid developments in the field. In 
2008 a tin–copper oxide superconductor with a small amount of indium 
reached a new peak of 212 K—an enormous increase in temperature.

The temperature at which a superconductor reverts back to the char-
acteristics of a conventional conductor is called the critical temperature, 
denoted by Tc. Note in Fig. 3.35 that the resistivity level changes abruptly 
at Tc. The sharpness of the transition region is a function of the purity of 
the sample. Long listings of critical temperatures for a variety of tested 
compounds can be found in reference materials providing tables of a wide 
variety to support research in physics, chemistry, geology, and related 
fields. Two such publications include the CRC (Chemical Rubber Co.) 
Handbook of Tables for Applied Engineering Science and the CRC 
Handbook of Chemistry and Physics.
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For years the ultimate goal in the superconductor research commu-
nity was to find that composition that would display superconductor 
characteristics at room temperature. All the recent and current applica-
tions of superconductors involve significant cooling systems that require 
careful design and are expensive. Finally, in December 2011, Supercon-
ductors.org introduced a pellet composed of (Tl5Pb2)Ba2Mg2Cu9O18+ 
that satisfied all the tests associated with defining a true superconductor 
at a temperature of 84°F. Based on this composition the next evolution-
ary steps seemed better defined and eventually a temperature of 170°F 
was attained using a copper oxide ceramic. As with a number of labora-
tory successes, however, the next challenge is to find a way to use this 
newly developed compound commercially in a financially efficient 
manner. Currently, the primary applications for superconductors remain 
in the areas of power transmission, MRI imaging equipment, Maglev 
trains, high-speed computers, electromagnetic magnets, and generators 
and motors. Now that room-temperature compounds are available, 
removing the need for extensive cooling systems, the range of applica-
tions should grow quite rapidly in the near future.

3.12 T hermistors

The thermistor is a two-terminal semiconductor device whose resist-
ance, as the name suggests, is temperature sensitive. A representative 
characteristic appears in Fig. 3.36 with the graphic symbol for the 
device. Note the nonlinearity of the curve and the drop in resistance 
from about 5000 Ω@cm to 100 Ω@cm for an increase in temperature 
from 20°C to 100°C. The decrease in resistance with an increase in tem-
perature indicates a negative temperature coefficient.

The temperature of the device can be changed internally or externally. 
An increase in current through the device raises its temperature, causing 
a drop in its terminal resistance. Any externally applied heat source 
results in an increase in its body temperature and a drop in resistance. 
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FIG. 3.34
Rising temperatures of superconductors.
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Defining the critical temperature Tc.
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Thermistor: (a) characteristics; (b) symbol.
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This type of action (internal or external) lends itself well to control mech-
anisms. Many different types of thermistors are shown in Fig. 3.37. 
Materials used in the manufacture of thermistors include oxides of cobalt, 
nickel, strontium, and manganese.

Note the use of a log scale (to be discussed in Chapter 21) in Fig. 3.36 
for the vertical axis. The log scale permits the display of a wider range of 
specific resistance levels than a linear scale such as the horizontal axis. 
Note that it extends from 0.0001 Ω@cm to 100,000,000 Ω@cm over a very 
short interval. The log scale is used for both the vertical and the horizon-
tal axis in Fig. 3.38.

FIG. 3.37
NTC (negative temperature coefficient) and PTC (positive temperature 

coefficient) thermistors.

R

0.1 k�C
el

l r
es

is
ta

nc
e

0.1 1.0 10 100 1000
Illumination (foot-candles)

(a)

(b)

1 k�

10 k�

100 k�

FIG. 3.38
Photoconductive cell: (a) characteristics. (b) symbol.

FIG. 3.39
Photoconductive cells.

3.13  Photoconductive Cell

The photoconductive cell is a two-terminal semiconductor device 
whose terminal resistance is determined by the intensity of the incident 
light on its exposed surface. As the applied illumination increases in 
intensity, the energy state of the surface electrons and atoms increases, 
with a resultant increase in the number of “free carriers” and a corre-
sponding drop in resistance. A typical set of characteristics and the pho-
toconductive cell’s graphic symbol appear in Fig. 3.38. Note the negative 
illumination coefficient. Several cadmium sulfide photoconductive cells 
appear in Fig. 3.39.

3.14  Varistors

Varistors are voltage-dependent, nonlinear resistors used to suppress 
high-voltage transients; that is, their characteristics enable them to limit 
the voltage that can appear across the terminals of a sensitive device or 
system. A typical set of characteristics appears in Fig. 3.40(a), along 
with a linear resistance characteristic for comparison purposes. Note that 
at a particular “firing voltage,” the current rises rapidly, but the voltage 
is limited to a level just above this firing potential. In other words, the 
magnitude of the voltage that can appear across this device cannot 
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exceed that level defined by its characteristics. Through proper design 
techniques, this device can therefore limit the voltage appearing across 
sensitive regions of a network. The current is simply limited by the net-
work to which it is connected. A photograph of a number of commercial 
units appears in Fig. 3.40(b).

3.15 App lications

The following are examples of how resistance can be used to perform a 
variety of tasks, from heating to measuring the stress or strain on a sup-
porting member of a structure. In general, resistance is a component of 
every electrical or electronic application.

Electric Baseboard Heating Element

One of the most common applications of resistance is in household fix-
tures such as toasters and baseboard heating where the heat generated by 
current passing through a resistive element is employed to perform a 
useful function.

Recently, as we remodeled our house, the local electrician informed 
us that we were limited to 16 ft of electric baseboard on a single circuit. 
That naturally had me wondering about the wattage per foot, the result-
ing current level, and whether the 16-ft limitation was a national stand-
ard. Reading the label on the 2-ft section appearing in Fig. 3.41(a), I 
found VOLTS AC 240/208, WATTS 750/575 (the power rating is 
described in Chapter 4), AMPS 3.2/2.8. Since my panel is rated 240 V 
(as are those in most residential homes), the wattage rating per foot is 
750 W/2 ft = 375 W/ft at a current of 3.2 A. The total wattage for the 
16 ft is therefore 16 * 375 W, or 6 kW.

In Chapter 4, you will find that the power to a resistive load is related 
to the current and applied voltage by the equation P = VI. The total 
resulting current can then be determined using this equation in the fol-
lowing manner: I = P>V = 6000 W>240 V = 25 A. The result was 
that we needed a circuit breaker larger than 25 A; otherwise, the circuit 
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FIG. 3.40
Varistors available with maximum dc voltage ratings between 14 V and 895 V.

[(b) Courtesy of Vishay Intertechnology]
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breaker would trip every time we turned the heat on. In my case, the 
electrician used a 32 A breaker to meet the National Fire Code require-
ment that does not permit exceeding 80% of the rated current for a con-
ductor or breaker. In most panels, a 30 A breaker takes two slots of the 
panel, whereas the more common 20 A breaker takes only one slot. If 
you have a moment, take a look in your own panel and note the rating of 
the breakers used for various circuits of your home.

Going back to Table 3.2, we find that the #12 wire commonly used for 
most circuits in the home has a maximum rating of 20 A and would not 
be suitable for the electric baseboard. Since #11 is usually not commer-
cially available, a #10 wire with a maximum rating of 30 A was used. 
You might wonder why the current drawn from the supply is 19.17 A 
while that required for one unit was only 2.8 A. This difference is due to 
the parallel combination of sections of the heating elements, a configura-
tion that will be described in Chapter 6. It is now clear why the require-
ment specifies a 16-ft limitation on a single circuit. Additional elements 
would raise the current to a level that would exceed the code level for #10 
wire and would approach the maximum rating of the circuit breaker.

(b)

"Return" wire Protective thermal element
Oil-filled copper tubing

"Feed" wire

Heating fins

(c)

Special
connection

Metal jacket
and fins for
heat transfer

Nichrome
core

Ceramic
insulator

Feed wire

(d)

InsulatorNichrome coil

Metal jacket

(a)

FIG. 3.41
Electric baseboard: (a) 2-ft section; (b) interior; (c) heating element;  

(d) nichrome coil.
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Fig. 3.41(b) shows a photo of the interior construction of the heating 
element. The red feed wire on the right is connected to the core of the 
heating element, and the black wire at the other end passes through a 
protective heater element and back to the terminal box of the unit (the 
place where the exterior wires are brought in and connected). If you look 
carefully at the end of the heating unit as shown in Fig. 3.41(c), you will 
find that the heating wire that runs through the core of the heater is not 
connected directly to the round jacket holding the fins in place. A 
ceramic material (insulator) separates the heating wire from the fins to 
remove any possibility of conduction between the current passing 
through the bare heating element and the outer fin structure. Ceramic 
materials are used because they are excellent conductors of heat. They 
also have a high retentivity for heat, so the surrounding area remains 
heated for a period of time even after the current has been turned off. As 
shown in Fig. 3.41(d), the heating wire that runs through the metal jacket 
is normally a nichrome composite (because pure nichrome is quite brit-
tle) wound in the shape of a coil to compensate for expansion and con-
traction with heating and also to permit a longer heating element in 
standard-length baseboard. On opening the core, we found that the 
nichrome wire in the core of a 2-ft baseboard was actually 7 ft long, or a 
3.5 : 1 ratio. The thinness of the wire was particularly noteworthy, meas-
uring out at about 8 mils in diameter, not much thicker than a hair. Recall 
from this chapter that the longer the conductor and the thinner the wire, 
the greater is the resistance. We took a section of the nichrome wire and 
tried to heat it with a reasonable level of current and the application of 
a hair dryer. The change in resistance was almost unnoticeable. In other 
words, all our effort to increase the resistance with the basic elements 
available to us in the lab was fruitless. This was an excellent demon-
stration of the meaning of the temperature coefficient of resistance in 
Table 3.4. Since the coefficient is so small for nichrome, the resistance 
does not measurably change unless the change in temperature is truly 
significant. The curve in Fig. 3.11 would therefore be close to horizontal 
for nichrome. For baseboard heaters, this is an excellent characteristic 
because the heat developed, and the power dissipated, will not vary with 
time as the conductor heats up with time. The flow of heat from the unit 
will remain fairly constant.

The feed and return cannot be soldered to the nichrome heater wire 
for two reasons. First, you cannot solder nichrome wires to each other or 
to other types of wire. Second, if you could, there might be a problem 
because the heat of the unit could rise above 880°F at the point where the 
wires are connected, the solder could melt, and the connection could be 
broken. Nichrome must be spot welded or crimped onto the copper wires 
of the unit. Using Eq. (3.1) and the 8-mil measured diameter, and assum-
ing pure nichrome for the moment, we find that the resistance of the 7-ft 
length is

 R =
rl

A

 =
(600)(7 ft)

(8 mils)2 =
4200

64

 R = 65.6 �

In Chapter 4, a power equation will be introduced in detail relating 
power, current, and resistance in the following manner: P = I2R. Using 
the above data and solving for the resistance, we obtain
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 R =
P

I 2

 =
750 W

(3.2 A)2

 R = 73.24 �

which is very close to the value calculated above from the geometric 
shape since we cannot be absolutely sure about the resistivity value for 
the composite.

During normal operation, the wire heats up and passes that heat on to 
the fins, which in turn heat the room via the air flowing through them. 
The flow of air through the unit is enhanced by the fact that hot air rises, 
so when the heated air leaves the top of the unit, it draws cold air from 
the bottom to contribute to the convection effect. Closing off the top or 
bottom of the unit would effectively eliminate the convection effect, and 
the room would not heat up. A condition could occur in which the inside 
of the heater became too hot, causing the metal casing also to get too 
hot. This concern is the primary reason for the thermal protective ele-
ment introduced above and appearing in Fig. 3.41(b). The long, thin 
copper tubing in Fig. 3.41 is actually filled with an oil-type fluid that 
expands when heated. If it is too hot, it expands, depresses a switch in 
the housing, and turns off the heater by cutting off the current to the 
heater wire.

Dimmer Control in an Automobile

A two-point rheostat is the primary element in the control of the light 
intensity on the dashboard and accessories of a car. The basic network 
appears in Fig. 3.42 with typical voltage and current levels. When the 
light switch is closed (usually by pulling the light control knob out from 
the dashboard), current is established through the 50 Ω rheostat and then 
to the various lights on the dashboard (including the panel lights, ashtray 
light, radio display, and glove compartment light). As the knob of the 
control switch is turned, it controls the amount of resistance between 
points a and b of the rheostat. The more resistance between points a and 
b, the less is the current and the less is the brightness of the various 
lights. Note the additional switch in the glove compartment light, which 
is activated by the opening of the door of the compartment. Aside from 
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FIG. 3.42
Dashboard dimmer control in an automobile.
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the glove compartment light, all the lights in Fig. 3.42 will be on at the 
same time when the light switch is activated. The first branch after the 
rheostat contains two bulbs of 6 V rating rather than the 12 V bulbs 
appearing in the other branches. The smaller bulbs of this branch pro-
duce a softer, more even light for specific areas of the panel. Note that 
the sum of the two bulbs (in series) is 12 V to match that across the other 
branches. The division of voltage in any network is covered in detail in 
Chapters 5 and 6.

Typical current levels for the various branches have also been pro-
vided in Fig. 3.42. You will learn in Chapter 6 that the current drain 
from the battery and through the fuse and rheostat approximately equals 
the sum of the currents in the branches of the network. The result is that 
the fuse must be able to handle current in amperes, so a 15 A fuse was 
used (even though the bulbs appear in Fig. 3.42 as 12 V bulbs to match 
the battery).

Whenever the operating voltage and current levels of a component are 
known, the internal “hot” resistance of the unit can be determined using 
Ohm’s law, introduced in detail in Chapter 4. Basically this law relates 
voltage, current, and resistance by I = V>R. For the 12 V bulb at a rated 
current of 300 mA, the resistance is R = V>I = 12 V>300 mA = 40 Ω. 
For the 6 V bulbs, it is 6 V>300 mA = 20 Ω. Additional information 
regarding the power levels and resistance levels is discussed in later 
chapters.

The preceding description assumed an ideal level of 12 V for the 
battery. In actuality, 6.3 V and 14 V bulbs are used to match the charg-
ing level of most automobiles.

Strain Gauges

Any change in the shape of a structure can be detected using strain 
gauges whose resistance changes with applied stress or flex. An exam-
ple of a strain gauge is shown in Fig. 3.43. Metallic strain gauges are 
constructed of a fine wire or thin metallic foil in a grid pattern. The ter-
minal resistance of the strain gauge will change when exposed to com-
pression or extension. One simple example of the use of resistive strain 
gauges is to monitor earthquake activity. When the gauge is placed 
across an area of suspected earthquake activity, the slightest separation 
in the earth changes the terminal resistance, and the processor displays a 
result sensitive to the amount of separation. Another example is in alarm 
systems where the slightest change in the shape of a supporting beam 
when someone walks overhead results in a change in terminal resistance, 

(b) The strain gauge is bonded to the surface to be measured along the line
of force. When the surface lengthens, the strain gauge stretches.

Force

(a) Typical strain gauge configuration.

Terminals Resistive material

FIG. 3.43
Resistive strain gauge.
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and an alarm sounds. Other examples include placing strain gauges on 
bridges to monitor their rigidity and on very large generators to check 
whether various moving components are beginning to separate because 
of a wearing of the bearings or spacers. The small mouse control within 
a computer keyboard can be a series of strain gauges that reveal the 
direction of compression or extension applied to the controlling element 
on the keyboard. Movement in one direction can extend or compress a 
resistance gauge, which can monitor and control the motion of the mouse 
on the screen.

Problems

SECTION 3.2  Resistance: Circular Wires

	 1.	 Convert the following to mils:
	a.	 0.4 in.	 b.	 1/32 in.
	c.	 1/5 in.	 d.	 20 mm
	e.	 0.02 ft	 f.	 3 cm

	 2.	 Calculate the area in circular mils (CM) of wires having the 
following diameter:
	a.	 30 mils	 b.	 0.08 in.
	c.	 1/16 in.	 d.	 2 cm
	e.	 0.02 ft	 f.	 4 mm

	 3.	 The area in circular mils is
	a.	 1800 CM	 b.	 840 CM
	c.	 42,000 CM	 d.	 2000 CM
	e.	 8.25 CM	 f.	 6 * 103CM

		  What is the diameter of each wire in inches?

	 4.	 What is the resistance of a copper wire 400 ft long and 
0.032″ in diameter (T = 20°C)?

	 5.	 a.	 What is the area in circular mils of an aluminum con-
ductor that is 80 ft long with a resistance of 2.5 Ω?

	b.	 What is its diameter in inches?

	 6.	 A 4.4 Ω resistor is to be made of nichrome wire. If the 
available wire is 1/16 in. in diameter, how much wire is 
required?

	 7.	 a.	 What is the diameter in inches of a copper wire that has 
a resistance of 3.3 Ω and is as long as a football field 
(100 yd) (T = 20°C)?

	b.	 Without working out the numerical solution, determine 
whether the area of an aluminum wire will be smaller or 
larger than that of the copper wire. Explain.

	c.	 Repeat (b) for a silver wire.

	 8.	 A wire 1200 ft long has a resistance of 0.6 kΩ and an area 
of 148 CM. Of what material is the wire made (T = 20°C)?

	 9.	 a.	 A contractor is concerned about the length of copper 
hookup wire still on the reel of Fig. 3.44. He measured 
the resistance and found it to be 3.14 Ω. A tape measure 
indicated that the thickness of the stranded wire was 
about 1/32 in. What is the approximate length in feet?

	b.	 What is the weight of the wire on the reel?
	c.	 It is typical to see temperature ranges for materials 

listed in centigrade rather than Fahrenheit degrees. What 
is the range in Fahrenheit degrees? What is unique about 
the relationship between degrees Fahrenheit and degrees 
centigrade at -40°C?

– 40ºC to +105ºC
5 lb/1000 ft

3.14 �

Diameter        in.1/32

FIG. 3.44
Problem 9.

	10.	 a.	 What is the cross-sectional area in circular mils of a rec-
tangular copper bus bar if the dimensions are 5/8 in. by 
6.8 in.?

	b.	 If the area of the wire commonly used in house wiring 
has a diameter close to 1/10 in., how many wires would 
have to be combined to have the same area?

	11.	 a.	 What is the resistance of a copper bus-bar for a high-
rise building with the dimensions shown (T = 20°C) in 
Fig. 3.45?

	b.	 Repeat (a) for aluminum and compare the results.
	c.	 Is the resistance of the bar of any concern whatsoever? 

Explain.

3 in.

1/2 in.

4 ft

FIG. 3.45
Problem 11.

	12.	 Determine the increase in resistance of a copper conductor 
if the area is reduced by a factor of 4 and the length is dou-
bled. The original resistance was 0.2 Ω. The temperature 
remains fixed.

	*13.	 What is the new resistance level of a copper wire if the 
length is changed from 400 ft to 200 yd, the area is changed 
from 50,000 CM to 0.06 in.2, and the original resistance 
was 900 mΩ?

SECTION 3.3  Wire Tables

	14.	 a.	 In construction the two most common wires employed 
in general house wiring are #12 and #14, although #12 
wire is the most common because it is rated at 20 A. 
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How much larger in area (by percent) is the #12 wire 
compared to the #14 wire?

	b.	 The maximum rated current for #14 wire is 15 A. How 
does the ratio of maximum current levels compare to the 
ratio of the areas of the two wires?

	15.	 a.	 Compare the area of a #12 wire with the area of a #9 
wire. Did the change in area substantiate the general 
rule that a drop of three gage numbers results in a dou-
bling of the area?

	b.	 Compare the area of a #12 wire with that of a #0 wire. 
How many times larger in area is the #0 wire compared 
to the #12 wire? Is the result significant? Compare it to 
the change in maximum current rating for each.

	16.	 a.	 Compare the area of a #30 hookup wire to a #20 house 
romax wire. Did the change in area substantiate the 
general rule that a drop of 10 gage numbers results in a 
tenfold increase in the area of the wire?

	b.	 Compare the area of a #30 wire with that of a #40 wire. 
How many times larger in area is the #30 wire than the 
#40 wire? Did the result support the rule of part (a)?

	17.	 a.	 For the system in Fig. 3.46, the resistance of each line 
cannot exceed 6 mΩ, and the maximum current drawn 
by the load is 110 A. What minimum size gage wire 
should be used?

	b.	 Repeat (a) for a maximum resistance of 3 mΩ, d = 30 ft, 
and a maximum current of 110 A.

E Load

d  =  30 ft

Solid round copper wire

+

–

FIG. 3.46
Problem 17.

	*18.	 a.	 From Table 3.2, determine the maximum permissible 
current density (A/CM) for an AWG #000 wire.

	b.	 Convert the result of (a) to A/in.2

	c.	 Using the result of (b), determine the cross-sectional 
area required to carry a current of 6000 A.

SECTION 3.4  Temperature Effects

	19.	 The resistance of a copper wire is 4 Ω at room temperature 
(20°C). What is its resistance at the freezing point of water 
(0°C)?

	20.	 The resistance of an aluminum bus-bar is 0.02 Ω at 0°C. 
What is its resistance at 100°C?

	21.	 The resistance of a copper wire is 2.6 Ω at room tempera-
ture 168°F2. What is its resistance at a freezing temperature 
of 32°F?

	22.	 The resistance of a copper wire is 25 mΩ at a temperature 
of 70°F.
	a.	 What is the resistance if the temperature drops 10° to 

60°F?

	b.	 What is the resistance if it drops an additional 10° to 
50°F?

	c.	 Noting the results of parts (a) and (b), what is the drop 
for each part in milliohms? Is the drop in resistance lin-
ear or nonlinear? Can you forecast the new resistance if 
it drops to 40°F, without using the basic temperature 
equation?

	d.	 If the temperature drops to -30°F in northern Maine, 
find the change in resistance from the room temperature 
level of part (a). Is the change significant?

	e.	 If the temperature increases to 120°F in Cairns, Aus-
tralia, find the change in resistance from the room tem-
perature of part (a). Is the change significant?

	23.	 a.	 The resistance of a copper wire is 2 Ω at 20°C (room 
temperature). At what temperature 1°C2 will it be 2.2 Ω?

	b.	 At what temperature will it be 0.2 Ω?

	24.	 a.	 If the resistance of 1000 ft of wire is about 1 Ω at room 
temperature 168°F2, at what temperature will it double 
in value?

	b.	 What gage wire was used?
	c.	 What is the approximate diameter in inches, using the 

closest fractional form?

	25.	 a.	 Verify the value of a20 for copper in Table 3.4 by substi-
tuting the inferred absolute temperature into Eq. (3.7).

	b.	 Using Eq. (3.8), find the temperature at which the resist-
ance of a copper conductor will increase to 1 Ω from a 
level of 0.8 Ω at 20°C.

	26.	 Using Eq. (3.8), find the resistance of a copper wire at 16°C 
if its resistance at 20°C is 0.4 Ω.

	*27.	 Using Eq. (3.8), determine the resistance of a 1000-ft coil of 
#12 copper wire sitting in the desert at a temperature of 170°F.

	28.	 A 22 Ω wire-wound resistor is rated at +200 PPM for a 
temperature range of -10°C to +75°C. Determine its resist-
ance at 65°C.

	29.	 A 100 Ω wire-wound resistor is rated at +100 PPM for a 
temperature range of 0°C to +100°C. Determine its resist-
ance at 50°C.

SECTION 3.5  Types of Resistors

	30.	 a.	 What is the approximate increase in size from a 1 W to 
a 2 W carbon resistor?

	b.	 What is the approximate increase in size from a 1/2 W 
to a 2 W carbon resistor?

	c.	 In general, can we conclude that for the same type of 
resistor, an increase in wattage rating requires an 
increase in size (volume)? Is it almost a linear relation-
ship? That is, does twice the wattage require an increase 
in size of 2:1?

	31.	 If the resistance between the outside terminals of a linear 
potentiometer is 20 kΩ, what is its resistance between the 
wiper (movable) arm and an outside terminal if the resist-
ance between the wiper arm and the other outside terminal 
is 6.5 kΩ?

	32.	 If the wiper arm of a linear potentiometer is one-fourth the 
way around the contact surface, what is the resistance 
between the wiper arm and each terminal if the total resist-
ance is 2.5 kΩ?
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	*33.	 Show the connections required to establish 4 kΩ between 
the wiper arm and one outside terminal of a 10 kΩ potenti-
ometer while having only zero ohms between the other out-
side terminal and the wiper arm.

SECTION 3.6  Color Coding and Standard 
Resistor Values

	34.	 Find the range in which a resistor having the following color 
bands must exist to satisfy the manufacturer’s tolerance:

1st band 2nd band 3rd band 4th band

a. gray red brown gold
b. red red brown silver
c. white brown orange —
d. white brown red gold
e. orange white green —

	35.	 Find the color code for the following 10% resistors:
	a.	 78 Ω	 b.	 0.66 Ω
	c.	 44 kΩ	 d.	 6.7 MΩ

	36.	 a.	 Is there an overlap in coverage between 20% resistors? 
That is, determine the tolerance range for a 10 Ω 20% 
resistor and a 15 Ω 20% resistor, and note whether their 
tolerance ranges overlap.

	b.	 Repeat part (a) for 10% resistors of the same value.

	37.	 Given a resistor coded yellow, violet, brown, silver that 
measures 492 Ω, is it within tolerance? What is the toler-
ance range?

	38.	 a.	 How would Fig. 3.26(a) change if the resistors of 
47 Ω, 68 Ω, and 100 Ω were changed to 4.7 kΩ, 6.8 kΩ, 
and 10 kΩ, respectively, if the tolerance remains the same.

	b.	 How would Fig. 3.26(a) change if the resistors of 47 Ω,
68 Ω, and 100 Ω were changed to 4.7 MΩ, 6.8 MΩ, 
and 10 MΩ, respectively, and the tolerance remained 
the same.

	39.	 Find the value of the following surface mount resistors:
	a.	 721	 b.	 666
	c.	 Q4	 d.	 C5

SECTION 3.7  Conductance

	40.	 Find the conductance of each of the following resistances:
	a.	 220 Ω	 b.	 6 kΩ
	c.	 1.1 MΩ	 d.	 Compare the three results.

	41.	 Find the conductance of 1000 ft of #12 AWG wire made of
	a.	 copper	 b.	 aluminum

	42.	 a.	 Find the conductance of a 10 Ω, 20 Ω, and 100 Ω resistor 
in millisiemens.

	b.	 How do you compare the rate of change in resistance to 
the rate of change in conductance?

	c.	 Is the relationship between the change in resistance and 
change in associated conductance an inverse linear rela-
tionship or an inverse nonlinear relationship?

	*43.	 The conductance of a wire is 400 S. If the area of the wire is 
increased by two-thirds and the length is reduced by the 
same amount, find the new conductance of the wire if the 
temperature remains fixed.

SECTION 3.8  Ohmmeters

	44.	 Why do you never apply an ohmmeter to a live network?

	45.	 How would you check the status of a fuse with an ohmmeter?

	46.	 How would you determine the on and off states of a switch 
using an ohmmeter?

	47.	 How would you use an ohmmeter to check the status of a 
light bulb?

SECTION 3.9  Resistance: Metric Units

	48.	 Using metric units, determine the length of a copper wire 
that has a resistance of 0.2 Ω and a diameter of 1/12 in.

	49.	 Repeat Problem 11 using metric units; that is, convert the 
given dimensions to metric units before determining the 
resistance.

	50.	 If the sheet resistance of a tin oxide sample is 200 Ω, what 
is the thickness of the oxide layer?

	51.	 Determine the width of a carbon resistor having a sheet 
resistance of 225 Ω if the length is 1/2 in. and the resistance 
is 600 Ω.

	*52.	 Derive the conversion factor between r (CM@Ω/ft) and 
r (Ω@cm) by
	a.	 Solving for r for the wire in Fig. 3.47 in CM@Ω/ft.
	b.	 Solving for r for the same wire in Fig. 3.47 in Ω@cm by 

making the necessary conversions.
	c.	 Use the equation r2 = kr1 to determine the conversion 

factor k if r1 is the solution of part (a) and r2 the solu-
tion of part (b).

R
1 in.

= 1 m�

1000 ft

FIG. 3.47
Problem 52.

SECTION 3.11  Superconductors

	53.	 In your own words, review what you have learned about 
superconductors. Do you feel it is an option that will have 
significant impact on the future of the electronics industry, or 
will its use be very limited? Explain why you feel the way 
you do. What could happen that would change your opinion?

	54.	 Visit your local library and find a table listing the critical 
temperatures for a variety of materials. List at least five 
materials with critical temperatures that are not mentioned 
in this text. Choose a few materials that have relatively high 
critical temperatures.

	55.	 Find at least one article on the application of superconduc-
tivity in the commercial sector, and write a short summary, 
including all interesting facts and figures.

	*56.	 Using the required 1 MA/cm2 density level for integrated 
circuit manufacturing, determine what the resulting current 
would be through a #12 house wire. Compare the result 
obtained with the allowable limit of Table 3.2.

	*57.	 Research the SQUID magnetic field detector and review its 
basic mode of operation and an application or two.



118    Resistance

R

G

SECTION 3.12  Thermistors

	*58.	 a.	 Find the resistance of the thermistor having the charac-
teristics of Fig. 3.36 at -50°C, 50°C, and 200°C. Note 
that it is a log scale. If necessary, consult a reference 
with an expanded log scale.

	b.	 Does the thermistor have a positive or a negative tem-
perature coefficient?

	c.	 Is the coefficient a fixed value for the range -100°C to 
400°C? Why?

	d.	 What is the approximate rate of change of r with tem-
perature at 100°C?

SECTION 3.13  Photoconductive Cell

	59.	 a.	 Using the characteristics of Fig. 3.38, determine the 
resistance of the photoconductive cell at 10 and 100 
foot-candles of illumination. As in Problem 58, note that 
it is a log scale.

	b.	 Does the cell have a positive or a negative illumination 
coefficient?

	c.	 Is the coefficient a fixed value for the range 0.1 to 1000 
foot-candles? Why?

	d.	 What is the approximate rate of change of R with illumi-
nation at 10 foot-candles?

SECTION 3.14  Varistors

	60.	 a.	 Referring to Fig. 3.40(a), find the terminal voltage of 
the device at 0.5 mA, 1 mA, 3 mA, and 5 mA.

	b.	 What is the total change in voltage for the indicated 
range of current levels?

	c.	 Compare the ratio of maximum to minimum current levels 
above to the corresponding ratio of voltage levels.

Glossary

Absolute zero  The temperature at which all molecular motion 
ceases; -273.15°C.

Circular mil (CM)  The cross-sectional area of a wire having a 
diameter of 1 mil.

Color coding  A technique using bands of color to indicate the 
resistance levels and tolerance of resistors.

Conductance (G)  An indication of the relative ease with which 
current can be established in a material. It is measured in 
siemens (S).

Cooper effect  The “pairing” of electrons as they travel through 
a medium.

Ductility  The property of a material that allows it to be drawn 
into long, thin wires.

Inferred absolute temperature  The temperature through which 
a straight-line approximation for the actual resistance-versus-
temperature curve intersects the temperature axis.

Malleability  The property of a material that allows it to be 
worked into many different shapes.

Memristor  Resistor whose resistance is a function of the current 
through it; capable of remembering and retaining its last 
resistance value.

Negative temperature coefficient of resistance  The value 
revealing that the resistance of a material will decrease with 
an increase in temperature.

Ohm (�)  The unit of measurement applied to resistance.
Ohmmeter  An instrument for measuring resistance levels.
Photoconductive cell  A two-terminal semiconductor device 

whose terminal resistance is determined by the intensity of the 
incident light on its exposed surface.

Positive temperature coefficient of resistance  The value 
revealing that the resistance of a material will increase with an 
increase in temperature.

Potentiometer  A three-terminal device through which potential 
levels can be varied in a linear or nonlinear manner.

PPM/°C  Temperature sensitivity of a resistor in parts per mil-
lion per degree Celsius.

Resistance  A measure of the opposition to the flow of charge 
through a material.

Resistivity (R)  A constant of proportionality between the resist-
ance of a material and its physical dimensions.

Rheostat  An element whose terminal resistance can be varied in 
a linear or nonlinear manner.

Sheet resistance  Defined by r/d for thin-film and integrated cir-
cuit design.

Superconductor  Conductors of electric charge that have for all 
practical purposes zero ohms.

Temperature coefficient of resistance  A constant related to the 
inferred absolute temperature of a material that reveals how 
quickly the resistance of a conductor will change with tem-
perature.

Thermistor  A two-terminal semiconductor device whose resist-
ance is temperature sensitive.

Varistor  A voltage-dependent, nonlinear resistor used to sup-
press high-voltage transients.



Ohm’s Law, Power,  
and Energy

4.1  Introduction

Now that the three important quantities of an electric circuit have been introduced, this chap-
ter reveals how they are interrelated. The most important equation in the study of electric 
circuits is introduced, and various other equations that allow us to find power and energy 
levels are discussed in detail. It is the first chapter where we tie things together and develop a 
feeling for the way an electric circuit behaves and what affects its response. For the first time, 
the data provided on the labels of household appliances and the manner in which your electric 
bill is calculated will have some meaning. It is indeed a chapter that should open your eyes to 
a wide array of past experiences with electrical systems.

4.2 O hm’s Law

As mentioned above, the first equation to be described is without question one of the most 
important to be learned in this field. It is not particularly difficult mathematically, but it is 
very powerful because it can be applied to any network in any time frame. That is, it is appli-
cable to dc circuits, ac circuits, digital and microwave circuits, and, in fact, any type of 
applied signal. In addition, it can be applied over a period of time or for instantaneous 
responses. The equation can be derived directly from the following basic equation for all 
physical systems:

	 Effect =  
cause

opposition
	 (4.1)

Every conversion of energy from one form to another can be related to this equation. In 
electric circuits, the effect we are trying to establish is the flow of charge, or current. The 
potential difference, or voltage, between two points is the cause (“pressure”), and the opposi-
tion is the resistance encountered.

An excellent analogy for the simplest of electrical circuits is the water in a hose con-
nected to a pressure valve, as discussed in Chapter 2. Think of the electrons in the copper 

Ohm’s Law, Power,  
and Energy

•	 Understand the importance of Ohm’s law and how 
to apply it to a variety of situations.

•	 Be able to plot Ohm’s law and understand how to 
“read” a graphical plot of voltage versus current.

•	 Become aware of the differences between power 
and energy levels and how to solve for each.

•	 Understand the power and energy flow of a 
system, including how the flow affects the 
efficiency of operation.

•	 Become aware of the operation of a variety of 
fuses and circuit breakers and where each is 
employed.

Objectives

44
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wire as the water in the hose, the pressure valve as the applied voltage, 
and the size of the hose as the factor that determines the resistance. If 
the pressure valve is closed, the water simply sits in the hose without a 
general direction, much like the oscillating electrons in a conductor 
without an applied voltage. When we open the pressure valve, water 
will flow through the hose much like the electrons in a copper wire 
when the voltage is applied. In other words, the absence of the “pres-
sure” in one case and the voltage in the other simply results in a system 
without direction or reaction. The rate at which the water will flow in 
the hose is a function of the size of the hose. A hose with a very small 
diameter will limit the rate at which water can flow through the hose, 
just as a copper wire with a small diameter will have a high resistance 
and will limit the current.

In summary, therefore, the absence of an applied “pressure” such as 
voltage in an electric circuit will result in no reaction in the system and 
no current in the electric circuit. Current is a reaction to the applied volt-
age and not the factor that gets the system in motion. To continue with 
the analogy, the greater the pressure at the spigot, the greater is the rate 
of water flow through the hose, just as applying a higher voltage to the 
same circuit results in a higher current.

Substituting the terms introduced above into Eq. (4.1) results in

Current =
potential difference

resistance

and	 I =
E

R
    (amperes, A)	 (4.2)

Eq. (4.2) is known as Ohm’s law in honor of Georg Simon Ohm 
(Fig. 4.1). The law states that for a fixed resistance, the greater the volt-
age (or pressure) across a resistor, the greater is the current; and the 
greater the resistance for the same voltage, the lower is the current. In 
other words, the current is proportional to the applied voltage and 
inversely proportional to the resistance.

By simple mathematical manipulations, the voltage and resistance 
can be found in terms of the other two quantities:

	 E = IR     (volts, V)	 (4.3)

and	 R =
E

I
    (ohms, Ω)	 (4.4)

All the quantities of Eq. (4.2) appear in the simple electrical circuit in 
Fig. 4.2. A resistor has been connected directly across a battery to estab-
lish a current through the resistor and supply. Note that

the symbol E is applied to all sources of voltage

and

the symbol V is applied to all voltage drops across components of the 
network.

Both are measured in volts and can be applied interchangeably in  
Eqs. (4.2) through (4.4).

R

I

VE
+

–

+

–

FIG. 4.2
Basic circuit.

German (Erlangen, Cologne)  
(1789–1854)
Physicist and Mathematician
Professor of Physics, University of Cologne

In 1827, developed one of the most important laws 
of electric circuits: Ohm’s law. When the law was 
first introduced, the supporting documentation was 
considered lacking and foolish, causing him to lose 
his teaching position and search for a living doing 
odd jobs and some tutoring. It took some 22 years 
for his work to be recognized as a major contribution 
to the field. He was then awarded a chair at the Uni-
versity of Munich and received the Copley Medal of 
the Royal Society in 1841. His research also 
extended into the areas of molecular physics, acous-
tics, and telegraphic communication.

FIG. 4.1
George Simon Ohm.

Science and Society/Superstock
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Since the battery in Fig. 4.2 is connected directly across the resistor, 
the voltage VR across the resistor must be equal to that of the supply. 
Applying Ohm’s law, we obtain

I =
VR

R
=

E

R

Note in Fig. 4.2 that the voltage source “pressures” current (conven-
tional current) in a direction that leaves the positive terminal of the sup-
ply and returns to the negative terminal of the battery. This will always 
be the case for single-source networks. (The effect of more than one 
source in the same network is investigated in a later chapter.) Note also 
that the current enters the positive terminal and leaves the negative ter-
minal for the load resistor R.

For any resistor, in any network, the direction of current through a 
resistor will define the polarity of the voltage drop across the resistor

as shown in Fig. 4.3 for two directions of current. Polarities as estab-
lished by current direction become increasingly important in the analy-
ses to follow.

EXAMPLE 4.1  Determine the current resulting from the application of 
a 9 V battery across a network with a resistance of 2.2 Ω.

Solution:  Eq. (4.2):

I =
VR

R
=

E

R
=

9 V

2.2 Ω
= 4.09 A

EXAMPLE 4.2  Calculate the resistance of a 60 W bulb if a current of 
500 mA results from an applied voltage of 120 V.

Solution:  Eq. (4.4):

R =
VR

I
=

E

I
=

120 V

500 * 10-3 A
= 240 𝛀

EXAMPLE 4.3  Calculate the current through the 2 kΩ  resistor in  
Fig. 4.4 if the voltage drop across it is 16 V.

Solution: 

I =
V

R
=

16 V

2 * 103 Ω
= 8 mA

EXAMPLE 4.4  Calculate the voltage that must be applied across the 
soldering iron in Fig. 4.5 to establish a current of 1.5 A through the iron 
if its internal resistance is 80 Ω.

Solution: 

E = VR = IR = (1.5 A)(80 Ω) = 120 V

In a number of the examples in this chapter, such as Example 4.4, the 
voltage applied is actually that obtained from an ac outlet in the home, 
office, or laboratory. This approach was used to provide an opportunity 

V

RI

(a)

V

RI

(b)

FIG. 4.3
Defining polarities.

16 V

2 k�I

FIG. 4.4
Example 4.3.

�R 80E

I  =  1.5 A

E

+

–

+

–

FIG. 4.5
Example 4.4.



122    Ohm’s Law, Power, and Energy
V

I R

for the student to relate to real-world situations as soon as possible and 
to demonstrate that a number of the equations derived in this chapter are 
applicable to ac networks also. Chapter 13 will provide a direct relation-
ship between ac and dc voltages that permits the mathematical substitu-
tions used in this chapter. In other words, don’t be concerned that some 
of the voltages and currents appearing in the examples of this chapter are 
actually ac voltages, because the equations for dc networks have exactly 
the same format, and all the solutions will be correct.

4.3  Plotting Ohm’s Law

Graphs, characteristics, plots, and the like play an important role in 
every technical field as modes through which the broad picture of the 
behavior or response of a system can be conveniently displayed. It is 
therefore critical to develop the skills necessary both to read data and to 
plot them in such a manner that they can be interpreted easily.

Any attempt to plot the characteristics of a device is totally dependent 
on first establishing a defined polarity and current for the device as 
shown at the top of Fig. 4.6. Without a defined set, it would be impossi-
ble to know where the plot point should be applied. Currents with the 
same direction as the defined direction would have a positive sign and 
appear in an upper quadrant of Fig. 4.6.

0

4

1 V I (mA)+–

V –+

8

–8

–4

5–10 –5

8 V

1 mA

+–

3 mA 4 mA

2 mA

I

2 V _+

6 V

10

_+

Defined polarity 
and direction

V(volts)

FIG. 4.6
Demonstrating the impact of defined voltage and current on a plot point.

Negative currents would be relegated to plot points below the axis. 
Similarly, voltages with the same polarity as the defined polarity would 
have plot points to the right of the vertical axis while negative voltages 
would be relegated to the region to the left of the vertical axis.

If it turns out that the applied voltage across the device of Fig. 4.6 has 
the same polarity as the defined polarity and the resulting current the 
same direction as the defined current, then the plot point is in the first 
quadrant. However, for the same applied voltage if the current has the 
opposite direction, then a negative sign must be associated with the cur-
rent and the plot point would be in the second quadrant. If the polarity of 
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the voltage applied across the device is opposite to the defined polarity 
and the resulting current is also opposite to the defined direction, then 
both the voltage and current must have a negative sign associated with 
each and the plot point is in the third quadrant. If the applied voltage has 
the opposite direction to the defined voltage but the resulting current has 
the same direction as the defined current, then the plot point must be 
placed in the fourth quadrant.

In time the importance of taking note of the defined polarity and 
direction when utilizing a device will become fairly obvious. Not only 
does it tell you how to properly hook up a device but also the various 
quadrants of the characteristics will reveal what to expect if the defined 
polarities or directions are ignored.

For most sets of characteristics of electronic devices, the current is 
represented by the vertical axis (ordinate) and the voltage by the hori-
zontal axis (abscissa), as shown in Figs. 4.6 and 4.7. First note that the 
vertical axis is in amperes and the horizontal axis is in volts. For some 
plots, I may be in milliamperes (mA), microamperes (mA), or whatever 
is appropriate for the range of interest. The same is true for the levels of 
voltage on the horizontal axis. Note also that the chosen parameters 
require that the spacing between numerical values of the vertical axis be 
different from that of the horizontal axis. The linear (straight-line) graph 
reveals that the resistance is not changing with current or voltage level; 
rather, it is a fixed quantity throughout. The current direction and the 
voltage polarity appearing at the top of Fig. 4.7 are the defined direction 
and polarity for the provided plot. For the standard fixed resistor, the 
first quadrant, or region, of Fig. 4.7 is the only region of interest. How-
ever, you will encounter many devices in your electronics courses that 
use the other quadrants of a graph.

Once a graph such as Fig. 4.7 is developed, the current or voltage at 
any level can be found from the other quantity by simply using the 
resulting plot. For instance, at V = 25 V, if a vertical line is drawn on 
Fig. 4.7 to the curve as shown, the resulting current can be found by 
drawing a horizontal line over to the current axis, where a result of 5 A 
is obtained. Similarly, at V = 10 V, drawing a vertical line to the plot 
and a horizontal line to the current axis results in a current of 2 A, as 
determined by Ohm’s law.

If the resistance of a plot is unknown, it can be determined at any 
point on the plot since a straight line indicates a fixed resistance. At any 
point on the plot, find the resulting current and voltage, and simply sub-
stitute into the following equation:

	 Rdc =
V

I
	 (4.5)

To test Eq. (4.5), consider a point on the plot of Fig. 4.7 where V = 20 V 
and I = 4 A. The resulting resistance is Rdc = 20 V>I = 20 V>4 A =
5 Ω. For comparison purposes, a 1 Ω and a 10 Ω resistor were plotted 
on the graph in Fig. 4.8. Note that the lower the resistance, the steeper is 
the slope (closer to the vertical axis) of the curve.

If we write Ohm’s law in the following manner and relate it to the 
basic straight-line equation

I = 1
R

 #  E + 0

T       T      T       T
y = m #  x + b

V

RI
Defining direction

Defining polarity
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V
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R = 5 Ω

FIG. 4.7
Plotting Ohm’s law.
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FIG. 4.8
Demonstrating on an I-V plot that the lower the 

resistance, the steeper is the slope.



124    Ohm’s Law, Power, and Energy
V

I R

we find that the slope is equal to 1 divided by the resistance value, as 
indicated by the following:

	 m = slope =
∆y

∆x
=

∆I

∆V
=

1

R
	 (4.6)

where ∆ signifies a small, finite change in the variable.
Eq. (4.6) reveals that the greater the resistance, the lower is the slope. 

If written in the following form, Eq. (4.6) can be used to determine the 
resistance from the linear curve:

	 R =
∆V

∆I
    (ohms)	 (4.7)

The equation states that by choosing a particular ∆V  (or ∆I), you 
can obtain the corresponding ∆I (or ∆V, respectively) from the graph, 
as shown in Fig. 4.9, and then determine the resistance. If the plot is a 
straight line, Eq. (4.7) will provide the same result no matter where the 
equation is applied. However, if the plot curves at all, the resistance 
will change.

0
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5

I (amperes)

V (volts)5 10 15 20 25

Resulting ∆I = 4 A – 3 A
= 1 A

Chosen ∆V  =  20 V – 15 V  =  5 V

30

6

∆V
∆ I

5 V
1 A

=  5 �R  = =

FIG. 4.9
Applying Eq. (4.7).

EXAMPLE 4.5  Determine the resistance associated with the curve in 
Fig. 4.10 using Eqs. (4.5) and (4.7), and compare results.

Solution:  At V = 6 V, I = 3 mA, and

Rdc =
V

I
=

6 V

3 mA
= 2 k𝛀

For the interval between 6 V and 8 V,

R =
∆V

∆I
=

2 V

1 mA
= 2 k𝛀

The results are equivalent.

Before leaving the subject, let us first investigate the characteristics of 
a very important semiconductor device called the diode, which will be 
examined in detail in basic electronics courses. This device ideally acts as 
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V (V)2 4 6 8 10

∆I   =  1 mA

∆V  =  2 V

FIG. 4.10
Example 4.5.
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a low-resistance path to current in one direction and a high-resistance 
path to current in the reverse direction, much like a switch that passes 
current in only one direction. A typical set of characteristics appears in 
Fig. 4.11. Without any mathematical calculations, the closeness of the 
characteristic to the voltage axis for negative values of applied voltage 
indicates that this is the low-conductance (high resistance, switch 
opened) region. Note that this region extends to approximately 0.7 V 
positive. However, for values of applied voltage greater than 0.7 V, the 
vertical rise in the characteristics indicates a high-conductivity (low 
resistance, switch closed) region. Application of Ohm’s law will now 
verify the above conclusions.

At VD = +1 V,

Rdiode =
VD

ID
=

1 V

50 mA
=

1 V

50 * 10-3 A
= 20 Ω

(a relatively low value for most applications)

At VD = -1 V,

Rdiode =
VD

ID
=

1 V

1 mA
= 1 MΩ

(which is often represented by an open@circuit equivalent)

4.4  Power

In general,

the term power is applied to provide an indication of how much work 
(energy conversion) can be accomplished in a specified amount of 
time; that is, power is a rate of doing work.

For instance, a large motor has more power than a smaller motor 
because it has the ability to convert more electrical energy into mechan-
ical energy in the same period of time. Since energy is measured in 
joules (J) and time in seconds (s), power is measured in joules/second 
(J/s). The electrical unit of measurement for power is the watt (W), 
defined by

	 1 watt (W) = 1 joule/second (J/s) 	 (4.8)

In equation form, power is determined by

	 P =
W

t
    (watts, W, or joules/second, J/s)	 (4.9)

with the energy (W) measured in joules and the time t in seconds.
The unit of measurement—the watt—is derived from the surname of 

James Watt (Fig. 4.12), who was instrumental in establishing the stand-
ards for power measurements. He introduced the horsepower (hp) as a 
measure of the average power of a strong dray horse over a full working 
day. It is approximately 50% more than can be expected from the aver-
age horse. The horsepower and watt are related in the following manner:

1 horsepower ≅ 746 watts

0
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Low R
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FIG. 4.11
Semiconductor diode characteristics.

FIG. 4.12
James Watt.

PRISMA ARCHIVO/Alamy

Scottish (Greenock, Birmingham)  
(1736–1819)
Instrument Maker and Inventor
Elected Fellow of the Royal Society  

of London in 1785

In 1757, at the age of 21, used his innovative talents 
to design mathematical instruments such as the quad-
rant, compass, and various scales. In 1765, intro-
duced the use of a separate condenser to increase the 
efficiency of steam engines. In the following years, 
he received a number of important patents on 
improved engine design, including a rotary motion 
for the steam engine (versus the reciprocating action) 
and a double-action engine, in which the piston pulled 
as well as pushed in its cyclic motion. Introduced the 
term horsepower as the average power of a strong 
dray (small cart) horse over a full working day.
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The power delivered to, or absorbed by, an electrical device or sys-
tem can be found in terms of the current and voltage by first substituting 
Eq. (2.4) into Eq. (4.9):

P =
W

t
=

QV

t
= V

Q

t
But

I =
Q

t

so that	 P = VI     (watts, W)	 (4.10)

By direct substitution of Ohm’s law, the equation for power can be 
obtained in two other forms:

P = VI = V ¢V

R
≤

and	 P =
V2

R
    (watts, W)	 (4.11)

or	 P = VI = (IR)I

and	 P = I2R     (watts, W)	 (4.12)

The result is that the power absorbed by the resistor in Fig. 4.13 can 
be found directly, depending on the information available. In other 
words, if the current and resistance are known, it pays to use Eq. (4.12) 
directly, and if V and I are known, use of Eq. (4.10) is appropriate. It 
saves having to apply Ohm’s law before determining the power.

The power supplied by a battery can be determined by simply insert-
ing the supply voltage into Eq. (4.10) to produce

	 P = EI     (watts, W)	 (4.13)

The importance of Eq. (4.13) cannot be overstated. It clearly states the 
following:

The power associated with any supply is not simply a function of the 
supply voltage. It is determined by the product of the supply voltage 
and its maximum current rating.

The simplest example is the car battery—a battery that is large, dif-
ficult to handle, and relatively heavy. It is only 12 V, a voltage level that 
could be supplied by a battery slightly larger than the small 9 V portable 
radio battery. However, to provide the power necessary to start a car, the 
battery must be able to supply the high surge current required at start-
ing—a component that requires size and mass. In total, therefore, it is 
not the voltage or current rating of a supply that determines its power 
capabilities; it is the product of the two.

Throughout the text, the abbreviation for energy (W) can be distin-
guished from that for the watt (W) because the one for energy is in ital-
ics while the one for watt is in roman. In fact, all variables in the dc 
section appear in italics, while the units appear in roman.

EXAMPLE 4.6  Find the power delivered to the dc motor of Fig. 4.14.

Solution: 

P = EI = (120 V)(5 A) = 600 W = 0.6 kW

V

R

I

P

FIG. 4.13
Defining the power to a resistive element.

5 A

120 V

Mechanical
horsepower
developed

Electrical
power
applied

FIG. 4.14
Example 4.6.
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EXAMPLE 4.7  What is the power dissipated by a 5 Ω resistor if the 
current is 4 A?

Solution: 

P = I2R = (4 A)2(5 Ω) = 80 W

EXAMPLE 4.8  The I@V  characteristics of a light bulb are provided in 
Fig. 4.15. Note the nonlinearity of the curve, indicating a wide range in 
resistance of the bulb with applied voltage. If the rated voltage is 120 V, 
find the wattage rating of the bulb. Also calculate the resistance of the 
bulb under rated conditions.

Solution:  At 120 V,

I = 0.625 A

and	 P = VI = (120 V)(0.625 A) = 75 W

At 120 V,

R =
V

I
=

120 V

0.625 A
= 192 𝛀

Sometimes the power is given and the current or voltage must be 
determined. Through algebraic manipulations, an equation for each vari-
able is derived as follows:

P = I2R 1 I2 =
P

R

and	 I = AP

R
    (amperes, A)	 (4.14)

P =
V2

R
1 V2 = PR

and	 V = 1PR     (volts, V)	 (4.15)

EXAMPLE 4.9  Determine the current through a 5 kΩ resistor when 
the power dissipated by the element is 20 mW.

Solution:  Eq. (4.14):

 I = AP

R
= A20 * 10-3 W

5 * 103 Ω
= 24 * 10-6 = 2 * 10-3 A

 = 2 mA

4.5  Energy

For power, which is the rate of doing work, to produce an energy con-
version of any form, it must be used over a period of time. For example, 
a motor may have the horsepower to run a heavy load, but unless the 
motor is used over a period of time, there will be no energy conversion. 
In addition, the longer the motor is used to drive the load, the greater 
will be the energy expended.

625

0 120 V (V)

higher R

I (mA)

lower R

FIG. 4.15
The nonlinear I-V characteristics of a 75 W light 

bulb (Example 4.8).
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      (b)

FIG. 4.17
Kilowatthour meters: (a) analog; (b) digital.

[(a) Larry Roberg/Fotolia; (b) Pi-Lens/Shutterstock]

The energy (W) lost or gained by any system is therefore determined by

	 W = Pt     (wattseconds, Ws, or joules)	 (4.16)

Since power is measured in watts (or joules per second) and time in 
seconds, the unit of energy is the wattsecond or joule (note Fig. 4.16). 
The wattsecond, however, is too small a quantity for most practical pur-
poses, so the watthour (Wh) and the kilowatthour (kWh) are defined, 
as follows:

	 Energy (Wh) = power (W) * time (h) 	 (4.17)

	 Energy (kWh) =
power (W) * time (h)

1000
	 (4.18)

Note that the energy in kilowatthours is simply the energy in wat-
thours divided by 1000. To develop some sense for the kilowatthour 
energy level, consider that 1 kWh is the energy dissipated by a 100 W 
bulb in 10 h.

The kilowatthour meter is an instrument for measuring the energy 
supplied to the residential or commercial user of electricity. It is nor-
mally connected directly to the lines at a point just prior to entering the 
power distribution panel of the building. A typical set of dials is shown 
in Fig. 4.17, along with a photograph of an analog kilowatthour meter. 
As indicated, each power of ten below a dial is in kilowatthours. The 
more rapidly the aluminum disc rotates, the greater is the energy demand. 
The dials are connected through a set of gears to the rotation of this disc. 
A solid-state digital meter with an extended range of capabilities also 
appears in Fig. 4.17.

In recent years there has been growing interest in the smart meter of 
Fig. 4.18 that permits the real-time transfer of information to the power 
company on an individual’s power usage. The information can be trans-
ferred as often as every 15 minutes to permit adjustments in the distribu-
tion of power to various districts by the supplier. Because it is a wireless 

British (Salford, Manchester)  
(1818–89)
Physicist
Honorary Doctorates from the Universities  

of Dublin and Oxford

Contributed to the important fundamental law of 
conservation of energy by establishing that various 
forms of energy, whether electrical, mechanical, or 
heat, are in the same family and can be exchanged 
from one form to another. In 1841 introduced Joule’s 
law, which stated that the heat developed by electric 
current in a wire is proportional to the product of the 
current squared and the resistance of the wire (I2 R). 
He further determined that the heat emitted was 
equivalent to the power absorbed, and therefore heat 
is a form of energy.

FIG. 4.16
James Prescott Joule.

Science and Society/Superstock
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FIG. 4.18
Smart meter.

(Courtesy of Itron, Inc.)

transfer of information, it eliminates the need for reading a meter on 
location each month, although the fact that it operates similarly to a cell 
phone raises some privacy and health concerns. As with cell phones, 
however, there is ongoing research as to whether there are any real 
health issues to be concerned about. Smart meters are widely used in 
Europe with more than 40 million now in place. By 2020 there will be 
more than 100 million online.

Utility companies are supporting the product because it does pro-
vide real-time data on the demand and the location of that demand 
facilitating adjustments to power distribution in the community. 
Smart meters eliminate the need for estimated bills and individual 
homeowners can get a better grasp on their personal use so they can 
make adjustments if the power company offers discounts in certain 
periods of the day due to lower demand. Because of health concerns, 
legislation has been developed in some states where individuals have 
the right to determine whether they will have a smart meter or not. 
Only time will tell whether the benefits of the meter outweigh the 
privacy and health concerns.

EXAMPLE 4.10  For the dial positions in Fig. 4.17(a), calculate the 
electricity bill if the previous reading was 4650 kWh and the average 
cost in your area is 12¢ per kilowatthour.

Solution: 

 5360 kWh - 4650 kWh = 710 kWh used

 710 kWha 12c

kWh
b = $85.20

EXAMPLE 4.11  How much energy (in kilowatthours) is required to 
light a 60 W bulb continuously for 1 year (365 days)?

Solution: 

 W =
Pt

1000
=

(60 W)(24 h/day)(365 days)

1000
=

525,600 Wh

1000

 = 525.60 kWh

EXAMPLE 4.12  How long can a 340 W plasma TV be on before it 
uses more than 4 kWh of energy?

Solution: 

W =
Pt

1000
1 t (hours) =

(W)(1000)

P
=

(4 kWh)(1000)

340 W
= 11.76 h

EXAMPLE 4.13  What is the cost of using a 5 hp motor for 2 h if the 
rate is 12¢ per kilowatthour?

Solution: 

 W (kilowatthours) =
Pt

1000
=

(5 hp * 746 W/hp)(2 h)

1000
= 7.46 kWh

 Cost = (7.46 kWh)(12¢/kWh) = 89.52¢
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EXAMPLE 4.14  What is the total cost of using all of the following at 
12¢ per kilowatthour?

A 1200 W toaster for 30 min
Six 50 W bulbs for 4 h
A 500 W washing machine for 45 min
A 4300 W electric clothes dryer for 20 min
An 80 W PC for 6 h

Solution: 

 W =
(1200 W)(1

2 h) + (6)(50 W)(4 h) + (500 W)(3
4 h) + (4300 W)(1

3 h) + (80 W)(6 h)

1000

 =
600 Wh + 1200 Wh + 375 Wh + 1433 Wh + 480 Wh

1000
=

4088 Wh

1000

 W = 4.09 kWh

 Cost = (4.09 kWh)(12c/kWh) ≅ 49.08c

The chart in Fig. 4.19 shows the national average cost per kilowat-
thour compared to the kilowatthours used per customer. Note that the 
cost today is just above the level of 1926, but the average customer uses 
more than 20 times as much electrical energy in a year. Keep in mind 
that the chart in Fig. 4.19 is the average cost across the nation. Some 
states have average rates closer to 7¢ per kilowatthour, whereas others 
approach 20¢ per kilowatthour.

Table 4.1 lists some common household appliances with their typical 
wattage ratings. You might find it interesting to calculate the cost of 

RESIDENTIAL SERVICE
Total electric utility industry
(including Alaska and Hawaii since 1960)
Average use per customer
and average revenue per kWh
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FIG. 4.19
Cost per kWh and average kWh per customer versus time.
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operating some of these appliances over a period of time, using the chart 
in Fig. 4.19 to find the cost per kilowatthour.

4.6  Efficiency

A flowchart for the energy levels associated with any system that con-
verts energy from one form to another is provided in Fig. 4.20. Note that 
the output energy level must always be less than the applied energy due 
to losses and storage within the system. The best one can hope for is that 
Wout and Win are relatively close in magnitude.

Conservation of energy requires that

Energy input = energy output + energy lost or stored by the system

Dividing both sides of the relationship by t gives

Win

t
=

Wout

t
+

Wlost or stored by the system

t

TABLE 4.1
Typical wattage ratings of some common household items.

Appliance Wattage Rating

Air conditioner (room) 1400
Blow dryer 1300
Cellular phone:
  Standby ≅35 mW
  Talk ≅4.3 W
Clock 2
Clothes dryer (electric) 4300
Coffeemaker 900
Dishwasher 1200
Fan:
  Portable 90
  Window 200
Heater 1500
Heating equipment:
  Furnace fan 320
 � Oil-burner motor 230
Iron, dry or steam 1000
Laptop computer:
  Sleep 61 (typically 0.3 to 0.5)
  Average use 80

Appliance Wattage Rating

Microwave oven 1200
Nintendo Wii 19
Radio 70
Range (self-cleaning) 12,200
Refrigerator (automatic defrost) 1800
Shaver 15
Sun lamp 280
Toaster 1200
Trash compactor 400
TV (50 in.):
  Plasma 340
  LCD 220
  LED 200
VCR/DVD 25
Washing machine 500
Water heater 4500
Xbox 360 187

Energy input
Win

Energy output
Wout

System

Energy
stored

Energy
lost

Wlost or stored

FIG. 4.20
Energy flow through a system.
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Since P = W/t, we have the following:

	 Pi = Po + Plost or stored   (W) 	 (4.19)

The efficiency (h) of the system is then determined by the following 
equation:

Efficiency =
power output

power input

and	 h =
Po

Pi
   (decimal number) 	 (4.20)

where h (the lowercase Greek letter eta) is a decimal number. Expressed 
as a percentage,

	 h% =
Po

Pi
* 100%   (percent) 	 (4.21)

In terms of the input and output energy, the efficiency in percent is 
given by

	 h% =
Wo

Wi
* 100%   (percent) 	 (4.22)

The maximum possible efficiency is 100%, which occurs when Po = Pi, 
or when the power lost or stored in the system is zero. Obviously, the 
greater the internal losses of the system in generating the necessary out-
put power or energy, the lower is the net efficiency.

EXAMPLE 4.15  A 2 hp motor operates at an efficiency of 75%. What 
is the power input in watts? If the applied voltage is 220 V, what is the 
input current?

Solution: 

 h% =
Po

Pi
* 100%

 0.75 =
(2 hp)(746 W/hp)

Pi

and	  Pi =
1492 W

0.75
= 1989.33 W

 Pi = EI  or  I =
Pi

E
=

1989.33 W

220 V
= 9.04 A

EXAMPLE 4.16  What is the output in horsepower of a motor with an 
efficiency of 80% and an input current of 8 A at 120 V?

Solution: 

 h% =
Po

Pi
* 100%

 0.80 =
Po

(120 V)(8 A)
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and	 Po = (0.80)(120 V)(8 A) = 768 W

with	 768 W a 1 hp

746 W
b = 1.03 hp

EXAMPLE 4.17  If h = 0.85, determine the output energy level if the 
applied energy is 50 J.

Solution: 

h =
Wo

Wi
 1 Wo = hWi = (0.85)(50 J) = 42.5 J

The very basic components of a generating (voltage) system are 
depicted in Fig. 4.21. The source of mechanical power is a structure such 
as a paddlewheel that is turned by water rushing over the dam. The gear 
train ensures that the rotating member of the generator is turning at rated 
speed. The output voltage must then be fed through a transmission sys-
tem to the load. For each component of the system, an input and output 
power have been indicated. The efficiency of each system is given by

h1 =
Po1

Pi1

  h2 =
Po2

Pi2

  h3 =
Po3

Pi3

Generator

Load
Transmission system

Po2
Pi3

Po3

Pi2
Po1

Pi1

Gear train

  3

1
2

RL

η
η

η

FIG. 4.21
Basic components of a generating system.

If we form the product of these three efficiencies,

h1
# h2

# h3 =
Po1

Pi1

 #  
Po2

Pi2

 #  
Po3

Pi3

=
Po3

Pi1

and substitute the fact that Pi2
= Po1

 and Pi3
= Po2

, we find that the quanti-
ties indicated above will cancel, resulting in Po3

>
 
Pi1

, which is a measure 
of the efficiency of the entire system.

In general, for the representative cascaded system in Fig. 4.22,

	 htotal = h1
# h2

# h3 . . . hn 	 (4.23)

ηnη3η2η1η η η η

FIG. 4.22
Cascaded system.
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EXAMPLE 4.18  Find the overall efficiency of the system in Fig. 4.21 
if h1 = 90%, h2 = 85%, and h3 = 95%.

Solution: 

hT = h1
# h2

# h3 = (0.90)(0.85)(0.95) = 0.727, or 72.7%

EXAMPLE 4.19  If the efficiency h1 drops to 40%, find the new overall 
efficiency and compare the result with that obtained in Example 4.18.

Solution: 

hT = h1
# h2

# h3 = (0.40)(0.85)(0.95) = 0.323, or 32.3%

Certainly 32.3% is noticeably less than 72.7%. The total efficiency of a 
cascaded system is therefore determined primarily by the lowest effi-
ciency (weakest link) and is less than (or equal to if the remaining effi-
ciencies are 100%) the least efficient link of the system.

4.7 Ci rcuit Breakers, GFCIs, and Fuses

The incoming power to any large industrial plant, heavy equipment, 
simple circuit in the home, or meters used in the laboratory must be lim-
ited to ensure that the current through the lines is not above the rated 
value. Otherwise, the conductors or the electrical or electronic equip-
ment may be damaged, and dangerous side effects such as fire or smoke 
may result.

To limit the current level, fuses or circuit breakers are installed 
where the power enters the installation, such as in the panel in the base-
ment of most homes at the point where the outside feeder lines enter the 
dwelling. The fuses in Fig. 4.23 have an internal metallic conductor 
through which the current passes; a fuse begins to melt if the current 
through the system exceeds the rated value printed on the casing. Of 
course, if the fuse melts through, the current path is broken and the load 
in its path is protected.

(a) (b) (c)

FIG. 4.23
Fuses: (a) CC-TRON® (0–10 A); (b) Semitron (0–600 A);  

(c) subminiature surface-mount chip fuses.
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In homes built in recent years, fuses have been replaced by circuit 
breakers such as those appearing in Fig. 4.24. When the current exceeds 
rated conditions, an electromagnet in the device will have sufficient 
strength to draw the connecting metallic link in the breaker out of the 
circuit and open the current path. When conditions have been corrected, 
the breaker can be reset and used again.

The most recent National Electrical Code requires that outlets in the 
bathroom and other sensitive areas be of the ground fault circuit inter-
rupt (GFCI) variety; GFCIs (often abbreviated GFI) are designed to trip 
more quickly than the standard circuit breaker. The commercial unit in 
Fig. 4.25 trips in 5 ms. It has been determined that 6 mA is the maximum 
level that most individuals can be exposed to for a short period of time 
without the risk of serious injury. A current higher than 11 mA can cause 
involuntary muscle contractions that could prevent a person from letting 
go of the conductor and possibly cause him or her to enter a state of 
shock. Higher currents lasting more than a second can cause the heart to 
go into fibrillation and possibly cause death in a few minutes. The GFCI 
is able to react as quickly as it does by sensing the difference between 
the input and output currents to the outlet; the currents should be the 
same if everything is working properly. An errant path, such as through 
an individual, establishes a difference in the two current levels and 
causes the breaker to trip and disconnect the power source.

4.8 Appli cations

Fluorescent versus CFL and LED Bulbs

Just a few short years ago the general consensus regarding light bulbs 
was that the compact fluorescent bulb (CFL) was clearly the direction 
to go due primarily to the reduced energy requirement as compared to 
the incandescent bulb. A host of benefits associated with the crossover 
left little doubt that this was the direction of the future. Countries such 
as Japan had already moved forward with the transition and were at an 
80% level with 100% the goal in a few years. The European Union was 
also moving forward with this new direction by setting dates for 100% 
usage over the next 5 to 10 years. The United States agreed with the 
plan, set dates for the discontinuance of various types of incandescent 
lamps, and prepared to make the move to 100% CFLs at the earliest 
opportunity. All seemed to be set in a singular direction—incandescents 
out, CFLs in! Then the unexpected quietly surfaced. Although light-
emitting diodes (LEDs) have been around since 1961, they were not 
considered a viable option until recently because of their cost, light-
producing qualities, and the unavailability of a variety of wattage rat-
ings. However, through exhaustive research and design, the cost has 
dropped to the point where it is now a close match with CFLs but with 
a number of enhanced characteristics. Recent production data reveal 
that the demand for CFLs is dropping while that of LEDs is growing 
very quickly. Such results are not to suggest that CFLs should no longer 
be the bulb of choice for many applications. They are a big savings in 
energy compared to incandescents and in general still remain a bit 
cheaper than LEDs. However, if a choice must be made and the type 
and wattage are available, then in the long run it might be best to 
strongly consider using an LED as a light source.

Saving energy is still a primary goal as we try to cut back on the energy 
required to produce the light-emission requirements of our daily lives. The 

FIG. 4.24
Circuit breakers.

(Robert Asento/Shutterstock)

Reset

Test

FIG. 4.25
Ground fault circuit interrupter (GFCI): 125 V ac, 

60 Hz, 15 A outlet.
(Leviton Manufacturing Co., Inc.)
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use of CFLs has the potential to reduce worldwide demand by 30 to 40%, 
resulting in a significant reduction in greenhouse gas emissions.

A comparison of the light (in lumens) emitted by incandescent, CFL, 
and LED bulbs is provided in Table 4.2. The lumen is a measure of the 
amount of light visible to the naked eye in a specific area: the brighter the 
light, the higher the number of lumens. In particular, note that the 60 W 
incandescent bulb has less lumens than a 13 W CFL. That is almost 1/5 
the wattage requirement but with an increased number of lumens—good 
reason to concur with this switch to CFLs to cut our light-emitting 
energy drain. However, then we note that the power drain for an LED 
with a higher lumen level is only 8 W, that is, almost 1/8 the power drain 
of the incandescent light bulb. It is amazing to see how much energy can 
be saved using either the CFL or LED. Fortunately, the energy savings 
appears to continue throughout Table 4.2. A 5 W LED provides about 
the same lumens as a 40 W incandescent bulb (1/8 ratio) and a 16 W 
LED is the same as a 100 W incandescent bulb (1/6 ratio). Be aware that 
the data in Table 4.2 are approximate for comparing the three types of 
bulbs. Depending on the manufacturer and the usage of the bulb, there 
will be some variation from the levels appearing in Table 4.2. Be 
assured, however, that they do reflect the general levels of wattage 
required by each type of bulb for the same output in lumens.

With any light source there are certainly other factors to consider 
when purchasing light bulbs for the home or business. One of the most 
important factors is the quality of the light source: Is it easy on the eyes? 
Does it match the daylight frequency spectrum? The general consensus 
of those who spend many hours working under artificial light appears to 
be that incandescent light is still the best with its warmth, dispersion, soft 
textures, and close correspondence to natural light. Many have made it a 
point to stockpile incandescents to be sure they have a pleasant working 
environment. At first, the light associated with LEDs was often described 
as harsh, too bright, and cold. However, vendors such as Philips have 
accepted this criticism and introduced inventive ways to bring a warm 
glow to the light by introducing phosphor inside the globe and clustering 
a number of LEDs in the base of a bulb to improve the dispersion of light 
inside the bulb. Diffuser lenses were also added along with dimpled 
lenses to spread out the light within the bulb. CFLs suffered from the 
same criticism now being directed at LEDs, but in time the stark white 
light of earlier CFLs has given way to a softer, warmer variety of options. 
In any event, it appears the manufacturers are working on developing a 
functional “cool” white light for task lighting and a softer warm light for 
mood and general lighting that will be welcome by artisans and the gen-
eral public and avoid the need to stockpile energy-hungry incandescents.

The cost factor is always an important element in the decision-making 
process. For CFLs and LEDs, which are the only real contenders for the 
future, the cost of each has dropped considerably in recent years. LEDs 
that once cost up to $40 for an 8 W (60 W incandescent equivalent) bulb 
have now dropped to less than $15. Of course, The quality, available 
lumens, and lifetime may vary with the price and manufacturer.

Another factor affecting cost is the lifetime of the bulb. Incandescents 
certainly suffer here with rated lifetimes of about 1200 hours. CFLs are 
rated at 10,000 hours on average while LEDs have lifetimes that typi-
cally vary from 25,000 to 50,000 hours. Combining the cost per unit 
with the lifetime clearly shows that LEDs are the cheapest in the long 
run if the units truly meet their specified lifetimes. At this point CFLs 
and LEDs have not been in use long enough to develop any conclusive 
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TABLE 4.2
Comparing the power drain levels of incandescent, 

CFL, and LED bulbs for similar lumen levels
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comments on their average lifetimes but the provided lifetime does give 
some indication of how long each is expected to function. Recent data 
suggest that the failure rate is a definite function of the quality of the 
construction of the electronic control element in both the CFL and the 
LED. For LEDs, it is not the LEDs themselves but the surrounding elec-
tronic components that introduce problems.

Another important advantage of LED lighting is the fact that LEDs 
operate at a lower temperature than CFLs or incandescents. The heat emit-
ted by an incandescent is about 85 Btu/hour, a CFL about 30 Btu/hour, 
and an LED about 3.4 Btu/hour. This can be an important factor in a home 
or business with an extensive number of bulbs in that it can affect air-
conditioning costs. The construction clearly shows that the LED casing is 
stronger than the incandescent bulb, and most CFLs suffer from the fact 
that they have about 1–5 mg of mercury in the bulb requiring that they be 
disposed of properly with any clean-up following a very strict regimen. 
LEDs also contain trace amounts of arsenic, but it is used in the construc-
tion of the p-n junction and not in a gaseous form inside the envelope of 
the bulb. The presence of arsenic does require careful disposal of broken 
bulbs or those not operating properly. Additional advantages of LEDs 
include the fact that they can be built in a variety of sizes from the very 
small to the very large and are dimmable. There are dimmable CFLs but 
they are more expensive than a standard CFL because they require addi-
tional circuitry in the bulb and have some operating constraints. And, 
finally, although there may be other advantages of one against the other, 
LEDs do not require a warm-up time that is typical for many CFLs.

One of the interesting results of this growing list of options is that the 
Federal Trade Commission (FTC) has now determined that the first cri-
teria in choosing a bulb should not be, as it was for years, simply choos-
ing the wattage rating but to first look at the lumen output level for the 
bulb. As indicated earlier, the higher the lumen rating of a bulb, the 
higher the intensity of the light. If you find there are two LED bulbs 
listed as equivalent to a 60 W incandescent bulb, then the one with the 
highest lumen level of perhaps 950 lumens at 9 W should be chosen if a 
high-intensity light is needed for some task usage. If lighting is more for 
atmosphere, then perhaps the 750 lumens at 7 W should be chosen. In 
total, therefore, the average customer when shopping for bulbs has to be 
aware of the desired lumens rating rather than the wattage. If you want a 
very bright bulb for an area that needs full light, you may need a bulb 
with a 1600 lumens output. Then find the bulb that has a lumens rating 
closest to 1600 lumens and let the wattage rating fall where it may. The 
result may be a 16 W LED, which has a lumens level just less than that 
of a 100 W incandescent bulb. Art museums are now looking very seri-
ously at the use of LED lighting since the softness issue has been 
addressed because they don’t radiate the heat (as do incandescent and 
CFL bulbs) that can damage paintings or the ultraviolet light rays of 
fluorescent lights that can also damage artwork.

The incandescent bulb has the simplest construction (and therefore 
had the lowest cost) using a tungsten filament in an inert gas such as 
argon. The current through the filament will raise the temperature of 
the tungsten filament to over 3000°F resulting in the emission of light 
due to the intense heat. For many years incandescent bulbs were the 
major source of light along with the fluorescent bulbs that were much 
larger in size and typically just used in ceiling fixtures. However, in 
time, the higher efficiency of the fluorescent bulb led to the design of 
an electronic ignition system to replace the large ballast and starting 
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mechanism of the older fluorescent bulbs. The result was a much 
smaller bulb but the cost was prohibitive at first due to the ignition 
system required to excite the gas in the bulb. In time the cost had 
dropped to the point where, when one considered the longer lifetime of 
the fluorescent bulb to the incandescent bulb, it made sense to convert. 
Of course, the government had something to do with the conversion 
also with the banning of certain types of incandescent bulbs in an 
effort to reduce the greenhouse gas emission levels. A typical CFL and 
its internal construction are provided in Fig. 4.26. Note the extensive 
firing mechanism required in each bulb, which certainly accounted for 
the increase in cost over the typical incandescent bulb. The bulb sec-
tion remains completely isolated, with only four leads available to 
connect to the firing mechanism. The bulb section must be isolated 
since it contains a gas and the toxic mercury. The firing mechanism 
has been reversed for the picture and actually is deep into the stem of 
the bulb. The black and white leads on the edge of the firing mecha-
nism are connected to the stem of the bulb, which makes contact with 
a 120 V ac source. Note also that the largest components of the firing 
mechanism are the transformer and the 22 uF electrolytic capacitor.  

23 W, 380 mA CFL

Connections to electronic
ignition network 

Diode

Resistor

Inductor

Connected to
base of bulb

Capacitors

Transformer

22 µF

FIG. 4.26
CFL bulb.
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The LED has the basic appearance and construction provided in Fig. 
4.27. Note again the size of the electronic control element of the bulb, 
which obviously affects its manufacturing cost. Clearly the transformer 
and electrolytic capacitor are the largest components. In this case, how-
ever, the circuitry is not acting as a firing mechanism but is controlling 
the current through the LED electronic components that appear in a clus-
ter on the printed circuit board at the far right of the picture to ensure the 
best available light emission. The details of LED construction will be 
left for an electronics course, but let it be said here that two materials of 
different composition, when energized, give off light at the junction of 
the two materials. Clearly, comparing the construction of the LED to 
that of the CFL, it is not hard to believe that LEDs are a lot stronger in 
construction. The fact that there is not a gaseous toxic chamber typically 
associated with the CFL is also a very positive characteristic of LEDs. If 
broken, as mentioned above, there is arsenic in the construction of the 
LEDs that must be disposed of properly. A broken CFL bulb also must 
be treated with a great deal of care due the release of the gas. Do not use 
a vacuum cleaner but quickly open all windows in the area and carefully 
sweep the debris into a closed container of some kind. The vacuum 
cleaner will spread the gas throughout the room. For additional informa-
tion on the proper removal of damaged CFLs or LEDs, investigate a 
dedicated site online. 

Microwave Oven

It is probably safe to say that most homes today have a microwave oven 
(see Fig. 4.28). Most users are not concerned with its operating effi-
ciency. However, it is interesting to learn how the units operate and 
apply some of the theory presented in this chapter.

8 W LED (60 W incandescent equivalent)

Control elements

Transformer

Phosphor- 
coated 
globe 

Cluster of 
LEDs

Base

Electrolytic 
capacitor

FIG. 4.27
LED bulb.

(Don Johnson Photo)
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FIG. 4.28
Microwave oven.

First, some general comments. Most microwaves are rated at 500 W 
to 1200 W at a frequency of 2.45 GHz (almost 2.5 billion cycles per 
second, compared to the 60 cycles per second for the ac voltage at the 
typical home outlet—details in Chapter 13). The heating occurs because 
the water molecules in the food are vibrated at such a high frequency 
that the friction with neighboring molecules causes the heating effect. 
Since it is the high frequency of vibration that heats the food, there is no 
need for the material to be a conductor of electricity. However, any 
metal placed in the microwave can act as an antenna (especially if it has 
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any points or sharp edges) that will attract the microwave energy and 
reach very high temperatures. In fact, a browning skillet is now made for 
microwaves that has some metal embedded in the bottom and sides to 
attract the microwave energy and raise the temperature at the surface 
between the food and skillet to give the food a brown color and a crisp 
texture. Even if the metal did not act as an antenna, it is a good conduc-
tor of heat and could get quite hot as it draws heat from the food.

Any container with low moisture content can be used to heat foods in 
a microwave. Because of this requirement, manufacturers have developed 
a whole line of microwave cookware that is very low in moisture content. 
Theoretically, glass and plastic have very little moisture content, but even 
so, when heated in the oven for a minute or so, they do get warm. It could 
be the moisture in the air that clings to the surface of each or perhaps the 
lead used in good crystal. In any case, microwaves should be used only to 
prepare food. They were not designed to be dryers or evaporators.

The instructions with every microwave specify that the oven should 
not be turned on when empty. Even though the oven may be empty, 
microwave energy will be generated and will make every effort to find a 
channel for absorption. If the oven is empty, the energy might be 
attracted to the oven itself and could do some damage. To demonstrate 
that a dry empty glass or plastic container will not attract a significant 
amount of microwave energy, place two glasses in an oven, one with 
water and the other empty. After 1 min, you will find the glass with the 
water quite warm due to the heating effect of the hot water while the 
other is close to its original temperature. In other words, the water cre-
ated a heat sink for the majority of the microwave energy, leaving the 
empty glass as a less attractive path for heat conduction. Dry paper tow-
els and plastic wrap can be used in the oven to cover dishes since they 
initially have low water molecule content, and paper and plastic are not 
good conductors of heat. However, it would be very unsafe to place a 
paper towel in an oven alone because, as said above, the microwave 
energy will seek an absorbing medium and could set the paper on fire.

The cooking of food by a conventional oven is from the outside in. 
The same is true for microwave ovens, but they have the additional 
advantage of being able to penetrate the outside few centimeters of the 
food, reducing the cooking time substantially. The cooking time with a 
microwave oven is related to the amount of food in the oven. Two cups 
of water will take longer to heat than one cup, although it is not a linear 
relationship, so it will not take twice as long—perhaps 75% to 90% 
longer. Eventually, if you place enough food in the microwave oven and 
compare the longer cooking time to that with a conventional oven, you 
will reach a crossover point at which it would be just as wise to use a 
conventional oven and get the texture in the food you might prefer.

The basic construction of the microwave oven is depicted in Fig. 
4.28. It uses a 120 V ac supply, which is then converted through a high-
voltage transformer to one having peak values approaching 5000 V (at 
substantial current levels)—sufficient warning to leave microwave 
repair to the local service location. Through the rectifying process briefly 
described in Chapter 2, a high dc voltage of a few thousand volts is gen-
erated that appears across a magnetron. The magnetron, through its very 
special design (currently the same design as in World War II, when it 
was invented by the British for use in high-power radar units), generates 
the required 2.45 GHz signal for the oven. It should be pointed out also 
that the magnetron has a specific power level of operation that cannot 
be controlled—once it’s on, it’s on at a set power level. One may then 
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wonder how the cooking temperature and duration can be controlled. 
This is accomplished through a controlling network that determines the 
amount of off and on time during the input cycle of the 120 V supply. 
Higher temperatures are achieved by setting a high ratio of on to off 
time, while low temperatures are set by the reverse action.

One unfortunate characteristic of the magnetron is that in the conver-
sion process, it generates a great deal of heat that does not go toward the 
heating of the food and that must be absorbed by heat sinks or dispersed 
by a cooling fan. Typical conversion efficiencies are between 55% and 
75%. Considering other losses inherent in any operating system, it is 
reasonable to assume that most microwaves are between 50% and 60% 
efficient. However, the conventional oven with its continually operating 
exhaust fan and heating of the oven, cookware, surrounding air, and so 
on also has significant losses, even if it is less sensitive to the amount of 
food to be cooked. All in all, convenience is probably the other factor 
that weighs the heaviest in this discussion. It also leaves the question of 
how our time is figured into the efficiency equation.

For specific numbers, let us consider the energy associated with bak-
ing a 5-oz potato in a 1200 W microwave oven for 5 min if the conver-
sion efficiency is an average value of 55%. First, it is important to realize 
that when a unit is rated as 1200 W, that is the rated power drawn from 
the line during the cooking process. If the microwave is plugged into a 
120 V outlet, the current drawn is

I = P>V = 1200 W>120 V = 10.0 A

which is a significant level of current. Next, we can determine the 
amount of power dedicated solely to the cooking process by using the 
efficiency level. That is,

Po = hPi = (0.55)(1200 W) = 660 W

The energy transferred to the potato over a period of 5 min can then be 
determined from

W = Pt = (660 W)(5 min)(60 s>1 min) = 198 kJ

which is about half of the energy (nutritional value) derived from eating 
a 5-oz potato. The number of kilowatthours drawn by the unit is deter-
mined from

W = Pt>1000 = (1200 W)(5>60 h)>1000 = 0.1 kWh

At a rate of 10¢/kWh we find that we can cook the potato for 1 penny—
relatively speaking, pretty cheap. A typical 1550 W toaster oven would 
take an hour to heat the same potato, using 1.55 kWh and costing 15.5 
cents—a significant increase in cost.

Household Wiring

A number of facets of household wiring can be discussed without exam-
ining the manner in which they are physically connected. In the follow-
ing chapters, additional coverage is provided to ensure that you develop 
a solid fundamental understanding of the overall household wiring sys-
tem. At the very least you will establish a background that will permit 
you to answer questions that you should be able to answer as a student of 
this field.

The one specification that defines the overall system is the maximum 
current that can be drawn from the power lines since the voltage is fixed 
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at 120 V or 240 V (occasionally 208 V). For most older homes with a 
heating system other than electric, a 100 A service is the norm. Today, 
with all the electronic systems becoming commonplace in the home, 
many people are opting for the 200 A service even if they do not have 
electric heat. A 100 A service specifies that the maximum current that 
can be drawn through the power lines into your home is 100 A. Using 
the line-to-line rated voltage and the full-service current (and assuming 
all resistive-type loads), we can determine the maximum power that can 
be delivered using the basic power equation:

P = EI = (240 V)(100 A) = 24,000 W = 24 kW

This rating reveals that the total rating of all the units turned on in the 
home cannot exceed 24 kW at any one time. If it did, we could expect 
the main breaker at the top of the power panel to open. Initially, 24 kW 
may seem like quite a large rating, but when you consider that a self-
cleaning electric oven may draw 12.2 kW, a dryer 4.8 kW, a water heater 
4.5 kW, and a dishwasher 1.2 kW, we are already at 22.7 kW (if all the 
units are operating at peak demand), and we have not turned the lights or 
TV on yet. Obviously, the use of an electric oven alone may strongly 
suggest considering a 200 A service. However, seldom are all the burn-
ers of a stove used at once, and the oven incorporates a thermostat to 
control the temperature so that it is not on all the time. The same is true 
for the water heater and dishwasher, so the chances of all the units in a 
home demanding full service at the same time is very slim. Certainly, a 
typical home with electric heat that may draw 16 kW just for heating in 
cold weather must consider a 200 A service. You must also understand 
that there is some leeway in maximum ratings for safety purposes. In 
other words, a system designed for a maximum load of 100 A can accept 
a slightly higher current for short periods of time without significant 
damage. For the long term, however, the limit should not be exceeded.

Changing the service to 200 A is not simply a matter of changing the 
panel in the basement—a new, heavier line must be run from the road to the 
house. In some areas feeder cables are aluminum because of the reduced 
cost and weight. In other areas, aluminum is not permitted because of its 
temperature sensitivity (expansion and contraction), and copper must be 
used. In any event, when aluminum is used, the contractor must be abso-
lutely sure that the connections at both ends are very secure. The National 
Electric Code specifies that 100 A service must use a #4 AWG copper 
conductor or #2 aluminum conductor. For 200 A service, a 2/0 copper wire 
or a 4/0 aluminum conductor must be used, as shown in Fig. 4.29(a). A 

(a)
2/0

Copper
4/0

Aluminum (b)

FIG. 4.29
200 A service conductors: (a) 4/0 aluminum and 2/0 copper; (b) three-wire 4/0 aluminum service.



Computer Analysis    143
V

I R

100 A or 200 A service must have two lines and a service neutral as shown 
in Fig. 4.29(b). Note in Fig. 4.29(b) that the lines are coated and insulated 
from each other, and the service neutral is spread around the inside of the 
wire coating. At the terminal point, all the strands of the service neutral are 
gathered together and securely attached to the panel. It is fairly obvious that 
the cables of Fig. 4.29(a) are stranded for added flexibility.

Within the system, the incoming power is broken down into a number 
of circuits with lower current ratings utilizing 15 A, 20 A, 30 A, and 
40 A protective breakers. Since the load on each breaker should not 
exceed 80% of its rating, in a 15 A breaker the maximum current should 
be limited to 80% of 15 A, or 12 A, with 16 A for a 20 A breaker, 24 A 
for a 30 A breaker, and 32 A for a 40 A breaker. The result is that a home 
with 200 A service can theoretically have a maximum of 12 circuits 
(200 A>16 A = 12.5) utilizing the 16 A maximum current ratings asso-
ciated with 20 A breakers. However, if they are aware of the loads on 
each circuit, electricians can install as many circuits as they feel appro-
priate. The code further specifies that a #14 wire should not carry a cur-
rent in excess of 15 A, a #12 in excess of 20 A, and a #10 in excess of 
30 A. Thus, #12 wire is now the most common for general home wiring 
to ensure that it can handle any excursions beyond 15 A on the 20 A 
breaker (the most common breaker size). The #14 wire is often used in 
conjunction with the #12 wire in areas where it is known that the current 
levels are limited. The #10 wire is typically used for high-demand appli-
ances such as dryers and ovens.

The circuits themselves are usually broken down into those that pro-
vide lighting, outlets, and so on. Some circuits (such as ovens and dry-
ers) require a higher voltage of 240 V, obtained by using two power 
lines and the neutral. The higher voltage reduces the current requirement 
for the same power rating, with the net result that the appliance can usu-
ally be smaller. For example, the size of an air conditioner with the same 
cooling ability is measurably smaller when designed for a 240 V line 
than when designed for 120 V. Most 240 V lines, however, demand a 
current level that requires 30 A or 40 A breakers and special outlets to 
ensure that appliances rated at 120 V are not connected to the same out-
let. Check the panel in your home and note the number of circuits—in 
particular, the rating of each breaker and the number of 240 V lines indi-
cated by breakers requiring two slots of the panel. Determine the total of 
the current ratings of all the breakers in your panel, and explain, using 
the above information, why the total exceeds your feed level.

For safety sake, grounding is a very important part of the electrical 
system in your home. The National Electric Code requires that the neu-
tral wire of a system be grounded to an earth-driven rod, a metallic water 
piping system of 10 ft or more, or a buried metal plate. That ground is 
then passed on through the electrical circuits of the home for further 
protection. In a later chapter, the details of the connections and ground-
ing methods are discussed.

4.9 C omputer Analysis

Now that a complete circuit has been introduced and examined in detail, 
we can begin the application of computer methods. As mentioned in 
Chapter 1, two software packages will be introduced to demonstrate the 
options available with each and the differences that exist. Each has a broad 
range of support in the educational and industrial communities. They 
include Cadence OrCAD, version 16.6 (Fig. 4.30), and Multisim 13.0 
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(Fig. 4.31). Each approach has its own characteristics with procedures that 
must be followed exactly; otherwise, error messages will appear. Do not 
assume that you can “force” the system to respond the way you would 
prefer—every step is well defined, and one error on the input side can 
yield results of a meaningless nature. At times you may believe that the 
system is in error because you are absolutely sure you followed every step 
correctly. In such cases, accept the fact that something was entered incor-
rectly, and review all your work very carefully. All it takes is a comma 
instead of a period or a decimal point to generate incorrect results.

Be patient with the learning process; keep notes of specific maneuvers 
that you learn; and don’t be afraid to ask for help when you need it. For 

FIG. 4.30
Cadence® OrCAD® Electronic Design software.

(Don Johnson Photo)

FIG. 4.31
NI Multisim Circuit Design Suite.

(Don Johnson Photo)
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each approach, there is always the initial concern about how to start and 
proceed through the first phases of the analysis. However, be assured that 
with time and exposure you will work through the required maneuvers at 
a speed you never would have expected. In time you will be absolutely 
delighted with the results you can obtain using computer methods.

In this section, Ohm’s law is investigated using the software pack-
ages PSpice and Multisim to analyze the circuit in Fig. 4.32. Both require 
that the circuit first be “drawn” on the computer screen and then ana-
lyzed (simulated) to obtain the desired results. As mentioned above, the 
analysis program cannot be changed by the user. The most proficient 
user is one who can draw the most out of a computer software package. 
Those of you who have used either program in the past will find that the 
changes are minor and appear primarily in the front end and in the 
sequence of events for some procedures. The demo version of OrCAD is 
free from Cadence Design Systems, Inc., and can be downloaded directly 
from the EMA Design Automation, Inc. website, info@emaeda.com. 
Multisim must be purchased from the National Instruments Corporation 
using its website, ni.com/multism.

In previous editions, the OrCAD package was referred to as the 
PSpice program primarily because it is a subset of a more sophisticated 
version used extensively in industry called SPICE. For this reason this 
text will continue to use the term PSpice in the descriptions to follow 
when initiating an analysis using the OrCAD software.

The downloading process for each package will be described in the 
next few paragraphs. Since we are in a transition state from Windows 7 to 
Windows 8.1, the installation process for each will be covered in detail.

Although the author feels that there is sufficient material in the text to 
carry a new student of the material through the programs provided, be 
aware that this is not a computer text. Rather, it is one whose primary 
purpose is simply to introduce the different approaches and how they 
can be applied effectively. Excellent texts and manuals are available that 
cover the material in a great deal more detail and perhaps at a slower 
pace. In fact, the quality of the available literature has improved dra-
matically in recent years.

PSpice

Installation  
Windows 7 or earlier systems  Insert the Cadence OrCAD 16.6 

Lite software DVD into the disk drive to open the Cadence OrCAD 
dialog box.

Select Lite Installation and the User Acct Control dialog box will 
appear asking if you want to allow the following program to make 
changes to the computer. Select YES and the Welcome to the Install 
Shield Wizard for OrCAD 16.6 Lite dialog box will appear. Select 
NEXT and the License Agreement dialog box will appear. Select I 
accept the terms of the license agreement followed by NEXT. The 
Setup type dialog box will appear and Only for me (recommended) 
should be chosen. The Choose Destination Location dialog box will 
appear in which NEXT is chosen again. The Start Copying Files dialog 
box will then appear in which NEXT is chosen. The Ready to Install 
the Program dialog box will appear in which INSTALL is chosen. A 
Setup dialog box will appear showing the ongoing installation. In time a 
Setup Complete dialog box will appear and FINISH should be chosen. 
The software has now been successfully installed and the computer 
should be Restarted to set the program in memory.
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FIG. 4.32
Circuit to be analyzed using PSpice and Multisim.
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Screen Icon  If the icon fails to appear on the screen automatically, 
it can be established by the following sequence: START-All Programs-
Cadence-OrCAD 16.6 Lite, followed by a right-click of the mouse to 
obtain a listing where Send to is chosen, followed by Desktop (create 
shortcut). The OrCAD icon should then appear on the screen and can 
be moved to the desired location. It has a gray background with a blue 
IC and OrCAD Capture CIS Lite underneath.

Folder Creation  The folder for future storage can be defined by a 
right-click of the Start option at the bottom left of the screen. Then 
choose Open Windows Explorer followed by Hard Drive (C:). Then 
place the mouse on the folder listing, and a right-click will result in a 
listing in which New is an option. Select New followed by Folder and 
then type in OrCAD 16.6 in the provided area on the screen, followed 
by a left-click of the mouse.

Windows 8.1  Insert the Cadence OrCAD 16.6 Lite software DVD 
into the disk drive and wait for the response at the top of the screen.

Click once on the DVD RW Drive(E:) OrCAD 16.6 Lite listing. A 
dialog box will appear asking you to choose what to do with the disk. 
Select RunSetup.exe. The Cadence OrCAD 16.6 Lite software pack-
age design will appear in which Lite Installation is chosen. The proce-
dure will then be the same as described above for Windows 7.

Screen Icon  The screen icon can be found by going to the Start 
User Interface (the display of defined square and rectangular areas of 
interest) and clicking on the down arrow at the bottom left of the screen. 
The list of Apps will appear and a Cadence subheading of Apps can be 
obtained by scrolling to the right. The OrCAD icon of interest for this 
text is at the head of the second column. The icon can be transferred to 
the Start User Interface by first right-clicking on the icon in the Apps 
list to obtain a listing on the bottom left of the screen with the option to 
Pin to Start. Selecting this option will result in the chosen icon appear-
ing on the Start User Interface. The icon can now be placed anywhere 
on the Start User Interface by clicking on the icon and dragging it to the 
desired location. It can also be labeled as part of a Group listing by right-
clicking on the icon and typing in the desired heading (our choice was 
CIRCUITS) and clicking at any location on the screen to set it in place.

Folder Creation  A folder can be created by right-clicking on the 
OrCAD Capture CIS Lite icon on the Start User Interface to reveal a 
listing on the bottom left of the screen. Select Open file location and 
under Desktop select This PC. Then double-click on Local Disk (C:) 
and continue by selecting New folder at the head of the screen. Then 
type in PSpice 16.6 and double-click to set in place.

We are now ready to apply Ohm’s law to the simple circuit of Fig. 4.32.

Ohm’s Law  This first project is initiated by selecting the OrCAD 
Capture CIS Lite icon to obtain a Start Program screen with a number 
of options. Select Project(New) to obtain a New Project dialog box. 
Enter the name of the project as PSpice 4-1 to represent the first project 
of Chapter 4. The Analog or Mixed A/D option will remain our selec-
tion for all the analysis to be performed in this text. Note at the bottom of 
the dialog box that the Location appears as PSpice 16.6 as set above in 
the installation process. Click OK, and another dialog box appears titled 
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Create PSpice Project. Select Create a blank project (again, for all 
the analyses to be performed in this text). Click OK and a screen will 
appear with toolbars on the top and to the right of the screen. If a Project 
Manager Window opens on the left side of the working window, click 
the + sign to the left of the pspice 4-1.dsn listing to obtain SCHE-
MATIC1. Click + again, and PAGE1 appears; clicking on a – sign 
reverses the process. The width and height of the window can be adjusted 
by grabbing an edge of the screen until you see a double-headed arrow 
and dragging the border to the desired location. The entire window can 
be moved by clicking on the top heading until it is dark blue and drag-
ging it to the desired location.

Now you are ready to build the simple circuit in Fig. 4.32. Select the 
Place a part key (the key on the right toolbar with a small plus sign and 
IC structure) to obtain the Place Part dialog box. Since this is the first 
circuit to be constructed, you must ensure that the parts appear in the list 
of active libraries. Under Libraries select the small square with the yel-
low star in the top left corner. When you bring the mouse close to this 
icon, you will see the listing Add Library(Alt+A). A Browse File 
dialog box will appear in which ANALOG will appear under the Name 
listing. Select it and it will appear in the File name below. Select Open 
and it will appear in the Place Part dialog box under Libraries. It will 
now appear in the Libraries listing at the bottom left of the dialog box. 
Repeat for the SOURCE and SPECIAL libraries. All three files are 
required to build the networks appearing in this text. However, it is 
important to realize that

once the library files have been selected, they will appear in the active 
listing for each new project without your having to add them each 
time—a step, such as the Folder step above, that does not have to be 
repeated with each similar project.

You are now ready to place components on the screen. For the dc 
voltage source, first select the Place a part key and then select SOURCE 
in the library listing. Under Part List, a list of available sources appears; 
select VDC for this project. Once VDC has been selected, its symbol, 
label, and value appears on the picture window at the bottom right of the 
dialog box. Click the icon with the plus sign and IC structure to the left 
of the Help key at the top of the Place Part dialog box, and the VDC 
source appears on the screen and can be moved to any location on the 
screen. Move it to a convenient location, left-click the mouse, and it will 
be set in place as shown in Fig. 4.33. Since only one source is required, 
right-clicking results in a list of options, in which End Mode appears at 
the top. Choosing this option ends the procedure, leaving the source in a 
red dashed box. If it is red, it is an active mode and can be operated on. 
Left-clicking puts the source in place and removes the red active status.

One of the most important steps in the procedure is to ensure that a 
0 V ground potential is defined for the network so that voltages at any 
point in the network have a reference point. The result is a requirement 
that every network must have a ground defined. For our purposes, the  
0/CAPSYM option will be our choice when the GND key is selected. It 
ensures that one side of the source is defined as 0 V. It is obtained by 
selecting the ground symbol (Place ground (G)) from the toolbar at the 
right edge of the screen. A Place Ground dialog box appears under 
which 0/CAPSYM can be selected followed by an OK to place on the 
screen. Always remember the End Mode operation when all the ele-
ments of a particular type are in place. Finally, you need to add a resistor 
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to the network by selecting the Place a part key again and then selecting 
the ANALOG library. Scrolling the options, note that R appears and 
should be selected. Click OK, and the resistor appears next to the cursor 
on the screen. Move it to the desired location and click it in place. Then 
right-click and End Mode, and the resistor has been entered into the 
schematic’s memory. Unfortunately, the resistor ended up in the hori-
zontal position, and the circuit of Fig. 4.32 has the resistor in the vertical 
position. No problem: Simply select the resistor again to make it red and 
right-click. A listing appears in which Rotate is an option. It turns the 
resistor 90° in the counterclockwise direction.

All the required elements are on the screen, but they need to be con-
nected. To accomplish this, select the Place a wire key (Place wire (W)) 
that looks like a step in the right toolbar. The result is a crosshair with the 
center that should be placed at the point to be connected. Place the cross-
hair at the top of the voltage source, and left-click it once to connect it to 
that point. Then draw a line to the top end of the resistor, and click again 
when the crosshair is at the correct point. A red line results with a square 
at each end to confirm that the connection has been made. Then move the 
crosshair to the other elements and build the circuit. Once everything is 
connected, right-clicking provides the End Mode option. Do not forget 
to connect the source to ground as shown in Fig. 4.33.

Now you have all the elements in place, but their labels and values 
are wrong. To change any parameter, simply double-click on the param-
eter (the label or the value) to obtain the Display Properties dialog box. 
Type in the correct label or value, click OK, and the quantity is changed 
on the screen. Before selecting OK, be sure to check the Display For-
mat to specify what will appear on the screen. The labels and values can 
be moved by simply clicking on the center of the parameter until it is 
closely surrounded by the four small squares and then dragging it to the 
new location. Left-clicking again deposits it in its new location.

FIG. 4.33
Using PSpice to determine the voltage, current, and power levels  

for the circuit of Fig. 4.32.
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Finally, you can initiate the analysis process, called Simulation, by 
selecting the New simulation profile key in a toolbar in the heading of 
the screen that resembles a data page with a varying waveform and yel-
low star in the top right corner. A New Simulation dialog box opens that 
first asks for the Name of the simulation (PSpice 4-1). Then select  
Create and a bias point calculation will be performed. The dc voltages 
of the network: 12 V and 0 V will now appear on the circuit of Fig. 4.33. 
The dc currents and power levels can be displayed as shown in Fig. 4.33 
by simply selecting the green circular keys with the I and W in a toolbar 
at the top of the screen. Individual values can be removed by simply 
selecting the value and pressing the Delete key or the scissors key in the 
top menu bar. Resulting values can be moved by simply left-clicking the 
value and dragging it to the desired location.

Note in Fig. 4.33 that the current is 3 mA (as expected) at each point 
in the network, and the power delivered by the source and dissipated by 
the resistor is the same, or 36 mW. There are also 12 V across the resis-
tor as required by the configuration.

There is no question that this procedure seems long for such a simple 
circuit. However, keep in mind that we needed to introduce many new 
facets of using PSpice that are not discussed again. By the time you fin-
ish analyzing your third or fourth network, the procedure will be routine 
and easy to do.

Multisim

Installation  
Windows 7 or earlier systems  Insert the NI Circuit Design Suite 

13.0 Education Edition DVD into the disk drive to open the National 
Instruments dialog box.

Select Install NI Circuit Design Suite 13.0 and the User Account 
Control dialog box will appear asking: Do you want to allow the fol-
lowing program to make changes to this computer? Select Yes and a 
dialog box will appear stating that Microsoft.NET Framework 4.0 is 
required before you can install this product. If already installed in your 
system, the next few steps will not appear. Click OK to install the .NET 
Framework 4.0. A Microsoft.NET Framework 4 Setup dialog box 
will then appear in which the option I have read and accept the license 
terms should be selected followed by choosing the Install option. A 
dialog box revealing the installation progress will then appear until a 
dialog box indicating that the Installation (of .NET Framework 4) is 
Complete. Then Finish is selected again and a NI Circuit Design Suite 
13.0 dialog box will appear and Next is chosen.

The User Information dialog box will now appear in which the 
name and serial number are entered. The serial number is on the package 
labeled as S/N *******. Selecting Next will then result in the Destina-
tion Directory dialog box, which will reveal the path for the files to be 
installed. By choosing Next again, a Features dialog box will appear in 
which NI Circuit Design Suite 13.0 Education should be selected. The 
selection of Next again will result in the Product Notifications dialog 
box, which should be selected to ensure a search for important messages 
and updates. Choosing Next again will result in a second Product Noti-
fications dialog box, which will reveal if there are any notifications for 
your software package. Choose Next again and a License Agreement 
dialog box will appear in which the option I accept the above 2 License 
Agreements(s) must be selected. Continue by selecting Next to obtain 
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the Start Installation dialog box, which will reveal the products to be 
installed. Select Next and a dialog box will appear showing the progress 
of the installation. When completed, remove the NI Circuit Design 
Suite 13.0 Education Edition DVD.

An Insert Source dialog box will then appear requesting the installa-
tion of the ELVISmx 4 : DVD. Select Install Now and a dialog box 
will appear showing the progress of the installation. Eventually, a Prod-
uct Notifications dialog box will appear and if there are no notifications 
for your product select Next. A License Agreement dialog box will 
appear in which the option I accept the above 2 License Agreement(s) 
must be chosen. The Start Installation dialog box will then appear in 
which Next is chosen. A dialog box will then appear showing the pro-
gress of installation. Eventually, the Installation Complete dialog box 
will appear and Next should be chosen again. As directed by the next 
dialog box, you must restart your computer to complete the operation. 
This is done by selecting Restart in the dialog box.

The result should be an icon on your display revealing the software 
package has been installed. The icon has the appearance of a small cir-
cuit board on a purple background with the label NI Multisim 13.0.

Screen Icon  If the icon fails to appear on the screen automatically, 
it can be established by the following sequence: START-All Programs-
National Instruments Software-NI Multisim 13.0, followed by a 
right-click of the mouse to obtain a listing where Send to is chosen, fol-
lowed by Desktop(create shortcut). The Multisim icon should then 
appear on the screen and can be moved to the desired location.

Folder Creation  The folder for future storage can be defined by a 
right-click of the Start option at the bottom left of the screen. Then 
choose Explore followed by Hard Drive(C:). Then place the mouse on 
the folder listing, and a right-click will result in a listing in which New is 
an option. Select New followed by Folder and then type in OrCAD 16.6 
in the provided area of the screen, followed by a right-click of the mouse.

Windows 8.1  Insert the NI Circuit Design Suite 13.0 Education 
Edition DVD into the disk drive and wait for the response at the top 
right of the screen.

Click once on the DVD RW Drive(E:) NICDS130EDU listing. A 
dialog box will appear asking you to choose what to do with the disk. 
Select Run autorun.exe. The NI Circuit Design Suite 13.0 cover page 
will appear in which Install NI Circuit Design Suite 13.0 is selected. 
The procedure is then the same as described above for Windows 7.

Screen Icon  The screen icon can be found by going to the Start 
user interface and clicking on the down arrow at the bottom left of the 
screen. The list of Apps will appear and the NI Multisim 13.0 icon can 
be found in the first broad group of Apps. A supporting cast of Apps for 
NI Multisim 13.0 can be found by scrolling to the right and looking for 
the heading National Instruments. The icon can be transferred to the 
Start user interface by first right-clicking on the icon in the Apps list to 
obtain a listing on the bottom left of the screen with the option Pin to 
Start. Selecting this option will result in the chosen icon appearing on the 
Start user interface. The icon can now be placed anywhere on the Start 
user interface by clicking on the icon and dragging it to the desired loca-
tion. It can also be labeled as part of a Group listing by right-clicking on 
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the icon and typing in the desired heading (our choice for both OrCAD 
and Multisim was CIRCUITS) and clicking at any location on the screen 
to set it in place.

Folder Creation  A folder can be created by right-clicking on the 
NI Multisim 13.0 icon on the Start user interface to reveal a listing on 
the bottom left of the screen. Select Open file location and then Home 
followed by New folder. The choice of Multisim 13.0 can then be 
entered for future storage.

Ohm’s Law    For comparison purposes, Multisim is also used to 
analyze the circuit in Fig. 4.32. Although there are differences between 
PSpice and Multisim, such as in initiating the process, constructing the 
networks, making the measurements, and setting up the simulation pro-
cedure, there are sufficient similarities between the two approaches to 
make it easier to learn one if you are already familiar with the other. The 
similarities will be obvious only if you make an attempt to learn both. 
One of the major differences between the two is the option to use actual 
instruments in Multisim to make the measurements—a positive trait in 
preparation for the laboratory experience. However, in Multisim, you 
may not find the extensive list of options available with PSpice. In gen-
eral, however, both software packages are well prepared to take us 
through the types of analyses to be encountered in this text.

When the Multisim icon is selected from the opening window, a 
screen appears with the heading Design 1-Multisim. A menu bar 
appears across the top of the screen, with seven additional toolbars: 
Standard, View, Main, Components, Simulation Switch, Simula-
tion, and Instruments. By selecting View from the top menu bar fol-
lowed by Toolbars, you can add or delete toolbars. The heading can be 
changed to Multisim 4-1 by selecting File-Save As to open the Save 
As dialog box. Enter Multisim 4-1 as the File name to obtain the list-
ing of Fig. 4.34.

For the placement of components, View-Grid was selected so that a 
grid would appear on the screen. As you place an element, it will auto-
matically be placed in a relationship specific to the grid structure.

To build the circuit in Fig. 4.32, first take the cursor and place it on 
the battery symbol in the Component toolbar. Left-click and a Compo-
nent dialog box will appear, which provides a list of sources. Under 
Select a Family, select Power Sources and then under Component 
select DC_POWER. The symbol will appear in the upper right corner. 
Click OK and a left-click will place the dc source on the screen. The 
battery symbol appears next to the location of the cursor. Move the cur-
sor to the desired location and left-click to set the battery symbol in 
place. The operation is complete. If you want to delete the source, sim-
ply left-click on the symbol again to create a dashed rectangle around 
the source. These rectangles indicate that the source is in the active 
mode and can be operated on. If you want to delete it, click on the Delete 
key or select the Scissor keypad in the Standard toolbar. If you want to 
modify the source, right-click outside the rectangle, and you get one list. 
Right-click within the rectangle, and you have a different set of options. 
At any time, if you want to remove the active state, left-click anywhere 
on the screen. If you want to move the source, click on the source sym-
bol to create the rectangle, but do not release the mouse. Hold it down 
and drag the source to the preferred location. When the source is in 
place, release the mouse. Click again to remove the active state. From 
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now on, whenever possible, the word “click” means a left-click. The 
need for a right-click will continue to be spelled out.

For the simple circuit in Fig. 4.34, you need to place a resistor across 
the source. Select the keypad in the Components toolbar that looks like a 
resistor symbol. A Select a Component dialog box opens with a Family 
listing. Selecting RESISTOR results in a list of standard values that can 
be quickly selected for the deposited resistor. However, in this case, you 
want to use a 4 kΩ resistor, which is not a standard value but can be 
changed to 4 kΩ by simply changing the value once it has been placed 
on the screen. Another approach is to add the Virtual toolbar (also 
referred to as the Basic toolbar), which provides a list of components 
for which the value can be set. Selecting the resistor symbol from the 
Virtual toolbar will result in a Basic toolbar in which the resistor sym-
bol can be selected. Once selected a resistor of 1 kΩ will appear on the 
screen, which can be placed in any location as described above. Once 
placed on the screen, the value of the resistor can be changed by simply 
double-clicking on the resistor value to obtain a dialog box that permits 
the change. The placement of the resistor is exactly the same as that 
employed for the source above.

In Fig. 4.32, the resistor is in the vertical position, so a rotation must 
be made. Click on the resistor to obtain the active state, and then right-
click within the rectangle. A number of options appear, including Flip 
Horizontal, Flip Vertical, 90° Clockwise, and 90° Counter CW. To 
rotate 90° counterclockwise, select that option, and the resistor is auto-
matically rotated 90°.

!

FIG. 4.34
Using Multisim to determine the voltage and current level for  

the 4 kΩ resistor of Fig. 4.32.
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Finally, you need a ground for all networks. Going back to the Place 
Source parts bin, find GROUND, which is located alphabetically down 
the list. Select GROUND and place it on the screen below the voltage 
source as shown in Fig. 4.34. A second option to obtain the ground con-
nection is to go to the Virtual toolbar and select Show/Hide Power 
Source Family and select the ground symbol and place as above. Now, 
before connecting the components together, move the labels and the 
value of each component to the relative positions shown in Fig. 4.34. Do 
this by clicking on the label or value to create a small set of squares 
around the element and then dragging the element to the desired loca-
tion. Release the mouse, and then click again to set the element in place. 
To change the label or value, double-click on the label (such as V1) to 
open a DC_POWER dialog box. Select Label and enter E as the Refer-
ence Designation (RefDes). Then, before leaving the dialog box, go to 
Value and change the value if necessary. It is very important to realize 
that you cannot type in the units where the V now appears to the right of 
the value. The suffix is controlled by the scroll keys at the left of the unit 
of measure. For practice, try the scroll keys, and you will find that you 
can go from pV to TV. For now, leave it as V. Click OK, and both have 
been changed on the screen. The same process can be applied to the 
resistive element to obtain the label and value appearing in Fig. 4.34.

Next, you need to tell the system which results should be generated 
and how they should be displayed. For this example, we use a multime-
ter to measure both the current and the voltage of the circuit. The Multi-
meter is the first option in the list of instruments appearing in the toolbar 
to the right of the screen. When selected, it appears on the screen and can 
be placed anywhere, using the same procedure defined for the compo-
nents above. Double-click on the meter symbol, and a Multimeter 
dialog box opens in which the function of the meter must be defined. 
Since the meter XMM1 will be used as an ammeter, select the letter A 
and the horizontal line to indicate dc level. There is no need to select Set 
for the default values since they have been chosen for the broad range of 
applications. The dialog meters can be moved to any location by click-
ing on their heading bar to make it dark blue and then dragging the meter 
to the preferred position. For the voltmeter, V and the horizontal bar 
were selected as shown in Fig. 4.34. The voltmeter was turned clock-
wise 90° using the same procedure as described for the resistor above.

Finally, the elements need to be connected. To do this, bring the cur-
sor to one end of an element, say, the top of the voltage source. A small 
dot and a crosshair appear at the top end of the element. Click once, fol-
low the path you want, and place the crosshair over the positive terminal 
of the ammeter. Click again, and the wire appears in place.

At this point, you should be aware that the software package has its 
preferences about how it wants the elements to be connected. That is, 
you may try to draw it one way, but the computer generation may be a 
different path. Eventually, you will learn these preferences and can set 
up the network to your liking. Now continue making the connections 
appearing in Fig. 4.34, moving elements or adjusting lines as necessary. 
Be sure that the small dot appears at any point where you want a connec-
tion. Its absence suggests that the connection has not been made and the 
software program has not accepted the entry.

You are now ready to run the program and view the solution. The 
analysis can be initiated in a number of ways. One option is to select 
Simulate from the top toolbar, followed by RUN. Another is to select 
the Simulate key (the green arrow) in the Simulation toolbar. The 



154    Ohm’s Law, Power, and Energy
V

I R

last option, and the one we use the most, utilizes the OFF/ON, 0/1 
Simulation switch at the top right of the screen. With this last option, 
the analysis (called Simulation) is initiated by clicking the switch into 
the 1 position. The analysis is performed, and the current and voltage 
appear on the meter as shown in Fig. 4.34. Note that both provide the 
expected results.

One of the most important things to learn about applying Multisim:

Always stop or end the simulation (clicking on 0 or choosing OFF) 
before making any changes in the network. When the simulation is 
initiated, it stays in that mode until turned off.

There was obviously a great deal of material to learn in this first exer-
cise using Multisim. Be assured, however, that as we continue with more 
examples, you will find the procedure quite straightforward and actually 
enjoyable to apply.

Problems

SECTION 4.2  Ohm’s Law

	 1.	 What is the voltage across a 220 Ω resistor if the current 
through it is 5.6 mA?

	 2.	 What is the current through a 2.2 kΩ resistor if the voltage 
drop across it is 24 V?

	 3.	 How much resistance is required to limit the current to 
1.5 mA if the potential drop across the resistor is 24 V?

	 4.	 At starting, what is the current drain on a 12 V car battery if 
the resistance of the starting motor is 40 mΩ?

	 5.	 If the current through a 200 kΩ resistor is 5.0 mA, what is 
the voltage drop across the resistor?

	 6.	 If a voltmeter has an internal resistance of 50 kΩ, find the 
current through the meter when it reads 120 V.

	 7.	 If a refrigerator draws 2.2 A at 120 V, what is its resistance?

	 8.	 If a clock has an internal resistance of 7 kΩ, find the current 
through the clock if it is plugged into a 110 V outlet.

	 9.	 A washing machine is rated at 4.6 A at 150 V. What is its 
internal resistance?

	10.	 A CD player draws 80 mA when 4.5 V is applied. What is 
the internal resistance?

	11.	 The input current to a transistor is 30 mA. If the applied 
(input) voltage is 36 mV, determine the input resistance of 
the transistor.

	12.	 The internal resistance of a dc generator is 0.8 Ω. Deter-
mine the loss in terminal voltage across this internal resist-
ance if the current is 14 A.

	*13.	 a.	 �If an electric heater draws 9.5 A when connected to a 
120 V supply, what is the internal resistance of the 
heater?

	 b.	 Using the basic relationships of Chapter 2, determine 
how much energy in joules (J) is converted if the heater 
is used for 2 h during the day.

	14.	 In a TV camera, a current of 8.4 mA passes through a resis-
tor of 4.2 MΩ. What is the voltage drop across the resistor?

SECTION 4.3  Plotting Ohm’s Law

	15.	 a.	� Plot the curve of I (vertical axis) versus V (horizontal 
axis) for a 120 Ω resistor. Use a horizontal scale of 0 to 
100 V and a vertical scale of 0 to 1 A.

	 b.	 Using the graph of part (a), find the current at a voltage 
of 20 V.

	16.	 a.	� Plot the I-V curve for a 5 Ω and a 20 Ω resistor on the 
same graph. Use a horizontal scale of 0 to 40 V and a 
vertical scale of 0 to 2 A.

	 b.	 Which is the steeper curve? Can you offer any general 
conclusions based on results?

	 c.	 If the horizontal and vertical scales were interchanged, 
which would be the steeper curve?

	17.	 a.	 �Plot the I-V characteristics of a 1 Ω, 100 Ω, and 1000 Ω 
resistor on the same graph. Use a horizontal axis of 0 to 
100 V and a vertical axis of 0 to 100 A.

	 b.	 Comment on the steepness of a curve with increasing 
levels of resistance.

	*18.	 Sketch the internal resistance characteristics of a device that 
has an internal resistance of 20 Ω from 0 to 10 V, an inter-
nal resistance of 4 Ω from 10 V to 15 V, and an internal 
resistance of 1 Ω for any voltage greater than 15 V. Use a 
horizontal scale that extends from 0 to 20 V and a vertical 
scale that permits plotting the current for all values of volt-
age from 0 to 20 V.

	*19.	 a.	 Plot the I-V characteristics of a 1 kΩ, 10 kΩ, and a 
1 MΩ resistor on the same graph. Use a horizontal axis 
of 0 to 20 V and a vertical axis of 0 to 10 mA.

	 b.	 Comment on the steepness of the curve with decreasing 
levels of resistance.

	 c.	 Are the curves linear or nonlinear? Why?

SECTION 4.4  Power

	20.	 If 540 J of energy are absorbed by a resistor in 3.6 min, 
what is the power delivered to the resistor in watts?

	21.	 The power to a device is 60 joules per second (J/s). How 
long will it take to deliver 840 J?
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	 22.	 a.	 How many joules of energy does a 3 W nightlight dis-
sipate in 12 h?

	 b.	 How many kilowatthours does it dissipate?

	23.	 How long must a steady current of 1.4 A exist in a resistor 
that has 3 V across it to dissipate 12 J of energy?

	24.	 What is the power delivered by a 12 V battery if the current 
drain is 40 A?

	25.	 The current through a 4 kΩ resistor is 7.2 mA. What is the 
power delivered to the resistor?

	26.	 The power consumed by a 2.2 kΩ  resistor is 240 mW. 
What is the current level through the resistor?

	27.	 What is the maximum permissible current in a 69 Ω, 2 W 
resistor? What is the maximum voltage that can be applied 
across the resistor?

	28.	 The voltage drop across a transistor network is 22 V. If the 
total resistance is 16.8 kΩ, what is the current level? What is 
the power delivered? How much energy is dissipated in 1 h?

	29.	 If the power applied to a system is 10 kW, what is the volt-
age across the line if the current is 48 A?

	30.	 A 1.5 W resistor has a resistance of 5.0 MΩ. What is the 
maximum current level for the resistor? If the wattage rat-
ing is increased to 2.5 W, will the current rating double?

	31.	 A 2.2 kΩ resistor in a stereo system dissipates 42 mW of 
power. What is the voltage across the resistor?

	32.	 What are the “hot” resistance level and current rating of a 
240 V, 100 W bulb?

	33.	 What are the internal resistance and voltage rating of a 
450 W automatic washer that draws 3.75 A?

	34.	 A calculator with an internal 4.5 V battery draws 0.5 mW 
when fully functional.

	 a.	 What is the current demand from the supply?
	 b.	 If the calculator is rated to operate 550 h on the same 

battery, what is the ampere-hour rating of the battery?

	35.	 A 20 kΩ resistor has a rating of 100 W. What are the maxi-
mum current and the maximum voltage that can be applied 
to the resistor?

	36.	 What is the total horsepower rating of a series of commer-
cial ceiling fans that draw 40 A at 240 V?

SECTION 4.5  Energy

	37.	 A 12 Ω resistor is connected across a 12 V battery.
	 a.	 How many joules of energy will it dissipate in 2 min?
	 b.	 If the resistor is left connected for 4 min instead of 

2 min, will the energy used increase? Will the power 
dissipation level increase?

	38.	 How much energy in kilowatthours is required to keep a 
230 W oil-burner motor running 12 h a week for 5 months? 
(Use 4 weeks = 1 month.)

	39.	 How long can a 1500 W heater be on before using more 
than 12 kWh of energy?

	40.	 A 60 W bulb is on for 10 h.
	 a.	 What is the energy used in wattseconds?
	 b.	 What is the energy dissipated in joules?
	 c.	 What is the energy transferred in watthours?
	 d.	 How many kilowatthours of energy were dissipated?
	 e.	 At 12¢>kWh, what was the total cost?

	41.	 a.	 In 12 h an electrical system converts 1500 kWh of elec-
trical energy into heat. What is the power level of the 
system?

	 b.	 If the applied voltage is 230 V, what is the current 
drawn from the supply?

	 c.	 If the efficiency of the system is 79%, how much energy 
is lost or stored in 12 h?

	42.	 At 14¢>kWh, how long can you play a 260 W color televi-
sion for $1?

	43.	 The electric bill for a family for a month is $120.
	 a.	 Assuming 30 days in the month, what is the cost per 

day?
	 b.	 Based on 15-h days, what is the cost per hour?
	 c.	 How many kilowatthours are used per hour if the cost is 

12¢>kWh?
	 d.	 How many 60 W lightbulbs (approximate number) 

could you have on to use up that much energy per hour?
	 e.	 Do you believe the cost of electricity is excessive?

	44.	 How long can you use an Xbox 360 for $1 if it uses 198 W 
and the cost is 11¢>kWh?

	45.	 The average plasma screen TV draws 400 W of power, 
whereas the average LCD TV draws 213 W. If each set was 
used 6 h/day for 365 days, what would be the cost savings 
for the LCD unit over the year if the cost is 12¢>kWh?

	46.	 The average PC draws 78 W. What is the cost of using the 
PC for 4 h/day for a month of 31 days if the cost is 
12¢>kWh?

	*47.	 a.	 If a house is supplied with 110 V, 100 A service, find 
the maximum power capability.

	 b.	 Can the homeowner safely operate the following loads 
at the same time?

		  2–240 W TVs
		  2500 W clothes dryer
		  10–100 W bulbs
		  2000 W electric range
		  1.5 kW air conditioner
		  1500 W steam iron
	 c.	 If all the appliances are used for 3 hours, how much 

energy is converted in kWh?

	*48.	 What is the total cost of using the following at 12¢>kWh?
	 a.	 1600 W air conditioner for 8 h
	 b.	 1200 W hair dryer for 20 min
	 c.	 4800 W clothes dryer for 1 h
	 d.	 900 W coffee maker for 15 min
	 e.	 200 W Play Station 3 for 1.2 h
	 f.	 50 W stereo for 3.5 h

	*49.	 What is the total cost of using the following at 12¢>kWh?
	 a.	 200 W fan for 4 h
	 b.	 Six 60 W bulbs for 6 h
	 c.	 1200 W dryer for ½ h
	 d.	 175 W desktop computer for 3.5 h
	 e.	 250 W color television set for 4 h 20 min
	 f.	 30 W satellite dish for 8 h

SECTION 4.6  Efficiency

	50.	 What is the efficiency of a motor that has an output of 
0.5 hp with an input of 410 W?
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	*61.	 If the total input and output power of two systems in cas-
cade are 400 W and 200 W, respectively, what is the effi-
ciency of each system if one has twice the efficiency of the 
other?

SECTION 4.9  Computer Analysis

	62.	 Using PSpice or Multisim, repeat the analysis of the circuit 
in Fig. 4.32 with E = 400 mV and R = 0.04 MΩ.

	63.	 Using PSpice or Multisim, repeat the analysis of the circuit 
in Fig. 4.32, but reverse the polarity of the battery and use 
E = 8 V and R = 220 Ω.

Glossary

Circuit breaker  A two-terminal device designed to ensure that 
current levels do not exceed safe levels. If “tripped,” it can be 
reset with a switch or a reset button.

Diode  A semiconductor device whose behavior is much like that 
of a simple switch; that is, it will pass current ideally in only 
one direction when operating within specified limits.

Efficiency (H)  A ratio of output to input power that provides 
immediate information about the energy-converting charac-
teristics of a system.

Energy (W)  A quantity whose change in state is determined by 
the product of the rate of conversion (P) and the period 
involved (t). It is measured in joules (J) or wattseconds (Ws).

Fuse  A two-terminal device whose sole purpose is to ensure that 
current levels in a circuit do not exceed safe levels.

Horsepower (hp)  Equivalent to 746 watts in the electrical sys-
tem.

Kilowatthour meter  An instrument for measuring kilowat-
thours of energy supplied to a residential or commercial user 
of electricity.

Ohm’s law  An equation that establishes a relationship among 
the current, voltage, and resistance of an electrical system.

Power  An indication of how much work can be done in a speci-
fied amount of time; a rate of doing work. It is measured in 
joules/second (J/s) or watts (W).

	51.	 The motor of a power saw is rated 75% efficient. If 1.5 hp 
are required to cut a particular piece of lumber, what is the 
current drawn from a 120 V supply?

	52.	 What is the efficiency of a dryer motor that delivers 0.88 hp 
when the input current and voltage are 4.5 A and 220 V, 
respectively?

	53.	 A stereo system draws 1.8 A at 120 V. The audio output 
power is 50 W.

	 a.	 How much power is lost in the form of heat in the sys-
tem?

	 b.	 What is the efficiency of the system?

	54.	 If an electric motor having an efficiency of 80% and operat-
ing off a 230 V line delivers 4.6 hp, what input current does 
the motor draw?

	55.	 A motor is rated to deliver 2 hp.
	 a.	 If it runs on 120 V and is 90% efficient, how many 

watts does it draw from the power line?
	 b.	 What is the input current?
	 c.	 What is the input current if the motor is only 70% effi-

cient?

	56.	 An electric motor used in an elevator system has an effi-
ciency of 88%. If the input voltage is 240 V, what is the 
input current when the motor is delivering 16 hp?

	57.	 The motor used on a conveyor belt is 85% efficient. If the 
overall efficiency is 75%, what is the efficiency of the con-
veyor belt assembly?

	58.	 A 2 hp motor drives a sanding belt. If the efficiency of the 
motor is 86% and that of the sanding belt is 76% due to slip-
page, what is the overall efficiency of the system?

	59.	 The overall efficiency of two systems in cascade is 83%. If 
the efficiency of one is 0.9, what is the efficiency, in per-
cent, of the other?

	60.	 a.	 What is the total efficiency of three systems in cascade 
with respective efficiencies of 93%, 87%, and 21%?

	 b.	 If the system with the least efficiency (21%) were 
removed and replaced by one with an efficiency of 
80%, what would be the percentage increase in total 
efficiency?



Series dc Circuits

5.1  Introduction

Two types of current are readily available to the consumer today. One is direct current (dc), 
in which ideally the flow of charge (current) does not change in magnitude (or direction) with 
time. The other is sinusoidal alternating current (ac), in which the flow of charge is continu-
ally changing in magnitude (and direction) with time. The next few chapters are an introduc-
tion to circuit analysis purely from a dc approach. The methods and concepts are discussed in 
detail for direct current; when possible, a short discussion suffices to cover any variations we 
may encounter when we consider ac in the later chapters.

The battery in Fig. 5.1, by virtue of the potential difference between its terminals, has the 
ability to cause (or “pressure”) charge to flow through the simple circuit. The positive termi-
nal attracts the electrons through the wire at the same rate at which electrons are supplied by 
the negative terminal. As long as the battery is connected in the circuit and maintains its ter-
minal characteristics, the current (dc) through the circuit will not change in magnitude or 
direction.

If we consider the wire to be an ideal conductor (that is, having no opposition to flow), the 
potential difference V across the resistor equals the applied voltage of the battery: 
V (volts) = E (volts).

Series dc Circuits

•	 Become familiar with the characteristics of a series 
circuit and how to solve for the voltage, current, 
and power to each of the elements.

•	 Develop a clear understanding of Kirchhoff’s 
voltage law and how important it is to the analysis 
of electric circuits.

•	 Become aware of how an applied voltage will 
divide among series components and how to 
properly apply the voltage divider rule.

•	 Understand the use of single- and double-
subscript notation to define the voltage levels  
of a network.

•	 Learn how to use a voltmeter, ammeter, and 
ohmmeter to measure the important quantities 
of a network.

Objectives

55

S

Battery

E (volts)

Iconventional

Ielectron

I  = V
R

E
R

= —

R V

—

FIG. 5.1
Introducing the basic components of an electric circuit.
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The current is limited only by the resistor R. The higher the resistance, 
the less is the current, and conversely, as determined by Ohm’s law.

By convention (as discussed in Chapter 2), the direction of conven-
tional current flow (Iconventional) as shown in Fig. 5.1 is opposite to that of 
electron flow (Ielectron). Also, the uniform flow of charge dictates that the 
direct current I be the same everywhere in the circuit. By following the 
direction of conventional flow, we notice that there is a rise in potential 
across the battery (-  to +) and a drop in potential across the resistor 
(+  to -). For single-voltage-source dc circuits, conventional flow always 
passes from a low potential to a high potential when passing through a 
voltage source, as shown in Fig. 5.2. However, conventional flow always 
passes from a high to a low potential when passing through a resistor for 
any number of voltage sources in the same circuit, as shown in Fig. 5.3.

The circuit in Fig. 5.1 is the simplest possible configuration. This 
chapter and the following chapters add elements to the system in a very 
specific manner to introduce a range of concepts that will form a major 
part of the foundation required to analyze the most complex system. Be 
aware that the laws, rules, and so on introduced here and in Chapter 6 
will be used throughout your studies of electrical, electronic, or com-
puter systems. They are not replaced by a more advanced set as you 
progress to more sophisticated material. It is therefore critical that you 
understand the concepts thoroughly and are able to apply the various 
procedures and methods with confidence.

5.2  Series Resistors

Before the series connection is described, first recognize that every fixed 
resistor has only two terminals to connect in a configuration—it is there-
fore referred to as a two-terminal device. In Fig. 5.4, one terminal of 
resistor R2 is connected to resistor R1 on one side, and the remaining 
terminal is connected to resistor R3 on the other side, resulting in one, 
and only one, connection between adjoining resistors. When connected 
in this manner, the resistors have established a series connection. If three 
elements were connected to the same point, as shown in Fig. 5.5, there 
would not be a series connection between resistors R1 and R2.

For resistors in series,

the total resistance of a series configuration is the sum of the 
resistance levels.

In equation form for any number (N) of resistors,

	 RT = R1 + R2 + R3 + R4 + g + RN 	 (5.1)

A result of Eq. (5.1) is that

the more resistors we add in series, the greater is the resistance, no 
matter what their value.

Further,

the largest resistor in a series combination will have the most impact 
on the total resistance.

For the configuration in Fig. 5.4, the total resistance is

	  RT = R1 + R2 + R3 	

	  = 10 Ω + 30 Ω + 100 Ω	

and	  RT = 140 � 	

For all one-voltage-
source dc circuits

EI

FIG. 5.2
Defining the direction of conventional flow for 

single-source dc circuits.

I

V

R
For any combination of voltage
sources in the same dc circuit

FIG. 5.3
Defining the polarity resulting from a conventional 

current I through a resistive element.

a

b

R1

10 �

R2

30 �

R3

100 �

RT

FIG. 5.4
Series connection of resistors.

R1

10 �

R2

30 �

R4 220 �

FIG. 5.5
Configuration in which none of the resistors  

are in series.
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EXAMPLE 5.1  Determine the total resistance of the series connection 
in Fig. 5.6. Note that all the resistors appearing in this network are stand-
ard values.

Solution:  Note in Fig. 5.6 that even though resistor R3 is on the ver-
tical and resistor R4 returns at the bottom to terminal b, all the resis-
tors are in series since there are only two resistor leads at each 
connection point.

Applying Eq. (5.1) gives

 RT = R1 + R2 + R3 + R4

 RT = 20 Ω + 220 Ω + 1.2 kΩ + 5.6 kΩ
and	  RT = 7040 Ω = 7.04 k� 	

For the special case where resistors are the same value, Eq. (5.1) can 
be modified as follows:

	 	 (5.2)

where N is the number of resistors in series of value R.

EXAMPLE 5.2  Find the total resistance of the series resistors in 
Fig. 5.7. Again, recognize 3.3 kΩ as a standard value.

Solution:  Again, don’t be concerned about the change in configura-
tion. Neighboring resistors are connected only at one point, satisfying 
the definition of series elements.

Eq. (5.2):	  RT = NR

 = (4)(3.3 kΩ) = 13.2 k�

It is important to realize that since the parameters of Eq. (5.1) can be 
put in any order,

the total resistance of resistors in series is unaffected by the order in 
which they are connected.

The result is that the total resistance in Fig. 5.8(a) is the same as in 
Fig. 5.8(b). Again, note that all the resistors are standard values.

RT = NR

a

b

20 � 220 �

1.2 k�

5.6 k�

RT

R1 R2

R3

R4

FIG. 5.6
Series connection of resistors for Example 5.1.

a

b

R1

3.3 k�

R4

3.3 k�

R2 3.3 k�

R3 3.3 k�

RT

FIG. 5.7
Series connection of four resistors of the same value 

(Example 5.2).

RT

a

b

R1

30 �

R2

82 �

R3 10 �

(a)

a

b

R3

10 �

R1

30 �

R2 82 �

(b)

RT

FIG. 5.8
Two series combinations of the same elements with the same total resistance.
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EXAMPLE 5.3  Determine the total resistance for the series resistors 
(standard values) in Fig. 5.9.

Solution:  First, the order of the resistors is changed as shown in 
Fig. 5.10 to permit the use of Eq. (5.2). The total resistance is then

 RT = R1 + R3 + NR2

 = 4.7 kΩ + 2.2 kΩ + (3)(1 kΩ) = 9.9 k�

Analogies

Throughout the text, analogies are used to help explain some of the 
important fundamental relationships in electrical circuits. An analogy is 
simply a combination of elements of a different type that are helpful in 
explaining a particular concept, relationship, or equation.

One analogy that works well for the series combination of ele-
ments is connecting different lengths of rope together to make the 
rope longer. Adjoining pieces of rope are connected at only one point, 
satisfying the definition of series elements. Connecting a third rope to 
the common point would mean that the sections of rope are no longer 
in a series.

Another analogy is connecting hoses together to form a longer hose. 
Again, there is still only one connection point between adjoining sec-
tions, resulting in a series connection.

Instrumentation

The total resistance of any configuration can be measured by simply 
connecting an ohmmeter across the access terminals as shown in 
Fig. 5.11 for the circuit in Fig. 5.4. Since there is no polarity associated 
with resistance, either lead can be connected to point a, with the other 
lead connected to point b. Choose a scale that will exceed the total 
resistance of the circuit, and remember when you read the response on 
the meter, if a kilohm scale was selected, the result will be in kilohms. 
For Fig. 5.11, the 200 Ω  scale of our chosen multimeter was used 
because the total resistance is 140 Ω. If the 2 kΩ  scale of our meter 
were selected, the digital display would read 0.140, and you must rec-
ognize that the result is in kilohms.

In the next section, another method for determining the total resist-
ance of a circuit is introduced using Ohm’s law.

a

b

R1

4.7 k�

R3

2.2 k�

R2

1 k�

R5

1 k�

R4 1 k�
RT

FIG. 5.9
Series combination of resistors for Example 5.3.

RT

a

b

R1

4.7 k�

R2

1 k�

R3

2.2 k�

R5

1 k�

R4 1 k�

FIG. 5.10
Series circuit of Fig. 5.9 redrawn to permit the use of 

Eq. (5.2): RT = NR.

RT

R1 R2 R3

10 � 30 � 100 �

140.0

+

FIG. 5.11
Using an ohmmeter to measure the total resistance of a series circuit.
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5.3  Series Circuits

If we now take an 8.4 V dc supply and connect it in series with the series 
resistors in Fig. 5.4, we have the series circuit in Fig. 5.12.

A circuit is any combination of elements that will result in a 
continuous flow of charge, or current, through the configuration.

E 8.4 V

Is

RT

Is

10 �

V1

R1

100 �

V3

R3

30 �

V2

R2Is Is

Is

Is

FIG. 5.12
Schematic representation for a dc series circuit.

First, recognize that the dc supply is also a two-terminal device with 
two points to be connected. If we simply ensure that there is only one 
connection made at each end of the supply to the series combination of 
resistors, we can be sure that we have established a series circuit.

The manner in which the supply is connected determines the direc-
tion of the resulting conventional current. For series dc circuits:

the direction of conventional current in a series dc circuit is such that 
it leaves the positive terminal of the supply and returns to the negative 
terminal, as shown in Fig. 5.12.

One of the most important concepts to remember when analyzing 
series circuits and defining elements that are in series is:

The current is the same at every point in a series circuit.

For the circuit in Fig. 5.12, the above statement dictates that the current 
is the same through the three resistors and the voltage source. In addition, 
if you are ever concerned about whether two elements are in series, simply 
check whether the current is the same through each element.

In any configuration, if two elements are in series, the current must 
be the same. However, if the current is the same for two adjoining 
elements, the elements may or may not be in series.

The need for this constraint in the last sentence will be demonstrated in 
the chapters to follow.

Now that we have a complete circuit and current has been estab-
lished, the level of current and the voltage across each resistor should be 
determined. To do this, return to Ohm’s law and replace the resistance in 
the equation by the total resistance of the circuit. That is,

	 Is =
E

RT
	 (5.3)

with the subscript s used to indicate source current.
It is important to realize that when a dc supply is connected, it does 

not “see” the individual connection of elements but simply the total 
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resistance “seen” at the connection terminals, as shown in Fig. 5.13(a). 
In other words, it reduces the entire configuration to one such as in Fig. 
5.13(b) to which Ohm’s law can easily be applied.

For the configuration in Fig. 5.12, with the total resistance calculated 
in the last section, the resulting current is

Is =
E

RT
=

8.4 V

140 Ω
= 0.06 A = 60 mA

Note that the current Is at every point or corner of the network is the 
same. Furthermore, note that the current is also indicated on the current 
display of the power supply.

Now that we have the current level, we can calculate the voltage 
across each resistor. First recognize that

the polarity of the voltage across a resistor is determined by the 
direction of the current.

Current entering a resistor creates a drop in voltage with the polarity 
indicated in Fig. 5.14(a). Reverse the direction of the current, and the 
polarity will reverse as shown in Fig. 5.14(b). Change the orientation of 
the resistor, and the same rules apply as shown in Fig. 5.14(c). Applying 
the above to the circuit in Fig. 5.12 will result in the polarities appearing 
in that figure.

140 �RT

a

b

R1

10 �

R2

30 �

R3 100 �

(a)

RT

a

b

(b)

FIG. 5.13
Resistance “seen” at the terminals of a series circuit.

10 �I

V

(a)

10 � I

V

(b)

10 �

I

V

(c)

FIG. 5.14
Inserting the polarities across a resistor as determined by the direction  

of the current.

The magnitude of the voltage drop across each resistor can then be 
found by applying Ohm’s law using only the resistance of each resistor. 
That is,

	

V1 = I1R1

V2 = I2R2

V3 = I3R3

	 (5.4)
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which for Fig. 5.12 results in

 V1 = I1R1 = IsR1 = (60 mA)(10 Ω) = 0.6 V

 V2 = I2R2 = IsR2 = (60 mA)(30 Ω) = 1.8 V

 V3 = I3R3 = IsR3 = (60 mA)(100 Ω) = 6.0 V

Note that in all the numerical calculations appearing in the text thus 
far, a unit of measurement has been applied to each calculated quantity. 
Always remember that a quantity without a unit of measurement is often 
meaningless.

EXAMPLE 5.4  For the series circuit in Fig. 5.15:

	 a.	 Find the total resistance RT.
	 b.	 Calculate the resulting source current Is.
	 c.	 Determine the voltage across each resistor.

Solutions: 

	 a.	  RT = R1 + R2 + R3

		   = 2 Ω + 1 Ω + 5 Ω
		   RT = 8 Ω

	 b.	 Is =
E

RT
=

20 V

8 Ω
= 2.5 A

	 c.	 V1 = I1R1 = IsR1 = (2.5 A)(2 Ω) = 5 V
V2 = I2R2 = IsR2 = (2.5 A)(1 Ω) = 2.5 V
V3 = I3R3 = IsR3 = (2.5 A)(5 Ω) = 12.5 V

EXAMPLE 5.5  For the series circuit in Fig. 5.16:

	 a.	 Find the total resistance RT.
	 b.	 Determine the source current Is and indicate its direction on the circuit.
	 c.	 Find the voltage across resistor R2 and indicate its polarity on the 

circuit.

Solutions: 

	 a.	 The elements of the circuit are rearranged as shown in Fig. 5.17.

 RT = R2 + NR

 = 4 Ω + (3)(7 Ω)

 = 4 Ω + 21 Ω
 RT = 25 �

20 V R2 1 �

R1 = 2 �

V1

V2

R3 = 5 �

V3

E

Is

RT

Is

FIG. 5.15
Series circuit to be investigated in Example 5.4.

R1 = 7 �Is

RT

Is

R2 = 4 �

V2

Is
R4

7 �

R3 7 �50 VE

FIG. 5.16
Series circuit to be analyzed in Example 5.5.

V2

E = 50 V RT

Is

R2

4 �

R1

7 �

R3

7 �

R4

7 �

Is Is

Is

FIG. 5.17
Circuit in Fig. 5.16 redrawn to permit the use of Eq. (5.2).
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	 b.	 Note that because of the manner in which the dc supply was con-
nected, the current now has a counterclockwise direction as shown 
in Fig. 5.17:

Is =
E

RT
=

50 V

25 Ω
= 2 A

	 c.	 The direction of the current will define the polarity for V2 appearing 
in Fig. 5.17:

V2 = I2R2 = IsR2 = (2 A)(4 Ω) = 8 V

Examples 5.4 and 5.5 are straightforward, substitution-type problems 
that are relatively easy to solve with some practice. Example 5.6, how-
ever, is another type of problem that requires both a firm grasp of the 
fundamental laws and equations and an ability to identify which quantity 
should be determined first. The best preparation for this type of exercise 
is to work through as many problems of this kind as possible.

EXAMPLE 5.6  Given RT and I3, calculate R1 and E for the circuit in 
Fig. 5.18.

Solution:  Since we are given the total resistance, it seems natural to 
first write the equation for the total resistance and then insert what we 
know:

RT = R1 + R2 + R3

We find that there is only one unknown, and it can be determined with 
some simple mathematical manipulations. That is,

	  12 kΩ = R1 + 4 kΩ + 6 kΩ = R1 + 10 kΩ
and	  12 kΩ - 10 kΩ = R1

so that	  R1 = 2 k�

The dc voltage can be determined directly from Ohm’s law:

E = IsRT = I3RT = (6 mA)(12 kΩ) = 72 V

Analogies

The analogies used earlier to define the series connection are also excel-
lent for the current of a series circuit. For instance, for the series-connected 
ropes, the stress on each rope is the same as they try to hold the heavy 
weight. For the water analogy, the flow of water is the same through each 
section of hose as the water is carried to its destination.

Instrumentation

Another important concept to remember is:

The insertion of any meter in a circuit will affect the circuit.

You must use meters that minimize the impact on the response of the 
circuit. The loading effects of meters are discussed in detail in a later 
section of this chapter. For now, we will assume that the meters are ideal 
and do not affect the networks to which they are applied so that we can 
concentrate on their proper usage.

R3 6 k�

R2

E

RT = 12 k�

R1

4 k�

I3 = 6 mA

FIG. 5.18
Series circuit to be analyzed in Example 5.6.
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Furthermore, it is particularly helpful in the laboratory to realize that

the voltages of a circuit can be measured without disturbing 
(breaking the connections in) the circuit.

In Fig. 5.19, all the voltages of the circuit in Fig. 5.12 are being meas-
ured by voltmeters that were connected without disturbing the original 
configuration. Note that all the voltmeters are placed across the resis-
tive elements. In addition, note that the positive (normally red) lead of 
the voltmeter is connected to the point of higher potential (positive 
sign), with the negative (normally black) lead of the voltmeter con-
nected to the point of lower potential (negative sign) for V1 and V2. The 
result is a positive reading on the display. If the leads were reversed, the 
magnitude would remain the same, but a negative sign would appear as 
shown for V3.

10 � 30 � 100 �

R3R2

1.800

V
+

8 . 4 0

6 0 . 0

+

R1

0.600

V
+

Is

6.000

V
+

V2+ – V3+ –V1+ –

FIG. 5.19
Using voltmeters to measure the voltages across the resistors in Fig. 5.12.

Take special note that the 20 V scale of our meter was used to meas-
ure the -6 V level, while the 2 V scale of our meter was used to measure 
the 0.6 V and 1.8 V levels. The maximum value of the chosen scale must 
always exceed the maximum value to be measured. In general,

when using a voltmeter, start with a scale that will ensure that the 
reading is less than the maximum value of the scale. Then work your 
way down in scales until the reading with the highest level of 
precision is obtained.

Turning our attention to the current of the circuit, we find that

using an ammeter to measure the current of a circuit requires that 
the circuit be broken at some point and the meter inserted in series 
with the branch in which the current is to be determined.

For instance, to measure the current leaving the positive terminal of the 
supply, the connection to the positive terminal must be removed to cre-
ate an open circuit between the supply and resistor R1. The ammeter is 
then inserted between these two points to form a bridge between the sup-
ply and the first resistor, as shown in Fig. 5.20. The ammeter is now in 
series with the supply and the other elements of the circuit. If each meter 
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is to provide a positive reading, the connection must be made such that 
conventional current enters the positive terminal of the meter and leaves 
the negative terminal. This was done for three of the ammeters, with the 
ammeter to the right of R3 connected in the reverse manner. The result is 
a negative sign for the current. However, also note that the current has 
the correct magnitude. Since the current is 60 mA, the 200 mA scale of 
our meter was used for each meter.

As expected, the current at each point in the series circuit is the same 
using our ideal ammeters.

5.4  Power Distribution  
in a Series Circuit

In any electrical system, the power applied will equal the power dissi-
pated or absorbed. For any series circuit, such as that in Fig. 5.21,

the power applied by the dc supply must equal that dissipated by the 
resistive elements.

8 . 4 0

6 0 . 0

+

60.00

mA
+

R1 R2 R3

Is

60.00

+

60.00

+

60.00

+

Is Is Is Is

Is

10 � 30 � 100 �

mA mA mA

FIG. 5.20
Measuring the current throughout the series circuit in Fig. 5.12.

E

R1 R2 R3

PE

PR1

PR2 PR3

Is

FIG. 5.21
Power distribution in a series circuit.
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In equation form,

	 PE = PR1
+ PR2

+ PR3
	 (5.5)

The power delivered by the supply can be determined using

	 PE = EIs  (watts, W)	 (5.6)

The power dissipated by the resistive elements can be determined by 
any of the following forms (shown for resistor R1 only):

	 P1 = V1I1 = I 1
2R1 =

V 1
2

R1
  (watts, W)	 (5.7)

Since the current is the same through series elements, you will find in 
the following examples that

in a series configuration, maximum power is delivered to the largest 
resistor.

EXAMPLE 5.7  For the series circuit in Fig. 5.22 (all standard values):

	 a.	 Determine the total resistance RT.
	 b.	 Calculate the current Is.
	 c.	 Determine the voltage across each resistor.
	 d.	 Find the power supplied by the battery.
	 e.	 Determine the power dissipated by each resistor.
	 f.	 Comment on whether the total power supplied equals the total 

power dissipated.

Solutions: 

	 a.	  RT = R1 + R2 + R3

		   = 1 kΩ + 3 kΩ + 2 kΩ
		   RT = 6 k�

	 b.	 Is =
E

RT
=

36 V

6 kΩ
= 6 mA

	 c.	 V1 = I1R1 = IsR1 = (6 mA)(1 kΩ) = 6 V
V2 = I2R2 = IsR2 = (6 mA)(3 kΩ) = 18 V
V3 = I3R3 = IsR3 = (6 mA)(2 kΩ) = 12 V

	 d.	 PE = EIs = (36 V)(6 mA) = 216 mW
	 e.	 P1 = V1I1 = (6 V)(6 mA) = 36 mW
		  P2 = I 2

2R2 = (6 mA)2(3 kΩ) = 108 mW

		  P3 =
V2

3

 R3
=

(12 V)2

2 kΩ
= 72 mW

	 f.	 PE = PR1
+ PR2

+ PR3

		  216 mW = 36 mW + 108 mW + 72 mW = 216 mW  (checks)

5.5  Voltage Sources in Series

Voltage sources can be connected in series, as shown in Fig. 5.23, to 
increase or decrease the total voltage applied to a system. The net volt-
age is determined by summing the sources with the same polarity and 
subtracting the total of the sources with the opposite polarity. The net 
polarity is the polarity of the larger sum.

R3 2 k�

R2

PR1

E

RT

R1

36 V

3 k�

Is

1 k�

V1 V2

V3

PE

PR2

PR3

FIG. 5.22
Series circuit to be investigated in Example 5.7.



168    Series dc Circuits S

In Fig. 5.23(a), for example, the sources are all “pressuring” current 
to follow a clockwise path, so the net voltage is

ET = E1 + E2 + E3 = 10 V + 6 V + 2 V = 18 V

as shown in the figure. In Fig. 5.23(b), however, the 4 V source is “pres-
suring” current in the clockwise direction while the other two are trying 
to establish current in the counterclockwise direction. In this case, the 
applied voltage for a counterclockwise direction is greater than that for 
the clockwise direction. The result is the counterclockwise direction 
for the current as shown in Fig. 5.23(b). The net effect can be deter-
mined by finding the difference in applied voltage between those sup-
plies “pressuring” current in one direction and the total in the other 
direction. In this case,

ET = E1 + E2 - E3 = 9 V + 3 V - 4 V = 8 V

with the polarity shown in the figure.

Instrumentation

The connection of batteries in series to obtain a higher voltage is com-
mon in much of today’s portable electronic equipment. For example, in 
Fig. 5.24(a), four 1.5 V AAA batteries have been connected in series to 
obtain a source voltage of 6 V. Although the voltage has increased, 
keep in mind that the maximum current for each AAA battery and for 
the 6 V supply is still the same. However, the power available has 
increased by a factor of 4 due to the increase in terminal voltage. Note 
also, as mentioned in Chapter 2, that the negative end of each battery is 
connected to the spring and the positive end to the solid contact. In 
addition, note how the connection is made between batteries using the 
horizontal connecting tabs.

In general, supplies with only two terminals (+  and -) can be con-
nected as shown for the batteries. A problem arises, however, if the sup-
ply has an optional or fixed internal ground connection. In Fig. 5.24(b), 
two laboratory supplies have been connected in series with both grounds 
connected. The result is a shorting out of the lower source E1 (which 
may damage the supply if the protective fuse does not activate quickly 
enough) because both grounds are at zero potential. In such cases, the 
supply E2 must be left ungrounded (floating), as shown in Fig. 5.24(c), 
to provide the 60 V terminal voltage. If the laboratory supplies have an 
internal connection from the negative terminal to ground as a protective 

E1 10 V

E2 6 V

E3 2 V

Is

ET

Is

18 V

(a)

E1 9 V

E2 3 V

E3 4 V

Is

ET

Is

8 V

(b)

FIG. 5.23
Reducing series dc voltage sources to a single source.
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feature for the users, a series connection of supplies cannot be made. Be 
aware of this fact, because some educational institutions add an internal 
ground to the supplies as a protective feature even though the panel still 
displays the ground connection as an optional feature.

5.6  Kirchhoff’s Voltage Law

The law to be described in this section is one of the most important in 
this field. It has application not only to dc circuits but also to any type of 
signal—whether it be ac, digital, and so on. This law is far-reaching and 
can be very helpful in working out solutions to networks that sometimes 
leave us lost for a direction of investigation.

The law, called Kirchhoff’s voltage law (KVL), was developed by 
Gustav Kirchhoff (Fig. 5.25) in the mid-1800s. It is a cornerstone of the 
entire field and, in fact, will never be outdated or replaced.

The application of the law requires that we define a closed path of inves-
tigation, permitting us to start at one point in the network, travel through 
the network, and find our way back to the original starting point. The path 
does not have to be circular, square, or any other defined shape; it must 
simply provide a way to leave a point and get back to it without leaving the 

60 V

4 0 . 0

0 . 0 0

+

2 0 . 0

0 . 0 0

+
a

b

a

b

20 V

40 V

E2

E1

60 V

(c)

20 V

40 V

20 V?

E2

E1

0 V

0 V

a

b

Short across supply E1

(b)

4 0 . 0

0 . 0 0

2 0 . 0

0 . 0 0

+

+

a

b

60 V?

(a)

1.5 V

1.5 V

1.5 V

1.5 V

6 V

E2

E1

FIG. 5.24
Series connection of dc supplies: (a) four 1.5 V batteries in series  

to establish a terminal voltage of 6 V; (b) incorrect connections for two  
series dc supplies; (c) correct connection of two series supplies to establish  

60 V at the output terminals.

German (Königsberg, Berlin) 
(1824–87),
Physicist
Professor of Physics, University of Heidelberg

Although a contributor to a number of areas in the 
physics domain, he is best known for his work in the 
electrical area with his definition of the relationships 
between the currents and voltages of a network in 
1847. Did extensive research with German chemist 
Robert Bunsen (developed the Bunsen burner), 
resulting in the discovery of the important elements 
of cesium and rubidium.

FIG. 5.25
Gustav Robert Kirchhoff. 

Library of Congress Prints and 
Photographs Division
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network. In Fig. 5.26, if we leave point a and follow the current, we will 
end up at point b. Continuing, we can pass through points c and d and even-
tually return through the voltage source to point a, our starting point. The 
path abcda is therefore a closed path, or closed loop. The law specifies that

the algebraic sum of the potential rises and drops around a closed 
path (or closed loop) is zero.

In symbolic form it can be written as

	 gUV = 0  (Kirchhoff’s voltage law in symbolic form)	 (5.8)

where g  represents summation, U the closed loop, and V the potential 
drops and rises. The term algebraic simply means paying attention to 
the signs that result in the equations as we add and subtract terms.

The first question that often arises is, Which way should I go around 
the closed path? Should I always follow the direction of the current? To 
simplify matters, this text will always try to move in a clockwise direc-
tion. By selecting a direction, you eliminate the need to think about 
which way would be more appropriate. Any direction will work as long 
as you get back to the starting point.

Another question is, How do I apply a sign to the various voltages as I 
proceed in a clockwise direction? For a particular voltage, we will assign a 
positive sign when proceeding from the negative to positive potential— 
a positive experience such as moving from a negative checking balance to a 
positive one. The opposite change in potential level results in a negative sign. 
In Fig. 5.26, as we proceed from point d to point a across the voltage source, 
we move from a negative potential (the negative sign) to a positive potential 
(the positive sign), so a positive sign is given to the source voltage E. As we 
proceed from point a to point b, we encounter a positive sign followed by a 
negative sign, so a drop in potential has occurred, and a negative sign is 
applied. Continuing from b to c, we encounter another drop in potential, so 
another negative sign is applied. We then arrive back at the starting point d, 
and the resulting sum is set equal to zero as defined by Eq. (5.8).

Writing out the sequence with the voltages and the signs results in the 
following:

+E - V1 - V2 = 0

which can be rewritten as	 E = V1 + V2	

The result is particularly interesting because it tells us that

the applied voltage of a series dc circuit will equal the sum of the 
voltage drops of the circuit.

Kirchhoff’s voltage law can also be written in the following form:

	 gUVrises = gUVdrops	 (5.9)

revealing that

the sum of the voltage rises around a closed path will always equal 
the sum of the voltage drops.

To demonstrate that the direction that you take around the loop has 
no effect on the results, let’s take the counterclockwise path and com-
pare results. The resulting sequence appears as

-E + V2 + V1 = 0

yielding the same result of	 E = V1 + V2

R2

R1

V1

V2E

a   b

cd

I          I

I

KVL

FIG. 5.26
Applying Kirchhoff’s voltage law to a series  

dc circuit.
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EXAMPLE 5.8  Use Kirchhoff’s voltage law to determine the unknown 
voltage for the circuit in Fig. 5.27.

Solution:  When applying Kirchhoff’s voltage law, be sure to concen-
trate on the polarities of the voltage rise or drop rather than on the type 
of element. In other words, do not treat a voltage drop across a resistive 
element differently from a voltage rise (or drop) across a source. If the 
polarity dictates that a drop has occurred, that is the important fact, not 
whether it is a resistive element or source.

Application of Kirchhoff’s voltage law to the circuit in Fig. 5.27 in 
the clockwise direction results in

+E1 - V1 - V2 - E2 = 0

and	  V1 = E1 - V2 - E2

 = 16 V - 4.2 V - 9 V

so	  V1 = 2.8 V

The result clearly indicates that you do not need to know the values 
of the resistors or the current to determine the unknown voltage. Suf-
ficient information was carried by the other voltage levels to determine 
the unknown.

EXAMPLE 5.9  Determine the unknown voltage for the circuit in Fig. 5.28.

Solution:  In this case, the unknown voltage is not across a single resis-
tive element but between two arbitrary points in the circuit. Simply 
apply Kirchhoff’s voltage law around a path, including the source or 
resistor R3. For the clockwise path, including the source, the resulting 
equation is the following:

+E - V1 - Vx = 0

and	 Vx = E - V1 = 32 V - 12 V = 20 V

For the clockwise path, including resistor R3, the following results:

+Vx - V2 - V3 = 0

and	  Vx = V2 + V3

 = 6 V + 14 V

with	  Vx = 20 V

providing exactly the same solution.

There is no requirement that the followed path have charge flow or cur-
rent. In Example 5.10, the current is zero everywhere, but Kirchhoff’s volt-
age law can still be applied to determine the voltage between the points of 
interest. Also, there will be situations where the actual polarity will not be 
provided. In such cases, simply assume a polarity. If the answer is negative, 
the magnitude of the result is correct, but the polarity should be reversed.

EXAMPLE 5.10  Using Kirchhoff’s voltage law, determine voltages V1 
and V2 for the network in Fig. 5.29.

Solution:  For path 1, starting at point a in a clockwise direction,

+25 V - V1 + 15 V = 0

and	 V1 = 40 V

R1

E1

V1
R2

4.2 V

9 VE216 V

FIG. 5.27
Series circuit to be examined in Example 5.8.

32 V

R1

E

12 V

R3 14 V

R2

6 V

Vx

FIG. 5.28
Series dc circuit to be analyzed in Example 5.9.

25 V 15 V

20 V

2

1

a

V2

V1

FIG. 5.29
Combination of voltage sources to be examined 

in Example 5.10.
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For path 2, starting at point a in a clockwise direction,

 -V2 - 20 V = 0

and	  V2 = −20 V

The minus sign in the solution simply indicates that the actual polari-
ties are different from those assumed.

The next example demonstrates that you do not need to know what 
elements are inside a container when applying Kirchhoff’s voltage law. 
They could all be voltage sources or a mix of sources and resistors. It 
doesn’t matter—simply pay strict attention to the polarities encountered.

Try to find the unknown quantities in the next examples without 
looking at the solutions. It will help define where you may be having 
trouble.

Example 5.11 emphasizes the fact that when you are applying 
Kirchhoff’s voltage law, the polarities of the voltage rise or drop are the 
important parameters, not the type of element involved.

EXAMPLE 5.11  Using Kirchhoff’s voltage law, determine the unknown 
voltage for the circuit in Fig. 5.30.

Solution:  Note that in this circuit, there are various polarities across 
the unknown elements since they can contain any mixture of compo-
nents. Applying Kirchhoff’s voltage law in the clockwise direction 
results in

+60 V - 40 V - Vx + 30 V = 0

and	  Vx = 60 V + 30 V - 40 V = 90 V - 40 V

with	  Vx = 50 V

EXAMPLE 5.12  Determine the voltage Vx for the circuit in Fig. 5.31. 
Note that the polarity of Vx was not provided.

Solution:  For cases where the polarity is not included, simply make an 
assumption about the polarity, and apply Kirchhoff’s voltage law as 
before. If the result has a positive sign, the assumed polarity was correct. 
If the result has a minus sign, the magnitude is correct, but the assumed 
polarity must be reversed. In this case, if we assume point a to be posi-
tive and point b to be negative, an application of Kirchhoff’s voltage law 
in the clockwise direction results in

-6 V - 14 V - Vx + 2 V = 0

and	 Vx = -20 V + 2 V

so that	 Vx = −18 V

Since the result is negative, we know that point a should be negative and 
point b should be positive, but the magnitude of 18 V is correct.

EXAMPLE 5.13  For the series circuit in Fig. 5.32.

	 a.	 Determine V2 using Kirchhoff’s voltage law.
	 b.	 Determine current I2.
	 c.	 Find R1 and R3.

40 V

60 V Vx

30 V

FIG. 5.30
Series configuration to be examined in 

Example 5.11.

6 V

2 V

14 V

Vx

a

b

FIG. 5.31
Applying Kirchhoff’s voltage law to a circuit in 

which the polarities have not been provided for one 
of the voltages (Example 5.12).

I2

54 VE R2 7 � V2

R1

V1 = 18 V

V3 = 15 V

R3

FIG. 5.32
Series configuration to be examined in 

Example 5.13.
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Solutions: 

	 a.	 Applying Kirchhoff’s voltage law in the clockwise direction start-
ing at the negative terminal of the supply results in

-E + V3 + V2 + V1 = 0

and	 E = V1 + V2 + V3 (as expected)

so that	 V2 = E - V1 - V3 = 54 V - 18 V - 15 V

and	 V2 = 21 V

	 b.	 I2 =
V2

R2
=

21 V

7 Ω
		  I2 = 3 A

	 c.	 R1 =
V1

I1
=

18 V

3 A
= 6 �

with R3 =
V3

I3
=

15 V

3 A
= 5 �

EXAMPLE 5.14  Using Kirchhoff’s voltage law and Fig. 5.12, verify 
Eq. (5.1).

Solution:  Applying Kirchhoff’s voltage law around the closed path:

E = V1 + V2 + V3

Substituting Ohm’s law:

 IsRT = I1R1 + I2R2 + I3R3

but	  Is = I1 = I2 = I3

so that	  IsRT = Is(R1 + R2 + R3)

and	  RT = R1 + R2 + R3

which is Eq. (5.1).

5.7  Voltage Division in a Series Circuit

The previous section demonstrated that the sum of the voltages across 
the resistors of a series circuit will always equal the applied voltage. It 
cannot be more or less than that value. The next question is, How will a 
resistor’s value affect the voltage across the resistor? It turns out that

in a series circuit, the larger the resistance the larger the voltage 
across the resistance.

In fact, there is a ratio rule that states that the ratio of the voltages across 
series resistors is in direct proportion to the ratio of their resistive values.

Ratio Rule:

	
V1

V2
=

R1

R2
	 (5.10)

EXAMPLE 5.15  Using the information provided in Fig. 5.33, find

	 a.	 The voltage V1 using the ratio rule.
	 b.	 The voltage V3 using the ratio rule.
	 c.	 The applied voltage E using Kirchhoff’s voltage law.

1 �R3

3 �R2 6 V

6 �R1

E

V1

V2

V3

FIG. 5.33
Example 5.15.
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Solutions: 
	 a.	 Applying the ratio rule:

 
V1

V2
=

R1

R2

 
V1

6 V
=

6 Ω
3 Ω

 V1 = 2(6 V) = 12 V

	 b.	 Applying the ratio rule:

 
V2

V3
=

R2

R3

 
6 V

V3
=

3 Ω
1 Ω

 V3 =
1

3
 (6 V) = 2 V

	 c.	 Applying Kirchhoff’s voltage law:

 E = V1 + V2 + V3 = 12 V + 6 V + 2 V

 = 20 V

Note that if the resistance levels of all the resistors in Example 5.15 
are increased by the same amount, as shown in Fig. 5.34, the voltage 
levels all remain the same. In other words, even though the resistance 
levels were increased by a factor of 1 million, the voltage ratios remained 
the same. Clearly, therefore, it is the ratio of resistor values that counts 
when it comes to voltage division, not the magnitude of the resistors. 
The current level of the network will be severely affected by this change 
in resistance level, but the voltage levels remain unaffected.

Based on the above, it should now be clear that when you first 
encounter a circuit such as that in Fig. 5.35, you will expect that the volt-
age across the 1 MΩ resistor will be much greater than that across the 
1 kΩ or the 100 Ω resistor. In addition, based on a statement above, the 
voltage across the 1 kΩ resistor will be 10 times as great as that across 
the 100 Ω resistor since the resistance level is 10 times as much. Cer-
tainly, you would expect that very little voltage will be left for the 100 Ω 
resistor. Note that the current was never mentioned in the above analy-
sis. The distribution of the applied voltage is determined solely by the 
ratio of the resistance levels. Of course, the magnitude of the resistors 
will determine the resulting current level.

To continue with the above, since 1 MΩ is 1000 times larger than 
1 kΩ, voltage V1 will be 1000 times larger than V2. In addition, voltage 
V2 will be 10 times larger than V3. Finally, the voltage across the largest 
resistor of 1 MΩ will be (10)(1000) = 10,000 times larger than V3.

Now for some details. The total resistance is

 RT = R1 + R2 + R3

 = 1 MΩ + 1 kΩ + 100 Ω
 RT = 1,001,100 �

The current is

Is =
E

RT
=

100 V

1,001,100 Ω
≅ 99.89 mA  (about 100 mA)

20 V 3 M� 6 VE R2

6 M� 12 VR1

1 M� 2 VR3

FIG. 5.34
The ratio of the resistive values determines the 

voltage division of a series dc circuit.

100 V 1 k� V2E R2

1 M� V1R1

V3R3

>> V2 or V3

= 10V3

 R1 >> R2 or R3

100 �

FIG. 5.35
The largest of the series resistive elements 

will capture the major share of the applied voltage.
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with

V1 = I1R1 = IsR1 = (99.89 mA)(1 MΩ) = 99.89 V (almost the full 100 V)

V2 = I2R2 = IsR2 = (99.89 mA)(1 kΩ) = 99.89 mV (about 100 mV)

V3 = I3R3 = IsR3 = (99.89 mA)(100 Ω) = 9.989 mV (about 10 mV)

As illustrated above, the major part of the applied voltage is across the 
1 MΩ resistor. The current is in the microampere range due primarily to 
the large 1 MΩ resistor. Voltage V2 is about 0.1 V, compared to almost 
100 V for V1. The voltage across R3 is only about 10 mV, or 0.010 V.

Before making any detailed, lengthy calculations, you should first 
examine the resistance levels of the series resistors to develop some idea 
of how the applied voltage will be divided through the circuit. It will 
reveal, with a minumum amount of effort, what you should expect when 
performing the calculations (a checking mechanism). It also allows you 
to speak intelligently about the response of the circuit without having to 
resort to any calculations.

Voltage Divider Rule (VDR)

The voltage divider rule (VDR) permits the determination of the volt-
age across a series resistor without first having to determine the current 
of the circuit. The rule itself can be derived by analyzing the simple 
series circuit in Fig. 5.36.

First, determine the total resistance as follows:

RT = R1 + R2

Then	 Is = I1 = I2 =
E

RT

Apply Ohm’s law to each resistor:

V1 = I1R1 = a E

RT
bR1 = R1

E

RT

V2 = I2R2 = a E

RT
bR2 = R2

E

RT

The resulting format for V1 and V2 is

	 Vx = Rx 
E

RT
  (voltage divider rule)	 (5.11)

where Vx is the voltage across the resistor Rx, E is the impressed voltage 
across the series elements, and RT is the total resistance of the series circuit.

The voltage divider rule states that

the voltage across a resistor in a series circuit is equal to the value of 
that resistor times the total applied voltage divided by the total 
resistance of the series configuration.

Although Eq. (5.11) was derived using a series circuit of only two ele-
ments, it can be used for series circuits with any number of series resistors.

EXAMPLE 5.16  For the series circuit in Fig. 5.37.

	 a.	 Without making any calculations, how much larger would you 
expect the voltage across R2 to be compared to that across R1?

	 b.	 Find the voltage V1 using only the voltage divider rule.

V2

E

R2

V1R1

I

RT

FIG. 5.36
Developing the voltage divider rule.

64 V

R2

60 �

R1

20 �

E

V1 V2

FIG. 5.37
Series circuit to be examined using the voltage 

divider rule in Example 5.16.
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	 c.	 Using the conclusion of part (a), determine the voltage across R2.
	 d.	 Use the voltage divider rule to determine the voltage across R2, and 

compare your answer to your conclusion in part (c).
	 e.	 How does the sum of V1 and V2 compare to the applied voltage?

Solutions: 

	 a.	 Since resistor R2 is three times R1, it is expected that V2 = 3V1.

	 b.	 V1 = R1
E

RT
= 20 Ω a 64 V

20 Ω + 60 Ω
b = 20 Ω a 64 V

80 Ω
b = 16 V

	 c.	 V2 = 3V1 = 3(16 V) = 48 V

	 d.	 V2 = R2
E

RT
= (60 Ω)a 64 V

80 Ω
b = 48 V

		  The results are an exact match.
	 e.	 E = V1 + V2 

64 V = 16 V + 48 V = 64 V    (checks)

EXAMPLE 5.17  Using the voltage divider rule, determine voltages V1 
and V3 for the series circuit in Fig. 5.38.

Solution: 
 RT = R1 + R2 + R3

 = 2 kΩ + 5 kΩ + 8 kΩ
 RT = 15 kΩ

 V1 = R1
E

RT
= 2 kΩ a 45 V

15 kΩ
b = 6 V

and	  V3 = R3
E

RT
= 8 kΩ a 45 V

15 Ω
b = 24 V

The voltage divider rule can be extended to the voltage across two or 
more series elements if the resistance in the numerator of Eq. (5.11) is 
expanded to include the total resistance of the series resistors across 
which the voltage is to be found (R′). That is,

	 V′ = R′
E

RT
	 (5.12)

EXAMPLE 5.18  Determine the voltage (denoted V′) across the series 
combination of resistors R1 and R2 in Fig. 5.38.

Solution:  Since the voltage desired is across both R1 and R2, the sum 
of R1 and R2 will be substituted as R′ in Eq. (5.12). The result is

 R′ = R1 + R2 = 2 kΩ + 5 kΩ = 7 kΩ

and	  V′ = R′
E

RT
= 7 kΩ a 45 V

15 kΩ
b = 21 V

In the next example you are presented with a problem of the other 
kind: Given the voltage division, you must determine the required resis-
tor values. In most cases, problems of this kind simply require that you 
are able to use the basic equations introduced thus far in the text.

45 V 5 k�E R2

2 k� V1R1

8 k� V3R3

V'

FIG. 5.38
Series circuit to be investigated in  

Examples 5.17 and 5.18.
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EXAMPLE 5.19  Given the voltmeter reading in Fig. 5.39, find volt-
age V3.

Solution:  Even though the rest of the network is not shown and the cur-
rent level has not been determined, the voltage divider rule can be applied 
by using the voltmeter reading as the full voltage across the series combi-
nation of resistors. That is,

 V3 = R3 
(Vmeter)

R3 + R2
=

3 kΩ(5.6 V)

3 kΩ + 1.2 kΩ
 V3 = 4 V

EXAMPLE 5.20  Design the voltage divider circuit in Fig. 5.40 such 
that the voltage across R1 will be four times the voltage across R2; that is, 
VR1

= 4VR2
.

Solution:  The total resistance is defined by

RT = R1 + R2

However, if	  VR1
= 4VR2

then	  R1 = 4R2

so that	  RT = R1 + R2 = 4R2 + R2 = 5R2

Applying Ohm’s law, we can determine the total resistance of the 
circuit:

RT =
E

Is
=

20 V

4 mA
= 5 kΩ

so	 RT = 5R2 = 5 kΩ

and	 R2 =
5 kΩ

5
= 1 k�

Then	 R1 = 4R2 = 4(1 kΩ) = 4 k�

5.8  Interchanging Series Elements

The elements of a series circuit can be interchanged without affecting 
the total resistance, current, or power to each element. For instance, the 
network in Fig. 5.41 can be redrawn as shown in Fig. 5.42 without 
affecting I or V2. The total resistance RT  is 35 Ω  in both cases, and 
I = 70 V>35 Ω = 2 A. The voltage V2 = IR2 = (2 A)(5 Ω) = 10 V 
for both configurations.

5.600

V
+

R1 4.7 k�

R2 1.2 k�

R3 3 k� V3

R4 10 k�

FIG. 5.39
Voltage divider action for Example 5.19.

20 VE

R2

VR1
R1

VR2

4 mA

FIG. 5.40
Designing a voltage divider circuit (Example 5.20).

70 V

R1

10 �

R2

5 �

E

I

V2

R3 20 �

FIG. 5.41
Series dc circuit with elements to be 

interchanged.

70 VE R2 5 � V2

R1 R3

10 � 20 �

I

FIG. 5.42
Circuit in Fig. 5.41 with R2 and R3 

interchanged.
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EXAMPLE 5.21  Determine I and the voltage across the 7 Ω resistor 
for the network in Fig. 5.43.

Solution:  The network is redrawn in Fig. 5.44.

 RT = (2)(4 Ω) + 7 Ω = 15 Ω

 I =
E

RT
=

37.5 V

15 Ω
= 2.5 A

 V7Ω = IR = (2.5 A)(7 Ω) = 17.5 V

50 V

4 � 4 �

I

7 �

12.5 V

37.5 V

4 � 4 �

I

7 �V V

FIG. 5.44
Redrawing the circuit in Fig. 5.43.

5.9 N otation

Notation plays an increasingly important role in the analysis to follow. It 
is important, therefore, that we begin to examine the notation used 
throughout the industry.

Voltage Sources and Ground

Except for a few special cases, electrical and electronic systems are 
grounded for reference and safety purposes. The symbol for the ground 
connection appears in Fig. 5.45 with its defined potential level—zero 
volts. A grounded circuit may appear as shown in Fig. 5.46(a), (b), or (c). 
In any case, it is understood that the negative terminal of the battery and 
the bottom of the resistor R2 are at ground potential. Although Fig. 5.46(c) 
shows no connection between the two grounds, it is recognized that such 
a connection exists for the continuous flow of charge. If E = 12 V, then 
point a is 12 V positive with respect to ground potential, and 12 V exist 

50 V

4 �

I

V
7 �

4 �

12.5 V

FIG. 5.43
Example 5.21.

0 V

FIG. 5.45
Ground potential.

(a)

R1

R2E

a

(c)

R2

E

R1

b

(b)

R2

E

R1

FIG. 5.46
Three ways to sketch the same series dc circuit.
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across the series combination of resistors R1 and R2. If a voltmeter placed 
from point b to ground reads 4 V, then the voltage across R2 is 4 V, with 
the higher potential at point b.

On large schematics where space is at a premium and clarity is impor-
tant, voltage sources may be indicated as shown in Figs. 5.47(a) and 
5.48(a) rather than as illustrated in Figs. 5.47(b) and 5.48(b). In addition, 
potential levels may be indicated as in Fig. 5.49, to permit a rapid check 
of the potential levels at various points in a network with respect to 
ground to ensure that the system is operating properly.

12 V

R2

R1

R2

R1

12 V

(a) (b)

FIG. 5.47
Replacing the special notation for a dc voltage 

source with the standard symbol.

– 5 V

R2 R2

R1

5 V

(a) (b)

R1

FIG. 5.48
Replacing the notation for a negative dc supply with the standard notation.

R1

R2

R3

25 V

FIG. 5.49
The expected voltage level at a particular point in a 

network if the system is functioning properly.

Double-Subscript Notation

The fact that voltage is an across variable and exists between two points 
has resulted in a double-subscript notation that defines the first subscript 
as the higher potential. In Fig. 5.50(a), the two points that define the 
voltage across the resistor R are denoted by a and b. Since a is the first 
subscript for Vab, point a must have a higher potential than point b if Vab 
is to have a positive value. If, in fact, point b is at a higher potential than 
point a, Vab will have a negative value, as indicated in Fig. 5.50(b).

+

a

Vab

(Vab  =  +)
R

–

b

(a)

I

+

a

Vab

(Vab  =  –)
R

–

b

(b)

I

FIG. 5.50
Defining the sign for double-subscript notation.

In summary:

The double-subscript notation Vab specifies point a as the higher 
potential. If this is not the case, a negative sign must be associated 
with the magnitude of Vab.

In other words,

the voltage Vab is the voltage at point a with respect to (w.r.t.) point b.

Single-Subscript Notation

If point b of the notation Vab is specified as ground potential (zero volts), 
then a single-subscript notation can be used that provides the voltage at 
a point with respect to ground.
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In Fig. 5.51, Va is the voltage from point a to ground. In this case, it is 
obviously 10 V since it is right across the source voltage E. The voltage 
Vb is the voltage from point b to ground. Because it is directly across the 
4 Ω resistor, Vb = 4 V.

In summary:

The single-subscript notation Va specifies the voltage at point a with 
respect to ground (zero volts). If the voltage is less than zero volts, a 
negative sign must be associated with the magnitude of Va.

General Comments

A particularly useful relationship can now be established that has exten-
sive applications in the analysis of electronic circuits. For the above 
notational standards, the following relationship exists:

	 Vab = Va - Vb	 (5.13)

In other words, if the voltage at points a and b is known with respect to 
ground, then the voltage Vab can be determined using Eq. (5.13). In 
Fig. 5.51, for example,

 Vab = Va - Vb = 10 V - 4 V

 = 6 V

EXAMPLE 5.22  Find the voltage Vab for the conditions in Fig. 5.52.

Solution:  Applying Eq. (5.13) gives

 Vab = Va - Vb = 16 V - 20 V

 = −4 V

Note the negative sign to reflect the fact that point b is at a higher 
potential than point a.

EXAMPLE 5.23  Find the voltage Va for the configuration in Fig. 5.53.

Solution:  Applying Eq. (5.13) gives

Vab = Va - Vb

and	  Va = Vab + Vb = 5 V + 4 V

 = 9 V

EXAMPLE 5.24  Find the voltage Vab for the configuration in Fig. 5.54.

Solution:  Applying Eq. (5.13) gives

 Vab = Va - Vb = 20 V - (-15 V) = 20 V + 15 V

 = 35 V

Note in Example 5.24 you must be careful with the signs when apply-
ing the equation. The voltage is dropping from a high level of +20 V to 
a negative voltage of -15 V. As shown in Fig. 5.55, this represents a 
drop in voltage of 35 V. In some ways it’s like going from a positive 
checking balance of $20 to owing $15; the total expenditure is $35.

Va

4 �10 V 4 VE =  10 V

6 �+ +

––

Vb

ba

FIG. 5.51
Defining the use of single-subscript notation 

for voltage levels.

a bR

Va  =  +16 V Vb  =  +20 V

FIG. 5.52
Example 5.22.

Va

a bR

Vab  =  +5 V Vb  =  4 V

FIG. 5.53
Example 5.23.

R Vab10 k�

+

–

Va  =  +20 V

Vb  =  –15 V

FIG. 5.54
Example 5.24.

V

Gnd (0 V)

Va  =  20 V

Vb  =  –15 V

Vab  =  35 V

FIG. 5.55
The impact of positive and negative voltages on the 

total voltage drop.
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EXAMPLE 5.25  Find the voltages Vb, Vc, and Vac for the network in 
Fig. 5.56.

Solution:  Starting at ground potential (zero volts), we proceed through 
a rise of 10 V to reach point a and then pass through a drop in potential 
of 4 V to point b. The result is that the meter reads

Vb = +10 V - 4 V = 6 V

as clearly demonstrated by Fig. 5.57.
If we then proceed to point c, there is an additional drop of 20 V, 

resulting in

Vc = Vb - 20 V = 6 V - 20 V = −14 V

as shown in Fig. 5.58:

6.000

V
+

E2
a

b
+ –

20 V
c

4 V

E1  =  10 V

FIG. 5.56
Example 5.25.

V

4 V
6 V

10 V

Gnd (0 V)

FIG. 5.57
Determining Vb using the defined voltage levels.

V

–4 V

+10 V

Gnd (0 V)

a

b

–20 V

c

Vac  =   +24 V

Vc  =   –14 V

FIG. 5.58
Review of the potential levels for the circuit in Fig. 5.56.

The voltage Vac can be obtainted using Eq. (5.13) or by simply refer-
ring to Fig. 5.58:

 Vac = Va - Vc = 10 V - (-14 V)

 = 24 V

EXAMPLE 5.26  Determine Vab, Vcb, and Vc for the network in Fig. 5.59.

Solution:  There are two ways to approach this problem. The first is to 
sketch the diagram in Fig. 5.60 and note that there is a 54 V drop across 
the series resistors R1 and R2. The current can then be determined using 
Ohm’s law and the voltage levels as follows:

I =
54 V

45 Ω
= 1.2 A

 Vab = IR2 = (1.2 A)(25 Ω) = 30 V

 Vcb = -IR1 = -(1.2 A)(20 Ω) = −24 V

 Vc = E1 = −19 V

Vab25 �

+

–

E2 = +35 V

R2

–

+

a

b

Vcb R1 20 �

E1 = –19 V

c

FIG. 5.59
Example 5.26.

+35 V

54 V

–19 V

Gnd (0 V)

V

FIG. 5.60
Determining the total voltage drop across the 

resistive elements in Fig 5.59.
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The other approach is to redraw the network as shown in Fig. 5.61 to 
clearly establish the aiding effect of E1 and E2 and then solve the result-
ing series circuit:

I =
E1 + E2

RT
=

19 V + 35 V

45 Ω
=

54 V

45 Ω
= 1.2 A

and	 Vab = 30 V    Vcb = −24 V    Vc = −19 V

EXAMPLE 5.27  Using the voltage divider rule, determine the voltages 
V1 and V2 of Fig. 5.62.

Solution:  Redrawing the network with the standard battery symbol 
results in the network in Fig. 5.63. Applying the voltage divider rule 
gives

V1 =
R1E

R1 + R2
=

(4 Ω)(24 V)

4 Ω + 2 Ω
= 16 V

V2 =
R2E

R1 + R2
=

(2 Ω)(24 V)

4 Ω + 2 Ω
= 8 V

EXAMPLE 5.28  For the network in Fig. 5.64.

	 a.	 Calculate Vab.
	 b.	 Determine Vb.
	 c.	 Calculate Vc.

Solutions: 

	 a.	 Voltage divider rule:

Vab =
R1E

RT
=

(2 Ω)(10 V)

2 Ω + 3 Ω + 5 Ω
= +2 V

	 b.	 Voltage divider rule:

Vb = VR2
+ VR3

=
(R2 + R3)E

RT
=

(3 Ω + 5 Ω)(10 V)

10 Ω
= 8 V

or	 Vb = Va - Vab = E - Vab = 10 V - 2 V = 8 V

	 c.	 Vc = ground potential = 0 V

5.10  Ground Connection Awareness

For the majority of the circuits analyzed thus far the ground connection 
appeared at the bottom edge of the schematic usually tied directly to the 
source. There are times, however, for various reasons when it is more 
convenient and appropriate for the ground connection to be placed in 
another part of the circuit.

In general,

the placement of the ground connection will not affect the 
magnitude or polarity of the voltage across an element but it may 
have a significant impact on the voltage from any point in the 
network to ground.

The above will be clearly demonstrated in the next few examples.

a

b

c

25 �R2

R1 20 �

–

+

E1 19 V

I

–

+

+

–

E2 35 V
+

–

FIG. 5.61
Redrawing the circuit in Fig. 5.59 using standard 

dc voltage supply symbols.

V2

4 �R1V1

R2 2 �

+

–
V2

+

–

E  =  +24 V

FIG. 5.62
Example 5.27.

R1 4 � V1

+

–

R2 2 � V2

+

–

24 VE
–

+

FIG. 5.63
Circuit of Fig. 5.62 redrawn.

3 �

5 �E 10 V

Vab

R1 R2

Vb R3

a b

c

+ –

2 � +

–

+

–

FIG. 5.64
Example 5.28.
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EXAMPLE 5.29  For the series network of Fig. 5.65, determine

	 a.	 The voltage Va.
	 b.	 The voltage Vb.
	 c.	 The voltage Vab.

Solutions: 

	 a.	 The voltage from point a to ground is directly across the 16 V volt-
age source and therefore:

Va = E1 = 16 V

	 b.	 The voltage at point b with respect to ground can be determined by 
examining potential rises and drops as we proceed from the ground 
point to the desired point on the network. Starting at ground level, 
we first encounter a 9 V rise in potential due to the voltage source 
E2 followed by a rise in potential due to the source E3. The result 
is that

Vb = +E2 + E3 = +9 V + 7 V = 16 V

		  However, note also that point a is connected to point b so

Vb = Va = 16 V

	 c.	 The voltage Vab can be determined directly from

Vab = Va - Vb = 16 V - 16 V = 0 V

		  or applying Kirchhoff’s voltage law around the closed loop we have

+Vab - E1 + E2 + E3 = 0

and	 Vab = E1 - E3 - E2 = 16 V - 7 V - 9 V = 0 V

EXAMPLE 5.30  For the series network of Fig. 5.66, determine

	 a.	 The voltage Va.
	 b.	 The voltages Vb and Vc.
	 c.	 The voltage Vab.

Solutions: 

	 a.	 Let us first determine the current:

I =
E

R1 + R2 + R3
=

72 V

6 Ω + 8 Ω + 4 Ω
=

72 V

18 Ω
= 4 A

		  The voltage Va is then

Va = V1 = IR1 = (4 A)(6 Ω) = 24 V

	 b.	 The voltage Vb is equal to

Vb = -V2

		  with	 V2 = IR2 = (4 A)(8 Ω) = 32 V

so that	 Vb = −32 V

 Vc = -V2 - V3 = -32 V - (I )(R3)

 = -32 V - (4 A)(4 Ω)

 = -32 V - 16 V

 = −48 V

E1 16 V

E2 9 V

E3 7 V

a

b

FIG. 5.65
Example 5.29.

4 �

8 �

6 �

72 V

a

E

1R

2R

3R

c

b

I

V1

V2

V3

FIG. 5.66
Example 5.30.
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	 c.	 The voltage Vab is

Vab = Va - Vb = 24 V - (-32 V) = 56 V

EXAMPLE 5.31 

	 a.	 For the series circuit of Fig. 5.67 find the voltages Va, Vb, and Vc.
	 b.	 Determine the voltage Vad.

Solutions: 

	 a.	 Clearly,

Va = 0 V

		  The current:

I =
E1 - E2

R1 + R2 + R3
=

240 V - 60 V

10 Ω + 40 Ω + 50 Ω
=

180 V

100 Ω
= 1.8 A

so that	 V2 = IR2 = (1.8 A)(40 Ω) = 72 V

V3 = IR3 = (1.8 A)(50 Ω) = 90 V

and	 Vb = -V2 - V3 = -72 V - 90 V = −162 V

Vc = -V2 = -(72 V) = −72 V

	 b.	 Applying Kirchhoff’s voltage law:

Vad + V1 - E1 = 0

so that	  Vad = E1 - V1

with	  V1 = I(R1) = (1.8 A)(10 Ω) = 18 V

and finally	  Vad = E1 - V1 = 240 V - 18 V = 222 V

5.11  Voltage Regulation  
and the Internal Resistance  
of Voltage Sources

When you use a dc supply such as the generator, battery, or supply in 
Fig. 5.68, you initially assume that it will provide the desired voltage for 
any resistive load you may hook up to the supply. In other words, if the 
battery is labeled 1.5 V or the supply is set at 20 V, you assume that they 
will provide that voltage no matter what load you may apply. Unfortu-
nately, this is not always the case. For instance, if we apply a 1 kΩ 

10 �

50 �

40 �

E1

V1 V2

V3

E2

R1 R2

R3

60 V

240 V

a c

bd

I

FIG. 5.67
Example 5.31.

E

(a) (b)

Rint

E

2 7 . 1

0 . 0 0

+

E
E

FIG. 5.68
(a) Sources of dc voltage; (b) equivalent circuit.
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resistor to a dc laboratory supply, it is fairly easy to set the voltage across 
the resistor to 20 V. However, if we remove the 1 kΩ  resistor and 
replace it with a 100 Ω resistor and don’t touch the controls on the sup-
ply at all, we may find that the voltage has dropped to 19.14 V. Change 
the load to a 68 Ω resistor, and the terminal voltage drops to 18.72 V. 
We discover that the load applied affects the terminal voltage of the sup-
ply. In fact, this example points out that

a network should always be connected to a supply before the level of 
supply voltage is set.

The reason the terminal voltage drops with changes in load (current 
demand) is that

every practical (real-world) supply has an internal resistance in series 
with the idealized voltage source

as shown in Fig. 5.68(b). The resistance level depends on the type of sup-
ply, but it is always present. Every year new supplies come out that are less 
sensitive to the load applied, but even so, some sensitivity still remains.

The supply in Fig. 5.69 helps explain the action that occurred above 
as we changed the load resistor. Due to the internal resistance of the 
supply, the ideal internal supply must be set to 20.1 V in Fig. 5.69(a) if 
20 V are to appear across the 1 kΩ resistor. The internal resistance will 
capture 0.1 V of the applied voltage. The current in the circuit is deter-
mined by simply looking at the load and using Ohm’s law; that is, 
IL = VL>RL = 20 V>1 kΩ = 20 mA, which is a relatively low current.

20.1 V

5 �

1.28 V
Rint

RL = 68 � VL = 18.72 V

(c)

20.1 V

5 �

0.1 V
Rint

RL = 1 k�

(a)

20.1 V

5 �

0.86 V
Rint

RL = 100 � VL = 19.14 V

(b)

IL = 20 mA IL = 191.43 mA IL = 275.34 mA

VL = 20 VE EE

FIG. 5.69
Demonstrating the effect of changing a load on the terminal voltage of a supply.

In Fig. 5.69(b), all the settings of the supply are left untouched, but 
the 1 kΩ load is replaced by a 100 Ω resistor. The resulting current is 
now IL = E>RT = 20.1 V>105 Ω = 191.43 mA, and the output voltage 
is VL = ILR = (191.43 mA)(100 Ω) = 19.14 V, a drop of 0.86 V. In 
Fig. 5.69(c), a 68 Ω load is applied, and the current increases substan-
tially to 275.34 mA with a terminal voltage of only 18.72 V. This is a 
drop of 1.28 V from the expected level. Quite obviously, therefore, as 
the current drawn from the supply increases, the terminal voltage contin-
ues to drop.

If we plot the terminal voltage versus current demand from 0 A to 
275.34 mA, we obtain the plot in Fig. 5.70. Interestingly enough, it turns 
out to be a straight line that continues to drop with an increase in current 
demand. Note, in particular, that the curve begins at a current level of 
0 A. Under no-load conditions, where the output terminals of the supply 
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are not connected to any load, the current will be 0 A due to the absence 
of a complete circuit. The output voltage will be the internal ideal supply 
level of 20.1 V.

The slope of the line is defined by the internal resistance of the sup-
ply. That is,

	 Rint =
∆VL

∆IL
  (ohms, Ω)	 (5.14)

which for the plot in Fig. 5.70 results in

Rint =
∆VL

∆IL
=

20.1 V - 18.72 V

275.34 mA - 0 mA
=

1.38 V

275.34 mA
= 5 �

For supplies of any kind, the plot of particular importance is the output 
voltage versus current drawn from the supply, as shown in Fig. 5.71(a). 
Note that the maximum value is achieved under no-load (NL) conditions 
as defined by Fig. 5.71(b) and the description above. Full-load (FL) con-
ditions are defined by the maximum current the supply can provide on a 
continuous basis, as shown in Fig. 5.71(c).

∆IL

0 20 mA 191.43 mA 275.34 mA IL

VL

20 V

19.14 V
18.72 V

20.1 V

∆VL

FIG. 5.70
Plotting VL versus IL for the supply in Fig. 5.69.

∆VL
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VNL = E

VFL

0
INL IFL

IL

∆IL

(a) (b)

Rint

E

Is = 0 A

VNL = E

(c)

Rint

E

IFL

RL VFL

IFL = Imax

+

–

+

–

+ –

+

–

+

–

FIG. 5.71
Defining the properties of importance for a power supply.
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As a basis for comparison, an ideal power supply and its response 
curve are provided in Fig. 5.72. Note the absence of the internal resist-
ance and the fact that the plot is a horizontal line (no variation at all with 
load demand)—an impossible response curve. When we compare the 
curve in Fig. 5.72 with that in Fig. 5.71(a), however, we now realize that 
the steeper the slope, the more sensitive is the supply to the change in 
load and therefore the less desirable it is for many laboratory proce-
dures. In fact,

the larger the internal resistance, the steeper is the drop in voltage 
with an increase in load demand (current).

0 INL IFL IL

E
VNL = E

VFL = E

VL

E RL VL = E
+

–

+

–

FIG. 5.72
Ideal supply and its terminal characteristics.

To help us anticipate the expected response of a supply, a defining 
quantity called voltage regulation (abbreviated VR; often called load 
regulation on specification sheets) was established. The basic equation 
in terms of the quantities in Fig. 5.71(a) is the following:

	 VR =
VNL - VFL

VFL
* 100%	 (5.15)

The examples to follow demonstrate that

the smaller the voltage or load regulation of a supply, the less will 
the terminal voltage change with increasing levels of current 
demand.

For the supply above with a no-load voltage of 20.1 V and a full-load 
voltage of 18.72 V, at 275.34 mA the voltage regulation is

VR =
VNL - VFL

VFL
* 100% =

20.1 V - 18.72 V

18.72 V
* 100% ≅ 7.37%

which is quite high, revealing that we have a very sensitive supply. Most 
modern commercial supplies have regulation factors less than 1%, with 
0.01% being very typical.

EXAMPLE 5.32 

	 a.	 Given the characteristics in Fig. 5.73, determine the voltage regula-
tion of the supply.

	 b.	 Determine the internal resistance of the supply.
	 c.	 Sketch the equivalent circuit for the supply.
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Solutions: 

	 a.	  VR =
VNL - VFL

VFL
* 100%

		   =
120 V - 118 V

118 V
* 100% =

2

118
* 100%

		   VR ≅ 1.7%

	 b.	 Rint =
∆VL

∆IL
=

120 V - 118 V

10 A - 0 A
=

2 V

10 A
= 0.2 �

	 c.	 See Fig. 5.74.

EXAMPLE 5.33  Given a 60 V supply with a voltage regulation of 2%:

	 a.	 Determine the terminal voltage of the supply under full-load conditions.
	 b.	 If the half-load current is 5 A, determine the internal resistance of 

the supply.
	 c.	 Sketch the curve of the terminal voltage versus load demand and the 

equivalent circuit for the supply.

Solutions: 

	 a.	  VR =
VNL - VFL

VFL
* 100%

		   2% =
60 V - VFL

VFL
* 100%

		   
2%

100%
=

60 V - VFL

VFL

		   0.02VFL = 60 V - VFL

		   1.02VFL = 60 V

		   VFL =
60 V

1.02
= 58.82 V

	 b.	 IFL = 10 A

		   Rint =
∆VL

∆IL
=

60 V - 58.82 V

10 A - 0 A
=

1.18 V

10 A
≅ 0.12 �

	 c.	 See Fig. 5.75.

0 IL

VL

(VNL) 120 V
118 V (VFL)

10 A (IFL)

FIG. 5.73
Terminal characteristics for the supply of Example 5.32.

E

0.2 �

120 V

Rint

+

–

FIG. 5.74
dc supply with the terminal characteristics 

of Fig. 5.73.
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E

0.12 �

60 V

Rint

0

VL

INL = 0 A IFL = 10 A IL

VNL = 60 V VFL = 58.82 V

+

–

FIG. 5.75
Characteristics and equivalent circuit for the supply of Example 5.33.

5.12  Loading Effects of Instruments

In the previous section, we learned that power supplies are not the ideal 
instruments we may have thought they were. The applied load can have an 
effect on the terminal voltage. Fortunately, since today’s supplies have such 
small load regulation factors, the change in terminal voltage with load can 
usually be ignored for most applications. If we now turn our attention to the 
various meters we use in the lab, we again find that they are not totally ideal:

Whenever you apply a meter to a circuit, you change the circuit and 
the response of the system. Fortunately, however, for most 
applications, considering the meters to be ideal is a valid 
approximation as long as certain factors are considered.

For instance,

any ammeter connected in a series circuit will introduce resistance to 
the series combination that will affect the current and voltages of the 
configuration.

The resistance between the terminals of an ammeter is determined by 
the chosen scale of the ammeter. In general,

for ammeters, the higher the maximum value of the current for a 
particular scale, the smaller will the internal resistance be.

For example, it is not uncommon for the resistance between the termi-
nals of an ammeter to be 250 Ω for a 2 mA scale but only 1.5 Ω for the 
2 A scale, as shown in Fig. 5.76(a) and (b). If you are analyzing a circuit 
in detail, you can include the internal resistance as shown in Fig. 5.76 as 
a resistor between the two terminals of the meter.

At first reading, such resistance levels at low currents give the impres-
sion that ammeters are far from ideal, and that they should be used only 
to obtain a general idea of the current and should not be expected to 
provide a true reading. Fortunately, however, when you are reading cur-
rents below the 2 mA range, the resistors in series with the ammeter are 
typically in the kilohm range. For example, in Fig. 5.77(a), for an ideal 
ammeter, the current displayed is 0.6 mA as determined from 
Is = E>RT = 12 V>20 kΩ = 0.6 mA. If we now insert a meter with an 
internal resistance of 250 Ω as shown in Fig. 5.77(b), the additional 
resistance in the circuit will drop the current to 0.593 mA as determined 
from Is = E>RT = 12 V>20.25 kΩ = 0.593 mA. Now, certainly the 
current has dropped from the ideal level, but the difference in results is 
only about 1%—nothing major, and the measurement can be used for 

1.530

2mA
mA

COM+
250 �

(a)

0.972

2A

A
COM+

1.5 �

(b)

FIG. 5.76
Including the effects of the internal resistance of 

an ammeter: (a) 2 mA scale; (b) 2 A scale.
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most purposes. If the series resistors were in the same range as the 250 Ω 
resistors, we would have a different problem, and we would have to look 
at the results very carefully.

Let us go back to Fig. 5.20 and determine the actual current if each meter 
on the 2 A scale has an internal resistance of 1.5 Ω. The fact that there are 
four meters will result in an additional resistance of (4)(1.5 Ω) = 6 Ω in 
the circuit, and the current will be Is = E>RT = 8.4 V>146 Ω ≅ 58 mA, 
rather than the 60 mA under ideal conditions. This value is still close enough 
to be considered a helpful reading. However, keep in mind that if we were 
measuring the current in the circuit, we would use only one ammeter, and 
the current would be Is = E>RT = 8.4 V>141.5 Ω ≅ 59 mA, which can 
certainly be approximated as 60 mA.

In general, therefore, be aware that this internal resistance must be 
factored in, but for the reasons just described, most readings can be used 
as an excellent first approximation to the actual current.

It should be added that because of this insertion problem with 
ammeters, and because of the very important fact that the circuit must 
be disturbed to measure a current, ammeters are not used as much as 
you might initially expect. Rather than break a circuit to insert a meter, 
the voltage across a resistor is often measured and the current then 
calculated using Ohm’s law. This eliminates the need to worry about 
the level of the meter resistance and having to disturb the circuit. 
Another option is to use the clamp-type ammeters introduced in Chap-
ter 2, removing the concerns about insertion loss and disturbing the 
circuit. Of course, for many practical applications (such as on power 
supplies), it is convenient to have an ammeter permanently installed so 
that the current can quickly be read from the display. In such cases, 
however, the design is such as to compensate for the insertion loss.

In summary, therefore, keep in mind that the insertion of an ammeter 
will add resistance to the branch and will affect the current and voltage 
levels. However, in most cases the effect is minimal, and the reading 
will provide a good first approximation to the actual level.

(a)

0.600

2mA
mA

COM+
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0.593

COM+

2mA
mA

250 �

2 k�

18 k�12 V RT = 2 k� + 18 k� = 20 k�

Is
Is

(b)

2 k�

18 k�12 V RT = 250 � + 2 k� + 18 k�
     = 20.25 k�

Is

+

–

+

–

FIG. 5.77
Applying an ammeter set on the 2 mA scale to a circuit with resistors in the kilohm range: (a) ideal; (b) practical.
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The loading effect of voltmeters is discussed in detail in the next chap-
ter because loading is not a series effect. In general, however, the results 
will be similar in many ways to those of the ammeter, but the major differ-
ence is that the circuit does not have to be disturbed to apply the meter.

5.13  Protoboards (Breadboards)

At some point in the design of any electrical/electronic system, a proto-
type must be built and tested. One of the most effective ways to build a 
testing model is to use the protoboard (in the past most commonly 
called a breadboard) in Fig. 5.78. It permits a direct connection of the 
power supply and provides a convenient method for holding and con-
necting the components. There isn’t a great deal to learn about the proto-
board, but it is important to point out some of its characteristics, 
including the way the elements are typically connected.

Conductively

connected

regions

FIG. 5.78
Protoboard with areas of conductivity defined using two different approaches.

The red terminal Va is connected directly to the positive terminal of 
the dc power supply, with the black lead Vb connected to the negative 
terminal and the green terminal used for the ground connection. Under 
the hole pattern, there are continuous horizontal copper strips under the 
top and bottom rows, as shown by the copper bands in Fig. 5.78. In the 
center region, the conductive strips are vertical but do not extend beyond 
the deep notch running the horizontal length of the board. That’s all 
there is to it, although it will take some practice to make the most effec-
tive use of the conductive patterns.

As examples, the network in Fig. 5.12 is connected on the protoboard 
in the photo in Fig. 5.79 using two different approaches. After the dc 
power supply has been hooked up, a lead is brought down from the posi-
tive red terminal to the top conductive strip marked “+ .” Keep in mind 
that now the entire strip is connected to the positive terminal of the supply. 
The negative terminal is connected to the bottom strip marked with a 
minus sign (-), so that 8.4 V can be read at any point between the top 
positive strip and the bottom negative strip. A ground connection to the 
negative terminal of the battery was made at the site of the three terminals. 
For the user’s convenience, kits are available in which the length of the 
wires is color coded. Otherwise, a spool of 24 gage wire is cut to length 
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and the ends are stripped. In general, feel free to use the extra length—
everything doesn’t have to be at right angles. For most protoboards, 1/4 
through 1 W resistors will insert nicely in the board. For clarity, 1/2 W 
resistors are used in Fig. 5.79. The voltage across any component can be 
easily read by inserting additional leads as shown in the figure (yellow 
leads) for the voltage V3 of each configuration (the yellow wires) and 
attaching the meter. For any network, the components can be wired in a 
variety of ways. Note in the configuration on the right that the horizontal 
break through the center of the board was used to isolate the two terminals 
of each resistor. Even though there are no set standards, it is important that 
the arrangement can easily be understood by someone else. 

Additional setups using the protoboard are in the chapters to follow 
so that you can become accustomed to the manner in which it is used 
most effectively. You will probably see the protoboard quite frequently 
in your laboratory sessions or in an industrial setting.

5.14  Applications

Before looking at a few applications, we need to consider a few general char-
acteristics of the series configuration that you should always keep in mind 
when designing a system. First, and probably the most important, is that

if one element of a series combination of elements should fail, it will 
disrupt the response of all the series elements. If an open circuit occurs, 
the current will be zero. If a short circuit results, the voltage will increase 
across the other elements, and the current will increase in magnitude.

Second, and a thought you should always keep in mind, is that

for the same source voltage, the more elements you place in series, 
the less is the current and the less is the voltage across all the 
elements of the series combination.

Source connections

Meter connections

Meter
connections

FIG. 5.79
Two setups for the network in Fig. 5.12 on a protoboard with yellow leads added to each  

configuration to measure voltage V3 with a voltmeter.

+

–
8.4 V

30 �10 � 100 �
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Last, and a result discussed in detail in this chapter, is that

the current is the same for each element of a series combination, but 
the voltage across each element is a function of its terminal 
resistance.

There are other characteristics of importance that you will learn as you 
investigate possible areas of application, but the above are the most 
important.

Series Control

One common use of the series configuration is in setting up a system 
that ensures that everything is in place before full power is applied. In 
Fig. 5.80, various sensing mechanisms can be tied to series switches, 
preventing power to the load until all the switches are in the closed or on 
position. For instance, as shown in Fig. 5.80, one component may test 
the environment for dangers such as gases, high temperatures, and so on. 
The next component may be sensitive to the properties of the system to 
be energized to be sure all components are working. Security is another 
factor in the series sequence, and finally a timing mechanism may be 
present to ensure limited hours of operation or to restrict operating peri-
ods. The list is endless, but the fact remains that “all systems must be 
go” before power reaches the operating system.

Environm
ental

testing

System

properties

Security

Tim
ing

control

System

Power
source

+

–

FIG. 5.80
Series control over an operating system.

Holiday Lights

In recent years, the small blinking holiday lights with 50 to 100 bulbs on 
a string have become very popular [see Fig. 5.81(a)]. Although holiday 
lights can be connected in series or parallel (to be described in the next 
chapter), the smaller blinking light sets are normally connected in series. 
It is relatively easy to determine if the lights are connected in series. If 
one wire enters and leaves the bulb casing, they are in series. If two 
wires enter and leave, they are probably in parallel. Normally, when 
bulbs are connected in series, if one burns out (the filament breaks and 
the circuit opens), all the bulbs go out since the current path has been 
interrupted. However, the bulbs in Fig. 5.81(a) are specially designed, 
as shown in Fig. 5.81(b), to permit current to continue to flow to the other 
bulbs when the filament burns out. At the base of each bulb, there is a 
fuse link wrapped around the two posts holding the filament. The fuse 
link of a soft conducting metal appears to be touching the two vertical 
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posts, but in fact a coating on the posts or fuse link prevents conduction 
from one to the other under normal operating conditions. If a filament 
should burn out and create an open circuit between the posts, the current 
through the bulb and other bulbs would be interrupted if it were not for 
the fuse link. At the instant a bulb opens up, current through the circuit 
is zero, and the full 120 V from the outlet appears across the bad bulb. 
This high voltage from post to post of a single bulb is of sufficient poten-
tial difference to establish current through the insulating coatings and 
spot-weld the fuse link to the two posts. The circuit is again complete, 
and all the bulbs light except the one with the activated fuse link. Keep 
in mind, however, that each time a bulb burns out, there is more voltage 
across the other bulbs of the circuit, making them burn brighter. Eventu-
ally, if too many bulbs burn out, the voltage reaches a point where the 
other bulbs burn out in rapid succession. To prevent this, you must 
replace burned-out bulbs at the earliest opportunity. 

The bulbs in Fig. 5.81(b) are rated 2.5 V at 0.2 A or 200 mA. Since there 
are 50 bulbs in series, the total voltage across the bulbs will be 50 * 2.5 V 
or 125 V, which matches the voltage available at the typical home outlet. 
Since the bulbs are in series, the current through each bulb will be 200 mA. 
The power rating of each bulb is therefore P = VI = (2.5 V)(0.2 A) =
0.5 W with a total wattage demand of 50 * 0.5 W = 25 W.

A schematic representation for the set of Fig. 5.81(a) is provided in 
Fig. 5.82(a). Note that only one flasher unit is required. Since the bulbs 
are in series, when the flasher unit interrupts the current flow, it turns off 
all the bulbs. As shown in Fig. 5.81(b), the flasher unit incorporates a 
bimetal thermal switch that opens when heated by the current to a preset 
level. As soon as it opens, it begins to cool down and closes again so that 
current can return to the bulbs. It then heats up again, opens up, and 
repeats the entire process. The result is an on-and-off action that creates 
the flashing pattern we are so familiar with. Naturally, in a colder cli-
mate (for example, outside in the snow and ice), it initially takes longer 
to heat up, so the flashing pattern is slow at first, but as the bulbs warm 
up, the frequency increases. 

The manufacturer specifies that no more than six sets should be con-
nected together. How can you connect the sets together, end to end, with-
out reducing the voltage across each bulb and making all the lights 

(a)

FIG. 5.81
Holiday lights: (a) 50-unit set; (b) bulb construction.

(b)
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dimmer? If you look closely at the wiring, you will find that since the 
bulbs are connected in series, there is one wire to each bulb with addi-
tional wires from plug to plug. Why would they need two additional 
wires if the bulbs are connected in series? Because when each set is con-
nected together, they are actually in a parallel arrangement (to be dis-
cussed in the next chapter). This unique wiring arrangement is shown in 
Fig. 5.82(b) and redrawn in Fig. 5.82(c). Note that the top line is the hot 
line to all the connected sets, and the bottom line is the return, neutral, or 
ground line for all the sets. Inside the plug in Fig. 5.82(d), the hot line and 
return are connected to each set, with the connections to the metal spades 
of the plug as shown in Fig. 5.82(b). We will find in the next chapter that 
the current drawn from the wall outlet for parallel loads is the sum of the 
current to each branch. The result, as shown in Fig. 5.82(c), is that the 
current drawn from the supply is 6 * 200 mA = 1.2 A, and the total 
wattage for all six sets is the product of the applied voltage and the source 
current or (120 V)(1.2 A) = 144 W with 144 W>6 = 24 W per set.

Microwave Oven

Series circuits can be very effective in the design of safety equipment. 
Although we all recognize the usefulness of the microwave oven, it can 
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FIG. 5.82
(a) Single-set wiring diagram; (b) special wiring arrangement; (c) redrawn schematic;  

(d) special plug and flasher unit.
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be quite dangerous if the door is not closed or sealed properly. It is not 
enough to test the closure at only one point around the door because the 
door may be bent or distorted from continual use, and leakage can result 
at some point distant from the test point. One common safety arrange-
ment appears in Fig. 5.83. Note that magnetic switches are located all 
around the door, with the magnet in the door itself and the magnetic door 
switch in the main frame. Magnetic switches are simply switches where 
the magnet draws a magnetic conducting bar between two contacts to 
complete the circuit—somewhat revealed by the symbol for the device 
in the circuit diagram in Fig. 5.83. Since the magnetic switches are all in 
series, they must all be closed to complete the circuit and turn on the 
power unit. If the door is sufficiently out of shape to prevent a single 
magnet from getting close enough to the switching mechanism, the cir-
cuit will not be complete, and the power cannot be turned on. Within the 
control unit of the power supply, either the series circuit completes a 
circuit for operation or a sensing current is established and monitored 
that controls the system operation.

Magnets

Magnetic
door
switches

Microwave
power
unit

Magnets

Series safety switches

FIG. 5.83
Series safety switches in a microwave oven.

Series Alarm Circuit

The circuit in Fig. 5.84 is a simple alarm circuit. Note that every ele-
ment of the design is in a series configuration. The power supply is a 
5 V dc supply that can be provided through a design similar to that in 
Fig. 2.36, a dc battery, or a combination of an ac and a dc supply that 
ensures that the battery will always be at full charge. If all the sensors 
are closed, a current of 5 mA results because of the terminal load of the 
relay of about 1 kΩ. That current energizes the relay and maintains an 
off position for the alarm. However, if any of the sensors is opened, the 
current will be interrupted, the relay will let go, and the alarm circuit 
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FIG. 5.84
Series alarm circuit.
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will be energized. With relatively short wires and a few sensors, the 
system should work well since the voltage drop across each is mini-
mal. However, since the alarm wire is usually relatively thin, resulting 
in a measurable resistance level, if the wire to the sensors is too long, a 
sufficient voltage drop could occur across the line, reducing the volt-
age across the relay to a point where the alarm fails to operate prop-
erly. Thus, wire length is a factor that must be considered if a series 
configuration is used. Proper sensitivity to the length of the line should 
remove any concerns about its operation. An improved design is 
described in Chapter 8.

5.15 C omputer Analysis

PSpice

In Section 4.9, the basic procedure for setting up the PSpice folder and 
running the program were presented. Because of the detail provided in 
that section, you should review it before proceeding with this example. 
Because this is only the second example using PSpice, some detail is 
provided, but not at the level of Section 4.9.

The circuit to be investigated appears in Fig. 5.85. Selecting the 
OrCAD Capture CIS Lite icon opens the Start Page in which Project 
New is selected. Then the sequence Name-PSpice 5-1-OK-Create a 
blank project-OK results in the PAGE1 screen and we are ready to set 
up the circuit.

First select the Place part key to open the Place Part dialog box. 
Note that the SOURCE library is already in place in the Library list 
(from the efforts of Chapter 4). Selecting SOURCE results in the list 
of sources under Part List, and VDC can be selected. Click OK, and 
the cursor can put it in place with a single left click. Right-click and 
select End Mode to end the process since the network has only one 
source. One more left click, and the source is in place. Select the Place 
a Part key again, followed by ANALOG library to find the resistor R. 
Once the resistor has been selected, click OK to place it next to the 
cursor on the screen. This time, since three resistors need to be placed, 
there is no need to go to End Mode between depositing each. Simply 
click one in place, then the next, and finally the third. Then right-click 
to end the process with End Mode. Finally, add a GND by selecting 
the ground key from the right toolbar and selecting 0/CAPSYM in the 
Place Ground dialog box. Click OK, and place the ground as shown 
in Fig. 5.86.

Connect the elements by using the Place a wire key to obtain the 
crosshair on the screen. Start at the top of the voltage source with a left 
click, and draw the wire, left-clicking it at every 90° turn. When a wire 
is connected from one element to another, move on to the next connec-
tion to be made—there is no need to go End Mode between connec-
tions. Now set the labels and values by double-clicking on each 
parameter to obtain a Display Properties dialog box. Since the dialog 
box appears with the quantity of interest in a blue background, type in 
the desired label or value, followed by OK. The network is now com-
plete and ready to be analyzed.

To simulate, select the New Simulation Profile key (which appears 
as a data sheet on the second toolbar down with a star in the top left 
corner) to obtain the New Simulation dialog box. Enter Bias Point for 
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FIG. 5.85
Series dc network to be analyzed using PSpice.
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a dc solution under Name, and hit the Create key. Click OK, and then 
select the Run PSpice key (the blue arrow) to initiate the simulation. 
Select the V, I, and W in the toolbar at the top of the window to ensure 
that the voltages, currents, and power are displayed on the screen. The 
resulting display (Fig. 5.86) shows the current is 3 A for the circuit with 
15 V across R3, and 36 V from a point between R1 and R2 to ground. 
The voltage across R2 is 36 V - 15 V = 21 V, and the voltage across 
R1 is 54 V - 36 V = 18 V. The power supplied or dissipated by each 
element is also listed.

Multisim

The construction of the network in Fig. 5.87 using Multisim is simply 
an extension of the procedure outlined in Chapter 4. For each resistive 
element or meter, the process is repeated. The label for each increases 
by one as additional resistors or meters are added. Remember from the 
discussion of Chapter 4 that you should add the meters before connect-
ing the elements together because the meters take space and must be 
properly oriented. The current is determined by the XMM1 ammeter 
and the voltages by XMM2 through XMM5. Of particular importance, 
note that

in Multisim the meters are connected in exactly the same way they 
would be placed in an active circuit in the laboratory. Ammeters are 
in series with the branch in which the current is to be determined, 
and voltmeters are connected between the two points of interest 
(across resistors). In addition, for positive readings, ammeters are 
connected so that conventional current enters the positive terminal, 
and voltmeters are connected so that the point of higher potential is 
connected to the positive terminal.

FIG. 5.86
Applying PSpice to a series dc circuit.



Computer Analysis    199S

The meter settings are made by double-clicking on the meter symbol 
on the schematic. In each case, V or I had to be chosen, but the horizon-
tal line for dc analysis is the same for each. Again, you can select the Set 
key to see what it controls, but the default values of meter input resist-
ance levels are fine for all the analyses described in this text. Leave the 
meters on the screen so that the various voltages and the current level 
will be displayed after the simulation.

Recall from Chapter 4 that elements can be moved by simply clicking 
on each schematic symbol and dragging it to the desired location. The 
same is true for labels and values. Labels and values are set by double-
clicking on the label or value and entering your preference. Click OK, 
and they are changed on the schematic. You do not have to first select a 
special key to connect the elements. Simply bring the cursor to the start-
ing point to generate the small circle and crosshair. Click on the starting 
point, and follow the desired path to the next connection path. When in 
the correct location, click again, and the line appears. All connecting 
lines can make 90° turns. However, you cannot follow a diagonal path 
from one point to another. To remove any element, label, or line, click 
on the quantity to obtain the four-square active status, and select the 
Delete key or the scissors key on the top menu bar.

Recall from Chapter 4 that you can initiate simulation through the 
sequence Simulate-Run by selecting the green Run key or switching 
the Simulate Switch to the 1 position.

Note from the results that the sum of the voltages measured by 
XMM2 and XMM4 equals the applied voltage. All the meters are con-
sidered ideal, so there is no voltage drop across the XMM1 ammeter. In 
addition, they do not affect the value of the current measured by XMM1. 
All the voltmeters have essentially infinite internal resistance, while the 
ammeters all have zero internal resistance. Of course, the meters can be 
entered as anything but ideal using the Set option. Note also that the sum 
of the voltages measured by XMM3 and XMM5 equals that measured 
by XMM4 as required by Kirchhoff’s voltage law.

FIG. 5.87
Applying Multisim to a series dc circuit.
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Problems

Section 5.2  Series Resistors

	 1.	 For each configuration in Fig. 5.88, find the individual (not 
combinations of) elements (voltage sources and/or resis-
tors) that are in series.

(a)

R3

R1

E R2

+

–

R3E

R1

(b)

R2

+

–

(c)

R3

R2

+

–

R1

E1
+

–
E2

R2

E

R1

(d)

R3

R4

R5

+

–

FIG. 5.88
Problem 1.

	 2.	 For each configuration in Fig. 5.89, find the individual (not 
combinations of) elements (voltage sources and/or resis-
tors) that are in series.
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FIG. 5.89
Problem 2.
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	 3.	 Find the total resistance RT  for each configuration in 
Fig. 5.90. Note that only standard resistor values were used.

(a)
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6.8 k� 
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FIG. 5.90
Problem 3.

	 4.	 Find the total resistance RT  for each configuration in 
Fig. 5.91. Note that only standard resistor values were used.
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82 �

R2

47 �

R1

R3 820 �RT

91 �

R5

51 �

R6

1.2 k�

R4

3.3 k�

2.2 k� 10 k�

6.8 k�RT

(c)

FIG. 5.91
Problem 4.

	 5.	 For each circuit board in Fig. 5.92, find the total resistance 
between connection tabs 1 and 2.

(b)

1

2

(a)

1

2

FIG. 5.92
Problem 5.
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	 6.	 For the circuit in Fig. 5.93, composed of standard values:
	 a.	 Which resistor will have the most impact on the total 

resistance?
	 b.	 On an approximate basis, which resistors can be ignored 

when determining the total resistance?
	 c.	 Find the total resistance, and comment on your results 

for parts (a) and (b).

	 7.	 For each configuration in Fig. 5.94, determine the ohmme-
ter reading.

R3 2 M�

R4

400 k�

200 �

R1

2 k�

R2

RT

FIG. 5.93
Problem 6.

(a)

�
10 �

20 � 68 �

33 �

56 �

+–

47 �

(b)

�
2.2 k� 0.82 k�

3.3 k� 2.7 k�

1.2 k�

+–

FIG. 5.94
Problem 7.

(a) 

�

129 k�

R 56 k�

22 k�

33 k� 18 k�

(b)

�

103 k�

24 k� R1

43 k�

R2 = 2R1

+–+–

FIG. 5.95
Problem 8.

(a)

1 k�

1.2 k�

2.2 k�

�

�

(b)

1.2 k�

10 k�

9.1 k�

�

(c)

12 �

22 �

16 �

20 �

+–

+–+–

FIG. 5.96
Problem 9.

	 8.	 Find the resistance R, given the ohmmeter reading for each 
configuration of Fig. 5.95.

	 9.	 What is the ohmmeter reading for each configuration in 
Fig. 5.96?
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	12.	 Find the applied voltage necessary to develop the current 
specified in each circuit in Fig. 5.99.

	13.	 For each network in Fig. 5.100, constructed of standard val-
ues, determine:

	 a.	 The current I.
	 b.	 The source voltage E.
	 c.	 The unknown resistance.
	 d.	 The voltage across each element.

Section 5.3  Series Circuits

	10.	 For the series configuration in Fig. 5.97, constructed of 
standard values:

	 a.	 Find the total resistance.
	 b.	 Calculate the current.
	 c.	 Find the voltage across each resistive element.
	 d.	 Calculate the power delivered by the source.
	 e.	 Find the power delivered to the 20 Ω resistor.

R3 20 � V3
E 76 V

RT 12 �

R1

V1

14 �

R2

V2

Is

+ – + –

+

–

+

–

FIG. 5.97
Problem 10.

	11.	 For the series configuration in Fig. 5.98, constructed using 
standard value resistors:

	 a.	 Without making a single calculation, which resistive 
element will have the most voltage across it? Which 
will have the least?

R3 84 k� V3
E 60 V

RT

Is

2.2 k�

V1

R1

6.8 k�

V2

R2

+ – + –

+

–

+

–

FIG. 5.98
Problem 11.

	 b.	 Which resistor will have the most impact on the total 
resistance and the resulting current? Find the total 
resistance and the current.

	 c.	 Find the voltage across each element and review your 
response to part (a).

6 k�

12 k�

E 10 �E

I = 4 mA

4 k� 12 � 22 � 82 �

(a) (b)

I = 500 mA

+

–+

–

FIG. 5.99
Problem 12.

1.3 �

4.7 �

R

E
RT = 9 �

(I)

2.2 k�

(II)

E

R

3.3 k�

I

5.2 V

I

6.6 V

9 V

+–

+

–

+–

+

–

+

–

FIG. 5.100
Problem 13.
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	14.	 For each configuration in Fig. 5.101, what are the readings 
of the ammeter and the voltmeter?

*	15.	 For each configuration of Fig. 5.102, find the current I and 
the voltage V.

(a)

2.2 k�

A

V
+–

+ –

2.2 k�E 36 V
–

+

(c)

12 V

A V
+–+ –

A
+–

V

(b)

2.4 k�

E 22.5 V

1 k�

+–

+

–

+–

5.6 k� 
1.2 k� 

3.3 k�

FIG. 5.101
Problem 14.

+ –

40    �
20    �

10    �

100     �

V

80 V

I

10  �

30    �20     �

10 V

I
V

E
+

–

(b)(a)

FIG. 5.102
Problem 15.

Section 5.4  Power Distribution in a Series Circuit

	16.	 For the circuit in Fig. 5.103, constructed of standard value 
resistors:

	 a.	 Find the total resistance, current, and voltage across 
each element.

	 b.	 Find the power delivered to each resistor.
	 c.	 Calculate the total power delivered to all the resistors.
	 d.	 Find the power delivered by the source.
	 e.	 How does the power delivered by the source compare to 

that delivered to all the resistors?

E 120 V

2 k�

R3

1 k�

R2

3 k�

R1

+

–

FIG. 5.103
Problem 16.

R V3

2 A
P = 28 W

+

–
E

+

–

3 �

V1+ –

2 �

V2+ –

FIG. 5.104
Problem 17.

	 f.	 Which resistor received the most power? Why?
	 g.	 What happened to all the power delivered to the 

resistors?
	 h.	 If the resistors are available with wattage ratings of 

1/2 W, 1 W, 2 W, and 5 W, what minimum wattage rat-
ing can be used for each resistor?

	17.	 Find the unknown quantities for the circuit of Fig. 5.104 
using the information provided.
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	18.	 Find the unknown quantities for the circuit in Fig. 5.105 
using the information provided.

	19.	 Eight holiday lights are connected in series as shown in 
Fig. 5.106.

	 a.	 If the set is connected to a 120 V source, what is the 
current through the bulbs if each bulb has an internal 
resistance of 28 1>2 Ω?

	 b.	 Determine the power delivered to each bulb.
	 c.	 Calculate the voltage drop across each bulb.
	 d.	 If one bulb burns out (that is, the filament opens), what 

is the effect on the remaining bulbs? Why?

2 �
RT = 36 �

I R1 R2

P = 20 W

P = 12 W

E
+

–

FIG. 5.105
Problem 18.

FIG. 5.106
Problem 19.

	*20.	 For the conditions specified in Fig. 5.107, determine the 
unknown resistance.

RE 40 V

40 W

R2

6 �4 �

R1

+

–

FIG. 5.107
Problem 20.

(a) (b) (c)

a b
4 9 V V 12 V

6 V

b

12 V V5 V8 

a

12 V

b

a

4 V

+ 4 V –

8 V

+– +– + –

+ –

– 8 V + 

+–

+– + – +–

+

–+

–

FIG. 5.108
Problem 21.

4.7 � 5.6 �

8 V

(a)

4.7 �

10 V

5.6 �

4 V

(b)

12 V

1.2 �

+–

+–32 V+ –

I

I

+

–
20 V

+

–

+

–

FIG. 5.109
Problem 22.

Section 5.5  Voltage Sources in Series

	21.	 Combine the series voltage sources in Fig. 5.108 into a sin-
gle voltage source between points a and b.

	22.	 Determine the current I and its direction for each network in 
Fig. 5.109. Before solving for I, redraw each network with a 
single voltage source.
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	23.	 Find the unknown voltage source and resistor for the networks 
in Fig. 5.110. First combine the series voltage sources into a 
single source. Indicate the direction of the resulting current.

(b)

R

12 V10 V

4 V2 k�16 V

E

(a)

R

20 V

2 mA

3 k�

P = 8 mW

E

+ –

+–

+–

+ –

+

–

+–

+

–

FIG. 5.110
Problem 23.

Section 5.6  Kirchhoff’s Voltage Law

	24.	 Using Kirchhoff’s voltage law, find the unknown voltages 
for the circuits in Fig. 5.111.

(b)

30  V8V

(a)

4 V

V

6 V 12   V

R

V +–
+–

+

–+

–

+– 7 V+ –

+

–

+

–

(c)

12 V

22 V

14 V 12 V
+

–

–

+

+

–

+ – + –

+ –

V2

V1

FIG. 5.111
Problem 24.

	25.		 a.	 Find the current I for the network of Fig. 5.112.
	 b.	 Find the voltage V2.
	 c.	 Find the voltage V1 using Kirchhoff’s voltage law.

4 �  

6 �  

V2

V1

50 V

10 V + –

+

–

+ –

+

–

I

FIG. 5.112
Problem 25.
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Section 5.7  Voltage Division in a Series Circuit

	28.	 Determine the values of the unknown resistors in Fig. 5.115 
using only the provided voltage levels. Do not calculate the 
current!

+

–

(b)

6 V

10 V
V2

V1

E 24 V

10 V 8 V

V2

1 k�

1 M� 

(a)

+ –

+

–

+

–

+

–

+ –

V1

+

–

+

–

+

–

FIG. 5.113
Problem 26.

V1

3 V

10 V  2 V V2

(b)

24 V 10 V 

3 A 

(a)

6 V

+

–

+–

+–

+

–

+

–

+ –V1+ –

V2 +–

+

–

+

–

2.7 �

1.8 �

R1 R1

R2

FIG. 5.114
Problem 27.

E

10 k�

R3

1 k�

R2

100 �

R1

60 V

V3V2V1

V�

+

–
+ –

+ –+ –+ –

FIG. 5.116
Problem 29.

E

R3

200 V

R2

100 V

R1 = 4 �

2 V + –+ –+ –

+

–

FIG. 5.115
Problem 28.

	 b.	 How much larger will voltage V3 be compared to V2 
and V1?

	 c.	 Find the voltage across the largest resistor using the 
voltage divider rule.

	 d.	 Find the voltage across the series combination of resis-
tors R2 and R3.

	29.	 For the configuration in Fig. 5.116, with standard resistor 
values:

	 a.	 By inspection, which resistor will receive the largest 
share of the applied voltage? Why?

	30.	 Using the voltage divider rule, find the indicated voltages in 
Fig. 5.117.

	26.	 Using Kirchhoff’s voltage law, determine the unknown 
voltages for the series circuits in Fig. 5.113.

	27.	 Using Kirchhoff’s voltage law, find the unknown voltages 
for the configurations in Fig. 5.114.
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	33.	 Using the information provided, find the unknown quanti-
ties of Fig. 5.120.

V3R3120 V

R1

V1

R2

10 V

(b)

80 VV2E

1.2 � 

6.8 � 

V1

2 �

20 V

(a)

+

–

+ – + –

+

–

+

–

+

–

+ – + –

+

–

+

–

FIG. 5.118
Problem 31.

0.6 �

2.5 �

0.72 V

1.5 �

0.5 � 0.9 �

(c)

2 k�

4 k�

40 V

1 k�

3 k�

(b)

40 �

20 �

30 V

(a)

+

–
+

–

+

–

+

–

+

–

+

– V
VV

FIG. 5.117
Problem 30.

E

(a)

V12 �

V268 � 

1000 V100 �

(b)

+

–

+

–

+

–
+

–

E1

Vx

+

–

+

–

V2

+

–

3.3 k� 

6.8 k� 

4.7 k� 

10 k� 

50 V

E2

+

–
30 V

V1+ –

  
FIG. 5.119
Problem 32.

R3

4 k�

R2

3 k�

R1

V23 V

I

R4 4 k� V4
E

18 V

+

–

+ – + –+ –

+

–

FIG. 5.120
Problem 33.

	31.	 Using the voltage divider rule or Kirchhoff’s voltage law, 
determine the unknown voltages for the configurations in 
Fig. 5.118. Do not calculate the current!

	32.	 Using the voltage divider rule or Kirchhoff’s voltage law, 
determine the unknown voltages for the configurations in 
Fig. 5.119. Do not calculate the current!

	*34.	 Using the voltage divider rule, find the unknown resistance 
for the configurations in Fig. 5.121.

	35.	 	a.	� Design a voltage divider circuit that will permit the use 
of an 8 V, 50 mA bulb in an automobile with a 12 V 
electrical system.

	 b.	 What is the minimum wattage rating of the chosen resis-
tor if 1>4 W, 1>2 W, and 1 W resistors are available?
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*	38.	 	a.	� Design the circuit in Fig. 5.124 such that VR2
=

3VR1
 and VR3

= 4VR2
.

	 b.	 If the current is reduced to 10 mA, what are the new 
values of R1, R2, and R3? How do they compare to the 
results of part (a)?

*	36.	 Design the voltage divider in Fig. 5.122 such that 
VR1

= 1>5VR1
. That is, find R1 and R2.

R 4 V

2.2 k� 1.8 k�

20 V

6 M� 

3 M� 

140 V

R

110 V

(b)

(a)

+

–

+

–

+

–

+

–

FIG. 5.121
Problem 34.

R2R1

92 V

5 mA

+ –

FIG. 5.122
Problem 36.

*	37.	 Find the voltage across each resistor in Fig. 5.123 if 
R1 = 2R3 and R2 = 7R3.

E 80 V

R3 V3

R2 V2

R1 V1

+

–

+

–
+

–

+

–

FIG. 5.123
Problem 37.

R3E 64 V

10 mA

R2R1

+

–

FIG. 5.124
Problem 38.

Section 5.9  Notation

	39.	 Determine the voltages Va, Vb, and Vab for the networks in 
Fig. 5.125.

(a)

VbVa

12 V 16 V+ – +–

5 V
+

–

(b)

10 V 

6 V Vb

Va

+–

R

+

–
6 V

–

+

(c)

3 V 
Va

21 V 

+– + –
8 V 

Vb

+

–

8 V–

FIG. 5.125
Problem 39.

	40.	 	a.	� Determine the current I (with direction) and the voltage 
V (with polarity) for the networks in Fig. 5.126.

	 b.	 Find the voltage Va.
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	41.	 For the network in Fig. 5.127 determine the voltages:
	 a.	 Va, Vb, Vc, Vd, Ve

	 b.	 Vab, Vdc, Vcb

	 c.	 Vac, Vdb

(a) (b)

60 V

–60 V 

–100 V –20 V 

18 �

2 k� 

2 k� � 2 k� 2 k� �82 �

a

a

I

I

   (a) (b)

60 V

–60 V 

–100 V –20 V 

18 �

2 k� 

2 k� � 2 k� 2 k� �82 �

a

a

I

I

FIG. 5.126
Problem 40.

3 k�

b
54 V1 k�

27 V

a
2 k�

c d

e

+

–

+ –

FIG. 5.127
Problem 41.

*	42.	 Given the information appearing in Fig. 5.128, find the 
level of resistance for R1 and R3.

R1

+18 V 

R2 10 �

R3

+6 V 

–6 V

–12 V 

FIG. 5.128
Problem 42.

	43.	 Determine the values of R1, R2, R3, and R4 for the voltage 
divider of Fig. 5.129 if the source current is 16 mA.

	44.	 For the network in Fig. 5.130, determine the voltages:
	 a.	 Va, Vb, Vc, Vd

	 b.	 Vab, Vcb, Vcd

	 c.	 Vad, Vca

	*45.	 For the integrated circuit in Fig. 5.131, determine V0, V4,
V7, V10, V23, V30, V67, V56, and I (magnitude and direction.)

R1

R2

+48 V

R3

R4

+12 V

–20 V

16 mA

100 VE
+

–

FIG. 5.129
Problem 43.

b

a

d

c

6 V 

8 V 

14 V 

10 �

10 �

–

+

+

–
+

–

FIG. 5.130
Problem 44.

6 mA

2  k�

4 �

–8 V

+4 V

+12 V 

1
2

4
3 65

7
0

+3 V

4 V

I

FIG. 5.131
Problem 45.

Section 5.10  Ground Connection Awareness

	*46.	 For the integrated circuit in Fig. 5.132, determine V0, V03, 
V2, V23, V12, and Ii.

3.3 k�
E

3 mA

3

21

0

20 V

Ii

4 mA

10 mA

+

–

FIG. 5.132
Problem 46.
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	 b.	 If an ammeter with an internal resistance of 450 Ω is 
inserted into the circuit in Fig. 5.134, what effect will it 
have on the current level?

	 c.	 Is the difference in current level a major concern for 
most applications?

Section 5.15  Computer Analysis

	50.	 Use the computer to verify the results of Example 5.4.

	51.	 Use the computer to verify the results of Example 5.5.

	52.	 Use the computer to verify the results of Example 5.16.

Glossary

Circuit  A combination of a number of elements joined at termi-
nal points providing at least one closed path through which 
charge can flow.

Closed loop  Any continuous connection of branches that allows 
tracing of a path that leaves a point in one direction and 
returns to that same point from another direction without leav-
ing the circuit.

Internal resistance  The inherent resistance found internal to 
any source of energy.

Kirchhoff’s voltage law (KVL)  The algebraic sum of the poten-
tial rises and drops around a closed loop (or path) is zero.

Protoboard (breadboard)  A flat board with a set pattern of 
conductively connected holes designed to accept 24-gage 
wire and components with leads of about the same diameter.

Series circuit  A circuit configuration in which the elements 
have only one point in common and each terminal is not con-
nected to a third, current-carrying element.

Two-terminal device  Any element or component with two 
external terminals for connection to a network configuration.

Voltage divider rule (VDR)  A method by which a voltage in a 
series circuit can be determined without first calculating the 
current in the circuit.

Voltage regulation (VR)  A value, given as a percent, that pro-
vides an indication of the change in terminal voltage of a sup-
ply with a change in load demand.

Section 5.11  Voltage Regulation and the Internal 
Resistance of Voltage Sources

	47.	 	a.	� Find the internal resistance of a battery that has a no-
load output of 122 V and that supplies a full-load cur-
rent of 3.5 A to a load of 32 Ω.

	 b.	 Find the voltage regulation of the supply.

	48.	 	a.	� Find the voltage to the load (full-load conditions) for 
the supply in Fig. 5.133.

	 b.	 Find the voltage regulation of the supply.
	 c.	 How much power is supplied by the source and lost to 

the internal resistance under full-load conditions?

VL 3.3 �

+

–

Rint  =  43 m� 

E  =  12 V

+

–

FIG. 5.133
Problem 48.

Section 5.12  Loading Effects of Instruments

	49.	 	a.	 Determine the current through the circuit in Fig. 5.134.

E 30 V 6.8 k�

�2.2 k

I
+

–

FIG. 5.134
Problem 49.
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Parallel dc Circuits

6.1  Introduction

Two network configurations, series and parallel, form the framework for some of the most 
complex network structures. A clear understanding of each will pay enormous dividends as 
more complex methods and networks are examined. The series connection was discussed in 
detail in the last chapter. We will now examine the parallel circuit and all the methods and 
laws associated with this important configuration.

6.2  Parallel Resistors

The term parallel is used so often to describe a physical arrangement between two elements 
that most individuals are aware of its general characteristics.

In general,

two elements, branches, or circuits are in parallel if they have two points in common.

For instance, in Fig. 6.1(a), the two resistors are in parallel because they are connected at 
points a and b. If both ends were not connected as shown, the resistors would not be in paral-
lel. In Fig. 6.1(b), resistors R1 and R2 are in parallel because they again have points a and b in 
common. R1 is not in parallel with R3 because they are connected at only one point (b). Fur-
ther, R1 and R3 are not in series because a third connection appears at point b. The same can 
be said for resistors R2 and R3. In Fig. 6.1(c), resistors R1 and R2 are in series because they 
have only one point in common that is not connected elsewhere in the network. Resistors R1 
and R3 are not in parallel because they have only point a in common. In addition, they are not 
in series because of the third connection to point a. The same can be said for resistors R2 and 
R3. In a broader context, it can be said that the series combination of resistors R1 and R2 is in 
parallel with resistor R3 (more will be said about this option in Chapter 7). Furthermore, even 
though the discussion above was only for resistors, it can be applied to any two-terminal ele-
ments such as voltage sources and meters.

Parallel dc Circuits

•	 Become familiar with the characteristics of a 
parallel network and how to solve for the voltage, 
current, and power to each element.

•	 Develop a clear understanding of Kirchhoff’s 
current law and its importance to the analysis of 
electric circuits.

•	 Become aware of how the source current will split 
between parallel elements and how to properly 
apply the current divider rule.

•	 Clearly understand the impact of open and short 
circuits on the behavior of a network.

•	 Learn how to use an ohmmeter, voltmeter, and 
ammeter to measure the important parameters of 
a parallel network.

Objectives

66

P
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On schematics, the parallel combination can appear in a number of 
ways, as shown in Fig. 6.2. In each case, the three resistors are in paral-
lel. They all have points a and b in common.

(b)

R3

R1

R2

a b

(a)

a

b

R1 R2

(c)

R3

R1

R2

a

b

c

FIG. 6.1
(a) Parallel resistors; (b) R1 and R2 are in parallel; (c) R3 is in parallel with  

the series combination of R1 and R2.

R3R2R1

a

b

(a)

R3R2R1

a

b

(b)

R3R2R1

a

b
(c)

FIG. 6.2
Schematic representations of three parallel resistors.

For resistors in parallel as shown in Fig. 6.3, the total resistance is 
determined from the following equation:

	
1

RT
=

1

R1
+

1

R2
+

1

R3
+ . . . +

1

RN
	 (6.1)

Since G = I>R, the equation can also be written in terms of conduct-
ance levels as follows:

	 GT = G1 + G2 + G3 + . . . + GN  (siemens, S) 	 (6.2)

RNR2R1 R3
RT

FIG. 6.3
Parallel combination of resistors.
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which is an exact match in format with the equation for the total resist-
ance of resistors in series: RT = R1 + R2 + R3 + g + RN. The result 
of this duality is that you can go from one equation to the other simply by 
interchanging R and G.

In general, however, when the total resistance is desired, the follow-
ing format is applied:

	 RT =
1

1

R1
+

1

R2
+

1

R3
+ . . . +

1

RN

	 (6.3)

Quite obviously, Eq. (6.3) is not as “clean” as the equation for the total 
resistance of series resistors. You must be careful when dealing with all 
the divisions into 1. The great feature about the equation, however, is 
that it can be applied to any number of resistors in parallel.

EXAMPLE 6.1 

	 a.	 Find the total conductance of the parallel network in Fig. 6.4.
	 b.	 Find the total resistance of the same network using the results of 

part (a) and using Eq. (6.3).

Solutions: 

	 a.	 G1p =
1

R1
=

1

3 Ω
= 0.333 S,  G2 =

1

R2
=

1

6 Ω
= 0.167 S 

and GT = G1 + G2 = 0.333 S + 0.167 S = 0.5 S

	 b.	  RT =
1

GT
=

1

0.5 S
= 2 �

Applying Eq. (6.3) gives

RT =
1

1

R1
+

1

R2

=
1

1

3 Ω
+

1

6 Ω

 =
1

0.333 S + 0.167 S
=

1

0.5 S
= 2 �

EXAMPLE 6.2 

	 a.	 By inspection, which parallel element in Fig. 6.5 has the least con-
ductance? Determine the total conductance of the network and note 
whether your conclusion was verified.

R2R1
RT

3 � 6 �

FIG. 6.4
Parallel resistors for Example 6.1.

R3 1 k�R2 200 �R1 2 �
RT

FIG. 6.5
Parallel resistors for Example 6.2.
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	 b.	 Determine the total resistance from the results of part (a) and by 

applying Eq. (6.3).

Solutions: 

	 a.	 Since the 1 kΩ resistor has the largest resistance and therefore the 
largest opposition to the flow of charge (level of conductivity), it 
will have the lowest level of conductance:

 G1 =
1

R1
=

1

2 Ω
= 0.5 S, G2 =

1

R2
+

1

200 Ω
= 0.005 S = 5 mS

 G3 =
1

R3
=

1

1 kΩ
=

1

1000 Ω
= 0.001 S = 1 mS

 GT = G1 + G2 + G3 = 0.5 S + 5 mS + 1 mS

 = 506 mS

Note the difference in conductance level between the 2 Ω (500 mS) 
and the 1 kΩ (1 mS) resistor.

	 b.	 RT =
1

GT
=

1

506 mS
= 1.976 �

Applying Eq. (6.3) gives

 RT =
1

1

R1
+

1

R2
+

1

R3

=
1

1

2 Ω
+

1

200 Ω
+

1

1 kΩ

 =
1

0.5 S + 0.005 S + 0.001 S
=

1

0.506 S
= 1.98 �

EXAMPLE 6.3  Find the total resistance of the configuration in Fig. 6.6.

R3

5 �

R2 4 �
RT

R1

1 �

FIG. 6.6
Network to be investigated in Example 6.3.

Solution:  First the network is redrawn as shown in Fig. 6.7 to clearly 
demonstrate that all the resistors are in parallel.

Applying Eq. (6.3) gives

 RT =
1

1

R1
+

1

R2
+

1

R3

=
1

1

1 Ω
+

1

4 Ω
+

1

5 Ω

 =
1

1 S + 0.25 S + 0.2 S
=

1

1.45 S
 ≅ 0.69 �
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If you review the examples above, you will find that the total resist-
ance is less than the smallest parallel resistor. That is, in Example 
6.1, 2 Ω is less than 3 Ω or 6 Ω. In Example 6.2, 1.976 Ω is less than 
2 Ω, 100 Ω, or 1 kΩ; and in Example 6.3, 0.69 Ω is less than 1 Ω, 4 Ω, 
or 5 Ω. In general, therefore,

the total resistance of parallel resistors is always less than the value 
of the smallest resistor.

This is particularly important when you want a quick estimate of the 
total resistance of a parallel combination. Simply find the smallest 
value, and you know that the total resistance will be less than that 
value. It is also a great check on your calculations. In addition, you 
will find that

if the smallest resistance of a parallel combination is much smaller 
than that of the other parallel resistors, the total resistance will be 
very close to the smallest resistance value.

This fact is obvious in Example 6.2, where the total resistance of 1.976 Ω 
is very close to the smallest resistance of 2 Ω.

Another interesting characteristic of parallel resistors is demonstrated 
in Example 6.4.

EXAMPLE 6.4 

	 a.	 What is the effect of adding another resistor of 100 Ω in parallel 
with the parallel resistors of Example 6.1 as shown in Fig. 6.8?

	 b.	 What is the effect of adding a parallel 1 Ω resistor to the configura-
tion in Fig. 6.8?

R3 5 �R2 4 �R1 1 �
RT

FIG. 6.7
Network in Fig. 6.6 redrawn.

R3 100 �R2 6 �R1 3 �
RT

FIG. 6.8
Adding a parallel 100 Ω resistor to the network in Fig. 6.4.
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Solutions: 

	 a.	 Applying Eq. (6.3) gives

 RT =
1

1

R1
+

1

R2
+

1

R3

=
1

1

3 Ω
+

1

6 Ω
+

1

100 Ω

 =
1

0.333 S + 0.167 S + 0.010 S
=

1

0.510 S
= 1.96 �

The parallel combination of the 3 Ω and 6 Ω resistors resulted 
in a total resistance of 2 Ω in Example 6.1. The effect of adding a 
resistor in parallel of 100 Ω had little effect on the total resistance 
because its resistance level is significantly higher (and conductance 
level significantly less) than that of the other two resistors. The total 
change in resistance was less than 2%. However, note that the total 
resistance dropped with the addition of the 100 Ω resistor.

	 b.	 Applying Eq. (6.3) gives

 RT =
1

1

R1
+

1

R2
+

1

R3
+

1

R4

=
1

1

3 Ω
+

1

6 Ω
+

1

100 Ω
+

1

1 Ω

 =
1

0.333 S + 0.167 S + 0.010 S + 1 S
=

1

0.51 S
= 0.66 �

The introduction of the 1 Ω resistor reduced the total resistance 
from 2 Ω to only 0.66 Ω—a decrease of almost 67%. The fact that 
the added resistor has a resistance less than that of the other parallel 
elements and one-third that of the smallest contributed to the signifi-
cant drop in resistance level.

In part (a) of Example 6.4, the total resistance dropped from 2 Ω to 
1.96 Ω. In part (b), it dropped to 0.66 Ω. The results clearly reveal that

the total resistance of parallel resistors will always drop as new 
resistors are added in parallel, irrespective of their value.

Recall that this is the opposite of what occurs for series resistors, where 
additional resistors of any value increase the total resistance.

Special Case: Equal Parallel Resistors

For equal resistors in parallel, the equation for the total resistance 
becomes significantly easier to apply. For N equal resistors in parallel, 
Eq. (6.3) becomes

 RT =
1

1

R
+

1

R
+

1

R
+ . . . +

1

RN

 =
1

N a 1

R
b

=
1

N

R

and	 RT =
R

N
	 (6.4)
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In other words,

the total resistance of N parallel resistors of equal value is the resistance 
of one resistor divided by the number (N) of parallel resistors.

EXAMPLE 6.5  Find the total resistance of the parallel resistors in Fig. 6.9.

12 �12 �12 �
RT

R1 R2 R3

FIG. 6.9
Three equal parallel resistors to be investigated in Example 6.5.

Solution:  Applying Eq. (6.4) gives

RT =
R

N
=

12 Ω
3

= 4 �

EXAMPLE 6.6  Find the total resistance for the configuration in Fig. 6.10.

R2 2 � R3 2 �

R4

2 �

RT

R1 2 �

FIG. 6.10
Parallel configuration for Example 6.6.

R4 2 �
RT

R3 2 �R2 2 �R1 2 �

FIG. 6.11
Network in Fig. 6.10 redrawn.

Solution:  Redrawing the network results in the parallel network in 
Fig. 6.11.

Applying Eq. (6.4) gives

RT =
R

N
=

2 Ω
4

= 0.5 �

Special Case: Two Parallel Resistors

In the vast majority of cases, only two or three parallel resistors will have 
to be combined. With this in mind, an equation has been derived for two 
parallel resistors that is easy to apply and removes the need to continually 
worry about dividing into 1 and possibly misplacing a decimal point. For 
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three parallel resistors, the equation to be derived here can be applied 
twice, or Eq. (6.3) can be used.

For two parallel resistors, the total resistance is determined by  
Eq. (6.1):

1

RT
=

1

R1
+

1

R2

Multiplying the top and bottom of each term of the right side of the 
equation by the other resistance results in

 
1

RT
= aR2

R2
b 1

R1
+ aR1

R1
b 1

R2
=

R2

R1R2
+

R1

R1R2

 
1

RT
=

R2 + R1

R1R2

and	 RT =
R1R2

R1 + R2
	 (6.5)

In words, the equation states that

the total resistance of two parallel resistors is simply the product of 
their values divided by their sum.

EXAMPLE 6.7  Repeat Example 6.1 using Eq. (6.5).

Solution:  Eq. (6.5) gives

RT =
R1R2

R1 + R2
=

(3 Ω)(6 Ω)

3 Ω + 6 Ω
=

18

9
 Ω = 2 �

which matches the earlier solution.

EXAMPLE 6.8  Determine the total resistance for the parallel combina-
tion in Fig. 6.7 using two applications of Eq. (6.5).

Solution:  First the 1 Ω  and 4 Ω  resistors are combined using  
Eq. (6.5), resulting in the reduced network in Fig. 6.12:

Eq. (6.4): R′T =
R1R2

R1 + R2
=

(1 Ω)(4 Ω)

1 Ω + 4 Ω
=

4

5
 Ω = 0.8 Ω

Then Eq. (6.5) is applied again using the equivalent value:

RT =
R′T R3

R′T + R3
=

(0.8 Ω)(5 Ω)

0.8 Ω + 5 Ω
=

4

5.8
 Ω = 0.69 �

The result matches that obtained in Example 6.3.

Recall that series elements can be interchanged without affecting the 
magnitude of the total resistance. In parallel networks,

parallel resistors can be interchanged without affecting the total 
resistance.

The next example demonstrates this and reveals how redrawing a net-
work can often define which operations or equations should be applied.

R3 5 �0.8 �R′TRT

FIG. 6.12
Reduced equivalent in Fig. 6.7.
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EXAMPLE 6.9  Determine the total resistance of the parallel elements 
in Fig. 6.13.

R1 6 � R2 9 � R3 6 � R4 72 � R5 6 �

RT

FIG. 6.13
Parallel network for Example 6.9.

R1 6 � R3 6 � R5 6 � R2 9 � R4 72 �RT

R′T R″T

FIG. 6.14
Redrawn network in Fig. 6.13 (Example 6.9).

Solution:  The network is redrawn in Fig. 6.14.

Eq. (6.4):	 R′T =
R

N
=

6 Ω
3

= 2 Ω

Eq. (6.5):	R″T =
R2R4

R2 + R4
=

(9 Ω)(72 Ω)

9 Ω + 72 Ω
=

648

81
 Ω = 8 Ω

Eq. (6.5):	RT =
R′TR″T

R′T + R″T
=

(2 Ω)(8 Ω)

2 Ω + 8 Ω
=

16

10
 Ω = 1.6 �

The preceding examples involve direct substitution; that is, once the 
proper equation has been defined, it is only a matter of plugging in the 
numbers and performing the required algebraic manipulations. The next 
two examples have a design orientation, in which specific network 
parameters are defined and the circuit elements must be determined.

EXAMPLE 6.10  Determine the value of R2 in Fig. 6.15 to establish a 
total resistance of 9 kΩ.

Solution: 

 RT =
R1R2

R1 + R2

 RT (R1 + R2) = R1R2

 RT R1 + RT R2 = R1R2

 RT R1 = R1R2 - RT R2

 RT R1 = (R1 - RT)R2

and	  R2 =
RT R1

R1 - RT

Substituting values gives

R2 =
(9 kΩ)(12 kΩ)

12 kΩ - 9 kΩ
=

108

3
 kΩ = 36 k�

R1 12 k� R2RT = 9 k�

FIG. 6.15
Parallel network for Example 6.10.
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EXAMPLE 6.11  Determine the values of R1, R2, and R3 in Fig. 6.16 if 
R2 = 2R1, R3 = 2R2, and the total resistance is 16 kΩ.

Solution:  Eq. (6.1) states

1

RT
=

1

R1
+

1

R2
+

1

R3

However, R2 = 2R1    and    R3 = 2R2 = 2(2R1) = 4R1

so that	
1

16 kΩ
=

1

R1
+

1

2R1
+

1

4R1

and	
1

16 kΩ
=

1

R1
+

1

2
 a 1

R1
b +

1

4
 a 1

R1
b

or	
1

16 kΩ
= 1.75a 1

R1
b

resulting in	  R1 = 1.75(16 kΩ) = 28 k�

so that	  R2 = 2R1 = 2(28 kΩ) = 56 k�

and	  R3 = 2R2 = 2(56 kΩ) = 112 k�

Analogies

Analogies were effectively used to introduce the concept of series ele-
ments. They can also be used to help define a parallel configuration. On 
a ladder, the rungs of the ladder form a parallel configuration. When 
ropes are tied between a grappling hook and a load, they effectively 
absorb the stress in a parallel configuration. The cables of a suspended 
roadway form a parallel configuration. There are numerous other analo-
gies that demonstrate how connections between the same two points per-
mit a distribution of stress between the parallel elements.

Instrumentation

As shown in Fig. 6.17, the total resistance of a parallel combination of 
resistive elements can be found by simply applying an ohmmeter. There 
is no polarity to resistance, so either lead of the ohmmeter can be con-
nected to either side of the network. Although there are no supplies in 
Fig. 6.17, always keep in mind that ohmmeters can never be applied to a 
“live” circuit. It is not enough to set the supply to 0 V or to turn it off. It 
may still load down (change the network configuration of) the circuit 
and change the reading. It is best to remove the supply and apply the 

R3R2R1RT = 16 k�

FIG. 6.16
Parallel network for Example 6.11.

R1 R2 R31 k� 2.2 k� 1.2 k�

437.1

+ RT = 437.1 �

FIG. 6.17
Using an ohmmeter to measure the total resistance of a parallel network.
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ohmmeter to the two resulting terminals. Since all the resistors are in the 
kilohm range, the 20 kΩ scale was chosen first. We then moved down to 
the 2 kΩ scale for increased precision. Moving down to the 200 Ω scale 
resulted in an “OL” indication since we were below the measured resist-
ance value.

6.3  Parallel Circuits

A parallel circuit can now be established by connecting a supply across 
a set of parallel resistors as shown in Fig. 6.18. The positive terminal of 
the supply is directly connected to the top of each resistor, while the 
negative terminal is connected to the bottom of each resistor. Therefore, 
it should be quite clear that the applied voltage is the same across each 
resistor. In general,

the voltage is always the same across parallel elements.

Therefore, remember that

if two elements are in parallel, the voltage across them must be the 
same. However, if the voltage across two neighboring elements is the 
same, the two elements may or may not be in parallel.

The reason for this qualifying comment in the above statement is dis-
cussed in detail in Chapter 7.

For the voltages of the circuit in Fig. 6.18, the result is that

	 V1 = V2 = E 	 (6.6)

Once the supply has been connected, a source current is established 
through the supply that passes through the parallel resistors. The current 
that results is a direct function of the total resistance of the parallel cir-
cuit. The smaller the total resistance, the greater is the current, as 
occurred for series circuits also.

Recall from series circuits that the source does not “see” the parallel 
combination of elements. It reacts only to the total resistance of the cir-
cuit, as shown in Fig. 6.19. The source current can then be determined 
using Ohm’s law:

	 Is =
E

RT
	 (6.7)

Since the voltage is the same across parallel elements, the current 
through each resistor can also be determined using Ohm’s law. That is,

	 I1 =
V1

R1
=

E

R1
  and  I2 =

V2

R2
=

E

R2
	 (6.8)

The direction for the currents is dictated by the polarity of the voltage 
across the resistors. Recall that for a resistor, current enters the positive 
side of a potential drop and leaves the negative side. The result, as shown 
in Fig. 6.18, is that the source current enters point a, and currents I1 and 
I2 leave the same point. An excellent analogy for describing the flow of 
charge through the network of Fig. 6.18 is the flow of water through the 
parallel pipes of Fig. 6.20. The larger pipe, with less “resistance” to the 
flow of water, will have a larger flow of water, through it. The thinner 

R1 = 1 k�E 12 V R2 = 3 k�V1 V2

a

I1 I2

Is

+

–

+

–

+

–

FIG. 6.18
Parallel network.

E 12 V RT

Is

Is

=
(1 k�)(3 k�)

1 k� + 3 k�
= 0.75 k�

Equivalent resistance

FIG. 6.19
Replacing the parallel resistors in Fig. 6.18 with the 

equivalent total resistance.

QT

QT

Q1 Q2

FIG. 6.20
Mechanical analogy for Fig. 6.18.
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pipe, with its increased “resistance” level, will have less water flowing 
through it. In any case, the total water entering the pipes at the top QT 
must equal that leaving at the bottom, with QT = Q1 + Q2.

The relationship between the source current and the parallel resistor 
currents can be derived by simply taking the equation for the total resist-
ance in Eq. (6.1):

1

RT
=

1

R1
+

1

R2

Multiplying both sides by the applied voltage gives

Ea 1

RT
b = Ea 1

R1
+

1

R2
b

resulting in
E

RT
=

E

R1
+

E

R2

Then note that E>R1 = I1 and E>R2 = I2 to obtain

	 Is = I1 + I2 	 (6.9)

The result reveals a very important property of parallel circuits:

For single-source parallel networks, the source current (Is) is always 
equal to the sum of the individual branch currents.

The duality that exists between series and parallel circuits continues to 
surface as we proceed through the basic equations for electric circuits. 
This is fortunate because it provides a way of remembering the charac-
teristics of one using the results of another. For instance, in Fig. 6.21(a), 
we have a parallel circuit where it is clear that IT = I1 + I2. By simply 
replacing the currents of the equation in Fig. 6.21(a) by a voltage level, 
as shown in Fig. 6.21(b), we have Kirchhoff’s voltage law for a series 
circuit: E = V1 + V2. In other words,

for a parallel circuit, the source current equals the sum of the branch 
currents, while for a series circuit, the applied voltage equals the sum 
of the voltage drops.

Duality

R2R1

I1 I2

IT

R1

V1

R2

V2

E = V1 + V2
(a) (b)

E
+

–

+ –+ –

IT = I1 + I2

FIG. 6.21
Demonstrating the duality that exists between series and parallel circuits.

R1 V1E R2

I2I1

RT

Is

–

 +

9 � V218 �

–

 +

27 V
+

–

FIG. 6.22
Parallel network for Example 6.12.

EXAMPLE 6.12  For the parallel network in Fig. 6.22:

	 a.	 Find the total resistance.
	 b.	 Calculate the source current.
	 c.	 Determine the current through each parallel branch.
	 d.	 Show that Eq. (6.9) is satisfied.
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Solutions: 

	 a.	 Using Eq. (6.5) gives

RT =
R1R2

R1 + R2
=

(9 Ω)(18 Ω)

9 Ω + 18 Ω
=

162

27
 Ω = 6 �

	 b.	 Applying Ohm’s law gives

Is =
E

RT
=

27 V

6 Ω
= 4.5 A

	 c.	 Applying Ohm’s law gives

 I1 =
V1

R1
=

E

R1
=

27 V

9 Ω
= 3 A

 I2 =
V2

R2
=

E

R2
=

27 V

18 Ω
= 1.5 A

	 d.	 Substituting values from parts (b) and (c) gives

Is = 4.5 A = I1 + I2 = 3 A + 1.5 A = 4.5 A  (checks)

EXAMPLE 6.13  For the parallel network in Fig. 6.23.

	 a.	 Find the total resistance.
	 b.	 Calculate the source current.
	 c.	 Determine the current through each branch.

Solutions: 

	 a.	 Applying Eq. (6.3) gives

 RT =
1

1

R1
+

1

R2
+

1

R3

=
1

1

10 Ω
+

1

220 Ω
+

1

1.2 kΩ

 =
1

100 * 10-3 + 4.545 * 10-3 + 0.833 * 10-3 =
1

105.38 * 10-3

 RT = 9.49 �

		  Note that the total resistance is less than that of the smallest parallel 
resistor, and its magnitude is very close to the resistance of the 
smallest resistor because the other resistors are larger by a factor 
greater than 10:1.

	 b.	 Using Ohm’s law gives

Is =
E

RT
=

24 V

9.49 Ω
= 2.53 A

	 c.	 Applying Ohm’s law gives

 I1 =
V1

R1
=

E

R1
=

24 V

10 Ω
= 2.4 A

 I2 =
V2

R2
=

E

R2
=

24 V

220 Ω
= 0.11 A

 I3 =
V3

R3
=

E

R3
=

24 V

1.2 kΩ
= 0.02 A

R3 1.2 k�R2 220 �R1 10 �

RT

E 24 V

Is

I1 I2 I3

FIG. 6.23
Parallel network for Example 6.13.
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A careful examination of the results of Example 6.13 reveals that the 

larger the parallel resistor, the lower is the branch current. In general, 
therefore,

for parallel resistors, the greatest current will exist in the branch with 
the least resistance.

A more powerful statement is that

current always seeks the path of least resistance.

EXAMPLE 6.14  Given the information provided in Fig. 6.24:

	 a.	 Determine R3.
	 b.	 Find the applied voltage E.
	 c.	 Find the source current Is.
	 d.	 Find I2.

Solutions: 

	 a.	 Applying Eq. (6.1) gives

	  
1

RT
=

1

R1
+

1

R2
+

1

R3

Substituting gives	  
1

4 Ω
=

1

10 Ω
+

1

20 Ω
+

1

R3

so that	  0.25 S = 0.1 S + 0.05 S +
1

R3

and	  0.25 S = 0.15 S +
1

R3

with	  
1

R3
= 0.1 S

and	  R3 =
1

0.1 S
= 10 �

	 b.	 Using Ohm’s law gives

E = V1 = I1R1 = (4 A)(10 Ω) = 40 V

	 c.		  Is =
E

RT
=

40 V

4 Ω
= 10 A

	 d.	 Applying Ohm’s law gives

I2 =
V2

R2
=

E

R2
=

40 V

20 Ω
= 2 A

Instrumentation

In Fig. 6.25, voltmeters have been connected to verify that the volt-
age across parallel elements is the same. Note that the positive or red 
lead of each voltmeter is connected to the high (positive) side of the 
voltage across each resistor to obtain a positive reading. The 20 V 
scale was used because the applied voltage exceeded the range of the 
2 V scale.

I2

R3R1 R210 � 20 �E

Is

+

–

RT = 4 � I1 = 4 A

FIG. 6.24
Parallel network for Example 6.14.
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In Fig. 6.26, an ammeter has been hooked up to measure the source 
current. First, the connection to the supply had to be broken at the pos-
itive terminal and the meter inserted as shown. Be sure to use ammeter 
terminals on your meter for such measurements. The red or positive 
lead of the meter is connected so that the source current enters that 
lead and leaves the negative or black lead to ensure a positive reading. 
The 200 mA scale was used because the source current exceeded the 
maximum value of the 2 mA scale. For the moment, we assume that 
the internal resistance of the meter can be ignored. Since the internal 
resistance of an ammeter on the 200 mA scale is typically only a few 
ohms, compared to the parallel resistors in the kilohm range, it is an 
excellent assumption.

R1 R21 k� 3 k�V1 V2

+

–

+

–

1 2 . 0

1 6 . 0

+

12.00

V
+

12.00

V
+

FIG. 6.25
Measuring the voltages of a parallel dc network.

16.00

mA
+

Is

1 2 . 0

1 6 . 0

+
R1 R21 k� 3 k�

FIG. 6.26
Measuring the source current of a parallel network.

A more difficult measurement is for the current through resistor R1. 
This measurement often gives trouble in the laboratory session. First, as 
shown in Fig. 6.27(a), resistor R1 must be disconnected from the upper 
connection point to establish an open circuit. The ammeter is then 
inserted between the resulting terminals so that the current enters the 
positive or red terminal, as shown in Fig. 6.27(b). Always remember: 
When using an ammeter, first establish an open circuit in the branch in 
which the current is to be measured, and then insert the meter.
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The easiest measurement is for the current through resistor R2. 
Break the connection to R2 above or below the resistor, and insert the 
ammeter with the current entering the positive or red lead to obtain a 
positive reading.

6.4  Power Distribution  
in a Parallel Circuit

Recall from the discussion of series circuits that the power applied to a 
series resistive circuit equals the power dissipated by the resistive ele-
ments. The same is true for parallel resistive networks. In fact,

for any network composed of resistive elements, the power applied by 
the source will equal that dissipated by the resistive elements.

For the parallel circuit in Fig. 6.28:

	 PE = PR1
+ PR2

+ PR3
	 (6.10)

which is exactly the same as obtained for the series combination.

12.00

mA
+

1 2 . 0

1 6 . 0

+

(a) (b)

R2 3 k�

R1 1 k�

I1

R1 1 k�
(Break path
of I1)

Open!

FIG. 6.27
Measuring the current through resistor R1.

E R1

I1Is

V1 R2V2 R3V3

I2 I3

Power fl
ow

+

–

+

–

+

–

+

–

FIG. 6.28
Power flow in a dc parallel network.
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The power delivered by the source in the same:

	 PE = EIs   (watts, W) 	 (6.11)

as is the equation for the power to each resistor (shown for R1 only):

	 P1 = V1I1 = I2
1R1 =

V2
1

R1
   (watts, W) 	 (6.12)

In the equation P = V2>R, the voltage across each resistor in a paral-
lel circuit will be the same. The only factor that changes is the resistance 
in the denominator of the equation. The result is that

in a parallel resistive network, the larger the resistor, the less is the 
power absorbed.

EXAMPLE 6.15  For the parallel network in Fig. 6.29 (all standard 
values):

	 a.	 Determine the total resistance RT.
	 b.	 Find the source current and the current through each resistor.
	 c.	 Calculate the power delivered by the source.
	 d.	 Determine the power absorbed by each parallel resistor.
	 e.	 Verify Eq. (6.10).

E 28 V R1 1.6 k� R2 20 k� R3 56 k�

Is

RT

I1 I2 I3

PE

FIG. 6.29
Parallel network for Example 6.15.

Solutions: 

	 a.	 Without making a single calculation, it should now be apparent 
from previous examples that the total resistance is less than 1.6 kΩ 
and very close to this value because of the magnitude of the other 
resistance levels:

 RT =
1

1

R1
+

1

R2
+

1

R3

=
1

1

1.6 kΩ
+

1

20 kΩ
+

1

56 kΩ

 =
1

625 * 10-6 + 50 * 10-6 + 17.867 * 10-6 =
1

692.867 * 10-6

		  and RT = 1.44 k�
	 b.	 Applying Ohm’s law gives

Is =
E

RT
=

28 V

1.44 kΩ
= 19.44 mA
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		  Recalling that current always seeks the path of least resistance 

immediately tells us that the current through the 1.6 kΩ  resistor 
will be the largest and the current through the 56 kΩ  resistor the 
smallest.
	 Applying Ohm’s law again gives

 I1 =
V1

R1
=

E

R1
=

28 V

1.6 kΩ
= 17.5 mA

 I2 =
V2

R2
=

E

R2
=

28 V

20 kΩ
= 1.4 mA

 I3 =
V3

R3
=

E

R3
=

28 V

56 kΩ
= 0.5 mA

	 c.	 Applying Eq. (6.11) gives

PE = EIs = (28 V)(19.4 mA) = 543.2 mW

	 d.	 Applying each form of the power equation gives

 P1 = V1I1 = EI1 = (28 V)(17.5 mA) = 490 mW

 P2 = I 2
2R2 = (1.4 mA)2 (20 kΩ) = 39.2 mW

 P3 =
V 3

2

R3
=

E 2

R3
=

(28 V)2

56 kΩ
= 14 mW

		  A review of the results clearly substantiates the fact that the larger 
the resistor, the less is the power absorbed.

	 e.		  PE = PR1
+ PR2

+ PR3

543.2 mW = 490 mW + 39.2 mW + 14 mW = 543.2 mW (checks)

6.5  Kirchhoff’s Current Law

In the previous chapter, Kirchhoff’s voltage law was introduced, provid-
ing a very important relationship among the voltages of a closed path. 
Kirchhoff is also credited with developing the following equally impor-
tant relationship between the currents of a network, called Kirchhoff’s 
current law (KCL):

The algebraic sum of the currents entering and leaving a junction (or 
region) of a network is zero.

The law can also be stated in the following way:

The sum of the currents entering a junction (or region) of a network 
must equal the sum of the currents leaving the same junction (or 
region).

In equation form, the above statement can be written as follows:

	 g Ii = g Io 	 (6.13)

with Ii representing the current entering, or “in,” and Io representing the 
current leaving, or “out.”

In Fig. 6.30, for example, the shaded area can enclose an entire sys-
tem or a complex network, or it can simply provide a connection point 

System,
complex
network,
junction

I2 = 2 A

I3 = 10 A

I4 = 8 A

I1 = 4 A

FIG. 6.30
Introducing Kirchhoff’s current law.
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(junction) for the displayed currents. In each case, the current entering 
must equal that leaving, as required by Eq. (6.13):

 g Ii = g Io

 I1 + I4 = I2 + I3

 4 A + 8 A = 2 A + 10 A

 12 A = 12 A (checks)

The most common application of the law will be at a junction of two 
or more current paths, as shown in Fig. 6.31(a). Some students have dif-
ficulty initially determining whether a current is entering or leaving a 
junction. One approach that may help is to use the water analog in Fig. 
6.31(b), where the junction in Fig. 6.31(a) is the small bridge across the 
stream. Simply relate the current of I1 to the fluid flow of Q1, the smaller 
branch current I2 to the water flow Q2, and the larger branch current I3 to 
the flow Q3. The water arriving at the bridge must equal the sum of that 
leaving the bridge, so that Q1 = Q2 + Q3. Since the current I1 is point-
ing at the junction and the fluid flow Q1 is toward the person on the 
bridge, both quantities are seen as approaching the junction, and can be 
considered entering the junction. The currents I2 and I3 are both leaving 
the junction, just as Q2 and Q3 are leaving the fork in the river. The 
quantities I2, I3, Q2, and Q3 are therefore all leaving the junction.

(a) (b)

I1 = 6 A

I3 = 4 A

I2 = 2 AJunction Q1

Q2

Q3

FIG. 6.31
(a) Demonstrating Kirchhoff’s current law; (b) the water analogy for the junction in (a).

In the next few examples, unknown currents can be determined by 
applying Kirchhoff’s current law. Remember to place all current levels 
entering the junction to the left of the equals sign and the sum of all cur-
rents leaving the junction to the right of the equals sign.

In technology, the term node is commonly used to refer to a junction 
of two or more branches. Therefore, this term is used frequently in the 
analyses to follow.

EXAMPLE 6.16  Determine currents I3 and I4 in Fig. 6.32 using Kirch-
hoff’s current law.

Solution:  There are two junctions or nodes in Fig. 6.32. Node a has 
only one unknown, while node b has two unknowns. Since a single 
equation can be used to solve for only one unknown, we must apply 
Kirchhoff’s current law to node a first.

I5 = 1 A

b

I1 = 2 A

I2 = 3 A

a I3

I4

FIG. 6.32
Two-node configuration for Example 6.16.
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At node a

 g Ii = g Io

 I1 + I2 = I3

 2 A + 3 A = I3 = 5 A

At node b, using the result just obtained,

 g Ii = g Io

 I3 + I5 = I4

 5 A + 1 A = I4 = 6 A

Note that in Fig. 6.32, the width of the blue-shaded regions matches 
the magnitude of the current in that region.

EXAMPLE 6.17  Determine currents I1, I3, I4, and I5 for the network in 
Fig. 6.33.

R1 R3

R2 R4
R5

I2 = 4 A

I = 5 A
I5

a

I1 I3

I4

b

d

c

FIG. 6.33
Four-node configuration for Example 6.17.

Solution:  In this configuration, four nodes are defined. Nodes a and c 
have only one unknown current at the junction, so Kirchhoff’s current 
law can be applied at either junction.

At node a
 g Ii = g Io

 I = I1 + I2

 5 A = I1 + 4 A

and	  I1 = 5 A - 4 A = 1 A

At node c
 g Ii = g Io

 I2 = I4

and	  I4 = I2 = 4 A

Using the above results at the other junctions results in the following.
At node b

 g Ii = g Io

 I1 = I3

and	  I3 = I1 = 1 A

At node d
 g Ii = g Io

 I3 + I4 = I5

 1 A + 4 A = I5 = 5 A

If we enclose the entire network, we find that the current entering 
from the far left is I = 5 A, while the current leaving from the far right 
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is I5 = 5 A. The two must be equal since the net current entering any 
system must equal the net current leaving.

EXAMPLE 6.18  Determine currents I3 and I5 in Fig. 6.34 through 
applications of Kirchhoff’s current law.

Solution:  Note first that since node b has two unknown quantities (I3 
and I5), and node a has only one, Kirchhoff’s current law must first be 
applied to node a. The result is then applied to node b.

At node a

 g Ii = g Io

 I1 + I2 = I3

 4 A + 3 A = I3 = 7 A

At node b

 g Ii = g Io

 I3 = I4 + I5

 7 A = 1 A + I5

and	  I5 = 7 A - 1 A = 6 A

EXAMPLE 6.19  For the parallel dc network in Fig. 6.35:

	 a.	 Determine the source current Is.
	 b.	 Find the source voltage E.
	 c.	 Determine R3.
	 d.	 Calculate RT.

b

I2 = 3 A

I4 = 1 A

I5

a

I1 = 4 A

I3

FIG. 6.34
Network for Example 6.18.

E R32 k�

Is

R2R1

RT

8 mA 10 mA 2 mA

a

FIG. 6.35
Parallel network for Example 6.19.

Solutions: 

	 a.	 First apply Eq. (6.13) at node a. Although node a in Fig. 6.35 may 
not initially appear as a single junction, it can be redrawn as shown 
in Fig. 6.36, where it is clearly a common point for all the branches.

The result is

 g Ii = g Io

 Is = I1 + I2 + I3

		  Substituting values: Is = 8 mA + 10 mA + 2 mA = 20 mA

Note in this solution that you do not need to know the resistor 
values or the voltage applied. The solution is determined solely by 
the current levels.

E R1 R2 R3

I1 I2 I3

a
Is

RT

FIG. 6.36
Redrawn network in Fig. 6.35.
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	 b.	 Applying Ohm’s law gives

E = V1 = I1R1 = (8 mA)(2 kΩ) = 16 V

	 c.	 Applying Ohm’s law in a different form gives

R3 =
V3

I3
=

E

I3
=

16 V

2 mA
= 8 k�

	 d.	 Applying Ohm’s law again gives

RT =
E

Is
=

16 V

20 mA
= 0.8 k�

The application of Kirchhoff’s current law is not limited to networks 
where all the internal connections are known or visible. For instance, all 
the currents of the integrated circuit in Fig. 6.37 are known except I1. By 
treating the entire system (which could contain over a million elements) 
as a single node, we can apply Kirchhoff’s current law as shown in 
Example 6.20.

Before looking at Example 6.20 in detail, note that the direction of 
the unknown current I1 is not provided in Fig. 6.37. On many occasions, 
this will be true. With so many currents entering or leaving the system, it 
is difficult to know by inspection which direction should be assigned to 
I1. In such cases, simply make an assumption about the direction and 
then check out the result. If the result is negative, the wrong direction 
was assumed. If the result is positive, the correct direction was assumed. 
In either case, the magnitude of the current will be correct.

EXAMPLE 6.20  Determine I1 for the integrated circuit in Fig. 6.37.

Solution:  Assuming that the current I1 entering the chip results in the 
following when Kirchhoff’s current law is applied, we find

 g Ii = g Io

 I1 + 10 mA + 4 mA + 8 mA = 5 mA + 4 mA + 2 mA + 6 mA

 I1 + 22 mA = 17 mA

 I1 = 17 mA - 22 mA = −5 mA

We find that the direction for I1 is leaving the IC, although the magni-
tude of 5 mA is correct.

As we leave this important section, be aware that Kirchhoff’s current 
law will be applied in one form or another throughout the text. Kirch-
hoff’s laws are unquestionably two of the most important in this field 
because they are applicable to the most complex configurations in exist-
ence today. They will not be replaced by a more important law or 
dropped for a more sophisticated approach.

6.6 C urrent Divider Rule

For series circuits we have the powerful voltage divider rule for finding 
the voltage across a resistor in a series circuit. We now introduce the 
equally powerful current divider rule (CDR) for finding the current 
through a resistor in a parallel circuit.

IC

5 mA 10 mA

I1

6 mA 4 mA

4 mA

8 mA
2 mA

FIG. 6.37
Integrated circuit for Example 6.20.
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In Section 6.4, it was pointed out that current will always seek the 

path of least resistance. In Fig. 6.38, for example, the current of 9 A is 
faced with splitting between the three parallel resistors. Based on the 
previous sections, it should now be clear without a single calculation 
that the majority of the current will pass through the smallest resistor of 
10 Ω, and the least current will pass through the 1 kΩ resistor. In fact, 
the current through the 100 Ω resistor will also exceed that through the 
1 kΩ resistor. We can take it one step further by recognizing that the 
resistance of the 100 Ω resistor is 10 times that of the 10 Ω resistor. 
The result is a current through the 10 Ω resistor that is 10 times that of 
the 100 Ω resistor. Similarly, the current through the 100 Ω resistor is 
10 times that through the 1 kΩ resistor.

In general,

For two parallel elements of equal value, the current will divide equally.

For parallel elements with different values, the smaller the resistance, 
the greater is the share of input current.

For parallel elements of different values, the current will split with a 
ratio equal to the inverse of their resistance values.

Ratio Rule  Each of the boldface statements above is supported by the 
ratio rule, which states that for parallel resistors the current will divide as 
the inverse of their resistor values.

In equation form:

	
I1

I2
=

R2

R1
	 (6.14)

The next example will demonstrate how quickly currents can be 
determined using this important relationship.

EXAMPLE 6.21 

	 a.	 Determine the current I1 for the network of Fig. 6.39 using the ratio 
rule.

	 b.	 Determine the current I3 for the network of Fig. 6.39 using the ratio 
rule.

	 c.	 Determine the current Is using Kirchhoff’s current law.

Solutions: 

	 a.	 Applying the ratio rule:

 
I1

I2
=

R2

R1

 
I1

2 mA
=

3 Ω
6 Ω

 I1 =
1

2
 (2 mA) = 1 mA

	 b.	 Applying the ratio rule:

 
I2

I3
=

R3

R2

 
2 mA

I3
=

1 Ω
3 Ω

 I3 = 3(2 mA) = 6 mA

10 �

100 �

1 k�

I1

I2

I3

I = 9 A

FIG. 6.38
Discussing the manner in which the current  
will split between three parallel branches  

of different resistive value.

R36 � R2R1

Is I2 = 2 mAI1 I3

3 � 1 �

Single node

FIG. 6.39
Parallel network for Example 6.21.
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	 c.	 Applying Kirchhoff’s current law:

 g Ii = g Io

 Is = I1 + I2 + I3

 = 1 mA + 2 mA + 6 mA

 = 9 mA

Although the above discussions and examples allowed us to deter-
mine the relative magnitude of a current based on a known level, they do 
not provide the magnitude of a current through a branch of a parallel 
network if only the total entering current is known. The result is a need 
for the current divider rule, which will be derived using the parallel con-
figuration in Fig. 6.40(a). The current IT (using the subscript T to indi-
cate the total entering current) splits between the N parallel resistors and 
then gathers itself together again at the bottom of the configuration. In 
Fig. 6.40(b), the parallel combination of resistors has been replaced by a 
single resistor equal to the total resistance of the parallel combination as 
determined in the previous sections.

(a) (b)

V

IT

RT
RT

V R1 R2 R3 RN

I1 I2 I3 IN

IT

FIG. 6.40
Deriving the current divider rule: (a) parallel network of N parallel resistors;  

(b) reduced equivalent of part (a).

The current IT can then be determined using Ohm’s law:

IT =
V

RT

Since the voltage V is the same across parallel elements, the following 
is true:

V = I1R1 = I2R2 = I3R3 = . . . = IxRx

where the product IxRx refers to any combination in the series.
Substituting for V in the above equation for IT, we have

IT =
IxRx

RT

Solving for Ix, the final result is the current divider rule:

	 Ix =
RT

Rx
IT 	 (6.15)

which states that

the current through any branch of a parallel resistive network is 
equal to the total resistance of the parallel network divided by the 
resistance of the resistor of interest and multiplied by the total current 
entering the parallel configuration.
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Since RT and IT are constants, for a particular configuration the larger 

the value of Rx (in the denominator), the smaller is the value of Ix for that 
branch, confirming the fact that current always seeks the path of least 
resistance.

EXAMPLE 6.22  For the parallel network in Fig. 6.41, determine cur-
rent I1 using Eq. (6.15).

1 k�

R1

IT = 12 mA

I1

12 mA

10 k�

R2

22 k�

R3

FIG. 6.41
Using the current divider rule to calculate current I1 in Example 6.22.

Solution:  Eq. (6.3):

 RT =
1

1

R1
+

1

R2
+

1

R3

 =
1

1

1 kΩ
+

1

10 kΩ
+

1

22 kΩ

 =
1

1 * 10-3 + 100 * 10-6 + 45.46 * 10-6

 =
1

1.145 * 10-3 = 873.01 �

Eq. (6.15):  I1 =
RT

R1
IT

 =
(873.01 Ω)

1 kΩ
 (12 mA) = (0.873)(12 mA) = 10.48 mA

with the smallest parallel resistor receives the majority of the current.

Note also that

for a parallel network, the current through the smallest resistor will 
be very close to the total entering current if the other parallel 
elements of the configuration are much larger in magnitude.

In Example 6.22, the current through R1 is very close to the total current 
because R1 is 10 times less than the next smallest resistance.

Special Case: Two Parallel Resistors

For the case of two parallel resistors as shown in Fig. 6.42, the total 
resistance is determined by

RT =
R1R2

R1 + R2

IT

I1 I2

RT
R1 R2

FIG. 6.42
Deriving the current divider rule for the special  

case of only two parallel resistors.
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Substituting RT into Eq. (6.15) for current I1 results in

I1 =
RT

R1
IT =

a R1R2

R1 + R2
b

R1
IT

and	 I1 = a R2

R1 + R2
b IT 	 (6.16a)

Similarly, for I2,

	 I2 = a R1

R1 + R2
b IT 	 (6.16b)

Eq. (6.16) states that

for two parallel resistors, the current through one is equal to the 
resistance of the other times the total entering current divided by the 
sum of the two resistances.

Since the combination of two parallel resistors is probably the most 
common parallel configuration, the simplicity of the format for Eq. 
(6.16) suggests that it is worth memorizing. Take particular note, how-
ever, that the denominator of the equation is simply the sum, not the 
total resistance, of the combination.

EXAMPLE 6.23  Determine current I2 for the network in Fig. 6.43 
using the current divider rule.

Solution:  Using Eq. (6.16b) gives

 I2 = a R1

R1 + R2
b IT

 = a 4 kΩ
4 kΩ + 8 kΩ

b6 A = (0.333)(6 A) = 2 A

Using Eq. (6.15) gives

 I2 =
RT

R2
IT

with	  RT = 4 kΩ 78 kΩ =
(4 kΩ)(8 kΩ)

4 kΩ + 8 kΩ
= 2.667 kΩ

and	  I2 = a 2.667 kΩ
8 kΩ

b6 A = (0.333)(6 A) = 2 A

matching the above solution.

It would appear that the solution with Eq. (6.16b) is more direct in 
Example 6.23. However, keep in mind that Eq. (6.15) is applicable to any 
parallel configuration, removing the necessity to remember two equations.

Now we present a design-type problem.

EXAMPLE 6.24  Determine resistor R1 in Fig. 6.44 to implement the 
division of current shown.

Solution:  There are essentially two approaches to this type of problem. 
One involves the direct substitution of known values into the current 

R1

I2

4 k� R2 8 k�

Is = 6 A

Is = 6 A

FIG. 6.43
Using the current divider rule to determine  

current I2 in Example 6.23.

7 �

R1

R2
I = 27 mA

I1 = 21 mA

FIG. 6.44
A design-type problem for two parallel resistors 

(Example 6.24).
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divider rule equation followed by a mathematical analysis. The other is 
the sequential application of the basic laws of electric circuits. First we 
will use the latter approach.

Applying Kirchhoff’s current law gives

 g Ii = g Io

 I = I1 + I2

 27 mA = 21 mA + I2

and	  I2 = 27 mA - 21 mA = 6 mA

The voltage V2:	  V2 = I2R2 = (6 mA)(7 Ω) = 42 mV

so that	  V1 = V2 = 42 mV

Finally,	  R1 =
V1

I1
=

42 mV

21 mA
= 2 �

Now for the other approach using the current divider rule:

 I1 =
R2

R1 + R2
IT

 21 mA = a 7 Ω
R1 + 7 Ω

b27 mA

 (R1 + 7 Ω)(21 mA) = (7 Ω)(27 mA)

(21 mA)R1 + 147 mV = 189 mV

 (21 mA)R1 = 189 mV - 147 mV = 42 mV

and	  R1 =
42 mV

21 mA
= 2 �

In summary, therefore, remember that current always seeks the path 
of least resistance, and the ratio of the resistance values is the inverse of 
the resulting current levels, as shown in Fig 6.45. The thickness of the 
blue bands in Fig. 6.45 reflects the relative magnitude of the current in 
each branch.

I1

4 � 4 �

IT

I2 I1

1 � 2 �

I2 I1

2 � 6 �

I2 I1

1 � 3 �

I2

6 �

I3

IT IT IT

IT IT IT IT

I1 = I2 =
IT

2
I1 = 2I2 I1 = I2 = 3I2

6
2( ) I1 = 6I3

I1 = 3I2

I2 = I3 = 2I3
6
3( )

FIG. 6.45
Demonstrating how current divides through equal and unequal parallel resistors.
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6.7 V oltage Sources in Parallel

Because the voltage is the same across parallel elements,

voltage sources can be placed in parallel only if they have the same 
voltage.

The primary reason for placing two or more batteries or supplies in par-
allel is to increase the current rating above that of a single supply. For 
example, in Fig. 6.46, two ideal batteries of 12 V have been placed in 
parallel. The total source current using Kirchhoff’s current law is now 
the sum of the rated currents of each supply. The resulting power avail-
able will be twice that of a single supply if the rated supply current of 
each is the same. That is,

with	  I1 = I2 = I

then	  PT = E(I1 + I2) = E(I + I) = E(2I) = 2(EI) = 2P(one supply)

E1

I1

12 V E2 12 V

I2
Is

E 12 V

Is = I1 + I2

FIG. 6.46
Demonstrating the effect of placing two ideal supplies of the same  

voltage in parallel.

If for some reason two batteries of different voltages are placed in 
parallel, both will become ineffective or damaged because the battery 
with the larger voltage will rapidly discharge through the battery with 
the smaller terminal voltage. For example, consider two lead–acid bat-
teries of different terminal voltages placed in parallel as shown in Fig 
6.47. It makes no sense to talk about placing an ideal 12 V battery in 
parallel with a 6 V battery because Kirchhoff’s voltage law would be 
violated. However, we can examine the effects if we include the internal 
resistance levels as shown in Fig. 6.47.

The only current-limiting resistors in the network are the internal 
resistances, resulting in a very high discharge current for the battery 
with the larger supply voltage. The resulting current for the case in Fig. 
6.47 would be

I =
E1 - E2

Rint1 + Rint2

=
12 V - 6 V

0.03 Ω + 0.02 Ω
=

6 V

0.05 Ω
= 120 A

This value far exceeds the rated drain current of the 12 V battery, result-
ing in rapid discharge of E1 and a destructive impact on the smaller sup-
ply due to the excessive currents. This type of situation did arise on 
occasion when some cars still had 6 V batteries. Some people thought, “If 
I have a 6 V battery, a 12 V battery will work twice as well”—not true!

In general,

it is always recommended that when you are replacing batteries in 
series or parallel, replace all the batteries.

A fresh battery placed in parallel with an older battery probably has a 
higher terminal voltage and immediately starts discharging through the 

I

E1 12 V

Rint1
Rint2

0.03 � 0.02 �

E2 6 V

FIG. 6.47
Examining the impact of placing two lead–acid 

batteries of different terminal voltages in parallel.
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older battery. In addition, the available current is less for the older bat-
tery, resulting in a higher-than-rated current drain from the newer bat-
tery when a load is applied.

6.8 Op en and Short Circuits

Open circuits and short circuits can often cause more confusion and dif-
ficulty in the analysis of a system than standard series or parallel con-
figurations. This will become more obvious in the chapters to follow 
when we apply some of the methods and theorems.

An open circuit is two isolated terminals not connected by an ele-
ment of any kind, as shown in Fig. 6.48(a). Since a path for conduction 
does not exist, the current associated with an open circuit must always 
be zero. The voltage across the open circuit, however, can be any value, 
as determined by the system it is connected to. In summary, therefore,

an open circuit can have a potential difference (voltage) across its 
terminals, but the current is always zero amperes.

In Fig. 6.48(b), an open circuit exists between terminals a and b. The 
voltage across the open-circuit terminals is the supply voltage, but the 
current is zero due to the absence of a complete circuit.

Some practical examples of open circuits and their impact are pro-
vided in Fig. 6.49. In Fig. 6.49(a), the excessive current demanded by 
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(b)

System V

I = 0 A
Open circuit

+

–

E

a

b
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I = 0 A

+

–

+
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FIG. 6.48
Defining an open circuit.
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FIG. 6.49
Examples of open circuits.
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System V = 0 V

I

Short circuit
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–

FIG. 6.50
Defining a short circuit.
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FIG. 6.51
Demonstrating the effect of a short circuit on current levels.

the circuit caused a fuse to fail, creating an open circuit that reduced the 
current to zero amperes. However, it is important to note that the full 
applied voltage is now across the open circuit, so you must be careful 
when changing the fuse. If there is a main breaker ahead of the fuse, 
throw it first to remove the possibility of getting a shock. This situation 
clearly reveals the benefit of circuit breakers: You can reset the breaker 
without having to get near the hot wires.

In Fig. 6.49(b), the pressure plate at the bottom of the bulb cavity 
in a flashlight was bent when the flashlight was dropped. An open 
circuit now exists between the contact point of the bulb and the plate 
connected to the batteries. The current has dropped to zero amperes, 
but the 3 V provided by the series batteries appears across the open 
circuit. The situation can be corrected by placing a flat-edge screw-
driver under the plate and bending it toward the bulb.

Finally, in Fig. 6.49(c), the filament in a bulb in a series connec-
tion has opened due to excessive current or old age, creating an open 
circuit that knocks out all the bulbs in the series configuration. Again, 
the current has dropped to zero amperes, but the full 120 V will 
appear across the contact points of the bad bulb. For situations such 
as this, you should remove the plug from the wall before changing 
the bulb.

A short circuit is a very low resistance, direct connection between 
two terminals of a network, as shown in Fig. 6.50. The current through 
the short circuit can be any value, as determined by the system it is 
connected to, but the voltage across the short circuit is always zero 
volts because the resistance of the short circuit is assumed to be essen-
tially zero ohms and V = IR = I(0 Ω) = 0 V.

In summary, therefore,

a short circuit can carry a current of a level determined by the 
external circuit, but the potential difference (voltage) across its 
terminals is always zero volts.

In Fig. 6.51(a), the current through the 2 Ω resistor is 5 A. If a short 
circuit should develop across the 2 Ω resistor, the total resistance of the 
parallel combination of the 2 Ω resistor and the short (of essentially zero 
ohms) will be

2 Ω 70 Ω =
(2 Ω)(0 Ω)

2 Ω + 0 Ω
= 0 Ω
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as indicated in Fig. 6.51(b), and the current will rise to very high levels, 
as determined by Ohm’s law:

I =
E

R
=

10 V

0 Ω
S ∞ A

The effect of the 2 Ω resistor has effectively been “shorted out” by 
the low-resistance connection. The maximum current is now limited 
only by the circuit breaker or fuse in series with the source.

Some practical examples of short circuits and their impact are pro-
vided in Fig. 6.52. In Fig. 6.52(a), a hot (the feed) wire wrapped around 
a screw became loose and is touching the return connection. A short-
circuit connection between the two terminals has been established that 
could result in a very heavy current and a possible fire hazard. One 
hopes that the breaker will “pop,” and the circuit will be deactivated. 
Problems such as this are among the reasons aluminum wires (cheaper 
and lighter than copper) are not permitted in residential or industrial 
wiring. Aluminum is more sensitive to temperature than copper and 
will expand and contract due to the heat developed by the current pass-
ing through the wire. Eventually, this expansion and contraction can 
loosen the screw, and a wire under some torsional stress from the 
installation can move and make contact as shown in Fig. 6.52(a). Alu-
minum is still used in large panels as a bus-bar connection, but it is 
bolted down.

(b)

120 V

Twisted wire

Contact—short circuit

(c)

120 V

Ferromagnetic core

Tight
winding

Short circuit

(a)

Short
circuit

120 V
I (high)

+

–

+

–

+

–

FIG. 6.52
Examples of short circuits.

In Fig. 6.52(b), the wires of an iron have started to twist and crack 
due to excessive currents or long-term use of the iron. Once the insula-
tion breaks down, the twisting can cause the two wires to touch and 
establish a short circuit. One can hope that a circuit breaker or fuse will 
quickly disconnect the circuit. Often, it is not the wire of the iron that 
causes the problem, but a cheap extension cord with the wrong gage 
wire. Be aware that you cannot tell the capacity of an extension cord by 
its outside jacket. It may have a thick orange covering but have a very 
thin wire inside. Check the gage on the wire the next time you buy an 
extension cord, and be sure that it is at least #14 gage, with #12 being the 
better choice for high-current appliances.

Finally, in Fig. 6.52(c), the windings in a transformer or motor for 
residential or industrial use are illustrated. The windings are wound so 
tightly together with such a very thin coating of insulation that it is pos-
sible with age and use for the insulation to break down and short out the 
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windings. In many cases, shorts can develop, but a short will simply 
reduce the number of effective windings in the unit. The tool or appliance 
may still work but with less strength or rotational speed. If you notice 
such a change in the response, you should check the windings because a 
short can lead to a dangerous situation. In many cases, the state of the 
windings can be checked with a simple ohmmeter reading. If a short has 
occurred, the length of usable wire in the winding has been reduced, and 
the resistance drops. If you know what the resistance normally is, you can 
compare and make a judgment.

For the layperson, the terminology short circuit or open circuit is 
usually associated with dire situations such as power loss, smoke, or 
fire. However, in network analysis, both can play an integral role in 
determining specific parameters of a system. Most often, however, if a 
short-circuit condition is to be established, it is accomplished with a 
jumper—a lead of negligible resistance to be connected between the 
points of interest. Establishing an open circuit just requires making sure 
that the terminals of interest are isolated from each other.

6.9 V oltmeter Loading Effects

In previous chapters, we learned that ammeters are not ideal instruments. 
When you insert an ammeter, you actually introduce an additional resist-
ance in series with the branch in which you are measuring the current. 
Generally, this is not a serious problem, but it can have a troubling effect 
on your readings, so it is important to be aware of it.

Voltmeters also have an internal resistance that appears between the 
two terminals of interest when a measurement is being made. While an 
ammeter places an additional resistance in series with the branch of 
interest, a voltmeter places an additional resistance across the element, 
as shown in Fig. 6.53. Since it appears in parallel with the element of 
interest, the ideal level for the internal resistance of a voltmeter would 
be infinite ohms, just as zero ohms would be ideal for an ammeter. 
Unfortunately, the internal resistance of any voltmeter is not infinite and 
changes from one type of meter to another.

Most digital meters have a fixed internal resistance level in the meg-
ohm range that remains the same for all its scales. For example, the 
meter in Fig. 6.53 has the typical level of 11 MΩ for its internal resist-
ance, no matter which voltage scale is used. When the meter is placed 
across the 10 kΩ resistor, the total resistance of the combination is

RT = 10 kΩ 711 MΩ =
(104 Ω)(11 * 106 Ω)

104 Ω + (11 * 106)
= 9.99 kΩ

and the behavior of the network is not seriously affected. The result, 
therefore, is that

most digital voltmeters can be used in circuits with resistances up to 
the high-kilohm range without concern for the effect of the internal 
resistance on the reading.

However, if the resistances are in the megohm range, you should inves-
tigate the effect of the internal resistance.

An analog VOM is a different matter, however, because the internal 
resistance levels are much lower and the internal resistance levels are a 
function of the scale used. If a VOM on the 2.5 V scale were placed 

I

+ –

11 M�

DMM

10 k�

FIG. 6.53
Voltmeter loading.
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across the 10 kΩ resistor in Fig. 6.53, the internal resistance might be 
50 kΩ, resulting in a combined resistance of

RT = 10 kΩ 7  50 kΩ =
(104 Ω)(50 * 103 Ω)

104 Ω + (50 * 103 Ω)
= 8.33 kΩ

and the behavior of the network would be affected because the 10 kΩ 
resistor would appear as an 8.33 kΩ resistor.

To determine the resistance Rm of any scale of a VOM, simply multi-
ply the maximum voltage of the chosen scale by the ohm/volt (Ω ,V) 
rating normally appearing at the bottom of the face of the meter. That is,

Rm (VOM) = (scale)(Ω >V rating)

For a typical Ω >V rating of 20,000, the 2.5 V scale would have an inter-
nal resistance of

(2.5 V)(20,000 Ω >V) = 50 k�

whereas for the 100 V scale, the internal resistance of the VOM would be

(100 V)(20,000 Ω >V) = 2 M�

and for the 250 V scale,

(250 V)(20,000 Ω >V) = 5 M�

EXAMPLE 6.25  For the relatively simple circuit in Fig. 6.54(a):

	 a.	 What is the open-circuit voltage Vab?
	 b.	 What will a DMM indicate if it has an internal resistance of 11 MΩ? 

Compare your answer to that of part (a).
	 c.	 Repeat part (b) for a VOM with an Ω >V rating of 20,000 on the 

100 V scale.

Solutions: 

	 a.	 Due to the open circuit, the current is zero, and the voltage drop 
across the 1 MΩ resistor is zero volts. The result is that the entire 
source voltage appears between points a and b, and

Vab = 20 V

	 b.	 When the meter is connected as shown in Fig. 6.54(b), a complete 
circuit has been established, and current can pass through the cir-
cuit. The voltmeter reading can be determined using the voltage 
divider rule as follows:

Vab =
(11 MΩ)(20 V)

(11 MΩ + 1 MΩ)
= 18.33 V

		  and the reading is affected somewhat.

	 c.	 For the VOM, the internal resistance of the meter is

 Rm = (100 V) (20,000 Ω >V) = 2 MΩ

and		   Vab =
(2 MΩ)(20 V)

(2 MΩ + 1 MΩ)
= 13.33 V

		  which is considerably below the desired level of 20 V.

Vab
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a

b

20 V

+

–

Vab 11 M� V

R

1 M�

E

a

b

+

–

+
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(a)

(b)

FIG. 6.54
(a) Measuring an open-circuit voltage with a 

voltmeter; (b) determining the effect of using a 
digital voltmeter with an internal resistance of 
11 MΩ on measuring an open-circuit voltage 

(Example 6.25).
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6.10 S ummary Table

Now that the series and parallel configurations have been covered in 
detail, we will review the salient equations and characteristics of each. 
The equations for the two configurations have a number of similarities. 
In fact, the equations for one can often be obtained directly from the 
other by simply applying the duality principle. Duality between equa-
tions means that the format for an equation can be applied to two differ-
ent situations by just changing the variable of interest. For instance, the 
equation for the total resistance of a series circuit is the sum of the resist-
ances. By changing the resistance parameters to conductance parame-
ters, you can obtain the equation for the total conductance of a parallel 
network—an easy way to remember the two equations. Similarly, by 
starting with the total conductance equation, you can easily write the 
total resistance equation for series circuits by replacing the conductance 
parameters by resistance parameters. Series and parallel networks share 
two important dual relationships: (1) between resistance of series cir-
cuits and conductance of parallel circuits and (2) between the voltage or 
current of a series circuit and the current or voltage, respectively, of a 
parallel circuit. Table 6.1 summarizes this duality.

TABLE 6.1
Summary table.

Series and Parallel Circuits

Series Duality Parallel

RT = R1 + R2 + R3 + g + RN R N  G GT = G1 + G2 + G3 + g + GN

RT increases (GT decreases) if additional  
resistors are added in series

R N  G GT increases (RT decreases) if additional  
resistors are added in parallel

Special case: two elements RT = R1 + R2 R N  G GT = G1 + G2

I the same through series elements I N  V V the same across parallel elements

E = V1 + V2 + V3 E, V N  I IT = I1 + I2 + I3

Largest V across largest R V N  I    and    R N  G Greatest I through largest G (smallest R)

Vx =
Rx E

RT
E, V  N  I    and    R N  G Ix =

Gx IT

GT

P = EIT E N  I    and    I N  E P = ITE

P = I2R I N  V    and    R N  G P = V2G

P = V2>R V N  I    and    R N  G P = I2>G

The format for the total resistance for a series circuit has the same 
format as the total conductance of a parallel network, as shown in 
Table 6.1. All that is required to move back and forth between the 
series and parallel headings is to interchange the letters R and G. For 
the special case of two elements, the equations have the same format, 
but the equation applied for the total resistance of the parallel config-
uration has changed. In the series configuration, the total resistance 
increases with each added resistor. For parallel networks, the total 
conductance increases with each additional conductance. The result is 
that the total conductance of a series circuit drops with added resistive 
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elements, while the total resistance of parallel networks decreases 
with added elements.

In a series circuit, the current is the same everywhere. In a parallel 
network, the voltage is the same across each element. The result is a 
duality between voltage and current for the two configurations. What is 
true for one in one configuration is true for the other in the other con-
figuration. In a series circuit, the applied voltage divides between the 
series elements. In a parallel network, the current divides between paral-
lel elements. For series circuits, the largest resistor captures the largest 
share of the applied voltage. For parallel networks, the branch with the 
highest conductance captures the greater share of the incoming current. 
In addition, for series circuits, the applied voltage equals the sum of the 
voltage drops across the series elements of the circuit, while the source 
current for parallel branches equals the sum of the currents through all 
the parallel branches.

The total power delivered to a series or parallel network is deter-
mined by the product of the applied voltage and resulting source current. 
The power delivered to each element is also the same for each configu-
ration. Duality can be applied again, but the equation P = EI results in 
the same result as P = IE. Also, P = I2R can be replaced by P = V2G 
for parallel elements, but essentially each can be used for each configu-
ration. The duality principle can be very helpful in the learning process. 
Remember this as you progress through the next few chapters. You will 
find in the later chapters that this duality can also be applied between 
two important elements—inductors and capacitors.

6.11 T roubleshooting Techniques

The art of troubleshooting is not limited solely to electrical or electronic 
systems. In the broad sense,

troubleshooting is a process by which acquired knowledge and 
experience are used to localize a problem and offer or implement a 
solution.

There are many reasons why the simplest electrical circuit might not 
be operating correctly. A connection may be open; the measuring instru-
ments may need calibration; the power supply may not be on or may 
have been connected incorrectly to the circuit; an element may not be 
performing correctly due to earlier damage or poor manufacturing; a 
fuse may have blown; and so on. Unfortunately, a defined sequence of 
steps does not exist for identifying the wide range of problems that can 
surface in an electrical system. It is only through experience and a clear 
understanding of the basic laws of electric circuits that you can become 
proficient at quickly locating the cause of an erroneous output.

It should be fairly obvious, however, that the first step in checking a 
network or identifying a problem area is to have some idea of the expected 
voltage and current levels. For instance, the circuit in Fig. 6.55 should 
have a current in the low milliampere range, with the majority of the sup-
ply voltage across the 8 kΩ resistor. However, as indicated in Fig. 6.55, 
VR1

= VR2
= 0 V and Va = 20 V. Since V = IR, the results immediately 

suggest that I = 0 A and an open circuit exists in the circuit. The fact that 
Va = 20 V immediately tells us that the connections are true from the 
ground of the supply to point a. The open circuit must therefore exist 
between R1 and R2 or at the ground connection of R2. An open circuit at 
either point results in I = 0 A and the readings obtained previously. Keep 
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I

FIG. 6.55
A malfunctioning network.
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in mind that, even though I = 0 A, R1 does form a connection between 
the supply and point a. That is, if I = 0 A, VR1

= IR2 = (0)R2 = 0 V, as 
obtained for a short circuit.

In Fig. 6.55, if VR1
≅ 20 V and VR2

 is quite small (≅0.08 V), it first 
suggests that the circuit is complete, a current does exist, and a problem 
surrounds the resistor R2. R2 is not shorted out since such a condition 
would result in VR2

= 0V. A careful check of the inserted resistor reveals 
that an 8 Ω resistor was used rather than the 8 kΩ resistor specified—an 
incorrect reading of the color code. To avoid this, an ohmmeter should 
be used to check a resistor to validate the color-code reading or to ensure 
that its value is still in the prescribed range set by the color code.

Occasionally, the problem may be difficult to diagnose. You’ve 
checked all the elements, and all the connections appear tight. The supply 
is on and set at the proper level; the meters appear to be functioning cor-
rectly. In situations such as this, experience becomes a key factor. Perhaps 
you can recall when a recent check of a resistor revealed that the internal 
connection (not externally visible) was a “make or break” situation or that 
the resistor was damaged earlier by excessive current levels, so its actual 
resistance was much lower than called for by the color code. Recheck the 
supply! Perhaps the terminal voltage was set correctly, but the current 
control knob was left in the zero or minimum position. Is the ground con-
nection stable? The questions that arise may seem endless. However, as 
you gain experience, you will be able to localize problems more rapidly. 
Of course, the more complicated the system, the longer is the list of pos-
sibilities, but it is often possible to identify a particular area of the system 
that is behaving improperly before checking individual elements.

6.12  Protoboards (Breadboards)

In Section 5.13, the protoboard was introduced with the connections for 
a simple series circuit. To continue the development, the network in Fig. 
6.17 was set up on the board in Fig. 6.56(a) using two different tech-
niques. The possibilities are endless, but these two solutions use a fairly 
straightforward approach.

(a)

Meter connections

(b)

R1 1 k� R3 1.2 k�R2 2.2 k�

0.437

+

FIG. 6.56
Using a protoboard to set up the circuit in Fig. 6.17.
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First, note that the supply lines and ground are established across the 

length of the board using the horizontal conduction zones at the top and 
bottom of the board through the connections to the terminals. The net-
work to the left on the board was used to set up the circuit in much the 
same manner as it appears in the schematic of Fig. 6.56(b). This 
approach required that the resistors be connected between two vertical 
conducting strips. If placed perfectly vertical in a single conducting 
strip, the resistors would have shorted out. Often, setting the network 
up in a manner that best copies the original can make it easier to check 
and make measurements. The network to the right in part (a) used the 
vertical conducting strips to connect the resistors together at each end. 
Since there wasn’t enough room for all three, a connection had to be 
added from the upper vertical set to the lower set. The resistors are in 
order R1, R2, and R3 from the top down. For both configurations, the 
ohmmeter can be connected to the positive lead of the supply terminal 
and the negative or ground terminal.

Take a moment to review the connections and think of other possi-
bilities. Improvements can often be made, and it can be satisfying to find 
the most effective setup with the least number of connecting wires.

6.13 App lications

One of the most important advantages of the parallel configuration is that

if one branch of the configuration should fail (open circuit), the 
remaining branches will still have full operating power.

In a home, the parallel connection is used throughout to ensure that if 
one circuit has a problem and opens the circuit breaker, the remaining 
circuits still have the full 120 V. The same is true in automobiles, com-
puter systems, industrial plants, and wherever it would be disastrous for 
one circuit to control the total power distribution.

Another important advantage is that

branches can be added at any time without affecting the behavior of 
those already in place.

In other words, unlike the series connection, where an additional compo-
nent reduces the current level and perhaps affects the response of some 
of the existing components, an additional parallel branch will not affect 
the current level in the other branches. Of course, the current demand 
from the supply increases as determined by Kirchhoff’s current law, so 
you must be aware of the limitations of the supply.

The following are some of the most common applications of the par-
allel configuration.

Car System

As you begin to examine the electrical system of an automobile, the 
most important thing to understand is that the entire electrical system of 
a car is run as a dc system. Although the generator produces a varying 
ac signal, rectification converts it to one having an average dc level for 
charging the battery. In particular, note the use of a filter capacitor in 
the alternator branch in Fig. 6.57 to smooth out the rectified ac wave-
form and to provide an improved dc supply. The charged battery must 
therefore provide the required direct current for the entire electrical sys-
tem of the car. Thus, the power demand on the battery at any instant is 
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the product of the terminal voltage and the current drain of the total 
load of every operating system of the car. This certainly places an enor-
mous burden on the battery and its internal chemical reaction and war-
rants all the battery care we can provide.

Since the electrical system of a car is essentially a parallel system, the 
total current drain on the battery is the sum of the currents to all the par-
allel branches of the car connected directly to the battery. In Fig. 6.57, a 
few branches of the wiring diagram for a car have been sketched to pro-
vide some background information on basic wiring, current levels, and 
fuse configurations. Every automobile has fuse links and fuses, and 
some also have circuit breakers, to protect the various components of the 
car and to ensure that a dangerous fire situation does not develop. Except 
for a few branches that may have series elements, the operating voltage 
for most components of a car is the terminal voltage of the battery, 
which we will designate as 12 V even though it will typically vary 
between 12 V and the charging level of 14.6 V. In other words, each 
component is connected to the battery at one end and to the ground or 
chassis of the car at the other end.

Referring to Fig. 6.57, note that the alternator or charging branch of 
the system is connected directly across the battery to provide the charging 
current as indicated. Once the car is started, the rotor of the alternator 
turns, generating an ac varying voltage that then passes through a rectifier 
network and filter to provide the dc charging voltage for the battery. 
Charging occurs only when the sensor connected directly to the battery 
signals that the terminal voltage of the battery is too low. Just to the right 
of the battery the starter branch was included to demonstrate that there is 
no fusing action between the battery and starter when the ignition switch 
is activated. The lack of fusing action is provided because enormous 
starting currents (hundreds of amperes) flow through the starter to start a 
car that has not been used for days and/or has been sitting in a cold 
climate—and high friction occurs between components until the oil starts 
flowing. The starting level can vary so much that it would be difficult to 
find the right fuse level, and frequent high currents may damage the fuse 
link and cause a failure at expected levels of current. When the ignition 
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FIG. 6.57
Expanded view of an automobile’s electrical system.
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switch is activated, the starting relay completes the circuit between the 
battery and starter, and, it is hoped, the car starts. If a car fails to start, the 
first thing to check is the connections at the battery, starting relay, and 
starter to be sure that they are not providing an unexpected open circuit 
due to vibration, corrosion, or moisture.

Once the car has started, the starting relay opens, and the battery 
begins to activate the operating components of the car. Although the 
diagram in Fig. 6.57 does not display the switching mechanism, the 
entire electrical network of the car, except for the important external 
lights, is usually disengaged so that the full strength of the battery can 
be dedicated to the starting process. The lights are included for situa-
tions where turning the lights off, even for short periods of time, could 
create a dangerous situation. If the car is in a safe environment, it is 
best to leave the lights off when starting, to save the battery an addi-
tional 30 A of drain. If the lights are on, they dim because of the 
starter drain, which may exceed 500 A. Today, batteries are typically 
rated in cranking (starting) current rather than ampere-hours. Batter-
ies rated with cold cranking ampere ratings between 700 A and 
1000 A are typical today.

Separating the alternator from the battery and the battery from the 
numerous networks of the car are fuse links such as shown in Fig. 
6.58(a). Fuse links are actually wires of a specific gage designed to open 
at fairly high current levels of 100 A or more. They are included to pro-
tect against those situations where there is an unexpected current drawn 
from the many circuits to which they are connected. That heavy drain 
can, of course, be from a short circuit in one of the branches, but in such 
cases the fuse in that branch will probably release. The fuse link is an 
additional protection for the line if the total current drawn by the parallel-
connected branches begins to exceed safe levels. The fuses following 
the fuse link have the appearance shown in Fig. 6.58(b), where a gap 
between the legs of the fuse indicates a blown fuse. As shown in Fig. 
6.57, the 60 A fuse (often called a power distribution fuse) for the lights 
is a second-tier fuse sensitive to the total drain from the three light cir-
cuits. Finally, the third fuse level is for the individual units of a car such 
as the lights, air conditioner, and power locks. In each case, the fuse rat-
ing exceeds the normal load (current level) of the operating component, 
but the level of each fuse does give some indication of the demand to be 
expected under normal operating conditions. For instance, headlights 
typically draw more than 10 A, tail lights more than 5 A, air conditioner 
about 10 A (when the clutch engages), and power windows 10 A to 
20 A, depending on how many are operated at once.

(a) (b)

15 A fuse Open

gap

FIG. 6.58
Car fuses: (a) fuse link; (b) plug-in.
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Some details for only one section of the total car network are pro-

vided in Fig. 6.57. In the same figure, additional parallel paths with their 
respective fuses have been provided to further reveal the parallel 
arrangement of all the circuits.

In most vehicles the return path to the battery through the ground 
connection is through the chassis of the car. That is, there is only one 
wire to each electrical load, with the other end simply grounded to the 
chassis. The return to the battery (chassis to negative terminal) is there-
fore a heavy-gage wire matching that connected to the positive terminal. 
In some cars constructed of a mixture of materials such as metal, plastic, 
and rubber, the return path through the metallic chassis may be lost, and 
two wires must be connected to each electrical load of the car.

House Wiring

In Chapter 4, the basic power levels of importance were discussed for 
various services to the home. We are now ready to take the next step and 
examine the actual connection of elements in the home.

First, it is important to realize that except for some very special cir-
cumstances, the basic wiring is done in a parallel configuration. Each 
parallel branch, however, can have a combination of parallel and series 
elements. Every full branch of the circuit receives the full 120 V or 
240 V, with the current determined by the applied load. Fig. 6.59(a) pro-
vides the detailed wiring of a single circuit having a light bulb and two 
outlets. Fig. 6.59(b) shows the schematic representation. Note that 
although each load is in parallel with the supply, switches are always 
connected in series with the load. The power is transmitted to the lamp 
only when the switch is closed and the full 120 V appears across the 
bulb. The connection point for the two outlets is in the ceiling box hold-
ing the light bulb. Since a switch is not present, both outlets are always 
“hot” unless the circuit breaker in the main panel is opened. This is 
important to understand in case you are tempted to change the light fix-
ture by simply turning off the wall switch. True, if you’re very careful, 
you can work with one line at a time (being sure that you don’t touch the 
other line at any time), but it is much safer to throw the circuit breaker 
on the panel whenever working on a circuit. Note in Fig. 6.59(a) that  
the feed wire (black) into the fixture from the panel is connected to the 
switch and both outlets at one point. It is not connected directly to the 
light fixture because the lamp would be on all the time. Power to  
the light fixture is made available through the switch. The continuous 
connection to the outlets from the panel ensures that the outlets are “hot” 
whenever the circuit breaker in the panel is on. Note also how the return 
wire (white) is connected directly to the light switch and outlets to pro-
vide a return for each component. There is no need for the white wire to 
go through the switch since an applied voltage is a two-point connection 
and the black wire is controlled by the switch.

Proper grounding of the system in total and of the individual loads is 
one of the most important facets in the installation of any system. There 
is a tendency at times to be satisfied that the system is working and to 
pay less attention to proper grounding technique. Always keep in mind 
that a properly grounded system has a direct path to ground if an unde-
sirable situation should develop. The absence of a direct ground causes 
the system to determine its own path to ground, and you could be that 
path if you happened to touch the wrong wire, metal box, metal pipe, 
and so on. In Fig. 6.59(a), the connections for the ground wires have 
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been included. For the romex (plastic-coated wire) used in Fig. 6.59(a), 
the ground wire is provided as a bare copper wire. Note that it is con-
nected to the panel, which in turn is directly connected to the grounded 
8 ft copper rod. In addition, note that the ground connection is carried 
through the entire circuit, including the switch, light fixture, and outlets. 
It is one continuous connection. If the outlet box, switch box, and hous-
ing for the light fixture are made of a conductive material such as metal, 
the ground will be connected to each. If each is plastic, there is no need 
for the ground connection. However, the switch, both outlets, and the 
fixture itself are connected to ground. For the switch and outlets, there is 
usually a green screw for the ground wire, which is connected to the 
entire framework of the switch or outlet as shown in Fig. 6.60, including 
the ground connection of the outlet. For both the switch and the outlet, 
even the screw or screws used to hold the outside plate in place are 

RESIDENTIAL SERVICE

Neutral
Line 1 Line 2

20 A breaker
Neutral bar

Grounding bar

MAIN PANEL

Grounding
electrode
(8 ft copper bar
in ground)

Box
grounded 3-wire

romex cable

Bare Black

Wire
nut

Junction
box

Bare

Bare

Black

Green

White WhiteWhite

Black

Light
switch Box and switch

grounded
Light bulb

Black (HOT-FEED)
White (NEUTRAL-
RETURN)
Bare or green (GROUND)Box

grounded

Outlet box

Bare or green

Black

White

Outlet box

Box
grounded

Copper bus bar

(a)

L

Feed

120 V

Neutral
ground

Circuit breaker
Single pole switch

Ceiling
lamp

Duplex
convenience
receptacles(Using standard

blueprint electrical
symbols)

+ 20 A

(b)

S

Bare

Continuous-ground bar

Ground-wire
connection

Connected to ground

Hot-wire
connections

Connected to ground

Terminal connection
for ground of plug

Terminal connection
for ground of plug

FIG. 6.60
Continuous ground connection in a duplex outlet.

FIG. 6.59
Single phase of house wiring: (a) physical details; (b) schematic 

representation.
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grounded since they are screwed into the metal housing of the switch or 
outlet. When screwed into a metal box, the ground connection can be 
made by the screws that hold the switch or outlet in the box as shown in 
Fig. 6.60. Always pay strict attention to the grounding process whenever 
installing any electrical equipment.

On the practical side, whenever hooking up a wire to a screw-type 
terminal, always wrap the wire around the screw in the clockwise man-
ner so that when you tighten the screw, it grabs the wire and turns it in 
the same direction. An expanded view of a typical house-wiring arrange-
ment appears in Chapter 15.

Parallel Computer Bus Connections

The internal construction (hardware) of large mainframe computers and 
personal computers is set up to accept a variety of adapter cards in the 
slots appearing in Fig. 6.61(a). The primary board (usually the largest), 
commonly called the motherboard, contains most of the functions 

PS2 mouse
connector and
keyboard socket

COM PORTS
(modems, etc.

Power supply
connection

SDRAM
memory
sockets

Memory SIMM
sockets

CMOS
BIOS

ISA-AT
bus for

ISA adaptors

Socket for CPU
(central processing unit)

CPU regulator
heatsinks

Motherboard
controller chip sets

EIDE channels
for hard drive

Parallel port
(printers)

Keyboard
control

(a)

For PCI adaptors Four parallel bus connectors

(b)

Dashed line shows parallel
connection between bus

connections for one
pin connection

(a)

(All in parallel as shown
in Fig. 6.68 (b))

Floppy disk port

FIG. 6.61
(a) Motherboard for a desktop computer; (b) the printed circuit board connections for the region indicated in part (a).
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required for full computer operation. Adapter cards are normally added 
to expand the memory, set up a network, add peripheral equipment, and 
so on. For instance, if you decide to add another hard drive to your 
computer, you can simply insert the card into the proper channel of Fig. 
6.61(a). The bus connectors are connected in parallel with common 
connections to the power supply, address and data buses, control sig-
nals, ground, and so on. For instance, if the bottom connection of each 
bus connector is a ground connection, that ground connection carries 
through each bus connector and is immediately connected to any 
adapter card installed. Each card has a slot connector that fits directly 
into the bus connector without the need for any soldering or construc-
tion. The pins of the adapter card are then designed to provide a path 
between the motherboard and its components to support the desired 
function. Note in Fig. 6.61(b), which is a back view of the region identi-
fied in Fig. 6.61(a), that if you follow the path of the second pin from 
the top on the far left, you will see that it is connected to the same pin 
on the other three bus connectors.

Most small laptop computers today have all the options already 
installed, thereby bypassing the need for bus connectors. Additional mem-
ory and other upgrades are added as direct inserts into the motherboard.

6.14 C omputer Analysis

PSpice

Parallel dc Network    The computer analysis coverage for parallel 
dc circuits is very similar to that for series dc circuits. However, in this 
case the voltage is the same across all the parallel elements, and the cur-
rent through each branch changes with the resistance value. The parallel 
network to be analyzed will have a wide range of resistor values to dem-
onstrate the effect on the resulting current. The following is a list of 
abbreviations for any parameter of a network when using PSpice:

 f = 10-15

 p = 10-12

 n = 10-9

 u = 10-6

 m = 10-3

 k = 10+3

 MEG = 10+6

 G = 10+9

 T = 10+12

In particular, note that m (or M) is used for “milli” and MEG for 
“megohms.” Also, PSpice does not distinguish between upper- and 
lower-case units, but certain parameters typically use either the upper- 
or lower-case abbreviation as shown above.

Since the details of setting up a network and going through the simu-
lation process were covered in detail in Sections 4.9 and 5.15 for dc cir-
cuits, the coverage here is limited solely to the various steps required. 
These steps will help you learn how to “draw” a circuit and then run a 
simulation fairly quickly and easily.

Start the analysis of the network of Fig. 6.62 with Project New-
PSpice 6-1-OK-Create a blank project-OK-PAGE1.

Add the voltage source and resistors as described in detail in earlier 
sections, but now you need to turn the resistors 90°. You do this by 
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right-clicking before setting a resistor in place. Choose Rotate from the 
list of options, which turns the resistor counterclockwise 90°. It can also 
be rotated by simultaneously selecting Ctrl-R. The resistor can then be 
placed in position by a left click. An additional benefit of this maneuver 
is that the remaining resistors to be placed will already be in the vertical 
position. The values selected for the voltage source and resistors appear 
in Fig. 6.62.

FIG. 6.62
Applying PSpice to a parallel dc network.

Once the network is complete, the Run PSpice key can be selected 
followed by being sure the green circular keys for V, I, and W are in the 
on state.

The result, shown in Fig. 6.62, reveals that the voltage is the same 
across all the parallel elements, and the current increases significantly 
with decrease in resistance. The range in resistor values suggests, by 
inspection, that the total resistance is just less than the smallest resist-
ance of 22 Ω. Using Ohm’s law and the source current of 2.204 A results 
in a total resistance of RT = E>Is = 48 V>2.204 A = 21.78 Ω, con-
firming the above conclusion.

Multisim

Parallel dc Network    For comparison purposes with the PSpice 
approach, the same parallel network in Fig. 6.62 is now analyzed using 
Multisim. The source and ground are selected and placed as shown in 
Fig. 6.63 using the procedure defined in previous chapters. For the 
resistors, choose the resistor symbol in the BASIC toolbar listing. 
However, you must rotate it 90° to match the configuration of Fig. 6.62. 
You do this by first clicking on the resistor symbol to place it in the 
active state. (Be sure that the resulting small black squares surround 
the symbol, label, and value; otherwise, you may have activated only the 
label or value.) Then right-click inside the rectangle. Select 90° Clock-
wise, and the resistor is turned automatically. Unfortunately, there is no 
continuum here, so the next resistor has to be turned using the same 
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procedure. The values of each resistor are set by double-clicking on the 
resistor symbol to obtain the dialog box. Remember that the unit of 
measurement is controlled by the scrolls at the right of the unit of meas-
urement. For Multisim, unlike PSpice, megohm uses capital M and mil-
liohm uses lowercase m.

This time, rather than use the full meter employed in earlier meas-
urements, let us use the measurement options available in the Virtual 
(also called BASIC) toolbar. If it is not already available, the toolbar 
can be obtained through the sequence View-Toolbars-Virtual. Choos-
ing the key that looks like a small meter (Show Measurement Family) 
will present four options for the use of an ammeter, four for a voltmeter, 
and five probes. The four choices for an ammeter simply set the posi-
tion and the location of the positive and negative connectors. The option 
Place Ammeter (Horizontal) sets the ammeter in the horizontal posi-
tion as shown in Fig. 6.63 in the top left of the diagram with the plus 
sign on the left and the minus sign on the right—the same polarity that 
would result if the current through a resistor in the same position were 
from left to right. Choosing Place Ammeter (Vertical) will result in 
the ammeters in the vertical sections of the network with the positive 
connection at the top and negative connection at the bottom, as shown 
in Fig. 6.63 for the four branches. If you chose Place Ammeter (Hori-
zontally rotated) for the source current, it would simply reverse the 
positions of the positive and negative signs and provide a negative 
answer for the reading. If Place Ammeter (Vertically rotated) was 
chosen for the vertical branches, the readings would all be correct but 
with negative signs. Once all the elements are in place and their values 
set, initiate simulation with the sequence Simulate-Run. The results 
shown in Fig. 6.63 appear.

Note that all the results appear with the meter boxes. All are positive 
results because the ammeters were all entered with a configuration that 
would result in conventional current entering the positive current. Also 
note that, as was true for inserting the meters, the meters are placed in 
series with the branch in which the current is to be measured.

FIG. 6.63
Using the indicators of Multisim to display the currents  

of a parallel dc network.
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Problems

SECTION 6.2  Parallel Resistors

	 1.	 For each configuration in Fig. 6.64, find the voltage sources 
and/or resistors elements (individual elements, not combi-
nations of elements) that are in parallel.

R3
E2R2

R4R1
R1

R2

E

R3

(d)

E

(c)

R2

R3

R1

(b)(a)

R3

R1

R4

R2E
+

–

+

–
E

+

– +

–
R4

FIG. 6.64
Problem 1.

	 2.	 For each configuration of Fig. 6.65, find the voltage sources 
and/or resistive elements (individual elements, not combi-
nations of elements) that are in parallel.

R4R3

(a) (b)

R2E
+

–

R2

R3

R1E
+

–

R1

R1

(c)

R2

R3

E

+–

R2

R4

R3

R5

R6

R1

(d)

E1

+

–

FIG. 6.65
Problem 2.

	 3.	 For the network in Fig. 6.66:
	 a.	 Find the elements (individual voltage sources and/or 

resistors) that are in parallel.
	 b.	 Find the elements (voltage sources and/or resistors) that 

are in series.

R1

R5R2

R3

R4

E

R6

R7

+

–

FIG. 6.66
Problem 3.
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	 4.	 Find the total resistance for each configuration in Fig. 6.67. 
Note that only standard value resistors were used.

1.1 k� 110 � 11 �

R3R2R1

2 k� 4 k� 25 k�

R3R2R1R2R1

40 � 20 �

RTRTRT

(c)(b)(a)

FIG. 6.67
Problem 4.

	 5.	 Find the total resistance for each configuration of Fig. 6.68. 
Note that only standard resistor values are included.

2 � 2 k� 2 M�

R3R2R1

20 � 10 � 20 � 10 � 20 � 20 �

R6R5R4R3R2R1

RTRT

(c)(b)

12 k� 12 k� 12 k� 4 k�

R4R3R2R1

RT

(a)

2 � 2 k� 2 M�

R3R2R1

20 � 10 � 20 � 10 � 20 � 20 �

R6R5R4R3R2R1

RTRT

(c)(b)

12 k� 12 k� 12 k� 4 k�

R4R3R2R1

RT

(a)

FIG. 6.68
Problem 5.

	 6.	 For each circuit board in Fig. 6.69, find the total resistance 
between connection tabs 1 and 2.

1

2

(b)(a)

1

2

FIG. 6.69
Problem 6.

(a)

R6 �3 �RT = 1.61    �

(b)

6 k�6 k�6 k� R

RT = 1.8 k�

(c)

R20 k�

RT = 5.07 k�

FIG. 6.70
Problem 7.

	 7.	 The total resistance of each of the configurations in Fig. 6.70 
is specified. Find the unknown standard resistance value.
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	 8.	 The total resistance for each configuration of Fig. 6.71 is 

specified. Find the unknown resistance level. All unknowns 
are standard values.

(a)

R2.4 k�

RT = 1.02 k�

6.8 k�

R

(b)

R1R1R1

T = 6 k�

R1

(c)

8.2 k�

10 k�

RT = 1.11 k�

R

2 k�

FIG. 6.71
Problem 8.

RT

2.2 k�R1 33 k�R2 330 k�R3 3.3 M�R4

FIG. 6.72
Problem 9.

	 9.	 For the parallel network in Fig. 6.72, composed of standard 
values:

	 a.	 Which resistor has the most impact on the total resist-
ance?

	 b.	 Without making a single calculation, what is an approx-
imate value for the total resistance?

	 c.	 Calculate the total resistance, and comment on your 
response to part (b).

	 d.	 On an approximate basis, which resistors can be ignored 
when determining the total resistance?

	 e.	 If we add another parallel resistor of any value to the 
network, what is the impact on the total resistance?

	10.	 What is the ohmmeter reading for each configuration in Fig. 
6.73?

� �+ – + –

10 �2 �3 �

(a) (b)

100 �10 �

�
+–

(c)

7 �3 �

FIG. 6.73
Problem 10.
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	*11.	 Determine R1 for the network in Fig. 6.74.

R1

24 �

24 �

24 �

RT  =  10 � 120 �

24 �

FIG. 6.74
Problem 11.

SECTION 6.3  Parallel Circuits

	12.	 For the parallel network in Fig. 6.75:
	 a.	 Find the total resistance.
	 b.	 What is the voltage across each branch?
	 c.	 Determine the source current and the current through 

each branch.
	 d.	 Verify that the source current equals the sum of the 

branch currents.

E 36 V

RT

Is

R1 8 �

I1

R2 24 �

I2

+

–

FIG. 6.75
Problem 12.

	13.	 For the network of Fig. 6.76:
	 a.	 Find the current through each branch.
	 b.	 Find the total resistance.
	 c.	 Calculate Is using the result of part (b).
	 d.	 Find the source current using the result of part (a).
	 e.	 Compare the results of parts (c) and (d).

RT

Is

I3I1 I2

+

–
E 20 V R3 48 �R1 4 � R2 12 �

FIG. 6.76
Problem 13.

	14.	 Repeat the analysis of Problem 13 for the network in  
Fig. 6.77, constructed of standard value resistors.

E 24 V

RT

Is

R3 6.8 k�

I3

R1 10 k�

I1

R2 1.2 k�

I2

+

–

FIG. 6.77
Problem 14.

	15.	 For the parallel network in Fig. 6.78:
	 a.	 Without making a single calculation, make a guess on 

the total resistance.
	 b.	 Calculate the total resistance, and compare it to your 

guess in part (a).
	 c.	 Without making a single calculation, which branch will 

have the most current? Which will have the least?
	 d.	 Calculate the current through each branch, and compare 

your results to the assumptions of part (c).
	 e.	 Find the source current and test whether it equals the 

sum of the branch currents.
	 f.	 How does the magnitude of the source current compare 

to that of the branch currents?

E 60 V

RT

Is

R4 91 k�

I4

R1 20 k�

I1

R2 10 k�

I2

R3 1 k�

I3

+

–

FIG. 6.78
Problem 15.

	16.	 Given the information provided in Fig. 6.79, find:
	 a.	 The resistance R2.
	 b.	 The supply voltage E.

R2R1E
+

–

= 8 � P = 64 W  
RT

20 �

FIG. 6.79
Problem 16.
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	17.	 Use the information in Fig. 6.80 to calculate:
	 a.	 The source voltage E.
	 b.	 The resistance R2.
	 c.	 The current I1.
	 d.	 The source current Is.
	 e.	 The power supplied by the source.
	 f.	 The power supplied to the resistors R1 and R2.
	 g.	 Compare the power calculated in part (e) to the sum of 

the power delivered to all the resistors.

R2

I1

s

E
+

–
R1 R

3 A

3 6 �12 �

P = 120 W  

I

FIG. 6.80
Problem 17.

	18.	 Given the information provided in Fig. 6.81, find the 
unknown quantities: E, R1, and I3.

12.3 A

R3 4 �

I3

R1 R2 20 �

10.8 A

+

–
E

FIG. 6.81
Problem 18.

	19.	 For the network of Fig. 6.82, find:
	 a.	 The voltage V.
	 b.	 The current I2.
	 c.	 The current Is.
	 d.	 The power to the 12 kΩ resistor.

18 k�48 V

3 k� 

I2

VsI + –

12 k� 

FIG. 6.82
Problem 19.

	20.	 Using the information provided in Fig. 6.83, find:
	 a.	 The resistance R2.
	 b.	 The resistance R3.
	 c.	 The current Is.

R3R2

Is

R1

–15 V 4 A

5 �

1 A

FIG. 6.83
Problem 20.

	21.	 For the network in Fig. 6.77:
	 a.	 Redraw the network and insert ammeters to measure the 

source current and the current through each branch.
	 b.	 Connect a voltmeter to measure the source voltage and 

the voltage across resistor R3. Is there any difference in 
the connections? Why?

SECTION 6.4  Power Distribution in a Parallel Circuit

	22.	 For the configuration in Fig. 6.84:
	 a.	 Find the total resistance and the current through each 

branch.
	 b.	 Find the power delivered to each resistor.
	 c.	 Calculate the power delivered by the source.
	 d.	 Compare the power delivered by the source to the sum 

of the powers delivered to the resistors.
	 e.	 Which resistor received the most power? Why?

E 60 V 

RT

Is

R1 2 k�

I1

R2 4.4 k�

I2

R3 8 k�

I3

+

–

FIG. 6.84
Problem 22.

	23.	 Eight holiday lights are connected in parallel as shown in 
Fig. 6.85.

	 a.	 If the set is connected to a 120 V source, what is the 
current through each bulb if each bulb has an internal 
resistance of 1.8 kΩ?

	 b.	 Determine the total resistance of the network.
	 c.	 Find the current drain from the supply.
	 d.	 What is the power delivered to each bulb?
	 e.	 Using the results of part (d), find the power delivered by 

the source.
	 f.	 If one bulb burns out (that is, the filament opens up), 

what is the effect on the remaining bulbs? What is the 
effect on the source current? Why?
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FIG. 6.85
Problem 23.

5 �

20 �

12 �

2 �

60 V
+

–

FIG. 6.86
Problem 24.

	24.	 Determine the power delivered by the dc battery in  
Fig. 6.86.

	25.	 A portion of a residential service to a home is depicted in 
Fig. 6.87.

	 a.	 Determine the current through each parallel branch of 
the system.

	 b.	 Calculate the current drawn from the 120 V source. 
Will the 20 A breaker trip?

	 c.	 What is the total resistance of the network?
	 d.	 Determine the power delivered by the source. How does 

it compare to the sum of the wattage ratings appearing 
in Fig. 6.87?

TV
320 W 

Five 60 W 
bulbs in parallel

breaker

Circuit
(20 A)

120 V

Microwave
1200 W   

DVD
25 W 

FIG. 6.87
Problem 25.

I1

6 �

10 �

24 V

4 �

I2

P4�

–4 V

FIG. 6.88
Problem 26.

	*26.	 For the network in Fig. 6.88:
	 a.	 Find the current I1.
	 b.	 Calculate the power dissipated by the 4 Ω resistor.
	 c.	 Find the current I2.

SECTION 6.5  Kirchhoff’s Current Law

	27.	 Using Kirchhoff’s current law, determine the unknown cur-
rents for the parallel network in Fig. 6.89.

R3E R1 R2

5 mA

4 mA

10 mA

Is

I2

+

–

FIG. 6.89
Problem 27.
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	28.	 Using Kirchoff’s current law, find the unknown currents for 

the complex configurations in Fig. 6.90.

9 mA

10 mA8 mA

2 mA
I3

I2

I1

(b)

7 A

I = ?

9 A

12 V

(a)

5 A

3 A

FIG. 6.90
Problem 28.

	29.	 Using Kirchhoff’s current law, determine the unknown cur-
rents for the networks in Fig. 6.91.

(a) (b)

E
+–

Is

R1 R2

R3 R4

I3

I4

20 mA

36 mA

4 mA
I2

R1 R2

R3

R4

I4

I3

8 A

3 A

Is Is

FIG. 6.91
Problem 29.

	30.	 Using the information provided in Fig. 6.92, find the branch 
resistances R1 and R3, the total resistance RT, and the volt-
age source E.

	31.	 Find the unknown quantities for the networks in Fig. 6.93 
using the information provided.

E R1 R35 k�

9 mA

R2

5 mA 2 mA

RT+

–

FIG. 6.92
Problem 30.

R110 V R2

I  =  3 A 2 A

(a)

6 �E

RT

I

(b)

I32 A I2

9 �

P  =  12 W

+

–

+

–
R1 R2 R3

FIG. 6.93
Problem 31.
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	32.	 Find the unknown quantities for the networks of Fig. 6.94 
using the information provided.

1 k�64 V R

Is  =  100 mA I1

(a)

4 k�

I3

30 �E R2

P  =  30 W I1

(b)

R3  =  R2

I3

2 A

+

– +

–

I2

FIG. 6.94
Problem 32.

SECTION 6.6  Current Divider Rule

	33.	 Based solely on the resistor values, determine all the cur-
rents for the configuration in Fig. 6.95. Do not use Ohm’s 
law.

3 �

I1 = 9 A

I2 15 �

2 �

20 �

I3

I4

ITIT

FIG. 6.95
Problem 33.

I1 1 k�

2.4 k� 

2.5 A 

IT

(b)(a)

I1 I2

20 mA

2 k� 8 k�

I1 1 k�

2.4 k� 

2.5 A 

IT

(b)(a)

I1 I2

20 mA

2 k� 8 k�

FIG. 6.96
Problem 34.

	34.	 a.	 Determine one of the unknown currents of Fig. 6.96 
using the current divider rule.

	 b.	 Determine the other current using Kirchhoff’s current 
law.

	35.	 For each network of Fig. 6.97, determine the unknown 
currents.

8 A
I1 I2

I3

I420 �

4 �
1.2 �

4 �

8 �

(b)

6 A 

4 �

8 � 

12 �

10 �

I1

I2

I3

I4

(a)

E
+–

FIG. 6.97
Problem 35.

	36.	 Parts (a) through (e) of this problem should be done by 
inspection—that is, mentally. The intent is to obtain an 
approximate solution without a lengthy series of calcula-
tions. For the network in Fig. 6.98:

	 a.	 What is the approximate value of I1, considering the 
magnitude of the parallel elements?

	 b.	 What is the ratio I1>I2? Based on the result of part (a), 
what is an approximate value of I2?

	 c.	 What is the ratio I1>I3? Based on the result, what is an 
approximate value of I3?

	 d.	 What is the ratio I1>I4? Based on the result, what is an 
approximate value of I4?

	 e.	 What is the effect of the parallel 100 kΩ resistor on the 
above calculations? How much smaller will the current 
I4 be than the current I1?
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	 f.	 Calculate the current through the 1 kΩ resistor using 

the current divider rule. How does it compare to the 
result of part (a)?

	 g.	 Calculate the current through the 10 Ω resistor. How 
does it compare to the result of part (b)?

	 h.	 Calculate the current through the 1 kΩ resistor. How 
does it compare to the result of part (c)?

	 i.	 Calculate the current through the 100 kΩ resistor. How 
does it compare to the solutions to part (e)?

100 k�

1 k�
I  =  10 A

I4

10 �

1 �

I3

I2

I1

FIG. 6.98
Problem 36.

	37.	 Find the unknown quantities for the networks in Fig. 6.99 
using the information provided.

	38.	 a.	 Find resistance R for the network in Fig. 6.100 that will 
ensure that I1 = 3I2.

	 b.	 Find I1 and I2.

R

3 k�

I1

I2

30 mA

FIG. 6.100
Problem 38.

	39.	 Design the network in Fig. 6.101 such that I2 = 2I1 and 
I3 = 2I2.

R1 R2 R3E 28 V

I1 I2 I3

91 mA

+

–

FIG. 6.101
Problem 39.

SECTION 6.7  Voltage Source in Parallel

	40.	 Assuming identical supplies in Fig. 6.102:
	 a.	 Find the indicated currents.
	 b.	 Find the power delivered by each source.
	 c.	 Find the total power delivered by both sources, and 

compare it to the power delivered to the load RL.
	 d.	 If only one source were available, what would the cur-

rent drain be to supply the same power to the load? How 
does the current level compare to the calculated level of 
part (a)?

RL

IL

I1

12 V 12 V

I2 PL = 72 W

+

–

+

–

FIG. 6.102
Problem 40.

I1

6 � 42 �21 V21 V

I2+

–

+

–

FIG. 6.103
Problem 41.

	41.	 Assuming identical supplies, determine currents I1, I2, and 
I3 for the configuration in Fig. 6.103.

36 �

3 �

I

I1

I21 A

(a)

12 k� 

I3

4 k� 

RI1

I2

(b)

    

 4 mA

I = 24 mA

FIG. 6.99
Problem 37.
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8 �R 16 V16 V

I
5 A

5 A

+

–

+

–

FIG. 6.104
Problem 42.

	42.	 Assuming identical supplies, determine the current I and 
resistance R for the parallel network in Fig. 6.104.

SECTION 6.9  Voltmeter Loading Effects

	43.	 For the simple series configuration in Fig. 6.105:
	 a.	 Determine voltage V2.
	 b.	 Determine the reading of a DMM having an internal 

resistance of 11 MΩ when used to measure V2.
	 c.	 Repeat part (b) with a VOM having an Ω >V rating of 

20,000 using the 20 V scale. Compare the results of 
parts (b) and (c). Explain any differences.

	 d.	 Repeat parts (a) through (c) with R1 = 100 kΩ  and 
R2 = 200 kΩ.

	 e.	 Based on the above, what general conclusions can you 
make about the use of a DMM or a VOM in the voltme-
ter mode?

	47.	 a.	 The voltage Va for the network in Fig. 6.109 is -1 V. If 
it suddenly jumped to 20 V, what could have happened 
to the circuit structure? Localize the problem area.

	 b.	 If the voltage Va is 6 V rather than -1 V, explain what 
is wrong about the network construction.

R2 22 k� V2
E 20 V

4.7 k�

R1

+

–

+

–

FIG. 6.105
Problem 43.

a

E 40 V

2 M�

R

b

+

–

FIG. 6.106
Problem 44.

3 k� 4 k�6 V 6 k�E

I

V 6 V

3.5 mA

+

–

FIG. 6.107
Problem 45.

	44.	 Given the configuration in Fig. 6.106:
	 a.	 What is the voltage between points a and b?
	 b.	 What will the reading of a DMM be when placed across 

terminals a and b if the internal resistance of the meter 
is 22 MΩ?

	 c.	 Repeat part (b) if a VOM having an Ω >V rating of 
22,000 using the 400 V scale is used. What is the read-
ing using the 40 V scale? Is there a difference? Why?

SECTION 6.10  Troubleshooting Techniques

	45.	 Based on the measurements of Fig. 6.107, determine 
whether the network is operating correctly. If not, deter-
mine why.

	46.	 Referring to Fig. 6.108, find the voltage Vab without the 
meter in place. When the meter is applied to the active net-
work, it reads 8.8 V. If the measured value does not equal 
the theoretical value, which element or elements may have 
been connected incorrectly?

E 12 V V

8.8 V

1 k� 4 k�

E 4 V

a

b

Vab

+

–

+

– +–

FIG. 6.108
Problem 46.

3 k�

4 k�

+20 V

1 k�

–4 V

a Va  =  –1 V

E1

E2

FIG. 6.109
Problem 47.
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Kirchhoff’s current law (KCL)  The algebraic sum of the cur-

rents entering and leaving a node is zero.
Node  A junction of two or more branches.
Ohm/volt (Ω ,V) rating  A rating used to determine both the 

current sensitivity of the movement and the internal resistance 
of the meter.

Open circuit  The absence of a direct connection between two 
points in a network.

Parallel circuit  A circuit configuration in which the elements 
have two points in common.

Short circuit  A direct connection of low resistive value that can 
significantly alter the behavior of an element or system.

SECTION 6.14  Computer Analysis

	48.	 Using PSpice or Multisim, verify the results of Example 6.13.

	49.	 Using PSpice or Multisim, determine the solution to Prob-
lem 12, and compare your answer to the longhand solution.

	50.	 Using PSpice or Multisim, determine the solution to Prob-
lem 14, and compare your answer to the longhand solution.

Glossary

Current divider rule (CDR)  A method by which the current 
through parallel elements can be determined without first 
finding the voltage across those parallel elements.



7Series-Parallel CircuitsSeries-Parallel Circuits

7.1  Introduction

Chapters 5 and 6 were dedicated to the fundamentals of series and parallel circuits. In some 
ways, these chapters may be the most important ones in the text because they form a founda-
tion for all the material to follow. The remaining network configurations cannot be defined by 
a strict list of conditions because of the variety of configurations that exists. In broad terms, 
we can look upon the remaining possibilities as either series-parallel or complex.

A series-parallel configuration is one that is formed by a combination of series and 
parallel elements.

A complex configuration is one in which none of the elements are in series or parallel.

In this chapter, we examine the series-parallel combination using the basic laws introduced 
for series and parallel circuits. There are no new laws or rules to learn—simply an approach 
that permits the analysis of such structures. In the next chapter, we consider complex net-
works using methods of analysis that allow us to analyze any type of network.

The possibilities for series-parallel configurations are infinite. Therefore, you need to 
examine each network as a separate entity and define the approach that provides the best 
path to determining the unknown quantities. In time, you will find similarities between con-
figurations that make it easier to define the best route to a solution, but this occurs only with 
exposure, practice, and patience. The best preparation for the analysis of series-parallel net-
works is a firm understanding of the concepts introduced for series and parallel networks. 
All the rules and laws to be applied in this chapter have already been introduced in the previ-
ous two chapters.

7.2  Series-Parallel Networks

The network in Fig. 7.1 is a series-parallel network. At first, you must be very careful to 
determine which elements are in series and which are in parallel. For instance, resistors R1 
and R2 are not in series due to resistor R3 being connected to the common point b between R1 
and R2. Resistors R2 and R4 are not in parallel because they are not connected at both ends. 
They are separated at one end by resistor R3. The need to be absolutely sure of your defini-
tions from the last two chapters now becomes obvious. In fact, it may be a good idea to refer 
to those rules as we progress through this chapter.

If we look carefully enough at Fig. 7.1, we do find that the two resistors R3 and R4 are 
in series because they share only point c, and no other element is connected to that point. 

•	 Learn about the unique characteristics of series-
parallel configurations and how to solve for the 
voltage, current, or power to any individual 
element or combination of elements.

•	 Become familiar with the voltage divider supply 
and the conditions needed to use it effectively.

•	 Learn how to use a potentiometer to control the 
voltage across any given load.

Objectives

7
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S
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Further, the voltage source E and resistor R1 are in series because they 
share point a, with no other elements connected to the same point. In 
the entire configuration, there are no two elements in parallel.

How do we analyze such configurations? The approach is one that 
requires us to first identify elements that can be combined. Since there 
are no parallel elements, we must turn to the possibilities with series ele-
ments. The voltage source and the series resistor cannot be combined 
because they are different types of elements. However, resistors R3 and 
R4 can be combined to form a single resistor. The total resistance of the 
two is their sum as defined by series circuits. The resulting resistance is 
then in parallel with resistor R2, and they can be combined using the 
laws for parallel elements. The process has begun: We are slowly reduc-
ing the network to one that will be represented by a single resistor equal 
to the total resistance “seen” by the source.

The source current can now be determined using Ohm’s law, and we 
can work back through the network to find all the other currents and 
voltages. The ability to define the first step in the analysis can some-
times be difficult. However, combinations can be made only by using 
the rules for series or parallel elements, so naturally the first step may 
simply be to define which elements are in series or parallel. You must 
then define how to find such things as the total resistance and the source 
current and proceed with the analysis. In general, the following steps 
will provide some guidance for the wide variety of possible combina-
tions that you might encounter.

General Approach:

1.	 Take a moment to study the problem “in total” and make a brief 
mental sketch of the overall approach you plan to use. The result 
may be time- and energy-saving shortcuts.

2.	 Examine each region of the network independently before tying 
them together in series-parallel combinations. This usually simpli-
fies the network and possibly reveals a direct approach toward ob-
taining one or more desired unknowns. It also eliminates many of 
the errors that may result due to the lack of a systematic approach.

3.	 Redraw the network as often as possible with the reduced branches 
and undisturbed unknown quantities to maintain clarity and pro-
vide the reduced networks for the trip back to unknown quantities 
from the source.

4.	 When you have a solution, check that it is reasonable by consider-
ing the magnitudes of the energy source and the elements in the 
network. If it does not seem reasonable, either solve the circuit 
using another approach or review your calculations.

7.3 R educe and Return Approach

The network of Fig. 7.1 is redrawn as Fig. 7.2(a). For this discussion, let us 
assume that voltage V4 is desired. As described in Section 7.2, first combine 
the series resistors R3 and R4 to form an equivalent resistor R′ as shown in 
Fig. 7.2(b). Resistors R2 and R′ are then in parallel and can be combined to 
establish an equivalent resistor R′T as shown in Fig. 7.2(c). Resistors R1 and 
R′T are then in series and can be combined to establish the total resistance 
of the network as shown in Fig. 7.2(d). The reduction phase of the analy-
sis is now complete. The network cannot be put in a simpler form.

We can now proceed with the return phase whereby we work our way 
back to the desired voltage V4. Due to the resulting series configuration, 

a
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R2 R4

b c
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–
E

FIG. 7.1
Series-parallel dc network.
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FIG. 7.2
Introducing the reduce and return approach.
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the source current is also the current through R1 and R′T. The voltage 
across R′T (and therefore across R2) can be determined using Ohm’s law as 
shown in Fig. 7.2(e). Finally, the desired voltage V4 can be determined by 
an application of the voltage divider rule as shown in Fig. 7.2(f).

The reduce and return approach has now been introduced. This 
process enables you to reduce the network to its simplest form across 
the source and then determine the source current. In the return phase, 
you use the resulting source current to work back to the desired 
unknown. For most single-source series-parallel networks, the above 
approach provides a viable option toward the solution. In some cases, 
shortcuts can be applied that save some time and energy. Now for a 
few examples.

EXAMPLE 7.1  Find current I3 for the series-parallel network in 
Fig. 7.3.

Solution:  Checking for series and parallel elements, we find that 
resistors R2 and R3 are in parallel. Their total resistance is

R′ = R2 }R3 =
R2R3

R2 + R3
=

(12 kΩ)(6 kΩ)

12 kΩ + 6 kΩ
= 4 kΩ

Replacing the parallel combination with a single equivalent resistance 
results in the configuration in Fig. 7.4. Resistors R1 and R′ are then in 
series, resulting in a total resistance of

RT = R1 + R′ = 2 kΩ + 4 kΩ = 6 kΩ

The source current is then determined using Ohm’s law:

Is =
E

RT
=

54 V

6 kΩ
= 9 mA

In Fig. 7.4, since R1 and R′ are in series, they have the same current Is. 
The result is

I1 = Is = 9 mA

Returning to Fig. 7.3, we find that I1 is the total current entering the par-
allel combination of R2 and R3. Applying the current divider rule results 
in the desired current:

I3 = a R2

R2 + R3
b I1 = a 12 kΩ

12 kΩ + 6 kΩ
b9 mA = 6 mA

Note in the solution for Example 7.1 that all of the equations used 
were introduced in the last two chapters—nothing new was intro-
duced except how to approach the problem and use the equations 
properly.

EXAMPLE 7.2  For the network in Fig. 7.5:

	 a.	 Determine currents I4 and Is and voltage V2.
	 b.	 Insert the meters to measure current I4 and voltage V2.

Solutions: 

	 a.	 Checking out the network, we find that there are no two resis-
tors in series, and the only parallel combination is resistors R2 

E 54 V R3 6 k�R2 12 k�

I3
+

–

2 k�

R1

FIG. 7.3
Series-parallel network for Example 7.1.

E 54 V R′ 4 k�

2 k�

R1

Is
RT

I1 I1

+

–

FIG. 7.4
Substituting the parallel equivalent resistance for 

resistors R2 and R3 in Fig. 7.3.
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and  R3. Combining the two parallel resistors results in a total 
resistance of

R′ = R2 }R3 =
R2R3

R2 + R3
=

(18 kΩ)(2 kΩ)

18 kΩ + 2 kΩ
= 1.8 kΩ

		  Redrawing the network with resistance R′ inserted results in the 
configuration in Fig. 7.6.

You may now be tempted to combine the series resistors R1 and 
R′ and redraw the network. However, a careful examination of 
Fig. 7.6 reveals that since the two resistive branches are in parallel, 
the voltage is the same across each branch. That is, the voltage 
across the series combination of R1 and R′ is 12 V and that across 
resistor R4 is 12 V. The result is that I4 can be determined directly 
using Ohm’s law as follows:

I4 =
V4

R4
=

E

R4
=

12 V

8.2 kΩ
= 1.46 mA

		  In fact, for the same reason, I4 could have been determined directly 
from Fig. 7.5. Because the total voltage across the series combina-
tion of R1 and R′T is 12 V, the voltage divider rule can be applied to 
determine voltage V2 as follows:

V2 = a R′
R′ + R1

bE = a 1.8 kΩ
1.8 kΩ + 6.8 kΩ

b12 V = 2.51 V

		  The current Is can be found in one of two ways. Find the total resist-
ance and use Ohm’s law, or find the current through the other paral-
lel branch and apply Kirchhoff’s current law. Since we already have 
the current I4, the latter approach will be applied:

I1 =
E

R1 + R′
=

12 V

6.8 kΩ + 1.8 kΩ
= 1.40 mA

and	 Is = I1 + I4 = 1.40 mA + 1.46 mA = 2.86 mA

	 b.	 The meters have been properly inserted in Fig. 7.7. Note that the 
voltmeter is across both resistors since the voltage across parallel 
elements is the same. In addition, note that the ammeter is in series 
with resistor R4, forcing the current through the meter to be the same 
as that through the series resistor. The power supply is displaying 
the source current.

Clearly, Example 7.2 revealed how a careful study of a network can 
eliminate unnecessary steps toward the desired solution. It is often worth 

R1 6.8 k� I4

E 12 V
V2

+

–

R3 2 k�R2 18 k�
R4 8.2 k�

Is

+

–

FIG. 7.5
Series-parallel network for Example 7.2.

12 V

R1

I4

E

6.8 k�

R4 8.2 k� 12 V

R′ = 1.8 k� V2

+

–

+

–

+

–

Is

FIG. 7.6
Schematic representation of the network in Fig. 7.5 

after substituting the equivalent resistance R′ for the 
parallel combination of R2 and R3.
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the extra time to sit back and carefully examine a network before trying 
every equation that seems appropriate.

7.4  Block Diagram Approach

In the previous example, we used the reduce and return approach to find 
the desired unknowns. The direction seemed fairly obvious and the solu-
tion relatively easy to understand. However, occasionally the approach 
is not as obvious, and you may need to look at groups of elements rather 
than the individual components. Once the grouping of elements reveals 
the most direct approach, you can examine the impact of the individual 
components in each group. This grouping of elements is called the block 
diagram approach and is used in the following examples.

In Fig. 7.8, blocks B and C are in parallel (points b and c in common), 
and the voltage source E is in series with block A (point a in common). 
The parallel combination of B and C is also in series with A and the volt-
age source E due to the common points b and c, respectively.

To ensure that the analysis to follow is as clear and uncluttered as 
possible, the following notation is used for series and parallel combina-
tions of elements. For series resistors R1 and R2, a comma is inserted 
between their subscript notations, as shown here:

R1,2 = R1 + R2

For parallel resistors R1 and R2, the parallel symbol is inserted 
between their subscripted notations, as follows:

R1}2 = R1 }R2 =
R1R2

R1 + R2

If each block in Fig. 7.8 were a single resistive element, the network 
in Fig. 7.9 would result. Note that it is an exact replica of Fig. 7.3 in 
Example 7.1. Blocks B and C are in parallel, and their combination is in 
series with block A.

However, as shown in the next example, the same block configura-
tion can result in a totally different network.

+

V2

I4

V
+

mA
+

R1

R2 R3

R4+

–

Is

1 2 . 0

2 . 8 6

02.51 1.46

FIG. 7.7
Inserting an ammeter and a voltmeter to measure I4 and V2, respectively.

A

C

a b

c

E B
+
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FIG. 7.8
Introducing the block diagram approach.
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FIG. 7.9
Block diagram format of Fig. 7.3.
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EXAMPLE 7.3  Determine all the currents and voltages of the network 
in Fig. 7.10.

E R2 4 �4 � R3

B

R1

4 �

A

C

0.5 �R4

1.5 �R5

10 V

RT

Is

a
IA

IB IC

b

c

+

–

FIG. 7.10
Example 7.3.

Solution:  Blocks A, B, and C have the same relative position, but the 
internal components are different. Note that blocks B and C are still in 
parallel, and block A is in series with the parallel combination. First, 
reduce each block into a single element and proceed as described for 
Example 7.1.

In this case:

 A: RA = 4 Ω

 B: RB = R2 }R3 = R2}3 =
R

N
=

4 Ω
2

= 2 Ω

 C: RC = R4 + R5 = R4,5 = 0.5 Ω + 1.5 Ω = 2 Ω

Blocks B and C are still in parallel, and

RB}C =
R

N
=

2 Ω
2

= 1 �
with

 RT = RA + RB}C

 = 4 Ω + 1 Ω = 5 �

and	 Is =
E

RT
=

10 V

5 Ω
= 2 A

We can find the currents IA, IB, and IC using the reduction of the net-
work in Fig. 7.10 (recall Step 3) as found in Fig. 7.11. Note that IA, IB, 
and IC are the same in Figs. 7.10 and Fig. 7.11 and therefore also appear 
in Fig. 7.11. In other words, the currents IA, IB, and IC in Fig. 7.11 have 
the same magnitude as the same currents in Fig. 7.10. We have

IA = Is = 2 A

and	 IB = IC =
IA

2
=

Is

2
=

2 A

2
= 1 A

Returning to the network in Fig. 7.10, we have

IR2
= IR3

=
IB

2
= 0.5 A

(Note the similarity between this equation 
and that obtained for Example 7.1.)

VBRB  =  2 �

+  VA  –

RA  =  4 �

10 V
+

–
VC

+

–
2 �RC

IB IC

IA

+

–

Is

FIG. 7.11
Reduced equivalent of Fig. 7.10.
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The voltages VA, VB, and VC from either figure are

 VA = IARA = (2 A)(4 Ω) = 8 V

 VB = IBRB = (1 A)(2 Ω) = 2 V

 VC = VB = 2 V

Applying Kirchhoff’s voltage law for the loop indicated in Fig. 7.11, 
we obtain

 gA V = E - VA - VB = 0

 E = EA + VB = 8 V + 2 V

or	  10 V = 10 V   (checks)

EXAMPLE 7.4  Another possible variation of Fig. 7.8 appears in 
Fig. 7.12. Determine all the currents and voltages.

R1

9 �
R2

6 � I2

I1

A

R4 6 � R5 3 �

R3 4 �

B

R6 3 �

C

IA

E 16.8 V

a

IB IC

b

c

+

–

FIG. 7.12
Example 7.4.

Solution: 

 RA = R1}2 =
(9 Ω)(6 Ω)

9 Ω + 6 Ω
=

54 Ω 

15
= 3.6 Ω

 RB = R3 + R4}5 = 4 Ω +
(6 Ω)(3 Ω)

6 Ω + 3 Ω
= 4 Ω + 2 Ω = 6 Ω

 RC = 3 Ω

The network in Fig. 7.12 can then be redrawn in reduced form, as shown 
in Fig. 7.13. Note the similarities between this circuit and the circuits in 
Figs. 7.9 and 7.11. We have

 RT = RA + RB}C = 3.6 Ω +
(6 Ω)(3 Ω)

6 Ω + 3 Ω
 = 3.6 Ω + 2 Ω = 5.6 �

 Is =
E

RT
=

16.8 V

5.6 Ω
= 3 A

 IA = Is = 3 A

RB 6 �

RA

3.6 �

RC 3 �E 16.8 V
RT

+  VA  –

Is

IA

IB

VB

+

–

IC

VC

+

–

+

–

FIG. 7.13
Reduced equivalent of Fig. 7.12.
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Applying the current divider rule yields

IB =
RC IA

RC + RB
=

(3 Ω)(3 A)

3 Ω + 6 Ω
=

9 A

9
= 1 A

By Kirchhoff’s current law,

IC = IA - IB = 3 A - 1 A = 2 A

By Ohm’s law,

 VA = IARA = (3 A)(3.6 Ω) = 10.8 V

 VB = IBRB = VC = ICRC = (2 A)(3 Ω) = 6 V

Returning to the original network (Fig. 7.12) and applying the current 
divider rule gives

I1 =
R2IA

R2 + R1
=

(6 Ω)(3 A)

6 Ω + 9 Ω
=

18 A

15
= 1.2 A

By Kirchhoff’s current law,

I2 = IA - I1 = 3 A - 1.2 A = 1.8 A
R1 4 � I4

R3 6 �R2 3 �
E 12 V

V2

+

–

+

–
R4 8 �

FIG. 7.14
Example 7.5.

A BE

I4

+

–

FIG. 7.15
Block diagram of Fig. 7.14.

–

E

+

–

V2

+

C

D

FIG. 7.16
Alternative block diagram for the first parallel 

branch in Fig. 7.14.

7.5 D escriptive Examples

EXAMPLE 7.5  Find the current I4 and the voltage V2 for the network in 
Fig. 7.14 using the block diagram approach.

Solution:  Note the similarities with the network in Fig. 7.5. In this 
case, particular unknowns are requested instead of a complete solution. 
It would, therefore, be a waste of time to find all the currents and volt-
ages of the network. The method used should concentrate on obtaining 
only the unknowns requested. With the block diagram approach, the net-
work has the basic structure in Fig. 7.15, clearly indicating that the three 
branches are in parallel and the voltage across A and B is the supply 
voltage. The current I4 is now immediately obvious as simply the supply 
voltage divided by the resultant resistance for B. If desired, block A can 
be broken down further, as shown in Fig. 7.16, to identify C and D as 
series elements, with the voltage V2 capable of being determined using 
the voltage divider rule once the resistance of C and D is reduced to a 
single value. This is an example of how making a mental sketch of the 
approach before applying laws, rules, and so on can help avoid dead 
ends and frustration.

Figs. 7.9, 7.10, and 7.12 are only a few of the infinite variety of con-
figurations that the network can assume starting with the basic arrange-
ment in Fig. 7.8. They were included in our discussion to emphasize the 
importance of considering each region of the network independently 
before finding the solution for the network as a whole.

The blocks in Fig. 7.8 can be arranged in a variety of ways. In fact, 
there is no limit on the number of series-parallel configurations that can 
appear within a given network. In reverse, the block diagram approach 
can be used effectively to reduce the apparent complexity of a system by 
identifying the major series and parallel components of the network. 
This approach is demonstrated in the next few examples.
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Applying Ohm’s law, we have

I4 =
E

RB
=

E

R4
=

12 V

8 Ω
= 1.5 A

Combining the resistors R2 and R3 in Fig. 7.14 results in

RD = R2 }R3 = 3 Ω }6 Ω =
(3 Ω)(6 Ω)

3 Ω + 6 Ω
=

18 Ω
9

= 2 Ω

and, applying the voltage divider rule, we find

V2 =
RDE

RD + RC
=

(2 Ω)(12 V)

2 Ω + 4 Ω
=

24 V

6
= 4 V

EXAMPLE 7.6  Find the indicated currents and voltages for the net-
work in Fig. 7.17.

R1

6 �

R3

2 �

+  V1  –

R4 8 � R5 12 � V5

+

–

I4

R2

6 �

I2

RT

Is

E 24 V
+

–

FIG. 7.17
Example 7.6.

Solution:  Again, only specific unknowns are requested. When the net-
work is redrawn, be sure to note which unknowns are preserved and 
which have to be determined using the original configuration. The block 
diagram of the network may appear as shown in Fig. 7.18, clearly reveal-
ing that A and B are in series. Note in this form the number of unknowns 
that have been preserved. The voltage V1 is the same across the three 
parallel branches in Fig. 7.17, and V5 is the same across R4 and R5. The 
unknown currents I2 and I4 are lost since they represent the currents 
through only one of the parallel branches. However, once V1 and V5 are 
known, you can find the required currents using Ohm’s law.

 R1}2 =
R

N
=

6 Ω
2

= 3 Ω

 RA = R1}2}3 =
(3 Ω)(2 Ω)

3 Ω + 2 Ω
=

6 Ω
5

= 1.2 Ω

 RB = R4}5 =
(8 Ω)(12 Ω)

8 Ω + 12 Ω
=

96 Ω
20

= 4.8 Ω

The reduced form of Fig. 7.17 then appears as shown in Fig. 7.19, and

 RT = R1}2}3 + R4}5 = 1.2 Ω + 4.8 Ω = 6 �

 Is =
E

RT
=

24 V

6 Ω
= 4 A

+ –V1

Is

RTE V5

Is

+

–

A

B
+

–

FIG. 7.18
Block diagram for Fig. 7.17.

+ –V1

Is

RT

E V5

+

–

4.8 �

1.2 �

R1�2�3

R4�524 V
+

–

FIG. 7.19
Reduced form of Fig. 7.17.
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with

V1 = Is R1}2}3 = (4 A)(1.2 Ω) = 4.8 V

V5 = Is R4}5 = (4 A)(4.8 Ω) = 19.2 V

Applying Ohm’s law gives

 I4 =
V5

R4
=

19.2 V

8 Ω
= 2.4 A

 I2 =
V2

R2
=

V1

R2
=

4.8 V

6 Ω
= 0.8 A

The next example demonstrates that unknown voltages do not have to 
be across elements but can exist between any two points in a network. In 
addition, the importance of redrawing the network in a more familiar 
form is clearly revealed by the analysis to follow.

EXAMPLE 7.7 

	 a.	 Find the voltages V1, V3, and Vab for the network in Fig. 7.20.
	 b.	 Calculate the source current Is.

Is

E1

+

–

a6 �

6 V

R3

E218 V

2 �

R4

5 �

R1

3 �

R2b

V3+ –

V1+ –

Vab

+

–

+

–

FIG. 7.20
Example 7.7.

Solutions:  This is one of those situations where it may be best to 
redraw the network before beginning the analysis. Since combining both 
sources will not affect the unknowns, the network is redrawn as shown 
in Fig. 7.21, establishing a parallel network with the total source voltage 
across each parallel branch. The net source voltage is the difference 
between the two with the polarity of the larger.

	 a.	 Note the similarities with Fig. 7.16, permitting the use of the volt-
age divider rule to determine V1 and V3:

 V1 =
R1E

R1 + R2
=

(5 Ω)(12 V)

5 Ω + 3 Ω
=

60 V

8
= 7.5 V

 V3 =
R3E

R3 + R4
=

(6 Ω)(12 V)

6 Ω + 2 Ω
=

72 V

8
= 9 V

		  The open-circuit voltage Vab is determined by applying Kirchhoff’s 
voltage law around the indicated loop in Fig. 7.21 in the clockwise 
direction starting at terminal a. We have

+ V1 - V3 - Vab = 0

and	 Vab = V1 - V3 = 7.5 V - 9 V = −1.5 V

b

R3 6 �

R4 2 �

R1 5 �

R2 3 �

12 VE

V1

+

–

Is

V3

+

–

I1 I3

a
Vab– +

+

–

FIG. 7.21
Network in Fig. 7.20 redrawn.
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	 b.	 By Ohm’s law,

 I1 =
V1

R1
=

7.5 V

5 Ω
= 1.5 A

 I3 =
V3

R3
=

9 V

6 Ω
= 1.5 A

		  Applying Kirchhoff’s current law gives

Is = I1 + I3 = 1.5 A + 1.5 A = 3 A

EXAMPLE 7.8  For the network in Fig. 7.22, determine the voltages V1 
and V2 and the current I.

Solution:  It would indeed be difficult to analyze the network in the 
form in Fig. 7.22 with the symbolic notation for the sources and the ref-
erence or ground connection in the upper left corner of the diagram. 
However, when the network is redrawn as shown in Fig. 7.23, the 
unknowns and the relationship between branches become significantly 
clearer. Note the common connection of the grounds and the replacing 
of the terminal notation by actual supplies.

–
V1

+

–
V2

+

R1 6 �

R4 6 �

R3

7 �

R2 5 �

a E1  =   – 6 V

E2 + 18 V

I

FIG. 7.22
Example 7.8.

a

V1
+

–

I2

R1 6 �

R4 6 �

R3 7 �

6 VE1

18 VE2

I
R2 5 �

I3

+

I1–

V2
+

–
+

–

FIG. 7.23
Network in Fig. 7.22 redrawn.

It is now obvious that

V2 = - E1 = −6 V

The minus sign simply indicates that the chosen polarity for V2 in 
Fig. 7.22 is opposite to that of the actual voltage. Applying Kirchhoff’s 
voltage law to the loop indicated, we obtain

-E1 + V1 - E2 = 0

and	 V1 = E2 + E1 = 18 V + 6 V = 24 V

Applying Kirchhoff’s current law to node a yields

 I = I1 + I2 + I3

 =
V1

R1
+

E1

R4
+

E1

R2 + R3

 =
24 V

6 Ω
+

6 V

6 Ω
+

6 V

12 Ω
 = 4 A + 1 A + 0.5 A

 I = 5.5 A
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The next example is clear evidence that techniques learned in the cur-
rent chapters will have far-reaching applications and will not be dropped 
for improved methods. Even though we have not studied the transistor 
yet, the dc levels of a transistor network can be examined using the basic 
rules and laws introduced in earlier chapters.

EXAMPLE 7.9  For the transistor configuration in Fig. 7.24, in which 
VB and VBE have been provided:

	 a.	 Determine the voltage VE and the current IE.
	 b.	 Calculate V1.
	 c.	 Determine VBC using the fact that the approximation IC = IE is often 

applied to transistor networks.
	 d.	 Calculate VCE using the information obtained in parts (a) through (c).

Solutions: 

	 a.	 From Fig. 7.24, we find

V2 = VB = 2 V

		  Writing Kirchhoff’s voltage law around the lower loop yields

	 V2 - VBE - VE = 0

or	 VE = V2 - VBE = 2 V - 0.7 V = 1.3 V

and	 IE =
VE

RE
=

1.3 V

1 kΩ
= 1.3 mA

	 b.	 Applying Kirchhoff’s voltage law to the input side (left region of 
the network) results in

	 V2 + V1 - VCC = 0

and	 V1 = VCC - V2

but	 V2 = VB

and	 V1 = VCC - V2 = 22 V - 2 V = 20 V

	 c.	 Redrawing the section of the network of immediate interest results 
in Fig. 7.25, where Kirchhoff’s voltage law yields

	  VC + VRC 
-  VCC = 0

and	  VC = VCC -  VRC
= VCC -  IC RC

but	  IC = IE

and	  VC = VCC - IERC = 22 V - (1.3 mA)(10 kΩ)

	  = 9 V

Then	  VBC = VB - VC

	  = 2 V - 9 V

	  = −7 V

	 d.		   VCE = VC - VE

	  = 9 V - 1.3 V

	  = 7.7 V

RE 1 k�

B

+

IE

E

C

VBE = 0.7 V –

VCC  =  22 V

–

VCE

–

+

IC

RC 10 k�
R1 40 k�

R2 4 k�V2

–

+

V1

–

+

VBC

+

VB = 2 V

VE

FIG. 7.24
Example 7.9.

RC 10 k�

VC

+

–

C

VRC

+

–

IC

VCC  =  22 V

FIG. 7.25
Determining VC for the network in Fig. 7.24.
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EXAMPLE 7.10  Calculate the indicated currents and voltage in Fig. 7.26.

R2 8 k�

R1

4 k�
+

R4 24 k�

R3

12 k�

R5

12 k�

I5

Is

a
R6

12 k�
R7

9 k�

R8

3 k�
R9

6 k�

–
V7

b

72 VE
+

–

FIG. 7.26
Example 7.10.

Is

+

–

I6I5

R1,2,3 24 k� R4 24 k�

V7 9 k�
R7 R8,9 9 k�

R6 12 k�

72 VE

R5 12 k�

I6I5

+

–

FIG. 7.27
Network in Fig. 7.26 redrawn.

Solution:  Redrawing the network after combining series elements 
yields Fig. 7.27, and

I5 =
E

R(1,2,3)}4 + R5
=

72 V

12 kΩ + 12 kΩ
=

72 V

24 kΩ
= 3 mA

with

 V7 =
R7}(8,9)E

R7}(8,9) + R6
=

(4.5 kΩ)(72 V)

4.5 kΩ + 12 kΩ
=

324 V

16.5
= 19.6 V

 I6 =
V7

R7}(8,9)
=

19.6 V

4.5 kΩ
= 4.35 mA

and	 Is = I5 + I6 = 3 mA + 4.35 mA = 7.35 mA

Since the potential difference between points a and b in Fig. 7.26 is 
fixed at E volts, the circuit to the right or left is unaffected if the network 
is reconstructed as shown in Fig. 7.28.

R2 8 k�

R1

4 k�

+
R4 24 k�

R3

12 k�

R5

12 k�

I6

R6

12 k�

R7

9 k� R8

3 k�

R9

6 k�

–
V7

72 VE

I6I5

I5

72 VE
+

–

+

–

FIG. 7.28
An alternative approach to Example 7.10.
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We can find each quantity required, except Is, by analyzing each cir-
cuit independently. To find Is, we must find the source current for each 
circuit and add it as in the above solution; that is, Is = I5 + I6.

EXAMPLE 7.11  For the network in Fig. 7.29:

	 a.	 Determine voltages Va, Vb, and Vc.
	 b.	 Find voltages Vac and Vbc.
	 c.	 Find current I2.
	 d.	 Find the source current Is3

.
	 e.	 Insert voltmeters to measure voltages Va and Vbc and current Is3

.

Solutions: 

	 a.	 The network is redrawn in Fig. 7.30 to clearly indicate the arrange-
ment between elements.

First, note that voltage Va is directly across voltage source E1. 
Therefore,

Va = E1 = 20 V

		  The same is true for voltage Vc, which is directly across the voltage 
source E3. Therefore,

Vc = E3 = 8 V

To find voltage Vb, which is actually the voltage across R3, we 
must apply Kirchhoff’s voltage law around loop 1 as follows:

+E1 - E2 - V3 = 0

and	 V3 = E1 - E2 = 20 V - 5 V = 15 V

and	 Vb = V3 = 15 V

	 b.	 Voltage Vac, which is actually the voltage across resistor R1, can 
then be determined as follows:

Vac = Va - Vc = 20 V - 8 V = 12 V

		  Similarly, voltage Vbc, which is actually the voltage across resistor 
R2, can then be determined as follows:

Vbc = Vb - Vc = 15 V - 8 V = 7 V

	 c.	 Current I2 can be determined using Ohm’s law:

I2 =
V2

R2
=

Vbc 

R2 
=

7 V

4 Ω
= 1.75 A

	 d.	 The source current Is3
 can be determined using Kirchhoff’s current 

law at node c:

 g Ii = g Io

 I1 + I2 + Is3
= 0

and	 Is3
= -I1 -  I2 = -  

V1

R1
  -  I2

with	 V1 = Vac = Va - Vc = 20 V - 8 V = 12 V

		  so that

Is3
= -  

12 V

10 Ω
  -  1.75 A = -1.2 A -  1.75 A = −2.95 A

20 VE1

Va

I2

Is

+

–

VcVb

R15 V

E2

R3

10 �

+E3

8 V
–

R2

4 �

5 �

+

–

FIG. 7.29
Example 7.11.

R1 10 �

V3 R3 5 �

R2

4 �
20 V

8 V

5 V

E1

E2

E3

Va

Vb Vc
I2

Is3

I1

+

–

+

–

+

–
+

–

FIG. 7.30
Network in Fig. 7.29 redrawn to better define a path 

toward the desired unknowns.
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		  revealing that current is actually being forced through source E3 in a 
direction opposite to that shown in Fig. 7.29.

	 e.	 Both voltmeters have a positive reading, as shown in Fig. 7.31, 
while the ammeter has a negative reading.

V
+

R1

E1 20 V
I2

Va

Vb

R3

R2

E2

E3

8 V

5 V

Vc

Is3

V
+

A
+

+

–

+

–

+

–

20.00

2.95

7.00

FIG. 7.31
Complex network for Example 7.11.

7.6 L adder Networks

A three-section ladder network appears in Fig. 7.32. The reason for the 
terminology is quite obvious for the repetitive structure. Basically two 
approaches are used to solve networks of this type.

V6

+

–

RT

I6

R6 2 �240 VE R4 6 �R2 6 �

R1

5 �

R3

4 �

R5

1 �

Is

+

–

FIG. 7.32
Ladder network.

Method 1

Calculate the total resistance and resulting source current, and then work 
back through the ladder until the desired current or voltage is obtained. 
This method is now employed to determine V6 in Fig. 7.32.

Combining parallel and series elements as shown in Fig. 7.33 results 
in the reduced network in Fig. 7.34, and

 RT = 5 Ω + 3 Ω = 8 Ω

 Is =
E

RT
=

240 V

8 Ω
= 30 A
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Working our way back to I6 (Fig. 7.35), we find that

I1 = Is

and	 I3 =
Is

2
=

30 A

2
= 15 A

and, finally (Fig. 7.36),

I6 =
(6 Ω)I3

6 Ω + 3 Ω
=

6

9
(15 A) = 10 A

and	 V6 = I6R6 = (10 A)(2 Ω) = 20 V

R2 6 �

R1

5 �

RT
R4 6 �

R3

4 �

3 �
(  =  1 � +  2 �)

(3 �)(6 �)

3 � +  6 �
=  2 �

R2 6 �

R1

5 �

RT
6 � (  =  4 � +  2 �)

6 �

2
=  3 �

FIG. 7.33

Working back to the source to determine RT for the network in Fig. 7.32.

3 �
RT

Is R1

5 �

FIG. 7.34
Calculating RT and Is.

E

I1

6 �6 �

R1

5 �

R2

Is I3

240 V
+

–

FIG. 7.35
Working back toward I6.

I1

6 �R2

Is R3

4 �

R1

5 �

E 240 V 3 �

I3 I4 I6

6 �R4 R5,6V4

+

–

+

–

FIG. 7.36
Calculating I6.

Method 2

Assign a letter symbol to the last branch current and work back through 
the network to the source, maintaining this assigned current or other cur-
rent of interest. The desired current can then be found directly. This 
method can best be described through the analysis of the same network 
considered in Fig. 7.32, redrawn in Fig. 7.37.
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The assigned notation for the current through the final branch is I6:

I6 =
V4

R5 + R6
=

V4

1 Ω + 2 Ω
=

V4

3 Ω
or	 V4 = (3 Ω)I6

so that	 I4 =
V4

R4
=

(3 Ω)I6

6 Ω
= 0.5I6

and	 I3 = I4 + I6 = 0.5I6 + I6 = 1.5I6

	 V3 = I3R3 = (1.5I6)(4 Ω) = (6 Ω)I6

Also,	 V2 = V3 + V4 = (6 Ω)I6 + (3 Ω)I6 = (9 Ω)I6

so that	 I2 =
V2

R2
=

(9 Ω)I6

6 Ω
= 1.5I6

and	 IS = I2 + I3 = 1.5I6 + 1.5I6 = 3I6

with	 V1 = I1R1 = IsR1 = (5 Ω)Is

so that	  E = V1 + V2 = (5 Ω)Is + (9 Ω)I6

	  = (5 Ω)(3I6) + (9 Ω)I6 = (24 Ω)I6

and	 I6 =
E

24 Ω
=

240 V

24 Ω
= 10 A

with	 V6 = I6R6 = (10 A)(2 Ω) = 20 V

as was obtained using method 1.

7.7 V oltage Divider Supply  
(Unloaded and Loaded)

When the term loaded is used to describe voltage divider supply, it refers 
to the application of an element, network, or system to a supply that draws 
current from the supply. In other words,

the loading down of a system is the process of introducing elements 
that will draw current from the system. The heavier the current, the 
greater is the loading effect.

Recall from Section 5.11 that the application of a load can affect the 
terminal voltage of a supply due to the internal resistance.

No-Load Conditions

Through a voltage divider network such as that in Fig. 7.38, a number of 
different terminal voltages can be made available from a single supply. 
Instead of having a single supply of 120 V, we now have terminal volt-
ages of 100 V and 60 V available—a wonderful result for such a simple 
network. However, there can be disadvantages. One is that the applied 

R1

5 �

V1+ –
I1

V2  R2 6 �

+

–

I2 I3

R3

4 �

V3+ –

R4 6 �
+

–

I4 I5

R5

1 �

V5+ –

V4240 V

Is

R6 2 �

I6

+

–
V6E

+

–

FIG. 7.37
An alternative approach for ladder networks.

E 20 �

30 �

10 �

a

b

c

0 V

60 V

100 V

120 V

120 V

+

–

FIG. 7.38
Voltage divider supply.
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resistive loads can have values too close to those making up the voltage 
divider network.

In general,

for a voltage divider supply to be effective, the applied resistive loads 
should be significantly larger than the resistors appearing in the 
voltage divider network.

To demonstrate the validity of the above statement, let us now exam-
ine the effect of applying resistors with values very close to those of the 
voltage divider network.

Loaded Conditions

In Fig. 7.39, resistors of 20 Ω have been connected to each of the termi-
nal voltages. Note that this value is equal to one of the resistors in the 
voltage divider network and very close to the other two.

R2 20 �

R1 10 �

E 120 V

R3 30 � RL3
20 �

RL2
20 �

RL1
20 �

Vc

Vb

Va  =  120 V

0 V

Voltage divider supply

+

–

FIG. 7.39
Voltage divider supply with loads equal to the average value  

of the resistive elements that make up the supply.

Voltage Va is unaffected by the load RL1
 since the load is in parallel 

with the supply voltage E. The result is Va = 120 V, which is the same 
as the no-load level. To determine Vb, we must first note that R3 and RL3

 
are in parallel and R′3 = R3 }RL3

= 30 Ω }20 Ω = 12 Ω. The parallel 
combination gives

 R′2 = (R2 + R′3) }RL2
= (20 Ω + 12 Ω) }20 Ω

 = 32 Ω }20 Ω = 12.31 Ω

Applying the voltage divider rule gives

Vb =
(12.31 Ω)(120 V)

12.31 Ω + 10 Ω
= 66.21 V

versus 100 V under no-load conditions.
Voltage Vc is

Vc =
(12 Ω)(66.21 V)

12 Ω + 20 Ω
= 24.83 V

versus 60 V under no-load conditions.
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The effect of load resistors close in value to the resistor employed in 
the voltage divider network is, therefore, to decrease significantly some 
of the terminal voltages.

If the load resistors are changed to the 1 kΩ level, the terminal volt-
ages will all be relatively close to the no-load values. The analysis is 
similar to the above, with the following results:

Va = 120 V  Vb = 98.88 V  Vc = 58.63 V

If we compare current drains established by the applied loads, we 
find for the network in Fig. 7.39 that

IL2
=

VL2

RL2

 =
66.21 V

20 Ω
= 3.31 A

and for the 1 kΩ level,

IL2
=

98.88 V

1 kΩ
 = 98.88 mA 6 0.1 A

As demonstrated above, the greater the current drain, the greater is 
the change in terminal voltage with the application of the load. This is 
certainly verified by the fact that IL2

 is about 33.5 times larger with the 
20 Ω loads.

The next example is a design exercise. The voltage and current rat-
ings of each load are provided, along with the terminal ratings of the 
supply. The required voltage divider resistors must be found.

R2

–12 V

R1

b

R3

a

RL2
E 72 V

20 mA

10 mA

20 V

RL1
60 V

+

–
+

–

+

–

Is  =  50 mA

FIG. 7.40
Voltage divider supply for Example 7.12.

Solution:  R3:

 R3 =
VR3

IR3

 =
VR3

 

Is 
=

12 V

50 mA
= 240 �

 PR3
= (IR3

)2R3 = (50 mA)2 240 Ω = 0.6 W 6 2 W

EXAMPLE 7.12  Determine R1, R2, and R3 for the voltage divider 
supply in Fig. 7.40. Can 2 W resistors be used in the design?
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R1: Applying Kirchhoff’s current law to node a, we have

	 Is -  IR1 
-  IL1

= 0

and	  IR1
= Is -  IL1

= 50 mA -  20 mA = 30 mA

	  R1 =
VR1

IR1

 =
VL1 

-  VL2
 

IR1
 

=
60 V -  20 V

30 mA
=

40 V

30 mA
= 1.33 k�

	  PR1
= (IR1

)2R1 = (30 mA)2 1.33 kΩ = 1.197 W 6 2 W

R2: Applying Kirchhoff’s current law at node b, we have

	 IR1
 -  IR2

 -  IL2
= 0

and	  IR2
= IR1  -   IL2

= 30 mA -  10 mA = 20 mA

	  R2 =
VR2

IR2

 =
20 V

20 mA
= 1 k�

	  PR2
= (IR2

)2R2 = (20 mA)2 1 kΩ = 0.4 W 6 2 W

Since PR1
, PR2

, and PR3
 are less than 2 W, 2 W resistors can be used for the 

design.

7.8  Potentiometer Loading

For the unloaded potentiometer in Fig. 7.41, the output voltage is deter-
mined by the voltage divider rule, with RT in the figure representing the 
total resistance of the potentiometer. Too often it is assumed that the 
voltage across a load connected to the wiper arm is determined solely by 
the potentiometer and the effect of the load can be ignored. This is defi-
nitely not the case, as is demonstrated here.

When a load is applied as shown in Fig. 7.42, the output voltage VL is 
now a function of the magnitude of the load applied since R1 is not as 
shown in Fig. 7.41 but is instead the parallel combination of R1 and RL.

The output voltage is now

	 VL =
R′E

R′ + R2
  with R′ = R1 }RL	 (7.1)

R1

E

R2

RT

VL

+

–
=

R1E
R1  +  R2

+

–

FIG. 7.41
Unloaded potentiometer.

RL

R′  =  R1 � RL

VL

RT

R1

E

R2

a

b

c
RL

R′  =  R1 � RL

VL

RT

R1

E

R2

a

b

c

+

a

b

c

RL

Potentiometer

E

Is
+

–

+

– +

–

+

–

FIG. 7.42
Loaded potentiometer.
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If you want to have good control of the output voltage VL through the 
controlling dial, knob, screw, or whatever, you must choose a load or 
potentiometer that satisfies the following relationship:

	 RL W RT	 (7.2)

In general,

when hooking up a load to a potentiometer, be sure that the load 
resistance far exceeds the maximum terminal resistance of the 
potentiometer if good control of the output voltage is desired.

For example, let’s disregard Eq. (7.2) and choose a 1 MΩ potentio
meter with a 100 Ω load and set the wiper arm to 1/10 the total resistance, 
as shown in Fig. 7.43. Then

R′ = 100 kΩ }100 Ω = 99.9 Ω

and	 VL =
99.9 Ω(10 V)

99.9 Ω + 900 kΩ
≅ 0.001 V = 1 mV

which is extremely small compared to the expected level of 1 V.
In fact, if we move the wiper arm to the midpoint,

R′ = 500 kΩ }100 Ω = 99.98 Ω

and	 VL =
(99.98 Ω)(10 V)

99.98 Ω + 500 kΩ
≅ 0.002 V = 2 mV

which is negligible compared to the expected level of 5 V. Even at 
R1 = 900 kΩ, VL is only 0.01 V, or 1/1000 of the available voltage.

Using the reverse situation of RT = 100 Ω and RL = 1 MΩ and the 
wiper arm at the 1/10 position, as in Fig. 7.44, we find

	 R′ = 10 Ω }  1 MΩ ≅ 10 Ω

and	 VL =
10 Ω(10 V)

10 Ω + 90 Ω
= 1 V

as desired.
For the lower limit (worst-case design) of RL = RT = 100 Ω, as 

defined by Eq. (7.2) and the halfway position of Fig. 7.42,

R′ = 50 Ω }100 Ω = 33.33 Ω

and	 VL =
33.33 Ω(10 V)

33.33 Ω + 50 Ω
 ≅ 4 V

It may not be the ideal level of 5 V, but at least 40% of the voltage E 
has been achieved at the halfway position rather than the 0.02% obtained 
with RL = 100 Ω and RT = 1 MΩ.

In general, therefore, try to establish a situation for potentiometer 
control in which Eq. (7.2) is satisfied to the highest degree possible.

Someone might suggest that we make RT as small as possible to bring 
the percent result as close to the ideal as possible. Keep in mind, how-
ever, that the potentiometer has a power rating, and for networks such as 
Fig. 7.44, P max ≅ E2>RT = (10 V)2>100 Ω = 1 W. If RT is reduced to 
10 Ω, P max = (10 V)2>10 Ω = 10 W, which would require a much 
larger unit.

VL

+

–

1 M�  Pot.

900 k�

100 k�

100 �

E 10 V
+

–

FIG. 7.43
Loaded potentiometer with RL V RT.

E

VL

+

–

10 V

100 �  Pot.

90 �

10 �

1 M�

+

–

FIG. 7.44
Loaded potentiometer with RL W RT.
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EXAMPLE 7.13  Find voltages V1 and V2 for the loaded potentiometer 
of Fig. 7.45.

Solution:  Ideal (no load):

V1 =
4 kΩ(120 V)

10 kΩ
= 48 V

V2 =
6 kΩ(120 V)

10 kΩ
= 72 V

Loaded:

 R′ = 4 kΩ }12 kΩ = 3 kΩ
 R″ = 6 kΩ }30 kΩ = 5 kΩ

 V1 =
3 kΩ(120 V)

8 kΩ
= 45 V

 V2 =
5 kΩ(120 V)

8 kΩ
= 75 V

The ideal and loaded voltage levels are so close that the design can 
be considered a good one for the applied loads. A slight variation in the 
position of the wiper arm will establish the ideal voltage levels across 
the two loads.

7.9  Impact of shorts and open circuits

The concept of shorts and open circuits was introduced in Section 6.8 
with a few simple examples. This section will demonstrate that both 
conditions can wreak havoc on the response of a system. Both are fre-
quently blamed for serious problems in network behavior and often very 
difficult to find. However, trained technicians and engineers develop a 
sense for finding the root of a problem through the application of com-
mon sense developed over the years. For both conditions keep in mind 
the general characteristics of each.

A short circuit introduces a low-resistance unwanted path between 
two points in a network that can result in unwanted high levels of 
current although the potential at both ends of the connection is the 
same. That is, the voltage drop across a short is zero volts although 
the current can be any level as determined by the altered network.

Similarly:

An open circuit introduces a high-resistance unwanted path between 
two points in a network that can result in very high levels of voltage 
across its terminals although the current between its two points must 
be zero ampere. That is, the current associated with an open-circuit is 
zero ampere but the voltage can be any level as determined by the 
altered network.

The next few examples will demonstrate how drastic the effects can 
be due to a single short circuit or open circuit.

EXAMPLE 7.14  This example will demonstrate the impact of an 
unwanted short circuit on the network of Example 7.7. Find the new 
levels of V1, V3, Vab, and the source current Is and compare to the levels 

E

V1

+

–

120 V

10 k�  Pot.

6 k�

4 k�

12 k�

V2

+

–
30 k�

+

–

FIG. 7.45
Example 7.13.
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Solution:  The network is redrawn as shown in Fig. 7.47. Redrawing 
the network is often the best first step in examining the impact of a short 
or open circuit.

Is
Isc

E1

–

+6 �

6 V

R3

E218 V

2 �

R4

5 �

R1

3 �

R2

a

b

V3

V1+ –

+ –
Vab

+

–

+

–

FIG. 7.46
Network of Example 7.7 with a short circuit.

5 �R1

Is

R4R3

6 � 2 �

6 V 3 �R21V
+

–
E1

–

+

+ –

Vx

Vab

Is

V3+ –

–
b

+
a

E218 V
+

–

FIG. 7.47
Network of Fig. 7.46 redrawn.

Clearly,

V1 = −6 V

Applying Kirchhoff’s voltage law:

 -E1 - Vx + E2 = 0

 Vx = E2 - E1 = 18 V - 6 V = 12 V

and then the voltage divider rule:

V3 =
6 Ω (Vx)

6 Ω + 2 Ω
=

6 Ω (12 V)

8 Ω
= 9 V

Applying Kirchhoff’s voltage law once again:

 -E1 - V3 - Vab = 0

 Vab = -E1 - V3 = -6 V - 9 V

 = −15 V

Then	 I2 Ω = I6 Ω =
Vx

6 Ω + 2 Ω
=

Vx

8 Ω
=

12 V

8 Ω
= 1.5 A

and	 I3 Ω =
E2

3 Ω
=

18 V

3 Ω
= 6 A

obtained in Example 7.7. The short circuit created a direct path to ground 
between two of the resistors of the network as shown in Fig. 7.46.
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and finally Kirchhoff’s current law:

 Is = I2 Ω + I3 Ω

 = 1.5 A + 6 A

 = 7.5 A

The results for the altered network are now listed next to the results of 
Example 7.7. The only quantity to remain the same was the voltage V3.

Example 7.7 Example 7.14

 V1 = 7.5 V
 V3 = 9 V

 Vab = -1.5 V
 Is = 3 A

 V1 = -6 V
 V3 = 9 V

 Vab = -15 V
 Is = 7.5 A

EXAMPLE 7.15  This example will demonstrate the impact of an 
unwanted open circuit on the network of Example 7.7. Find the new 
levels of V1, V3, Vab, and the source current Is and compare to the levels 
obtained in Example 7.7. The open circuit is a result of the less than 
solid connection between the resistors R1 and R2 as shown in Fig. 7.48.

Is

E1

+

–

a
6 �

6 V

R3

E218 V

2 �

R4

5 �

R1

3 �

R2b

V3+ –

V1+ –

Vab

+

–

+

–

FIG. 7.48
Network of Example 7.7 with an open circuit.

Is

2 �

R3 R4

Vab– +

6 �
V3+ –

E218 V
+

–
E1 6 V

V =1 0 V

+

–

FIG. 7.49
Network of Fig. 7.48 redrawn.

Solution:  The network is redrawn in Fig. 7.49.
The resistors R1 and R2 are now only connected at one point and there-

fore will not affect the desired voltages or currents of the configuration.
The result is that

V1 = 0 V

Applying the voltage divider rule:

 V3 =
6 Ω (18 V - 6 V)

6 Ω + 2 Ω
=

6 Ω (12 V)

8 Ω
 = 9 V

The voltage Vab is equal in magnitude to V3 but with the opposite polarity:

Vab = −9 V

The source current is determined by a simple application of Ohm’s law:

Is =
18 V - 6 V

6 Ω + 2 Ω
=

12 V

8 Ω
= 1.5 A

The results are now compared to those of Example 7.7. Again, the only 
quantity unchanged is the voltage V3.
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Example 7.7 Example 7.15

 V1 = 7.5 V
 V3 = 9 V

 Vab = -1.5 V
 Is = 3 A

 V1 = 0 V
 V3 = 9 V

 Vab = -9 V
 Is = 1.5 A

If the network were not performing properly and the voltage V3 were the 
only voltage measured, it would be the same for a short or open circuit and 
one would assume everything is fine. However, a second measurement 
would probably confirm that there is a problem somewhere in the system.

EXAMPLE 7.16  Find the short-circuit current for the network of 
Fig. 7.46 and the open-circuit voltage for Fig. 7.47.

Solution:  For Fig. 7.46, applying Kirchhoff’s current law:

 g Ii = g Io

 Isc = I5 Ω + I3 Ω

 =
18 V

3 Ω
+

6 V

5 Ω
 = 6 A + 1.2 A

 = 7.2 A

For Fig. 7.47, applying Kirchhoff’s voltage law:

 Voc = E2 - E1

 = 18 V - 6 V

 = 12 V

7.10 Amm eter, Voltmeter,  
and Ohmmeter Design

The designs of this section will use the iron-vane movement of Fig. 7.50 
because it is the one that is most frequently used by current instrument 
manufacturers. It operates using the principle that there is a repulsive 

Movement
terminals

Pointer

Spring

Fixed vane

Moving vane

SIDE VIEW

Coil

For up-scale reading
(printed on casing)

I

Pointer

Spring

TOP VIEW

Moving
vane

Fixed
vane

FIG. 7.50
Iron-vane movement.
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force between like magnetic poles. When a current is applied to the coil 
wrapped around the two vanes, a magnetic field is established within the 
coil, magnetizing the fixed and moveable vanes. Since both vanes will 
be magnetized in the same manner, they will have the same polarity, and 
a force of repulsion will develop between the two vanes. The stronger 
the applied current, the stronger are the magnetic field and the force of 
repulsion between the vanes. The fixed vane will remain in position, but 
the moveable vane will rotate and provide a measure of the strength of 
the applied current.

An iron-vane movement manufactured by the Simpson Company 
appears in Fig. 7.51(a). Movements of this type are usually rated in 
terms of current and resistance. The current sensitivity (CS) is the cur-
rent that will result in a full-scale deflection. The resistance (Rm) is the 
internal resistance of the movement. The graphic symbol for a move-
ment appears in Fig. 7.51(b) with the current sensitivity and internal 
resistance for the unit of Fig. 7.51(a).

Movements are usually rated by current and resistance. The specifi-
cations of a typical movement may be 1 mA, 50 Ω. The 1 mA is the 
current sensitivity (CS) of the movement, which is the current required 
for a full-scale deflection. It is denoted by the symbol ICS. The 50 Ω 
represents the internal resistance (Rm) of the movement. A common 
notation for the movement and its specifications is provided in Fig. 7.52.

The Ammeter

The maximum current that the iron-vane movement can read indepen-
dently is equal to the current sensitivity of the movement. However, 
higher currents can be measured if additional circuitry is introduced. 
This additional circuitry, as shown in Fig. 7.52, results in the basic con-
struction of an ammeter.

(a)

1 mA, 43 �

(b)

FIG. 7.51
Iron-vane movement; (a) photo, (b) symbol  

and ratings.

Rshunt

1 mA, 43 �

b

d

a

c
Imax  = 1 A

Is

Im

Ammeter

FIG. 7.52
Basic ammeter.

The resistance Rshunt is chosen for the ammeter in Fig. 7.53 to allow 
1 mA to flow through the movement when a maximum current of 1 A 

External terminalExternal terminal

Rotary switch

Imax  =  1 A I

Imax  =  10 A

Imax  =  100 A

I + –

1 mA, 43 �

4.3 m�

43 m�

0.43 m�

FIG. 7.53
Multirange ammeter.
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enters the ammeter. If less than 1 A flows through the ammeter, the 
movement will have less than 1 mA flowing through it and will indicate 
less than full-scale deflection.

Since the voltage across parallel elements must be the same, the 
potential drop across a-b in Fig. 7.53 must equal that across c-d; that is,

(1 mA)(43 Ω) = RshuntIs

Also, Is must equal 1 A -  1 mA = 999 mA if the current is to be 
limited to 1 mA through the movement (Kirchhoff’s current law). 
Therefore,

 (1 mA)(43 Ω) = Rshunt(999 mA)

 Rshunt =
(1 mA)(43 Ω)

999 mA

 ≅  43 mΩ (a standard value)

In general,

	 Rshunt =
RmICS

Imax -  ICS
	 (7.3)

One method of constructing a multirange ammeter is shown in 
Fig. 7.54, where the rotary switch determines the Rshunt to be used for 
the maximum current indicated on the face of the meter. Most meters 
use the same scale for various values of maximum current. If you read 
375 on the 0–5 mA scale with the switch on the 5 setting, the current is 
3.75 mA; on the 50 setting, the current is 37.5 mA; and so on.

The Voltmeter

A variation in the additional circuitry permits the use of the iron-vane 
movement in the design of a voltmeter. The 1 mA, 43 Ω movement can 
also be rated as a 43 mV (1 mA * 43 Ω), 43 Ω movement, indicating 
that the maximum voltage that the movement can measure indepen-
dently is 43 mV. The millivolt rating is sometimes referred to as the 
voltage sensitivity (VS). The basic construction of the voltmeter is shown 
in Fig. 7.54.

The Rseries is adjusted to limit the current through the movement to 
1 mA when the maximum voltage is applied across the voltmeter. A 
lower voltage simply reduces the current in the circuit and thereby the 
deflection of the movement.

Applying Kirchhoff’s voltage law around the closed loop of Fig. 7.54, 
we obtain

310 V - (1 mA)(Rseries)4 - 43 mV = 0

or	 Rseries =
10 V - (43 mV)

1 mA
= 9957 Ω ≅ 10 kΩ

In general,

	 Rseries =
Vmax -  VVS

ICS
	 (7.4)

One method of constructing a multirange voltmeter is shown in 
Fig. 7.55. If the rotary switch is at 10 V, Rseries = 10 kΩ; at 50 V, Rseries =
40 kΩ + 10 kΩ = 50 kΩ; and at 100 V, Rseries = 50 kΩ + 40 kΩ +
10 kΩ = 100 kΩ.

V  =  10  V (maximum)

Im  =  1 mA

Rseries

43 mV+ –

+ –

1 mA, 43 �

FIG. 7.54
Basic voltmeter.

40 k�

50 k�

External terminals

100 V

50 V

10 V
Rotary
switch

Im  =  1 mA

1 mA, 43 �

–+

10 k�

FIG. 7.55
Multirange voltmeter.
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The Ohmmeter

In general, ohmmeters are designed to measure resistance in the low, 
middle, or high range. The most common is the series ohmmeter, 
designed to read resistance levels in the midrange. It uses the series con-
figuration in Fig. 7.56. The design is quite different from that of the 
ammeter or voltmeter because it shows a full-scale deflection for zero 
ohms and no deflection for infinite resistance.

1 mA, 43 �

Rs

Zero-adjust

Im

E

Runknown

+

–

FIG. 7.56
Series ohmmeter.

To determine the series resistance Rs, the external terminals are 
shorted (a direct connection of zero ohms between the two) to simulate 
zero ohms, and the zero-adjust is set to half its maximum value. The 
resistance Rs is then adjusted to allow a current equal to the current sen-
sitivity of the movement (1 mA) to flow in the circuit. The zero-adjust is 
set to half its value so that any variation in the components of the meter 
that may produce a current more or less than the current sensitivity can 
be compensated for. The current Im is

	 Im (full scale) = ICS =
E

Rs + Rm +
zero@adjust

2

	 (7.5)

and	 Rs =
E

ICS
 -  Rm -  

zero@adjust

2
	 (7.6)

If an unknown resistance is then placed between the external termi-
nals, the current is reduced, causing a deflection less than full scale. If 
the terminals are left open, simulating infinite resistance, the pointer 
does not deflect since the current through the circuit is zero.

An instrument designed to read very low values of resistance and volt-
age appears in Fig. 7.57. It is capable of reading resistance levels between 
10 mΩ (0.01 Ω) and 100 mΩ (0.1 Ω) and voltages between 10 mV and 
100 V. Because of its low-range capability, the network design must be a 
great deal more sophisticated than described above. It uses electronic 
components that eliminate the inaccuracies introduced by lead and contact 
resistances. It is similar to the above system in the sense that it is com-
pletely portable and does require a dc battery to establish measurement 
conditions. Special leads are used to limit any introduced resistance levels.

The megohmmeter (often called a megger) is an instrument for 
measuring very high resistance values. Its primary function is to test the 
insulation found in power transmission systems, electrical machinery, 

FIG. 7.57
Nanovoltmeter.

(Courtesy of Keithley Instruments)
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transformers, and so on. To measure the high-resistance values, a high 
dc voltage is established by a hand-driven generator. If the shaft is 
rotated above some set value, the output of the generator is fixed at one 
selectable voltage, typically 250 V, 500 V, or 1000 V—good reason to 
be careful in its use. A photograph of a commercially available tester is 
shown in Fig. 7.58. For this instrument, the range is 0 to 5000 MΩ.

7.11 App lications

Boosting a Car Battery

Although boosting a car battery may initially appear to be a simple 
application of parallel networks, it is really a series-parallel operation 
that is worthy of some investigation. As indicated in Chapter 2, every dc 
supply has some internal resistance. For the typical 12 V lead-acid car 
battery, the resistance is quite small—in the milliohm range. In most 
cases, the low internal resistance ensures that most of the voltage (or 
power) is delivered to the load and not lost on the internal resistance. In 
Fig. 7.59, battery #2 has discharged because the lights were left on for 3 
hours during a movie. Fortunately, a friend who made sure his own 
lights were off has a fully charged battery #1 and a good set of 16-ft 
cables with #6 gage stranded wire and well-designed clips. The invest-
ment in a good set of cables with sufficient length and heavy wire is a 
wise one, particularly if you live in a cold climate. Flexibility, as pro-
vided by stranded wire, is also a very desirable characteristic under some 
conditions. Be sure to check the gage of the wire and not just the thick-
ness of the insulating jacket. You get what you pay for, and the copper is 
the most expensive part of the cables. Too often the label says “heavy-
duty,” but the gage number of the wire is too high.

FIG. 7.58
Megohmmeter.

(Courtesy of AEMC Instruments)

12 V

20 m� 10 m�

Booster battery
(#1)

Down battery
(#2)

11.7 V

Booster cable

Icharging

Battery terminals

+

–

+

–

+

–

+

–

FIG. 7.59
Boosting a car battery.

The proper sequence of events in boosting a car is often a function of 
to whom you speak or what information you read. For safety’s sake, 
some people recommend that the car with the good battery be turned off 
when making the connections. This, however, can create an immediate 
problem if the “dead” battery is in such a bad state that when it is hooked 
up to the good battery, it immediately drains the good battery to the 
point that neither car will start. With this in mind, it does make some 
sense to leave the car running to ensure that the charging process contin-
ues until the starting of the disabled car is initiated. Because accidents 
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do happen, it is strongly recommended that the person making the con-
nections wear the proper type of protective eye equipment. Take suffi-
cient time to be sure that you know which are the positive and negative 
terminals for both cars. If it’s not immediately obvious, keep in mind 
that the negative or ground side is usually connected to the chassis of the 
car with a relatively short, heavy wire.

When you are sure which are the positive and negative terminals, first 
connect one of the red wire clamps of the booster cables to the positive 
terminal of the discharged battery—all the while being sure that the other 
red clamp is not touching the battery or car. Then connect the other end of 
the red wire to the positive terminal of the fully charged battery. Next, con-
nect one end of the black cable of the booster cables to the negative termi-
nal of the booster battery, and finally connect the other end of the black 
cable to the engine block of the stalled vehicle (not the negative post of the 
dead battery) away from the carburetor, fuel lines, or moving parts of the 
car. Lastly, have someone maintain a constant idle speed in the car with 
the good battery as you start the car with the bad battery. After the vehicle 
starts, remove the cables in the reverse order starting with the cable con-
nected to the engine block. Always be careful to ensure that clamps don’t 
touch the battery or chassis of the car or get near any moving parts.

Some people feel that the car with the good battery should charge the 
bad battery for 5 to 10 minutes before starting the disabled car so the 
disabled car will be essentially using its own battery in the starting pro-
cess. Keep in mind that the instant the booster cables are connected, the 
booster car is making a concerted effort to charge both its own battery 
and the drained battery. At starting, the good battery is asked to supply a 
heavy current to start the other car. It’s a pretty heavy load to put on a 
single battery. For the situation in Fig. 7.59, the voltage of battery #2 is 
less than that of battery #1, and the charging current will flow as shown. 
The resistance in series with the boosting battery is greater because of the 
long length of the booster cable to the other car. The current is limited 
only by the series milliohm resistors of the batteries, but the voltage dif-
ference is so small that the starting current will be in safe range for the 
cables involved. The initial charging current will be I = (12 V - 11.7 V)>
(20 mΩ + 10 mΩ) = 0.3 V>30 mΩ = 10 A. At starting, the current 
levels will be as shown in Fig. 7.60 for the resistance levels and battery 
voltages assumed. At starting, an internal resistance for the starting cir-
cuit of 0.1 Ω = 100 mΩ is assumed. Note that the battery of the disa-
bled car has now charged up to 11.8 V with an associated increase in its 
power level. The presence of two batteries requires that the analysis wait 
for the methods to be introduced in the next chapter.

12 V

S

I1 = 43.75 A I2 = 67.5 A

Istarter = I1 + I2 = 111.25 A

100 m�
starter
motor

11.8 V

20 m� 10 m�
+

–

+

–

+

–

FIG. 7.60
Current levels at starting.
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Note also that the current drawn from the starting circuit for the disa-
bled car is over 100 A and that the majority of the starting current is 
provided by the battery being charged. In essence, therefore, the major-
ity of the starting current is coming from the disabled car. The good bat-
tery has provided an initial charge to the bad battery and has provided 
the additional current necessary to start the car. In total, however, it is 
the battery of the disabled car that is the primary source of the starting 
current. For this very reason, the charging action should continue for 5 
or 10 minutes before starting the car. If the disabled car is in really bad 
shape with a voltage level of only 11 V, the resulting levels of current 
will reverse, with the good battery providing 68.75 A and the bad battery 
only 37.5 A. Quite obviously, therefore, the worse the condition of the 
dead battery, the heavier is the drain on the good battery. A point can 
also be reached where the bad battery is in such bad shape that it cannot 
accept a good charge or provide its share of the starting current. The 
result can be continuous cranking of the disabled car without starting 
and possible damage to the battery of the running car due to the enor-
mous current drain. Once the car is started and the booster cables are 
removed, the car with the discharged battery will continue to run because 
the alternator will carry the load (charging the battery and providing the 
necessary dc voltage) after ignition.

The above discussion was all rather straightforward, but let’s investi-
gate what may happen if it is a dark and rainy night, you are rushed, and 
you hook up the cables incorrectly as shown in Fig. 7.61. The result is 
two series-aiding batteries and a very low resistance path. The resulting 
current can then theoretically be extremely high [I = (12 V + 11.7 V)>
30 mΩ = 23.7 V>30 mΩ = 790 A], perhaps permanently damaging 
the electrical system of both cars and, worst of all, causing an explosion 
that may seriously injure someone. It is therefore very important that 
you treat the process of boosting a car with great care. Find that flash-
light, double-check the connections, and be sure that everyone is clear 
when you start that car.

12 V

20 m�

10 m�

11.7 V

Booster cable

Idamage = 790 A +

–+

–

+

–

FIG. 7.61
Current levels if the booster battery is improperly connected.

Before leaving the subject, we should point out that getting a boost 
from a tow truck results in a somewhat different situation: The connec-
tions to the battery in the truck are very secure; the cable from the truck 
is a heavy wire with thick insulation; the clamps are also quite large and 
make an excellent connection with your battery; and the battery is 
heavy-duty for this type of expected load. The result is less internal 
resistance on the supply side and a heavier current from the truck battery. 
In this case, the truck is really starting the disabled car, which simply 
reacts to the provided surge of power.



300    Series-Parallel Circuits
S    P    P

S

Electronic Circuits

The operation of most electronic systems requires a distribution of dc 
voltages throughout the design. Although a full explanation of why the 
dc level is required (since it is an ac signal to be amplified) will have to 
wait for the introductory courses in electronic circuits, the dc analysis 
will proceed in much the same manner as described in this chapter. In 
other words, this chapter and the preceding chapters are sufficient 
background to perform the dc analysis of the majority of electronic 
networks you will encounter if given the dc terminal characteristics of 
the electronic elements. For example, the network in Fig. 7.62 using a 
transistor will be covered in detail in any introductory electronics 
course. The dc voltage between the base (B) of the transistor and the 
emitter (E) is about 0.7 V under normal operating conditions, and the 
collector (C) is related to the base current by IC = bIB = 50IB (b varies 
from transistor to transistor). Using these facts will enable us to deter-
mine all the dc currents and voltages of the network using the laws 
introduced in this chapter. In general, therefore, be encouraged that 
you will use the content of this chapter in numerous applications in the 
courses to follow.

β = 50
VR
RC

2 kΩ

+ –

220 kΩ

+ –
VR
RB

12 VVBB 12 VVCC

IC

IB VBE

+
–

+
VCE–

C

B

E +

–

+

–

FIG. 7.62
The dc bias levels of a transistor amplifier.

For the network in Fig. 7.62, we begin our analysis by applying 
Kirchhoff’s voltage law to the base circuit (the left loop):

+VBB -  VRB
 -  VBE = 0  or VBB = VRB

+ VBE

and	  VRB
 = VBB  -  VBE = 12 V -  0.7 V = 11.3 V

so that	  VRB
 = IBRB  = 11.3 V

and	  IB =
VRB

 

RB
=

11.3 V

220 kΩ
 = 51.4 MA

Then	  IC = bIB = 50IB = 50(51.4 mA) = 2.57 mA

For the output circuit (the right loop)

+VCE + VRC
 -  VCC = 0  or  VCC = VRC

+ VCE

with	  VCE = VCC  -  VRC
 = VCC  -  ICRC = 12 V -  (2.57 mA)(2 kΩ)

 = 12 V -  5.14 V = 6.86 V

For a typical dc analysis of a transistor, all the currents and voltages 
of interest are now known: IB, VBE, IC, and VCE. All the remaining volt-
age, current, and power levels for the other elements of the network can 
now be found using the basic laws applied in this chapter.
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The previous example is typical of the type of exercise you will be 
asked to perform in your first electronics course. For now you only need 
to be exposed to the device and to understand the reason for the relation-
ships between the various currents and voltages of the device.

7.12 C omputer Analysis

PSpice

Voltage Divider Supply    We will now use PSpice to verify the 
results of Example 7.12. The calculated resistor values will be substi-
tuted and the voltage and current levels checked to see if they match the 
handwritten solution.

As shown in Fig. 7.63, the network is drawn as in earlier chapters 
using only the tools described thus far—in one way, a practice exercise 
for everything learned about the Capture CIS Edition. Note in this 
case that rotating the first resistor sets everything up for the remaining 
resistors. Further, it is a nice advantage that you can place one resistor 
after another without going to the End Mode option. Be especially 
careful with the placement of the ground, and be sure that 0/CAPSYM 
is used. Note also that resistor R1 in Fig. 7.63 was entered as 1.333 kΩ 
rather than 1.33 kΩ as in Example 7.12. When running the program, 
we found that the computer solutions were not a perfect match to the 
longhand solution to the level of accuracy desired unless this change 
was made.

Since all the voltages are to ground, the voltage across RL1
 is 60 V; 

across RL2
, 20 V; and across R3, -12 V. The currents are also an excellent 

match with the handwritten solution, with IE = 50 mA, IR1
= 30 mA, 

IR2
= 20 mA, IR3

= 50 mA, IRL2
= 10 mA, and IRL1

= 20 mA. For the 
display in Fig. 7.63, the W option was disabled to permit concentrating on 
the voltage and current levels. This time, there is an exact match with the 
longhand solution.

FIG. 7.63
Using PSpice to verify the results of Example 7.12.
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Problems

Sections 7.2–7.5  Series-Parallel Networks

	 1.	 Which elements (individual elements, not combinations of 
elements) of the networks in Fig. 7.64 are in series? Which 
are in parallel? As a check on your assumptions, be sure 
that the elements in series have the same current and that 
the elements in parallel have the same voltage. Restrict your 
decisions to single elements, not combinations of elements.

+

–

R1

R2

R4

R3 R5
E

(a) (b)

R

E

4

R3R2

R1

+

–

R1 R4

E

(c)

R3 R5

R2

FIG. 7.64
Problem 1.

	 2.	 Repeat Problem 1 for the networks of Fig. 7.65.

R2

(a)

R4

R3 R5

R1

2+E

(b)

R1

R2

R4

R3

+

–
E

(c)

+

–
E

R4

R1

R5

R6

R2

R3

+ E1

FIG. 7.65
Problem 2.

	 3.	 Determine RT for the networks in Fig. 7.66.

(a) (b)

10 �

10 �

RT

10 �

10 �

4 �

RT

4 �

4 �

4 � R

(c)

10 �
T

1.2      �

8.2      �

6.8      �

FIG. 7.66
Problem 3.
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	 4.	 Determine RT for the networks of Fig. 7.67.

(a)

10 �

4 �

RT

4 �

RT

�

(b)

10 � 4 � 4 

4 �

(c)

RT

2 � �4 
12 �8 �

6 �

FIG. 7.67
Problem 4.

	*5.	 Find the total resistance for the configuration of Fig. 7.68. 	d.	 If V2 = 8 V and E = 14 V, find V3.
	e.	 If R1 = 4 Ω, R2 = 2 Ω, R3 = 4 Ω, and R4 = 6 Ω, 

what is RT?
	f.	 If all the resistors of the configuration are 20 Ω, what is 

the source current if the applied voltage is 20 V?
	g.	 Using the values of part (f), find the power delivered by 

the battery and the power absorbed by the total resist-
ance RT.

R1

R2

I1

I2
+  V2  –

R3

R4

I3

I4

+  V3  –

I5Is

RT

E

+

–

I6

FIG. 7.70
Problem 7.

15 k�

15 k�

3.3 k�

RT

3.3 k�

FIG. 7.68
Problem 5.

	*6.	 The total resistance RT  for the network of Fig. 7.69 is 
9.6 kΩ. Find the resistance R1.

R1R1R1

R1

RT  = 9.6 k�

FIG. 7.69
Problem 6.

	 7.	 For the network in Fig. 7.70:
	a.	 Does Is = I5 = I6? Explain.
	b.	 If Is = 10 A and I1 = 4 A, find I2.
	c.	 Does I1 + I2 = I3 + I4? Explain.

	 8.	 For the network in Fig. 7.71:
	a.	 Determine RT.
	b.	 Find Is, I1, and I2.
	c.	 Find voltage Va.

R1 10 � R2 15 �E

36 V

Is
I1 I2

R3 10 �

R4 2 �

Va

RT

+

–

FIG. 7.71
Problem 8.

	 9.	 For the network of Fig. 7.72:
	a.	 Find the currents Is and I4.
	b.	 Calculate the voltages V1 and V3.

I4

R1

  + V1  –

11 �
R3 = 27 �

R2 27�

Is

E V80
+

–

R4

27 �

V3

+

–

FIG. 7.72
Problem 9.
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	10.	 For the network of Fig. 7.73:
	a.	 Find the voltages Va and Vb.
	b.	 Find the currents I1 and Is.

I1

32 V

72 �

24 � 8 �

b

18 �

12 �

Isa

FIG. 7.73
Problem 10.

	11.	 For the network of Fig. 7.74:
	a.	 Find the voltages Va, Vb, and Vc.
	b.	 Find the currents I1 and I2.

I1
I2+

–
36 V

+

–
60 V8 k�

a

5 k�

10 k�1 k� b c

FIG. 7.74
Problem 11.

	12.	 For the circuit board in Fig. 7.75:
	a.	 Find the total resistance RT of the configuration.

1 k� 2.4 k�

1.2 k�

2 k�

3.3 k�

6.8 k�

Is

RT

V

48 V

+

–

+ –

FIG. 7.75
Problem 12.

	13.	 Find the value of each resistor for the network of Fig. 7.76.

2R

R

R

2R

12 A

120 V
+

–

FIG. 7.76
Problem 13.

	*14.	 Find the resistance RT for the network of Fig. 7.77. Hint! If 
it was infinite in length, how would the resistance looking 
into the next vertical 1 Ω resistor compare to the desired 
resistance RT?

1 �

1 �

1 � 1 �

1 �1 �

1 �

RT

1 � 1 �

1 �

∞

FIG. 7.77
Problem 14.

	b.	 Find the current drawn from the supply if the applied 
voltage is 48 V.

	c.	 Find the reading of the applied voltmeter.
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R1
12 k�

R4

9 k�

R2
12 k�

R3 3 k�V1

+

–

R5

6 k�

+  V5  –
R6 10.4 k�E  =  28 V

Is
I6

I2
+

–

FIG. 7.78
Problem 15.

	*15.	 For the network in Fig. 7.78:
	a.	 Find currents Is, I2, and I6.
	b.	 Find voltages V1 and V5.
	c.	 Find the power delivered to the 3 kΩ resistor.

	16.	 a.	 Find the magnitude and direction of the currents I, I1, I2, 
and I3 for the network in Fig. 7.79.

	b.	 Indicate their direction on Fig. 7.79.

R2 2 �

R3 10 �

R1 4 �

+24 V

I

I2

I3

I1

+8 V

FIG. 7.79
Problem 16.

	17.	 Determine the currents I1 and I2 for the network in Fig. 7.80, 
constructed of standard values.

I1

+ 30 V

I2

47 �

160 �

270 �

– 21 V

FIG. 7.80
Problem 17.

	*18.	 For the network in Fig. 7.81:
	a.	 Determine the currents Is, I1, I3, and I4.
	b.	 Calculate Va and Vbc.

R1 10 � R3 5 �20 V

R4

14 � R5

6 �

Va

c b

I4

I3

I1 Is

20 �

R2
+

–

FIG. 7.81
Problem 18.

	19.	 For the network in Fig. 7.82:
	a.	 Determine the current I1.
	b.	 Calculate the currents I2 and I3.
	c.	 Determine the voltage level Va.

R3 6 �R5 6 �

R4 4 �

R2 4 �

R1

E1 = 20 V

= 15 VE2

4 �

I1

I2

I3
Va

FIG. 7.82
Problem 19.
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	*20.	 Determine the dc levels for the transistor network in Fig. 7.83 
using the fact that VBE = 0.7 V, VE = 2 V, and IC = IE. 
That is:
	a.	 Determine IE and IC.
	b.	 Calculate IB.
	c.	 Determine VB and VC.
	d.	 Find VCE and VBC.

RE 1 k�

RC 2.2 k�RB 220 k�

IE

IC

IB

VCC  =  8 V

C VC

E  VE  =  2 V

BVB

+

–
VBE

+
VBC

–

VCE

+

–

FIG. 7.83
Problem 20.

	21.	 For the network in Fig. 7.84:
	a.	 Determine the current I2.
	b.	 Find V1.
	c.	 Calculate I1.

R1 8 �

R2 4 �

R3

V1

+

–

E1  =  +44 V

18 �

I2
I1

E2  =  +44 V

FIG. 7.84
Problem 21.

	*22.	 For the network in Fig. 7.85:
	a.	 Determine RT by combining resistive elements.
	b.	 Find V1 and V4.
	c.	 Calculate I3 (with direction).
	d.	 Determine Is by finding the current through each ele-

ment and then applying Kirchhoff’s current law. Then 
calculate RT from RT = E>Is, and compare the answer 
with the solution of part (a).

R1

16 �

R2

8 �

R4

32 �

R5

16 �

R3

4 �

32 V

E
RT

Is

I3

+  V4  –

+  V1  –

+ –

FIG. 7.85
Problem 22.

	*23.	 For the network of Fig. 7.86:
	a.	 Find the voltages Va and Vb.
	b.	 Calculate the current I.
	c.	 Determine the voltage Vab.

5 �6 V

20 V3 �

2 �
a b

I

+

–

+

–

FIG. 7.86
Problem 23.

	*24.	 For the network in Fig. 7.87:
	a.	 Determine the current I.
	b.	 Calculate the open-circuit voltage V.

V

8 �
I

3 � 6 �

18 V

20 V
+

–

+
–

+–

FIG. 7.87
Problem 24.
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	*26.	 If all the resistors of the cube in Fig. 7.89 are 10 Ω, what is 
the total resistance? (Hint: Make some basic assumptions 
about current division through the cube.)

	*25.	 For the network in Fig. 7.88, find the resistance R3 if the 
current through it is 2 A.

R2 20 � R3

4 A

R1 12 �

120 V
+

–

FIG. 7.88
Problem 25.

RT

FIG. 7.89
Problem 26.

SECTION 7.6  Ladder Networks

	27.	 For the ladder network in Fig. 7.90:
	a.	 Find the current I.
	b.	 Find the current I7.
	c.	 Determine the voltages V3, V5, and V7.
	d.	 Calculate the power delivered to R7, and compare it to 

the power delivered by the 240 V supply.

R3 4 �

R4

2 �

R5 6 � R7 2 �V7

+

–
V5

+

–
V3

+

–

R6

1 �

R1

3 �

R2

5 �

240 V

I

I7

+

–

FIG. 7.90
Problem 27.

	28.	 For the ladder network in Fig. 7.91:
	a.	 Determine RT.
	b.	 Calculate I.
	c.	 Find the power delivered to R7.

P

R2 2 �

R3

4 �

R4 2 � R7 2 �

R6

4 �

R1

4 �RT

R5

1 �

I

R8

1 �

+

–
40 V

FIG. 7.91
Problem 28.

SECTION 7.7  Voltage Divider Supply  
(Unloaded and Loaded)

	29.	 Given the voltage divider supply in Fig. 7.92:
	a.	 Determine the supply voltage E.
	b.	 Find the load resistors RL2

 and RL3
.

	c.	 Determine the voltage divider resistors R1, R2, and R3.

R2

48 V

1.6 k�

R1

R3 RL3

RL2

RL1

E

Is = 80 mA

32 V
8 mA

12 mA

48 mA

FIG. 7.92
Problem 29.
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	*31.	 A studio lamp requires 40 V at 50 mA to burn brightly. 
Design a voltage divider arrangement that will work prop-
erly off a 120 V source supplying a current of 200 mA. Use 
resistors as close as possible to standard values, and specify 
the minimum wattage rating of each.

	*30.	 Determine the voltage divider supply resistors for the con-
figuration in Fig. 7.93. Also determine the required wattage 
rating for each resistor, and compare their levels.

R3180 V

20 mA

R2

R1

R4

R5

RL3
36 V

RL2
40 V

RL1
100 V

+

–

10 mA

+120 V

+

–

+

–

4 mA

–60 V

+

–

40 mA

FIG. 7.93
Problem 30.

10 k�

R1
E

R2 +

–
RL

12 V

1 k�  Pot.

3 V

+

–

FIG. 7.94
Problem 32.

SECTION 7.8  Potentiometer Loading

	*32.	 For the system in Fig. 7.94:
	a.	 At first exposure, does the design appear to be a good 

one?
	b.	 In the absence of the 10 kΩ load, what are the values of 

R1 and R2 to establish 3 V across R2?
	c.	 Determine the values of R1 and R2 to establish VRL

= 3 V 
when the load is applied, and compare them to the 
results of part (b).

	*33.	 For the potentiometer in Fig. 7.95:
	a.	 What are the voltages Vab and Vbc with no load applied 

(RL1
= RL2

= ∞ Ω)?
	b.	 What are the voltages Vab and Vbc with the indicated 

loads applied?
	c.	 What is the power dissipated by the potentiometer under 

the loaded conditions in Fig. 7.95?
	d.	 What is the power dissipated by the potentiometer with 

no loads applied? Compare it to the results of part (c).

10 k�

E

+

–
Vab

40 V

100 �  Pot.

1 k�

+

–
Vbc

b

c

a

20 �

+

–

FIG. 7.95
Problem 33.

SECTION 7.9  Impact of Shorts and Open Circuits

	34.	 Determine the voltage Vab and the current I for the network 
of Fig. 7.96. Recall the discussion of short and open circuits 
in Section 6.8.

I

+

–

+–

12 V

18 V

10 k� 2 k�

ba10 k�

FIG. 7.96
Problem 34.

	*35.	 Given the voltmeter reading V = 27 V in Fig. 7.97:
	a.	 Is the network operating properly?
	b.	 If not, what could be the cause of the incorrect reading?

E 36 k�

12 k�

6 k�

6 k�

45 V V
+

–

27 V

FIG. 7.97
Problem 35.
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	*36.	 Determine the power delivered to the 6 Ω load in Fig. 7.98.

4 �

12 �

E

12 �

7 �

24 V

2 �

24 �
P+

– 6 �

FIG. 7.98
Problem 36.

	37.	 For the multiple ladder configuration in Fig. 7.99:
	a.	 Determine I.
	b.	 Calculate I4.
	c.	 Find I6.
	d.	 Find I10.

R9 12 �

R8

12 �

R7

3 � I

R2 6 �

R4 10 �

R6 4 �

R5  =  6 �

R3  =  1 �

R1 3 �

12 V
E

I4

I6

R10

1 �
R11 2 �

R12 2 �
I10

+

–

FIG. 7.99
Problem 37.

(a)

R1

18 �

�

R2

18 �

R3

18 �

(b)

6.2 k� 6.2 k� 3.3 k� 3.3 k�

1.2 k�

1.2 k�

�

(a)

R1

18 �

�

R2

18 �

R3

18 �

(b)

6.2 k� 6.2 k� 3.3 k� 3.3 k�

1.2 k�

1.2 k�

�

FIG. 7.100
Problem 45.

SECTION 7.10  Ammeter, Voltmeter,  
and Ohmmeter Design

	38.	 An iron-vane movement is rated 1.5 mA, 200 Ω.
	a.	 What is the current sensitivity?
	b.	 Design a 30 A ammeter using the above movement. 

Show the circuit and component values.

	39.	 Using a 100 mA, 1500 Ω movement, design a multirange 
milliammeter having scales of 150 mA, 300 mA, and 600 mA. 
Show the circuit and component values.

	40.	 An iron-vane movement is rated 50 mA, 1000 Ω.
	a.	 Design a 20 V dc voltmeter. Show the circuit and com-

ponent values.
	b.	 What is the ohm/volt rating of the voltmeter?

	41.	 Using a 1 mA, 1000 Ω movement, design a multirange 
voltmeter having scales of 2 V, 20 V, and 200 V. Show the 
circuit and component values.

	42.	 A digital meter has an internal resistance of 15 MΩ on its 
0.5 V range. If you had to build a voltmeter with an iron-
vane movement, what current sensitivity would you need if 
the meter were to have the same internal resistance on the 
same voltage scale?

	*43.	 a.	 Design a series ohmmeter using a 200 mA, 1000 Ω 
movement, a zero-adjust with a maximum value of 
2 kΩ, a battery of 5 V, and a series resistor whose value 
is to be determined.

	b.	 Find the resistance required for full-scale, 3/4-scale, 
1/2-scale, and 1/4-scale deflection.

	c.	 Using the results of part (b), draw the scale to be used 
with the ohmmeter.

	44.	 Describe the basic construction and operation of the 
megohmmeter.

	*45.	 Determine the reading of the ohmmeter for each configura-
tion of Fig. 7.100.

SECTION 7.12  Computer Analysis

	46.	 Using PSpice or Multisim, verify the results of Example 7.2.

	47.	 Using PSpice or Multisim, confirm the solutions of 
Example 7.5.
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	48.	 Using PSpice or Multisim, verify the results of Example 7.10.

	49.	 Using PSpice or Multisim, find voltage V6 of Fig. 7.32.

	50.	 Using PSpice or Multisim, find voltages Vb and Vc of Fig. 7.40.

Glossary

Complex configuration  A network in which none of the ele-
ments are in series or parallel.

Iron-vane  A movement operating on the principle that there is 
repulsion between like magnetic poles. The two poles are 
vanes inside of a fixed coil. One vane is fixed and the other 
movable with an attached pointer. The higher the applied cur-
rent, the greater is the deflection of the movable vane and the 
greater is the deflection of the pointer.

Ladder network  A network that consists of a cascaded set of 
series-parallel combinations and has the appearance of a 
ladder.

Megohmmeter  An instrument for measuring very high resist-
ance levels, such as in the megohm range.

Series ohmmeter  A resistance-measuring instrument in 
which the movement is placed in series with the unknown 
resistance.

Series-parallel network  A network consisting of a combination 
of both series and parallel branches.

Transistor  A three-terminal semiconductor electronic device 
that can be used for amplification and switching purposes.

Voltage divider supply  A series network that can provide a 
range of voltage levels for an application.



Methods of Analysis and 
Selected Topics (dc)

8.1  Introduction

The circuits and networks examined in the previous chapters permitted the combination of 
series and parallel elements in the search for specific unknowns. Situations will arise, how-
ever, where sources, elements, or branches are not in series or parallel and such reduction 
techniques cannot be applied. The result is the need to develop an approach using the basic 
laws of electric circuits that will work for any configuration. The approach chosen is deter-
mined by whether our primary interest is in the currents of the network or the voltages from a 
specific point to ground.

The methods of analysis introduced in this chapter include branch-current analysis and 
mesh analysis if the currents are desired and nodal analysis if the voltages are to be found. 
All three methods can be applied to any network with any number of sources although the 
desired unknowns will determine which is applied. It will take a measure of effort to apply 
each method for the first time. However, in time, with practice, you will find that each method 
can be applied very quickly and accurately without an enormous concern about errors creep-
ing in the process. In fact, you will almost be amazed as to how powerful the methods of 
analysis can be. They can solve the most complex network with any combination of elements 
in any arrangement in very short order.

Before examining one of the methods, the concept of a current source must first be intro-
duced. In previous chapters only voltage sources such as a battery or supply were encoun-
tered. The current source is very common in the analysis of electronic circuits because it 
appears in the models (network equivalent) of some of the most common electronic devices 
such as the transistor. There are commercially available current sources, as introduced in 
Chapter 2, but in actuality they are voltage sources that have been designed to act as current 
sources for a specific application.

Methods of Analysis and 
Selected Topics (dc)

•	 Become familiar with the terminal characteristics 
of a current source and how to solve for the 
voltages and currents of a network using current 
sources and/or current sources and voltage 
sources.

•	 Be able to apply branch-current analysis and mesh 
analysis to find the currents of network with one 
or more independent paths.

•	 Be able to apply nodal analysis to find all the 
terminal voltages of any series-parallel network 
with one or more independent sources.

•	 Become familiar with bridge network 
configurations and how to perform ∆−Y  or Y−∆ 
conversions.

Objectives

88

NA
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8.2 C urrent Sources

Introduction

As shown in Fig. 8.1(a), an ideal voltage source provides a fixed voltage 
to the network no matter the level of current drawn from the supply. 
Take note in Fig. 8.1(a) that at every level of current drawn from the 
supply the terminal voltage of the battery is still E volts. The current 
source of Fig. 8.1(b) will establish a fixed level of current that will 
define the resulting terminal voltage of the attached network as shown in 
Fig. 8.1(b). Note that the symbol for a current source includes an arrow 
to show the direction in which it is supplying the current. Take special 
note of the fact that the current supplied by the source is fixed no matter 
what the resulting voltage is across the network. A voltage source and 
current source are often said to have a dual relationship. The term dual 
reveals that what was true for the voltage of one is true for the current of 
the other and vice versa.

Network

Voltage

(a)

0 Current

Inetwork 

E

+

–
E

Inetwork 

Network

Voltage

Current

(b)

+

–
Vnetwork 

Vnetwork 

Is

Is

0

Is

FIG. 8.1
Terminal characteristics of an (a) ideal voltage source and  

(b) ideal current source.

Because the current source is not a typical piece of laboratory equip-
ment and has not been employed in the analysis thus far, it will take 
some time before you are confident in understanding its characteristics 
and the impact it will have on the network to which it is attached. For the 
moment, simply keep in mind that a voltage source sets the voltage 
between two points in a network and the other parameters have to 
respond to the applied level. A current source sets the current in the 
branch in which it is located and the other parameters, such as voltages 
and currents in other branches, have to be in tune with this set level of 
current. For instance, in Fig. 8.2 the current source is dictating the direc-
tion of the current through the series-resistive element. The result is the 
voltage across the resistor will have the polarity shown. For single-source 

Vs

I IR = I

R+–
+ VR –

FIG. 8.2
Defining the current in a branch in which a current 

source is located.
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networks the voltage across the current source will always be as shown 
in Fig. 8.1(b) or Fig. 8.2.

In general, therefore,

a current source determines the direction and magnitude of the 
current in the branch where it is located.

Furthermore,

the magnitude and the polarity of the voltage across a current 
source are each a function of the network to which the voltage 
is applied.

A few examples will demonstrate the similarities between solving for 
the source current of a voltage source and the terminal voltage of a cur-
rent source. All the rules and laws developed in the previous chapter still 
apply, so we just have to remember what we are looking for and prop-
erly understand the characteristics of each source.

The simplest possible configuration with a current source appears in 
Example 8.1.

EXAMPLE 8.1  Find the source voltage, the voltage V1, and current I1 
for the circuit in Fig. 8.3.

Solution:  Since the current source establishes the current in the branch 
in which it is located, the current I1 must equal I, and

I1 = I = 10 mA

The voltage across R1 is then determined by Ohm’s law:

V1 = I1R1 = (10 mA)(20 kΩ) = 200 V

Since resistor R1 and the current source are in parallel, the voltage across 
each must be the same, and

Vs = V1 = 200 V

with the polarity shown.

EXAMPLE 8.2  Find the voltage Vs and currents I1 and I2 for the net-
work in Fig. 8.4.

Solution:  This is an interesting problem because it has both a current 
source and a voltage source. For each source, the dependent (a function 
of something else) variable will be determined. That is, for the current 
source, Vs must be determined, and for the voltage source, Is must be 
determined.

Since the current source and voltage source are in parallel,

Vs = E = 12 V

Further, since the voltage source and resistor R are in parallel,

VR = E = 12 V

and	 I2 =
VR

R
=

12 V

4 Ω
= 3 A

–

+
V1R1 20 k�

I1

I = 10 mA
+

–
Vs

FIG. 8.3
Circuit for Example 8.1.

E R12 V 4 �

I1

Vs 7 A

+

–
I

I2

+

–

FIG. 8.4
Network for Example 8.2.
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The current I1 of the voltage source can then be determined by apply-
ing Kirchhoff’s current law at the top of the network as follows:

 g Ii = g Io

 I = I1 + I2

and	  I1 = I - I2 = 7 A - 3 A = 4 A

EXAMPLE 8.3  Determine the current I1 and the voltage Vs for the net-
work in Fig. 8.5.

Solution:  First note that the current in the branch with the current 
source must be 6 A, no matter what the magnitude of the voltage source 
to the right. In other words, the currents of the network are defined by 
I, R1, and R2. However, the voltage across the current source is directly 
affected by the magnitude and polarity of the applied source.

Using the current divider rule gives

I1 =
R2I

R2 + R1
=

(1 Ω)(6 A)

1 Ω + 2 Ω
=

1

3
 (6 A) = 2 A

The voltage V1 is given by

V1 = I1R1 = (2 A)(2 Ω) = 4 V

Applying Kirchhoff’s voltage rule to determine Vs gives

 + Vs - V1 - 20 V = 0

and	  Vs = V1 + 20 V = 4 V + 20 V = 24 V

In particular, note the polarity of the voltage Vs as determined by the 
network.

Source Conversions

The current source appearing in the previous section is called an ideal source 
due to the absence of any internal resistance. In reality, all sources—whether 
they are voltage sources or current sources—have some internal resistance 
in the relative positions shown in Fig. 8.6. For the voltage source, if 
Rs = 0 Ω, or if it is so small compared to any series resistors that it can be 
ignored, then we have an “ideal” voltage source for all practical purposes. 
For the current source, since the resistor RP is in parallel, if RP = ∞  Ω, or 
if it is large enough compared to any parallel resistive elements that it can be 
ignored, then we have an “ideal” current source.

Unfortunately, however, ideal sources cannot be converted from one 
type to another. That is, a voltage source cannot be converted to a cur-
rent source, and vice versa—the internal resistance must be present. If 
the voltage source in Fig. 8.6(a) is to be equivalent to the source in Fig. 
8.6(b), any load connected to the sources such as RL should receive the 
same current, voltage, and power from each configuration. In other 
words, if the source were enclosed in a container, the load RL would not 
know which source it was connected to.

This type of equivalence is established using the equations appearing in 
Fig. 8.7. First note that the resistance is the same in each configuration—a 
nice advantage. For the voltage source equivalent, the voltage is determined 
by a simple application of Ohm’s law to the current source: E = IRp. For 
the current source equivalent, the current is again determined by applying 

+ 20 V
2 �

R1

6 A

–

+

Vs

R2

1 �

+ V1 –

I

I1

FIG. 8.5
Example 8.3.

(b)

E

(a)

+

–

Rs

RL

IL IL

I RL
Rp

FIG. 8.6
Practical sources: (a) voltage; (b) current.



Current Sources    315
NA

Ohm’s law to the voltage source: I = E>Rs. At first glance, it all seems too 
simple, but Example 8.4 verifies the results.

It is important to realize, however, that

the equivalence between a current source and a voltage source exists 
only at their external terminals.

The internal characteristics of each are quite different.
And, finally, one must always be aware of the direction of “pressure” 

established by a voltage source when considering a conversion to a cur-
rent source. In Fig. 8.7 the pressure by the voltage source to establish a 
current through the network is up through the branch (from terminal b to 
terminal a) and, therefore, the arrow in the equivalent current source 
must have that same direction of pressure. The same consideration must 
be applied when converting from a current source to a voltage source.

EXAMPLE 8.4  For the circuit in Fig. 8.8:

	 a.	 Determine the current IL.
	 b.	 Convert the voltage source to a current source.
	 c.	 Using the resulting current source of part (b), calculate the current 

through the load resistor, and compare your answer to the result of 
part (a).

Solutions: 

	 a.	 Applying Ohm’s law gives

IL =
E

Rs + RL
=

6 V

2 Ω + 4 Ω
=

6 V

6 Ω
= 1 A

	 b.	 Using Ohm’s law again gives

I =
E

Rs
=

6 V

2 Ω
= 3 A

		  and the equivalent source appears in Fig. 8.9 with the load reap-
plied.

	 c.	 Using the current divider rule gives

IL =
RpI

Rp + RL
=

(2 Ω)(3 A)

2 Ω + 4 Ω
=

1

3
 (3 A) = 1 A

		  We find that the current IL is the same for the voltage source as it was 
for the equivalent current source—the sources are therefore equivalent.

a

b

a

b

E  =  IRp

Rp  =  Rs

Rs  =  Rp

+

–

I  = E
Rs

FIG. 8.7
Source conversion.

b

a

IL
2 �Rs

6 VE
+

–

4 �RL

FIG. 8.8
Practical voltage source and load for Example 8.4.

a

b

I = = 3 A

3 A

E
Rs

RL 4 �Rp 2 �

IL

FIG. 8.9
Equivalent current source and load for the voltage 

source in Fig. 8.8.
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As demonstrated in Fig. 8.6 and in Example 8.4, note that

a source and its equivalent will establish current in the same direction 
through the applied load.

In Example 8.4, note that both sources pressure or establish current up 
through the circuit to establish the same direction for the load current IL 
and the same polarity for the voltage VL.

EXAMPLE 8.5  Determine current I2 for the network in Fig. 8.10.

Solution:  Although it may appear that the network cannot be solved 
using methods introduced thus far, one source conversion, as shown in 
Fig. 8.11, results in a simple series circuit. It does not make sense to 
convert the voltage source to a current source because you would lose 
the current I2 in the redrawn network. Note the polarity for the equiva-
lent voltage source as determined by the current source.

For the source conversion

E1 = I1R1 = (4 A)(3 Ω) = 12 V

and	 I2 =
E1 + E2

R1 + R2
=

12 V + 5 V

3 Ω + 2 Ω
=

17 V

5 Ω
= 3.4 A

EXAMPLE 8.6  Determine the voltage across the 7 Ω resistor in the 
network of Fig. 8.12 by converting the current source to a voltage source.

Solution:  Converting the current source to a voltage source will result 
in the configuration of Fig. 8.13.

Take special note of the direction of pressure for the 9 V source.
The current

I =
24 V - 9 V

2 Ω + 3 Ω + 7 Ω
=

15 V

12 Ω
= 1.25 A

and the voltage across the 7 Ω resistor:

V4 Ω = IR = (1.25 A)(7 Ω) = 8.75 V

Current Sources in Parallel

We found that voltage sources of different terminal voltages cannot be 
placed in parallel because of a violation of Kirchhoff’s voltage law. 
Similarly,

current sources of different values cannot be placed in series due to a 
violation of Kirchhoff’s current law.

However, current sources can be placed in parallel just as voltage 
sources can be placed in series. In general,

two or more current sources in parallel can be replaced by a single 
current source having a magnitude determined by the difference of 
the sum of the currents in one direction and the sum in the opposite 
direction. The new parallel internal resistance is the total resistance 
of the resulting parallel resistive elements.

Consider the following examples.

R2 2 �I1 4 A

5 V

E2

R1 3 �

a

b

I2

+ –

FIG. 8.10
Two-source network for Example 8.5.

R2 2 �

5 V

E2

I2

R1

E1

3 �

12 V

a

b

+

–

+ –

FIG. 8.11
Network in Fig. 8.10 following the conversion of the 

current source to a voltage source.

3 �

7 � V
+

–

R2

R3

2 �

R1

24 V

+–
E

I = 3 A 

FIG. 8.12
Example 8.6.

7 �

2 � 3 �

R1

24 V

+– R2+ –

+

–
V

E

9 V

R3
I

FIG. 8.13
Network of Fig. 8.12 with converted voltage source.
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EXAMPLE 8.7  Reduce the parallel current sources in Fig. 8.14 to a 
single current source.

6 A 3 � 10 A 6 �R1 R2

FIG. 8.14
Parallel current sources for Example 8.7.

Solution:  The net source current is

I = 10 A - 6 A = 4 A

with the direction being that of the larger source.
The net internal resistance is the parallel combination of resistances, 

R1 and R2:

Rp = 3 Ω  7  Ω = 2 �

The reduced equivalent appears in Fig. 8.15.

EXAMPLE 8.8  Reduce the parallel current sources in Fig. 8.16 to a 
single current source.

Solution:  The net current is

I = 7 A + 4 A - 3 A = 8 A

with the direction shown in Fig. 8.17. The net internal resistance remains 
the same.

EXAMPLE 8.9  Reduce the network in Fig. 8.18 to a single current 
source, and calculate the current through RL.

Solution:  In this example, the voltage source will first be converted to 
a current source as shown in Fig. 8.19. Combining current sources gives

Is = I1 + I2 = 4 A + 6 A = 10 A

and	 Rs = R1 7  R2 = 8 Ω  7  24 Ω = 6 �

4 AIs 2 �Rp

FIG. 8.15
Reduced equivalent for the configuration  

of Fig 8.14.

R13 A 4 �7 A 4 A

FIG. 8.16
Parallel current sources for Example 8.8.

8 AIs 4 �Rp

FIG. 8.17
Reduced equivalent for Fig. 8.16.

R1

6 A 24 � 14 �

8 �

32 V

I2 R2

E1

RL
+

–

IL

FIG. 8.18
Example 8.9.

4 A

= = 4 A

R1 6 A 24 � 14 �8 � I2 R2 RL

IL

I1

I1 =
E1
R1

32 V
8 �

FIG. 8.19
Network in Fig. 8.18 following the conversion of the voltage  

source to a current source.
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Applying the current divider rule to the resulting network in Fig. 8.20 
gives

IL =
RpIs

Rp + RL
=

(6 Ω)(10 A)

6 Ω + 14 Ω
=

60 A

20
= 3 A

Current Sources in Series

The current through any branch of a network can be only single-valued. 
For the situation indicated at point a in Fig. 8.21, we find by application 
of Kirchhoff’s current law that the current leaving that point is greater 
than that entering—an impossible situation. Therefore,

current sources of different current ratings are not connected in 
series,

just as voltage sources of different voltage ratings are not connected in 
parallel.

8.3  Branch-Current Analysis

Before examining the details of the first important method of analysis, 
let us examine the network in Fig. 8.22 to be sure that you understand 
the need for these special methods.

Initially, it may appear that we can use the reduce and return approach 
to work our way back to the source E1 and calculate the source current 
Is1

. Unfortunately, however, the series elements R3 and E2 cannot be 
combined because they are different types of elements. A further exami-
nation of the network reveals that there are no two like elements that are 
in series or parallel. No combination of elements can be performed, and 
it is clear that another approach must be defined.

It should be noted that the network of Fig. 8.22 can be solved if we 
convert each voltage source to a current source and then combine paral-
lel current sources. However, if a specific quantity of the original net-
work is required, it would require working back using the information 
determined from the source conversion. Further, there will be complex 
networks for which source conversions will not permit a solution, so it is 
important to understand the methods to be described in this chapter.

The first approach to be introduced is called branch-current analy-
sis because we will define and solve for the currents of each branch of 
the network.

At this point it is important that we are able to identify the branch cur-
rents of the network. In general,

a branch is a series connection of elements in the network that has 
the same current.

In Fig. 8.22 the source E1 and the resistor R1 are in series and have the 
same current, so the two elements define a branch of the network. It is 
the same for the series combination of the source E2 and resistor R3. The 
branch with the resistor R2 has a current different from the other two 
and, therefore, defines a third branch. The result is three distinct branch 
currents in the network of Fig. 8.22 that need to be determined.

Experience shows that the best way to introduce the branch-current 
method is to take the series of steps listed here. Each step is carefully 
demonstrated in the examples to follow.

10 A 6 � 14 �Rp RL

IL

Is

Is

FIG. 8.20
Network in Fig. 8.19 reduced to its simplest form.

a6 A 7 A

No!

FIG. 8.21
Invalid situation.

R3R1

R2E1 E2

+

–

+

–

FIG. 8.22
Demonstrating the need for an approach such as 

branch-current analysis.
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Branch-Current Analysis Procedure

1.	 Assign a distinct current of arbitrary direction to each branch of 
the network.

2.	 Indicate the polarities for each resistor as determined by the 
assumed current direction.

3.	 Apply Kirchhoff’s voltage law around each closed, independent 
loop of the network.

The best way to determine how many times Kirchhoff’s voltage law 
has to be applied is to determine the number of “windows” in the net-
work. The network in Example 8.10 that follows has a definite similarity 
to the two-window configuration in Fig. 8.23(a). The result is a need to 
apply Kirchhoff’s voltage law twice. For networks with three windows, 
as shown in Fig. 8.23(b), three applications of Kirchhoff’s voltage law 
are required, and so on.

(b)

1 2 3 1 2

3 1 2

3

(a)

1 2

FIG. 8.23
Determining the number of independent closed loops.

4.	 Apply Kirchhoff’s current law at the minimum number of nodes 
that will include all the branch currents of the network.

The minimum number is one less than the number of independent 
nodes of the network. For the purposes of this analysis, a node is a junc-
tion of two or more branches, where a branch is any combination of 
series elements. Fig. 8.24 defines the number of applications of Kirch-
hoff’s current law for each configuration in Fig. 8.23.

(4 nodes)

2

3

4

1
4 – 1  =  3 eq.

(4 nodes)

2 3 4

1
4 – 1  =  3 eq.

(2 nodes)
2

1
2 – 1  =  1 eq.

(2 nodes)
2

1
2 – 1  =  1 eq.

FIG. 8.24
Determining the number of applications of Kirchhoff’s current law required.

5.	 Solve the resulting simultaneous linear equations for assumed 
branch currents.

It is assumed that the use of the determinants method to solve 
for the currents I1, I2, and I3 is understood and is a part of the stu-
dent’s mathematical background. If not, a detailed explanation of the 
procedure is provided in Appendix C. Calculators and computer soft-
ware packages such as MATLAB and Mathcad can find the solutions 
quickly and accurately.
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EXAMPLE 8.10  Apply the branch-current method to the network in 
Fig. 8.25.

Solution 1: 

Step 1: Since there are three distinct branches (cda, cba, ca), three 
currents of arbitrary directions (I1, I2, I3) are chosen, as indicated in 
Fig. 8.25. The current directions for I1 and I2 were chosen to match 
the “pressure” applied by sources E1 and E2, respectively. Since both 
I1 and I2 enter node a, I3 is leaving.

Step 2: Polarities for each resistor are drawn to agree with assumed cur-
rent directions, as indicated in Fig. 8.26.

4 �

6 V

I1

E2

1 �

2 VE1

I2

I3

bd

a

c

R2

R3

+

–

+

–

2 �R1

FIG. 8.25
Example 8.10.

I2

4 �

–

a

+

21

I1

I3

Defined by I3

R3

Defined
by I1

–

+2 � R1

–

+1 �

Defined
by I2

R2

2 VE1

Fixed
polarity +

–
6 VE2

Fixed
polarity+

–

FIG. 8.26
Inserting the polarities across the resistive elements as defined  

by the chosen branch currents.

Step 3: Kirchhoff’s voltage law is applied around each closed loop 
(1 and 2) in the clockwise direction:

and	

loop 1:  V � �E1 � VR1 � VR3 � 0

Rise in potential

Drop in potential

loop 2:  V � �VR3 � VR2 
� E2  � 0

Rise in potential

Drop in potential

loop 2:  V � (4 �)I3 � (1 �)I2 � 6 V � 0 

Battery
potential

Voltage drop
across 2 �

resistor

Voltage drop
across 4 �

resistor

�

�

�

loop 1:  V � �2 V � (2 �)I1 � (4 �)I3 � 0 �

Step 4: Applying Kirchhoff’s current law at node a (in a two-node net-
work, the law is applied at only one node) gives

I1 + I2 = I3
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Step 5: There are three equations and three unknowns (units removed for 
clarity):

 2 - 2I1 - 4I3 = 0   Rewritten: 2I1 + 0 + 4I3 = 2

 4I3 + 1I2 - 6 = 0   0 + I2 + 4I3 = 6

 I1 + I2 = I3   I1 + I2 - I3 = 0

Using third-order determinants (Appendix B), we have

2        0        4       
6        1        4       

2        0        4       
0        1        4       

0        1                   �1

1        1                   �1

2        2              4
0        6              4

2        0              2
0        1              6
1        1              0

1        0     �1

I1 �

I2 �

I3 �

D �

� �1 A

� 2 A

� 1 A

D

D

A negative sign in front of a
branch current indicates only
that the actual current is
in the direction opposite to
that assumed.

Solution 2:  Instead of using third-order determinants as in Solution 1, 
we can reduce the three equations to two by substituting the third equa-
tion in the first and second equations:

2 � 2I1 � 4(I1 � I2) � 0 2 � 2I1 � 4I1 � 4I2 � 0

4(I1 � I2) � I2 � 6 � 0 4I1 � 4I2 � I2 � 6 � 0  

I3

I3

or	 -6I1 - 4I2 = -2

	 +4I1 + 5I2 = +6

Multiplying through by -1 in the top equation yields

6I1 - 4I2 = +2

4I1 + 5I2 = +6

and using determinants gives

I1 =
` 2 4

6 5
`

` 6 4

4 5
`

=
10 - 24

30 - 16
=

-14

14
= −1 A

TI-89 Solution:  The procedure for determining the determinant in 
Example 8.10 requires some scrolling to obtain the desired math func-
tions, but in time that procedure can be performed quite rapidly. As with 
any computer or calculator system, it is paramount that you enter all 
parameters correctly. One error in the sequence negates the entire pro-
cess. For the TI-89, the entries are shown in Fig. 8.27(a).
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After you select the last ENTER key, the screen shown in Fig. 8.27(b) 
appears.

 I2 =
` 6 2

4 6
`

14
=

36 - 8

14
=

28

14
= 2 A

 I3 = I1 + I2 = -1 + 2 = 1 A

It is now important that the impact of the results obtained be under-
stood. The currents I1, I2, and I3 are the actual currents in the branches in 
which they were defined. A negative sign in the solution means that the 
actual current has the opposite direction than initially defined—the mag-
nitude is correct. Once the actual current directions and their magnitudes 
are inserted in the original network, the various voltages and power lev-
els can be determined. For this example, the actual current directions 
and their magnitudes have been entered on the original network in 
Fig. 8.28. Note that the current through the series elements R1 and E1 is 
1 A; the current through R3, is 1 A; and the current through the series 
elements R2 and E2 is 2 A. Due to the minus sign in the solution, the 
direction of I1 is opposite to that shown in Fig. 8.25. The voltage across 
any resistor can now be found using Ohm’s law, and the power delivered 
by either source or to any one of the three resistors can be found using 
the appropriate power equation.

Applying Kirchhoff’s voltage law around the loop indicated in 
Fig. 8.28 gives

gUV = +(4 Ω)I3 + (1 Ω)I2 - 6 V = 0

or	  (4 Ω)I3 + (1 Ω)I2 = 6 V

and	  (4 Ω)(1 A) + (1 Ω)(2 A) = 6 V

 4 V + 2 V = 6 V

 6 V = 6 V  (checks)

EXAMPLE 8.11  Apply branch-current analysis to the network in 
Fig. 8.29.

Solution:  Again, the current directions were chosen to match the 
“pressure” of each battery. The polarities are then added, and Kirch-
hoff’s voltage law is applied around each closed loop in the clockwise 
direction. The result is as follows:

loop 1: +15 V - (4 Ω)I1 + (10 Ω)I3 - 20 V = 0

loop 2: +20 V - (10 Ω)I3 - (5 Ω)I2 + 40 V = 0

4 ,

Home MATH Matrix det(

[

2NDENTER ENTER

2

2ND

; ]4, 2ND 6 , 5 2ND

) MATH2ND Matrix det(

[ ;

ENTER

2ND 6 , 4 2ND 5 2ND ]

) ENTER

÷

(a)

NTERE

FIG. 8.27
TI-89 solution for the current I1 of Fig. 8.25.
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4 �
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I1  =  1 A

R3

I2  =  2 A

I3  =  1 A

6 VE2

+

–
2 VE1

+

–
–

+1 �R2

–

+

2 �R1

FIG. 8.28
Reviewing the results of the analysis of the network 

in Fig. 8.25.
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–
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–
20 VE3

+

–
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FIG. 8.29
Example 8.11.
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Applying Kirchhoff’s current law at node a gives

I1 + I3 = I2

Substituting the third equation into the other two yields (with units 
removed for clarity)

15 - 4I1 + 10I3 - 20 = 0

20 - 10I3 - 5(I1 + I3) + 40 = 0
 f  

Substituting for I2 (since it occurs 
only once in the two equations)

or	
-4I1 + 10I3 = 5

-5I1 - 15I3 = -60

Multiplying the lower equation by -1, we have

-4I1 + 10I3 = 5

5I1 + 15I3 = 60

 I1 =
` 5 10

 60 15
`

` -4 10

5 15
`

=
75 - 600

-60 - 50
=

-525

-110
= 4.77 A

 I3 =
` -4 5

5 60
`

-110
=

-240 - 25

-110
=

-265

-110
= 2.41 A

 I2 = I1 + I3 = 4.77 A + 2.41 A = 7.18 A

revealing that the assumed directions were the actual directions, with I2 
equal to the sum of I1 and I3.

As indicated in an earlier discussion, there are occasions where a sim-
ple source conversion will provide the desired results. This will now be 
demonstrated by repeating Example 8.10 using source conversions. This 
approach will work very well in this example but be aware that it is not 
always possible to make the source conversions and we must return to 
the general steps of applying the branch-current method.

EXAMPLE 8.12  Find the current through the resistor R3 for the net-
work of Fig. 8.25 using source conversions.

Solution:  The network of Fig. 8.30 will result after both voltage 
sources of Fig. 8.25 are converted to current sources and placed back in 
the original configuration of Fig. 8.25.

6 A1 A 2 � 4 � 1 �R3R1 R2

I

FIG. 8.30
Network of Fig. 8.25 redrawn with equivalent current sources.
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The parallel current sources and two parallel source resistors can then 
be combined resulting in the configuration of Fig. 8.31.

The parallel combination of the 2 Ω and 1 Ω resistors is then

 R′ =
(2 Ω)(1 Ω)

2 Ω + 1 Ω
=

2

3
 Ω

and	  IT = 1 A + 6 A = 7 A

Applying the current divider rule, we find

I =
a 2

3
 Ω b (7 A)

2

3
 Ω + 4 Ω

= 1 A

which matches the result of Example 8.10.

8.4  Mesh Analysis (General Approach)

The next method to be described—mesh analysis—is actually an exten-
sion of the branch-current analysis approach just introduced. By defin-
ing a unique array of currents to the network, the information provided 
by the application of Kirchhoff’s current law is already included when 
we apply Kirchhoff’s voltage law. In other words, there is no need to 
apply step 4 of the branch-current method.

The currents to be defined are called mesh or loop currents. The two 
terms are used interchangeably. In Fig. 8.32(a), a network with two 
“windows” has had two mesh currents defined. Note that each forms a 
closed “loop” around the inside of each window; these loops are similar 
to the loops defined in the wire mesh fence in Fig. 8.32(b)—hence the 
use of the term mesh for the loop currents. We will find that

the number of mesh currents required to analyze a network will equal 
the number of “windows” of the configuration.

The defined mesh currents can initially be a little confusing because it 
appears that two currents have been defined for resistor R3. There is no 
problem with E1 and R1, which have only current I1, or with E2 and R2, 
which have only current I2. However, defining the current through R3 may 
seem a little troublesome. Actually, it is quite straightforward. The current 
through R3 is simply the difference between I1 and I2, with the direction 
being that of the larger. This is demonstrated in the examples to follow.

Because mesh currents can result in more than one current through an 
element, branch-current analysis was introduced first. Branch-current 
analysis is the straightforward application of the basic laws of electric 
circuits. Mesh analysis employs a maneuver (“trick,” if you prefer) that 
removes the need to apply Kirchhoff’s current law.

Mesh Analysis Procedure

1.	 Assign a distinct current in the clockwise direction to each inde-
pendent, closed loop of the network. It is not absolutely necessary 
to choose the clockwise direction for each loop current. In fact, 
any direction can be chosen for each loop current with no loss in 
accuracy, as long as the remaining steps are followed properly. 
However, by choosing the clockwise direction as a standard, we 

I

7 A 2 � 4 �1 �

FIG. 8.31
Reduced form for the network of Fig. 8.30.

I1 I2

E1

R1

E2

R3

R2

(a)

(b)

+

–

+

–

FIG. 8.32
Defining the mesh (loop) current: (a) “two-window” 

network; (b) wire mesh fence analogy.
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can develop a shorthand method (Section 8.5) for writing the 
required equations that will save time and possibly prevent some 
common errors.

This first step is accomplished most effectively by placing a loop cur-
rent within each “window” of the network, as demonstrated in the previ-
ous section, to ensure that they are all independent. A variety of other loop 
currents can be assigned. In each case, however, be sure that the informa-
tion carried by any one loop equation is not included in a combination of 
the other network equations. This is the crux of the terminology independ-
ent. No matter how you choose your loop currents, the number of loop 
currents required is always equal to the number of windows of a planar 
(no-crossovers) network. On occasion, a network may appear to be non-
planar. However, a redrawing of the network may reveal that it is, in fact, 
planar. This may be true for one or two problems at the end of the chapter.

Before continuing to the next step, let us ensure that the concept of a loop 
current is clear. For the network in Fig. 8.33, the loop current I1 is the branch 
current of the branch containing the 2 Ω resistor and 2 V battery. The cur-
rent through the 4 Ω resistor is not I1, however, since there is also a loop 
current I2 through it. Since they have opposite directions, I4Ω equals the dif-
ference between the two, I1 - I2 or I2 - I1, depending on which you 
choose to be the defining direction. In other words, a loop current is a 
branch current only when it is the only loop current assigned to that branch.

2.	 Indicate the polarities within each loop for each resistor as deter-
mined by the assumed direction of loop current for that loop. Note 
the requirement that the polarities be placed within each loop. This 
requires, as shown in Fig. 8.33, that the 4 Ω resistor have two sets 
of polarities across it.

3.	 Apply Kirchhoff’s voltage law around each closed loop in the 
clockwise direction. Again, the clockwise direction was chosen to 
establish uniformity and prepare us for the method to be intro-
duced in the next section.

	 a.	 If a resistor has two or more assumed currents through it, the 
total current through the resistor is the assumed current of the 
loop in which Kirchhoff’s voltage law is being applied, plus 
the assumed currents of the other loops passing through in the 
same direction, minus the assumed currents through in the 
opposite direction.

	 b.	 The polarity of a voltage source is unaffected by the direction 
of the assigned loop currents.

4.	 Solve the resulting simultaneous linear equations for the assumed 
loop currents.

EXAMPLE 8.13  Consider the same basic network as in Example 8.10, 
now appearing as Fig. 8.33.

Solution: 

Step 1: Two loop currents (I1 and I2) are assigned in the clockwise direc-
tion in the windows of the network. A third loop (I3) could have been 
included around the entire network, but the information carried by this 
loop is already included in the other two.

Step 2: Polarities are drawn within each window to agree with assumed 
current directions. Note that for this case, the polarities across the 4 Ω 
resistor are the opposite for each loop current.

21 R3 4 �

+

–

–

+

b

I1

I3

I2

a

R1

+

–
2 � 1 �R2

+

–

2 VE1

+

–
6 V E2

+

–

FIG. 8.33
Defining the mesh currents for a  

“two-window” network.
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Step 3: Kirchhoff’s voltage law is applied around each loop in the clock-
wise direction. Keep in mind as this step is performed that the law is con-
cerned only with the magnitude and polarity of the voltages around the 
closed loop and not with whether a voltage rise or drop is due to a battery 
or a resistive element. The voltage across each resistor is determined by 
V = IR. For a resistor with more than one current through it, the current is 
the loop current of the loop being examined plus or minus the other loop 
currents as determined by their directions. If clockwise applications of 
Kirchhoff’s voltage law are always chosen, the other loop currents are 
always subtracted from the loop current of the loop being analyzed.

loop 1: +E1 - V1 - V3 = 0 (clockwise starting at point a)

�2 V � (2 �)I1 � (4 �)(I1 � I2) � 0 

Total current
through

4 � resistor

Voltage drop across
4 � resistor

Subtracted since I
2
 is

opposite in direction to I
1
.

 loop 2: -V3 - V2 - E2 = 0 (clockwise starting at point b)

 -(4 Ω)(I2 - I1) - (1 Ω)I2 - 6 V = 0

Step 4: The equations are then rewritten as follows (without units for clarity):

loop 1: +2 - 2I1 - 4I1 + 4I2 = 0

loop 2: -4I2 + 4I1 - 1I2 - 6 = 0

and	 loop 1: +2 - 6I1 + 4I2 = 0

loop 2: -5I2 + 4I1 - 6 = 0

or	 loop 1: -6I1 + 4I2 = -2

loop 2: +4I1 - 5I2 = +6

Applying determinants results in

I1 = −1 A  and  I2 = −2 A

The minus signs indicate that the currents have a direction opposite to 
that indicated by the assumed loop current.

The actual current through the 2 V source and 2 Ω resistor is there-
fore 1 A in the other direction, and the current through the 6 V source 
and 1 Ω resistor is 2 A in the opposite direction indicated on the cir-
cuit. The current through the 4 Ω resistor is determined by the following 
equation from the original network:

 loop 1: I4Ω = I1 - I2 = -1 A - (-2 A) = -1 A + 2 A

 = 1 A (in the direction of I1)

The outer loop (I3) and one inner loop (either I1 or I2) would also have 
produced the correct results. This approach, however, often leads to er-
rors since the loop equations may be more difficult to write. The best 
method of picking these loop currents is the window approach.

EXAMPLE 8.14  Find the current through each branch of the network 
in Fig. 8.34.

Solution: 

Steps 1 and 2: These are as indicated in the circuit. Note that the polari-
ties of the 6 Ω resistor are different for each loop current.

21

a

I2
b

I1

R2 6 �

+

–

–

+
R1

+

–
1 �

5 VE1

+

–
10 VE2

+

–

2 �

+

–
R3

FIG. 8.34
Example 8.14.
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Step 3: Kirchhoff’s voltage law is applied around each closed loop in the 
clockwise direction:

 loop 1: +E1 - V1 - V2 - E2 = 0 (clockwise starting at point a)

 +5 V - (1 Ω)I1 - (6 Ω)(I1 - I2) - 10 V = 0
	 c
	� I2 flows through the 6 Ω resistor  

in the direction opposite to I1.

 loop 2: E2 - V2 - V3 = 0 (clockwise starting at point b)

 +10 V - (6 Ω)(I2 - I1) - (2 Ω)I2 = 0

The equations are rewritten as

5 - I1 - 6I1 + 6I2 - 10 = 0
 10 - 6I2 + 6I1 - 2I2 = 0

f  
-7I1 + 6I2 = 5
+6I1 - 8I2 = -10

Step 4:

	  I1 =
` 5 6

-10 -8
`

`  -7 6

6 -8
`

=
-40 + 60

56 - 36
=

20

20
= 1 A

	  I2 =
` -7 5

6 -10
`

20
=

70 - 30

20
=

40

20
= 2 A

Since I1 and I2 are positive and flow in opposite directions through 
the 6 Ω resistor and 10 V source, the total current in this branch is equal 
to the difference of the two currents in the direction of the larger:

I2 7 I1 (2 A 7 1 A)

Therefore,

IR2
= I2 - I1 = 2 A - 1 A = 1 A in the direction of I2

It is sometimes impractical to draw all the branches of a circuit at 
right angles to one another. The next example demonstrates how a por-
tion of a network may appear due to various constraints. The method of 
analysis is no different with this change in configuration.

EXAMPLE 8.15  Find the branch currents of the networks in Fig. 8.35.

Solution: 

Steps 1 and 2: These are as indicated in the circuit.

Step 3: Kirchhoff’s voltage law is applied around each closed loop:

 loop 1: -E1 - I1R1 - E2 - V2 = 0 (clockwise from point a)

 -6 V - (2 Ω)I1 - 4 V - (4 Ω)(I1 - I2) = 0

 loop 2: -V2 + E2 - V3 - E3 = 0 (clockwise from point b)

 -(4 Ω)(I2 - I1) + 4 V - (6 Ω)(I2) - 3 V = 0

which are rewritten as

-10 - 4I1 - 2I1 + 4I2 = 0

 +1 + 4I1 + 4I2 - 6I2 = 0
f  

-6I1 +  4I2 = +10

+4I1 - 10I2 = -1 

or, by multiplying the top equation by -1, we obtain

 6I1 - 4I2 = -10

 4I1 - 10I2 = -1

+

–E2 4 V

R2

+

–

–

+
4 �

I1 I2

1 2 +

–
E3 = 3 VE1 = 6 V

+

–

b
a

R1 = 2 �
+

–
R3 = 6 �
–

+

FIG. 8.35
Example 8.15.
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Step 4: 	  I1 =
` -10 -4

-1 -10
`

`  6 -4

 4 -10
`

=
100 - 4

-60 + 16
=

96

-44
= −2.18 A

	  I2 =
` 6 -10

4 -1
`

-44
=

-6 + 40

-44
=

34

-44
= −0.77 A

The current in the 4 Ω resistor and 4 V source for loop 1 is

 I1 - I2 = -2.18 A - (-0.77 A)

 = -2.18 A + 0.77 A

 = −1.41 A

revealing that it is 1.41 A in a direction opposite (due to the minus sign) 
to I1 in loop 1.

Supermesh Currents

Occasionally, you will find current sources in a network without a paral-
lel resistance. This removes the possibility of converting the source to a 
voltage source as required by the given procedure. In such cases, you 
have a choice of two approaches.

The simplest and most direct approach is to place a resistor in parallel 
with the current source that has a much higher value than the other resis-
tors of the network. For instance, if most of the resistors of the network 
are in the 1 to 10 Ω range, choosing a resistor of 100 Ω or higher would 
provide one level of accuracy for the answer. However, choosing a resis-
tor of 1000 Ω or higher would increase the accuracy of the answer. You 
will never get the exact answer because the network has been modified 
by this introduced element. However for most applications, the answer 
will be sufficiently accurate.

The other choice is to use the supermesh approach described in the 
following steps. Although this approach will provide the exact solution, 
it does require some practice to become proficient in its use. The proce-
dure is as follows.

Start as before, and assign a mesh current to each independent loop, 
including the current sources, as if they were resistors or voltage 
sources. Then mentally (redraw the network if necessary) remove the 
current sources (replace with open-circuit equivalents), and apply 
Kirchhoff’s voltage law to all the remaining independent paths of the 
network using the mesh currents just defined. Any resulting path, 
including two or more mesh currents, is said to be the path of a 
supermesh current. Then relate the chosen mesh currents of the net-
work to the independent current sources of the network, and solve for 
the mesh currents. The next example clarifies the definition of 
supermesh current and the procedure.

EXAMPLE 8.16  Using mesh analysis, determine the currents of the 
network in Fig. 8.36.

Solution:  First, the mesh currents for the network are defined, as 
shown in Fig. 8.37. Then the current source is mentally removed, as 
shown in Fig. 8.38, and Kirchhoff’s voltage law is applied to the 

R1 6 �

E1 20 V

E2 12 V4 AI

R2

4 �

R3

2 �

+

–

+

–

FIG. 8.36
Example 8.16.
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resulting network. The single path now including the effects of two 
mesh currents is referred to as the path of a supermesh current.

Applying Kirchhoff’s law gives

20 V - I1(6 Ω) - I1(4 Ω) - I2(2 Ω) + 12 V = 0

or	 10I1 + 2I2 = 32

Node a is then used to relate the mesh currents and the current source 
using Kirchhoff’s current law:

I1 = I + I2

The result is two equations and two unknowns:

 10I1 + 2I2 = 32

 I1 - I2 = 4

Applying determinants gives

I1 =
` 32 2

4 -1
`

` 10 2

1 -1
`

=
(32)(-1) - (2)(4)

(10)(-1) - (2)(1)
=

40

12
= 3.33 A

and	 I2 = I1 - I = 3.33 A - 4 A = −0.67 A

In the above analysis, it may appear that when the current source was 
removed, I1 = I2. However, the supermesh approach requires that we 
stick with the original definition of each mesh current and not alter those 
definitions when current sources are removed.

EXAMPLE 8.17  Using mesh analysis, determine the currents for the 
network in Fig. 8.39.
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E1 20 V

E2 12 V4 AI

R2
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–

FIG. 8.37
Defining the mesh currents for the network  

in Fig. 8.36.
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FIG. 8.38
Defining the supermesh current.
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FIG. 8.39
Example 8.17.

Solution:  The mesh currents are defined in Fig. 8.40. The current sources 
are removed, and the single supermesh path is defined in Fig. 8.41.
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Applying Kirchhoff’s voltage law around the supermesh path gives

 -V2Ω - V6Ω - V8Ω = 0

  -(I2 - I1)2 Ω - I2(6 Ω) - (I2 - I3)8 Ω = 0

 -2I2 + 2I1 - 6I2 - 8I2 + 8I3 = 0

2I1 - 16I2 + 8I3 = 0

Introducing the relationship between the mesh currents and the cur-
rent sources

I1 = 6 A

I3 = 8 A

results in the following solutions:

2I1 - 16I2 + 8I3 = 0

2(6 A) - 16I2 + 8(8 A) = 0

and	 I2 =
76 A

16
= 4.75 A

Then	 I2Ω T = I1 - I2 = 6 A - 4.75 A = 1.25 A

and	 I8Ω c = I3 - I2 = 8 A - 4.75 A = 3.25 A

Again, note that you must stick with your original definitions of the 
various mesh currents when applying Kirchhoff’s voltage law around 
the resulting supermesh paths.

8.5  Mesh Analysis (Format Approach)

Now that the basis for the mesh-analysis approach has been estab-
lished, we now examine a technique for writing the mesh equations 
more rapidly and usually with fewer errors. As an aid in introducing 
the procedure, the network in Example 8.14 (Fig. 8.34) has been 
redrawn in Fig. 8.42 with the assigned loop currents. (Note that each 
loop current has a clockwise direction.)

The equations obtained are

 -7I1 + 6I2 = 5

 6I1 - 8I2 = -10

which can also be written as

 7I1 - 6I2 = -5

 8I2 - 9I1 = 10

I1 I3I22 � 8 �

6 �

6 A 8 A

FIG. 8.40
Defining the mesh currents for the network in Fig. 8.39.

Supermesh
current

I1 I3I22 � 8 �

6 �
+ –

+

–

–

+

FIG. 8.41
Defining the supermesh current for the 

network in Fig. 8.39.

21 2 �R3

+

–

–
R1

+
1 � R2 6 �

+

–

–

+

5 VE1 10 VE2

I1 I2

+

–

+

–

FIG. 8.42
Network in Fig. 8.34 redrawn with assigned 

loop currents.
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and expanded as

Col. 1	 Col. 2	 Col. 3

(1 + 6)I1 -   6I2  = (5 - 10)

(2 + 6)I1 -   6I2  = 10

Note in the above equations that column 1 is composed of a loop current 
times the sum of the resistors through which that loop current passes. Col-
umn 2 is the product of the resistors common to another loop current times 
that other loop current. Note that in each equation, this column is subtracted 
from column 1. Column 3 is the algebraic sum of the voltage sources 
through which the loop current of interest passes. A source is assigned a 
positive sign if the loop current passes from the negative to the positive 
terminal, and a negative value is assigned if the polarities are reversed. The 
comments above are correct only for a standard direction of loop current in 
each window, the one chosen being the clockwise direction.

The above statements can be extended to develop the following for-
mat approach to mesh analysis.

Mesh Analysis Procedure

1.	 Assign a loop current to each independent, closed loop (as in the 
previous section) in a clockwise direction.

2.	 The number of required equations is equal to the number of 
chosen independent, closed loops. Column 1 of each equation 
is formed by summing the resistance values of those resistors 
through which the loop current of interest passes and multiplying 
the result by that loop current.

3.	 We must now consider the mutual terms, which, as noted in the 
examples above, are always subtracted from the first column. A mu-
tual term is simply any resistive element having an additional loop 
current passing through it. It is possible to have more than one mu-
tual term if the loop current of interest has an element in common 
with more than one other loop current. This will be demonstrated in 
an example to follow. Each term is the product of the mutual resis-
tor and the other loop current passing through the same element.

4.	 The column to the right of the equality sign is the algebraic sum 
of the voltage sources through which the loop current of interest 
passes. Positive signs are assigned to those sources of voltage hav-
ing a polarity such that the loop current passes from the negative 
to the positive terminal. A negative sign is assigned to those poten-
tials for which the reverse is true.

5.	 Solve the resulting simultaneous equations for the desired loop 
currents.

Before considering a few examples, be aware that since the column to 
the right of the equals sign is the algebraic sum of the voltage sources in 
that loop, the format approach can be applied only to networks in which 
all current sources have been converted to their equivalent voltage source.

EXAMPLE 8.18  Write the mesh equations for the network in Fig. 8.43, 
and find the current through the 7 Ω resistor.

Solution: 
Step 1: As indicated in Fig. 8.43, each assigned loop current has a clock-
wise direction.

21

4 V

6 �

–+

–

+
8 � 7 �

+

–
2 �

+

–

–

+

9 V

I1 I2

+ – +–

FIG. 8.43
Example 8.18.
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Steps 2 to 4: 

I1:  (8 Ω + 6 Ω + 2 Ω)I1 - (2 Ω)I2 = 4 V

I2:  (7 Ω + 2 Ω)I2 - (2 Ω)I1 = -9 V

and	  16I1 - 2I2 = 4

 9I2 - 2I1 = -9

which, for determinants, are

 16I1 - 2I2 = 4

 -2I1 + 9I2 = -9

and	 I2 = I7Ω =
` 16 4

-2 -9
`

` 16 -2

-2 9
`

=
-144 + 8

144 - 4
=

-136

140

 = −0.97 A

EXAMPLE 8.19  Write the mesh equations for the network in 
Fig. 8.44.

I1 I2

21

1 �

+

–

–

+

4 V
–

+

+

–
2 V

+

–
1 � 2 V

–

+
4 �

3 � 3

2 �+ –

I3

+

–+

–

+

–

FIG. 8.44
Example 8.19.

Solution:  Each window is assigned a loop current in the clockwise 
direction:

(1 � � 1 �)I1 � (1 �)I2 � 0 � 2 V � 4 V 

(3 � � 4 �)I3 � (3 �)I2 � 0 � 2 V
(1 � � 2 � � 3 �)I2 � (1 �)I1 � (3 �)I3 � 4 V    

I1 :
I2 :
I3 :

I
1
 does not pass through an element

mutual with I
3
.

I
3
 does not pass through an element

mutual with I
1
.

Summing terms yields

 2I1 - I2 + 0  = -2

 6I2 - I1 - 3I3 = 4

 7I3 - 3I2 + 0  = 2
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which are rewritten for determinants as

   2I1         �I2     �   0       � �2

       0            �3I2       �7I3     � 2

     �I1          �6I2       �3I3    � 4

c b a

b

a

Note that the coefficients of the a and b diagonals are equal. This symme-
try about the c-axis will always be true for equations written using the format 
approach. It is a check on whether the equations were obtained correctly.

We now consider a network with only one source of voltage to point 
out that mesh analysis can be used to advantage in other than multi-
source networks.

EXAMPLE 8.20  Find the current through the 10 Ω resistor of the net-
work in Fig. 8.45.

21 2 �

+

–
3 �

+

–

–

+

–+
+–

15 V

–+
+–

10 �

–+

3

I10� = I3

8 � 5 �

+

–

I3

I2I1

FIG. 8.45
Example 8.20.

Solution: 

I1:  (8 Ω + 3 Ω)I1 - (8 Ω)I3 - (3 Ω)I2 = 15 V

I2:  (3 Ω + 5 Ω + 2 Ω)I2 - (3 Ω)I1 - (5 Ω)I3 = 0

I3:  (8 Ω + 10 Ω + 5 Ω)I3 - (8 Ω)I1 - (5 Ω)I2 = 0

 11I1 - 8I3 - 3I2 = 15 V

 10I2 - 3I1 - 5I3 = 0

 23I3 - 8I1 - 5I2 = 0

or	  11I1 - 3I2 - 8I3 = 15 V

 -3I1 + 10I2 - 5I3 = 0

 -8I1 - 5I2 + 23I3 = 0

and	 I3 = I10Ω =

†
11 -3  15

-3 10 0

-8 -5 0

†

†
11 -3 -8

-3 10 -5

-8 -5 23

†
= 1.22 A
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TI-89 Calculator Solution:  When the TI-89 calculator is used, the 
sequence in Fig. 8.46(a) results, which in shorthand form appears as in 
Fig. 8.46(b). The intermediary 2ND and scrolling steps were not 
included. This sequence certainly requires some care in entering the data 
in the required format, but it is still a rather neat, compact format.

det

det

1.22E0

–3
10
–5

15
0
0

11
–3
–8

–3
10
–5

–8
–5
23

11
–3
–8

FIG. 8.47
The resulting display after properly entering  

the data for the current I3.

Home

Home

MATH

MATH

Matrix det( [2NDENTER ENTER 1 1 13(–)2ND

;2ND 3 1 2ND

Matrix det( [ENTER 2NDENTER 1

, ,

1

0

8, , ,

, 0

3 3 1 0

]

]

ENTE 1.22R(a)

5 (–)

; (–)(–) (–) 5,

)

(–)

,; (–) (–) 35 ,

, 8(–); (–), ,5

2ND 2ND

2ND 2ND) ÷

8 2

0

(a)

det([11,�3,15;�3,10,0;�8,�5,0])/det([11,�3,�8;�3,10,�5;�8,�5,23]) ENTER 1.22

(b)

FIG. 8.46
Using the TI-89 calculator to solve for the current I3. (a) Key entries; (b) shorthand form.

The resulting display in Fig. 8.47 confirms our solution.

8.6 N odal Analysis (General Approach)

The methods introduced thus far have all been to find the currents of the 
network. We now turn our attention to nodal analysis—a method that 
provides the nodal voltages of a network, that is, the voltage from the 
various nodes (junction points) of the network to ground. The method is 
developed through the use of Kirchhoff’s current law in much the same 
manner as Kirchhoff’s voltage law was used to develop the mesh analy-
sis approach.

Although it is not a requirement, we make it a policy to make ground 
our reference node and assign it a potential level of zero volts. All the 
other voltage levels are then found with respect to this reference level. 
For a network of N nodes, by assigning one as our reference node, we 
have (N - 1) nodes for which the voltage must be determined. In other 
words,

the number of nodes for which the voltage must be determined using 
nodal analysis is 1 less than the total number of nodes.

The result of the above is (N - 1) nodal voltages that need to be 
determined, requiring that (N - 1) independent equations be written to 
find the nodal voltages. In other words,

the number of equations required to solve for all the nodal voltages of 
a network is 1 less than the total number of independent nodes.

Since each equation is the result of an application of Kirchhoff’s cur-
rent law, Kirchhoff’s current law must be applied (N - 1) times for 
each network.

Nodal analysis, like mesh analysis, can be applied by a series of care-
fully defined steps. The examples to follow explain each step in detail.
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Nodal Analysis Procedure

1.	 Determine the number of nodes within the network.
2.	 Pick a reference node, and label each remaining node with a sub-

scripted value of voltage: V1,V2 , and so on.
3.	 Apply Kirchhoff’s current law at each node except the reference. 

Assume that all unknown currents leave the node for each applica-
tion of Kirchhoff’s current law. In other words, for each node, 
don’t be influenced by the direction that an unknown current for 
another node may have had. Each node is to be treated as a sepa-
rate entity, independent of the application of Kirchhoff’s current 
law to the other nodes.

4.	 Solve the resulting equations for the nodal voltages.

A few examples clarify the procedure defined by step 3. It initially 
takes some practice writing the equations for Kirchhoff’s current law 
correctly, but in time the advantage of assuming that all the currents 
leave a node rather than identifying a specific direction for each branch 
becomes obvious. (The same type of advantage is associated with 
assuming that all the mesh currents are clockwise when applying mesh 
analysis.)

As with mesh and branch-current analysis, a number of networks to 
be encountered in this section can be solved using a simple source con-
version. In Example 8.21, for instance, the network of Fig. 8.48 can be 
easily solved by converting the voltage source to a current source and 
combining the parallel current sources. However, as noted for mesh and 
branch-current analysis, this method can also be applied to more com-
plex networks where a source conversion is not possible.

EXAMPLE 8.21  Apply nodal analysis to the network in Fig. 8.48.

Solution: 

Steps 1 and 2: The network has two nodes, as shown in Fig. 8.49. 
The lower node is defined as the reference node at ground potential 
(zero volts), and the other node as V1, the voltage from node 1 to 
ground.

Step 3: I1 and I2 are defined as leaving the node in Fig. 8.50, and Kirch-
hoff’s current law is applied as follows:

I = I1 + I2

The current I2 is related to the nodal voltage V1 by Ohm’s law:

I2 =
VR2

R2
=

V1

R2

The current I1 is also determined by Ohm’s law as follows:

 I1 =
VR1

R1

with	  VR1
= V1 - E

Substituting into the Kirchhoff’s current law equation

I =
V1 - E

R1
+

V1

R2

I 1 A12 �R2

R1 6 �

E 24 V
+

–

FIG. 8.48
Example 8.21.

I 1 A12 �R2

V1

(0 V)

E 24 V
+

–

R1 6 �

FIG. 8.49
Network in Fig. 8.48 with assigned nodes.

+

–
I 1 A12 �R2

R1 6 �

E 24 V

V1

(0 V)

I1

–

+

I2

+

–

FIG. 8.50
Applying Kirchhoff’s current law to the node V1.
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and rearranging, we have

I =
V1

R1
-

E

R1
+

V1

R2
= V1a 1

R1
+

1

R2
b -

E

R1

or	 V1a 1

R1
+

1

R2
b =

E

R1
+ 1

Substituting numerical values, we obtain

 V1a 1

6 Ω
+

1

12 Ω
b =

24 V

6 Ω
+ 1 A = 4 A + 1 A

 V1a 1

4 Ω
b = 5 A

 V1 = 20 V

The currents I1 and I2 can then be determined by using the preceding 
equations:

I1 =
V1 - E

R1
=

20 V - 24 V

6 Ω
=

-4 V

6 Ω
 = −0.67 A

The minus sign indicates that the current I1 has a direction opposite to 
that appearing in Fig. 8.50. In addition,

I2 =
V1

R2
=

20 V

12 Ω
= 1.67 A

EXAMPLE 8.22  Apply nodal analysis to the network in Fig. 8.51.

Solution: 
Steps 1 and 2: The network has three nodes, as defined in Fig. 8.52, with 
the bottom node again defined as the reference node (at ground poten-
tial, or zero volts), and the other nodes as V1 and V2.

Step 3: For node V1, the currents are defined as shown in Fig. 8.53, and 
Kirchhoff’s current law is applied:

0 = I1 + I2 + I

with	 I1 =
V1 - E

R1

and	 I2 =
VR2

R2
=

V1 - V2

R2

so that	
V1 - E

R1
+

V1 - V2

R2
+ I = 0

or	
V1

R1
-

E

R1
+

V1

R2
-

V2

R2
+ I = 0

and	 V1a 1

R1
+

1

R2
b - V2a 1

R2
b = -I +

E

R1

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �
+

–

FIG. 8.51
Example 8.22.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+

–

V2V1

+

–

FIG. 8.52
Defining the nodes for the network in Fig. 8.51.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+ –

+

–

V2V1

I1

I2

+

–

FIG. 8.53
Applying Kirchhoff’s current law to node V1.
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Substituting values gives

V1a 1

8 Ω
+

1

4 Ω
b - V2a 1

4 Ω
b = -2 A +

64 V

8 Ω
= 6 A

For node V2, the currents are defined as shown in Fig. 8.54, and 
Kirchhoff’s current law is applied:

I = I2 + I3

with	 I =
V2 - V1

R2
+

V2

R3

or	 I =
V2

R2
-

V1

R2
+

V2

R3

and	 V2a 1

R2
+

1

R3
b - V1a 1

R2
b = I

Substituting values gives

V2a 1

4 Ω
+

1

10 Ω
b - V1a 1

4 Ω
b = 2 A

Step 4: The result is two equations and two unknowns:

 V1a 1

8 Ω
+

1

4 Ω
b - V2a 1

4 Ω
b = 6 A

 -V1a 1

4 Ω
b + V2a 1

4 Ω
+

1

10 Ω
b = 2 A

which become

 0.375V1 - 0.25V2 = 6

 -0.25V1 + 0.35V2 = 2

Using determinants, we obtain

V1 = 37.82 V

V2 = 32.73 V

Since E is greater than V1, the current I1 flows from ground to V1 and is 
equal to

IR1
=

E - V1

R1
=

64 V - 37.82 V

8 Ω
= 3.27 A

The positive value for V2 results in a current IR3
 from node V2 to ground 

equal to

IR3
=

VR3

R3
=

V2

R3
=

32.73 V

10 Ω
= 3.27 A

Since V1 is greater than V2, the current IR2
 flows from V1 to V2 and is equal to

IR2
=

V1 - V2

R2
=

37.82 V - 32.73 V

4 Ω
= 1.27 A

The results of V1 = 37.82 V and V2 = 32.73 V confirm the theoretical 
solution.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+–

+

–

V2V1

I3

I2

+

–

FIG. 8.54
Applying Kirchhoff’s current law to node V2.
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EXAMPLE 8.23  Determine the nodal voltages for the network in 
Fig. 8.55.

4 A 2 �R1 R2 6 �

R3

2 A

12 �

FIG. 8.55
Example 8.23.

Solution: 
Steps 1 and 2: As indicated in Fig. 8.56:

4 A
R1 2 A

2 �

I3

Reference

V1 V2

R2 6 �

R3  =  12 �

I1

FIG. 8.56
Defining the nodes and applying Kirchhoff’s current law to the node V1.

Step 3: Included in Fig. 8.56 for the node V1. Applying Kirchhoff’s cur-
rent law gives

 4 A = I1 + I3

and	  4 A =
V1

R1
+

V1 - V2

R3
=

V1

2 Ω
+

V1 - V2

12 Ω

Expanding and rearranging gives

V1a
1

2 Ω
+

1

12 Ω
b - V2a

1

12 Ω
b = 4 A

For node V2, the currents are defined as in Fig. 8.57.

4 A R1 2 A2 �

I3

Reference

V1 V2

R2
6 �

R3  =  12 �

I2

FIG. 8.57
Applying Kirchhoff’s current law to the node V2.
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Applying Kirchhoff’s current law gives

0 = I3 + I2 + 2 A

and	
V2 - V1

R3
+

V2

R2
+ 2 A = 0 ¡

V2 - V1

12 Ω
+

V2

6 Ω
+ 2 A = 0

Expanding and rearranging gives

V2a 1

12 Ω
+

1

6 Ω
b - V1a 1

12 Ω
b = -2 A

resulting in the following two equations and two unknowns:

	

V1a 1

2 Ω
+

1

12 Ω
b - V2a 1

12 Ω
b = +4 A

V2a 1

12 Ω
+

1

6 Ω
b - V1a 1

12 Ω
b = -2 A 

t 	 (8.1)

producing

7

12
V1 -

1

12
V2 = +4

-
1

12
V1 +

3

12
V2 = -2

t  

7V1 - V2 = 48

-1V1 + 3V2 = -24

and	  V1 =
` 48 -1

-24 3
`

` 7 -1

 -1 3
`

=
120

20
= +6 V

 V2 =
` 7 48

-1 -24
`

20
=

-120

20
= −6 V

Since V1 is greater than V2, the current through R3 passes from V1 to V2. 
Its value is

IR3
=

V1 - V2

R3
=

6 V - (-6 V)

12 Ω
=

12 V

12 Ω
= 1 A

The fact that V1 is positive results in a current IR1
 from V1 to ground 

equal to

IR1
=

VR1

R1
=

V1

R1
=

6 V

2 Ω
= 3 A

Finally, since V2 is negative, the current IR2
 flows from ground to V2 and 

is equal to

IR2
=

VR2

R2
=

V2

R2
=

-6 V

6 Ω
= −1 A

Supernode

Occasionally, you may encounter voltage sources in a network that do 
not have a series internal resistance that would permit a conversion to a 
current source. In such cases, you have two options.

The simpler and more direct approach is to place a resistor in series 
with the source of a very small value compared to the other resistive 
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elements of the network. For instance, if most of the resistors are 10 Ω or 
larger, placing a 1 Ω resistor in series with a voltage source provides one 
level of accuracy for your answer. However, choosing a resistor of 0.1 Ω 
or less increases the accuracy of your answer. You will never get an exact 
answer because the network has been modified by the introduced element. 
However, for most applications, the accuracy will be sufficiently high.

The other approach is to use the supernode approach described 
below. This approach provides an exact solution but requires some prac-
tice to become proficient.

Start as usual and assign a nodal voltage to each independent node of 
the network, including each independent voltage source as if it were a 
resistor or current source. Then mentally replace the independent volt-
age sources with short-circuit equivalents, and apply Kirchhoff’s current 
law to the defined nodes of the network. Any node including the effect 
of elements tied only to other nodes is referred to as a supernode (since 
it has an additional number of terms). Finally, relate the defined nodes to 
the independent voltage sources of the network, and solve for the nodal 
voltages. The next example clarifies the definition of supernode.

EXAMPLE 8.24  Determine the nodal voltages V1 and V2 in Fig. 8.58 
using the concept of a supernode.

Solution:  Replacing the independent voltage source of 12 V with a 
short-circuit equivalent results in the network in Fig. 8.59. Even though 
the mental application of a short-circuit equivalent is discussed above, it 
would be wise in the early stage of development to redraw the network 
as shown in Fig. 8.59. The result is a single supernode for which Kirch-
hoff’s current law must be applied. Be sure to leave the other defined 
nodes in place, and use them to define the currents from that region of 
the network. In particular, note that the current I3 leaves the supernode at 
V1 and then enters the same supernode at V2. It must therefore appear 
twice when applying Kirchhoff’s current law, as shown below:

g Ii = g Io

6 A + I3 = I1 + I2 + 4 A + I3

or	 I1 + I2 = 6 A - 4 A = 2 A

Then	
V1

R1
+

V2

R2
= 2 A

and	
V1

4 Ω
+

V2

2 Ω
= 2 A

Relating the defined nodal voltages to the independent voltage source, 
we have

V1 - V2 = E = 12 V

which results in two equations and two unknowns:

 0.25V1 + 0.5V2 =  2

 V1 -  1V2 = 12

Substituting gives

V1 = V2 + 12

0.25(V2 + 12) + 0.5V2 = 2

and	 0.75V2 = 2 - 3 = -1

R1 4 �

R3

10 �
E

12 V

R2 2 �6 A            4 A

V2V1 + –

FIG. 8.58
Example 8.24.

R1 4 �

R3

10 �

R2 2 �6 A            4 A

V2V1

I1 I2

I3 I3 Supernode

FIG. 8.59
Defining the supernode for the network in Fig. 8.58.
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so that	 V2 =
-1

0.75
= −1.33 V

and	 V1 = V2 + 12 V = -1.33 V + 12 V = −10.67 V

The current of the network can then be determined as follows:

 I1T =
V1

R1
=

10.67 V

4 Ω
= 2.67 A

 I2c =
V2

R2
=

1.33 V

2 Ω
=  0.67 A

 
S
I3 =

V1 - V2

10 Ω
=

10.67 V - (-1.33 V)

10 Ω
=

12 Ω
10 Ω

= 1.2 A

A careful examination of the network at the beginning of the analysis 
would have revealed that the voltage across the resistor R3 must be 12 V 
and I3 must be equal to 1.2 A.

As part of the introduction to branch-current and mesh analysis, 
another approach that involved source conversions was introduced to 
demonstrate an alternative approach to solving networks with more than 
one source that are not in series or parallel. It was also pointed out the 
source conversion approach is not always an alternative but it did offer 
another way to approach such problems. The same is true for nodal 
analysis and will be demonstrated in the next example.

EXAMPLE 8.25  Find the nodal voltages for the network of Fig. 8.55 using 
a source conversion approach and compare to the solutions of Example 8.23.

Solution:  Converting the two current sources of Fig. 8.55 to voltage 
sources will result in the network of Fig. 8.60.

2 � 6 �12 �

R1 R3V1 V2
R2

+

– +

–

8 V 12 VI

FIG. 8.60
Network of Fig. 8.55 redrawn with equivalent voltage sources.

The result is a continuous series circuit in which the current can be 
determined by:

I =
8 V + 12 V

2 Ω + 12 Ω + 6 Ω
=

20 V

20 Ω
= 1 A

The nodal voltages are then

 V1 = 8 V - I(2 Ω) = 8 V - (1 A)(2 Ω) = 8 V - 2 V = 6 V

 V2 = V1 - I(12 Ω) = 6 V - (1 A)(12 Ω) = 6 V - 12 V = −6 V

which match the results of Example 8.23.
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8.7 N odal Analysis (Format Approach)

A close examination of Eq. (8.1) appearing in Example 8.23 reveals that 
the subscripted voltage at the node in which Kirchhoff’s current law is 
applied is multiplied by the sum of the conductances attached to that 
node. Note also that the other nodal voltages within the same equation 
are multiplied by the negative of the conductance between the two 
nodes. The current sources are represented to the right of the equals sign 
with a positive sign if they supply current to the node and with a nega-
tive sign if they draw current from the node.

These conclusions can be expanded to include networks with any 
number of nodes. This allows us to write nodal equations rapidly and in 
a form that is convenient for the use of determinants. A major require-
ment, however, is that all voltage sources must first be converted to cur-
rent sources before the procedure is applied. Note the parallelism 
between the following four steps of application and those required for 
mesh analysis in Section 8.5.

Nodal Analysis Procedure

1.	 Choose a reference node, and assign a subscripted voltage label to 
the (N − 1) remaining nodes of the network.

2.	 The number of equations required for a complete solution is equal 
to the number of subscripted voltages (N − 1). Column 1 of each 
equation is formed by summing the conductances tied to the node 
of interest and multiplying the result by that subscripted nodal 
voltage.

3.	 We must now consider the mutual terms, which, as noted in the 
preceding example, are always subtracted from the first column. It 
is possible to have more than one mutual term if the nodal voltage 
of current interest has an element in common with more than one 
other nodal voltage. This is demonstrated in an example to follow. 
Each mutual term is the product of the mutual conductance and 
the other nodal voltage, tied to that conductance.

4.	 The column to the right of the equality sign is the algebraic sum of 
the current sources tied to the node of interest. A current source is 
assigned a positive sign if it supplies current to a node and a nega-
tive sign if it draws current from the node.

5.	 Solve the resulting simultaneous equations for the desired voltages.

Let us now consider a few examples.

EXAMPLE 8.26  Write the nodal equations for the network in Fig. 8.61.

2 A 6 �R1 R2 4 �

R3

3 A

3 �

I2I1

FIG. 8.61
Example 8.26.
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Solution: 

Step 1: Redraw the figure with assigned subscripted voltages in Fig. 8.62.

Reference

R1 6 �

R3

3 �

I2 3 A R2 4 �I1 2 A

V1 V2

FIG. 8.62
Defining the nodes for the network in Fig. 8.61.

Steps 2 to 4:  

V1: V1 V2
1

6 �
1

3 �
1

3 �
� � � �2 A

Drawing current
from node 1

Sum of
conductances

connected
to node 1

Mutual
conductance

V2: V2 V1
1

4 �
1

3 �
1

3 �
� � � �3 A

Supplying current
to node 2

Sum of
conductances

connected
to node 2

Mutual
conductance

and	  
1

2
V1 -  

1

3
V2 = -2

 -
1

3
V1 +

7

12
V2 = 3

EXAMPLE 8.27  Find the voltage across the 3 Ω resistor in Fig. 8.63 
by nodal analysis.

2 �

V3�8 V

6 � 10 �

4 � 3 � 1 V–

++

– +

–

FIG. 8.63
Example 8.27.
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Solution:  Converting sources and choosing nodes (Fig. 8.64), we 
have

V3�2 �

V1

4 A

–

+
4 � 3 �

10 �
0.1 A

V2

Reference

6 �

FIG. 8.64
Defining the nodes for the network in Fig. 8.63.

a 1

2 Ω
+

1

4 Ω
+

1

6 Ω
bV1 - a 1

6 Ω
bV2 = +4 A

a 1

10 Ω
+

1

3 Ω
+

1

6 Ω
bV2 - a 1

6 Ω
bV1 = -0.1 A

t
11

12
V1 -

1

6
V2 = 4

-
1

6
V1 +

3

5
V2 = -0.1

resulting in

 11V1 -  2V2 = +48

 -5V1 + 18V2 = -3

and

V2 = V3Ω =
` 11 48

-5 -3
`

` 11 -2

-5 18
`

=
-33 + 240

198 - 10
=

207

188
= 1.10 V

As demonstrated for mesh analysis, nodal analysis can also be a very 
useful technique for solving networks with only one source.

EXAMPLE 8.28  Using nodal analysis, determine the potential across 
the 4 Ω resistor in Fig. 8.65.

Solution:  The reference and four subscripted voltage levels were cho-
sen as shown in Fig. 8.66. Remember that for any difference in potential 
between V1 and V3, the current through and the potential drop across 
each 5 Ω resistor are the same. Therefore, V4 is simply a mid-voltage 
level between V1 and V3 and is known if V1 and V3 are available. We will 
therefore not include it in a nodal voltage and will redraw the network as 
shown in Fig. 8.67. Understand, however, that V4 can be included if 

2 �

3 A

2 �

4 �2 �

5 � 5 �

FIG. 8.65
Example 8.28.
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desired, although four nodal voltages will result rather than three as in 
the solution of this problem. We have

V1:  a 1

2 Ω
+

1

2 Ω
+

1

10 Ω
bV1 - a 1

2 Ω
bV2 -  a 1

10 Ω
bV3 = 0

V2:   a 1

2 Ω
+

1

2 Ω
bV2 - a 1

2 Ω
bV1 -  a 1

2 Ω
bV3 = 3 A

V3:  a 1

10 Ω
+

1

2 Ω
+

1

4 Ω
bV3 - a 1

2 Ω
bV2 -  a 1

10 Ω
bV1 = 0

which are rewritten as

 1.1V1 - 0.5V2 - 0.1V3 = 0

 V2 - 0.5V1 - 0.5V3 = 3

 0.85V3 - 0.5V2 - 0.1V1 = 0

For determinants, we have

1.1V1 � 0.5V2 � 0.1V3 � 0

�0.1V1 � 0.5V2 � 0.85V3 � 0

�0.5V1 � 1V2 � 0.5V3 � 3

c b a

b

a

Before continuing, note the symmetry about the major diagonal in 
the equation above. Recall a similar result for mesh analysis. Exam-
ples 8.26 and 8.27 also exhibit this property in the resulting equations. 
Keep this in mind as a check on future applications of nodal analysis. 
We have

V3 = V4Ω =

†
1.1 -0.5 0

-0.5 +1 3
-0.1 -0.5 0

†

†
1.1 -0.5 -0.1

-0.5 +1 -0.5
-0.1 -0.5 +0.85

†
= 4.65 V

The next example has only one source applied to a ladder network.

EXAMPLE 8.29  Write the nodal equations and find the voltage across 
the 2 Ω resistor for the network in Fig. 8.68.

2 �

3 A

2 �

4 �2 �

5 � 5 �

V1

V4

V3V2

(0 V)

FIG. 8.66
Defining the nodes for the network in Fig. 8.65.

2 �

3 A

2 �

4 �2 �

V1

10 �

(0 V)

V2 V3

FIG. 8.67
Reducing the number of nodes for the network in 

Fig. 8.65 by combining the two 5 Ω resistors.

3 � 4 � 1 �

9 �

240 V 6 � 6 � 2 �
+

–

FIG. 8.68
Example 8.29.
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Solution:  The nodal voltages are chosen as shown in Fig. 8.69. We have

V1:  a 1

12 Ω
+

1

6 Ω
+

1

4 Ω
bV1 - a 1

4 Ω
bV2 + 0 = 20 A

V2:  a 1

4 Ω
+

1

6 Ω
+

1

1 Ω
bV2 - a 1

4 Ω
bV1 - a 1

1 Ω
bV3 = 0 

V3:  a 1

1 Ω
+

1

2 Ω
bV3 - a 1

1 Ω
bV2 + 0 = 0

and	  0.5V1 - 0.25V2 + 0 = 20

 -0.25V1 +
17

12
V2 - 1V3 = 0

 0 - 1V2 + 1.5V3 = 0

12 �

V1

2 �20 A 6 � 6 �

(0 V)

1 �4 �

V2 V3

FIG. 8.69
Converting the voltage source to a current source and defining the nodes  

for the network in Fig. 8.68.

Note the symmetry present about the major axis. Application of de-
terminants reveals that

V3 = V2Ω = 10.67 V

8.8  Bridge Networks

This section introduces the bridge network, a configuration that has a 
multitude of applications. In the following chapters, this type of network is 
used in both dc and ac meters. Electronics courses introduce these in the 
discussion of rectifying circuits used in converting a varying signal to one 
of a steady nature (such as dc). A number of other areas of application also 
require some knowledge of ac networks; these areas are discussed later.

The bridge network may appear in one of the three forms as indicated 
in Fig. 8.70. The network in Fig. 8.70(c) is also called a symmetrical 

(b)

R2R1

R3 R4

R5

R1 R2

R5

R3 R4

(a) (c)

R2

R1

R3

R4

R5

FIG. 8.70
Various formats for a bridge network.
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lattice network if R2 = R3 and R1 = R4. Fig. 8.70(c) is an excellent 
example of how a planar network can be made to appear nonplanar. For 
the purposes of investigation, let us examine the network in Fig. 8.71 
using mesh and nodal analysis.

Mesh analysis (Fig. 8.72) yields

(3 Ω + 4 Ω + 2 Ω)I1 - (4 Ω)I2 - (2 Ω)I3 = 20 V

(4 Ω + 5 Ω + 2 Ω)I2 - (4 Ω)I1 - (5 Ω)I3 = 0

(2 Ω + 5 Ω + 1 Ω)I3 - (2 Ω)I1 - (5 Ω)I2 = 0

and	  9I1 - 4I2 - 2I3 = 20

 -4I1 + 11I2 - 5I3 = 0

 -2I1 - 5I2 + 8I3 = 0

with the result that

I1 = 4 A

I2 = 2.67 A

I3 = 2.67 A

The net current through the 5 Ω resistor is

I5Ω = I2 - I3 = 2.67 A - 2.67 A = 0 A

Nodal analysis (Fig. 8.73) yields

 a 1

3 Ω
+

1

4 Ω
+

1

2 Ω
bV1 - a 1

4 Ω
bV2 - a 1

2 Ω
bV3 =

20

3
 A

 a 1

4 Ω
+

1

2 Ω
+

1

5 Ω
bV2 - a 1

4 Ω
bV1 - a 1

5 Ω
bV3 = 0

 a 1

5 Ω
+

1

2 Ω
+

1

1 Ω
bV3 - a 1

2 Ω
bV1 - a 1

5 Ω
bV2 = 0

and

 a 1

3 Ω
+

1

4 Ω
+

1

2 Ω
bV1 - a 1

4 Ω
bV2 - a 1

2 Ω
bV3 = 6.67 A 

 - a 1

4 Ω
bV1 + a 1

4 Ω
+

1

2 Ω
+

1

5 Ω
bV2 - a 1

5 Ω
bV3 = 0

 - a 1

2 Ω
bV1 - a 1

5 Ω
bV2 + a 1

5 Ω
+

1

2 Ω
+

1

1 Ω
bV3 = 0

Note the symmetry of the solution.

TI-89 Calculator Solution

With the TI-89 calculator, the top part of the determinant is determined by 
the sequence in Fig. 8.74 (take note of the calculations within parentheses):

Rs 3 � R2

2 �

R3

2 �
5 �

R5

1 �

R4

4 �

R1

E 20 V
+

–

FIG. 8.71
Standard bridge configuration.

Rs 3 � R2
2 �

R3
1 �

R1

E 20 V

I1

4 �
R5 I2

I35 �
2 � R4

+

–

FIG. 8.72
Assigning the mesh currents to the network 

in Fig. 8.71.

R1

R2R5

R3

R4

2 �

3 �I Rs

V2

V1

V3

4 �

5 �
2 �

1 �

20
3 A

(0 V)

FIG. 8.73
Defining the nodal voltages for the network 

in Fig. 8.71.

det([6.67,�1/4,�1/2;0,(1/4�1/2�1/5),�1/5;0,�1/5,(1/5�1/2�1/1)]) ENTER 10.51E0

FIG. 8.74
TI-89 solution for the numerator of the solution for V1.

with the bottom of the determinant determined by the sequence in Fig. 8.75.
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and	 V1 = 8.02 V

Similarly,	 V2 = 2.67 V  and  V3 = 2.67 V

and the voltage across the 5 Ω resistor is

V5Ω = V2 - V3 = 2.67 A - 2.67 A = 0 V

Since V5Ω = 0 V, we can insert a short in place of the bridge arm with-
out affecting the network behavior. (Certainly V = IR = I # (0) = 0 V.) 
In Fig. 8.77, a short circuit has replaced the resistor R5, and the voltage 
across R4 is to be determined. The network is redrawn in Fig. 8.78, and

 V1Ω =
(2 Ω  7  1 Ω)20 V

(2 Ω  7  1 Ω) + (4 Ω  7  2 Ω) + 3 Ω
  (voltage divider rule)

 =

2

3
(20 V)

2

3
+

8

6
+ 3

=

2

3
(20 V)

2

3
+

4

3
+

9

3

 =
2(20 V)

2 + 4 + 9
=

40 V

15
= 2.67 V

as obtained earlier.
We found through mesh analysis that I5Ω = 0 A, which has as its 

equivalent an open circuit as shown in Fig. 8.79(a). (Certainly I = V>R =
0>(∞ Ω) = 0 A.) The voltage across the resistor R4 is again determined 
and compared with the result above.

The network is redrawn after combining series elements as shown in 
Fig. 8.79(b), and

V3Ω =
(6 Ω  7  3 Ω)(20 V)

6 Ω  7  3 Ω + 3 Ω
=

2 Ω(20 V)

2 Ω + 3 Ω
= 8 V

det([(1/3�1/4�1/2),�1/4,�1/2;�1/4,(1/4�1/2�1/5),�1/5;�1/2,�1/5,(1/5�1/2�1/1)]) ENTER 1.31E0

FIG. 8.75
TI-89 solution for the denominator of the equation for V1.

Finally, the simple division in Fig. 8.76 provides the desired result.

R1

R2

R3

R4

2 �

E

4 �

2 �

1 �

V  =  0

Rs 3 �

20 V

–

+
V1�

+

–

FIG. 8.77
Substituting the short-circuit equivalent for 

the balance arm of a balanced bridge.

R1 2 �

–

+

4 � R2

R3 1 �2 � R4

Rs 3 �

E 20 V V1�

+

–

FIG. 8.78
Redrawing the network in Fig. 8.77.

10.51/1.31 8.02ENTER

FIG. 8.76
TI-89 solution for V1.

R1

R2

R3

R4

2 �

E

4 �

2 �

1 �

Rs 3 �

20 V
–

+

I  =  0

(a)

V1�

6 �

3 �Rs

3 �

E 20 V

(b)

+

–

+

–

FIG. 8.79
Substituting the open-circuit equivalent for the balance arm of a balanced bridge.
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and	 V1Ω =
1 Ω(8 V)

1 Ω + 2 Ω
=

8 V

3
= 2.67 V

as above.
The condition V5Ω = 0 V or I5Ω = 0 A exists only for a particular 

relationship between the resistors of the network. Let us now derive this 
relationship using the network in Fig. 8.80, in which it is indicated that 
I = 0 A and V = 0 V. Note that resistor Rs of the network in Fig. 8.79 
does not appear in the following analysis.

The bridge network is said to be balanced when the condition of 
I = 0 A or V = 0 V exists.

If V = 0 V (short circuit between a and b), then

V1 = V2

and	 I1R1 = I2R2

or	 I1 =
I2R2

R1

In addition, when V = 0 V,

V3 = V4

and	 I3R3 = I4R4

If we set I = 0 A, then I3 = I1 and I4 = I2, with the result that the 
above equation becomes

I1R3 = I2R4

Substituting for I1 from above yields

a I2R2

R1
bR3 = I2R4

or, rearranging, we have

	
R1

R3
=

R2

R4
	 (8.2)

This conclusion states that if the ratio of R1 to R3 is equal to that of R2 
to R4, the bridge is balanced, and I = 0 A or V = 0 V. A method of 
memorizing this form is indicated in Fig. 8.81.

For the example above, R1 = 4 Ω, R2 = 2 Ω, R3 = 2 Ω, R4 = 1 Ω, 
and

R1

R3
=

R2

R4
S 4 Ω

2 Ω
=

2 Ω
1 Ω

= 2

The emphasis in this section has been on the balanced situation. 
Understand that if the ratio is not satisfied, there will be a potential drop 
across the balance arm and a current through it. The methods just 
described (mesh and nodal analysis) will yield any and all potentials or 
currents desired, just as they did for the balanced situation.

8.9 Y -� (T-P) and �-Y (P-T) Conversions

Circuit configurations are often encountered in which the resistors do not 
appear to be in series or parallel. Under these conditions, it may be neces-
sary to convert the circuit from one form to another to solve for any 
unknown quantities if mesh or nodal analysis is not applied. Two circuit 
configurations that often account for these difficulties are the wye (Y) and 

R1

R3E

V  =  0
Rs

–

+
I  =  0

R4
V4

I4

I1V1–
+ I2

V2
–

+
R2

V3 –

+

I3

–+

+

–

FIG. 8.80
Establishing the balance criteria for a bridge 

network.

R1

R3

R2

R4

R1

R3

R2

R4
=

FIG. 8.81
A visual approach to remembering the balance 

condition.
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delta (∆) configurations depicted in Fig. 8.82(a). They are also referred 
to as the tee (T) and pi (p), respectively, as indicated in Fig. 8.82(b). Note 
that the pi is actually an inverted delta.

RB

RC

RA

“ ”

R1
R2

R3

“ ”

RB RA

RC

“ ”

(a) (b)

R1 R2

R3

“ ”

FIG. 8.82
The Y (T) and ∆ (p) configurations.

The purpose of this section is to develop the equations for converting 
from ∆ to Y, or vice versa. This type of conversion normally leads to a 
network that can be solved using techniques such as those described in 
Chapter 7. In other words, in Fig. 8.83, with terminals a, b, and c held 
fast, if the wye (Y) configuration were desired instead of the inverted 
delta (∆) configuration, all that would be necessary is a direct applica-
tion of the equations to be derived. The phrase instead of is emphasized 
to ensure that it is understood that only one of these configurations is to 
appear at one time between the indicated terminals.

It is our purpose (referring to Fig. 8.83) to find some expression for 
R1, R2, and R3 in terms of RA, RB, and RC, and vice versa, that will ensure 
that the resistance between any two terminals of the Y configuration will 
be the same with the ∆ configuration inserted in place of the Y configu-
ration (and vice versa). If the two circuits are to be equivalent, the total 
resistance between any two terminals must be the same. Consider termi-
nals a-c in the ∆@Y configurations in Fig. 8.84.

a

RARB
R3

R2R1

RC
b

c

“ ”

FIG. 8.83
Introducing the concept of ∆@Y or Y@∆ conversions.

R1 R2

R3

a b

c

Ra-c RB RA

RC

a b

c

Ra-c

RB RA

RC

a

b

c

Ra-c

External to path
of measurement

FIG. 8.84
Finding the resistance Ra@c for the Y and ∆ configurations.

Let us first assume that we want to convert the ∆ (RA, RB, RC) to 
the Y (R1, R2, R3). This requires that we have a relationship for R1, R2, 
and R3 in terms of RA, RB, and RC. If the resistance is to be the same 
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between terminals a-c for both the ∆ and the Y, the following must 
be true:

Ra@c(Y) = Ra@c(∆)

so that	 Ra@c = R1 + R3 =
RB (RA + RC)

RB + (RA + RC)
	 (8.3a)

Using the same approach for a-b and b-c, we obtain the following 
relationships:

	 Ra@b = R1 + R2 =
RC (RA + RB)

RC + (RA + RB)
	 (8.3b)

and	 Rb@c = R2 + R3 =
RA(RB + RC)

RA + (RB + RC)
	 (8.3c)

Subtracting Eq. (8.3a) from Eq. (8.3b), we have

(R1 + R2) - (R1 + R3) = a RCRB + RCRA

RA + RB + RC
b - a RBRA + RBRA

RA + RB + RC
b

so that	 R2 - R3 =
RARC - RBRA

RA + RB + RC
	 (8.4)

Subtracting Eq. (8.4) from Eq. (8.3c) yields

(R2 + R3) - (R2 - R3) = a RARB + RARC

RA + RB + RC
b - a RARC - RBRA

RA + RB + RC
b

so that	 2R3 =
2RBRA

RA + RB + RC

resulting in the following expression for R3 in terms of RA, RB, and RC:

	 R3 =
RARB

RA + RB + RC
	 (8.5a)

Following the same procedure for R1 and R2, we have

	 R1 =
RBRC

RA + RB + RC
	 (8.5b)

and	 R2 =
RARC

RA + RB + RC
	 (8.5c)

Note that each resistor of the Y is equal to the product of the resistors 
in the two closest branches of the ∆ divided by the sum of the 
resistors in the ∆.

To obtain the relationships necessary to convert from a Y to a ∆, first 
divide Eq. (8.5a) by Eq. (8.5b):

R3

R1
=

(RARB)>(RA + RB + RC)

(RBRC)>(RA + RB + RC)
=

RA

RC

or	 RA =
RCR3

R1

Y-∆ (T-p) and ∆-Y (p-T) Conversions    351
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Then divide Eq. (8.5a) by Eq. (8.5c):

R3

R2
=

(RARB)>(RA + RB + RC)

(RARC)>(RA + RB + RC)
=

RB

RC

or	 RB =
R3RC

R2

Substituting for RA and RB in Eq. (8.5c) yields

 R2 =
(RCR3>R1)RC

(R3RC>R1) + (RCR3>R2) + RC

 =
(R3>R1)RC

(R3>R2) + (R3>R1) + 1

Placing these over a common denominator, we obtain

 R2 =
(R3RC>R1)

(R1R2 + R1R3 + R2R3)>(R1R2)

 =
R2R3RC

R1R2 + R1R3 + R2R3

and	 RC =
R1R2 + R1R3 + R2R3

R3
	 (8.6a)

We follow the same procedure for RB and RA:

	 RA =
R1R2 + R1R3 + R2R3

R1
	 (8.6b)

and	 RB =
R1R2 + R1R3 + R2R3

R2
	 (8.6c)

Note that the value of each resistor of the ∆ is equal to the sum of the 
possible product combinations of the resistances of the Y divided by 
the resistance of the Y farthest from the resistor to be determined.

Let us consider what would occur if all the values of a ∆ or Y were 
the same. If RA = RB = RC, Eq. (8.5a) would become (using RA only) 
the following:

R3 =
RARB

RA + RB + RC
=

RARA

RA + RA + RA
=

RA
2

3RA
=

RA

3

and, following the same procedure,

R1 =
RA

3
  R2 =

RA

3

In general, therefore,

	 RY =
R∆

3
	 (8.7)

or	 R∆ = 3RY	 (8.8)

which indicates that for a Y of three equal resistors, the value of each 
resistor of the ∆ is equal to three times the value of any resistor of the Y. 
If only two elements of a Y or a ∆ are the same, the corresponding ∆ or 
Y of each will also have two equal elements. The converting of equa-
tions is left as an exercise for you.
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The Y and the ∆ often appear as shown in Fig. 8.85. They are then 
referred to as a tee (T) and a pi (p) network, respectively. The equations 
used to convert from one form to the other are exactly the same as those 
developed for the Y and ∆ transformation.

(a)

1

2

3

4

R3

“ ” “ ” “ ”

1

2

3

4

“ ”

(b)

R2R1 RC

RARB

FIG. 8.85
The relationship between the Y and T configurations and the ∆ and p configurations.

EXAMPLE 8.30  Convert the ∆ in Fig. 8.86 to a Y.

Solution: 

 R1 =
RBRC

RA + RB + RC
=

(20 Ω)(10 Ω)

30 Ω + 20 Ω + 10 Ω
=

200 Ω
60

= 31
3 �

 R2 =
RARC

RA + RB + RC
=

(30 Ω)(10 Ω)

60 Ω
=

300 Ω
60

= 5 �

 R3 =
RARB

RA + RB + RC
=

(20 Ω)(30 Ω)

60 Ω
=

600 Ω
60

= 10 �

The equivalent network is shown in Fig. 8.87.

RB

RA

RCa
b

c

a

b

c

20 �
30 �

10 �

FIG. 8.86
Example 8.30.

R3 10 �

R1

31/3 � R2

5 �

a
ba

b

c
c

FIG. 8.87
The Y equivalent for the ∆ in Fig. 8.86.

R3 60 �

R1

60 � R2

60 �

a
ba

b

c
c

FIG. 8.88
Example 8.31.

EXAMPLE 8.31  Convert the Y in Fig. 8.88 to a ∆.

Solution: 

RA =
R1R2 + R1R3 + R2R3

R1

 =
(60 Ω)(60 Ω) + (60 Ω)(60 Ω) + (60 Ω)(60 Ω)

60 Ω

 =
3600 Ω + 3600 Ω + 3600 Ω

60
=

10,800 Ω
60

 RA = 180 �

Y-∆ (T-p) and ∆-Y (p-T) Conversions    353
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However, the three resistors for the Y are equal, permitting the use of 
Eq. (8.8) and yielding

R∆ = 3RY = 3(60 Ω) = 180 Ω
and	 RB = RC = 180 �

The equivalent network is shown in Fig. 8.89.

EXAMPLE 8.32  Find the total resistance of the network in Fig. 8.90, 
where RA = 3 Ω, RB = 3 Ω, and RC = 6 Ω.

Solution: 

R1 =
RBRC

RA + RB + RC
=

(3 Ω)(6 Ω)

3 Ω + 3 Ω + 6 Ω
=

18 Ω
12

= 1.5 �

R2 =
RARC

RA + RB + RC
=

(3 Ω)(6 Ω)

12 Ω
=

18 Ω
12

= 1.5 �

R3 =
RARB

RA + RB + RC
=

(3 Ω)(3 Ω)

12 Ω
=

9 Ω
12

= 0.75 �

Replacing the ∆ by the Y, as shown in Fig. 8.91, yields

RT = 0.75 Ω +
(4 Ω + 1.5 Ω)(2 Ω + 1.5 Ω)

(4 Ω + 1.5 Ω) + (2 Ω + 1.5 Ω)

 = 0.75 Ω +
(5.5 Ω)(3.5 Ω)

5.5 Ω + 3.5 Ω
 = 0.75 Ω + 2.139 Ω

 RT = 2.89 �

EXAMPLE 8.33  Find the total resistance of the network in Fig. 8.92.

Solutions:  Since all the resistors of the ∆ or Y are the same, Eqs. (8.7) 
and (8.8) can be used to convert either form to the other.

	 a.	 Converting the ∆ to a Y: Note: When this is done, the resulting d′ 
of the new Y will be the same as the point d shown in the original 
figure, only because both systems are “balanced.” That is, the resist-
ance in each branch of each system has the same value:

(Fig. 8.93): RY =
R∆

3
=

6 Ω
3

= 2 Ω

Two resistors of the ∆ were equal; 
therefore, two resistors of the Y will 
be equal.

RC

RB

180 � RA

a
ba

b

c
c

180 �

180 �

FIG. 8.89
The ∆ equivalent for the Y in Fig. 8.88.

RB

3 �
RA

3 �

ba

c

4 � 2 �

6 � “    ”RT

RC

FIG. 8.90
Example 8.32.

RT

0.75 �

R1

ba

c

4 � 2 �

1.5 � 1.5 �

R3

R2

FIG. 8.91
Substituting the Y equivalent for the bottom  

∆ in Fig. 8.90.

RT

6 �

a

bc

9 �
6 �

9 � 9 �

6 �

d

FIG. 8.92
Example 8.33.

d ′

2 �

2 � 2 �

a

bc

6 �

a

bc

6 �

6 �

FIG. 8.93
Converting the ∆ configuration of Fig. 8.92 to a Y configuration.
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The network then appears as shown in Fig. 8.94. We have

RT = 2 c (2 Ω)(9 Ω)

2 Ω + 9 Ω
d = 3.27 �

	 b.	 Converting the Y to a ∆:

(Fig. 8.95):	  R∆ = 3RY = (3)(9 Ω) = 27 Ω

 R′T =
(6 Ω)(27 Ω)

6 Ω + 27 Ω
=

162 Ω
33

= 4.91 Ω

 RT =
R′T (R′T + R′T)

R′T + (R′T + R′T)
=

R′T2R′T
3R′T

=
2R′T

3

 =
2(4.91 Ω)

3
= 3.27 �

which checks with the previous solution.

8.10  Applications

This section discusses the constant-current characteristic in the design of 
security systems, the bridge circuit in a common residential smoke 
detector, and the nodal voltages of a digital logic probe.

Constant-Current Alarm Systems

The basic components of an alarm system using a constant-current sup-
ply are provided in Fig. 8.96. This design is improved over that pro-
vided in Chapter 5 in the sense that it is less sensitive to changes in 
resistance in the circuit due to heating, humidity, changes in the length 
of the line to the sensors, and so on. The 1.5 kΩ rheostat (total resist-
ance between points a and b) is adjusted to ensure a current of 5 mA 
through the single-series security circuit. The adjustable rheostat is nec-
essary to compensate for variations in the total resistance of the circuit 
introduced by the resistance of the wire, sensors, sensing relay, and mil-
liammeter. The milliammeter is included to set the rheostat and ensure 
a current of 5 mA.

RT

9 �

a

2 �

d, d ′

c b

9 � 9 �

2 �2 �

FIG. 8.94
Substituting the Y configuration for the converted ∆ 

into the network in Fig. 8.92.

RT
6 �

a

bc

27 �
6 �

6 �

27 �
27 �

FIG. 8.95
Substituting the converted Y configuration into the 

network in Fig. 8.92.
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FIG. 8.96
Constant-current alarm system.
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If any of the sensors opens the current through the entire circuit drops 
to zero, the coil of the relay releases the plunger, and contact is made 
with the N/C position of the relay. This action completes the circuit for 
the bell circuit, and the alarm sounds. For the future, keep in mind that 
switch positions for a relay are always shown with no power to the net-
work, resulting in the N/C position in Fig. 8.96. When power is applied, 
the switch will have the position indicated by the dashed line. That is, 
various factors, such as a change in resistance of any of the elements due 
to heating, humidity, and so on, cause the applied voltage to redistribute 
itself and create a sensitive situation. With an adjusted 5 mA, the loading 
can change, but the current will always be 5 mA and the chance of trip-
ping reduced. Note that the relay is rated as 5 V at 5 mA, indicating that 
in the on state the voltage across the relay is 5 V and the current through 
the relay is 5 mA. Its internal resistance is therefore 5 V>5 mA = 1 kΩ 
in this state.

A more advanced alarm system using a constant current is illus-
trated in Fig. 8.97. In this case, an electronic system using a single 
transistor, biasing resistors, and a dc battery are establishing a current 
of 4 mA through the series sensor circuit connected to the positive side 
of an operational amplifier (op-amp). Transistors and op-amp devices 
may be new to you (these are discussed in detail in electronics courses), 
but for now you just need to know that the transistor in this application 
is being used not as an amplifier but as part of a design to establish a 
constant current through the circuit. The op-amp is a very useful com-
ponent of numerous electronic systems, and it has important terminal 
characteristics established by a variety of components internal to its 
design. The LM2900 operational amplifier in Fig. 8.97 is one of four 
found in the dual-in-line integrated circuit package appearing in 
Fig. 8.98(a). Pins 2, 3, 4, 7, and 14 were used for the design in Fig. 8.97. 
Note in Fig. 8.98(b) the number of elements required to establish the 
desired terminal characteristics—the details of which will be investi-
gated in your electronics courses.

Magnetic
switch

Window
foil

Door
switch

2 mA

4 mA

+15 V

Rref

3

2

+15 V

+

–

LM2900

14

7
4

Output

Constant-
current
source

To alarm
bell circuit

+15 V

4 mA
RE

R2

R1

Op-Amp

FIG. 8.97
Constant-current alarm system with electronic components.
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INPUT 1+ INPUT 2+ INPUT 2– OUTPUT 2 GNDOUTPUT 1 INPUT 1–

TOP VIEW

FIG. 8.98
LM2900 operational amplifier: (a) dual-in-line 
package (DIP); (b) components; (c) impact of  

low-input impedance.

In Fig. 8.97, the designed 15 V dc supply, biasing resistors, and tran-
sistor in the upper right corner of the schematic establish a constant 4 
mA current through the circuit. It is referred to as a constant-current 
source because the current remains fairly constant at 4 mA even though 
there may be moderate variations in the total resistance of the series sen-
sor circuit connected to the transistor. Following the 4 mA through the 
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circuit, we find that it enters terminal 2 (positive side of the input) of the 
op-amp. A second current of 2 mA, called the reference current, is 
established by the 15 V source and resistance R and enters terminal 
3 (negative side of the input) of the op-amp. The reference current of 
2 mA is necessary to establish a current for the 4 mA current of the net-
work to be compared against. As long as the 4 mA current exists, the 
operational amplifier provides a “high” output voltage that exceeds 13.5 
V, with a typical level of 14.2 V (according to the specification sheet for 
the op-amp). However, if the sensor current drops from 4 mA to a level 
below the reference level of 2 mA, the op-amp responds with a “low” 
output voltage that is typically about 0.1 V. The output of the opera-
tional amplifier then signals the alarm circuit about the disturbance. 
Note from the above that it is not necessary for the sensor current to drop 
to 0 mA to signal the alarm circuit—just a variation around the reference 
level that appears unusual.

One very important characteristic of this particular op-amp is that the 
input impedance to the op-amp is relatively low. This feature is impor-
tant because you don’t want alarm circuits reacting to every voltage 
spike or turbulence that comes down the line because of external switch-
ing action or outside forces such as lightning. In Fig. 8.98(c), for 
instance, if a high voltage should appear at the input to the series con-
figuration, most of the voltage would be absorbed by the series resist-
ance of the sensor circuit rather than travel across the input terminals of 
the operational amplifier—thus preventing a false output and an activa-
tion of the alarm.

Wheatstone Bridge Smoke Detector

The Wheatstone bridge is a popular network configuration whenever 
detection of small changes in a quantity is required. In Fig. 8.99(a), the 
dc bridge configuration uses a photoelectric device to detect the pres-
ence of smoke and to sound the alarm. A photograph of a photoelectric 
smoke detector appears in Fig. 8.99(b), and the internal construction of 
the unit is shown in Fig. 8.99(c). First, note that air vents are provided 
to permit the smoke to enter the chamber below the clear plastic. The 
clear plastic prevents the smoke from entering the upper chamber but 
permits the light from the bulb in the upper chamber to bounce off the 
lower reflector to the semiconductor light sensor (a cadmium photocell) 
at the left side of the chamber. The clear plastic separation ensures that 
the light hitting the light sensor in the upper chamber is not affected 
by  the entering smoke. It establishes a reference level to compare 
against the chamber with the entering smoke. If no smoke is present, 
the difference in response between the sensor cells will be registered as 
the normal situation. Of course, if both cells were exactly identical, and 
if the clear plastic did not cut down on the light, both sensors would 
establish the same reference level, and their difference would be zero. 
However, this is seldom the case, so a reference difference is recog-
nized as the sign that smoke is not present. However, once smoke is 
present, there will be a sharp difference in the sensor reaction from the 
norm, and the alarm should sound.

In Fig. 8.99(a), we find that the two sensors are located on opposite 
arms of the bridge. With no smoke present, the balance-adjust rheostat 
is used to ensure that the voltage V between points a and b is zero volts 
and the resulting current through the primary of the sensitive relay is 
zero amperes. Taking a look at the relay, we find that the absence of a 
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voltage from a to b leaves the relay coil unenergized and the switch in 
the N/O position (recall that the position of a relay switch is always 
drawn in the unenergized state). An unbalanced situation results in a 
voltage across the coil and activation of the relay, and the switch moves 
to the N/C position to complete the alarm circuit and activate the alarm. 
Relays with two contacts and one movable arm are called single-pole–
double-throw (SPDT) relays. The dc power is required to set up the 
balanced situation, energize the parallel bulb so we know that the sys-
tem is on, and provide the voltage from a to b if an unbalanced situation 
should develop.

Why do you suppose that only one sensor isn’t used, since its resist-
ance would be sensitive to the presence of smoke? The answer is that the 
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FIG. 8.99
Wheatstone bridge smoke detector: (a) dc bridge configuration; (b) outside appearance; (c) internal construction.
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smoke detector may generate a false readout if the supply voltage or 
output light intensity of the bulb should vary. Smoke detectors of the 
type just described must be used in gas stations, kitchens, dentist offices, 
and so on, where the range of gas fumes present may set off an ionizing-
type smoke detector.

Schematic with Nodal Voltages

When an investigator is presented with a system that is down or not 
operating properly, one of the first options is to check the system’s spec-
ified voltages on the schematic. These specified voltage levels are actu-
ally the nodal voltages determined in this chapter. Nodal voltage is 
simply a special term for a voltage measured from that point to ground. 
The technician attaches the negative or lower-potential lead to the 
ground of the network (often the chassis) and then places the positive or 
higher-potential lead on the specified points of the network to check the 
nodal voltages. If they match, it means that section of the system is oper-
ating properly. If one or more fail to match the given values, the problem 
area can usually be identified. Be aware that a reading of -15.87 V is 
significantly different from an expected reading of +16 V if the leads 
have been properly attached. Although the actual numbers seem close, 
the difference is actually more than 30 V. You must expect some devia-
tion from the given value as shown, but always be very sensitive to the 
resulting sign of the reading.

The schematic in Fig. 8.100(a) includes the nodal voltages for a logic 
probe used to measure the input and output states of integrated circuit 
logic chips. In other words, the probe determines whether the measured 
voltage is one of two states: high or low (often referred to as “on” or 
“off” or 1 or 0). If the LOGIC IN terminal of the probe is placed on a 
chip at a location where the voltage is between 0 and 1.2 V, the voltage 
is considered to be a low level, and the green LED lights (LEDs are 
light-emitting semiconductor diodes that emit light when current is 
passed through them). If the measured voltage is between 1.8 V and 5 V, 
the reading is considered high, and the red LED lights. Any voltage 
between 1.2 V and 1.8 V is considered a “floating level” and is an indi-
cation that the system being measured is not operating correctly. Note 
that the reference levels mentioned above are established by the voltage 
divider network to the left of the schematic. The op-amps used are of 
such high input impedance that their loading on the voltage divider net-
work can be ignored and the voltage divider network considered a net-
work unto itself. Even though three 5.5 V dc supply voltages are 
indicated on the diagram, be aware that all three points are connected to 
the same supply. The other voltages provided (the nodal voltages) are 
the voltage levels that should be present from that point to ground if the 
system is working properly.

The op-amps are used to sense the difference between the reference 
at points 3 and 6 and the voltage picked up in LOGIC IN. Any difference 
results in an output that lights either the green or the red LED. Be aware, 
because of the direct connection, that the voltage at point 3 is the same 
as shown by the nodal voltage to the left, or 1.8 V. Likewise, the voltage 
at point 6 is 1.2 V for comparison with the voltages at points 5 and 2, 
which reflect the measured voltage. If the input voltage happened to be 
1.0 V, the difference between the voltages at points 5 and 6 would be 
0.2 V, which ideally would appear at point 7. This low potential at point 
7 would result in a current flowing from the much higher 5.5 V dc supply 
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through the green LED, causing it to light and indicating a low condi-
tion. By the way, LEDs, like diodes, permit current through them only in 
the direction of the arrow in the symbol. Also note that the voltage at 
point 6 must be higher than that at point 5 for the output to turn on the 
LED. The same is true for point 2 over point 3, which reveals why the 
red LED does not light when the 1.0 V level is measured.

Often it is impractical to draw the full network as shown in 
Fig. 8.100(b) because there are space limitations or because the same 
voltage divider network is used to supply other parts of the system. In 
such cases, you should recognize that points having the same shape are 
connected, and the number in the figure reveals how many connections 
are made to that point.

A photograph of the outside and inside of a commercially available 
logic probe is shown in Fig. 8.100(c). Note the increased complexity of 
system because of the variety of functions that the probe can perform.
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FIG. 8.100
Logic probe: (a) schematic with nodal voltages; (b) network with global connections;  

(c) photograph of commercially available unit.
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8.11 C omputer Analysis

PSpice

We will now analyze the bridge network in Fig. 8.73 using PSpice to 
ensure that it is in the balanced state. The only component that has not 
been introduced in earlier chapters is the dc current source. To obtain it, 
first select the Place a part key and then the SOURCE library. Scroll-
ing the Part List results in the option IDC. A left click on IDC followed 
by selecting the Place Part key and then OK results in a dc current 
source whose direction is toward the bottom of the screen. One left click 
(to make it red, or active) followed by a right click results in a listing 
having a Mirror Vertically option. Selecting that option flips the source 
and gives it the direction in Fig. 8.73.

The remaining parts of the PSpice analysis are pretty straightforward, 
with the results in Fig. 8.101 matching those obtained in the analysis of 
Fig. 8.73. The voltage across the current source is 8 V positive to ground, 
and the voltage at either end of the bridge arm is 2.667 V. The voltage 
across R5 is 0 V and the current through R5 is 0 A. Note also for the bal-
anced bridge that the current through R1 equals that of R3, and the cur-
rent through R2 equals that of R4.

FIG. 8.101
Applying PSpice to the bridge network of Fig. 8.73.

Multisim

We will now use Multisim to verify the results in Example 8.20. All the 
elements of creating the schematic in Fig. 8.102 have been presented in 
earlier chapters; they are not repeated here to demonstrate how little 
documentation is now necessary to carry you through a fairly complex 
network.
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Problems

Section 8.2  Current Sources

	 1.	 For the network of Fig. 8.103:
	 a.	 Find the currents I1 and I2.
	 b.	 Determine the voltage Vs.

8 A2 � 8 �R2R1

I2I1

Vs

+

–

FIG. 8.103
Problem 1.

	 2.	 For the network of Fig. 8.104:
	 a.	 Determine the currents I1 and I2.
	 b.	 Calculate the voltages V2 and Vs.

2.2 k�

3.3 k�

R1

R2

Vs

+

–

V2

+

–

25 mA

I1

I2

FIG. 8.104
Problem 2.

For the analysis, both the standard Multimeter and meters from the 
Show Measurement Family of the BASIC toolbar listing were employed. 
For the current through the resistor R5, the Place Ammeter (Horizontal) 
was used, while for the voltage across the resistor R4, the Place Voltmeter 
(Vertical) was used. The Multimeter is reading the voltage across the 
resistor R2. In actuality, the ammeter is reading the loop current for the top 
window, and the voltmeters are showing the nodal voltages of the network.

After simulation, the results displayed are an exact match with those 
in Example 8.20.

FIG. 8.102
Using Multisim to verify the results of Example 8.20.
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	 7.	 Convert the voltage sources in Fig. 8.109 to current sources.	 3.	 Find voltage Vs (with polarity) across the ideal current 
source in Fig. 8.105.

R1

E I

3.0 k�

12 V
+

–
8 mA Vs

FIG. 8.105
Problem 3.

	 4.	 For the network in Fig. 8.106:
	 a.	 Find voltage Vs.
	 b.	 Calculate current I2.
	 c.	 Find the source current Is.

R2 3 �

1 �

R1

I 24 V

I2

Vs 2 A E

Is+

–

+

–

FIG. 8.106
Problem 4.

	 5.	 Find the voltage V3 and the current I2 for the network in 
Fig. 8.107.

R1 10 �

0.8 A

I

16 � V3

+

–
R3

I2

R2 24 �

8 �R4

FIG. 8.107
Problem 5.

	 6.	 For the network in Fig. 8.108:
	 a.	 Find the currents I1 and Is.
	 b.	 Find the voltages Vs and V3.

R1 2 �

6 �

4 A

I 2 � V3

+

–

R2

R3E 24 VVs

+

–

I1 Is

+

–

FIG. 8.108
Problem 6.
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+

– +

–

FIG. 8.109
Problem 7.

	 8.	 Convert the current sources in Fig. 8.110 to voltage sources.

(a)

I 6 A
Rp

15 �

(b)

R2R1

18 mAI
3.0 k� 9.0 k�

FIG. 8.110
Problem 8.

	 9.	 For the network in Fig. 8.111:
	 a.	 Find the current IL through the 15 Ω resistor.
	 b.	 Convert the current source to a voltage source, and 

recalculate the current through the 15 Ω resistor.
		  Did you obtain the same result?

Rp 95 �

12 mA

RL 15 �

IL

Is

FIG. 8.111
Problem 9.

	10.	 For the configuration of Fig. 8.112:
	 a.	 Convert the current source to a voltage source.
	 b.	 Combine the two series voltage sources into one source.
	 c.	 Calculate the current through the 91 Ω resistor.
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	14.	 For the network in Fig. 8.116, reduce the network to a sin-
gle current source, and determine the voltage V1.

	11.	 For the network in Fig. 8.113:
	 a.	 Replace all the current sources by a single current 

source.
	 b.	 Find the source voltage Vs.

R1

12 �

R2

6 �

R3 95 �E 18 V

I3

I  =  2 A+

–

FIG. 8.112
Problem 10.

Vs 6.2 A 1.2 A
0.6 A

+

–

R 8 �

FIG. 8.113
Problem 11.

	12.	 Find the voltage Vs and the current I1 for the network in 
Fig. 8.114.

9 A

I1

R1 4 � R2 6 � 6 A

+

–
Vs

FIG. 8.114
Problem 12.

	13.	 Convert the voltage sources in Fig. 8.115 to current sources.
	 a.	 Find the resultant current source.
	 b.	 Find the voltage Vab and the polarity of points a and b.
	 c.	 Find the magnitude and direction of the current I3.

R1 3 �

E1 9 V

R2 2 �

E2 20 V

R3 6 �

I3

b

a

Vab

+

–+

–

FIG. 8.115
Problems 13 and 37.

+

–

V1 R1

R2

R3

1.2 k�

2.2 k�

3 mA

6 mA

5 mA

1 k� 

FIG. 8.116
Problem 14.

Section 8.3  Branch-Current Analysis

	15.	 	a.	 Using branch-current analysis, find the magnitude and 
direction of the current through each resistor for the net-
work of Fig. 8.117.

	 b.	 Find the voltage Va.

R3 8 � 6 V

R

a

2

2 �

E2

R1

4 �

4 V E1

+

–

+

–

FIG. 8.117
Problems 15, 20, 32, and 72.

	16.	 For the network of Fig. 8.118:
	 a.	 Determine the current through the 12 Ω resistor using 

branch-current analysis.
	 b.	 Convert the two voltage sources to current sources, and 

then determine the current through the 12 Ω resistor.
	 c.	 Compare the results of parts (a) and (b).

R2 3 �

12 VE1

R1 4 �

15 VE2

R3 12 �

+

– +

–

FIG. 8.118
Problems 16, 21, and 33.
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	21.	 	a.	 Using the general approach to mesh analysis, determine 
the current through each voltage source in Fig. 8.118.

	 b.	 Using the results of part (a), find the power delivered by 
the source E2 and to the resistor R3.

	22.	 	a.	 Using the general approach to mesh analysis, determine 
the current through each resistor of Fig. 8.119.

	 b.	 Using the results of part (a), determine the voltage 
across the 3.3 kΩ resistor.

	23.	 	a.	 Using the general approach to mesh analysis, determine 
the current through each resistor of Fig. 8.120.

	 b.	 Using the results of part (a), find the voltage Va.

	*24.	 	a.	 Determine the mesh currents for the network of Fig. 
8.121 using the general approach.

	 b.	 Through the proper use of Kirchhoff’s current law, 
reduce the resulting set of equations to three.

	 c.	 Use determinants to find the three mesh currents.
	 d.	 Determine the current through each source, using the 

results of part (c).

	*25.	 	a.	 Write the mesh equations for the network of Fig. 8.122 
using the general approach.

	 b.	 Using determinants, calculate the mesh currents.
	 c.	 Using the results of part (b), find the current through 

each source.

	*17.	 Using branch-current analysis, find the current through 
each resistor for the network of Fig. 8.119. The resistors are 
all standard values.

R1 5.6 k�

40 V

R2

3.3 k�

E2

15 VE1 25 VE3

R3 2.2 k�

+

–

+

–

+

–

FIG. 8.119
Problems 17, 22 and 34.

	*18.	 	a.	 Using branch-current analysis, find the current through 
the 9.1 kΩ resistor in Fig. 8.120. Note that all the resis-
tors are standard values.

	 b.	 Using the results of part (a), determine the voltage Va.

9 V

E1

6 V

E2

R2

8.2 k�

R

a

3 9.1 k�

R4

1.1 k�

R1

1.2 k�

+ –

+–

FIG. 8.120
Problems 18 and 23.

	*19.	 For the network in Fig. 8.121:
	 a.	 Write the equations necessary to solve for the branch 

currents.
	 b.	 By substitution of Kirchhoff’s current law, reduce the 

set to three equations.
	 c.	 Rewrite the equations in a format that can be solved 

using third-order determinants.
	 d.	 Solve for the branch current through the resistor R3.

E2 12 VE1 15 V R4 5 �R2 1 �

R1

2 �

R3

4 �

R5

3 �
+

–

+

–

FIG. 8.121
Problems 19, 24, and 35.

Section 8.4  Mesh Analysis (General Approach)

	20.	 	a.	 Using the general approach to mesh analysis, determine 
the current through each resistor of Fig. 8.117.

	 b.	 Using the results of part (a), find the voltage Va.

R2 3.3 k�

E2 3 V

R5 6.8 k�

E1 18 V

R1 9.1 k�

7.5 k�

R4

R3 2.2 k�

+

–

+

–

FIG. 8.122
Problems 25 and 36.

R5

4 �

R4

4 �

4 �

R1

7 �
R6

3 �

R2

R3

E1

15 V

10 �

+
–

FIG. 8.123
Problem 26.

	*26.	 	a.	 Write the mesh equations for the network of Fig. 8.123 
using the general approach.

	 b.	 Using determinants, calculate the mesh currents.
	 c.	 Using the results of part (b), calculate the current 

through the resistor R5.

	*27.	 	a.	 Write the mesh currents for the network of Fig. 8.124 
using the general approach.

	 b.	 Using determinants, calculate the mesh currents.
	 c.	 Using the results of part (b), find the power delivered by 

the 6 V source.
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	*30.	 Using the supermesh approach, find the current through 
each element of the network of Fig. 8.127.

	*28.	 	a.	 Redraw the network of Fig. 8.125 in a manner that will 
remove the crossover.

	 b.	 Write the mesh equations for the network using the 
general approach.

	 c.	 Calculate the mesh currents for the network.
	 d.	 Find the total power delivered by the two sources.

9 V

6.8 k�

4.7 k�

6 V

1.1 k�

22 k�

8.2 k�2.2 k�

1.2 k�
+

–

+

–

FIG. 8.124
Problems 27, 38, and 73.

R1

2 �

1 �

R3

8 �

6 V

E2

R4

4 �

6 V

E1

R2

+–

+–

FIG. 8.125
Problem 28.

	*29.	 For the transistor configuration in Fig. 8.126:
	 a.	 Solve for the currents IB, IC, and IE, using the fact that 

VBE = 0.7 V and VCE = 8 V.
	 b.	 Find the voltages VB, VC, and VE with respect to ground.
	 c.	 What is the ratio of output current IC to input current IB? 

[Note: In transistor analysis, this ratio is referred to as 
the dc beta of the transistor (bdc).]

IE

VCC 20 V

RB

270 k�

RC

2.2 k�

RE 510 �

IC

8 V

E

C

0.7 V

B

+ –

–

VCC 20 V

+

IB +

–+

–

FIG. 8.126
Problem 29.

4 �

24 V

6 �

10 �

6 A
12 V
+

–

+

–

FIG. 8.127
Problem 30.

	*31.	 Using the supermesh approach, find the current through 
each element of the network of Fig. 8.128.

1 �

6 �

20 V

3 A
4 �

8 �

8 A

+

–

FIG. 8.128
Problem 31.

Section 8.5  Mesh Analysis (Format Approach)

	32.	 	a.	 Using the format approach to mesh analysis, write the 
mesh equations for the network of Fig. 8.117.

	 b.	 Solve for the current through the 8 Ω resistor.

	33.	 	a.	 Using the format approach to mesh analysis, write the 
mesh equations for the network of Fig. 8.118.

	 b.	 Solve for the current through the 3 Ω resistor.

	34.	 	a.	 Using the format approach to mesh analysis, write the 
mesh equations for the network of Fig. 8.119 with three 
independent sources.

	 b.	 Find the current through each source of the network.

	*35.	 	a.	 Write the mesh equations for the network of Fig. 8.121 
using the format approach to mesh analysis.

	 b.	 Solve for the three mesh currents, using determinants.
	 c.	 Determine the current through the 1 Ω resistor.

	*36.	 	a.	 Write the mesh equations for the network of Fig. 8.122 
using the format approach to mesh analysis.

	 b.	 Solve for the three mesh currents, using determinants.
	 c.	 Find the current through each source of the network.

	37.	 	a.	 Write the mesh equations for the network of Fig. 8.115 
using the format approach.

	 b.	 Find the voltage Vab using the result of part (a).
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	43.	 	a.	 Write the nodal equations using the general approach 
for the network of Fig. 8.132.

	 b.	 Find the nodal voltages using determinants.
	 c.	 What is the total power supplied by the current sources?

	*38.	 	a.	 Write the mesh equations for the network of Fig. 8.124 
using the format approach to mesh analysis.

	 b.	 Solve for the four mesh currents using determinants.
	 c.	 Find the voltage at the common connection at the center 

of the diagram.

	*39.	 	a.	 Write the mesh equations for the network of Fig. 8.129 
using the format approach to mesh analysis.

	 b.	 Use determinants to determine the mesh currents.
	 c.	 Find the voltages Va and Vb.
	 d.	 Determine the voltage Vab.

R1 1 �

10 �

R3

8 �
R4

2 �

R2

E1

E2

12 V
20 V

a b

+

–

+–

FIG. 8.129
Problems 39 and 57.

	40.	 	a.	 Write the mesh equations for the network of Fig. 8.125 
using the format approach.

	 b.	 Use determinants to calculate the mesh current through 
the resistor R1.

	 c.	 Find the voltage across the 1 ohm resistor.

Section 8.6  Nodal Analysis (General Approach)

	41.	 	a.	 Write the nodal equations using the general approach 
for the network of Fig. 8.130.

	 b.	 Find the nodal voltages using determinants.
	 c.	 Use the results of part (b) to find the voltage across the 

8 Ω resistor.
	 d.	 Use the results of part (b) to find the current through the 

2 Ω and 4 Ω resistors.

2 � 5 A 4 �3 A

8 �

R3

R2I2I1R1

FIG. 8.130
Problems 44 and 52.

	42.	 	a.	 Write the nodal equations using the general approach 
for the network of Fig. 8.131.

	 b.	 Find the nodal voltages using determinants.
	 c.	 Using the results of part (b), calculate the current 

through the 20 Ω resistor.

8 � 10 A 5 �

6 �

R2

R420 �R3I1R1

54 V
+ –

FIG. 8.131
Problems 42 and 53.

R4
5 �

I2

R3
20 �R1 2 �

4 A
I1

R2

4 �

2 A

FIG. 8.132
Problem 43.

	*44.	 	a.	 Write the nodal equations for the network of Fig. 8.133 
using the general approach.

	 b.	 Using determinants, solve for the nodal voltages.
	 c.	 Determine the magnitude and polarity of the voltage 

across each resistor.

R2
4 �

I26 AI1

R4

2 �

R1 5 � 7 A

R3

3 �

R5 8 �

FIG. 8.133
Problem 44.

	*45.	 	a.	 Write the nodal equations for the network of Fig. 8.134 
using the general approach.

	 b.	 Solve for the nodal voltages using determinants.
	 c.	 Find the current through the 6 Ω resistor.
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	*49.	 Write the nodal equations for the network of Fig. 8.138 
using the general approach and find the nodal voltages. 
Then calculate the current through the 4 Ω resistor.	*46.	 	a.	 Write the nodal equations for the network of Fig. 8.135 

using the general approach.
	 b.	 Solve for the nodal voltages using determinants.
	 c.	 Find the voltage across the 5 Ω resistor.

R28 �

R3

4 �

4 A I2
R4 6 �R13 �

5 A I1

E

12 V

+–

FIG. 8.134
Problem 45.

I1
15 V 3 AE1

R1 3 �

R24 �

R3
6 �

R4

5 �

+

–

FIG. 8.135
Problem 46.

	*47.	 	a.	 Write the nodal equations for the network of Fig. 8.136 
using the general approach.

	 b.	 Solve for the nodal voltages using determinants.
	 c.	 Find the voltage across the resistor R4.

2 A

I1

R1 9 �

R5

20 �

R4

20 �

R24 �

E116 V
+

–

R3 18 �

FIG. 8.136
Problems 47 and 54.

	*48.	 	a.	 Write the nodal equations for the network of Fig. 8.137 
using the general approach.

	 b.	 Find the nodal voltages using determinants.
	 c.	 Determine the current through the 9 Ω resistor.

2 �
5 A

9 �

2 �

2 � 4 �

2 �

7 �

FIG. 8.137
Problems 48, 56, and 74.

4 �6 �

2 A

5 A

2 �

5 �

FIG. 8.138
Problems 49 and 56.

	*50.	 Using the supernode approach, determine the nodal volt-
ages for the network of Fig. 8.139.

10 �

6 �2 A 12 �4 �

24 V
+ –

FIG. 8.139
Problem 50.

	*51.	 Using the supernode approach, determine the nodal volt-
ages for the network of Fig. 8.140.

40 �3 A

16 V

4 A20 �

+–

FIG. 8.140
Problem 51.



Problems    369
NA

	61.	 For the bridge in Fig. 8.142:
	 a.	 Write the mesh equations using the format approach.
	 b.	 Determine the current through R5.
	 c.	 Is the bridge balanced?
	 d.	 Is Eq. (8.2) satisfied?

Section 8.7  Nodal Analysis (Format Approach)

	52.	 	a.	 Determine the nodal voltages of Fig. 8.130 using the 
format approach to nodal analysis.

	 b.	 Then find the voltage across each current source.

	53.	 	a.	 Convert the voltage source of Fig 8.131 to a current 
source, and then find the nodal voltages using the for-
mat approach to nodal analysis.

	 b.	 Use the results of part (a) to find the voltage across the 
6 Ω resistor of Fig. 8.131.

	*54.	 	a.	 Convert the voltage source of Fig. 8.136 to a current 
source, and then apply the format approach to nodal 
analysis to find the nodal voltages.

	 b.	 Use the results of part (a) to find the current through the 
4 Ω resistor.

	*55.	 	a.	 Apply the format approach of nodal analysis to the net-
work of Fig. 8.137 to find the nodal voltages.

	 b.	 Use the results of part (a) to find the current through the 
9 Ω resistor.

	*56.	 	a.	 Using the format approach, find the nodal voltages of 
Fig. 8.138 using nodal analysis.

	 b.	 Using the results of part (a), find the current through the 
2 Ω resistor.

	*57.	 	a.	 Convert the voltage sources of Fig. 8.129 to current 
sources, and then find the nodal voltages of the resulting 
network using the format approach to nodal analysis.

	 b.	 Using the results of part (a), find the voltage between 
points a and b.

	58.	 For the network of Fig. 8.135:
	 a.	 Convert the voltage source to a current source.
	 b.	 Determine the nodal voltages of the network.
	 c.	 Calculate the current through the 5 Ω resistor.

Section 8.8  Bridge Networks

	59.	 For the bridge network in Fig. 8.141:
	 a.	 Write the mesh equations using the format approach.
	 b.	 Determine the current through R5.
	 c.	 Is the bridge balanced?
	 d.	 Is Eq. (8.2) satisfied?

Rs 6 �
R5

5 �

R1

2 �

10 �

R3

R4

R2

2 �

20 �
18 VE

+

–

FIG. 8.141
Problems 59 and 60.

	60.	 For the network in Fig. 8.141:
	 a.	 Write the nodal equations using the format approach.
	 b.	 Determine the voltage across R5.
	 c.	 Is the bridge balanced?
	 d.	 Is Eq. (8.2) satisfied?

Rs 2 k�

R5

36 k�

R1

33 k�

R4

R2

56 k�

5.6 k�

R3

3.3 k�

I
20 mA

FIG. 8.142
Problems 61 and 62.

	62.	 For the bridge network in Fig. 8.142:
	 a.	 Write the nodal equations using the format approach.
	 b.	 Determine the current across R5.
	 c.	 Is the bridge balanced?
	 d.	 Is Eq. (8.2) satisfied?

	*63.	 Determine the current through the source resistor Rs in 
Fig. 8.143 using either mesh or nodal analysis. Explain why 
you chose one method over the other.

R1 2 k�

E

Rs 1 k� 2 k� R2

15 V R3 2 k� 2 k�R4

R5

2 k�+

–

Is

FIG. 8.143
Problem 63.

	*64.	 Repeat Problem 63 for the network of Fig. 8.144.

20 �
10 �

R2

R5
4 A

Rs
R4

20 �
R1

R3

20 �

10 �
10 �I

Is

FIG. 8.144
Problem 64.
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	69.	 The network of Fig. 8.149 is very similar to the two-source 
networks solved using mesh or nodal analysis. We will now 
use a Y@∆ conversion to solve the same network. Find the 
source current Is1

 using a Y@∆ conversion.

Section 8.9  Y-∆ (T-P) and ∆-Y (P-T) Conversions

	65.	 Using a ∆@Y or Y@∆ conversion, find the current I for the 
network of Fig. 8.145.

20 V

I
2 �

4 �

1 �

2 �

3 �

+

–

FIG. 8.145
Problem 65.

	66.	 Convert the ∆ of 6.8 kΩ resistors in Fig. 8.146 to a T con-
figuration and find the current I.

8 V

I

4.7 k�

6.8 k�

1.1 k�

6.8 k� 6.8 k�

+

–

FIG. 8.146
Problem 66.

	67.	 For the network of Fig. 8.147, find the current I without 
using Y@∆ conversion.

80 V

I

4 k�

4 k�

6 k�

4 k�
+

–

FIG. 8.147
Problem 67.

	68.	 	a.	 Using a ∆@Y or Y@∆ conversion, find the current I in 
the network of Fig. 8.148.

	 b.	 What other method could be used to find the current I?

I

18 �

6 � 6 �

6 �
18 �18 �60 V

+

–

FIG. 8.148
Problem 68.

E1 10 V E2 5 VR3 6 k�

R2

6 k�

R1

6 k�+

–

+

–

FIG. 8.149
Problem 69.

	70.	 	a.	 Replace the p configuration in Fig. 8.150 (composed of 
3 kΩ resistors) with a T configuration.

	 b.	 Solve for the source current Is.

E 20 V
R5

Rs 1 k�

Is

R4 3 k�

R3

3 k�

R1 2 k� R2 2 k�

3 k�

+

–

FIG. 8.150
Problem 70.
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Bridge network  A network configuration typically having a 
diamond appearance in which no two elements are in series or 
parallel.

Current sources  Sources that supply a fixed current to a net-
work and have a terminal voltage dependent on the network to 
which they are applied.

Delta (∆), pi (P) configuration  A network structure that con-
sists of three branches and has the appearance of the Greek 
letter delta (∆) or pi (p).

Determinants method  A mathematical technique for finding 
the unknown variables of two or more simultaneous linear 
equations.

Mesh analysis  A technique for determining the mesh (loop) cur-
rents of a network that results in a reduced set of equations 
compared to the branch-current method.

Mesh (loop) current  A labeled current assigned to each distinct 
closed loop of a network that can, individually or in combina-
tion with other mesh currents, define all of the branch currents 
of a network.

Nodal analysis  A technique for determining the nodal voltages 
of a network.

Node  A junction of two or more branches in a network.
Supermesh current  A current defined in a network with ideal 

current sources that permits the use of mesh analysis.
Supernode  A node defined in a network with ideal voltage 

sources that permits the use of nodal analysis.
Wye (Y), tee (T) configuration  A network structure that con-

sists of three branches and has the appearance of the capital 
letter Y or T.

Section 8.11  Computer Analysis

PSpice or Multisim

	72.	 Using schematics, find the current through each element in 
Fig. 8.117.

	*73.	 Using schematics, find the mesh currents for the network in 
Fig. 8.124.

	*74.	 Using schematics, determine the nodal voltages for the net-
work in Fig. 8.137.

Glossary

Branch-current analysis  A technique for determining the 
branch currents of a multiloop network.

	*71.	 Using Y@∆ or ∆@Y conversion, determine the total resist-
ance of the network in Fig. 8.151.

RT

9 � 9 �

9 �

9 �
9 �

9 �9 �

9 �

a b

c
d

h g

fe

FIG. 8.151
Problem 71.
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9Network TheoremsNetwork Theorems

9.1  Introduction

This chapter introduces a number of theorems that have application throughout the field of 
electricity and electronics. Not only can they be used to solve networks such as encountered 
in the previous chapter, but they also provide an opportunity to determine the impact of a 
particular source or element on the response of the entire system. In most cases, the network 
to be analyzed and the mathematics required to find the solution are simplified. All of the 
theorems appear again in the analysis of ac networks. In fact, the application of each theorem 
to ac networks is very similar in content to that found in this chapter.

The first theorem to be introduced is the superposition theorem, followed by Thévenin’s 
theorem, Norton’s theorem, and the maximum power transfer theorem. The chapter concludes 
with a brief introduction to Millman’s theorem and the substitution and reciprocity theorems.

9.2  Superposition Theorem

The superposition theorem is unquestionably one of the most powerful in this field. It has 
such widespread application that people often apply it without recognizing that their maneu-
vers are valid only because of this theorem.

In general, the theorem can be used to do the following:

•	 Analyze networks such as introduced in the last chapter that have two or more sources 
that are not in series or parallel.

•	 Reveal the effect of each source on a particular quantity of interest.
•	 For sources of different types (such as dc and ac, which affect the parameters of the 

network in a different manner) and apply a separate analysis for each type, with the 
total result simply the algebraic sum of the results.

•	 Become familiar with the superposition theorem 
and its unique ability to separate the impact of 
each source on the quantity of interest.

•	 Be able to apply Thévenin’s theorem to reduce any 
two-terminal, series-parallel network with any 
number of sources to a single voltage source and 
series resistor.

•	 Become familiar with Norton’s theorem and how 
it can be used to reduce any two-terminal, series-
parallel network with any number of sources to a 
single current source and a parallel resistor.

•	 Understand how to apply the maximum power 
transfer theorem to determine the maximum 
power to a load and to choose a load that will 
receive maximum power.

•	 Become aware of the reduction powers of 
Millman’s theorem and the powerful implications 
of the substitution and reciprocity theorems.

Objectives

9

Th
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The first two areas of application are described in detail in this section. 
The last are covered in the discussion of the superposition theorem in the 
ac portion of the text.

The superposition theorem states the following:

The current through, or voltage across, any element of a network is 
equal to the algebraic sum of the currents or voltages produced 
independently by each source.

In other words, this theorem allows us to find a solution for a current or 
voltage using only one source at a time. Once we have the solution for 
each source, we can combine the results to obtain the total solution. The 
term algebraic appears in the above theorem statement because the cur-
rents resulting from the sources of the network can have different direc-
tions, just as the resulting voltages can have opposite polarities.

If we are to consider the effects of each source, the other sources 
obviously must be removed. Setting a voltage source to zero volts is like 
placing a short circuit across its terminals. Therefore,

when removing a voltage source from a network schematic, replace it 
with a direct connection (short circuit) of zero ohms. Any internal 
resistance associated with the source must remain in the network.

Setting a current source to zero amperes is like replacing it with an 
open circuit. Therefore,

when removing a current source from a network schematic, replace it 
by an open circuit of infinite ohms. Any internal resistance associated 
with the source must remain in the network.

The above statements are illustrated in Fig. 9.1.

Rint

E

Rint

I Rint Rint

FIG. 9.1
Removing a voltage source and a current source to permit the application  

of the superposition theorem.

Since the effect of each source will be determined independently, the 
number of networks to be analyzed will equal the number of sources.

If a particular current of a network is to be determined, the contribution 
to that current must be determined for each source. When the effect of 
each source has been determined, those currents in the same direction 
are added, and those having the opposite direction are subtracted; the 
algebraic sum is being determined. The total result is the direction of the 
larger sum and the magnitude of the difference.

Similarly, if a particular voltage of a network is to be determined, the 
contribution to that voltage must be determined for each source. When 
the effect of each source has been determined, those voltages with the 
same polarity are added, and those with the opposite polarity are sub-
tracted; the algebraic sum is being determined. The total result has the 
polarity of the larger sum and the magnitude of the difference.
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 Superposition cannot be applied to power effects because the power 
is related to the square of the voltage across a resistor or the current 
through a resistor. The squared term results in a nonlinear (a curve, not a 
straight line) relationship between the power and the determining current 
or voltage. For example, doubling the current through a resistor does not 
double the power to the resistor (as defined by a linear relationship) but, 
in fact, increases it by a factor of 4 (due to the squared term). Tripling the 
current increases the power level by a factor of 9. Example 9.1 demon-
strates the differences between a linear and a nonlinear relationship.

A few examples clarify how sources are removed and total solutions 
obtained.

EXAMPLE 9.1 

	 a.	 Using the superposition theorem, determine the current through 
resistor R2 for the network in Fig. 9.2.

	 b.	 Demonstrate that the superposition theorem is not applicable to 
power levels.

Solutions: 

	 a.	 In order to determine the effect of the 36 V voltage source, the cur-
rent source must be replaced by an open-circuit equivalent as shown 
in Fig. 9.3. The result is a simple series circuit with a current equal to

I′2 =
E

RT
=

E

R1 + R2
=

36 V

12 Ω + 6 Ω
=

36 V

18 Ω
= 2 A

Examining the effect of the 9 A current source requires replacing 
the 36 V voltage source by a short-circuit equivalent as shown in 
Fig. 9.4. The result is a parallel combination of resistors R1 and R2. 
Applying the current divider rule results in

I″2 =
R1(I)

R1 + R2
=

(12 Ω)(9 A)

12 Ω + 6 Ω
= 6 A

Since the contribution to current I2 has the same direction for 
each source, as shown in Fig. 9.5, the total solution for current I2 is 
the sum of the currents established by the two sources. That is,

I2 = I′2 + I″2 = 2 A + 6 A = 8 A

	 b.	 Using Fig. 9.3 and the results obtained, we find the power delivered 
to the 6 Ω resistor

P1 = (I′2)2(R2) = (2 A)2(6 Ω) = 24 W

		  Using Fig. 9.4 and the results obtained, we find the power delivered 
to the 6 Ω resistor

P2 = (I″2)2(R2) = (6 A)2(6 Ω) = 216 W

		  Using the total results of Fig. 9.5, we obtain the power delivered to 
the 6 Ω resistor

PT = I2
2R2 = (8 A)2(6 Ω) = 384 W

It is now quite clear that the power delivered to the 6 Ω resistor 
using the total current of 8 A is not equal to the sum of the power 
levels due to each source independently. That is,

P1 + P2 = 24 W + 216 W = 240 W ≠ PT = 384 W

R2 6 �

R1

12 �

I

I2

9 AE 36 V

FIG. 9.2
Network to be analyzed in Example 9.1 using the 

superposition theorem.

Current source
replaced by open circuit

R1

12 �

R2 6 �E 36 V
I�2

FIG. 9.3
Replacing the 9 A current source in Fig. 9.2 by an 

open circuit to determine the effect of the 36 V 
voltage source on current I2.

R2 6 �

R1

12 �

I = 9 A

I��2

I

FIG. 9.4
Replacing the 36 V voltage source by a short-circuit 
equivalent to determine the effect of the 9 A current 

source on current I2.

R2 6 �

I2 = 8 A

R2 6 �

I�2 = 2 A

I��2 = 6 A

FIG. 9.5
Using the results of Figs. 9.3 and 9.4 to determine 

current I2 for the network in Fig. 9.2.
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		  To expand on the above conclusion and further demonstrate what 
is meant by a nonlinear relationship, the power to the 6 Ω resistor 
versus current through the 6 Ω resistor is plotted in Fig. 9.6. Note 
that the curve is not a straight line but one whose rise gets steeper 
with increase in current level.

400

300

200

100

x

0 1 2 3 4 5 6 7 8 I6 � (A
( (

)
))

P (W)

y

z

{
Nonlinear curve

(I ′2 I″2 IT)

FIG. 9.6
Plotting power delivered to the 6 Ω resistor versus current  

through the resistor.

Recall from Fig. 9.3 that the power level was 24 W for a cur-
rent of 2 A developed by the 36 V voltage source, shown in Fig. 9.6. 
From Fig. 9.4, we found that the current level was 6 A for a power 
level of 216 W, shown in Fig. 9.6. Using the total current of 8 A, we 
find that the power level in 384 W, shown in Fig. 9.6. Quite clearly, 
the sum of power levels due to the 2 A and 6 A current levels does 
not equal that due to the 8 A level. That is,

x + y ≠ z

Now, the relationship between the voltage across a resistor and 
the current through a resistor is a linear (straight line) one, as shown 
in Fig. 9.7, with

c = a + b

4

3

2

1

0
12 24 36 48 V6 � (V

((
)

))

I (A)

a

c

Linear curveb

8

7

6

5

9
10

(I ′2 I″2 IT)

FIG. 9.7
Plotting I versus V for the 6 Ω resistor.
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EXAMPLE 9.2  Using the superposition theorem, determine the current 
through the 12 Ω resistor in Fig. 9.8. Note that this is a two-source net-
work of the type examined in the previous chapter when we applied 
branch-current analysis and mesh analysis.

Solution:  Considering the effects of the 54 V source requires replac-
ing the 48 V source by a short-circuit equivalent as shown in Fig. 9.9. 
The result is that the 12 Ω and 4 Ω resistors are in parallel.

The total resistance seen by the source is therefore

RT = R1 + R2 }R3 = 24 Ω + 12 Ω }4 Ω = 24 Ω + 3 Ω = 27 Ω

and the source current is

Is =
E1

RT
=

54 V

27 Ω
= 2 A

R1

24 �

R3

4 �

E1 54 V

I2 = ?

R2 12 � E2 48 V

FIG. 9.8
Using the superposition theorem to determine the 
current through the 12 Ω resistor (Example 9.2).

48 V battery
replaced by short

circuit

3 �

RT

IsR1

24 �

R3

4 �

E1 54 V E1 54 V

R1

24 �

R2 12 � R2 12 � R3 4 �

I�2 I�2

FIG. 9.9
Using the superposition theorem to determine the effect of the 54 V voltage source on current I2 in Fig. 9.8.

Using the current divider rule results in the contribution to I2 due to the 
54 V source:

I′2 =
R3Is

R3 + R2
=

(4 Ω)(2 A)

4 Ω + 12 Ω
= 0.5 A

If we now replace the 54 V source by a short-circuit equivalent, the 
network in Fig. 9.10 results. The result is a parallel connection for the 
12 Ω and 24 Ω resistors.

Therefore, the total resistance seen by the 48 V source is

RT = R3 + R2 }R1 = 4 Ω + 12 Ω }24 Ω = 4 Ω + 8 Ω = 12 Ω

48 V

8 �

RT

E2

R1

24 �

R2 12 �

I��2 I��2

R3

4 �

E2 R2 12 �R1 24 �48 V

R3

4 �

54 V battery replaced
by short circuit

FIG. 9.10
Using the superposition theorem to determine the effect of the 48 V voltage source on current I2 in Fig. 9.8.
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and the source current is

Is =
E2

RT
=

48 V

12 Ω
= 4 A

Applying the current divider rule results in

I″2 =
R1(Is)

R1 + R2
=

(24 Ω)(4 A)

24 Ω + 12 Ω
= 2.67 A

It is now important to realize that current I2 due to each source has a 
different direction, as shown in Fig. 9.11. The net current therefore is the 
difference of the two and in the direction of the larger as follows:

I2 = I″2 - I′2 = 2.67 A - 0.5 A = 2.17 A

Using Figs. 9.9 and 9.10 in Example 9.2, we can determine the other 
currents of the network with little added effort. That is, we can deter-
mine all the branch currents of the network, matching an application of 
the branch-current analysis or mesh analysis approach. In general, there-
fore, not only can the superposition theorem provide a complete solution 
for the network, but it also reveals the effect of each source on the 
desired quantity.

EXAMPLE 9.3  Using the superposition theorem, determine current I1 
for the network in Fig. 9.12.

Solution:  Since two sources are present, there are two networks to be 
analyzed. First let us determine the effects of the voltage source by set-
ting the current source to zero amperes as shown in Fig. 9.13. Note that 
the resulting current is defined as I′1 because it is the current through 
resistor R1 due to the voltage source only.

Due to the open circuit, resistor R1 is in series (and, in fact, in paral-
lel) with the voltage source E. The voltage across the resistor is the ap-
plied voltage, and current I′1 is determined by

I′1 =
V1

R1
=

E

R1
=

30 V

6 Ω
= 5 A

Now for the contribution due to the current source. Setting the voltage 
source to zero volts results in the network in Fig. 9.14, which presents us 
with an interesting situation. The current source has been replaced with 
a short-circuit equivalent that is directly across the current source and 
resistor R1. Since the source current takes the path of least resistance, it 
chooses the zero ohm path of the inserted short-circuit equivalent, and 
the current through R1 is zero amperes. This is clearly demonstrated by 
an application of the current divider rule as follows:

I″1 =
RscI

Rsc + R1
=

(0 Ω)I

0 Ω + 6 Ω
= 0 A

Since I′1 and I″1 have the same defined direction in Figs. 9.13 and 9.14, 
the total current is defined by

I1 = I′1 + I″1 = 5 A + 0 A = 5 A

Although this has been an excellent introduction to the application of 
the superposition theorem, it should be immediately clear in Fig. 9.12 
that the voltage source is in parallel with the current source and load 

R2 12 �

I�2 = 0.5 A

I��2 = 2.67 A

R2 12 �

I2 = 2.17 A

FIG. 9.11
Using the results of Figs. 9.9 and 9.10 to determine 

current I2 for the network in Fig. 9.8.

I 3 A

I1

E 30 V R1 6 �

FIG. 9.12
Two-source network to be analyzed using the 

superposition theorem in Example 9.3.

I�1

E 30 V R1 6 �

FIG. 9.13
Determining the effect of the 30 V supply on the 

current I1 in Fig. 9.12.

R1 6 �
I

I

I

3 A

I��1

FIG. 9.14
Determining the effect of the 3 A current source on 

the current I1 in Fig. 9.12.
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resistor R1, so the voltage across each must be 30 V. The result is that I1 
must be determined solely by

I1 =
V1

R1
=

E

R1
=

30 V

6 Ω
= 5 A

EXAMPLE 9.4  Using the principle of superposition, find the current I2 
through the 12 kΩ resistor in Fig. 9.15.

Solution:  Consider the effect of the 6 mA current source (Fig. 9.16).

R1 6 k�

R3
14 k�

R4 = 35 k�

R2 = 12 k�

6 mAI

I2

9 V

E
+ –

FIG. 9.15
Example 9.4.

R1 6 k�

R3 14 k�

R2 12 k�

R4 35 k�

6 mAI

I ′2

6 mA

6 mA

I ′2

I

R4 35 k�R3 14 k�

R2 12 k�R1 6 k�

6 mA

FIG. 9.16
The effect of the current source I on the current I2.

The current divider rule gives

I′2 =
R1I

R1 + R2
=

(6 kΩ)(6 mA)

6 kΩ + 12 kΩ
= 2 mA

Considering the effect of the 9 V voltage source (Fig. 9.17) gives

I″2 =
E

R1 + R2
=

9 V

6 kΩ + 12 kΩ
= 0.5 mA

Since I′2 and I″2 have the same direction through R2, the desired cur-
rent is the sum of the two:

I2 = I′2 + I″2
 = 2 mA + 0.5 mA

 = 2.5 mA

R1

6 k�

R2

12 k�

R3

14 k�

R4

35 k�

9 V

E

R1 6 k�

R3 14 k�

R2 12 k�

R4 35 k�

+ –9 V

+ –9 V

9 V

E

I�2

I�2

+ –+ –

FIG. 9.17
The effect of the voltage source E on the current I2.
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EXAMPLE 9.5  Find the current through the 2 Ω resistor of the net-
work in Fig. 9.18. The presence of three sources results in three different 
networks to be analyzed.

Solution:  Consider the effect of the 12 V source (Fig. 9.19):

E1

R24 �

R1 2 �

I1

I 3 A

6 V12 V
+ –

+

–
E2

FIG. 9.18
Example 9.5.

R24 �

R12 �

E1

12 V

I�1I�1

I�1+ –

FIG. 9.19
The effect of E1 on the current I.

R24 �
R12 �

6 V E2
I�1 I�1

I  �1

+

–

FIG. 9.20
The effect of E2 on the current I1.

R24 �

R12 � 3 AI

I�1

FIG. 9.21
The effect of I on the current I1.

R1 2 � R1 2 �I�1  =  2  A I �1  =  1  A I�1  =  2  A I1  =  1  A

I1

FIG. 9.22
The resultant current I1.

I′1 =
E1

R1 + R2
=

12 V

2 Ω + 4 Ω
=

12 V

6 Ω
= 2 A

Consider the effect of the 6 V source (Fig. 9.20):

I″1 =
E2

R1 + R2
=

6 V

2 Ω + 4 Ω
=

6 V

6 Ω
= 1 A

Consider the effect of the 3 A source (Fig. 9.21): Applying the current 
divider rule gives

I‴1 =
R2I

R1 + R2
=

(4 Ω)(3 A)

2 Ω + 4 Ω
=

12 A

6
= 2 A

The total current through the 2 Ω resistor appears in Fig. 9.22, and

I1 I I" I"1�

�

�

�

�

� �

' '

1 A 1 A2 A 2 A

Same direction
as I1 in Fig. 9.18

Opposite direction
to I1 in Fig. 9.18

1 1

9.3 T hévenin’s Theorem

The next theorem to be introduced, Thévenin’s theorem, is probably 
one of the most interesting in that it permits the reduction of complex 
networks to a simpler form for analysis and design.

In general, the theorem can be used to do the following:

•	 Analyze networks with sources that are not in series or parallel.
•	 Reduce the number of components required to establish the same 

characteristics at the output terminals.
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•	 Investigate the effect of changing a particular component on the 
behavior of a network without having to analyze the entire network 
after each change.

All three areas of application are demonstrated in the examples to follow.
Thévenin’s theorem states the following:

Any two-terminal dc network can be replaced by an equivalent circuit 
consisting solely of a voltage source and a series resistor as shown in 
Fig. 9.23.

The theorem was developed by Commandant Leon-Charles Thévenin in 
1883 as described in Fig. 9.24.

To demonstrate the power of the theorem, consider the fairly com-
plex network of Fig. 9.25(a) with its two sources and series-parallel con-
nections. The theorem states that the entire network inside the blue 
shaded area can be replaced by one voltage source and one resistor as 
shown in Fig. 9.25(b). If the replacement is done properly, the voltage 
across, and the current through, the resistor RL will be the same for each 
network. The value of RL can be changed to any value, and the voltage, 
current, or power to the load resistor is the same for each configuration. 
Now, this is a very powerful statement—one that is verified in the exam-
ples to follow.

The question then is, How can you determine the proper value of 
Thévenin voltage and resistance? In general, finding the Thévenin resist-
ance value is quite straightforward. Finding the Thévenin voltage can be 
more of a challenge and, in fact, may require using the superposition 
theorem or one of the methods described in Chapter 8.

Fortunately, there is a series of steps that will lead to the proper value 
of each parameter. Although a few of the steps may seem trivial at first, 
they can become quite important when the network becomes complex.

Thévenin’s Theorem Procedure

Preliminary:

1.	 Remove that portion of the network where the Thévenin equivalent 
circuit is found. In Fig. 9.25(a), this requires that the load resistor 
RL be temporarily removed from the network.

2.	 Mark the terminals of the remaining two-terminal network. 
(The importance of this step will become obvious as we progress 
through some complex networks.)

RTh:

3.	 Calculate RTh by first setting all sources to zero (voltage sources 
are replaced by short circuits and current sources by open circuits) 
and then finding the resultant resistance between the two marked 
terminals. (If the internal resistance of the voltage and/or current 
sources is included in the original network, it must remain when 
the sources are set to zero.)

ETh:

4.	 Calculate ETh by first returning all sources to their original posi-
tion and finding the open-circuit voltage between the marked ter-
minals. (This step is invariably the one that causes most confusion 
and errors. In all cases, keep in mind that it is the open-circuit 
potential between the two terminals marked in step 2.)

ETh

+

–

a

b

RTh

FIG. 9.23
Thévenin equivalent circuit.

French (Meaux, Paris) 
(1857–1927)
Telegraph Engineer, Commandant and Educator 

École Polytechnique and École Supérieure de 
Télégraphie

Although active in the study and design of tele-
graphic systems (including underground transmis-
sion), cylindrical condensers (capacitors), and 
electromagnetism, he is best known for a theorem 
first presented in the French Journal of Physics—
Theory and Applications in 1883. It appeared under 
the heading of “Sur un nouveau théorème d’électricité 
dynamique” (“On a new theorem of dynamic electric-
ity”) and was originally referred to as the equivalent 
generator theorem. There is some evidence that a 
similar theorem was introduced by Hermann von 
Helmholtz in 1853. However, Professor Helmholtz 
applied the theorem to animal physiology and not to 
communication or generator systems, and therefore 
he has not received the credit in this field that he 
might deserve. In the early 1920s AT&T did some 
pioneering work using the equivalent circuit and may 
have initiated the reference to the theorem as simply 
Thévenin’s theorem. In fact, Edward L. Norton, an 
engineer at AT&T at the time, introduced a current 
source equivalent of the Thévenin equivalent cur-
rently referred to as the Norton equivalent circuit. As 
an aside, Commandant Thévenin was an avid skier 
and in fact was commissioner of an international ski 
competition in Chamonix, France, in 1912.

FIG. 9.24
Leon-Charles Thévenin.
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Conclusion:

5.	 Draw the Thévenin equivalent circuit with the portion of the 
circuit previously removed replaced between the terminals of the 
equivalent circuit. This step is indicated by the placement of the 
resistor RL between the terminals of the Thévenin equivalent 
circuit as shown in Fig. 9.25(b).

R3

a

b

(a) (b)

E

a

IL

ETh

RTh

b

RLRL

IL

R1

R2

I

FIG. 9.25
Substituting the Thévenin equivalent circuit for a complex network.

EXAMPLE 9.6  Find the Thévenin equivalent circuit for the network in 
the shaded area of the network in Fig. 9.26. Then find the current through 
RL for values of 2 Ω, 10 Ω, and 100 Ω.

Solution: 
Steps 1 and 2: These produce the network in Fig. 9.27. Note that the load 
resistor RL has been removed and the two “holding” terminals have been 
defined as a and b.

Step 3: Replacing the voltage source E1 with a short-circuit equivalent 
yields the network in Fig. 9.28(a), where

RTh = R1 }R2 =
(3 Ω)(6 Ω)

3 Ω + 6 Ω
= 2 �

R1

3 �

R2 6 �

b

E1 9 V RL

a

+

–

FIG. 9.26
Example 9.6.

R2 6 �

R1

3 �

E1 9 V

a

b

+

–

FIG. 9.27
Identifying the terminals of particular  

importance when applying  
Thévenin’s theorem.

+ –
�

R2 6 �

(a) (b)

R1

3 �

RTh
R2

b b

a a

I�

R1

FIG. 9.28
Determining RTh for the network in Fig. 9.27.

The importance of the two marked terminals now begins to surface. 
They are the two terminals across which the Thévenin resistance is 
measured. It is no longer the total resistance as seen by the source, as 
determined in the majority of problems of Chapter 7. If some difficulty 
develops when determining RTh with regard to whether the resistive 
elements are in series or parallel, consider recalling that the ohmmeter 
sends out a trickle current into a resistive combination and senses the 
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level of the resulting voltage to establish the measured resistance level. 
In Fig. 9.28(b), the trickle current of the ohmmeter approaches the net-
work through terminal a, and when it reaches the junction of R1 and R2, 
it splits as shown. The fact that the trickle current splits and then recom-
bines at the lower node reveals that the resistors are in parallel as far as 
the ohmmeter reading is concerned. In essence, the path of the sensing 
current of the ohmmeter has revealed how the resistors are connected to 
the two terminals of interest and how the Thévenin resistance should be 
determined. Remember this as you work through the various examples 
in this section.

Step 4: Replace the voltage source (Fig. 9.29). For this case, the open-
circuit voltage ETh is the same as the voltage drop across the 6 Ω resistor. 
Applying the voltage divider rule gives

ETh =
R2E1

R2 + R1
=

(6 Ω)(9 V)

6 Ω + 3 Ω
=

54 V

9
= 6 V

It is particularly important to recognize that ETh is the open-circuit 
potential between points a and b. Remember that an open circuit can 
have any voltage across it, but the current must be zero. In fact, the cur-
rent through any element in series with the open circuit must be zero 
also. The use of a voltmeter to measure ETh appears in Fig. 9.30. Note 
that it is placed directly across the resistor R2 since ETh and VR2

 are in 
parallel.

Step 5: (Fig. 9.31):

 IL =
ETh

RTh + RL

 RL = 2 Ω:   IL =
6 V

2 Ω + 2 Ω
= 1.5 A

 RL = 10 Ω:   IL =
6 V

2 Ω + 10 Ω
= 0.5 A

 RL = 100 Ω:   IL =
6 V

2 Ω + 100 Ω
= 0.06 A

If Thévenin’s theorem were unavailable, each change in RL would 
require that the entire network in Fig. 9.26 be reexamined to find the 
new value of RL.

EXAMPLE 9.7  Find the Thévenin equivalent circuit for the network in 
the shaded area of the network in Fig. 9.32.

Solution: 

Steps 1 and 2: See Fig. 9.33.

Step 3: See Fig. 9.34. The current source has been replaced with an 
open-circuit equivalent and the resistance determined between terminals 
a and b.

In this case, an ohmmeter connected between terminals a and b sends 
out a sensing current that flows directly through R1 and R2 (at the same 
level). The result is that R1 and R2 are in series and the Thévenin resist-
ance is the sum of the two,

RTh = R1 + R2 = 4 Ω + 2 Ω = 6 �

R2 6 �9 VE1 ETh

+

–

a

b

R1

3 �

+

–

+

–

FIG. 9.29
Determining ETh for the network in Fig. 9.27.

+ –
ETh

E1 R2 6 �

R1

3 �

9 V

+

–

+

–

FIG. 9.30
Measuring ETh for the network in Fig. 9.27.

RL

a
RTh  =  2 �

ETh  =  6 V

b

IL

+

–

FIG. 9.31
Substituting the Thévenin equivalent circuit for the 

network external to RL in Fig. 9.26.

R3 7 �

R2

2 �

R1 4 �

a

b

12 A
I  =

FIG. 9.32
Example 9.7.

R2

2 �

R1 4 �I12 A

a

b

FIG. 9.33
Establishing the terminals of particular  

interest for the network in Fig. 9.32.
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Step 4: See Fig. 9.35. In this case, since an open circuit exists between 
the two marked terminals, the current is zero between these terminals 
and through the 2 Ω resistor. The voltage drop across R2 is, therefore,

V2 = I2R2 = (0)R2 = 0 V

and	 ETh = V1 = I1R1 = IR1 = (12 A)(4 Ω) = 48 V

Step 5: See Fig. 9.36.

EXAMPLE 9.8  Find the Thévenin equivalent circuit for the network in 
the shaded area of the network in Fig. 9.37. Note in this example that 
there is no need for the section of the network to be preserved to be at the 
“end” of the configuration.

R1 4 �

a

b

RTh

R2

2 �

FIG. 9.34
Determining RTh for the network 

in Fig. 9.33.

R1 4 �

R2  =  2 �I

I  =  12 A

+

–

I  =  0 +

–

+ V2  =  0 V  – a

b

ETh

FIG. 9.35
Determining ETh for the network  

in Fig. 9.33.

R3 7 �

a

b

RTh  =  6 �

ETh  =  48 V
+

–

FIG. 9.36
Substituting the Thévenin equivalent circuit in the 
network external to the resistor R3 in Fig. 9.32.

8 VE1R4 3 �R1 6 �

R2

4 �a

b

+

–
R3 2 �

FIG. 9.37
Example 9.8.

Solution: 

Steps 1 and 2: See Fig. 9.38.

R1 6 �

R2

4 �

R3 2 �E1 8 V

a

b

–

+

FIG. 9.38
Identifying the terminals of particular interest for the network in Fig. 9.37.



Thévenin’s Theorem    385Th

Step 3: See Fig. 9.39. Steps 1 and 2 are relatively easy to apply, but now 
we must be careful to “hold” onto the terminals a and b as the Thévenin 
resistance and voltage are determined. In Fig. 9.39, all the remaining 
elements turn out to be in parallel, and the network can be redrawn as 
shown. We have

RTh = R1 }R2 =
(6 Ω)(4 Ω)

6 Ω + 4 Ω
=

24 Ω
10

= 2.4 �

R2

4 �

R1 6 � R2 4 �R1 6 �

a

b

RTh

“Short circuited”

R3 2 �

Circuit redrawn:

RTh

a

b

RT  =  0 � �� 2 �  =  0 �

FIG. 9.39
Determining RTh for the network in Fig. 9.38.

ETh  R1 6 �

R2

4 �

R3 2 �ETh E1 8 V
–

+

–

+

a

b +

–

FIG. 9.40
Determining ETh for the network in Fig. 9.38.

R2 4 �

ETh  R1 6 �

R3 2 �–

+

–

+
E1 8 V

FIG. 9.41
Network of Fig. 9.40 redrawn.

Step 4: See Fig. 9.40. In this case, the network can be redrawn as shown 
in Fig. 9.41. Since the voltage is the same across parallel elements, the 
voltage across the series resistors R1 and R2 is E1, or 8 V. Applying the 
voltage divider rule gives

ETh =
R1E1

R1 + R2
=

(6 Ω)(8 V)

6 Ω + 4 Ω
=

48 V

10
= 4.8 V

Step 5: See Fig. 9.42.

The importance of marking the terminals should be obvious from 
Example 9.8. Note that there is no requirement that the Thévenin 
voltage have the same polarity as the equivalent circuit originally 
introduced.

R4 3 �

RTh  =  2.4 �
a

b

ETh  =  4.8 V
–

+

FIG. 9.42
Substituting the Thévenin equivalent circuit for the 

network external to the resistor R4 in Fig. 9.37.

EXAMPLE 9.9  Find the Thévenin equivalent circuit for the network in 
the shaded area of the bridge network in Fig. 9.43.

R1

6 � 12 �

4 �

R2

RLR3 R4

3 �

b aE 72 V
+

–

FIG. 9.43
Example 9.9.
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Solution: 

Steps 1 and 2: See Fig. 9.44.

Step 3: See Fig. 9.45. In this case, the short-circuit replacement of the volt-
age source E provides a direct connection between c and c′ in Fig. 9.45(a), 
permitting a “folding” of the network around the horizontal line of a-b to 
produce the configuration in Fig. 9.45(b).

RTh = Ra - b = R1 }R3 + R2 }R4

 = 6 Ω }3 Ω + 4 Ω }12 Ω
 = 2 Ω + 3 Ω = 5 �

R1

6 �

R2

12 �

4 �

R4R3

3 �

b a72 VE

+

–

FIG. 9.44
Identifying the terminals of particular interest for the 

network in Fig. 9.43.

R1

3 �R1

6 �

R2

R3 R4

12 �

3 � 4 �

R2

R4

4 �

RTh

b a

R3

12 �6 �

(b)(a)

ab
RTh

c′

c

c,c′

FIG. 9.45
Solving for RTh for the network in Fig. 9.44.

Step 4: The circuit is redrawn in Fig. 9.46. The absence of a direct con-
nection between a and b results in a network with three parallel branches. 
The voltages V1 and V2 can therefore be determined using the voltage 
divider rule:

 V1 =
R1E

R1 + R3
=

(6 Ω)(72 V)

6 Ω + 3 Ω
=

432 V

9
= 48 V

 V2 =
R2E

R2 + R4
=

(12 Ω)(72 V)

12 Ω + 4 Ω
=

864 V

16
= 54 V

V1 R1 6 �

R3 3 �

R2 12 �

R4 4 �

KVL
+

–
72 V

+

– +
V2

b a

ETh
–

+

E E
–

+

–

FIG. 9.46
Determining ETh for the network in Fig. 9.44.

RL

RTh  =  5 �

ETh  =  6 V

a

b

+

–

FIG. 9.47
Substituting the Thévenin equivalent circuit for the 

network external to the resistor RL in Fig. 9.43.

Assuming the polarity shown for ETh and applying Kirchhoff’s volt-
age law to the top loop in the clockwise direction results in

 gCV = +  ETh + V1 - V2 = 0

and	  ETh = V2 - V1 = 54 V - 48 V = 6 V

Step 5: See Fig. 9.47.
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Thévenin’s theorem is not restricted to a single passive element, as 
shown in the preceding examples, but can be applied across sources, 
whole branches, portions of networks, or any circuit configuration, as 
shown in the following example. It is also possible that you may have to 
use one of the methods previously described, such as mesh analysis or 
superposition, to find the Thévenin equivalent circuit.

EXAMPLE 9.10  (Two sources) Find the Thévenin circuit for the net-
work within the shaded area of Fig. 9.48.

Solution: 

Steps 1 and 2: See Fig. 9.49. The network is redrawn.

Step 3: See Fig. 9.50.

RTh = R4 + R1 }R2 }R3

 = 1.4 kΩ + 0.8 kΩ }4 kΩ }6 kΩ
 = 1.4 kΩ + 0.8 kΩ }2.4 kΩ
 = 1.4 kΩ + 0.6 kΩ
 = 2 k�

Step 4: Applying superposition, we will consider the effects of the volt-
age source E1 first. Note Fig. 9.51. The open circuit requires that 
V4 = I4R4 = (0)R4 = 0 V, and

E′Th = V3

R′T = R2 }R3 = 4 kΩ }6 kΩ = 2.4 kΩ 

Applying the voltage divider rule gives

V3 =
R′T E1

R′T + R1
=

(2.4 kΩ)(6 V)

2.4 kΩ + 0.8 kΩ
=

14.4 V

3.2
= 4.5 V

E′Th = V3 = 4.5 V

For the source E2, the network in Fig. 9.52 results. Again, V4 =
I4R4 = (0)R4 = 0 V, and

E″Th = V3

R″T = R1 }R3 = 0.8 kΩ }6 kΩ = 0.706 kΩ 

and

	

V3 =
R″T E2

R″T + R2
=

(0.706 kΩ)(10 V)

0.706 kΩ + 4 kΩ
=

7.06 V

4.706
= 1.5 V

E″Th = V3 = 1.5 V

R4

1.4 k�

R3 6 k� RLR1 0.8 k�

R2 4 k�

E2 + 10 V

E1 – 6 V

FIG. 9.48
Example 9.10.

R1 0.8 k�

R4

1.4 k�R2 4 k�

R3 6 k�

E1 6 V E2 10 V
+

–

–

+

a

b

FIG. 9.49
Identifying the terminals of particular interest for  

the network in Fig. 9.48.

2.4 k�

R2 4 k�

R3 6 k�

R1 0.8 k�

RTh

a

b

R4

1.4 k�

FIG. 9.50
Determining RTh for the network in Fig. 9.49.

R3 6 k�

V4

1.4 k�

E1

0.8 k�
R2 4 k�R1

R4

6 V

I4  =  0

–

+

– +

V3

+

–
E�Th

+

–

FIG. 9.51
Determining the contribution to ETh from the  

source E1 for the network in Fig. 9.49.

R2 4 k�

R3 6 k�

E2 10 V

I4  =  0

E�ThV3

R4

1.4 k�

V4+ –

+

–

+

–

R1 0.8 k�
+

–

FIG. 9.52
Determining the contribution to ETh from the  

source E2 for the network in Fig. 9.49.
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Since E′Th and E″Th have opposite polarities,

 ETh = E′Th - E″Th

 = 4.5 V - 1.5 V

 = 3 V  (polarity of E′Th)

Step 5: See Fig. 9.53.

RTh

2 k�

RL3 VETh

+

–

FIG. 9.53
Substituting the Thévenin equivalent circuit for the 

network external to the resistor RL in Fig. 9.48.
In the next example there is both a current source and voltage source 

in the configuration to be converted into a Thévenin equivalent circuit. 
In such cases it may be necessary to use the superposition theorem or a 
method of analysis to find the Thévenin voltage. Note also that the net-
work outside the chosen area is more complex than a single element. In 
other words, portions of a more complex network can be replaced by 
their Thévenin equivalent circuit to further reduce the complexity of the 
original network.

EXAMPLE 9.11  For the network of Fig. 9.54,

	 a.	 Find the Thévenin equivalent circuit for the portion of the network 
in the shaded area.

	 b.	 Reconstruct the network of Fig. 9.54 with the Thévenin equivalent 
network in place.

	 c.	 Using the resulting network of part (b) find the voltage Va.

4 �

6 �

8 �12 �

E1

I

18  V

E2

16 V  

a

 2 A

FIG. 9.54
Example 9.11.

Solutions: 

	 a.	 Steps 1 and 2: See Fig. 9.55.

		  Step 3: See Fig. 9.56.

RTh = 12 Ω } (4 Ω + 6 Ω) = 12 Ω }10 Ω = 5.45 �

		  Step 4: Applying the superposition theorem, we will first find the 
effect of the voltage source on the Thévenin voltage using the net-
work of Fig. 9.57. Applying the voltage divider rule:

E′Th =
12 Ω (18 V)

6 Ω + 4 Ω + 12 Ω
=

216

22
 V = 9.82 V

ETh?

RTh?

4 �

6 �

12 �

E1

I

18  V

2 A

FIG. 9.55
Establishing the terminals of interest  

for the network of Fig. 9.54.
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		  The contribution due to the current source is determined using the 
network of Fig. 9.58(a) redrawn as shown in Fig. 9.58(b). Applying 
the current divider rule:

	  I′ =
4 Ω (2 A)

4 Ω + 18 Ω
=

8

22
 A = 0.364 A

and	  E″Th = -I′(12 Ω) = -(0.364 A)(12 Ω) = -4.37 V

so that	  ETh = E′Th + E″Th = 9.82 V - 4.37 V = 5.45 V

	 b.	 The reconstructed network is shown in Fig. 9.59.
	 c.	 Using the voltage divider rule:

Va =
8 Ω (5.45 V + 16 V)

5.45 Ω + 8 Ω
=

8 (21.45)

13.45
 V =

171.6

13.45
 V = 12.76 V

Instead of using the superposition theorem, the current source could first 
have been converted to a voltage source and the series elements com-
bined to determine the Thévenin voltage. In any event both approaches 
would have yielded the same results.

Experimental Procedures

Now that the analytical procedure has been described in detail and a 
sense for the Thévenin impedance and voltage established, it is time to 

4 �

6 �

12 � RTh

FIG. 9.56
Determining RTh.

4 �

6 �

12 �

18  VE1

–

+

E�Th

FIG. 9.57
Determining the contribution of E1 to ETh.

4 �

I

 2 A

I� �18 

(b)(a)

6 �

I�

12 � E�Th

+

–

4 �

I

2 A

FIG. 9.58
Determining the contribution of I to ETh.

8 � 

5.45 �  

E2

16 V  

5.45 V  ETh

RTh
Va

Thévenin equivalent

FIG. 9.59
Applying the Thévenin equivalent network to the 

network of Fig. 9.54.



390    Network Theorems Th

investigate how both quantities can be determined using an experimental 
procedure.

Even though the Thévenin resistance is usually the easiest to deter-
mine analytically, the Thévenin voltage is often the easiest to determine 
experimentally, and therefore it will be examined first.

Measuring ETh    The network of Fig. 9.60(a) has the equivalent 
Thévenin circuit appearing in Fig. 9.60(b). The open-circuit Thévenin 
voltage can be determined by simply placing a voltmeter on the output 
terminals in Fig. 9.60(a) as shown. This is due to the fact that the open 
circuit in Fig. 9.60(b) dictates that the current through and the voltage 
across the Thévenin resistance must be zero. The result for Fig. 9.60(b) 
is that

Voc = ETh = 4.5 V

In general, therefore,

the Thévenin voltage is determined by connecting a voltmeter to the 
output terminals of the network. Be sure the internal resistance of the 
voltmeter is significantly more than the expected level of RTh.

4.500
20V

V
+ COM

4.500
20V

V
+ COM

4 �I 8 A R1

12 V

R3 3 �

E

R2

1 �

Voc = ETh = 4.5 V

1.875 �

Voc = ETh = 4.5 V

V = 0 V
RTh

4.5 VETh

I = 0 A

(a) (b)

FIG. 9.60
Measuring the Thévenin voltage with a voltmeter: (a) actual network; (b) Thévenin equivalent.

Measuring RTh  

Using An Ohmmeter  In Fig. 9.61, the sources in Fig. 9.60(a) have 
been set to zero, and an ohmmeter has been applied to measure the 
Thévenin resistance. In Fig. 9.60(b), it is clear that if the Thévenin 
voltage is set to zero volts, the ohmmeter will read the Thévenin resist-
ance directly.

In general, therefore,

the Thévenin resistance can be measured by setting all the sources to 
zero and measuring the resistance at the output terminals.

It is important to remember, however, that ohmmeters cannot be used 
on live circuits, and you cannot set a voltage source by putting a short 
circuit across it—it causes instant damage. The source must either be set 
to zero or removed entirely and then replaced by a direct connection. For 
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the current source, the open-circuit condition must be clearly estab-
lished; otherwise, the measured resistance will be incorrect. For most 
situations, it is usually best to remove the sources and replace them by 
the appropriate equivalent.

Using a Potentiometer  If we use a potentiometer to measure the 
Thévenin resistance, the sources can be left as is. For this reason alone, 
this approach is one of the more popular. In Fig. 9.62(a), a potentiometer 
has been connected across the output terminals of the network to estab-
lish the condition appearing in Fig. 9.62(b) for the Thévenin equivalent. 
If the resistance of the potentiometer is now adjusted so that the voltage 
across the potentiometer is one-half the measured Thévenin voltage, the 
Thévenin resistance must match that of the potentiometer. Recall that 
for a series circuit, the applied voltage will divide equally across two 
equal series resistors.

If the potentiometer is then disconnected and the resistance measured 
with an ohmmeter as shown in Fig. 9.62(c), the ohmmeter displays the 
Thévenin resistance of the network. In general, therefore,

the Thévenin resistance can be measured by applying a potentiometer 
to the output terminals and varying the resistance until the output 
voltage is one-half the measured Thévenin voltage. The resistance of 
the potentiometer is the Thévenin resistance for the network.

Using the Short-Circuit Current  The Thévenin resistance can also 
be determined by placing a short circuit across the output terminals and 
finding the current through the short circuit. Since ammeters ideally 
have zero internal ohms between their terminals, hooking up an amme-
ter as shown in Fig. 9.63(a) has the effect of both hooking up a short 
circuit across the terminals and measuring the resulting current. The 
same ammeter was connected across the Thévenin equivalent circuit in 
Fig. 9.63(b).

On a practical level, it is assumed, of course, that the internal resistance 
of the ammeter is approximately zero ohms in comparison to the other 
resistors of the network. It is also important to be sure that the resulting cur-
rent does not exceed the maximum current for the chosen ammeter scale.

1.875

200Ω

COM+

1.875

200Ω

COM+

(a) (b)

1.875 �

R = RTh = 1.875 �

RTh

ETh = 0 V4 �R1

R3 3 �

R2

1 �

R = RTh = 1.875 �

FIG. 9.61
Measuring RTh with an ohmmeter: (a) actual network; (b) Thévenin equivalent.
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2.250
20V

V
+ COM

2.250
20V

V
+ COM

(a) (b)

1.875 �

= RTh = 1.875 �

RTh

4.5 VETh RL
= 2.25 V

ETh
24 �I 8 A R1

12 V

R3 3 �

E

R2

1 �

ETh
2

1.875

200Ω

COM+

(c)

FIG. 9.62
Using a potentiometer to determine RTh: (a) actual network; (b) Thévenin equivalent; (c) measuring RTh.

2.400

20A

A
COM+

2.400

20A

A
COM+

4 �I 8 A R1

12 V

R3 3 �

E

R2

1 �

Isc

1.875 �

RTh

4.5 V

(a) (b)

ETh Isc =        = 2.4 A
ETh
RTh

FIG. 9.63
Determining RTh using the short-circuit current: (a) actual network; (b) Thévenin equivalent.
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In Fig. 9.63(b), since the short-circuit current is

Isc =
ETh

RTh

the Thévenin resistance can be determined by

RTh =
ETh

Isc

In general, therefore,

the Thévenin resistance can be determined by hooking up an 
ammeter across the output terminals to measure the short-circuit 
current and then using the open-circuit voltage to calculate the 
Thévenin resistance in the following manner:

	 RTh =
Voc

Isc
	 (9.1)

As a result, we have three ways to measure the Thévenin resistance of a 
configuration. Because of the concern about setting the sources to zero 
in the first procedure and the concern about current levels in the last, the 
second method is often chosen.

9.4 N orton’s Theorem

In Section 8.2, we learned that every voltage source with a series inter-
nal resistance has a current source equivalent. The current source equiv-
alent can be determined by Norton’s theorem (Fig. 9.64). It can also be 
found through the conversions of Section 8.2.

The theorem states the following:

Any two-terminal linear bilateral dc network can be replaced by an 
equivalent circuit consisting of a current source and a parallel 
resistor, as shown in Fig. 9.65.

American (Rockland, Maine; Summit, New Jersey) 
1898–1983
Electrical Engineer, Scientist, Inventor
Department Head: Bell Laboratories
Fellow: Acoustical Society and Institute of Radio 

Engineers

Although interested primarily in communications 
circuit theory and the transmission of data at high 
speeds over telephone lines, Edward L. Norton is 
best remembered for development of the dual of 
Thévenin equivalent circuit, currently referred to as 
Norton’s equivalent circuit. In fact, Norton and his 
associates at AT&T in the early 1920s are recognized 
as being among the first to perform work applying 
Thévenin’s equivalent circuit and referring to this 
concept simply as Thévenin’s theorem. In 1926, he 
proposed the equivalent circuit using a current 
source and parallel resistor to assist in the design of 
recording instrumentation that was primarily current 
driven. He began his telephone career in 1922 with 
the Western Electric Company’s Engineering Depart-
ment, which later became Bell Laboratories. His 
areas of active research included network theory, 
acoustical systems, electromagnetic apparatus, and 
data transmission. A graduate of MIT and Columbia 
University, he held nineteen patents on his work.

FIG. 9.64
Edward L. Norton.

Reprinted with permission  
of Alcatel-Lucent USA Inc.

RNIN

a

b

FIG. 9.65
Norton equivalent circuit.

The discussion of Thévenin’s theorem with respect to the equivalent 
circuit can also be applied to the Norton equivalent circuit. The steps 
leading to the proper values of IN and RN are now listed.

Norton’s Theorem Procedure

Preliminary:

1.	 Remove that portion of the network across which the Norton 
equivalent circuit is found.

2.	 Mark the terminals of the remaining two-terminal network.
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RN:

3.	 Calculate RN by first setting all sources to zero (voltage sources 
are replaced with short circuits and current sources with open 
circuits) and then finding the resultant resistance between the two 
marked terminals. (If the internal resistance of the voltage and/or 
current sources is included in the original network, it must remain 
when the sources are set to zero.) Since RN = RTh, the procedure 
and value obtained using the approach described for Thévenin’s 
theorem will determine the proper value of RN.

IN:

4.	 Calculate IN by first returning all sources to their original posi-
tion and then finding the short-circuit current between the marked 
terminals. It is the same current that would be measured by an 
ammeter placed between the marked terminals.

Conclusion:

5.	 Draw the Norton equivalent circuit with the portion of the circuit 
previously removed replaced between the terminals of the equivalent 
circuit.

The Norton and Thévenin equivalent circuits can also be found from 
each other by using the source transformation discussed earlier in this 
chapter and reproduced in Fig. 9.66.

RTh  =  RN

ETh

RTh
RN  =  RTh

ETh  =  IN RN

+

–
IN

FIG. 9.66
Converting between Thévenin and Norton equivalent circuits.

EXAMPLE 9.12  Find the Norton equivalent circuit for the network in 
the shaded area in Fig. 9.67.

Solution: 

Steps 1 and 2: See Fig. 9.68.

Step 3: See Fig. 9.69, and

RN = R1 }R2 = 3 Ω }6 Ω =
(3 Ω)(6 Ω)

3 Ω + 6 Ω
=

18 Ω
9

= 2 �

Step 4: See Fig. 9.70, which clearly indicates that the short-circuit con-
nection between terminals a and b is in parallel with R2 and eliminates 
its effect. IN is therefore the same as through R1, and the full battery volt-
age appears across R1 since

V2 = I2R2 = (0)6 Ω = 0 V

Therefore,

IN =
E

R1
=

9 V

3 Ω
= 3 A

Step 5: See Fig. 9.71. This circuit is the same as the first one considered 
in the development of Thévenin’s theorem. A simple conversion indi-
cates that the Thévenin circuits are, in fact, the same (Fig. 9.72).

R2 6 �

R1

3 �

RL9 VE
+

–

a

b

FIG. 9.67
Example 9.12.

R1

3 �

R2 6 �9 V
+

–

a

b

E

FIG. 9.68
Identifying the terminals of particular interest for  

the network in Fig. 9.67.

R2 6 �

R1

3 �

RN

a

b

FIG. 9.69
Determining RN for the network in Fig. 9.68.

V2 R2 6 �

R1

3 �

Short circuited

E 9 V

Short

+

–

+

–

a

b

I1 IN IN

IN

I2  =  0

FIG. 9.70
Determining IN for the network in Fig. 9.68.
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RLRN  =  2 �IN =  3 A

a

b

FIG. 9.71
Substituting the Norton equivalent circuit for the 
network external to the resistor RL in Fig. 9.67.

RTh  =  RN  =  2 �

IN RN  =  2 �

3 A

a

b

ETh  =  IN RN  =  (3 A)(2 �)  =  6 V

a

b

+

–

FIG. 9.72
Converting the Norton equivalent circuit in Fig. 9.71 to a  

Thévenin equivalent circuit.

EXAMPLE 9.13  Find the Norton equivalent circuit for the network 
external to the 9 Ω resistor in Fig. 9.73.

Solution: 

Steps 1 and 2: See Fig. 9.74.

R1

5 �

10 A

a

b

RL 9 �R2 4 �

I

FIG. 9.73
Example 9.13.

R2 4 �

R1

5 �

10 A

a

b

I

FIG. 9.74
Identifying the terminals of 

particular interest for the network in 
Fig. 9.73.

R2 4 �

R1

5 �
a

b

RN

FIG. 9.75
Determining RN for the network in 

Fig. 9.74.

10 A
R2 4 �

R1

5 �
a

b

IN
R1 5 �

b a

IR2 4 �

I

IN

10 A

FIG. 9.76
Determining IN for the network in Fig. 9.74.

9 � RL 9 �IN 5.56 A

a

b

RN

FIG. 9.77
Substituting the Norton equivalent circuit for the 
network external to the resistor RL in Fig. 9.73.

Step 3: See Fig. 9.75, and

RN = R1 + R2 = 5 Ω + 4 Ω = 9 �

Step 4: As shown in Fig. 9.76, the Norton current is the same as the cur-
rent through the 4 Ω resistor. Applying the current divider rule gives

IN =
R1I

R1 + R2
=

(5 Ω)(10 A)

5 Ω + 4 Ω
=

50 A

9
= 5.56 A

Step 5: See Fig. 9.77.
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EXAMPLE 9.14  (Two sources) Find the Norton equivalent circuit for 
the portion of the network to the left of a-b in Fig. 9.78.

R3 9 �

R4 10 �R2 6 �
R1 4 �

E1 7 V

I 8 A

E2 12 V

b

a

+

– +

–

FIG. 9.78
Example 9.14.

IN 6.25 A
R3 9 �

RN  =  2.4 �

E2 12 V

R4 10 �

a

b

+

–

FIG. 9.83
Substituting the Norton equivalent circuit for the network to the left of 

terminals a@b in Fig. 9.78.

Solution: 

Steps 1 and 2: See Fig. 9.79.

Step 3: See Fig. 9.80, and

RN = R1 }R2 = 4 Ω }6 Ω =
(4 Ω)(6 Ω)

4 Ω + 6 Ω
=

24 Ω
10

= 2.4 �

Step 4: (Using superposition) For the 7 V battery (Fig. 9.81),

I′N =
E1

R1
=

7 V

4 Ω
= 1.75 A

For the 8 A source (Fig. 9.82), we find that both R1 and R2 have been 
“short circuited” by the direct connection between a and b, and

I″N = I = 8 A

The result is

IN = I″N - I′N = 8 A - 1.75 A = 6.25 A

Step 5: See Fig. 9.83.

R1 4 �
R2 6 �

E1 7 V

I 8 A

a

b

+

–

FIG. 9.79
Identifying the terminals of particular interest  

for the network in Fig. 9.78.

R1 4 �

R2 6 �

a

b

RN

FIG. 9.80
Determining RN for the network in Fig. 9.79.

R2 6 �
R1 4 �

Short circuited

E1 7 V

a

b

I�N

+

–

I�N

I�N

FIG. 9.81
Determining the contribution to IN from the voltage 

source E1.

R1 4 �

R2 6 �I 8 A

I �N

a

b

I �N I �N

I �N

Short circuited

FIG. 9.82
Determining the contribution to IN from the current 

source I.

Experimental Procedure

The Norton current is measured in the same way as described for the 
short-circuit current (Isc) for the Thévenin network. Since the Norton 
and Thévenin resistances are the same, the same procedures can be fol-
lowed as described for the Thévenin network.
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9.5 Maxi mum Power Transfer Theorem

When designing a circuit, it is often important to be able to answer one 
of the following questions:

What load should be applied to a system to ensure that the load is 
receiving maximum power from the system?

Conversely:

For a particular load, what conditions should be imposed on the 
source to ensure that it will deliver the maximum power available?

Even if a load cannot be set at the value that would result in maxi-
mum power transfer, it is often helpful to have some idea of the value 
that will draw maximum power so that you can compare it to the load at 
hand. For instance, if a design calls for a load of 100 Ω, to ensure that 
the load receives maximum power, using a resistor of 1 Ω  or 1 kΩ 
results in a power transfer that is much less than the maximum possible. 
However, using a load of 82 Ω or 120 Ω probably results in a fairly 
good level of power transfer.

Fortunately, the process of finding the load that will receive maxi-
mum power from a particular system is quite straightforward due to the 
maximum power transfer theorem, which states the following:

A load will receive maximum power from a network when its 
resistance is exactly equal to the Thévenin resistance of the network 
applied to the load. That is,

	 RL = RTh	 (9.2)

In other words, for the Thévenin equivalent circuit in Fig. 9.84, when the 
load is set equal to the Thévenin resistance, the load will receive maxi-
mum power from the network.

Using Fig. 9.84 with RL = RTh, we can determine the maximum 
power delivered to the load by first finding the current:

IL =
ETh

RTh + RL
=

ETh

RTh + RTh
=

ETh

2RTh

Then we substitute into the power equation:

PL = I2
LRL = a ETh

2RTh
b

2

(RTh) =
E 2

ThRTh

4R2
Th

and	 PLmax
=

E 2
Th

4RTh
	 (9.3)

To demonstrate that maximum power is indeed transferred to the load 
under the conditions defined above, consider the Thévenin equivalent 
circuit in Fig. 9.85.

Before getting into detail, however, if you were to guess what value 
of RL would result in maximum power transfer to RL, you might think 
that the smaller the value of RL, the better it is because the current 
reaches a maximum when it is squared in the power equation. The prob-
lem is, however, that in the equation PL = I 2

LRL, the load resistance is a 
multiplier. As it gets smaller, it forms a smaller product. Then again, you 
might suggest larger values of RL because the output voltage increases, 
and power is determined by PL = V 2

L /RL. This time, however, the load 

RL = RTh

IRTh

ETh

+

–

FIG. 9.84
Defining the conditions for maximum power to a 

load using the Thévenin equivalent circuit.

RL

IL

RTh

ETh

+

–

9 �

60 V VL

PL

+

–

FIG. 9.85
Thévenin equivalent network to be used to validate 

the maximum power transfer theorem.
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resistance is in the denominator of the equation and causes the resulting 
power to decrease. A balance must obviously be made between the load 
resistance and the resulting current or voltage. The following discussion 
shows that

maximum power transfer occurs when the load voltage and current 
are one-half their maximum possible values.

For the circuit in Fig. 9.85, the current through the load is determined by

IL =
ETh

RTh + RL
=

60 V

9 Ω + RL

The voltage is determined by

VL =
RLETh

RL + RTh
=

RL(60 V)

RL + RTh

and the power by

PL = I2
LRL = a 60 V

9 Ω + RL
b

2

(RL) =
3600RL

(9 Ω + RL)2

If we tabulate the three quantities versus a range of values for RL from 
0.1 Ω to 30 Ω, we obtain the results appearing in Table 9.1. Note in 
particular that when RL is equal to the Thévenin resistance of 9 Ω, the 

TABLE 9.1

RL(�) PL(W) IL(A) VL(V)

0.1 4.35 6.60 0.66
0.2 8.51 6.52 1.30
0.5 19.94 6.32 3.16
1 36.00 6.00 6.00
2 59.50 5.46 10.91
3 75.00 5.00 15.00
4 85.21 4.62 18.46
5 91.84 4.29 21.43
6 96.00 4.00 24.00
7 98.44    Increase 3.75    Decrease 26.25    Increase
8 99.65 3.53 28.23
9 (RTh) 100.00 (Maximum) 3.33 (Imax/2) 30.00 (ETh/2)

10 99.72 3.16 31.58
11 99.00 3.00 33.00
12 97.96 2.86 34.29
13 96.69 2.73 35.46
14 95.27 2.61 36.52
15 93.75 2.50 37.50
16 92.16 2.40 38.40
17 90.53 2.31 39.23
18 88.89 2.22 40.00
19 87.24 2.14 40.71
20 85.61 2.07 41.38
25 77.86 1.77 44.12
30 71.00 1.54 46.15
40 59.98 1.22 48.98

100 30.30 0.55 55.05
500 6.95    Decrease 0.12    Decrease 58.94    Increase

1000 3.54 0.06 59.47
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power has a maximum value of 100 W, the current is 3.33 A, or one-half 
its maximum value of 6.67 A (as would result with a short circuit across 
the output terminals), and the voltage across the load is 30 V, or one-half 
its maximum value of 60 V (as would result with an open circuit across 
its output terminals). As you can see, there is no question that maximum 
power is transferred to the load when the load equals the Thévenin value.

The power to the load versus the range of resistor values is provided 
in Fig. 9.86. Note in particular that for values of load resistance less 
than the Thévenin value, the change is dramatic as it approaches the 
peak value. However, for values greater than the Thévenin value, the 
drop is a great deal more gradual. This is important because it tells us 
the following:

If the load applied is less than the Thévenin resistance, the power to 
the load will drop off rapidly as it gets smaller. However, if the 
applied load is greater than the Thévenin resistance, the power to the 
load will not drop off as rapidly as it increases.

For instance, the power to the load is at least 90 W for the range of 
about 4.5 Ω to 9 Ω below the peak value, but it is at least the same level 
for a range of about 9 Ω to 18 Ω above the peak value. The range below 
the peak is 4.5 Ω, while the range above the peak is almost twice as much 
at 9 Ω. As mentioned above, if maximum transfer conditions cannot be 
established, at least we now know from Fig. 9.86 that any resistance rela-
tively close to the Thévenin value results in a strong transfer of power. 
More distant values such as 1 Ω or 100 Ω result in much lower levels.

It is particularly interesting to plot the power to the load versus load 
resistance using a log scale, as shown in Fig. 9.87. Logarithms will be 
discussed in detail in Chapter 22, but for now notice that the spacing 

PL

PL (W)

0 5 9 10 15 20 25 30 RL (�)

10

20

30

40

50

60

70

80

90

RL  =  RTh  =  9 �

PLmax
  =  100

RTh

FIG. 9.86
PL versus RL for the network in Fig. 9.85.
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between values of RL is not linear, but the distance, between powers of 
ten (such as 0.1 and 1, 1 and 10, and 10 and 100) are all equal. The 
advantage of the log scale is that a wide resistance range can be plotted 
on a relatively small graph.

Note in Fig. 9.87 that a smooth, bell-shaped curve results that is sym-
metrical about the Thévenin resistance of 9 Ω. At 0.1 Ω, the power has 
dropped to about the same level as that at 1000 Ω, and at 1 Ω and 100 Ω, 
the power has dropped to the neighborhood of 30 W.

Although all of the above discussion centers on the power to the load, 
it is important to remember the following:

The total power delivered by a supply such as ETh is absorbed by both 
the Thévenin equivalent resistance and the load resistance. Any 
power delivered by the source that does not get to the load is lost to 
the Thévenin resistance.

Under maximum power conditions, only half the power delivered by the 
source gets to the load. Now, that sounds disastrous, but remember that 
we are starting out with a fixed Thévenin voltage and resistance, and the 
above simply tells us that we must make the two resistance levels equal 
if we want maximum power to the load. On an efficiency basis, we are 
working at only a 50% level, but we are content because we are getting 
maximum power out of our system.

The dc operating efficiency is defined as the ratio of the power deliv-
ered to the load (PL) to the power delivered by the source (Ps). That is,

	 h% =
PL

Ps
* 100%	 (9.4)

For the situation where RL = RTh,

 h% =
I2

LRL

IL
2RT

* 100% =
RL

RT
* 100% =

RTh

RTh + RTh
* 100%

 =
RTh

2RTh
* 100% =

1

2
* 100% = 50%

Log scale

P (W)

100

90

80

70

60

50

40

30

20

10

0.1 0.5 1 2 3 4 5678 10 20 30 40 100 1000 RL (�)

RL = RTh = 9 �

0.2

PL

PLmax

Linear
scale

FIG. 9.87
PL versus RL for the network in Fig. 9.85.
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For the circuit in Fig. 9.85, if we plot the efficiency of operation ver-
sus load resistance, we obtain the plot in Fig. 9.88, which clearly shows 
that the efficiency continues to rise to a 100% level as RL gets larger. 
Note in particular that the efficiency is 50% when RL = RTh.

To ensure that you completely understand the effect of the maximum 
power transfer theorem and the efficiency criteria, consider the circuit in 
Fig. 9.89, where the load resistance is set at 100 Ω and the power to the 
Thévenin resistance and to the load are calculated as follows:

IL =
ETh

RTh + RL
=

60 V

9 Ω + 100 Ω
=

60 V

109 Ω
= 550.5 mA

with	  PRTh
= I2

LRTh = (550.5 mA)2(9 Ω) ≅ 2.73 W

and	  PL = I2
LRL = (550.5 mA)2(100 Ω) ≅ 30.3 W

The results clearly show that most of the power supplied by the bat-
tery is getting to the load—a desirable attribute on an efficiency basis. 
However, the power getting to the load is only 30.3 W compared to the 
100 W obtained under maximum power conditions. In general, there-
fore, the following guidelines apply:

If efficiency is the overriding factor, then the load should be much 
larger than the internal resistance of the supply. If maximum power 
transfer is desired and efficiency less of a concern, then the 
conditions dictated by the maximum power transfer theorem should 
be applied.

A relatively low efficiency of 50% can be tolerated in situations where 
power levels are relatively low, such as in a wide variety of electronic 
systems, where maximum power transfer for the given system is usually 
more important. However, when large power levels are involved, such 
as at generating plants, efficiencies of 50% cannot be tolerated. In fact, a 
great deal of expense and research is dedicated to raising power generat-
ing and transmission efficiencies a few percentage points. Raising an effi-
ciency level of a 10 MkW power plant from 94% to 95% (a 1% increase) 
can save 0.1 MkW, or 100 million watts, of power—an enormous saving.

100

75

50

25

0 20 40 60 80 100 RL (�)

RL  =  RTh

%

10

≅  kRL  �  100%%

Approaches 100%

FIG. 9.88
Efficiency of operation versus increasing values of RL.

PE

PTh

PL

RL 100 �
ETh 60 V

RTh = 9 �

Power flow

FIG. 9.89
Examining a circuit with high efficiency but a 

relatively low level of power to the load.
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In all of the above discussions, the effect of changing the load was 
discussed for a fixed Thévenin resistance. Looking at the situation from 
a different viewpoint, we can say

if the load resistance is fixed and does not match the applied 
Thévenin equivalent resistance, then some effort should be made (if 
possible) to redesign the system so that the Thévenin equivalent 
resistance is closer to the fixed applied load.

In other words, if a designer faces a situation where the load resistance is 
fixed, he or she should investigate whether the supply section should be 
replaced or redesigned to create a closer match of resistance levels to 
produce higher levels of power to the load.

For the Norton equivalent circuit in Fig. 9.90, maximum power will 
be delivered to the load when

	 RL = RN	 (9.5)

This result [Eq. (9.5)] will be used to its fullest advantage in the analysis 
of transistor networks, where the most frequently applied transistor 
circuit model uses a current source rather than a voltage source.

For the Norton circuit in Fig. 9.90,

	 PLmax
=

I2
NRN

4
  (W)	 (9.6)

EXAMPLE 9.15  A dc generator, battery, and laboratory supply are 
connected to resistive load RL in Fig. 9.91.

	 a.	 For each, determine the value of RL for maximum power transfer to RL.
	 b.	 Under maximum power conditions, what are the current level and 

the power to the load for each configuration?
	 c.	 What is the efficiency of operation for each supply in part (b)?
	 d.	 If a load of 1 kΩ were applied to the laboratory supply, what would 

the power delivered to the load be? Compare your answer to the 
level of part (b). What is the level of efficiency?

	 e.	 For each supply, determine the value of RL for 75% efficiency.

RL  =  RN

I

RNIN

FIG. 9.90
Defining the conditions for maximum power to a 

load using the Norton equivalent circuit.

RL

2.5 �Rint

–

+
E

RL

0.05 Rint

E

RL

Rint

E

(a)  dc generator (b)  Battery (c)  Laboratory supply

+

–

+

–

120 V

20 �

12 V 0–40 V

�

FIG. 9.91
Example 9.15.

Solutions: 

	 a.	 For the dc generator,

RL = RTh = Rint = 2.5 �
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		  For the 12 V car battery,

RL = RTh = Rint = 0.05 �

		  For the dc laboratory supply,

RL = RTh = Rint = 20 �

	 b.	 For the dc generator,

PLmax
=

E2
Th

4RTh
=

E2

4Rint
=

(120 V)2

4(2.5 Ω)
= 1.44 kW

		  For the 12 V car battery,

PLmax
=

E2
Th

4RTh
=

E2

4Rint
=

(12 V)2

4(0.05 Ω)
= 720 W

		  For the dc laboratory supply,

PLmax
=

E2
Th

4RTh
=

E2

4Rint
=

(40 V)2

4(20 Ω)
= 20 W

	 c.	 They are all operating under a 50% efficiency level because RL = RTh.
	 d.	 The power to the load is determined as follows:

IL =
E

Rint + RL
=

40 V

20 Ω + 1000 Ω
=

40 V

1020 Ω
= 39.22 mA

and	 PL = I 2
L RL = (39.22 mA)2(1000 Ω) = 1.54 W

		  The power level is significantly less than the 20 W achieved in 
part (b). The efficiency level is

 h% =
PL

Ps
* 100% =

1.54 W

EIs
* 100% =

1.54 W

(40 V)(39.22 mA)
* 100%

 =
1.54 W

1.57 W
* 100% = 98.09%

		  which is markedly higher than achieved under maximum power 
conditions—albeit at the expense of the power level.

	 e.	 For the dc generator,

	  h =
Po

Ps
=

RL

RTh + RL
 (h in decimal form)

and	  h =
RL

RTh + RL

	  h(RTh + RL) = RL

	  hRTh + hRL = RL

	  RL(1 - h) = hRTh

and	 RL =
hRTh

1 - h
	 (9.7)

RL =
0.75(2.5 Ω)

1 - 0.75
= 7.5 �

		  For the battery,

RL =
0.75(0.05 Ω)

1 - 0.75
= 0.15 �
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For the laboratory supply,

RL =
0.75(20 Ω)

1 - 0.75
= 60 �

EXAMPLE 9.16  The analysis of a transistor network resulted in the 
reduced equivalent in Fig. 9.92.

	 a.	 Find the load resistance that will result in maximum power transfer 
to the load, and find the maximum power delivered.

	 b.	 If the load were changed to 68 kΩ, would you expect a fairly high 
level of power transfer to the load based on the results of part (a)? 
What would the new power level be? Is your initial assumption 
verified?

	 c.	 If the load were changed to 8.2 kΩ, would you expect a fairly high 
level of power transfer to the load based on the results of part (a)? 
What would the new power level be? Is your initial assumption 
verified?

Solutions: 

	 a.	 Replacing the current source by an open-circuit equivalent results in

RTh = Rs = 40 kΩ

		  Restoring the current source and finding the open-circuit voltage at 
the output terminals results in

ETh = Voc = IRs = (10 mA)(40 kΩ) = 400 V

		  For maximum power transfer to the load,

RL = RTh = 40 k�

		  with a maximum power level of

PLmax
=

E 2
Th

4RTh
=

(400 V)2

4(40 kΩ)
= 1 W

	 b.	 Yes, because the 68 kΩ load is greater (note Fig. 9.86) than the 
40 kΩ load, but relatively close in magnitude.

 IL =
ETh

RTh + RL
=

400 V

40 kΩ + 68 kΩ
=

400

108 kΩ
≅ 3.7 mA

 PL = I2
LRL = (3.7 mA)2(68 kΩ) ≅ 0.93 W

		  Yes, the power level of 0.93 W compared to the 1 W level of part 
(a) verifies the assumption.

	 c.	 No, 8.2 kΩ is quite a bit less (note Fig. 9.86) than the 40 kΩ value.

 IL =
ETh

RTh + RL
=

400 V

40 kΩ + 8.2 kΩ
=

400 V

48.2 kΩ
≅ 8.3 mA

 PL = I 2
L RL = (8.3 mA)2(8.2 kΩ) ≅ 0.57 W

		  Yes, the power level of 0.57 W compared to the 1 W level of part (a) 
verifies the assumption.

EXAMPLE 9.17  In Fig. 9.93, a fixed load of 16 Ω is applied to a 48 V 
supply with an internal resistance of 36 Ω.

I 10 mA Rs 40 k� RL

FIG. 9.92
Example 9.16.

dc supply

RL 16 �48 V

36 �

Rs

E

FIG. 9.93
dc supply with a fixed 16 Ω load (Example 9.17).
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	 a.	 For the conditions in Fig. 9.93, what is the power delivered to the 
load and lost to the internal resistance of the supply?

	 b.	 If the designer has some control over the internal resistance level of 
the supply, what value should he or she make it for maximum power 
to the load? What is the maximum power to the load? How does it 
compare to the level obtained in part (a)?

	 c.	 Without making a single calculation, find the value that would 
result in more power to the load if the designer could change the 
internal resistance to 22 Ω or 8.2 Ω. Verify your conclusion by cal-
culating the power to the load for each value.

Solutions: 

	 a.	  IL =
E

Rs + RL
=

48 V

36 Ω + 16 Ω
=

48 V

52 Ω
= 923.1 mA

		   PRs
= I2

LRs = (923.1 mA)2(36 Ω) = 30.68 W

		   PL = I2
LRL = (923.1 mA)2(16 Ω) = 13.63 W

	 b.	 Be careful here. The quick response is to make the source resistance 
Rs equal to the load resistance to satisfy the criteria of the maximum 
power transfer theorem. However, this is a totally different type of 
problem from what was examined earlier in this section. If the load 
is fixed, the smaller the source resistance Rs, the more applied volt-
age will reach the load and the less will be lost in the internal series 
resistor. In fact, the source resistance should be made as small as 
possible. If zero ohms were possible for Rs, the voltage across the 
load would be the full supply voltage, and the power delivered to 
the load would equal

PL =
V2

L

RL
=

(48 V)2

16 Ω
= 144 W

		  which is more than 10 times the value with a source resistance of 
36 Ω.

	 c.	 Again, forget the impact in Fig. 9.86: The smaller the source resist-
ance, the greater is the power to the fixed 16 Ω load. Therefore, the 
8.2 Ω resistance level results in a higher power transfer to the load 
than the 22 Ω resistor.

For Rs = 8.2 Ω

	  IL =
E

Rs + RL
=

48 V

8.2 Ω + 16 Ω
=

48 V

24.2 Ω
= 1.983 A

and	  PL = I2
LRL = (1.983 A)2(16 Ω) ≅ 62.92 W

For  Rs = 22 Ω

	  IL =
E

Rs + RL
=

48 V

22 Ω + 16 Ω
=

48 V

38 Ω
= 1.263 A

and	  PL = I 2
L RL = (1.263 A)2(16 Ω) ≅ 25.52 W

EXAMPLE 9.18  Given the network in Fig. 9.94, find the value of 
RL for maximum power to the load, and find the maximum power to 
the load.

Solution:  The Thévenin resistance is determined from Fig. 9.95:

RTh = R1 + R2 + R3 = 3 Ω + 10 Ω + 2 Ω = 15 Ω

R2 10 �

R1

3 �

6 AI RL

E1

68 V

R3

2 �

+ –

FIG. 9.94
Example 9.18.

R2 10 �

R1

3 �

R3

2 �

RTh

FIG. 9.95
Determining RTh for the network external to resistor 

RL in Fig. 9.94.
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so that	 RL = RTh = 15 Ω

The Thévenin voltage is determined using Fig. 9.96, where

V1 = V3 = 0 V and V2 = I2R2 = IR2 = (6 A)(10 Ω) = 60 V

Applying Kirchhoff’s voltage law gives

-V2 - E + ETh = 0

and	 ETh = V2 + E = 60 V + 68 V = 128 V

with the maximum power equal to

PLmax
=

E2
Th

4RTh
=

(128 V)2

4(15 Ω)
= 273.07 W

V2 R2  =  10 �

E1

68 V
R1  =  3 �

I  =  0

I  =  6 A
I  =  0

R3  =  2 �
+  V3  =  0 V  –

ETh

–

+

–  V1  =  0 V  +

–

+
6 A

I  =

6 A

+ –

FIG. 9.96
Determining ETh for the network external to resistor 

RL in Fig. 9.94.

R1

E1

R2

E2

R3

E3

RL

Req

Eeq

RL

+

–

+

–

+

–

+

–

FIG. 9.97
Demonstrating the effect of applying Millman’s theorem.

Step 1: Convert all voltage sources to current sources as outlined in 
Section 8.2. This is performed in Fig. 9.98 for the network in Fig. 9.97.

I1 E1G1 G1 I2 E2G2 I3G2 E3G3 G3 RL

( )E3
R3

( )E2
R2

( )E1
R1

FIG. 9.98
Converting all the sources in Fig. 9.97 to current sources.

9.6 Mill man’s Theorem

Through the application of Millman’s theorem, any number of parallel 
voltage sources can be reduced to one. In Fig. 9.97, for example, the 
three voltage sources can be reduced to one. This permits finding the 
current through or voltage across RL without having to apply a method 
such as mesh analysis, nodal analysis, superposition, and so on. The 
theorem can best be described by applying it to the network in Fig. 9.97. 
Basically, three steps are included in its application.
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Step 2: Combine parallel current sources as described in Section 8.2. The 
resulting network is shown in Fig. 9.99, where

IT = I1 + I2 + I3  and  GT = G1 + G2 + G3

Step 3: Convert the resulting current source to a voltage source, and the 
desired single-source network is obtained, as shown in Fig. 9.100.

In general, Millman’s theorem states that for any number of parallel 
voltage sources,

Eeq =
IT

GT
=

{  I1 {  I2 {  I3 {  g{  IN

G1 + G2 + G3 + g+  GN

or	 Eeq =
{  E1G1 {  E2G2 {  E3G3 {g{  ENGN

G1 + G2 + G3 + g+  GN
� (9.8)

The plus-and-minus signs appear in Eq. (9.8) to include those cases 
where the sources may not be supplying energy in the same direction. 
(Note Example 9.19.)

The equivalent resistance is

	 Req =
1

GT
=

1

G1 + G2 + G3 + g+  GN
	 (9.9)

In terms of the resistance values,

	 Eeq =
{  

E1

R1
 {  

E2

R2
 {  

E3

R3
{ g{  

EN

RN

1

R1
+

1

R2
+

1

R3
+ g+  

1

RN

	 (9.10)

and	 Req =
1

1

R1
+

1

R2
+

1

R3
+ g+  

1

RN

� (9.11)

Because of the relatively few direct steps required, you may find it 
easier to apply each step rather than memorizing and employing Eqs. (9.8) 
through (9.11).

EXAMPLE 9.19  Using Millman’s theorem, find the current through 
and voltage across the resistor RL in Fig. 9.101.

Solution:  By Eq. (9.10),

Eeq =
+

E1

R1
-

E2

R2
+

E3

R3

1

R1
+

1

R2
+

1

R3

The minus sign is used for E2>R2 because that supply has the opposite 
polarity of the other two. The chosen reference direction is therefore 
that of E1 and E3. The total conductance is unaffected by the direction, 
and

GTIT RL

FIG. 9.99
Reducing all the current sources in Fig. 9.98 to a 

single current source.

Req
1

GT

Eeq
IT
GT

+

–

RL

FIG. 9.100
Converting the current source in Fig. 9.99 to a 

voltage source.

R1 5 � R2 4 � R3 2 �

E1
10 V

E2
16 V

E3
8 V

RL 3 �

IL

VL

+

–
+

–

+

–+

–

FIG. 9.101
Example 9.19.
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 Eeq =
+

10 V

5 Ω
-

16 V

4 Ω
+

8 V

2 Ω
1

5 Ω
+

1

4 Ω
+

1

2 Ω

=
2 A - 4 A + 4 A

0.2 S + 0.25 S + 0.5 S

 =
2 A

0.95 S
= 2.11 V

with	 Req =
1

1

5 Ω
+

1

4 Ω
+

1

2 Ω

=
1

0.95 S
= 1.05 �

The resultant source is shown in Fig. 9.102, and

	 IL =
2.11 V

1.05 Ω + 3 Ω
=

2.11 V

4.05 Ω
= 0.52 A

with	 VL = ILRL = (0.52 A)(3 Ω) = 1.56 V

EXAMPLE 9.20  Let us now consider the type of problem encountered 
in the introduction to mesh and nodal analysis in Chapter 8. Mesh analy-
sis was applied to the network of Fig. 9.103 (Example 8.14). Let us now 
use Millman’s theorem to find the current through the 2 Ω resistor and 
compare the results.

Solutions: 

	 a.	 Let us first apply each step and, in the (b) solution, Eq. (9.10). Con-
verting sources yields Fig. 9.104. Combining sources and parallel 
conductance branches (Fig. 9.105) yields

 IT = I1 + I2 = 5 A +
5

3
 A =

15

3
 A +

5

3
 A =

20

3
 A

 GT = G1 + G2 = 1 S +
1

6 
 S =

6

6 
 S +

1

6 
 S =

7

6
 S

Req 1.05 �

Eeq

RL 3 � VL
–

+

2.11 V

IL

+

–

FIG. 9.102
The result of applying Millman’s theorem to the 

network in Fig. 9.101.

R1 1 � R2 6 �

E1 5 V E2 10 V

R3 2 �
+

–

+

–

FIG. 9.103
Example 9.20.

R3 2 �

6
7

Req �

Eeq
40
7 V

+

–

FIG. 9.106
Converting the current source in Fig. 9.105  

to a voltage source.

		  Converting the current source to a voltage source (Fig. 9.106), we obtain

Eeq =
IT

GT
=

20

3
 A

7

6
 S

=
(6)(20)

(3)(7)
 V =

40
7

 V

and	 Req =
1

GT
=

1

7

6
 S

=
6
7

 �

IT
20
3

7
6

R3 2 �SA GT

FIG. 9.105
Reducing the current sources in Fig. 9.104  

to a single source.

I1

R1

5 A

1 � R2 6 �

I2
5
3

R3 2 �

A

FIG. 9.104
Converting the sources in Fig. 9.103 to current 

sources.
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		  so that

I2Ω =
Eeq

Req + R3
=

40

7
 V

6

7
 Ω + 2 Ω 

=

40

7
 V

6

7
 Ω +

14

7
 Ω 

=
40 V

20 Ω
= 2 A

		  which agrees with the result obtained in Example 8.14.
	 b.	 Let us now simply apply the proper equation, Eq. (9.10):

Eeq =
+

5 V

1 Ω
+

10 V

6 Ω
1

1 Ω
+

1

6 Ω

=

30 V

6 Ω
+

10 V

6 Ω
6

6 Ω
+

1

6 Ω

=
40
7

 V

		  and

Req =
1

1

1 Ω
+

1

6 Ω

=
1

6

6 Ω
+

1

6 Ω

=
1

7

6
 S

=
6
7

 �

		  which are the same values obtained above.

The dual of Millman’s theorem (Fig. 9.97) appears in Fig. 9.107. It 
can be shown that Ieq and Req, as in Fig. 9.107, are given by

	 Ieq =
{  I1R1 {  I2R2 {  I3R3

R1 + R2 + R3
	 (9.12)

and	 Req = R1 + R2 + R3� (9.13)

The derivation appears as a problem at the end of the chapter.

R1

I2

R2

I3

R3

I1

Req

Ieq

RL RL

FIG. 9.107
The dual effect of Millman’s theorem.

9.7  Substitution Theorem

The substitution theorem states the following:

If the voltage across and the current through any branch of a dc 
bilateral network are known, this branch can be replaced by any 
combination of elements that will maintain the same voltage across 
and current through the chosen branch.

More simply, the theorem states that for branch equivalence, the 
terminal voltage and current must be the same. Consider the circuit in 
Fig. 9.108, in which the voltage across and current through the branch 

R2 4 �

R1

6 �

a

b

3 A

E 30  V
+

–
12 V

+

–

FIG. 9.108
Demonstrating the effect of the substitution theorem.
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a@b are determined. Through the use of the substitution theorem, a 
number of equivalent a@a′ branches are shown in Fig. 9.109.

Note that for each equivalent, the terminal voltage and current are the 
same. Also consider that the response of the remainder of the circuit in 
Fig. 9.108 is unchanged by substituting any one of the equivalent 
branches. As demonstrated by the single-source equivalents in Fig. 9.109, 
a known potential difference and current in a network can be replaced by 
an ideal voltage source and current source, respectively.

Understand that this theorem cannot be used to solve networks with 
two or more sources that are not in series or parallel. For it to be applied, 
a potential difference or current value must be known or found using one 
of the techniques discussed earlier. One application of the theorem is 
shown in Fig. 9.110. Note that in the figure the known potential differ-
ence V was replaced by a voltage source, permitting the isolation of the 
portion of the network including R3, R4, and R5. Recall that this was 
basically the approach used in the analysis of the ladder network as we 
worked our way back toward the terminal resistance R5.

2 A 12 � 12 V

b

3 A
a

–

+

a

b
–

+

2 �

 6 V

3 A

12 V

a

b
–

+

3 A 12 V

a

b

12 V

–

+
3 A

+

–
+

–

FIG. 9.109
Equivalent branches for the branch a-b in Fig. 9.108.

R2

R3a

b

E V

–

+

R1

R4 R5

R3

b

E′  =  V R5R4

a

+

–

+

–

FIG. 9.110
Demonstrating the effect of knowing a voltage at some point in a complex network.

The current source equivalence of the above is shown in Fig. 9.111, 
where a known current is replaced by an ideal current source, permitting 
the isolation of R4 and R5.

R2 R4

R3

R5

ba

I

R5

a

I

b

R1

E
+

–

R4

FIG. 9.111
Demonstrating the effect of knowing a current at some point in a complex network.
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Recall from the discussion of bridge networks that V = 0 and I = 0 
were replaced by a short circuit and an open circuit, respectively. This 
substitution is a very specific application of the substitution theorem.

9.8 R eciprocity Theorem

The reciprocity theorem is applicable only to single-source networks. 
It is, therefore, not a theorem used in the analysis of multisource net-
works described thus far. The theorem states the following:

The current I in any branch of a network due to a single voltage 
source E anywhere else in the network will equal the current through 
the branch in which the source was originally located if the source is 
placed in the branch in which the current I was originally measured.

In other words, the location of the voltage source and the resulting 
current may be interchanged without a change in current. The theorem 
requires that the polarity of the voltage source have the same corre-
spondence with the direction of the branch current in each position.

I

E

a

b

c

d

I

E

a

b

c

d

(a) (b)

+

–

+

–

FIG. 9.112
Demonstrating the impact of the reciprocity theorem.

E 45 V

I

+

–

R3

2 �

R1

12 �

R2 6 � R4 4 �

Is

FIG. 9.113
Finding the current I due to a source E.

In the representative network in Fig. 9.112(a), the current I due to the 
voltage source E was determined. If the position of each is interchanged 
as shown in Fig. 9.112(b), the current I will be the same value as indi-
cated. To demonstrate the validity of this statement and the theorem, 
consider the network in Fig. 9.113, in which values for the elements of 
Fig. 9.112(a) have been assigned.

The total resistance is

 RT = R1 + R2 } (R3 + R4) = 12 Ω + 6 Ω } (2 Ω + 4 Ω)

 = 12 Ω + 6 Ω }6 Ω = 12 Ω + 3 Ω = 15 Ω

and	 Is =
E

RT
=

45 V

15 Ω
= 3 A

with	 I =
3 A

2
= 1.5 A

For the network in Fig. 9.114, which corresponds to that in Fig. 9.112(b), 
we find

 RT = R4 + R3 + R1 }R2

 = 4 Ω + 2 Ω + 12 Ω }6 Ω = 10 Ω

and	 Is =
E

RT
=

45 V

10 Ω
= 4.5 A

so that	 I =
(6 Ω)(4.5 A)

12 Ω + 6 Ω
=

4.5 A

3
= 1.5 A

which agrees with the above.

R1

12 �

R3

2 �

R2 6 �
R4 4 �

E 45 V

I RT

Is

+

–

FIG. 9.114
Interchanging the location of E and I of Fig. 9.113 to 
demonstrate the validity of the reciprocity theorem.
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The uniqueness and power of this theorem can best be demonstrated 
by considering a complex, single-source network such as the one shown 
in Fig. 9.115.

c

d

a

b

I
c

d

a

b

I

E

E
+

–

+

–

FIG. 9.115
Demonstrating the power and uniqueness of the reciprocity theorem.

9.9 C omputer Analysis

Once you understand the mechanics of applying a software package or 
language, the opportunity to be creative and innovative presents itself. 
Through years of exposure and trial-and-error experiences, professional 
programmers develop a catalog of innovative techniques that are not only 
functional but very interesting and truly artistic in nature. Now that some 
of the basic operations associated with PSpice have been introduced, a 
few innovative maneuvers will be made in the examples to follow.

PSpice

Thévenin’s Theorem    The application of Thévenin’s theorem requires 
an interesting maneuver to determine the Thévenin resistance. It is a 
maneuver, however, that has application beyond Thévenin’s theorem 
whenever a resistance level is required. The network to be analyzed appears 
in Fig. 9.116 and is the same one analyzed in Example 9.10 (Fig. 9.48).

Since PSpice is not set up to measure resistance levels directly, a 1 A 
current source can be applied as shown in Fig. 9.117, and Ohm’s law can 
be used to determine the magnitude of the Thévenin resistance in the 
following manner:

	 0RTh 0 = ` Vs

Is
` = ` Vs

1 A
` = 0Vs 0 	 (9.14)

In Eq. (9.14), since Is = 1A, the magnitude of RTh in ohms is the same 
as the magnitude of the voltage Vs (in volts) across the current source. 
The result is that when the voltage across the current source is displayed, 
it can be read as ohms rather than volts.

When PSpice is applied, the network appears as shown in Fig. 9.117. 
Flip the voltage source E1 and the current source by right-clicking on the 
source and choosing the Mirror Vertically option. Set both voltage 
sources to zero through the Display Properties dialog box obtained by 
double-clicking on the source symbol. The result of the Bias Point sim-
ulation is 2 kV across the current source. The Thévenin resistance is 
therefore 2 kΩ between the two terminals of the network to the left of 
the current source (to match the results of Example 9.10). In total, by 

R1 0.8 k�

R4

1.4 k�

R2 4 k�

R3 6 k�

+

–

E2 10 VE1 6 V
–

+

ETh
+

–

RTh

FIG. 9.116
Network to which PSpice is to be applied to 

determine ETh and RTh.
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setting the voltage source to 0 V, we have dictated that the voltage is the 
same at both ends of the voltage source, replicating the effect of a short-
circuit connection between the two points.

For the open-circuit Thévenin voltage between the terminals of 
interest, the network must be constructed as shown in Fig. 9.118. The 
resistance of 1 T (=  1 million MΩ) is considered large enough to repre-
sent an open circuit to permit an analysis of the network using PSpice. 
PSpice does not recognize floating nodes and generates an error signal 
if a connection is not made from the top right node to ground. Both 
voltage sources are now set on their prescribed values, and a simulation 
results in 3 V across the 1 T resistor. The open-circuit Thévenin voltage 
is therefore 3 V, which agrees with the solution in Example 9.10.

Maximum Power Transfer    The procedure for plotting a quantity 
versus a parameter of the network is now introduced. In this case, the 
output power versus values of load resistance is used to verify that max-
imum power is delivered to the load when its value equals the series 
Thévenin resistance. A number of new steps are introduced, but keep in 
mind that the method has broad application beyond Thévenin’s theorem 
and is therefore well worth the learning process.

The circuit to be analyzed appears in Fig. 9.119. The circuit is con-
structed in exactly the same manner as described earlier except for the 
value of the load resistance. Begin the process by starting a New Project 
labeled PSpice 9-3, and build the circuit in Fig. 9.119. For the moment, 
do not set the value of the load resistance.

The first step is to establish the value of the load resistance as a vari-
able since it will not be assigned a fixed value. Double-click on the value 
of RL, which is initially 1 kΩ, to obtain the Display Properties dialog 

FIG. 9.117
Using PSpice to determine the Thévenin resistance of a network through  

the application of a 1 A current source.
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box. For Value, type in {Rval} and click in place. The brackets (not 
parentheses) are required, but the variable does not have to be called 
Rval—it is the choice of the user. Next select the Place part key to 
obtain the Place Part dialog box. If you are not already in the Libraries 
list, choose Add Library and add SPECIAL to the list. Select the 
SPECIAL library and scroll the Part List until PARAM appears. 
Select and then click Place Part to obtain a rectangular box next to the 
cursor on the screen. Select a spot near Rval, and deposit the rectangle. 
The result is PARAMETERS: as shown in Fig. 9.119.

Next double-click on PARAMETERS: to obtain a Property Editor 
dialog box, which should have SCHEMATIC1:PAGE1 in the second 
column from the left. Now select the New Property option from the 
top list of choices. An Undo Warning !! dialog box will appear. Select 
Yes to continue. An Add New Property dialog box will appear in 
which the Name: is entered as Rval and the Value: as 1. Then click 
OK and the Undo Warning !! dialog box will appear again (to really 
be sure you want to do it!) and select Yes again. If you now move the 
position control at the bottom of the screen to the left (only slightly) 
you will see Rval/1 as a new column in the SCHEMATIC1:PAGE1 
listing. Now select Rval/1 by clicking on Rval to surround Rval by a 
dashed line and add a black background around the 1. Choose 
Display to produce the Display Properties dialog box, and select 
Name and Value followed by OK. Then exit the Property Editor 
dialog box by selecting PAGE1* in the row above the schematic to 
display the screen in Fig. 9.119. Note that now the first value (1 Ω) 
of Rval is displayed.

FIG. 9.118
Using PSpice to determine the Thévenin voltage for a network using a very 
large resistance value to represent the open-circuit condition between the 

terminals of interest.
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We are now ready to set up the simulation process. Select the New 
Simulation Profile key to open the New Simulation dialog box. Enter 
DC Sweep under Name followed by Create. A blinking Simulation 
Setting-Rval dialog box will then appear at the bottom of the screen that 
can be selected so it will appear in full size on the screen. After selecting 
Analysis, select DC Sweep under the Analysis type heading. Then leave 
the Primary Sweep under the Options heading, and select Global 
parameter under the Sweep variable. The Parameter name should 
then be entered as Rval. For the Sweep type, the Start value should be 
1 Ω; but if we use 1 Ω, the curve to be generated will start at 1 Ω, leav-
ing a blank from 0 to 1 Ω. The curve will look incomplete. To solve this 
problem, select 0.001 Ω as the Start value (very close to 0 Ω) with an 
Increment of 0.001 Ω. Enter the End value as 31 Ω  to ensure a cal-
culation at RL = 30.001 Ω. If we used 30 Ω  as the end value, the last 
calculation would be at 29.001 Ω since 29.001 Ω + 1 Ω = 30.001 Ω, 
which is beyond the range of 30 Ω. The values of RL will therefore be 
0.001 Ω, 1.001 Ω, 2.001 Ω, c29.001 Ω, 30.001  Ω, and so on, although 
the plot will look as if the values were 0 Ω, 1 Ω, 2 Ω, 29 Ω, 30 Ω, and 
so on. Click OK, and select the Run PSpice key, which will activate the 
analysis and result in a blinking yellow screen at the bottom of the win-
dow. Select and the plot will appear as shown in Fig. 9.120.

Note that there are no plots on the graph, and that the graph extends 
to 40 Ω rather than 30 Ω as desired. It did not respond with a plot of 
power versus RL because we have not defined the plot of interest for 
the computer. To do this, select the Add Trace key (the key that has a 
red curve peaking in the middle of the plot) or Trace-Add Trace from 
the top menu bar. Either choice results in the Add Traces dialog box. 

FIG. 9.119
Using PSpice to plot the power to RL for a range of values for RL.
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The most important region of this dialog box is the Trace Expression 
listing at the bottom. The desired trace can be typed in directly, or the 
quantities of interest can be chosen from the list of Simulation Output 
Variables and deposited in the Trace Expression listing. To find the 
power to RL for the chosen range of values for RL, select W(RL) in the 
listing; it then appears as the Trace Expression. Click OK, and the plot 
in Fig. 9.121 appears. Originally, the plot extended from 0 Ω to 40 Ω. 
We reduced the range to 0 Ω to 31 Ω by selecting Plot-Axis Settings-X 
Axis-User Defined 0 to 31-OK.

Select the Toggle cursor key (which has an arrow set in a blue back-
ground) at the top of the dialog box and seven options will open to the 
right of the key that include Cursor Peak, Cursor Trough, Cursor 
Slope, Cursor Min, Cursor Max, Cursor Point, and Cursor Search. 
Select Cursor Max (the fifth one over), and the Probe Cursor dialog 
box on the screen will reveal where the peak occurred and the power 

FIG. 9.120
Plot resulting from the dc sweep of RL for the network in Fig. 9.119 before 

defining the parameters to be displayed.

FIG. 9.121
A plot of the power delivered to RL in Fig. 9.119 for a range of values for RL 

extending from 0 Ω to 30 Ω.



Computer Analysis    417Th

level at that point. In the Probe Cursor dialog box the first column titled 
Trace Color reveals the color of the trace on the W(RL) plot. This 
becomes important when there is more than one trace on the screen. The 
next column titled Trace Name is labeled X values and gives the loca-
tion on the horizontal axis for the point of interest Y1. Note that it is 
approximately 9 Ω to match the point of maximum power to the load 
RL. The next line reveals that the power W(RL) is 100W at RL = 9 Ω. 
There are other options available in the Probe Cursor dialog box by 
scrolling to the right.

It is possible that the Probe Cursor box will not appear as a separate 
entity on the screen but simply as an attachment at the bottom of the 
response screen. It can be isolated by deleting the dialog boxes to the 
right and left and then right-clicking the Toggle Cursor key. By simply 
unchecking the Allow Docking option the Probe Cursor dialog box 
will appear as a separate entity as obtained above. It can then be moved 
to any location on the screen. A second cursor can be generated by right-
clicking the mouse on the Cursor Point option and moving it to a resist-
ance of 29.98 Ω (_30 Ω). The result is a power level of 71.009 W, as 
shown on the plot. Notice also that the plot generated appears as a listing 
at the bottom left of the screen as W(RL).

Multisim

Superposition    Let us now apply superposition to the network in 
Fig. 9.122, which appeared earlier as Fig. 9.2 in Example 9.1, to permit 
a comparison of resulting solutions. The current through R2 is to be 
determined. With the use of methods described in earlier chapters for 
the application of Multisim, the network in Fig. 9.123 results, which R2 6 �

R1

12 � I2

I 9 AE 36 V
+

–

FIG. 9.122
Applying Multisim to determine the current I2 using 

superposition.

FIG. 9.123
Using Multisim to determine the contribution of the 36 V voltage source to the 

current through R2.



418    Network Theorems Th

allows us to determine the effect of the 36 V voltage source. Note in 
Fig. 9.123 that both the voltage source and current source are present 
even though we are finding the contribution due solely to the voltage 
source. Obtain the voltage source by selecting the Place Source option 
at the top of the left toolbar to open the Select a Component dialog 
box. Then select POWER_SOURCES followed by DC_POWER as 
described in earlier chapters. You can also obtain the current source 
from the same dialog box by selecting SIGNAL_CURRENT under 
Family followed by DC_CURRENT under Component. The current 
source can be flipped vertically by right-clicking the source and select-
ing Flip Vertical. Set the current source to zero by left-clicking the 
source twice to obtain the DC_CURRENT dialog box. After choosing 
Value, set Current(I) to 0 A.

Following simulation, the results appear as in Fig. 9.123. The current 
through the 6 Ω resistor is 2 A due solely to the 36 V voltage source. 
The positive value for the 2 A reading reveals that the current due to the 
36 V source is down through resistor R2.

For the effects of the current source, the voltage source is set to 
0 V as shown in Fig. 9.124. The resulting current is then 6 A through 
R2, with the same direction as the contribution due to the voltage 
source.

The resulting current for the resistor R2 is the sum of the two currents: 
IT = 2 A + 6 A = 8 A, as determined in Example 9.1.

FIG. 9.124
Using Multisim to determine the contribution of the 9 A current source to the 

current through R2.
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Problems

SECTION 9.2  Superposition Theorem

	 1.	 a.	 Using the superposition theorem, determine the current 
through the 15 Ω resistor of Fig. 9.125.

	b.	 Convert both voltage sources to current sources and 
recalculate the current to the 15 Ω resistor.

	c.	 How do the results of parts (a) and (b) compare?

	 2.	 a.	 Using the superposition theorem, determine the voltage 
across the 4.7 Ω resistor of Fig. 9.126.

	b.	 Find the power delivered to the 4.7 Ω resistor due solely 
to the current source.

	c.	 Find the power delivered to the 4.7 Ω resistor due solely 
to the voltage source.

	d.	 Find the power delivered to the 4.7 Ω resistor using the 
voltage found in part (a).

	e.	 How do the results of part (d) compare with the sum of 
the results to parts (b) and (c)? Can the superposition 
theorem be applied to power levels?

R2

R3

I

10 VE2

R1

16 VE1

4 � 2 �

15 �

+

–+

–

FIG. 9.125
Problem 1.

4.7 �

R2

3.3 � 12 V

E

2.4 �R1 R33 A
I

V

+–

+

–

FIG. 9.126
Problem 2.

	 3.	 Using the superposition theorem, determine the current 
through the 60 Ω resistor of Fig. 9.127.

24 �10 A

 24 V 12 � 60 �I

FIG. 9.127
Problem 3.

	 4.	 Using superposition, find the current I through the 24 V 
source in Fig. 9.128.

R1 18 �

R2 9 � R3 15 � R4 10 �

30 V

E2

E1  =  + 48 V

+– I

FIG. 9.128
Problem 4.

	 5.	 Using superposition, find the voltage VR3
 for the network of 

Fig. 9.129.

10 k� 18 k�R1 R24 mA

18 V
+–

R4

R3

4.7 k�

3.3 k�

VR
3
–+

FIG. 9.129
Problem 5.

	 6.	 Using superposition, find the voltage V2 for the network in 
Fig. 9.130.

R1 12 k�

I 10 mA

40 VE

V2

+

–
R2

6.8 k�

FIG. 9.130
Problem 6.
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	10.	 a.	 Find the Thévenin equivalent circuit for the network 
external to the resistor R for the network in Fig. 9.134.

	b.	 Find the power delivered to R when R is 2 kΩ  and 
100 kΩ.

	*8.	 Using superposition, find the voltage across the 6 A source 
in Fig. 9.132.

	*7.	 Using superposition, find the current through R1 for the net-
work in Fig. 9.131.

R2

6.8 k�

R1 2.2 k�

5 mA

2 mAI R4

R3

4.7 k�

1.2 k� 

8 V

I1

+

–

FIG. 9.131
Problem 7.

I = 6 A

R4 12 �

E2E1
R2R1

4 + 8 V 12 V �6 �

R5

4 �
Vs+ –

–

FIG. 9.132
Problem 8.

SECTION 9.3  Thévenin’s Theorem

	 9.	 a.	 Find the Thévenin equivalent circuit for the network 
external to the resistor R in Fig. 9.133.

	b.	 Find the current through R when R is 5 Ω, 40 Ω, and 
120 Ω.

R1

6 �

R2 9 �E R18 V

R3

4 �

+

–

FIG. 9.133
Problem 9.

R1.2 k�

3.3 k�

120 mA

2.4 k�

FIG. 9.134
Problem 10.

	11.	 a.	 Find the Thévenin equivalent circuit for the network 
external to the resistor R for the network in Fig. 9.135.

	b.	 Find the power delivered to R when R is 4 Ω and 90 Ω.

6 �

E 20 V

R2 R

6 �R1
6 �

R3

+

–

FIG. 9.135
Problem 11.

	12.	 Find the Thévenin equivalent circuit for the network exter-
nal to the resistor R for the network in Fig. 9.136.

R

18 VE1

8 �
3 �

12 VE2

R2

10 � 
R3

R1

+

–
+

–

FIG. 9.136
Problem 12.

	13.	 Find the Thévenin equivalent circuit for the network exter-
nal to the resistor R for the network in Fig. 9.137.

R

8 mA

5.6 k�

2.2 k�
+ 16 V

FIG. 9.137
Problem 13.
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1.1 k�

2.2 k�R2

– 4 V

R1

1.2 k�R

E2

E1  =  +12 V

3.3 k�

R3

FIG. 9.141
Problem 17.

	*14.	 Find the Thévenin equivalent circuit for the network exter-
nal to the resistor R in Fig. 9.138.

8 �

3 �

2 �

R

4 �

4 A

FIG. 9.138
Problem 14.

	15.	 a.	 Find the Thévenin equivalent circuit for the portions of 
the network of Fig. 9.139 external to points a and b.

	b.	 Redraw the network with the Thévenin circuit in place 
and find the current through the 10 kΩ resistor.

8 mA

4 k� 

20 V 

4 k� 

4 k� 

10 k� 4 k� 

+

– a b

FIG. 9.139
Problem 15.

	*16.	 a.	 Determine the Thevénin equivalent circuit for the net-
work external to the resistor R in Fig. 9.140.

	b.	 Find the current through the resistor R if its value is 
20 Ω, 50 Ω, and 100 Ω.

	c.	 Without having the Thévenin equivalent circuit, what 
would you have to do to find the current through the 
resistor R for all the values of part (b)?

20 V 5 � R

20 �

R2E

R1

16 �R4

12 �

R3

2 �

R5

+

–

FIG. 9.140
Problem 16.

	*17.	 a.	 Determine the Thévenin equivalent circuit for the net-
work external to the resistor R in Fig. 9.141.

	b.	 Find the polarity and magnitude of the voltage across 
the resistor R if its value is 1.2 kΩ.

	*18.	 For the network in Fig. 9.142, find the Thévenin equivalent 
circuit for the network external to the load resistor RL.

3.3 k�

RL

+ 22 V

5.6 k�

– 12 V

2.2 k�

1.2 k�

5 mA

FIG. 9.142
Problem 18.

	*19.	 For the transistor network in Fig. 9.143:
	a.	 Find the Thévenin equivalent circuit for that portion of 

the network to the left of the base (B) terminal.
	b.	 Using the fact that IC = IE and VCE = 8 V, determine 

the magnitude of IE.
	c.	 Using the results of parts (a) and (b), calculate the base 

current IB if VBE = 0.7 V.
	d.	 What is the voltage VC?

R1 51 k�

R2 10 k�

RC 2.2 k�

RE 0.5 k�

IE

IC

20 V20 V

B

C

E

VCE  =  8 V

+

–

VC

IB

FIG. 9.143
Problem 19.



422    Network Theorems Th

10 V

2 �

4 �

4 �

a

4 V

250 �

b
4 �

+

–

+

–

FIG. 9.145
Problem 21.

	20.	 For each vertical set of measurements appearing in Fig. 9.144, 
determine the Thévenin equivalent circuit.

VNetwork = 20 V

VNetwork = 60 mV

VNetwork = 16 V

INetwork = 1.6 mA

�Network = 2.72 k�

Network R = 2.2 k�

(a)

(b)

(c)

8 V

E = 0 V

+

–

FIG. 9.144
Problem 20.

	*21.	 For the network of Fig. 9.145, find the Thévenin equivalent 
circuit for the network external to the 250 Ω resistor.

SECTION 9.4  Norton’s Theorem

	22.	 a.	 Find the Norton equivalent circuit for the network exter-
nal to the resistor R in Fig. 9.133.

	b.	 Convert the Norton equivalent circuit to the Thévenin form.
	c.	 Find the Thévenin equivalent circuit using the Thévenin 

approach and compare results with part (b).
	23.	 a.	 Find the Norton equivalent circuit for the network exter-

nal to the resistor R in Fig. 9.134.
	b.	 Convert the Norton equivalent circuit to the Thévenin form.
	c.	 Find the Thévenin equivalent circuit using the Thévenin 

approach and compare results with part (b).

	24.	 Find the Norton equivalent circuit for the network external 
to the resistor R in Fig. 9.136.

	25.	 Find the Norton equivalent circuit for the network external 
to the resistor R in Fig. 9.137.

	*26.	 Find the Norton equivalent circuit for the network external 
to the resistor R in Fig. 9.138.

	*27.	 Find the Norton equivalent circuit for the network external 
to the resistor R in Fig. 9.140.

	*28.	 Find the Norton equivalent circuit for the network external 
to the resistor RL in Fig. 9.142.

	*29.	 Find the Norton equivalent circuit for the network external 
to the 250 Ω resistor in Fig. 9.145.

	*30.	 a.	 Find the Norton equivalent circuit external to points a 
and b in Fig. 9.146.

	b.	 Find the magnitude and polarity of the voltage across 
the 100 Ω resistor using the results of part (a).

80 � 

20 � 

100 � 

4 A

16 V

40 � 

8 V

+

–

a

b

FIG. 9.146
Problem 30.
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	*38.	 For the network in Fig. 9.150, determine the level of R that 
will ensure maximum power to the 100 Ω resistor. Find the 
maximum power to RL.

SECTION 9.5  Maximum Power Transfer Theorem

	31.	 a.	 Find the value of R for maximum power transfer to R for 
the network of Fig. 9.133.

	b.	 Determine the maximum power of R.

	32.	 a.	 Find the value of R for maximum power transfer to R for 
the network of Fig. 9.136.

	b.	 Determine the maximum power of R.

	33.	 a.	 Find the value of R for maximum power transfer to R for 
the network of Fig. 9.138.

	b.	 Determine the maximum power to R.

	*34.	 a.	 Find the value of RL in Fig. 9.142 for maximum power 
transfer to RL.

	b.	 Find the maximum power to RL.

	35.	 a.	 For the network of Fig. 9.147, determine the value of R 
for maximum power to R.

	b.	 Determine the maximum power to R.
	c.	 Plot a curve of power to R versus R for R ranging from 

1/4 to 2 times the value determined in part (a) using an 
increment of 1/4 the value of R. Does the curve verify 
the fact that the chosen value of R in part (a) will ensure 
maximum power transfer?

20 V

5 A RR2

R1

E

I
+

–

2.4 �

24 �

FIG. 9.147
Problem 35.

	*36.	 Find the resistance R1 in Fig. 9.148 such that the resistor R4 
will receive maximum power. Think!

100 V 50 �R4

R1

50 �R2

50 �

R3

+

–

FIG. 9.148
Problem 36.

	*37.	 a.	 For the network in Fig. 9.149, determine the value of R2 
for maximum power to R4.

	b.	 Is there a general statement that can be made about situ-
ations such as those presented here and in Problem 36?

120 V R4R2

24 �

R3

24 �

R1

E
+

–

FIG. 9.149
Problem 37.

16 V

RL

500 �  Pot.

R

100 �

+

–

FIG. 9.150
Problem 38.

SECTION 9.6  Millman’s Theorem

	39.	 Using Millman’s theorem, find the current through and volt-
age across the resistor RL in Fig. 9.151.

40 V

6 �R2

E1

RL 3 �

42 VE2

10 �R1

+

–

+

–

FIG. 9.151
Problem 39.

	40.	 Repeat Problem 38 for the network in Fig. 9.152.

5 V 8.2 k�R2E1

RL 5.6 k�

20 VE2

+

–
2.2 k�R1

+

–

FIG. 9.152
Problem 40.
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	45.	 Using the substitution theorem, draw three equivalent 
branches for the branch a-b of the network in Fig. 9.157.

	41.	 Using Millman’s theorem, find the current through and 
voltage across the resistor RL in Fig. 9.153.

+

–

400 V 80 �R2E1

20 VE2

+

–
80 �R1

RL 300 � 10 VE3

+

–

R3

50 �

FIG. 9.153
Problem 41.

	42.	 Using the dual of Millman’s theorem, find the current through 
and voltage across the resistor RL in Fig. 9.154.

R1

4.7 � RL 2.7 �

I1  =  4 A

R2

3.3 �

I2  =  1.6 A

FIG. 9.154
Problem 42.

	43.	 Using the dual of Millman’s theorem, find the current 
through and voltage across the resistor RL in Fig. 9.155.

R2

4.7 �

8 mA

I2

I1

10 mA

R1 2 k� I3

4 mA

R3 8.2 k�

6.8 k�

RL

FIG. 9.155
Problem 43.

SECTION 9.7  Substitution Theorem

	44.	 Using the substitution theorem, draw three equivalent 
branches for the branch a-b of the network in Fig. 9.156.

7 k�15 k�80 VE

8 k�4.5 k� a

b

+

–

FIG. 9.156
Problem 44.

2 k� 1.5 k�

R2

0.51 k�

4 mA

I

10 V

E
ba

R1

+ –

FIG. 9.157
Problem 45.

	*46.	 Using the substitution theorem, draw three equivalent 
branches for the branch a-b of the network of Fig. 9.158.

R2 12 �20 VE1

8 �4 � a

b

40 VE2

R3R1

+

– +

–

FIG. 9.158
Problem 46.

SECTION 9.8  Reciprocity Theorem

	47.	 a.	 For the network in Fig. 9.159(a), determine the current I.
	b.	 Repeat part (a) for the network in Fig. 9.159(b).
	c.	 Is the reciprocity theorem satisfied?

32 VE

4 k�8 k�

24 k�
20 k�

24 k�

I

(a)

+

–

32 V

E

4 k�8 k�

24 k�

24 k�

I

(b)

+

–

20 k�

FIG. 9.159
Problem 47.
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Glossary

Maximum power transfer theorem  A theorem used to deter-
mine the load resistance necessary to ensure maximum power 
transfer to the load.

Millman’s theorem  A method using source conversions that 
will permit the determination of unknown variables in a 
multiloop network.

Norton’s theorem  A theorem that permits the reduction of any 
two-terminal linear dc network to one having a single current 
source and parallel resistor.

Reciprocity theorem  A theorem that states that for single-
source networks, the current in any branch of a network due to 
a single voltage source in the network will equal the current 
through the branch in which the source was originally located 
if the source is placed in the branch in which the current was 
originally measured.

Substitution theorem  A theorem that states that if the voltage 
across and current through any branch of a dc bilateral net-
work are known, the branch can be replaced by any combina-
tion of elements that will maintain the same voltage across 
and current through the chosen branch.

Superposition theorem  A network theorem that permits consid-
ering the effects of each source independently. The resulting 
current and/or voltage is the algebraic sum of the currents 
and/or voltages developed by each source independently.

Thévenin’s theorem  A theorem that permits the reduction of 
any two-terminal, linear dc network to one having a single 
voltage source and series resistor.

	48.	 a.	 For the network of Fig. 9.160(a), determine the current I.
	b.	 Repeat part (a) for the network in Fig. 9.160(b).
	c.	 Is the reciprocity theorem satisfied?

	49.	 a.	 Determine the voltage V for the network in Fig. 9.161(a).
	b.	 Repeat part (a) for the network in Fig. 9.161(b).
	c.	 Is the dual of the reciprocity theorem satisfied?

+–

+

–

4 k 4 k

4 k 8 k

E

10 V

I

(a)

4 k 4 k

4 k 8 k

E 10 V
I

(b)

FIG. 9.160
Problem 48.

R1 3 �

R2

2 �

R3 4 �I

9 A

+  V  –

(a)

R1 3 �

R2

2 �

R3 4 �

I  =  6 A

V

(b)

+

–

FIG. 9.161
Problem 49.

SECTION 9.9  Computer Analysis

	50.	 Using PSpice or Multisim and the superposition theorem, 
determine the voltage V2 and its components for the net-
work in Fig. 9.130.

	51.	 Using PSpice or Multisim, determine the Thévenin equiva-
lent circuit for the network in Fig. 9.138.

	*52.	 a.	 Using PSpice, plot the power delivered to the resistor R 
in Fig. 9.135 for R having values from 1 Ω to 10 Ω.

	b.	 From the plot, determine the value of R resulting in the 
maximum power to R and the maximum power to R.

	c.	 Compare the results of part (a) to the numerical solution.
	d.	 Plot VR and IR versus R, and find the value of each under 

maximum power conditions.

	*53.	 Change the 300 Ω resistor in Fig. 9.145 to a variable resis-
tor, and using Pspice, plot the power delivered to the resis-
tor versus values of the resistor. Determine the range of 
resistance by trial and error rather than first performing a 
longhand calculation. Determine the Norton equivalent cir-
cuit from the results. The Norton current can be determined 
from the maximum power level.
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Capacitors

10.1  Introduction

The analysis thus far has been limited solely to dc resistive networks where the relationship 
between the current and voltage remains fixed and insensitive to time. This chapter will now 
introduce the capacitor that has a relationship between the current and voltage that is very 
dependent on how one or the other changes with time. Compared to the resistor, this device is 
very unique in that if the voltage across the capacitor fails to change with time, the current 
associated with the capacitor is zero and the two-terminal device behaves like an open circuit. 
In addition, we now know that all the energy supplied to a resistor is dissipated as heat. For a 
pure capacitor, there is no dissipation (ideally) but the energy delivered to the capacitor is 
stored in a form that can be returned to the network when called for by the network design.

Although the basic construction of capacitors is actually quite simple, it is a component 
that opens the door to all types of practical applications, extending from touch pads to 
sophisticated control systems. A few applications are introduced and discussed in detail later 
in this chapter.

10.2 T he Electric Field

Recall from Chapter 2 that a force of attraction or repulsion exists between two charged bod-
ies. We now examine this phenomenon in greater detail by considering the electric field that 
exists in the region around any charged body. This electric field is represented by electric 
flux lines, which are drawn to indicate the strength of the electric field at any point around 
the charged body. The denser the lines of flux, the stronger is the electric field. In Fig. 10.1, 
for example, the electric field strength is stronger in region a than region b because the flux 
lines are denser in region a than in b. That is, the same number of flux lines pass through 
each region, but the area A1 is much smaller than area A2. The symbol for electric flux is the 
Greek letter c (psi). The flux per unit area (flux density) is represented by the capital letter 
D and is determined by

	 D =
c

A
   (flux/unit area) 	 (10.1)

Capacitors

•	 Become familiar with the basic construction of a 
capacitor and the factors that affect its ability to 
store charge on its plates.

•	 Be able to determine the transient (time-varying) 
response of a capacitive network and plot the 
resulting voltages and currents.

•	 Understand the impact of combining capacitors in 
series or parallel and how to read the nameplate 
data.

•	 Develop some familiarity with the use of computer 
methods to analyze networks with capacitive 
elements.

Objectives

1010
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The larger the charge Q in coulombs, the greater is the number of flux 
lines extending or terminating per unit area, independent of the sur-
rounding medium. Twice the charge produces twice the flux per unit 
area. The two can therefore be equated:

	 c = Q   (coulombs, C) 	 (10.2)

By definition, the electric field strength (designated by the capital 
script letter ℰ) at a point is the force acting on a unit positive charge at 
that point; that is,

	 ℰ =
F

Q
   (newtons/coulomb, N/C) 	 (10.3)

In Fig. 10.2, the force exerted on a unit (1 coulomb) positive charge 
by a charge Q, r meters away, can be determined using Coulomb’s law 
(Eq. 2.1) as follows:

F = k 
Q1Q2

r 2 = k 
Q(1 C)

r 2 =
kQ

r 2  (k = 9 * 109 Nm2>C 2)

Substituting the result into Eq. (10.3) for a unit positive charge results in

ℰ =
F

Q
=

kQ>r 2

1>C

and	 ℰ =
kQ

r2    (N/C) 	 (10.4)

The result clearly reveals that the electric field strength is directly 
related to the size of the charge Q. The greater the charge Q, the greater 
is the electric field intensity on a unit charge at any point in the neigh-
borhood. However, the distance is a squared term in the denominator. 
The result is that the greater the distance from the charge Q, the less is 
the electric field strength, and dramatically so because of the squared 
term. In Fig. 10.1, the electric field strength at region A2 is therefore 
significantly less than at region A1.

For two charges of similar and opposite polarities, the flux distribu-
tion appears as shown in Fig. 10.3. In general,

electric flux lines always extend from a positively charged body to a 
negatively charged body, always extend or terminate perpendicular to 
the charged surfaces, and never intersect.

+
a

b

Positive charge Q
Electric
flux lines

Flux lines radiate
outward for positive
charges and inward
for negative charges.

A2

A1
Higher density

Lower density

FIG. 10.1
Flux distribution from an isolated positive charge.

+
r

1 C

FQ
+

FIG. 10.2
Determining the force on a unit charge r meters 

from a charge Q of similar polarity.
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Note in Fig. 10.3(a) that the electric flux lines establish the most 
direct pattern possible from the positive to negative charge. They are 
evenly distributed and have the shortest distance on the horizontal 
between the two charges. This pattern is a direct result of the fact that 
electric flux lines strive to establish the shortest path from one charged 
body to another. The result is a natural pressure to be as close as possi-
ble. If two bodies of the same polarity are in the same vicinity, as shown 
in Fig. 10.3(b), the result is the direct opposite. The flux lines tend to 
establish a buffer action between the two with a repulsive action that 
grows as the two charges are brought closer to one another.

10.3 C apacitance

Thus far, we have examined only isolated positive and negative spheri-
cal charges, but the description can be extended to charged surfaces of 
any shape and size. In Fig. 10.4, for example, two parallel plates of a 
material such as aluminum (the most commonly used metal in the con-
struction of capacitors) have been connected through a switch and a 
resistor to a battery. If the parallel plates are initially uncharged and the 
switch is left open, no net positive or negative charge exists on either 
plate. The instant the switch is closed, however, electrons are drawn 
from the upper plate through the resistor to the positive terminal of the 
battery. There will be a surge of current at first, limited in magnitude by 
the resistance present. The level of flow then declines, as will be demon-
strated in the sections to follow. This action creates a net positive charge 
on the top plate. Electrons are being repelled by the negative terminal 
through the lower conductor to the bottom plate at the same rate they are 
being drawn to the positive terminal. This transfer of electrons continues 
until the potential difference across the parallel plates is exactly equal to 
the battery voltage. The final result is a net positive charge on the top 

(b)

+ +

(a)

+ –

FIG. 10.3
Electric flux distributions: (a) opposite charges; (b) like charges.

E

R

Air
gap

Plates of a
conducting material

e

e
e

e

V = E

+

– +

–

+

–

+

–

+

–

+

–

+

–

FIG. 10.4
Fundamental charging circuit.
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plate and a negative charge on the bottom plate, very similar in many 
respects to the two isolated charges in Fig. 10.3(a).

Before continuing, it is important to note that the entire flow of 
charge is through the battery and resistor—not through the region 
between the plates. In every sense of the definition, there is an open 
circuit between the plates of the capacitor.

This element, constructed simply of two conducting surfaces sepa-
rated by the air gap, is called a capacitor.

Capacitance is a measure of a capacitor’s ability to store charge on 
its plates—in other words, its storage capacity.

In addition,

the higher the capacitance of a capacitor, the greater is the amount of 
charge stored on the plates for the same applied voltage.

The unit of measure applied to capacitors is the farad (F), named after 
an English scientist, Michael Faraday, who did extensive research in the 
field (Fig. 10.5). In particular,

a capacitor has a capacitance of 1 F if 1 C of charge (6.242 : 1018 
electrons) is deposited on the plates by a potential difference of 1 V 
across its plates.

The farad, however, is generally too large a measure of capacitance 
for most practical applications, so the microfarad (10-6) or picofarad 
(10-12) are more commonly encountered.

The relationship connecting the applied voltage, the charge on the 
plates, and the capacitance level is defined by the following equation:

	 C =
Q

V
   

C = farads (F)
Q = coulombs (C)
V = volts (V)

	 (10.5)

Eq. (10.5) reveals that for the same voltage (V), the greater the charge 
(Q) on the plates (in the numerator of the equation), the higher is the 
capacitance level (C).

If we write the equation in the form

	 Q = CV   (coulombs, C) 	 (10.6)

it becomes obvious through the product relationship that the higher the 
capacitance (C) or applied voltage (V), the greater is the charge on the 
plates.

EXAMPLE 10.1 

	 a.	 If 82.4 * 1014 electrons are deposited on the negative plate of a 
capacitor by an applied voltage of 60 V, find the capacitance of the 
capacitor.

	 b.	 If 40 V are applied across a 470 mF capacitor, find the charge on the 
plates.

Solutions: 

	 a.	 First find the number of coulombs of charge as follows:

82.4 * 1014 electronsa 1 C

6.242 * 1018 electrons
b = 1.32 mC

English (London)  
(1791–1867)
Chemist and Electrical Experimenter
Honorary Doctorate, Oxford University, 1832

An experimenter with no formal education, he began 
his research career at the Royal Institute in London 
as a laboratory assistant. Intrigued by the interaction 
between electrical and magnetic effects, he discov-
ered electromagnetic induction, demonstrating that 
electrical effects can be generated from a magnetic 
field (the birth of the generator as we know it today). 
He also discovered self-induced currents and intro-
duced the concept of lines and fields of magnetic 
force. Having received over one hundred academic 
and scientific honors, he became a Fellow of the 
Royal Society in 1824 at the young age of 32.

FIG. 10.5
Michael Faraday.

The Print Collector/Alamy
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		  and then

C =
Q

V
=

1.32 mC

60 V
= 22 MF  (a standard value)

	 b.	 Applying Eq. (10.6) gives

Q = CV = (470 mF)(40 V) = 18.8 mC

A cross-sectional view of the parallel plates in Fig. 10.4 is provided 
in Fig. 10.6(a). Note the fringing that occurs at the edges as the flux 
lines originating from the points farthest away from the negative plate 
strive to complete the connection. This fringing, which has the effect of 
reducing the net capacitance somewhat, can be ignored for most applica-
tions. Ideally, and the way we will assume the distribution to be in this 
text, the electric flux distribution appears as shown in Fig. 10.6(b), 
where all the flux lines are equally distributed and “fringing” does not 
occur.

The electric field strength between the plates is determined by the 
voltage across the plates and the distance between the plates as follows:

	 ℰ =
V

d
  

ℰ = volts/m (V/m)
V = volts (V)
d = meters (m)

	 (10.7)

Note that the distance between the plates is measured in meters, not cen-
timeters or inches.

The equation for the electric field strength is determined by two fac-
tors only: the applied voltage and the distance between the plates. The 
charge on the plates does not appear in the equation, nor does the size of 
the capacitor or the plate material.

Many values of capacitance can be obtained for the same set of paral-
lel plates by the addition of certain insulating materials between the 
plates. In Fig. 10.7, an insulating material has been placed between a set 
of parallel plates having a potential difference of V volts across them.

�

Fringing

(a)

+ + + + + + + + +

– – – – – – – – –

�

(b)

+ + + + + + + + +
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FIG. 10.6
Electric flux distribution between the plates of a 

capacitor: (a) including fringing; (b) ideal.
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FIG. 10.7
Effect of a dielectric on the field distribution between the plates of a capacitor: 
(a) alignment of dipoles in the dielectric; (b) electric field components between 

the plates of a capacitor with a dielectric present.

Since the material is an insulator, the electrons within the insulator 
are unable to leave the parent atom and travel to the positive plate. The 
positive components (protons) and negative components (electrons) of 
each atom do shift, however [as shown in Fig. 10.7(a)], to form dipoles.

When the dipoles align themselves as shown in Fig. 10.7(a), the mate-
rial is polarized. A close examination within this polarized material 
reveals that the positive and negative components of adjoining dipoles are 
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neutralizing the effects of each other [note the oval area in Fig. 10.7(a)]. 
The layer of positive charge on one surface and the negative charge on the 
other are not neutralized, however, resulting in the establishment of an 
electric field within the insulator [ℰdielectric; Fig. 10.7(b)].

In Fig. 10.8(a), two plates are separated by an air gap and have layers 
of charge on the plates as established by the applied voltage and the dis-
tance between the plates. The electric field strength is ℰ1 as defined by 
Eq. (10.7). In Fig. 10.8(b), a slice of mica is introduced, which, through 
an alignment of cells within the dielectric, establishes an electric field ℰ2 
that will oppose electric field ℰ1. The effect is to try to reduce the elec-
tric field strength between the plates. However, Eq. (10.7) states that the 
electric field strength must be the value established by the applied volt-
age and the distance between the plates. This condition is maintained by 
placing more charge on the plates, thereby increasing the electric field 
strength between the plates to a level that cancels out the opposing elec-
tric field introduced by the mica sheet. The net result is an increase in 
charge on the plates and an increase in the capacitance level as estab-
lished by Eq. (10.5).
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FIG. 10.8
Demonstrating the effect of inserting a dielectric between the plates of a capacitor:  

(a) air capacitor; (b) dielectric being inserted.

Different materials placed between the plates establish different 
amounts of additional charge on the plates. All, however, must be insula-
tors and must have the ability to set up an electric field within the struc-
ture. A list of common materials appears in Table 10.1 using air as the 
reference level of 1.* All of these materials are referred to as dielectrics, 
the “di” for opposing, and the “electric” from electric field. The symbol 
Pr in Table 10.1 is called the relative permittivity (or dielectric con-
stant). The term permittivity is applied as a measure of how easily a 
material “permits” the establishment of an electric field in the material. 
The relative permittivity compares the permittivity of a material to that of 
air. For instance, Table 10.1 reveals that mica, with a relative permittivity 
of 5, “permits” the establishment of an opposing electric field in the 
material five times better than in air. Note the ceramic material at the bot-
tom of the chart with a relative permittivity of 7500—a relative permittiv-
ity that makes it a very special dielectric in the manufacture of capacitors.

*Although there is a difference in dielectric characteristics between air and a vacuum, the 
difference is so small that air is commonly used as the reference level.
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Defining Po as the permittivity of air, we define the relative permittiv-
ity of a material with a permittivity P by

	 Pr =
P
Po
   (dimensionless) 	 (10.8)

Note that Pr, which (as mentioned previously) is often called the dielec-
tric constant, is a dimensionless quantity because it is a ratio of similar 
quantities. However, permittivity does have the units of farads/meter 
(F/m) and is 8.85 * 10-12 F/m for air. Although the relative permittivity 
for the air we breathe is listed as 1.006, a value of 1 is normally used for 
the relative permittivity of air.

For every dielectric there is a potential that, if applied across the die-
lectric, will break down the bonds within it and cause current to flow 
through it. The voltage required per unit length is an indication of its 
dielectric strength and is called the breakdown voltage. When break-
down occurs, the capacitor has characteristics very similar to those of a 
conductor. A typical example of dielectric breakdown is lightning, 
which occurs when the potential between the clouds and the earth is so 
high that charge can pass from one to the other through the atmosphere 
(the dielectric). The average dielectric strengths for various dielectrics 
are tabulated in volts/mil in Table 10.2 (1 mil = 1>1000 inch).

One of the important parameters of a capacitor is the maximum 
working voltage. It defines the maximum voltage that can be placed 
across the capacitor on a continuous basis without damaging it or chang-
ing its characteristics. For most capacitors, it is the dielectric strength 
that defines the maximum working voltage.

10.4 C apacitors

Capacitor Construction

We are now aware of the basic components of a capacitor: conductive 
plates, separation, and dielectric. However, the question remains, How 
do all these factors interact to determine the capacitance of a capacitor? 

TABLE 10.1
Relative permittivity (dielectric constant) Pr of various dielectrics.

Dielectric `r (Average Values)

Vacuum 1.0
Air 1.0006
Teflon® 2.0
Paper, paraffined 2.5
Rubber 3.0
Polystyrene 3.0
Oil 4.0
Mica 5.0
Porcelain 6.0
Bakelite® 7.0
Aluminum oxide 7
Glass 7.5
Tantalum oxide 30
Ceramics 20–7500
Barium-strontium titanite (ceramic) 7500.0

TABLE 10.2
Dielectric strength of some dielectric materials.

Dielectric

Dielectric  
Strength  
(Average  

Value)  
in Volts/Mil

Air 75
Barium-strontium  
  titanite (ceramic)

75

Ceramics 75–1000
Porcelain 200
Oil 400
Bakelite® 400
Rubber 700
Paper paraffined 1300
Teflon® 1500
Glass 3000
Mica 5000
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Larger plates permit an increased area for the storage of charge, so 
the area of the plates should be in the numerator of the defining equa-
tion. The smaller the distance between the plates, the larger is the 
capacitance, so this factor should appear in the denominator of the 
equation. Finally, since higher levels of permittivity result in higher 
levels of capacitance, the factor P should appear in the numerator of 
the defining equation.

The result is the following general equation for capacitance:

	 C = PA
d
   

C = farads (F)
 P = permittivity (F/m)
A = m2

 d = m

	 (10.9)

If we substitute Eq. (10.8) for the permittivity of the material, we obtain 
the following equation for the capacitance:

	 C = PoPr
A

d
   (farads, F) 	 (10.10)

or if we substitute the known value for the permittivity of air, we obtain 
the following useful equation:

	 C = 8.85 * 10 - 12Pr
A

d
   (farads, F) 	 (10.11)

It is important to note in Eq. (10.11) that the area of the plates (actually 
the area of only one plate) is in meters squared (m2); the distance 
between the plates is measured in meters; and the numerical value of Pr 
is simply taken from Table 10.1.

You should also be aware that most capacitors are in the mF, nF, or 
pF range, not the 1 F or greater range. A 1 F capacitor can be as large as 
a typical flashlight, requiring that the housing for the system be quite 
large. Most capacitors in electronic systems are the size of a thumbnail 
or smaller.

If we form the ratio of the equation for the capacitance of a capacitor 
with a specific dielectric to that of the same capacitor with air as the 
dielectric, the following results:

C = P
A

d

Co = Po
A

d

 1  
C

Co
=

P
Po

= Pr

and	 C = PrCo � (10.12)

The result is that

the capacitance of a capacitor with a dielectric having a relative 
permittivity of Pr is Pr times the capacitance using air as the dielectric.

The next few examples review the concepts and equations just presented.

EXAMPLE 10.2  In Fig. 10.9, if each air capacitor in the left column is 
changed to the type appearing in the right column, find the new capaci-
tance level. For each change, the other factors remain the same.
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Solutions: 

	 a.	 In Fig. 10.9(a), the area has increased by a factor of three, providing 
more space for the storage of charge on each plate. Since the area 
appears in the numerator of the capacitance equation, the capaci-
tance increases by a factor of three. That is,

C = 3(Co) = 3(5 mF) = 15 MF

	 b.	 In Fig. 10.9(b), the area stayed the same, but the distance between 
the plates was increased by a factor of two. Increasing the distance 
reduces the capacitance level, so the resulting capacitance is one-
half of what it was before. That is,

C =
1

2
(0.1 mF) = 0.05 MF

	 c.	 In Fig. 10.9(c), the area and the distance between the plates were 
maintained, but a dielectric of paraffined (waxed) paper was added 
between the plates. Since the permittivity appears in the numerator 
of the capacitance equation, the capacitance increases by a factor 
determined by the relative permittivity. That is,

C = PrCo = 2.5(20 mF) = 50 MF

	 d.	 In Fig. 10.9(d), a multitude of changes are happening at the same 
time. However, solving the problem is simply a matter of deter-
mining whether the change increases or decreases the capacitance 
and then placing the multiplying factor in the numerator or de-
nominator of the equation. The increase in area by a factor of four 
produces a multiplier of four in the numerator, as shown in the 
equation below. Reducing the distance by a factor of 1/8 will in-
crease the capacitance by its inverse, or a factor of eight. Inserting 
the mica dielectric increases the capacitance by a factor of five. 
The result is

C = (5) 
4

(1>8)
 (Co) = 160(1000 pF) = 0.16 MF 

C = 20   F C = ?

�r = 2.5
(paraffined
paper)

�o

(c)

same A, d
1
8 d

C = 1000 pF C = ?

A

d

(d)

�o

4A

�r = 5 (mica)

All parameters
changed

d

C = 5   F

d

3A

C = ?

(a)

A

Same d, �r

C = 0.1   F

2dd

C = ?

(b)
Same A, �r

FIG. 10.9
Example 10.2.
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In the next example, the dimensions of an air capacitor are provided 
and the capacitance is to be determined. The example emphasizes the 
importance of knowing the units of each factor of the equation. Failing 
to make a conversion to the proper set of units will probably produce a 
meaningless result, even if the proper equation were used and the math-
ematics properly executed.

EXAMPLE 10.3  For the capacitor in Fig. 10.10:

	 a.	 Find the capacitance.
	 b.	 Find the strength of the electric field between the plates if 48 V are 

applied across the plates.
	 c.	 Find the charge on each plate.

Solutions: 

	 a.	 First, the area and the distance between the plates must be converted 
to the SI system as required by Eq. (10.11):

d =
1

32
 in.a 1 m

39.37 in.
b = 0.794 mm

and	 A = (2 in.)(2 in.)a 1 m

39.37 in.
b a 1 m

39.37 in.
b = 2.581 * 10-3 m2

		  Eq. (10.11):

C = 8.85 * 10-12 Pr 
A

d
= 8.85 * 10-12(1)

(2.581 * 10-3m2)

0.794 mm
= 28.8 pF

	 b.	 The electric field between the plates is determined by Eq. (10.7):

ℰ =
V

d
=

48 V

0.794 mm
= 60.5 kV ,m

	 c.	 The charge on the plates is determined by Eq. (10.6):

Q = CV = (28.8 pF)(48 V) = 1.38 nC

In the next example, we will insert a ceramic dielectric between the 
plates of the air capacitor in Fig. 10.10 and see how it affects the capaci-
tance level, electric field, and charge on the plates.

EXAMPLE 10.4 

	 a.	 Insert a ceramic dielectric with an Pr of 250 between the plates of 
the capacitor in Fig. 10.10. Then determine the new level of capaci-
tance. Compare your results to the solution in Example 10.3.

	 b.	 Find the resulting electric field strength between the plates, and 
compare your answer to the result in Example 10.3.

	 c.	 Determine the charge on each of the plates, and compare your 
answer to the result in Example 10.3.

Solutions: 

	 a.	 From Eq. (10.12), the new capacitance level is

C = PrCo = (250)(28.8 pF) = 7200 pF = 7.2 nF = 0.0072 MF

		  which is significantly higher than the level in Example 10.3.

�o

2″
1

32

Q (+)

Q (–)

2″
″

FIG. 10.10
Air capacitor for Example 10.3.
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	 b.	 ℰ =
V

d
=

48 V

0.794 mm
= 60.5 kV ,m

Since the applied voltage and the distance between the plates 
did not change, the electric field between the plates remains the 
same.

	 c.	 Q = CV = (7200 pF)(48 V) = 345.6 nC = 0.35 MC

We now know that the insertion of a dielectric between the plates 
increases the amount of charge stored on the plates. In Example 10.4, 
since the relative permittivity increased by a factor of 250, the charge on 
the plates increased by the same amount.

EXAMPLE 10.5  Find the maximum voltage that can be applied across 
the capacitor in Example 10.4 if the dielectric strength is 80 V/mil.

Solution: 

	 d =
1

32
 in.a 1000 mils

1 in.
b = 31.25 mils

and	 Vmax = 31.25 mils a 80 V

mil
b = 2.5 kV

although the provided working voltage may be only 2 kV to provide a 
margin of safety.

Types of Capacitors

Capacitors, like resistors, can be listed under two general headings: 
fixed and variable. The symbol for the fixed capacitor appears in Fig. 
10.11(a). Note that the curved side is normally connected to ground or to 
the point of lower dc potential. The symbol for variable capacitors 
appears in Fig. 10.11(b).

Fixed Capacitors    Fixed-type capacitors come in all shapes and 
sizes. However,

in general, for the same type of construction and dielectric, the larger 
the required capacitance, the larger is the physical size of the 
capacitor.

In Fig. 10.12(a), the 10,000 mF electrolytic capacitor is significantly 
larger than the 1 mF capacitor. However, it is certainly not 10,000 times 
larger. For the polyester-film type of Fig. 10.12(b), the 2.2 mF capacitor 
is significantly larger than the 0.01 mF capacitor, but again it is not 
220 times larger. The 22 mF tantalum capacitor of Fig. 10.12(c) is about 
6 times larger than the 1.5 mF capacitor, even though the capacitance 
level is about 15 times higher. It is particularly interesting to note that 
due to the difference in dielectric and construction, the 22 mF tantalum 
capacitor is significantly smaller than the 2.2 mF polyester-film capaci-
tor and much smaller than 1/5 the size of the 100 mF electrolytic capac-
itor. The relatively large 10,000 mF electrolytic capacitor is normally 
used for high-power applications, such as in power supplies and high-
output speaker systems. All the others may appear in any commercial 
electronic system.

(a) (b)

FIG. 10.11
Symbols for the capacitor: (a) fixed; (b) variable.
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The increase in size is due primarily to the effect of area and thickness 
of the dielectric on the capacitance level. There are a number of ways to 
increase the area without making the capacitor too large. One is to lay out 
the plates and the dielectric in long, narrow strips and then roll them all 
together, as shown in Fig. 10.13(a). The dielectric (remember that it has 
the characteristics of an insulator) between the conducting strips ensures 
the strips never touch. Of course, the dielectric must be the type that can be 
rolled without breaking up. Depending on how the materials are wrapped, 
the capacitor can be either a cylindrical or a rectangular, box-type shape.

1 µF 100 µF
(a)

10,000 µF = 0.01 F = 1/100 F

2.2 µF0.22 µF
(b)

0.01 µF

1.5 µF 22 µF
(c)

FIG. 10.12
Demonstrating that, in general, for each type of construction, the size of a 

capacitor increases with the capacitance value: (a) electrolytic;  
(b) polyester-film; (c) tantalum.

(b)

Foil
Mica

Foil
Mica

Foil
Mica

Foil

(a)

Connected to
one foil

Connected to
the other foil

Kraft paper
Aluminum foil
Polyester (plastic) film
Aluminum foil
Kraft paper

(c)

Tantalum

+

–

FIG. 10.13
Three ways to increase the area of a capacitor: (a) rolling; (b) stacking; (c) insertion.

A second popular method is to stack the plates and the dielectrics, as 
shown in Fig. 10.14(b). The area is now a multiple of the number of die-
lectric layers. This construction is very popular for smaller capacitors. A 
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third method is to use the dielectric to establish the body shape [a cylin-
der in Fig. 10.13(c)]. Then simply insert a rod for the positive plate, and 
coat the surface of the cylinder to form the negative plate, as shown in 
Fig. 10.13(c). Although the resulting “plates” are not the same in con-
struction or surface area, the effect is to provide a large surface area for 
storage (the density of electric field lines will be different on the two 
“plates”), although the resulting distance factor may be larger than 
desired. Using a dielectric with a high Pr, however, compensates for the 
increased distance between the plates.

There are other variations of the above to increase the area factor, but 
the three depicted in Fig. 10.13 are the most popular.

The next controllable factor is the distance between the plates. This 
factor, however, is very sensitive to how thin the dielectric can be made, 
with natural concerns because the working voltage (the breakdown volt-
age) drops as the gap decreases. Some of the thinnest dielectrics are just 
oxide coatings on one of the conducting surfaces (plates). A very thin 
polyester material, such as Mylar®, Teflon®, or even paper with a paraf-
fin coating, provides a thin sheet of material than can easily be wrapped 
for increased areas. Materials such as mica and some ceramic materials 
can be made only so thin before crumbling or breaking down under stress.

The last factor is the dielectric, for which there is a wide range of pos-
sibilities. However, the following factors greatly influence which dielec-
tric is used:

The level of capacitance desired
The resulting size
The possibilities for rolling, stacking, and so on
Temperature sensitivity
Working voltage

The range of relative permittivities is enormous, as shown in Table 
10.2, but all the factors listed above must be considered in the construc-
tion process.

In general, the most common fixed capacitors are the electrolytic, 
film, polyester, foil, ceramic, mica, dipped, and oil types.

The electrolytic capacitors in Fig. 10.14 are usually easy to identify 
by their shape and the fact that they usually have a polarity marking on 
the body (although special-application electrolytics are available that 
are not polarized). Few capacitors have a polarity marking, but those 
that do must be connected with the negative terminal connected to 
ground or to the point of lower potential. The markings often used to 
denote the positive terminal or plate include + , u, and ∆. In general, 

(b)

WBR

20 –350

20 MFD

350 VDC

TAIWAN

WBR

20 –350

20 MFD

350 VDC

TAIWAN

(c) (d)(a) (e)

FIG. 10.14
Various types of electrolytic capacitors: (a) miniature radial leads; (b) axial leads; (c) flatpack;  

(d) surface-mount; (e) screw-in terminals.
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electrolytic capacitors offer some of the highest capacitance values 
available, although their working voltage levels are limited. Typical 
values range from 0.1 mF to 15,000 mF, with working voltages from 
5 V to 450 V. The basic construction uses the rolling process in Fig. 
10.13(a) in which a roll of aluminum foil is coated on one side with 
aluminum oxide—the aluminum being the positive plate and the oxide 
the dielectric. A layer of paper or gauze saturated with an electrolyte (a 
solution or paste that forms the conducting medium between the elec-
trodes of the capacitor) is placed over the aluminum oxide coating of 
the positive plate. Another layer of aluminum without the oxide coating 
is then placed over this layer to assume the role of the negative plate. In 
most cases, the negative plate is connected directly to the aluminum 
container, which then serves as the negative terminal for external con-
nections. Because of the size of the roll of aluminum foil, the overall 
size of the electrolytic capacitor is greater than most.

Film, polyester, foil, polypropylene, or Teflon® capacitors use a 
rolling or stacking process to increase the surface area, as shown in Fig. 
10.15. The resulting shape can be either round or rectangular, with radial 
or axial leads. The typical range for such capacitors is 100 pF to 10 mF, 
with units available up to 100 mF. The name of the unit defines the type 
of dielectric employed. Working voltages can extend from a few volts to 
2000 V, depending on the type of unit.

(a) (b) (c) (d)

MKP
1841-M

0016
ER

Q

OMT 2P18K
18MFD210%

200VOC CDET

FIG. 10.15
(a) Film/foil polyester radial lead; (b) metalized polyester-film axial lead; (c) surface-mount polyester-film;  

(d) polypropylene-film, radial lead.

Ceramic capacitors (often called disc capacitors) use a ceramic die-
lectric, as shown in Fig. 10.16(a), to utilize the excellent Pr values and 
high working voltages associated with a number of ceramic materials. 

Solder

Ceramic dielectric

Lead wire soldered
to silver electrode

Dipped phenolic coating

Silver electrodes deposited on
top and bottom of ceramic disc

(a)

10

(b)

FIG. 10.16
Ceramic (disc) capacitor: (a) construction; (b) appearance.
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Stacking can also be applied to increase the surface area. An example of 
the disc variety appears in Fig. 10.16(b). Ceramic capacitors typically 
range in value from 10 pF to 0.047 mF, with high working voltages that 
can reach as high as 10 kV.

Mica capacitors use a mica dielectric that can be monolithic (single 
chip) or stacked. The relatively small size of monolithic mica chip 
capacitors is demonstrated in Fig. 10.17(a), with their placement shown 
in Fig. 10.17(b). A variety of high-voltage mica paper capacitors are 
displayed in Fig. 10.17(c). Mica capacitors typically range in value from 
2 pF to several microfarads, with working voltages up to 20 kV.

Dipped capacitors are made by dipping the dielectric (tantalum or 
mica) into a conductor in a molten state to form a thin, conductive sheet 
on the dielectric. Due to the presence of an electrolyte in the manufactur-
ing process, dipped tantalum capacitors require a polarity marking to 
ensure that the positive plate is always at a higher potential than the 
negative plate, as shown in Fig. 10.18(a). A series of small positive signs 
is typically applied to the casing near the positive lead. A group of non-
polarized, mica dipped capacitors are shown in Fig. 10.18(b). They typi-
cally range in value from 0.1 mF to 680 mF, but with lower working 
voltages ranging from 6 V to 50 V.

Most oil capacitors such as appearing in Fig. 10.19 are used for indus-
trial applications such as welding, high-voltage power supplies, surge pro-
tection, and power-factor correction (Chapter 20). They can provide 
capacitance levels extending from 0.001 mF all the way up to 10,000 mF, 
with working voltages up to 150 kV. Internally, there are a number of paral-
lel plates sitting in a bath of oil or oil-impregnated material (the dielectric).

Variable Capacitors    All the parameters in Eq. (10.11) can be 
changed to some degree to create a variable capacitor. For example, 
in Fig. 10.20(a), the capacitance of the variable air capacitor is changed 
by turning the shaft at the end of the unit. By turning the shaft, you 
control the amount of common area between the plates: The less com-
mon area there is, the lower is the capacitance. In Fig. 10.20(b), we 
have a much smaller air trimmer capacitor. It works under the same 
principle, but the rotating blades are totally hidden inside the structure. 

(c)(a) (c)(a)

FIG. 10.17
Mica capacitors: (a) and (b) surface-mount monolithic chips; (c) high-voltage/temperature mica paper capacitors.

[(a) and (b) Courtesy of Vishay Intertechnology, Inc.; (c) Courtesy of Custom Electronics, Inc.]
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FIG. 10.18
Dipped capacitors: (a) polarized tantalum;  

(b) nonpolarized mica.

FIG. 10.19
Oil-filled, metallic oval case snubber capacitor (the 

snubber removes unwanted voltage spikes).
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In Fig. 10.20(c), the ceramic trimmer capacitor permits varying the 
capacitance by changing the common area as above or by applying 
pressure to the ceramic plate to reduce the distance between the plates.

Leakage Current and ESR

Although we would like to think of capacitors as ideal elements, unfortu-
nately, this is not the case. There is a dc resistance appearing as Rs in the 
equivalent model of Fig. 10.21 due to the resistance introduced by the 
contacts, the leads, or the plate or foil materials. In addition, up to this 
point, we have assumed that the insulating characteristics of dielectrics 
prevent any flow of charge between the plates unless the breakdown volt-
age is exceeded. In reality, however, dielectrics are not perfect insulators, 
and they do carry a few free electrons in their atomic structure.

(a) (b) (c)

FIG. 10.20
Variable capacitors: (a) air; (b) air trimmer; (c) ceramic dielectric compression trimmer.

(a) (b)

V

I

I

C

+

–

+

–

Rs

C Rp

Rs

C

V Rp

FIG. 10.21
Leakage current: (a) including the dc and leakage resistance in the equivalent model 

for a capacitor; (b) internal discharge of a capacitor due to the leakage current.

When a voltage is applied across a capacitor, a leakage current is 
established between the plates. This current is usually so small that it can be 
ignored for the application under investigation. The availability of free 
electrons to support current flow is represented by a large parallel resistor 
Rp in the equivalent circuit for a capacitor as shown in Fig. 10.21(a). If we 
apply 10 V across a capacitor with an internal resistance of 1000 MΩ, the 
current will be 0.01 mA—a level that can be ignored for most applications.

The real problem associated with leakage currents is not evident until 
you ask the capacitors to sit in a charged state for long periods of time. As 
shown in Fig. 10.21(b), the voltage (V = Q>C) across a charged capaci-
tor also appears across the parallel leakage resistance and establishes a 
discharge current through the resistor. In time, the capacitor is totally 
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discharged. Capacitors such as the electrolytic that have high leakage 
currents (a leakage resistance of 0.5 MΩ is typical) usually have a lim-
ited shelf life due to this internal discharge characteristic. Ceramic, tanta-
lum, and mica capacitors typically have unlimited shelf life due to leakage 
resistances in excess of 1000 MΩ. Thin-film capacitors have lower lev-
els of leakage resistances that result in some concern about shelf life.

There is another quantity of importance when defining the complete 
capacitive equivalent: the equivalent series resistance (ESR). It is a 
quantity of such importance to the design of switching and linear power 
supplies that it holds equal weight with the actual capacitance level. It is 
a frequency-sensitive characteristic that will be examined in Chapter 14 
after the concept of frequency response has been introduced in detail. As 
the name implied, it is included in the equivalent model for the capacitor 
as a series resistor that includes all the dissipative factors in an actual 
capacitor that go beyond just the dc resistance. The picture of an ESR 
meter is provided as Fig. 14.25.

Temperature Effects: ppm

Every capacitor is temperature sensitive, with the nameplate capacitance 
level specified at room temperature. Depending on the type of dielectric, 
increasing or decreasing temperatures can cause either a drop or a rise in 
capacitance. If temperature is a concern for a particular application, the 
manufacturer will provide a temperature plot, such as shown in Fig. 
10.22, or a ppm/°C (parts per million per degree Celsius) rating for the 
capacitor. Note in Fig. 10.20 the 0% variation from the nominal (name-
plate) value at 25°C (room temperature). At 0°C (freezing), it has 
dropped 20%, while at 100°C (the boiling point of water), it has dropped 
70%—a factor to consider for some applications.

As an example of using the ppm level, consider a 100 mF capacitor 
with a temperature coefficient or ppm of -150 ppm/°C. It is important 
to note the negative sign in front of the ppm value because it reveals that 
the capacitance will drop with increase in temperature. It takes a moment 
to fully appreciate a term such as parts per million. In equation form, a 
negative 150 parts per million can be written as

-
150

1,000,000
*

If we then multiply this term by the capacitor value, we can obtain the 
change in capacitance for each 1°C change in temperature. That is,

-
150

1,000,000
 (100 mF)>°C = −0.015 MF , °C = −15,000 pF , °C

If the temperature should rise by 25°C, the capacitance would decrease by

-
15,000 pF

°C
 (25 °C) = −0.38 MF

changing the capacitance level to

100 mF - 0.38 mF = 99.62 MF

Capacitor Labeling

Due to the small size of some capacitors, various marking schemes have 
been adopted to provide the capacitance level, tolerance, and, if possi-
ble, working voltage. In general, however, as pointed out above, the size 
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FIG. 10.22
Variation of capacitor value with temperature.
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of the capacitor is the first indicator of its value. In fact, most marking 
schemes do not indicate whether it is in mF or pF. It is assumed that you 
can make that judgment purely from the size. The smaller units are typi-
cally in pF and the larger units in mF. Unless indicated by an n or N, 
most units are not provided in nF. On larger mF units, the value can 
often be printed on the jacket with the tolerance and working voltage. 
However, smaller units need to use some form of abbreviation as shown 
in Fig. 10.23. For very small units such as those in Fig. 10.23(a) with 
only two numbers, the value is recognized immediately as being in pF 
with the K an indicator of a {10% tolerance level. Too often the K is 
read as a multiplier of 103, and the capacitance is read as 20,000 pF or 
20 nF rather than the actual 20 pF.

For the unit in Fig. 10.23(b), there was room for a lowercase n to repre-
sent a multiplier of 10 - 9, resulting in a value of 200 nF. To avoid unnec-
essary confusion, the letters used for tolerance do not include N, U, or P, 
so the presence of any of these letters in upper- or lowercase normally 
refers to the multiplier level. The J appearing on the unit in Fig. 10.23(b) 
represents a {5% tolerance level. For the capacitor in Fig. 10.23(c), the 
first two numbers are the numerical value of the capacitor, while the third 
number is the power of the multiplier (or number of zeros to be added to 
the first two numbers). The question then remains whether the units are 
mF or pF. With the 223 representing a number of 22,000, the units are 
certainly not mF because the unit is too small for such a large capaci-
tance. It is a 22,000 pF = 22 nF capacitor. The F represents a {1% tol-
erance level. Multipliers of 0.01 use an 8 for the third digit, while 
multipliers of 0.1 use a 9. The capacitor in Fig. 10.23(d) is a 
33 * 0.1 = 3.3 mF capacitor with a tolerance of {20% as defined by 
the capital letter M. The capacitance is not 3.3 pF because the unit is too 
large; again, the factor of size is very helpful in making a judgment about 
the capacitance level. It should also be noted that MFD is sometimes 
used to signify microfarads.

Measurement and Testing of Capacitors

The capacitance of a capacitor can be read directly using a meter such as 
the Universal LCR Meter in Fig. 10.24. If you set the meter on C for 
capacitance, it will automatically choose the most appropriate unit of 
measurement for the element, that is, F, mF, nF, or pF. Note the polarity 
markings on the meter for capacitors that have a specified polarity.

The best check is to use a meter such as the one in Fig. 10.24. How-
ever, if it is unavailable, an ohmmeter can be used to determine whether 
the dielectric is still in good working order or whether it has deteriorated 
due to age or use (especially for paper and electrolytics). As the dielec-
tric breaks down, the insulating qualities of the material decrease to the 
point where the resistance between the plates drops to a relatively low 

(d)(c)(b)(a)

20
K

200n
J 223F 339M

FIG. 10.23
Various marking schemes for small capacitors.

FIG. 10.24
Digital reading capacitance meter.

(Courtesy of B+K Precision)
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level. To use an ohmmeter, be sure that the capacitor is fully discharged 
by placing a lead directly across its terminals. Then hook up the meter 
(paying attention to the polarities if the unit is polarized) as shown in 
Fig. 10.25, and note whether the resistance has dropped to a relatively 
low value (0 to a few kilohms). If so, the capacitor should be discarded. 
You may find that the reading changes when the meter is first connected. 
This change is due to the charging of the capacitor by the internal supply 
of the ohmmeter. In time the capacitor becomes stable, and the correct 
reading can be observed. Typically, it should pin at the highest level on 
the megohm scales or indicate OL on a digital meter.

The above ohmmeter test is not all-inclusive because some capacitors 
exhibit the breakdown characteristics only when a large voltage is 
applied. The test, however, does help isolate capacitors in which the 
dielectric has deteriorated.

Standard Capacitor Values

The most common capacitors use the same numerical multipliers 
encountered for resistors.

The vast majority are available with 5%, 10%, or 20% tolerances. There 
are capacitors available, however, with tolerances of 1%, 2%, or 3%, if 
you are willing to pay the price. Typical values include 0.1 mF, 0.15 mF, 
0.22 mF, 0.33 mF, 0.47 mF, 0.68 mF; and 1 mF, 1.5 mF, 2.2 mF, 3.3 mF, 
4.7 mF, 6.8 mF; and 10 pF, 22 pF, 33 pF, 100 pF; and so on.

10.5 T ransients in Capacitive Networks: 
The Charging Phase

The placement of charge on the plates of a capacitor does not occur 
instantaneously. Instead, it occurs over a period of time determined by 
the components of the network. The charging phase—the phase dur-
ing which charge is deposited on the plates—can be described by 
reviewing the response of the simple series circuit in Fig. 10.4. The 
circuit has been redrawn in Fig. 10.26 with the symbol for a fixed 
capacitor. With the switch of Fig. 10.26 open, the source voltage E is 
not part of the circuit. The voltage across the capacitor will be zero 
volts, as shown in Fig. 10.27 below t = 0 s, and the current through 
the circuit will be zero ampere. However, the instant the switch is 
closed, electrons are drawn from the top plate and deposited on the 
bottom plate by the battery, resulting in a net positive charge on the top 
plate and a negative charge on the bottom plate. The transfer of elec-
trons is very rapid at first, slowing down as the potential across the 
plates approaches the applied voltage of the battery. Eventually, when 
the voltage across the capacitor equals the applied voltage, the transfer 
of electrons ceases, and the plates have a net charge determined by 
Q = CyC = CE. This period of time during which charge is being 
deposited on the plates is called the transient period—a period of 
time where the voltage or current changes from one steady-state level 
to another.

Since the voltage across the plates is directly related to the charge on 
the plates by V = Q>C, a plot of the voltage across the capacitor will 
have the same shape as a plot of the charge on the plates over time. As 
shown in Fig. 10.27, the voltage across the capacitor is zero volts when 
the switch is closed (t = 0 s). It then builds up very quickly at first since 

O.L.

COM+

20MΩ

FIG. 10.25
Checking the dielectric of an electrolytic capacitor.
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FIG. 10.26
Basic R-C charging network.
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E
vC

0 t

Rapid increase

Switch closed

FIG. 10.27
yC during the charging phase.
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charge is being deposited at a very high rate of speed. As time passes, 
the charge is deposited at a slower rate, and the change in voltage drops 
off. The voltage continues to grow, but at a much slower rate. Eventu-
ally, as the voltage across the plates approaches the applied voltage, the 
charging rate is very slow, until finally the voltage across the plates is 
equal to the applied voltage—the transient phase has passed.

Fortunately, the waveform in Fig. 10.27 from beginning to end can 
be described using the mathematical function e-x. It is an exponential 
function that decreases with time, as shown in Fig. 10.28. If we substi-
tute zero for x, we obtain e-0, which by definition is 1, as shown in 
Table 10.3 and on the plot in Fig. 10.28. Table 10.3 reveals that as x 
increases, the function e-x decreases in magnitude until it is very close 
to zero after x = 5. As noted in Table 10.3, the exponential factor 
e1 = e = 2.71828.

A plot of 1 - e-x is also provided in Fig. 10.28 since it is a compo-
nent of the voltage yC in Fig. 10.27. When e-x is 1, 1 - e-x is zero, as 
shown in Fig. 10.28, and when e-x decreases in magnitude, 1 - e-x 
approaches 1, as shown in the same figure.

0 1� 2� 3� 4� 5� 6�
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y  =  e–x

y  =  1  –  e –x
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0.632 (close to     )2 3
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FIG. 10.28
Universal time constant chart.

TABLE 10.3
Selected values of e - x.

x = 0 e-x = e-0 =
1

e0 =
1

1
= 1

x = 1 e-1 =
1
e

=
1

2.71828 . . .
= 0.3679

x = 2 e-2 =
1

e2 = 0.1353

x = 5 e-5 =
1

e5
= 0.00674

x = 10 e-10 =
1

e10 = 0.0000454

x = 100 e - 100 =
1

e100 = 3.72 * 10 - 44

You may wonder how this mathematical function can help us if it 
decreases with time and the curve for the voltage across the capacitor 
increases with time. We simply place the exponential in the proper 
mathematical form as follows:

	 yC = E(1 - e - t>t)  
charging

  (volts, V) 	 (10.13)

First note in Eq. (10.13) that the voltage yC is written in lowercase 
(not capital) italic to point out that it is a function that will change with 
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time—it is not a constant. The exponent of the exponential function is no 
longer just x, but now is time (t) divided by a constant t, the Greek letter 
tau. The quantity t is defined by

	 t = RC   (time, s) 	 (10.14)

The factor t, called the time constant of the network, has the units of 
time, as shown below using some of the basic equations introduced ear-
lier in this text:

t = RC = aV

I
b aQ

V
b = a V

Q>t
b aQ

V
b = t (seconds)

A plot of Eq. (10.13) results in the curve in Fig. 10.29, whose shape is an 
exact match with that in Fig. 10.27.

0.632E

0.865E
(86.5%)

0.95E
(95%)

0.982E
(98.2%)

0.993E
(99.3%)

99.3%

E

t

C

0

63.2%

Switch closed
1� 2� 3� 4� 5� 6�

FIG. 10.29
Plotting the equation yC = E(1 - e-t>t) versus time (t).

In Eq. (10.13), if we substitute t = 0 s, we find that

e-t>t = e-0>t = e-0 =
1

e0 =
1

1
= 1

and	 yC = E(1 - e - t>t) = E(1 - 1) = 0 V

as appearing in the plot in Fig. 10.29.
It is important to realize at this point that the plot in Fig. 10.29 is not 

against simply time but against t, the time constant of the network. If we 
want to know the voltage across the plates after one time constant, we 
simply plug t = 1t into Eq. (10.13). The result is

e - t>t = e - t>t = e - 1 ≅ 0.368

and	 yC = E(1 - e - t>t) = E(1 - 0.368) = 0.632E

as shown in Fig. 10.29.
At t = 2t

e-t>t = e-2t>t = e-2 ≅ 0.135

and	 yC = E(1 - e-t>t) = E(1 - 0.135) ≅ 0.865E

as shown in Fig. 10.29.
As the number of time constants increases, the voltage across the 

capacitor does indeed approach the applied voltage.
At t = 5t

e-t>t = e-5t>t = e-5 ≅  0.007

and	 yC = E(1 - e-t>t) = E(1 - 0.007) = 0.993E ≅ E
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In fact, we can conclude from the results just obtained that

the voltage across a capacitor in a dc network is essentially equal to 
the applied voltage after five time constants of the charging phase 
have passed.

Or, in more general terms,

the transient or charging phase of a capacitor has essentially ended 
after five time constants.

It is indeed fortunate that the same exponential function can be used 
to plot the current of the capacitor versus time. When the switch is first 
closed, the flow of charge or current jumps very quickly to a value lim-
ited by the applied voltage and the circuit resistance, as shown in Fig. 
10.30. The rate of deposit, and hence the current, then decreases quite 
rapidly, until eventually charge is not being deposited on the plates and 
the current drops to zero amperes.

The equation for the current is

	 iC =
E

R
 e-t>t  

charging

  (amperes, A) 	 (10.15)

In Fig. 10.26, the current (conventional flow) has the direction shown 
since electrons flow in the opposite direction.
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FIG. 10.30

Plotting the equation iC =
E

R
 e-t>t versus time (t).

At t = 0 s

e-t>t = e-0 = 1

and	 iC =
E

R
 e-t>t =

E

R
 (1) =

E
R

At t = 1t

e-t>t = e-t>t = e-1 ≅  0.368

and	 iC =
E

R
 e-t>t =

E

R
 (0.368) = 0.368 

E
R

In general, Fig. 10.30 clearly reveals that

the current of a capacitive dc network is essentially zero amperes 
after five time constants of the charging phase have passed.
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It is also important to recognize that

during the charging phase, the major change in voltage and current 
occurs during the first time constant.

The voltage across the capacitor reaches about 63.2% (about 2/3) of 
its final value, whereas the current drops to 36.8% (about 1/3) of its peak 
value. During the next time constant, the voltage increases only about 
23.3%, whereas the current drops to 13.5%. The first time constant is 
therefore a very dramatic time for the changing parameters. Between the 
fourth and fifth time constants, the voltage increases only about 1.2%, 
whereas the current drops to less than 1% of its peak value.

Returning to Figs. 10.29 and 10.30, note that when the voltage across 
the capacitor reaches the applied voltage E, the current drops to zero 
amperes, as reviewed in Fig. 10.31. These conditions match those of an 
open circuit, permitting the following conclusion:

A capacitor can be replaced by an open-circuit equivalent once the 
charging phase in a dc network has passed.

+ –vR = 0 V

vC = E voltsE

iC = 0 A

Open circuit

R

+

–

+

–

FIG. 10.31
Demonstrating that a capacitor has the characteristics of an open circuit  

after the charging phase has passed.

vR = E

E

iC = iC =

Short circuit

R

E
R

vC = 0 V

+ –

+

–

+

–

FIG. 10.32
Revealing the short-circuit equivalent for the capacitor that occurs  

when the switch is first closed.

This conclusion will be particularly useful when analyzing dc networks 
that hav.e been on for a long period of time or have passed the transient 
phase that normally occurs when a system is first turned on.

A similar conclusion can be reached if we consider the instant the 
switch is closed in the circuit in Fig. 10.26. Referring to Figs. 10.29 and 
10.30 again, we find that the current is a peak value at t = 0 s, whereas 
the voltage across the capacitor is 0 V, as shown in the equivalent circuit 
in Fig. 10.32. The result is that

a capacitor has the characteristics of a short-circuit equivalent at the 
instant the switch is closed in an uncharged series R-C circuit.
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In Eq. (10.13), the time constant t will always have some value 
because some resistance is always present in a capacitive network. In 
some cases, the value of t may be very small, but five times that value 
of t, no matter how small, must therefore always exist; it cannot be 
zero. The result is the following very important conclusion:

The voltage across a capacitor cannot change instantaneously.

In fact, we can take this statement a step further by saying that the 
capacitance of a network is a measure of how much it will oppose a 
change in voltage in a network. The larger the capacitance, the larger is 
the time constant, and the longer it will take the voltage across the 
capacitor to reach the applied value. This can prove very helpful when 
lightning arresters and surge suppressors are designed to protect equip-
ment from unexpected high surges in voltage.

Since the resistor and the capacitor in Fig. 10.26 are in series, the cur-
rent through the resistor is the same as that associated with the capacitor. 
The voltage across the resistor can be determined by using Ohm’s law in 
the following manner:

yR = iRR = iCR

so that	 yR = aE

R
 e-t>tbR

and		  yR = Ee-t>t  
charging

  (volts, V) � (10.16)

A plot of the voltage as shown in Fig. 10.33 has the same shape as 
that for the current because they are related by the constant R. Note, 
however, that the voltage across the resistor starts at a level of E volts 
because the voltage across the capacitor is zero volts and Kirchhoff’s 
voltage law must always be satisfied. When the capacitor has reached 
the applied voltage, the voltage across the resistor must drop to zero 
volts for the same reason. Always remember that

Kirchhoff’s voltage law is applicable at any instant of time for any 
type of voltage in any type of network.

t0

E

0.368E

654321

0.135E
0.05E 0.018E 0.0067E

R

R

FIG. 10.33
Plotting the equation yR = Ee-t>t versus time (t).
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The Concept of t (0−) and t (0+)

Network equivalents such as Fig. 10.32 suggest that there is an instan-
taneous change in the state of the capacitor when the switch is closed. 
The word “instantaneous” is one that needs to be examined because it 
implies that there is no time element required to switch from one state 
to another. It implies that the current can jump from 0 A to a level E>R 
in absolutely no time at all. Not milliseconds or microseconds— 
simply instantaneous. Now, for all practical purposes, the current does 
appear to change to the much higher level the instant the switch is 
closed but in reality there has to be a time element to change from one 
state to another—physics, inertia, mechanics, and so on do not permit 
such changes in state. The time element can be exceedingly small but 
it does exist—instantaneous is not possible. If you look forward at  
Eq. (10.26), which relates the current of a capacitor to the change of 
voltage across the capacitor, it would require an instantaneous change 
in voltage to create an instantaneous change in current,—an impossi-
ble requirement. One of the popular methods to handle situations that 
appear to be instantaneous is to use parameters such as t(0-) and t(0+). 
The term t(0-) defines the instant just before a switch or action occurs. 
The time t(0+) is just after the change in state occurs. They define a 
period of time that you can consider as small as necessary to avoid 
dealing with the concept of instantaneous change. For the capacitor, 
when the switch is closed the current will jump to the value E>R at 
time t(0+). We can consider t(0+) to be measured in picoseconds so the 
plot of Fig. 10.30 is absolutely correct. We simply recognize that the 
current will reach that level in a very short period of time that would 
simply not show up on the plot for the timescale chosen. Graphically, 
the situation for a capacitor appears as shown in Fig. 10.34 for changes 
in state for the voltage and current. For the voltage, since we know it 
cannot change instantaneously, the value of yC (0-) = yC (0+) as shown 
in Fig. 10.34(a). For the current, where it is recognized that it can 
change “almost” instantaneously, the result is the plot of Fig. 10.34(b) 
where iC(0+) W iC(0-). The time interval defined by t(0+) permits the 
change in current to the new level in a time interval that would “appear” 
to be instantaneous.
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0 A0 –( iC ) =
vC 0 V0 –(  ) 0 +( )= =
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FIG. 10.34
Defining t(0-) and t(0+) for a capacitive element.
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The introduction of time elements such as t(0-) and t(0+) is not 
meant to complicate the introduction of this important basic material 
surrounding capacitors. The intent is simply to introduce an approach 
that is used extensively in mathematics and engineering applications to 
cover such situations. It will not be applied in the analysis to follow. 
However, in all likelihood you will encounter the use of such notation 
a number of times in your career.

Using the Calculator to Solve  
Exponential Functions

Before looking at an example, we will first discuss the use of the TI-89 
calculator with exponential functions. The process is actually quite sim-
ple for a number such as e-1.2. Just select the 2nd function (diamond) 
key, followed by the function ex. Then insert the (-) sign from the 
numerical keyboard (not the mathematical functions), and insert the 
number 1.2 followed by ENTER to obtain the result of 0.301, as shown 
in Fig. 10.35.

301.2E-3ex ) ENTER1(–) 2� .

FIG. 10.35
Calculator key strokes to determine e-1.2.

EXAMPLE 10.6  For the circuit in Fig. 10.36:

	 a.	 Find the mathematical expression for the transient behavior of yC, 
iC, and yR if the switch is closed at t = 0 s.

	 b.	 Plot the waveform of yC versus the time constant of the network.
	 c.	 Plot the waveform of yC versus time.
	 d.	 Plot the waveforms of iC and yR versus the time constant of the net-

work.
	 e.	 What is the value of yC at t = 20 ms?
	 f.	 On a practical basis, how much time must pass before we can as-

sume that the charging phase has passed?
	 g.	 When the charging phase has passed, how much charge is sitting on 

the plates?
	 h.	 If the capacitor has a leakage resistance of 10,000 MΩ, what is the 

initial leakage current? Once the capacitor is separated from the cir-
cuit, how long will it take to totally discharge, assuming a linear 
(unchanging) discharge rate?

Solutions: 

	 a.	 The time constant of the network is

t = RC = (8 kΩ)(4 mF) = 32 ms

		  resulting in the following mathematical equations:

 yC = E(1 - e-t>t) = 40 V(1 − e−t,32 ms)

 iC =
E

R
 e-t>t =

40 V

8 kΩ
 e-t>32 ms = 5 mAe−t,32 ms

 yR = Ee-t>t = 40 Ve−t,32 ms

4    FC

iCR

40 V

8 k�

+

–

+ –

+

–

E vC

vR

FIG. 10.36
Transient network for Example 10.6.
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	 b.	 The resulting plot appears in Fig. 10.37.
	 c.	 The horizontal scale will now be against time rather than time con-

stants, as shown in Fig. 10.38. The plot points in Fig. 10.38 were 
taken from Fig. 10.37.

	 d.	 Both plots appear in Fig. 10.39.
	 e.	 Substituting the time t = 20 ms results in the following for the 

exponential part of the equation:

et>t = e-20 ms>32 ms = e-0.625 = 0.535  (using a calculator)

		  so that yC = 40 V(1 - et>32 ms) = 40 V (1 - 0.535)

= (40 V)(0.465) = 18.6 V  (as verified by Fig. 10.38)

	 f.	 Assuming a full charge in five time constants results in

5t = 5(32 ms) = 160 ms = 0.16 s

	 g.	 Using Eq. (10.6) gives

Q = CV = (4 mF)(40 V) = 160 MC

	 h.	 Using Ohm’s law gives

Ileakage =
40 V

10,000 MΩ
= 4 nA

		  Finally, the basic equation I = Q>t results in

t =
Q

I
=

160 mC

4 nA
= (40,000 s)a 1 min

60 s
b a 1 h

60 min
b = 11.11 h

40

t

vC  (V)

0 V

39.3 V 39.7 V38 V
34.6 V

25.28 V

30

20

10

1 2 3 4 5 6

FIG. 10.37
yC versus time for the charging network in Fig. 10.36.

40

t (ms)

vC  (V)

0

30

20

10

20015010050

1

2

3 5

18.6 V
@ t = 20 ms

4
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FIG. 10.38
Plotting the waveform in Fig. 10.37 versus time (t).

iC (mA)

t0
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0.25 mA

0.09 mA

0.034 mA

vR (V)

t0
(b)

1 2 3 4 5

14.7 V
10

20

30

40

5.4 V 2.0 V 0.73 V 0.27 V

FIG. 10.39
iC and yR for the charging network in Fig. 10.37.
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10.6 T ransients in Capacitive Networks: 
The Discharging Phase

We now investigate how to discharge a capacitor while exerting some 
control on how long the discharge time will be. You can, of course, 
place a lead directly across a capacitor to discharge it very quickly—and 
possibly cause a visible spark. For larger capacitors such those in TV 
sets, this procedure should not be attempted because of the high voltages 
involved—unless, of course, you are trained in the maneuver.

In Fig. 10.40(a), a second contact for the switch was added to the 
circuit in Fig. 10.26 to permit a controlled discharge of the capacitor. 
With the switch in position 1, we have the charging network described in 
the last section. Following the full charging phase, if we move the switch 
to position 1, the capacitor can be discharged through the resulting cir-
cuit in Fig. 10.40(b). In Fig. 10.40(b), the voltage across the capacitor 
appears directly across the resistor to establish a discharge current. Ini-
tially, the current jumps to a relatively high value; then it begins to drop. 
It drops with time because charge is leaving the plates of the capacitor, 
which in turn reduces the voltage across the capacitor and thereby the 
voltage across the resistor and the resulting current.

(a)

(b)

C

iC

2

R

vR

iC = iR

+

–

+–

vC = E

C

iC

vC

1

2
E

R

vR

+

–

+ –

+

–

(a)

(b)

C

iC

2

R

vR

iC = iR

+

–

+–

vC = E

C

iC

vC

1

2
E

R

vR

+

–

+ –

+

–

FIG. 10.40
(a) Charging network; (b) discharging configuration.

Before looking at the wave shapes for each quantity of interest, note 
that current iC has now reversed direction as shown in Fig. 10.40(b). As 
shown in parts (a) and (b) in Fig. 10.40, the voltage across the capacitor 
does not reverse polarity, but the current reverses direction. We will 
show the reversals on the resulting plots by sketching the waveforms in 
the negative regions of the graph. In all the waveforms, note that all the 
mathematical expressions use the same e-x factor appearing during the 
charging phase.

For the voltage across the capacitor that is decreasing with time, the 
mathematical expression is

	 yC = Ee-t>t  
discharging

	 (10.17)

For this circuit, the time constant t is defined by the same equation as 
used for the charging phase. That is,

	 t = RC  
discharging

	 (10.18)

Since the current decreases with time, it will have a similar format:

	 iC =
E

R
 e-t>t  

discharging

	 (10.19)
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For the configuration in Fig. 10.40(b), since yR = yC (in parallel), the 
equation for the voltage yR has the same format:

	 yR = Ee-t>t  
discharging

	 (10.20)

The complete discharge will occur, for all practical purposes, in five 
time constants. If the switch is moved between terminals 1 and 2 every 
five time constants, the wave shapes in Fig. 10.41 will result for yC, iC, 
and yR. For each curve, the current directions and voltage polarities are 
as defined by the configurations in Fig. 10.40. Note, as pointed out 
above, that the current reverses direction during the discharge phase.

vR

t0

E

151413121110987654321

–E

vC

t0

E

151413121110987654321

Switch in
position 1

Position 2 Position 1 Position 2

iC

t0

E

151413121110987654321

R

E
R

FIG. 10.41
yC, iC, and yR for 5t switching between contacts in Fig. 10.40(a).

The discharge rate does not have to equal the charging rate if a differ-
ent switching arrangement is used. In fact, Example 10.8 will demon-
strate how to change the discharge rate.

EXAMPLE 10.7  Using the values in Example 10.6, plot the wave-
forms for yC and iC resulting from switching between contacts 1 and 2 in 
Fig. 10.40 every five time constants.

Solution:  The time constant is the same for the charging and discharg-
ing phases. That is,

t = RC = (8 kΩ)(4 mF) = 32 ms

For the discharge phase, the equations are

 yC = Ee-t>t = 40 Ve−t,32 ms

 iC = -
E

R
 e-t>t = -

40 V

8 kΩ
 e-t>32 ms = −5 mAe−t,32 ms

 yR = yC = 40 Ve−t,32 ms

A continuous plot for the charging and discharging phases appears in 
Fig. 10.42.
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The Effect of T on the Response

In Example 10.7, if the value of t were changed by changing the resist-
ance, the capacitor, or both, the resulting waveforms would appear the 
same because they were plotted against the time constant of the network. 
If they were plotted against time, there could be a dramatic change in the 
appearance of the resulting plots. In fact, on an oscilloscope, an instru-
ment designed to display such waveforms, the plots are against time, and 
the change will be immediately apparent. In Fig. 10.43(a), the waveforms 

vC

t0

40 V

15105
Switch in
position 1

Position 2 Position 1 Position 2

iC

t0

+5 mA

15105

= 32 ms

= 32 ms

–5 mA

FIG. 10.42
yC and iC for the network in Fig. 10.40(a) with the values in Example 10.6.

t
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40 ms

10
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120 ms 200 ms 280 ms 440 ms

20 30

–5 mA

iC

t0

5 mA

= 32 ms

–5 mA

160 ms

320 ms

480 ms

vC

t0

40 V

= 32 ms

160 ms 320 ms
(10 )(5 ) (15 )

480 ms

40 V

vC

t0 480 ms40 ms
(5 )

80 ms
(10 )

320 ms
(20 )

= 8 ms

160 ms

(a)

(b)

iC

FIG. 10.43
Plotting yC and iC versus time in ms: (a) t = 32 ms; (b) t = 8 ms.
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in Fig. 10.42 for yC and iC were plotted against time. In Fig. 10.43(b), the 
capacitance was decreased to 1 mF, which reduces the time constant to 
8 ms. Note the dramatic effect on the appearance of the waveform.

For a fixed-resistance network, the effect of increasing the capaci-
tance is clearly demonstrated in Fig. 10.44. The larger the capacitance, 
and hence the time constant, the longer it takes the capacitor to charge 
up—there is more charge to be stored. The same effect can be created 
by holding the capacitance constant and increasing the resistance, but 
now the longer time is due to the lower currents that are a result of the 
higher resistance.

EXAMPLE 10.8  For the circuit in Fig. 10.45:

	 a.	 Find the mathematical expressions for the transient behavior of the 
voltage yC and the current iC if the capacitor was initially uncharged 
and the switch is thrown into position 1 at t = 0 s.

	 b.	 Find the mathematical expressions for the voltage yC and the current 
iC if the switch is moved to position 2 at t = 10 ms. (Assume that 
the leakage resistance of the capacitor is infinite ohms; that is, there 
is no leakage current.)

	 c.	 Find the mathematical expressions for the voltage yC and the current 
iC if the switch is thrown into position 3 at t = 20 ms.

	 d.	 Plot the waveforms obtained in parts (a)–(c) on the same time axis 
using the defined polarities in Fig. 10.45.

E

vC

0 t

C1
C2

C3 C3 > C2 > C1
R fixed

FIG. 10.44
Effect of increasing values of C (with R constant) on 

the charging curve for yC.

C

iC

0.05 µF vC

3

1

2

E 12 V

R1

20 k�

R2 10 k�

+

–

+

–

FIG. 10.45
Network to be analyzed in Example 10.8.

Solutions: 

	 a.	 Charging phase:

 t = R1C = (20 kΩ)(0.05 mF) = 1 ms

 yC = E(1 -  e-t>t) = 12 V(1 − e−t,1 ms)

 iC =
E

R1
e-t>t =

12 V

20 kΩ
 e-t>1 ms = 0.6 mAe−t,1 ms

	 b.	 Storage phase: At 10 ms, a period of time equal to 10t has passed, 
permitting the assumption that the capacitor is fully charged. Since 
Rleakage = ∞  Ω, the capacitor will hold its charge indefinitely. The 
result is that both yC and iC will remain at a fixed value:

 yC = 12 V

 iC = 0 A
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	 c.	 Discharge phase (using 20 ms as the new t = 0 s for the equations): 
The new time constant is

 t′ = RC = (R1 + R2)C = (20 kΩ + 10 kΩ)(0.05 mF) = 1.5 ms

 yC = Ee-t>t′ = 12 Ve−t,1.5 ms

 iC = -
E

R
 e-t>t′ = -  

E

R1 + R2
 e-t>t′

 = -
12 V

20 kΩ + 10 kΩ
 e-t>1.5 ms = −0.4 mAe−t,1.5 ms

	 d.	 See Fig. 10.46.

12 V

vC

0 t5

(15 ms)

5
 = 1.5

0.6 mA

iC

t

10

(22.5 ms)(10 ms)(5 ms)

0 5 10

(15 ms) (22.5 ms)(10 ms)(5 ms)

– 0.4 mA

FIG. 10.46
yC and iC for the network in Fig. 10.45.

EXAMPLE 10.9  For the network in Fig. 10.47:

	 a.	 Find the mathematical expression for the transient behavior of the 
voltage across the capacitor if the switch is thrown into position 1 at 
t = 0 s.

	 b.	 Find the mathematical expression for the transient behavior of the 
voltage across the capacitor if the switch is moved to position 2 at 
t = 1t.

R2 1 k�

4 mA

I C

2

1 iC

vC

+

–
R1 5 k�

R3

3 k�

10    F

FIG. 10.47
Network to be analyzed in Example 10.9.
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	 c.	 Plot the resulting waveform for the voltage yC as determined by 
parts (a) and (b).

	 d.	 Repeat parts (a)–(c) for the current iC.

Solutions: 

	 a.	 Converting the current source to a voltage source results in the con-
figuration in Fig. 10.48 for the charging phase.

R2 1 k�
20 VE C

2

1 iC

vC

+

–

R1

5 k�

R3

3 k�

10    F
+

–

FIG. 10.48
The charging phase for the network in Fig. 10.47.

10    F

3 k�

+

–

iC

CvC

+

–

R3

1 k�R2

2

12.64 V

FIG. 10.49
Network in Fig. 10.48 when the switch is moved to 

position 2 at t = 1t1.

		  For the source conversion

 E = IR = (4 mA)(5 kΩ) = 20 V

and	  Rs = Rp = 5 kΩ
 t = RC = (R1 + R3)C = (5 kΩ + 3 kΩ)(10 mF) = 80 ms

 yC = E(1 - e-t>t) = 20 V (1 − e−t,80 ms)

	 b.	 With the switch in position 2, the network appears as shown in Fig. 
10.49. The voltage at 1t can be found by using the fact that the volt-
age is 63.2% of its final value of 20 V, so that 0.632(20 V) = 12.64 V. 
Alternatively, you can substitute into the derived equation as follows:

e-t>t = e-t>t = e-1 = 0.368

and	  yC = 20 V(1 - e-t>80 ms) = 20 V(1 - 0.368)

 = (20 V)(0.632) = 12.64 V

		  Using this voltage as the starting point and substituting into the dis-
charge equation results in

 t′ = RC = (R2 + R3)C = (1 kΩ + 3 kΩ)(10 mF) = 40 ms

 yC = Ee-t>t′ = 12.64 Ve−t,40 ms

	 c.	 See Fig. 10.50.

vC (V)

0 t (ms)80 160 240 320 400

12.64 V

20 V

5

FIG. 10.50
yC for the network in Fig. 10.48.
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	 d.	 The charging equation for the current is

iC =
E

R
 e-t>t =

E

R1 + R3
 e-t>t =

20 V

8 kΩ
 e-t>80 ms = 2.5 mAe−t,80 ms

		  which, at t = 80 ms, results in

iC = 2.5 mAe-80 ms>80 ms = 2.5 mAe-1 = (2.5 mA)(0.368) = 0.92 mA

When the switch is moved to position 2, the 12.64 V across 
the capacitor appears across the resistor to establish a current of 
12.64 V>4 kΩ = 3.16 mA. Substituting into the discharge equa-
tion with Vi = 12.64 V and t′ = 40 ms yields

 iC = -  
Vi

R2 + R3
 e-t>t′ = -  

12.64 V

1 kΩ + 3 kΩ
 e-t>40 ms

 = -
12.64 V

4 kΩ
e-t>40 ms = −3.16 mAe−t,40 ms

The equation has a minus sign because the direction of the dis-
charge current is opposite to that defined for the current in Fig. 
10.49. The resulting plot appears in Fig. 10.51.

iC (mA)

0 t (ms)320 400

5

0.92

2.5

240

–3.16

16080

FIG. 10.51
ic for the network in Fig. 10.48.

10.7  Initial Conditions

In all the examples in the previous sections, the capacitor was 
uncharged before the switch was thrown. We now examine the effect 
of a charge, and therefore a voltage (V = Q>C), on the plates at the 
instant the switching action takes place. The voltage across the capaci-
tor at this instant is called the initial value, as shown for the general 
waveform in Fig. 10.52.

Once the switch is thrown, the transient phase commences until a lev-
eling off occurs after five time constants. This region of relatively fixed 
value that follows the transient response is called the steady-state region, 
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and the resulting value is called the steady-state or final value. The 
steady-state value is found by substituting the open-circuit equivalent 
for the capacitor and finding the voltage across the plates. Using the 
transient equation developed in the previous section, we can write an 
equation for the voltage yC for the entire time interval in Fig. 10.52. That 
is, for the transient period, the voltage rises from Vi (previously 0 V) to a 
final value of Vf. Therefore,

yC = E(1 - e-t>t) = (Vf - Vi)(1 - e-t>t)

Adding the starting value of Vi to the equation results in

yC = Vi + (Vf - Vi)(1 - e-t>t)

However, by multiplying through and rearranging terms, we obtain

 yC = Vi + Vf - Vf  e
-t>t - Vi + Vie

-t>t

 = Vf - Vf  e
-t>t + Vi e

-t>t

We find

	 yC = Vf + (Vi - Vf)e
-t>t 	 (10.21)

Now that the equation has been developed, it is important to recog-
nize that

Eq. (10.21) is a universal equation for the transient response of a 
capacitor.

That is, it can be used whether or not the capacitor has an initial value. If 
the initial value is 0 V as it was in all the previous examples, simply set 
Vi equal to zero in the equation, and the desired equation results. The 
final value is the voltage across the capacitor when the open-circuit 
equivalent is substituted.

EXAMPLE 10.10  The capacitor in Fig. 10.53 has an initial voltage 
of 4 V.

	 a.	 Find the mathematical expression for the voltage across the capaci-
tor once the switch is closed.

	 b.	 Find the mathematical expression for the current during the tran-
sient period.

	 c.	 Sketch the waveform for each from initial value to final value.

Initial
conditions

Vi Transient
response

Steady-state
region

Vf

0 t

vC

FIG. 10.52
Defining the regions associated with a transient response.
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Solutions: 

	 a.	 Substituting the open-circuit equivalent for the capacitor results in a 
final or steady-state voltage yC of 24 V.

The time constant is determined by

 t = (R1 + R2)C

 = (2.2 kΩ + 1.2 kΩ)(3.3 mF) = 11.22 ms

		  with	 5t = 56.1 ms

Applying Eq. (10.21) gives

yC = Vf + (Vi - Vf)e
-t>t = 24 V + (4 V - 24 V)e-t>11.22 ms

		  and	 yC = 24 V − 20 Ve−t,11.22 ms

	 b.	 Since the voltage across the capacitor is constant at 4 V prior to the 
closing of the switch, the current (whose level is sensitive only to 
changes in voltage across the capacitor) must have an initial value 
of 0 mA. At the instant the switch is closed, the voltage across the 
capacitor cannot change instantaneously, so the voltage across the 
resistive elements at this instant is the applied voltage less the initial 
voltage across the capacitor. The resulting peak current is

Im =
E - VC

R1 + R2
=

24 V -  4 V

2.2 kΩ + 1.2 kΩ
=

20 V

3.4 kΩ
= 5.88 mA

The current then decays (with the same time constant as the volt-
age yC) to zero because the capacitor is approaching its open-circuit 
equivalence.

The equation for iC is therefore

iC = 5.88 mAe−t,11.22 ms

	 c.	 See Fig. 10.54. The initial and final values of the voltage were 
drawn first, and then the transient response was included between 
these levels. For the current, the waveform begins and ends at zero, 
with the peak value having a sign sensitive to the defined direction 
of iC in Fig. 10.53.

Let us now test the validity of the equation for yC by substituting 
t = 0 s to reflect the instant the switch is closed. We have

e-t>t = e-0 = 1

iC

R2

1.2 k�

R1

2.2 k�

E C24 V 3.3    F
+

–
4 VvC

+

–

+

–

FIG. 10.53
Example 10.10.
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FIG. 10.54
yC and iC for the network in Fig. 10.53.
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		  and	 yC = 24 V - 20 Ve - t>t = 24 V - 20 V = 4 V

When t 7 5t,

e-t>t ≅  0

		  and	 yC = 24 V - 20 Vet>t = 24 V - 0 V = 24 V

Eq. (10.21) can also be applied to the discharge phase by applying the 
correct levels of Vi and Vf.

For the discharge pattern in Fig. 10.55, Vf = 0 V, and Eq. (10.21) 
becomes

yC = Vf + (Vi - Vf)e
-t>t = 0 V + (Vi - 0 V)e-t>t

and	 yC = Vi e
-t>t  

discharging
� (10.22)

Substituting Vi = E volts results in Eq. (10.17).

10.8  Instantaneous Values

Finding the Voltage or Current at a Particular  
Instant of Time

Occasionally, you may need to determine the voltage or current at a par-
ticular instant of time that is not an integral multiple of t, as in the previ-
ous sections. For example, if

yC = 20 V(1 -  e(-t>2 ms))

the voltage yC may be required at t = 5 ms, which does not correspond to 
a particular value of t. Fig. 10.28 reveals that (1 - et>t) is approximately 
0.93 at t = 5 ms = 2.5t, resulting in yC - 20(0.93) - 18.6 V. Addi-
tional accuracy can be obtained by substituting y = 5 ms into the equa-
tion and solving for yC using a calculator or table to determine e-2.5. Thus,

 yC = 20 V(1 - e-5 ms>2 ms) = (20 V)(1 - e-2.5) = (20 V)(1 - 0.082)

 = (20 V)(0.918) = 18.36 V

The TI-89 calculator key strokes appear in Fig. 10.56.

vC

Vi = E

t0
Vf = 0 V

1 2 3 4 5

FIG. 10.55
Defining the parameters in Eq. (10.21) for the 

discharge phase.

2 ×0 ( 1 − EE(–) (–)5ex

3 2÷ EE 3 ((–) ENTER

♦

( 18.358EO

FIG. 10.56
Key strokes to determine 20 V(1 - e-5 ms>2 ms) using the TI-89 calculator.

The results are close, but accuracy beyond the tenths place is suspect 
using Fig. 10.28. The above procedure can also be applied to any other 
equation introduced in this chapter for currents or other voltages.

Find the Time to Reach a Particular Level  
of Voltage or Current

Occasionally, you may need to determine the time required to reach a 
particular voltage or current. The procedure is complicated somewhat by 
the use of natural logs (loge, or ln), but today’s calculators are equipped 
to handle the operation with ease.
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For example, solving for t in the equation

yC = Vf + (Vi - Vf)e
-t>t

results in

	 t = t(loge) 
(Vi -  Vf)

(yC -  Vf)
	 (10.23)

For example, suppose that

yC = 20 V(1 - e-t>2 ms)

and the time t to reach 10 V is desired. Since Vi = 0 V, and Vf = 20 V, 
we have

 t = t(loge) 
(Vi - Vf)

(yC - Vf)
= (2 ms)(loge) 

(0 V -  20 V)

(10 V -  20 V)

 = (2 ms) c logea  -20 V

 -10 V
b d = (2 ms)(loge2) = (2 ms)(0.693)

 = 1.386 ms

The TI-89 calculator key strokes appear in Fig. 10.57.

2 (–)EE 3 × 2ND ENTERLN 1.39E-3)2

FIG. 10.57
Key strokes to determine (2 ms)( loge2) using the TI-89 calculator.

For the discharge equation,

yC = Ee-t>t = Vi (e
-t>t)  with Vf = 0 V

Using Eq. (10.23) gives

t = t(loge) 
(Vi - Vf)

(yC - Vf)
= t(loge) 

(Vi -  0 V)

(yC -  0 V)

and	 t = t loge 
Vi 
yC 

	 (10.24)

For the current equation,

iC =
E

R
 e-t>t  Ii =

E

R
  If = 0 A

and	 t = loge 
Ii 

iC 
	 (10.25)

10.9 T hÉvenin Equivalent: T = RThC
You may encounter instances in which the network does not have the 
simple series form in Fig. 10.26. You then need to find the Thévenin 
equivalent circuit for the network external to the capacitive element. RTh 
will be the source voltage E in Eqs. (10.13) through (10.25), and RTh will 
be the resistance R. The time constant is then t = RThC.

EXAMPLE 10.11  For the network in Fig. 10.58:

	 a.	 Find the mathematical expression for the transient behavior of the 
voltage yC and the current iC following the closing of the switch 
(position 1 at t = 0 s).
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	 b.	 Find the mathematical expression for the voltage yC and the current 
iC as a function of time if the switch is thrown into position 2 at 
t = 9 ms.

	 c.	 Draw the resultant waveforms of parts (a) and (b) on the same time 
axis.

Solutions: 

	 a.	 Applying Thévenin’s theorem to the 0.2 mF capacitor, we obtain 
Fig. 10.59. We have

 RTh = R1 �� R2 + R3 =
(60 kΩ)(30 kΩ)

90 kΩ
+ 10 kΩ

 = 20 kΩ + 10 kΩ = 30 kΩ

 ETh =
R2E

R2 + R1
 =

(30 kΩ)(21 V)

30 kΩ + 60 kΩ
=

1

3
 (21 V) = 7 V

The resultant Thévenin equivalent circuit with the capacitor 
replaced is shown in Fig. 10.60.

Using Eq. (10.21) with Vf = ETh and Vt = 0 V, we find that

			    yC = Vf + (Vi - Vf )e-t>t

		  becomes	  yC = ETh + (0 V - ETh)e
-t>t

		  or	  yC = ETh(1 - e -t>t)

		  with	  t = RC = (30 kΩ)(0.2 mF) = 6 ms

		  Therefore,	  yC = 7 V(1 − e−t,6 ms)

		  For the current iC:

  iC =
ETh

R
 e-t>RC =

7 V

30 kΩ
 e-t>6 ms

 = 0.23 mAe − t,6 ms

	 b.	 At t = 9 ms,

 yC = ETh(1 - e-t>t) = 7 V(1 - e-(9 ms>6 ms))

 = (7 V)(1 - e-1.5) = (7 V)(1 - 0.223)

 = (7 V)(0.777) = 5.44 V

		  and	  iC =
ETh

R
e-t>t = 0.23 mAe-1.5 

			    = (0.23 * 10-3)(0.233) = 0.052 * 10-3 = 0.05 mA

		  Using Eq. (10.21) with Vf = 0 V and Vi = 5.44 V, we find that

yC = Vf + (Vi -  Vf)e
-t>t′

R230 k�

R1

60 k�

E 21 V

R3

10 k�

vC

+

–

iC1 2

R4 10 k�
+

–
C = 0.2    F

FIG. 10.58
Example 10.11.

ETh:

R1

60 k�

R3

10 k�

R2 30 k� EThE 21 V

RTh

RTh:

R1

60 k�

R3

10 k�

R2 30 k�

+

–

FIG. 10.59
Applying Thévenin’s theorem to the network  

in Fig. 10.58.

vC

RTh  =  30 k�

ETh  =  7 V

iC

+

–
C = 0.2    F

+

–

FIG. 10.60
Substituting the Thévenin equivalent for the  

network in Fig. 10.58.



466    Capacitors

		  becomes	  yC = 0 V + (5.44 V - 0 V)e-t>t′

 = 5.44 Ve-t>t′

		  with	  t′ = R4C = (10 kΩ)(0.2 mF) = 2 ms

		  and	  yC = 5.44 Ve−t,2 ms

By Eq. (10.19),

 Ii =
5.44 V

10 kΩ
= 0.54 mA

		  and	 iC = Iie
- t>t = 0.54 mAe−t,2 ms

	 c.	 See Fig. 10.61.

t (ms)

0.23

vC (V)

ETh = 7

Vi = 5.44 V

iC (mA)

0 t (ms)25 30 3520

10

5

0.05

–0.54

15

5�'

5�

5�

5�'

0 15 25 30 3520105

FIG. 10.61
The resulting waveforms for the network in Fig. 10.58.

EXAMPLE 10.12  The capacitor in Fig. 10.62 is initially charged to 
40 V. Find the mathematical expression for yC after the closing of the 
switch. Plot the waveform for yC.

Solution:  The network is redrawn in Fig. 10.63.

ETh:

ETh =
R3E

R3 + R1 + R4
=

(18 kΩ)(120 V)

18 kΩ + 7 kΩ + 2 kΩ
= 80 V

RTh:
 RTh = R2 + R3 �� (R1 + R4)

 RTh = 5 kΩ + (18 kΩ) �� (7 kΩ + 2 kΩ)

 = 5 kΩ + 6 kΩ = 11 kΩ

R1 7 k�

R4 2 k�

C

40   F
+  40 V  –

+  vC  –

R2

5 k� R3

18 k�

E 120 V
+

–

FIG. 10.62
Example 10.12.

40 V

+

–

Thévenin

C

R2

5 k�

R1

7 k�

R3 18 k� E 120 V
+

–
40 F

R4

2 k�

FIG. 10.63
Network in Fig. 10.62 redrawn.
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Therefore,	 Vi = 40 V  and  Vf = 80 V

and	  t = RThC = (11 kΩ)(40 mF) = 0.44 s

Eq. (10.21):	  yC = Vf + (Vi - Vf)e
-t>t

	  = 80 V + (40 V - 80 V)e-t>0.44 s

and	  yC = 80 V − 40 Ve−t,0.44 s

The waveform appears as in Fig. 10.64.

EXAMPLE 10.13  For the network in Fig. 10.65, find the mathematical 
expression for the voltage yC after the closing of the switch (at t = 0).

Solution: 

 RTh = R1 + R2 = 6 Ω + 10 Ω = 16 Ω
 ETh = V1 + V2 = IR1 + 0

 = (20 * 10-3 A)(6 Ω) = 120 * 10-3 V = 0.12 V

and	 t = RThC = (16 Ω)(500 * 10-6F) = 8 ms

so that	 yC = 0.12 V(1 − e−t,8 ms)

10.10 T he Current iC
There is a very special relationship between the current of a capacitor 
and the voltage across it. For the resistor, it is defined by Ohm’s law: 
iR = yR>R. The current through and the voltage across the resistor are 
related by a constant R—a very simple direct linear relationship. For the 
capacitor, it is the more complex relationship defined by

	 iC = C 
dyC

dt
	 (10.26)

The factor C reveals that the higher the capacitance, the greater is the 
resulting current. Intuitively, this relationship makes sense because 
higher capacitance levels result in increased levels of stored charge, pro-
viding a source for increased current levels. The second term, dyC>dt, is 
sensitive to the rate of change of yC with time. The function dyC>dt is 
called the derivative (calculus) of the voltage yC with respect to time t. 
The faster the voltage yC changes with time, the larger will be the factor 
dyC>dt and the larger will be the resulting current iC. That is why the 
current jumps to its maximum of E>R in a charging circuit where the 
switch is closed. In that region, if you look at the charging curve for yC, 
the voltage is changing at its greatest rate. As it approaches its final 
value, the rate of change decreases, and, as confirmed by Eq. (10.26), 
the level of current decreases.

Take special note of the following:

The capacitive current is directly related to the rate of change of the 
voltage across the capacitor, not the levels of voltage involved.

For example, the current of a capacitor will be greater when the volt-
age changes from 1 V to 10 V in 1 ms than when it changes from 10 V 
to 100 V in 1 s; in fact, it will be 100 times more.

40 V

80 V

vC

0 t

= 0.44 s

1 2 3 4 5

FIG. 10.64
yC for the network in Fig. 10.62.

I R1  =  6 �

R2

10 �

20 mA
C vC

+

–
500   F

FIG. 10.65
Example 10.13.
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If the voltage fails to change over time, then

dyC

dt
= 0

and	 iC = C
dyC

dt
= C(0) = 0 A

In an effort to develop a clearer understanding of Eq. (10.26), let us 
calculate the average current associated with a capacitor for various 
voltages impressed across the capacitor. The average current is defined 
by the equation

	 iCav
= C 

∆yC

∆t
	 (10.27)

where ∆ indicates a finite (measurable) change in voltage or time.
In the following example, the change in voltage ∆yC will be consid-

ered for each slope of the voltage waveform. If the voltage increases 
with time, the average current is the change in voltage divided by the 
change in time, with a positive sign. If the voltage decreases with time, 
the average current is again the change in voltage divided by the change 
in time, but with a negative sign.

EXAMPLE 10.14  Find the waveform for the average current if the 
voltage across a 2 mF capacitor is as shown in Fig. 10.66.

vC (V)

0
t (ms)

9 10 11 12
t1

4

5 6 7 81 2 3 4t3t2

�t

v3
v2

�v

FIG. 10.66
yC for Example 10.14.

Solutions: 

	 a.	 From 0 ms to 2 ms, the voltage increases linearly from 0 V to 4 V; 
the change in voltage ∆y = 4 V - 0 = 4 V (with a positive sign 
since the voltage increases with time). The change in time ∆t =  
2 ms - 0 = 2 ms, and

 iCav
= C 

∆yC

∆t
= (2 * 10-6 F)a 4 V

2 * 10-3 s
b

 = 4 * 10-3 A = 4 mA

	 b.	 From 2 ms to 5 ms, the voltage remains constant at 4 V; the change 
in voltage ∆y = 0. The change in time ∆t = 3 ms, and

iCav
= C 

∆yC

∆t
= C 

0

∆t
= 0 mA
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	 c.	 From 5 ms to 11 ms, the voltage decreases from 4 V to 0 V. The 
change in voltage ∆y is, therefore, 4 V - 0 = 4 V (with a negative 
sign since the voltage is decreasing with time). The change in time 
∆t = 11 ms - 5 ms = 6 ms, and

 iCav
= C 

∆yC

∆t
= -(2 * 10-6 F)a 4 V

6 * 10-3 s
b

 = -1.33 * 10-3 A = −1.33 mA

	 d.	 From 11 ms on, the voltage remains constant at 0 and ∆y = 0, 
so iCav

= 0 mA. The waveform for the average current for the im-
pressed voltage is as shown in Fig. 10.67.

iC (mA)

0

4

–1.33

t (ms)9 10 11 125 6 7 81 2 3 4

FIG. 10.67
The resulting current iC for the applied voltage in Fig. 10.66.

Note in Example 10.14 that, in general, the steeper the slope, the 
greater is the current, and when the voltage fails to change, the current is 
zero. In addition, the average value is the same as the instantaneous 
value at any point along the slope over which the average value was 
found. For example, if the interval ∆t is reduced from 0 S t1 to t2 - t3, 
as noted in Fig. 10.66, ∆y>∆t is still the same. In fact, no matter how 
small the interval ∆t, the slope will be the same, and therefore the cur-
rent iCav

 will be the same. If we consider the limit as ∆t S 0, the slope 
will still remain the same, and therefore iCav

=  iCinst
 at any instant of 

time between 0 and t1. The same can be said about any portion of the 
voltage waveform that has a constant slope.

An important point to be gained from this discussion is that it is not 
the magnitude of the voltage across a capacitor that determines the cur-
rent but rather how quickly the voltage changes across the capacitor. An 
applied steady dc voltage of 10,000 V would (ideally) not create any 
flow of charge (current), but a change in voltage of 1 V in a very brief 
period of time could create a significant current.

The method described above is only for waveforms with straight-line 
(linear) segments. For nonlinear (curved) waveforms, a method of calcu-
lus (differentiation) must be used. However, as mentioned earlier when 
the derivative of a function first appeared, there is no need to become 
versed in the mathematical process of finding the derivative of a func-
tion to continue with the analysis of capacitive networks. It is only intro-
duced for completeness and exposure.

10.11 C apacitors in Series and in Parallel

Capacitors, like resistors, can be placed in series and in parallel. 
Increasing levels of capacitance can be obtained by placing capacitors 
in parallel, while decreasing levels can be obtained by placing capaci-
tors in series.
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For capacitors in series, the charge is the same on each capacitor 
(Fig. 10.68):

	 QT = Q1 = Q2 = Q3 	 (10.28)

Applying Kirchhoff’s voltage law around the closed loop gives

 E = V1 + V2 + V3

However,	  V =
Q

C

so that	  
QT

CT
=

Q1

C1
+

Q2

C2
+

Q3

C3

Using Eq. (10.28) and dividing both sides by Q yields

	
1

CT
=

1

C1
+

1

C2
+

1

C3
	 (10.29)

which is similar to the manner in which we found the total resistance of a 
parallel resistive circuit. The total capacitance of two capacitors in series is

	 CT =
C1C2

C1 + C2
	 (10.30)

The voltage across each capacitor in Fig. 10.68 can be found by first 
recognizing that

 QT = Q1

or	  CTE = C1V1

Solving for V1 gives	  V1 =
CTE

C1

and substituting for CT gives

	 V1 = a 1>C1

1>C1 + 1>C2 + 1>C3
bE 	 (10.31)

A similar equation results for each capacitor of the network.
For capacitors in parallel, as shown in Fig. 10.69, the voltage is the 

same across each capacitor, and the total charge is the sum of that on 
each capacitor:

	 QT = Q1 + Q2 + Q3 	 (10.32)

However,	 Q = CV

Therefore,	 CTE = C1V1 = C2V2 = C3V3

but	 E = V1 = V2 = V3

Thus,	 CT = C1 + C2 + C3 	 (10.33)

which is similar to the manner in which the total resistance of a series 
circuit is found.

V2

E
QT

V3V1

+ – + – + –
Q2 Q3Q1

+

–

FIG. 10.68
Series capacitors.

E

QT

V1

Q1+

–
V2

Q2+

–
V3

Q3+

–

+

–

FIG. 10.69
Parallel capacitors.
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EXAMPLE 10.15  For the circuit in Fig. 10.70:

	 a.	 Find the total capacitance.
	 b.	 Determine the charge on each plate.
	 c.	 Find the voltage across each capacitor.

Solutions: 

	 a.	  
1

CT
=

1

C1
+

1

C2
+

1

C3

		   =
1

200 * 10-6 F
+

1

50 * 10-6 F
+

1

10 * 10-6 F

		   = 0.005 * 106 + 0.02 * 106 + 0.1 * 106

		   = 0.125 * 106

		  and	 CT =
1

0.125 * 106 = 8 MF

	 b.	  QT = Q1 = Q2 = Q3

		   = CTE = (8 * 10 - 6 F) (60 V) = 480 MC

	 c.	 V1 =
Q1

C1
=

480 * 10-6 C

200 * 10-6 F
= 2.4 V

		  V2 =
Q2

C2
=

480 * 10-6 C

50 * 10-6 F
= 9.6 V

		  V3 =
Q3

C3
=

480 * 10-6 C

10 * 10-6 F
= 48.0 V

		  and	E = V1 + V2 + V3 = 2.4 V + 9.6 V + 48 V = 60 V   (checks)

EXAMPLE 10.16  For the network in Fig. 10.71:

	 a.	 Find the total capacitance.
	 b.	 Determine the charge on each plate.
	 c.	 Find the total charge.

Solutions: 

	 a.	 CT = C1 + C2 + C3 = 800 mF + 60 mF + 1200 mF = 2060 MF

	 b.	 Q1 = C1E = (800 * 10 - 6 F)(48 V) = 38.4 mC

		  Q2 = C2E = (60 * 10 - 6 F)(48 V) = 2.88 mC

		  Q3 = C3E = (1200 * 10 - 6 F)(48 V) = 57.6 mC

	 c.	 QT = Q1 + Q2 + Q3 = 38.4 mC + 2.88 mC + 57.6 mC = 98.88 mC

EXAMPLE 10.17  Find the voltage across and the charge on each 
capacitor for the network in Fig. 10.72.

Solution: 

 C′T = C2 + C3 = 4 mF + 2 mF = 6 mF

 CT =
C1C′T

C1 + C′T
=

(3 mF)(6 mF)

3 mF + 6 mF
= 2 mF

 QT = CT E = (2 * 10-6 F)(120 V) = 240 MC

E

CT

C2 C3C1

60 V
+

–

200   F 50   F 10   F

FIG. 10.70
Example 10.15.

800   F
E

CT
C1 C2 C3

QT

48 V 60   F 1200   F

+

–

Q1 Q2 Q3

FIG. 10.71
Example 10.16.

2   F
E = 120 V

C1

C2 C3
+

– 4   F

3   F

Q2 Q3

Q1

+ –V1

+

–
V2

+

–
V3

FIG. 10.72
Example 10.17.
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An equivalent circuit (Fig. 10.73) has

 QT = Q1 = Q′T

and, therefore,	  Q1 = 240 MC

and	  V1 =
Q1

C1
=

240 * 10-6 C

3 * 10-6 F
= 80 V

	  Q′T = 240 mC

Therefore,	 V′T =
Q′T
C′T

=
240 * 10-6 C

6 * 10-6 F
= 40 V

and	  Q2 = C2V′T = (4 * 10-6 F)(40 V) = 160 MC

 Q3 = C3V′T = (2 * 10-6 F)(40 V) = 80 MC

EXAMPLE 10.18  Find the voltage across and the charge on capacitor 
C1 in Fig. 10.74 after it has charged up to its final value.

Solution:  As previously discussed, the capacitor is effectively an open 
circuit for dc after charging up to its final value (Fig. 10.75).

Therefore,

 VC =
(8 Ω)(24 V)

4 Ω + 8 Ω
= 16 V

 Q1 = C1VC = (20 * 10-6 F)(16 V) = 320 MC

EXAMPLE 10.19  Find the voltage across and the charge on each 
capacitor of the network in Fig. 10.76(a) after each has charged up to its 
final value.

Solution:  See Fig. 10.76(b). We have

 VC2
=

(7 Ω)(72 V)

7 Ω + 2 Ω
= 56 V

 VC1
=

(2 Ω)(72 V)

2 Ω + 7 Ω
= 16 V

 Q1 = C1VC1
= (2 * 10-6 F)(16 V) = 32 MC

 Q2 = C2VC2
= (3 * 10-6 F)(56 V) = 168 MC

E  =  120 V

C1

C'T

Q1+ –V1

V'

+

–Q'T

Q3
V'

+

–C3

Q2

C2

+

–

3   F

6   F
 T

 T

FIG. 10.73
Reduced equivalent for the network in Fig. 10.72.
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4 �
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–
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+

–

FIG. 10.74
Example 10.18.

4 �

E = 24 V 8 � VC

+

–

+

–

FIG. 10.75
Determining the final (steady-state) value for yC.

C1 = 2   F

R1

2 �

C2 = 3   F

+

–

+  V1  –

+  V2  –Q1

Q2

E = 72 V R2 7 � R3 8 �

R1

2 �

+  VC1  
–

+  VC2  
–

I  =  0
+

–
R2 7 � R3 8 �E = 72 V

(b)(a)

FIG. 10.76
Example 10.19.
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10.12 E nergy Stored by a Capacitor

An ideal capacitor does not dissipate any of the energy supplied to it. It 
stores the energy in the form of an electric field between the conducting 
surfaces. A plot of the voltage, current, and power to a capacitor during 
the charging phase is shown in Fig. 10.77. The power curve can be 
obtained by finding the product of the voltage and current at selected 
instants of time and connecting the points obtained. The energy stored is 
represented by the shaded area under the power curve. Using calculus, 
we can determine the area under the curve:

WC =
1

2
 CE2

In general,	 WC =
1

2
 CV2   (J) � (10.34)

where V is the steady-state voltage across the capacitor. In terms of Q 
and C,

WC =
1

2
 C aQ

C
b

2

or	 WC =
Q2

2C
   (J) � (10.35)

EXAMPLE 10.20  For the network in Fig. 10.76(a), determine the 
energy stored by each capacitor.

Solution:  For C1:

 WC =
1

2
 CV2

 =
1

2
 (2 * 10-6 F)(16 V)2 = (1 * 10-6)(256) = 256 MJ

For C2:

 WC =
1

2
 CV2

 =
1

2
 (3 * 10-6 F)(56 V)2 = (1.5 * 10-6)(3136) = 4704 MJ

Due to the squared term, the energy stored increases rapidly with in-
creasing voltages.

10.13 S tray Capacitances

In addition to the capacitors discussed so far in this chapter, there are 
stray capacitances that exist not through design but simply because two 
conducting surfaces are relatively close to each other. Two conducting 
wires in the same network have a capacitive effect between them, as 
shown in Fig. 10.78(a). In electronic circuits, capacitance levels exist 
between conducting surfaces of the transistor, as shown in Fig. 10.78(b). 
In Chapter 11, we will discuss another element, called the inductor, 

0 t

E

R
E

v, i, p

vC

p = vC iC

iC

FIG. 10.77
Plotting the power to a capacitive element during  

the transient phase.

(a)

P P
E C

B Cce

N

(b)

Cbe Cbc

(c)

Conductors

FIG. 10.78
Examples of stray capacitance.
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which has capacitive effects between the windings [Fig. 10.78(c)]. Stray 
capacitances can often lead to serious errors in system design if they are 
not considered carefully.

10.14 A pplications

This section includes a description of the operation of touch pads and 
one of the less expensive, throwaway cameras that have become so pop-
ular, as well as a discussion of the use of capacitors in the line condition-
ers (surge protectors) that are used in many homes and throughout the 
business world. Additional examples of the use of capacitors appear in 
Chapter 11.

Touch Pad

The touch pad on the computer of Fig. 10.79 is used to control the posi-
tion of the pointer on the computer screen by providing a link between 
the position of a finger on the pad to a position on the screen. There are 
two general approaches to providing this linkage: capacitance sensing 
and conductance sensing. Capacitance sensing depends on the charge 
carried by the human body, while conductance sensing only requires 
that pressure be applied to a particular position on the pad. In other 
words, the wearing of gloves or using a pencil will not work with capac-
itance sensing but is effective with conductance sensing.

There are two methods commonly employed for capacitance testing. 
One is referred to as the matrix approach, and the other is called the 
capacitive shunt approach. The matrix approach requires two sets of 
parallel conductors separated by a dielectric and perpendicular to each 
other as shown in Fig. 10.80. Two sets of perpendicular wires are 
required to permit the determination of the location of the point on the 
two-dimensional plane—one for the horizontal displacement and the 

Laptop
touch pad

FIG. 10.79
Laptop touch pad.

Conductors under
dielectric

Dielectric

High-frequency signal
sequentially applied to
conductors on top of
dielectric

�

Conductors
above dielectric

C

As each grid wire on the top is energized, an IC 
sensor scans all the perpendicular wires in the bottom 
of the structure to determine the location of the 
change in capacitance.

FIG. 10.80
Matrix approach to capacitive sensing in a touch pad.
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other for the vertical displacement. The result when looking down at the 
pad is a two-dimensional grid with intersecting points or nodes. Its oper-
ation requires the application of a high-frequency signal that will permit 
the monitoring of the capacitance between each set of wires at each 
intersection as shown in Fig. 10.80 using ICs connected to each set of 
wires. When a finger approaches a particular intersection the charge on 
the finger will change the field distribution at that point by drawing 
some of the field lines away from the intersection. Some like to think of 
the finger as applying a virtual ground to the point as shown in the fig-
ure. Recall from the discussion in Section 10.3 that any change in elec-
tric field strength for a fixed capacitor (such as the insertion of a 
dielectric between the plates of a capacitor) will change the charge on 
the plates and the level of capacitance determined by C = Q>V. The 
change in capacitance at the intersection will be noted by the ICs. That 
change in capacitance can then be translated by a capacitance to digital 
converter (CDC) and used to define the location on the screen. Recent 
experiments have found that this type of sensing is most effective with a 
soft, delicate touch on the pad rather than hard, firm pressure.

The capacitive shunt approach takes a totally different approach. 
Rather than establish a grid, a sensor is used to detect changes in capaci-
tive levels. The basic construction for an analog device appears in Fig. 
10.81. The sensor has a transmitter and a receiver, both of which are 
formed on separate printed circuit board (PCB) platforms with a plastic 
cover over the transmitter to avoid actual contact with the finger. When 
the excitation signal of 250 kHz is applied to the transmitter platform, an 
electric field is established between the transmitter and receiver, with a 
strong fringing effect on the surface of the sensor. If a finger with its 
negative charge is brought close to the transmitter surface, it will distort 
the fringing effect by attracting some of the electric field as shown in the 
figure. The resulting change in total field strength will affect the charge 
level on the plates of the sensor and therefore the capacitance between 
the transmitter and receiver. This will be detected by the sensor and pro-
vide either the horizontal or vertical position of the contact. The result-
ant change in capacitance is only in the order of femtofarads, as 
compared to the picofarads for the sensor, but is still sufficient to be 
detected by the sensor. The change in capacitance is picked up by a 
16-bit g @∆ capacitor to digital convertor (CDC) and the results fed into 
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FIG. 10.81
Capacitive shunt approach.
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the contoller for the system to which the sensor is connected. The term 
shunt comes from the fact that some of the electric field is “shunted” 
away from the sensor. The sensors themselves can be made of many dif-
ferent shapes and sizes. For applications such as the circular button for 
an elevator, the circular pattern of Fig. 10.82(a) may be applied, while 
for a slide control, it may appear as shown in Fig. 10.82(b). In each case 
the excitation is applied to the red lines and regions and the capacitance 
level measured by the CIN blue lines and regions. In other words, a field 
is established between the red and blue lines throughout the pattern, and 
touching the pads in any area will reveal a change in capacitance. For a 
computer touch pad the number of CIN inputs required is one per row 
and one per column to provide the location in a two-dimensional space.

The last method to be described is the conductance-sensing approach. 
Basically, it employs two thin metallic conducting surfaces separated by 
a very thin space. The top surface is usually flexible, while the bottom is 
fixed and coated with a layer of small conductive nipples. When the top 
surface is touched, it drops down and touches a nipple, causing the con-
ductance between the two surfaces to increase dramatically in that one 
location. This change in conductance is then picked up by the ICs on 
each side of the grid and the location determined for use in setting the 
position on the screen of the computer. This type of mouse pad permits 
the use of a pen, pencil, or other nonconductive instrument to set the 
location on the screen, which is useful in situations in which one may 
have to wear gloves continually or need to use nonconductive pointing 
devices because of environmental concerns.

Surge Protector (Line Conditioner)

In recent years we have all become familiar with the surge protector as a 
safety measure for our computers, TVs, DVD players, and other sensitive 
instrumentation. In addition to protecting equipment from unexpected 
surges in voltage and current, most quality units also filter out (remove) 
electromagnetic interference (EMI) and radio-frequency interference 
(RFI). EMI encompasses any unwanted disturbances down the power 
line established by any combination of electromagnetic effects such as 
those generated by motors on the line, power equipment in the area emit-
ting signals picked up by the power line acting as an antenna, and so on. 
RFI includes all signals in the air in the audio range and beyond that may 
also be picked up by power lines inside or outside the house.

The unit in Fig. 10.83 has all the design features expected in a good 
line conditioner. Figure 10.83 reveals that it can handle the power drawn 
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FIG. 10.83
Surge protector: general appearance.
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by six outlets and that it is set up for FAX/MODEM protection. Also 
note that it has both LED (light-emitting diode) displays, which reveal 
whether there is fault on the line or whether the line is OK, and an exter-
nal circuit breaker to reset the system. In addition, when the surge pro-
tector is on, a red light is visible at the power switch.

The schematic in Fig. 10.84 does not include all the details of the 
design, but it does include the major components that appear in most 
good line conditioners. First note in the photograph in Fig. 10.85 that the 
outlets are all connected in parallel, with a ground bar used to establish a 
ground connection for each outlet. The circuit board had to be flipped 
over to show the components, so it will take some adjustment to relate 
the position of the elements on the board to the casing. The feed line or 
hot lead wire (black in the actual unit) is connected directly from the line 
to the circuit breaker. The other end of the circuit breaker is connected to 
the other side of the circuit board. All the large discs that you see are 2 nF 
capacitors [not all have been included in Fig 10.85 for clarity]. There are 
quite a few capacitors to handle all the possibilities. For instance, there 
are capacitors from line to return (black wire to white wire), from line to 
ground (black to green), and from return to ground (white to ground). 
Each has two functions. The first and most obvious function is to pre-
vent any spikes in voltage that may come down the line because of 
external effects such as lightning from reaching the equipment plugged 
into the unit. Recall from this chapter that the voltage across capacitors 
cannot change instantaneously and, in fact, acts to squelch any rapid 
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change in voltage across its terminals. The capacitor, therefore, prevents 
the line to neutral voltage from changing too quickly, and any spike that 
tries to come down the line has to find another point in the feed circuit to 
fall across. In this way, the appliances plugged into the surge protector 
are well protected.

The second function requires some knowledge of the reaction of 
capacitors to different frequencies and is discussed in more detail in later 
chapters. For the moment, let it suffice to say that the capacitor has a 
different impedance to different frequencies, thereby preventing unde-
sired frequencies, such as those associated with EMI and RFI distur-
bances, from affecting the operation of units connected to the line 
conditioner. The rectangular-shaped capacitor of 1 mF near the center of 
the board is connected directly across the line to take the brunt of a 
strong voltage spike down the line. Its larger size is clear evidence that it 
is designed to absorb a fairly high energy level that may be established 
by a large voltage—significant current over a period of time that may 
exceed a few milliseconds.

The large, toroidal-shaped structure in the center of the circuit board 
in Fig. 10.85 has two coils (Chapter 11) of 228 mH that appear in the 
line and neutral in Fig. 10.84. Their purpose, like that of the capacitors, 
is twofold: to block spikes in current from coming down the line and to 
block unwanted EMI and RFI frequencies from getting to the connected 
systems. In the next chapter you will find that coils act as “chokes” to 
quick changes in current; that is, the current through a coil cannot 
change instantaneously. For increasing frequencies, such as those asso-
ciated with EMI and RFI disturbances, the reactance of a coil increases 
and absorbs the undesired signal rather than let it pass down the line. 
Using a choke in both the line and the neutral makes the conditioner 
network balanced to ground. In total, capacitors in a line conditioner 
have the effect of bypassing the disturbances, whereas inductors block 
the disturbance.
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FIG. 10.85
Internal construction of surge protector.
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The smaller disc (blue) between two capacitors and near the circuit 
breaker is an MOV (metal-oxide varistor), which is the heart of most 
line conditioners. It is an electronic device whose terminal characteris-
tics change with the voltage applied across its terminals. For the normal 
range of voltages down the line, its terminal resistance is sufficiently 
large to be considered an open circuit, and its presence can be ignored. 
However, if the voltage is too large, its terminal characteristics change 
from a very large resistance to a very small resistance that can essen-
tially be considered a short circuit. This variation in resistance with 
applied voltage is the reason for the name varistor. For MOVs in North 
America, where the line voltage is 120 V, the MOVs are 180 V or more. 
The reason for the 60 V difference is that the 120 V rating is an effective 
value related to dc voltage levels, whereas the waveform for the voltage 
at any 120 V outlet has a peak value of about 170 V. A great deal more 
will be said about this topic in Chapter 13.

Taking a look at the symbol for an MOV in Fig. 10.85, note that it has 
an arrow in each direction, revealing that the MOV is bidirectional and 
blocks voltages with either polarity. In general, therefore, for normal 
operating conditions, the presence of the MOV can be ignored, but if a 
large spike should appear down the line, exceeding the MOV rating, it 
acts as a short across the line to protect the connected circuitry. It is a 
significant improvement to simply putting a fuse in the line because it is 
voltage sensitive, can react much quicker than a fuse, and displays its 
low-resistance characteristics for only a short period of time. When the 
spike has passed, it returns to its normal open-circuit characteristic. If 
you’re wondering where the spike goes if the load is protected by a short 
circuit, remember that all sources of disturbance, such as lightning, gen-
erators, inductive motors (such as in air conditioners, dishwashers, 
power saws, and so on), have their own “source resistance,” and there is 
always some resistance down the line to absorb the disturbance.

Most line conditioners, as part of their advertising, mention their energy 
absorption level. The rating of the unit in Fig. 10.83 is 1200 J, which is 
actually higher than most. Remembering that W = Pt = EIt from the ear-
lier discussion of cameras, we now realize that if a 5000 V spike occurred, 
we would be left with the product It = W>E = 1200 J>5000 V =  
240 mAs. Assuming a linear relationship between all quantities, the 
rated energy level reveals that a current of 100 A could be sustained for 
t = 240 mAs>100 A = 2.4 ms, a current of 1000 A for 240 ms, and a 
current of 10,000 A for 24 ms. Obviously, the higher the power product 
of E and I, the less is the time element.

The technical specifications of the unit in Fig. 10.83 include an 
instantaneous response time in the order of picoseconds, with a phone 
line protection of 5 ns. The unit is rated to dissipate surges up to 6000 V 
and current spikes up to 96,000 A. It has a very high noise suppression 
ratio (80 dB; see Chapter 22) at frequencies from 50 kHz to 1000 MHz, 
and (a credit to the company) it has a lifetime warranty.

10.15 C omputer Analysis

PSpice

Transient RC Response    We now use PSpice to investigate the tran-
sient response for the voltage across the capacitor in Fig. 10.86. In all the 
examples in the text involving a transient response, a switch appeared in 
series with the source as shown in Fig. 10.87(a). When applying PSpice, 
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FIG. 10.86
Circuit to be analyzed using PSpice.
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we establish this instantaneous change in voltage level by applying a 
pulse waveform as shown in Fig. 10.87(b) with a pulse width (PW) 
longer than the period (5t) of interest for the network.

To obtain a pulse source, start with the sequence Place part key-
Libraries-SOURCE-VPULSE-OK. Once in place, set the label and all 
the parameters by double-clicking on each to obtain the Display Prop-
erties dialog box. As you scroll down the list of attributes, you will see 
the following parameters defined by Fig. 10.88:

V1 is the initial value.
V2 is the pulse level.
TD is the delay time.
TR is the rise time.
TF is the fall time.
PW is the pulse width at the V2 level.
PER is the period of the waveform.

All the parameters have been set as shown on the schematic in Fig. 
10.89 for the network in Fig. 10.86. Be sure to rotate the capacitor C so 
that terminal 1 is at the top (for V1(C)) later on. Since a rise and fall time 
of 0 s is unrealistic from a practical standpoint, 0.1 ms was chosen for each 
in this example. Further, since t = RC = (5 kΩ) * (8 mF) = 20 ms 
and 5t = 200 ms, a pulse width of 500 ms was selected. The period was 
simply chosen as twice the pulse width.

Now for the simulation process. First select the New Simulation 
Profile key to obtain the New Simulation dialog box in which PSpice 
10-1 is inserted for the Name and Create is chosen to leave the dialog 
box. The Simulation Settings-PSpice 10-1 dialog box appears at the 
bottom of the screen. Select and it will appear on the face of the larger 
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Using PSpice to investigate the transient response of the series R-C circuit  

in Fig. 10.86.
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window, under Analysis, choose the Time Domain (Transient) option 
under Analysis type. Set the Run to time at 200 ms so that only the first 
five time constants will be plotted. Set the Start saving data after 
option at 0 s to ensure that the data are collected immediately. The Max-
imum step size is 1 ms to provide sufficient data points for a good plot. 
Click OK, and you are ready to select the Run PSpice key. A blinking 
SCHEMATIC1-PSpice 10-1 dialog box will appear at the bottom of 
the screen. Select it and a graph without a plot will appear that extends 
from 0 s to 200 ms as set above. To obtain a plot of the voltage across 
the capacitor versus time, apply the following sequence: Trace-Add 
Trace key-V1(C)-OK. The plot in Fig. 10.90 results. The color and 
thickness of the plot and the axis can be changed by placing the cursor 
on the plot line and right-clicking. Select Trace Property from the list 
that appears. A Trace Property dialog box appears in which you can 
change the color and thickness of the line. Since the plot is against a 
black background, a better printout occurred when yellow was selected 
and the line was made thicker as shown in Fig. 10.90. For comparison, 
plot the applied pulse signal also. This is accomplished by going back to 
Trace and selecting Add Trace followed by V(Vpulse:+) and OK. 
Now both waveforms appear on the same screen as shown in Fig. 10.90. 
In this case, the plot has a reddish tint so it can be distinguished from the 
axis and the other plot. Note that it follows the left axis to the top and 
travels across the screen at 20 V.

If you want the magnitude of either plot at any instant, simply select 
the Toggle cursor key. Then click on V1(C) at the bottom left of the 
screen. A box appears around V1(C) indicating that this is the function to 
which the cursor is to be applied. By moving the cursor as close as you 
can to 200 ms, you find that the magnitude (Y1) is 19.862 V (in the Probe 
Cursor dialog box), clearly showing how close it is to the final value 
of 20 V. A second cursor can be placed on the screen by simply right-
clicking on the screen at any location. The cursor can then be dragged to 
any point of interest on the curve with the magnitude appearing in the 

FIG. 10.90
Transient response for the voltage across the capacitor in Fig. 10.86 when 

VPulse is applied.
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Probe cursor dialog box. Note in the Probe dialog box that the colors 
match that of the curves and the value of V1(C) and VPulse appears for 
each value of X. If you now move the second cursor close to one time 
constant of 40 ms, you find that the voltage is 12.61 V as shown in the 
Probe Cursor dialog box. This confirms that the voltage should be 63.2% 
of its final value of 20 V in one time constant (0.632 * 20 V = 12.4 V). 
Two separate plots could have been obtained by going to Plot-Add Plot 
to Window and then using the trace sequence again.

Average Capacitive Current    As an exercise in using the pulse 
source and to verify our analysis of the average current for a purely 
capacitive network, the description to follow verifies the results of 
Example 10.14. For the pulse waveform in Fig. 10.66, the parameters of 
the pulse supply appear in Fig. 10.91. Note that the rise time is now 
2 ms, starting at 0 s, and the fall time is 6 ms. The period was set at 
15 ms to permit monitoring the current after the pulse had passed.

Initiate simulation by first selecting the New Simulation Profile key to 
obtain the New Simulation dialog box in which AverageIC is entered as 
the Name. Choose Create to obtain the Simulation Settings-AverageIC 
dialog box blinking at the bottom of the window. Select to bring it to the 
screen and after selecting Analysis, choose Time Domain (Transient) 
under the Analysis type options. Set the Run to time to 15 ms to encom-
pass the period of interest, and set the Start saving data after at 0 s to 
ensure data points starting at t = 0 s. Select the Maximum step size 
from 15 ms>1000 = 15 ms to ensure 1000 data points for the plot. Click 
OK, and select the Run PSpice key to obtain the blinking SCHE-
MATIC1-Average IC dialog box at the bottom of the window. Select 
to bring it to the screen. The window will have a horizontal scale that 
extends from 0 to 15 ms as defined above. Then select the Add Trace 

FIG. 10.91
Using PSpice to verify the results in Example 10.14.
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key, and choose I(C) to appear in the Trace Expression below. Click 
OK, and the plot of I(C) appears in the bottom of Fig. 10.92. This time 
it would be nice to see the pulse waveform in the same window but as a 
separate plot. Therefore, continue with Plot-Add Plot to Window-
Trace-Add Trace-V(Vpulse:+)@OK, and both plots appear as shown 
in Fig. 10.92.

Now use the cursors to measure the resulting average current levels. 
First, select the I(C) plot to move the SEL++  notation to the lower 
plot. The SEL++  defines which plot for multiplot screens is active. 
Then select the Toggle cursor key, and left-click on the I(C) plot to 
establish the crosshairs of the cursor. Set the value at 1 ms, and the mag-
nitude Y1 is displayed as 4 mA. Right-click on the same plot, and a 
second cursor results that can be placed at 6 ms to get a response of 
-1.33 mA (Y2) as expected from Example 10.14. The plot for I(C) was 
set in the yellow color with a wider line by right-clicking on the curve 
and choosing Properties. You will find after using the DEMO version 
for a while that it informs you that there is a limit of nine files that can be 
saved under the File listing. The result is that any further use of the 
DEMO version requires opening one of the nine files and deleting the 
contents if you want to run another program. That is, clear the screen 
and enter the new network.

Multisim

Multisim will now be used to examine the response of the R-C circuit of 
Fig. 10.93 to a pulse signal with a capacitor having an initial condition 
(IC) of 5 V. The pulse source is obtained and placed on the screen through 
the sequence: Place Source-SIGNAL_VOLTAGE_SOURCES-
PULSE_VOLTAGE–OK. Then double-clicking on the source will 
result in the PULSE_VOLTAGE dialog box in which the the Label can 
be changed to VPulse and the following values entered: Initial value: 
0 V, Pulsed value: 20 V, Pulse width: 2 ms, and Period: 4 ms. The 

FIG. 10.92
The applied pulse and resulting current for the 2 mF capacitor in Fig. 10.91.
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remaining components can then be placed using the same process intro-
duced in recent chapters. Be sure when you change the value of the 
capacitor that you check the initial conditions box and enter an initial 
condition of 5 V. Then proceed with Simulate-Analyses-Transient 
analysis to obtain the dialog box where the Analysis parameters can be 
set as follows: Initial conditions: User-defined, Start time: 0 s, End 
time: 4E-3 s (for 4 ms). The Start and End time cannot be entered using 
prefixes such as m and m for the time. Then select the Output heading 
and move V(2) (the voltage across the capacitor) to the Selected varia-
bles for analysis column and select Simulate.

Note in Fig. 10.93 that the voltage across the capacitor did, in fact, 
start at the initial value of 5 V and climb to the final value of 20 V. Once 
the higher pulse level is removed, the voltage decays to the level of 0 V 
since there are no additional initial values to consider.

FIG. 10.93
Applying Multisim to determine the response of a series R-C circuit to a pulse 

signal if the capacitor has an initial voltage to consider.

Problems

Section 10.2  The Electric Field

	 1.	 a.	 Find the electric field strength at a point 1 m from a 
charge of 4 mC.

	 b.	 Find the electric field strength at a point 1 mm [1/1000 
the distance of part (a)] from the same charge as part (a) 
and compare results.

	 2.	 The electric field strength is 96 newtons/coulomb (N/C) at a 
point r meters from a charge of 3 mC. Find the distance r.

Sections 10.3 and 10.4  Capacitance and Capacitors

	 3.	 Find the capacitance of a parallel plate capacitor if 1700 mC 
of charge are deposited on its plates when 34 V are applied 
across the plates.

	 4.	 How much charge is deposited on the plates of a 0.25 mF 
capacitor if 220 V are applied across the capacitor?

	 5.	 a.	 Find the electric field strength between the plates of a 
parallel plate capacitor if 500 mV are applied across the 
plates and the plates are 1 inch apart.

	 b.	 Repeat part (a) if the distance between the plates is 
1>100 inch.

	 c.	 Compare the results of parts (a) and (b). Is the differ-
ence in field strength significant?

	 6.	 A 9.8 mF parallel plate capacitor has 180 mC of charge on 
its plates. If the plates are 3 mm apart, find the electric field 
strength between the plates.

	 7.	 Find the capacitance of a parallel plate capacitor if the area 
of each plate is 0.2 m2 and the distance between the plates is 
0.2 inch. The dielectric is air.

	 8.	 Repeat Problem 7 if the dielectric is paraffin-coated paper.

	 9.	 Find the distance in mils between the plates of a 2.5 mF 
capacitor if the area of each plate is 0.18 m2 and the dielec-
tric is transformer oil.

	10.	 The capacitance of a capacitor with a dielectric of air is 
1460 pF. When a dielectric is inserted between the plates, 
the capacitance increases to 7.3 nF. Of what material is the 
dielectric made?

	11.	 The plates of a parallel plate capacitor with a dielectric of 
Bakelite are 0.2 mm apart and have an area of 0.08 m2, and 
80 V are applied across the plates.

	 a.	 Determine the capacitance.
	 b.	 Find the electric field intensity between the plates.
	 c.	 Find the charge on each plate.

	12.	 A parallel plate air capacitor has a capacitance of 4.7 mF. 
Find the new capacitance if:

	 a.	 The distance between the plates is doubled (everything 
else remains the same).
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	 b.	 The area of the plates is doubled (everything else 
remains the same as for the 4.7 mF level).

	 c.	 A dielectric with a relative permittivity of 20 is inserted 
between the plates (everything else remains the same as 
for the 4.7 mF level).

	 d.	 A dielectric is inserted with a relative permittivity of 4, 
and the area is reduced to 1/3 and the distance to 1/4 of 
their original dimensions.

	*13.	 Find the maximum voltage that can be applied across a par-
allel plate capacitor of 8700 pF if the area of one plate is 
0.03 m2 and the dielectric is mica. Assume a linear relation-
ship between the dielectric strength and the thickness of the 
dielectric.

	*14.	 Find the distance in micrometers between the plates of a 
parallel plate mica capacitor if the maximum voltage that 
can be applied across the capacitor is 1200 V. Assume a 
linear relationship between the breakdown strength and the 
thickness of the dielectric.

	15.	 A 22 mF capacitor has -200 ppm/°C at room temperature 
of 20°C. What is the capacitance if the temperature increases 
to 100°C, the boiling point of water?

	16.	 What is the capacitance of a small teardrop capacitor 
labeled 60 J? What is the range of expected values as estab-
lished by the tolerance?

	17.	 A large, flat, mica capacitor is labeled 671F. What are the 
capacitance and the expected range of values guaranteed by 
the manufacturer?

	18.	 A small, flat, disc ceramic capacitor is labeled 282K. What 
are the capacitance level and the expected range of values?

Section 10.5  Transients in Capacitive Networks: 
The Charging Phase

	19.	 For the circuit in Fig. 10.94, composed of standard values:
	 a.	 Determine the time constant of the circuit.
	 b.	 Write the mathematical equation for the voltage yC fol-

lowing the closing of the switch.
	 c.	 Determine the voltage yC after one, three, and five time 

constants.
	 d.	 Write the equations for the current iC and the voltage 

yR.
	 e.	 Sketch the waveforms for yC and iC.

	 c.	 Determine yC after one, three, and five time constants.
	 d.	 Write the equations for the current iC and the voltage yR2

.
	 e.	 Sketch the waveforms for yC and iC.

	*22.	 For the circuit in Fig. 10.96, composed of standard values:
	 a.	 Determine the time constant of the circuit.
	 b.	 Write the mathematical equation for the voltage yC fol-

lowing the closing of the switch.
	 c.	 Write the mathematical expression for the current iC 

following the closing of the switch.
	 d.	 Sketch the waveforms of yC and iC.
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	20.	 Repeat Problem 19 for R = 100 kΩ, and compare the 
results.

	21.	 For the circuit in Fig. 10.95, composed of standard values:
	 a.	 Determine the time constant of the circuit.
	 b.	 Write the mathematical equation for the voltage yC fol-

lowing the closing of the switch.

	23.	 Given the voltage yC = 20 V(1 - e - t>200 ms):
	 a.	 What is the time constant?
	 b.	 What is the voltage at t = 100 ms?
	 c.	 What is the voltage at t = 2 ms?

	24.	 The voltage across a 10 mF capacitor in a series R-C circuit 
is yC = 40 mV(1 - e - t>20 ms).

	 a.	 On a practical basis, how much time must pass before 
the charging phase has passed?

	 b.	 What is the resistance of the circuit?
	 c.	 What is the voltage at t = 20 ms?
	 d.	 What is the voltage at 10 time constants?
	 e.	 Under steady-state conditions, how much charge is on 

the plates?
	 f.	 If the leakage resistance is 1000 MΩ, how long will it 

take (in hours) for the capacitor to discharge if we 
assume that the discharge rate is constant throughout 
the discharge period?

Section 10.6  Transients in Capacitive Networks: 
The Discharging Phase

	25.	 For the R-C circuit in Fig. 10.97, composed of standard 
values:

	 a.	 Determine the time constant of the circuit when the 
switch is thrown into position 1.

	 b.	 Find the mathematical expression for the voltage across 
the capacitor and the current after the switch is thrown 
into position 1.
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	 c.	 Determine the magnitude of the voltage yC and the cur-
rent iC the instant the switch is thrown into position 2 at 
t = 1 s.

	 d.	 Determine the mathematical expression for the voltage 
yC and the current iC for the discharge phase.

	 e.	 Plot the waveforms of yC and iC for a period of time 
extending from 0 to 2 s from when the switch was 
thrown into position 1.

	26.	 For the network in Fig. 10.98, composed of standard values:
	 a.	 Write the mathematical expressions for the voltages yC, 

and yR1
 and the current iC after the switch is thrown into 

position 1.
	 b.	 Find the values of yC, yR1

, and iC when the switch is 
moved to position 2 at t = 100 ms.

	 c.	 Write the mathematical expressions for the voltages yC 
and yR2

 and the current iC if the switch is moved to posi-
tion 3 at t = 200 ms.

	 d.	 Plot the waveforms of yC, yR2
, and iC for the time period 

extending from 0 to 300 ms.

	 b.	 Find the mathematical expressions for the voltage yC and 
the current iC if the switch is thrown into position 2 at a 
time equal to five time constants of the charging circuit.

	 c.	 Plot the waveforms of yC and iC for a period of time 
extending from 0 to 100 ms.

	28.	 The 2000 mF capacitor in Fig. 10.100 is charged to 18 V in 
an automobile. To discharge the capacitor before further 
use, a wire with a resistance of 2 mΩ is placed across the 
capacitor.

	 a.	 How long will it take to discharge the capacitor?
	 b.	 What is the peak value of the current?
	 c.	 Based on the answer to part (b), is a spark expected 

when contact is made with both ends of the capacitor?
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FIG. 10.97
Problem 25.
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FIG. 10.98
Problem 26.

	*27.	 For the network in Fig. 10.99, composed of standard values:
	 a.	 Find the mathematical expressions for the voltage yC and 

the current iC when the switch is thrown into position 1.
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FIG. 10.99
Problem 27.
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FIG. 10.100
Problem 28.
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FIG. 10.101
Problem 29.

Section 10.7  Initial Conditions

	29.	 The capacitor in Fig. 10.101 is initially charged to 6 V with 
the polarity shown.

	 a.	 Write the expression for the voltage yC after the switch 
is closed.

	 b.	 Write the expression for the current iC after the switch is 
closed.

	 c.	 Plot the results of parts (a) and (b).

	*30.	 Repeat Problem 29 if the initial charge is -40 V.

	*31.	 Repeat Problem 29 if the initial charge is +40 V.

	32.	 The capacitor in Fig. 10.102 is initially charged to 20 V 
before the switch is closed. Write the expressions for the 
voltages yC and yR2

 and the current iC following the closing 
of the switch. Plot the resulting waveforms.
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	*33.	 The capacitor in Fig. 10.103 is initially charged to 10 V 
with the polarity shown. Write the expressions for the volt-
age yC and the current iC following the closing of the 
switch. Plot the resulting waveforms.

iC R1 R2

1 k� 2.2 k�

+ –vC

+– vR2

+  20 V  –

180   FC = 

FIG. 10.102
Problem 32.

Section 10.8  Instantaneous Values

	37.	 Given the expression yC = 140 mV(1 - e - t>2 ms)
	 a.	 Determine yC at t = 1 ms.
	 b.	 Determine yC at t = 20 ms.
	 c.	 Find the time t for yC to reach 100 mV.
	 d.	 Find the time t for yC to reach 138 mV.

	38.	 For the automobile circuit of Fig. 10.106, VL must be 10 V 
before the system is activated. If the switch is closed at 
t = 0 s, how long will it take for the system to be activated?
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FIG. 10.103
Problem 33.
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FIG. 10.104
Problem 34.
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FIG. 10.105
Problem 35.

	*34.	 The capacitor in Fig. 10.104 is initially charged to 8 V with 
the polarity shown.

	 a.	 Find the mathematical expressions for the voltage yC 
and the current iC when the switch is closed.

	 b.	 Sketch the waveforms of yC and iC.

	35.	 The capacitors of Fig. 10.105 are initially uncharged.
	 a.	 Sketch the waveform for yC after the switch is closed.
	 b.	 Find the voltage yC when t = 10 s.
	 c.	 At t = 5 t, find the charge on each capacitor.

	36.	 Repeat Problem 35 if a 10 kΩ resistor is placed in parallel 
with the capacitors.

R 44 k�

15 VE

(t  =  0 s)

C System
R  =  ∞ � VL

+

–

+

–
30   F

FIG. 10.106
Problem 38.

20 VE

(t  =  0 s)

C System
R  =  ∞ �

VL  =  15 V to turn on
+

–

R

800   F

FIG. 10.107
Problem 39.
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FIG. 10.108
Problem 40.

	*39.	 Design the network in Fig. 10.107 such that the system 
turns on 12 s after the switch is closed.

	40.	 For the circuit in Fig. 10.108:
	 a.	 Find the time required for yC to reach 48 V following 

the closing of the switch.
	 b.	 Calculate the current iC at the instant yC = 48 V.
	 c.	 Determine the power delivered by the source at the 

instant t = 2t.
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	41.	 For the system in Fig. 10.109, using a DMM with a 10 MΩ 
internal resistance in the voltmeter mode:

	 a.	 Determine the voltmeter reading one time constant after 
the switch is closed.

	 b.	 Find the current iC two time constants after the switch is 
closed.

	 c.	 Calculate the time that must pass after the closing of the 
switch for the voltage yC to be 50 V.

	44.	 The capacitors in Fig. 10.112 are initially charged to 12 V 
with the polarity shown.

	 a.	 Write the mathematical expressions for the voltage yC 
and the current iC when the switch is closed.

	 b.	 Sketch the waveforms of yC and iC.
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Problem 41.
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FIG. 10.111
Problem 43.

Section 10.9  Thévenin Equivalent: T = RThC

	42.	 For the circuit in Fig. 10.110:
	 a.	 Find the mathematical expressions for the transient 

behavior of the voltage yC and the current iC following 
the closing of the switch.

	 b.	 Sketch the waveforms of yC and iC.

	43.	 The capacitor in Fig. 10.111 is initially charged to 10 V 
with the polarity shown.

	 a.	 Write the mathematical expressions for the voltage yC 
and the current iC when the switch is closed.

	 b.	 Sketch the waveforms of yC and iC.
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FIG. 10.114
Problem 46.

	45.	 For the circuit in Fig. 10.113:
	 a.	 Find the mathematical expressions for the transient 

behavior of the voltage yC and the current iC following 
the closing of the switch.

	 b.	 Sketch the waveforms of yC and iC.

	*46.	 The capacitor in Fig. 10.114 is initially charged to 8 V with 
the polarity shown.

	 a.	 Write the mathematical expressions for the voltage yC 
and the current iC when the switch is closed.

	 b.	 Sketch the waveforms of yC and iC.
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	*47.	 For the system in Fig. 10.115, using a DMM with a 12 MΩ 
internal resistance in the voltmeter mode:

	 a.	 Determine the voltmeter reading four time constants 
after the switch is closed.

	 b.	 Find the time that must pass before iC drops to 4 mA.
	 c.	 Find the time that must pass after the closing of the 

switch for the voltage across the meter to reach 15 V.
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FIG. 10.115
Problem 47.
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FIG. 10.117
Problem 49.

	49.	 Find the waveform for the average current if the voltage 
across the 4.7 mF capacitor is as shown in Fig. 10.117.
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FIG. 10.118
Problem 50.

	50.	 Given the waveform in Fig. 10.118 for the current of a 
20 mF capacitor, sketch the waveform of the voltage yC 
across the capacitor if yC = 0 V at t = 0 s.

vC  (V)
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1 2 3 4 5 6 7 8 9 10 11 12 t  (ms)0

FIG. 10.116
Problem 48.

Section 10.10  The Current iC

	48.	 Find the waveform for the average current if the voltage 
across the 2 mF capacitor is as shown in Fig. 10.116.
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	55.	 For the configuration in Fig. 10.123, determine the steady-
state voltage across each capacitor and the charge on each 
capacitor under steady-state conditions.

Section 10.11  Capacitors in Series and in Parallel

	51.	 Find the total capacitance CT for the network in Fig. 10.119.
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	52.	 Find the total capacitance CT for the network in Fig. 10.120.

	53.	 Find the steady-state voltage across and the charge on each 
capacitor for the circuit in Fig. 10.121.

	54.	 Find the steady-state voltage across and the charge on each 
capacitor for the circuit in Fig. 10.122.
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FIG. 10.125
Problem 59.

	56.	 For the configuration in Fig. 10.124, determine the steady-
state voltage across each capacitor and the charge on each 
capacitor.

CT

6    F

5    F
15  F8    F

FIG. 10.119
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FIG. 10.120
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Section 10.12  Energy Stored by a Capacitor

	57.	 Find the energy stored by a 140 pF capacitor with 20 V 
across its plates.

	58.	 If the energy stored by a 8 mF capacitor is 1500 J, find the 
charge Q on each plate of the capacitor.

	*59.	 For the network in Fig. 10.125, determine the energy stored 
by each capacitor under steady-state conditions.

	*60.	 An electronic flashgun has a 1500 mF capacitor that is 
charged to 120 V.

	 a.	 How much energy is stored by the capacitor?
	 b.	 What is the charge on the capacitor?
	 c.	 When the photographer takes a picture, the flash fires 

for 1/2500 s. What is the average current through the 
flashtube?

	 d.	 Find the power delivered to the flashtube.
	 e.	 After a picture is taken, the capacitor has to be recharged 

by a power supply that delivers a maximum current of 
12 mA. How long will it take to charge the capacitor?
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Section 10.15  Computer Analysis

	61.	 Using PSpice or Multisim, verify the results in Example 10.6.

	62.	 Using the initial condition operator, verify the results  
in Example 10.8 for the charging phase using PSpice or 
Multisim.

	63.	 Using PSpice or Multisim, verify the results for yC during 
the charging phase in Example 10.11.

	64.	 Using PSpice or Multisim, verify the results in Problem 46.

Glossary

Average current  The current defined by a linear (straight-line) 
change in voltage across a capacitor for a specific period of time.

Breakdown voltage  Another term for dielectric strength, listed 
below.

Capacitance  A measure of a capacitor’s ability to store charge; 
measured in farads (F).

Capacitor  A fundamental electrical element having two con-
ducting surfaces separated by an insulating material and hav-
ing the capacity to store charge on its plates.

Coulomb’s law  An equation relating the force between two like 
or unlike charges.

Derivative  The instantaneous change in a quantity at a particular 
instant in time.

Dielectic  The insulating material between the plates of a capaci-
tor that can have a pronounced effect on the charge stored on 
the plates of a capacitor.

Dielectric constant  Another term for relative permittivity, listed 
below.

Dielectric strength  An indication of the voltage required for 
unit length to establish conduction in a dielectric.

Electric field strength  The force acting on a unit positive charge 
in the region of interest.

Electric flux lines  Lines drawn to indicate the strength and 
direction of an electric field in a particular region.

Fringing  An effect established by flux lines that do not pass 
directly from one conducting surface to another.

Initial value  The steady-state voltage across a capacitor before a 
transient period begins.

Leakage current  The current that results in the total discharge 
of a capacitor if the capacitor is disconnected from the charg-
ing network for a sufficient length of time.

Maximum working voltage  That voltage level at which a 
capacitor can perform its function without concern about 
breakdown or change in characteristics.

Permittivity  A measure of how well a dielectric permits the 
establishment of flux lines within the dielectric.

Relative permittivity  The permittivity of a material compared 
to that of air.

Steady-state region  A period of time defined by the fact that the 
voltage across a capacitor has reached a level that, for all 
practical purposes, remains constant.

Stray capacitance  Capacitances that exist not through design 
but simply because two conducting surfaces are relatively 
close to each other.

Temperature coefficient (ppm)  An indication of how much the 
capacitance value of a capacitor will change with change in 
temperature.

Time constant  A period of time defined by the parameters of 
the network that defines how long the transient behavior of 
the voltage or current of a capacitor will last.

Transient period  That period of time where the voltage across a 
capacitor or the current of a capacitor will change in value at a 
rate determined by the time constant of the network.
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Inductors

11.1  Introduction

Three basic components appear in the majority of electrical/electronic systems in use today. 
They include the resistor and the capacitor, which have already been introduced, and the 
inductor, to be examined in detail in this chapter. In many ways, the inductor is the dual of 
the capacitor; that is, the voltage of one is applicable to the current of the other, and vice 
versa. In fact, some sections in this chapter parallel those in Chapter 10 on the capacitor. Like 
the capacitor, the inductor exhibits its true characteristics only when a change in voltage or 
current is made in the network.

Recall from Chapter 10 that a capacitor can be replaced by an open-circuit equivalent 
under steady-state conditions. You will see in this chapter that an inductor can be replaced 
by a short-circuit equivalent under steady-state conditions. Finally, you will learn that 
while resistors dissipate the power delivered to them in the form of heat, ideal capacitors 
store the energy delivered to them in the form of an electric field. Inductors, in the ideal 
sense, are like capacitors in that they also store the energy delivered to them—but in the 
form of a magnetic field.

11.2  Magnetic Field

Magnetism plays an integral part in almost every electrical device used today in industry, research, 
or the home. Generators, motors, transformers, circuit breakers, televisions, computers, tape 
recorders, and telephones all employ magnetic effects to perform a variety of important tasks.

The compass, used by Chinese sailors as early as the second century a.d., relies on a 
permanent magnet for indicating direction. A permanent magnet is made of a material, such 
as steel or iron, that remains magnetized for long periods of time without the need for an 
external source of energy.

In 1820, the Danish physicist Hans Christian Oersted discovered that the needle of a com-
pass deflects if brought near a current-carrying conductor. This was the first demonstration 
that electricity and magnetism were related. In the same year, the French physicist André-
Marie Ampère performed experiments in this area and developed what is presently known as 
Ampère’s circuital law. In subsequent years, others, such as Michael Faraday, Karl Frie-
drich Gauss, and James Clerk Maxwell, continued to experiment in this area and developed 

Inductors

•	 Become familiar with the basic construction of an 
inductor, the factors that affect the strength of the 
magnetic field established by the element, and 
how to read the nameplate data.

•	 Be able to determine the transient (time-varying) 
response of an inductive network and plot the 
resulting voltages and currents.

•	 Understand the impact of combining inductors in 
series or parallel.

•	 Develop some familiarity with the use of PSpice or 
Multisim to analyze networks with inductive 
elements.

Objectives

1111
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many of the basic concepts of electromagnetism—magnetic effects 
induced by the flow of charge, or current.

A magnetic field exists in the region surrounding a permanent mag-
net, which can be represented by magnetic flux lines similar to electric 
flux lines. Magnetic flux lines, however, do not have origins or terminat-
ing points as do electric flux lines but exist in continuous loops, as 
shown in Fig. 11.1.

The magnetic flux lines radiate from the north pole to the south pole, 
returning to the north pole through the metallic bar. Note the equal spac-
ing between the flux lines within the core and the symmetric distribution 
outside the magnetic material. These are additional properties of mag-
netic flux lines in homogeneous materials (that is, materials having uni-
form structure or composition throughout). It is also important to realize 
that the continuous magnetic flux line will strive to occupy as small an 
area as possible. This results in magnetic flux lines of minimum length 
between the unlike poles, as shown in Fig. 11.2. The strength of a mag-
netic field in a particular region is directly related to the density of flux 
lines in that region. In Fig. 11.1, for example, the magnetic field strength 
at point a is twice that at point b since twice as many magnetic flux lines 
are associated with the perpendicular plane at point a than at point b. 
Recall from childhood experiments that the strength of permanent mag-
nets is always stronger near the poles.

If unlike poles of two permanent magnets are brought together, the 
magnets attract, and the flux distribution is as shown in Fig. 11.2. If like 
poles are brought together, the magnets repel, and the flux distribution is 
as shown in Fig. 11.3.

If a nonmagnetic material, such as glass or copper, is placed in the 
flux paths surrounding a permanent magnet, an almost unnoticeable 
change occurs in the flux distribution (Fig. 11.4). However, if a mag-
netic material, such as soft iron, is placed in the flux path, the flux lines 
pass through the soft iron rather than the surrounding air because flux 
lines pass with greater ease through magnetic materials than through air. 
This principle is used in shielding sensitive electrical elements and 
instruments that can be affected by stray magnetic fields (Fig. 11.5).

Same area b

a S N

Flux lines

�

FIG. 11.1
Flux distribution for a permanent magnet.

N S N S

FIG. 11.2
Flux distribution for two adjacent, opposite poles.

S N N S

FIG. 11.3
Flux distribution for two adjacent, like poles.

N

Soft iron

S

Flux lines

Glass

FIG. 11.4
Effect of a ferromagnetic sample on the flux 

distribution of a permanent magnet.

Sensitive
instrument

Soft iron

FIG. 11.5
Effect of a magnetic shield on 

the flux distribution.

A magnetic field (represented by concentric magnetic flux lines, as 
in Fig. 11.6) is present around every wire that carries an electric cur-
rent. The direction of the magnetic flux lines can be found simply by 
placing the thumb of the right hand in the direction of conventional 
current flow and noting the direction of the fingers. (This method is 
commonly called the right-hand rule.) If the conductor is wound in a 
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single-turn coil (Fig. 11.7), the resulting flux flows in a common direc-
tion through the center of the coil. A coil of more than one turn pro-
duces a magnetic field that exists in a continuous path through and 
around the coil (Fig. 11.8).

The flux distribution of the coil is quite similar to that of the perma-
nent magnet. The flux lines leaving the coil from the left and entering to 
the right simulate a north and a south pole, respectively. The principal 
difference between the two flux distributions is that the flux lines are 
more concentrated for the permanent magnet than for the coil. Also, 
since the strength of a magnetic field is determined by the density of the 
flux lines, the coil has a weaker field strength. The field strength of the 
coil can be effectively increased by placing certain materials, such as 
iron, steel, or cobalt, within the coil to increase the flux density within 
the coil. By increasing the field strength with the addition of the core, we 
have devised an electromagnet (Fig. 11.9) that not only has all the prop-
erties of a permanent magnet but also has a field strength that can be 
varied by changing one of the component values (current, turns, and so 
on). Of course, current must pass through the coil of the electromagnet 
for magnetic flux to be developed, whereas there is no need for the coil 
or current in the permanent magnet. The direction of flux lines can be 
determined for the electromagnet (or in any core with a wrapping of 
turns) by placing the fingers of your right hand in the direction of current 
flow around the core. Your thumb then points in the direction of the 
north pole of the induced magnetic flux, as demonstrated in Fig. 11.10(a). 
A cross section of the same electromagnet is in Fig. 11.10(b) to intro-
duce the convention for directions perpendicular to the page. The cross 
and the dot refer to the tail and the head of the arrow, respectively.

In the SI system of units, magnetic flux is measured in webers (Wb) 
as derived from the surname of Wilhelm Eduard Weber (Fig. 11.11). 
The applied symbol is the capital Greek letter phi, f. The number of flux 
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FIG. 11.10
Determining the direction of flux for an electromagnet: (a) method; (b) notation.

FIG. 11.11
Wilhelm Eduard Weber.
Rudolf Hoffmann/Library  

of Congress

German (Wittenberg, Göttingen)  
(1804–91)
Physicist  
Professor of Physics, University of Göttingen

An important contributor to the establishment of a 
system of absolute units for the electrical sciences, 
which was beginning to become a very active area of 
research and development. Established a definition of 
electric current in an electromagnetic system based on 
the magnetic field produced by the current. He was 
politically active and, in fact, was dismissed from the 
faculty of the University of Göttingen for protesting 
the suppression of the constitution by the King of 
Hanover in 1837. However, he found other faculty 
positions and eventually returned to Göttingen as 
director of the astronomical observatory. He received 
honors from England, France, and Germany, includ-
ing the Copley Medal of the Royal Society of London.
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lines per unit area, called the flux density, is denoted by the capital letter 
B and is measured in teslas (T) to honor the efforts of Nikola Tesla, a 
scientist of the late 1800s (Fig. 11.12).

In equation form,

	 B =
Φ
A
  

B = Wb/m2 = teslas (T)
Φ = webers (Wb)
A = m2

	 (11.1)

where Φ is the number of flux lines passing through area A in Fig. 11.13. 
The flux density at point a in Fig. 11.1 is twice that at point b because 
twice as many flux lines pass through the same area.

In Eq. (11.1), the equivalence is given by

	 1 tesla = 1 T ≈ 1 Wb/m2	 (11.2)

which states in words that if 1 weber of magnetic flux passes through an 
area of 1 square meter, the flux density is 1 tesla.

For the CGS system, magnetic flux is measured in maxwells and the 
flux density in gauss. For the English system, magnetic flux is measured 
in lines and the flux density in lines per square inch. The relationship 
between such systems is defined in Appendix D.

The flux density of an electromagnet is directly related to the number 
of turns of, and current through, the coil. The product of the two, called the 
magnetomotive force, is measured in ampere-turns (At) as defined by

	 f = NI  (ampere@turns, At)	 (11.3)

In other words, if you increase the number of turns around a core and/or 
increase the current through the coil, the magnetic field strength also 
increases. In many ways, the magnetomotive force for magnetic circuits 
is similar to the applied voltage in an electric circuit. Increasing either 
one results in an increase in the desired effect: magnetic flux for mag-
netic circuits and current for electric circuits.

For the CGS system, the magnetomotive force is measured in gil-
berts, while for the English system, it is measured in ampere-turns.

Another factor that affects the magnetic field strength is the type of 
core used. Materials in which magnetic flux lines can readily be set up 
are said to be magnetic and to have a high permeability. Again, note 
the similarity with the word “permit” used to describe permittivity for 
the dielectrics of capacitors. Similarly, the permeability (represented by 
the Greek letter mu, m) of a material is a measure of the ease with which 
magnetic flux lines can be established in the material.

Just as there is a specific value for the permittivity of air, there is a 
specific number associated with the permeability of air:

	 mo = 4p * 10-7 Wb/Am	 (11.4)

Practically speaking, the permeability of all nonmagnetic materials, 
such as copper, aluminum, wood, glass, and air, is the same as that for 
free space. Materials that have permeabilities slightly less than that of 
free space are said to be diamagnetic, and those with permeabilities 
slightly greater than that of free space are said to be paramagnetic. 
Magnetic materials, such as iron, nickel, steel, cobalt, and alloys of these 
metals, have permeabilities hundreds and even thousands of times that 
of free space. Materials with these very high permeabilities are referred 
to as ferromagnetic.

FIG. 11.12
Nikola Tesla.

Bain News Service/George Grantham 
Bain Collection/Library of Congress

Croatian-American (Smiljan, Paris,  
Colorado Springs, New York City) 

(1856–1943)
 Electrical Engineer and Inventor Recipient of 

the Edison Medal in 1917

Often regarded as one of the most innovative and 
inventive individuals in the history of the sciences. 
He was the first to introduce the alternating-current 
machine, removing the need for commutator bars of 
dc machines. After emigrating to the United States 
in 1884, he sold a number of his patents on ac 
machines, transformers, and induction coils (includ-
ing the Tesla coil as we know it today) to the West-
inghouse Electric Company. Some say that his most 
important discovery was made at his laboratory in 
Colorado Springs, where in 1900 he discovered ter-
restrial stationary waves. The range of his discover-
ies and inventions is too extensive to list here but 
extends from lighting systems to polyphase power 
systems to a wireless world broadcasting system.

Φ

A

FIG. 11.13
Defining the flux density B.
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The ratio of the permeability of a material to that of free space is 
called its relative permeability; that is,

	 mr -
m

mo
	 (11.5)

In general, for ferromagnetic materials, mr Ú 100, and for nonmagnetic 
materials, mr = 1.

A table of values for m to match the provided table for permittivity 
levels of specific dielectrics would be helpful. Unfortunately, such a table 
cannot be provided because relative permeability is a function of the oper-
ating conditions. If you change the magnetomotive force applied, the level 
of m can vary between extreme limits. At one level of magnetomotive 
force, the permeability of a material can be 10 times that at another level.

An instrument designed to measure flux density in milligauss (CGS 
system) appears in Fig. 11.14. The meter has two sensitivities, 0.5 to 100 
milligauss at 60 Hz and 0.2 to 3 milligauss at 60 Hz. It can be used to 
measure the electric field strength discussed in Chapter 10 on switching 
to the ELECTRIC setting. The top scale will then provide a reading in 
kilovolts/meter. (As an aside, the meter of Fig. 11.14 has appeared in TV 
programs as a device for detecting a “paranormal” response.) Appendix D 
reveals that 1 T = 104 gauss. The magnitude of the reading of 20 milli-
gauss would be equivalent to

20 milligaussa 1 T

104 gauss
b = 2 mT

Although our emphasis in this chapter is to introduce the parameters 
that affect the nameplate data of an inductor, the use of magnetics has 
widespread application in the electrical/electronics industry, as shown 
by a few areas of application in Fig. 11.15.

FIG. 11.14
Milligaussmeter.

(Courtesy of AlphaLab, Inc.)
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FIG. 11.15
Some areas of application of magnetic effects.
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11.3  Inductance

In the previous section, we learned that sending a current through a coil 
of wire, with or without a core, establishes a magnetic field through and 
surrounding the unit. This component, of rather simple construction (see 
Fig. 11.16), is called an inductor (often referred to as a coil). Its induct-
ance level determines the strength of the magnetic field around the coil 
due to an applied current. The higher the inductance level, the greater is 
the strength of the magnetic field. In total, therefore,

inductors are designed to set up a strong magnetic field linking the 
unit, whereas capacitors are designed to set up a strong electric field 
between the plates.

Inductance is measured in henries (H), after the American physicist 
Joseph Henry (Fig. 11.17). However, just as the farad is too large a unit 
for most applications, most inductors are of the millihenry (mH) or 
microhenry (mH) range.

In Chapter 10, 1 farad was defined as a capacitance level that would 
result in 1 coulomb of charge on the plates due to the application of 1 
volt across the plates. For inductors,

1 henry is the inductance level that will establish a voltage of 1 volt 
across the coil due to a change in current of 1 A/s through the coil.

Inductor Construction

In Chapter 10, we found that capacitance is sensitive to the area of the 
plates, the distance between the plates, and the dielectic employed. The 
level of inductance has similar construction sensitivities in that it is 
dependent on the area within the coil, the length of the unit, and the per-
meability of the core material. It is also sensitive to the number of turns 
of wire in the coil as dictated by the following equation and defined in 
Fig. 11.16 for two of the most popular shapes:

	  m = permeability (Wb/Am)
	  N = number of turns (t)

L =
mN2A

l
     A = m2

	  l = m
	  L = henries (H) 	

(11.6)

First note that since the turns are squared in the equation, the number 
of turns is a big factor. However, also keep in mind that the more turns, 
the bigger is the unit. If the wire is made too thin to get more windings 
on the core, the rated current of the inductor is limited. Since higher 
levels of permeability result in higher levels of magnetic flux, permea-
bility should, and does, appear in the numerator of the equation. Increas-
ing the area of the core or decreasing the length also increases the 
inductance level.

Substituting m = mrmo for the permeability results in the following 
equation, which is very similar to the equation for the capacitance of a 
capacitor:

L =
mrmoN 2A

l
    with mo = 4p * 10-7 Wb/Am

and	 L = 4p * 10-7mrN
2A

l
  (henries, H)	 (11.7)

A

N turns

(a)

A

Iron or
ferrite core

(  r)

N turns

l

l

(b)

FIG. 11.16
Defining the parameters for Eq. (11.6).

FIG. 11.17
Joseph Henry.

Brady-Handy Photograph Collection/
Library of Congress

American (Albany, NY; Princeton, NJ) 
(1797–1878)
Physicist and Mathematician
Professor of Natural Philosophy,  

Princeton University

In the early 1800s the title Professor of Natural Phi-
losophy was applied to educators in the sciences. As a 
student and teacher at the Albany Academy, Henry 
performed extensive research in the area of electro-
magnetism. He improved the design of electromag-
nets by insulating the coil wire to permit a tighter 
wrap on the core. One of his earlier designs was capa-
ble of lifting 3600 pounds. In 1832 he discovered and 
delivered a paper on self-induction. This was followed 
by the construction of an effective electric telegraph 
transmitter and receiver and extensive research on the 
oscillatory nature of lightning and discharges from a 
Leyden jar. In 1845 he was appointed the first Secre-
tary of the Smithsonian.
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If we break out the relative permeability as

L = mra
moN2A

l
b

we obtain the following useful equation:

	 L = mr Lo	 (11.8)

which is very similar to the equation C = PrCo. Eq. (11.8) states the 
following:

The inductance of an inductor with a ferromagnetic core is mr times 
the inductance obtained with an air core.

Although Eq. (11.6) is approximate at best, the equations for the induct-
ance of a wide variety of coils can be found in reference handbooks. Most 
of the equations are mathematically more complex than Eq. (11.6), but the 
impact of each factor is the same in each equation.

EXAMPLE 11.1  For the air-core coil in Fig. 11.18:

	 a.	 Find the inductance.
	 b.	 Find the inductance if a metallic core with mr = 2000 is inserted in 

the coil.

Solutions: 

	 a.	  d =
1

4
 in.a 1 m

39.37 in.
b = 6.35 mm

 A =
pd2

4
=

p(6.35 mm)2

4
= 31.67 mm2

 l = 1 in.a 1 m

39.37 in.
b = 25.4 mm

 L = 4p * 10-7mrN2A

l

 = 4p * 10-7(1)(100 t)2(31.7 mm2)

25.4 mm
= 15.68 MH

	 b.	 Eq. (11.8):  L = mr Lo = (2000)(15.68 mH) = 31.36 mH

EXAMPLE 11.2  In Fig. 11.19, if each inductor in the left column is 
changed to the type appearing in the right column, find the new 
inductance level. For each change, assume that the other factors 
remain the same.

Solutions: 

	 a.	 The only change was the number of turns, but it is a squared factor, 
resulting in

L = (2)2Lo = (4)(20 mH) = 80 MH

	 b.	 In this case, the area is three times the original size, and the number 
of turns is 1>2. Since the area is in the numerator, it increases the 

100 turns

1

d = 1
4

Air core (  o)

FIG. 11.18
Air-core coil for Example 11.1.
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inductance by a factor of three. The drop in the number of turns 
reduces the inductance by a factor of (1>2)2 = 1>4. Therefore,

L = (3)a 1

4
bLo =

3

4
 (16 mH) = 12 MH

	 c.	 Both m and the number of turns have increased, although the in-
crease in the number of turns is squared. The increased length re-
duces the inductance. Therefore,

L =
(3)2(1200)

2.5
Lo = (4.32 * 103)(10 mH) = 43.2 mH

Types of Inductors

Inductors, like capacitors and resistors, can be categorized under the 
general headings fixed or variable. The symbol for a fixed air-core 
inductor is provided in Fig. 11.20(a), for an inductor with a ferromag-
netic core in Fig. 11.20(b), for a tapped coil in Fig. 11.20(c), and for a 
variable inductor in Fig. 11.20(d).

Fixed    Fixed-type inductors come in all shapes and sizes. However,

in general, the size of an inductor is determined primarily by the type 
of construction, the core used, and the current rating.

In Fig. 11.21(a), the 10 mH and 1 mH coils are about the same size 
because a thinner wire was used for the 1 mH coil to permit more turns in 
the same space. The result, however, is a drop in rated current from 10 A to 
only 1.3 A. If the wire of the 10 mH coil had been used to make the 1 mH 
coil, the resulting coil would have been many times the size of the 10 mH 

(a)

Core,   r = 1200
A2 = A1

 L = ?

N2 = 2N1

o, l2 = l1

N1 turns

o, l1

(b)

N1 turns

(c)

N1 turns

o, l1

 L = ?
A2 = 3A1

o, l2 = l1

N2 =    N1
1
2

l2 = 2.5l1
N2 = 3N1

 L = ?

A1

A1

A1

A2 = A1

Lo =16  H

Lo =10  H

Lo =20  H

FIG. 11.19
Inductors for Example 11.2.

Air-core

(a)

Ferromagnetic
core

(b)

Variable
(permeability-tuned)

(d)

Tapped

(c)

FIG. 11.20
Inductor (coil) symbols.
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coil. The impact of the wire thickness is clearly revealed by the 1 mH coil 
at the far right in Fig. 11.21(a), where a thicker wire was used to raise the 
rated current level from 1.3 A to 2.4 A. Even though the inductance level is 
the same, the size of the toroid is four to five greater.

The phenolic inductor (using a nonferromagnetic core of resin or 
plastic) in Fig. 11.21(b) is quite small for its level of inductance. We 
must assume that it has a high number of turns of very thin wire. Note, 
however, that the use of a very thin wire has resulted in a relatively low 
current rating of only 350 mA (0.35 A). The use of a ferrite (ferromag-
netic) core in the inductor in Fig. 11.21(c) has resulted in an amazingly 
high level of inductance for its size. However, the wire is so thin that the 
current rating is only 11 mA = 0.011 A. Note that for all the inductors, 
the dc resistance of the inductor increases with a decrease in the thick-
ness of the wire. The 10 mH toroid has a dc resistance of only 6 mΩ, 
whereas the dc resistance of the 100 mH ferrite inductor is 700 Ω—a 
price to be paid for the smaller size and high inductance level.

Different types of fixed inductive elements are displayed in Fig. 
11.22, including their typical range of values and common areas of 
application. Based on the earlier discussion of inductor construction, it is 
fairly easy to identify an inductive element. The shape of a molded film 
resistor is similar to that of an inductor. However, careful examination 
of the typical shapes of each reveals some differences, such as the ridges 
at each end of a resistor that do not appear on most inductors.

Variable    A number of variable inductors are depicted in Fig. 11.23. 
In each case, the inductance is changed by turning the slot at the end of 
the core to move it in and out of the unit. The farther in the core is, the 
more the ferromagnetic material is part of the magnetic circuit, and the 
higher is the magnetic field strength and the inductance level.

Thick wire: few turns Thin wire: more turns

Thicker wire: longer l

(a)

(b) (c)

10    H 
10 A, Rdc = 6 mΩ 

1000    H = 1 mH
1.3 A, Rdc = 0.4 Ω

1000    H = 1 mH
2.4 A, Rdc = 0.3 Ω

100,000    H = 100 mH
11 mA, Rdc = 0.7 kΩ

  1   H 
350 mA, Rdc = 6 Ω 

FIG. 11.21
Relative sizes of different types of inductors: (a) toroid, high-current;  

(b) phenolic (resin or plastic core); (c) ferrite core.
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Practical Equivalent Inductors

Inductors, like capacitors, are not ideal. Associated with every induc-
tor is a resistance determined by the resistance of the turns of wire (the 
thinner the wire, the greater is the resistance for the same material) and 
by the core losses (radiation and skin effect, eddy current and hystere-
sis losses—all discussed in more advanced texts). There is also some 
stray capacitance due to the capacitance between the current-carrying 
turns of wire of the coil. Recall that capacitance appears whenever 
there are two conducting surfaces separated by an insulator, such as 
air, and when those wrappings are fairly tight and are parallel. Both 
elements are included in the equivalent circuit in Fig. 11.24. For most 
applications in this text, the capacitance can be ignored, resulting in 
the equivalent model in Fig. 11.25. The resistance Rl plays an impor-
tant part in some areas (such as resonance, discussed in Chapter 20) 

Type: Air-core inductors (1–32 turns)
Typical values: 2.5 nH–1   H
Applications: High-frequency applications

Type: Toroid coil
Typical values: 10   H–30 mH
Applications: Used as a choke in ac
power line circuits to filter transient
and reduce EMI interference. This
coil is found in many electronic
appliances.

Type: Hash choke coil
Typical values: 3   H–1 mH
Applications: Used in ac supply
lines that deliver high currents.

Fiber
insulator

Coil Inner
core

Plastic tubeType: Delay line coil
Typical values: 10   H–50   H
Applications: Used in color
televisions to correct for timing
differences between the color
signal and the black-and-white signal.

Type: Molded coils
Typical values: 0.1   H–100 mH
Applications: Used in a wide variety
of circuits such as oscillators, filters,
pass-band filters, and others.

Type: RF chokes
Typical values: 10   H–470 mH
Applications: Used in radio,
television, and communication
circuits. Found in AM, FM, and
UHF circuits.

Type: Common-mode choke coil
Typical values: 0.6 mH–50 mH
Applications: Used in ac line filters,
switching power supplies, battery
chargers, and other electronic equipment.

Type: Surface-mount inductors
Typical values: 0.01   H–250   H
Applications: Found in many
electronic circuits that require
miniature components on
multilayered PCBs (printed
circuit boards).

3′′

FIG. 11.22
Typical areas of application for inductive elements.

FIG. 11.23
Variable inductors with a typical range of values 

from 1 mH to 100 mH; commonly used in oscillators 
and various RF circuits such as CB transceivers, 

televisions, and radios.

Stray capacitanceC

Resistance of the
turns of wire

Inductance of
coil

Rl L

FIG. 11.24
Complete equivalent model for an inductor.

Rl LL

FIG. 11.25
Practical equivalent model for an inductor.
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because the resistance can extend from a few ohms to a few hundred 
ohms, depending on the construction. For this chapter, the inductor is 
considered an ideal element, and the series resistance is dropped from 
Fig. 11.25.

Inductor Labeling

Because some inductors are larger in size, their nameplate value can 
often be printed on the body of the element. However, on smaller units, 
there may not be enough room to print the actual value, so an abbrevia-
tion is used that is fairly easy to understand. First, realize that the 
microhenry (mH) is the fundamental unit of measurement for this mark-
ing. Most manuals list the inductance value in mH even if the value 
must be reported as 470,000 mH rather than as 470 mH. If the label 
reads 223K, the third number (3) is the power to be applied to the first 
two. The K is not from kilo, representing a power of three, but is used to 
denote a tolerance of {10% as described for capacitors. The resulting 
number of 22,000 is, therefore, in mH, so the 223K unit is a 22,000 mH 
or 22 mH inductor. The letters J and M indicate a tolerance of {5% and 
{20%, respectively.

For molded inductors, a color-coding system very similar to that used 
for resistors is used. The major difference is that the resulting value is 
always in mH, and a wide band at the beginning of the labeling is an MIL 
(“meets military standards”) indicator. Always read the colors in sequence, 
starting with the band closest to one end as shown in Fig. 11.26.

The standard values for inductors employ the same numerical values 
and multipliers used with resistors and capacitors. In general, therefore, 

Second significant figure
Decimal point
First significant figure
MIL identifier

Tolerance

Multiplier
Second significant figure
First significant figure
MIL identifier

Tolerance

Black
Brown
Red
Orange
Yellow
Green
Blue
Violet
Gray
White
None2

Silver
Gold

0
1
2
3
4
5
6
7
8
9

1
10

100
1000

�20
�10
�5

Color Code Table
Significant

Figure Multiplier2Color1
Inductance

Tolerance (%)

Decimal
point

1 Indicates body color.
2 The multiplier is the factor by which the two significant figures
  are multiplied to yield the nominal inductance value.

Cylindrical molded choke coils are marked with five colored bands. A wide silver
band, located at one end of the coil, identifies military radio-frequency coils. The next
three bands indicate the inductance in microhenries, and the fourth band is the
tolerance.

Color coding is in accordance with the color code table, shown on the left. If the
first or second band is gold, it represents the decimal point for inductance values less
than 10. Then the following two bands are significant figures. For inductance values
of 10 or more, the first two bands represent significant figures, and the third is the
multiplier.

L values less than 10  H

6.8    H � 10%

270    H � 5%

L values 10  H or greater

FIG. 11.26
Molded inductor color coding.
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expect to find inductors with the following multipliers: 1 mH, 1.5 mH, 
2.2 mH, 3.3 mH, 4.7 mH, 6.8 mH, 10 mH, and so on.

Measurement and Testing of Inductors

The inductance of an inductor can be read directly using a meter such as 
the Universal LCR Meter (Fig. 11.27), also discussed in Chapter 10 on 
capacitors. Set the meter to L for inductance, and the meter automati-
cally chooses the most appropriate unit of measurement for the element, 
that is, H, mH, mH, or pH.

An inductance meter is the best choice, but an ohmmeter can also be 
used to check whether a short has developed between the windings or 
whether an open circuit has developed. The open-circuit possibility is 
easy to check because a reading of infinite ohms or very high resistance 
results. The short-circuit condition is harder to check because the resist-
ance of many good inductors is relatively small, and the shorting of a 
few windings may not adversely affect the total resistance. Of course, if 
you are aware of the typical resistance of the coil, you can compare it to 
the measured value. A short between the windings and the core can be 
checked by simply placing one lead of the ohmmeter on one wire (per-
haps a terminal) and the other on the core itself. A reading of zero ohms 
reveals a short between the two that may be due to a breakdown in the 
insulation jacket around the wire resulting from excessive currents, 
environmental conditions, or simply old age and cracking.

11.4  Induced Voltage YL

Before analyzing the response of inductive elements to an applied dc 
voltage, we must introduce a number of laws and equations that affect 
the transient response.

The first, referred to as Faraday’s law of electromagnetic induc-
tion, is one of the most important in this field because it enables us to 
establish ac and dc voltages with a generator. If we move a conductor 
(any material with conductor characteristics as defined in Chapter 2) 
through a magnetic field so that it cuts magnetic lines of flux as shown 
in Fig. 11.28, a voltage is induced across the conductor that can be meas-
ured with a sensitive voltmeter. That’s all it takes, and, in fact, the faster 
you move the conductor through the magnetic flux, the greater is the 
induced voltage. The same effect can be produced if you hold the con-
ductor still and move the magnetic field across the conductor. Note that 
the direction in which you move the conductor through the field deter-
mines the polarity of the induced voltage. Also, if you move the conduc-
tor through the field at right angles to the magnetic flux, you generate 
the maximum induced voltage. Moving the conductor parallel with the 
magnetic flux lines results in an induced voltage of zero volts since mag-
netic lines of flux are not crossed.

If we now go a step further and move a coil of N turns through the 
magnetic field as shown in Fig. 11.29, a voltage will be induced across 
the coil as determined by Faraday’s law:

	 e = N 
df

dt
  (volts, V)	 (11.9)

The greater the number of turns or the faster the coil is moved through 
the magnetic flux pattern, the greater is the induced voltage. The term 

FIG. 11.27
Digital reading inductance meter.

(Courtesy of B+K Precision)

N S

eind
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V

Conductor

+

–

FIG. 11.28
Generating an induced voltage by moving a 

conductor through a magnetic field.

N S

N turns

Motion

Φ

e

FIG. 11.29
Demonstrating Faraday’s law.
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df>dt is the differential change in magnetic flux through the coil at a 
particular instant in time. If the magnetic flux passing through a coil 
remains constant—no matter how strong the magnetic field—the term 
will be zero, and the induced voltage zero volts. It doesn’t matter whether 
the changing flux is due to moving the magnetic field or moving the coil 
in the vicinity of a magnetic field: The only requirement is that the flux 
linking (passing through) the coil changes with time. Before the coil 
passes through the magnetic poles, the induced voltage is zero because 
there are no magnetic flux lines passing through the coil. As the coil 
enters the flux pattern, the number of flux lines cut per instant of time 
increases until it peaks at the center of the poles. The induced voltage 
then decreases with time as it leaves the magnetic field.

This important phenomenon can now be applied to the inductor in 
Fig. 11.30, which is simply an extended version of the coil in Fig. 11.29. 
In Section 11.2, we found that the magnetic flux linking the coil of N 
turns with a current I has the distribution shown in Fig. 11.30. If the cur-
rent through the coil increases in magnitude, the flux linking the coil 
also increases. We just learned through Faraday’s law, however, that a 
coil in the vicinity of a changing magnetic flux will have a voltage 
induced across it. The result is that a voltage is induced across the coil in 
Fig. 11.30 due to the change in current through the coil.

It is very important to note in Fig. 11.30 that the polarity of the 
induced voltage across the coil is such that it opposes the increasing 
level of current in the coil. In other words, the changing current through 
the coil induces a voltage across the coil that is opposing the applied 
voltage that establishes the increase in current in the first place. The 
quicker the change in current through the coil, the greater is the oppos-
ing induced voltage to squelch the attempt of the current to increase in 
magnitude. The “choking” action of the coil is the reason inductors or 
coils are often referred to as chokes. This effect is a result of an impor-
tant law referred to as Lenz’s law, which states that

an induced effect is always such as to oppose the cause that produced it.

The inductance of a coil is also a measure of the change in flux linking 
the coil due to a change in current through the coil. That is,

	 L = N 
df

diL
  (henries, H)	 (11.10)

The equation reveals that the greater the number of turns or the 
greater the change in flux linking the coil due to a particular change in 
current, the greater is the level of inductance. In other words, coils with 
smaller levels of inductance generate smaller changes in flux linking the 
coil for the same change in current through the coil. If the inductance 
level is very small, there will be almost no change in flux linking the 
coil, and the induced voltage across the coil will be very small. In fact, if 
we now write Eq. (11.9) in the form

e = N 
df

dt
= aN 

df

diL
b a diL

dt
b

and substitute Eq. (11.10), we obtain

	 eL = L 
diL
dt
  (volts, V)	 (11.11)

eind I

I

+
–

FIG. 11.30
Demonstrating the effect of Lenz’s law.
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which relates the voltage across a coil to the number of turns of the 
coil and the change in current through the coil.

When induced effects are used in the generation of voltages such as 
those from dc or ac generators, the symbol e is applied to the induced 
voltage. However, in network analysis, the voltage induced across an 
inductor will always have a polarity that opposes the applied voltage 
(like the voltage across a resistor). Therefore, the following notation is 
used for the induced voltage across an inductor:

	 yL = L
diL
dt
  (volts, V)	 (11.12)

The equation clearly states that

the larger the inductance and/or the more rapid the change in current 
through a coil, the larger will be the induced voltage across the coil.

If the current through the coil fails to change with time, the induced 
voltage across the coil will be zero. We will find in the next section that 
for dc applications, when the transient phase has passed, diL>dt = 0, 
and the induced voltage across the coil is

yL = L
diL
dt

= L(0) = 0 V

The duality that exists between inductive and capacitive elements is 
now abundantly clear. Simply interchange the voltages and currents of 
Eq. (11.12), and interchange the inductance and capacitance. The fol-
lowing equation for the current of a capacitor results:

 yL = L 
diL
dt

 iC = C 
dyC

dt

We are now at a point where we have all the background relationships 
necessary to investigate the transient behavior of inductive elements.

11.5  R-L Transients: The Storage Phase

A great number of similarities exist between the analyses of inductive 
and capacitive networks. That is, what is true for the voltage of a capaci-
tor is also true for the current of an inductor, and what is true for the 
current of a capacitor can be matched in many ways by the voltage of an 
inductor. The storage waveforms have the same shape, and time con-
stants are defined for each configuration. Because these concepts are so 
similar (refer to Section 10.5 on the charging of a capacitor), you have 
an opportunity to reinforce concepts introduced earlier and still learn 
more about the behavior of inductive elements.

The circuit in Fig. 11.31 is used to describe the storage phase. Note 
that it is the same circuit used to describe the charging phase of capaci-
tors, with a simple replacement of the capacitor by an ideal inductor. 
Throughout the analysis, it is important to remember that energy is 
stored in the form of an electric field between the plates of a capacitor. 
For inductors, on the other hand, energy is stored in the form of a mag-
netic field linking the coil.

–

E

+

iL
–+ vR

vLL

R

+

–

FIG. 11.31
Basic R-L transient network.



R-L Transients: The Storage Phase    507

At the instant the switch is closed, the choking action of the coil pre-
vents an instantaneous change in current through the coil, resulting in 
iL = 0 A, as shown in Fig. 11.32(a). Recalling the discussion of Section 
10.5 for capacitive networks, we can now conclude for inductive networks 
that iL(0-) = iL(0+). The absence of a current through the coil and circuit 
at the instant the switch is closed results in zero volts across the resistor as 
determined by yR = iRR = iLR = (0 A)R = 0 V, as shown in Fig. 
11.32(c). Applying Kirchhoff’s voltage law around the closed loop results 
in E volts across the coil at the instant the switch is closed, as shown in Fig. 
11.32(b). Again, recalling the discussion of Section 10.5, we find for the 
inductive network of Fig. 11.31 that yL(0-) = 0 V and yL(0+) = E volts.

Initially, the current increases very rapidly, as shown in Fig. 11.32(a) 
and then at a much slower rate as it approaches its steady-state value 
determined by the parameters of the network (E>R). The voltage across 
the resistor rises at the same rate because yR = iRR = iLR. Since the 
voltage across the coil is sensitive to the rate of change of current 
through the coil, the voltage will be at or near its maximum value early 
in the storage phase. Finally, when the current reaches its steady-state 

(a)

(b)

(c)

0 1 2 3 4 5 t

iL

0.632Im

0.865Im

0.951Im
0.981Im 0.993Im

Im  =
E
R

(1 –  e–t/(L/R))iL =
E
R

0

vL

E

1t 2t 3t 4t 5t 6t t

0.368E

0.135E
0.049E 0.019E 0.007E

vL = Ee– t/t

0 t

vR

E

1 2 3 4 5

0.632E

0.865E
0.951E 0.981E 0.99E

vR = E(1– e– t/t)

FIG. 11.32
iL, yL, and yR for the circuit in Fig. 11.31 following the closing of the switch.
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value of E>R amperes, the current through the coil ceases to change, and 
the voltage across the coil drops to zero volts. At any instant of time, the 
voltage across the coil can be determined using Kirchhoff’s voltage law 
in the following manner: yL = E - yR.

Because the waveforms for the inductor have the same shape as 
obtained for capacitive networks, we are familiar with the mathematical 
format and can feel comfortable calculating the quantities of interest 
using a calculator or computer.

The equation for the transient response of the current through an 
inductor is

	 iL =
E

R
 (1 - e-t>t)  (amperes, A)	 (11.13)

with the time constant now defined by

	 t =
L

R
  (seconds, s)	 (11.14)

Note that Eq. (11.14) is a ratio of parameters rather than a product as used 
for capacitive networks, yet the units used are still seconds (for time).

Our experience with the factor (1 - e-t>t) verifies the level of 63.2% 
for the inductor current after one time constant, 86.5% after two time 
constants, and so on. If we keep R constant and increase L, the ratio L>R 
increases, and the rise time of 5t increases as shown in Fig. 11.33 for 
increasing levels of L. The change in transient response is expected 
because the higher the inductance level, the greater is the choking action 
on the changing current level, and the longer it will take to reach steady-
state conditions.

The equation for the voltage across the coil is

	 yL = Ee-t>t  (volts, V)	 (11.15)

and the equation for the voltage across the resistor is

	 yR = E(1 - e-t>t)  (volts, V)	 (11.16)

As mentioned earlier, the shape of the response curve for the voltage 
across the resistor must match that of the current iL since yR = iRR = iLR.

Since the waveforms are similar to those obtained for capacitive net-
works, we will assume that

the storage phase has passed and steady-state conditions have been 
established once a period of time equal to five time constants has 
occurred.

In addition, since t = L>R will always have some numerical value, 
even though it may be very small at times, the transient period of 5t will 
always have some numerical value. Therefore,

the current cannot change instantaneously in an inductive network.

If we examine the conditions that exist at the instant the switch is closed, 
we find that the voltage across the coil is E volts, although the current is 
zero amperes as shown in Fig. 11.34. In essence, therefore,

the inductor takes on the characteristics of an open circuit at the 
instant the switch is closed.

iLE
R L1 L2 L3

L3>L2>L1
(R fixed)

t (s)

FIG. 11.33
Effect of L on the shape of the iL storage waveform.

iL=0 A
i = 0

vL=E voltsE

R

vR= iR=(0)R=0 V

+

–

+

–

FIG. 11.34
Circuit in Figure 11.31 the instant  

the switch is closed.
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However, if we consider the conditions that exist when steady-state 
conditions have been established, we find that the voltage across the coil 
is zero volts and the current is a maximum value of E>R amperes, as 
shown in Fig. 11.35. In essence, therefore,

the inductor takes on the characteristics of a short circuit when 
steady-state conditions have been established.

EXAMPLE 11.3  Find the mathematical expressions for the transient 
behavior of iL and yL for the circuit in Fig. 11.36 if the switch is closed 
at t = 0 s. Sketch the resulting curves.

Solution:  First, we determine the time constant:

t =
L

R1
=

4 H

2 kΩ
= 2 ms

Then the maximum or steady-state current is

Im =
E

R1
=

50 V

2 kΩ
= 25 * 10-3A = 25 mA

Substituting into Eq. (11.13) gives

iL = 25 mA (1 − e−t,2 ms)

Using Eq. (11.15) gives

yL = 50 Ve−t,2 ms

The resulting waveforms appear in Fig. 11.37.

R
iL=

i

vL=0 V

vR= iR=    .R=E volts

E
R

E
R

+

–
E

+

–

FIG. 11.35
Circuit in Fig. 11.31 under steady-state conditions.

–
E

+

iL

R1

vLL 4 H50 V

2 k�
+

–

FIG. 11.36
Series R-L circuit for Example 11.3.

0 t

50 V

vL
iL

25 mA

0 t1 2 3 4 5

 =  2 ms  =  2 ms

1 2 3 4 5

FIG. 11.37
iL and yL for the network in Fig. 11.36.

11.6  Initial Conditions

This section parallels Section 10.7 on the effect of initial values on the 
transient phase. Since the current through a coil cannot change instanta-
neously, the current through a coil begins the transient phase at the ini-
tial value established by the network (note Fig. 11.38) before the switch 
was closed. It then passes through the transient phase until it reaches the 
steady-state (or final) level after about five time constants. The steady-
state level of the inductor current can be found by substituting its short-
circuit equivalent (or Rl for the practical equivalent) and finding the 
resulting current through the element.

Transient
response

Ii

iL

If

0 t

Initial
conditions

Steady-state
region

(If  – Ii)

FIG. 11.38
Defining the three phases of a transient waveform.
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Using the transient equation developed in the previous section, we 
can write an equation for the current iL for the entire time interval in Fig. 
11.38; that is,

iL = Ii + (If - Ii)(1 - e-t>t)

with (If - Ii) representing the total change during the transient phase. 
However, by multiplying through and rearranging terms as

 iL = Ii + If - If e
-t>t - Ii + Iie

-t>t

 = If - If e
-t>t + Iie

-t>t

we find	 iL = If + (Ii - If)e
-t>t	 (11.17)

If you are required to draw the waveform for the current iL from ini-
tial value to final value, start by drawing a line at the initial value and 
steady-state levels, and then add the transient response (sensitive to the 
time constant) between the two levels. The following example will clar-
ify the procedure.

EXAMPLE 11.4  The inductor in Fig. 11.39 has an initial current level 
of 4 mA in the direction shown. (Specific methods to establish the initial 
current are presented in the sections and problems to follow.)

	 a.	 Find the mathematical expression for the current through the coil 
once the switch is closed.

	 b.	 Find the mathematical expression for the voltage across the coil dur-
ing the same transient period.

	 c.	 Sketch the waveform for each from initial value to final value.

Solutions: 

	 a.	 Substituting the short-circuit equivalent for the inductor results in a 
final or steady-state current determined by Ohm’s law:

If =
E

R1 + R2
=

16 V

2.2 kΩ + 6.8 kΩ
=

16 V

9 kΩ
= 1.78 mA

		  The time constant is determined by

t =
L

RT
=

100 mH

2.2 kΩ + 6.8 kΩ
=

100 mH

9 kΩ
= 11.11 ms

		  Applying Eq. (11.17) gives

 iL = If + (Ii - If)e
-t>t = 1.78 mA + (4 mA - 1.78 mA)e-t>11.11 ms

 = 1.78 mA + 2.22 mAe−t,11.11 Ms

	 b.	 Since the current through the inductor is constant at 4 mA prior to 
the closing of the switch, the voltage (whose level is sensitive only 
to changes in current through the coil) must have an initial value of 
0 V. At the instant the switch is closed, the current through the coil 
cannot change instantaneously, so the current through the resistive 
elements is 4 mA. The resulting peak voltage at t = 0 s can then be 
found using Kirchhoff’s voltage law as follows:

 Vm = E - VR1
- VR2

= 16 V - (4 mA)(2.2 kΩ) - (4 mA)(6.8 kΩ)

 = 16 V - 8.8 V - 27.2 V = 16 V - 36 V = -20 V

–

+

4 mA

vL

iL

R2

6.8 k�

R1

2.2 k�

E 16 V L = 100 mH
+

–

FIG. 11.39
Example 11.4.
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		  Note the minus sign to indicate that the polarity of the voltage yL is 
opposite to the defined polarity of Fig. 11.39.

The voltage then decays (with the same time constant as the 
current iL) to zero because the inductor is approaching its short-
circuit equivalence.

The equation for yL is therefore

yL = −20 Ve−t,11.11 Ms

	 c.	 See Fig. 11.40. The initial and final values of the current were drawn 
first, and then the transient response was included between these 
levels. For the voltage, the waveform begins and ends at zero, with 
the peak value having a sign sensitive to the defined polarity of yL 
in Fig. 11.39.

0

1.78 mA

iL (mA)

4 mA
vL (volts)

0 V

–20 V

0 V 0
3

2

1

54321 t (   s)

=11.11 s
=11.11 s

54321

FIG. 11.40
iL and yL for the network in Fig. 11.39.

		  Let us now test the validity of the equation for iL by substituting 
t = 0 s to reflect the instant the switch is closed. We have

e-t>t = e-0 = 1

and	 iL = 1.78 mA + 2.22 mAe-t>t = 1.78 mA + 2.22 mA = 4 mA

When t 7 5t,	 e-t/t ≅ 0

and	 iL = 1.78 mA + 2.22 mAe - t>t = 1.78 mA

11.7  R-L Transients: The Release Phase

In the analysis of R-C circuits, we found that the capacitor could hold its 
charge and store energy in the form of an electric field for a period of 
time determined by the leakage factors. In R-L circuits, the energy is 
stored in the form of a magnetic field established by the current through 
the coil. Unlike the capacitor, however, an isolated inductor cannot con-
tinue to store energy because the absence of a closed path causes the 
current to drop to zero, releasing the energy stored in the form of a mag-
netic field. If the series R-L circuit in Fig. 11.41 reaches steady-state 
conditions and the switch is quickly opened, a spark will occur across 
the contacts due to the rapid change in current from a maximum of E>R 
to zero amperes. The change in current di>dt of the equation yL = L(di>dt) 
establishes a high voltage yL across the coil that, in conjunction with the 
applied voltage E, appears across the points of the switch. This is the 
same mechanism used in the ignition system of a car to ignite the fuel in 
the cylinder. Some 25,000 V are generated by the rapid decrease in 

E L vL

–

+

vR = iRR = (0 A)R = 0 V

Rvcontact = vL + E
+ –vcontact

iL
0 A

+

–

FIG. 11.41
Demonstrating the effect of opening a switch in 

series with an inductor with a steady-state current.
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ignition coil current that occurs when the switch in the system is opened. 
(In older systems, the “points” in the distributor served as the switch.) 
This inductive reaction is significant when you consider that the only 
independent source in a car is a 12 V battery.

If opening the switch to move it to another position causes such a 
rapid discharge in stored energy, how can the decay phase of an R-L 
circuit be analyzed in much the same manner as for the R-C circuit? The 
solution is to use a network like that in Fig. 11.42(a). When the switch is 
closed, the voltage across resistor R2 is E volts, and the R-L branch 
responds in the same manner as described above, with the same wave-
forms and levels. A Thévenin network of E in parallel with R2 results in 
the source as shown in Fig. 11.42(b) since R2 will be shorted out by the 
short-circuit replacement of the voltage source E when the Thévenin 
resistance is determined.

(a)

R2E

R1
+

–

iL

+

–
vR2

Th

vR1
+ –

L

(b)

E

R1
+

–

iL
vR1

+ –

L vLvL

+

–

+

–

FIG. 11.42
Initiating the storage phase for an inductor by closing the switch.

After the storage phase has passed and steady-state conditions are 
established, the switch can be opened without the sparking effect or rapid 
discharge due to resistor R2, which provides a complete path for the cur-
rent iL. In fact, for clarity the discharge path is isolated in Fig. 11.43. The 
voltage yL across the inductor reverses polarity and has a magnitude 
determined by

	 yL = -(yR1
+ yR2

)	 (11.18)

Recall that the voltage across an inductor can change instantaneously 
but the current cannot. The result is that the current iL must maintain the 
same direction and magnitude, as shown in Fig. 11.43. Therefore, the 
instant after the switch is opened, iL is still Im = E>R1, and

 yL = -(yR1
+ yR2

) = -(i1R1 + i2R2)

 = - iL(R1 + R2) = -
E

R1
 (R1 + R2) = - aR1

R1
+

R2

R1
bE

and	 yL = - a1 +
R2

R1
bE  (switch opened)	 (11.19)

which is bigger than E volts by the ratio R2>R1. In other words, when the 
switch is opened, the voltage across the inductor reverses polarity and 
drops instantaneously from 0 to -[1 + (R2>R1)]E volts.

–

+

iL
–+

vLLvR2
R2

vR1

–

+

iL

iL

(same
direction)

(reversed
polarity)

(same polarity)

R1

FIG. 11.43
Network in Fig. 11.42 the instant  

the switch is opened.
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As an inductor releases its stored energy, the voltage across the coil 
decays to zero in the following manner:

	 yL = -Vie
-t>t′	 (11.20)

with	 Vi = a1 +
R2

R1
bE

and	 t′ =
L

RT
=

L

R1 + R2

The current decays from a maximum of Im = E>R1 to zero.
Using Eq. (11.17) gives

Ii =
E

R1
  and  If = 0 A

so that	 iL = If + (Ii - If)e
-t>t′ = 0 A + a E

R1
- 0 Abe-t>t′

and	 iL =
E

R1
e-t>t′	 (11.21)

with	 t′ =
L

R1 + R2

The mathematical expression for the voltage across either resistor can 
then be determined using Ohm’s law:

yR1
= iR1

R1 = iLR1 =
E

R1
 R1e

-t>t′

and	 yR1
= Ee-t>t′	 (11.22)

The voltage yR1
 has the same polarity as during the storage phase since 

the current iL has the same direction. The voltage yR2
 is expressed as fol-

lows using the defined polarity of Fig. 11.42:

yR2
= - iR2

R2 = - iLR2 = -
E

R1
 R2e

-t>t′

and	 yR2
= -

R2

R1
 Ee-t>t′	 (11.23)

EXAMPLE 11.5  Resistor R2 was added to the network in Fig. 11.36 as 
shown in Fig. 11.44.

	 a.	 Find the mathematical expressions for iL, yL, yR1
, and yR2

 for five 
time constants of the storage phase.

	 b.	 Find the mathematical expressions for iL, yL, yR1
, and yR2

 if the 
switch is opened after five time constants of the storage phase.

	 c.	 Sketch the waveforms for each voltage and current for both phases 
covered by this example. Use the defined polarities in Fig. 11.44.
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Solutions: 

	 a.	 From Example 11.3:

 iL = 25 mA(1 − e−t,2 ms)

 yL = 50 Ve−t,2 ms

 yR1
= iR1

R1 = iLR1

 = c E

R1
 (1 - e-t>t) dR1

 = E(1 - e-t>t)

and	  yR1
= 50 V(1 − e−t,2 ms)

 yR2
= E = 50 V

	 b.	  t′ =
L

R1 + R2
=

4 H

2 kΩ + 3 kΩ
=

4 H

5 * 103 Ω

		   = 0.8 * 10-3 s = 0.8 ms

		  By Eqs. (11.19) and (11.20):

Vi = a1 +
R2

R1
bE = a1 +

3 kΩ
2 kΩ

b (50 V) = 125 V

and	 yL = -Vie
-t>t′ = −125 Ve−t,−0.8 ms

		  By Eq. (11.21):

Im =
E

R1
=

50 V

2 kΩ
= 25 mA

and	 iL = Ime-t>t′ = 25 mAe−t,0.8 ms

		  By Eq. (11.22):

yR1
= Ee-t>t′ = 50 Ve−t,0.8 ms

		  By Eq. (11.23):

yR2
= -

R2

R1
 Ee-t>t′ = -

3 kΩ
2 kΩ

 (50 V)e-t>t′ = −75 Ve−t,0.8 ms

	 c.	 See Fig. 11.45.

3 k�E = 50 V

R1 iL

vR1
+ –

L 4 H
+

–

2 k�

R2

+

–
vR2

vL

+

–

FIG. 11.44
Defined polarities for yR1

, yR2
, yL, and current direction for  

iL for Example 11.5.
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In the preceding analysis, it was assumed that steady-state conditions 
were established during the charging phase and Im = E>R1, with yL = 0 V. 
However, if the switch in Fig. 11.42 is opened before iL reaches its maximum 
value, the equation for the decaying current of Fig. 11.42 must change to

	 iL = Iie
-t>t′	 (11.24)

where Ii is the starting or initial current. The voltage across the coil is 
defined by the following:

	 yL = -Vie
-t>t′	 (11.25)

with	 Vi = Ii(R1 + R2)

0

R1

vR1

50 VE

vL:

vL

+

–

Defined
polarity

Switch
closed

5t
5(2 ms)
=  10 ms

5t′  =  5(0.8 ms)  =  4 ms

Switch opened

–125
Instantaneous
change

t

0

iL:

Defined
direction

5t
t

iL (mA)

25

5t′

No instantaneous
change

0

Defined
polarity

5t
t

volts

50

5t′

Same shape
as iL since
vR1

  =  iL R1

+ –

R2vR2

0
Defined
polarity 5t

t

volts

50

5t′

+

–

vR2
:

75

vR1
:

FIG. 11.45
The various voltages and the current for the network in Fig. 11.44.
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11.8 T hévenin Equivalent: T = L ,RTh

In Chapter 10 on capacitors, we found that a circuit does not always 
have the basic form in Fig. 11.31. The solution is to find the Thévenin 
equivalent circuit before proceeding in the manner described in this 
chapter. Consider the following example.

EXAMPLE 11.6  For the network in Fig. 11.46:

	 a.	 Find the mathematical expression for the transient behavior of the 
current iL and the voltage yL after the closing of the switch 
(Ii = 0 mA).

	 b.	 Draw the resultant waveform for each.

Solutions: 

	 a.	 Applying Thévenin’s theorem to the 80 mH inductor (Fig. 11.47) 
yields

RTh =
R

N
=

20 kΩ
2

= 10 kΩ

–

E
+

iL

L  =  80 mH

R1

vL

20 k�

R2

4 k�

R3 16 k�12 V
+

–

FIG. 11.46
Example 11.6.

R1

20 k�

RTh

R2

4 k�

R3 16 k�

RTh:

R1 20 k�RTh

R2  +  R3  =

4 k�  +  16 k�
=  20 k�

FIG. 11.47
Determining RTh for the network in Fig. 11.46.

		  Applying the voltage divider rule (Fig. 11.48), we obtain

 ETh =
(R2 + R3)E

R1 + R2 + R3

 =
(4 kΩ + 16 kΩ)(12 V)

20 kΩ + 4 kΩ + 16 kΩ 
=

(20 kΩ)(12 V)

40 kΩ
= 6 V

20 k�

R1

4 k�

R2

E 12 V ETh

ETh:

R3 16 k�
+

–

+

–

FIG. 11.48
Determining ETh for the network in Fig. 11.46.
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		  The Thévenin equivalent circuit is shown in Fig. 11.49. Using 
Eq. (11.13) gives

 iL =
ETh

R
(1 - e-t>t)

 t =
L

RTh
=

80 * 10-3 H

10 * 103 Ω
= 8 * 10-6 s = 8 ms

 Im =
ETh

RTh
=

6 V

10 * 103 Ω
= 0.6 * 10-3 A = 0.6 mA

and	  iL = 0.6 mA (1 − e−t,8 Ms)

		  Using Eq. (11.15) gives

yL = EThe
- t>t

so that	 yL = 6 Ve−t,8 Ms

	 b.	 See Fig. 11.50.

ETh

+

iL

–
vL6 V

RTh

10 k�

80 mH

Thévenin equivalent circuit:

+

–

FIG. 11.49
The resulting Thévenin equivalent circuit  

for the network in Fig. 11.46.

5 10 15 20 25 30 35 40 45 50

vL

=  0.6 mA

Im  =
ETh
R

ETh  =  6 V

vL, iL

iL

5t

t (   s)

FIG. 11.50
The resulting waveforms for iL and yL for the network in Fig. 11.46.

EXAMPLE 11.7  Switch S1 in Fig. 11.51 has been closed for a long 
time. At t = 0 s, S1 is opened at the same instant that S2 is closed to 
avoid an interruption in current through the coil.

	 a.	 Find the initial current through the coil. Pay particular attention to 
its direction.

iL

R1 = 2.2 k�

1 k�

R3

8.2 k�

R2

I 12 mA

S1
(t = 0 s)

S2
(t = 0 s)

6 VE680 mHL
+

–

FIG. 11.51
Example 11.7.
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	 b.	 Find the mathematical expression for the current iL following the 
closing of switch S2.

	 c.	 Sketch the waveform for iL.

Solutions: 

	 a.	 Using Ohm’s law, we find the initial current through the coil:

Ii = -
E

R3
= -

6 V

1 kΩ
= -6 mA

	 b.	 Applying Thévenin’s theorem gives

 RTh = R1 + R2 = 2.2 kΩ + 8.2 kΩ = 10.4 kΩ
 ETh = IR1 = (12 mA)(2.2 kΩ) = 26.4 V

		  The Thévenin equivalent network appears in Fig. 11.52.
The steady-state current can then be determined by substituting 

the short-circuit equivalent for the inductor:

If =
E

RTh
=

26.4 V

10.4 kΩ
= 2.54 mA

		  The time constant is

t =
L

RTh
=

680 mH

10.4 kΩ
= 65.39 ms

		  Applying Eq. (11.17) gives

 iL = If + (Ii - If)e
-t>t

 = 2.54 mA + (-6 mA - 2.54 mA)e-t>65.39 ms

 = 2.54 mA − 8.54 mAe−t,65.39 Ms

	 c.	 Note Fig. 11.53.

iL10.4 k�

RTh

680 mHL26.4 VETh

6 mA

+

–

FIG. 11.52
Thévenin equivalent circuit for the network  

in Fig. 11.51 for t Ú 0 s.

t

iL (mA)

1

2 3 4 5

3

2

1

0
–1

–2

–3

–4

–5

–7

–6 mA

2.54 mA

= 65.39 s

FIG. 11.53
The current iL for the network in Fig. 11.51.

11.9  Instantaneous Values

The development presented in Section 10.8 for capacitive networks can 
also be applied to R-L networks to determine instantaneous voltages, 
currents, and time. The instantaneous values of any voltage or current 
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can be determined by simply inserting t into the equation and using a 
calculator or table to determine the magnitude of the exponential term.

The similarity between the equations

yC = Vf + (Vi + Vf)e
-t>t

and	 iL = If + (Ii - If)e
-t>t

results in a derivation of the following for t that is identical to that used 
to obtain Eq. (10.23):

	 t = t loge

(Ii - If)

(iL - If)
  (seconds, s)	 (11.26)

For the other form, the equation yC = Ee-t>t is a close match with 
yL = Ee-t>t = Vie

-t>t, permitting a derivation similar to that employed 
for Eq. (10.23):

	 t = t loge
Vi

yL
  (seconds, s)	 (11.27)

For the voltage yR, Vi = 0 V and Vf = EV  since yR = E(1 - e-t>t). 
Solving for t yields

t = t logea E

E -  yR
b

or	 t = t logea
Vf

Vf - yR
b  (seconds, s)	 (11.28)

11.10 Av erage Induced Voltage: YLav

In an effort to develop some feeling for the impact of the derivative in an 
equation, the average value was defined for capacitors in Section 10.10, 
and a number of plots for the current were developed for an applied volt-
age. For inductors, a similar relationship exists between the induced 
voltage across a coil and the current through the coil. For inductors, the 
average induced voltage is defined by

	 yLav
= L

∆iL
∆t
  (volts, V)	 (11.29)

where ∆  indicates a finite (measurable) change in current or time. 
Eq. (11.12) for the instantaneous voltage across a coil can be derived 
from Eq. (11.29) by letting VL become vanishingly small. That is,

yLinst
= lim

∆tS0
L

∆iL
∆t

= L
diL
dt

In the following example, the change in current ∆iL is considered 
for each slope of the current waveform. If the current increases with 
time, the average current is the change in current divided by the 
change in time, with a positive sign. If the current decreases with 
time, a negative sign is applied. Note in the example that the faster the 
current changes with time, the greater is the induced voltage across 
the coil. When making the necessary calculations, do not forget to 
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multiply by the inductance of the coil. Larger inductances result in 
increased levels of induced voltage for the same change in current 
through the coil.

EXAMPLE 11.8  Find the waveform for the average voltage across the 
coil if the current through a 4 mH coil is as shown in Fig. 11.54.

t (ms)

iL (mA)

10

5

0 10987654321

FIG. 11.54
Current iL to be applied to a 4 mH coil in Example 11.8.

Solutions: 

	 a.	 0 to 2 ms: Since there is no change in current through the coil, there 
is no voltage induced across the coil. That is,

yL = L
∆iL
∆t

= L
0

∆t
= 0 V

	 b.	 2 ms to 4 ms:

yL = L
∆iL
∆t

= (4 * 10-3 H)a 10 * 10-3 A

2 * 10-3 s
b = 20 * 10-3 V = 20 mV

	 c.	 4 ms to 9 ms:

yL = L
∆iL
∆t

= (-4 * 10-3 H)a10 * 10-3 A

5 * 10-3 s
b = -8 * 10-3 V = −8 mV

	 d.	 9 ms to ∞ :

yL = L
∆iL
∆t

= L
0

∆t
= 0 V

t (ms)

vL (mV)

20

10

0 10987654321

–10

FIG. 11.55
Voltage across a 4 mH coil due to the current in Fig. 11.54.

The waveform for the average voltage across the coil is shown in 
Fig. 11.55. Note from the curve that
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the voltage across the coil is not determined solely by the magnitude 
of the change in current through the coil (∆iL), but by the rate of 
change of current through the coil (∆iL ,∆t).

A similar statement was made for the current of a capacitor due to 
change in voltage across the capacitor.

A careful examination of Fig. 11.55 also reveals that the area under 
the positive pulse from 2 ms to 4 ms equals the area under the negative 
pulse from 4 ms to 9 ms. In Section 11.13, we will find that the area 
under the curves represents the energy stored or released by the induc-
tor. From 2 ms to 4 ms, the inductor is storing energy, whereas from 4 
ms to 9 ms, the inductor is releasing the energy stored. For the full period 
from 0 ms to 10 ms, energy has been stored and released; there has been 
no dissipation as experienced for the resistive elements. Over a full 
cycle, both the ideal capacitor and inductor do not consume energy but 
store and release it in their respective forms.

11.11  Inductors in Series and in Parallel

Inductors, like resistors and capacitors, can be placed in series or in par-
allel. Increasing levels of inductance can be obtained by placing induc-
tors in series, while decreasing levels can be obtained by placing 
inductors in parallel.

For inductors in series, the total inductance is found in the same man-

ner as the total resistance of resistors in series (Fig. 11.56):

	 LT = L1 + L2 + L3 + g + LN	 (11.30)

L1 L2 L3 LN
LT

FIG. 11.56
Inductors in series.

L1 L2 L3 LN
LT

FIG. 11.57
Inductors in parallel.

For inductors in parallel, the total inductance is found in the same 
manner as the total resistance of resistors in parallel (Fig. 11.57):

	
1

LT
=

1

L1
+

1

L2
+

1

L3
+ g +

1

LN
	 (11.31)

For two inductors in parallel,

	 LT =
L1L2

L1 + L2
	 (11.32)
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EXAMPLE 11.9  Reduce the network in Fig. 11.58 to its simplest form.

Solution:  Inductors L2 and L3 are equal in value and they are in paral-
lel, resulting in an equivalent parallel value of

L′T =
L

N
=

1.2 H

2
= 0.6 H

The resulting 0.6 H is then in parallel with the 1.8 H inductor, and

L″T =
(L′T)(L4)

L′T + L4
=

(0.6 H)(1.8 H)

0.6 H + 1.8 H
= 0.45 H

Inductor L1 is then in series with the equivalent parallel value, and

LT = L1 + L″T = 0.56 H + 0.45 H = 1.01 H

The reduced equivalent network appears in Fig. 11.59.

11.12 S teady-State Conditions

We found in Section 11.5 that, for all practical purposes, an ideal (ignor-
ing internal resistance and stray capacitances) inductor can be replaced 
by a short-circuit equivalent once steady-state conditions have been 
established. Recall that the term steady state implies that the voltage and 
current levels have reached their final resting value and will no longer 
change unless a change is made in the applied voltage or circuit configu-
ration. For all practical purposes, our assumption is that steady-state 
conditions have been established after five time constants of the storage 
or release phase have passed.

For the circuit in Fig. 11.60(a), for example, if we assume that steady-
state conditions have been established, the inductor can be removed and 
replaced by a short-circuit equivalent as shown in Fig. 11.60(b). The 
short-circuit equivalent shorts out the 3 Ω  resistor, and current I1 is 
determined by

I1 =
E

R1
=

10 V

2 Ω
= 5 A

R

1.2 k�

L2

1.2 H

L1

0.56 H

L4

1.8 H
L3 = 1.2 H

FIG. 11.58
Example 11.9.

R

1.2 k�

LT 1.01 H

FIG. 11.59
Terminal equivalent of the network in Fig. 11.58.

R1

10 VE

2 �

–

+
L  =  2 H R2 3 �

I1

R1

10 VE

2 �

–

+
R2 3 �

I1

FIG. 11.60
Substituting the short-circuit equivalent for the inductor for t 7 5t.

For the circuit in Fig. 11.61(a), the steady-state equivalent is as shown 
in Fig. 11.61(b). This time, resistor R1 is shorted out, and resistors R2 
and R3 now appear in parallel. The result is

I =
E

R2 7R3

=
21 V

2 Ω
= 10.5 A
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Applying the current divider rule yields

I1 =
R3I

R3 + R2
=

(6 Ω)(10.5 A)

6 Ω + 3 Ω
=

63

9
A = 7 A

In the examples to follow, it is assumed that steady-state conditions 
have been established.

EXAMPLE 11.10  Find the current IL and the voltage VC for the net-
work in Fig. 11.62.

R1

21 VE

5 �
6 mH

R3 6 �

I1

R1

21 VE

5 �

R3 6 �

I1

R2 3 �

10 mHI I

R2 3 �

2 �

I

+

–

+

–

FIG. 11.61
Establishing the equivalent network for t 7 5t.

E 10 V

–+

L1
C

VC

IL

E 10 V R3
4 �

IL

V  =  0
–

+

I  =  0

+

–

+

–

+  VC  –

R2 3 �

R1

2 �

R1

2 �

R3 4 �

R2 3 �

FIG. 11.62
Example 11.10.

Solution: 

 IL =
E

R1 + R2
=

10 V

5 Ω
= 2 A

VC =
R2E

R2 + R1
=

(3 Ω)(10 V)

3 Ω + 2 Ω
= 6 V

EXAMPLE 11.11  Find currents I1 and I2 and voltages V1 and V2 for the 
network in Fig. 11.63.

R1

2 �

I1

R2 5 �
R4 4 �

R3

1 �

I2

L1 L2

R5 7 �

C1 V1

+

–
V2

+

–
C2

E 50 V
+

–

FIG. 11.63
Example 11.11.
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Solution:  Note Fig. 11.64.

 I1 = I2

 =
E

R1 + R3 + R5
=

50 V

2 Ω + 1 Ω + 7 Ω
=

50 V

10 Ω
= 5 A

V2 = I2R5 = (5 A)(7 Ω) = 35 V

Applying the voltage divider rule yields

V1 =
(R3 + R5)E

R1 + R3 + R5
=

(1 Ω + 7 Ω)(50 V)

2 Ω + 1 Ω + 7 Ω
=

(8 Ω)(50 V)

10 Ω
= 40 V

11.13 E nergy Stored by an Inductor

The ideal inductor, like the ideal capacitor, does not dissipate the electri-
cal energy supplied to it. It stores the energy in the form of a magnetic 
field. A plot of the voltage, current, and power to an inductor is shown in 
Fig. 11.65 during the buildup of the magnetic field surrounding the 
inductor. The energy stored is represented by the shaded area under the 
power curve. Using calculus, we can show that the evaluation of the area 
under the curve yields

	 Wstored =
1

2
LI2

m  (joules, j)	 (11.33)

R1

2 �

I1 R3

1 �

I2

R5 7 �

V1

+

–
V2

+

–

E 50 V
+

–

R4 4 �R2 5 �

FIG. 11.64
Substituting the short-circuit equivalents for the inductors and the open-circuit 

equivalents for the capacitor for t 7 5t.

E

Im

iL

vL

pL  =  vLiL

t

Energy stored

FIG. 11.65
The power curve for an inductive element under transient conditions.

EXAMPLE 11.12  Find the energy stored by the inductor in the circuit 
in Fig. 11.66 when the current through it has reached its final value.
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Solution: 

 Im =
E

R1 + R2
=

15 V

3 Ω + 2 Ω
=

15 V

5 Ω
= 3 A

 Wstored =
1

2
LI2

m =
1

2
(6 * 10-3 H)(3 A)2 =

54

2
* 10-3 J = 27 mJ

11.14 App lications

Household Dimmer Switch

Inductors can be found in a wide variety of common electronic circuits in 
the home. The typical household dimmer uses an inductor to protect the 
other components and the applied load from “rush” currents—currents 
that increase at very high rates and often to excessively high levels. This 
feature is particularly important for dimmers since they are most com-
monly used to control the light intensity of an incandescent lamp. When 
a lamp is turned on, the resistance is typically very low, and relatively 
high currents may flow for short periods of time until the filament of the 
bulb heats up. The inductor is also effective in blocking high-frequency 
noise (RFI) generated by the switching action of the triac in the dimmer. 
A capacitor is also normally included from line to neutral to prevent any 
voltage spikes from affecting the operation of the dimmer and the applied 
load (lamp, etc.) and to assist with the suppression of RFI disturbances.

A photograph of one of the most common dimmers is provided in 
Fig. 11.67(a), with an internal view shown in Fig. 11.67(b). The basic 

R1

3 �

R2

2 �

L 6 mH15 VE

R1

3 �

R2

2 �

15 VE Im

+

–

+

–

FIG. 11.66
Example 11.12.

(a)

FIG. 11.67
Dimmer control: (a) external appearance.
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components of most commercially available dimmers appear in the 
schematic in Fig. 11.67(c). In this design, a 14.5 mH inductor is used in 
the choking capacity described above, with a 0.068 mF capacitor for the 
“bypass” operation. Note the size of the inductor with its heavy wire and 
large ferromagnetic core and the relatively large size of the two 0.068 mF 
capacitors. Both suggest that they are designed to absorb high-energy 
disturbances.

The general operation of a dimmer is shown in Fig. 11.68. The control-
ling network is in series with the lamp and essentially acts as an imped-
ance (like resistance—to be introduced in Chapter 15) that can vary 
between very low and very high levels. Very low impedance levels resem-
ble a short circuit, so that the majority of the applied voltage appears 
across the lamp [Fig. 11.68(a)], and very high impedances approach an 
open circuit where very little voltage appears across the lamp 
[Fig. 11.68(b)]. Intermediate levels of impedance control the terminal 
voltage of the bulb accordingly. For instance, if the controlling network 

(b)

Rheostat
housing

Triac

Heat sink
for triac

Diac

47 k
resistor

0.068   F
capacitors

14.5   H inductor

�

Feed

+

–

120 V ac

Dimmer
switch
on/off

Return

Lamp
under control

DIMMER

G
K

A
TRIAC

DIAC

0.068 µF14.5 µH

330 k�
rheostat

47 k�

(c)

0.068    F

FIG. 11.67
Dimmer control: (b) internal construction; (c) schematic.
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has a very high impedance (open-circuit equivalent) through half the 
cycle, as shown in Fig. 11.68(c), the brightness of the bulb will be less 
than full voltage but not 50% due to the nonlinear relationship between the 
brightness of a bulb and the applied voltage. A lagging effect is also pre-
sent in the actual operation of the dimmer, which we will learn about when 
leading and lagging networks are examined in the ac chapters.

DIMMER
+

–

ZcontrolZchange

Vlamp

Vline

+

–

Vline

Vlamp t

(c)

A

K

Change state
at 1/4 cycle

DIMMER
+

–

A

K

ZcontrolZlow

Vlamp

Vline

+

–

Vline

Vlamp

t

(a)

DIMMER
+

–

A

K

ZcontrolZhigh

Vlamp

Vline

+

–

Vline

Vlamp

t

(b)

(high)

FIG. 11.68
Basic operation of the dimmer in Fig. 11.67: (a) full voltage to the lamp; 

(b) approaching the cutoff point for the bulb; (c) reduced illumination of the lamp.

The controlling knob, slide, or whatever other method is used on the 
face of the switch to control the light intensity is connected directly to 
the rheostat in the branch parallel to the triac. Its setting determines 
when the voltage across the capacitor reaches a sufficiently high level to 
turn on the diac (a bidirectional diode) and establish a voltage at the gate 
(G) of the triac to turn it on. When it does, it establishes a very low 
resistance path from the anode (A) to the cathode (K), and the applied 
voltage appears directly across the lamp. When the SCR is off, its termi-
nal resistance between anode and cathode is very high and can be 
approximated by an open circuit. During this period, the applied voltage 
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does not reach the load (lamp). At this time, the impedance of the paral-
lel branch containing the rheostat, fixed resistor, and capacitor is suffi-
ciently high compared to the load that it can also be ignored, completing 
the open-circuit equivalent in series with the load. Note the placement of 
the elements in the photograph in Fig. 11.67(b) and that the metal plate 
to which the triac is connected is actually a heat sink for the device. The 
on/off switch is in the same housing as the rheostat. The total design is 
certainly well planned to maintain a relatively small size for the dimmer.

Since the effort here is to control the amount of power getting to the 
load, the question is often asked, Why don’t we just use a rheostat in 
series with the lamp? The question is best answered by examining 
Fig. 11.69, which shows a rather simple network with a rheostat in 
series with the lamp. At full wattage, a 60 W bulb on a 120 V line theo-
retically has an internal resistance of R = V2>P (from the equation 
P = V2>R) = (120 V)2>60 W = 240 Ω. Although the resistance is sen-
sitive to the applied voltage, we will assume this level for the following 
calculations.

If we consider the case where the rheostat is set for the same level as the 
bulb, as shown in Fig. 11.69, there will be 60 V across the rheostat and the 
bulb. The power to each element is then P = V2>R = (60 V)2>240 Ω =
15 W. The bulb is certainly quite dim, but the rheostat inside the dimmer 
switch is dissipating 15 W of power on a continuous basis. When you 
consider the size of a 2 W potentiometer in your laboratory, you can 
imagine the size rheostat you would need for 15 W, not to mention the 
purchase cost, although the biggest concern would probably be all the 
heat developed in the walls of the house. You would be paying for elec-
tric power that was not performing a useful function. Also, if you had 
four dimmers set at the same level, you would actually be wasting suf-
ficient power to fully light another 60 W bulb.

On occasion, especially when the lights are set very low by the dim-
mer, a faint “singing” can sometimes be heard from the light bulb. This 
effect sometimes occurs when the conduction period of the dimmer is 
very small. The short, repetitive voltage pulse applied to the bulb sets 
the bulb into a condition similar to a resonance state (Chapter 20). The 
short pulses are just enough to heat up the filament and its supporting 
structures, and then the pulses are removed to allow the filament to cool 
down again for a longer period of time. This repetitive heating and cool-
ing cycle can set the filament in motion, and the “singing” can be heard 
in a quiet environment. Incidentally, the longer the filament, the louder 
is the “singing.” A further condition for this effect is that the filament 
must be in the shape of a coil and not a straight wire so that the “slinky” 
effect can develop.

11.15 C omputer Analysis

PSpice

Transient RL Response    The computer analysis begins with a tran-
sient analysis of the network of parallel inductive elements in Fig. 11.70. 
The inductors are picked up from the ANALOG library in the Place 
Part dialog box. When setting the inductors in place use the Rotate 
option to insure the 1 terminal of each inductor is in the top.

Note in Fig. 11.70 the need for a series resistor R1 within the parallel 
loop of inductors. In PSpice, inductors must have a series resistor to re-
flect real-world conditions. The chosen value of 1 mΩ  is so small, 

1 k�

240 �

240 �
60 V

+

–

Rheostat
dimmer
in wall

+

–

60 V
+

–Vline = 120 V

FIG. 11.69
Direct rheostat control of the brightness  

of a 60 W bulb.
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however, that it will not affect the response of the system. For VPulse 
(obtained from the SOURCE Library), the rise and fall times were 
selected as 0.01 ms, and the pulse width was chosen as 10 ms because 
the time constant of the network is t = LT>R = (4 H 712 H)>2 kΩ =
1.5 ms and 5t = 7.5 ms.

The simulation is the same as applied when obtaining the transient 
response of capacitive networks. In condensed form, the sequence to 
obtain a plot of the voltage across the coils versus time is as follows: New 
SimulationProfile key-PSpice 11-1-Create-TimeDomain(Transient)-
Run to time:10ms-Start saving data after:0s and Maximum step 
size:5 ms-OK-Run PSpice key Trace-Add Trace key-V(L2:1)-OK. 
The resulting trace appears in the bottom of Fig. 11.71. A maximum step 
size of 5 ms was chosen to ensure that it was less than the rise or fall 
times of 10 ms. Note that the voltage across the coil jumps to the 50 V 
level almost immediately; then it decays to 0 V in about 8 ms. A plot of 
the total current through the parallel coils can be obtained through Plot-
Plot to Window-Add Trace key-I(R)-OK, resulting in the trace appear-
ing at the top of Fig. 11.71. When the trace first appeared, the vertical 
scale extended from 0 A to 40 mA even though the maximum value of iR 
was 25 mA. To bring the maximum value to the top of the graph, Plot 
was selected followed by Axis Settings-Y Axis-User Defined-0A to 
25mA-OK.

For values, the voltage plot was selected, SELg, followed by the 
Toggle cursor key and a click on the screen to establish the crosshairs. 
The left-click cursor was set on one time constant of 1.5 ms to reveal a 
value of 18.24 V (about 36.5% of the maximum as defined by the expo-
nential waveform). The right-click cursor was set at 7.5 ms or five time 
constants, resulting in a relatively low 0.338 V.

Transient Response with Initial Conditions    The next applica-
tion verifies the results of Example 11.4, which has an initial condition 

FIG. 11.70
Using PSpice to obtain the transient response of a parallel inductive network 

due to an applied pulse of 50 V.
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associated with the inductive element. VPulse is again employed with 
the parameters appearing in Fig. 11.72. Since t = L>R = 100 mH>
(2.2 kΩ + 6.8 kΩ) = 100 mH>9 kΩ = 11.11 ms and 5t = 55.55 ms, 
the pulse width (PW) was set to 100 ms. The rise and fall times were set 
at 100 ms>1000 = 0.1 ms.

FIG. 11.71
The transient response of yL and iR for the network in Fig. 11.70.

FIG. 11.72
Using PSpice to determine the transient response for a circuit in which 

the inductive element has an initial condition.
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Setting the initial conditions for the inductor requires a procedure that 
has not been described as yet. First double-click on the inductor symbol 
to obtain the Parts listing. Find the column headed IC for Initial Condi-
tion. Select the rectangular area under the IC heading and insert the initial 
condition of 4 mA. Then select Display to obtain the Undo Warning!! 
dialog box. Respond with Yes and the Display Properties dialog box 
will appear. Select Name and Value and proceed with Apply and 
PAGE1* to return to the original screen.

Now for the simulation. First select the New Simulation Profile key, 
insert the name PSpice 11-3, and follow up with Create. Then in the 
Simulation Settings dialog box, select Time Domain(Transient) for the 
Analysis type and General Settings for the Options. The Run to time 
should be 200 ms so that you can see the full effect of the pulse source on 
the transient response. The Start saving data after should remain at 0 s, 
and the Maximum step size should be 200 ms>1000 = 200 ns. Click 
OK and then select the Run PSpice key. The result is a screen with an 
x-axis extending from 0 to 200 ms. Selecting Trace to get to the Add 
Traces dialog box and then selecting I(L) followed by OK results in the 
display in Fig. 11.73. The plot for I(L) clearly starts at the initial value of 
4 mA and then decays to 1.78 mA as defined by the left-click cursor. The 
right-click cursor reveals that the current has dropped to 0.225 mA 
(essentially 0 A) after the pulse source has dropped to 0 V for 100 ms. 
The VPulse source was placed in the same figure through Plot-Add Plot 
to Window-Trace-Add Trace@V(VPulse:+)@OK to permit a compari-
son between the applied voltage and the resulting inductor current.

FIG. 11.73
A plot of the applied pulse and resulting current for the circuit in Fig. 11.72.

Multisim

The transient response of an R-L network can also be obtained using 
Multisim. The circuit to be examined appears in Fig. 11.74 with a pulse 
voltage source to simulate the closing of a switch at t = 0 s. The source, 
PULSE_VOLTAGE, is found under SIGNAL_VOLTAGE Source 
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Family. When placed on the screen, it appears with a label, an initial 
voltage, a step voltage, and the time period for each level. All can be 
changed by double-clicking on the source symbol to obtain the dialog 
box. As shown in Fig. 11.74, the Pulsed Value will be set at 20 V, and 
the Delay Time to 0 s. The Rise Time and Fall Time will both remain 
at the default levels of 1 ns. For our analysis we want a Pulse Width that 
is at least twice the 5t transient period of the circuit. For the chosen val-
ues of R and L, t = L>R = 10 mH>100 Ω = 0.1 ms = 100 ms. The 
transient period of 5t is therefore 500 ms or 0.5 ms. Thus, a Pulse Width 
of 1 ms would seem appropriate with a Period of 2 ms. The result is a 
frequency of f = I>T = 1>2 ms = 500 Hz. When the value of the 
inductor is set at 10 mH using a procedure defined in earlier chapters, an 
initial value for the current of the inductor can also be set under the head-
ing of Additional SPICE Simulation Parameters. In this case, since it 
is not part of our analysis, it was set at 0 A, as shown in Fig. 11.74. When 
all have been set and selected, the parameters of the pulse source appear 
as shown in Fig. 11.74. Next the resistor, inductor, and ground are placed 
on the screen to complete the circuit.

The simulation process is initiated by the following sequence: Simu-
late-Analyses-Transient Analysis. The result is the Transient Analy-
sis dialog box in which Analysis Parameters is chosen first. Under 
Parameters, use 0 s as the Start time and 4 ms (4E-3) as the End time 
so that we get two full cycles of the applied voltage. After enabling the 
Maximum time step settings(TMAX), select the Minimum number 
of time points and set at 1000 to get a reasonably good plot during the 
rapidly changing transient period. Next, select the Output variables 
section and tell the program which voltage and current levels you are 
interested in. On the left side of the dialog box is a list of Variables that 
have been defined for the circuit. On the right is a list of Selected vari-
ables for analysis. In between you see Add or Remove. To move a 
variable from the left to the right column, select it in the left column and 
choose Add. It then appears in the right column. To plot both the applied 
voltage and the voltage across the coil, move V(1) and V(2) to the right 
column. Then select Simulate. A window appears with the selected 
plots as shown in Fig. 11.74. Click on the Show/Hide Grid key (a red 

FIG. 11.74
Using Multisim to obtain the transient response for an inductive circuit.
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	 5.	 An air-core inductor has a total inductance of 4.7 mH.
	 a.	 What is the inductance if the only change is to increase 

the number of turns by a factor of three?
	 b.	 What is the inductance if the only change is to increase 

the length by a factor of three?
	 c.	 What is the inductance if the area is doubled, the length 

cut in half, and the number of turns doubled?
	 d.	 What is the inductance if the area, length, and number 

of turns are cut in half and a ferromagnetic core with a 
mr of 1500 is inserted?

	 6.	 What are the inductance and the range of expected values 
for an inductor with the following label?
	a.	 392K	 b.	 blue gray black J
	c.	 47K	 d.	 brown green red K

SECTION 11.4  Induced Voltage yL

	 7.	 If the flux linking a coil of 60 turns changes at a rate of 
140 mWb/s, what is the induced voltage across the coil?

	 8.	 Determine the rate of change of flux linking a coil if 25 V 
are induced across a coil of 400 turns.

Problems

SECTION 11.2  Magnetic Field

	 1.	 For the electromagnet in Fig. 11.75:
	 a.	 Find the flux density in Wb/m2.
	 b.	 What is the flux density in teslas?
	 c.	 What is the applied magnetomotive force?
	 d.	 What would the reading of the meter in Fig. 11.14 read 

in gauss?

grid on a black axis), and the grid lines appear. Selecting the Show/Hide 
Legend key on the immediate right results in the small Transient 
Analysis dialog box that identifies the color that goes with each nodal 
voltage. In this case, red is the color of the applied voltage, and green is 
the color of the voltage across the coil.

The source voltage appears as expected with its transition to 20 V, 
50% duty cycle, and the period of 2 ms. The voltage across the coil 
jumped immediately to the 20 V level and then began its decay to 0 V in 
about 0.5 ms as predicted. When the source voltage dropped to zero, the 
voltage across the coil reversed polarity to maintain the same direction 
of current in the inductive circuit. Remember that for a coil, the voltage 
can change instantaneously, but the inductor “chokes” any instantaneous 
change in current. By reversing its polarity, the voltage across the coil 
ensures the same polarity of voltage across the resistor and therefore the 
same direction of current through the coil and circuit.

A = 0.02 m2

Φ = 4  10–4 Wb

50 turnsI = 2.2 A

Steel core�

FIG. 11.75
Problem 1.

SECTION 11.3  Inductance

	 2.	 For the inductor in Fig. 11.76, find the inductance L in 
henries.

	 3.	 a.		 Repeat Problem 2 with a ferromagnetic core with 
mr = 600.

	 b.	 How is the new inductance related to the old one? How 
does it relate to the value of mr?

l  =  1 in.

d =  0.15 in.

250  turns

Air core

FIG. 11.76
Problems 2 and 3.

	 4.	 For the inductor in Fig. 11.77, find the approximate induct-
ance L in henries.

A  =  1.5  ×  10–4 m2

200 turns

l  =  0.20 m

r = 1000

FIG. 11.77
Problem 4.
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	14.	 Given a supply of 18 V, use standard values to design a 
circuit to have the response of Fig. 11.81.

	 9.	 How many turns does a coil have if 50 mV are induced 
across the coil by a change in flux of 5 mWb/s?

	10.	 Find the voltage induced across a coil of 22 mH if the rate 
of change of current through the coil is:

	 a.	 1 A/s
	 b.	 20 mA/ms
	 c.	 6 mA>100 ms

SECTION 11.5  R-L Transients: The Storage Phase

	11.	 For the circuit of Fig. 11.78 composed of standard values:
	 a.	 Determine the time constant.
	 b.	 Write the mathematical expression for the current iL 

after the switch is closed.
	 c.	 Repeat part (b) for yL and yR.
	 d.	 Determine iL and yL at one, three, and five time constants.
	 e.	 Sketch the waveforms of iL, yL, and yR.

–
E

+

iL

R

vLL 470 mH40 V

20 k�

–+ vR

+

–

FIG. 11.78
Problem 11.

	12.	 For the circuit in Fig. 11.79 composed of standard values:
	 a.	 Determine t.
	 b.	 Write the mathematical expression for the current iL 

after the switch is closed at t = 0 s.
	 c.	 Write the mathematical expression for yL and yR after 

the switch is closed at t = 0 s.
	 d.	 Determine iL and yL at t = 1t, 3t, and 5t.
	 e.	 Sketch the waveforms of iL, yL, and yR for the storage 

phase.

	13.	 For the network of Fig. 11.80:
	 a.	 Write the expression for the voltage yL after the switch 

is closed.
	 b.	 Sketch the waveform for the source current after the 

switch is closed.
	 c.	 How long after the switch is closed can we assume the 

inductor is acting like a short circuit?

R

2.2 k�

L

4.7 mH

iL

+  vR  – +  vL  –

+12 V

FIG. 11.79
Problem 12.

12 

12 mH 

V
+

–
28 V

+

–

20 k�

is

+ vL –

E1 E2

FIG. 11.80
Problem 13.

0

15 mA

t5   = 15 µs

iL

FIG. 11.81
Problem 14.

SECTION 11.6  Initial Conditions

	15.	 For the circuit in Fig. 11.82:
	 a.	 Write the mathematical expressions for the current iL and 

the voltage yL following the closing of the switch. Note 
the magnitude and the direction of the initial current.

	 b.	 Sketch the waveform of iL and yL for the entire period 
from initial value to steady-state level.

iL
vL+ –

36 VE

8 mA

3.9 k�R

120 mH

L

+

–

FIG. 11.82
Problems 15 and 51.

	16.	 In this problem, the effect of reversing the initial current is 
investigated. The circuit in Fig. 11.83 is the same as that 
appearing in Fig. 11.82, with the only change being the 
direction of the initial current.

	 a.	 Write the mathematical expressions for the current iL 
and the voltage yL following the closing of the switch. 
Take careful note of the defined polarity for yL and the 
direction for iL.
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SECTION 11.7  R-L Transients: The Release Phase

	20.	 For the network in Fig. 11.87:
	 a.	 Determine the mathematical expressions for the current 

iL and the voltage yL when the switch is closed.
	 b.	 Repeat part (a) if the switch is opened after a period of 

five time constants has passed.
	 c.	 Sketch the waveforms of parts (a) and (b) on the same 

set of axes.

	 b.	 Sketch the waveform of iL and yL for the entire period 
from initial value to steady-state level.

	 c.	 Compare the results with those of Problem 15.

	17.	 For the network of Fig. 11.84:
	 a.	 Find the expression for the voltage across the resistor R2 

after the switch is closed.
	 b.	 Write the expression for the current through the inductor.
	 c.	 Sketch both waveforms.

iL
vL+ –

36 VE

8 mA

3.9 k�R

120 mH

L

+

–

FIG. 11.83
Problem 16.

1.2 k�R1 2.2 k�R2

20 V

E
+ –

L

100 mH
iL

–
vR2
+

FIG. 11.84
Problem 17.

	18.	 For the network in Fig. 11.85:
	 a.	 Write the mathematical expressions for the current iL and 

the voltage yL following the closing of the switch. Note 
the magnitude and the direction of the initial current.

	 b.	 Sketch the waveform of iL and yL for the entire period 
from initial value to steady-state level.

iL

R1 = 1.2 k�

2.2 k�

R2

I 5 mA 2 HL vL

+

–
4 mA

FIG. 11.85
Problem 18.

	*19.	 For the network in Fig. 11.86:
	 a.	 Write the mathematical expressions for the current iL 

and the voltage yL following the closing of the switch. 
Note the magnitude and direction of the initial current.

	 b.	 Sketch the waveform of iL and yL for the entire period 
from initial value to steady-state level.

iL

vL+ –

12 V

6 mA

L = 200 mH

I 4 mA R1 = 2.2 k�

R2

8.2 k�

–

+

FIG. 11.86
Problem 19.

–

+
R2 L 10 mH

R1 iL

vL8 V 
+

–

36 k�

12 k�

FIG. 11.87
Problem 20.

–

+
R2 10 k� L 4.7 mH

R1

2 k�

iL

vLE 12 V
+

–

FIG. 11.88
Problem 21.

	*21.	 For the network in Fig. 11.88:
	 a.	 Determine the mathematical expressions for the current 

iL and the voltage yL following the closing of the switch.
	 b.	 Repeat part (a) if the switch is opened at t = 1 ms.
	 c.	 Sketch the waveforms of parts (a) and (b) on the same 

set of axes.

	*22.	 For the network in Fig. 11.89:
	 a.	 Write the mathematical expression for the current iL and 

the voltage yL following the closing of the switch.
	 b.	 Determine the mathematical expressions for iL and yL if 

the switch is opened after a period of five time con-
stants has passed.
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	*25.	 For Fig. 11.92:
	 a.	 Determine the mathematical expressions for iL and yL 

following the closing of the switch. Note the defined 
direction for iL and polarity for yL.

	 b.	 Calculate iL and yL at t = 10 ms.
	 c.	 Write the mathematical expressions for the current iL 

and the voltage yL if the switch is opened at t = 10 ms.
	 d.	 Sketch the waveforms of iL and yL for parts (a) and (c).

	 c.	 Sketch the waveforms of iL and yL for the time periods 
defined by parts (a) and (b).

	 d.	 Sketch the waveform for the voltage across R2 for the 
same period of time encompassed by iL and yL. Take 
careful note of the defined polarities and directions in 
Fig. 11.89.

SECTION 11.8  Thévenin Equivalent: T = L ,RTh

	23.	 For Fig. 11.90:
	 a.	 Determine the mathematical expressions for iL and yL 

following the closing of the switch.
	 b.	 Determine iL and yL after one time constant.

E – 6 V

–

+

R2 8.2 k�

R1 6.8 k�

L 5 mH vL

–

+
vR2

iL

iL

FIG. 11.89
Problem 22.

L 47 mH

3 k�

E 12 V

iL

2 k�

vL

+

–

+

–
6.2 k�

2.2 k�

FIG. 11.90
Problems 23 and 52.

	24.	 For Fig. 11.91:
	 a.	 Determine the mathematical expressions for iL and yL 

following the closing of the switch.
	 b.	 Determine iL and yL at t = 100 ns.

–

+
12 k� L 2 mH

R2

24 k�
iL

vL

I  =
4 mA R1

E

20 V
+–

FIG. 11.91
Problem 24.

–

+
R2 4.7 k� L 10 mH vL

iL

R1 2.2 k�

E  =  –10 V

FIG. 11.92
Problem 25.

	*26.	 For the network in Fig. 11.93, the switch is closed at t = 0 s.
	 a.	 Determine yL at t = 25 ms.
	 b.	 Find yL at t = 1 ms.
	 c.	 Calculate yR1

 at t = 1t.
	 d.	 Find the time required for the current iL to reach 1 mA.

iL

36������������ V L
10 mH

R3

2.7 k�

R1

8.2 k�

R2 2.2 k� R4   1 k�  E vL

+

–

+

–

FIG. 11.93
Problem 26.

	*27.	 The switch in Fig. 11.94 has been open for a long time. It is 
then closed at t = 0 s.

	 a.	 Write the mathematical expression for the current iL and 
the voltage yL after the switch is closed.

	 b.	 Sketch the waveform of iL and yL from the initial value 
to the steady-state level.
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	*30.	 The switch in Fig. 11.97 has been closed for a long time. It 
is then opened at t = 0 s.

	 a.	 Write the mathematical expression for the current iL and 
the voltage yL after the switch is opened.

	 b.	 Sketch the waveform of iL and yL from initial value to 
the steady-state level.

	*28.	 a.		 Determine the mathematical expressions for iL and yL 
following the closing of the switch in Fig. 11.95. The 
steady-state values of iL and yL are established before 
the switch is closed.

	 b.	 Determine iL and yL after two time constants of the stor-
age phase.

	 c.	 Write the mathematical expressions for the current iL 
and the voltage yL if the switch is opened at the instant 
defined by part (b).

	 d.	 Sketch the waveforms of iL and yL for parts (a) and (c).

iL4.7 k�

R1

16 VE

1 k�R3

2 HL

3.3 k�

R2

vL

+

–
(t = 0 s)

+

–

FIG. 11.94
Problem 27.

R2 4 k� R4 1.5 k�

L 3 mHR3 3 k�

R1

12 k�

+20 V

iL

vL

–

+

– 8 V

FIG. 11.95
Problem 28.

	*29.	 The switch for the network in Fig. 11.96 has been closed for 
about 1 h. It is then opened at the time defined as t = 0 s.

	 a.	 Determine the time required for the current iL to drop to 
10 mA.

	 b.	 Find the voltage yL at t = 10 ms.
	 c.	 Calculate yL at t = 5t.

–

+
L 5 H

iL

vL

24 V

2 M�

E

200V

V
+ COM

+

–
Rmeter = 10 M�

FIG. 11.96
Problem 29.

iL2.2 

– 24 V 

k�

1.2 k�

R1
vL+ –

1.2 H

(t = 0 s)

4.7 k�

R2

FIG. 11.97
Problem 30.

SECTION 11.9  Instantaneous Values

	31.	 Given iL = 150 mA(1 - e - t>15 ms):
	 a.	 Determine iL at t = 1.5 ms.
	 b.	 Determine iL at t = 150 ms.
	 c.	 Find the time t when iL will equal 75 mA.
	 d.	 Find the time t when iL will equal 149 mA.

	32.	 a.		 If the measured current for an inductor during the stor-
age phase is 126.4 mA at after a period of one time con-
stant has passed, what is the maximum level of current 
to be achieved?

	 b.	 When the current of part (a) reaches 160 mA, 64.4 ms 
have passed. Find the time constant of the network.

	 c.	 If the circuit’s resistance is 500 Ω, what is the value of 
the series inductor to establish the current of part (a)? Is 
the resulting inductance a standard value?

	 d.	 What is the required supply voltage?

	33.	 The network in Fig. 11.98 employs a DMM with an internal 
resistance of 10 MΩ in the voltmeter mode. The switch is 
closed at t = 0 s.

	 a.	 Find the voltage across the coil the instant after the 
switch is closed.

	 b.	 What is the final value of the current iL?
	 c.	 How much time must pass before iL reaches 10 mA?
	 d.	 What is the voltmeter reading at t = 12 ms?

16 V E

200V

V
+ COM

L 5 H

iL

vL

2 M�

+

–
+

–
Rmeter = 10 M�

FIG. 11.98
Problem 33.
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SECTION 11.10  Average Induced Voltage: YLav

	34.	 Find the waveform for the voltage induced across a 200 mH 
coil if the current through the coil is as shown in Fig. 11.99.

0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

30

15

t (ms)

iL (mA)

1 2 3 4 5 6 7 8 9

FIG. 11.99
Problem 34.

	35.	 Find the waveform for the voltage induced across a 5 mH 
coil if the current through the coil is as shown in Fig. 11.100.

1918

iL (mA)

0 t (ms)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
–5

–10

–15

–20

20

15

10

5

FIG. 11.100
Problem 35.

	*36.	 Find the waveform for the current of a 10 mH coil if the 
voltage across the coil follows the pattern in Fig. 11.101. 
The current iL is 4 mA at t = 0- s.

vL

–10 V

–25 V

t (  s)

20 V

0 5 10 12 16 24

FIG. 11.101
Problem 36.
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	41.	 Reduce the network of Fig. 11.106 to the fewest elements.

SECTION 11.11  Inductors in Series and in Parallel

	37.	 Find the total inductance of the circuit of Fig. 11.102.

3.3 mH
2.4 mH

10 mH 3.4 mH

= 5.6 mHL4

= 4 mHL3

L2

L1
L6 L5

LT

FIG. 11.102
Problem 37.

	38.	 Find the total inductance for the network of Fig. 11.103.

L3

LT
L5

L2 L4

55 mH

22 mH

18 mH

60 mH
20 mH

L1

FIG. 11.103
Problem 38.

	39.	 Reduce the network in Fig. 11.104 to the fewest number of 
components.

9.1 k�

1 k�

4.7 k�

E 20 V  
+

–

6.8 mH 3.3 mH

1.8 mH4.7 mH

FIG. 11.104
Problem 39.

	40.	 Reduce the network in Fig. 11.105 to the fewest elements.

10 µF

36 mH 91 µF9.1 F

24 mH

12 mH
6.2 mH

F3.3

FIG. 11.105
Problem 40.

5 mH

12  µF

42 µF

20 mH

7  µF

2.2 k�

FIG. 11.106
Problem 41.

iL2 k�

vR

E 36 V vL

+

–

+ –

+

–
8.2 k� 3 mH 2 mH

FIG. 11.107
Problem 42.

	*42.	 For the network in Fig. 11.107:
	 a.	 Write the mathematical expressions for the voltages yL 

and yR and the current iL if the switch is closed at 
t = 0 s.

	 b.	 Sketch the waveforms of yL, yR, and iL.



540    Inductors

	46.	 Find the steady-state currents and voltages for the network 
in Fig. 11.111.

	*43.	 For the network in Fig. 11.108:
	 a.	 Write the mathematical expressions for the voltage yL 

and the current iL if the switch is closed at t = 0 s. Take 
special note of the required yL.

	 b.	 Sketch the waveforms of yL and iL.

10 mH

iL

2 k�

2 k�

20 mH

8 mA 8.2 k�

–

+
vL

FIG. 11.108
Problem 43.

	*44.	 For the network in Fig. 11.109:
	 a.	 Find the mathematical expressions for the voltage yL 

and the current iL following the closing of the switch.
	 b.	 Sketch the waveforms of yL and iL obtained in part (a).
	 c.	 Determine the mathematical expression for the voltage 

yL3
 following the closing of the switch, and sketch the 

waveform.

–

+

R1

R2 20 k�

iL

L2 10 HL3 vL3

–

+

vL

20 V L1

3 H10 k�

4.7 H

FIG. 11.109
Problem 44.

SECTION 11.12  Steady-State Conditions

	45.	 Find the steady-state currents I1 and I2 for the network in 
Fig. 11.110.

R3 4 �

10 � 

R2
I1

I2

R1 4 �

1 H

L

C

1

2 H

L2

E 25 V
+

–

10 µF

FIG. 11.110
Problem 45.

I2

E 100 V

2 � 4 H 12 �

V1 2 µF V2 2 µF

I1
+

–

+

–

+

–

FIG. 11.111
Problem 46.

	47.	 Find the steady-state currents and voltages for the network 
in Fig. 11.112 after the switch is closed.

2 H

4 �V1

I1

I2

8 � V2

100 µF

12 V

+

–+

–

– 8 V

FIG. 11.112
Problem 47.
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Diamagnetic materials  Materials that have permeabilities 
slightly less than that of free space.

Electromagnetism  Magnetic effects introduced by the flow of 
charge, or current.

Faraday’s law  A law stating the relationship between the volt-
age induced across a coil and the number of turns in the coil 
and the rate at which the flux linking the coil is changing.

Ferromagnetic materials  Materials having permeabilities hun-
dreds and thousands of times greater than that of free space.

Flux density (B)  A measure of the flux per unit area perpendicu-
lar to a magnetic flux path. It is measured in teslas (T) or 
webers per square meter (Wb/m2).

Inductance (L)  A measure of the ability of a coil to oppose any 
change in current through the coil and to store energy in the 
form of a magnetic field in the region surrounding the coil.

Inductor (coil)  A fundamental element of electrical systems 
constructed of numerous turns of wire around a ferromagnetic 
core or an air core.

Lenz’s law  A law stating that an induced effect is always such as 
to oppose the cause that produced it.

Magnetic flux lines  Lines of a continuous nature that reveal the 
strength and direction of a magnetic field.

Magnetomotive force (mmf) (f)  The “pressure” required to 
establish magnetic flux in a ferromagnetic material. It is 
measured in ampere-turns (At).

Paramagnetic materials  Materials that have permeabilities 
slightly greater than that of free space.

Permanent magnet  A material such as steel or iron that will 
remain magnetized for long periods of time without the aid of 
external means.

Permeability (M)  A measure of the ease with which magnetic 
flux can be established in a material. It is measured in Wb/A # m.

Relative permeability (Mr)  The ratio of the permeability of a 
material to that of free space.

	48.	 Find the indicated steady-state currents and voltages for the 
network in Fig. 11.113.

6 �

V1

20 �

–

+

4 �

I2

5 �

75 V

I1
6 F 4 H

0.5 H

100 F
+

–
V2

–

+

FIG. 11.113
Problem 48.

SECTION 11.15  Computer Analysis

	49.	 Using PSpice or Multisim, verify the results of Example 11.3.

	50.	 Using PSpice or Multisim, verify the results of Example 11.4.

	51.	 Using PSpice or Multisim, find the solution to Problem 15.

	52.	 Using PSpice or Multisim, find the solution to Problem 23.

	53.	 Using PSpice or Multisim, verify the results of Example 11.8.

Glossary

Ampère’s circuital law  A law establishing the fact that the 
algebraic sum of the rises and drops of the magnetomotive 
force (mmf) around a closed loop of a magnetic circuit is 
equal to zero.

Choke  A term often applied to an inductor, due to the ability of 
an inductor to resist a change in current through it.
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12Magnetic CircuitsMagnetic Circuits

12.1  Introduction

Magnetic and electromagnetic effects play an important role in the design of a wide variety of 
electrical/electronic systems in use today. Motors, generators, transformers, loudspeakers, 
relays, medical equipment and movements of all kinds depend on magnetic effects to function 
properly. The response and characteristics of each have an impact on the current and voltage 
levels of the system, the efficiency of the design, the resulting size, and many other important 
considerations.

Fortunately, there is a great deal of similarity between the analyses of electric circuits and 
magnetic circuits. The magnetic flux of magnetic circuits has properties very similar to the cur-
rent of electric circuits. As shown in Fig. 11.15, it has a direction and a closed path. The magni-
tude of the established flux is a direct function of the applied magnetomotive force, resulting in 
a duality with electric circuits, where the resulting current is a function of the magnitude of the 
applied voltage. The flux established is also inversely related to the structural opposition of the 
magnetic path in the same way the current in a network is inversely related to the resistance of 
the network. All of these similarities are used throughout the analysis to clarify the approach.

One of the difficulties associated with studying magnetic circuits is that three different 
systems of units are commonly used in the industry. The manufacturer, application, and type 
of component all have an impact on which system is used. To the extent practical, the SI sys-
tem is applied throughout the chapter. References to the CGS and English systems require the 
use of Appendix D.

12.2  Magnetic Field

The magnetic field distribution around a permanent magnet or electromagnet was covered in 
detail in Chapter 11. Recall that flux lines strive to be as short as possible and take the path 
with the highest permeability. The flux density is defined as follows [Eq. (11.1) repeated here 
for convenience]:

	  B = Wb/m2 = teslas (T)
	  Φ = webers (Wb) � (12.1)
	  A = m2

The “pressure” on the system to establish magnetic lines of force is determined by the 
applied magnetomotive force, which is directly related to the number of turns and current of 

B =
Φ
A

•	 Become aware of the similarities between the 
analysis of magnetic circuits and electric circuits.

•	 Develop a clear understanding of the important 
parameters of a magnetic circuit and how to find 
each quantity for a variety of magnetic circuit 
configurations.

•	 Begin to appreciate why a clear understanding of 
magnetic circuit parameters is an important 
component in the design of electrical/electronic 
systems.

Objectives

12
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the magnetizing coil as appearing in the following equation [Eq. (11.3) 
repeated here for convenience]:

	  f = ampere@turns (At)
	  N = turns (t) 	 (12.2)
	  I = amperes (A)

The level of magnetic flux established in a ferromagnetic core is a 
direction function of the permeability of the material. Ferromagnetic 
materials have a very high level of permeability, while nonmagnetic 
materials such as air and wood have very low levels. The ratio of the 
permeability of the material to that of air is called the relative permea-
bility and is defined by the following equation [Eq. (11.5) repeated here 
for convenience]:

	 mr =
m

mo
    mo = 4p * 10-7 Wb/Am	 (12.3)

As mentioned in Chapter 11, the values of mr are not provided in a 
table format because the value is determined by the other quantities of 
the magnetic circuit. Change the magnetomotive force, and the relative 
permeability changes.

12.3 R eluctance

The resistance of a material to the flow of charge (current) is determined 
for electric circuits by the equation

R = r 
l

A
  (ohms, Ω)

The reluctance of a material to the setting up of magnetic flux lines 
in the material is determined by the following equation:

	 r =
l

mA
    (rels, or At/Wb)	 (12.4)

where ℛ is the reluctance, l is the length of the magnetic path, and A is 
the cross-sectional area. The t in the units At/Wb is the number of turns 
of the applied winding. More is said about ampere-turns (At) in the next 
section. Note that the resistance and reluctance are inversely propor-
tional to the area, indicating that an increase in area results in a reduction 
in each and an increase in the desired result: current and flux. For an 
increase in length, the opposite is true, and the desired effect is reduced. 
The reluctance, however, is inversely proportional to the permeability, 
while the resistance is directly proportional to the resistivity. The larger 
the m or the smaller the r, the smaller are the reluctance and resistance, 
respectively. Obviously, therefore, materials with high permeability, 
such as the ferromagnetics, have very small reluctances and result in an 
increased measure of flux through the core. There is no widely accepted 
unit for reluctance, although the rel and the At/Wb are usually applied.

12.4 O hm’s Law for Magnetic Circuits

Recall the equation

Effect =
cause

opposition

f = NI
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appearing in Chapter 4 to introduce Ohm’s law for electric circuits. 
For magnetic circuits, the effect desired is the flux Φ. The cause is the 
magnetomotive force (mmf) f, which is the external force (or “pres-
sure”) required to set up the magnetic flux lines within the magnetic 
material. The opposition to the setting up of the flux Φ is the reluctance ℛ.

Substituting, we have

	 Φ =
f

r
	 (12.5)

Since f = NI, Eq. (12.5) clearly reveals that an increase in the number 
of turns or the current through the wire in Fig. 12.1 results in an increased 
“pressure” on the system to establish the flux lines through the core.

Although there is a great deal of similarity between electric and 
magnetic circuits, you must understand that the flux Φ is not a “flow” 
variable such as current in an electric circuit. Magnetic flux is estab-
lished in the core through the alteration of the atomic structure of the 
core due to external pressure and is not a measure of the flow of some 
charged particles through the core.

12.5  Magnetizing Force

The magnetomotive force per unit length is called the magnetizing 
force (H). In equation form,

	 H =
f

l
  (At/m)	 (12.6)

Substituting for the magnetomotive force results in

	 H =
Nl

l
  (At/m)	 (12.7)

For the magnetic circuit in Fig. 12.2, if NI = 40 At and l = 0.2 m, then

H =
NI

l
=

40 At

0.2 m
= 200 At/m

In words, the result indicates that there are 200 At of “pressure” per 
meter to establish flux in the core.

Note in Fig. 12.2 that the direction of the flux Φ can be determined 
by placing the fingers of your right hand in the direction of current 
around the core and noting the direction of the thumb. It is interesting to 
realize that the magnetizing force is independent of the type of core 
material—it is determined solely by the number of turns, the current, 
and the length of the core.

The applied magnetizing force has a pronounced effect on the result-
ing permeability of a magnetic material. As the magnetizing force 
increases, the permeability rises to a maximum and then drops to a min-
imum, as shown in Fig. 12.3 for three commonly employed magnetic 
materials.

The flux density and the magnetizing force are related by the follow-
ing equation:

	 B = mH	 (12.8)

I

I

�

N turns

FIG. 12.1
Defining the components of a magnetomotive force.

Mean length l  =  0.2 m

I

I
N turns

�

FIG. 12.2
Defining the magnetizing force of a magnetic circuit.
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This equation indicates that for a particular magnetizing force, the 
greater the permeability, the greater is the induced flux density.

Since henries (H) and the magnetizing force (H) use the same capital 
letter, it must be pointed out that all units of measurement in the text, 
such as henries, use roman letters, such as H, whereas variables such as 
the magnetizing force use italic letters, such as H.

12.6 H ysteresis

A curve of the flux density B versus the magnetizing force H of a material 
is of particular importance to the engineer. Curves of this type can usually 
be found in manuals, descriptive pamphlets, and brochures published by 
manufacturers of magnetic materials. A typical B-H curve for a ferromag-
netic material such as steel can be derived using the setup in Fig. 12.4.

The core is initially unmagnetized, and the current I = 0. If the cur-
rent I is increased to some value above zero, the magnetizing force H 
increases to a value determined by

H c =
NI c

l

The flux f and the flux density B (B = f>A) also increase with the cur-
rent I (or H). If the material has no residual magnetism, and the magnet-
izing force H is increased from zero to some value Ha, the B-H curve 
follows the path shown in Fig. 12.5 between o and a. If the magnetizing 
force H is increased until saturation (Hs) occurs, the curve continues as 
shown in the figure to point b. When saturation occurs, the flux density 
has, for all practical purposes, reached its maximum value. Any further 
increase in current through the coil increasing H = NI>l results in a very 
small increase in flux density B.

If the magnetizing force is reduced to zero by letting I decrease to 
zero, the curve follows the path of the curve between b and c. The flux 
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FIG. 12.3
Variation of m with the magnetizing force.
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N turns
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A�

FIG. 12.4
Series magnetic circuit used to define the  

hysteresis curve.
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density BR, which remains when the magnetizing force is zero, is called 
the residual flux density. It is this residual flux density that makes it pos-
sible to create permanent magnets. If the coil is now removed from the 
core in Fig. 12.4, the core will still have the magnetic properties deter-
mined by the residual flux density, a measure of its “retentivity.” If the 
current I is reversed, developing a magnetizing force, -H, the flux den-
sity B decreases with an increase in I. Eventually, the flux density will 
be zero when -Hd (the portion of curve from c to d) is reached. The 
magnetizing force -Hd required to “coerce” the flux density to reduce 
its level to zero is called the coercive force, a measure of the coercivity 
of the magnetic sample. As the force -H is increased until saturation 
again occurs and is then reversed and brought back to zero, the path def 
results. If the magnetizing force is increased in the positive direction 
(+H), the curve traces the path shown from f to b. The entire curve rep-
resented by bcdefb is called the hysteresis curve for the ferromagnetic 
material, from the Greek hysterein, meaning “to lag behind.” The flux 
density B lagged behind the magnetizing force H during the entire plot-
ting of the curve. When H was zero at c, B was not zero but had only 
begun to decline. Long after H had passed through zero and had become 
equal to -Hd did the flux density B finally become equal to zero.

If the entire cycle is repeated, the curve obtained for the same core 
will be determined by the maximum H applied. Three hysteresis loops 
for the same material for maximum values of H less than the saturation 
value are shown in Fig. 12.6. In addition, the saturation curve is repeated 
for comparison purposes.

Saturationb
B (T)

BR
c

d– Hs

Saturation

– Bmax
– BR

f

Ha Hs

e

– Hd
H (NI/l)

Bmax

a

o

FIG. 12.5
Hysteresis curve.

HS

H (At/m)
H3

Hx

B (T)

H1 H2

FIG. 12.6
Defining the normal magnetization curve.
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Note from the various curves that for a particular value of H, say, Hx, 
the value of B can vary widely, as determined by the history of the core. 
In an effort to assign a particular value of B to each value of H, we com-
promise by connecting the tips of the hysteresis loops. The resulting 
curve, shown by the heavy, solid line in Fig. 12.6 and for various materi-
als in Fig. 12.7, is called the normal magnetization curve. An expanded 
view of one region appears in Fig. 12.8.

A comparison of Figs. 12.3 and 12.7 shows that for the same value of 
H, the value of B is higher in Fig. 12.7 for the materials with the higher 
m in Fig. 12.3. This is particularly obvious for low values of H. This cor-
respondence between the two figures must exist since B = mH. In fact, 
if in Fig. 12.7 we find m for each value of H using the equation m = B>H, 
we obtain the curves in Fig. 12.3.

It is interesting to note that the hysteresis curves in Fig. 12.6 have a point 
symmetry about the origin; that is, the inverted pattern to the left of the verti-
cal axis is the same as that appearing to the right of the vertical axis. In addi-
tion, you will find that a further application of the same magnetizing forces 
to the sample results in the same plot. For a current I in H = NI>l that 
moves between positive and negative maximums at a fixed rate, the same 
B-H curve results during each cycle. Such will be the case when we examine 
ac (sinusoidal) networks in the later chapters. The reversal of the field (f) 
due to the changing current direction results in a loss of energy that can best 
be described by first introducing the domain theory of magnetism.

Within each atom, the orbiting electrons (described in Chapter 2) are 
also spinning as they revolve around the nucleus. The atom, due to its 
spinning electrons, has a magnetic field associated with it. In nonmagnetic 
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FIG. 12.7
Normal magnetization curve for three ferromagnetic materials.
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FIG. 12.8
Expanded view of Fig. 12.7 for the low magnetizing force region.
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materials, the net magnetic field is effectively zero since the magnetic 
fields due to the atoms of the material oppose each other. In magnetic 
materials such as iron and steel, however, the magnetic fields of groups 
of atoms numbering in the order of 1012 are aligned, forming very small 
bar magnets. This group of magnetically aligned atoms is called a 
domain. Each domain is a separate entity; that is, each domain is inde-
pendent of the surrounding domains. For an unmagnetized sample of 
magnetic material, these domains appear in a random manner, such as 
shown in Fig. 12.9(a). The net magnetic field in any one direction is zero.

(a) (b)

S N

FIG. 12.9
Demonstrating the domain theory of magnetism.

When an external magnetizing force is applied, the domains that are 
nearly aligned with the applied field grow at the expense of the less 
favorably oriented domains, such as shown in Fig. 12.9(b). Eventually, 
if a sufficiently strong field is applied, all of the domains have the orien-
tation of the applied magnetizing force, and any further increase in 
external field will not increase the strength of the magnetic flux through 
the core—a condition referred to as saturation. The elasticity of the 
above is evidenced by the fact that when the magnetizing force is 
removed, the alignment is lost to some measure, and the flux density 
drops to BR. In other words, the removal of the magnetizing force results 
in the return of a number of misaligned domains within the core. The 
continued alignment of a number of the domains, however, accounts for 
our ability to create permanent magnets.

At a point just before saturation, the opposing unaligned domains are 
reduced to small cylinders of various shapes referred to as bubbles. These 
bubbles can be moved within the magnetic sample through the applica-
tion of a controlling magnetic field. These magnetic bubbles form the 
basis of the recently designed bubble memory system for computers.

12.7 Am père’s Circuital Law

As mentioned in the introduction to this chapter, there is a broad similarity 
between the analyses of electric and magnetic circuits. This has already 
been demonstrated to some extent for the quantities in Table 12.1.

If we apply the “cause” analogy to Kirchhoff’s voltage law 
1gAV = 02, we obtain the following:

	 gA f = 0  (for magnetic circuits)	 (12.9)

which, in words, states that the algebraic sum of the rises and drops of 
the mmf around a closed loop of a magnetic circuit is equal to zero; that 
is, the sum of the rises in mmf equals the sum of the drops in mmf around 
a closed loop.

Eq. (12.9) is referred to as Ampère’s circuital law. When it is applied 
to magnetic circuits, sources of mmf are expressed by the equation

	 f = NI  (At)	 (12.10)

TABLE 12.1

Electric 
Circuits

Magnetic 
Circuits

Cause E f
Effect I Φ
Opposition R r



Series Magnetic Circuits: Determining NI    551

The equation for the mmf drop across a portion of a magnetic circuit can 
be found by applying the relationships listed in Table 12.1; that is, for 
electric circuits,

V = IR

resulting in the following for magnetic circuits:

	 f = Φr  (At)	 (12.11)

where f is the flux passing through a section of the magnetic circuit and 
ℛ is the reluctance of that section. The reluctance, however, is seldom 
calculated in the analysis of magnetic circuits. A more practical equation 
for the mmf drop is

	 f = Hl  (At)	 (12.12)

as derived from Eq. (12.6), where H is the magnetizing force on a sec-
tion of a magnetic circuit and l is the length of the section.

As an example of Eq. (12.9), consider the magnetic circuit appearing 
in Fig. 12.10 constructed of three different ferromagnetic materials.

Applying Ampère’s circuital law, we have

� � � 0
�NI � Hablab � Hbclbc � Hcalca � 0

NI    � Hablab � Hbclbc � Hcalca 

Drop

mmf dropsImpressed
mmf

Rise Drop Drop

All the terms of the equation are known except the magnetizing force for 
each portion of the magnetic circuit, which can be found by using the 
B-H curve if the flux density B is known.

12.8  Flux �
If we continue to apply the relationships described in the previous sec-
tion to Kirchhoff’s current law, we find that the sum of the fluxes enter-
ing a junction is equal to the sum of the fluxes leaving a junction; that is, 
for the circuit in Fig. 12.11,

	 Φa = Φb + Φc  (at junction a)

or	 Φb + Φc = Φa  (at junction b)

which are equivalent.

12.9 S eries Magnetic Circuits: 
Determining NI
We are now in a position to solve a few magnetic circuit problems, which 
are basically of two types. In one type, Φ is given, and the impressed mmf 
NI must be computed. This is the type of problem encountered in the 
design of motors, generators, and transformers. In the other type, NI is 
given, and the flux Φ of the magnetic circuit must be found. This type of 
problem is encountered primarily in the design of magnetic amplifiers 
and is more difficult since the approach is “hit or miss.”

Iron�
a

c

b

Steel

CobaltI

I

N turns

FIG. 12.10
Series magnetic circuit of three different materials.

�a

a

I

I

N

b

�c
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�b

FIG. 12.11
Flux distribution of a series-parallel magnetic 

network.
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As indicated in earlier discussions, the value of m varies from point to 
point along the magnetization curve. This eliminates the possibility of 
finding the reluctance of each “branch” or the “total reluctance” of a net-
work, as was done for electric circuits, where r had a fixed value for any 
applied current or voltage. If the total reluctance can be determined, Φ can 
then be determined using the Ohm’s law analogy for magnetic circuits.

For magnetic circuits, the level of B or H is determined from the other 
using the B-H curve, and m is seldom calculated unless asked for.

An approach frequently used in the analysis of magnetic circuits is 
the table method. Before a problem is analyzed in detail, a table is pre-
pared listing in the far left column the various sections of the magnetic 
circuit (see Table 12.2). The columns on the right are reserved for the 
quantities to be found for each section. In this way, when you are solv-
ing a problem, you can keep track of what the next step should be and 
what is required to complete the problem. After a few examples, the 
usefulness of this method should become clear.

This section considers only series magnetic circuits in which the flux 
f is the same throughout. In each example, the magnitude of the mag-
netomotive force is to be determined.

EXAMPLE 12.1  For the series magnetic circuit in Fig. 12.12:

	 a.	 Find the value of I required to develop a magnetic flux of  
Φ = 4 * 10-4 Wb.

	 b.	 Determine m and mr for the material under these conditions.

Solutions:  The magnetic circuit can be represented by the system shown 
in Fig. 12.13(a). The electric circuit analogy is shown in Fig. 12.13(b). 
Analogies of this type can be very helpful in the solution of magnetic cir-
cuits. Table 12.2 is for part (a) of this problem. The table is fairly trivial for 
this example, but it does define the quantities to be found.

	 a.	 The flux density B is

B =
Φ
A

=
4 * 10-4 Wb

2 * 10-3 m2 = 2 * 10-1 T = 0.2 T

		  Using the B-H curves in Fig. 12.8, we can determine the magnetiz-
ing force H:

H (cast steel) = 170 At/m

		  Applying Ampère’s circuital law yields

	 NI = Hl

and	 I =
Hl

N
=

(170 At/m)(0.16 m)

400 t
= 68 mA

		  (Recall that t represents turns.)
	 b.	 The permeability of the material can be found using Eq. (12.8):

m =
B

H
=

0.2 T

170 At/m
= 1.18 : 10−3 Wb/Am

Cast-steel coreN  =  400 turns

I

I

A  =  2  �  10–3 m2

l  =  0.16 m
(mean length)

�

FIG. 12.12
Example 12.1.

�

� �

I

RE

(a)

(b)

+

–

FIG. 12.13
(a) Magnetic circuit equivalent and  

(b) electric circuit analogy.

TABLE 12.2

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

One continuous section 4 * 10-4 2 * 10-3 0.16



and the relative permeability is

mr =
m

mo
=

1.18 * 10-3

4p * 10-7 = 939.01

EXAMPLE 12.2  The electromagnet in Fig. 12.14 has picked up a sec-
tion of cast iron. Determine the current I required to establish the indi-
cated flux in the core.

Solution:  To be able to use Figs. 12.7 and 12.8, we must first convert 
to the metric system. However, since the area is the same throughout, we 
can determine the length for each material rather than work with the 
individual sections:

 lefab = 4 in. + 4 in. + 4 in. = 12 in.

 lbcde = 0.5 in. + 4 in. + 0.5 in. = 5 in.

 12 in.a 1 m

39.37 in.
b = 304.8 * 10-3 m

 5 in.a 1 m

39.37 in.
b = 127 * 10-3 m

 1 in.2a 1 m

39.37 in.
b a 1 m

39.37 in.
b = 6.45 * 10-4 m2

The information available from the efab and bcde specifications of 
the problem has been inserted in Table 12.3. When the problem has been 
completed, each space will contain some information. Sufficient data to 
complete the problem can be found if we fill in each column from left 
to right. As the various quantities are calculated, they will be placed in a 
similar table found at the end of the example.

N  =  50 turns
Sheet steel

Cast iron

f

e

d

a

b

c

�

lab  =  lcd  =  lef  =  lfa  =  4 in.

lbc  =  lde  =  0.5 in.

Area (throughout)  =  1 in.2

�  =  3.5  ×  10–4 Wb

I I

FIG. 12.14
Electromagnet for Example 12.2.

TABLE 12.3

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

efab 3.5 * 10-4 6.45 * 10-4 304.8 * 10-3

bcde 3.5 * 10-4 6.45 * 10-4 127 * 10-3

The flux density for each section is

B =
Φ
A

=
3.5 * 10-4 Wb

6.45 * 10-4 m2 = 0.54 T

and the magnetizing force is

H (sheet steel, Fig. 12.8) ≅ 70 At/m

H (cast iron, Fig. 12.7) ≅ 1600 At/m

Note the extreme difference in magnetizing force for each material for 
the required flux density. In fact, when we apply Ampère’s circuital law, 
we find that the sheet steel section can be ignored with a minimal error 
in the solution.

Determining Hl for each section yields

 Hefablefab = (70 At/m)(304.8 * 10 - 3 m) = 21.34 At

 Hbcdelbcde = (1600 At/m)(127 * 10 - 3 m) = 203.2 At

Series Magnetic Circuits: Determining NI    553
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Solution:  This is the first example with two magnetizing forces to 
consider. In the analogies in Fig. 12.17, note that the resulting flux of 
each is opposing, just as the two sources of voltage are opposing in the 
electric circuit analogy.

TABLE 12.4

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

efab 3.5 * 10-4 6.45 * 10-4 0.54 70 304.8 * 10-3 21.34

bcde 3.5 * 10-4 6.45 * 10-4 0.54 1600 127 * 10-3 203.2

�

�efab

E

(a)

(b)

�bcde

Rbcde

Refab

+–

FIG. 12.15
(a) Magnetic circuit equivalent and (b) electric 

circuit analogy for the electromagnet in Fig. 12.14.

Inserting the above data in Table 12.3 results in Table 12.4.

The magnetic circuit equivalent and the electric circuit analogy for 
the system in Fig. 12.14 appear in Fig. 12.15.

Applying Ampère’s circuital law, we obtain

 NI = Hefablefab + Hbcdelbcde

 = 21.34 At + 203.2 At = 224.54 At

and	 (50 t)I = 224.54 At

so that	 I =
224.54 At

50 t
= 4.49 A

EXAMPLE 12.3  Determine the secondary current I2 for the trans-
former in Fig. 12.16 if the resultant clockwise flux in the core is 
1.5 * 10-5 Wb.

Area (throughout)  =  0.15  ×  10–3 m2

labcda  =  0.16 m

I1 (2 A)

N1  =  60 turns

I1

a

d

b

c

Sheet steel�
I2

N2  =  30 turns

I2

FIG. 12.16
Transformer for Example 12.3.
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FIG. 12.17
(a) Magnetic circuit equivalent and (b) electric circuit analogy for the  

transformer in Fig. 12.16.
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The flux density throughout is

B =
f

A
=

1.5 * 10-5 Wb

0.15 * 10-3 m2 = 10 * 10-2 T = 0.10 T

and

H (from Fig. 12.8) ≅
1

5
 (100 At/m) = 20 At/m

Applying Ampère’s circuital law, we obtain

N1I1 - N2I2 = Habcdalabcda

(60 t)(2 A) - (30 t)(I2) = (20 At/m)(0.16 m)

120 At - (30 t)I2 = 3.2 At

and	 (30 t)I2 = 120 At - 3.2 At

or	 I2 =
116.8 At

30 t
= 3.89 A

The abcda structural data appear in Table 12.5.

TABLE 12.5

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

abcda 1.5 * 10-5 0.15 * 10-3 0.16

For the analysis of most transformer systems, the equation 
N1I1 = N2I2 is used. This results in 4 A versus 3.89 A above. This differ-
ence is normally ignored, however, and the equation N1I1 = N2I2 con-
sidered exact.

Because of the nonlinearity of the B-H curve, it is not possible to 
apply superposition to magnetic circuits; that is, in Example 12.3, we 
cannot consider the effects of each source independently and then find 
the total effects by using superposition.

12.10 Ai r Gaps

Before continuing with the illustrative examples, let us consider the 
effects that an air gap has on a magnetic circuit. Note the presence of 
air gaps in the magnetic circuits of the motor and meter in Fig. 11.15. 
The spreading of the flux lines outside the common area of the core 
for the air gap in Fig. 12.18(a) is known as fringing. For our purposes, 
we shall ignore this effect and assume the flux distribution to be as in 
Fig. 12.18(b).

The flux density of the air gap in Fig. 12.18(b) is given by

	 Bg =
Φg

Ag
	 (12.13)

where, for our purposes,

	  Φg = Φcore

and	  Ag = Acore

�c

�c

(a)

�c

�c

(b)

�c

Air gap

fringing

FIG. 12.18
Air gaps: (a) with fringing; (b) ideal.
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For most practical applications, the permeability of air is taken to be 
equal to that of free space. The magnetizing force of the air gap is then 
determined by

	 Hg =
Bg

mo
	 (12.14)

and the mmf drop across the air gap is equal to HgLg. An equation for Hg 
is as follows:

Hg =
Bg

mo
=

Bg

4p * 10-7

and	 Hg = (7.96 * 105)Bg  (At/m)	 (12.15)

EXAMPLE 12.4  Find the value of I required to establish a magnetic 
flux of f = 0.75 * 10-4 Wb in the series magnetic circuit in Fig. 12.19.

N  =  200  turns

All cast steel

Air gap

Area (throughout)

=  1.5  ×  10–4 m2

�  =  0.75  ×  10–4 Wb

a
b
c

de

f

I

I

lcdefab  =  100  ×  10–3 m

lbc  =  2  ×  10–3 m

�

�

�

FIG. 12.19
Relay for Example 12.4.

�

�

I

E

(a)

�core

Rbc

Rcdefab

�gap

(b)

+

–

FIG. 12.20
(a) Magnetic circuit equivalent and (b) electric 

circuit analogy for the relay in Fig. 12.19.

Solution:  An equivalent magnetic circuit and its electric circuit anal-
ogy are shown in Fig. 12.20.

The flux density for each section is

B =
Φ
A

=
0.75 * 10-4 Wb

1.5 * 10-4 m2 = 0.5 T

From the B-H curves in Fig. 12.8,

H (cast steel) ≅ 280 At/m

Applying Eq. (12.15),

Hg = (7.96 * 105)Bg = (7.96 * 105)(0.5 T) = 3.98 * 105 At/m

The mmf drops are

 Hcorelcore = (280 At/m)(100 * 10-3 m) = 28 At

 Hglg = (3.98 * 105 At/m)(2 * 10-3 m) = 796 At



Series-Parallel Magnetic Circuits    557

Applying Ampère’s circuital law, we obtain

 NI = Hcorelcore + Hglg
= 28 At + 796 At

 (200 t)I = 824 At

 I = 4.12 A

Note from the above that the air gap requires the biggest share (by 
far) of the impressed NI because air is nonmagnetic.

12.11 S eries-Parallel Magnetic Circuits

As one might expect, the close analogies between electric and magnetic 
circuits eventually lead to series-parallel magnetic circuits similar in 
many respects to those encountered in Chapter 7. In fact, the electric 
circuit analogy will prove helpful in defining the procedure to follow 
toward a solution.

EXAMPLE 12.5  Determine the current I required to establish a flux of 
1.5 * 10-4 Wb in the section of the core indicated in Fig. 12.21.

Sheet steel

I

I

a b c

f e d

1 2N  =  50 turns

�1
�T

lbcde  =  lefab  =  0.2 m
lbe  =  0.05 m
Cross-sectional area  =  6  ×  10–4 m2 throughout

�2  =  1.5  ×  10–4 Wb

FIG. 12.21
Example 12.5.

Solution:  The equivalent magnetic circuit and the electric circuit 
analogy appear in Fig. 12.22. We have

B2 =
Φ2

A
=

1.5 * 10-4 Wb

6 * 10-4 m2 = 0.25 T

From Fig. 12.8,

Hbcde ≅ 40 At/m

Applying Ampère’s circuital law around loop 2 in Figs. 12.21 and 12.22,

 gA f = 0

 Hbelbe - Hbcde lbcde = 0

 Hbe(0.05 m) - (40 At/m)(0.2 m) = 0

 Hbe =
8 At

0.05 m
= 160 At/m

From Fig. 12.8,

B1 ≅ 0.97 T

�efab

�T

� �be �bcde

�1 �2

1 2

(a)

Refab

IT I1

1 2Rbe Rbcde

I2

E

(b)

+

–

FIG. 12.22
(a) Magnetic circuit equivalent and (b) electric 
circuit analogy for the series-parallel system in 

Fig. 12.21.
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and

Φ1 = B1A = (0.97 T)(6 * 10-4 m2) = 5.82 * 10-4 Wb

The results for bcde, be, and efab are entered in Table 12.6.

Table 12.6 reveals that we must now turn our attention to section efab:

 ΦT = Φ1 + Φ2 = 5.82 * 10-4 Wb + 1.5 * 10-4 Wb

 = 7.32 * 10-4 Wb

B =
ΦT

A
=

7.32 * 10-4 Wb

6 * 10-4 m2

 = 1.22 T

From Fig. 12.7,

Hefab ≅ 400 At

Applying Ampère’s circuital law, we find

 +NI - Hefablefab - Hbelbe = 0

  NI = (400 At/m)(0.2 m) + (160 At/m)(0.05 m)

 (50 t)I = 80 At + 8 At

 I =
88 At

50 t
= 1.76 A

To demonstrate that m is sensitive to the magnetizing force H, the 
permeability of each section is determined as follows. For section bcde,

	  m =
B

H
=

0.25 T

40 At/m
= 6.25 * 10-3

and	  mr =
m

mo
=

6.25 * 10-3

12.57 * 10-7 = 4972.2

For section be,

	  m =
B

H
=

0.97 T

160 At/m
= 6.06 * 10-3

and	  mr =
m

mo
=

6.06 * 10-3

12.57 * 10-7 = 4821

For section efab,

	  m =
B

H
=

1.22 T

400 At/m
= 3.05 * 10-3

and	  mr =
m

mo
=

3.05 * 10-3

12.57 * 10-7 = 2426.41

TABLE 12.6

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

bcde 1.5 * 10-4 6 * 10-4 0.25 40 0.2 8

be 5.82 * 10-4 6 * 10-4 0.97 160 0.05 8

efab 6 * 10-4 0.2
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12.12 D etermining �
The examples of this section are of the second type, where NI is given 
and the flux Φ must be found. This is a relatively straightforward prob-
lem if only one magnetic section is involved. Then

H =
NI

l
  H S B  (B@H curve)

and	 Φ = BA

For magnetic circuits with more than one section, there is no set order 
of steps that lead to an exact solution for every problem on the first 
attempt. In general, however, we proceed as follows. We must find the 
impressed mmf for a calculated guess of the flux Φ and then compare 
this with the specified value of mmf. We can then make adjustments to 
our guess to bring it closer to the actual value. For most applications, a 
value within {5% of the actual Φ or specified NI is acceptable.

We can make a reasonable guess at the value of Φ if we realize that 
the maximum mmf drop appears across the material with the smallest 
permeability if the length and area of each material are the same. As 
shown in Example 12.4, if there is an air gap in the magnetic circuit, there 
will be a considerable drop in mmf across the gap. As a starting point for 
problems of this type, therefore, we shall assume that the total mmf (NI) 
is across the section with the lowest m or greatest ℛ (if the other physical 
dimensions are relatively similar). This assumption gives a value of Φ 
that will produce a calculated NI greater than the specified value. Then, 
after considering the results of our original assumption very carefully, we 
shall cut Φ and NI by introducing the effects (reluctance) of the other 
portions of the magnetic circuit and try the new solution. For obvious 
reasons, this approach is frequently called the cut and try method.

EXAMPLE 12.6  Calculate the magnetic flux Φ for the magnetic cir-
cuit in Fig. 12.23.

Solution:  By Ampère’s circuital law,

	  NI = Habcdalabcda

or	  Habcda =
NI

labcda
=

(60 t)(5 A)

0.3 m

	  =
300 At

0.3 m
= 1000 At/m

and	 Babcda (from Fig. 12.7) ≅ 0.39 T

Since B = Φ/A, we have

	 Φ = BA = (0.39 T)(2 * 10-4 m2) = 0.78 : 10−4 Wb

EXAMPLE 12.7  Find the magnetic flux Φ for the series magnetic cir-
cuit in Fig. 12.24 for the specified impressed mmf.

Solution:  Assuming that the total impressed mmf NI is across the air 
gap, we obtain

	  NI = HgIg

or	  Hg =
NI

lg
=

400 At

0.001 m
= 4 * 105 At/m

A (throughout)  =  2  ×  10–4 m2

a b

d c

Cast ironlabcda  =  0.3 m

I

I  =  5 A

N  =  60 turns

�

FIG. 12.23
Example 12.6.

Cast iron

Air gap
1 mm

Area  =  0.003 m2I  =  4 A

N  =  100 turns lcore  =  0.16 m

Φ

FIG. 12.24
Example 12.7.
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and	  Bg = moHg = (4p * 10-7)(4 * 105 At/m)

	  = 0.50 T

The flux is given by

 Φg = Φcore = BgA

 = (0.50 T)(0.003 m2)

 Φcore = 1.5 * 10-3 Wb

Using this value of Φ, we can find NI. The core and gap data are 
inserted in Table 12.7.

TABLE 12.7

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

Core 1.51 * 10-3 0.003 0.50 1500 (B-H curve) 0.16

Gap 1.51 * 10-3 0.003 0.50 4 * 105 0.001 400

Hcorelcore = (1500 At/m)(0.16 m) = 240 At

Applying Ampère’s circuital law results in

 NI = Hcorelcore + Hglg
 = 240 At + 400 At

 400 At ≠ 640 At

Since we neglected the reluctance of all the magnetic paths but the air 
gap, the calculated value is greater than the specified value. We must there-
fore reduce this value by including the effect of these reluctances. Since 
approximately (640 At - 400 At)/640 At = 240 At/640 At ≅ 37.5% 
of our calculated value is above the desired value, let us reduce Φ by 
30% and see how close we come to the impressed mmf of 400 At:

 Φ = (1 - 0.3)(1.5 * 10-3 Wb)

 = 1.05 * 10-3 Wb

See Table 12.8. We have

TABLE 12.8

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

Core 1.05 * 10-3 0.003 0.16

Gap 1.05 * 10-3 0.003 0.001

 B =
Φ
A

=
1.05 * 10-3 Wb

0.003 m3  ≅  0.35 T

 HgIg = (7.96 * 105)BgIg

 = (7.96 * 105)(0.35 T)(0.001 m)

 ≅  278.6 At

From the B-H curves,

 Hcore ≅ 850 At/m

 Hcorelcore = (850 At/m)(0.16 m) = 136 At
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Applying Ampère’s circuital law yields

 NI = Hcorelcore + Hglg
 = 136 At + 278.6 At

 400 At _ 414.6 At    (but within {5% and therefore acceptable)

The solution is, therefore,

Φ ≅ 1.06 : 10−3 Wb

12.13 A pplications

Speakers and Microphones

Electromagnetic effects are the moving force in the design of speakers 
such as the one shown in Fig. 12.25. The shape of the pulsating wave-
form of the input current is determined by the sound to be reproduced by 
the speaker at a high audio level. As the current peaks and returns to the 
valleys of the sound pattern, the strength of the electromagnet varies in 
exactly the same manner. This causes the cone of the speaker to vibrate 
at a frequency directly proportional to the pulsating input. The higher 
the pitch of the sound pattern, the higher is the oscillating frequency 
between the peaks and valleys and the higher is the frequency of vibra-
tion of the cone.

A second design used more frequently in more expensive speaker 
systems appears in Fig. 12.26. In this case, the permanent magnet is 
fixed, and the input is applied to a movable core within the magnet, as 
shown in the figure. High peaking currents at the input produce a 
strong flux pattern in the voice coil, causing it to be drawn well into 
the flux pattern of the permanent magnet. As occurred for the speaker 
in Fig. 12.25, the core then vibrates at a rate determined by the input 
and provides the audible sound.

Sound

i

i

i

Magnetic sample
(free to move)

Electromagnet

Flexible cone

FIG. 12.25
Speaker.

i i

Magnetized
ferromagnetic
material

(b) (c)

Magnetic gap

Magnet

Voice coil

Lead terminal

Magnet

Cone

(a)

FIG. 12.26
Coaxial high-fidelity loudspeaker: (a) construction: (b) basic operation; (c) cross section of actual unit.

(Linearts of Coaxial Loudspeakers from Electro-Voice. Courtesy of Electro-Voice Inc.)

Microphones also employ electromagnetic effects. The incoming 
sound causes the core and attached moving coil to move within the 
magnetic field of the permanent magnet. Through Faraday’s law 
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(e = N df/dt), a voltage is induced across the movable coil proportional 
to the speed with which it is moving through the magnetic field. The 
resulting induced voltage pattern can then be amplified and reproduced 
at a much higher audio level through the use of speakers, as described 
earlier. Microphones of this type are the most frequently employed, 
although other types that use capacitive, carbon granular, and piezoelec-
tric* effects are available. This particular design is commercially 
referred to as a dynamic microphone.

Hall Effect Sensor

The Hall effect sensor is a semiconductor device that generates an output 
voltage when exposed to a magnetic field. The basic construction con-
sists of a slab of semiconductor material through which a current is 
passed, as shown in Fig. 12.27(a). If a magnetic field is applied, as shown 
in the figure, perpendicular to the direction of the current, a voltage VH is 
generated between the two terminals, as indicated in Fig. 12.27(a). The 
difference in potential is due to the separation of charge established by 
the Lorentz force first studied by Professor Hendrick Lorentz in the late 
1800s. He found that electrons in a magnetic field are subjected to a force 
proportional to the velocity of the electrons through the field and the 
strength of the magnetic field. The direction of the force is determined by 
the left-hand rule. Simply place the index finger of your left hand in the 
direction of the magnetic field, with the second finger at right angles to 
the index finger in the direction of conventional current through the sem-
iconductor material, as shown in Fig. 12.27(b). The thumb, if placed at 
right angles to the index finger, will indicate the direction of the force on 
the electrons. In Fig. 12.27(b), the force causes the electrons to accumu-
late in the bottom region of the semiconductor (connected to the negative 
terminal of the voltage VH), leaving a net positive charge in the upper 
region of the material (connected to the positive terminal of VH). The 
stronger the current or strength of the magnetic field, the greater is the 
induced voltage VH.

In essence, therefore, the Hall effect sensor can reveal the strength of 
a magnetic field or the level of current through a device if the other 
determining factor is held fixed. Two applications of the sensor are 
therefore apparent—to measure the strength of a magnetic field in the 
vicinity of a sensor (for an applied fixed current) and to measure the 
level of current through a sensor (with knowledge of the strength of the 
magnetic field linking the sensor). The gaussmeter in Fig. 11.14 uses a 
Hall effect sensor. Internal to the meter, a fixed current is passed through 
the sensor with the voltage VH indicating the relative strength of the 
field. Through amplification, calibration, and proper scaling, the meter 
can display the relative strength in gauss.

The Hall effect sensor has a broad range of applications that are often 
quite interesting and innovative. The most widespread is as a trigger for 
an alarm system in large department stores, where theft is often a diffi-
cult problem. A magnetic strip attached to the merchandise sounds an 
alarm when a customer passes through the exit gates without paying for 
the product. The sensor, control current, and monitoring system are 
housed in the exit fence and react to the presence of the magnetic field as 

*Piezoelectricity is the generation of a small voltage by exerting pressure across certain 
crystals.

(a)

(b)

(conventional
flow)

I

+

–

VH

B

+

–

VH

++++++++++++++++

– – – – – – – – – – – – – – – –

I

e– e– e– e–

Magnetic field
into page

I

FIG. 12.27
Hall effect sensor: (a) orientation of controlling 

parameters; (b) effect on electron flow.
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the product leaves the store. When the product is paid for, the cashier 
removes the strip or demagnetizes the strip by applying a magnetizing 
force that reduces the residual magnetism in the strip to essentially zero.

The Hall effect sensor is also used to indicate the speed of a bicycle 
on a digital display conveniently mounted on the handlebars. As shown 
in Fig. 12.28(a), the sensor is mounted on the frame of the bike, and a 
small permanent magnet is mounted on a spoke of the front wheel. The 
magnet must be carefully mounted to be sure that it passes over the 
proper region of the sensor. When the magnet passes over the sensor, the 
flux pattern in Fig. 12.28(b) results, and a voltage with a sharp peak is 
developed by the sensor. For a bicycle with a 26-in.-diameter wheel, the 
circumference will be about 82 in. Over 1 mi, the number of rotations is

5280 ft a 12 in.

1 ft
b a 1 rotation

82 in.
b ≅ 773 rotations

If the bicycle is traveling at 20 mph, an output pulse occurs at a rate 
of 4.29 per second. It is interesting to note that at a speed of 20 mph, the 
wheel is rotating at more than 4 revolutions per second, and the total 
number of rotations over 20 mi is 15,460.

Magnetic Reed Switch

One of the most frequently employed switches in alarm systems is the 
magnetic reed switch shown in Fig. 12.29. As shown by the figure, 
there are two components of the reed switch—a permanent magnet 
embedded in one unit that is normally connected to the movable ele-
ment (door, window, and so on) and a reed switch in the other unit 
that is connected to the electrical control circuit. The reed switch is 
constructed of two iron-alloy (ferromagnetic) reeds in a hermetically 
sealed capsule. The cantilevered ends of the two reeds do not touch 
but are in very close proximity to one another. In the absence of a 

(a)

I (from battery)

Hall effect sensor
Permanent
magnet

I

+ –VH

(b)

Hall
effect
sensor

B

VH

–

+

Spoke

Motion
N
S

Time
for one
rotation

I I

FIG. 12.28
Obtaining a speed indication for a bicycle using a Hall effect sensor: (a) mounting the 

components; (b) Hall effect response.

Reeds

Sealed
capsule

Embedded
permanent
magnet

Plastic
housing

S

N

FIG. 12.29
Magnetic reed switch.
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magnetic field, the reeds remain separated. However, if a magnetic 
field is introduced, the reeds are drawn to each other because flux 
lines seek the path of least reluctance and, if possible, exercise every 
alternative to establish the path of least reluctance. It is similar to 
placing a ferromagnetic bar close to the ends of a U-shaped magnet. 
The bar is drawn to the poles of the magnet, establishing a magnetic 
flux path without air gaps and with minimum reluctance. In the open-
circuit state, the resistance between reeds is in excess of 100 MΩ, 
while in the on state it drops to less than 1 Ω.

In Fig. 12.30 a reed switch has been placed on the fixed frame of a 
window and a magnet on the movable window unit. When the window is 
closed as shown in Fig. 12.30, the magnet and reed switch are suffi-
ciently close to establish contact between the reeds, and a current is 
established through the reed switch to the control panel. In the armed 
state, the alarm system accepts the resulting current flow as a normal 
secure response. If the window is opened, the magnet leaves the vicinity 
of the reed switch, and the switch opens. The current through the switch 
is interrupted, and the alarm reacts appropriately.

One of the distinct advantages of the magnetic reed switch is that 
the proper operation of any switch can be checked with a portable 
magnetic element. Simply bring the magnet to the switch and note the 
output response. There is no need to continually open and close win-
dows and doors. In addition, the reed switch is hermetically enclosed 
so that oxidation and foreign objects cannot damage it, and the result 
is a unit that can last indefinitely. Magnetic reed switches are also 
available in other shapes and sizes, allowing them to be concealed 
from obvious view. One is a circular variety that can be set into the 
edge of a door and door jam, resulting in only two small visible disks 
when the door is open.

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) provides quality cross-sectional 
images of the body for medical diagnosis and treatment. MRI does not 
expose the patient to potentially hazardous X-rays or injected contrast 
materials such as those used to obtain computerized axial tomography 
(CAT) scans.

The three major components of an MRI system are a strong mag-
net, a table for transporting the patient into the circular hole in the 
magnet, and a control center, as shown in Fig. 12.31. The image is 
obtained by placing the patient in the tube to a precise depth depend-
ing on the cross section to be obtained and applying a strong mag-
netic field that causes the nuclei of certain atoms in the body to line 
up. Radio waves of different frequencies are then applied to the 
patient in the region of interest, and if the frequency of the wave 
matches the natural frequency of the atom, the nuclei is set into a 
state of resonance and absorbs energy from the applied signal. When 
the signal is removed, the nuclei release the acquired energy in the 
form of weak but detectable signals. The strength and duration of the 
energy emission vary from one tissue of the body to another. The 
weak signals are then amplified, digitized, and translated to provide 
a cross-sectional image such as the one shown in Fig. 12.32. For 
some patients the claustrophobic feeling they experience while in the 
circular tube is difficult to contend with. A more open unit has been 

Permanent
magnet

Reed switch

Control

FIG. 12.30
Using a magnetic reed switch to monitor the state  

of a window.

FIG. 12.31
Magnetic resonance imaging equipment.

(Mikhail Kondrashov/Fotolia)
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Problems

SECTION 12.2  Magnetic Field

	 1.	 Using Appendix E, fill in the blanks in the following table. 
Indicate the units for each quantity.

	 3.	 For the electromagnet in Fig. 12.34:
	a.	 Find the flux density in the core.
	b.	 Sketch the magnetic flux lines and indicate their 

direction.
	c.	 Indicate the north and south poles of the magnet.

developed, as shown in Fig. 12.33, that has removed most of this 
discomfort.

Patients who have metallic implants or pacemakers or those who 
have worked in industrial environments where minute ferromagnetic 
particles may have become lodged in open, sensitive areas such as the 
eyes, nose, and so on, may have to use a CAT scan system because it 
does not employ magnetic effects. The attending physician is well 
trained in such areas of concern and will remove any unfounded fears or 
suggest alternative methods.

FIG. 12.32
Magnetic resonance image.

(Mark Herreid/Shutterstock)

FIG. 12.33
Magnetic resonance imaging equipment (open variety).

(Sarymsakov.com/Fotolia)

� B

SI 5 * 10-4 Wb 8 * 10-4 T
CGS ____________ ____________

English ____________ ____________

	 2.	 Repeat Problem 1 for the following table if area = 2 in.2:

� B

SI ____________ ____________

CGS 60,000 maxwells ____________

English ____________ ____________

Φ  =  4  ×  10–4 Wb

A  =  0.01 m2

N turnsI I

FIG. 12.34
Problem 3.

SECTION 12.3  Reluctance

	 4.	 Which section of Fig. 12.35—(a), (b), or (c)—has the 
largest reluctance to the setting up of flux lines through its 
longest dimension?
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	10.	 Find the current necessary to establish a flux of 
Φ = 3 * 10-4 Wb in the square core series magnetic cir-
cuit in Fig. 12.37.

SECTION 12.4  Ohm’s Law for Magnetic Circuits

	 5.	 Find the reluctance of a magnetic circuit if a magnetic flux 
Φ = 8.2 * 10-4 Wb is established by an impressed mmf 
of 500 At.

	 6.	 Repeat Problem 5 for Φ = 66,000 maxwells and an 
impressed mmf of 150 gilberts.

(b)

Iron

3 in.

in.1
2

(a)

6 cm
Iron

2 cm

1 cm

(c)

0.01 m

0.01 m

0.1 m

Iron

    (b)

Iron

3 in.

in.1
2

(a)

6 cm
Iron

2 cm

1 cm

(c)

0.01 m

0.01 m

0.1 m

Iron

(b)

Iron

3 in.

in.1
2

(a)

6 cm
Iron

2 cm

1 cm

(c)

0.01 m

0.01 m

0.1 m

Iron

FIG. 12.35
Problem 4.

SECTION 12.5  Magnetizing Force

	 7.	 Find the magnetizing force H for Problem 5 in SI units if 
the magnetic circuit is 9 in. long.

	 8.	 If a magnetizing force H of 600 At/m is applied to a mag-
netic circuit, a flux density B of 1200 * 10-4 Wb/m2 is 
established. Find the permeability m of a material that will 
produce twice the original flux density for the same mag-
netizing force.

SECTIONs 12.6–12.9  Hysteresis through Series 
Magnetic Circuits

	 9.	 For the series magnetic circuit in Fig. 12.36, determine the 
current I necessary to establish the indicated flux.

Area (throughout)
=  3  ×  10–3 m2

Cast iron

Φ  =  10  ×  10–4 Wb
Mean length  =  0.2 m

N  =  75 turns

I

I

Φ

Φ

FIG. 12.36
Problem 9.

Cast iron

N

Sheet steel

liron core  =  lsteel core  =  0.3 m
Area (throughout)  =  5  �  10–4 m2

N  =  200 turns

I

FIG. 12.37
Problem 10.

	11.	 a.	 Find the number of turns N1 required to establish a 
flux Φ = 12 * 10-4 Wb in the magnetic circuit in 
Fig. 12.38.

	b.	 Find the permeability m of the material.

I  =  3 A

N2  =  40 turns

Area  =  0.0012 m2

lm (mean length)  =  0.2 m

lm
N1

I  =
2 A

Cast steel

Φ

FIG. 12.38
Problem 11.

	12.	 a.	 Find the mmf (NI) required to establish a flux 
Φ = 80,000 lines in the magnetic circuit in Fig. 12.39.

	b.	 Find the permeability of each material.

lcast steel  =  5.5 in.
lsheet steel  =  0.5 in.

Cast steel

Sheet steel

Uniform area
(throughout)
=  1 in.2

NI

FIG. 12.39
Problem 12.
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I  =  900 mA
N  =  80 turns

4 cm

f

Plunger

Chime

I

FIG. 12.42
Door chime for Problem 15.

	*13.	 For the series magnetic circuit in Fig. 12.40 with two 
impressed sources of magnetic “pressure,” determine the 
current I. Each applied mmf establishes a flux pattern in the 
clockwise direction.

Cast steel

I

I
Cast iron

Area (throughout)  =  0.25 in.

lcast steel  =  5.5 in.
lcast iron  =  2.5 in.

Φ  =  0.8 �

2

Wb

I

N1  =  20 turns N2  =  30 turns 10–4

FIG. 12.40
Problem 13.

SECTION 12.10  Air Gaps

	14.	 a.	 Find the current I required to establish a flux Φ =
2.4 * 10-4 Wb in the magnetic circuit in Fig. 12.41.

	b.	 Compare the mmf drop across the air gap to that across 
the rest of the magnetic circuit. Discuss your results 
using the value of m for each material.

0.003 m

Sheet steel

Area (throughout)  =  2  ×  10–4 m2

lab  =  lef  =  0.05 m
laf  =  lbe  =  0.02 m

lbc  =  lde

N  =
100
turns

I

I
e

d

c

ba

f

Φ

FIG. 12.41
Problem 14.

	*15.	 The force carried by the plunger of the door chime in 
Fig. 12.42 is determined by

f =
1

2
 NI 

df

dx
  (newtons)

		  where df/dx is the rate of change of flux linking the coil 
as the core is drawn into the coil. The greatest rate of 
change of flux occurs when the core is 1>4 to 3>4 the way 
through. In this region, if Φ changes from 0.5 * 10-4 Wb 
to 8 * 10-4 Wb, what is the force carried by the plunger?

	16.	 Determine the current I1 required to establish a flux of 
Φ = 2 * 10-4 Wb in the magnetic circuit in Fig. 12.43.

0.002 m
Sheet steel

0.4 m

I2  =  0.3 A
N2  =  50 turns

N1  =  250 turns

I1

I1

Φ

Area (throughout)  =  1.3  ×  10–4 m2

FIG. 12.43
Problem 16.

	*17.	 a.	 A flux of 0.2 * 10-4 Wb will establish sufficient attrac-
tive force for the armature of the relay in Fig. 12.44 to 
close the contacts. Determine the required current to 
establish this flux level if we assume that the total mmf 
drop is across the air gap.

	b.	 The force exerted on the armature is determined by the 
equation

F(newtons) =
1

2
 #  

B2
g A

mo

		  where Bg is the flux density within the air gap and A is the 
common area of the air gap. Find the force in newtons 
exerted when the flux Φ specified in part (a) is established.

Spring
Armature Air gap  =  0.2 cm

Contacts

Coil
N  =  200 turns
Diameter of core  =  0.01 m

Solenoid
I

FIG. 12.44
Relay for Problem 17.
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	*21.	 Note how closely the B-H curve of cast steel in Fig. 12.7 
matches the curve for the voltage across a capacitor as it 
charges from zero volts to its final value.
	a.	 Using the equation for the charging voltage as a guide, 

write an equation for B as a function of H [B = f (H )] 
for cast steel.

	b.	 Test the resulting equation at H = 900 At/m, 1800 
At/m, and 2700 At/m.

	c.	 Using the equation of part (a), derive an equation for H 
in terms of B [H = f (B)].

	d.	 Test the resulting equation at B = 1 T and B = 1.4 T.
	e.	 Using the result of part (c), perform the analysis of 

Example 12.1, and compare the results for the current I.

Glossary

Ampère’s circuital law  A law establishing the fact that the 
algebraic sum of the rises and drops of the mmf around a 
closed loop of a magnetic circuit is equal to zero.

Domain  A group of magnetically aligned atoms.
Electromagnetism  Magnetic effects introduced by the flow of 

charge or current.
Ferromagnetic materials  Materials having permeabilities 

hundreds and thousands of times greater than that of free 
space.

Flux density (B)  A measure of the flux per unit area perpendicu-
lar to a magnetic flux path. It is measured in teslas (T) or 
webers per square meter (Wb/m2).

Hysteresis  The lagging effect between the flux density of a 
material and the magnetizing force applied.

Magnetic flux lines  Lines of a continuous nature that reveal the 
strength and direction of a magnetic field.

Magnetizing force (H)  A measure of the magnetomotive force 
per unit length of a magnetic circuit.

Magnetomotive force (mmf) (f)  The “pressure” required to 
establish magnetic flux in a ferromagnetic material. It is 
measured in ampere-turns (At).

Permanent magnet  A material such as steel or iron that will 
remain magnetized for long periods of time without the aid of 
external means.

Permeability (M)  A measure of the ease with which magnetic 
flux can be established in a material. It is measured in  
Wb/Am.

Relative permeability (Mr)  The ratio of the permeability of a 
material to that of free space.

Reluctance (ℛ)  A quantity determined by the physical charac-
teristics of a material that will provide an indication of the 
“reluctance” of that material to the setting up of magnetic flux 
lines in the material. It is measured in rels or At/Wb.

SECTION 12.11  Series-Parallel Magnetic Circuits

	*18.	 For the series-parallel magnetic circuit in Fig. 12.45, find 
the value of I required to establish a flux in the gap of 
Φg = 2 * 10-4 Wb.

Sheet steel throughout

N  =
200 turns

a

h g f

e

d

cb�T

I

�1

Area for sections other than bg  =  5  ×  10–4 m2

lab  =  lbg  =  lgh  =  lha  =  0.2 m
lbc  =  lfg  =  0.1 m, lcd  =  lef  =  0.099 m

  Area  =
2  ×  10–4 m2

1 2

0.002 m

�2

FIG. 12.45
Problem 18.

SECTION 12.12  Determining �

	19.	 Find the magnetic flux Φ established in the series magnetic 
circuit in Fig. 12.46.

Cast steel

Area  =
0.012 m2

0.08 m

N  =  100 turns

I  =  2 A

Φ

FIG. 12.46
Problem 19.

	*20.	 Determine the magnetic flux Φ established in the series 
magnetic circuit in Fig. 12.47.

a

f e

d

c

b

Cast steel

Φ

N  = 150 turns

I  = 2 A

lcd  =  8  ×  10– 4 m
lab  =  lbe  =  lef  =  lfa  =  0.2 m
Area (throughout)  =  2  ×  10– 4 m2

lbc  =  lde

FIG. 12.47
Problem 20.



Sinusoidal Alternating 
Waveforms

13.1  Introduction

The analysis thus far has been limited to dc networks—networks in which the currents or 
voltages are fixed in magnitude except for transient effects. We now turn our attention to the 
analysis of networks in which the magnitude of the source varies in a set manner. Of particu-
lar interest is the time-varying voltage that is commercially available in large quantities and is 
commonly called the ac voltage. (The letters ac are an abbreviation for alternating current.) 
To be absolutely rigorous, the terminology ac voltage or ac current is not sufficient to describe 
the type of signal we will be analyzing. Each waveform in Fig. 13.1 is an alternating wave-
form available from commercial suppliers. The term alternating indicates only that the wave-
form alternates between two prescribed levels in a set time sequence. To be absolutely correct, 
the term sinusoidal, square-wave, or triangular must also be applied.

The pattern of particular interest is the sinusoidal ac voltage in Fig. 13.1. Since this type 
of signal is encountered in the vast majority of instances, the abbreviated phrases ac voltage 
and ac current are commonly applied without confusion. For the other patterns in Fig. 13.1, 
the descriptive term is always present, but frequently the ac abbreviation is dropped, resulting 
in the designation square-wave or triangular waveforms.

One of the important reasons for concentrating on the sinusoidal ac voltage is that it is the 
voltage generated by utilities throughout the world. Other reasons include its application 
throughout electrical, electronic, communication, and industrial systems. In addition, the 
chapters to follow will reveal that the waveform itself has a number of characteristics that 
result in a unique response when it is applied to basic electrical elements. The wide range of 
theorems and methods introduced for dc networks will also be applied to sinusoidal ac sys-
tems. Although the application of sinusoidal signals raises the required math level, once the 

Sinusoidal Alternating 
Waveforms

•	 Become familiar with the characteristics of a 
sinusoidal waveform, including its general format, 
average value, and effective value.

•	 Be able to determine the phase relationship 
between two sinusoidal waveforms of the same 
frequency.

•	 Understand how to calculate the average and 
effective values of any waveform.

•	 Become familiar with the use of instruments 
designed to measure ac quantities.

Objectives

1313

0 t

v

Triangular wave

0 t

v

Square wave

0 t

v

Sinusoidal

FIG. 13.1
Alternating waveforms.
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notation given in Chapter 14 is understood, most of the concepts intro-
duced in the dc chapters can be applied to ac networks with a minimum 
of added difficulty.

13.2  Sinusoidal ac Voltage 
Characteristics and Definitions

Generation

Sinusoidal ac voltages are available from a variety of sources. The most 
common source is the typical home outlet, which provides an ac voltage 
that originates at a power plant. Most power plants are fueled by water 
power, oil, gas, or nuclear fusion. In each case, an ac generator (also 
called an alternator), as shown in Fig. 13.2(a), is the primary component 
in the energy-conversion process. The power to the shaft developed by 
one of the energy sources listed turns a rotor (constructed of alternating 
magnetic poles) inside a set of windings housed in the stator (the sta-
tionary part of the dynamo) and induces a voltage across the windings of 
the stator, as defined by Faraday’s law:

e = N 
df

dt

Through proper design of the generator, a sinusoidal ac voltage is devel-
oped that can be transformed to higher levels for distribution through the 
power lines to the consumer. For isolated locations where power lines 
have not been installed, portable ac generators [Fig. 13.2(b)] are availa-
ble that run on gasoline. As in the larger power plants, however, an ac 
generator is an integral part of the design.

In an effort to conserve our natural resources and reduce pollution, 
wind power, solar energy, and fuel cells are receiving increasing interest 
from various districts of the world that have such energy sources avail-
able in level and duration that make the conversion process viable. The 
turning propellers of the wind-power station [Fig. 13.2(c)] are connected 
directly to the shaft of an ac generator to provide the ac voltage described 
above. Through light energy absorbed in the form of photons, solar cells 

(e)(d)(c)(b)(a)

Inverter

FIG. 13.2
Various sources of ac power: (a) generating plant; (b) portable ac generator; (c) wind-power station;  

(d) solar panel; (e) function generator.
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[Fig. 13.2(d)] can generate dc voltages. Through an electronic package 
called an inverter, the dc voltage can be converted to one of a sinusoidal 
nature. Boats, recreational vehicles (RVs), and so on, make frequent use 
of the inversion process in isolated areas.

Sinusoidal ac voltages with characteristics that can be controlled by 
the user are available from function generators, such as the one in Fig. 
13.2(e). By setting the various switches and controlling the position of 
the knobs on the face of the instrument, you can make available sinusoi-
dal voltages of different peak values and different repetition rates. The 
function generator plays an integral role in the investigation of the vari-
ety of theorems, methods of analysis, and topics to be introduced in the 
chapters that follow.

Definitions

The sinusoidal waveform in Fig. 13.3 with its additional notation will now 
be used as a model in defining a few basic terms. These terms, however, 
can be applied to any alternating waveform. It is important to remember, 
as you proceed through the various definitions, that the vertical scaling is 
in volts or amperes and the horizontal scaling is in units of time.

Max

e

0 t1

e1

T3

Ep -pt

T2T1

Em t2

Em

Max

e2

FIG. 13.3
Important parameters for a sinusoidal voltage.

Waveform: The path traced by a quantity, such as the voltage in Fig. 
13.3, plotted as a function of some variable, such as time (as above), 
position, degrees, radians, temperature, and so on.
Instantaneous value: The magnitude of a waveform at any instant of 
time; denoted by lowercase letters (e1, e2 in Fig. 13.3).
Peak amplitude: The maximum value of a waveform as measured 
from its average, or mean, value, denoted by uppercase letters [such 
as Em (Fig. 13.3) for sources of voltage and Vm for the voltage drop 
across a load]. For the waveform in Fig. 13.3, the average value is 
zero volts, and Em is as defined by the figure.
Peak value: The maximum instantaneous value of a function as 
measured from the zero volt level. For the waveform in Fig. 13.3, the 
peak amplitude and peak value are the same since the average value 
of the function is zero volts.
Peak-to-peak value: Denoted by Ep@p or Vp@p (as shown in Fig. 13.3), 
the full voltage between positive and negative peaks of the waveform, 
that is, the sum of the magnitude of the positive and negative peaks.
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Periodic waveform: A waveform that continually repeats itself 
after the same time interval. The waveform in Fig. 13.3 is a periodic 
waveform.
Period (T): The time of a periodic waveform.
Cycle: The portion of a waveform contained in one period of time. 
The cycles within T1, T2, and T3 in Fig. 13.3 may appear differently in 
Fig. 13.4, but they are all bounded by one period of time and there-
fore satisfy the definition of a cycle.

1 cycle

T1

1 cycle

T2

1 cycle

T3

FIG. 13.4
Defining the cycle and period of a sinusoidal waveform.

T=0.4 s

1 s

(b)

T=1 s

(a)

T=0.5 s

1 s

(c)

FIG. 13.5
Demonstrating the effect of a changing frequency on the period  

of a sinusoidal waveform.

Frequency ( f ): The number of cycles that occur in 1 s. The frequency 
of the waveform in Fig. 13.5(a) is 1 cycle per second, and for Fig. 13.5(b), 
21>2 cycles per second. If a waveform of similar shape had a period of 
0.5 s [Fig. 13.5(c)], the frequency would be 2 cycles per second.

The unit of measure for frequency is the hertz (Hz), where

	 1 hertz (Hz) = 1 cycle per second (cps) 	 (13.1)

The unit hertz is derived from the surname of Heinrich Rudolph Hertz 
(Fig. 13.6), who did original research in the area of alternating currents 
and voltages and their effect on the basic R, L, and C elements. The fre-
quency standard for North America is 60 Hz, whereas for Europe it is 
predominantly 50 Hz.

As with all standards, any variation from the norm will cause difficul-
ties. In 1993, Berlin, Germany, received all its power from plants gener-
ating ac voltages whose output frequency was varying between 50.03 Hz 
and 51 Hz. The result was that clocks were gaining as much as 4 minutes 
a day. Alarms went off too soon, VCRs clicked off before the end of the 
program, and so on, requiring that clocks be continually reset. In 1994, 
however, when power was linked with the rest of Europe, the precise 
standard of 50 Hz was reestablished and everyone was on time again.

German (Hamburg, Berlin, Karlsruhe)  
(1857–94)
Physicist
Professor of Physics, Karlsruhe Polytechnic and 

University of Bonn

Spurred on by the earlier predictions of the English 
physicist James Clerk Maxwell, Heinrich Hertz pro-
duced electromagnetic waves in his laboratory at the 
Karlsruhe Polytechnic while in his early 30s. The 
rudimentary transmitter and receiver were in 
essence the first to broadcast and receive radio 
waves. He was able to measure the wavelength of the 
electromagnetic waves and confirmed that the veloc-
ity of propagation is in the same order of magnitude 
as that of light. In addition, he demonstrated that the 
reflective and refractive properties of electromag-
netic waves are the same as those for heat and light 
waves. It was indeed unfortunate that such an ingen-
ious, industrious individual should pass away at the 
very early age of 37 due to a bone disease.

FIG. 13.6
Heinrich Rudolph Hertz.

SZ Photo/Scherl/DIZ Muenchen GmbH,  
Sueddeutsche Zeitung Photo/Alamy
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EXAMPLE 13.1  For the sinusoidal waveform in Fig. 13.7:

	 a.	 What is the peak value?
	 b.	 What is the instantaneous value at 0.3 s and 0.6 s?
	 c.	 What is the peak-to-peak value of the waveform?
	 d.	 What is the period of the waveform?
	 e.	 How many cycles are shown?
	 f.	 What is the frequency of the waveform?

Solutions: 

	 a.	 8 V.
	 b.	 At 0.3 s, −8 V; at 0.6 s, 0 V.
	 c.	 16 V.
	 d.	 0.4 s.
	 e.	 3.5 cycles.
	 f.	 2.5 cps, or 2.5 Hz.

13.3  Frequency Spectrum

Using a log scale (described in detail in Chapter 21), we can examine a 
frequency spectrum from 1 Hz to 1000 GHz on the same axis, as shown 
in Fig. 13.8. A number of terms in the various portions of the spectrum 
are probably familiar to you from everyday experiences. Note that the 
audio range (human ear) extends from only 15 Hz to 20 kHz, but the 
transmission of radio signals can occur between 3 kHz and 300 GHz. 
The uniform process of defining the intervals of the radio-frequency 
spectrum from VLF to EHF is quite evident from the length of the bars 
in the figure (although keep in mind that it is a log scale, so the frequen-
cies encompassed within each segment are quite different). Other fre-
quencies of particular interest (TV, CB, microwave, and so on) are also 
included for reference purposes. Although it is numerically easy to talk 
about frequencies in the megahertz and gigahertz range, keep in mind 
that a frequency of 100 MHz, for instance, represents a sinusoidal 
waveform that passes through 100,000,000 cycles in only 1 s—an 
incredible number when we compare it to the 60 Hz of our conventional 
power sources.

Due to the wide variety of demands for specific frequency bands for 
applications such as cell phones, Wi-Fi, GPS, Bluetooth, ham radio, 
satellite TV, garage door openers, and so on, regulations must be set by 
the government to control the use of the frequency spectrum that is 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

8 V

–8 V

v

t (s)

FIG. 13.7
Example 13.1.
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available for telecommunications. In fact, there is an International Tele-
communications Union (UTC) whose primary function is to coordinate 
the use of specific frequencies on an international basis. In 2014, the 
search for Malaysia Airlines’ flight 370 involved listening for pings at 
37.5 kHz—an international standard for the black box carried in com-
mercial airlines. The aircraft emergency frequency reserved solely for 
planes in distress is 121.5 MHz for commercial airlines and 243.0 MHz 

Microwave
Microwave
oven

LF
VLF
3 kHz–30 kHz (Very Low Freq.)

30 kHz–300 kHz (Low Freq.)

300 kHz–3 MHz (Medium Freq.)

3 MHz–30 MHz (High Freq.)

30 MHz–300 MHz (Very High Freq.)

300 MHz–3 GHz (Ultrahigh Freq.)

3 GHz–30 GHz (Super-High Freq.)

30 GHz–300 GHz
(Extremely High Freq.)

MF
HF

VHF
UHF

SHF
EHF

RADIO FREQUENCIES (SPECTRUM)

Infrared3 kHz–300 GHz

15 Hz–20 kHz

AUDIO FREQUENCIES

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 100 MHz 1 GHz 10 GHz 1000 GHz f(log scale)

FM

TV

88 MHz–108 MHz

54 MHz–88 MHz

TV channels (7–13)
174 MHz–216 MHz

TV channels (14–83)
470 MHz–890 MHz

2.45 GHz microwave oven

Shortwave
1.5 MHz–30 MHz

Cell phone
824–894 MHz, 1850–1990 MHz

TV  channels (2–6)

AM
0.53 MHz–1.71 MHz

Wi-Fi 2.4 GHz–5.96 GHz

GPS 1.57 GHz carrier

100 GHz

ELF
30 Hz–3 kHz (Extemely Low Freq.)

FIG. 13.8
Areas of application for specific frequency bands.
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for military aircraft. For marine purposes the VHF radio channel 16 at 
156.8 MHz is employed. By simply tuning into these frequencies an 
aircraft or vessel can quickly send out a distress signal. Any inappropri-
ate use of such frequencies would carry a severe penalty for obvious 
reasons. Bands of frequencies set up solely for mobile communications 
include 806–960 MHz, 710–2025 MHz, 2110–2200 MHz, and 2500–
2690 MHz, although the most common are the bands of 824–896 MHz 
and 1850–1990 MHz, often referred to as the 850 MHz and the 1.9 GHz 
bands. Both bands are commonly used by AT&T and Verizon. Table 
13.1 is a brief review of prominent frequencies.

Since the frequency is inversely related to the period—that is, as one 
increases, the other decreases by an equal amount—the two can be 
related by the following equation:

	 f =
1

T
   

 f = Hz
T = seconds (s)

	 (13.2)

or	 T =
1

f
	 (13.3)

EXAMPLE 13.2  Find the period of periodic waveform with a fre-
quency of

	 a.	 60 Hz.
	 b.	 1000 Hz.

Solutions: 

	 a.	 T =
1

f
=

1

60 Hz
 ≅  0.01667 s or 16.67 ms

		  (a recurring value since 60 Hz is so prevalent)

	 b.	 T =
1

f
=

1

1000 Hz
= 10-3 s = 1 ms

TABLE 13.1
Prominent Frequencies

15 Hz–20 kHz Audio range (human ear)
50 Hz Power distribution frequency in Europe, Asia, 

Australia, and so on, and clock construction
60 Hz Power distribution frequency in North America 

and South America and clock construction
32,768 Hz Crystal oscillator for clock construction
37.5 kHz Black box ping frequency for airlines
0.53–1.71 MHz AM radio
54–890 MHz TV
88–108 MHz FM radio
121.5 MHz Aircraft distress frequency
130.167 MHz Space station
156.8 MHz Marine distress frequency
243.0 MHz Military aircraft distress frequency
850 MHz, 1.9 GHz Prominent mobile communications frequencies
1.57 GHz GPS
2.4, 3.6, 4.16, 5, 5.96 GHz Wi-Fi frequencies
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EXAMPLE 13.3  Determine the frequency of the waveform in Fig. 13.9.

Solution:  From the figure, T = (25 ms - 5 ms) or (35 ms - 15 ms) =  
20 ms, and

f =
1

T
=

1

20 * 10-3 s
= 50 Hz

In Fig. 13.10, the seismogram resulting from a seismometer near an 
earthquake is displayed. Prior to the disturbance, the waveform has a rela-
tively steady level, but as the event is about to occur, the frequency begins 
to increase along with the amplitude. Finally, the earthquake occurs, and 
the frequency and the amplitude increase dramatically. In other words, the 
relative frequencies can be determined simply by looking at the tightness 
of the waveform and the associated period. The change in amplitude is 
immediately obvious from the resulting waveform. The fact that the earth-
quake lasts for only a few minutes is clear from the horizontal scale.

0 t (ms)

10 V
e

5 15 25 35

FIG. 13.9
Example 13.3.

Relatively low frequency, low amplitude

Relatively high frequency,
high amplitude
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FIG. 13.10
Seismogram from station BNY (Binghamton University) in New York due to magnitude 6.7 earthquake in Central Alaska that occurred at 

63.62°N, 148.04°W, with a depth of 10 km, on Wednesday, October 23, 2002.

Defined Polarities and Direction

You may be wondering how a polarity for a voltage or a direction for a 
current can be established if the waveform moves back and forth from 
the positive to the negative region. For a period of time, a voltage has 
one polarity, while for the next equal period it reverses. To take care of 
this problem, a positive sign is applied if the voltage is above the axis, 
as shown in Fig. 13.11(a). For a current source, the direction in the 
symbol corresponds with the positive region of the waveform, as shown 
in Fig. 13.11(b).

For any quantity that will not change with time, an uppercase letter 
such as V or I is used. For expressions that are time dependent or that rep-
resent a particular instant of time, a lowercase letter such as e or i is used.

The need for defining polarities and current direction becomes quite 
obvious when we consider multisource ac networks. Note in the last 
sentence the absence of the term sinusoidal before the phrase ac net-
works. This phrase will be used to an increasing degree as we progress; 
sinusoidal is to be understood unless otherwise indicated.

(a)

e

e

t
+

–

i

(b)

i

t

FIG. 13.11
(a) Sinusoidal ac voltage sources; (b) sinusoidal 

current sources.
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13.4 T he Sinusoidal Waveform

The terms defined in the previous section can be applied to any type of 
periodic waveform, whether smooth or discontinuous. The sinusoidal 
waveform is of particular importance, however, since it lends itself read-
ily to the mathematics and the physical phenomena associated with elec-
tric circuits. Consider the power of the following statement:

The sinusoidal waveform is the only alternating waveform whose 
shape is unaffected by the response characteristics of R, L, and C 
elements.

In other words, if the voltage across (or current through) a resistor, 
inductor, or capacitor is sinusoidal in nature, the resulting current (or volt-
age, respectively) for each will also have sinusoidal characteristics, as 
shown in Fig. 13.12. If any other alternating waveform such as a square 
wave or a triangular wave were applied, such would not be the case.

The unit of measurement for the horizontal axis can be time (as 
appearing in the figures thus far), degrees, or radians. The term radian 
can be defined as follows: If we mark off a portion of the circumference 
of a circle by a length equal to the radius of the circle, as shown in Fig. 
13.13, the angle resulting is called 1 radian. The result is

	 1 rad = 57.296° ≅ 57.3° 	 (13.4)

where 57.3° is the usual approximation applied.
One full circle has 2p radians, as shown in Fig. 13.14. That is,

	 2p rad = 360° 	 (13.5)

so that	 2p = 2(3.142) = 6.28

and	 2p(57.3°) = 6.28(57.3°) = 359.84° ≅ 360°

A number of electrical formulas contain a multiplier of p. For this 
reason, it is sometimes preferable to measure angles in radians rather 
than in degrees.

The quantity P is the ratio of the circumference of a circle to its 
diameter.

p has been determined to an extended number of places, primarily in 
an attempt to see if a repetitive sequence of numbers appears. It does 
not. A sampling of the effort appears below:

p = 3.14159 26535 89793 23846 26433 c

Although the approximation p ≅ 3.14 is often applied, all the calcu-
lations in the text use the p function as provided on all scientific 
calculators.

The units of measurement Degrees and Radians, are related as 
shown in Fig. 13.14. The conversions equations between the two are 
the following:

	 Radians = a p

180°
b * (degrees) 	 (13.6)

	 Degrees = a 180°
p

b * (radians) 	 (13.7)

+

–

i

t
vR, L, or C

t

FIG. 13.12
The sine wave is the only alternating waveform 

whose shape is not altered by the response 
characteristics of a pure resistor, inductor, or 

capacitor.

r

r

57.296°

1 radian

FIG. 13.13
Defining the radian.
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Applying these equations, we find

 90°: Radians =
p

180°
(90°) =

P

2
 rad

 30°: Radians =
p

180°
(30°) =

P

6
 rad

 
P

3
 rad: Degrees =

180°
p

ap
3
b = 60°

 
3P
2

 rad: Degrees =
180°
p

a 3p

2
b = 270°

For comparison purposes, two sinusoidal voltages are plotted in Fig. 
13.15 using degrees and radians as the units of measurement for the hor-
izontal axis.

It is of particular interest that the sinusoidal waveform can be derived 
from the length of the vertical projection of a radius vector rotating in a 
uniform circular motion about a fixed point. Starting as shown in Fig. 
13.16(a) and plotting the amplitude (above and below zero) on the 
coordinates drawn to the right [Figs. 13.16(b) through (i)], we will trace 
a complete sinusoidal waveform after the radius vector has completed a 
360° rotation about the center.

The velocity with which the radius vector rotates about the center, 
called the angular velocity, can be determined from the following 
equation:

	 Angular velocity =
distance (degrees or radians)

time (seconds)
	 (13.8)

Substituting into Eq. (13.8) and assigning the lowercase Greek letter 
omega (v) to the angular velocity, we have

	 v =
a

t
	 (13.9)

and	 a = vt 	 (13.10)

Since v is typically provided in radians per second, the angle a 
obtained using Eq. (13.10) is usually in radians. If a is required in 
degrees, Eq. (13.7) must be applied. The importance of remembering the 
above will become obvious in the examples to follow.

(a)

v, i,  etc.

0 45� 135� � (degrees)90�

225� 315�270� 360�

180�

(b)

v, i,  etc.

0
4 2 4

3
4
5

2
3

4
7

2�

�    (radians)

FIG. 13.15
Plotting a sine wave versus (a) degrees and  

(b) radians.

2
3

4
5 6 0.28

(6.28 radians)
2π radians

π radians
(3.14 radians) 1 radian

FIG. 13.14
There are 2p radians in one full circle of 360°.
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0° 45° 90° 135° 180°
225° 270° 315° 360°

T (period)

Sine wave

(i)
α

α  =  360°

0°
315°

(h)
α

α  =  315°

0°
(g)

α

α  =  270°
270°

0°
(f)

α

α  =  225°
225°

0°

(e)

α

α  =  180°

180°

0°

(d)

α

α  =  135°

45° 90° 135°

0°
(c)

α

α  =  90°
90°

0°
(b)

α

α  =  45°
45°

Note equality

0°
(a)

αα  =  0°

FIG. 13.16
Generating a sinusoidal waveform through the vertical projection  

of a rotating vector.
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In Fig. 13.16, the time required to complete one revolution is equal to 
the period (T) of the sinusoidal waveform in Fig. 13.16(i). The radians 
subtended in this time interval are 2p. Substituting, we have

	 v =
2p

T
   (rad/s) 	 (13.11)

In words, this equation states that the smaller the period of the sinu-
soidal waveform of Fig. 13.16(i), or the smaller the time interval before 
one complete cycle is generated, the greater must be the angular velocity 
of the rotating radius vector. Certainly this statement agrees with what 
we have learned thus far. We can now go one step further and apply the 
fact that the frequency of the generated waveform is inversely related to 
the period of the waveform; that is, f = 1>T. Thus,

	 v = 2pf   (rad/s) 	 (13.12)

This equation states that the higher the frequency of the generated 
sinusoidal waveform, the higher must be the angular velocity. Eqs. 
(13.11) and (13.12) are verified somewhat by Fig. 13.17, where for the 
same radius vector, v = 100 rad/s and 500 rad/s.

EXAMPLE 13.4  Determine the angular velocity of a sine wave having 
a frequency of 60 Hz.

Solution: 

v = 2pf = (2p)(60 Hz) ≅ 377 rad/s

(a recurring value due to 60 Hz predominance).

EXAMPLE 13.5  Determine the frequency and period of the sine wave 
in Fig. 13.17(b).

Solution:  Since v = 2p>T,

T =
2p
v

=
2p rad

500 rad/s
=

2p rad

500 rad/s
= 12.57 ms

and	 f =
1

T
=

1

12.57 * 10-3 s
= 79.58 Hz

EXAMPLE 13.6  Given v = 200 rad/s, determine how long it will 
take the sinusoidal waveform to pass through an angle of 90°.

Solution:  Eq. (13.10): a = vt, and

t =
a

v

However, a must be substituted as p>2 (=90°) since v is in radians 
per second:

t =
a

v
=

p>2 rad

200 rad/s
=

p

400
 s = 7.85 ms

(a)

(b)

T

T

Decreased ω, increased T,
decreased f

Increased ω, decreased T,
increased f

ω  =  500 rad/s

ω  =  100 rad/s

FIG. 13.17
Demonstrating the effect of v on the  

frequency and period.
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EXAMPLE 13.7  Find the angle through which a sinusoidal waveform 
of 60 Hz will pass in a period of 5 ms.

Solution:  Eq. (13.11): a = vt, or

a = 2pft = (2p)(60 Hz)(5 * 10-3 s) = 1.89 rad

If not careful, you might be tempted to interpret the answer as 1.885° 
However,

a(°) =
180°
p rad

(1.89 rad) = 108.3°

13.5  General Format for the Sinusoidal 
Voltage or Current

The basic mathematical format for the sinusoidal waveform is

	 Am sin a 	 (13.13)

where Am is the peak value of the waveform and a is the unit of measure 
for the horizontal axis, as shown in Fig. 13.18.

The equation a = vt states that the angle a through which the rotat-
ing vector in Fig. 13.16 will pass is determined by the angular velocity 
of the rotating vector and the length of time the vector rotates. For exam-
ple, for a particular angular velocity (fixed v), the longer the radius vec-
tor is permitted to rotate (that is, the greater the value of t), the greater is 
the number of degrees or radians through which the vector will pass. 
Relating this statement to the sinusoidal waveform, we have that, for a 
particular angular velocity, the longer the time, the greater is the number 
of cycles shown. For a fixed time interval, the greater is the angular 
velocity, the greater is the number of cycles generated.

Due to Eq. (13.10), the general format of a sine wave can also be 
written

	 Am sin vt 	 (13.14)

with vt as the horizontal unit of measure.
For electrical quantities such as current and voltage, the general 

format is

 i = Im sin vt = Im sin a

 e = Em sin vt = Em sin a

where the capital letters with the subscript m represent the amplitude, 
and the lowercase letters i and e represent the instantaneous value of cur-
rent and voltage, respectively, at any time t. This format is particularly 
important because it presents the sinusoidal voltage or current as a func-
tion of time, which is the horizontal scale for the oscilloscope. Recall 
that the horizontal sensitivity of a scope is in time per division, not 
degrees per centimeter.

EXAMPLE 13.8  Given e = 5 sin a, determine e at a = 40° and 
a = 0.8p.

Solution:  For a = 40°,

e = 5 sin 40° = 5(0.6428) = 3.21 V

0

π,  180� 2π,  360�

α (� or rad)

Am

Am

FIG. 13.18
Basic sinusoidal function.
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For a = 0.8p,

a(°) =
180°
p

(0.8 p) = 144°

and	 e = 5 sin 144° = 5(0.5878) = 2.94 V

The angle at which a particular voltage level is attained can be deter-
mined by rearranging the equation

e = Em sin a

in the following manner:

sin a =
e

Em

which can be written

	 a = sin -1 
e

Em
	 (13.15)

Similarly, for a particular current level,

	 a = sin -1 
i

Im
	 (13.16)

EXAMPLE 13.9 

	 a.	 Determine the angle at which the magnitude of the sinusoidal func-
tion y = 10 sin 377t is 4 V.

	 b.	 Determine the time at which the magnitude is attained.

Solutions: 

	 a.	 Eq. (13.15):

a1 = sin-1 
y

Em
= sin-1 

4 V

10 V
= sin-1 0.4 = 23.58°

However, Fig. 13.19 reveals that the magnitude of 4 V (positive) 
will be attained at two points between 0° and 180°. The second 
intersection is determined by

a2 = 180° - 23.578° = 156.42°

In general, therefore, keep in mind that Eqs. (13.15) and (13.16) 
will provide an angle with a magnitude between 0° and 90°.

	 b.	 Eq. (13.10): a = vt, and so t = a>v. However, a must be in  
radians. Thus,

a(rad) =
p

180°
(23.578°) = 0.412 rad

and	 t1 =
a

v
=

0.412 rad

377 rad/s
= 1.09 ms

For the second intersection,

 a(rad) =
p

180°
 (156.422°) = 2.73 rad

 t2 =
a

v
=

2.73 rad

377 rad/s
= 7.24 ms

v (V)

4

1 90�

10

0
t1

2

t2

180�

FIG. 13.19
Example 13.9.
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Calculator Operations

Both sin and sin-1 are available on all scientific calculators. You can also 
use them to work with the angle in degrees or radians without having to 
convert from one form to the other. That is, if the angle is in radians and 
the mode setting is for radians, you can enter the radian measure directly.

To set the DEGREE mode, proceed as outlined in Fig. 13.20(a) using 
the TI-89 calculator. The magnitude of the voltage e at 40° can then be 
found using the sequence in Fig. 13.20(b).

(a)

Angle DEGREEENTER ENTERHOME MODE ENTER

(b)
3.215 0 )× SIN 4 ENTER2ND

FIG. 13.20
(a) Setting the DEGREE mode; (b) evaluating 5 sin 40°.

After establishing the RADIAN mode, the sequence in Fig. 13.21 
determines the voltage at 0.8p.

SIN 2.94) ENTER0 8 2ND5 2ND

FIG. 13.21
Finding e = 5 sin 0.8p using the calculator in the RADIAN mode.

Finally, the angle in degrees for a1 in part (a) of Example 13.9 can be 
determined by the sequence in Fig. 13.22 with the mode set in degrees, 
whereas the angle in radians for part (a) of Example 13.9 can be deter-
mined by the sequence in Fig. 13.23 with the mode set in radians.

ENTER 23.60� 4 )0SIN–1 1÷
FIG. 13.22

Finding a1 = sin-1(4>10) using the calculator in the DEGREE mode.

The sinusoidal waveform can also be plotted against time on the hori-
zontal axis. The time period for each interval can be determined from 
t = a>v, but the most direct route is simply to find the period T from 
T = 1>f  and break it up into the required intervals. This latter technique 
is demonstrated in Example 13.10.

Before reviewing the example, take special note of the relative simplicity 
of the mathematical equation that can represent a sinusoidal waveform. Any 
alternating waveform whose characteristics differ from those of the sine 
wave cannot be represented by a single term, but may require two, four, 
six, or perhaps an infinite number of terms to be represented accurately.

EXAMPLE 13.10  Sketch e = 10 sin 314t with the abscissa

	 a.	 angle (a) in degrees.
	 b.	 angle (a) in radians.
	 c.	 time (t) in seconds.

ENTER 0.41� 4 )0SIN–1 1÷

FIG. 13.23
Finding a1 = sin-1(4>10) using the calculator in the RADIAN mode.



584    Sinusoidal Alternating Waveforms

Solutions: 

	 a.	 See Fig. 13.24. (Note that no calculations are required.)
	 b.	 See Fig. 13.25. (Once the relationship between degrees and radians 

is understood, no calculations are required.)
	 c.	 See Fig. 13.26.

 360°:  T =
2p
v

=
2p

314
= 20 ms

 180°:  
T

2
=

20 ms

2
= 10 ms

 90°:  
T

4
=

20 ms

4
= 5 ms

 30°:   
T

12
=

20 ms

12
= 1.67 ms

10

0� 30� 90�

180� 270� 360�

α (�)

e

10

FIG. 13.24
Example 13.10, horizontal axis in degrees.

0 α (rad)
2
—

6
—

3
2

—
2

10

e

10

FIG. 13.25
Example 13.10, horizontal axis in radians.

0 1.67

10 15 20

10

T  =  20 ms

t (ms)5

10

FIG. 13.26
Example 13.10, horizontal axis in milliseconds.

EXAMPLE 13.11  Given i = 6 * 10-3 sin 1000t, determine i at t =  
2 ms.

Solution: 

 a = vt = 1000t = (1000 rad/s)(2 * 10-3 s) = 2 rad

 a(°) =
180°
p rad

(2 rad) = 114.59°

 i = (6 * 10-3)(sin 114.59°) = (6 mA)(0.9093) = 5.46 mA

13.6  Phase Relations

Thus far, we have considered only sine waves that have maxima at p>2 
and 3p>2, with a zero value at 0, p, and 2p, as shown in Fig. 13.25. If 
the waveform is shifted to the right or left of 0°, the expression becomes

	 Am sin (vt {  u) 	 (13.17)

where u is the angle in degrees or radians that the waveform has been 
shifted.

If the waveform passes through the horizontal axis with a positive-
going (increasing with time) slope before 0°, as shown in Fig. 13.27, the 
expression is

	 Am sin (vt + u) 	 (13.18)

(    –    )

Am

(2     –   )

Am sin

FIG. 13.27
Defining the phase shift for a sinusoidal function  

that crosses the horizontal axis with a positive  
slope before 0°.
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At vt = a = 0°, the magnitude is determined by Am sin u. If the 
waveform passes through the horizontal axis with a positive-going slope 
after 0°, as shown in Fig. 13.28, the expression is

	 Am sin (vt - u) 	 (13.19)

Finally, at vt = a = 0°, the magnitude is Am sin (-u), which, by a trig-
onometric identity, is -Am sin u.

If the waveform crosses the horizontal axis with a positive-going 
slope 90° (p>2) sooner, as shown in Fig. 13.29, it is called a cosine 
wave; that is,

	 sin (vt + 90°) = sin avt +
p

2
b = cos vt 	 (13.20)

or	 sin vt = cos (vt - 90°) = cos avt -
p

2
b 	 (13.21)

The terms leading and lagging are used to indicate the relationship 
between two sinusoidal waveforms of the same frequency plotted on the 
same set of axes. In Fig. 13.29, the cosine curve is said to lead the sine 
curve by 90°, and the sine curve is said to lag the cosine curve by 90°. 
The 90° is referred to as the phase angle between the two waveforms. In 
language commonly applied, the waveforms are out of phase by 90°. 
Note that the phase angle between the two waveforms is measured 
between those two points on the horizontal axis through which each 
passes with the same slope. If both waveforms cross the axis at the same 
point with the same slope, they are in phase.

The geometric relationship between various forms of the sine and 
cosine functions can be derived from Fig. 13.30. For instance, starting at 
the +sin a position, we find that +cos a is an additional 90° in the coun-
terclockwise direction. Therefore, cos a = sin(a + 90°). For -sin a 
we must travel 180° in the counterclockwise (or clockwise) direction so 
that -sin a = sin(a { 180°), and so on, as listed below:

	  cos a = sin (a + 90°)
	  sin a = cos (a - 90°)
	  -sin a = sin (a { 180°)
	  -cos a = sin (a + 270°) = sin (a - 90°)
	 etc.	

(13.22)

In addition, note that

	  sin (-a) = -sin a

	  cos (-a) = cos a 	
(13.23)

If a sinusoidal expression appears as

e = -Em sin vt

the negative sign is associated with the sine portion of the expression, 
not the peak value Em. In other words, the expression, if not for con-
venience, would be written

e = Em(-sin vt)

v (p  +  v)

Am

(2p  +  v)

�– Am sin v

FIG. 13.28
Defining the phase shift for a sinusoidal function 

that crosses the horizontal axis with a positive  
slope after 0°.

0

Am

90°

cos �
sin �

p 2p

�

p
2

– p
2

p3
2

FIG. 13.29
Phase relationship between a sine wave and a  

cosine wave.

+cos

–cos

+sin–sin
sin(  +90�)

cos(  –90�)

FIG. 13.30
Graphic tool for finding the relationship between 

specific sine and cosine functions.
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Since	 -sin vt = sin (vt { 180°)

the expression can also be written

e = Em sin (vt { 180°)

revealing that a negative sign can be replaced by a 180° change in phase 
angle (+  or -); that is,

e = -Em sin vt = Em sin (vt + 180°) = Em sin (vt - 180°)

A plot of each will clearly show their equivalence. There are, there-
fore, two correct mathematical representations for the functions.

The phase relationship between two waveforms indicates which one 
leads or lags the other and by how many degrees or radians.

EXAMPLE 13.12  What is the phase relationship between the sinusoi-
dal waveforms of each of the following sets?

	 a.	  y = 10 sin(vt + 30°)
		   i = 5 sin(vt + 70°)
	 b.	  i = 15 sin(vt + 60°)
		   y = 10 sin(vt - 20°)
	 c.	  i = 2 cos(vt + 10°)
		   y = 3 sin(vt - 10°)
	 d.	  i = -sin(vt + 30°)
		   y = 2 sin(vt + 10°)
	 e.	  i = -2 cos(vt - 60°)
		   y = 3 sin(vt - 150°)

Solutions: 

	 a.	 See Fig. 13.31.

		  i leads Y by 40°, or Y lags i by 40°.

v

30�40�

5
10

i

0
2

3
2

2

70�

FIG. 13.31
Example 13.12(a): i leads y by 40°.

	 b.	 See Fig. 13.32.
		  i leads Y by 80°, or Y lags i by 80°.

	 c.	 See Fig. 13.33.

 i = 2 cos (vt + 10°) = 2 sin (vt + 10° + 90°)
 = 2 sin (vt + 100°)

		  i leads Y by 110°, or Y lags i by 110°.
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	 d.	 See Fig. 13.34.

bNote

 -sin (vt + 30°) = sin (vt + 30° - 180°)
 = sin (vt - 150°)

		  Y leads i by 160°, or i lags Y by 160°.

		  Or using

bNote

 -sin (vt + 30°) = sin (vt + 30° + 180°)
 = sin (vt + 210°)

		  i leads Y by 200°, or Y lags i by 200°.

10 15

i

v

2
–

2
3
2

2

20�

80�

60�

0

FIG. 13.32
Example 13.12(b): i leads y by 80°.

i

v2
3

10�

110�

2
0 3

2
2

100�

�
2

––

FIG. 13.33
Example 13.12(c): i leads y by 110°.

2

1

2
– 3

2

2
2

5
2 3

10�
160�

200�
360�

0

i

v

150�

FIG. 13.34
Example 13.12(d): y leads i by 160°.

2
– 3

22

2 5
2

30

i

v

150�

2
3

FIG. 13.35
Example 13.12(e): y and i are in phase.

	 e.	 See Fig. 13.35.

bBy choice
 i = -2 cos (vt - 60°) = 2 cos (vt - 60° - 180°)

 = 2 cos (vt - 240°)
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		  However,    cos a = sin (a + 90°)

		  so that	  2 cos (vt - 240°) = 2 sin (vt - 240° + 90°)
			    = 2 sin (vt - 150°)

		  Y and i are in phase.

Function Generators

Function generators are an important component of the typical labora-
tory setting. The generator of Fig. 13.36 can generate six different out-
puts; sine, triangular, and square wave, ramp, +pulse, and -pulse, with 
frequencies extending from 0.5 Hz to 4 MHz. However, as shown in the 
output listing, it has a maximum amplitude of 20 Vp@p. A number of other 
characteristics are included to demonstrate how the text will cover each 
in some detail.

MAIN OUTPUT
Frequency range ................................................ 0.5 Hz to 4 MHz in six ranges
Waveforms ........................................................ Six waveforms (sine, square, triangle,
          ramp, �pulse, �pulse)
Amplitude .......................................................... 20 Vp-p into an open (10 Vp-p in to 50 �)
Attenuator .......................................................... 0 dB, �20 dB (�2%)—Chapter 21
Output impedance .............................................. 50 � (�2%)—Chapter 26
Distortion ........................................................... <1%, 1 Hz to 100 kHz
Rise/fall time ..................................................... <60 ns—(Chapter 25)

SYNC OUTPUT
Rise time ............................................................ <40 ns—(Chapter 25)
Waveforms ........................................................ Square, pulse—(Chapter 25)
SWEEP
Mode .................................................................. Linear/log sweep—(Chapter 22)
Rate .................................................................... From 10 ms to 5 s continuously variable
Sweep output ..................................................... 10 Vp-p (open)
Output impedance ............................................. 1 k� �2%—Chapter 26

FIG. 13.36
Function generator.

(Courtesy of B+K Precision)

The Oscilloscope

The oscilloscope of Fig. 13.37 is an instrument that will display the 
sinusoidal alternating waveform in a way that will permit the reviewing 
of all of the waveform’s characteristics. In some ways, the screen and 
the dials give an oscilloscope the appearance of a small TV, but remem-
ber that it can display only what you feed into it. You can’t turn it on and 
ask for a sine wave, a square wave, and so on; it must be connected to a 
source or an active circuit to pick up the desired waveform.

The screen has a standard appearance, with 10 horizontal divisions and 
8 vertical divisions. The distance between divisions is 1 cm on the vertical 

FIG. 13.37
Two-channel digital storage oscilloscope.

(Courtesy of B+K Precision)
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and horizontal scales, providing you with an excellent opportunity to 
become aware of the length of 1 cm. The vertical scale is set to display volt-
age levels, whereas the horizontal scale is always in units of time. The 
vertical sensitivity control sets the voltage level for each division, whereas 
the horizontal sensitivity control sets the time associated with each divi-
sion. In other words, if the vertical sensitivity is set at 1 V/div., each divi-
sion displays a 1 V swing, so that a total vertical swing of 8 divisions 
represents 8 V peak-to-peak. If the horizontal control is set on 10 ms/div., 4 
divisions equal a time period of 40 ms. Remember, the oscilloscope display 
presents a sinusoidal voltage versus time, not degrees or radians. Further, 
the vertical scale is always a voltage sensitivity, never units of amperes.

The oscilloscope of Fig. 13.37 is a digital storage scope, where storage 
indicates that it can store waveform in digital form. The digital storage 
scope (DSO) is the standard for most laboratories today. At the input to 
the scope, an analog-to-digital converter (ADC) will convert the analog 
signal into digital at the rate of 250 MSa/s, or 250,000,000 samples per 
second—an enormous number—capable of picking up any distortion in 
the waveform.

EXAMPLE 13.13  Find the period, frequency, and peak value of the 
sinusoidal waveform appearing on the screen of the oscilloscope in Fig. 
13.38. Note the sensitivities provided in the figure.

Solution:  One cycle spans 4 divisions. Therefore, the period is

T = 4 div.a 50 ms

div.
b = 200 Ms

and the frequency is

f =
1

T
=

1

200 * 10-6 s
= 5 kHz

The vertical height above the horizontal axis encompasses 2 divisions. 
Therefore,

Vm = 2 div.a 0.1 V

div.
b = 0.2 V

An oscilloscope can also be used to make phase measurements 
between two sinusoidal waveforms. Virtually all laboratory oscillo-
scopes today have the dual-trace option, that is, the ability to show two 
waveforms at the same time. It is important to remember, however, that 
both waveforms will and must have the same frequency. The hookup 
procedure for using an oscilloscope to measure phase angles is covered 
in detail in Section 15.13. However, the equation for determining the 
phase angle can be introduced using Fig. 13.39.

First, note that each sinusoidal function has the same frequency, per-
mitting the use of either waveform to determine the period. For the 
waveform chosen in Fig. 13.39, the period encompasses 5 divisions at 
0.2 ms/div. The phase shift between the waveforms (irrespective of 
which is leading or lagging) is 2 divisions. Since the full period repre-
sents a cycle of 360°, the following ratio [from which Eq. (13.24) can be 
derived] can be formed:

360°
T (no. of div.)

=
u

phase shift (no. of div.)

Vertical sensitivity = 2 V/div.
Horizontal sensitivity = 0.2 ms/div.

T

e
i

FIG. 13.39
Finding the phase angle between waveforms using  

a dual-trace oscilloscope.

Vertical sensitivity  = 0.1 V/div. 
Horizontal sensitivity  = 50   s/div.

FIG. 13.38
Example 13.13.
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and	  u =
phase shift (no. of div.)

T (no. of div.)
* 360° 	 (13.24)

Substituting into Eq. (13.24) results in

u =
(2 div.)

(5 div.)
* 360° = 144°

and e leads i by 144°.

13.7 Av erage Value

Even though the concept of the average value is an important one in 
most technical fields, its true meaning is often misunderstood. In Fig. 
13.40(a), for example, the average height of the sand may be required to 
determine the volume of sand available. The average height of the sand 
is that height obtained if the distance from one end to the other is main-
tained while the sand is leveled off, as shown in Fig. 13.40(b). The area 
under the mound in Fig. 13.40(a) then equals the area under the rectan-
gular shape in Fig. 13.40(b) as determined by A = b * h. Of course, 
the depth (into the page) of the sand must be the same for Fig. 13.40(a) 
and (b) for the preceding conclusions to have any meaning.

In Fig. 13.40, the distance was measured from one end of the pile to 
the other. In Fig. 13.41(a), the distance extends beyond the end of the 
original pile of Fig. 13.40. The situation could be one where a land-
scaper wants to know the average height of the sand if it is spread out 
over a distance such as defined in Fig. 13.41(a). The result of an 
increased distance is shown in Fig. 13.41(b). The average height has 
decreased compared to Fig. 13.40. Quite obviously, therefore, the longer 
the distance, the lower is the average value.

If the distance parameter includes a depression, as shown in Fig. 
13.42(a), some of the sand will be used to fill the depression, resulting  

Height

Distance

Sand

(a)

Height

Average height

Sand

Same
distance

(b)

FIG. 13.40
Defining average value.

Height

Distance

Sand

(a)

Height

Average height

Same
distance

(b)

Sand

FIG. 13.41
Effect of distance (length) on average value.

Height

Distance

(a)

Height

Average height

Sand

Same
distance

(b)

Sand

Ground level

FIG. 13.42
Effect of depressions (negative excursions) on 

average value.
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in an even lower average value for the landscaper, as shown in  
Fig. 13.42(b). For a sinusoidal waveform, the depression would have the 
same shape as the mound of sand (over one full cycle), resulting in an 
average value at ground level (or zero volts for a sinusoidal voltage over 
one full period).

After traveling a considerable distance by car, some drivers like to 
calculate their average speed for the entire trip. This is usually done 
by dividing the miles traveled by the hours required to drive that dis-
tance. For example, if a person traveled 225 mi in 5 h, the average 
speed was 225 mi/5 h, or 45 mi/h. This same distance may have been 
traveled at various speeds for various intervals of time, as shown in 
Fig. 13.43.

10
20
30
40
50
60
70

Speed (mi/h)

A1 A2

0 1 2 3 4 5 6 t (h)
Lunch break

Average speed

FIG. 13.43
Plotting speed versus time for an automobile excursion.

By finding the total area under the curve for the 5 h and then dividing 
the area by 5 h (the total time for the trip), we obtain the same result of 
45 mi/h; that is,

	 Average speed =
area under curve

length of curve
	 (13.25)

 Average speed =
A1 + A2

5 h
=

(60 mi/h)(2 h) + (50 mi/h)(2.5 h)

5 h

 =
225

5
 mi/h = 45 mi/h

Eq. (13.25) can be extended to include any variable quantity, such as 
current or voltage, if we let G denote the average value, as follows:

	 G (average value) =
algebraic sum of areas

length of curve
	 (13.26)

The algebraic sum of the areas must be determined since some 
area contributions are from below the horizontal axis. Areas above the 
axis are assigned a positive sign and those below it a negative sign. A 
positive average value is then above the axis, and a negative value is 
below it.

The average value of any current or voltage is the value indicated on 
a dc meter. In other words, over a complete cycle, the average value is 
the equivalent dc value. In the analysis of electronic circuits to be con-
sidered in a later course, both dc and ac sources of voltage will be applied 
to the same network. You will then need to know or determine the dc (or 
average value) and ac components of the voltage or current in various 
parts of the system.
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EXAMPLE 13.14  Determine the average value of the waveforms in 
Fig. 13.44.

0

10 V

1 2 3 4 t (ms)

–10 V

(a)

0

14 V

1 2 3 4 t (ms)

–6  V

(b)

v1
v2

(Square wave)

FIG. 13.44
Example 13.14.

Solutions: 

	 a.	 By inspection, the area above the axis equals the area below over 
one cycle, resulting in an average value of zero volts. Using Eq. 
(13.26) gives

G =
(10 V)(1 ms) - (10 V)(1 ms)

2 ms
=

0

2 ms
= 0 V

	 b.	 Using Eq. (13.26) gives

G =
(14 V)(1 ms) - (6 V)(1 ms)

2 ms
=

14 V - 6 V

2
=

8 V

2
= 4 V

		  as shown in Fig. 13.45.

In reality, the waveform in Fig. 13.44(b) is simply the square 
wave in Fig. 13.44(b) with a dc shift of 4 V; that is,

y2 = y1 + 4 V

EXAMPLE 13.15  Find the average values of the following waveforms 
over one full cycle:

	 a.	 Fig. 13.46.
	 b.	 Fig. 13.47.

14 V

4 V
0

–6 V
1 2 3 4 t (ms)

FIG. 13.45
Defining the average value for the waveform  

in Fig. 13.44(b).

3

v (V)

0

–1

4 8
t (ms)

1 cycle

FIG. 13.46
Example 13.15(a).

1 cycle

2 4
6 8

10 t (ms)

i (A)

4

0

–2

–10

FIG. 13.47
Example 13.15(b).

Solutions: 

	 a.	 G =
+(3 V)(4 ms) - (1 V)(4 ms)

8 ms
=

12 V - 4 V

8
= 1 V
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		  Note Fig. 13.48.

	 b.	  G =
-(10 V)(2 ms) - (4 V)(2 ms) - (2 V)(2 ms)

10 ms

		   =
-20 V + 8 V - 4 V

10
= -

16 V

10
= −1.6 V

		  Note Fig. 13.49.

We found the areas under the curves in Example 13.15 by using a 
simple geometric formula. If we encounter a sine wave or any other unu-
sual shape, however, we must find the area by some other means. We 
can obtain a good approximation of the area by attempting to reproduce 
the original wave shape using a number of small rectangles or other 
familiar shapes, the area of which we already know through simple geo-
metric formulas. For example,

the area of the positive (or negative) pulse of a sine wave is 2Am.

Approximating this waveform by two triangles (Fig. 13.50), we obtain 
(using area =  1>2 base *  height for the area of a triangle) a rough idea 
of the actual area:
	 b	 h

Area shaded = 2a 1

2
 bhb = 2 c a 1

2
b ap

2
b (Am) d =

p

2
 Am ≅ 1.58Am

A closer approximation may be a rectangle with two similar triangles 
(Fig. 13.51):

Area = Am
p

3
+ 2a 1

2
 bhb = Am

p

3
+

p

3
 Am =

2

3
pAm = 2.094Am

which is certainly close to the actual area. If an infinite number of forms 
is used, an exact answer of 2Am can be obtained. For irregular wave-
forms, this method can be especially useful if data such as the average 
value are desired.

The procedure of calculus that gives the exact solution 2Am is known 
as integration. Integration is presented here only to make the method 
recognizable to you; it is not necessary to be proficient in its use to con-
tinue with this text. It is a useful mathematical tool, however, and should 
be learned. Finding the area under the positive pulse of a sine wave 
using integration, we have

Area = L
p

0
Am sin a da

where 1  is the sign of integration, 0 and p are the limits of integration, 
Am sin a is the function to be integrated, and da indicates that we are 
integrating with respect to a.

Integrating, (for demonstrating only) we obtain

 Area = Am3-cos a4p0
 = -Am(cos p - cos 0°)
 = -Am3-1 - (+1)4 = -Am(-2)

	 Area = 2Am 	 (13.27)

1

vav (V)

8 t (ms)

1V0

dc voltmeter (between 0 and 8 ms)

FIG. 13.48
The response of a dc meter to the waveform  

in Fig. 13.46.

0
–1.6

iav (A)

t (ms)

dc ammeter (between 0 and 10 ms)

– +–1.6

10

FIG. 13.49
The response of a dc meter to the waveform  

in Fig. 13.47.

f •

0
2
—

Am

FIG. 13.50
Approximating the shape of the positive pulse of a 

sinusoidal waveform with two right triangles.

0

Am

0
2
—

Am

3
— 2

3
—

FIG. 13.51
A better approximation for the shape of the positive 

pulse of a sinusoidal waveform.
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Since we know the area under the positive (or negative) pulse, we can 
easily determine the average value of the positive (or negative) region of 
a sine wave pulse by applying Eq. (13.26):

G =
2Am

p

and	 G =
2Am

p
= 0.637Am 	 (13.28)

For the waveform in Fig. 13.52,

G =
(2Am>2)

p>2
=

2Am

p
  (The average is the same as for a full pulse.)

EXAMPLE 13.16  Determine the average value of the sinusoidal wave-
form in Fig. 13.53.

Solution:  By inspection it is fairly obvious that

the average value of a pure sinusoidal waveform over one full cycle 
is zero.

Eq. (13.26):

G =
+2Am - 2Am

2p
= 0 V

EXAMPLE 13.17  Determine the average value of the waveform in 
Fig. 13.54.

Solution:  The peak-to-peak value of the sinusoidal function is 
16 mV + 2 mV = 18 mV. The peak amplitude of the sinusoidal wave-
form is, therefore, 18 mV>2 = 9 mV. Counting down 9 mV from 2 mV 
(or 9 mV up from -16 mV) results in an average or dc level of −7 mV, 
as noted by the dashed line in Fig. 13.54.

EXAMPLE 13.18  Determine the average value of the waveform in 
Fig. 13.55.

Solution: 

G =
2Am + 0

2p
=

2(10 V)

2p
≅ 3.18 V

EXAMPLE 13.19  For the waveform in Fig. 13.56, determine whether the 
average value is positive or negative, and determine its approximate value.

Solution:  From the appearance of the waveform, the average value is 
positive and in the vicinity of 2 mV. Occasionally, judgments of this 
type will have to be made.

Instrumentation

The dc level or average value of any waveform can be found using a 
digital multimeter (DMM) or an oscilloscope. For purely dc circuits, set 

0

Am
G

0

Am

2
—

FIG. 13.52
Finding the average value of one-half the positive 

pulse of a sinusoidal waveform.

0

1 cycle

Am

Am

2

FIG. 13.53
Example 13.16.

+2 mV

v

0
t

–16 mV

FIG. 13.54
Example 13.17.

�

1 cycle

2pp

v (V)

10

3.18
0

Sine wave

FIG. 13.55
Example 13.18.

v (mV)

10 mV

0
t

FIG. 13.56
Example 13.19.
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the DMM on dc, and read the voltage or current levels. Oscilloscopes 
are limited to voltage levels using the sequence of steps listed below:

	 1.	 First choose GND from the DC-GND-AC option list associated 
with each vertical channel. The GND option blocks any signal to 
which the oscilloscope probe may be connected from entering 
the oscilloscope and responds with just a horizontal line. Set the 
resulting line in the middle of the vertical axis on the horizontal 
axis, as shown in Fig. 13.57(a).

	 2.	 Apply the oscilloscope probe to the voltage to be measured (if 
not already connected), and switch to the DC option. If a dc volt-
age is present, the horizontal line shifts up or down, as demon-
strated in Fig. 13.57(b). Multiplying the shift by the vertical 
sensitivity results in the dc voltage. An upward shift is a positive 
voltage (higher potential at the red or positive lead of the oscil-
loscope), while a downward shift is a negative voltage (lower 
potential at the red or positive lead of the oscilloscope).

(b)

Vertical sensitivity = 50 mV/div.

Shift = 2.5 div.

(a)

FIG. 13.57
Using the oscilloscope to measure dc voltages; (a) setting the GND condition; (b) the vertical 

shift resulting from a dc voltage when shifted to the DC option.

In general,

Vdc = (vertical shift in div.) * (vertical sensitivity in V/div.) 	 (13.29)

For the waveform in Fig. 13.57(b),

Vdc = (2.5 div.)(50 mV/div.) = 125 mV

The oscilloscope can also be used to measure the dc or average level 
of any waveform using the following sequence:

	 1.	 Using the GND option, reset the horizontal line to the middle of 
the screen.

	 2.	 Switch to AC (all dc components of the signal to which the probe 
is connected will be blocked from entering the oscilloscope—
only the alternating, or changing, components are displayed). 
Note the location of some definitive point on the waveform, such 
as the bottom of the half-wave rectified waveform of Fig. 
13.58(a); that is, note its position on the vertical scale. For the 
future, whenever you use the AC option, keep in mind that the 
computer will distribute the waveform above and below the hori-
zontal axis such that the average value is zero; that is, the area 
above the axis will equal the area below.
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	 3.	 Then switch to DC (to permit both the dc and the ac components 
of the waveform to enter the oscilloscope), and note the shift in 
the chosen level of part 2, as shown in Fig. 13.58(b). Eq. (13.29) 
can then be used to determine the dc or average value of the 
waveform. For the waveform in Fig. 13.58(b), the average value 
is about

Vav = Vdc = (0.9 div.)(5 V/div.) = 4.5 V

The procedure outlined above can be applied to any alternating wave-
form such as the one in Fig. 13.56. In some cases the average value may 
require moving the starting position of the waveform under the AC 
option to a different region of the screen or choosing a higher voltage 
scale. By choosing the appropriate scale, you can enable DMMs to read 
the average or dc level of any waveform.

13.8 Eff ective (rms) Values

This section begins to relate dc and ac quantities with respect to the 
power delivered to a load. It will help us determine the amplitude of a 
sinusoidal ac current required to deliver the same power as a particular 
dc current. The question frequently arises, How is it possible for a sinu-
soidal ac quantity to deliver a net power if, over a full cycle, the net cur-
rent in any one direction is zero (average value = 0)? It would almost 
appear that the power delivered during the positive portion of the sinu-
soidal waveform is withdrawn during the negative portion, and since the 
two are equal in magnitude, the net power delivered is zero. However, 
understand that regardless of direction, current of any magnitude through 
a resistor delivers power to that resistor. In other words, during the pos-
itive or negative portions of a sinusoidal ac current, power is being 
delivered at each instant of time to the resistor. The power delivered at 
each instant, of course, varies with the magnitude of the sinusoidal ac 
current, but there will be a net flow during either the positive or the 
negative pulses with a net flow over the full cycle. The net power flow 
equals twice that delivered by either the positive or the negative regions 
of sinusoidal quantity.

A fixed relationship between ac and dc voltages and currents can be 
derived from the experimental setup shown in Fig. 13.59. A resistor in a 
water bath is connected by switches to a dc and an ac supply. If switch 1 
is closed, a dc current I, determined by the resistance R and battery volt-
age E, is established through the resistor R. The temperature reached by 

Shift = 0.9 div.

(a)

Reference

level

(b)

FIG. 13.58
Determining the average value of a nonsinusoidal waveform using the oscilloscope: (a) vertical channel on 

the ac mode; (b) vertical channel on the dc mode.
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the water is determined by the dc power dissipated in the form of heat by 
the resistor.

If switch 2 is closed and switch 1 left open, the ac current through the 
resistor has a peak value of Im. The temperature reached by the water is 
now determined by the ac power dissipated in the form of heat by the 
resistor. The ac input is varied until the temperature is the same as that 
reached with the dc input. When this is accomplished, the average elec-
trical power delivered to the resistor R by the ac source is the same as 
that delivered by the dc source.

The power delivered by the ac supply at any instant of time is

Pac = (iac)
2R = (Im sin vt)2R = (I2

m sin 2 vt)R

However,

sin 2 vt =
1

2
 (1 - cos 2vt)  (trigonometric identity)

Therefore,

Pac = I2
m c 1

2
(1 - cos 2vt) dR

and	 Pac =
I2

m R

2
-

I2
mR

2
 cos 2vt 	 (13.30)

The average power delivered by the ac source is just the first term, 
since the average value of a cosine wave is zero even though the wave 
may have twice the frequency of the original input current waveform. 
Equating the average power delivered by the ac generator to that deliv-
ered by the dc source,

 Pav(ac) = Pdc

 
I2

m R

2
= I2

dc R

and	  Idc =
Im12

= 0.707Im

which, in words, states that

the equivalent dc value of a sinusoidal current or voltage is 1/12 or 
0.707 of its peak value.

Switch 2

iac

ac generatore

Switch 1

dc source
E

R

Idc+

–

+

–

FIG. 13.59
An experimental setup to establish a relationship between dc and  

ac quantities.
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The equivalent dc value is called the rms or effective value of the sinu-
soidal quantity.

As a simple numerical example, it requires an ac current with a peak 
value of 12(10) = 14.14 A to deliver the same power to the resistor in 
Fig. 13.59 as a dc current of 10 A. The effective value of any quantity 
plotted as a function of time can be found by using the following equa-
tion derived from the experiment just described:

Calculus format:	 Irms = C 1T
0 i2(t)dt

T
	 (13.31)

which means	 Irms = A area(i2(t))

T
	 (13.32)

In words, Eqs. (13.31) and (13.32) state that to find the rms value, the 
function i(t) must first be squared. After i(t) is squared, the area under 
the curve is found by integration. It is then divided by T, the length of the 
cycle or the period of the waveform, to obtain the average or mean value 
of the squared waveform. The final step is to take the square root of the 
mean value. This procedure is the source for the other designation for 
the effective value, the root-mean-square (rms) value. In fact, since 
rms is the most commonly used term in the educational and industrial 
communities, it is used throughout this text.

The relationship between the peak value and the rms value is the 
same for voltages, resulting in the following set of relationships for the 
examples and text material to follow:

	

Irms = 112
 Im = 0.707Im

Erms = 112
 Em = 0.707Em

	 (13.33)

Similarly,

	
 Im = 12Irms = 1.414Irms

Em = 12Erms = 1.414Erms
	 (13.34)

EXAMPLE 13.20  Find the rms values of the sinusoidal waveform in 
each part in Fig. 13.60.

12

i (mA)

0
t

12

i (mA)

0
t

1 s 2 s
t

v

169.7 V

(c)(b)(a)

1 s

FIG. 13.60
Example 13.20.
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Solution:  For part (a), Irms = 0.707(12 * 10-3 A) = 8.48 mA. For 
part (b), again Irms = 8.48 mA. Note that frequency did not change  
the effective value in (b) compared to (a). For part (c), Vrms =  
0.707(169.73 V) ≅ 120 V, the same as available from a home outlet.

EXAMPLE 13.21  The 120 V dc source in Fig. 13.61(a) delivers 3.6 W 
to the load. Determine the peak value of the applied voltage (Em) and the 
current (Im) if the ac source [Fig. 13.61(b)] is to deliver the same power 
to the load.

iac

P=3.6 W
Load

Idc

E 120 V P=3.6 W
Load

(b)(a)

Em
e

Im

E

Idc

t

t

0

0

iac

+

–

+

–

FIG. 13.61
Example 13.21.

Solution: 

 Pdc = VdcIdc

and	  Idc =
Pdc

Vdc
=

3.6 W

120 V
= 30 mA

 Im = 12Idc = (1.414)(30 mA) = 42.42 mA

 Em = 12Edc = (1.414)(120 V) = 169.68 V

EXAMPLE 13.22  Find the rms value of the waveform in Fig. 13.62.

Solution:  y2 (Fig. 13.63):

Vrms = A (9)(4) + (1)(4)

8
= A40

8
= 2.24 V

1 cycle

t (s)
840

3

–1

v (V)

FIG. 13.62
Example 13.22.

9

v2 (V2)

1

0 4 8 t (s)

(– 1)2  =  1

FIG. 13.63
The squared waveform of Fig. 13.62.
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EXAMPLE 13.23  Calculate the rms value of the voltage in Fig. 13.64.

1 cycle

4

v (V)

0
–2

–10

4 6 8 10 t (s)

FIG. 13.64
Example 13.23.

100

2 4 6 8 10

16
4

0 t (s)

v2  (V2)

FIG. 13.65
The squared waveform of Fig. 13.64.

Solution:  y2 (Fig. 13.65):

 Vrms = B (100 V2)(2 s) + (16 V2)(s) + (4 V2)(2 s)

10 s

 = B 200 V2 s + 32 V2 s + 8 V2 s

10 s

 = A240

10
V2 = 224 V2

 = 4.9 V

EXAMPLE 13.24  Determine the average and rms values of the square 
wave in Fig. 13.66.

Solution:  By inspection, the average value is zero.
y2 (Fig. 13.67):

 Vrms = B (1600)(10 * 10-3) + (1600)(10 * 10-3)

20 * 10-3

 = B (32,000 * 10-3)

20 * 10-3 = 11600 = 40 V

(the maximum value of the waveform in Fig. 13.66).

The waveforms appearing in these examples are the same as those 
used in the examples on the average value. It may prove interesting to 
compare the rms and average values of these waveforms.

The rms values of sinusoidal quantities such as voltage or current are 
represented by E and I. These symbols are the same as those used for dc 
voltages and currents. To avoid confusion, the peak value of a wave-
form always has a subscript m associated with it: Im sin vt. Caution: 

40

0

–40

10 20 t (ms)

v (V)

1 cycle

FIG. 13.66
Example 13.24.

20100

v2 (V)

1600

t (ms)

FIG. 13.67
The squared waveform of Fig. 13.66.
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When finding the rms value of the positive pulse of a sine wave, note 
that the squared area is not simply (2Am)2 = 4A2

m; it must be found by a 
completely new integration. This is always true for any waveform that 
is not rectangular.

dc + ac

A unique situation arises if a waveform has both a dc and an ac compo-
nent that may be due to a source, such as the one in Fig. 13.68. The 
combination appears frequently in the analysis of electronic networks 
where both dc and ac levels are present in the same system.

1.5 sin    t
+

–

6 V

vT

+

–

vT

7.5 V

6 V

4.5 V

0 t

+

–

FIG. 13.68
Generation and display of a waveform having a dc and an ac component.

The question arises, What is the rms value of the voltage yT? You may 
be tempted to assume that it is the sum of the rms values of each compo-
nent of the waveform; that is, VTrms

= 0.7071(1.5 V) + 6 V = 1.06 V +  
6 V = 7.06 V. However, the rms value is actually determined by

	 Vrms = 2V2
dc + V2

ac(rms) 	 (13.35)

which for the waveform in Fig. 13.68 is

Vrms = 2(6 V)2 + (1.06 V)2 = 237.124 V2 ≅ 6.1 V

This result is noticeably less than the solution of 7.06 V.

True rms Meters

Throughout this section, the rms value of a variety of waveforms was 
determined to help ensure that the concept is correctly understood. How-
ever, to use a meter to measure the rms value of the same waveforms 
would require a specially designed meter. Too often, the face of a meter 
will read True rms Multimeter or such. However, in most cases the 
meter is only designed to read the rms value of periodic signals with no 
dc level and have a symmetry about the zero axis. Most multimeters are 
ac coupled (the dc component of the signal is blocked by a capacitor at 
the input terminals), so only the ac portion is measured. For such cases 
one may be able to first determine the rms value of the ac portion of the 
waveform and then use the dc section of the meter to measure the dc 
level. Then Eq. (13.35) can be used to determine the correct rms value.

The problem, however, is that many waveforms are not symmetric 
about the zero axis—How is an rms reading obtained? In general, the 
rms value of any waveform is a measure of the “heating” potential of the 
applied waveform, as discussed earlier in this section. A direct result is 
the development of meters that use a thermal converter calibrated to dis-
play the proper rms value. A drawback of this approach, however, is that 
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the meter will draw power from the circuit during the heating process, 
and the results have a low precision standard. A better approach that is 
commonly used uses an analog-to-digital converter (ADC) mentioned 
earlier to digitize the signal, so that the rms value then can be determined 
to a high degree of accuracy. One such meter appears in Fig. 13.69, 
which samples the input signal at 1.4 MHz, or 1,400,000 samples per 
second—certainly sufficient for a wide variety of signals. This meter 
will run the sampling rate at all times, even when making dc measure-
ments, so both the dc and ac content of a waveform can be displayed at 
the same time.

FIG. 13.69
True rms multimeter.

(Courtesy of Keysight Technologies, Inc.)

13.9 C onverters and Inverters

The two most common supplies are either DC or AC. Unfortunately, 
there are times when we have one but need the other for a variety of 
reasons. Solar panels generate a dc voltage that must be converted to ac 
if the power is to be distributed over a power line network. In an RV or 
boat we need ac for some applications but the only source is often just 
the dc batteries. The dc batteries in our cell phones need charging from 
a dc source but the only option we have is to plug them into an ac outlet. 
Obviously, there is an important need for an electronic package that 
will convert from one type of source to the other with the highest effi-
ciency possible. There is little value in a conversion if it operates at an 
efficiency of 10%.

Fortunately, since this need is not a new one, a host of conversion 
options have been developed. If you need to convert ac to dc, the piece 
of equipment used is called a converter. In Fig. 13.70 the converter 
will convert a 120 V ac supply to a 12 V dc supply so you can run all 
your 12 V appliances, such as a GPS that you may have in a car or RV. 
On the output side it is rated at 12 V at a current of 5.8 A or a power 
level of 69.6 W. The input side has a voltage of 120 V and a current 
rating of 1.8 A or a maximum power rating of 216 W. Although the 
input and output ratings are not the same, the voltage levels of 12 V 
and 120 V are fixed and are the operating levels. The current levels are 
maximum values for the input or output side. Note also that the dc 
output power is a great deal less than the maximum input power level. 
This is most likely an indicator of the efficiency of the system. This 
unit is relatively inexpensive and does do the job—it is simply not the 
most efficient. The fact that the output power rating is 69.6 W reveals 
that any load applied to the dc supply cannot draw a current of more 
than 5.8 A or power of 69.6 W. The actual electronic package required 
to perform the above operation is relatively simple in design as shown 

FIG. 13.70
120 V ac to 12 V dc converter.

(Don Johnson Photo)
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in Fig. 13.71. A transformer (Chapter 23) will reduce the applied 
120 V ac source (peak value approximately 170 V) to about a 14 V 
peak. The diode (basic electronics course) and resistor form a half-
wave rectifier that will cut off the bottom of the sinusoidal signal. 
Finally, a capacitor will smooth out the waveform as shown in Fig. 
13.71, which will have an average or dc level of approximately 12 V. 
Have you ever noticed that the voltage on your car gauge is normally 
at about 14 V rather than the 12 V of your battery? In order to maintain 
the 12 V level, the charging voltage has to be more than the required 
12 V or the terminal voltage may drop below 12 V. If you see it drop 
to 12 V on your dashboard, the charging system needs to be checked. 
The generation network of Fig. 13.71 is the simplest design available 
today for the desired conversion. There is certainly a great deal of dis-
tortion compared to a pure dc supply. However, there are supplies with 
less than 0.01% distortion available today, but it always goes back to 
you get what you pay for.

An inverter is an electronic package, such as shown in Fig. 13.72, 
that will convert a dc supply into an ac source. This is an especially 
important function in an RV or boat where so many appliances run off 
ac rather than the dc available from the stored batteries. The unit shown 
has clips that can be attached to a 12 V battery to provide a continuous 
output of 115 V ac at a current of 6.67 A. The output rating of 800 W is 
enough to run a number of appliances such as a TV, fan, and small 
refrigerator. For short periods of time it can provide a peak output of 
1600 W. The golf ball was included simply to provide some idea of the 
size of the unit. In a conversion of this type the important elements are 
the frequency of the generated waveform (60 Hz), the peak voltage 
(115 V), and the shape of the alternating function. For this unit the 
response as shown in Fig. 13.73 is called a “a modified sine wave.” It 
has the proper frequency and is close to the proper amplitude but has the 
square edges rather than the smooth curve. The result is a waveform 
with a harmonic distortion (Chapter 26) of about 35%. For many appli-
cations such a waveform will be satisfactory. However, if the appliances 
being connected are sensitive to the additional harmonics (Chapter 26) 
being presented by a signal of this type, then the response will not be as 
desired. For this unit it clearly states that it should not be used for a 
microwave oven or battery chargers that do not use a transformer. The 
requirement of a transformer in the chargers is probably due to the fact 
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FIG. 13.71
Establishing a 12 V dc level.

FIG. 13.72
12 V dc to 120 V ac inverter.

(Don Johnson Photo)
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that the inductive nature of a transformer will actually make the “modi-
fied sine wave” closer in appearance to a pure sine wave.

There are numerous ways to perform the conversion from dc to sinu-
soidal ac. The simplest is provided in Fig. 13.73. Through switching 
action and clipping (basic electronic courses) networks, the steady-state 
dc level of Fig. 13.73 can be converted to the modified form shown in 
the same figure. This is accomplished by using a three-way switch that 
can perform the actions of letting the signal pass through, shutting off 
the input and reversing the polarity of the output. All three regions are 
defined in Fig. 13.73. By carefully controlling the timing of the switch-
ing mechanism, the modified sine wave can closely match that of the 
60 cycles per second sinusoidal waveform also shown in the figure. 
Now that the generated voltage changes with time, a transformer can 
raise the level to one approaching the desired 170 V peak of a 115 V ac 
source. In fact, as mentioned above, the inductive nature of the trans-
former action will probably improve the appearance of the sinusoidal 
output. The appearance of the waveform can further be improved by 
passing the resulting waveform through a series of filters (inductive and 
capacitive elements, Chapter 22) to remove unwanted harmonics (Chap-
ter 26). A second approach involves connecting the dc input to the center 
tap of the primary of a transformer and switching between both ends of 
the primary. This action will reverse the direction of the current through 
the primary each half-cycle, which will reverse the polarity of the output 
of the secondary. This action of switching the battery polarity is all the 
the transformer needs to perform its function because a transformer can 
only react to changes in voltage at the primary.

Another approach of a more sophisticated direction involves the use 
of oscillators (sinusoidal ac waveform generators) that utilize the dc 
power to generate an ac waveform through the use of tuned networks 
having inductive and/or capacitive elements. One such oscillator is 
called the Wien bridge oscillator, which can include a number of ICs, 
capacitive elements, transistors, and a transformer. Such units have a 
wide range of control with very low distortion rates but are a great deal 
more expensive.
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One other important concern when converting dc power to ac power 
in an RV or boat is how long that fully charged battery will provide the 
necessary ac power. This all goes back to the ampere-hour rating cov-
ered in Chapter 2. If the batteries are rated at 100 AH at a current drain 
of 15 ampere, that battery will provide the necessary voltage and current 
for 100 AH>15 A = 6.67 hours. This is an important consideration 
when in an isolated location with only batteries available. This is one 
reason to have a number of batteries in parallel in an RV or boat so that 
you can double or triple the time period that the current can be drained. 
Two batteries of the above rating would provide the required current of 
15 A for a period of time closer to 12 hours. Of course, a lower demand 
will also increase the time period before depleting the source.

13.10  ac Meters and Instruments

Iron-Vane or d’Arsonval Movement

If an average reading movement such as the iron-vane movement used 
in the VOM of Fig. 2.29 is used to measure an ac current or voltage, the 
level indicated by the movement must be multiplied by a calibration 
factor. In other words, if the movement of any voltmeter or ammeter is 
reading the average value, that level must be multiplied by a specific 
constant, or calibration factor, to indicate the rms level. For ac wave-
forms, the signal must first be converted to one having an average value 
over the time period. Recall that it is zero over a full period for a sinusoi-
dal waveform. This is usually accomplished for sinusoidal waveforms 
using a bridge rectifier such as in Fig. 13.74. The conversion process, 
involving four diodes in a bridge configuration, is well documented in 
most electronic texts.

Fundamentally, conduction is permitted through the diodes in such a 
manner as to convert the sinusoidal input of Fig. 13.75(a) to one having 
the appearance of Fig. 13.75(b). The negative portion of the input has 
been effectively “flipped over” by the bridge configuration. The result-
ing waveform in Fig. 13.75(b) is called a full-wave rectified waveform.

The zero average value in Fig. 13.75(a) has been replaced by a pat-
tern having an average value determined by

G =
2Vm + 2Vm

2p
=

4Vm

2p
=

2Vm

p
= 0.637Vm

The movement of the pointer is therefore directly related to the peak 
value of the signal by the factor 0.637.

Forming the ratio between the rms and dc levels results in

Vrms

Vdc
=

0.707Vm

0.637Vm
≅ 1.11

revealing that the scale indication is 1.11 times the dc level measured by 
the movement; that is,

	 Meter indication = 1.11 (dc or average value)  full@wave 	 (13.36)

Some ac meters use a half-wave rectifier arrangement that results in 
the waveform in Fig. 13.76, which has half the average value in Fig. 
13.75(b) over one full cycle. The result is

	 Meter indication = 2.22 (dc or average value)  half@wave 	 (13.37)
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FIG. 13.74
Full-wave bridge rectifier.
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FIG. 13.76
Half-wave rectified signal.
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Electrodynamometer Movement

The electrodynamometer movement is a movement that has the distinct 
advantage of being able to read the turn rms value of any current, volt-
age, or power measurement without additional circuitry. The basic con-
struction appears in Fig. 13.77, which shows two fixed coils and a 
rotating coil. The two fixed coils establish a field similar to that estab-
lished by the permanent magnet in an iron-vane movement. However, in 
this case, the same current that establishes the field in the fixed coils will 
also establish the field in the movable coil. The result is opposing polar-
ities between the rotating and fixed coils that will establish a torque on 
the movable coil and cause it to rotate and provide a reading using the 
attached pointer. Removing the excitation force will allow the attached 
spring to bring the pointer back to the rest position. Although the elec-
trodynamometer movement would be very effective in reading the rms 
value of any voltage or current, it is used almost exclusively in dc/ac 
wattmeters for any shape of input. It can also be used for phase shift 
measurements, harmonic analysis, and frequency measurements, 
although improving digital electronic technology is the new direction for 
these areas of application.

Fixed coil

Meter Terminals

N
S

N N S

Moving coil

S

I
I

Fixed  coil

FIG. 13.77
Electrodynamometer movement.

EXAMPLE 13.25  Determine the reading of each meter for each situa-
tion in Fig. 13.78(a) and (b).

Solution:  For Fig. 13.78(a), situation (1): By Eq. (13.36),

Meter indication = 1.11(20 V) = 22.2 V

For Fig. 13.78(a), situation (2):

Vrms = 0.707Vm = (0.707)(20 V) = 14.14 V

For Fig. 13.78(b), situation (1):

Vrms = Vdc = 25 V

For Fig. 13.78(b), situation (2):

Vrms = 0.707Vm = 0.707(15 V) ≅ 10.6 V
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Frequency Counter

For frequency measurements, the frequency counter in Fig. 13.79 pro-
vides a digital readout of sine, square, and triangular waves from 0.1 Hz 
to 2.4 GHz. The temperature-compensated, crystal-controlled time base 
is stable to {1 part per million per year.
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FIG. 13.78
Example 13.25.

FIG. 13.79
Frequency counter, 3.5 GHz multifunctional instrument.

(Courtesy of B+K Precision)

Clamp-on Meters

The AEMC® Clamp Meter in Fig. 13.80 is an instrument that can 
measure alternating current in the ampere range without having to open 
the circuit. The loop is opened by squeezing the “trigger”; then it is 
placed around the current-carrying conductor. Through transformer 
action, the level of current in rms units appears on the appropriate scale. 
The Model 501 is auto-ranging (that is, each scale changes automati-
cally) and can measure dc or ac currents up to 400 mA. Through the use 
of additional leads, it can also be used as a voltmeter (up to 400 V, dc or 
ac) and an ohmmeter (from zero to 400 Ω).

FIG. 13.80
Clamp-on ammeter and voltmeter.

(Courtesy of AEMC Instruments)
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Impedance Measurements

Before we leave the subject of ac meters and instrumentation, you should 
understand that

an ohmmeter cannot be used to measure the ac reactance or 
impedance of an element or system even though reactance and 
impedance are measured in ohms.

Recall that ohmmeters cannot be used on energized networks—the 
power must be shut off or disconnected. For an inductor, if the ac power 
is removed, the reactance of the coil is simply the dc resistance of the 
windings because the applicable frequency will be 0 Hz. For a capacitor, 
if the ac power is removed, the reactance of the capacitor is simply the 
leakage resistance of the capacitor. In general, therefore, always keep in 
mind that ohmmeters can read only the dc resistance of an element or 
network, and only after the applied power has been removed.

13.11 App lications

(120 V at 60 Hz) versus (220 V at 50 Hz)

In North and South America, the most common available ac supply is 
120 V at 60 Hz; in Western and Central Europe, Africa; Asia, and 
Australia, 220 V at 50 Hz is the most common. Japan is unique in that 
the eastern part of the country uses 100 V at 50 Hz, whereas most of 
the western part uses 100 V at 60 Hz or 220 V at 50 Hz. The choices 
of rms value and frequency were obviously made carefully because 
they have such an important impact on the design and operation of so 
many systems.

The fact that the frequency difference is only 10 Hz reveals that 
there was agreement on the general frequency range that should be 
used for power generation and distribution. History suggests that the 
question of frequency selection originally focused on the frequency 
that would not exhibit flicker in the incandescent lamps available in 
those days. Technically, however, there really wouldn’t be a noticea-
ble difference between 50 and 60 cycles per second based on this crite-
rion. Another important factor in the early design stages was the effect 
of frequency on the size of transformers, which play a major role in 
power generation and distribution. Working through the fundamental 
equations for transformer design, you will find that the size of a trans-
former is inversely proportional to frequency. The result is that trans-
formers operating at 50 Hz must be larger (on a purely mathematical 
basis about 17% larger) than those operating at 60 Hz. You will there-
fore find that transformers designed for the international market, where 
they can operate on 50 Hz or 60 Hz, are designed around the 50 Hz 
frequency. On the other side of the coin, however, higher frequencies 
result in increased concerns about arcing, increased losses in the trans-
former core due to eddy current and hysteresis losses, and skin effect 
phenomena. Somewhere in the discussion we may wonder about the 
fact that 60 Hz is an exact multiple of 60 seconds in a minute and 60 
minutes in an hour. On the other side of the coin, however, a 60 Hz 
signal has a period of 16.67 ms (an awkward number), but the period 
of a 50 Hz signal is exactly 20 ms. Since accurate timing is such a 
critical part of our technological design, was this a significant motive 
in the final choice? There is also the question about whether the 50 Hz 
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is a result of the close affinity of this value to the metric system. Keep 
in mind that powers of ten are all-powerful in the metric system, with 
100 cm in a meter, 100°C the boiling point of water, and so on. Note 
that 50 Hz is exactly half of this special number. All in all, it would 
seem that both sides have an argument that is worth defending. How-
ever, in the final analysis, we must also wonder whether the difference 
is simply political in nature.

The difference in voltage between the Americas and Europe is a dif-
ferent matter entirely, in the sense that the difference is close to 100%. 
Again, however, there are valid arguments for both sides. There is no 
question that larger voltages such as 220 V raise safety issues beyond 
those raised by voltages of 120 V. However, when higher voltages are 
supplied, there is less current in the wire for the same power demand, 
permitting the use of smaller conductors—a real money saver. In addi-
tion, motors and some appliances can be smaller in size. Higher volt-
ages, however, also bring back the concern about arcing effects, 
insulation requirements, and, due to real safety concerns, higher installa-
tion costs. In general, however, international travelers are prepared for 
most situations if they have a transformer that can convert from their 
home level to that of the country they plan to visit. Most equipment (not 
clocks, of course) can run quite well on 50 Hz or 60 Hz for most travel 
periods. For any unit not operating at its design frequency, it simply has 
to “work a little harder” to perform the given task. The major problem 
for the traveler is not the transformer itself but the wide variety of plugs 
used from one country to another. Each country has its own design for 
the “female” plug in the wall. For a three-week tour, this could mean as 
many as 6 to 10 different plugs of the type shown in Fig. 13.81. For a 
120 V, 60 Hz supply, the plug is quite standard in appearance with its 
two spade leads (and possible ground connection).

In any event, both the 120 V at 60 Hz and the 220 V at 50 Hz are 
obviously meeting the needs of the consumer. It is a debate that could go 
on at length without an ultimate victor.

Safety Concerns (High Voltages and dc versus ac)

Be aware that any “live” network should be treated with a calculated 
level of respect. Electricity in its various forms is not to be feared but 
used with some awareness of its potentially dangerous side effects. It is 
common knowledge that electricity and water do not mix (never use 
extension cords or plug in TVs or radios in the bathroom) because a full 
120 V in a layer of water of any height (from a shallow puddle to a full 
bath) can be lethal. However, other effects of dc and ac voltages are less 
known. In general, as the voltage and current increase, your concern 
about safety should increase exponentially. For instance, under dry con-
ditions, most human beings can survive a 120 V ac shock such as 
obtained when changing a light bulb, turning on a switch, and so on. 
Most electricians have experienced such a jolt many times in their 
careers. However, ask an electrician to relate how it feels to hit 220 V, 
and the response (if he or she has been unfortunate to have had such an 
experience) will be totally different. How often have you heard of a 
back-hoe operator hitting a 220 V line and having a fatal heart attack? 
Remember, the operator is sitting in a metal container on a damp ground, 
which provides an excellent path for the resulting current to flow from 
the line to ground. If only for a short period of time, with the best envi-
ronment (rubber-sole shoes, and so on), in a situation where you can 

FIG. 13.81
Variety of plugs for a 220 V, 50 Hz connection.
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quickly escape the situation, most human beings can also survive a 
220  V shock. However, as mentioned above, it is one you will not 
quickly forget. For voltages beyond 220 V rms, the chances of survival 
go down exponentially with increase in voltage. It takes only about 
10 mA of steady current through the heart to put it in defibrillation. In 
general, therefore, always be sure that the power is disconnected when 
working on the repair of electrical equipment. Don’t assume that throw-
ing a wall switch will disconnect the power. Throw the main circuit 
breaker and test the lines with a voltmeter before working on the system. 
Since voltage is a two-point phenomenon, be sure to work with only one 
line at at time—accidents happen!

You should also be aware that the reaction to dc voltages is quite 
different from that to ac voltages. You have probably seen in movies 
or comic strips that people are often unable to let go of a hot wire. This 
is evidence of the most important difference between the two types of 
voltages. As mentioned above, if you happen to touch a “hot” 120 V ac 
line, you will probably get a good sting, but you can let go. If it hap-
pens to be a “hot” 120 V dc line, you will probably not be able to let 
go, and you could die. Time plays an important role when this hap-
pens, because the longer you are subjected to the dc voltage, the more 
the resistance in the body decreases, until a fatal current can be estab-
lished. The reason that we can let go of an ac line is best demonstrated 
by carefully examining the 120 V rms, 60 Hz voltage in Fig. 13.82. 
Since the voltage is oscillating, there is a period when the voltage is 
near zero or less than, say, 20 V, and is reversing in direction. Although 
this time interval is very short, it appears every 8.3 ms and provides a 
window for you to let go.

Now that we are aware of the additional dangers of dc voltages, it is 
important to mention that under the wrong conditions, dc voltages as 
low as 12 V, such as from a car battery, can be quite dangerous. If you 
happen to be working on a car under wet conditions, or if you are sweat-
ing badly for some reason or, worse yet, wearing a wedding ring that 
may have moisture and body salt underneath, touching the positive ter-
minal may initiate the process whereby the body resistance begins to 
drop, and serious injury could take place. It is one of the reasons you 
seldom see a professional electrician wearing any rings or jewelry—it is 
just not worth the risk.

Before leaving this topic of safety concerns, you should also be aware 
of the dangers of high-frequency supplies. We are all aware of what 
2.45 GHz at 120 V can do to a meat product in a microwave oven, and it 
is therefore very important that the seal around the oven be as tight as 
possible. However, don’t ever assume that anything is absolutely perfect 
in design—so don’t make it a habit to view the cooking process in the 
microwave 6 in. from the door on a continuing basis. Find something 
else to do, and check the food only when the cooking process is com-
plete. If you ever visit the Empire State Building, you will notice that 
you are unable to get close to the antenna on the dome due to the high-
frequency signals being emitted with a great deal of power. Also note 
the large KEEP OUT signs near radio transmission towers for local 
radio stations. Standing within 10 ft of an AM transmitter working at 
540 kHz would bring on disaster. Simply holding (do not try!) a fluores-
cent bulb near the tower could make it light up due to the excitation of 
the molecules inside the bulb.

In total, therefore, treat any situation with high ac voltages or cur-
rents, high-energy dc levels, and high frequencies with added care.
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13.12 C omputer Analysis

PSpice

OrCAD Capture offers a variety of ac voltage and current sources. How-
ever, for the purposes of this text, the voltage source VSIN and the cur-
rent source ISIN are the most appropriate because they have a list of 
attributes that covers current areas of interest. Under the library 
SOURCE, a number of others are listed, but they don’t have the full 
range of the above, or they are dedicated to only one type of analysis. On 
occasion, ISRC is used because it has an arrow symbol like that appear-
ing in the text, and it can be used for dc, ac, and some transient analyses. 
The symbol for ISIN is a sine wave that utilizes the plus-and-minus sign 
({) to indicate direction. The sources VAC, IAC, VSRC, and ISRC 
are fine if the magnitude and the phase of a specific quantity are desired 
or if a transient plot against frequency is desired. However, they will not 
provide a response against time even if the frequency and the transient 
information are provided for the simulation.

 VSIN and ISIN are used for time-based analysis and sources such 
as VAC and IAC are used for phasor and frequency analysis. In addi-
tion, VSIN and ISIN employ the VAMPL (peak) value of a sinusoidal 
waveform while VAC and IAC reference rms values. For the time-
based analysis the VAMPL is the controlling variable and the AC list-
ing can be listed at any value, although we will use the effective value 
in this text.

Before examining the mechanics of getting the various sources, 
remember that

Transient Analysis provides an ac or a dc output versus time, while 
AC Sweep is used to obtain a plot versus frequency.

To obtain any of the sources listed above, apply the following sequence: 
Place part key-Place Part dialog box-Source-(enter type of source). 
Once you select the source, the ac source VSIN appears on the sche-
matic with OFF, VAMPL, FREQ, and AC. Always specify VOFF as 
0 V (unless a specific value is part of the analysis), and provide a value 
for the amplitude and frequency. Additional quantities such as PHASE, 
DC, DF, and TD can be set by double-clicking on the source symbol to 
get the component listing, although PHASE, DF (damping factor), and 
TD (time delay) do have a default of 0 s. To add a phase angle, click on 
PHASE, enter the phase angle in the box below, and then select Apply. 
If you want to display a factor such as a phase angle of 60°, click on 
PHASE followed by Display to obtain the Display Properties dialog 
box. Then choose Name and Value followed by OK and Apply, and 
PHASE = 60 will appear next to the VSIN source. The next chapter 
includes the use of the ac source in a simple circuit.

Multisim

For Multisim, the ac voltage source is available from three sources—the 
Place Source key pad in the Components toolbar, the Show Power 
Source Family in the Virtual or BASIC toolbar, and the Function 
Generator. The major difference among the options is that the phase 
angle cannot be set using the Function Generator.

Using the Place Source option, select SIGNAL_VOLTAGE_ 
SOURCES group under the Family heading, followed by AC_ 
VOLTAGE-OK. When selected and placed, it displays the default 
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values for the amplitude, frequency, and phase. All the parameters of 
the source can be changed by double-clicking on the source symbol to 
obtain the dialog box. The listing clearly indicates that the set voltage 
is the peak value. Note that the unit of measurement is set by typing in 
the desired unit of measurement. The label can be changed by switch-
ing the Label heading and inserting the desired label. After all the 
changes have been made in the dialog box, click OK, and all the 
changes appear next to the ac voltage source symbol. In Fig. 13.83, the 
label was changed to Vs and the amplitude to 10 V, while the freqency 
and phase angle were left with their default values. The important 
ground connection was made with the sequence Place Source—All 
families—GROUND-OK. It is particularly important to realize that

FIG. 13.83
Using the oscilloscope to display the sinusoidal ac voltage source available in 

the Multisim Sources tool bin.

for any frequency analysis (that is, where the frequency will change), 
the AC Magnitude of the ac source must be set under Analysis Setup 
in the SIGNAL_VOLTAGE_SOURCES dialog box. Failure to do so 
will create results linked to the default values rather than the value 
set under the Value heading.

To view the sinusoidal voltage set in Fig. 13.83, select an oscillo-
scope from the Instrument toolbar (fourth option down) at the right of 
the screen. When hooking up the oscilloscope, do not worry about over-
lapping wires. Connections are shown by small, solid dots. Note that it is 
a dual-channel oscilloscope with an A channel and a B channel. It has a 
ground (G) connection and a trigger (T) connection. The connections 
for viewing the ac voltage source on the A channel are provided in Fig. 
13.83. Note that the trigger control is also connected to the A channel for 
sync control. The screen appearing in Fig. 13.83 can be displayed by 
double-clicking on the oscilloscope symbol on the screen. It has all the 
major controls of a typical laboratory oscilloscope. When you select 
Simulate-Run or select 1 on the Simulate Switch, the ac voltage 
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appears on the screen. Changing the Time base to 100 ms/div. results in 
the display of Fig. 13.83 since there are 10 divisions across the screen 
and 10(100 ms) = 1 ms (the period of the applied signal). Changes in the 
Time base are made by clicking on the default value to obtain the scrolls 
in the same box. For a single waveform like that in Fig. 13.83, be sure to 
select Sing. (for Singular) in the bottom right of the scope. It is impor-
tant to remember, however, that

changes in the oscilloscope setting or any network should not be 
made until the simulation is ended by disabling the Simulate-Run 
option or placing the Simulate switch in the 0 mode.

To stop the simulation, there are three options: choose Simulate-Stop 
from the top toolbar on the screen; select the red square to the right of 
the green arrow; or click the switch back to the 0 position.

The options within the time base are set by the scroll bars and cannot 
be changed—again they match those typically available on a laboratory 
oscilloscope. The vertical sensitivity of the A channel was automatically 
set by the program at 5 V/div. to result in two vertical boxes for the peak 
value as shown in Fig. 13.83. Note the AC and DC keypads below 
Channel A. Since there is no dc component in the applied signal, either 
one results in the same display. The Trigger control is set on the posi-
tive transition at a level of 0 V. The T1 and T2 refer to the cursor posi-
tions on the horizontal time axis. By clicking on the small triangle at the 
top of the line at the far left edge of the screen and dragging the triangle, 
you can move the vertical line to any position along the axis. If moved to 
the point where the waveform crosses the axis, the time element is one-
half that of the period or 500 ms. In the cursor box you will find 
x1 = 497.75 ms ≅ 500 ms with a magnitude of 141.07 mV or 0.14 V, 
which is essentially zero volts compared to the peak value of 10 V. 
Selecting the other cursor and moving it to the peak value at 
x2 = 247.75 ms ≅ 250 ms results in a magnitude of y2 = 9.99 V or 
essentially 10 V. The accuracy is controlled by the number of data points 
called for in the simulation setup. The more data points, the higher is the 
likelihood of a higher degree of accuracy for the desired quantity. How-
ever, an increased number of data points also extends the running time 
of the simulation. The third line provides the difference between x2 and 
x1 as 250 ms and difference between their magnitudes dy =  9.85 V.

As mentioned above, you can also obtain an ac voltage from the 
Function Generator appearing as the second option down on the 
Instrument toolbar. Its symbol appears in Fig. 13.84 with positive, neg-
ative, and ground connections. Double-click on the generator graphic 
symbol, and the Function Generator dialog box appears in which 
selections can be made. For this example, the sinusoidal waveform is 
chosen. To set the frequency, click on the unit of measurement to pro-
duce a list of options. For this case, kHz was chosen and the 1 left as is. 
The Amplitude (peak value) is set as Vp = 10 V and the Offset at 0 V. 
Note that there is no option to set the phase angle as was possible for 
the source above. Double-clicking on the oscilloscope generates the 
Oscilloscope-XSCI dialog box in which a Timebase of 100 ms/div. can 
be set again with a vertical sensitivity of 5 V/div. Setup the connections 
appearing in Fig. 13.84 and select 1 on the Simulate switch, to obtain 
the waveform of Fig. 13.84. Choosing Sing. under Trigger results in a 
fixed display. Set the Simulate switch on 0 to end the simulation. Placing 
the cursors in the same position shows that the waveforms for Figs. 13.83 
and 13.84 are the same.
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For most of the Multisim analyses to appear in this text, the AC_
VOLTAGE under Place Source will be employed. However, with such 
a limited introduction to Multisim, it seemed appropriate to introduce 
the use of the Function Generator because of its close linkage to the 
laboratory experience.

FIG. 13.84
Using the function generator to place a sinusoidal ac voltage waveform on the 

screen of the oscilloscope.
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FIG. 13.85
Problem 1.

Problems

SECTION 13.2  Sinusoidal ac Voltage Characteristics  
and Definitions

	 1.	 For the sinusoidal waveform in Fig. 13.85:
	 a.	 What is the peak value?
	 b.	 What is the instantaneous value at 15 ms and at 20 ms?
	 c.	 What is the peak-to-peak value of the waveform?
	 d.	 What is the period of the waveform?
	 e.	 How many cycles are shown?

	 c.	 What is the peak-to-peak value of the waveform?
	 d.	 What is the period of the waveform?
	 e.	 How many cycles are shown?

	 2.	 For the sinusoidal signal in Fig. 13.86:
	 a.	 What is the peak value?
	 b.	 What is the instantaneous value at 1 ms and at 7 ms.

0 2 10864 t  (   s)

i (   A)

200

–200

FIG. 13.86
Problem 2.

	 3.	 For the periodic square-wave waveform in Fig. 13.87:
	 a.	 What is the peak value?
	 b.	 What is the instantaneous value at 1.5 ms and at 5.1 ms?
	 c.	 What is the peak-to-peak value of the waveform?
	 d.	 What is the period of the waveform?
	 e.	 How many cycles are shown?
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	 4.	 For the waveform of Fig. 13.88:
	 a.	 Does this appear to be a high- or low-frequency wave-

form? Why?
	 b.	 How many full cycles are shown?
	 c.	 What is the period of the waveform?
	 d.	 What is the frequency of the waveform?
	 e.	 What is the peak value of the waveform?
	 f.	 What is the peak-to-peak value of the waveform?

0 3 4 5 6 7

–40

40

1 2

v (mV)

t    (ms)

FIG. 13.87
Problem 3.

0

–8

t  ( s)

v (mV)

–16

16

8

2015105 25

FIG. 13.88
Problem 4.

SECTION 13.3  Frequency Spectrum

	 5.	 Find the period of a periodic waveform whose frequency is
	 a.	 250 Hz.	 b.	 50 MHz.
	 c.	 28 kHz.	 d.	 2 Hz.

	 6.	 Find the frequency of a repeating waveform whose period is
	 a.	 1 s.	 b.	 1

36 s.
	 c.	 75 ms.	 d.	 40 ms.

	 7.	 If a periodic waveform has a frequency of 2 kHz, how long 
(in seconds) will it take to complete five cycles?

	 8.	 Find the period of a sinusoidal waveform that completes 
100 cycles in 25 ms.

	 9.	 What is the frequency of a periodic waveform that com-
pletes 72 cycles in 8 s?

	10.	 For the oscilloscope pattern of Fig. 13.89:
	 a.	 Determine the peak amplitude.
	 b.	 Find the period.
	 c.	 Calculate the frequency.
		  Redraw the oscilloscope pattern if a +20 mV dc level were 

added to the input waveform.

Vertical sensitivity = 50 mV/div.
Horizontal sensitivity = 10    s/div.

FIG. 13.89
Problem 10.

Vertical sensitivity = 10 mV/div.
Horizontal sensitivity = 5    s/div.

FIG. 13.90
Problem 11.

	11.	 For the waveform of Fig. 13.90:
	 a.	 What is the peak value of the waveform?
	 b.	 What is the peak-to-peak value of the waveform?
	 c.	 What is the period of the waveform?
	 d.	 What is the frequency of the waveform?
	 e.	 How many full cycles are shown?
	 f.	 What is the shift (in time) of the cosine wave from the 

vertical axis at t = 0 s?

SECTION 13.4  The Sinusoidal Waveform

	12.	 Convert the following degrees to radians:
	 a.	 40°	 b.	 60°
	 c.	 135°	 d.	 170°
	13.	 Convert the following radians to degrees:
	 a.	 p>3	 b.	 1.2p
	 c.	 1

10p	 d.	 0.6p

	14.	 Find the angular velocity of a waveform with a period of
	 a.	 1.6 s.	 b.	 0.5 ms.
	 c.	 7 ms	 d.	 3 * 10 - 6s.

	15.	 Find the angular velocity of a waveform with a frequency of
	 a.	 150 Hz.	 b.	 0.50 kHz.
	 c.	 4 kHz.	 d.	 0.008 MHz.

	16.	 Find the frequency and period of sine waves having an 
angular velocity of

	 a.	 654 rad/s.	 b.	 18 rad/s.
	 c.	 6600 rad/s.	 d.	 0.19 rad/s.
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	*17.	 Given f = 60 Hz, determine how long it will take the sinu-
soidal waveform to pass through an angle of 120°.

	*18.	 If a sinusoidal waveform passes through an angle of 45° in 
9 ms, determine the angular velocity of the waveform.

SECTION 13.5  General Format for the Sinusoidal  
Voltage or Current

	19.	 Find the amplitude and frequency of the following waves:
	 a.	 20 sin 377t
	 b.	 12 sin 2p120t
	 c.	 106 sin 10,000t
	 d.	 -8 sin 10,058t

	20.	 Sketch 6 sin 754t with the abscissa
	 a.	 angle in degrees.
	 b.	 angle in radians.
	 c.	 time in seconds.

	*21.	 Sketch -8 sin 2p80t with the abscissa
	 a.	 angle in degrees.
	 b.	 angle in radians.
	 c.	 time in seconds.

	*22.	 If e = 500 sin 176t, how long (in seconds) does it take this 
waveform to complete 1>2 cycle?

	*23.	 Given i = 0.3 sin a, determine i at a = 60°.

	*24.	 Given y = 25 sin a, determine y at a = 1.4p.

	*25.	 Given y = 40 * 10-3 sin a, determine the angles at which 
y will be 8 mV.

	*26.	 If y = 60 V at a = 30° and t = 1.5 ms, determine the math-
ematical expression for the sinusoidal voltage.

SECTION 13.6  Phase Relations

	*27.	 Sketch sin(377t + 60°) with the abscissa
	 a.	 angle in degrees.
	 b.	 angle in radians.
	 c.	 time in seconds.

	*28.	 Sketch the following waveforms:
	 a.	 50 sin(vt + 0°)
	 b.	 5 sin(vt + 120°)
	 c.	 2 cos(vt + 10°)
	 d.	 -2 sin(vt + 10°)

	29.	 Write the analytical expression for the waveforms of Fig. 
13.91 with the phase angle in degrees.

	30.	 Write the analytical expression for the waveform of Fig. 
13.92 with the phase angle in degrees.
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FIG. 13.91
Problem 29.
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FIG. 13.92
Problem 30.

	31.	 Write the analytical expression for the waveform of Fig. 
13.93 with the phase angle in degrees.
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FIG. 13.93
Problem 31.

	32.	 Write the analytical expression for the waveform of Fig. 
13.94 with the phase angle in radians.
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FIG. 13.94
Problem 32.
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	33.	 Find the phase relationship between the following wave-
forms:

y = 25 sin(vt + 80°)
i = 4 sin(vt - 10°)

	34.	 Find the phase relationship between the following wave-
forms:

y = 0.3 sin(vt - 65°)
i = 0.2 sin(vt - 30°)

	*35.	 Find the phase relationship between the following wave-
forms:

y = 5 cos(vt - 30°)
i = 8 sin(vt + 50°)

	*36.	 Find the phase relationship between the following wave-
forms:

y = -5 cos(vt + 90°)
i = -3 sin(vt + 20°)

	*37.	 The sinusoidal voltage y = 160 sin(2p1000t + 60°2  is 
plotted in Fig. 13.95. Determine the time t1 when the wave-
form crosses the axis.

SECTION 13.7  Average Value

	41.	 Find the average value of the periodic waveform in Fig. 
13.98.
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FIG. 13.95
Problem 37.

	*38.	 The sinusoidal current i = 20 * 10-3 sin(50,000t - 40°) 
is plotted in Fig. 13.96. Determine the time t1 when the 
waveform crosses the axis.
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FIG. 13.96
Problem 38.

	39.	 For the waveform of Fig. 13.95, find the time when the 
waveform has its peak value.

	40.	 For the oscilloscope display in Fig. 13.97:
	 a.	 Determine the period of the waveform.
	 b.	 Determine the frequency of each waveform.

Vertical sensitivity  =  0.5 V/div.
Horizontal sensitivity  =  1 ms/div.
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FIG. 13.97
Problem 40.
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Problem 41.
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Problem 42.

	42.	 Find the average value of the periodic waveforms in Fig. 
13.99 over one full cycle.

	 c.	 Find the rms value of each waveform.
	 d.	 Determine the phase shift between the two waveforms 

and determine which leads and which lags.
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	47.	 For the waveform in Fig. 13.104:
	 a.	 Determine the period.
	 b.	 Find the frequency.
	 c.	 Determine the average value.
	 d.	 Sketch the resulting oscilloscope display if the vertical 

channel is switched from dc to ac.

	43.	 Find the average value of the periodic waveform of Fig. 
13.100 over one full cycle.
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Problem 46.

	44.	 Find the average value of the periodic waveform of Fig. 
13.101 over one full cycle.

	45.	 Find the average value of the periodic function of Fig. 
13.102:

	 a.	 By inspection.
	 b.	 Through calculations.
	 c.	 Compare the results of parts (a) and (b).

	46.	 Find the average value of the periodic waveform in Fig. 
13.103.

Vertical sensitivity  =  10 mV/div.
Horizontal sensitivity  =  0.2 ms/div.

FIG. 13.104
Problem 47.

	*48.	 For the waveform in Fig. 13.105:
	 a.	 Determine the period.
	 b.	 Find the frequency.
	 c.	 Determine the average value.
	 d.	 Sketch the resulting oscilloscope display if the vertical 

channel is switched from dc to ac.

Vertical sensitivity = 10 mV/div.
Horizontal sensitivity = 10   s/div.

FIG. 13.105
Problem 48.
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SECTION 13.8  Effective (rms) Values

	49.	 Find the rms values of the following sinusoidal waveforms:
	 a.	 y = 130 sin(377t + 45°)
	 b.	 i = 5 * 10-3 sin(2p1500t)
	 c.	 y = 9 * 10 - 6 sin(2p4500t + 60°)
	50.	 Write the sinusoidal expressions for voltages and currents 

having the following rms values at a frequency of 60 Hz 
with zero phase shift:

	 a.	 6.8 V
	 b.	 60 mA
	 c.	 5 kV

	51.	 Find the rms value of the periodic waveform in Fig. 13.106 
over one full cycle.

	*54.	 For each waveform in Fig. 13.109, determine the period, 
frequency, average value, and rms value.
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FIG. 13.109
Problem 54.

	52.	 Find the rms value of the periodic waveform in Fig. 13.107 
over one full cycle.

	53.	 What are the average and rms values of the square wave in 
Fig. 13.108?

	*55.	 For the waveform of Fig. 13.110:
	 a.	 Carefully sketch the squared waveform. Note that the 

equation for the sloping line must first be determined.
	 b.	 Using some basic area equations and the approximate 

approach, find the approximate area under the squared 
curve.

	 c.	 Determine the rms value of the original waveform.
	 d.	 Find the average value of the original waveform.
	 e.	 How does the average value of the waveform compare 

to the rms value?
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FIG. 13.110
Problem 55.



620    Sinusoidal Alternating Waveforms

SECTION 13.10  ac Meters and Instruments

	*56.	 Determine the reading of the meter for each situation in Fig. 
13.111.
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FIG. 13.111
Problem 56.

Glossary

Alternating waveform  A waveform that oscillates above and 
below a defined reference level.

Angular velocity  The velocity with which a radius vector pro-
jecting a sinusoidal function rotates about its center.

Average value  The level of a waveform defined by the condi-
tion that the area enclosed by the curve above this level is 
exactly equal to the area enclosed by the curve below this 
level.

Calibration factor  A multiplying factor used to convert from 
one meter indication to another.

Clamp Meter®  A clamp-type instrument that will permit nonin-
vasive current measurements and that can be used as a con-
ventional voltmeter or ohmmeter.

Converter  Converts ac to dc.
Cycle  A portion of a waveform contained in one period of time.
Effective value  The equivalent dc value of any alternating volt-

age or current.
Electrodynamometer meters  Instruments that can measure 

both ac and dc quantities without a change in internal  
circuitry.

Frequency ( f )  The number of cycles of a periodic waveform 
that occur in 1 s.

Frequency counter  An instrument that will provide a digital 
display of the frequency or period of a periodic time-varying 
signal.

Instantaneous value  The magnitude of a waveform at any 
instant of time, denoted by lowercase letters.

Inverter  Converts dc to ac.
Lagging waveform  A waveform that crosses the time axis at a 

point in time later than another waveform of the same  
frequency.

Leading waveform  A waveform that crosses the time axis at a 
point in time ahead of another waveform of the same fre-
quency.

Oscilloscope  An instrument that will display, through the use 
of a cathode-ray tube, the characteristics of a time-varying 
signal.

Peak amplitude  The maximum value of a waveform as meas-
ured from its average, or mean, value, denoted by uppercase 
letters.

Peak-to-peak value  The magnitude of the total swing of a sig-
nal from positive to negative peaks. The sum of the absolute 
values of the positive and negative peak values.

Peak value  The maximum value of a waveform, denoted by 
uppercase letters.

Period (T)  The time interval necessary for one cycle of a peri-
odic waveform.

Periodic waveform  A waveform that continually repeats itself 
after a defined time interval.

Phase relationship  An indication of which of two waveforms 
leads or lags the other, and by how many degrees or radians.

Radian (rad)  A unit of measure used to define a particular seg-
ment of a circle. One radian is approximately equal to 
57.3°; 2p rad are equal to 360°.

Root-mean-square (rms) value  The root-mean-square or effec-
tive value of a waveform.

Sinusoidal ac waveform  An alternating waveform of unique 
characteristics that oscillates with equal amplitude above and 
below a given axis.

VOM  A multimeter with the capability to measure resistance 
and both ac and dc levels of current and voltage.

Waveform  The path traced by a quantity, plotted as a function 
of some variable such as position, time, degrees, temperature, 
and so on.



The Basic Elements 
and Phasors

14.1  Introduction

The previous chapter was a detailed introduction to the sinusoidal ac voltage and its important 
characteristics. In this chapter we will begin to analyze how resistive, inductive, and capaci-
tive elements will respond to this time-varying source. The fact that the magnitude of the 
source varies with time at rates directly related to its frequency will require that we carefully 
look at the relationship between the current through a device and the voltage across it. In an 
ideal world the voltage across a resistor is related to the current through the resistor by a fixed 
quantity called resistance—a parameter that is not affected by how fast the applied signal 
varies or the magnitude of the applied signal—totally fixed (ideally) in value. However, for 
both the inductor and capacitor the relationship between the voltage and current is very sensi-
tive to the time-varying characteristics of the applied signal. Recall the discussion of capaci-
tors in Section 10.10 where the equation

iC = C
dyC

dt

was introduced. In words, the above equation states that the current of a capacitor is equal to 
the product of the magnitude of the capacitance (determined by its construction) times the 
derivative of the voltage across the capacitor with respect to time. Since the concept of the 
derivative plays a very important part in the reaction of a capacitor to a time-varying quantity, 
it is absolutely necessary that we develop some familiarity with what it means to take the 
derivative of any function. For the moment, since the sinusoidal waveform is the waveform of 
interest, let us examine what the derivative of such a waveform might look like.

Keep in mind that the derivative of a function is the rate of change of that quantity with 
respect to time. In other words, if it fails to change at a particular instant, dyC = 0 and the 
derivative is zero. If it changes at a very high rate, the derivative is very high. Now what does 
this mean to the basic sinusoidal waveform? Looking at the sinusoidal waveform of Fig. 14.1, 
it is clear that at the instant the curve passes through the origin at t = 0 s the curve is rising 
(changing) very quickly with time. The result is that the derivative of the voltage at that 

The Basic Elements 
and Phasors

•	 Become familiar with the response of a resistor, 
an inductor, and a capacitor to the application of 
a sinusoidal voltage or current.

•	 Learn how to apply the phasor format to add and 
subtract sinusoidal waveforms.

•	 Understand how to calculate the real power to 
resistive elements and the reactive power to 
inductive and capacitive elements.

•	 Become aware of the differences between the 
frequency response of ideal and practical 
elements.

•	 Become proficient in the use of a calculator to 
work with complex numbers.

Objectives

1414

�



622    The Basic Elements and Phasors �

instant is a maximum and, since this is the voltage across a capacitor, the 
current would be a maximum as determined by the equation above. At 
the positive and negative peaks of the waveform, the waveform is chang-
ing from a positive-going to negative-going waveform and at that instant 
there is no change in voltage. The result is an instant where the voltage 
is not changing, dyC = 0, and the derivative must be zero for that 
instant. The resulting current at that instant is zero.

If we plot the waveform for dyC>dt due to the applied voltage of Fig. 
14.1, we will obtain the waveform of Fig. 14.2. Note the peak values at 
the same instants that the voltage of Fig. 14.1 passed through the origin.
Notice also that when the voltage increases with a positive slope dyC>dt 
is positive, and when it decreases with a negative slope it is negative. 
Also note that dyC>dt is zero when the applied voltage reaches a positive 
or negative peak. In total, the derivative of the applied voltage results in 
a cosine wave with a peak value that will be a function of the capaci-
tance and how quickly the applied voltage changes with time.

Sine wave

0

  =  0

t2 t3t1 t4

  = max

  =  0vC

t

dt

dt

dvC

dvC

dvC

dt

FIG. 14.1
Defining those points in a sinusoidal waveform that have maximum 

and minimum derivatives.

Cosine wave
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max
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dt dt
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FIG. 14.2
Derivative of the sine wave of Fig. 14.1.

In general,

the derivative of a sine wave is a cosine wave.

In Fig. 14.3 two waveforms of different frequencies are shown above 
their derivative. Clearly, the higher the frequency the steeper the slope 
(and, hence, the quicker the change in voltage with time) when the volt-
age crosses the axis and the higher the peak value of the derivative. Of 
additional importance is the fact that

the current through and voltage across the capacitor have the same 
frequency and period.
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In general,

the derivative of a sine wave has the same period and frequency as 
the original sinusoidal waveform.

For the inductor the voltage and current will interchange roles 
resulting in a voltage that is directly related to the inductance of an 
inductor (due to construction) and the rate in which the current through 
the coil changes. No change in current through the coil and the termi-
nal voltage is zero no matter how high the inductance. In addition, 
higher frequencies for the same inductance will result in higher volt-
ages across the coil.

The introduction to material such as the derivative and the integral is 
included solely on an introductory level. Be aware that it will not be nec-
essary to mathematically perform derivative calculations (a form of cal-
culus) to continue with the material presented in this text. There are no 
examples that require you to calculate the derivative or integrate any 
function. Their appearance is only to fill in the gaps so that you have 
some understanding of how the final conclusions were derived.

For those students with some calculus background finding the deriva-
tive of the sinusoidal function of Fig. 14.1 would proceed as follows 
(a process referred to as differentiation):

yC (t) = Em sin(vt { u)

and	

d
dt
yC (t) = vEm cos(vt { u)

= 2pf Em cos(vt { u)
	 (14.1)

Take special note of the results of Eq. (14.1) where it is clear that the 
peak value of the cosine waveform is directly related to the applied fre-
quency and is multiplied by the factor 2p. The phase angle u associated 
with both yC and its derivative remains the same. Again, there is no 
requirement that you be well versed in differentiation or integration to 
continue with the content of this text.
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Less slope
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f2f1 >vC1 vC2

dt
1

dvC

2
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FIG. 14.3
Effect of frequency on the peak value of the derivative.
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14.2 R esponse of Basic R, L, and C 
Elements to a Sinusoidal Voltage 
or Current

Now that we are familiar with the characteristics of the derivative of a 
sinusoidal function, we can investigate the response of the basic ele-
ments R, L, and C to a sinusoidal voltage or current.

Resistor

For power-line frequencies and frequencies up to a few hundred kilo-
hertz, resistance is, for all practical purposes, unaffected by the fre-
quency of the applied sinusoidal voltage or current. For this frequency 
region, the resistor R in Fig. 14.4 can be treated as a constant, and Ohm’s 
law can be applied as follows. For y = Vm sin vt,

i =
y

R
=

Vm sin vt

R
=

Vm

R
 sin vt = Im sin vt

where	 Im =
Vm

R
	 (14.2)

In addition, for a given i,

y = iR = (Im sin vt)R = ImR sin vt = Vm sin vt

where	 Vm = ImR	 (14.3)

A plot of y and i in Fig. 14.5 reveals that

for a purely resistive element, the voltage across and the current 
through the element are in phase, with their peak values related 
by Ohm’s law.

Inductor

We found in Chapter 11 that the voltage across the inductor of Fig. 14.6 is 
directly related to the inductance of the coil and the rate of change of cur-
rent through the coil. A relationship defined by the following equation:

yL = L
diL
dt

Consequently, the higher the frequency, the greater is the rate of 
change of current through the coil, and the greater is the magnitude of 
the voltage. In addition, we found in the same chapter that the induct-
ance of a coil determines the rate of change of the flux linking a coil for 
a particular change in current through the coil. The higher the induct-
ance, the greater is the rate of change of the flux linkages, and the greater 
is the resulting voltage across the coil.

For a sinusoidal current defined by

iL = Im sin vt

we can calculate the voltage across the coil by differentiating the current 
through the coil and substituting into the basic equation above. That is,

 yL = L
diL
dt

= L
d

dt
 (Im sin vt) = LIm

d

dt
 (sin vt)

 = LIm(v cos vt)

v
+

–

i

R

FIG. 14.4
Determining the sinusoidal response for  

a resistive element.

qt0 p 2p

iR

vR

Vm
Im

FIG. 14.5
The voltage and current of a resistive element  

are in phase.

iL  =  Im sin qt

vL

+

–
L

FIG. 14.6
Investigating the sinusoidal response  

of an inductive element.
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with the final solution of

yL = vLIm sin(vt + 90°)

The peak value of the resulting voltage is therefore directly related to the 
applied frequency (v = 2pf ), the inductance of the coil L, and the peak 
value of the applied current Im. A plot of yL and iL in Fig. 14.7 reveals 
that for an inductor, yL leads iL by 90°, or iL lags yL by 90°.

The opposition to an applied voltage (similar to the opposition estab-
lished by the resistance of a resistor in any network) can be determined 
by simply substituting the peak values for Vm and Im as follows:

Opposition =
cause

effect
=

Vm

Im
=

vLIm

Im
= vL

revealing that the opposition established by an inductor in an ac sinusoi-
dal network is directly related to the product of the angular velocity 
(v = 2pf ) and the inductance.

The quantity vL, called the reactance (from the word reaction) of an 
inductor, is symbolically represented by XL and is measured in ohms; 
that is,

	 XL = vL  (ohms, Ω)	 (14.4)

In an Ohm’s law format, its magnitude can be determined from

	 XL =
Vm

Im
  (ohms, Ω)	 (14.5)

Inductive reactance is the opposition to the flow of current, which 
results in the continual interchange of energy between the source and the 
magnetic field of the inductor. In other words, inductive reactance, 
unlike resistance (which dissipates energy in the form of heat), does not 
dissipate electrical energy (ignoring the effects of the internal resistance 
of the inductor.)

Once the reactance is known, the peak value of the voltage or current 
can be found from the other by simply applying Ohm’s law as follows:

	 Im =
Vm

XL
	 (14.6)

and	 Vm = ImXL	 (14.7)

Capacitor

Let us now examine the capacitive configuration of Fig. 14.8. For the 
capacitor, we will determine i for a particular voltage across the element 
rather than the voltage as was determined for the inductive element. 
When this approach reaches its conclusion, we will know the relation-
ship between the voltage and current and the opposition level to sinusoi-
dally applied emfs.

Our investigation of the inductor revealed that the inductive voltage 
across a coil opposes the instantaneous change in current through the 
coil. For capacitive networks, the voltage across the capacitor is limited 
by the rate at which charge can be deposited on, or released by, the plates 
of the capacitor during the charging and discharging phases, respec-
tively. In other words, an instantaneous change in voltage across a 

qt0 p 2p

iL

vL
Vm

Im

p
2

3
2 

p

– p
90°

L: vL leads iL by 90°

2

FIG. 14.7
For a pure inductor, the voltage across the coil leads 

the current through the coil by 90°.

iC  =  ?

 vC  =  Vm sin qt
+

–
C

FIG. 14.8
Investigating the sinusoidal response of  

a capacitive element.
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capacitor is opposed by the fact that there is an element of time required 
to deposit charge on (or release charge from) the plates of a capacitor, 
and V = Q>C.

Since capacitance is a measure of the rate at which a capacitor will 
store charge on its plates,

for a particular change in voltage across the capacitor, the greater 
the value of capacitance, the greater is the resulting capacitive 
current.

In addition, the fundamental equation relating the voltage across a 
capacitor to the current of a capacitor [i = C(dyC>dt)] indicates that

for a particular capacitance, the greater the rate of change of voltage 
across the capacitor, the greater is the capacitive current.

Certainly, an increase in frequency corresponds to an increase in the rate 
of change of voltage across the capacitor and to an increase in the cur-
rent of the capacitor.

For the capacitor of Fig. 14.8, we recall from Chapter 10 that

iC = C 
dyC

dt

Substituting

yC = Vm sin vt

and, applying differentiation, we obtain

iC = C 
dyC

dt
= C 

d

dt
 (Vm sin vt) = vCVm cos vt

so that

iC = vCVm sin(vt + 90°)

Note that the peak value of iC is directly related to v(=  2pf ), C, and 
the peak value of the applied voltage.

A plot of yC and iC in Fig. 14.9 reveals that

for a capacitor, iC leads yC by 90°, or yC lags iC by 90°.*

Applying

Opposition =
cause

effect

and substituting values, we obtain

Opposition =
Vm

Im
=

Vm

vCVm
=

1

vC

The quantity 1>vC, called the reactance of a capacitor, is symboli-
cally represented by XC and is measured in ohms; that is,

	 XC =
1

vC
  (ohms, Ω)	 (14.8)

*A mnemonic phrase sometimes used to remember the phase relationship between the 
voltage and current of a coil and capacitor is “ELI the ICE man.” Note that the L (inductor) 
has the E before the I (e leads i by 90°), and the C (capacitor) has the I before the E (i leads e 
by 90°).

qt0 p 2p

iC vC

Vm

Im

–
90°

C:  iC leads vC by 90°

3
2

p
p
2

p
2

FIG. 14.9
The current of a purely capacitive element leads 

the voltage across the element by 90°.
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In an Ohm’s law format, its magnitude can be determined from

	 XC =
Vm

Im
  (ohms, Ω)	 (14.9)

Capacitive reactance is the opposition to the flow of charge, which 
results in the continual interchange of energy between the source and the 
electric field of the capacitor. Like the inductor, the capacitor does not dis-
sipate energy in any form (ignoring the effects of the leakage resistance).

Once the reactance is known, the peak value of the voltage or current 
can be found from the other by simply applying Ohm’s law as follows:

	 Im =
Vm

XC
	 (14.10)

and	 Vm = ImXC	 (14.11)

In the circuits just considered, the current was given in the inductive cir-
cuit and the voltage in the capacitive circuit. This was done to avoid the use 
of integration (not required to continue with the material) in finding the 
unknown quantities. In the inductive circuit,

yL = L  
diL
dt

and through integration:	 iL =
1

L LyL dt	 (14.12)

In the capacitive circuit,

iC = C 
dyC

dt

and through integration:	 yC =
1

C L iC dt	 (14.13)

Soon, we shall consider a method of analyzing ac circuits that will per-
mit us to solve for an unknown quantity with sinusoidal input without 
having to use direct integration or differentiation.

It is possible to determine whether a network with one or more ele-
ments is predominantly capacitive or inductive by noting the phase rela-
tionship between the input voltage and current.

If the source current leads the applied voltage, the network is 
predominantly capacitive, and if the applied voltage leads the source 
current, it is predominantly inductive.

Since we now have an equation for the reactance of an inductor or 
capacitor, we do not need to use derivatives or integration in the exam-
ples to be considered. Simply applying Ohm’s law, Im = Em>XL (or XC), 
and keeping in mind the phase relationship between the voltage and cur-
rent for each element will be sufficient to complete the examples.

EXAMPLE 14.1  The voltage across a resistor is provided below. Find 
the sinusoidal expression for the current if the resistor is 10 Ω. Sketch 
the curves for y and i.

	 a.	 y = 100 sin 377t
	 b.	 y = 25 sin(377t + 60°)
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Solutions: 

	 a.	 Eq. (14.2): Im =
Vm

R
=

100 V

10 Ω
= 10 A

		  (y and i are in phase), resulting in

i = 10 sin 377t

		  The curves are sketched in Fig. 14.10.

	 b.	 Eq. (14.2): Im =
Vm

R
=

25 V

10 Ω
= 2.5 A

		  (y and i are in phase), resulting in

i = 2.5 sin(377t + 60°)

		  The curves are sketched in Fig. 14.11.

EXAMPLE 14.2  The current through a 5 Ω resistor is i = 40 sin(377t +
30°). Find the sinusoidal expression for the voltage across the resistor.

Solution:  Eq. (14.3): Vm = ImR = (40 A)(5 Ω) = 200 V

(y and i are in phase), resulting in

y = 200 sin(377t + 30°)

EXAMPLE 14.3  The current through a 0.1 H coil is provided. Find the 
sinusoidal expression for the voltage across the coil. Sketch the y and i 
curves.

	 a.	 i = 10  sin  377t
	 b.	 i = 7  sin(377t - 70°)

Solutions: 

	 a.	 Eq. (14.4): XL = vL = (377 rad/s)(0.1 H) = 37.7 Ω
		  Eq. (14.7): Vm = ImXL = (10 A)(37.7 Ω) = 377 V

		  and we know that for a coil y leads i by 90°. Therefore,

y = 377 sin(377t + 90°)

		  The curves are sketched in Fig. 14.12.

�0 p 2piR

vR
Vm  =  100 V

Im  =  10 A

In phase

FIG. 14.10
Example 14.1(a).
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vRVm  =  25 V

Im  =  2.5 A
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FIG. 14.11
Example 14.1(b).
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FIG. 14.12
Example 14.3(a).
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	 b.	 XL remains at 37.7 Ω.

Vm = ImXL = (7 A)(37.7 Ω) = 263.9 V

		  and we know that for a coil y leads i by 90°. Therefore,

y = 263.9 sin(377t - 70° + 90°)

		  and

y = 263.9 sin(377t + 20°)

		  The curves are sketched in Fig. 14.13.

EXAMPLE 14.4  The voltage across a 0.5 H coil is provided below. 
What is the sinusoidal expression for the current?

y = 100 sin 20t

Solution: 

 XL = vL = (20 rad/s)(0.5 H) = 10 Ω

 Im =
Vm

XL
=

100 V

10 Ω
= 10 A

and we know the i lags y by 90°. Therefore,

i = 10 sin(20t − 90°)

EXAMPLE 14.5  The voltage across a 1 mF capacitor is provided 
below. What is the sinusoidal expression for the current? Sketch the y 
and i curves.

y = 30 sin 400t

Solution: 

Eq. (14.8): XC =
1

vC
=

1

(400 rad/s)(1 * 10-6 F)
=

106 Ω
400

= 2500 Ω

Eq. (14.10): Im =
Vm

XC
=

30 V

2500 Ω
= 0.0120 A = 12 mA

and we know that for a capacitor i leads y by 90°. Therefore,

i = 12 : 10−3 sin(400t + 90°)

The curves are sketched in Fig. 14.14.

�

0
p 2p

iL
vL

Vm  =  263.9 V

Im  =  7 A

90°

p
2

70°

v leads i by 90°.

3
2 

p20°

FIG. 14.13
Example 14.3(b).

0
90°

iC

vC

Vm  =  30 V

Im  =  12 mA

i leads v by 90°.

– 2 2
3
2

2

FIG. 14.14
Example 14.5.
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EXAMPLE 14.6  The current through a 100 mF capacitor is given. Find 
the sinusoidal expression for the voltage across the capacitor.

i = 40 sin(500t + 60°)

Solution: 

 XC =
1

vC
=

1

(500 rad/s)(100 * 10-6 F)
=

106 Ω
5 * 104 =

102 Ω
5

= 20 Ω

 VM = IMXC = (40 A)(20 Ω) = 800 V

and we know that for a capacitor, y lags i by 90°. Therefore,

y = 800 sin(500t + 60° - 90°)
and	 y = 800 sin(500t − 30°)

EXAMPLE 14.7  For the following pairs of voltages and currents, 
determine whether the element involved is a capacitor, an inductor, or a 
resistor. Determine the value of C, L, or R if sufficient data are provided 
(Fig. 14.15):

	 a.	  y = 100 sin(vt + 40°)
		   i = 20 sin(vt + 40°)
	 b.	  y = 1000 sin(377t + 10°)
		   i = 5 sin(377t - 80°)
	 c.	  y = 500 sin(157t + 30°)
		   i = 1 sin(157t + 120°)
	 d.	  y = 50 cos(vt + 20°)
		   i = 5 sin(vt + 110°)

Solutions: 

	 a.	 Since y and i are in phase, the element is a resistor, and

R =
Vm

Im
=

100 V

20 A
= 5 �

	 b.	 Since y leads i by 90°, the element is an inductor, and

XL =
Vm

Im
=

1000 V

5 A
= 200 Ω

		  so that XL = vL = 200 Ω or

L =
200 Ω
v

=
200 Ω

377 rad/s
= 0.53 H

	 c.	 Since i leads y by 90°, the element is a capacitor, and

XC =
Vm

Im
=

500 V

1 A
= 500 Ω

		  so that XC =
1

vC
= 500 Ω or

C =
1

v500 Ω
=

1

(157 rad/s)(500 Ω)
= 12.74 F

	 d.	  y = 50 cos(vt + 20°) = 50 sin(vt + 20° + 90°)
 = 50 sin(vt + 110°)

v ?
+

–

i

FIG. 14.15
Example 14.7.
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Since y and i are in phase, the element is a resistor, and

R =
Vm

Im
=

50 V

5 A
= 10 �

14.3  Frequency Response 
of the Basic Elements

Thus far, each description has been for a set frequency, resulting in a 
fixed level of impedance for each of the basic elements. We must now 
investigate how a change in frequency affects the impedance level of 
the basic elements. It is an important consideration because most sig-
nals other than those provided by a power plant contain a variety of 
frequency levels. The last section made it quite clear that the reactance 
of an inductor or a capacitor is sensitive to the applied frequency. 
However, the question is, How will these reactance levels change if we 
steadily increase the frequency from a very low level to a much higher 
level?

Although we would like to think of every element as ideal, it is 
important to realize that every commercial element available today will 
not respond in an ideal fashion for the full range of possible frequencies. 
That is, each element is such that for a particular range of frequencies, it 
performs in an essentially ideal manner. However, there is always a 
range of frequencies in which the performance varies from the ideal. 
Fortunately, the designer is aware of these limitations and will take them 
into account in the design.

The discussion begins with a look at the response of the ideal 
elements—a response that will be assumed for the remaining chapters of 
this text and one that can be assumed for any initial investigation of a 
network. This discussion is followed by a look at the factors that cause 
an element to deviate from an ideal response as frequency levels become 
too low or high.

Ideal Response

Resistor R    For an ideal resistor, you can assume that frequency will 
have absolutely no effect on the impedance level, as shown by the 
response in Fig. 14.16. Note that at 5 kHz or 20 kHz, the resistance of 
the resistor remains at 22 Ω; there is no change whatsoever. For the rest 
of the analyses in this text, the resistance level remains as the nameplate 
value, no matter what frequency is applied. This is not true for commer-
cially available resistors with some more sensitive to the applied fre-
quency than others, but for this text we will assume the resistors are 
frequency insensitive.

Inductor L    For the ideal inductor, the equation for the reactance can 
be written as follows to isolate the frequency term in the equation. The 
result is a constant times the frequency variable that changes as we move 
down the horizontal axis of a plot:

XL = vL = 2pfL = (2pL)f = kf  with k = 2pL

The resulting equation can be compared directly with the equation for a 
straight line:

y = mx + b = kf + 0 = kf

0 5 10 15 20 f (kHz)

R

22 �

FIG. 14.16
R versus f for the range of interest.
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where b = 0 and the slope is k or 2pL. XL is the y variable, and f is the x 
variable, as shown in Fig. 14.17. Since the inductance determines the 
slope of the curve, the higher the inductance, the steeper is the straight-
line plot, as shown in Fig. 14.17 for two levels of inductance.

In particular, note that at f = 0 Hz, the reactance of each plot is zero 
ohms, as determined by substituting f = 0 Hz into the basic equation 
for the reactance of an inductor:

XL = 2pfL = 2p(0 Hz)L = 0 Ω

Since a reactance of zero ohms corresponds with the characteristics of a 
short circuit, we can conclude that

at a frequency of 0 Hz, an inductor takes on the characteristics of a 
short circuit, as shown in Fig. 14.18.

XL (k�)

0 5 10 15 20 f (kHz)

XL  =  0 � at f  =  0 Hz

Increasing L
L  =  20 mH

L  =  100 mH

1

2

3

4

5

FIG. 14.17
XL versus frequency.

f = very high frequenciesf = 0 HzL

FIG. 14.18
Effect of low and high frequencies on the circuit model of an inductor.

As shown in Fig. 14.18, as the frequency increases, the reactance 
increases, until it reaches an extremely high level at very high frequen-
cies. The result is that

at very high frequencies, the characteristics of an inductor approach 
those of an open circuit, as shown in Fig. 14.18.

The inductor, therefore, is capable of handling impedance levels that 
cover the entire range, from zero ohms to infinite ohms, changing at a 
steady rate determined by the inductance level. The higher the induct-
ance, the faster it approaches the open-circuit equivalent.

Capacitor C    For the capacitor, the equation for the reactance

XC =
1

2pfC

can be written as

XC f =
1

2pC
= k  (a constant)

which matches the basic format for a hyberbola:

yx = k

where XC is the y variable, f the x variable, and k a constant equal to 
1>(2pC).

Hyberbolas have the shape appearing in Fig. 14.19 for two levels of 
capacitance. Note that the higher the capacitance, the closer the curve 
approaches the vertical and horizontal axes at low and high frequencies.

At or near 0 Hz, the reactance of any capacitor is extremely high, as 
determined by the basic equation for capacitance:

XC =
1

2pfC
=

1

2p(0 Hz)C
 1 ∞ Ω

XC (k�)

0 5 10 15 20 f (kHz)

Increasing C

1

2

3

4

5

C  =  0.01    F

C  =  0.03    F

FIG. 14.19
XC versus frequency.
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The result is that

at or near 0 Hz, the characteristics of a capacitor approach those of 
an open circuit, as shown in Fig. 14.20.

f = very high frequenciesf = 0 Hz

C

FIG. 14.20
Effect of low and high frequencies on the circuit model of a capacitor.

As the frequency increases, the reactance approaches a value of zero 
ohms. The result is that

at very high frequencies, a capacitor takes on the characteristics of a 
short circuit, as shown in Fig. 14.20.

It is important to note in Fig. 14.19 that the reactance drops very rap-
idly as the frequency increases. It is not a gradual drop as encountered 
for the rise in inductive reactance. In addition, the reactance sits at a 
fairly low level for a broad range of frequencies. In general, therefore, 
recognize that for capacitive elements, the change in reactance level can 
be dramatic with a relatively small change in frequency level.

Finally, recognize the following:

As frequency increases, the reactance of an inductive element increases, 
while that of a capacitor decreases, with one approaching an open-
circuit equivalent as the other approaches a short-circuit equivalent.

Practical Response

Resistor R    In the manufacturing process, every resistive element 
inherits some stray capacitance levels and lead inductances. For most 
applications, the levels are so low that their effects can be ignored. How-
ever, as the frequency extends beyond a few megahertz, it may be neces-
sary to be aware of their effects. For instance, a number of carbon 
composition resistors have the frequency response appearing in Fig. 14.21. 

f (log scale)

R
(% of

nameplate
value)

1 MHz

100

90

60

80
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40
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20

10 MHz 100 MHz 1000 MHz

100 �

2 k�

10 k�

100 k�

Ideal response

FIG. 14.21
Typical resistance-versus-frequency curves for carbon composition resistors.
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The 100 Ω resistor is essentially stable up to about 300 MHz, whereas the 
100 kΩ resistor starts to drop off at about 15 MHz. In general, therefore, 
this type of carbon composition resistor has the ideal characteristics of 
Fig. 14.16 for frequencies up to about 15 MHz. For frequencies of 100 Hz, 
1 kHz, 150 kHz, and so on, the resistor can be considered ideal.

The horizontal scale of Fig. 14.21 is a log scale that starts at 1 MHz 
rather than zero as applied to the vertical scale. Logarithms are discussed 
in detail in Chapter 22, which describes why the scale cannot start at 
zero and the fact that the major intervals are separated by powers of 10. 
For now, simply note that log scales permit the display of a range of 
frequencies not possible with a linear scale such as was used for the ver-
tical scale of Fig. 14.21. Imagine trying to draw a linear scale from 
1 MHz to 1000 MHz using a linear scale. It would be an impossible task 
unless the horizontal length of the plot was enormous. As indicated 
above, a great deal more will be said about log scales in Chapter 22.

Inductor L    In reality, inductance can be affected by frequency, tempera-
ture, and current. A true equivalent for an inductor appears in Fig. 14.22. 
The series resistance Rs represents the copper losses (resistance of the 
many turns of thin copper wire); the eddy current losses (losses due to 
small circular currents in the core when an ac voltage is applied); and the 
hysteresis losses (losses due to core losses created by the rapidly revers-
ing field in the core). The capacitance Cp is the stray capacitance that 
exists between the windings of the inductor.

For most inductors, the construction is usually such that the larger the 
inductance, the lower is the frequency at which the parasitic elements 
become important. That is, for inductors in the millihenry range (which is 
very typical), frequencies approaching 100 kHz can have an effect on the 
ideal characteristics of the element. For inductors in the microhenry range, 
a frequency of 1 MHz may introduce negative effects. This is not to sug-
gest that the inductors lose their effect at these frequencies but rather that 
they can no longer be considered ideal (purely inductive elements).

Fig. 14.23 is a plot of the magnitude of the reactance XL of Fig. 14.22 
versus frequency. Note that up to about 2 MHz, the impedance increases 
almost linearly with frequency, clearly suggesting that the 100 mH 
inductor is essentially ideal. However, above 2 MHz, all the factors con-
tributing to Rs start to increase, while the reactance due to the capacitive 
element Cp is more pronounced. The dropping level of capacitive reac-
tance begins to have a shorting effect across the windings of the inductor 
and reduces the overall inductive effect. Eventually, if the frequency 

ZL

Rs

Cp

L

FIG. 14.22
Practical equivalent for an inductor.

1MHz 2MHz 4MHz 6MHz 10MHz
f (log scale)

Due to Cp

10 �H

100 �H

Due to Cp

XL (�)

ZL ≅ 2   fL

XL ≅ 2   fL

FIG. 14.23
XL versus frequency for the practical inductor equivalent of Fig. 14.22.
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continues to increase, the capacitive effects overcome the inductive 
effects, and the element actually begins to behave in a capacitive fash-
ion. Note the similarities of this region with the curves in Fig. 14.19. 
Also, note that decreasing levels of inductance (available with fewer 
turns and therefore lower levels of Cp) do not demonstrate the degrading 
effect until higher frequencies are applied.

In general, therefore, the frequency of application for a coil becomes 
important at increasing frequencies. Inductors lose their ideal character-
istics and, in fact, begin to act as capacitive elements with increasing 
losses at very high frequencies.

Capacitor C    The capacitor, like the inductor, is not ideal for the full 
frequency range. In fact, a transition point exists where the characteris-
tics of a capacitor actually take on those of an inductor. The equivalent 
model for an inductor appearing in Fig. 14.24(a) is an expanded version 
of that appearing in Fig. 10.21. An inductor Ls was added to reflect the 
inductance present due to the capacitor leads and any inductance intro-
duced by the design of the capacitor. The inductance of the leads is typi-
cally about 0.05 mH per centimeter, which is about 0.2 mH for a capacitor 
with 2 cm leads at each end—a level of inductance that can be important 
at very high frequencies.

C Rp
Rd

Ls

Rs
C

(a)

FIG. 14.24
Practical equivalent for a capacitor; (a) network; (b) response.

Inductive characteristics
due to Ls

1 f (MHz–
log scale)
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0.01 �F

20

10

XC ≅ 1
2   fC

(b)

XC (�)

The resistance Rd reflects the energy lost due to molecular friction 
within the dielectric as the atoms continually realign themselves in the 
dielectric due to the applied alternating ac voltage. Of interest, however, 
the relative permittivity decreases with increasing frequencies but even-
tually undergoes a complete turnaround and begins to increase at very 
high frequencies. Notice the capacitor included in series with Rd to 
reflect the fact that this loss is not present under dc conditions. The 
capacitor assumes its open-circuit state for dc applications.

The resistance Rp, as introduced earlier, is defined by the resistivity 
of the dielectric (typically 1012 Ω or greater) and the case resistance and 
will determine the level of leakage current if the capacitor is left to dis-
charge. Depending on the capacitor, the discharge time can extend from 
a few seconds for some electrolytics to hours (paper) or days (polysty-
rene), revealing that electrolytics typically have much lower levels of Rp 
than most other capacitors.
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The effect of all the elements on the actual response of a 0.01 mF 
metallized film capacitor with 2 cm leads is provided in Fig. 14.24(b), 
where the response is almost ideal for the low and mid-frequency range 
but then at about 3.7 MHz begins to show an inductive response due to Ls.

In general, therefore, the frequency of application is important for 
capacitive elements because when the frequency increases to a certain 
level, the element takes on inductive characteristics. Also, the frequency 
of application defines the type of capacitor (or inductor) that is applied: 
Electrolytics are limited to frequencies to perhaps 10 kHz, while ceramic 
or mica can handle frequencies higher than 10 MHz.

The expected temperature range of operation can have an important 
impact on the type of capacitor chosen for a particular application. Elec-
trolytics, tantalum, and some high-k ceramic capacitors are very sensi-
tive to colder temperatures. In fact, most electrolytics lose 20% of their 
room-temperature capacitance at 0°C (freezing). Higher temperatures 
(up to 100°C or 212°F) seem to have less impact in general than colder 
temperatures, but high-k ceramics can lose up to 30% of their capaci-
tance level at 100°C compared to room temperature. With experience, 
you will learn the type of capacitor to use for each application and only 
be concerned when you encounter very high frequencies, extreme tem-
peratures, or very high currents or voltages.

ESR    The term equivalent series resistance (ESR) was introduced in 
Chapter 10, where it was noted that the topic would surface again after 
the concept of frequency response was introduced. In the simplest of 
terms, the ESR as appearing in the simplistic model of Fig. 14.25(a) is 
the actual dissipative factor one can expect when using a capacitor at 
various frequencies. For dc conditions it is essentially the dc resistance 
of the capacitor appearing as Rs in Fig. 14.24(a). However, for any ac 
application the level of dissipation will be a function of the levels of Rp 
and Rd and the frequency applied.

Although space does not permit a detailed derivation here, the ESR 
for a capacitor is defined by the following equation:

ESR = Rs +
1

v2C2Rp
+

1

vC2Rd

Note that the first term is simply the dc resistance and is not a function 
of frequency. However, the next two terms are a function of frequency 
in the denominator, revealing that they will increase very quickly as the 
frequency drops. The result is the valid concern about levels of ESR at 
low frequencies. At high frequencies, the second two terms will die off 
quickly, leaving only the dc resistance. In general, therefore, keep in 
mind that

the level of ESR or equivalent series resistance is frequency sensitive 
and considerably greater at low frequencies than just the dc 
resistance. At very high frequencies, it approaches the dc level.

It is such as important factor in some designs that instruments have 
been developed primarily to measure this quantity. One such instrument 
appears in Fig. 14.25(b).

There are some general rules about the level of ESR associated with 
various capacitors. For all applications, the lower the ESR, the better. 
Electrolytic capacitors typically have much higher levels of ESR than 
film, ceramic, or paper capacitors. A standard electrolytic 22 mF capaci-
tor may have an ESR between 5 and 30 Ω, while a standard ceramic 

ESR = Rs + Rp(f) + Rd(f)

C

(a)

(b)

FIG. 14.25
ESR. (a) Impact on equivalent model;  

(b) Measuring instrument.
[(b) Courtesy of Peak Electronics Design Limited]
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may have only 10 to 100 mΩ, a significant difference. Electrolytics, 
however, because of their other characteristics, are still very popular in 
power supply design—it is simply a matter of balancing the ESR level 
with other important factors.

EXAMPLE 14.8  At what frequency will the reactance of a 200 mH 
inductor match the resistance level of a 5 kΩ resistor?

Solution:  The resistance remains constant at 5 kΩ for the frequency 
range of the inductor. Therefore,

 R = 5000 Ω = XL = 2pfL = 2pLf

 = 2p(200 * 10-3 H)f = 1.257f

and	  f =
5000 Hz

1.257
≅ 3.98 kHz

EXAMPLE 14.9  At what frequency will an inductor of 5 mH have the 
same reactance as a capacitor of 0.1 mF?

Solution: 

 XL = XC

 2pfL =
1

2pfC

 f 2 =
1

4p2LC

and

  f =
1

2p1LC
=

1

2p2(5 * 10-3 H)(0.1 * 10-6 F)

 =
1

2p25 * 10-10
=

1

(2p)(2.236 * 10-5)
=

105 Hz

14.05
≅ 7.12 kHz

14.4 Av erage Power and Power Factor

A common question is, How can a sinusoidal voltage or current deliver 
power to a load if it seems to be delivering power during one part of its 
cycle and taking it back during the negative part of the sinusoidal cycle? 
The equal oscillations above and below the axis seem to suggest that 
over one full cycle there is no net transfer of power or energy. However, 
as mentioned in the last chapter, there is a net transfer of power over one 
full cycle because power is delivered to the load at each instant of the 
applied voltage or current (except when either is crossing the axis) no 
matter what the direction is of the current or polarity of the voltage.

To demonstrate this, consider the relatively simple configuration in 
Fig. 14.26, where an 8 V peak sinusoidal voltage is applied across a 2 Ω 
resistor. When the voltage is at its positive peak, the power delivered at 
that instant is 32 W, as shown in the figure. At the midpoint of 4 V, the 
instantaneous power delivered drops to 8 W; when the voltage crosses 
the axis, it drops to 0 W. Note, however, that when the applied voltage is 
at its negative peak, the current may reverse, but at that instant, 32 W is 
still being delivered to the resistor.
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In total, therefore,

even though the current through and the voltage across reverse 
direction and polarity, respectively, power is delivered to the resistive 
load at each instant of time.

If we plot the power delivered over a full cycle, we obtain the curve 
in Fig. 14.27. Note that the applied voltage and resulting current are in 
phase and have twice the frequency of the power curve. For one full 
cycle of the applied voltage having a period T, the power level peaks for 
each pulse of the sinusoidal waveform.

The fact that the power curve is always above the horizontal axis 
reveals that power is being delivered to the load at each instant of 
time of the applied sinusoidal voltage.

Any portion of the power curve below the axis reveals that power is 
being returned to the source. The average value of the power curve 

R 2 �

iR

vR

+

–

0

8 V

–8 V

vR

2
3
2

2 t

R 2 �

iR = 2 A+

–

4 V

= 32 

+

–

R 2 �

iR = 4 A

P = iR
2R

W

8 V

8 V

iR = 4 A

R 2 �

iR = 0 A

P = 0 W

R 2 �

+

–

0 V

= 8
P = i2R

W

= 32 
P = i2R

W

+

–

FIG. 14.26
Demonstrating that power is delivered at every instant of a sinusoidal voltage 

waveform (except yR = 0 V).

(Average)
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t
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v

i0
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8 V

4 A
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16
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source by

element
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delivered to
element by

source

P(W)

FIG. 14.27
Power versus time for a purely resistive load.
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occurs at a level equal to VmIm>2, as shown in Fig. 14.27. This power 
level is called the average or real power level. It establishes a particu-
lar level of power transfer for the full cycle, so that we do not have to 
determine the level of power to apply to a quantity that varies in a sinu-
soidal nature.

If we substitute the equation for the peak value in terms of the rms 
value as

Pav =
Vm Im

2
=

(12 Vrms)(12 Irms)

2
=

2 Vrms Irms

2

we find that the average or real power delivered to a resistor takes on the 
following very convenient form:

	 Pav = Vrms Irms	 (14.14)

Note that the power equation is exactly the same when applied to dc 
networks as long as we work with rms values.

The above analysis was for a purely resistive load. If the sinusoidal 
voltage is applied to a network with a combination of R, L, and C com-
ponents, the instantaneous equation for the power levels is more com-
plex. However, if we are careful in developing the general equation and 
examine the results, we find some general conclusions that will be very 
helpful in the analysis to follow.

In Fig. 14.28, a voltage with an initial phase angle is applied to a net-
work with any combination of elements that results in a current with the 
indicated phase angle.

The power delivered at each instant of time is then defined by

 p = yi = Vm sin(vt + uy)Im sin(vt + ui)

 = Vm Im sin(vt + uy)sin(vt + ui)

Using the trigonometric identity

sin A sin B =
cos(A - B) - cos(A + B)

2

we see that the function sin(vt + uy)sin(vt + ui) becomes

sin(vt + uy)sin(vt + ui)

 =
cos[(vt + uy) - (vt + ui)] - cos[(vt + uy) + (vt + ui)]

2

 =
cos(uy - ui) - cos(2vt + uy + ui)

2

so that
	 Fixed value	 Time-varying (function of t)
	 7	 7

p = c VmIm

2
 cos(uy - ui) d - c VmIm

2
 cos(2vt + uy - ui) d

A plot of y, i, and r on the same set of axes is shown in Fig. 14.29.
Note that the second factor in the preceding equation is a cosine wave 

with an amplitude of VmIm>2 and with a frequency twice that of the volt-
age or current. The average value of this term is zero over one cycle, 
producing no net transfer of energy in any one direction.

The first term in the preceding equation, however, has a constant 
magnitude (no time dependence) and therefore provides some net trans-
fer of energy. This term is referred to as the average power or real 

Load

+

–

i = Im sin (  t +   i)

v = Vm sin (  t +   v)

P

FIG. 14.28
Determining the power delivered in a sinusoidal 

ac network.
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power as introduced earlier. The angle (uy - ui) is the phase angle 
between y and i. Since cos(-a) = cos a,

the magnitude of average power delivered is independent of whether 
Y leads i or i leads Y.

Defining u as equal to � uy - ui � , where � � indicates that only the magni-
tude is important and the sign is immaterial, we have

	 P =
VmIm

2
 cos u  (watts, W)	 (14.15)

where P is the average power in watts. This equation can also be written

P = a Vm12
b a Im12

bcos u

or, since	 Veff =
Vm12
  and  Ieff =

Im12

Eq. (14.15) becomes

	 P = Vrms Irms cos u	 (14.16)

Let us now apply Eqs. (14.15) and (14.16) to the basic R, L, and C 
elements.

Resistor

In a purely resistive circuit, since y and i are in phase, �uy - ui � = u = 0°,
and cos u = cos 0° = 1, so that

	 P =
VmIm

2
= Vrms Irms  (W)	 (14.17)

or, since	 Irms =
Vrms

R

then	 P =
V2

rms

R
= I2

rmsR  (W)	 (14.18)

0

p

v

i

Pav

  i

  v

   t

Vm Im
2
     cos(  v  –    i)

Vm Im
2

FIG. 14.29
Defining the average power for a sinusoidal ac network.
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Inductor

In a purely inductive circuit, since y leads i by 90°, � uy - ui � = u =
� -90° � = 90°. Therefore,

P =
VmIm

2
 cos 90° =

VmIm

2
  (0) = 0 W

The average power or power dissipated by the ideal inductor 
(no associated resistance) is zero watts.

Capacitor

In a purely capacitive circuit, since i leads y by 90°, � uy - ui � = u =
� -90° � = 90°. Therefore,

P =
VmIm

2
 cos(90°) =

VmIm

2
 (0) = 0 W

The average power or power dissipated by the ideal capacitor (no 
associated resistance) is zero watts.

EXAMPLE 14.10  Find the average power dissipated in a network 
whose input current and voltage are the following:

 i = 5 sin(vt + 40°)
 y = 10 sin(vt + 40°)

Solution:  Since y and i are in phase, the circuit appears to be purely 
resistive at the input terminals. Therefore,

P =
VmIm

2
=

(10 V)(5 A)

2
= 25 W

or	  R =
Vm

Im
=

10 V

5 A
= 2 Ω

and	  P =
V rms

2

R
=

[(0.707)(10 V)]2

2
= 25 W

or	  P = I rms
2 R = [(0.707)(5 A)]2(2) = 25 W

For the following example, the circuit consists of a combination of 
resistances and reactances producing phase angles between the input 
current and voltage different from 0° or 90°.

EXAMPLE 14.11  Determine the average power delivered to networks 
having the following input voltage and current:

	 a.	  y = 100 sin(vt + 40°)
		   i = 20 sin(vt + 70°)
	 b.	  y = 150 sin(vt - 70°)
		   i = 3 sin(vt - 50°)

Solutions: 
	 a.	  Vm = 100, uy = 40°
		   Im = 20 A, ui = 70°
		   u = � uy - ui � = � 40° - 70° � = � -30° � = 30°
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		  and

 P =
VmIm

2
 cos u =

(100 V)(20 A)

2
 cos(30°) = (1000 W)(0.866)

 = 866 W

	 b.	  Vm = 150 V,  uy = -70°
		   Im = 3 A,  ui = -50°
		   u = � uy - ui � = � -70° - (-50°) �
		   = � -70° + 50° � = � -20° � = 20°

		  and

 P =
VmIm

2
 cos u =

(150 V)(3 A)

2
 cos(20°) = (225 W)(0.9397)

 = 211.43 W

Power Factor

In the equation P = (VmIm>2)cos u, the factor that has significant con-
trol over the delivered power level is the cos u. No matter how large the 
voltage or current, if cos u = 0, the power is zero; if cos u = 1, the 
power delivered is a maximum. Since it has such control, the expression 
was given the name power factor and is defined by

	 Power factor = Fp = cos u	 (14.19)

For a purely resistive load such as the one shown in Fig. 14.30, the phase 
angle between y and i is 0° and Fp = cos u = cos 0° = 1. The power deliv-
ered is a maximum of (VmIm>2) cos u = ((100 V)(5 A)>2)(1) = 250 W.

For a purely reactive load (inductive or capactitive) such as the one 
shown in Fig. 14.31, the phase angle between y and i is 90° and 
Fp = cos u = cos 90° = 0. The power delivered is then the minimum 
value of zero watts, even though the current has the same peak value as 
that encountered in Fig. 14.30.

For situations where the load is a combination of resistive and reac-
tive elements, the power factor varies between 0 and 1. The more resis-
tive the total impedance, the closer is the power factor to 1; the more 
reactive the total impedance, the closer is the power factor to 0.

In terms of the average power and the terminal voltage and current,

	 Fp = cos u =
P

Vrms Irms
	 (14.20)

The terms leading and lagging are often written in conjunction with 
the power factor. They are defined by the current through the load. If the 
current leads the voltage across a load, the load has a leading power 
factor. If the current lags the voltage across the load, the load has a 
lagging power factor. In other words,

capacitive networks have leading power factors, and inductive 
networks have lagging power factors.

The importance of the power factor to power distribution systems is 
examined in Chapter 20. In fact, an entire section is devoted to power-
factor correction.

Im = 5 A

R 20 �100 VEm

+

–

Fp = 1

Pmax = 250 W

FIG. 14.30
Purely resistive load with Fp = 1.

100 VEm

+

–

Fp = 0

P = 0 W

XL 20 �

Im = 5 A

FIG. 14.31
Purely inductive load with Fp = 0.
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EXAMPLE 14.12  Determine the power factors of the following loads, 
and indicate whether they are leading or lagging:

	 a.	 Fig. 14.32
	 b.	 Fig. 14.33
	 c.	 Fig. 14.34

Solutions: 
	 a.	 Fp = cos u = cos � 40° - (-20°) � = cos 60° = 0.5 leading

	 b.	 Fp = cos u �  80° - 30° � = cos 50° = 0.64 lagging

	 c.	 Fp = cos u =
P

VeffIeff
=

100 W

(20 V)(5 A)
=

100 W

100 W
= 1

		  The load is resistive, and Fp is neither leading nor lagging.

14.5 C omplex Numbers

In our analysis of dc networks, we found it necessary to determine the 
algebraic sum of voltages and currents. Since the same will also be true for 
ac networks, the question arises, How do we determine the algebraic sum 
of two or more voltages (or currents) that are continually changing? 
Although one solution would be to find the algebraic sum on a point-to-
point basis (as shown in Section 14.13), this would be a long and tedious 
process in which accuracy would be directly related to the scale used.

It is the purpose of this chapter to introduce a system of complex num-
bers that, when related to the sinusoidal ac waveform, results in a technique 
for finding the algebraic sum of sinusoidal waveforms that is quick, direct, 
and accurate. In the following chapters, the technique is extended to permit 
the analysis of sinusoidal ac networks in a manner very similar to that 
applied to dc networks. The methods and theorems as described for dc net-
works can then be applied to sinusoidal ac networks with little difficulty.

A complex number represents a point in a two-dimensional plane 
located with reference to two distinct axes. This point can also determine 
a radius vector drawn from the origin to the point. The horizontal axis is 
called the real axis, while the vertical axis is called the imaginary axis. 
Both are labeled in Fig. 14.35. Every number from zero to {∞  can be 
represented by some point along the real axis. Prior to the development of 
this system of complex numbers, it was believed that any number not on 
the real axis did not exist—hence the term imaginary for the vertical axis.

In the complex plane, the horizontal or real axis represents all posi-
tive numbers to the right of the imaginary axis and all negative numbers 
to the left of the imaginary axis. All positive imaginary numbers are 
represented above the real axis, and all negative imaginary numbers, 
below the real axis. The symbol j (or sometimes i) is used to denote the 
imaginary component.

Two forms are used to represent a complex number: rectangular and 
polar. Each can represent a point in the plane or a radius vector drawn 
from the origin to that point.

14.6 R ectangular Form

The format for the rectangular form is

	 C = X + jY 	 (14.21)

i = 2 sin(   t + 40°)

Fp = ? Load

+

–

v = 50 sin(   t – 20°)

FIG. 14.32
Example 14.12(a).

+

–
v

i

v  =  120 sin(   t  +  80°)
i  =  5 sin(   t  +  30°)

FIG. 14.33
Example 14.12(b).

LOAD

Ieff = 5 A

Fp = ? Veff = 20 V

P = 100 W

+

–

FIG. 14.34
Example 14.12(c).

Imaginary axis ( j )

+

–

Real axis

–

+

FIG. 14.35
Defining the real and imaginary axes  

of a complex plane.
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as shown in Fig. 14.36. The letter C was chosen from the word “com-
plex.” The boldface notation is for any number with magnitude and 
direction. The italic is for magnitude only.

EXAMPLE 14.13  Sketch the following complex numbers in the com-
plex plane:

	 a.	 C = 3 + j 4      b.  C = 0 - j 6      c.  C = -10 - j 20

Solutions: 
	 a.	 See Fig. 14.37.
	 b.	 See Fig. 14.38.
	 c.	 See Fig. 14.39.

C = X + jY

j

X

Y

–j

– +

FIG. 14.36
Defining the rectangular form.

14.7 P olar Form

The format for the polar form is

	 C = Z ∠u	 (14.22)

with the letter Z chosen from the sequence X, Y, Z.
 Z indicates magnitude only, and u is always measured counterclock-

wise (CCW) from the positive real axis, as shown in Fig. 14.40. Angles 
measured in the clockwise direction from the positive real axis must 
have a negative sign associated with them.

A negative sign in front of the polar form has the effect shown in 
Fig. 14.41. Note that it results in a complex number directly opposite the 

1 +– 0 2 3

1
2
3
4

–j

j
C = 3 + j4

+3

+4

FIG. 14.37
Example 14.13(a).

–1 +–

–j

j

C = 0 – j6
–2
–3
–4
–5
–6

0

–6

FIG. 14.38
Example 14.13(b).

+–

–j

j

C = –10 – j20

0

–20

–10

–20

–10

FIG. 14.39
Example 14.13(c).

+–

–j

j

Z C

FIG. 14.40
Defining the polar form.

+–

–j

j

– C

C

FIG. 14.41
Demonstrating the effect of a 

negative sign on the polar form.
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complex number with a positive sign.

	 -C = -Z ∠u = Z ∠u {  180°	 (14.23)

EXAMPLE 14.14  Sketch the following complex numbers in the com-
plex plane:

	 a.	 C = 5 ∠30°
	 b.	 C = 7 ∠-120°
	 c.	 C = -4.2 ∠60°

Solutions: 

	 a.	 See Fig. 14.42.
	 b.	 See Fig. 14.43.
	 c.	 See Fig. 14.44.

+–

–j

j

C = 5 � 30°

+30°
5

FIG. 14.42
Example 14.14(a).

+–

–j

j

7
–120°

C = 7�–120°

FIG. 14.43
Example 14.14(b).

+–

–j

j

C = 4.2 � 240°

4.2

+240°

–120°

C = – 4.2 � 60° = 4.2 � 60° + 180°
= 4.2 � + 240°

FIG. 14.44
Example 14.14(c).

14.8 C onversion Between Forms

The two forms are related by the following equations, as illustrated in 
Fig. 14.45.

Rectangular to Polar

	 Z = 2X2 + Y2	 (14.24)

	 u = tan-1 
Y

X
	 (14.25)

Polar to Rectangular

	 X = Z cos u	 (14.26)

	 Y = Z sin u	 (14.27)

+–

–j

j

X

Y

C = Z �    = X + jY

Z

FIG. 14.45
Conversion between forms.
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EXAMPLE 14.15  Convert the following from rectangular to polar 
form:

C = 3 + j 4  (Fig. 14.46)

Solution: 

 Z = 2(3)2 + (4)2 = 125 = 5

 u = tan-1a 4

3
b = 53.13°

and	  C = 5 j53.13°

EXAMPLE 14.16  Convert the following from polar to rectangular 
form:

C = 10 ∠45°  (Fig. 14.47)

Solution: 

 X = 10 cos 45° = (10)(0.707) = 7.07

 Y = 10 sin 45° = (10)(0.707) = 7.07

and	  C = 7.97 + j 7.07

If the complex number should appear in the second, third, or fourth 
quadrant, simply convert it in that quadrant, and carefully determine the 
proper angle to be associated with the magnitude of the vector.

EXAMPLE 14.17  Convert the following from rectangular to polar 
form:

C = -6 + j 3  (Fig. 14.48)

Solution: 

 Z = 2(6)2 + (3)2 = 145 = 6.71

 b = tan-1a 3

6
b = 26.57°

 u = 180° - 26.57° = 153.43°
and	  C = 6.71 j153.43°

EXAMPLE 14.18  Convert the following from polar to rectangular 
form:

C = 10 ∠230°  (Fig. 14.49)

Solution: 

 X = Z cos b = 10 cos(230° - 180°) = 10 cos 50°
 = (10)(0.6428) = 6.428

 Y = Z sin b = 10 sin 50° = (10)(0.7660) = 7.66

and	  C = −6.43 − j 7.66

+–

–j

j C = 3 + j4

Z

+3

+4

FIG. 14.46
Example 14.15.

+–

–j

j

C  =  10 � 45°

45°
10

FIG. 14.47
Example 14.16.

–j

+

3
b

C  =  – 6  +  j3 j

–

v

Z

6

FIG. 14.48
Example 14.17.

j

+

Y

v  =  230°

C  =  10∠230°

–j

–

Z = 10

X

b

FIG. 14.49
Example 14.18.
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14.9 M athematical Operations 
with Complex Numbers

Complex numbers lend themselves readily to the basic mathematical 
operations of addition, subtraction, multiplication, and division. A few 
basic rules and definitions must be understood before considering these 
operations.

Let us first examine the symbol j associated with imaginary numbers. 
By definition,

	 j = 1-1	 (14.28)

Thus,	 j2 = -1	 (14.29)

and	  j3 = j2j = -1j = - j

with	  j4 = j2j2 = (-1)(-1) = +1

 j5 = j

and so on. Further,

1

j
= (1)a 1

j
b = a j

j
b a 1

j
b =

j

j2 =
j

-1

and	
1

j
= - j	 (14.30)

Complex Conjugate

The conjugate or complex conjugate of a complex number can be 
found by simply changing the sign of the imaginary part in the rectangu-
lar form or by using the negative of the angle of the polar form. For 
example, the conjugate of

C = 2 + j 3

is	 2 - j 3

as shown in Fig. 14.50. The conjugate of

C = 2 ∠30°
is	 2 ∠-30°

as shown in Fig. 14.51.

Reciprocal

The reciprocal of a complex number is 1 divided by the complex num-
ber. For example, the reciprocal of

C = X + jY

is	
1

X + jY

and that of Z ∠u is

1

Z ∠u

–j

j C = 2 + j3

2

3

–3

Complex conjugate of C
C = 2 – j3

+

FIG. 14.50
Defining the complex conjugate of a complex 

number in rectangular form.

–j

j

C

Complex conjugate of C

+

30°

–30°

2

2

FIG. 14.51
Defining the complex conjugate of a complex 

number in polar form.
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We are now prepared to consider the four basic operations of addition, 
subtraction, multiplication, and division with complex numbers.

Addition

To add two or more complex numbers, add the real and imaginary parts 
separately. For example, if

C1 = {X1 { jY1  and  C2 = {X2 { jY2

then	 C1 + C2 = ({X1 { X2) + j({Y1 { Y2)	 (14.31)

There is really no need to memorize the equation. Simply set one above 
the other and consider the real and imaginary parts separately, as shown 
in Example 14.19.

EXAMPLE 14.19 

	 a.	 Add C1 = 2 + j 4    and    C2 = 3 + j 1.
	 b.	 Add C1 = 3 + j 6    and    C2 = -6 + j 3.

Solutions: 

	 a.	 By Eq. (14.31),

C1 + C2 = (2 + 3) + j(4 + 1) = 5 + j 5

		  Note Fig. 14.52. An alternative method is

2 + j 4

3 + j 1

T T
5 + j 5

	 b.	 By Eq. (14.31),

C1 + C2 = (3 - 6) + j(6 + 3) = −3 + j 9

		  Note Fig. 14.53. An alternative method is

3 + j 6

-6 + j 3

T T
-3 + j 9

Subtraction

In subtraction, the real and imaginary parts are again considered sepa-
rately. For example, if

C1 = {X1 { jY1  and  C2 = {X2 { jY2

then	 C1 - C2 = [{X1 - ({X2)] + j[{Y1 - ({Y2)]	 (14.32)

–j

j

+

C1

C1 + C2

C2

6

4

2

0 2 4 6

FIG. 14.52
Example 14.19(a).

–j

j

+

C1

C1 + C2

C2

6

4

0 2 4 6–2–4–6–8

8

10

2

FIG. 14.53
Example 14.19(b).
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Again, there is no need to memorize the equation if the alternative 
method of Example 14.20 is used.

EXAMPLE 14.20 

	 a.	 Subtract C2 = 1 + j 4 from C1 = 4 + j 6.
	 b.	 Subtract C2 = -2 + j 5 from C1 = +3 + j 3.

Solutions: 

	 a.	 By Eq. (14.32),

C1 - C2 = (4 - 1) + j(6 - 4) = 3 + j 2

		  Note Fig. 14.54. An alternative method is

4 + j 6

-(1 + j 4)

T  T 
 3 + j 2

	 b.	 By Eq. (14.32),

C1 - C2 = [3 - (-2)] + j(3 - 5) = 5 − j 2

		  Note Fig. 14.55. An alternative method is

3 + j 3

-(-2 + j 5)

T   T
5 − j 2

Addition or subtraction cannot be performed in polar form unless the 
complex numbers have the same angle U or unless they differ only by 
multiples of 180°.

EXAMPLE 14.21 

	 a.	 2 ∠45° + 3 ∠45° = 5 ∠45°. Note Fig. 14.56.
	 b.	 2 ∠0° - 4 ∠180° = 2 ∠0° - (-4 ∠0°) = 6 ∠0°. Note Fig. 14.57.

–j

j

+

C1

C1 – C2

C2

6

4

2

0
2 4 6–2–

–C2

FIG. 14.54
Example 14.20(a).

–j

j

+

C1

C1 – C2

C2

6

4

2

0 2 4 6–2–
–2

–4

–6

–4

–C2

FIG. 14.55
Example 14.20(b).

2

+–

–j

j

3 5

45°

FIG. 14.56
Example 14.21(a).

+–

–j

j

6

2

–4 � 180°

4 � 180°

FIG. 14.57
Example 14.21(b).
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Multiplication

To multiply two complex numbers in rectangular form, multiply the 
real and imaginary parts of one in turn by the real and imaginary parts of 
the other. For example, if

C1 = X1 + jY1  and  C2 = X2 + jY2

then

	

C1
# C2:

 

  

  

  

 

X1 + jY1

 X2 + jY2 

X1X2 + jY1X2

        + jX1Y2 + j2Y1Y2 

X1X2 + j(Y1X2 + X1Y2) + Y1Y2(-1)

and	 C1
# C2 = (X1X2 - Y1Y2) + j(Y1X2 + X1Y2)	 (14.33)

In Example 14.22(b), we obtain a solution without resorting to 
memorizing Eq. (14.33). Simply carry along the j factor when multi-
plying each part of one vector with the real and imaginary parts of the 
other.

EXAMPLE 14.22 

	 a.	 Find C1
# C2 if

C1 = 2 + j 3  and  C2 = 5 + j 10

	 b.	 Find C1
# C2 if

C1 = -2 - j 3  and  C2 = +4 - j 6

Solutions: 

	 a.	 Using the format above, we have

 C1
# C2 = [(2)(5) - (3)(10)] + j[(3)(5) + (2)(10)]

 = −20 + j 35

	 b.	 Without using the format, we obtain

-2 - j 3

+4 - j 6    

-8 - j 12

+ j 12 + j2 18   

-8 + j(-12 + 12) - 18

and	 C1
# C2 = −26 = 26 j180°

In polar form, the magnitudes are multiplied and the angles added 
algebraically. For example, for

C1 = Z1 ∠u1  and  C2 = Z2 ∠u2

we write	 C1
# C2 = Z1Z2 lu1 + u2	 (14.34)
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EXAMPLE 14.23 

	 a.	 Find C1
# C2 if

C1 = 5 ∠20°  and  C2 = 10 ∠30°

	 b.	 Find C1
# C2 if

C1 = 2 ∠-40°  and  C2 = 7 ∠+120°

Solutions: 

	 a.	 C1
# C2 = (5 ∠20°)(10 ∠30°) = (5)(10) l20° + 30° = 50 j50°

	 b.	  C1
# C2 = (2 ∠-40°)(7 ∠+120°) = (2)(7)l-40° + 120°

		   = 14 j+80°

To multiply a complex number in rectangular form by a real number 
requires that both the real part and the imaginary part be multiplied by 
the real number. For example,

(10)(2 + j 3) = 20 + j 30

and	 50 ∠0°(0 + j 6) = j 300 = 300 j90°

Division

To divide two complex numbers in rectangular form, multiply the 
numerator and denominator by the conjugate of the denominator and the 
resulting real and imaginary parts collected. That is, if

C1 = X1 + jY1  and  C2 = X2 + jY2

then	  
C1

C2
=

(X1 + jY1)(X2 - jY2)

(X2 + jY2)(X2 - jY2)

 =
(X1X2 + Y1Y2) + j(X2Y1 - X1Y2)

X2
2 + Y2

2

and	
C1

C2
=

X1X2 + Y1Y2

X2
2 + Y2

2 + j 
X2Y1 - X1Y2

X2
2 + Y2

2 	 (14.35)

The equation does not have to be memorized if the steps above used 
to obtain it are employed. That is, first multiply the numerator by the 
complex conjugate of the denominator and separate the real and imagi-
nary terms. Then divide each term by the sum of each term of the 
denominator squared.

EXAMPLE 14.24 

	 a.	 Find C1>C2 if C1 = 1 + j 4    and    C2 = 4 + j 5.
	 b.	 Find C1>C2 if C1 = -4 - j 8    and    C2 = +6 - j 1.

Solutions: 
	 a.	 By Eq. (14.35),

 
C1

C2
=

(1)(4) + (4)(5)

42 + 52 + j 
(4)(4) - (1)(5)

42 + 52

 =
24

41
+

j 11

41
≅ 0.59 + j 0.27
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	 b.	 Using an alternative method, we obtain

 -4 - j 8

 +6 + j 1

 -24 - j 48

 - j 4 - j2 8

 -24 - j 52 + 8 = -16 - j 52

 +6 - j 1

 +6 + j 1

 36 + j 6

 - j 6 - j2 1

 36 + 0 + 1 = 37

and	
C1

C2
=

-16

37
-

j 52

37
= −0.43 − j 1.41

To divide a complex number in rectangular form by a real number, 
both the real part and the imaginary part must be divided by the real 
number. For example,

8 + j 10

2
= 4 + j 5

and	
6.8 - j 0

2
= 3.4 - j 0 = 3.4 j0°

In polar form, division is accomplished by dividing the magnitude of 
the numerator by the magnitude of the denominator and subtracting the 
angle of the denominator from that of the numerator. That is, for

C1 = Z1 ∠u1  and  C2 = Z2 ∠u2

we write	
C1

C2
=

Z1

Z2
 lu1 - u2	 (14.36)

EXAMPLE 14.25 

	 a.	 Find C1>C2 if C1 = 15 ∠10°    and    C2 = 2 ∠7°.
	 b.	 Find C1>C2 if C1 = 8 ∠120°    and    C2 = 16 ∠-50°.

Solutions: 

	 a.	
C1

C2
=

15 ∠10°
2 ∠7°

=
15

2
 l10° - 7° = 7.5 j3°

	 b.	
C1

C2
=

8 ∠120°
16 ∠-50°

=
8

16
 l120° - (-50°) = 0.5 j170°

We obtain the reciprocal in the rectangular form by multiplying 
the numerator and denominator by the complex conjugate of the 
denominator:

1

X + jY
= a 1

X + jY
b aX - jY

X - jY
b =

X - jY

X2 + Y2



Calculator Methods with Complex Numbers    653�

and	
1

X + jY
=

X

X2 + Y2 - j 
Y

X2 + Y2	 (14.37)

In polar form, the reciprocal is

	
1

Z ∠u
=

1

Z
∠-u	 (14.38)

A concluding example using the four basic operations follows.

EXAMPLE 14.26  Perform the following operations, leaving the 
answer in polar or rectangular form:

	 a.	  
(2 + j 3) + (4 + j 6)

(7 + j 7) - (3 - j 3)
=

(2 + 4) + j(3 + 6)

(7 - 3) + j(7 + 3)

		   =
(6 + j 9)(4 - j 10)

(4 + j 10)(4 - j 10)

		   =
[(6)(4) + (9)(10)] + j[(4)(9) - (6)(10)]

42 + 102

		   =
114 - j 24

116
= 0.98 − j 0.21

	 b.	  
(50 ∠30°)(5 + j 5)

10 ∠-20°
=

(50 ∠30°)(7.07 ∠45°)
10 ∠-20°

=
353.5 ∠75°
10 ∠-20°

		   = 35.35 l75° - (-20°) = 35.35 j95°

	 c.	  
(2 ∠20°)2(3 + j 4)

8 - j 6
=

(2 ∠20°)(2 ∠20°)(5 ∠53.13°)
10 ∠-36.87°

		   =
(4 ∠40°)(5 ∠53.13°)

10 ∠-36.87°
=

20 ∠93.13°
10 ∠-36.87°

		   = 2 l93.13° - (-36.87°) = 2.0 j130°

	 d.	  3 ∠27° - 6 ∠-40° = (2.673 + j 1.362) - (4.596 - j 3.857)

		   = (2.673 - 4.596) + j(1.362 + 3.857)

		   = −1.92 + j 5.22

14.10 C alculator Methods 
with Complex Numbers

The process of converting from one form to another or working through 
lengthy operations with complex numbers can be time-consuming and 
often frustrating if one lost minus sign or decimal point invalidates the 
solution. Fortunately, technologists of today have calculators and com-
puter methods that make the process measurably easier with higher 
degrees of reliability and accuracy.

Calculators

The TI-89 calculator in Fig. 14.58 is only one of numerous calculators 
that can convert from one form to another and perform lengthy calcu-
lations with complex numbers in a concise, neat form. The basic 

FIG. 14.58
TI-89 scientific calculator.

(Don Johnson Photo)



654    The Basic Elements and Phasors �

operations with the TI-89 are included primarily to demonstrate the 
ease with which the conversions can be made and the format for more 
complex operations.

There are different routes to perform the conversions and operations 
below, but these instructions give you one approach that is fairly direct 
and straightforward. Since most operations are in the DEGREE rather 
than RADIAN mode, the sequence in Fig. 14.59 shows how to set the 
DEGREE mode for the operations to follow. A similar sequence sets the 
RADIAN mode if required. The arrows show the direction to scroll. Be 
aware that it can be a short scroll or a fairly lengthy one. In most cases it 
is not a single step.

ENTERMODE ENTERAngle DEGREE

FIG. 14.59
Setting the DEGREE mode on the TI-89 calculator.

Rectangular to Polar Conversion    The sequence in Fig. 14.60 
provides a detailed listing of the steps needed to convert from rectangu-
lar to polar form. In the examples to follow, the scrolling steps are not 
listed to simplify the sequence.

In the sequence in Fig. 14.60, an up scroll is chosen after Matrix 
because that is a more direct path to Vector ops. A down scroll generates 
the same result, but it requires going through the whole listing. The 
sequence seems quite long for such a simple conversion, but with prac-
tice you will be able to perform the scrolling steps quite rapidly. Always 
be sure the input data are entered correctly, such as including the i after 
the y component. Any incorrect entry will result in an error listing.

5 i3( 2ND MatrixMATH2ND)

ENTER ENTER 5.83E0 � 59.0E0PolarVector ops

+

FIG. 14.60
Converting 3 + j 5 to the polar form using the TI-89 calculator.

Polar to Rectangular Conversion    The sequence in Fig. 14.61 is a 
detailed listing of the steps needed to convert from polar to rectangular 
form. Note in the format that the brackets must surround the polar form. 
Also, the degree sign must be included with the angle to perform the 
calculation. The answer is displayed in the engineering notation selected.

Rect 3.00E0+4.00E0iENTER ENTER

5 2ND( ∠ 5 3 1 MATH2ND.

2ND MatrixENTER ) MATH Vector ops°Angle

FIG. 14.61
Converting 5∠53.1° to the rectangular form using the TI-89 calculator.

Mathematical Operations    Mathematical operations are performed 
in the natural order of operations, but you must remember to select the 
format for the solution. For instance, if the sequence in Fig. 14.62 did 
not include the polar designation, the answer would be in rectangular 
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form even though both quantities in the calculation are in polar form. In 
the rest of the examples, the scrolling required to obtain mathematical 
functions is not included to minimize the length of the sequence.

For the product of mixed complex numbers, the sequence of 
Fig. 14.63 results. Again, the polar form was selected for the solution.

1( ∠ 5 0 )0 ( 2 ∠ 2 0 )×° °

Polar ENTER 20.00E0 ∠ 70.00E0

FIG. 14.62
Performing the operation (10 ∠50°)(2 ∠20°).

Finally, Example 14.26(c) is entered as shown by the sequence in 
Fig. 14.64. Note that the results exactly match those obtained earlier.

°5( ∠ 5 3 1 ( 2) i2 )

Polar ENTER 14.14E0 ∠ 98.10E0

× +.

ENTER

FIG. 14.63
Performing the operation (5 ∠53.1°)(2 + j 2).

2( ∠ 2 0 (2° ) ^ 3 i4 )×

Polar ENTER( –8 i6 ) 2.00E0 ∠ 130.0E0ENTER÷
+

FIG. 14.64
Verifying the results of Example 14.26(c).

14.11 P hasors

As noted earlier in this chapter, the addition of sinusoidal voltages and 
currents is frequently required in the analysis of ac circuits. One lengthy 
but valid method of performing this operation is to place both sinusoidal 
waveforms on the same set of axes and add algebraically the magnitudes 
of each at every point along the abscissa, as shown for c = a + b in 
Fig. 14.65. This, however, can be a long and tedious process with limited 

v

v1
a

b

0 t

v2

vT = v1 + v2c = a + b

FIG. 14.65
Adding two sinusoidal waveforms on a point-by-point basis.
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accuracy. A shorter method uses the rotating radius vector first appear-
ing in Fig. 13.16. This radius vector, having a constant magnitude 
(length) with one end fixed at the origin, is called a phasor when applied 
to electric circuits.

Because of the importance of the discussion to follow and the bene-
fits it will provide in your future analysis, it is strongly suggested that 
you return to Section 13.4 and carefully review how the rotating vector 
of fixed magnitude can generate a sinusoidal waveform at a frequency 
determined by the speed of rotation of the vector. If the two sinusoidal 
voltages to be added are in phase, as shown in Fig. 14.66(a), the radius 
vectors representing each appear on the positive axis at zero degrees 
because the vertical projection of each at that instant is zero, as shown in 
Fig. 14.66(b). Note also that the length of each phasor representation is 
the same as the peak value in Fig. 14.66(a). It should be clear from 
Fig. 14.66(a) that when the sinusoidal voltages are in phase the sum is 
simply the sum of the peak values of each as verified in Fig. 14.66(b). In 
general, therefore,

the addition (or subtraction) of two sinusoidal voltages of the same 
frequency and phase angle is simply the sum (or difference) of the 
peak values of each with the sum (or difference) having the same 
phase angle.

qt0 p
2

p 2p

v(V)

3
2 

p

2
3

5

3p5
2 

p

vT

v2

v1

(t = 0 s)

v1 =  2 sin   t
vT =  5 sin   t

v2 =  3 sin   t

0

V1 = 2 V �0° V2 = 3 V �0°  

VT = 5 V �0°  

j

5 V

3 V

2 V

(a) (b)

FIG. 14.66
Finding the sum of two sinusoidal waveforms with the same frequency and phase angle.

If the waveforms do not have the same phase angle, a summation of 
waveforms must be performed as indicated in Fig. 14.65 or using the 
approach to be described in this section.

Consider the addition of the two sinusoidal voltages of Fig. 14.67(a) 
out of phase by 90°. The peak value of one is 2 V and the other is 4 V, as 
shown in Fig. 14.67(a) and in the phasor representation of Fig. 14.67(b). 
At t = 0 s (u = 0°) the rotating vector of one is passing through the 
horizontal axis at zero degrees while the other is at its peak value due to 
the 90° phase shift. If we add the two waveforms of Fig. 14.67(a) on a 
point-to-point basis, the dashed blue sinusoidal waveform shown in the 
same figure would result. Note at u = 0°(t = 0 s) that yT = y1 = 4 V 
since y1 = 0 V and at u = p>2 that yT = y1 = 2 V since y2 = 0 V. 
The peak value will turn out to be close to 4.1 V at a phase angle of 
about 76°. It is difficult when adding waveforms to obtain a high level of 
accuracy unless the graphs are quite large and very carefully drawn. 
Now, if we look at the phasor diagram and simply find the hypotenuse 
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of the triangle formed by the two vectors, we find that the magnitude of 
the projection is also 4.12 V—wonderful. A solution has been found for 
finding the sum of two sinusoidal waveforms that are not in phase. Sim-
ply draw a snapshot of the rotating vectors at u = 0°(t = 0 s) and find 
the sum of the two vectors. A closer examination of Fig. 14.67(b) also 
reveals that the phase angle associated with the resultant waveform leads 
the voltage by 63.43°. In other words, using the phasor diagram we can 
calculate both the magnitude and phase angle of the sinusoidal wave-
form representing the sum of the two waveforms. In addition, note the 
high level of accuracy obtained with a vector addition compared to the 
artistic approach.

If we now return to Fig. 14.67(b), the phasors representing each sinu-
soidal waveform can be written as

V1 = 2 V ∠0°  and  V2 = 4 V ∠90°

Their vector sum then becomes the following using the vector alge-
bra introduced in the previous section. That is,

 VT = V1 + V2 = 2 V ∠0° + 4 V ∠90°
 = 2 V + j 4 V

 = 4.47 V ∠63.43°

The result can then be written in the sinusoidal time domain format:

yT = 4.47 sin(vt + 63.43°)

If the sinusoidal voltages to be added have different peaks and phase 
angles, the required calculations are a bit more complex but not exten-
sively so. The next few examples will demonstrate the power of the con-
clusions just introduced.

EXAMPLE 14.27  Find the sum of the following sinusoidal functions

i1 = 5 sin(vt + 30°)
i2 = 6 sin(vt + 60°)

	 a.	 Using a graphical approach
	 b.	 Using a phasor approach

v(V)

≅ 63°

v1

v2

4V

2V

p 2p 3pp
2

v2 =  4 sin (  t

v1 =  2 sin  t

 + 90°)

vT ≅  4.5 sin (  t  + 63°)

(a)

2 V

63.43°

V2 = 4 V �90°  
4 V

V1 = 2 V �0°  

4.
47

 V

(b)

90°

≅ 4.5 V
= 4.47 V �63.43°  VT

t  + 63.43°)vT ≅  4.47 sin (  

j

FIG. 14.67
Finding the sum of two sinusoidal waveforms that are out of phase.
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Solutions: 

	 a.	 The two waveforms and the resultant sum appear in Fig. 14.68. It 
was obviously a tedious process to add the two waveforms with this 
approach. Take note that the position of each vector generating the 
waveforms shown is a snapshot of their position at u = 0°(t = 0 s). 
The sum of the two waveforms is obviously a vector addition of the 
two waveforms as shown to the left of Fig. 14.68.

	 b.	 In phasor form:

 i1 = 5 sin(vt + 30°) 1 5 A ∠30°
 i2 = 6 sin(vt + 60°) 1 6 A ∠60°

 IT = I1 + I2

 = 5 A ∠30° + 6 A ∠60°
 = (4.33 A + j 2.5 A) + (3 A + j 5.2 A)

 = 7.33 A + j 7.7 A

 = 10.63 A ∠46.41°
and	  iT = 10.63 sin(Vt + 46.41°)  as obtained graphically.

6 A 5 A

ImT

0°
(t = 0 s)

i

5 A

6 A

10.63 A

(a) (b)

iT = i1 + i2 = 10.63 sin(qt + 46.41°)

i1 = 5 sin(qt + 30°)

qt

i2 = 6 sin(qt + 60°)

v1 = 30°

vT

v2 = 60°

v2 = 60°

v1 = 30°

vT = 46.41°

FIG. 14.68
Example 14.27

Since the rms, rather than the peak, values are used almost exclu-
sively in the analysis of ac circuits, the phasor will now be redefined for 
the purposes of practicality and uniformity as having a magnitude equal 
to the rms value of the sine wave it represents. The angle associated 
with the phasor will remain as previously described—the phase angle.

In general, for all of the analyses to follow, the phasor form of a sinu-
soidal voltage or current will be

V = V ∠u  and  I = I ∠u

where V and I are rms values and u is the phase angle. It should be 
pointed out that in phasor notation, the sine wave is always the refer-
ence, and the frequency is not represented.
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Phasor algebra for sinusoidal quantities is applicable only for 
waveforms having the same frequency.

The use of phasor notation in the analysis of ac networks was first 
introduced by Charles Proteus Steinmetz in 1897 (Fig. 14.69).

EXAMPLE 14.28  Convert the following from the time to the phasor 
domain:

FIG. 14.69
Charles Proteus Steinmetz.

Bain News Service/George 
Grantham Bain Collection/Library 

of Congress

German-American (Breslau, Germany; Yonkers 
and Schenectady, NY, USA)

(1865–1923)
Mathematician, Scientist, Engineer, Inventor, 

Professor of Electrical Engineering and 
Electrophysics, Union College

Department Head, General Electric Co.

Although the holder of some 200 patents and recog-
nized worldwide for his contributions to the study of 
hysteresis losses and electrical transients, Charles 
Proteus Steinmetz is best recognized for his contribu-
tion to the study of ac networks. His “Symbolic 
Method of Alternating-current Calculations” pro-
vided an approach to the analysis of ac networks that 
removed a great deal of the confusion and frustration 
experienced by engineers of that day as they made 
the transition from dc to ac systems. His approach 
(on which the phasor notation of this text is prem-
ised) permitted a direct analysis of ac systems using 
many of the theorems and methods of analysis devel-
oped for dc systems. In 1897 he authored the epic 
work Theory and Calculation of Alternating Current 
Phenomena, which became the authoritative guide 
for practicing engineers. Dr. Steinmetz was fondly 
referred to as “The Doctor” at General Electric Com-
pany where he worked for some 30 years in a number 
of important capacities. His recognition as a mul-
tigifted genius is supported by the fact that he main-
tained active friendships with such individuals as 
Albert Einstein, Guglielmo Marconi, and Thomas A. 
Edison, to name just a few. He was President of the 
American Institute of Electrical Engineers (AIEE) 
and the National Association of Corporation Schools 
and actively supported his local community (Sche-
nectady) as president of the Board of Education and 
the Commission on Parks and City Planning.

Time Domain Phasor Domain

a. 12(50) sin vt 50 j0°
b. 69.6 sin(vt + 72°) (0.707)(69.6) ∠72° = 49.21 j72°
c. 45 cos vt (0.707)(45) ∠90° = 31.82 j90°

EXAMPLE 14.29  Write the sinusoidal expression for the following 
phasors if the frequency is 60 Hz:

Phasor Domain Time Domain

a. I = 10 ∠30° i = 12(10) sin(2p60t + 30°)
and i = 14.14 sin(377t + 30°)

b. V = 115 ∠-70° y = 12(115) sin(377t - 70°) 
and y = 162.6 sin(377t − 70°)

EXAMPLE 14.30  Find the input voltage of the circuit in Fig. 14.70 if

ya = 50 sin(377t + 30°)
yb = 30 sin(377t + 60°)

f f = 60 Hz

+

–

+

–

+ –

ein

va

vb

FIG. 14.70
Example 14.30.

Solution:  Applying Kirchhoff’s voltage law, we have

ein = ya + yb

Converting from the time to the phasor domain yields

 ya = 50 sin(377t + 30°) 1 Va = 35.35 V ∠30°
 yb = 30 sin(377t + 60°) 1 Vb = 21.21 V ∠60°

Converting from polar to rectangular form for addition yields

 Va = 35.35 V ∠30° = 30.61 V + j 17.68 V

 Vb = 21.21 V ∠60° = 10.61 V + j 18.37 V
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Then

 Ein = Va + Vb = (30.61 V + j 17.68 V) + (10.61 V + j 18.37 V)

 = 41.22 V + j 36.05 V

Converting from rectangular to polar form, we have

Ein = 41.22 V + j 36.05 V = 54.76 V ∠41.17°

Converting from the phasor to the time domain, we obtain

Ein = 54.76 V ∠41.17° 1 ein = 12(54.76)sin(377t + 41.17°)
and	 ein = 77.43 sin(377t + 41.17°)

A plot of the three waveforms is shown in Fig. 14.71. Note that at 
each instant of time, the sum of the two waveforms does in fact add up 
to ein. At t = 0(vt = 0), ein is the sum of the two positive values, while 
at a value of vt, almost midway between p>2 and p, the sum of the 
positive value of ya and the negative value of yb results in ein = 0.

ein  =  va  +  vb

60°

41.17°

30°

30 50

77.43

va

vb

0

– 2 2
3
2

2   t

FIG. 14.71
Solution to Example 14.30.

EXAMPLE 14.31  Determine the current i2 for the network in Fig. 14.72.

iT  =  120  �  10–3 sin (qt  +  60°)

i1  =  80  �  10–3 sin qt

i2  =  ?

FIG. 14.72
Example 14.31.
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Solution:  Applying Kirchhoff’s current law, we obtain

iT = i1 + i2  or  i2 = iT - i1

Converting from the time to the phasor domain yields

 iT = 120 * 10-3 sin(vt + 60°) 1 84.84 mA ∠60°
 i1 = 80 * 10-3 sin vt 1 56.56 mA ∠0°

Converting from polar to rectangular form for subtraction yields

 IT = 84.84 mA ∠60° = 42.42 mA + j 73.47 mA

 I1 = 56.56 mA ∠0° = 56.56 mA + j 0

Then

 I2 = IT - I1

 = (42.42 mA + j 73.47 mA) - (56.56 mA + j 0)

and	 I2 = -14.14 mA + j 73.47 mA

Converting from rectangular to polar form, we have

I2 = 74.82 mA ∠100.89°

Converting from the phasor to the time domain, we have

 I2 = 74.82 mA ∠100.89° 1
 i2 = 12(74.82 * 10-3)sin(vt + 100.89°)

and	  i2 = 105.8 : 10−3 sin(Vt + 100.89°)

A plot of the three waveforms appears in Fig. 14.73. The waveforms 
clearly indicate that iT = i1 + i2.

i2

60°100.89°

0°

80
105.8

120
i1

iT

i (mA)
i2  =  iT  –  i1

– 2

2
3
2 2

FIG. 14.73
Solution to Example 14.31.
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14.12 C omputer Analysis

PSpice

Capacitors and the ac Response    The simplest of ac capacitive 
circuits is now analyzed to introduce the process of setting up an ac 
source and running an ac transient simulation. The ac source in Fig. 
14.74 is obtained through Place part key-SOURCE-VSIN-OK. Change 
the name or value of any parameter by double-clicking on the parameter 
on the display. The peak value (VAMPL) of the source voltage is 5 V, 
the frequency 1 kHz, and the phase angle zero degrees.

FIG. 14.74
Using PSpice to analyze the response of a capacitor to a sinusoidal ac signal.

The simulation process is initiated by selecting the New Simulation 
Profile. Under New Simulation, enter PSpice 14-1 for the Name fol-
lowed by Create. The result will be a blinking Simulation Setting-
PSpice 14-1 dialog box at the bottom of the window that can be 
deposited on the screen by simply clicking on the dialog box. In the 
Simulation Settings dialog box, select Analysis and choose Time 
Domain(Transient) under Analysis type. Set the Run to time at 3 ms 
to permit a display of three cycles of the sinusoidal waveforms 
(T = 1>f = 1>1000 Hz = 1 ms). Leave the Start saving data after at 
0 s, and set the Maximum step size at 3 ms>1000 = 3 ms. Clicking OK 
and then selecting the Run PSpice icon results in a SCHEMATIC1-
PSpice 14-1 dialog box at the bottom of the window that can be depos-
ited on the screen by simply clicking on the dialog box. The resulting 
plot has a horizontal axis that extends from 0 to 3ms.

Now you must tell the computer which waveforms you are interested 
in. First, take a look at the applied ac source by selecting Trace-Add 
Trace-V(Vs:+ ) followed by OK. The result is the sweeping ac voltage 
in the bottom region of the screen in Fig. 14.75. Note that it has a peak 
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value of 5 V, and three cycles appear in the 3 ms time frame. The current 
for the capacitor can be added by selecting Trace-Add Trace and 
choosing I(C) followed by OK. The resulting waveform for I(C) appears 
at a 90° phase shift from the applied voltage, with the current leading the 
voltage (the current has already peaked as the voltage crosses the 0 V 
axis). Since the peak value of each plot is in the same magnitude range, 
the 5 appearing on the vertical scale can be used for both. A theoretical 
analysis results in XC = 2.34 Ω, and the peak value of IC = E>XC =
5 V>2.34 = 2.136 A, as shown in Fig. 14.75.

For practice, let us obtain the curve for the power delivered to the 
capacitor over the same time period. First select Plot-Add Plot to 
Window-Trace-Add Trace to obtain the Add Traces dialog box. 
Select W(C) followed by OK and the top plot of Fig. 14.75 will appear 
showing that over time the net power delivered is zero (the average 
value). The power to the capacitor can also be found by first choosing 
V(Vs:+) followed by * from the Function listing on the right side of 
the Add Traces dialog box and then I(C). The result is the expression 
V(Vs:+)*I(C) of the power format: p = yi. Click OK, and the power 
plot at the top of Fig. 14.75 appears. Note that over the full three cycles, 
the area above the axis equals the area below—there is no net transfer of 
power over the 3 ms period. Note also that the power curve is sinusoidal 
(which is quite interesting) with a frequency twice that of the applied 
signal. Using the cursor control, we can determine that the maximum 
power (peak value of the sinusoidal waveform) is 5.34 W. The cursors, 
in fact, have been added to the lower curves to show the peak value of 
the applied sinusoid and the resulting current.

After selecting the Toggle cursor icon, left-click to surround the 
symbol to the left of V(Vs:+) at the bottom of the plot with a dashed 
line to establish that the cursor is providing the levels of that quantity. 
Then a left-click on the plot will establish the cursor option. When 
placed at 1>4 of the total period (250 ms), the peak value is approximately 

FIG. 14.75
A plot of the voltage, current, and power for the capacitor in Fig. 14.74.
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5 V (Y1) as shown in the Probe Cursor dialog box. Placing the cursor 
over the symbol next to I(C) at the bottom of the plot and right-clicking 
assigns the right cursor to the current. Placing it at exactly 1 ms (Y2) 
results in a peak value of 2.136 A to match the solution above. To fur-
ther distinguish between the voltage and current waveforms, the color 
and the width of the lines of the traces were changed. With the Toggle 
cursor key disabled, place the cursor right on the plot line and right-
click. The Properties option appears. When Properties is selected, a 
Trace Properties dialog box appears in which the yellow color can be 
selected and the width widened to improve the visibility on the black 
background. Note that yellow was chosen for Vs and green for I(C). 
Note also that the axis and the grid have been changed to a more visible 
color using the same procedure.

Multisim

Since PSpice reviewed the response of a capacitive element to an ac 
voltage, Multisim repeats the analysis for an inductive element. The ac 
voltage source was derived from the Place Source parts bin as 
described in Chapter 13 with the values appearing in Fig. 14.76 set in 
the AC-Voltage dialog box.

FIG. 14.76
Using Multisim to review the response of an inductive element  

to a sinusoidal ac signal.

Once the circuit has been constructed, the sequence Simulate-
Analyses-Transient Analysis results in a Transient Analysis dialog 
box. Select Analysis parameters and set Start Time to 0 s and End 
Time to 105 ms using 0.105 s or 105E-3 s. Then select Analysis options 
and set maximum number of points to 10,000 to ensure a good display 
for the rapidly changing waveform. The 105 ms was set as the End 
Time to give the network 100 ms to settle down in its steady-state mode 
and 5 ms for five cycles in the output display.
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	 2.	 Repeat Problem 1 for the following sinusoidal function, and 
compare results. In particular, determine the frequency of 
the waveforms of Problems 1 and 2, and compare the mag-
nitude of the derivative.

y = 10 sin 377t

	 3.	 What is the derivative of each of the following sinusoidal 
expressions?
	a.	 10 sin 377t	 b.	 20 sin(400t + 60°)
	c.	 12 20 sin(157t - 20°)	 d.	 -200 sin(t + 180°)

Problems

SECTION 14.1  Introduction

	 1.	 Plot the following waveform versus time showing one 
clear, complete cycle. Then determine the derivative of the 
waveform using Eq. (14.1), and sketch one complete cycle 
of the derivative directly under the original waveform. 
Compare the magnitude of the derivative at various points 
versus the slope of the original sinusoidal function.

y = 4 sin 62.8t

Next the Output heading was chosen within the dialog box, and the 
source voltage V(1) and source current I(VS) were moved from the 
Variables in Circuit to Selected variables for analysis using the Add 
option. Choosing Simulate results in a waveform that extends from 0 s 
to 105 ms. Even though we plan to save only the response that occurs 
after 100 ms, the computer is unaware of our interest, and it plots the 
response for the entire period. This is corrected by selecting Trace-
Trace Properties to obtain the Graph Properties dialog box. Selecting 
Bottom Axis permits setting the Range from a Minimum of 
0.100 s = 100 ms to a Maximum of 0.105 s = 105 ms. Click OK, 
and the time period of Fig. 14.76 is displayed. The grid structure is 
added by selecting the Show Grid keypad, and the color associated with 
each curve is displayed if we choose Legend-Show Legend.

It is clear from the plot that the scale for the source current has to be 
improved for us to be able to clearly read its peak and negative values. 
This is done by first clicking on the I(VS) curve to set the Selected 
Trace at the bottom of the graph as I(VS). A right click, and one can 
choose the Properties option to obtain the Graph Properties dialog 
box. Under Traces, select Right axis under Y-vertical axis. Then 
select Right Axis to establish the right axis as the scale to be used for 
the source current. Insert the Label: Current(A), select Enabled under 
the Axis heading, and finally choose Pen Size as 1. The Scale is Linear 
and of range -0.5 to 0.5 (-500 mA to 500 mA), with Total Ticks of 8 
and Minor Ticks of 2. The result is the plot of Fig. 14.76. The right 
axis can now be improved by selecting Graph Properties again, fol-
lowed by Left Axis, whereby the Current(A) can be deleted. We can 
now see that the source current has a peak value of about 160 mA. For 
more detail on the waveforms, select Cursor-Show Cursors to obtain 
the Transient Analysis dialog box with box V(1) and I(VS) listed with 
the same color headings as used on the graph. Clicking on one of the 
cursors and moving it horizontally to the maximum value of the current 
will result in x1 = 101.0 ms with y1 at 158.88 mA. Actually, the max y 
appears below at 159.07 mA, which could have been obtained if we had 
increased the number of data points. Moving the other cursor to find the 
minimum value of current will result in x2 = 101.24 ms with y2 at 
4.1 mA (the closest to the level of 0 mA obtainable with this data level 
setting). The maximum value of V(1) appears below as 9.986 V ≅ 10 V 
(at x1 = 101 ms), which it should be, and the distance between the 
maximum value of I(VS) and the its minimum value is dx = 239.79 ms, 
which is very close to 0.25 ms, or one fourth of the period of the applied 
signal.
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	14.	 Determine the closest standard value capacitance that has a 
reactance of

	 a.	 75 Ω at f = 250 Hz.
	 b.	 2.2 kΩ at 36 kHz.

	15.	 Determine the frequency at which a 3.9 mF capacitor has 
the following capacitive reactances:
	a.	 10 Ω	 b.	 60 kΩ
	c.	 0.1 Ω	 d.	 2000 Ω

	16.	 The voltage across a 2.5 Ω capacitive reactance is given. 
What is the sinusoidal expression for the current? Sketch 
the y and i sinusoidal waveforms on the same set of axes.

	 a.	 120 sin vt
	 b.	 4 * 10-3 sin(vt + 40°)
	17.	 The voltage across a 1 mF capacitor is given. What is the 

sinusoidal expression for the current?
	 a.	 30 sin 250t
	 b.	 90 * 10-3 sin 377t

	18.	 The current through a 2 kΩ capacitive reactance is given. 
Write the sinusoidal expression for the voltage. Sketch the 
y and i sinusoidal waveforms on the same set of axes.

	 a.	 i = 50 * 10-3 sin vt
	 b.	 i = 2 * 10-6 sin(vt + 60°)
	19.	 The current through a 0.50 mF capacitor is given. What is 

the sinusoidal expression for the voltage?
	 a.	 0.20 sin 500t
	 b.	 5 * 10-3 sin(377t - 45°)
	*20.	 For the following pairs of voltages and currents, indicate 

whether the element involved is a capacitor, an inductor, or 
a resistor, and find the value of C, L, or R if sufficient data 
are given:

	 a.	  y = 550 sin(377t + 50°)
		   i = 11 sin(377t - 40°)
	 b.	  y = 36 sin(754t - 80°)
		   i = 4 sin(754t - 170°)
	 c.	  y = 10.5 sin(vt - 13°)
		   i = 1.5 sin(vt - 13°)
	*21.	 Repeat Problem 20 for the following pairs of voltages and 

currents with v = 157 rad/s.
	 a.	  y = 2000 sin vt
		   i = 5 cos vt
	 b.	  y = 80 sin(157t + 150°)
		   i = 2 sin(157t + 60°)
	 c.	  y = 35 sin(vt - 20°)
		   i = 7 cos(vt - 110°)

SECTION 14.3  Frequency Response  
of the Basic Elements

	22.	 Plot XL versus frequency for a 3 mH coil using a frequency 
range of zero to 100 kHz on a linear scale.

	23.	 Plot XC versus frequency for a 1 mF capacitor using a fre-
quency range of zero to 10 kHz on a linear scale.

	24.	 At what frequency will the reactance of a 1.5 mF capacitor 
equal the resistance of a 2 kΩ resistor?

	25.	 The reactance of a coil equals the resistance of a 10 kΩ 
resistor at a frequency of 5 kHz. Determine the inductance 
of the coil.

Section 14.2  Response of Basic R, L, and C 
Elements to a Sinusoidal Voltage or Current

	 4.	 The voltage across a 20 Ω resistor is as indicated. Find the 
sinusoidal expression for the current. In addition, sketch the 
y and i sinusoidal waveforms on the same axis.

	 a.	 160 sin 100t
	 b.	 60 sin(2000t + 45°)
	 c.	 6 cos(vt + 10°)
	 d.	 -12 sin(vt + 40°)
	 5.	 The current through a 7.8 kΩ resistor is as indicated. Find 

the sinusoidal expression for the voltage. In addition, sketch 
the y and i sinusoidal waveforms on the same axis.

	 a.	 0.2 sin 500t
	 b.	 5 * 10-3 sin(600t - 120°)
	 6.	 Determine the inductive reactance (in ohms) of a 3 mH coil 

for
	 a.	 dc

		  and for the following frequencies:
	 b.	 60 Hz
	 c.	 8 kHz
	 d.	 1.4 MHz

	 7.	 Determine the closest standard value inductance that has a 
reactance of

	 a.	 2.5 kΩ at  f = 12.47 kHz.
	 b.	 45 kΩ at  f = 5.8 kHz.

	 8.	 Determine the frequency at which a 47 mH inductance has 
the following inductive reactances:

	 a.	 10 Ω
	 b.	 4 kΩ
	 c.	 12 kΩ
	 9.	 The current through a 20 Ω inductive reactance is given. 

What is the sinusoidal expression for the voltage? Sketch 
the y and i sinusoidal waveforms on the same axis.

	 a.	 i = 25 * 10-3 sin 200t
	 b.	 i = 40 * 10-3 sin(vt + 60°)
	 c.	 i = -6 sin(vt - 30°)
	10.	 The current through a 0.15 H coil is given. What is the sinu-

soidal expression for the voltage?
	 a.	 15 sin 150t
	 b.	 6 * 10-6 sin(400t + 20°)
	11.	 The voltage across a 40 Ω inductive reactance is given. 

What is the sinusoidal expression for the current? Sketch 
the y and i sinusoidal waveforms on the same set of axes.

	 a.	 120 sin vt
	 b.	 30 sin(vt + 20°)
	12.	 The voltage across a 0.25 H coil is given. What is the sinu-

soidal expression for the current?
	 a.	 2.5 sin 90t
	 b.	 16 * 10-3 sin(20t + 5°)
	13.	 Determine the capacitive reactance (in ohms) of a 0.4 mF 

capacitor for
	 a.	 dc

		  and for the following frequencies:
	 b.	 80 Hz
	 c.	 2.5 kHz
	 d.	 2.5 MHz
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	34.	 In Fig. 14.79, i = 20 * 10-3 sin(2p600t - 30°).
	 a.	 Find the sinusoidal expression for e.
	 b.	 Find the average power loss in the capacitor.

	26.	 Determine the frequency at which a 2 mF capacitor and an 
80 mH inductor will have the same reactance.

	27.	 Determine the capacitance required to establish a capacitive 
reactance that will match that of a 2 mH coil at a frequency 
of 60 kHz.

SECTION 14.4  Average Power and Power Factor

	*28.	 Find the average power loss and power factor for each of 
the circuits whose input current and voltage are as follows:

	 a.	  y = 60 sin(vt + 30°)
		   i = 15 sin(vt + 60°)
	 b.	  y = -50 sin(vt - 20°)
		   i = -2 sin(vt - 20°)
	 c.	  y = 50 sin(vt + 80°)
		   i = 3 cos(vt - 20°)
	 d.	  y = 75 sin(vt - 5°)
		   i = 0.08 sin(vt + 35°)
	29.	 If the current through and voltage across an element are 

i = 8 sin(vt + 40°) and y = 56 sin(vt + 50°), respec-
tively, compute the power by I2R, (VmIm>2) cos u, and 
VI cos u, and compare answers.

	30.	 A circuit dissipates 150 W (average power) at 200 V (effec-
tive input voltage) and 2.5 A (effective input current). What 
is the power factor? Repeat if the power is 0 W; 500 W.

	*31.	 The power factor of a circuit is 0.5 lagging. The power 
delivered in watts is 600. If the input voltage is 60 sin(vt +
20°), find the sinusoidal expression for the input current.

	32.	 In Fig. 14.77, e = 120 sin(2p60t + 20°).
	 a.	 What is the sinusoidal expression for the current?
	 b.	 Find the power loss in the circuit.
	 c.	 How long (in seconds) does it take the current to com-

plete six cycles?

i

e

+

–

 L = 3 mH 

FIG. 14.78
Problem 33.

e

+

–

R = 6.8 k�

i

FIG. 14.77
Problem 32.

	33.	 In Fig. 14.78, e = 240 sin(1500t + 45°).
	 a.	 Find the sinusoidal expression for i.
	 b.	 Find the average power loss by the inductor.

vs

+

–

L2 120 mHL1

i1 i2

is 60 mH

is  =  80 sin (103t  +  30˚)

FIG. 14.81
Problem 36.

e

i

+

–

C = 900 pF

FIG. 14.79
Problem 34.

	*35.	 For the network in Fig. 14.80 and the applied signal:
	 a.	 Determine the sinusoidal expressions for i1 and i2.
	 b.	 Find the sinusoidal expression for is by combining the 

two parallel capacitors.

e

is

+

–

e  =  120 sin (104t  +  60°)

C2 10 mFC1 2 mF

i1 i2

FIG. 14.80
Problem 35.

	*36.	 For the network in Fig. 14.81 and the applied source:
	 a.	 Determine the sinusoidal expression for the source volt-

age ys.
	 b.	 Find the sinusoidal expression for the currents i1 

and i2.



668    The Basic Elements and Phasors �

	*48.	 Perform the following operations, and express your answer 
in rectangular form:

	 a.	
(4 + j 3) + (6 - j 8)

(3 + j 3) - (2 + j 3)

	 b.	
8 ∠60°

(2 ∠0°) + (100 + j 400)

	 c.	
(6 ∠20°)(120 ∠-40°)(3 + j 8)

2 ∠-30°
	*49.	 Perform the following operations, and express your answer 

in polar form:

	 a.	
(0.4 ∠60°)2(300 ∠40°)

3 + j 9

	 b.	 a 1

(0.02 ∠10°)2 b a
2

j
b

3

a 1

62 - j1900
b

	*50.		 a.	 Determine a solution for x and y if
(x + j 5) + (3x + jy) - j 6 = 16 ∠0°

	 b.	 Determine x if
(18 ∠20°)(x ∠-60°) = 38.64 - j 25.72

	*51.	 	a.	 Determine a solution for x and y if
(5x + j 10)(2 - jy) = 90 - j 70

	 b.	 Determine u if
80 ∠0°
20 ∠u

= 3.464 - j 2

SECTION 14.11  Phasors

	52.	 Express the following in phasor form:
	 a.	 12(180)sin(vt + 40°)
	 b.	 12(25 * 10-3)sin(157t - 60°)
	 c.	 300 sin(vt - 120°)
	*53.	 Express the following in phasor form:
	 a.	 30 sin(377t - 180°)
	 b.	 6 * 10-6 cos vt
	 c.	 5.6 * 10-6 cos(754t - 40°)
	54.	 Express the following phasor currents and voltages as sine 

waves if the frequency is 60 Hz:
	 a.	 I = 40 A ∠20°
	 b.	 V = 120 V ∠10°
	 c.	 I = 8 * 10-3A ∠-110°

	 d.	 V =
600012

 V ∠-180°

	55.	 For the system in Fig. 14.82, find the sinusoidal expression 
for the unknown voltage ya if

ein = 60 sin(377t + 90°)
yb = 20 sin(377t - 45°)

SECTION 14.8  Conversion between Forms

	37.	 Convert the following from rectangular to polar form:
	a.	 4 + j 6	 b.	 3 + j 3
	c.	 5 + j 15	 d.	 500 + j 50
	e.	 -1000 + j 2000	 f.	 -0.2 + j 0.4

	*38.	 Convert the following from rectangular to polar form:
	 a.	 -8 - j 16
	 b.	 +8 - j 4
	 c.	 0.02 - j 0.003
	 d.	 -6 * 10-3 - j 6 * 10-3

	 e.	 200 + j 0.02
	 f.	 -1000 + j 20

	39.	 Convert the following from polar to rectangular form:
	a.	 6 ∠40°	 b.	 12 l120°
	c.	 2000 l-90°	 d.	 0.0064 l+200°
	e.	 48 l2°	 f.	 5 * 10-4 l-20°

	40.	 Convert the following from polar to rectangular form:
	 a.	 42 l0.15°
	 b.	 2002 l-60°
	 c.	 0.006 l-120°
	 d.	 8 * 10-3 l-220°
	 e.	 15 l+180°
	 f.	 1.2 l-89.9°

SECTION 14.9  Mathematical Operations 
with Complex Numbers

	41.	 Perform the following additions in rectangular form:
	 a.	 (4.8 + j 7.8) + (4.6 + j 0.6)
	 b.	 (242 + j 7) + (3.8 + j 44) + (0.4 + j 0.7)
	 c.	 (5 * 10-6 + j 75) + (7.4 * 10-7 - j 9)

	42.	 Perform the following subtractions in rectangular form:
	 a.	 (8.8 + j 6.2) - (5.6 + j 5.6)
	 b.	 (197 + j 243) - (-42.3 - j 58)
	 c.	 (-36.0 + j 70) - (-5 - j 6) + (10.5 - j 72)

	43.	 Perform the following operations with polar numbers, and 
leave the answer in polar form:

	 a.	 6 ∠20° + 8 ∠80°
	 b.	 42 ∠45° + 62 ∠60° - 70 ∠120°
	 c.	 20 l-120° - 10 l-150° + 8 l-210° + 8 l+240°
	44.	 Perform the following multiplications in rectangular form:
	 a.	 (2 + j 3)(6 + j 8)
	 b.	 (7.8 + j 1)(4 + j 2)(7 + j 6)
	 c.	 (400 - j 200)(-0.01 - j 0.5)(-1 + j 3)

	45.	 Perform the following multiplications in polar form:
	 a.	 (2 ∠60°)(4 ∠-40°)
	 b.	 (6.9 ∠8°)(7.2 ∠-72°)
	 c.	 (0.002 ∠120°)(0.5 ∠200°)(40 ∠ + 80°)
	46.	 Perform the following divisions in polar form:
	 a.	 (42 ∠10°)>(7 ∠60°)
	 b.	 (0.006 ∠120°)>(30 ∠+60°)
	 c.	 (4360 ∠-20°)>(40 ∠-210°)
	47.	 Perform the following divisions, and leave the answer in 

rectangular form:
	 a.	 (8 + j 8)>(2 + j 2)
	 b.	 (8 + j 42)>(-6 - j 4)
	 c.	 (-4.5 - j 6)>(0.1 - j 0.8)

+

–

+ –va

vb

+

–
ein

FIG. 14.82
Problem 55.
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SECTION 14.12  Computer Analysis

PSpice or Multisim

	59.	 Plot ic and yc versus time for the network in Fig. 14.74 for 
two cycles if the frequency is 0.2 kHz.

	60.	 Plot the magnitude and phase angle of the current ic versus 
frequency (100 Hz to 100 kHz) for the network in Fig. 
14.74.

	*61.	 Plot the total impedance of the configuration in Fig. 
14.24(a) versus frequency (100 kHz to 100 MHz) for the 
following parameter values: C = 0.1 mF, Ls = 0.2 mH, 
Rs = 2MΩ, and Rp = 100 MΩ. For what frequency range 
is the capacitor “capacitive”?

Glossary

Average or real power  The power delivered to and dissipated 
by the load over a full cycle.

Complex conjugate  A complex number defined by simply 
changing the sign of an imaginary component of a complex 
number in the rectangular form.

Complex number  A number that represents a point in a two- 
dimensional plane located with reference to two distinct axes. 
It defines a vector drawn from the origin to that point.

Derivative  The instantaneous rate of change of a function with 
respect to time or another variable.

Leading and lagging power factors  An indication of whether a 
network is primarily capacitive or inductive in nature. Lead-
ing power factors are associated with capacitive networks and 
lagging power factors with inductive networks.

Phasor  A radius vector that has a constant magnitude at a fixed 
angle from the positive real axis and that represents a sinusoi-
dal voltage or current in the vector domain.

Phasor diagram  A “snapshot” of the phasors that represent a 
number of sinusoidal waveforms at t = 0.

Polar form  A method of defining a point in a complex plane 
that includes a single magnitude to represent the distance 
from the origin and an angle to reflect the counterclockwise 
distance from the positive real axis.

Power factor (Fp)  An indication of how reactive or resistive an 
electrical system is. The higher the power factor, the greater is 
the resistive component.

Reactance  The opposition of an inductor or a capacitor to the 
flow of charge that results in the continual exchange of energy 
between the circuit and magnetic field of an inductor or the 
electric field of a capacitor.

Reciprocal  A format defined by 1 divided by the complex number.
Rectangular form  A method of defining a point in a complex 

plane that includes the magnitude of the real component and 
the magnitude of the imaginary component, the latter compo-
nent being defined by an associated letter j.

	56.	 For the system in Fig. 14.83, find the sinusoidal expression 
for the unknown current i1 if

is = 30 * 10-6 sin(vt + 80°)
i2 = 4 * 10-6 sin(vt - 50°)

is i1 i2

FIG. 14.83
Problem 56.

	57.	 Find the sinusoidal expression for the voltage ya for the sys-
tem in Fig. 14.84 if

 ein = 120 sin(vt + 30°)
 yb = 30 sin(vt + 60°)
 yc = 40 sin(vt - 90°)

+

–

+ –va

vb

+

–

ein

– +vc

FIG. 14.84
Problem 57.

	*58.	 Find the sinusoidal expression for the current i1 for the sys-
tem in Fig. 14.85 if

is = 18 * 10-3 sin(377t + 180°)
i2 = 8 * 10-3 sin(377t + 90°)
i3 = 2i2

is i1 i3

i2

FIG. 14.85
Problem 58.
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15Series ac CircuitsSeries ac Circuits

15.1  Introduction

In this chapter, phasor algebra is used to develop a quick, direct method for solving series ac 
circuits. The close relationship that exists between this method for solving for unknown quan-
tities and the approach used for dc circuits will become apparent after a few simple examples 
are considered. Once this association is established, many of the rules such as the voltage 
divider rule for dc circuits can be readily applied to ac circuits.

A series circuit of any combination of elements, devices, or systems has the basic appear-
ance provided in Fig. 15.1(a). Each component is tied to its neighboring component by only 
one connection and the current is the same through each element whether it be resistors, 
capacitors, inductors, motors, generators, or complete packaged systems. All the rules for deter-
mining series elements for dc networks are applicable for ac networks also. The simplest of 
series ac networks with a resistor, inductor, and capacitor is provided as shown in Fig. 15.1(b). 
You will recall for resistive circuits that the total resistance was simply the sum of the resist-
ance values of the series elements. The question now is, How do we find the total opposition 
of a series network that has resistors, inductors, and capacitors? Certainly, we cannot simply 
add the resistance value of Fig. 15.1(b) to the inductance and capacitance values. Doing so 
would suggest that the applied frequency would have no impact on the total opposition of the 
circuit, but we know from Chapter 14 that the applied frequency has a very important impact 
on the behavior of an inductive or capacitive element. Since each component of Fig. 15.1(b) 

•	 Become familiar with the characteristics of a series 
circuit and be able to find current, voltage, and 
power levels for each element.

•	 Be able to find the total impedance of any series 
ac circuit and sketch the impedance diagram.

•	 Develop confidence in applying Kirchhoff’s voltage 
law to any series configuration.

•	 Be able to apply the voltage divider rule to any ac 
network.

•	 Become adept at finding the frequency response 
of a series combination of elements.

Objectives

15

a c(a)

+

–
E

I

(b)

+

–

R L C

E
I

FIG. 15.1
(a) Series elements; (b) series R-L-C circuit.
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will react differently to an applied ac source, it is best that we examine 
each element in detail and then tie the three together. Since the resistor is 
the simplest to describe, it will be considered first.

15.2 R esistive Elements

In Chapter 14, we found for a purely resistive element, as shown in 
Fig. 15.2, that yR and iR are in phase and the magnitude of the peak 
values was determined by Ohm’s law.

If we now write both the voltage and current in phasor form, we find 
that the phase angle associated with the voltage and current is zero 
degrees. That is,

 yR = Vm sin vt 1 VR = V ∠0°
 iR = Im sin vt 1 IR = I ∠0°

If we apply phasor algebra as follows,

IR =
VR

R

we find that the format is such that we need to assign an angle to the 
resistive component in order to apply phasor algebra. For the moment let 
us assign the angle uR to the resistive component so we end up with the 
following:

IR =
VR

R
=

V ∠0°
R ∠uR

=
V

R
 l0° - uR

Now since we know the angle associated with the current must also 
be zero degrees, the angle uR must be zero degrees. Now if we apply 
phasor algebra we obtain the following:

IR =
VR

R
=

V ∠0°
R ∠0°

=
V

R
 ∠0°

so that in the time domain

iR = 22aV

R
b  sin vt

which agrees with the development of Chapter 14.
For the future, therefore, whenever we encounter a resistor in the ac 

domain, we will assign an angle of zero degrees to form a complex num-
ber notation. The standard format will therefore be

	 ZR = R ∠0°	 (15.1)

with the boldface roman notation specifying that the quantity has both 
magnitude and angle. Called the impedance of the resistive element and 
measured in ohms, it is a measure of how much the element will 
“impede” the flow of charge through the circuit.

The above format will prove to be a useful “tool” when the networks 
become more complex and phase relationships become less obvious. It 
is important to realize, however, that ZR is not a phasor, even though the 
format R ∠0° is very similar to the phasor notation for sinusoidal cur-
rents and voltages. The term phasor is reserved for quantities that vary 
with time, and R and its associated angle of 0° are fixed, nonvarying 
quantities.

R vR =  Vm sin qt

+

–

iR =  Im sin qt

FIG. 15.2
Resistive ac circuit.
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EXAMPLE 15.1  Using complex algebra,

	 a.	 Find the current iR for the circuit in Fig. 15.3.
	 b.	 Sketch the waveforms of iR and VR.

Solution: 

	 a.		   y = 100 sin vt 1 phasor form V = 70.71 V ∠0°

			    IR =
VR

ZR
=

V ∠u

R ∠0°
=

70.71 V ∠0°
5 Ω ∠0°

= 14.14 A ∠0°

		  and	  iR = 12(14.14) sin vt = 20 sin Vt

	 b.	 Note Fig. 15.4.

5 � v  =  100 sin qt

+

–

i

FIG. 15.3
Example 15.1.

100 V

0

20 A

2

2
3

2
�

vR

iR

FIG. 15.4
Waveforms for Example 15.1.

(a)

+

j

14.14 A

I V

(b)

+

j

I

V
5.565 V

2.828 A

30º

R R

R

R

70.71 V 

FIG. 15.7
Phasor diagrams for Examples 15.1 and 15.2.

It is often helpful in the analysis of networks to have a phasor 
diagram, which shows at a glance the magnitudes and phase relations 
among the various quantities within the network. For example, the 
phasor diagrams of the circuits considered in the two preceding exam-
ples would be as shown in Fig. 15.7. In both cases, it is immediately 
obvious that yR and iR are in phase since they both have the same phase 
angle.

15.3  Inductive Elements

We learned in Chapter 14 that for the pure inductor in Fig. 15.8, the volt-
age leads the current by 90° and that the reactance of the coil XL is deter-
mined by vL. We have

yL = Vm sin vt 1 phasor form V = V ∠0°

EXAMPLE 15.2  Using complex algebra,

	 a.	 Find the voltage yR for the circuit in Fig. 15.5.
	 b.	 Sketch the waveforms of yR and iR.

Solution: 

	 a.		   iR = 4 sin (vt + 30°) 1 phasor form IR = 2.828 A ∠30°
			    V = IRZR = (I ∠u)(R ∠0°) = (2.828 A ∠30°)(2 Ω ∠0°)
			    = 5.656 V ∠30°
		  and	  yR = 12(5.656) sin (vt + 30°) = 8.0 sin (Vt + 30°)
	 b.	 Note Fig. 15.6.

+

–
2 �

  = 4 sin(qt + 30°)iR

vR

FIG. 15.5
Example 15.2.

8 V

0

4 A

�
30°

2

2
3

2

Rv

iR

FIG. 15.6
Waveforms for Example 15.2.
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Applying Ohm’s law and following a similar path to that applied to the 
resistive element, we find that

IL =
VL

XL
=

V ∠0°
XL ∠uL

=
V

XL
 l0° - uL

Since yL leads iL by 90°, iL must have an angle of -90° associated with it. 
To satisfy this condition, uL must equal +90°. Substituting uL = 90°, we 
obtain

IL =
V ∠0°

XL ∠90°
=

V

XL
 l0° - 90° =

V

XL
 ∠-90°

so that in the time domain,

iL = 12a V

XL
b  sin(vt - 90°)

We use the fact that uL = 90° in the following polar format for induc-
tive reactance to ensure the proper phase relationship between the volt-
age and current of an inductor:

	 ZL = XL ∠90°	 (15.2)

The boldface roman quantity ZL, having both magnitude and an associ-
ated angle, is referred to as the impedance of an inductive element. It is 
measured in ohms and is a measure of how much the inductive element 
“controls or impedes” the level of current through the network (always 
keep in mind that inductive elements are storage devices and do not dissi-
pate like resistors). The above format, like that defined for the resistive 
element, will prove to be a useful tool in the analysis of ac networks. 
Again, be aware that ZL is not a phasor quantity, for the same reasons 
indicated for a resistive element.

XL  = qL   = Vm sin qt

+

–

Li

vL

FIG. 15.8
Inductive ac circuit.

XL  =  3 �

Li
+

–
vL  =  24 sin qt

FIG. 15.9
Example 15.3.

90°

24 V

8 A

0
2 2

3
2
52

Li

vL

FIG. 15.10
Waveforms for Example 15.3.

+

–

 =  5 sin(qt  +  30°)

XL  =  4 �

iL

vL

FIG. 15.11
Example 15.4.

20 V

90°

30°

5 A

0
2

–
2

3
2

2   

iL

vL

FIG. 15.12
Waveforms for Example 15.4.

EXAMPLE 15.3  Using complex algebra, 

	 a.	 Find the current iL for the circuit in Fig. 15.9.
	 b.	 Sketch the yL and iL curves.

Solution: 

	 a.		   yL = 24 sin vt 1 phasor form VL = 16.968 V ∠0°

			    I =
VL

ZL
=

V ∠u

XL ∠90°
=

16.968 V ∠0°
3 Ω ∠90°

= 5.656 A ∠-90°

		  and	  i = 12(5.656) sin (vt - 90°) = 8.0 sin (Vt − 90°)
	 b.	 Note Fig. 15.10.

EXAMPLE 15.4  Using complex algebra,

	 a.	 Find the voltage yL for the circuit in Fig. 15.11.
	 b.	 Sketch the yL and iL curves.

Solution: 

	 a.	  iL = 5 sin (vt + 30°) 1 phasor form IL = 3.535 A ∠30°
		   VL = IZL = (I ∠u)(XL ∠90°) = (3.535 A ∠30°)(4 Ω ∠+90°)
		   = 14.140 V ∠120°
		  and	 yL = 12(14.140) sin (vt + 120°) = 20 sin (Vt + 120°)

	 b.	 Note Fig. 15.12.
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The phasor diagrams for the two circuits of the two preceding exam-
ples are shown in Fig. 15.13. Both indicate quite clearly that the voltage 
leads the current by 90°.

+

j

I

5.656 A

16.968 A

Leading

VL +

j

I

V

3.535 A
14.140 V

30°

Leading

L

L

L

FIG. 15.13
Phasor diagrams for Examples 15.3 and 15.4.

15.4 Capa citive Elements

We learned in Chapter 14 that for the pure capacitor in Fig. 15.14, the 
current leads the voltage by 90° and that the reactance of the capacitor 
XC is determined by 1>vC. We have

yC = Vm sin vt 1 phasor form VC = V ∠0°

Applying Ohm’s law and continuing as before, we find

IC =
VC

XC
=

V ∠0°
XC ∠uC

=
V

XC
 l0° - uC

Since iC leads yC by 90°, iC must have an angle of +90° associated with it. 
To satisfy this condition, uC must equal -90°. Substituting uC = -90° 
yields

IC =
VC

XC
=

V ∠0°
XC ∠-90°

=
V

XC
 l0° - (-90°) =

V

XC
 ∠90°

so, in the time domain,

iC = 12 a V

XC
b  sin (vt + 90°)

We use the fact that uC = -90° in the following polar format for 
capacitive reactance to ensure the proper phase relationship between the 
voltage and current of a capacitor:

	 ZC = XC ∠-90°	 (15.3)

The boldface roman quantity ZC, having both magnitude and an asso-
ciated angle, is referred to as the impedance of a capacitive element. It is 
measured in ohms and is a measure of how much the capacitive element 
“controls or impedes” the level of current through the network (always 
keep in mind that capacitive elements are storage devices and do not dis-
sipate like resistors). The above format, like that defined for the resistive 
element, will prove a very useful tool in the analysis of ac networks. 
Again, be aware that ZC is not a phasor quantity, for the same reasons 
indicated for a resistive element.

  =  Vm sin qt

+

–

i

XC  =  1/qC vC

C

FIG. 15.14
Capacitive ac circuit.
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  = 15 sin qt

+

–
XC  =  2 �

iiC

vC

FIG. 15.15
Example 15.5.

15 V

0

7.5 A

2
3 2

90°
2

–
2

vC

iC

FIG. 15.16
Waveforms for Example 15.5.

EXAMPLE 15.6  Using complex algebra, 

	 a.	 Find the voltage yC for the circuit in Fig. 15.17.
	 b.	 Sketch the yC and iC curves.

Solution: 

	 a.	  iC = 6 sin (vt - 60°) 1 phasor notation IC = 4.242 A ∠-60°
		   VC = IZC = (I∠u)(XC ∠-90°) = (4.242 A ∠-60°)(0.5 Ω∠-90°)
		   = 2.121 V ∠-150°
		  and	 yC = 12(2.121) sin (vt - 150°) = 3.0 sin (Vt − 150°)
	 b.	 Note Fig. 15.18.

+

–
XC  =  0.5 �

   =  6 sin(qt  –  60°)iC

v C

FIG. 15.17
Example 15.6.

3 V

0

6 A

90°
60°

35
2

2
2

3
2

iC

vC

FIG. 15.18
Waveforms for Example 15.6.

EXAMPLE 15.5  Using complex algebra,

	 a.	 Find the current iC for the circuit in Fig. 15.15.
	 b.	 Sketch the yC and iC curves.

Solution: 

	 a.		   yC = 15 sin vt 1 phasor notation V = 10.605 V ∠0°

			    IC =
VC

ZC
=

V ∠u

XC ∠-90°
=

10.605 V ∠0°
2 Ω ∠-90°

= 5.303 A ∠90°

		  and	  iC = 12(5.303) sin (vt + 90°) = 7.5 sin (Vt + 90°)
	 b.	 Note Fig. 15.16.
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(b)
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j
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60°2.121 V
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(a)

+

j

10.605 V
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5.303 A

IC

VC
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� (b)

+

j

Leading

60°2.121 V

4.242 A

(a)

+

j

10.605 V

Leading
5.303 A

IC

VC
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IC

FIG. 15.19
Phasor diagrams for Examples 15.5 and 15.6.

+ 90°

j

– 90°

XL ∠90°

XC ∠90°

R ∠0° +

FIG. 15.20
Impedance diagram.

The phasor diagrams for the two circuits of the two preceding exam-
ples are shown in Fig. 15.19. Both indicate quite clearly that the current 
i leads the voltage y by 90°.

15.5  Impedance Diagram

Now that an angle is associated with resistance, inductive reactance, and 
capacitive reactance, each can be placed on a complex plane diagram, as 
shown in Fig. 15.20. For any network, the resistance will always appear 
on the positive real axis, the inductive reactance on the positive imagi-
nary axis, and the capacitive reactance on the negative imaginary axis. 
The result is an impedance diagram that can reflect the individual and 
total impedance levels of an ac network.

We will find in the rest of this text that networks combining different 
types of elements will have total impedances that extend from -90° to 
+90°. If the total impedance has an angle of 0°, it is said to be resistive in 
nature. If it is closer to 90°, it is inductive in nature. If it is closer to -90°, 
it is capacitive in nature.

Of course, for single-element networks, the angle associated with the 
impedance will be the same as that of the resistive or reactive element, 
as revealed by Eqs. (15.1) through (15.3). It is important to remember 
that impedance, like resistance or reactance, is not a phasor quantity rep-
resenting a time-varying function with a particular phase shift. It is sim-
ply an operating tool that is extremely useful in determining the 
magnitude and angle of quantities in a sinusoidal ac network.

Once the total impedance of a network is determined, its magnitude 
will define the resulting current level (through Ohm’s law), whereas its 
angle will reveal whether the network is primarily inductive or capaci-
tive or simply resistive.

For any configuration (series, parallel, series-parallel, and so on), the 
angle associated with the total impedance is the angle by which the 
applied voltage leads the source current. For inductive networks, UT 
will be positive, whereas for capacitive networks, UT will be negative.

EXAMPLE 15.7  Sketch the impedance diagram for a 22 ohm resistor.

Solution:  Note Fig. 15.21.

R = 22 � �0°
+ 22 � 

+j

_

FIG. 15.21
The impedance diagram for a 22 Ω resistor.
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EXAMPLE 15.8  Sketch the impedance diagram of a 2 kΩ capacitive 
reactance.

Solution:  Note Fig. 15.22.

+

+j

_

2 k� 

XC = 2 k� �–90°

FIG. 15.22
The impedance diagram for a 2 kΩ capacitive reactance.

15.6 S eries Configuration

The overall properties of series ac circuits (Fig. 15.23) are the same as 
those for dc circuits. For instance, the total impedance of a system is the 
sum of the individual impedances and the current I is the same through 
each impedance.

	 ZT = Z1 + Z2 + Z3 + g +  ZN	 (15.4)

ZT

ZNZ3Z2Z1

I I I

I

I

FIG. 15.23
Series impedances.

EXAMPLE 15.9  Draw the impedance diagram for the circuit in 
Fig. 15.24, and find the total impedance.

Solution:  As indicated by Fig. 15.25, the input impedance can be 
found graphically from the impedance diagram by properly scaling the 
real and imaginary axes and finding the length of the resultant vector ZT 
and angle uT. Or, by using vector algebra, we obtain

 ZT = Z1 + Z2

 = R ∠0° + XL ∠90°

 = R + jXL = 4 Ω + j 8 Ω

 ZT = 8.94 � j63.43°

R  =  4 � XL  =  8 �

ZT

FIG. 15.24
Example 15.9.

XL  =  8 �

j

Z T

+R  =  4 �

vT

FIG. 15.25
Impedance diagram for Example 15.9.



Series Configuration    679
a c

EXAMPLE 15.10  Determine the input impedance to the series net-
work in Fig. 15.26. Draw the impedance diagram.

Solution: 

 ZT = Z1 + Z2 + Z3

 = R ∠0° + XL ∠90° + XC ∠-90°

 = R + jXL - jXC

 = R + j(XL - XC) = 6 Ω + j(10 Ω - 12 Ω) = 6 Ω - j 2 Ω

 ZT = 6.32 � j−18.43°

The impedance diagram appears in Fig. 15.27. Note that in this 
example, series inductive and capacitive reactances are in direct 
opposition. For the circuit in Fig. 15.26, if the inductive reactance were 
equal to the capacitive reactance, the input impedance would be purely 
resistive. We will have more to say about this particular condition in a 
later chapter.

For the representative series ac configuration in Fig. 15.28 having 
two impedances, the current is the same through each element (as it was 
for the series dc circuits) and is determined by Ohm’s law:

ZT = Z1 + Z2

and	 I =
E
ZT

	 (15.5)

The voltage across each element can then be found by another applica-
tion of Ohm’s law:

	 V1 = IZ1	 (15.6a)

	 V2 = IZ2	 (15.6b)

Kirchhoff’s voltage law can then be applied in the same manner as it 
is employed for dc circuits. However, keep in mind that we are now 
dealing with the algebraic manipulation of quantities that have both 
magnitude and direction. We have

E - V1 - V2 = 0

or	 E = V1 + V2	 (15.7)

The power to the circuit can be determined by

	 P = EI cos uT	 (15.8)

where uT is the phase angle between E and I.
Now that a general approach has been introduced, the simplest of 

series configurations will be investigated in detail to further emphasize 
the similarities in the analysis of dc circuits. In many of the circuits to be 
considered, 3 + j 4 = 5 ∠53.13° and 4 + j 3 = 5 ∠36.87° are used 
quite frequently to ensure that the approach is as clear as possible and 
not lost in mathematical complexity. Of course, the problems at the end 
of the chapter will provide plenty of experience with random values.

ZT

Z1

R  =  6 �

Z2

XL  =  10 �

Z3

XC  =  12 �

FIG. 15.26
Example 15.10

+

j

T
XC – XL = 2 �

XC = 12 �

R = 6 �

XL = 10 �

ZT

FIG. 15.27
Impedance diagram for Example 15.10.

I

E

+

ZT–

Z1

V1 –+

Z2

+

V2

–

FIG. 15.28
Series ac circuit.



680    Series ac Circuits
a c

R-L
Refer to Fig. 15.29.

Phasor Notation  

e = 141.4 sin vt 1 E = 100 V∠0°

Note Fig. 15.30.

ZT   

 ZT = Z1 + Z2 = 3 Ω ∠0° + 4 Ω ∠90° = 3 Ω + j 4 Ω
and	  ZT = 5 � j53.13°

Impedance diagram: See Fig. 15.31.

I  

I =
E
ZT

=
100 V∠0°

5 Ω ∠53.13°
= 20 A j−53.13°

VR and VL  
Ohm’s law:

 VR = IZR = (20 A ∠-53.13°)(3 Ω ∠0°)
 = 60 V j−53.13°

 VL = IZL = (20 A ∠-53.13°)(4 Ω ∠90°)
 = 80 V j36.87°

Kirchhoff’s voltage law:

	  gAV = E - VR - VL = 0

or	  E = VR + VL

In rectangular form,

 VR = 60 V ∠-53.13° = 36 V - j 48 V

 VL = 80 V ∠+36.87° = 64 V + j 48 V

and

 E = VR + VL = (36 V - j 48 V) + (64 V + j 48 V) = 100 V + j 0

 = 100 V ∠0°

as applied.
Phasor diagram: Note that for the phasor diagram in Fig. 15.32, I is 

in phase with the voltage across the resistor and lags the voltage across 
the inductor by 90°.

Power: The total power in watts delivered to the circuit is

 PT = EI cos uT

 = (100 V)(20 A) cos 53.13° = (2000 W)(0.6)

 = 1200 W

where E and I are effective values and uT is the phase angle between E 
and I, or

 PT = I2R

 = (20 A)2(3 Ω) = (400)(3)

 = 1200 W

R  =  3 � XL  =  4 �

vL –+vR –+

–

+

e =  141.4 sin qt i

FIG. 15.29
Series R-L circuit.

+

–

I

R = 3 � XL = 4 �

VR+ – VL+ –

E = 100 V � 0°

FIG. 15.30
Applying phasor notation to the network  

in Fig. 15.29.

+

j

R = 3 �

XL = 4 �

Z 
= 

5 
�

T
= 53.13�

FIG. 15.31
Impedance diagram for the series R-L circuit  

in Fig. 15.29.

+

j

80 V

60 V

VR

I
53.13° E

VL

36.87°
100 V

FIG. 15.32
Phasor diagram for the series R-L circuit  

in Fig. 15.29.
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where I is the effective value, or, finally,

 PT = PR + PL = VRI cos uR + VLI cos uL

 = (60 V)(20 A) cos 0° + (80 V)(20 A) cos 90°
 = 1200 W + 0

 = 1200 W

where uR is the phase angle between VR and I, and uL is the phase angle 
between VL and I.

Power factor: The power factor Fp of the circuit is cos 53.13° = 0.6 
lagging, where 53.13° is the phase angle between E and I.

If we write the basic power equation P = EI cos u as

cos u =
P

EI

where E and I are the input quantities and P is the power delivered to the 
network, and then perform the following substitutions from the basic 
series ac circuit as

cos u =
P

EI
=

I2R

EI
=

IR

E
=

R

E>I =
R

ZT

we find	 Fp = cos uT =
R

ZT
	 (15.9)

Reference to Fig. 15.31 also indicates that u is the impedance angle 
uT as written in Eq. (15.9), further supporting the fact that the impedance 
angle uT is also the phase angle between the input voltage and current for 
a series ac circuit. To determine the power factor, it is necessary only to 
form the ratio of the total resistance to the magnitude of the input imped-
ance. For the case at hand,

Fp = cos u =
R

ZT
=

3 Ω
5 Ω

= 0.6 lagging

as found above.

R-C
Refer to Fig. 15.33.

Phasor Notation  

i = 7.07 sin (vt + 53.13°) 1 I = 5 A ∠53.13°

Note Fig. 15.34.

ZT   

ZT = Z1 + Z2 = 6 Ω ∠0° + 8 Ω ∠-90° = 6 Ω - j 8 Ω

and	 ZT = 10 � j−53.13°

Impedance diagram: As shown in Fig. 15.35.

E  

E = IZT = (5 A ∠53.13°)(10 Ω ∠-53.13°) = 50 V j0°

R  =  6 � XC  =  8 �

vC –+vR –+

i =  7.07 sin(qt +  53.13°)

FIG. 15.33
Series R-C ac circuit.

R = 6 �

VR+ –

XC = 8 �

VC+ –I = 5 �53.13°
+

–

ZT

I E

FIG. 15.34
Applying phasor notation to the circuit in Fig. 15.33.

+

j

T = 53.13�

R = 6 �

Z
T =

10
�XC = 8 �

FIG. 15.35
Impedance diagram for the series R-C circuit  

in Fig. 15.33.



682    Series ac Circuits
a c

VR and VC  

 VR = IZR = (I ∠u)(R ∠0°) = (5 A ∠53.13°)(6 Ω ∠0°)
 = 30 V j53.13°

 VC = IZC = (I ∠u)(XC ∠-90°) = (5 A ∠53.13°)(8 Ω ∠-90°)
 = 40 V j−36.87°

Kirchhoff’s voltage law:

 gA V = E - VR - VC = 0

or	  E = VR + VC

which can be verified by vector algebra as demonstrated for the R-L circuit.
Phasor diagram: Note on the phasor diagram in Fig. 15.36 that the 

current I is in phase with the voltage across the resistor and leads the 
voltage across the capacitor by 90°.

Time domain: In the time domain,

 e = 12(50) sin vt = 70.70 sin Vt
 yR = 12(30) sin (vt + 53.13°) = 42.42 sin (V t + 53.13°)
 yC = 12(40) sin (vt - 36.87°) = 56.56 sin (V t − 36.87°)

A plot of all of the voltages and the current of the circuit appears in 
Fig. 15.37. Note again that i and yR are in phase and that yC lags i by 90°.

+

30
 V

VR

E

VC

53.13°
36.87°

I 50 V

j

40 V

FIG. 15.36
Phasor diagram for the series R-C circuit  

in Fig.15.33.
70.70 V

56.56 V

42.42 V
vR

e

vC

36.87�

90�

i
0

2
–

2
3

2

2

FIG. 15.37
Waveforms for the series R-C circuit in Fig. 15.33.

Power: The total power in watts delivered to the circuit is

	  PT = EI cos uT = (50 V)(5 A) cos 53.13°
	  = (250)(0.6) = 150 W

or	  PT = I2R = (5A)2(6 Ω) = (25)(6)

	  = 150 W
or, finally,

 PT = PR + PC = VRI cos uR + VCI cos uC

 = (30 V)(5 A) cos 0° + (40 V)(5 A) cos 90°
 = 150 W + 0

 = 150 W
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Power factor: The power factor of the circuit is

Fp = cos u = cos 53.13° = 0.6 leading

Using Eq. (15.9), we obtain

 Fp = cos u =
R

ZT
=

6 Ω
10 Ω

 = 0.6 leading

as determined above.

R-L-C
Refer to Fig. 15.38.

R   =  3 � XC  =  3 �

vC –+vR –+

e =  70.7 sin qt

vL –+

XL  =  7 �

–

+

i

FIG. 15.38
Series R-L-C ac circuit.

Phasor Notation    As shown in Fig. 15.39.

R  =  3 � XC  =  3 �

VC –+VR –+

E =  50 V ∠ 0°

VL –+

XL  =  7 �

–

+

I

FIG. 15.39
Applying phasor notation to the circuit in Fig. 15.38.

ZT   

	  ZT = Z1 + Z2 + Z3 = R ∠0° + XL ∠90° + XC ∠-90°
	  = 3 Ω + j 7 Ω - j 3 Ω = 3 Ω + j 4 Ω

and	  ZT = 5 � j53.13°

Impedance diagram: As shown in Fig. 15.40.

I  

I =
E
ZT

=
50 V ∠0°

5 Ω ∠53.13°
= 10 A j−53.13°

+

j

XL = 7 �

XL – XC = 4 �

XC = 3 �

R = 3 �

Z T
=

5
�

T  = 53.13�

FIG. 15.40
Impedance diagram for the series R-L-C circuit in 

Fig. 15.38.
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VR, VL, and VC  

 VR = IZR = (I ∠u)(R ∠0°) = (10 A ∠-53.13°)(3 Ω ∠0°)
 = 30 V j−53.13°

 VL = IZL = (I ∠u)(XL ∠90°) = (10 A ∠-53.13°)(7 Ω ∠90°)
 = 70 V j36.87°

 VC = IZC = (I∠u)(XC ∠-90°) = (10 A ∠-53.13°)(3 Ω ∠-90°)
 = 30 V j−143.13°

Kirchhoff’s voltage law:

gAV = E - VR - VL - VC = 0

or	 E = VR + VL + VC

which can also be verified through vector algebra.
Phasor diagram: The phasor diagram in Fig. 15.41 indicates that 

the current I is in phase with the voltage across the resistor, lags the 
voltage across the inductor by 90°, and leads the voltage across the 
capacitor by 90°.

Time domain:

 i = 12( 10) sin (vt - 53.13°) = 14.14 sin (Vt − 53.13°)
 yR = 12(30) sin (vt - 53.13°) = 42.42 sin (Vt − 53.13°)
 yL = 12(70) sin (vt + 36.87°) = 98.98 sin (Vt + 36.87°)
 yC = 12(30) sin (vt - 143.13°) = 42.42 sin (Vt − 143.13°)

A plot of all the voltages and the current of the circuit appears in 
Fig. 15.42.

V L
  – V C

VC

VL

E

36.87°

53.13°
I

j

+

VR

FIG. 15.41
Phasor diagram for the series R-L-C circuit  

in Fig. 15.38.

98.98 V

70.70 V

42.42 V

vL

vC

53.13�

90�

0

36.87�

e

vR

i

3
2
52

2
3

22
–

FIG. 15.42
Waveforms for the series R-L-C circuit in Fig. 15.38.

Power: The total power in watts delivered to the circuit is

	  PT = EI cos uT = (50 V)(10 A) cos 53.13° = (500)(0.6) = 300 W

or	  PT = I2R = (10 A)2(3 Ω) = (100)(3) = 300 W
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15.7 V oltage Divider Rule

The basic format for the voltage divider rule in ac circuits is exactly the 
same as that for dc circuits:

	 Vx =
ZxE

ZT
	 (15.10)

where Vx is the voltage across one or more elements in a series that have 
total impedance Zx, E is the total voltage appearing across the series 
circuit, and ZT is the total impedance of the series circuit.

EXAMPLE 15.11  Using the voltage divider rule, find the voltage 
across each element of the circuit in Fig. 15.43.

Solution: 

 VC =
ZCE

ZC + ZR
=

(4 Ω ∠-90°)(100 V ∠0°)
4 Ω ∠-90° + 3 Ω ∠0°

=
400 V ∠-90°

3 - j4

 =
400 V ∠-90°
5 ∠-53.13°

= 80 V j−36.87°

 VR =
ZRE

ZC + ZR
=

(3 Ω ∠0°)(100 V ∠0°)
5 Ω ∠-53.13°

=
300 V ∠0°

5 ∠-53.13°
 = 60 V j+53.13°

EXAMPLE 15.12  Using the voltage divider rule, find the unknown 
voltages VR, VL, VC, and V1 for the circuit in Fig. 15.44.

or

 PT = PR + PL + PC

 = VRI cos uR + VLI cos uL + VCI cos uC

 = (30 V)(10 A) cos 0° + (70 V)(10 A) cos 90° + (30 V)(10 A) cos 90°
 = (30 V)(10 A) + 0 + 0 = 300 W

Power factor: The power factor of the circuit is

Fp = cos uT = cos 53.13° = 0.6 lagging

Using Eq. (15.9), we obtain

Fp = cos u =
R

ZT
=

3 Ω
5 Ω

= 0.6 lagging

R  =  3 � XC  =  4 �

VC –+VR –+

E  =  100 V ∠ 0°
–

+

FIG. 15.43
Example 15.11.

R  =  6 � XC  =  17 �

VC –+VR –+

E  =  50 V ∠ 30°

–

+
V1

XL  =  9 �

VL –+

FIG. 15.44
Example 15.12.
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Solution: 

 VR =
ZRE

ZR + ZL + ZC
=

(6 Ω ∠0°)(50 V ∠30°)
6 Ω ∠0° + 9 Ω ∠90° + 17 Ω ∠-90°

 =
300 V ∠30°

6 + j 9 - j 17
=

300 V ∠30°
6 - j 8

 =
300 V ∠30°

10 ∠-53.13°
= 30 V j83.13°

Calculator    The above calculation provides an excellent opportunity 
to demonstrate the power of today’s calculators. For the TI-89 calcula-
tor, the sequence of steps to calculate VR are shown in Fig. 15.45.

6( ∠ 0 ° ) ( 05

9(6 ∠ 0 ° ) ∠ 0 ° )9 ( 1

Polar 30.00E0 ∠ 83.13E0))(–) 0 °97 ∠

° ) ( (∠ 03×

+

÷
+

ENTERENTER

FIG. 15.45
Using the TI-89 calculator to determine VR in Example 15.12.

 VL =
ZLE

ZT
=

(9 Ω ∠90°)(50 V ∠30°)
10 Ω ∠-53.13°

=
450 V ∠120°
10 ∠-53.13°

 = 45 V j173.13°

 VC =
ZCE

ZT
=

(17 Ω ∠-90°)(50 V ∠30°)
10 Ω ∠-53.13°

=
850 V ∠-60°

10 ∠-53°
 = 85 V j−6.87°

 V1 =
(ZL + ZC)E

ZT
=

(9 Ω ∠90° + 17 Ω ∠-90°)(50 V ∠30°)
10 Ω ∠-53.13°

 =
(8 ∠-90°)(50 V ∠30°)

10 ∠-53.13°

 =
400 V ∠-60°
10 ∠-53.13°

= 40 V j−6.87°

EXAMPLE 15.13  For the circuit in Fig. 15.46,

	 a.	 Calculate I, VR, VL, and VC in phasor form.
	 b.	 Calculate the total power factor.
	 c.	 Calculate the average power delivered to the circuit.
	 d.	 Draw the phasor diagram.

R1  =  6 � L2  =  0.05 H

vC
–+–+

e  =  �2(20) sin 377t

–

+ vL
–+

L1  =  0.05 H

vR

R2  =  4 �

C2  =  200 mFC1  =  200 mF

i

FIG. 15.46
Example 15.13.
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	 e.	 Obtain the phasor sum of VR, VL, and VC, and show that it equals the 
input voltage E.

	 f.	 Find VR and VC using the voltage divider rule.

Solutions: 

	 a.	 Combining common elements and finding the reactance of the 
inductor and capacitor, we obtain

 RT = 6 Ω + 4 Ω = 10 Ω
 LT = 0.05 H + 0.05 H = 0.1 H

 CT =
200 mF

2
= 100 mF

 XL = vL = (377 rad>s)(0.1 H) = 37.70 Ω

 XC =
1

vC
=

1

(377 rad>s)(100 * 10-6 F)
=

106 Ω
37,700

= 26.53 Ω

		  Redrawing the circuit using phasor notation results in Fig. 15.47.

R  =  10 � XC  =  26.53 �

VC –+VR –+

E  =  20 V ∠ 0°
–

+

I

XL  =  37.70 �

VL –+

FIG. 15.47
Applying phasor notation to the circuit in Fig. 15.46.

		  For the circuit in Fig. 15.47,

 ZT = R ∠0° + XL ∠90° + XC ∠-90°
 = 10 Ω + j 37.70 Ω - j 26.53 Ω
 = 10 Ω + j 11.17 Ω = 15 � j48.16°

		  The current I is

I =
E
ZT

=
20 V ∠0°

15 Ω ∠48.16°
= 1.33 A j−48.16°

		  The voltage across the resistor, inductor, and capacitor can be found 
using Ohm’s law:

 VR = IZR = (I ∠u)(R ∠0°) = (1.33 A ∠-48.16°)(10 Ω ∠0°)
 = 13.30 V j−48.16°

 VL = IZL = (I ∠u)(XL ∠90°) = (1.33 A ∠-48.16°)(37.70 Ω ∠90°)
 = 50.14 V j41.84°

 VC = IZC = (I ∠u)(XC ∠-90°) = (1.33 A ∠-48.16°)(26.53 Ω ∠-90°)
 = 35.28 V j−138.16°

	 b.	 The total power factor, determined by the angle between the applied 
voltage E and the resulting current I, is 48.16°:

	  Fp = cos u = cos 48.16° = 0.667 lagging

or	  Fp = cos u =
R

ZT
=

10 Ω
15 Ω

= 0.667 lagging
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	 c.	 The total power in watts delivered to the circuit is

PT = EIcos u = (20 V)(1.33 A)(0.667) = 17.74 W

	 d.	 The phasor diagram appears in Fig. 15.48.
	 e.	 The phasor sum of VR, VL, and VC is

 E = VR + VL + VC

 = 13.30 V ∠-48.16° + 50.14 V ∠41.84° + 35.28 V ∠-138.16°
 E = 13.30 V ∠-48.16° + 14.86 V ∠41.84°

		  Therefore,

E = 2(13.30 V)2 + (14.86 V)2 = 20 V

and	 uE = 0°  (from phasor diagram)

and	 E = 20 V ∠0°

	 f.	  VR =
ZRE

ZT
=

(10 Ω ∠0°)(20 V ∠0°)
15 Ω ∠48.16°

=
200 V ∠0°
15 ∠48.16°

		   = 13.3 V j−48.16°

		   VC =
ZCE

ZT
=

(26.5 Ω ∠-90°)(20 V ∠0°)
15 Ω ∠48.16°

=
530.6 V ∠-90°

15 ∠48.16°
		   = 35.37 V j−138.16°

15.8  Frequency Response for Series  
ac Circuits

Thus far, the analysis has been for a fixed frequency, resulting in a fixed 
value for the reactance of an inductor or a capacitor. We now examine 
how the response of a series circuit changes as the frequency changes. 
We assume ideal elements throughout the discussion, so that the 
response of each element will be as shown in Fig. 15.49. Each response 
in Fig. 15.49 was discussed in detail in Chapter 14.

VC

VL

E

41.84°

48.16°
I

j

+

VR

VL
  –

 V C

FIG. 15.48
Phasor diagram for the circuit in Fig. 15.46.

ZT XL ∠90�

+

+j

+

+j

XC ∠–90�

R ∠0�

+

+j

E

0 f

R

0 f 0 f

XL = 2�fL

XC = 
2�fC

1

R L C

+

–

FIG. 15.49
Reviewing the frequency response of the basic elements.
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When considering elements in series, remember that the total imped-
ance is the sum of the individual elements and that the reactance of an 
inductor is in direct opposition to that of a capacitor. For Fig. 15.49, we 
are first aware that the resistance will remain fixed for the full range of 
frequencies: It will always be there, but, more important, its magnitude 
will not change. The inductor, however, will provide increasing levels of 
impedance as the frequency increases, while the capacitor will provide 
lower levels of impedance.

We are also aware from Chapter 14 that the inductor has a short-circuit 
equivalence at f = 0 Hz or very low frequencies, while the capacitor is 
nearly an open circuit for the same frequency range. For very high fre-
quencies, the capacitor approaches the short-circuit equivalence, and the 
inductor approaches the open-circuit equivalence.

In general, therefore, if we encounter a series R-L-C circuit at very 
low frequencies, we can assume that the capacitor, with its very large 
impedance, will be the predominant factor. If the circuit is just an R-L 
series circuit, the impedance may be determined primarily by the resis-
tive element since the reactance of the inductor is so small. As the fre-
quency increases, the reactance of the coil increases to the point where it 
totally outshadows the impedance of the resistor. For an R-L-C combi-
nation, as the frequency increases, the reactance of the capacitor begins 
to approach a short-circuit equivalence, and the total impedance will be 
determined primarily by the inductive element. At very high frequen-
cies, for an R-C series circuit, the total impedance eventually approaches 
that of the resistor since the impedance of the capacitor is dropping off 
so quickly.

In total, therefore,

when encountering a series ac circuit of any combination of 
elements, always use the idealized response of each element to 
establish some feeling for how the circuit will respond as the 
frequency changes.

Once you have a logical, overall sense for what the response will be, you 
can concentrate on working out the details.

Series R-C ac Circuit

As an example of establishing the frequency response of a circuit, con-
sider the series R-C circuit in Fig. 15.50. As noted next to the source, 
the frequency range of interest is from 0 to 20 kHz. A great deal of 
detail is provided for this particular combination, so that obtaining the 
response of a series R-L or R-L-C combination should be quite straight-
forward.

5 k�

ZTE  =  10 V ∠ 0°
–

+

R

C 0.01 mF

–

+

VC

f : 0 to 20 kHz

FIG. 15.50
Determining the frequency response of a series R-C circuit.
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The Total Impedance ZT

For the circuit of Fig. 15.50 the total impedance will be the sum of the 
impedances for each element at any frequency of interest. At very low 
frequencies the impedance of the capacitor will be much larger than 
that of the resistive element, as shown by the plots of Fig. 15.51. The 
capacitive component will therefore be the primary contributor to the 
sum of the impedances at low frequencies. Recall from Chapter 14 that 
at 0 Hz the capacitive unit acts essentially like an open circuit (an ele-
ment of infinite impedance). As the frequency increases, the impedance 
of the capacitor will decrease, as shown in Fig. 15.51, and approach that 
of the resistive element. Eventually they will be equal and any further 
increase in frequency will result in the resistive element having more 
impedance than the capacitive element, as shown in the rough sketch 
for the total impedance in Fig. 15.52. With the capacitive impedance 
approaching zero ohms, the total impedance will approach that of the 
resistor or 5 kΩ.

The frequency at which the reactance of the capacitor drops to that of 
the resistor can be determined by setting the reactance of the capacitor 
equal to that of the resistor as follows:

XC =
1

2p f1C
= R

Solving for the frequency yields

	 f1 =
1

2pRC
	 (15.11)

This significant point appears in the frequency plots in Fig. 15.51. 
Substituting values, we find that it occurs at

f1 =
1

2pRC
=

1

2p(5 kΩ)(0.01 mF)
≅ 3.18 kHz

We now know that for frequencies greater than f1, R 7 XC and that for 
frequencies less than f1, XC 7 R, as shown in Fig. 15.51.

0

R = 5 k�

ZT XC = 1
2 fC

f

5 k�

R

XC

5 k�

R < XC R > XC

0 ff1

FIG. 15.51
The frequency response for the individual elements of a series R-C circuit.

Z T

f

5 k�

0

FIG. 15.52
ZT versus frequency for the circuit  

of Fig. 15.50.
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Now for the details. The total impedance is determined by the follow-
ing equation:

ZT = R - jXC

and	 ZT = ZT ∠uT = 2R2 + XC
2  ∠- tan-1 

XC

R
� (15.12)

The magnitude and angle of the total impedance can now be found at 
any frequency of interest by simply substituting into Eq. (15.12). First, 
let us include f1, the frequency at which XC = R, in Fig. 15.53.

50 101 15 20 f (kHz)

Circuit resistive

Circuit capacitive

5

10

15

20
ZT (k�)

R  =  5 k�

ZT ( f )

XC = R 

f1

FIG. 15.53
The magnitude of the input impedance versus frequency for the circuit  

in Fig. 15.50.

Then, starting at a low frequency, find the impedance and angle of the 
total impedance up to a frequency of 20 kHz as follows:

f = 100 hz  

XC =
1

2pf C
=

1

2p(100 Hz)(0.01 mF)
= 159.16 kΩ

and� ZT = 2R2 + XC
2 = 2(5 kΩ)2 + (159.16 kΩ)2 = 159.24 kΩ

with	  uT = - tan-1 
XC

R
= - tan-1 

159.16 kΩ
5 kΩ

= - tan-1 31.83

	  = -88.2°

and	 ZT = 159.24 k� j−88.2°
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5

0�

101 15 20 f (kHz)

Circuit capacitive

–45�

–30�

–60�

–90�

Circuit resistive

T

T ( f )

FIG. 15.54
The phase angle of the input impedance versus frequency for the circuit  

in Fig. 15.50.

which compares very closely with ZC = 159.16 kΩ ∠-90° if the cir-
cuit were purely capacitive (R = 0Ω). Our assumption that the circuit is 
primarily capacitive at low frequencies is therefore confirmed.

f = 1 khz  

	 XC =
1

2pf C
=

1

2p(1 kHz)(0.01 mF)
= 15.92 kΩ

and	 ZT = 2R2 + XC
2 = 2(5 kΩ)2 + (15.92 kΩ)2 = 16.69 kΩ

with	  uT = - tan-1 
XC

R
= - tan-1 

15.92 kΩ
5 kΩ

	  = - tan-1 3.18 = -72.54°
and	 ZT = 16.69 k� j−72.54°

A noticeable drop in the magnitude has occurred, and the impedance 
angle has dropped almost 17° from the purely capacitive level.

Continuing, we obtain

 f = 5 kHz: ZT = 5.93 k� j−32.48°
 f = 10 kHz: ZT = 5.25 k� j−17.66°
 f = 15 kHz: ZT = 5.11 k� j−11.98°
 f = 20 kHz: ZT = 5.06 k� j−9.04°

Note how close the magnitude of ZT at f = 20 khz is to the resistance 
level of 5 kΩ. In addition, note how the phase angle is approaching that 
associated with a pure resistive network (0°).

A plot of ZT versus frequency in Fig. 15.53 completely supports our 
assumption based on the curves of Fig. 15.51 and 15.52. The plot of uT 
versus frequency in Fig. 15.54 further suggests that the total impedance 
made a transition from one of a capacitive nature (uT = -90°) to one 
with resistive characteristics (uT = 0°).
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The Voltage vC

Applying the voltage divider rule to determine the voltage across the 
capacitor in phasor form yields

 VC =
ZCE

ZR + ZC

 =
(XC ∠-90°)(E ∠0°)

R - jXC
=

XCE ∠-90°
R - jXC

 =
XCE ∠-90°2R2 + XC

2  l- tan-1XC>R
or	 VC = VC ∠uC =

XCE2R2 + XC
2

 l-90° + tan-1(XC>R)

The magnitude of VC is therefore determined by

	 VC =
XCE2R2 + XC

2
	 (15.13)

and the phase angle uC by which VC leads E is given by

	 uC = -90° + tan-1 
XC

R
= - tan-1 

R

XC
	 (15.14)

To determine the frequency response, XC must be calculated for each 
frequency of interest and inserted into Eqs. (15.13) and (15.14).

To begin our analysis, we should consider the case of f = 0 Hz 
(dc conditions).

f = 0 hz  

XC =
1

2p(0)C
=

1

0
1 very large value

Applying the open-circuit equivalent for the capacitor based on the 
above calculation results in the following:

VC = E = 10 V∠0°

f = 1 khz    Applying Eq. (15.13) gives

XC =
1

2pf C
=

1

(2p)(1 * 103 Hz)(0.01 * 10-6 F)
≅ 15.92 k�2R2 + XC

2 = 2(5 kΩ)2 + (15.92 kΩ)2 ≅ 16.69 kΩ

and	 VC =
XCE2R2 + XC

2
=

(15.92 kΩ)(10)

16.69 kΩ
= 9.54 V

Applying Eq. (15.14) gives

 uC = - tan-1 
R

XC
= - tan-1 

5 kΩ
15.9 kΩ

 = - tan-10.314 = −17.46°
and	  VC = 9.83 V j−17.46°

As expected, the high reactance of the capacitor at low frequencies has 
resulted in the major part of the applied voltage appearing across the 
capacitor.
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If we plot the phasor diagrams for f = 0 Hz and f = 1 kHz, as shown 
in Fig. 15.55, we find that VC is beginning a clockwise rotation with an 
increase in frequency that will increase the angle uC and decrease the 
phase angle between I and E. Recall that for a purely capacitive network, 
I leads E by 90°. As the frequency increases, therefore, the capacitive 
reactance is decreasing, and eventually R W XC with uC = -90°, and 
the angle between I and E will approach 0°. Keep in mind as we proceed 
through the other frequencies that uC is the phase angle between VC and E 
and that the magnitude of the angle by which I leads E is determined by

	 � uI � = 90° - � uC � 	 (15.15)

I  =  0 A

f  = 0 Hz

E
VC

E

I

VR

f  = 1 kHz

–17.46�

VC

C

I

C  =  0�
I  =  90�

FIG. 15.55
The phasor diagram for the circuit in Fig. 15.50 for f = 0 Hz and 1 kHz.

f = 5 khz    Applying Eq. (15.13) gives

XC =
1

2pf C
=

1

(2p)(5 * 103 Hz)(0.01 * 10-6 F)
≅ 3.18 k�

Note the dramatic drop in XC from 1 kHz to 5 kHz. In fact, XC is now 
less than the resistance R of the network, and the phase angle determined 
by tan-1(XC>R) must be less than 45°. Here,

VC =
XCE2R2 + XC

2
=

(3.18 kΩ)(10 V)2(5 kΩ)2 + (3.18 kΩ)2
= 5.37 V

with	  uC = - tan-1 
R

XC
= - tan-1 

5 kΩ
3.2 kΩ

	  = - tan-11.56 = −57.38°

f = 10 khz  

XC ≅ 1.59 k�   VC = 3.03 V  uC = −72.34°

f = 15 khz  

XC ≅ 1.06 k�   VC = 2.07 V  uC = −78.02°

f = 20 khz  

XC ≅ 795.78 �   VC = 1.57 V  uC = −80.96°

The phasor diagrams for f = 5 kHz and f = 20 kHz appear in Fig. 
15.56 to show the continuing rotation of the VC vector.

Note also from Figs. 15.55 and 15.56 that the vector VR and the current 
I have grown in magnitude with the reduction in the capacitive reactance. 
Eventually, at very high frequencies, XC will approach zero ohms and the 
short-circuit equivalent can be applied, resulting in VC ≅ 0 V and 

IVR

f  = 20 kHz

E

VC

C  =  –80.96�

IVR

E

VC

f  = 5 kHz

C  =  –57.38�

FIG. 15.56
The phasor diagram for the circuit in Fig. 15.50  

for f = 5 kHz and 20 kHz.
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VC  ≅  0 V E
VR vI  ≅  0°

vC  ≅  –90°

f  =  very high frequencies

FIG. 15.57
The phasor diagram for the circuit in Fig. 15.50 at 

very high frequencies.

uC ≅ -90° and producing the phasor diagram in Fig. 15.57. The net-
work is then resistive, the phase angle between I and E is essentially zero 
degrees, and VR and I are their maximum values.

A plot of VC versus frequency appears in Fig. 15.58. At low frequen-
cies, XC W R, and VC is very close to E in magnitude. As the applied 
frequency increases, XC decreases in magnitude along with VC as VR 
captures more of the applied voltage. A plot of uC versus frequency is 
provided in Fig. 15.59. At low frequencies, the phase angle between VC 
and E is very small since VC ≅ E. Recall that if two phasors are equal, 
they must have the same angle. As the applied frequency increases, the 

50 101 15 20 f (kHz)

Network resistive

Network capacitive

4

9

10

VC

VC ( f )

8

7

6

5

3

2

1

FIG. 15.58
The magnitude of the voltage VC versus frequency for the circuit in Fig. 15.50.

50 10 15 20 f (kHz)

Network capacitive–30�

–60�

–90�

Network resistive

1

C ( f )

C (phase angle between E and VC)

FIG. 15.59
The phase angle between E and VC versus frequency for the circuit in Fig. 15.50.
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network becomes more resistive, and the phase angle between VC and 
E approaches 90°. Keep in mind that, at high frequencies, I and E are 
approaching an in-phase situation, and the angle between VC and 
E will approach that between VC and I, which we know must be 90°
(IC leading VC).

A plot of VR versus frequency approaches E volts from zero volts 
with an increase in frequency, but remember that VR ≠ E - VC due to 
the vector relationship. The phase angle between I and E could be plotted 
directly from Fig. 15.59 using Eq. (15.15).

In Chapter 22, the analysis of this section is extended to a much 
wider frequency range using a log axis for frequency. It will be demon-
strated that an R-C circuit such as that in Fig. 15.50 can be used as a 
filter to determine which frequencies will have the greatest impact on 
the stage to follow. From our current analysis, it is obvious that any 
network connected across the capacitor will receive the greatest poten-
tial level at low frequencies and be effectively “shorted out” at very 
high frequencies.

Series R-L ac Circuit

The Total Impedance Z    For a series R-L ac circuit the frequency 
response of the resistor will remain as it was for the R-C circuit but the 
inductor will have a totally different response than that of the capacitive 
element, as shown in Fig. 15.60. At very low frequencies the impedance 
of the inductor will be so small that the resistive element will be the pre-
dominant factor in determining the total impedance. As the frequency 
increases, however, there will come a point where the impedance of the 
inductor will match that of the resistor.

The frequency at which this occurs is determined as follows:

	  XL = 2pfL = R

	  f1 =
R

2pL
	 (15.16)

Substituting:

f1 =
R

2pL
=

1 kΩ
2p(20 mH)

= 7.96 kΩ

0 f

1 k�

R

R = 1 k�

E

–

+ ZT

 20 mHL

0 f

1 k�

XL

XL = 2 fL

f1R > XL XL > R 

FIG. 15.60
The frequency response for the individual elements of a series R-L circuit.
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As the applied frequency increases beyond this level, the inductor 
will outweigh the impact of the resistor and the total impedance will 
approach that of just the inductor, as shown in Fig. 15.61.

The phase angle of the total impedance will approach 90°, as shown 
in Fig. 15.62, because the network begins to appear totally inductive. At 
low frequencies it approaches 0° because the resistor is the overpower-
ing factor.

0 ff1 2f1 3f1 4f1

= R = 1 k�Z T

Z T

= 1.414 k� 

�R2 2XL+=Z T

@Z T XL

FIG. 15.61
The total impedance versus frequency for the circuit 

of Fig. 15.60.

0°

45°

90°

ff1 2f1 3f1 4f1 5f1

Approaching 
totally inductive
circuit

Totally 
resistive
circuit

T  by which E leads I )∠

FIG. 15.62
The phase angle for the total impedance of the circuit of Fig. 15.60.

The Voltage VL  At very low frequencies the impedance of the 
inductive element is so small that the application of the voltage 
divider rule will result in a very low voltage across the inductor, as 
shown in Fig. 15.63. However, as the inductive reactance increases, 
the voltage VL will increase accordingly until it captures all the applied 
voltage as shown in the same figure.

0° ff1 2f1 3f1 4f1 5f1

E

VL

VL  = 0.7071  
(XL  = R) 

Approaching E volts

VL = 0 V, XL = 0 �

E

FIG. 15.63
VL versus frequency for the R-L circuit of Fig. 15.60.
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EXAMPLE 15.14  For the series R-L circuit in Fig. 15.64.

	 a.	 Determine the frequency at which XL = R.
	 b.	 Develop a mental image of the change in total impedance with fre-

quency without doing any calculations.
	 c.	 Find the total impedance at f = 100 Hz and 40 kHz, and compare 

your answer with the assumptions of part (b).
	 d.	 Plot the curve of VL versus frequency.
	 e.	 Find the phase angle of the total impedance at f = 40 kHz. Can the 

circuit be considered inductive at this frequency? Why?

L 40 mHE = 20 V ∠0°
f: 0 to 40 kHz

+

–

+

–

R

2 k�ZT

VL

FIG. 15.64
Circuit for Example 15.14.

Solutions: 

	 a.	 XL = 2pf1L = R

		  and	 f1 =
R

2pL
=

2 kΩ
2p(40 mH)

= 7957.7 Hz

	 b.	 At low frequencies, R 7 XL and the impedance will be very close to 
that of the resistor, or 2 kΩ. As the frequency increases, XL increases 
to a point where it is the predominant factor. The result is that the 
curve starts almost horizontal at 2 kΩ and then increases linearly to 
very high levels.

	 c.	 ZT = R + jXL = ZT ∠uT = 2R2 + XL
2 ∠tan-1 

XL

R

		  At f = 100 Hz:

XL = 2pf L = 2p(100 Hz)(40 mH) = 25.13 Ω

and	  ZT = 2R2 + XL
2 = 2(2 kΩ)2 + (25.13 Ω)2

	  = 2000.16 Ω ≅ R

		  At f = 40 kHz:

XL = 2pf L = 2p(40 kHz)(40 mH) ≅ 10.05 kΩ

and	  ZT = 2R2 + XL
2 = 2(2 kΩ)2 + (10.05 kΩ)2

	  = 10.25 kΩ ≅ XL

		  Both calculations support the conclusions of part (b).

	 d.	 Applying the voltage divider rule gives

VL =
ZLE

ZT

		  From part (c), we know that at 100 Hz, ZT ≅ R, so that VR ≅ 20 V 
and VL ≅ 0 V. Part (c) revealed that at 40 kHz, ZT ≅ XL, so that 
VL ≅ 20 V and VR ≅ 0 V. The result is two plot points for the 
curve in Fig. 15.65.
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At 1 kHz	 XL = 2pfL ≅ 0.25 kΩ

and	 VL =
(0.25 kΩ ∠90°)(20 V ∠0°)

2 kΩ + j 0.25 kΩ
= 2.48 V j82.87°

At 5 kHz	 XL = 2pf L ≅ 1.26 kΩ

and	 VL =
(1.26 kΩ∠90°)(20 V∠0°)

2 kΩ + j 1.26 kΩ
= 10.68 V j57.79°

At 10 kHz	 XL = 2pf L ≅ 2.5 kΩ

and	 VL =
(2.5 kΩ ∠90°)(20 V ∠0°)

2.5 kΩ + j 2.5 kΩ
= 15.63 V j38.66°

		  The complete plot appears in Fig. 15.65.

	 e.	 uT = tan-1 
XL

R
= tan-1 

10.05 kΩ
2 kΩ

= 78.75°

		  The angle uT is closing in on the 90° of a purely inductive network. 
Therefore, the network can be considered quite inductive at a fre-
quency of 40 kHz.

Series R-L-C Circuit

The Total Impedance ZT     The frequency responses for each ele-
ment of the series R-L-C circuit of Fig. 15.66(a) have been superim-
posed on each other in Fig. 15.66(b) to better define the regions of 
maximum impact for each.

0 kHz1 5 10 20 30 40

20 V

10 V VL

VL

FIG. 15.65
Plotting VL versus f for the series R-L circuit in Fig. 15.64.

+

–

R XL

100 � 

0.1 µF 

5 mH 

XCE
ZT

I

R
100 

223.68

0

XL = 2 fL
XC = 1

2 fC

ZT (�)

f1

(a) (b)

f

FIG. 15.66
Impedance versus frequency for a series R-L-C circuit.
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For the full frequency range the ideal resistor stays fixed at the same 
value of 100 ohms. The 0.1 mF capacitor has its maximum impedance at 
very low frequencies while the 5 mH inductor has its greatest impact at 
the higher frequencies. Looking at Fig. 15.66(b), it is clear that there is a 
frequency where the capacitive reactance will equal that of the inductive 
reactance. Its value can be determined as follows:

 XL = XC

 2pf L =
1

2pf C

 f 2 =
1

4p2LC

	 f1 =
1

2p2LC
	 (15.17)

which for the circuit of Fig. 15.66(a) is

f1 =
1

2p2LC
=

1

2p2(0.1 mF)(5 mH)
= 7.12 kHz

At the frequency f1 the impedance diagram of the circuit will appear 
as shown in Fig. 15.67. Note that the reactance of the capacitor and 
inductor is in opposition and the total reactive impedance is zero ohms. 
The impedance at f1 is therefore simply that of the resistor R. It is, in 
fact, the smallest possible level of impedance for the circuit. The actual 
reactance of both the capacitor and inductor at this frequency is

XC = XL = 2pfL = 2p(7.12 kHz)(5 mH) = 223.68 Ω

Note that the reactance of each is twice that of the resistor at f1 but 
since they cancel the total impedance is still just that of the resistor, or 
100 Ω. A plot of the total impedance of the network will therefore have 
the general shape appearing in Fig. 15.68 with the element of most 
impact labeled on the curve.

j

+R  = 100 � = ZT  

XC = 223.68 � 

XL = 223.68 � 

FIG. 15.67
Impedance diagram for the circuit of Fig. 15.66(a) 

of the frequency f1.

0

ZT (�)

f1 f

ZT  = R = 100

C R L

FIG. 15.68
Impedance curve for the circuit of Fig. 15.66(a).

The Current I    The fact that the impedance will be a minimum value 
at f1 will result in the current through the circuit being a maximum value 
at this frequency. The shape of the frequency plot for the current will 
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actually be a flipped version of Fig. 15.68, as shown in Fig. 15.69. A 
great deal more will be said about this circuit in Chapter 21 when we 
consider tuned networks.

15.9 S ummary: Series ac Circuits

The following is a review of important conclusions that can be derived 
from the discussion and examples of the previous sections. The list is not 
all-inclusive, but it does emphasize some of the conclusions that should 
be carried forward in the future analysis of ac systems.

For series ac circuits with reactive elements:

	 1.	 The total impedance will be frequency dependent.
	 2.	 The impedance of any one element can be greater than the total 

impedance of the network.
	 3.	 The inductive and capacitive reactances are always in direct 

opposition on an impedance diagram.
	 4.	 Depending on the frequency applied, the same circuit can be 

either predominantly inductive or predominantly capacitive.
	 5.	 At lower frequencies, the capacitive elements will usually have 

the most impact on the total impedance, while at high frequen-
cies, the inductive elements will usually have the most impact.

	 6.	 The magnitude of the voltage across any one element can be 
greater than the applied voltage.

	 7.	 The magnitude of the voltage across an element compared to the 
other elements of the circuit is directly related to the magnitude 
of its impedance; that is, the larger the impedance of an element, 
the larger is the magnitude of the voltage across the element.

	 8.	 The voltages across a coil or capacitor are always in direct 
opposition on a phasor diagram.

	 9.	 The current is always in phase with the voltage across the resistive 
elements, lags the voltage across all the inductive elements by 90°, 
and leads the voltage across all the capacitive elements by 90°.

	10.	 The larger the resistive element of a circuit compared to the net 
reactive impedance, the closer is the power factor to unity.

15.10  Phase Measurements

Measuring the phase angle between quantities is one of the most 
important functions that an oscilloscope can perform. It is an operation 
that must be performed carefully, however, or you may obtain the 
incorrect result or damage the equipment. Whenever you are using the 
dual-trace capability of an oscilloscope, the most important thing to 
remember is that

both channels of a dual-trace oscilloscope must be connected to the 
same ground.

Measuring ZT  and UT

For ac networks restricted to resistive loads, the total impedance can be 
found in the same manner as described for dc circuits: Simply remove the 
source and place an ohmmeter across the network terminals. However,

for ac networks with reactive elements, the total impedance cannot be 
measured with an ohmmeter.

0

I

f1 f

C R L

R
E

FIG. 15.69
The current I versus frequency for the series R-L-C 

circuit of Fig. 15.66(a).
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An experimental procedure must be defined that permits determining the 
magnitude and the angle of the terminal impedance.

The phase angle between the applied voltage and the resulting source 
current is one of the most important because (a) it is also the phase angle 
associated with the total impedance; (b) it provides an instant indication 
of whether a network is resistive or reactive; (c) it reveals whether a 
network is inductive or capacitive; and (d) it can be used to find the 
power delivered to the network.

In Fig. 15.70, a resistor has been added to the configuration between 
the source and the network to permit measuring the current and finding 
the phase angle between the applied voltage and the source current.

Channel 2

Channel 1 Network
E

Is

Vx

Sensing resistor

+

–

+

–

Is

ZT

IsVRs +–

FIG. 15.70
Using an oscilloscope to measure ZT and uT.

At the frequency of interest, the applied voltage establishes a voltage 
across the sensing resistor that can be displayed by one channel of the 
dual-trace oscilloscope. In Fig. 15.70, channel 1 is displaying the applied 
voltage and channel 2 the voltage across the sensing resistor. Sensitivities 
for each channel are chosen to establish the waveforms appearing on the 
screen in Fig. 15.71. As emphasized above, note that both channels have 
the same ground connection. In fact, the need for a common ground con-
nection is the only reason that the sensing resistor was not connected to 
the positive side of the supply. Since oscilloscopes display only voltages 
versus time, the peak value of the source current must be found using 
Ohm’s law. Since the voltage across a resistor and the current through the 
resistor are in phase, the phase angle between the two voltages will be the 
same as that between the applied voltage and the resulting source current.

1.7 div.

e

vRs Channel 2
10 mV/div.

Channel 1
2 V/div.

FIG. 15.71
e and yRS

 for the configuration in Fig. 15.70.
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Using the sensitivities, we find that the peak value of the applied volt-
age is

Em = (4 div.)(2 V/div.) = 8 V

while the peak value of the voltage across the sensing resistor is

VRs(peak) = (2div.)(10 mV/div.) = 20 mV

Using Ohm’s law, we find that the peak value of the current is

Is(peak) =
VRs(peak))

Rs
=

20 mV

10 Ω
= 2 mA

The sensing resistor is chosen small enough so that the voltage across 
the sensing resistor is small enough to permit the approximation 
Vx = E − VRs

@ E. The magnitude of the input impedance is then

ZT =
Vx

Is
≅

E

Is
=

8 V

2 mA
= 4 k�

For the chosen horizontal sensitivity, each waveform in Fig. 15.71 
has a period T defined by ten horizontal divisions, and the phase angle 
between the two waveforms is 1.7 divisions. Using the fact that each 
period of a sinusoidal waveform encompasses 360°, we can set up the 
following ratios to determine the phase angle u:

10 div.

360°
=

1.7 div.

u

and	 u = a 1.7

10
b360° = 61.2°

In general,

	 u =
(div. for u)

(div. for T )
* 360°	 (15.18)

Therefore, the total impedance is

ZT = 4 k� j61.2° = 1.93 k� + j 3.51 k� = R + jXL

which is equivalent to the series combination of a 1.93 kΩ resistor and 
an inductor with a reactance of 3.51 kΩ (at the frequency of interest).

Measuring the Phase Angle  
between Various Voltages

In Fig. 15.72, an oscilloscope is being used to find the phase relationship 
between the applied voltage and the voltage across the inductor. Note 
again that each channel shares the same ground connection. The result-
ing pattern appears in Fig. 15.73 with the chosen sensitivities. This time, 
both channels have the same sensitivity, resulting in the following peak 
values for the voltages:

 Em = (3 div.)(2 V/div.) = 6 V

 VL(peak) = (1.6 div.)(2 V/div.) = 3.2 V

The phase angle is determined using Eq. 15.18:

 u =
(1 div.)

(8 div.)
* 360°

 u = 45°
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If the phase relationship between e and yR is desired, the oscillo-
scope cannot be connected as shown in Fig. 15.74. The grounds of 
each channel are internally connected in the oscilloscope, forcing 
point b to have the same potential as point a. The result would be a 
direct connection between points a and b that would short out the 
inductive element. If the inductive element is the predominant factor 
in controlling the level of the current, the current in the circuit could 
rise to dangerous levels and damage the oscilloscope or supply. The 
easiest way to find the phase relationship between e and yR would be 
to simply interchange the positions of the resistor and the inductor 
and proceed as before.

15.11  Applications

Speaker Systems

The best reproduction of sound is obtained by using different speakers 
for the low-, mid-, and high-frequency regions. Although the typical 
audio range for the human ear is from about 100 Hz to 20 kHz, speakers 

Oscilloscope

Channel
1

Channel
2

R

Le vL

+

–

+

–

FIG. 15.72
Determining the phase relationship between e and yL.

vL

1 div.

e

T = 8 div.

Channel 1
2 V/div.

Channel 2
2 V/div.

FIG. 15.73
Determining the phase angle between e and yL for the configuration  

in Fig. 15.72.

R

Le

21

vR

Oscilloscope

a

b
+ –

+

–

FIG. 15.74
An improper phase-measurement connection.
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are available from 20 Hz to 40 kHz. For the low-frequency range usually 
extending from about 20 Hz to 300 Hz, a speaker referred to as a woofer 
is used. Of the three speakers, it is normally the largest. The mid-range 
speaker is typically smaller in size and covers the range from about 
100 Hz to 5 kHz. The tweeter, as it is normally called, is usually the 
smallest of the three speakers and typically covers the range from about 
2 kHz to 25 kHz. There is an overlap of frequencies to ensure that fre-
quencies aren’t lost in those regions where the response of one drops off 
and the other takes over. A great deal more about the range of each 
speaker and their dB response (a term you may have heard when dis-
cussing speaker response) is covered in detail in Chapter 22.

One popular method for hooking up the three speakers is the cross-
over configuration in Fig. 15.75. Note that it is nothing more than a par-
allel network with a speaker in each branch and full applied voltage 
across each branch. The added elements (inductors and capacitors) were 
carefully chosen to set the range of response for each speaker. Note that 
each speaker is labeled with an impedance level and associated fre-
quency. This type of information is typical when purchasing a quality 
speaker. It immediately identifies the type of speaker and reveals at 
which frequency it will have its maximum response. A detailed analysis 
of the same network will be included in Section 22.16. For now, how-
ever, it should prove interesting to determine the total impedance of 
each branch at specific frequencies to see if indeed the response of one 
will far outweigh the response of the other two. Since an amplifier with 
an output impedance of 8 Ω is to be used, maximum transfer of power 
(see Section 19.5 for ac networks) to the speaker results when the imped-
ance of the branch is equal to or very close to 8 Ω.

Let us begin by examining the response of the frequencies to be car-
ried primarily by the mid-range speaker since it represents the greatest 
portion of the human hearing range. Since the mid-range speaker branch 
is rated at 8 Ω at 1.4 kHz, let us test the effect of applying 1.4 kHz to all 
branches of the crossover network.

For the mid-range speaker:

 XC =
1

2pf C
=

1

2p(1.4 kHz)(47 mF)
= 2.42 Ω

 XL = 2pf L = 2p(1.4 kHz)(270 mH) = 2.78 Ω
 R = 8 Ω

and	  Zmid@range = R + j (XL - XC) = 8 Ω + j (2.78 Ω - 2.42 Ω)

	  = 8 Ω + j 0.36 Ω
	  = 8.008 Ω ∠-2.58° ≅ 8 Ω ∠0° = R

In Fig. 15.76(a), the amplifier with the output impedance of 8 Ω has 
been applied across the mid-range speaker at a frequency of 1.4 kHz. 
Since the total reactance offered by the two series reactive elements is so 
small compared to the 8 Ω resistance of the speaker, we can essentially 
replace the series combination of the coil and capacitor by a short circuit 
of 0 Ω. We are then left with a situation where the load impedance is an 
exact match with the output impedance of the amplifier, and maximum 
power will be delivered to the speaker. Because of the equal series 
impedances, each will capture half the applied voltage or 6 V. The power 
to the speaker is then V2>R = (6V)2>8 Ω = 4.5 W.

At a frequency of 1.4 kHz, we would expect the woofer and tweeter 
to have minimum impact on the generated sound. We will now test the 

8 �
Llow = 3.3 mH

Vi

+

–

8 �

8 �

Cmid = 47   F Lmid = 270   H

Chigh = 3.9   F

Woofer

Tweeter

Midrange

FIG. 15.75
Crossover speaker system.
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validity of this statement by determining the impedance of each branch 
at 1.4 kHz.

For the woofer,

 XL = 2pf L = 2p(1.4 kHz)(3.3 mH) = 29.03 Ω
and	  Zwoofer = R + jXL = 8 Ω + j 29.03 Ω

 = 30.11 Ω ∠74.59°

which is a poor match with the output impedance of the amplifier. The 
resulting network is shown in Fig. 15.76(b).

The total load on the source of 12 V is

 ZT = 8 Ω + 8 Ω + j 29.03 Ω = 16 Ω + j 29.03 Ω
 = 33.15 Ω ∠61.14°

and the current is

 I =
E
ZT

=
12 V ∠0°

33.15 Ω ∠61.14°
 = 362 mA ∠-61.14°

8 �

8 �
2.42 � 2.38 �

Midrange
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+

–

Vspeaker
= 6 V

Amplifier

+

–

12 V

(a)

(–jXC + jXL = –j 0.04 �)

XC

8 �

8 � 29.03 �

Woofer

XL

Ispeaker
= 362 mA

Amplifier

+

–

12 V

(b)

8 �

8 �
29.15 �

Tweeter

Amplifier

+

–

12 V

(c)

XC

Zwoofer

Ztweeter

Ispeaker
= 397 mA

ZT

Zmidrange

ZT

ZT

8 �

8 �
2.42 � 2.38 �

Midrange
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+

–

Vspeaker
= 6 V

Amplifier

+

–

12 V

(a)

(–jXC + jXL = –j 0.04 �)
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8 �

8 � 29.03 �

Woofer
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Ispeaker
= 362 mA

Amplifier

+

–

12 V

(b)

8 �

8 �
29.15 �

Tweeter

Amplifier

+

–

12 V

(c)

XC

Zwoofer

Ztweeter

Ispeaker
= 397 mA

ZT

Zmidrange

ZT

ZT

8 �

8 �
2.42 � 2.38 �

Midrange
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+

–

Vspeaker
= 6 V

Amplifier

+

–

12 V

(a)

(–jXC + jXL = –j 0.04 �)

XC

8 �

8 � 29.03 �

Woofer
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Ispeaker
= 362 mA

Amplifier

+

–

12 V

(b)

8 �

8 �
29.15 �

Tweeter
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+

–

12 V

(c)

XC

Zwoofer

Ztweeter

Ispeaker
= 397 mA

ZT

Zmidrange
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FIG. 15.76
Crossover network: (a) mid-range speaker at 1.4 kHz; (b) woofer  

at 1.4 kHz; (c) tweeter.
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The power to the 8 Ω speaker is then

Pwoofer = I2R = (362 mA)2(8 Ω) = 1.05 W

or about 1 W.
Consequently, the sound generated by the mid-range speaker far out-

weighs the response of the woofer (as it should).
For the tweeter in Fig. 15.76,

XC =
1

2pfC
=

1

2p(1.4 kHz)(3.9 mF)
= 29.15 Ω

and	  Ztweeter = R - jXC = 8 Ω - j 29.15 Ω

	  = 30.33 Ω ∠-74.65°

which, as for the woofer, is a poor match with the output impedance of 
the amplifier. The current is given as

 I =
E
ZT

=
12 V ∠0°

30.33 Ω ∠-74.65°

 = 397 mA ∠74.65°

The power to the 8 Ω speaker is then

Ptweeter = I2R = (397 mA)2(8 Ω) = 1.26 W

or about 1.3 W.
Consequently, the sound generated by the mid-range speaker far out-

weighs the response of the tweeter also.
All in all, the mid-range speaker predominates at a frequency of 

1.4 kHz for the crossover network in Fig. 15.75.
Let us now determine the impedance of the tweeter at 20 kHz and the 

impact of the woofer at this frequency.
For the tweeter,

XC =
1

2pf C
=

1

2p(20 kHz)(3.9 mF)
= 2.04 Ω

with	 Ztweeter = 8 Ω - j 2.04 Ω = 8.26 Ω ∠-14.31°

Even though the magnitude of the impedance of the branch is not 
exactly 8 Ω, it is very close, and the speaker will receive a high level of 
power (actually 4.43 W).

For the woofer,

XL = 2pf L = 2p(20 kHz)(3.3 mH) = 414.69 Ω

with	 Zwoofer = 8 Ω + j 414.69 Ω = 414.77 Ω ∠88.9°

which is a terrible match with the output impedance of the amplifier. 
Therefore, the speaker will receive a very low level of power (6.69 mW ≅
0.007 W).

For all the calculations, note that the capacitive elements predomi-
nate at low frequencies and the inductive elements at high frequencies. 
For the low frequencies, the reactance of the coil is quite small, permit-
ting a full transfer of power to the speaker. For the high-frequency 
tweeter, the reactance of the capacitor is quite small, providing a direct 
path for power flow to the speaker.
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15.12 C omputer Analysis

PSpice

Series R-L-C Circuit    The R-L-C network in Fig. 15.38 is now ana-
lyzed using OrCAD Capture. Since the inductive and capacitive reac-
tances cannot be entered onto the screen, the associated inductive and 
capacitive levels were first determined as follows:

 XL = 2pf L 1 L =
XL

2pf
=

7 Ω
2p(1 kHz)

= 1.114 mH

 XC =
1

2pf C
1 C =

1

2pf XC
=

1

2p(1 kHz)3 Ω
= 53.05 mF

Enter the values into the schematic as shown in Fig. 15.77. For the ac 
source, the sequence is Place part icon-SOURCE-VSIN-OK with 
VOFF set at 0 V, VAMPL set at 70.7 V (the peak value of the applied 
sinusoidal source in Fig. 15.38), and FREQ = 1 kHz. Double-click on 
the source symbol and the Property Editor appears, confirming the 
above choices and showing that DF = 0 s, PHASE = 0°, and 
TD = 0 s as set by the default levels. You are now ready to do an analy-
sis of the circuit for the fixed frequency of 1 kHz.

FIG. 15.77
Using PSpice to analyze a series R-L-C ac circuit.

The simulation process is initiated by first selecting the New Simulation 
Profile icon and inserting PSpice 15-1 as the Name followed by Create. 
The Simulation Settings dialog appears and since you are continuing to 
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plot the results against time, select the Time Domain (Transient) option 
under Analysis type. Since the period of each cycle of the applied source 
is 1 ms, set the Run to time at 5 ms so that five cycles appear. Leave the 
Start saving data after at 0 s even though there will be an oscillatory 
period for the reactive elements before the circuit settles down. Set the 
Maximum step size at 5 ms/1000 = 5 ms. Finally, select OK followed 
by the Run PSpice key. The result is a blank screen with an x-axis 
extending from 0 s to 5 ms.

The first quantity of interest is the current through the circuit, so 
select Trace-Add-Trace followed by I(R) and OK. The resulting plot 
in Fig. 15.78 clearly shows that there is a period of storing and discharg-
ing of the reactive elements before a steady-state level is established. It 
would appear that after 3 ms, steady-state conditions have been essen-
tially established. Select the Toggle cursor key, and left-click; a cursor 
appears that can be moved along the axis near the maximum value 
around 1.4 ms. In fact, the cursor reveals a maximum value of 16.35 A, 
which exceeds the steady-state solution by over 2 A. Right-click to 
establish a second cursor on the screen that can be placed near the 
steady-state peak around 4.4 ms. The resulting peak value is about 
14.15 A, which is a match with the longhand solution for Fig. 15.38. We 
will therefore assume that steady-state conditions have been established 
for the circuit after 4 ms.

FIG. 15.78
A plot of the current for the circuit in Fig. 15.77 showing the transition from 

the transient state to the steady-state response.

Now add the source voltage through Trace-Add Trace-V(Vs:+)-OK 
to obtain the multiple plot at the bottom of Fig. 15.79. For the voltage 
across the coil, the sequence Plot-Add Plot to Window-Trace-Add 
Trace-V(L:1)-V(L:2) results in the plot appearing at the top of Fig. 15.79. 
Take special note that the Trace Expression is V(L:1)–V(L:2) rather 
than just V(L:1) because V(L:1) would be the voltage from that point to 
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ground, which would include the voltage across the capacitor. In addi-
tion, the -  sign between the two comes from the Functions or Macros 
list at the right of the Add Traces dialog box. Finally, since we know 
that the waveforms are fairly steady after 3 ms, cut away the waveforms 
before 3 ms with Plot-Axis Settings-X axis-User Defined-3ms to 5ms-
OK to obtain the two cycles of Fig. 15.79. Now you can clearly see that 
the peak value of the voltage across the coil is 100 V to match the analy-
sis of Fig. 15.38. It is also clear that the applied voltage leads the input 
current by an angle that can be determined using the cursors. If the grid 
spacing for the lower plot is insufficient to get a good reading, first bring 
the SELW  designation to the lower plot and select Plot to obtain the 
Axis Settings dialog box. Then select Y-Grid followed by disabling the 
Automatic option. Then, under the Major Spacing option, set the spac-
ing to 20 and leave with an OK. The plot will then have a spacing of 
20 V between horizontal grid lines.

The angle by which the voltage leads the current in the lower plot 
can be found by first selecting the lower plot to set the SELW  label. 
Then select the Toggle cursor key to obtain the Probe Cursor dialog 
box. Left-click on small box to the left of the V(Vs:+) label at the 
bottom of the plot to designate this plot as the one to which the cursor 
is to be applied. Then click on the screen and drag the cursor to the 
point where the applied voltage crosses the axis. The result is 
x = 4 mS at -4.21 mV ≅ 0 V. Then left-click the small square to the 
left of the I(R) symbol to establish this plot as the plot to which the 
second cursor is to be applied. A right-click on the same screen will 
establish a second cursor that can be dragged to the desired location. If 
we then place the second cursor at the point where the current crosses 
the axis closest to the value of x above, we find that x = 4.15 ms at  
245.7 mA = 0.25 A ≅ 0 A compared to the peak value of 14.14 A. 
The Probe Cursor box then reveals that the time difference between x 
values (X1-X2) is 150.6 ms.

FIG. 15.79
A plot of the steady-state response (t 7 3 ms) for yL, yS, and i for the circuit in 

Fig. 15.77.
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Now set up the ratio

 
150.6 ms

1000 ms
=

u

360°
 u = 54.22°

The phase angle by which the applied voltage leads the source is 54.22°, 
which is very close to the theoretical solution of 53.13° obtained in 
Fig. 15.38. Increasing the number of data points for the plot would have 
increased the accuracy level and brought the results closer to 53.13°.

Multisim

The series R-L-C circuit of Fig. 15.38 will now be analyzed using Multi-
sim. First, use the following sequence to set the source: Place Source-
SIGNAL_VOLTAGE_SOURCES-AC_VOLTAGE–OK. Then 
double-click on the source to obtain the AC_VOLTAGE dialog box 
and choose Value from the heading. Then set Voltage(Pk): to 70.7 V, 
Frequency(F): to 5 kHz, AC Analysis magnitude: 70.7 V and select 
the Label heading to permit changing the label for the source to E. To 
set up the circuit the value of the inductor is found as follows:

XL = 2pf L 1 L =
XL

2pf
=

7 Ω
2p(5 kHz)

= 222.8 mH

and the value of the capacitor by:

XC =
1

2pf C
1 C =

1

2pf XC
=

1

2p(5 kHz)(3 Ω)
= 10.61 mF

Now select the multimeter from the top of the meter toolbar and place 
in an appropriate location on the screen. Follow with the oscilloscope, 
which is the fourth option down on the meter toolbar at the right of the 
screen. Lastly, establish a ground through Place Source-All families-
GROUND-OK and place near the bottom of the source.

All the major components are now on the screen and can be con-
nected following the procedure described in previous chapters. When 
you hook up the scope, overlapping situations may arise but keep in 
mind that all wire connections are shown by a dot. The absence of a dot 
means that there is no connection between the overlapping wires. Note 
that the scope will be reading both the applied voltage and the voltage 
across the capacitor.

Now be sure to set the multimeter to an ac ampere reading by select-
ing A and the sinusoidal signal. Then double-click on the oscilloscope 
and set the time base to 50 ms/div. and the vertical sensitivity for both 
Channel A and B to 50 V/div.

Simulate the analysis by selecting the Run key and stop the run in a 
few seconds by pressing the  pad on the toggle switch. Then select 
single and the meter reading and waveforms on the scope will appear as 
shown in Fig. 15.80.

The multimeter reading of 9.794 A is very close to the calculated 
value of 10 A for Fig. 15.38. Selecting a cursor and bringing it to the 
peak of the applied voltage on Channel A results in a reading of 69.71 V, 
which is also very close to the applied peak of 70.7 V. Using the vertical 
scale, the peak value of the voltage across the capacitor is close to 40 V, 
which is a great match for the calculated value of 42.42 V. At the time 
(T1) = 50.664 ms corresponding with the peak of the applied voltage, 
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the voltage across the capacitor is –32.228 V as shown in the cursor box. 
The time (T2) = 81.395 ms was chosen because it is the point where the 
capacitor’s voltage (on Channel B) crosses the axis. The voltage is 
1.840 V rather than the desired 0 V but it can be approximated as 0 V 
for this application. The accuracy could be improved by taking more 
data points in the analysis. The phase shift between the applied voltage 
and the voltage across the capacitor is clearly displayed in Fig. 15.80 
as the distance between where the applied voltage crosses the axis and 
the voltage across the capacitor crosses the axis. In the cursor box the 
quantity T1@T2 = 30.731 ms is the time element from the peak to the 
axis crossing. The total period of time is then (T1) +30.731 ms or 
50.664 ms + 30.731 ms = 81.395 ms. If we then use the equation

81.395 ms

200 ms
=

u

360°
1 u =

(360°)(81.395 ms)

200 ms
= 146.51°

we find the phase shift is 146.51°, which is very close to the calculated 
value of 143.13°. Since yC lags the applied voltage the phase angle is 
-146.51°.

FIG. 15.80
Using Multisim to find the magnitude of the current and the voltage VC for the series R-L-C circuit of Fig. 15.38.

Problems

SECTION 15.2  Resistive Elements

	 1.	 For the resistive element in Fig. 15.81:
	a.	 Write the current in phasor form.
	b.	 Calculate the voltage across the resistor in phasor form.
	c.	 Sketch the phasor diagram of the voltage and current.
	d.	 Write the voltage in the sinusoidal format.
	e.	 Sketch the waveform of the voltage and current.

R 2 k� 

   = 20   10 –3 sin(1000t + 30°)  �iR

vR

+

_

FIG. 15.81
Problem 1.
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	 2.	 For the resistive element in Fig. 15.82:
	a.	 Write the voltage in phasor form.
	b.	 Calculate the current through the resistor in phasor form.
	c.	 Sketch the phasor diagram of the voltage and current.
	d.	 Write the current in the sinusoidal format.
	e.	 Sketch the waveform of the voltage and current.

R 6.8 � 

iR

vR

+

_
 = 24 sin(300t + 20°)  

FIG. 15.82
Problem 2.

SECTION 15.3  Inductive Elements

	 3.	 For the inductive element of Fig. 15.83:
	a.	 Write the current in phasor form.
	b.	 Calculate the voltage across the inductor in phasor form.
	c.	 Sketch the phasor diagram of the voltage and current.
	d.	 Write the voltage in the sinusoidal format.
	e.	 Sketch the waveform of the voltage and current.

2 k� 

  = 10  10–3 sin(250t + 40°)  �iL

vL

+

_
XL

FIG. 15.83
Problem 3.

	 4.	 For the inductive element of Fig. 15.84:
	a.	 Calculate the reactance of the inductor.
	b.	 Write the voltage in phasor form.
	c.	 Calculate the current through the inductor in phasor form.
	d.	 Sketch the phasor diagram of the voltage and current.
	e.	 Write the current in the sinusoidal format.
	f.	 Sketch the waveform of the voltage and current.

40 mH 

iL

+

_
L   = 200 �  10–6  sin(750t + 90°)  vL

FIG. 15.84
Problem 4.

iL = 6 � 10–3 sin(1200t + 20°)  

L
+

_
vL = 16 sin(1200t + 110°)    

FIG. 15.85
Problem 5.

SECTION 15.4  Capacitive Elements

	 6.	 For the capacitive element of Fig. 15.86:
	a.	 Write the voltage in phasor form.
	b.	 Calculate the current of the capacitor in phasor form.
	c.	 Sketch the phasor diagram of the voltage and current.
	d.	 Write the current in the sinusoidal format.
	e.	 Sketch the waveform of the voltage and current.

iC

40 � XC  

+

_
  = 60 sin(400t + 60°)    vC

FIG. 15.86
Problem 6.

	 7.	 For the capacitive element of Fig. 15.87:
	a.	 Calculate the reactance of the capacitor.
	b.	 Write the current in phasor form.
	c.	 Calculate the voltage across the capacitor in phasor form.
	d.	 Sketch the phasar diagram of the voltage and current.
	e.	 Write the voltage in the sinusoidal format.
	f.	 Sketch the waveform of the voltage and current.

iC = 5 � 10–6 sin(20,000t – 80°) 

C
+

_
  vC0.01 µF

FIG. 15.87
Problem 7.

	 5.	 For the inductive element of Fig. 15.85:
	a.	 Write the voltage and current in phasor form.
	b.	 Calculate the impedance of the inductor.
	c.	 Find the inductance of the coil.
	d.	 Sketch the phasor diagram of the voltage and current.
	e.	 Sketch the waveform of the voltage and current.

	 8.	 For the capacitive element of Fig. 15.88:
	a.	 Write the voltage and current in phasor form.
	b.	 Calculate the impedance of the capacitor.
	c.	 Find the capacitance of the capacitor.
	d.	 Sketch the phasor diagram of the voltage and current.
	e.	 Sketch the waveform of the voltage and current.

iC = 60 � 10–6 sin(2000t + 80°)  

C
+

_
vC = 24 � 10–3 sin(2000t – 10°)  

FIG. 15.88
Problem 8.
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SECTION 15.5  Impedance Diagram

	 9.	 Sketch the impedance diagram of a 120 kΩ resistor.

	10.	 Sketch the impedance diagram of a 5 mH coil responding to 
a source having a frequency of 1.2 kHz.

	11.	 Sketch the impedance diagram of a 0.02 mF capacitor 
responding to a source having a frequency of 100 kHz.

SECTION 15.6  Series Configuration

	12.	 Calculate the total impedance of the circuits in Fig. 15.89. 
Express your answer in rectangular and polar forms and 
draw the impedance diagram.

XL2
  =  6.8 k�  

5.6 k� 

R1  =  3 k�

R2

(c)

XL1  =  3.2 k� 

ZT

R  =  7.8 �

XL 8.2 �

(a)

ZT
20 �

R1  =  2 �

R2

(b)

XC  =  8 �

ZT

FIG. 15.89
Problem 12.

L2  =  200 mH

C  =  0.1 mF

R  =  500 �

(c)

L1  =  47 mH

ZT

R  =  3 �

XL 5 �

(a)

ZT
6 k�

R  =  1 k�

XL2

(b)

ZT

XC  =  5 � XC  =  4 k�

XL1
  =  8 k�

f  =  1 kHz

FIG. 15.90
Problem 13.

E  =  120 V ∠ 0° ?

(a)

+

–

I  =  20 mA ∠ 40°

E  =  80 V ∠ 130° ?

(b)

+

–

E  =  8 kV ∠ 0° ?

(c)

+

–

I  =  6 Α ∠ 45° I  =   –30°12 A ∠

FIG. 15.91
Problem 14.

	13.	 Calculate the total impedance of the circuits in Fig. 15.90. 
Express your answer in rectangular and polar forms, and 
draw the impedance diagram.

	14.	 Find the type and impedance in ohms of the series circuit 
elements that must be in the closed container in Fig. 15.91 
for the indicated voltages and currents to exist at the input 
terminals. (Find the simplest series circuit that will satisfy 
the indicated conditions.)
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	f.	 Verify Kirchhoff’s voltage law around the closed loop.
	g.	 Find the average power delivered to the circuit.
	h.	 Find the power factor of the circuit, and indicate whether 

it is leading or lagging.
	i.	 Find the sinusoidal expressions for the voltages and current.
	j.	 Plot the waveforms for the voltages and current on the 

same set of axes.

	15.	 For the circuit in Fig. 15.92:
	a.	 Find the total impedance ZT in polar form.
	b.	 Draw the impedance diagram.
	c.	 Find the current I and the voltages VR and VL in phasor 

form.
	d.	 Draw the phasor diagram of the voltages E, VR, and VL, 

and the current I.
	e.	 Verify Kirchhoff’s voltage law around the closed loop.
	f.	 Find the average power delivered to the circuit.
	g.	 Find the power factor of the circuit, and indicate whether 

it is leading or lagging.
	h.	 Find the sinusoidal expressions for the voltages and cur-

rent if the frequency is 60 Hz.
	i.	 Plot the waveforms for the voltages and current on the 

same set of axes.

E  =  100 V ∠ 0°

R  =  8 �

VR
+ – VL

+ –

XL  =  6 �

I

+

–
ZT

FIG. 15.92
Problems 15 and 36.

	16.	 Repeat Problem 15 for the circuit in Fig. 15.93, replacing 
VL with VC in parts (c) and (d).

E  =  120 V ∠ 20°

R  = 18 � 

VR
+ –

VC
+ –

C  = 91 mF 

f  =  60 Hz 

I

+

–
ZT

FIG. 15.93
Problems 16 and 37.

	17.	 For the circuit in Fig. 15.94:
	a.	 Find the total impedance ZT in polar form.
	b.	 Draw the impedance diagram.
	c.	 Find the value of C in microfarads and L in henries.
	d.	 Find the current I and the voltages VR, VL, and VC in phasor 

form.
	e.	 Draw the phasor diagram of the voltages E, VR, VL, and 

VC and the current I.

+

–
ZT

vL+ –

XC  =  10 �

vR+ –

R  =  4 �

e  =  70.7 sin 377t

vC
+ –

XL  =  6 �

i

FIG. 15.94
Problem 17.

	18.	 Repeat Problem 17 for the circuit in Fig. 15.95 except for 
part (c).

+

–
ZT

vL+ –

C = 8200 pF 

vR+ –

R = 1.2 k�

e  =  6 sin(20,000t + 60°)

vC
+ –

L = 0.1 H 

i

FIG. 15.95
Problem 18.

	19.	 For the circuit of Fig. 15.96:
	a.	 Find the total impedance ZT.
	b.	 Calculate the current Is.
	c.	 Find the voltage VR.
	d.	 Find the power factor of the circuit. Is it leading or lagging?

+

–

8 �

XL
1

XL
2

XC
1

XC
2

ZT  12 � 

 40 � 

 60 � 

 30 � R

Is

60°∠E  =  40 V VR

+

–

FIG. 15.96
Problem 19.

	20.	 For the circuit of Fig. 15.97:
	a.	 Find the current IL.
	b.	 Find the voltage VC.

R

14 � 

XC

20 � 

8 � 
16 � 

XL2

XL1

VC+ – +

–

+–

E2  = 32 V ∠45°

IL  

E1 = 48V ∠0°

FIG. 15.97
Problem 20.
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	25.	 An electrical load has a power factor of 0.9 lagging. It dis-
sipates 9 kW at a voltage of 200 V. Calculate the impedance 
of this load in rectangular coordinates.

R1

4 k� 

XC

2 k� 

R2

5 k� 

4 k� 

XL2

8 k� XL1

VR1
+ –

+

–
I  = 8 mA ∠30°  

IL1
  

Vs

FIG. 15.98
Problem 21.

	21.	 For the circuit of Fig. 15.98:
	a.	 Find the current IL1

.
	b.	 Find the voltage Vs.
	c.	 Calculate the voltage VR1

.

	22.	 Using the oscilloscope reading in Fig. 15.99, determine the 
resistance R (closest standard value).

E = 24 V(rms) 22 � Scope = 43.20 V(p-p) 

+

–

R+

–

FIG. 15.99
Problem 22.

	*23.	 Using the DMM current reading and the oscilloscope meas-
urement in Fig. 15.100:
	a.	 Determine the inductance L.
	b.	 Find the resistance R.
	c.	 Find the closest standard value for the inductance found 

in part (a).

Scope = 22.8 V(p-p) 

+

–

R+

–

2.4 mA(rms)

L

I

E = 26 V(rms)
 = 1000 rad/s

FIG. 15.100
Problem 23.

	*24.	 Using the oscilloscope reading in Fig. 15.101:
	a.	 Find the rms value of the current in the series circuit.
	b.	 Determine the capacitance C.

E = 15 V(rms)

Scope = 10.37 V( p -p)
+

+

–

C

R

10 k�

–

f = 40 kHz

FIG. 15.101
Problem 24.

	*26.	 Find the series element or elements that must be in the 
enclosed container in Fig. 15.102 to satisfy the following 
conditions:
	a.	 Average power to circuit = 400 W.
	b.	 Circuit has a lagging power factor.

SECTION 15.7  Voltage Divider Rule

	27.	 Calculate the voltages V1 and V2 for the circuits in Fig. 15.103 
in phasor form using the voltage divider rule.

+

–

4 �

E  =  240 V ∠ 0°

I  =  3 A ∠ v

?

FIG. 15.102
Problem 26.

+

–

V1
+ –

6.8 �

E  =  110 V ∠ 5°
V2

+ –

40 �

(b)

+

–

V2
+ –

6 k�

E  =  200 V ∠ 60°

8 k�

(a)

V1
+ –

�22

+

–

V1
+ –

6.8 �

E  =  110 V ∠ 5°
V2

+ –

40 �

(b)

+

–

V2
+ –

6 k�

E  =  200 V ∠ 60°

8 k�

(a)

V1
+ –

�22

FIG. 15.103
Problem 27.
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	28.	 Calculate the voltages V1 and V2 for the circuits in Fig. 15.104 
in phasor form using the voltage divider rule.

+

–
V1

3.3 k�4.7 k�

E  =  150 V ∠ 0°

30 k�

(b)

+

–

V2
+ –

20 �

E  =  30 V ∠ 60°

20 �

(a)

V1
+ –

40 �

V2 10 k�

FIG. 15.104
Problem 28.

vC+ –

+

–

30 �

e  =  �2(20) sin(1000t + 40°) i
C  = 39 mF L  = 20 mH 

vR+ –

FIG. 15.105
Problems 29 and 38.

	e.	 Draw the phasor diagram of the voltages E, VR, and VC, 
and the current I.

	f.	 Find the voltages VR and VC using the voltage divider 
rule, and compare them with the results of part (a).

	g.	 Draw the equivalent series circuit of the above as far as 
the total impedance and the current i are concerned.

	*29.	 For the circuit in Fig. 15.105:
	a.	 Determine I, VR, and VC in phasor form.
	b.	 Calculate the total power factor, and indicate whether it 

is leading or lagging.
	c.	 Calculate the average power delivered to the circuit.
	d.	 Draw the impedance diagram.

SECTION 15.8  Frequency Response for  
Series ac Circuits

	*30.	 For the circuit in Fig. 15.106:
	a.	 Plot ZT and uT versus frequency for a frequency range of 

zero to 20 kHz.
	b.	 Plot VL versus frequency for the frequency range of 

part (a).
	c.	 Plot uL versus frequency for the frequency range of 

part (a).
	d.	 Plot VR versus frequency for the frequency range of 

part (a).

L 20 mH VL

–

+
ZT

1 k�

R
VR –+

+

–

e  =  7.07 sin qt
E  =  5 V ∠ 0°

FIG. 15.106
Problem 30.

	*31.	 For the circuit in Fig. 15.107:
	a.	 Plot ZT and uT versus frequency for a frequency range of 

zero to 10 kHz.
	b.	 Plot VC versus frequency for the frequency range of 

part (a).
	c.	 Plot uC versus frequency for the frequency range of 

part (a).
	d.	 Plot VR versus frequency for the frequency range of 

part (a).

C 0.47mF VC

–

+
ZT

100 �

R
VR –+

+

–
e  =  �2(10) sin qt

FIG. 15.107
Problem 31.



718    Series ac Circuits
a c

	*32.	 For the series R-L-C circuit in Fig. 15.108:
	a.	 Plot ZT and uT versus frequency for a frequency range of 

zero to 20 kHz in increments of 1 kHz.
	b.	 Plot VC (magnitude only) versus frequency for the same 

frequency range of part (a).
	c.	 Plot I (magnitude only) versus frequency for the same 

frequency range of part (a).

ZT C

R

E  =  120 V ∠0° VC

+

–

L

8200 pF

1 k� 20 mH

I

FIG. 15.108
Problem 32.

ZT

C VC

+

–
0.47    F

+

–

R

220 �

E  =  40 V ∠0°
f : 0 to 40 kHz

FIG. 15.109
Problem 33.

	33.	 For the series R-C circuit in Fig. 15.109:
	a.	 Determine the frequency at which XC = R.
	b.	 Develop a mental image of the change in total impedance 

with frequency without resorting to a single calculation.
	c.	 Find the total impedance at 100 Hz and 10 kHz, and 

compare your answer with the assumptions of part (b).
	d.	 Plot the curve of VC versus frequency.
	e.	 Find the phase angle of the total impedance at 

f = 40 kHz. Is the network resistive or capacitive at 
this frequency?

Vertical sensitivity = 0.5 V/div.
Horizontal sensitivity = 0.2 ms/div.

v1

v2

Vertical sensitivity = 2 V/div.
Horizontal sensitivity = 10 s/div.

v1

v2

(II)(I)

FIG. 15.111
Problem 35.

SECTION 15.10  Phase Measurements

	34.	 For the circuit in Fig. 15.110, determine the phase relation-
ship between the following using a dual-trace oscilloscope. 
The circuit can be reconstructed differently for each part, 
but do not use sensing resistors. Show all connections on a 
redrawn diagram.
	a.	 e and yC

	b.	 e and is
	c.	 e and yL

is

C

R

e vC

+

–

L

vR –+

+

–

vL –+

FIG. 15.110
Problem 34.

	35.	 For the oscilloscope traces in Fig. 15.111:
	a.	 Determine the phase relationship between the wave-

forms, and indicate which one leads or lags.

	b.	 Determine the peak-to-peak and rms values of each 
waveform.

	c.	 Find the frequency of each waveform.
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Glossary

Impedance diagram  A vector display that clearly depicts the 
magnitude of the impedance of the resistive, reactive, and 
capacitive components of a network and the magnitude and 
angle of the total impedance of the system.

Phasor diagram  A vector display that provides at a glance the 
magnitude and phase relationships among the various volt-
ages and currents of a network.

Series ac configuration  A connection of elements in an ac net-
work in which no two impedances have more than one termi-
nal in common and the current is the same through each 
element.

Voltage divider rule  A method through which the voltage 
across one element of a series of elements in an ac network 
can be determined without first having to find the current 
through the elements.

SECTION 15.12  Computer Analysis

PSpice or Multisim

	36.	 For the network in Fig. 15.92 (use f = 1 kHz):
	a.	 Determine the rms values of the voltages VR and VL and 

the current I.
	b.	 Plot yR, yL, and i versus time on separate plots.
	c.	 Place e, yR, yL, and i on the same plot, and label 

accordingly.

	37.	 For the network in Fig. 15.93:
	a.	 Plot the impedance of the network versus frequency 

from 0 to 10 kHz.
	b.	 Plot the current i versus frequency for the frequency 

range zero to 10 kHz.

	*38.	 For the network in Fig. 15.105:
	a.	 Find the rms values of the voltages yR and yC at a fre-

quency of 1 kHz.
	b.	 Plot yC versus frequency for the frequency range zero to 

10 kHz.
	c.	 Plot the phase angle between e and i for the frequency 

range zero to 10 kHz.
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Parallel ac Circuits

16.1  Introduction

The analysis of parallel ac networks will follow the same development applied to dc parallel 
networks. The rules and laws introduced for dc circuits will also be applicable to parallel ac 
networks with the primary difference being simply the use of phasors and complex number 
algebra rather than simply numerical values. The resulting mathematics may be a bit more 
cumbersome but the strong similarities in application should make the material fairly easy to 
comprehend.

16.2 T otal Impedance

The basic structure of a parallel ac network is provided in Fig. 16.1(a). As with dc circuits the 
voltage is the same across each parallel element and the source current is the sum of the cur-
rents through each branch. The simplest of parallel networks with all three elements appears 
in Fig. 16.1(b). We must now find a way to determine the total impedance of such a combina-
tion so that other elements such as the source current can be determined.

Parallel ac Circuits

•	 Become familiar with the characteristics of parallel 
ac networks and be able to find current, voltage, 
and power levels for each element.

•	 Be able to find the total impedance of any parallel 
ac network and sketch the impedance and 
admittance diagram of each.

•	 Develop confidence in applying Kirchhoff’s current 
law to any parallel configuration.

•	 Be able to apply the current divider rule to any 
parallel ac network.

•	 Become adept at finding the frequency response 
of a parallel combination of elements.

Objectives

1616

a c

Z1 Z2 Z3

ZT

Is

YT

I1 I2 I3

E

–

+

Is

ZT

YT

IR IC IL

E

–

+

R LC

(a) (b)

FIG. 16.1
Parallel ac network
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For the network of Fig. 16.2 with any number of parallel elements the 
total impedance has the same format as encountered for dc networks:

	
1

ZT
=

1

Z1
+

1

Z2
+

1

Z3
+ c +

1

ZN
	 (16.1)

which can be written in the following form:

	 ZT =
1

1

Z1
+

1

Z2
+

1

Z3
+ c +

1

ZN

	 (16.2)

For two impedances in parallel

1

ZT
=

1

Z1
+

1

Z2

which will become the following after a few mathematical manipulations:

	 ZT =
Z1Z2

Z1 + Z2
	 (16.3)

For three impedances in parallel the resulting equation is the following:

	 ZT =
Z1Z2Z3

Z1Z2 + Z2Z3 + Z1Z3
	 (16.4)

And for any number of impedances in parallel of the same content the 
following equation can be applied:

	 ZT =
Z1

N
	 (16.5)

A few examples will clearly reveal that based on our previous experi-
ence with parallel dc circuits there is a direct path toward finding the 
desired unknowns.

EXAMPLE 16.1  For the network in Fig. 16.3:

	 a.	 Determine the input impedance.
	 b.	 Draw the impedance diagram.

Z1 Z2 Z3 ZNZT

FIG. 16.2
Parallel impedances

XL 10 �ZT R 20 �

FIG. 16.3
Example 16.1.
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Solutions: 

	 a.	  ZT =
ZRZL

ZR + ZL
=

(20 Ω ∠0°)(10 Ω ∠90°)
20 Ω + j 10 Ω

	  =
200 Ω ∠90°

22.361 ∠26.57°
= 8.93 � j63.43°

	  = 4.00 � + j 7.95 � = RT + jXL = 8.93� j63.43°

	 b.	 The impedance diagram appears in Fig. 16.4.

EXAMPLE 16.2  For the network of Fig 16.5:

	 a.	 Determine the total impedance using Eqs. (16.2) and (16.4).
	 b.	 Sketch the impedance diagram.

Solutions: 

	 a.	 Eq. (16.2):	 ZT =
1

1

ZR
+

1

ZL
+

1

ZC

			    =
1

1

5 Ω ∠0°
+

1

8 Ω ∠90°
+

1

20 Ω ∠-90°

			    =
1

0.2 S ∠0° + 0.125 S ∠-90° + 0.05 S ∠90°

			    =
1

0.2 S - j  0.075 S
=

1

0.2136 S ∠-20.56°
			    = 4.68 � j20.56°

		  Eq. (16.4)

 ZT =
ZRZLZC

ZRZL + ZLZC + ZRZC

 =
(5 Ω ∠0°)(8 Ω ∠90°)(20 Ω ∠-90°)

(5 Ω ∠0°)(8 Ω ∠90°) + (8 Ω ∠90°)(20 Ω ∠-90°)
+  (5 Ω ∠0°)(20 Ω ∠-90°)

 =
800 Ω ∠0°

40 ∠90° + 160 ∠0° + 100 ∠-90°

 =
800 Ω

160 + j 40 - j 100
=

800 Ω
160 - j 60

 =
800 Ω

170.88 ∠-20.56°
 = 4.68 � j20.56° = 4.38 � +  j 1.64 �

	 b.	 The impedance diagram appears in Fig. 16.6.

16.3 T otal Admittance

In the discussion of parallel dc networks the concept of conductance 
was introduced as a quantity that is defined by G = 1>R. The higher the 
resistance, the lower the conductance and vice versa. Clearly, the chosen 
name is appropriate because when we have higher resistance levels we 

 j ZT

63.43°

ZL  =  7.95 � ∠ 90°

+ZR  =  4.00 � ∠ 0°

8.93 �

FIG. 16.4
Impedance diagram for the network in Fig. 16.3.

XC 20 �
YT

ZT
R 5 � XL 8 �

FIG. 16.5
Example 16.2.

 j

20.56° ZL  =  1.64 � ∠ 90°

+ZR  =  4.38 � ∠ 0°

4.68 �

FIG. 16.6
Impedance diagram for the network in Fig. 16.5.
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expect the conductive state of the network to be less. For ac parallel cir-
cuits the terminology applied is admittance, which has the symbol Y 
and is measured in siemens (S).

Resistive Elements: For resistors the admittance is defined by

	 YR =
1

ZR
=

1

R ∠0°
= G ∠0°   (siemens, S) 	 (16.6)

Inductive Elements: For inductive elements the admittance is 
defined by

	 YL =
1

ZL
=

1

XL ∠90°
=

1

XL
 ∠-90°  (siemens, S) 	 (16.7)

The ratio 1>XL is called the susceptance of the inductive element, is 
given the symbol BL, and is measured in siemens (S). Therefore,

	 BL =
1

XL
   (siemens, S) 	 (16.8)

and

	 YL = BL∠-90°   (siemens, S) 	 (16.9)

Capacitive Elements: For capacitive elements the admittance is 
defined by

	 YC =
1

ZC
=

1

XC ∠-90°
=

1

XC
 ∠90°   (siemens, S) 	(16.10)

The ratio 1>XC is also called the susceptance of the capacitive element, 
is given the symbol BC, and is measured in siemens (S). Therefore,

	 BC =
1

XC
   (siemens, S) 	 (16.11)

and

	 YC = BC ∠90°   (siemens, S) 	 (16.12)

For dc circuits with simply resistive elements we found that the total 
conductance of parallel resistive elements was simply the sum of the 
conductance values as shown below.

	 GT = G1 + G2 + G3 + . . . + GN   (siemens, S) 	 (16.13)

For ac parallel networks, the total admittance is simply the sum of the 
admittance levels of all the parallel branches of Fig. 16.7. That is,

	 YT = Y1 + Y2 + Y3 + . . . + YN  (siemens, S) 	 (16.14)

In any case, whether the total impedance or admittance is first found, 
the other can be found using the simple equation:

	 YT =
1

ZT
   (siemens, S) 	 (16.15)
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For parallel ac circuits, the admittance diagram is used with the 
three admittances, represented as shown in Fig. 16.8.

Note in Fig. 16.8 that the conductance (like resistance) is on the posi-
tive real axis, whereas inductive and capacitive susceptances are in 
direct opposition on the imaginary axis.

For any configuration (series, parallel, series-parallel, and so on), the 
angle associated with the total admittance is the angle by which the 
source current leads the applied voltage. For inductive networks, uT is 
negative, whereas for capacitive networks, uT is positive.

For parallel ac networks, the components of the configuration and 
the desired quantities determine whether to use an impedance or 
admittance approach. If the total impedance is requested, the most 
direct route may be to use impedance parameters. However, some-
times using admittance parameters can also be very efficient, as dem-
onstrated in some of the examples in the rest of the text. In general, 
use the approach with which you are more comfortable. Naturally, if 
the format of the desired quantity is spelled out, it is usually best to 
work with those parameters.

EXAMPLE 16.3  For the parallel R-L network of Fig. 16.3:

	 a.	 Find the admittance of each parallel element.
	 b.	 Calculate the total admittance of the network.
	 c.	 Sketch the admittance diagram.
	 d.	 Calculate the total impedance using Eq. (16.15) and compare with 

the solution of Example 16.1.

Solutions: 

	 a.	  YR = G ∠0° =
1

R
 ∠0° =

1

20 Ω
 ∠0° = 0.05 S j0°

		   = 0.05 S + j 0

		   YL = BL ∠-90° =
1

XL
 ∠-90° =

1

10 Ω
 ∠-90°

		   = 0.1 S j−90° = 0 − j 0.1 S

	 b.	  YT = YR + YL = (0.05 S + j 0) + (0 - j 0.1 S)
		   = 0.05 S − j 0.1 S = G - jBL = 0.112 S j−63.43°
	 c.	 The admittance diagram appears in Fig. 16.9.

	 d.	  ZT =
1

YT
=

1

0.112 S ∠-63.43°
		   = 8.93 � j63.43°— a perfect match

Y1 Y2 Y3 YNYT

FIG. 16.7
Finding the total admittance of N parallel branches.

 j

BC ∠ 90°

BL ∠ –90°

G ∠ 0°
+

FIG. 16.8
Admittance diagram.

 j

YT

+

YL  =  0.1 S ∠ – 90°

0.112 S

–63.43°

YR  =  0.05 S ∠ 0°

FIG. 16.9
Admittance diagram for the network in Fig. 16.3.
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EXAMPLE 16.4  For the parallel R-L-C network of Fig. 16.5:

	 a.	 Find the admittance for each parallel branch.
	 b.	 Calculate the total admittance of the network.
	 c.	 Sketch the admittance diagram.
	 d.	 Calculate the total impedance using Eq. (16.15) and compare with 

the solution of Example 16.2.

Solutions: 

	 a.	  YR = G ∠0° =
1

R
 ∠0° =

1

5 Ω
 ∠0°

		   = 0.2 S j0° = 0.2 S + j 0

		   YL = BL ∠-90° =
1

XL
 ∠-90° =

1

8 Ω
 ∠-90°

		   = 0.125 S j−90° = 0 − j 0.125 S

		   YC = BC ∠90° =
1

XC
 ∠90° =

1

20 Ω
 ∠90°

		   = 0.05 S j+90° = 0 + j 0.05 S

	 b.	  YT = YR + YL + YC

		   = (0.2 S + j 0) + (0 - j 0.125 S) + (0 + j 0.05 S)

		   = 0.2 S - j 0.075 S = 0.214 S j−20.56°

	 c.	 The admittance diagram appears in Fig. 16.10.

	 d.	  ZT =
1

YT
=

1

0.214 S ∠-20.56°
		   = 4.68 � j20.56° — a perfect match

On many occasions, the inverse relationship YT = 1>ZT  or 
ZT = 1>YT will require that we divide the number 1 by a complex num-
ber having a real and an imaginary part. This division, if not performed 
in the polar form, requires that we multiply the numerator and denomi-
nator by the conjugate of the denominator, as follows:

 YT =
1

ZT
=

1

4 Ω + j 6 Ω
= a 1

4 Ω + j 6 Ω
b a (4 Ω - j 6 Ω)

(4 Ω - j 6 Ω)
b

 =
4 - j 6

42 + 62

and	 YT =
4

52
 S - j 

6

52
 S

To avoid this laborious task each time we want to find the reciprocal 
of a complex number in rectangular form, a format can be developed 
using the following complex number, which is symbolic of any imped-
ance or admittance in the first or fourth quadrant:

1

a1 { j b1
= a 1

a1 { j b1
b a a1 | j b1

a1 | j b1
b =

a1 | j b1

a2
1 + b2

1

or	
1

a1 { j b1
=

a1

a2
1 + b2

1
| j 

b1

a2
1 + b2

1
	 (16.16)

20.56°

YR

YC

YL  –  YC

YT

0.214 S

+

YL

 j

FIG. 16.10
Admittance diagram for the network in Fig. 16.5.
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Note that the denominator is simply the sum of the squares of each term. 
The sign is inverted between the real and imaginary parts. A few exam-
ples will develop some familiarity with the use of this equation.

EXAMPLE 16.5  Find the admittance of each set of series elements in 
Fig. 16.11.

(a) (b)

R 6 �

XC 8 �

Y

R 10 �

XC 0.1 �

Y XL 4 �

FIG. 16.11
Example 16.5.

Solutions: 

	 a.	 Z = R - jXC = 6 Ω - j 8 Ω

		  Eq. (16.16):

 Y =
1

6 Ω - j 8  Ω
=

6 Ω
(6 Ω)2 + (8 Ω)2 + j 

8 Ω
(6 Ω)2 + (8 Ω)2

 =
6

100
 S + j  

8
100

 S

	 b.	 Z = 10 Ω + j 4 Ω + (- j 0.1 Ω) = 10 Ω + j 3.9 Ω

		  Eq. (16.16):

 Y =
1

Z
=

1

10 Ω + j 3.9 Ω
=

10

(10)2 + (3.9)2 - j 
3.9

(10)2 + (3.9)2

 =
10

115.21
- j  

3.9

115.21
= 0.087 S − j 0.034 S

16.4 P arallel ac Networks

For the representative parallel ac network in Fig. 16.12, the total imped-
ance or admittance is determined as described in the previous section, 
and the source current is determined by Ohm’s law as follows:

	 I =
E
ZT

= EYT � (16.17)

Since the voltage is the same across parallel elements, the current 
through each branch can then be found through another application of 
Ohm’s law:

	 I1 =
E
Z1

= EY1 � (16.18)

I

Z2E
ZT,

 
YT

Z1

I1 I2

–

+

FIG. 16.12
Parallel ac network.
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	 I2 =
E
Z2

= EY2 	 (16.19)

Kirchhoff’s current law can then be applied in the same manner as 
used for dc networks. However, keep in mind that we are now dealing 
with the algebraic manipulation of quantities that have both magnitude 
and direction. We have

I - I1 - I2 = 0

or	 I = I1 + I2 	 (16.20)

The power to the network can be determined by

	 P = EI cos uT 	 (16.21)

where uT is the phase angle between E and I.
A few examples:

R-L
Refer to Fig. 16.13.

R 3.33 �

a

iLiR

2.5 �XL

i

e  = �2(20) sin(qt +  53.13°)

+

–

FIG. 16.13
Parallel R-L network.

R 3.33 �

a

ILIR

2.5 �XL

I  =  10 A ∠ 0°

E  =  20 V ∠ 53.13°
+

–

YT

ZT

FIG. 16.14
Applying phasor notation to the network in Fig. 16.13.

Phasor Notation    As shown in Fig. 16.14.

 ZT =
ZR ZL

ZR + ZL
=

(3.33 Ω ∠0°)(2.5 Ω ∠90°)
3.33 Ω + j 2.5 Ω

 =
8.33 Ω ∠90°
4.16 ∠36.87°

 = 2 � j53.13°

and	 YT =
1

ZT
=

1

2 Ω ∠53.13°
= 0.5 S j−53.13°
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or	  YT = YR + YL

	  = G ∠0° + BL ∠-90° =
1

3.33 Ω
 ∠0° +

1

2.5 Ω
 ∠-90°

	  = 0.3 S ∠0° + 0.4 S ∠-90° = 0.3 S - j 0.4 S

	  = 0.5 S j−53.13°

Admittance diagram: As shown in Fig. 16.15.

I =
E
ZT

= EYT = (20 V ∠53.13°)(0.5 S ∠-53.13°) = 10 A j0°

 IR =
E
R

=
20 V ∠53.13°
3.33 Ω ∠0°

= 6 A j53.13°

 IL =
E
XL

=
20 V ∠53.13°
2.5 Ω ∠90°

= 8 A j−36.87°

Kirchhoff’s current law: At node a,

I - IR - IL = 0

or	 I = IR + IL

10 A ∠0° = 6 A ∠53.13° + 8 A ∠-36.87°
10 A ∠0° = (3.60 A + j 4.80 A) + (6.40 A - j 4.80 A) = 10 A + j 0

and	 10 A j0° = 10 A j0°  (checks)

 Phasor diagram: The phasor diagram in Fig. 16.16 indicates that the 
applied voltage E is in phase with the current IR and leads the current IL 
by 90°.

Power: The total power in watts delivered to the circuit is

 PT = EI cos uT

 = (20 V)(10 A) cos 53.13° = (200 W)(0.6)
 = 120 W

or	 PT = I2R =
VR

2

R
= VR

2 G = (20 V)2(0.3 S) = 120 W

or, finally,

 PT = PR + PL = EIR cos uR + EIL cos uL

 = (20 V)(6 A) cos 0° + (20 V)(8 A) cos 90° = 120 W + 0
 = 120 W

Power factor: The power factor of the circuit is

Fp = cos uT = cos 53.13° = 0.6 lagging

or, through an analysis similar to that used for a series ac circuit,

cos uT =
P

EI
=

E2>R

EI
=

EG

I
=

G

I>V
=

G

YT

and	 Fp = cos uT =
G

YT
	 (16.22)

where G and YT are the magnitudes of the total conductance and admit-
tance of the parallel network. For this case,

Fp = cos uT =
0.3 S

0.5 S
= 0.6 lagging

53.13° +

j

YT  =  0.5 S ∠ –53.13°

G ∠ 0°  =  0.3 S ∠ 0°

BL ∠ –90°  =  0.4 S ∠ –90°

FIG. 16.15
Admittance diagram for the parallel R-L network in 

Fig. 16.13.

36.87° +

j

I

53.13°

IL

IR

E

FIG. 16.16
Phasor diagram for the parallel R-L network  

in Fig. 16.13.
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Impedance approach: The current I can also be found by first finding 
the total impedance of the network:

 ZT =
ZRZL

ZR + ZL
=

(3.33 Ω ∠0°)(2.5 Ω ∠90°)
3.33 Ω ∠0° + 2.5 Ω ∠90°

 =
8.325 ∠90°

4.164 ∠36.87°
 = 2 � j53.13°

Then, using Ohm’s law, we obtain

I =
E
ZT

=
20 V ∠53.13°
2 Ω ∠53.13°

 = 10 A j0°

R-C
Refer to Fig. 16.17.

R 1.67 �

a

iCiR

1.25 �XC
i  =  14.14 sin qt

+

–

e

YT

ZT

FIG. 16.17
Parallel R-C network.

R 1.67 �

a

ICIR

1.25 �XC
I  =  10 A ∠ 0°

+

–

E

FIG. 16.18
Applying phasor notation to the network in Fig. 16.17.

Phasor Notation    As shown in Fig. 16.18.

 YT = YR + YC = G ∠0° + BC ∠90° =
1

1.67 Ω
 ∠0° +

1

1.25 Ω
 ∠90°

 = 0.6 S ∠0° + 0.8 S ∠90° = 0.6 S + j 0.8 S = 1.0 S j53.13°

 ZT =
1

YT
=

1

1.0 S ∠53.13°
= 1 � j−53.13°

Admittance diagram: As shown in Fig. 16.19.

 E = IZT =
I

YT
=

10 A ∠0°
1 S ∠53.13°

 = 10 V j−53.13°

 IR =
E
R

=
10 V ∠-53.13°

1.67 Ω ∠0°
= 6 A j−53.13°

 IC =
E
XC

=
10 V ∠-53.13°
1.25 Ω ∠-90°

= 8 A j36.87°

53.13°

+

j

G ∠ 0°  =  0.6 S ∠ 0°

BC ∠ 90°  =  0.8 S ∠ 90°
YT  =  1 S ∠ 53.13°

FIG. 16.19
Admittance diagram for the parallel R-C network  

in Fig. 16.17.
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Kirchhoff’s current law: At node a,

I - IR - IC = 0

or	 I = IR + IC

which can also be verified (as for the R-L network) through vector 
algebra.

Phasor diagram: The phasor diagram in Fig. 16.20 indicates that E is 
in phase with the current through the resistor IR and lags the capacitive 
current IC by 90°.

Time domain:

 e = 12(10) sin(vt - 53.13°) = 14.14 sin(Vt − 53.13°)
 iR = 12(6) sin(vt - 53.13°) = 8.48 sin(Vt − 53.13°)
 iC = 12(8) sin(vt + 36.87°) = 11.31 sin(Vt + 36.87°)

A plot of all of the currents and the voltage appears in Fig. 16.21. 
Note that e and iR are in phase and e lags iC by 90°.

IC

I

36.87°

53.13°

j

+

IR

E

FIG. 16.20
Phasor diagram for the parallel R-C network  

in Fig. 16.19.

90°

36.87°

iR

0

e

2
–

2 2
3

iC

i
14.14 A

11.31 A

8.48 A

  t2

FIG. 16.21
Waveforms for the parallel R-C network in Fig. 16.17.

Power:

 PT = EI cos u = (10 V)(10 A) cos 53.13° = (10)2(0.6)

 = 60 W

or	 PT = E2G = (10 V)2(0.6 S) = 60 W
or, finally,

 PT = PR + PC = EIR cos uR + EIC cos uC

 = (10 V)(6 A) cos 0° + (10 V)(8 A) cos 90°
 = 60 W

Power factor: The power factor of the circuit is

Fp = cos 53.13° = 0.6 leading

Using Eq. (16.22), we have

Fp = cos uT =
G

YT
=

0.6 S

1.0 S
= 0.6 leading
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Impedance approach: The voltage E can also be found by first find-
ing the total impedance of the circuit:

 ZT =
ZRZC

ZR + ZC
=

(1.67 Ω ∠0°)(1.25 Ω ∠-90°)
1.67 Ω ∠0° + 1.25 Ω ∠-90°

 =
2.09 ∠-90°

2.09 ∠-36.81°
= 1 � j−53.19°

and then, using Ohm’s law, we find

E = IZT = (10 A ∠0°)(1 Ω ∠-53.19°) = 10 V j−53.19°

R-L-C
Refer to Fig. 16.22.

R 3.33 �

a

iLiR

1.43 �XL

i

e  =  �2(100) sin(qt  +  53.13°)

+

–

iC

3.33 �XC

FIG. 16.22
Parallel R-L-C ac network.

R 3.33 �

a

ILIR

1.43 �XL

I

E  =  100 V ∠ 53.13°
+

–

IC

3.33 �XC

FIG. 16.23
Applying phasor notation to the network in Fig. 16.22.

Phasor notation: As shown in Fig. 16.23.

 YT = YR + YL + YC = G∠0° + BL ∠-90° + BC ∠90°

 =
1

3.33 Ω
 ∠0° +

1

1.43 Ω
 ∠-90° +

1

3.33 Ω
 ∠90°

 = 0.3 S ∠0° + 0.7 S ∠-90° + 0.3 S ∠90°
 = 0.3 S - j 0.7 S + j 0.3 S
 = 0.3 S - j 0.4 S = 0.5 S j−53.13°

 ZT =
1

YT
=

1

0.5 S ∠-53.13°
= 2 � j53.13°

Admittance diagram: As shown in Fig. 16.24.

 I =
E
ZT

= EYT = (100 V ∠53.13°)(0.5 S ∠-53.13°) = 50 A j0°

 IR = (E ∠u)(G ∠0°)
 = (100 V ∠53.13°)(0.3 S ∠0°) = 30 A j53.13°

 IL = (E ∠u)(BL ∠-90°)
 = (100 V ∠53.13°)(0.7 S ∠-90°) = 70 A j−36.87°

 IC = (E ∠u)(BC ∠90°)
 = (100 V ∠53.13°)(0.3 S ∠+90°) = 30 A j143.13°

53.13°

BC
 ∠ 90°  =  0.3 S ∠ 90°

+

 j

G ∠ 0°  =  0.3 S ∠ 0°

BL
 ∠ –90°  =  0.7 S ∠ –90°

YT  =  0.5 S ∠ –53.13°

BL  –  BC

FIG. 16.24
Admittance diagram for the parallel R-L-C network 

in Fig. 16.22.
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Kirchhoff’s current law: At node a,

I - IR - IL - IC = 0

or	 I = IR + IL + IC

Phasor diagram: The phasor diagram in Fig. 16.25 indicates that the 
impressed voltage E is in phase with the current IR through the resistor, 
leads the current IL through the inductor by 90°, and lags the current IC 
of the capacitor by 90°.

Time domain:

 i = 12(50) sin vt = 70.70 sin Vt

 iR = 12(30) sin(vt + 53.13°) = 42.42 sin(Vt + 53.13°)
 iL = 12(70) sin(vt - 36.87°) = 98.98 sin(Vt − 36.87°)
 iC = 12(30) sin(vt + 143.13°) = 42.42 sin(Vt + 143.13°)

A plot of all of the currents and the impressed voltage appears in 
Fig. 16.26.

Power: The total power in watts delivered to the circuit is

 PT = EI cos u = (100 V)(50 A) cos 53.13° = (5000)(0.6)

 = 3000 W

36.87°

53.13°

j

IC

I

IR

E

IL   –  IC

IL

+

FIG. 16.25
Phasor diagram for the parallel R-L-C network  

in Fig. 16.22.

90°

36.87°

iL

0

e

2
–

2

i

53.13°

90°

iR

–

iC

  t2
2
3

FIG. 16.26
Waveforms for the parallel R-L-C network in Fig. 16.22.

or	 PT = E2G = (100 V)2(0.3 S) = 3000 W
or, finally,

 PT = PR + PL + PC

 = EIR cos uR + EIL cos uL + EIC cos uC

 = (100 V)(30 A) cos 0° + (100 V)(70 A) cos 90°
+ (100 V)(30 A) cos 90°

 = 3000 W + 0 + 0

 = 3000 W

Power factor: The power factor of the circuit is

Fp = cos uT = cos 53.13° = 0.6 lagging
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Using Eq. (16.22), we obtain

Fp = cos uT =
G

YT
=

0.3 S

0.5 S
= 0.6 lagging

Impedance approach: The input current I can also be determined by 
first finding the total impedance in the following manner:

ZT =
ZRZLZC

ZRZL + ZLZC + ZRZC
= 2 � j53.13°

and, applying Ohm’s law, we obtain

I =
E
ZT

=
100 V∠53.13°
2 Ω ∠53.13°

= 50 A j0°

16.5 C urrent Divider Rule

The basic format for the current divider rule in ac circuits is exactly 
the same as that for dc circuits; that is, for two parallel branches with 
impedances Z1 and Z2 as shown in Fig. 16.27.

	 I1 =
Z2IT

Z1 + Z2
 or I2 =

Z1IT

Z1 + Z2
	 (16.23)

EXAMPLE 16.6  Using the current divider rule, find the current 
through each impedance in Fig. 16.28.

Solution: 

 IR =
ZLIT

ZR + ZL
=

(4 Ω ∠90°)(20 A ∠0°)
3 Ω ∠0° + 4 Ω ∠90°

=
80 A ∠90°
5 ∠53.13°

 = 16 A j36.87°

 IL =
ZRIT

ZR + ZL
=

(3 Ω ∠0°)(20 A ∠0°)
5 Ω ∠53.13°

=
60 A ∠0°
5 ∠53.13°

 = 12 A j−53.13°

EXAMPLE 16.7  Using the current divider rule, find the current 
through each parallel branch in Fig. 16.29.

Solution: 

 IR-L =
ZCIT

ZC + ZR-L
=

(2 Ω ∠-90°)(5 A ∠30°)
- j 2 Ω + 1 Ω + j 8 Ω

=
10 A ∠-60°

1 + j 6

 =
10 A ∠-60°

6.083 ∠80.54°
 ≅  1.64 A j−140.54°

 IC =
ZR-LIT

ZR-L + ZC
=

(1 Ω +  j 8 Ω)(5 A ∠30°)
6.08 Ω ∠80.54°

 =
(8.06 ∠82.87°)(5 A ∠30°)

6.08 ∠80.54°
=

40.30 A ∠112.87°
6.083 ∠80.54°

 = 6.63 A j32.33°

16.6  Frequency Response  
of Parallel Elements

Recall that for elements in series, the total impedance is the direct sum 
of the impedances of each element, and the largest real or imaginary 
component has the most impact on the total impedance. For parallel ele-
ments, it is important to remember that the smallest parallel impedance 
will have the most impact on the total impedance.

IT

Z1

Z2

IT

I1

I2

FIG. 16.27
Applying the current divider rule.

XL 4 �

I  =  20 A    0°
IL

R 3 �

IR

FIG. 16.28
Example 16.6.

IT  =  5 A 30°

R

1 �

XL

8 �

XC

2 �

FIG. 16.29
Example 16.7.
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In Fig. 16.30, the frequency response has been included for each ele-
ment of a parallel R-L-C combination. At very low frequencies, the 
impedance of the coil will be less than that of the resistor or capacitor, 
resulting in an inductive network in which the reactance of the inductor 
will have the most impact on the total impedance. As the frequency 
increases, the impedance of the inductor will increase, while the imped-
ance of the capacitor will decrease. Eventually, the impedance of the 
capacitive element will be the smallest of the three parallel elements and 
the network will be capacitive in nature, as shown in Fig. 16.31. Note in 
Fig. 16.31 that the impedance is a maximum near the peak frequency 
rather than a minimum as it was for the series R-L-C circuit. That means 
for the applied voltage source the current will be a minimum at the peak 
frequency rather than a maximum as it was for the series configuration. 
For the ideal elements of Fig. 16.30 the peak frequency can be found by 
first finding the total admittance as follows:

 YT =
1

R
+

1

XL
+

1

XC
=

1

R ∠0°
+

1

XL ∠90°
+

1

XC ∠-90°

 =
1

R
+

1

jXL
+

1

- jXC
=

1

R
- j 

1

XL
+ j 

1

XC

 YT =
1

R
+ j a 1

XC
-

1

XL
b

f

XC

f

XL

f

R

E

ZT

R L

–

+

C

FIG. 16.30
Frequency response for parallel R-L-C elements.

0 f 

ZT 

fp

L R C

R

FIG. 16.31
Impedance versus frequency for the network of Fig. 16.30.
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When XL = XC the total admittance will simply be

	 YT =
1

R
   

fp

	 (16.24)

and the total impedance:

	 ZT = R  
fp

	 (16.25)

The peak frequency can be found in the same manner as for the series 
R-L-C circuit:

 XL = XC

 2pfL =
1

2pfC

 f 2 =
1

4p2LC

	 fp =
1

2p1LC
	 (16.26)

A similar network will be examined in detail in Chapter 21 when we exam-
ine parallel resonant networks. That analysis will incorporate a current 
source, however, so the parallel output voltage will be a maximum at the 
peak frequency because the impedance is a maximum at that frequency.

Parallel R-L ac Network

Let us now note the impact of frequency on the total impedance and 
inductive current for the parallel R-L network in Fig. 16.32 for a fre-
quency range of zero through 40 kHz.

R 220 � L 4 mH

Is

ZT

E
–

+0°∠E  =  20 V 

f : 0 to 20 kHz

FIG. 16.32
Determining the frequency response of a parallel R-L network.

The Impedance ZT

Before getting into specifics, let us first develop a “sense” for the impact 
of frequency on the network in Fig. 16.32 by noting the impedance-versus-
frequency curves of the individual elements, as shown in Fig. 16.33. The 
fact that the elements are now in parallel requires that we consider their 
characteristics in a different manner than occurred for the series R-C cir-
cuit in Section 15.8. Recall that for parallel elements, the element with 
the smallest impedance will have the greatest impact on the total imped-
ance at that frequency. In Fig. 16.33, for example, XL is very small at low 
frequencies compared to R, establishing XL as the predominant factor in 
this frequency range as shown in the rough sketch of Fig. 16.34. In other 
words, at low frequencies the network will be primarily inductive, and 
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the angle associated with the total impedance will be close to 90°, as with 
a pure inductor. As the frequency increases, XL increases until it equals 
the impedance of the resistor (220 Ω). The frequency at which this situa-
tion occurs can be determined in the following manner:

XL = 2pf1L = R

and	 f1 =
R

2pL
	 (16.27)

which for the network in Fig. 16.32 is

  f1 =
R

2pL
=

220 Ω
2p(4 * 10-3 H)

 ≅  8.75 kHz

which falls within the frequency range of interest.
For frequencies less than f1, XL 6 R, and for frequencies greater than 

f1, XL 7 R, as shown in Figs. 16.33 and 16.34. A general equation for the 
total impedance in vector form can be developed in the following manner:

 ZT =
ZRZL

ZR + ZL

 =
(R ∠0°)(XL ∠90°)

R + jXL
=

RXL ∠90°2R2 + XL
2 ∠tan-1 XL>R

R 220 � L
L  =  4 mH

ZT

R

220 �

0 f

XL

0 ff1

220 �

XL < R XL > R

XL  =  2   fL

FIG. 16.33
The frequency response of the individual elements of a parallel R-L network.

0 f (kHz)10 20 30 40

220 

R = 220 Ω

ZT (Ω)

XL  =  R

ZT  = 155.5 Ω

(XL 0 Ω)

f  = 8.75 kHz1

L R

FIG. 16.34
Impedance versus frequency for the parallel ac network of Fig. 16.32.
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and	 ZT =
RXL2R2 + XL

2
 l90°- tan-1 XL>R

so that	 ZT =
RXL2R2 + XL

2
	 (16.28)

and	 uT = 90° - tan-1 
XL

R
= tan-1 

R

XL
	 (16.29)

The magnitude and angle of the total impedance can now be found at 
any frequency of interest simply by substituting Eqs. (16.28) and (16.29).

f = 1 kHZ

XL = 2pfL = 2p(1 kHz)(4 * 10-3 H) = 25.12 Ω

and

ZT =
RXL2R2 + XL

2
=

(220 Ω)(25.12 Ω)2(220 Ω)2 + (25.12 Ω)2
= 24.96 �

with	  uT = tan-1 
R

XL
= tan-1 

220 Ω
25.12 Ω

 = tan-1 8.76 = 83.49°

and	 ZT = 24.96 � j83.49°

This value compares very closely with XL = 25.12 Ω∠90°, which it 
would be if the network were purely inductive (R = ∞ Ω). Our assump-
tion that the network is primarily inductive at low frequencies is there-
fore confirmed.

Continuing, we obtain

f = 5 kHz: ZT = 109.1 � j60.23°
f = 10 kHz: ZT = 165.5 � j41.21°
f = 15 kHz: ZT = 189.99 � j30.28°
f = 20 kHz: ZT = 201.53 � j23.65°
f = 30 kHz: ZT = 211.19 � j16.27°
f = 40 kHz: ZT = 214.91 � j12.35°

At f = 40 kHz, note how closely the magnitude of ZT has approached 
the resistance level of 220 Ω and how the associated angle with the total 
impedance is approaching zero degrees. The result is a network with 
terminal characteristics that are becoming more and more resistive as the 
frequency increases, which further confirms the earlier conclusions 
developed by the curves in Figs. 16.33 and 16.34.

Plots of ZT versus frequency in Fig. 16.35 and uT in Fig. 16.36 clearly 
reveal the transition from an inductive network to one that has resistive 
characteristics. Note that the transition frequency of 8.75 kHz occurs 
right in the middle of the “knee” of the curves for both ZT and uT.

A review of Figs. 16.33 and 16.35 reveals that a series R-C and a 
parallel R-L network will have an impedance level that approaches the 
resistance of the network at high frequencies. The capacitive circuit 
approaches the level from above, whereas the inductive network does 
the same from below. For the series R-L circuit and the parallel R-C net-
work, the total impedance will begin at the resistance level and then 
display the characteristics of the reactive elements at high frequencies.
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The Source Current Is
The current Is, as mentioned earlier, will have a minimum value at the 
peak of the impedance curve. Additional plot points can be obtained 
by simply applying Ohm’s law at each frequency of interest. At 
f = 0 Hz the reactance of the inductor is zero ohms, essentially plac-
ing a short circuit across the parallel branches. The resulting current is 
very high and off the charts, as shown in Fig. 16.37. At f = 8.75 kHz, 
when XL = R, the current will be 0.707 times the peak value or 
0.707(220 Ω) = 155.62 Ω and the impedance angle -45°. The result-
ing current by Ohm’s law is

Is =
E
ZT

=
20 V ∠0°

155.62 Ω ∠90°
= 128.5 mA j−45°

ZT (v)

100

200
R  =  220 �

ZT (�)

0 1 5 10 20 30 40 f (kHz)

XL > R (ZT  ≅  R)

Network resistive

XL  =  R

8.75

XL < R (ZT  ≅  XL)

Network inductive

FIG. 16.35
The magnitude of the input impedance versus frequency for the network in  

Fig. 16.32.

5 f (kHz)1 10 20 30 40

0°

30°

45°

60°

90°

Inductive (XL < R)

Resistive (XL > R)

  T

  T ( f )

FIG. 16.36
The phase angle of the input impedance versus frequency for the network in  

Fig. 16.32.
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Additional plot points can then be obtained using the calculated 
impedance levels used earlier to plot the impedance curve. That is,

At 1 kHz:    Is =
E
ZT

=
20 V ∠0°

24.96 Ω ∠83.49°
= 801 mA j−83.49°

At 5 kHz:    Is = 183 mA j−60.23°
At 10 kHz:  Is = 121 mA j−41.21°
At 20 kHz:  Is = 99 mA j−23.65°
At 30 kHz:  Is = 95 mA j−16.27°
At 40 kHz:  Is = 93 mA j−12.35°

The resulting plot appears as Fig. 16.37. Note, as predicted, the cur-
rent is a minimum when the impedance is a maximum and the current is 
a maximum when the impedance of the inductor is very small.

The phase angle plot of Fig. 16.38 clearly reveals that the network is 
very inductive at low frequencies. The applied voltage leads the source 

0 f (kHz)10 20 30 40

Is (mA)

100 
128.5 

200 

300 

400 

500 

600 

700 

800 

f11 5

L R

FIG. 16.37
Is versus frequency for the parallel R-L network of Fig. 16.33.

0

f (kHz)

θ

f1

–90°

–45°

R L

FIG. 16.38
Phase angle of Is versus frequency for the parallel R-L network  

of Fig. 16.33.
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current by 90° and is almost purely resistive as we approach 40 kHz, 
where the total impedance becomes essentially equal to the parallel 
resistance of 220 ohms.

At f = 1 kHz, the phasor diagram of the network appears as shown 
in Fig. 16.39. First note that the magnitude and the phase angle of IL are 
very close to those of Is. The current IR is in phase with the applied volt-
age E. At this frequency R > XL and the current IR is relatively small in 
magnitude.

At f =  40 kHz, the phasor diagram changes to that appearing in 
Fig. 16.40. Note that now IR and Is are close in magnitude and phase 
because XL 7  R. The magnitude of IL has dropped to very low levels, 
and the phase angle associated with IL is -90°. The network is now 
more “resistive” compared to its “inductive” characteristics at low 
frequencies.

Parallel R-C ac Network

Total Impedance ZT     The frequency response of the R-C parallel 
network of Fig. 16.41 will now be examined following the same path 
applied to the parallel R-L network. At very low frequencies the imped-
ance of the capacitor is very large compared to the fixed resistor value 
and can be assumed to be close in behavior to an open circuit. The total 
impedance at low frequencies will therefore be very close to that of the 
resistor as shown in Fig. 16.42. At very high frequencies the impedance 
of the capacitor will become very small in comparison to that of the 
resistor and start to act like a short circuit across the parallel branches. 
The result is that the total impedance will begin to approach zero ohms 
at very high frequencies, as shown in Fig. 16.40. At some point the 
impedance of the capacitor will drop to that of the resistor as the fre-
quency increases. That frequency can be determined as follows:

 R = XC

 R =
1

2pfC

	 f1 =
1

2pRC
	 (16.30)

IsIL

83.49°

IR E

FIG. 16.39
The phasor diagram for the parallel R-L network in 

Fig. 16.32 at f = 1 kHz.

Is

IL 12.35°
IR E

FIG. 16.40
The phasor diagram for the parallel R-L network  

in Fig. 16.32 at f = 40 kHz.

4.7 µFC

+

–
R 2 k�E = 0°∠  10 V

f : 0         50 kHz

2 k�

0

R

0 f

XC

Is

FIG. 16.41
Parallel R-C network to be analyzed.



742    Parallel ac Circuits
a c

which for the network of Fig. 16.41 is

f1 =
1

2pRC
=

1

2p(2 kΩ)(4.7 nF)
= 16.93 kHz

In order to plot the total impedance of the network versus frequency 
we need to develop a general equation for the magnitude and phase 
angle of the total impedance as follows:

 ZT =
RXC

R + XC
=

(R ∠0°)(XC ∠-90°)
R - jXC

=
RXC ∠-90°2R2 + XC

2  l- tan-1 
XC

R

 =
RXC2R2 + XC

2
 l-90° + tan-1 

XC

R
=

RXC2R2 + XC
2

 l- tan-1 
R

XC

so that	 ZT =
RXC2R2 + XC

2

and	 uT = - tan-1 R

XC

At f = f1:	 XC = R = 2 kΩ

and	 ZT =
RXC2R2 + X2

C

=
(2 kΩ)(2 kΩ)2(2 kΩ)2 + (2 kΩ)2

= 1.41 kΩ

with	 uT = - tan-1 R

XC
= - tan-1 

2 kΩ
2 kΩ

= - tan-1 1 = -45°

At f = 1 kHz:

	 XC =
1

2pfC
=

1

2p(16.93 kHz)(4.7 nF)
= 33.86 kΩ

and	 ZT =
RXC2R2 + XC

2
=

(2 kΩ)(33.86 kΩ)2(2 kΩ)2 + (33.86 kΩ)2
= 1.99 kΩ

with	 uT = - tan-1 
R

XC
= - tan-1 

2 kΩ
33.86 kΩ

= - tan-1 0.059 = -3.3°

0 1 5 10 20 30

2

1

f (kHz)40 50

ZT  (k�)

(XC = R) 1.41

f1

R C

FIG. 16.42
ZT versus frequency for the parallel R-C network of Fig. 16.39.
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At f = 5 kHz:    ZT = 1.91 kΩ,  uT = -16.46°
At f = 10 kHz:  ZT = 1.72 kΩ,  uT = -30.61°
At f = 20 kHz:  ZT = 1.29 kΩ,  uT = -49.8°
At f = 30 kHz:  ZT = 0.98 kΩ,  uT = -60.53°
At f = 40 kHz:  ZT = 0.78 kΩ,  uT = -66.93°
At f = 50 kHz:  ZT = 0.677 kΩ, uT = -71.3°

resulting in the plot of Fig. 16.42.
The plot of the phase angle will yield the curve of Fig. 16.43. The 

fact that the angle is negative throughout reveals that the current leads 
the applied voltage for the full frequency range—typical for a capaci-
tive network.

0

1 5 10 20 30 f (kHz)40 50

�T 

f1

–90°

–45°

FIG. 16.43
Phase plot for the total impedance of the network of Fig. 16.39.

The Source Current Is
As the applied frequency increases for the network of Fig. 16.41, the 
parallel capacitor will establish an increasingly lower impedance across 
the parallel branches. The result is a decrease in total impedance (as 
shown in Fig. 16.42) and an increase in the level of current provided by 
the source. Now that we know what to expect let us now apply Ohm’s 
law as was done for the parallel R-L network to find the current at vari-
ous frequencies.

At f = 1 kHz:	 Is =
E
ZT

=
10 V ∠0° 

1.99 kΩ ∠-3.3°
= 5.03 mA j3.3°

using the total impedance determined for the impedance plot of Fig. 
16.40. Continuing, we have

At f = f1 kHz: 

(f1 = 16.93 kHz) Is =
E
ZT

=
10 V ∠0° 

1.41 kΩ ∠-45°
= 7.09 mA j45°

At f = 5 kHz:	 Is =
E
ZT

=
10 V ∠0° 

1.91 kΩ ∠-16.46°
= 5.24 mA j16.46°

At f = 10 kHz:	 Is =
E
ZT

=
10 V ∠0° 

1.72 kΩ ∠-30.61°
= 5.81 mA j30.61°

At f = 20 kHz:	 Is =
E
ZT

=
10 V ∠0° 

1.29 kΩ ∠-49.8°
= 7.75 mA j49.8°
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At f = 30 kHz: Is =
E
ZT

=
10 V ∠0° 

0.98 kΩ ∠-60.53°
= 11.11 mA j60.53°

At f = 40 kHz: Is =
E
ZT

=
10 V ∠0° 

0.78 kΩ ∠-66.93°
= 12.82 mA j66.93°

At f = 50 kHz: Is =
E
ZT

=
10 V ∠0° 

0.66 kΩ ∠-71.3°
= 14.99 mA j71.3°

resulting in the plot of Fig. 16.44.

0 1 5 10 20 30

10

5
7.09

f (kHz)40 50

Is (mA)

f1

R C

15

20

FIG. 16.44
I versus frequency for the parallel R-C network of Fig. 16.39.

The calculations above reveal that the phase angle approaches 90° as 
the frequency increases, corresponding with the fact that the network is 
becoming increasingly capacitive. Recall that for a pure capacitor the 
current leads the voltage across the capacitor by 90°.

Parallel R-L-C  Network

The response of a parallel R-L-C network to increasing frequencies was 
described in some detail at the beginning of Section 16.6. Since the 
impedance will peak when the XL = XC, the current will be a minimum 
value at the frequency in which this relationship is satisfied. In total, the 
curve for the source current will be a flipped version of that for the 
impedance with the minimum value of current equal to Imin = E>R.

Since the impedance is highly inductive at low frequencies and highly 
capacitive at high frequencies, the phase angle associated with the total 
impedance will traverse from 90° (yL leads iL by 90° for a pure inductor) 
to -90° (iC leads yC by 90° for a pure capacitor) with an angle of 0° at 
the frequency when the total impedance is resistive.

16.7 S ummary: Parallel ac Networks

The following is a review of important conclusions that can be derived 
from the discussion and examples of the previous sections. The list is not 
all-inclusive, but it does emphasize some of the conclusions that should 
be carried forward in the future analysis of ac systems.

For parallel ac networks with reactive elements:

	 1.	 The total admittance or impedance will be frequency dependent.
	 2.	 Depending on the frequency applied, the same network can be 

either predominantly inductive or predominantly capacitive.
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	 3.	 The magnitude of the current through any one branch can be 
greater than the source current.

	 4.	 The inductive and capacitive susceptances are in direct opposi-
tion on an admittance diagram.

	 5.	 At lower frequencies, the inductive elements will usually have the 
most impact on the total impedance, while at high frequencies, 
the capacitive elements will usually have the most impact.

	 6.	 The impedance of any one element can be less than the total 
impedance (recall that for dc circuits, the total resistance must 
always be less than the smallest parallel resistor).

	 7.	 The magnitude of the current through an element, compared to the 
other elements of the network, is directly related to the magnitude 
of its impedance; that is, the smaller the impedance of an element, 
the larger is the magnitude of the current through the element.

	 8.	 The current through a coil is always in direct opposition with the 
current through a capacitor on a phasor diagram.

	 9.	 The applied voltage is always in phase with the current through the 
resistive elements, leads the voltage across all the inductive elements 
by 90°, and lags the current through all capacitive elements by 90°.

	10.	 The smaller the resistive element of a network compared to the 
net reactive susceptance, the closer is the power factor to unity.

16.8 E quivalent Circuits

In a series ac circuit, the total impedance of two or more elements in 
series is often equivalent to an impedance that can be achieved with 
fewer elements of different values, the elements and their values being 
determined by the frequency applied. This is also true for parallel cir-
cuits. For the circuit in Fig. 16.45(a),

 ZT =
ZCZL

ZC + ZL
=

(5 Ω ∠-90°)(10 Ω ∠90°)
5 Ω ∠-90° + 10 Ω ∠90°

=
50 ∠0°
5 ∠90°

 = 10 Ω ∠-90°

The total impedance at the frequency applied is equivalent to a capacitor 
with a reactance of 10 Ω, as shown in Fig. 16.45(b). Always keep in mind 
that this equivalence is true only at the applied frequency. If the frequency 
changes, the reactance of each element changes, and the equivalent circuit 
changes—perhaps from capacitive to inductive in the above example.

Another interesting development appears if the impedance of a paral-
lel circuit, such as the one in Fig. 16.46(a), is found in rectangular form. 
In this case,

 ZT =
ZLZR

ZL + ZR
=

(4 Ω ∠90°)(3 Ω ∠0°)
4 Ω ∠90° + 3 Ω ∠0°

 =
12 ∠90°

5 ∠53.13°
= 2.40 Ω ∠36.87°

 = 1.92 Ω + j 1.44 Ω

which is the impedance of a series circuit with a resistor of 1.92 Ω and 
an inductive reactance of 1.44 Ω, as shown in Fig. 16.46(b).

The current I will be the same in each circuit in Fig. 16.45 or Fig. 
16.46 if the same input voltage E is applied. For a parallel circuit of 
one resistive element and one reactive element, the series circuit with 
the same input impedance will always be composed of one resistive 
and one reactive element. The impedance of each element of the series 

5 �XC
ZT 10 �XL

(a)

10 �XC
ZT

(b)

FIG. 16.45
Defining the equivalence between two networks at a 

specific frequency.

4 � R 3 �XL

I

ZT

E

+

–

(a)

XL  =  1.44 �I

ZT

E

+

–

(b)

R  =  1.92 �

FIG. 16.46
Finding the series equivalent circuit for a parallel 

R-L network.
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circuit will be different from that of the parallel circuit, but the reactive 
elements will always be of the same type; that is, an R-L circuit and an 
R-C parallel circuit will have an equivalent R-L and R-C series circuit, 
respectively. The same is true when converting from a series to a par-
allel circuit. In the discussion to follow, keep in mind that

the term equivalent refers only to the fact that for the same applied 
potential, the same impedance and input current will result.

To formulate the equivalence between the series and parallel circuits, 
the equivalent series circuit for a resistor and reactance in parallel can be 
found by determining the total impedance of the circuit in rectangular 
form; that is, for the circuit in Fig. 16.47(a),

Yp =
1

Rp
+

1

{ jXp
=

1

Rp
| j 

1

Xp

and

 Zp =
1

Yp
=

1

(1>Rp) | j(1>Xp)

 =
1>Rp

(1>Rp)
2 + (1>Xp)

2 {  j 
1>Xp

(1>Rp)
2 + (1>Xp)

2

Multiplying the numerator and denominator of each term by Rp
2 Xp

2 
results in

 Zp =
Rp Xp

2

Xp
2 + Rp

2 {  j 
Rp

2 Xp

Xp
2 + Rp

2

 =  Rs{  jXs [Fig. 16.47(b)]

and	 Rs =
Rp Xp

2

Xp
2 + Rp

2 	 (16.31)

with	 Xs =
Rp

2 Xp

Xp
2 + Rp

2 	 (16.32)

For the network in Fig. 16.46,

Rs =
Rp Xp

2

Xp
2 + Rp

2 =
(3 Ω)(4 Ω)2

(4 Ω)2 + (3 Ω)2 =
48 Ω

25
= 1.92 �

and

Xs =
Rp

2 Xp

Xp
2 + Rp

2 =
(3 Ω)2(4 Ω)

(4 Ω)2 + (3 Ω)2 =
36 Ω

25
= 1.44 �

which agrees with the previous result.
The equivalent parallel circuit for a circuit with a resistor and reac-

tance in series can be found by finding the total admittance of the system 
in rectangular form; that is, for the circuit in Fig. 16.47(b),

 Zs = Rs {  jXs

 Ys =
1

Zs
=

1

Rs {  jXs
=

Rs

Rs
2 + Xs

2 | j 
Xs

Rs
2 + Xs

2

 = Gp | jBp =
1

Rp
| j 

1

Xp
 [Fig. 16.47(a)]

(b)

(a)

Rs

Zs = Zp

Ys = Yp

Xs

Rp
Zp

Yp

XP

FIG. 16.47
Defining the parameters of equivalent series and 

parallel networks.
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or	 Rp =
Rs

2 + Xs
2

Rs
	 (16.33)

with	 Xp =
Rs

2 + Xs
2

Xs
	 (16.34)

For the above example,

Rp =
Rs

2 + Xs
2

Rs
=

(1.92 Ω)2 + (1.44 Ω)2

1.92 Ω
=

5.76 Ω
1.92

= 3.0 �

and	 Xp =
Rs

2 + Xs
2

Xs
=

5.76 Ω
1.44

= 4.0 �

as shown in Fig. 16.46(a).

EXAMPLE 16.8  Determine the series equivalent circuit for the net-
work in Fig. 16.48.

Solution: 

 Rp = 8 kΩ
 Xp (resultant) = � XL - XC � = � 9 kΩ - 4 kΩ �

 = 5 kΩ

and

Rs =
Rp Xp

2

Xp
2 + Rp

2 =
(8 kΩ)(5 kΩ)2

(5 kΩ)2 + (8 kΩ)2 =
200 kΩ

89
= 2.25 k�

with

 Xs =
Rp

2 Xp

Xp
2 + Rp

2 =
(8 kΩ)2(5 kΩ)

(5 kΩ)2 + (8 kΩ)2 =
320 kΩ

89

 = 3.60 k� (inductive)

The equivalent series circuit appears in Fig. 16.49.

EXAMPLE 16.9  For the network in Fig. 16.50.

	 a.	 Determine YT and ZT.
	 b.	 Sketch the admittance diagram.
	 c.	 Find E and IL.

4 k�

R 8 k�

XC

9 k�XL

Rp

Xp

FIG. 16.48
Example 16.8.

3.60 k�2.25 k�

XsRs

FIG. 16.49
The equivalent series circuit for the parallel network 

in Fig. 16.48.

R1 10 � R2 40 � L1 6 mH L2 12 mH
C1

80 mF
C2

20 mF

iL

i  =  �2 (12) sin 1000t

+

YT

ei
–

ZT

FIG. 16.50
Example 16.9.
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	 d.	 Compute the power factor of the network and the power delivered to 
the network.

	 e.	 Determine the equivalent series circuit as far as the terminal charac-
teristics of the network are concerned.

	 f.	 Using the equivalent circuit developed in part (e), calculate E, and 
compare it with the result of part (c).

	 g.	 Determine the power delivered to the network, and compare it with 
the solution of part (d).

	 h.	 Determine the equivalent parallel network from the equivalent 
series circuit, and calculate the total admittance YT. Compare the 
result with the solution of part (a).

Solutions: 

	 a.	 Combining common elements and finding the reactance of the 
inductor and capacitor, we obtain

 RT = 10 Ω 7  40 Ω = 8 Ω
 LT = 6 mH 7  12 mH = 4 mH

 CT = 80 mF + 20 mF = 100 mF

 XL = vL = (1000 rad/s)(4 mH) = 4 Ω

 XC =
1

vC
=

1

(1000 rad/s)(100 mF)
= 10 Ω

R 8 � 4 �XL XC
10 �

YT
IL

+

–

EI  =  12 A ∠ 0°

FIG. 16.51
Applying phasor notation to the network in Fig. 16.50.

		  The network is redrawn in Fig. 16.51 with phasor notation. The 
total admittance is

 YT = YR + YL + YC

 =  G ∠0° + BL ∠-90° + BC ∠+90°

 =
1

8 Ω
 ∠0° +

1

4 Ω
 ∠-90° +

1

10 Ω
 ∠+90°

 = 0.125 S ∠0° + 0.25 S ∠-90° + 0.1 S ∠+90°
 = 0.125 S - j 0.25 S + j 0.1 S

 = 0.125 S -  j 0.15 S = 0.195 S j−50.194°

 ZT =
1

YT
=

1

0.195 S ∠-50.194°
= 5.13 � j50.19°

	 b.	 See Fig. 16.52.

	 c.	 E = IZT =
I

YT
=

12 A ∠0°
0.195 S ∠-50.194°

= 61.54 V j50.19°

IL =
VL

ZL
=

E
ZL

=
61.538 V∠50.194°

4 Ω ∠90°
= 15.39 A j−39.81°

G ∠ 0°

–50.194°

0.195 S

YT

BL ∠ –90°

BL – BC

BC  ∠ 90°

j

+–

FIG. 16.52
Admittance diagram for the parallel R-L-C network 

in Fig. 16.50.
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	 d.	 Fp = cos u =
G

YT
=

0.125 S

0.195 S
= 0.641 lagging (E leads I)

 P = EI cos u = (61.538 V)(12 A) cos 50.194°
 = 472.75 W

	 e.	  ZT =
1

YT
=

1

0.195 S ∠-50.194°
= 5.128 Ω ∠+50.194°

 = 3.28 Ω + j 3.94 Ω
 = R + jXL

 XL = 3.94 Ω = vL

 L =
3.94 Ω

v
=

3.94 Ω
1000 rad/s

= 3.94 mH

		  The series equivalent circuit appears in Fig. 16.53.

L 3.94 mHE

+

–

I  =  12 A ∠ 0°

R

3.28 �

FIG. 16.53
Series equivalent circuit for the parallel R-L-C network in Fig. 16.50 with 

v = 1000 rad/s.

	 f.	  E = IZT = (12 A ∠0°)(5.128 Ω ∠50.194°)
 = 61.54 V j50.194° (as above)

	 g.	 P = I2R = (12 A)2(3.28 Ω) = 472.32 W  (as above)

	 h.	  Rp =
Rs

2 + Xs
2

Rs
=

(3.28 Ω)2 + (3.94 Ω)2

3.28 Ω
= 8 �

 Xp =
Rs

2 + Xs
2

Xs
=

(3.28 Ω)2 + (3.94 Ω)2

3.94 Ω
= 6.67 �

		  The parallel equivalent circuit appears in Fig. 16.54.

 YT = G ∠0° + BL ∠-90° =
1

8 Ω
 ∠0° +

1

6.675 Ω
 ∠-90°

 = 0.125 S ∠0° + 0.15 S ∠-90°
 = 0.125 S - j 0.15 S = 0.195 S j−50.194° (as above)

16.9 A pplications

Home Wiring

An expanded view of house wiring is provided in Fig. 16.55 to permit a 
discussion of the entire system. The house panel has been included with 
the “feed” and the important grounding mechanism. In addition, a num-
ber of typical circuits found in the home have been included to provide a 
sense for the manner in which the total power is distributed.

L 6.67 �I  =  12 A ∠ 0°

YT

R 8 �

FIG. 16.54
Parallel equivalent of the circuit in Fig. 16.53.
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First note how the copper bars in the panel are laid out to provide 
both 120 V and 240 V. Between any one bar and ground is the single-
phase 120 V supply. However, the bars have been arranged so that 
240 V can be obtained between two vertical adjacent bars using a dou-
ble-gang circuit breaker. When time permits, examine your own panel 
(but do not remove the cover), and note the dual circuit breaker arrange-
ment for the 240 V supply.

For appliances such as fixtures and heaters that have a metal casing, 
the ground wire is connected to the metal casing to provide a direct path 
to ground path for a “shorting” or errant current as described in Section 
6.8. For outlets that do not have a conductive casing, the ground lead is 
connected to a point on the outlet that distributes to all important points 
of the outlet.

Note the series arrangement between the thermostat and the heater 
but the parallel arrangement between heaters on the same circuit. In 
addition, note the series connection of switches to lights in the upper-
right corner but the parallel connection of lights and outlets. Due to 
high current demand, the air conditioner, heaters, and electric stove 
have 30 A breakers. Keep in mind that the total current does not equal 
the product of the two (or 60 A) since each breaker is in a line and the 
same current will flow through each breaker.

Neutral Line 1 Line 2

Main
breaker
200 A Copper bus-bars

Lighting Series switches20 A

40 A

40 A

30 A

30 A

15 A

15 A

30 A

30 A

30 A

30 A

#14

#14

#10

#10

#10
#10

Parallel
lamps

120 V

+

–

120 V
+

–

Washing
machine

400 W

Electric dryer

4.8 kW
240 V

+

–

240 V
+

–
Thermostat

2′ section 4′ section 8′ section

2300 W

Parallel electric
baseboard heaters

Neutral bus-bar

Ground bus-bar

MAIN PANEL

#12

#8

#8

#10

#10

Switched outlets Parallel outlets

12.2 kW
electric range

Air conditioner

860 W

240 V
+

–

240 V
+

–

+

–
60 W 40 W 60 W60 W

575 W 1150 W

120 V

FIG. 16.55
Home wiring diagram.
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In general, you now have a surface understanding of the general wir-
ing in your home. You may not be a qualified, licensed electrician, but at 
least you should now be able to converse with some intelligence about 
the system.

Phase-Shift Power Control

In Chapter 11, the internal structure of a light dimmer was examined and 
its basic operation described. We can now turn our attention to how the 
power flow to the bulb is controlled.

If the dimmer were composed of simply resistive elements, all the 
voltages of the network would be in phase, as shown in Fig. 16.56(a). If 
we assume that 20 V are required to turn on the triac in Fig. 11.67, the 
power will be distributed to the bulb for the period highlighted by the 
blue area of Fig. 16.56(a). For this situation, the bulb is close to full 
brightness since the applied voltage is available to the bulb for almost 
the entire cycle. To reduce the power to the bulb (and therefore reduce 
its brightness), the controlling voltage would need a lower peak voltage, 
as shown in Fig. 16.56(b). In fact, the waveform in Fig. 16.56(b) is such 
that the turn-on voltage is not reached until the peak value occurs. In this 
case, power is delivered to the bulb for only half the cycle, and the 
brightness of the bulb is reduced. The problem with using only resistive 
elements in a dimmer now becomes apparent: The bulb can be made no 
dimmer than the situation depicted by Fig. 16.56(b). Any further reduc-
tion in the controlling voltage would reduce its peak value below the 
trigger level, and the bulb would never turn on.

This dilemma can be resolved by using a series combination of ele-
ments such as shown in Fig. 16.57(a) from the dimmer in Fig. 11.67. 
Note that the controlling voltage is the voltage across the capacitor, 
while the full line voltage of 120 V rms, 170 V peak, is across the entire 
branch. To describe the behavior of the network, let us examine the case 
defined by setting the potentiometer (used as a rheostat) to 1/10 its max-
imum value, or 33 kΩ. Combining the 33 kΩ with the fixed resistance 
of 47 kΩ results in a total resistance of 80 kΩ and the equivalent net-
work in Fig. 16.57(b).

At 60 Hz, the reactance of the capacitor is

XC =
1

2pfC
=

1

2p(60 Hz)(62 mF)
= 42.78 kΩ

170

20

0

V (volts)

t

Applied
voltage

(b)

Controlling
voltage

(a)

170

20

0

V (volts)

t

Applied
voltage

Lamp
voltage

FIG. 16.56
Light dimmer: (a) with purely resistive elements;  

(b) half-cycle power distribution.

+

–

G

K

A

TRIACDIAC

0.068 mFVcontrol

330 k�
rheostat

47 k�

+

–

Vline = 170 V ∠0°
(peak)

(a)

+

–

170 V ∠0°

0.068 mFC

(b)

Vcontrol

+

–

80 k�R

FIG. 16.57
Light dimmer: (a) from Fig. 11.67; (b) with rheostat set at 33 kΩ.
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Applying the voltage divider rule gives

 Vcontrol =
ZCVs

ZR + ZC

 =
(42.78 kΩ ∠-90°)(Vs ∠0°)

80 kΩ - j 42.78 kΩ
=

42.78 kΩ Vs ∠-90°
90.72 kΩ ∠-28.14°

 = 0.472 Vs ∠-61.86°

Using a peak value of 170 V gives

 Vcontrol = 0.472(170 V) ∠-61.86°
 = 80.24 V ∠-61.86°

producing the waveform in Fig. 16.58(a). The result is a waveform with 
a phase shift of 61.86° (lagging the applied line voltage) and a relatively 
high peak value. The high peak value results in a quick transition to the 
20 V turn-on level, and power is distributed to the bulb for the major 
portion of the applied signal. Recall from the discussion in Chapter 11 
that the response in the negative region is a replica of that achieved in 
the positive region. If we reduced the potentiometer resistance further, 
the phase angle would be reduced, and the bulb would burn brighter. 
The situation is now very similar to that described for the response in 
Fig. 16.56(a). In other words, nothing has been gained thus far by using 
the capacitive element in the control network. However, let us now 
increase the potentiometer resistance to 200 kΩ and note the effect on 
the controlling voltage.

170

80.24

20

0° 90° 360°
61.86°

V (volts)

Vlamp

Vcontrol

Vapplied

(a)

180°

170

29.07
20

0° 90° 360°

80.2°

V (volts)

Vlamp

Vcontrol

Vapplied

(b)

180°

FIG. 16.58
Light dimmer in Fig. 11.67; (a) rheostat set at 33 kΩ; (b) rheostat set at 200 kΩ.

That is,

RT = 200 kΩ + 47 kΩ = 247 kΩ

 Vcontrol =
ZCVs

ZR + ZC

 =
(42.78 kΩ ∠-90°)(Vs ∠0°)

247 kΩ - j 42.78 kΩ
=

42.78 kΩ Vs ∠-90°
250.78 kΩ ∠-9.8°

 = 0.171 Vs ∠-80.2°
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and using a peak value of 170 V, we have

 Vcontrol = 0.171(170 V) ∠-80.2°
 = 29.07 V ∠-80.2°

The peak value has been substantially reduced to only 29.07 V, and the 
phase-shift angle has increased to 80.2°. The result, as depicted by Fig. 
16.58(b), is that the firing potential of 20 V is not reached until near 
the end of the positive region of the applied voltage. Power is deliv-
ered to the bulb for only a very short period of time, causing the bulb 
to be quite dim, significantly dimmer than obtained from the response 
in Fig. 16.58(b).

A conduction angle less than 90° is therefore possible due only to the 
phase shift introduced by the series R-C combination. Thus, it is possible 
to construct a network of some significance with a rather simple pair of 
elements.

16.10 C omputer Analysis

PSpice

This chapter provides the opportunity to apply a current source to a paral-
lel network and find the resulting terminal voltage and the current through 
an inductive leg as was done in Example 16.9. The network was con-
structed as shown in Fig. 16.59 using the IAC source to obtain effective 
values for the unknown quantities. The applied current has an effective 
value of 12 A and a radian frequency of 1000 rad/s. For the analysis the

frequency to be applied is f =
v

2p
=

1000 rad/s

2p
= 159.2 Hz, which 

will determine the reactance of the inductive and capacitive elements for 

FIG. 16.59
Parallel R-L-C network to be analyzed using PSpice.
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the calculations to be performed. You must be careful when using the 
IAC source because the symbol has a sine wave and not an arrow. The 
defined direction is down, so for this example it has to be rotated (mirror 
image) to have the proper direction or the results will be off by 180°. 
There is no frequency component to the source because that will be cho-
sen in the Simulation phase.

Note that the VPRINT option was chosen to read the voltage across 
the parallel network and the IPRINT for reading the current through 
the parallel branches of inductance. For both VPRINT and IPRINT an 
ok is set for the AC, MAG, and PHASE. Both VPRINT and IPRINT 
are found in the SPECIAL library in the Place Part dialog box. Once 
selected, the printer symbol appears on the screen next to the cursor, 
and it can be placed near the point of interest. Once the symbol is in 
place, double-click on it to display the Property Editor dialog box. 
Scrolling from left to right, type the word ok under AC, MAG, and 
PHASE. When each is active, select the Display key and choose the 
option Name and Value followed by OK. When all the entries have 
been made, choose Apply and exit the dialog box. The result is shown 
in Fig. 16.59. The VPRINT command can be set directly since the volt-
age will be from the point of connection to ground. You must be a little 
more careful for IPRINT since the current has direction. After the ini-
tial placement in series with the parallel coils, rotate IPRINT three 
times until the body of the printer is to the right on the schematic. The 
measured current will then be down through the parallel coils. To 
ensure that the resistors have the 1 terminal at the top it is also sug-
gested that the resistors be rotated three times so that V(R1:1) repre-
sents the voltage across the parallel branches and not V(R1:2). Note in 
Fig. 16.59 the need for a resistor in series with each coil. PSpice does 
not permit parallel inductors without some resistor value in series 
(much like the real world). Choosing very small values negates their 
effect on our desired solution. Throughout the process of setting up the 
network, do not be concerned about the repeated appearance of the 
Undo Warning!! dialog box. Simply select YES and continue.

The simulation is initiated by selecting the New Simulation Profile 
key and entering PSpice 16-1 as the name followed by Create to obtain 
the Simulation Settings PSpice 16-1 dialog box. Under Analysis type 
select AC Sweep/Noise and under AC Sweep Type enter 159.2Hz as 
the Start Frequency and End Frequencies followed by a 1 for Points/
Decade. Then select OK followed by Run PSpice. The result is a 
SCHEMATIC1-PSpice 16-1 dialog box with a graph from 80Hz to 
239Hz and an indicator at 159.2 Hz on the frequency axis. Next select 
Trace–Add Trace–V(R1:1) and the graph of Fig. 16.60 will result with 
a plot point close to 60 V at a frequency of 159.2 Hz. An improved read-
ing can be obtained by selecting Plot-Axis Settings-Y Axis-User 
Defined followed by 60-65. The result is a reading for the magnitude of 
the voltage across the parallel branches of 61.5 V, which is very close to 
the handwritten solution of 61.54 V. The associated phase angle can be 
obtained by Plot-Add Plot-Trace-Add Trace-P(V(R1:1)), which 
results in a phase angle of about 50°. Changing the scale as above to 
50–55° results in a reading of 50.1°, which is very close to the hand-
written solution 50.19°—an excellent verification of the longhand 
solution. The current through the branch of parallel inductors can be 
found through Plot-Add Plot-Trace-Add Trace-I(PRINT2) with a 
result of 15.4 A, which is again close to the longhand solution of 
15.39 A. The phase angle is obtained by Plot-Add Plot-Trace-Add 
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Trace-P(I(PRINT2)) resulting in -40°, which again is close to the 
handwritten solution of -39.81°.

The results can also be obtained by the sequence View-Output File 
and looking under the AC ANALYSIS section where it is revealed that 
the magnitude of E is 61.47 V and the phase angle is 50.17°, as shown in 
Fig. 16.61. A step or two lower is the inductive current with a magnitude 
of 15.36 A and a phase angle of -39.82°.

To take it a step further we can find the power dissipated by using the 
sequence Trace-Add Trace-V(R1:1)*(I(R1)+I(R2)) because power is 
only dissipated in the resistive elements. The result is a power level of 
472.7 W to match the handwritten solution.

Multisim

We now examine the response of a network versus frequency rather than 
time using the network in Fig. 16.32, which now appears on the sche-
matic in Fig. 16.62. The ac current source appears as AC_CURRENT_ 
SOURCE under the SIGNAL_CURRENT_SOURCES Family listing. 
Note that the current source was given an amplitude of 1 A to establish a 
magnitude match between the response of the voltage across the network 
and the impedance of the network. That is,

� ZT � = ` Vs

Is
` = ` Vs

1 A
` = �Vs �

Before applying computer methods, we should develop a rough idea 
of what to expect so that we have something to which to compare the 
computer solution. At very high frequencies such as 1 MHz, the imped-
ance of the inductive element will be about 25 kΩ, which when placed in 
parallel with the 220 Ω will look like an open circuit. The result is that as 

FIG. 16.60
A graph revealing the magnitude of the voltage across the resistor R1, the 

phase angle associated with the voltage across R1, the magnitude of the current 
through the parallel inductive elements, and the phase angle associated with 

the current through the parallel inductive elements.

 ** Profile: "SCHEMATIC1-PSpice 16-1" 

****     AC ANALYSIS
***************************************
  FREQ           VM(N05917)    VP(N05917)  
  1.592E+02   6.147E+01        5.017E+01

****     AC ANALYSIS
***************************************
  FREQ           IM(V_PRINT2)    IP(V_PRINT2)  
  1.592E+02   1.536E+01            -3.982E+01

FIG. 16.61
The output file with the magnitude and phase of the 

voltage across the parallel elements and the 
magnitude and phase of the current through the 

parallel inductive elements.
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the frequency gets very high, we should expect the impedance of the net-
work to approach the 220 Ω level of the resistor. In addition, since the 
network will take on resistive characteristics at very high frequencies, the 
angle associated with the input impedance should also approach 0°. At 
very low frequencies the reactance of the inductive element will be much 
less than the 220 Ω of the resistor, and the network will take on inductive 
characteristics. In fact, at, say, 10 Hz, the reactance of the inductor is only 
about 0.25 Ω, which is very close to a short-circuit equivalent compared 
to the parallel 220 Ω resistor. The result is that the impedance of the net-
work is very close to 0 Ω at very low frequencies. Again, since the induc-
tive effects are so strong at low frequencies, the phase angle associated 
with the input impedance should be very close to 90°.

Now for the computer analysis. The current source, the resistor ele-
ment, and the inductor are all placed and connected using procedures 
described in detail in earlier chapters. However, there is one big differ-
ence this time: Since the output will be plotted versus frequency, the AC 
Analysis Magnitude in the AC_CURRENT dialog box for the source 
must be set to 1 A. In this case, the default level of 1A matches that of the 
applied source, so you were set even if you failed to check the setting. In 
the future, however, a voltage or current source may be used that does not 
have an amplitude of 1, and proper entries must be made to this listing.

For the simulation, first apply the sequence Simulate-Analyses-AC 
Analysis to obtain the AC Analysis dialog box. Set the Start fre-
quency at 10 Hz so that you have entries at very low frequencies, and 
set the Stop frequency at 1MHz so that you have data points at the 
other end of the spectrum. The Sweep type can remain Decade, but the 
number of points per decade will be 1000 so that you obtain a detailed 
plot. Set the Vertical scale to Linear and within Output variables, 
select V(1). Shift it over to the Selected variables for analysis column 
using the Add keypad and then hit the Simulate key to obtain the two 
plots in Fig. 16.62. Select the Show/Hide Grid key to place the grid on 
the graph, and select the Show/Hide Cursors key to place the AC 
Analysis dialog box appearing in Fig. 16.62. Since two graphs are 

FIG. 16.62
Frequency response for the parallel R-L network of Fig. 16.32.
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present, define the one you are working on by clicking on the Voltage or 
Phase heading on the left side of each plot. A small red arrow appears 
when selected so you know which is the active plot. When setting up the 
cursors, be sure that you have activated the correct plot. When the blue 
cursor sits on 10 Hz (x1), you will find that the voltage across the net-
work is only 0.251 V (y1), resulting in an input impedance of only 
0.25 Ω—quite small and matching your theoretical prediction. In addi-
tion, note on the phase plot than the angle is essentially at 90°, confirm-
ing the assumption above—a totally inductive network. If you set the 
yellow cursor near 100 kHz (x2 = 102.3 kHz), you will find that the 
impedance at 219.2 Ω (y2) is closing in on the resistance of the parallel 
resistor of 220 Ω, again confirming the preliminary analysis above. If 
you set the yellow cursor on 1 MHz the voltage is 219.99 Ω or essen-
tially 220 Ω. Before leaving the plot, note the advantages of using a log 
axis when you want a response over a wide frequency range.

ZT ZT ZTR RXL XCXL LL C

f  = 10 kHz

20 mH

40 mH

4 nF

15 k�

10 k�
2 k� 6 k� 6 k�

(a) (b) (c)

FIG. 16.63
Problem 1.

ZTZT

XCXL
XC8 � 4 �

12 �

R

R
4 k�

2 k�
XL  = 10 k�

XC = 6 k�

R1

ZT

XC

XL 3.2 k� 

4.6 k� 
R2 3.6 k� 1.2 k� 

FIG. 16.64
Problem 2.

Problems

Section 16.2  Total Impedance

	 1.	 Find the total impedance of the parallel networks of Fig. 
16.63 in rectangular and polar form.

	 2.	 Find the total impedance of the parallel configurations of 
Fig. 16.64 in rectangular and polar form.
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Section 16.3  Total Admittance

	 3.	 For the configurations of Fig. 16.65:

YT

I

R  =  8.8 � YT

II

XL  =  300 � YT

III

XC  =  3 k� 

FIG. 16.65
Problem 3.

YT

I

15 � 60 �

YT

II

22 � 8 � 9 k�

YT

III

4 k� 6 k�2.2 �

FIG. 16.66
Problem 4.

	 4.	 For each configuration of Fig. 16.66:
	 a.	 Find the total impedance in polar form.
	 b.	 Calculate the total admittance using the results of part (a).

	 c.	 Identify the conductance and susceptance parts of the 
total admittance.

	 d.	 Sketch the admittance diagram.

0.6 k�

III

0.5 k�R =  4 �

XL  =  8 �

I

20 �

II

60 �

YT YT

4 k�

YT

33 �

FIG. 16.67
Problem 5.

	 5.	 For each configuration of Fig. 16.67:
	 a.	 Find the total impedance in polar form.
	 b.	 Calculate the total admittance using the results of part (a).

	 c.	 Identify the total conductance and susceptance parts of 
the total admittance.

	 d.	 Sketch the admittance diagram.

YT

2 k�

1 k�R1 R2

2 k� 2 k� 1 k�XC1

XC3

XC2

I

8 k�

XL2

4 k�
XL1

YT R2 20 k�10 k�

II

R 1

YT

2 k�

1 k�R1 R2

2 k� 2 k� 1 k�XC1

XC3

XC2

I

8 k�

XL2

4 k�
XL1

YT R2 20 k�10 k�

II

R 1

FIG. 16.68
Problem 6.

	*6.	 For each network of Fig. 16.68:
	 a.	 find the total admittance in rectangular form.

	 b.	 Using the results of part (a) build an equivalent parallel 
network for that of Fig. 16.68.

	 a.	 Find the admittance in rectangular and polar form.
	 b.	 Sketch the admittance diagram.
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	*7.	 For the circuit of Fig. 16.69:
	 a.	 Find the total admittance in rectangular form.
	 b.	 Construct a parallel network from the components 

found in part (a).
	 c.	 Determine the value of the resistive and inductive com-

ponents.
	 d.	 How do the components of part (c) compare with the 

original components of Fig. 16.69?

R

YT
L 470 mH

4.7 k� 

f  =  2 kHZ

FIG. 16.69
Problem 7.

?v

+

–

sin

v  =  24 sin 10,000t – 60°))

10,000t + 10°))i  =  6 � 10–3

FIG. 16.70
Problem 8.

E XL

+

–

YT
R

IR

Is  =  2 A ∠ 0°

IL

20 �10 �

FIG. 16.71
Problem 9.

	*8.	 Given the voltage and current shown in Fig. 16.70, find 
the parallel network internal to the container. That is, find 
the actual value of each component using the provided 
frequency.

Section 16.4  Parallel ac Networks

	 9.	 For the network in Fig. 16.71:
	 a.	 Find the total admittance YT in polar form.
	 b.	 Draw the admittance diagram.
	 c.	 Find the voltage E and the currents IR and IL in phasor 

form.
	 d.	 Draw the phasor diagram of the currents IS, IR, and IL, 

and the voltage E.

	 e.	 Verify Kirchhoff’s current law at one node.
	 f.	 Find the average power delivered to the circuit.
	 g.	 Find the power factor of the circuit, and indicate 

whether it is leading or lagging.
	 h.	 Find the sinusoidal expressions for the currents and 

voltage if the frequency is 60 Hz.
	 i.	 Plot the waveforms for the currents and voltage on the 

same set of axes.

E 0.13 mFC

+

–

R

f = 60 Hz

10 k�

IR

Is  =  2 mA ∠ 20°

IC

FIG. 16.72
Problem 10.

XL XC40 � 60 �220 � 120 �E

+

–
IC

Is
R2

R1 0°∠12 V 

FIG. 16.73
Problem 11.

	11.	 For the network of Fig. 16.73:
	 a.	 Find the total impedance “seen” by the source.
	 b.	 Using the results of part (a), find the total admittance.
	 c.	 Sketch the admittance diagram for the parallel network.
	 d.	 Determine the source current IS.
	 e.	 Calculate the current through the capacitive element IC.
	 f.	 Write the sinusoidal expressions for the applied voltage 

and source current.
	 g.	 What is the power factor of the network? Is it leading or 

lagging? Is this considered a capacitive or inductive 
configuration?

	10.	 Repeat Problem 9 for the network in Fig. 16.72, replacing 
IL with IC in parts (c) and (d).
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	12.	 For the network in Fig. 16.74:
	 a.	 Find the total admittance and impedance in polar form.
	 b.	 Draw the admittance and impedance diagrams.
	 c.	 Find the value of C in microfarads and L in henries.
	 d.	 Find the voltage E and currents IR, IL, and IC in phasor 

form.
	 e.	 Draw the phasor diagram of the currents IS, IR, IL, and 

IC, and the voltage E.
	 f.	 Verify Kirchhoff’s current law at one node.
	 g.	 Find the average power delivered to the circuit.
	 h.	 Find the power factor of the circuit, and indicate 

whether it is leading or lagging.
	 i.	 Find the sinusoidal expressions for the currents and 

voltage.
	 j.	 Plot the waveforms for the currents and voltage on the 

same set of axes.

	13.	 Repeat Problem 12 for the circuit in Fig. 16.75 except for 
part (c).

is  =  3 sin(377t + 60°) R 1.2 � 2 �XL XC 5 �

+

–

iR iL iC

e

FIG. 16.74
Problem 12.

is  =  5 � 10–3 sin(1000t – 20°) R 3 k� 3.9 HL C 0.12 mF

+

–

iR iL iC

e

FIG. 16.75
Problem 13.

I  =  30 A ∠ 40°

R 22 � 60 �
XL

I1 I2
I  =  8 A ∠ 45°

I1

R

12 �

XL

4 �

I2
XC

6 �

(b)

I  =  5 A ∠ 0°

I1
XL1

20 �

XL2

40 �
I2

XC

10 �

3 k� 

(c)(a)

R

FIG. 16.76
Problem 14.

VC2 mFC

+

–

R 40 �

IR

ZT

I  =  50 mA ∠0°

FIG. 16.77
Problems 15 and 17.

Section 16.5  Current Divider Rule

	14.	 Calculate the currents I1 and I2 in Fig. 16.76 in phasor form 
using the current divider rule.

Section 16.6  Frequency Response of Parallel 
Elements

	*15.	 For the parallel R-C network in Fig. 16.77:
	 a.	 Plot ZT and uT versus frequency for a frequency range 

of zero to 20 kHz.
	 b.	 Plot VC versus frequency for the frequency range of 

part (a).
	 c.	 Plot IR versus frequency for the frequency range of 

part (a).
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	*16.	 For the parallel R-L network in Fig. 16.78:
	 a.	 Plot ZT and uT versus frequency for a frequency range 

of zero to 10 kHz.
	 b.	 Plot IL versus frequency for the frequency range of 

part (a).
	 c.	 Plot IR versus frequency for the frequency range of 

part (a).

200 mHL

+

–

R 5 k�

IR

ZT

E  =  40 V ∠0°

IL

FIG. 16.78
Problems 16 and 18.

	17.	 Plot YT and uT (of YT = YT ∠uT) for a frequency range of 
zero to 20 kHz for the network in Fig. 16.77.

	18.	 Plot YT and uT (of YT = YT ∠uT) for a frequency range of 
zero to 10 kHz for the network in Fig. 16.78.

	19.	 For the parallel R-L-C network in Fig. 16.79.
	 a.	 Plot YT and uT (of YT = YT ∠uT) for a frequency range 

of zero to 20 kHz.
	 b.	 Repeat part (a) for ZT and uT (of ZT = ZT ∠uT).
	 c.	 Plot VC versus frequency for the frequency range of 

part (a).
	 d.	 Plot IL versus frequency for the frequency range of 

part (a).

I  =  10 mA ∠0° R 1 k�
100 mH

L C 3,000 pF

ZT

IL

VC

+

–
YT

FIG. 16.79
Problem 19.
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(a)

70 �

ZT

2 k�

(b)

14 k� 

ZT

8 k�

FIG. 16.80
Problem 20.

8.2 k�

R 20 k�XC
ZT

(a)

60 �
68 �RZT

(b)

XL

20 �XC

FIG. 16.81
Problem 21.

e R

220 �

1 �FC C 1 �F

+

–

iR iL

is  =  �2 sin 2p 1000t

L  =  10 mH

FIG. 16.82
Problem 22.

E  =  120 V –  0° ?20 �

I  =  80 A –  v

–

+

FIG. 16.83
Problem 23.

Section 16.8  Equivalent Circuits

	20.	 For the series circuits in Fig. 16.80, find a parallel circuit 
that will have the same total impedance (ZT).

	21.	 For the parallel circuits in Fig. 16.81, find a series circuit 
that will have the same total impedance.

	*22.	 For the network in Fig. 16.82:
	 a.	 Calculate E, IR, and IL in phasor form.
	 b.	 Calculate the total power factor, and indicate whether it 

is leading or lagging.
	 c.	 Calculate the average power delivered to the circuit.
	 d.	 Draw the admittance diagram.
	 e.	 Draw the phasor diagram of the currents IS, IR, and IL, 

and the voltage E.
	 f.	 Find the current IC for each capacitor using only Kirch-

hoff’s current law.
	 g.	 Find the series circuit of one resistive and reactive ele-

ment that will have the same impedance as the original 
circuit.

	23.	 Find the element or elements that must be in the closed con-
tainer in Fig. 16.83 to satisfy the following conditions. 
(Find the simplest parallel circuit that will satisfy the indi-
cated conditions.)

	 a.	 Average power to the circuit = 8000 W.
	 b.	 Circuit has a lagging power factor.
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Section 16.10  Computer Analysis

PSpice or Multisim
	24.	 For the network in Fig. 16.13 (use f = 1 kHz):
	 a.	 Determine the rms values of the voltages VR and VL and 

the current I.
	 b.	 Plot yR, yL, and i versus time on separate plots.
	 c.	 Place e, yR, yL, and i on the same plot, and label accord-

ingly.

	25.	 For the network in Fig. 16.22:
	 a.	 Determine the rms values of the currents IS, IR, IL, 

and IC.
	 b.	 Plot iS, iR, iL, and iC versus time on separate plots.
	 c.	 Place e, iS, iR, iL, and iC on the same plot, and label 

accordingly.

	26.	 For the network in Fig. 16.32:
	 a.	 Plot the impedance of the network versus frequency 

from 0 to 10 kHz.
	 b.	 Plot the current i versus frequency for the frequency 

range zero to 10 kHz.

	*27.	 For the network in Fig. 16.81a:
	 a.	 Find the rms values of the voltages yR and yC at a fre-

quency of 1 kHz.
	 b.	 Plot yC versus frequency for the frequency range zero to 

10 kHz.
	 c.	 Plot the phase angle between e and i for the frequency 

range zero to 10 kHz.

Glossary

Admittance  A measure of how easily a network will “admit” 
the passage of current through that system. It is measured in 
siemens, abbreviated S, and is represented by the capital 
letter Y.

Admittance diagram  A vector display that clearly depicts the 
magnitude of the admittance of the conductance, capacitive 
susceptance, and inductive susceptance and the magnitude 
and angle of the total admittance of the system.

Current divider rule  A method by which the current through 
either of two parallel branches can be determined in an ac net-
work without first finding the voltage across the parallel 
branches.

Equivalent circuits  For every series ac network, there is a paral-
lel ac network (and vice versa) that will be “equivalent” in the 
sense that the input current and impedance are the same.

Parallel ac circuits  A connection of elements in an ac network 
in which all the elements have two points in common. The 
voltage is the same across each element.

Phasor diagram  A vector display that provides at a glance the 
magnitude and phase relationships among the various volt-
ages and currents of a network.

Susceptance  A measure of how “susceptible” an element is to 
the passage of current through it. It is measured in siemens, 
abbreviated S, and is represented by the capital letter B.
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17.1  Introduction

In this chapter, we shall use the fundamental concepts of the previous chapter to develop a 
technique for solving series-parallel ac networks. A brief review of Chapter 7 may be help-
ful before considering these networks since the approach here is quite similar to that under-
taken earlier. The circuits to be discussed have only one source of energy, either potential or 
current. Networks with two or more sources are considered in Chapters 18 and 19, using 
methods previously described for dc circuits.

In general, when working with series-parallel ac networks, consider the following approach:

1.	 Redraw the network, using block impedances to combine obvious series and parallel 
elements, which will reduce the network to one that clearly reveals the fundamental 
structure of the system.

2.	 Study the problem and make a brief mental sketch of the overall approach you plan to 
use. Doing this may result in time- and energy-saving shortcuts. In some cases, a lengthy, 
drawn-out analysis may not be necessary. A single application of a fundamental law of 
circuit analysis may result in the desired solution.

3.	 After the overall approach has been determined, it is usually best to consider each 
branch involved in your method independently before tying them together in series- 
parallel combinations. In most cases, work back from the obvious series and parallel 
combinations to the source to determine the total impedance of the network. The 
source current can then be determined, and the path back to specific unknowns can be 
defined. As you progress back to the source, continually define those unknowns that 
have not been lost in the reduction process. It will save time when you have to work 
back through the network to find specific quantities.

4.	 When you have arrived at a solution, check to see that it is reasonable by considering 
the magnitudes of the energy source and the elements in the circuit. If not, either 
solve the network using another approach or check over your work very carefully. 
At this point, a computer solution can be an invaluable asset in the validation 
process.

17.2  Illustrative Examples

EXAMPLE 17.1  For the network in Fig. 17.1:

	 a.	 Calculate ZT.
	 b.	 Determine Is.
	 c.	 Calculate VR and VC.

•	 Develop confidence in the analysis of series-
parallel ac networks.

•	 Become proficient in the use of calculators and 
computer methods to support the analysis of ac 
series-parallel networks.

•	 Understand the importance of proper grounding in 
the operation of any electrical system.

Objectives

17
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	 d.	 Find IC.
	 e.	 Compute the power delivered.
	 f.	 Find FP of the network.

Solutions: 

	 a.	 As suggested in the introduction, the network has been redrawn 
with block impedances, as shown in Fig. 17.2. The impedance Z1 is 
simply the resistor R of 1 Ω, and Z2 is the parallel combination of 
XC and XL. The network now clearly reveals that it is fundamentally 
a series circuit, suggesting a direct path toward the total impedance 
and the source current. For many such problems, you must work 
back to the source to find first the total impedance and then the 
source current. When the unknown quantities are found in terms of 
these subscripted impedances, the numerical values can then be 
substituted to find the magnitude and phase angle of the unknown. 
In other words, try to find the desired solution solely in terms of the 
subscripted impedances before substituting numbers. This approach 
will usually enhance the clarity of the chosen path toward a solution 
while saving time and preventing careless calculation errors. Note 
also in Fig. 17.2 that all the unknown quantities except IC have been 
preserved, meaning that we can use Fig. 17.2 to determine these 
quantities rather than having to return to the more complex network 
in Fig. 17.1.

The total impedance is defined by

ZT = Z1 + Z2

R

1 �
+

–
E  =  120 V ∠ 0°

VR+ –

VC+ –
XC

XL

Is

ZT

IC 2 �

3 �

FIG. 17.1
Example 17.1.

+

–

Is

ZT
E  =  120 V ∠ 0°

Z1 Z2

FIG. 17.2
Network in Fig. 17.1 after assigning the block 

impedances.

		  with

 Z1 = R ∠0° = 1 Ω ∠0°

 Z2 = ZC }ZL =
(XC ∠-90°)(XL ∠90°)

- jXC + jXL
=

(2 Ω ∠-90°)(3 Ω ∠90°)
- j 2 Ω + j 3 Ω

=
 6Ω ∠0°

j 1
=

6 Ω ∠0°
1 ∠90°

= 6 Ω ∠-90°

		  and

ZT = Z1 + Z2 = 1 Ω - j 6 Ω = 6.08 � j−80.54°

	 b.	 Is =
E
ZT

=
120 V ∠0°

6.08 Ω ∠-80.54°
= 19.74 A j80.54°
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	 c.	 Referring to Fig. 17.2, we find that VR and VC can be found by a 
direct application of Ohm’s law:

 VR = IsZ1 = (19.74 A ∠80.54°)(1 Ω ∠0°) = 19.74 V j80.54°

 VC = IsZ2 = (19.74 A ∠80.54°)(6 Ω ∠-90°)

 = 118.44 V j−9.46°

	 d.	 Now that VC is known, the current IC can also be found using Ohm’s 
law:

IC =
VC

ZC
=

118.44 V ∠-9.46°
2 Ω ∠-90°

= 59.22 A j80.54°

	 e.	 Pdel = I2
sR = (19.74 A)2(1 Ω) = 389.67 W

	 f.	 Fp = cos u = cos 80.54° = 0.164 leading

The fact that the total impedance has a negative phase angle 
(revealing that Is leads E) is a clear indication that the network 
is capacitive in nature and therefore has a leading power factor. 
The fact that the network is capacitive can be determined from 
the original network by first realizing that, for the parallel L-C 
elements, the smaller impedance predominates and results in an 
R-C network.

EXAMPLE 17.2  For the network in Fig. 17.3:

	 a.	 If I is 50 A ∠30°, calculate I1 using the current divider rule.
	 b.	 Repeat part (a) for I2.
	 c.	 Verify Kirchhoff’s current law at one node.

Solutions: 

	 a.	 Redrawing the circuit as in Fig. 17.4, we have

 Z1 = R + jXL = 3 Ω + j 4 Ω = 5 Ω ∠53.13°

 Z2 = - jXC = - j 8 Ω = 8 Ω ∠-90°

		  Using the current divider rule yields

 I1 =
Z2I

Z2 + Z1
=

(8 Ω ∠-90°)(50 A ∠30°)
(- j 8 Ω) + (3 Ω + j 4 Ω)

=
400 A ∠-60°

3 - j4

 =
400 A ∠-60°
5 ∠-53.13°

= 80 A j−6.87°

	 b.	  I2 =
Z1I

Z2 + Z1
=

(5 Ω ∠53.13°)(50 A ∠30°)
5 Ω ∠-53.13°

=
250 A ∠83.13°

5 ∠-53.13°

 = 50 A j136.26°

	 c.	  I = I1 + I2

 50 A ∠30° = 80 A ∠-6.87° + 50 A ∠136.26°

 = (79.43 - j 9.57) + (-36.12 + j 34.57)

 = 43.31 + j 25.0

 50 A ∠30° = 50 A ∠30°    (checks)

R 3 �

XL

XC 8 �
4 �

I

I1 I2

FIG. 17.3
Example 17.2.

I

I1 I2

Z2Z1

FIG. 17.4
Network in Fig. 17.3 after assigning the block 

impedances.
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EXAMPLE 17.3  For the network in Fig. 17.5:

	 a.	 Calculate the voltage VC using the voltage divider rule.
	 b.	 Calculate the current Is.

Solutions: 

	 a.	 The network is redrawn as shown in Fig. 17.6, with

 Z1 = 5 Ω = 5 Ω ∠0°
 Z2 = - j 12 Ω = 12 Ω ∠-90°
 Z3 = + j 8 Ω = 8 Ω ∠90°

		  Since VC is desired, we will not combine R and XC into a single 
block impedance. Note also how Fig. 17.6 clearly reveals that E is 
the total voltage across the series combination of Z1 and Z2, permit-
ting the use of the voltage divider rule to calculate VC. In addition, 
note that all the currents necessary to determine Is have been pre-
served in Fig. 17.6, revealing that there is no need to ever return to 
the network of Fig. 17.5—everything is defined by Fig. 17.6.

 VC =
Z2E

Z1 + Z2
=

(12 Ω ∠-90°)(20 V ∠20°)
5 Ω - j 12 Ω

=
240 V ∠-70°
13 ∠-67.38°

 = 18.46 V j−2.62°

	 b.	 I1 =
E
Z3

=
20 V ∠20°
8 Ω ∠90°

= 2.5 A ∠-70°

I2 =
E

Z1 + Z2
=

20 V ∠20°
13 Ω ∠-67.38°

= 1.54 A ∠87.38°

		  and

 Is = I1 + I2

 = 2.5 A ∠-70° + 1.54 A ∠87.38°
 = (0.86 - j 2.35) + (0.07 + j 1.54)

 Is = 0.93 - j 0.81 = 1.23 A j−41.05°

EXAMPLE 17.4  For Fig. 17.7:

	 a.	 Calculate the current Is.
	 b.	 Find the voltage Vab.

Solutions: 

	 a.	 Redrawing the circuit as in Fig. 17.8, we obtain

 Z1 = R1 + jXL = 3 Ω + j 4 Ω = 5 Ω ∠53.13°
 Z2 = R2 - jXC = 8 Ω - j 6 Ω = 10 Ω ∠-36.87°

		  In this case the voltage Vab is lost in the redrawn network, but the 
currents I1 and I2 remain defined for future calculations necessary 
to determine Vab. Fig. 17.8 clearly reveals that the total impedance 
can be found using the equation for two parallel impedances:

 ZT =
Z1Z2

Z1 + Z2
=

(5 Ω ∠53.13°)(10 Ω ∠-36.87°)
(3 Ω + j 4 Ω) + (8 Ω - j 6 Ω)

 =
50 Ω ∠16.26°

11 - j 2
=

50 Ω ∠16.26°
11.18 ∠-10.30°

 = 4.47 � j26.56°

R

5 �
+

–
20 V ∠ 20°

+

–
XC

XL

Is

12 �8 � VCE

FIG. 17.5
Example 17.3.

E

I1 I2

Z1

Z3

Z2

Is

+

–

VC

+

–

FIG. 17.6
Network in Fig. 17.5 after assigning the block 

impedances.

R1 3 �

XL
XC 6 �4 �

I1 I2

Vaba b

R2 8 �

Is

+

–

E  =  100 V ∠ 0°

FIG. 17.7
Example 17.4.

I1 I2

Z2Z1

I

YT

+

–

E  =  100 V ∠ 0°

FIG. 17.8
Network in Fig. 17.7 after assigning the block 

impedances.
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		  and

Is =
E
ZT

=
100 V ∠0°

4.47 Ω ∠26.56°
= 22.36 A j−26.56°

	 b.	 By Ohm’s law,

 I1 =
E
Z1

=
100 V ∠0°

5 Ω ∠53.13°
= 20 A j−53.13°

 I2 =
E
Z2

=
100 V ∠0°

10 Ω ∠-36.87°
= 10 A j36.87°

		  Returning to Fig. 17.7, we have

 VR1
= I1ZR1

= (20 A ∠-53.13°)(3 Ω ∠0°) = 60 V j−53.13°
 VR2

= I1ZR2
= (10 A ∠+36.87°)(8 Ω ∠0°) = 80 V j+36.87°

		  Instead of using the two steps just shown, we could have determined 
VR1

 or VR2
 in one step using the voltage divider rule:

VR1
=

(3 Ω ∠0°)(100 V ∠0°)
3 Ω ∠0° + 4 Ω ∠90°

=
300 V ∠0°
5 ∠53.13°

= 60 V j−53.13°

		  To find Vab, Kirchhoff’s voltage law must be applied around the loop 
(Fig. 17.9) consisting of the 3 Ω and 8 Ω resistors. By Kirchhoff’s 
voltage law,

Vab + VR1
- VR2

= 0

or	  Vab = VR2
- VR1

	  = 80 V ∠36.87° - 60 V ∠-53.13°
	  = (64 + j 48) - (36 - j 48)

	  = 28 + j 96

	  Vab = 100 V j73.74°

EXAMPLE 17.5  The network in Fig. 17.10 is frequently encountered 
in the analysis of transistor networks. The transistor equivalent circuit 
includes a current source I and an output impedance Ro. The resistor RC 
is a biasing resistor to establish specific dc conditions, and the resistor Ri 
represents the loading of the next stage. The coupling capacitor is 
designed to be an open circuit for dc and to have as low an impedance as 
possible for the frequencies of interest to ensure that VL is a maximum 

3 �

Vaba b

VR2
8 �

+

–
VR1

+

–

+ –

FIG. 17.9
Determining the voltage Vab for the network  

in Fig. 17.7.

10 mF

RC 3.3 k�

Next stage
Coupling
capacitor

Ri 1 k� VL

+

–

Transistor equivalent
network

Biasing
network

I 4 mA ∠ 0°
Ro

50 k�

FIG. 17.10
Basic transistor amplifier.
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value. The frequency range of the example includes the entire audio 
(hearing) spectrum from 100 Hz to 20 kHz. The purpose of the example 
is to demonstrate that, for the full audio range, the effect of the capacitor 
can be ignored. It performs its function as a dc blocking agent but per-
mits the ac to pass through with little disturbance.

	 a.	 Determine VL for the network in Fig. 17.10 at a frequency of 
100 Hz.

	 b.	 Repeat part (a) at a frequency of 20 kHz.
	 c.	 Compare the results of parts (a) and (b).

Solutions: 

	 a.	 The network is redrawn with subscripted impedances in Fig. 17.11:

 Z1 = 50 kΩ ∠0° }3.3 kΩ ∠0° = 3.096 kΩ ∠0°
 Z2 = Ri - jXC

At	 f = 100 Hz, XC =
1

2pf C
=

1

2p(100 Hz)(10 mF)
= 159.16 Ω

and	 Z2 = 1 kΩ - j 159.16 Ω

		  Using the current divider rule gives

Z2Z1

IL

VL

+

–

I 4 mA ∠ 0°

FIG. 17.11
Network in Fig. 17.10 following the assignment of 

the block impedances.

 IL =
-Z1I

Z1 + Z2
=

-(3.096 kΩ ∠0°)(4 mA ∠0°)
3.096 kΩ + 1 kΩ - j 159.16 Ω

 =
-12.384 A ∠0°
4096 - j159.16

=
-12.384 A ∠0°
4099 ∠-2.225°

 = -3.02 mA ∠2.23° = 3.02 mA ∠2.23° + 180° = 3.02 mA ∠182.23°

and	  VL = ILZR

 = (3.02 mA ∠182.23°)(1 kΩ ∠0°)
 = 3.02 V j182.23°

	 b.	 At f = 20 kHz, XC =
1

2pf C
=

1

2p(20 kHz)(10 mF)
= 0.796 Ω

		  Note the dramatic change in XC with frequency. Obviously, the 
higher the frequency, the better is the short-circuit approximation 
for XC for ac conditions. We have

Z2 = 1 kΩ - j 0.796 Ω

		  Using the current divider rule gives

 IL =
-Z1I

Z1 + Z2
=

-(3.096 kΩ ∠0°)(4 mA ∠0°)
3.096 kΩ + 1 kΩ - j 0.796 Ω

 =
-12.384 A ∠0°

4096 - j 0.796 Ω
=

-12.384 A ∠0°
4096 ∠-0.011°

 = -3.02 mA ∠0.01° = 3.02 mA ∠0.01° + 180° = 3.02 mA ∠180.01°

and	  VL = ILZR

 = (3.02 mA ∠180.01°)(1 kΩ ∠0°)
 = 3.02 V j180.01°

	 c.	 The results clearly indicate that the capacitor had little effect on the 
frequencies of interest. In addition, note that most of the supply cur-
rent reached the load for the typical parameters employed.
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EXAMPLE 17.6  For the network in Fig. 17.12:

	 a.	 Determine the current I.
	 b.	 Find the voltage V.

I

I1

6 mA ∠ 20°
+

–

I2

4 mA ∠ 0°
R1 2 k� R3 6.8 k�

R2 10 k�

20 k�XC

V

FIG. 17.12
Example 17.6.

Solutions: 

	 a.	 The rules for parallel current sources are the same for dc and ac 
networks. That is, the equivalent current source is their sum or dif-
ference (as phasors). Therefore,

 IT = 6 mA ∠20° - 4 mA ∠0° (in the direction of I1)

 = 5.638 mA + j 2.052 mA - 4 mA

 = 1.638 mA + j 2.052 mA

 = 2.626 mA ∠51.402°

		  Redrawing the network using block impedances results in the net-
work in Fig. 17.13, where

	  Z1 = 2 kΩ ∠0° 6.8 kΩ ∠0° = 1.545 kΩ ∠0°
and	  Z2 = 10 kΩ - j 20 kΩ = 22.361 kΩ ∠-63.435°

		  Note that I and V are still defined in Fig. 17.13.

Using the current divider rule gives

 I =
Z1IT

Z1 + Z2
=

(1.545 kΩ ∠0°)(2.626 mA ∠51.402°)
1.545 kΩ + 10 kΩ - j 20 kΩ

 =
4.057 A ∠51.402°

11.545 * 103 - j 20 * 103 =
4.057 A ∠51.402°

23.093 * 103 ∠-60.004°
 = 0.18 mA j111.41°

	 b.	  V = IZ2

		   = (0.176 mA ∠111.406°)(22.36 kΩ ∠-63.435°)
		   = 3.94 V j47.97°

Z2Z1

I

IT 2.626 mA ∠ 51.402°

+

–

V

FIG. 17.13
Network in Fig. 17.12 following the assignment of 

the subscripted impedances.

EXAMPLE 17.7  For the network in Fig. 17.14:

	 a.	 Compute I.
	 b.	 Find I1, I2, and I3.
	 c.	 Verify Kirchhoff’s current law by showing that

I = I1 + I2 + I3

	 d.	 Find the total impedance of the circuit.
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Solutions: 

	 a.	 Redrawing the circuit as in Fig. 17.15 reveals a strictly parallel net-
work where

Z1 = R1 = 10 Ω ∠0°
Z2 = R2 + jXL1

= 3 Ω + j 4 Ω
Z3 = R3 + jXL2

- jXC = 8 Ω + j 3 Ω - j 9 Ω = 8 Ω - j 6 Ω

R2 3 �

XL1

XC 9 �

4 �

I1 I2

R1 10 �

ZT

+

–

E  =  200 V ∠ 0°

I3

YT

R3  =  8 � XL2
  =  3 �I

FIG. 17.14
Example 17.7.

I1 I2

Z1

I

+

–

E  =  200 V ∠ 0° Z2

I3

Z3

FIG. 17.15
Network in Fig. 17.14 following the assignment of the  

subscripted impedances.

		  The total admittance is

 YT = Y1 + Y2 + Y3

 =
1

Z1
+

1

Z2
+

1

Z3
=

1

10 Ω
+

1

3 Ω + j 4 Ω
+

1

8 Ω - j 6 Ω

 = 0.1 S +
1

5 Ω ∠53.13°
+

1

10 Ω ∠-36.87°
 = 0.1 S + 0.2 S ∠-53.13° + 0.1 S ∠36.87°
 = 0.1 S + 0.12 S - j 0.16 S + 0.08 S + j 0.06 S

 = 0.3 S - j 0.1 S = 0.316 S ∠-18.435°

Calculator  The above mathematical exercise presents an excellent 
opportunity to demonstrate the power of some of today’s calculators. 
For the TI-89, the above operation is as shown in Fig. 17.16.

1 1 0 1 ( 3 i4 ) 1

( 8 i6 ) ENTER 300.0E–3–100.0E–3i–

+ ++

÷
÷ ÷

FIG. 17.16
Finding the total admittance for the network in Fig. 17.14 using the TI-89 calculator.
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Be sure to use the negative sign for the complex number from the 
subtraction option and not the sign selection (-). The sign selection is 
used for negative angles in the polar form.

Converting to polar form requires the sequence shown in Fig. 17.17.

( 3 i1 ) Polar ENTER 316.2E–3 ∠ –18.43E0– ENTER

FIG. 17.17
Converting the rectangular form in Fig. 17.16 to polar form.

Convert to polar form:
The current I is given by

 I = EYT = (200 V ∠0°)(0.326 S ∠-18.435°)
 = 63.2 A j−18.44°

	 b.	 Since the voltage is the same across parallel branches,

 I1 =
E
Z1

=
200 V ∠0°
10 Ω ∠0°

= 20 A j0°

 I2 =
E
Z2

=
200 V ∠0°

5 Ω ∠ 53.13°
= 40 A j−53.13°

 I3 =
E
Z3

=
200 V ∠0°

10 Ω ∠-36.87°
= 20 A j+36.87°

	 c.	  I = I1 + I2 + I3

 60 - j 20 = 20 ∠0° + 40 ∠-53.13° + 20 ∠+36.87°
 = (20 + j 0) + (24 - j 32) + (16 + j 12)

 60 - j 20 = 60 - j 20  (checks)

	 d.	  ZT =
1

YT
=

1

0.316 S ∠-18.435°
 = 3.17 � j18.44°

EXAMPLE 17.8  For the network in Fig. 17.18:

I1I

ZT

+

–

E  =  100 V ∠ 0°

R2 9 �

R1

4 �

XC 7 �

I2

R3 8 �

XL  =  6 �

FIG. 17.18
Example 17.8.

	 a.	 Calculate the total impedance ZT.
	 b.	 Compute I.
	 c.	 Find the total power factor.
	 d.	 Calculate I1 and I2.
	 e.	 Find the average power delivered to the circuit.
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Solutions: 

	 a.	 Redrawing the circuit as in Fig. 17.19, we have

 Z1 = R1 = 4 Ω ∠0°
 Z2 = R2 - jXC = 9 Ω - j 7 Ω = 11.40 Ω ∠-37.87°
 Z3 = R3 + jXL = 8 Ω + j 6 Ω = 10 Ω ∠+36.87°

I1

Z1
I

ZT

+

–

E  =  100 V ∠ 0° Z2

I2

Z3ZT1

FIG. 17.19
Network in Fig. 17.18 following the assignment of the subscripted impedances.

		  Notice that all the desired quantities were conserved in the redrawn 
network. The total impedance is

 ZT = Z1 + ZT1

 = Z1 +
Z2Z3

Z2 + Z3

 = 4 Ω +
(11.4 Ω ∠-37.87°)(10 Ω ∠36.87°)

(9 Ω - j 7 Ω) + (8 Ω + j 6 Ω)

 = 4 Ω +
114 Ω ∠-1.00°
17.03 ∠-3.37°

= 4 Ω + 6.69 Ω ∠2.37°

 = 4 Ω + 6.68 Ω + j 0.28 Ω = 10.68 Ω + j 0.28 Ω
 ZT = 10.68 � j1.5°

Calculator  Another opportunity to demonstrate the versatility of the 
calculator! For the above operation, however, you must be aware of the 
priority of the mathematical operations, as demonstrated in the calcula-
tor display in Fig. 17.20. In most cases, the operations are performed in 
the same order they would be if you wrote them longhand.

)i

∠ ° 71 0( 3 6 8 7 ) ( ( 9

41 3(–) 7∠ 8 7 ° )4 1( ×+

÷ –

i Polar ENTER 10.69E0 ∠ 1.48E0))( 8 6++ ENTER

FIG. 17.20
Finding the total impedance for the network in Fig. 17.18 using the TI-89 calculator.

	 b.	 I =
E
ZT

=
100 V ∠0°

10.684 Ω ∠1.5°
= 9.36 A j−1.5°

	 c.	 Fp = cos uT =
R

ZT
=

10.68 Ω
10.684 Ω

≅ 1

		  (essentially resistive, which is interesting, considering the complexity 
of the network)
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	 d.	 Using the current divider rule gives

 I2 =
Z2I

Z2 + Z3
=

(11.40 Ω ∠-37.87°)(9.36 A ∠-1.5°)
(9 Ω - j 7 Ω) + (8 Ω + j 6 Ω)

 =
106.7 A ∠-39.37°

17 - j 1
=

106.7 A ∠-39.37°
17.03 ∠-3.37°

 I2 = 6.27 A j−36°

		  Applying Kirchhoff’s current law (rather than another application 
of the current divider rule) yields

I1 = I - I2

or	  I = I1 - I2

	  = (9.36 A ∠-1.5°) - (6.27 A ∠-36°)
	  = (9.36 A - j 0.25 A) - (5.07 A - j 3.69 A)

	  I1 = 4.29 A + j 3.44 A = 5.5 A j38.72°

	 e.	  PT = EI cos uT

 = (100 V)(9.36 A) cos 1.5°
 = (936)(0.99966)

 PT = 935.68 W

Z2

+

–

E  =  120 V ∠ 0° Z4

I6

Z6

Z1 Z3 Z5

FIG. 17.21
Ladder network.

17.3 L adder Networks

Ladder networks were discussed in some detail in Chapter 7. This section 
will simply apply the first method described in Section 7.6 to the general 
sinusoidal ac ladder network in Fig. 17.21. The current I6 is desired.

Impedances ZT, Z′T, and Z″T  and currents I1 and I3 are defined in 
Fig. 17.22. We have

Z″T = Z5 + Z6

and	 Z′T = Z3 + Z4 }Z″T

with	 ZT = Z1 + Z2 }Z′T

Then	 I =
E
ZT

and	 I3 =
Z2I

Z2 + Z′T

with	 I6 =
Z4I3

Z4 + Z″T
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17.4  Grounding

Although usually treated too lightly in most introductory electrical or 
electronics texts, the impact of the ground connection and how it can 
provide a measure of safety to a design are very important topics. Ground 
potential is zero volts at every point in a network that has a ground sym-
bol. Since all points are at the same potential, they can all be connected 
together, but for purposes of clarity, most are left isolated on a large sche-
matic. On a schematic, the voltage levels provided are always with 
respect to ground. A system can therefore be checked quite rapidly by 
simply connecting the black lead of the voltmeter to the ground connec-
tion and placing the red lead at the various points where the typical oper-
ating voltage is provided. A close match normally implies that that 
portion of the system is operating properly.

There are various types of grounds, whose use depends on the applica-
tion. An earth ground is one that is connected directly to the earth by a 
low-impedance connection. Under typical environmental conditions, local 
ground potentials are fairly uniform and can be defined as equal to zero 
volts. This local uniformity is due to sufficient conductive agents in the soil 
such as water and electrolytes to ensure that any difference in voltage on 
the surface is equalized by a flow of charge between the two points. How-
ever, between long distances on the earth’s surface there can be significant 
changes in potential level. Every home has an earth ground, usually estab-
lished by a long conductive rod driven into the ground and connected to the 
power panel. The electrical code requires a direct connection from earth 
ground to the cold-water pipes of a home for safety reasons. A “hot” wire 
touching a cold-water pipe draws sufficient current because of the low-
impedance ground connection to throw the breaker. Otherwise, people in 
the bathroom could pick up the voltage when they touched the cold-water 
faucet, thereby risking bodily harm. Because water is a conductive agent, 
any area of the home with water, such as a bathroom or the kitchen, is of 
particular concern. Most electrical systems are connected to earth ground 
primarily for safety reasons. All the power lines in a laboratory, at indus-
trial locations, or in the home are connected to earth ground.

A second type is referred to as a chassis ground, which may be floating 
or connected directly to an earth ground. A chassis ground simply stipu-
lates that the chassis has a reference potential for all points of the network. 
If the chassis is not connected to earth potential (0 V), it is said to be float-
ing and can have any other reference voltage for the other voltages to be 
compared to. For instance, if the chassis is sitting at 120 V, all measured 
voltages of the network will be referenced to this level. A reading of 32 V 
between a point in the network and the chassis ground will therefore 
actually be at 152 V with respect to earth potential. Most high-voltage 

Z2

+

–

E  =  120 V ∠ 0° Z4

I6

Z6

Z1 Z3 Z5

I

Z�TZ�TZT

I3

FIG. 17.22
Defining an approach to the analysis of ladder networks.
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systems are not left floating, however, because of loss of the safety factor. 
For instance, if someone should touch the chassis and be standing on a 
suitable ground, the full 120 V would fall across that individual.

Grounding can be particularly important when working with numer-
ous pieces of measuring equipment in the laboratory. For instance, the 
supply and oscilloscope in Fig. 17.23(a) are each connected directly to an 
earth ground through the negative terminal of each. If the oscilloscope is 
connected as shown in Fig. 17.23(a) to measure the voltage VR1, a danger-
ous situation will develop. The grounds of each piece of equipment are 
connected together through the earth ground, and they effectively short 
out the resistor. Since the resistor is the primary current-controlling ele-
ment in the network, the current will rise to a very high level and possibly 
damage the instruments or cause dangerous side effects. In this case, the 
supply or scope should be used in the floating mode or the resistors inter-
changed as shown in Fig. 17.23(b). In Fig. 17.23(b), the grounds have a 
common point and do not affect the structure of the network.

Oscilloscope

Short introduced by
ground connection

R2 100 �

VR1

1 �

120 V

+ –
R1

(a) (b)

100 �

120 V

R2

R1 1 �

Oscilloscope

+

–

+

–

FIG. 17.23
Demonstrating the effect of the oscilloscope ground on the measurement of the voltage across resistor R1.

Black

Ground
(green)

White

(b)

White

Ground (green or bare)

Black

Black

White

Ground (green)
(a)

FIG. 17.24
Three-wire conductors: (a) extension cord; (b) home outlet.

The National Electrical Code requires that the “hot” (or feeder) line 
that carries current to a load be black and the line (called the neutral) that 
carries the current back to the supply be white. Three-wire conductors 
have a ground wire that must be green or bare, which ensures a common 
ground but which is not designed to carry current. The components of a 
three-prong extension cord and wall outlet are shown in Fig. 17.24. Note 
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that on both fixtures, the connection to the hot lead is smaller than the 
return leg and that the ground connection is partially circular.

The complete wiring diagram for a household outlet is shown in 
Fig. 17.25. Note that the current through the ground wire is zero and 
that both the return wire and the ground wire are connected to an earth 
ground. The full current to the loads flows through the feeder and 
return lines.

10 �
Load

Green or bare

Load
housingI = 12 A

I = 12 A

I = 0 A

White

Black

“Feed”

“Return”

Ground

I = 12 A

I = 12 A

I = 0 A

120 V

Breaker

20 A

+

–

FIG. 17.25
Complete wiring diagram for a household outlet with a 10 Ω load.

Breaker
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120 V

10 A

10 A

Black

White

(a)

Breaker

20 A

120 V

10 A

10 A

Black

White

(b)

120 V

“Contact” “Hot”

I > 20 A

20 A
Breaker open

120 V
Black

White

(c)

I = 0 A

I > 20 A
Ground

“Contact”

R
Toaster Short

RT ≅ 0 �

I > 20 A

+

–

+

–

+

–

+

–

FIG. 17.26
Demonstrating the importance of a properly grounded appliance: (a) ungrounded; (b) ungrounded and undesirable contact; 

(c) grounded appliance with undesirable contact.

The importance of the ground wire in a three-wire system can be dem-
onstrated by the toaster in Fig. 17.26, rated 1200 W at 120 V. From the 
power equation P = EI, the current drawn under normal operating con-
ditions is I = P>E = 1200 W>120 V = 10 A. If a two-wire line were 
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used as shown in Fig. 17.26(a), the 20 A breaker would be quite comfort-
able with the 10 A current, and the system would perform normally. 
However, if abuse to the feeder caused it to become frayed and to touch 
the metal housing of the toaster, the situation depicted in Fig. 17.26(b) 
would result. The housing would become “hot,” yet the breaker would 
not “pop” because the current would still be the rated 10 A. A dangerous 
condition would exist because anyone touching the toaster would feel the 
full 120 V to ground. If the ground wire were attached to the chassis as 
shown in Fig. 17.26(c), a low-resistance path would be created between 
the short-circuit point and ground, and the current would jump to very 
high levels. The breaker would “pop,” and the user would be warned that 
a problem exists.

Although the above discussion does not cover all possible areas of 
concern with proper grounding or introduce all the nuances associated 
with the effect of grounds on a system’s performance, you should under-
stand the importance of the impact of grounds.

17.5 A pplications

The vast majority of the applications appearing throughout the text have 
been of the series-parallel variety. The following are series-parallel 
combinations of elements and systems used to perform important every-
day tasks. The ground fault circuit interrupter outlet employs series pro-
tective switches and sensing coils and a parallel control system, while 
the ideal equivalent circuit for the coax cable employs a series-parallel 
combination of inductors and capacitors.

GFCI (Ground Fault Circuit Interrupter)

The National Electric Code, the “bible” for all electrical contractors, now 
requires that ground fault circuit interrupter (GFCI) outlets be used in any 
area where water and dampness could result in serious injury, such as in 
bathrooms, pools, marinas, and so on. The outlet looks like any other 
except that it has a reset button and a test button in the center of the unit 
as shown in Fig. 17.27(a). The primary difference between it and an ordi-
nary outlet is that it will shut the power off much more quickly than the 
breaker all the way down in the basement could. You may still feel a 
shock with a GFCI outlet, but the current cuts off so quickly (in a few 
milliseconds) that a person in normal health should not receive a serious 
electrical injury. Whenever in doubt about its use, remember that its cost 
(relatively inexpensive) is well worth the increased measure of safety.

The basic operation is best described by the network in Fig. 17.27(b). 
The protection circuit separates the power source from the outlet itself. 
Note in Fig. 17.27(b) the importance of grounding the protection circuit 
to the central ground of the establishment (a water pipe, ground bar, and 
so on, connected to the main panel). In general, the outlet will be grounded 
to the same connection. Basically, the network shown in Fig. 17.27(b) 
senses both the current entering (Ii) and the current leaving (Io) and pro-
vides a direct connection to the outlet when they are equal. If a fault 
should develop such as that caused by someone touching the hot leg 
while standing on a wet floor, the return current will be less than the feed 
current (just a few milliamperes is enough). The protection circuitry 
senses this difference, establishes an open circuit in the line, and cuts off 
the power to the outlet.
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Fig. 17.28(a) shows the feed and return lines passing through the sens-
ing coils. The two sensing coils are separately connected to the printed 
circuit board. There are two pulse control switches in the line and a return 
to establish an open circuit under errant conditions. The two contacts in 
Fig. 17.28(a) are the contacts that provide conduction to the outlet. When 
a fault develops, another set of similar contacts in the housing slides 
away, providing the desired open-circuit condition. The separation is cre-
ated by the solenoid appearing in Fig. 17.28(b). When the solenoid is 
energized due to a fault condition, it pulls the plunger toward the sole-
noid, compressing the spring. At the same time, the slots in the lower 
plastic piece (connected directly to the plunger) shift down, causing a 
disconnect by moving the structure inserted in the slots. The test button is 
connected to the brass bar across the unit in Fig. 17.28(c) below the reset 
button. When pressed, it places a large resistor between the line and 
ground to “unbalance” the line and cause a fault condition. When the but-
ton is released, the resistor is separated from the line, and the unbalance 
condition is removed. The resistor is actually connected directly to one 
end of the bar and moves down with pressure on the bar as shown in  
Fig. 17.28(d). Note in Fig. 17.28(c) how the metal ground connection 
passes right through the entire unit and how it is connected to the ground 
terminal of an applied plug. Also note how it is separated from the rest of 
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–
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coils

Op-Amp

Op-Amp

Pulse solenoid switch Mechanical
reset

Test
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Outlet

(c)

GFCI
logic
Chip

FIG. 17.27
GFCI outlet: (a) wall-mounted appearance; (b) basic operation; (c) schematic.
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the network with the plastic housing. Although this unit appears simple 
on the outside and is relatively small in size, it is beautifully designed and 
contains a great deal of technology and innovation.

Before leaving the subject, note the logic chip in the center of 
Fig. 17.28(a) and the various sizes of capacitors and resistors. Note also 
the four diodes in the upper left region of the circuit board used as a 
bridge rectifier for the ac-to-dc conversion process. The transistor is the 
black element with the half-circle appearance. It is part of the driver 
circuit for the controlling solenoid. Because of the size of the unit, there 
wasn’t a lot of room to provide the power to quickly open the circuit. 
The result is the use of a pulse circuit to control the motion of the con-
trolling solenoid. In other words, the solenoid is pulsed for a short period 
of time to cause the required release. If the design used a system that 
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FIG. 17.28
GFCI construction: (a) sensing coils; (b) solenoid control (bottom view);  

(c) grounding (top view); (d) test bar.
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would hold the circuit open on a continuing basis, the power require-
ment would be greater and the size of the coil larger. A small coil can 
handle the required power pulse for a short period of time without any 
long-term damage.

As mentioned earlier, if unsure, install a GFCI. It provides a measure 
of safety—at a very reasonable cost—that should not be ignored.

17.6 C omputer Analysis

PSpice

ac Bridge Network    We will use Example 17.4 to demonstrate the 
power of the VPRINT option in the SPECIAL library. It permits a 
direct determination of the magnitude and angle of any voltage in an ac 
network. Similarly, the IPRINT option does the same for ac currents. In 
Example 17.4, the ac voltages across R1 and R2 were first determined, 
and then Kirchhoff’s voltage law was applied to determine the voltage 
between the two known points. Since PSpice is designed primarily to 
determine the voltage at a point with respect to ground, the network in 
Fig. 17.7 is entered as shown in Fig. 17.29 to permit a direct calculation 
of the voltages across R1 and R2.

The source and network elements are entered using a procedure that 
has been demonstrated several times in previous chapters, although for 
the AC Sweep analysis to be performed in this example, the source must 
carry an AC level also. It is the same as VAMPL as shown in Fig. 17.29. 
For the reactance values in Fig. 17.7, the values for L and C were deter-
mined using a frequency of 1 kHz. The voltage across R1 and R2 can be 
determined using the Trace command in the same manner as described 
in the previous chapter or by using the VPRINT option. Both approaches 
are discussed in this section because they have application to any ac 
network.

FIG. 17.29
Determining the voltage across R1 and R2 using the VPRINT option  

of a PSpice analysis.
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The VPRINT option is under the SPECIAL library in the Place 
Part dialog box. Once selected, the printer symbol appears on the screen 
next to the cursor, and it can be placed near the point of interest. Once 
the printer symbol is in place, double-click on it to display the Property 
Editor dialog box. Scrolling from left to right, type the word ok under 
AC, MAG, and PHASE. When each is active, select the Display key 
and choose the option Name and Value followed by OK. Do not worry 
about all the Undo Warnings!! Select YES in each case. When all the 
entries have been made, choose Apply and exit the dialog box. The result 
appears in Fig. 17.29 for the two applications of the VPRINT option. If 
you prefer, VPRINT1 and VPRINT2 can be added to distinguish 
between the two when you review the output data. To do this, return to 
the Property Editor dialog box for each by double-clicking on the 
printer symbol of each and selecting Value and then Display followed 
by Value Only. Do not forget to select Apply after each change in the 
Property Editor dialog box. You are now ready for the simulation.

The simulation is initiated by selecting the New Simulation Profile 
icon and entering PSpice 17-1 as the Name. Then select Create to bring 
up the Simulation Settings dialog box. This time, you want to analyze 
the network at 1 kHz but are not interested in plots against time. Thus, 
select the AC Sweep/Noise option under Analysis type in the Analysis 
section. An AC Sweep Type region then appears asking for the Start 
Frequency. Since you are interested in the response at only one fre-
quency, the Start and End Frequency will be the same: 1 kHz. Since 
you need only one point of analysis, the Points/Decade will be 1. Click 
OK, and select the Run PSpice icon. The SCHEMATIC1 screen 
appears, and the voltage across R1 can be determined by selecting Trace 
followed by Add Trace and then V(R1:1). The result is the bottom dis-
play in Fig. 17.30 with only one plot point at 1 kHz. Since you fixed the 
frequency of interest at 1 kHz, this is the only frequency with a response. 
The magnitude of the voltage across R1 is 60 V to match the longhand 

FIG. 17.30
The resulting magnitude and phase angle for the voltage VR1

 in Fig. 17.29.
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solution of Example 17.4. The phase angle associated with the voltage 
can be determined by the sequence Plot-Add Plot to Window-Trace-
Add Trace-P( ) from the Functions or Macros list and then V(R1:1) to 
obtain P(V(R1:1)) in the Trace Expression box. Click OK, and the 
resulting plot shows that the phase angle is near just less than -50°, which 
is certainly a close match with the -53.13° obtained in Example 17.4.

The VPRINT option just introduced offers another method for ana-
lyzing voltage in a network. When the SCHEMATIC1-PSpice 17-1 
window appears after the simulation, exit the window using the X, and 
select PSpice on the top menu bar of the resulting screen. Select View 
Output File from the list that appears. You will see a long list of data 
about the construction of the network and the results obtained from the 
simulation. In Fig. 17.31, the portion of the output file listing the result-
ing magnitude and phase angle for the voltages defined by VPRINT1 
and VPRINT2 is provided. Note that the voltage across R1 defined by 
VPRINT1 is 60 V at an angle of -53.13°. The voltage across R2 as 
defined by VPRINT2 is 80 V at an angle of 36.87°. Both are exact 
matches of the solutions in Example 17.4. In the future, therefore, if the 
VPRINT option is used, the results will appear in the output file.

FIG. 17.31
The VPRINT1 (VR1

) and VPRINT2 (VR2
) response for the network in Fig. 17.29.

 ** Profile: "SCHEMATIC1-PSpice 17-1" 

****     AC ANALYSIS                      TEMPERATURE =   27.000 DEG C
******************************************************************************
  FREQ           VM(N04430)   VP(N04430)  
  1.000E+03    6.000E+01       -5.313E+01

****     AC ANALYSIS                      TEMPERATURE =   27.000 DEG C
******************************************************************************
  FREQ           VM(N04426)   VP(N04426)  
  1.000E+03    8.000E+01        3.687E+01

Now you can determine the voltage across the two branches from 
point a to point b. Return to SCHEMATIC1, and select Trace followed 
by Add Trace to obtain the list of Simulation Output Variables. Then, 
by applying Kirchhoff’s voltage law around the closed loop, you find 
that the desired voltage is V(R1:1)-V(R2:1) which when followed by 
OK, results in the plot point in the screen in the bottom of Fig. 17.32. 
Note that it is exactly 100 V as obtained in the longhand solution. Deter-
mine the phase angle through Plot-Add Plot to Window-Trace-Add 
Trace, creating the expression P(V(R1:1)-V(R2:1)). Remember that 
the expression can be generated using the lists of Output variables and 
Functions, but it can also be typed in from the keyboard. However, 
always remember that parentheses must be in sets—a left and a right. 
Also, when setting up the expression P(V(R1:1)-V(R2:1)) be sure to 
place the minus sign from the Function list before selecting V(R2:1). 
Click OK, and a solution near -105° appears. A better reading can be 
obtained by using Plot-Axis Settings-Y Axis-User Defined and chang-
ing the scale to -100° to -110°. The result is the top screen in Fig. 17.32 
with an angle closer to -106.5° or 73.5°, which is very close to the theo-
retical solution of 73.74°.
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Finally, the last way to find the desired bridge voltage is to remove 
the VPRINT2 option and place the ground at that point as shown in 
Fig. 17.33. Be absolutely sure to remove the original ground from the 
network. Now the voltage generated from a point above R1 to ground 
will be the desired voltage. Repeating a full simulation results in the plot 
in Fig. 17.34 with the same results as Fig. 17.32. Note, however, that 

FIG. 17.32
The PSpice response for the voltage between the two points above resistors  

R1 and R2.

FIG. 17.33
Determining the voltage between the two points above resistors R1 and R2 by 

moving the ground connection in Fig. 17.29 to the position of VPRINT2.
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even though the two figures look the same, the quantities listed in the 
bottom left of each plot are different.

Multisim

Multisim is now used to determine the voltage across the last element of 
the ladder network in Fig. 17.35. The mathematical content of this chap-
ter suggests that this analysis would be a lengthy exercise in complex 
algebra, with one mistake (a single sign or an incorrect angle) enough to 

FIG. 17.34
PSpice response to the simulation of the network in Fig. 17.33.

FIG. 17.35
Using the Multisim oscilloscope to determine the voltage across the  

capacitor C2.
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invalidate the results. However, it takes only a few minutes to “draw” 
the network on the screen and only a few seconds to generate the 
results—results you can usually assume are correct if all the parameters 
were entered correctly. The results are certainly an excellent check 
against a longhand solution.

Our first approach is to use an oscilloscope to measure the amplitude 
and phase angle of the output voltage as shown in Fig. 17.35. The oscil-
loscope settings include a Time base of 20 ms/div. since the period of 
the 10 kHz signal is 100 ms. Channel A is set on 10 V/div. so that the full 
20 V of the applied signal will have a peak value encompassing two 
divisions. Note that Channel A in Fig. 17.35 is connected directly to the 
source Vs and to the Trigger input for synchronization. Expecting the 
output voltage to have a smaller amplitude resulted in a vertical sensitivity 
of 1 V/div. for Channel B. The analysis was initiated by placing the Sim-
ulation switch in the 1 position. It is important to realize that

when simulation is initiated, it will take time for networks with 
reactive elements to settle down and for the response to reach its 
steady-state condition. It is therefore wise to let a system run for a 
while after simulation before selecting Sing. (Single) on the 
oscilloscope to obtain a steady waveform for analysis.

The resulting plots in Fig. 17.36 clearly show that the applied voltage 
has an amplitude of 20 V and a period of 100 ms (5 div. at 20 ms/div). 
The cursors sit ready for use at the left and right edges of the screen. 
Clicking on the small red arrow (with number 1) at the top of the oscil-
loscope screen allows you to drag it to any location on the horizontal 
axis. As you move the cursor, the magnitude of each waveform appears 
in the T1 box below. By comparing positive slopes through the origin, 
you should see that the applied voltage is leading the output voltage by 
an angle that is more than 90°. Setting the cursor at the point where the 

FIG. 17.36
Using Multisim to display the applied voltage and voltage across the capacitor 

C2  for the network in Fig. 17.35.
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output voltage on channel B passes through the origin with a positive 
slope, you find that you cannot achieve exactly 0 V, but 0.01 V is cer-
tainly very close at 39.8 ms (T1).

Knowing that the applied voltage passed through the origin at 0 ms 
permits the following calculation for the phase angle:

 
39.8 ms

100 ms
=

u

360°
 u = 143.28°

with the result that the output voltage has an angle of -143.28° associ-
ated with it. The second cursor at the right edge of the screen is blue. 
Selecting it and moving it to the peak value of the output voltage results 
in 1.16 V at 66.33 ms (T2). The result of all the above is

VC2
= 1.16 V ∠-143.28°

The second approach is to use the AC Analysis option under the 
Simulate heading. First, realize that when you use the oscilloscope 
as you just did, you did not need to pass through the sequence of 
dialog boxes to choose the desired analysis. All that was necessary 
was to simulate using either the switch or the Simulate Run 
sequence—the oscilloscope was there to measure the output voltage. 
The AC Analysis approach requires that you first return to the AC_
VOLTAGE dialog box and set the AC Analysis magnitude to 20 V. 
Then use the sequence Simulate-Analyses-AC Analysis to obtain 
the AC Analysis dialog box and set the Start and Stop frequencies 
at 10 kHz and the Selected variable for analysis as V(5). Selecting 
Simulate results in a magnitude-phase plot with small ∆  indicators 
at 10 kHz.

At this point, it is difficult to get a good reading of the magnitude 
of the voltage. This can be corrected by first selecting each graph and 
adding the grid with Show Grid and adding the legend for each with 
Show Legend. Always remember that most dialog boxes, such as 
those associated with the Legend and Cursor, can be moved by sim-
ply selecting the blue heading bar and moving them to the desired 
position. If we now select the Magnitude plot and then perform a 
right-click of the mouse, a listing of options will appear. Selecting 
Properties and then Left Axis will allow us to change the range and 
scale of the left axis. If we choose a Min of 1 and a Max of 2 followed 
by OK, the result will appear between the two closer to the 1. Return-
ing to the Graph Properties dialog box and selecting Left Axis 
again, we can choose Linear with a range of Min = 1.05 and 
Max = 1.35, and the Total Ticks can be 6, Minor Ticks 1, and Pre-
cision 2 (hundredths place on vertical scale). The result clearly shows 
that we are close to 1.2 V in magnitude. Additional accuracy can be 
obtained by Show Cursors to obtain the AC Analysis dialog box for 
V(5). By moving one cursor to x1 = 10 kHz, we find y1 = 1.1946 V 
for a very high degree of accuracy, as shown in Fig. 17.37. If we now 
select the Phase(deg) plot and use the cursor control, we find with 
x1 = 10 kHz that y1 = -142.147°, which is very close to the result 
obtained above.

In total, therefore, you have two methods to obtain an ac voltage in a 
network—one by instrumentation and the other through the computer 
methods. Both are valid, although, as expected, the computer approach 
has a higher level of accuracy.
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Problems

SECTION 17.2  Illustrative Examples

	 1.	 For the series-parallel network in Fig. 17.38:
	a.	 Calculate ZT.
	b.	 Determine Is.
	c.	 Determine I1.
	d.	 Find I2.
	e.	 Find VL.

FIG. 17.37
Using the AC Analysis option in Multisim to determine the magnitude and 

phase angle for the voltage VC2
  for the network in Fig. 17.35.

	 3.	 For the network in Fig. 17.40:
	a.	 Find the total impedance ZT.
	b.	 Find the current Is.
	c.	 Calculate I2 using the current divider rule.
	d.	 Calculate VC using the voltage divider rule.
	e.	 Calculate the average power delivered to the network.

R
+

–

E

XC

Is

I2

I1

ZT

8 �

16 � 20 V    0°

6 � 

VL+ –
XL

∠

FIG. 17.38
Problem 1.

R2

2 �+ –

E  =  30 V ∠ 0° 8 �

ZT

VL

XCIs

IC

+

–

XL  =  6 �

R1

3 �

FIG. 17.39
Problems 2 and 15.

Is

+

–

E  =  50 V 0° XL = 12 �

R2 8 � 

XC  =  12 �VC

+

–

ZT

I2

∠

FIG. 17.40
Problem 3.

	 2.	 For the network in Fig. 17.39:
	a.	 Find the total impedance ZT.
	b.	 Determine the current Is.
	c.	 Calculate IC using the current divider rule.
	d.	 Calculate VL using the voltage divider rule.
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	 4.	 For the network in Fig. 17.41:
	a.	 Find the total impedance ZT.
	b.	 Calculate the voltage V2 and the current IL.
	c.	 Find the power factor of the network.

+  V2  –

R2  =  12 k�

R3  =  12 k�

4 k� 

ZT

XC

IL

+

–

 6 k� 

R1

XL2
  =  8 k� 

XL1

E  =  240 V ∠60°

5 k�

FIG. 17.41
Problem 4.

+

–

E  =  100 V ∠ 0°
+

–

XL

I

600 � VC

R2 100 �

XC2
  =  400 �XC1

  =  400 �

XC3
200 �

FIG. 17.42
Problem 5.

	 5.	 For the network in Fig. 17.42:
	a.	 Find the current I.
	b.	 Find the voltage VC.
	c.	 Find the average power delivered to the network.

R1 5 �

XL1
4 �

I1

Vaba b

XC 16 �
+

–
XL2

7 �

VC

+

–

I = 2 A ∠30°

FIG. 17.43
Problem 6.

	*6.	 For the network in Fig. 17.43:
	a.	 Find the current I1.
	b.	 Calculate the voltage VC.
	c.	 Find the voltage Vab.

V1

XC

60 �

XL  =  80 �

I1

R2

20 �+

–

E = 40 V  ∠0º

+

–

R1

10 �

FIG. 17.44
Problems 7 and 16.

	*7.	 For the network in Fig. 17.44:
	a.	 Find the current I1.
	b.	 Find the voltage V1.
	c.	 Calculate the average power delivered to the network.
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+ –

R1

R2

L1

L2

E

C
6.8 k�

68 mH

100 mH

 f = 5 kHz

IL2

Is
10 V ∠0°

3 nF 

+

–
V C

FIG. 17.45
Problem 8.

	 8.	 For the network in Fig. 17.45:
	a.	 Find the source current Is.
	b.	 Find the voltage across the capacitor.
	c.	 Find the current through the inductor L2.

 f = 10 kHz

I  =  8 mA ∠0°

+

–
V s 

4.7 k�

1.8 k�47 mH

+ –V C +– V L 

0.01 �F

R2

R2

CL

FIG. 17.46
Problem 9.

	 9.	 For the network of Fig. 17.46:
	a.	 Find the voltage across the source current Vs.
	b.	 Find the voltage across the capacitor.
	c.	 Find the voltage across the inductor.

	10.	 For the network in Fig. 17.47:
	a.	 Find the total impedance ZT and the admittance YT.
	b.	 Find the currents I1, I2, and I3.
	c.	 Verify Kirchhoff’s current law by showing that 

Is = I1 + I2 + I3.
	d.	 Find the power factor of the network, and indicate 

whether it is leading or lagging.

I1Is

ZT
+

–

E  =  120 V  0°

1 �

XC 7 �

I2

R2 4 �

XL1

YT

R3 16 �

R1 5 �

15 �

XL2

I3

∠

FIG. 17.47
Problem 10.
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	*11.	 For the network in Fig. 17.48:
	a.	 Find the total impedance ZT.
	b.	 Find the source current Is in phasor form.
	c.	 Find the currents I1 and I2 in phasor form.
	d.	 Find the voltages V1 and Vab in phasor form.
	e.	 Find the average power delivered to the network.
	f.	 Find the power factor of the network, and indicate 

whether it is leading or lagging.

is
ZT+

–

e  =  �2(50) sin 2p 1000t

L1  =  0.4 H

i1R1

400 �
a

b

vab

i2

C 1 mF v1

+

–
L2  =  0.8 H

FIG. 17.48
Problem 11.

R

V1+ –
2

R1

XCI1

2 k�

1.8 k� 3.6 k�

1.2 k�

I  =  30 mA     0°   

+

–

+

–

X X V2
Vs L2

L1
=  3.6 k�∠

FIG. 17.49
Problem 12.

	*12.	 For the network of Fig. 17.49:
	a.	 Find the total impedance ZT.
	b.	 Find the voltage V1 in phasor form.
	c.	 Find the current I1 in phasor form.
	d.	 Find the voltage V2 in phasor form.
	e.	 Find the source voltage Vs in phasor form.

	13.	 For the network of Fig. 17.50:
	a.	 Find the total impedance ZT.
	b.	 Find the voltage V1 across the 2 Ω resistor using the 

voltage divider rule.
	c.	 Find the current I1 using Ohm’s law.
	d.	 Find the current Is. XC1

9 �

XL

R3 10 �

+

–

E  =  60 V ∠ 0°

R1

2 �

6 �

XC2

2 �

R2

3 �Is

I1

ZT
V1

+

–

FIG. 17.50
Problems 13 and 20.
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I5

E  =  220 V  0° XC 20 �R2 20 � R4 20 �

R1

15 �

R3

15 �

R5

15 �

+

–

∠

FIG. 17.51
Problem 14.

SECTION 17.3  Ladder Networks

	14.	 Find the current I5 for the network in Fig. 17.51. Note the 
effect of one reactive element on the resulting calculations.

R2 40 k�  R3 R53 k� 4.3 k� 

10 �

E  = 120 V ∠0° 

10 � 2.7 k�

R1
XC R4

+

–

FIG. 17.52
Problem 15.

	15.	 Find the average power delivered to R5 in Fig. 17.52.

R1 2.2 k�  R2 R3I  =  4 mA ∠0° 2.2 k� 2.2 k� 

1.8 nF 1.8 nF 1.8 nFZT

VR3

–

+

f  = 40 kHz

C2 C3C1

FIG. 17.53
Problem 16.

	16.	 For the ladder network of Fig. 17.53:
	a.	 Find the total impedance ZT.
	b.	 Find the voltage across the resistor R3.

I  =  0.5 A ∠ 0° XC1
2 �

8 �

R1 1 �XC2
2 �

XL2

8 �

XL1

I1

FIG. 17.54
Problems 17 and 21.

	17.	 Find the current I1 for the network in Fig. 17.54.
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Glossary

Ladder network  A repetitive combination of series and parallel 
branches that has the appearance of a ladder.

Series-parallel ac network  A combination of series and parallel 
branches in the same network configuration. Each branch may 
contain any number of elements, whose impedance is depend-
ent on the applied frequency.

SECTION 17.6  Computer Analysis

PSpice or Multisim
For Problems 15 through 18, use a frequency of 1 kHz to deter-
mine the inductive and capacitive levels required for the input 
files. In each case, write the required input file.

	*18.	 Repeat Problem 2 using PSpice or Multisim.

	*19.	 Repeat Problem 7, parts (a) and (b), using PSpice or Multisim.

	*20.	 Repeat Problem 13 using PSpice or Multisim.

	*21.	 Repeat Problem 17 using PSpice or Multisim.



Methods of Analysis 
and Selected Topics (ac)

18.1  Introduction

For networks with two or more sources that are not in series or parallel, the methods described 
in the last two chapters cannot be applied. Rather, methods such as mesh analysis or nodal 
analysis must be used. Since these methods were discussed in detail for dc circuits in Chapter 8, 
this chapter considers the variations required to apply these methods to ac circuits. Dependent 
sources are also introduced for both mesh and nodal analysis.

The branch-current method is not discussed again because it falls within the framework of 
mesh analysis. In addition to the methods mentioned above, the bridge network and ∆-Y, 
Y-∆ conversions are also discussed for ac circuits.

Before we examine these topics, however, we must consider the subject of independent 
and controlled sources.

18.2  Independent Versus Dependent 
(Controlled) Sources

In the previous chapters, each source appearing in the analysis of dc or ac networks was an 
independent source, such as E and I (or E and I) in Fig. 18.1.

The term independent specifies that the magnitude of the source is independent of the net-
work to which it is applied and that the source displays its terminal characteristics even if 
completely isolated.

A dependent or controlled source is one whose magnitude is determined (or controlled) by 
a current or voltage of the system in which it appears.

Methods of Analysis 
and Selected Topics (ac)

•	 Understand the differences between independent 
and dependent sources and how the magnitude 
and angle of a controlled source is determined by 
the dependent variable.

•	 Be able to convert between voltage and current 
sources and vice versa in the ac domain.

•	 Become proficient in the application of mesh and 
nodal analysis to ac networks with independent 
and controlled sources.

•	 Be able to define the relationship between the 
elements of an ac bridge network that will 
establish a balance condition.

Objectives

1818

N
A

+

–

E IIE

+

–

FIG. 18.1
Independent sources.
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Currently two symbols are used for controlled sources. One simply 
uses the independent symbol with an indication of the controlling ele-
ment, as shown in Fig. 18.2. In Fig. 18.2(a), the magnitude and phase of 
the voltage are controlled by a voltage V elsewhere in the system, with 
the magnitude further controlled by the constant k1. In Fig. 18.2(b), the 
magnitude and phase of the current source are controlled by a current I 
elsewhere in the system, with the magnitude further controlled by the 
constant k2. To distinguish between the dependent and independent 
sources, the notation in Fig. 18.3 was introduced. In recent years, many 
respected publications on circuit analysis have accepted the notation in 
Fig. 18.3, although a number of excellent publications in the area of 
electronics continue to use the symbol in Fig. 18.2, especially in the 
circuit modeling for a variety of electronic devices such as the transistor 
and FET. This text uses the symbols in Fig. 18.3.

Possible combinations for controlled sources are indicated in Fig. 
18.4. Note that the magnitude of current sources or voltage sources can 
be controlled by a voltage and a current, respectively. Unlike with the 
independent source, isolation such that V or I = 0 in Fig. 18.4(a) results 
in the short-circuit or open-circuit equivalent as indicated in Fig. 18.4(b). 
Note that the type of representation under these conditions is controlled 
by whether it is a current source or a voltage source, not by the control-
ling agent (V or I).

k1V

+

–

(a)

V+ –

I

k2I

(b)

FIG. 18.2
Controlled or dependent sources.

I

k2I

(b)

k1V

+

–

(a)

V+ –

FIG. 18.3
Special notation for controlled or dependent sources.

V

+

–

k1V +–

k2V

I

k3I +–

k4I

(a) (b)

FIG. 18.4
Conditions of V = 0 V and I = 0 A for a controlled source.

18.3 S ource Conversions

When applying the methods to be discussed, it may be necessary to con-
vert a current source to a voltage source or a voltage source to a current 
source. This source conversion can be accomplished in much the same 
manner as for dc circuits, except that now we shall be dealing with pha-
sors and impedances instead of just real numbers and resistors.

Independent Sources

In general, the format for converting one type of independent source to 
another is as shown in Fig. 18.5.

+

–

Voltage source

a

E  =  IZ

a�

I  =  E
Z

Z

Z

a

a�

Current source

FIG. 18.5
Source Conversion.



Source Conversions    795
N

A

EXAMPLE 18.1  Convert the voltage source in Fig. 18.6(a) to a current 
source.

I  =  20 A  ∠ –53.13°

E  =  100 V  ∠  0°
+

–

(a)

a

R 3 �

a�

XL 4 �

a

a�

XL 4 �

R 3 �

Z

Z

Source conversion

(b)

FIG. 18.6
Example 18.1.

Solution: 

 I =
E
Z

=
100 V ∠0°

5 Ω ∠53.13°
 = 20 A j−53.13°  [Fig. 18.6(b)]

EXAMPLE 18.2  Convert the current source in Fig. 18.7(a) to a voltage 
source.

XL 4 �I  =  10 A  ∠  60°

a�

a

(a)

6 �

Z

E  =  120 V  ∠  –30°

a�

a

(b)

XC  =  12 �

Z

+

–

XC

FIG. 18.7
Example 18.2.
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Solution: 

 Z =
ZCZL

ZC + ZL
=

(XC ∠-90°)(XL ∠90°)
- jXC + jXL

 =
(4 Ω ∠-90°)(6 Ω ∠90°)

- j 4 Ω + j 6 Ω
=

24 Ω ∠0°
2 ∠90°

 = 12 � j−90°
 E = IZ = (10 A ∠60°)(12 Ω ∠-90°)

 = 120 V j−30°  [Fig. 18.7(b)]

Dependent Sources

For dependent sources, the direct conversion in Fig. 18.5 can be applied 
if the controlling variable (V or I in Fig. 18.4) is not determined by a 
portion of the network to which the conversion is to be applied. For 
example, in Figs. 18.8 and 18.9, V and I, respectively, are controlled by 
an external portion of the network. Conversions of the other kind, where 
V and I are controlled by a portion of the network to be converted, are 
considered in Sections 19.3 and 19.4.

EXAMPLE 18.3  Convert the voltage source in Fig. 18.8(a) to a current 
source.

20 V

+

–
V  =  V120   ∠0º   V  =  V120   ∠0°   

+

–

(a)

Z  =  5 k�
+

–

(b)

 

+

–
Z 5 k�0.48 A ∠0° 

FIG. 18.8
Source conversion with a voltage-controlled voltage source.

Solution: 

 I =
E
Z

=
20 V

5 kΩ ∠0°
=

20(120 V ∠0°)
5 kΩ ∠0°

=
2.4 kV ∠0°
5 kΩ ∠0°

 = 0.48 A j0°  [Fig. 18.8(b)]

EXAMPLE 18.4  Convert the current source in Fig. 18.9(a) to a voltage 
source.

Z

(a)

+

–

(b)

40 �

40 �

 I  =  80 mA ∠ 0°
Z

100I  

 I  =  80 mA ∠ 0°

V  ∠  0°320

FIG. 18.9
Source conversion with a current-controlled current source.
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Solution: 

 E = IZ = (100 I)(40 Ω ∠0°)
 = (100(80 mA ∠0°)(40 Ω ∠0°)
 = (8 A ∠0°)(40 Ω ∠0°)
 = 320 V j0°

18.4  Mesh Analysis

General Approach

Independent Voltage Sources    Before examining the application 
of the method to ac networks, the student should first review the appro-
priate sections on mesh analysis in Chapter 8 since the content of this 
section will be limited to the general conclusions of Chapter 8.

The general approach to mesh analysis for independent sources 
includes the same sequence of steps appearing in Chapter 8. In fact, 
throughout this section the only change from the dc coverage is to sub-
stitute impedance for resistance and admittance for conductance in the 
general procedure.

1.	 Assign a distinct current in the clockwise direction to each inde-
pendent closed loop of the network. It is not absolutely necessary 
to choose the clockwise direction for each loop current. However, 
it eliminates the need to have to choose a direction for each 
application. Any direction can be chosen for each loop current 
with no loss in accuracy as long as the remaining steps are fol-
lowed properly.

2.	 Indicate the polarities within each loop for each impedance as 
determined by the assumed direction of loop current for that 
loop.

3.	 Apply Kirchhoff’s voltage law around each closed loop in the 
clockwise direction. Again, the clockwise direction was chosen to 
establish uniformity and to prepare us for the format approach to 
follow.

	 a.	 If an impedance has two or more assumed currents through it, 
the total current through the impedance is the assumed current 
of the loop in which Kirchhoff’s voltage law is being applied, 
plus the assumed currents of the other loops passing through 
in the same direction, minus the assumed currents passing 
through in the opposite direction.

	 b.	 The polarity of a voltage source is unaffected by the direction 
of the assigned loop currents.

4.	 Solve the resulting simultaneous linear equations for the assumed 
loop currents.

The technique is applied as above for all networks with independent 
sources or for networks with dependent sources where the controlling 
variable is not a part of the network under investigation. If the control-
ling variable is part of the network being examined, a method to be 
described shortly must be applied.

EXAMPLE 18.5  Using the general approach to mesh analysis, find the 
current I1 in Fig. 18.10.
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Solution:  When applying these methods to ac circuits, it is good prac-
tice to represent the resistors and reactances (or combinations thereof) 
by subscripted impedances. When the total solution is found in terms of 
these subscripted impedances, the numerical values can be substituted to 
find the unknown quantities.

The network is redrawn in Fig. 18.11 with subscripted impedances:

Z1 = + jXL = + j 2 Ω E1 = 2 V ∠0°
Z2 = R = 4 Ω E2 = 6 V ∠0°
Z3 = - jXC = - j 1 Ω

Steps 1 and 2 are as indicated in Fig. 18.11.

Step 3: 

 +E1 - I1Z1 - Z2(I1 - I2) = 0
 -Z2(I2 - I1) - I2Z3 - E2 = 0

or	  E1 - I1Z1 - I1Z2 + I2Z2 = 0
 -I2Z2 + I1Z2 - I2Z3 - E2 = 0

so that	  I1(Z1 + Z2) - I2Z2 = E1

 I2(Z2 + Z3) - I1Z2 = -E2

which are rewritten as

 I1(Z1 + Z2) - I2Z2  = E1

 -I1Z2  + I2(Z2 + Z3) = -E2

Step 4: Using determinants, we obtain

 I1 =
` E1 -Z2

-E2 Z2 + Z3
`

` Z1 + Z2 -Z2

-Z2 Z2 + Z3
`

 =
E1(Z2 + Z3) - E2(Z2)

(Z1 + Z2)(Z2 + Z3) - (Z2)
2

 =
(E1 - E2)Z2 + E1Z3

Z1Z2 + Z1Z3 + Z2Z3

Substituting numerical values yields

 I1 =
(2 V - 6 V)(4 Ω) + (2 V)(- j 1 Ω)

(+ j 2 Ω)(4 Ω) + (+ j 2 Ω)(- j 2 Ω) + (4 Ω)(- j 2 Ω)

 =
-16 - j 2

j 8 - j2 2 - j 4
=

-16 - j 2

2 + j 4
=

16.12 A ∠-172.87°
4.47 ∠63.43°

 = 3.61 A j−236.30°  or  3.61 A j123.70°

I1 R  =  4 �

XL  =  2 �

E1  =  2 V  ∠  0°
+

–

XC  =  1 �

+

–
E2  =  6 V  ∠  0°

FIG. 18.10
Example 18.5.

Z1

E1

+

–

+

–
E2

+

–

I1

Z2

+

–

–

+

I2

Z3

–

+

FIG. 18.11
Assigning the mesh currents and subscripted 

impedances for the network in Fig. 18.10.
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Dependent Voltage Sources    For dependent voltage sources, the 
procedure is modified as follows:

	 1.	 Steps 1 and 2 are the same as those applied for independent volt-
age sources.

	 2.	 Step 3 is modified as follows: Treat each dependent source like 
an independent source when Kirchhoff’s voltage law is applied 
to each independent loop. However, once the equation is writ-
ten, substitute the equation for the controlling quantity to 
ensure that the unknowns are limited solely to the chosen mesh 
currents.

	 3.	 Step 4 is as before.

EXAMPLE 18.6  Write the mesh currents for the network in Fig. 18.12 
having a dependent voltage source.

Solution: 

Steps 1 and 2 are defined in Fig. 18.12.

Step 3:	  E1 - I1R1 - R2(I1 - I2) = 0

 R2(I2 - I1) + mVx - I2R3 = 0

Then substitute Vx = (I1 - I2)R2.
The result is two equations and two unknowns:

 E1 - I1R1 - R2(I - I2) = 0

 R2(I2 - I1) + mR2(I1 - I2) - I2R3 = 0

Independent Current Sources    For independent current sources, 
the procedure is modified as follows:

	 1.	 Steps 1 and 2 are the same as those applied for independent 
sources.

	 2.	 Step 3 is modified as follows: Treat each current source as an 
open circuit (recall the supermesh designation in Chapter 8), and 
write the mesh equations for each remaining independent path. 
Then relate the chosen mesh currents to the dependent sources to 
ensure that the unknowns of the final equations are limited to the 
mesh currents.

	 3.	 Step 4 is as before.

EXAMPLE 18.7  Write the mesh currents for the network in Fig. 18.13 
having an independent current source.

Solution: 

Steps 1 and 2 are defined in Fig. 18.13.

Step 3:	 E1 - I1Z1 + E2 - I2Z2 = 0 � (only remaining independent 
path)

with	 I1 + I = I2

The result is two equations and two unknowns.

R1

R3
R2

�Vx

+

–

+–

E1 Vx

+

–
I1 I2

FIG. 18.12
Applying mesh analysis to a network with a  

voltage-controlled voltage source.

E2 +–

E1

+

–

I1 I2
Z2

Z1

I

FIG. 18.13
Applying mesh analysis to a network with 

an independent current source.
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Dependent Current Sources    For dependent current sources, the 
procedure is modified as follows:

	 1.	 Steps 1 and 2 are the same as those applied for independent sources.
	 2.	 Step 3 is modified as follows: The procedure is essentially the 

same as that applied for independent current sources, except now 
the dependent sources have to be defined in terms of the chosen 
mesh currents to ensure that the final equations have only mesh 
currents as the unknown quantities.

	 3.	 Step 4 is as before.

EXAMPLE 18.8  Write the mesh currents for the network in Fig. 18.14 
having a dependent current source.

Solution: 

Steps 1 and 2 are defined in Fig. 18.14.

Step 3:	 E1 - I1Z1 - I2Z2 + E2 = 0

and	 kI = I1 - I2

Now I = I1 so that    kI1 = I1 - I2    or    I2 = I1(1 - k)

The result is two equations and two unknowns.

Format Approach

The format approach was introduced in Section 8.5. The steps for apply-
ing this method are repeated here with changes for its use in ac circuits:

1.	 Assign a loop current to each independent closed loop (as in the 
previous section) in a clockwise direction.

2.	 The number of required equations is equal to the number of 
chosen independent closed loops. Column 1 of each equation is 
formed by summing the impedance values of those impedances 
through which the loop current of interest passes and multiplying 
the result by that loop current.

3.	 We must now consider the mutual terms that are always subtracted 
from the terms in the first column. It is possible to have more than 
one mutual term if the loop current of interest has an element in 
common with more than one other loop current. Each mutual term 
is the product of the mutual impedance and the other loop current 
passing through the same element.

4.	 The column to the right of the equality sign is the algebraic sum 
of the voltage sources through which the loop current of interest 
passes. Positive signs are assigned to those sources of voltage hav-
ing a polarity such that the loop current passes from the negative 
to the positive terminal. Negative signs are assigned to those poten-
tials for which the reverse is true.

5.	 Solve the resulting simultaneous equations for the desired loop 
currents.

The technique is applied as above for all networks with independent 
sources or for networks with dependent sources where the controlling 
variable is not a part of the network under investigation. If the control-
ling variable is part of the network being examined, additional care must 
be taken when applying the above steps.

E2

+

E1

+

–
I1 I2

Z1

kI

–

Z2

I

FIG. 18.14
Applying mesh analysis to a network with a current-

controlled current source.
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EXAMPLE 18.9  Using the format approach to mesh analysis, repeat 
Example 18.5. The block impedance diagram is repeated as Fig. 18.15 
for convenience.

Solution: 

Step 1 is as indicated in Fig. 18.15.

Steps 2 through 4 result in the following:

 I1(Z1 + Z2) - I2Z2 = E1

 I2(Z2 + Z3) - I1Z2 = -E2

which can be rewritten as

 I1(Z1 + Z2) - I2Z2  = E1

-I1Z2  + I2(Z2 + Z3) = -E2

and we have the same set of equations as in Example 18.5 resulting in 
the same solution of

I1 = 3.61 A j−236.30°

EXAMPLE 18.10  Using the format approach to mesh analysis, find 
the current I2 in Fig. 18.16.

Z1

E1

+

–

+

–
E2

+

–

I1

Z2

+

–

–

+

I2

Z3

–

+

FIG. 18.15
Assigning the mesh currents and subscripted 

impedances for the network in Fig. 18.10 (repeated).

E1  =  8 V  ∠  20°

I2

4 �

+

–

8 �

–

+
E2  =  10 V  ∠  0°

R2

XC

XL1
  =  2 �

1 �R1

XL2
6 �

FIG. 18.16
Example 18.10.

Solution:  The network is redrawn in Fig. 18.17:

 Z1 = R1 + jXL1
= 1 Ω + j 2 Ω   E1 = 8 V ∠20°

 Z2 = R2 - jXC = 4 Ω - j 8 Ω   E2 = 10 V ∠0°
 Z3 = + jXL2

= + j 6 Ω

Note the reduction in complexity of the problem with the substitution of 
the subscripted impedances.

Step 1 is as indicated in Fig. 18.17.

Steps 2 to 4:

I1(Z1 + Z2) - I2Z2 = E1 + E2

I2(Z2 + Z3) - I1Z2 = -E2

which are rewritten as

 I1(Z1 + Z2) - I2Z2  = E1 + E2

-I1Z2  + I2(Z2 + Z3) = -E2

Z1

E1

+

–

–

+
E2

+

–

I1

Z2

+

–

–

+

I2

Z3

–

+

FIG. 18.17
Assigning the mesh currents and subscripted 

impedances for the network in Fig. 18.16.
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Step 5: Using determinants, we have

 I2 =
` Z1 + Z2 E1 + E2

-Z2 -E2
`

` Z1 + Z2 -Z2

-Z2 Z2 + Z3
`

 =
-(Z1 + Z2)E2 + Z2(E1 + E2)

(Z1 + Z2)(Z2 + Z3) - Z2
2

 =
Z2E1 - Z1E2

Z1Z2 + Z1Z3 + Z2Z3

Substituting numerical values yields

 I2 =
(4 Ω - j 8 Ω)(8 V ∠20°) - (1 Ω + j 2 Ω)(10 V ∠0°)

(1 Ω + j 2 Ω)(4 Ω - j 8 Ω) + (1 Ω + j 2 Ω)(+ j 6 Ω) + (4 Ω - j 8 Ω)(+ j 6 Ω)

 =
(4 - j 8)(7.52 + j 2.74) - (10 + j 20 )

20 + ( j 6 - 12) + ( j 24 + 48)

 =
(52.0 - j 49.20) - (10 + j 20)

56 + j 30
=

42.0 - j 69.20

56 + j 30
=

80.95 A ∠-58.74°
63.53 ∠28.18°

 = 1.27 A j286.92°

Calculator Solution:  The calculator can be an effective tool in per-
forming the long, laborious calculations involved with the final equa-
tion appearing above. However, you must be very careful to use 
brackets to define the order of the arithmetic operations (remember 
that each open bracket must be followed by a close bracket). With the 
TI-89 calculator, the sequence in Fig. 18.18(a) provides the solution 
for the numerator.

For the denominator, the sequence appears in Fig. 18.18(b).
The solution is then determined in Fig. 18.18(b).

MATH ANGLE iENTER ) ( 1 2 2ND

4 − 8 2ND ) 2ND 2ND2 0( 8

) (

(

−
i

°
∠

1 0 0 ) Polar2ND ENTER

(a)

80.92  –58.77∠ ∠

(b)

1 + 2 2ND ) − 8 ) +2ND( 4

1 + 2 2ND ) 2ND ) (+( 6 4

) ( )6 2ND− 8 2ND Polar ENTER 63.53 ∠ 28.18°

(

(

i

i i

i

i i

(c)

8 0 . 9 2 − . 7 7 2ND

2ND

5 8

÷MATH ANGLE ° ENTER

MATH ANGLE ENTER

) (

)

6 3 5 3.
2ND

2 8 . 1 8 2ND Polar ENTER

( ∠

∠

° 1.27  –86.95°∠

FIG. 18.18
Determining I2 for the network of Fig. 18.16.
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EXAMPLE 18.11  Write the mesh equations for the network in Fig. 18.19. 
Do not solve.

E1

+

–

–

+
E2

R2

R1

XL2

XL1

XC1

R3

XC2

R4

FIG. 18.19
Example 18.11.

Solution:  The network is redrawn in Fig. 18.20. Again note the 
reduced complexity and increased clarity provided by the use of sub-
scripted impedances:

 Z1 = R1 + jXL1
  Z4 = R3 - jXC2

 Z2 = R2 + jXL2
  Z5 = R4

 Z3 = jXC1

and	  I1(Z1 + Z2) - I2Z2 = E1

 I2(Z2 + Z3 + Z4) - I1Z2 + I3Z4 = 0
 I3(Z4 + Z5) - I2Z4 = E2

or	 I1(Z1 + Z2) - I2(Z2)  + 0  = E1

I1Z2  - I2(Z2 + Z3 + Z4) - I3(Z4)  = 0
0  - I2(Z4)  - I3(Z4 + Z5) = E2

Z2

+

–

–

+

Z1

E1

+

–

–

+
E2

+ –

I1 I2

Z4

+

–

–

+

Z3
+ –

Z5
+ –

I3

FIG. 18.20
Assigning the mesh currents and subscripted impedances for the network 

in Fig. 18.19.

EXAMPLE 18.12  Using the format approach, write the mesh equa-
tions for the network in Fig. 18.21.

Solution:  The network is redrawn as shown in Fig. 18.22, where

Z1 = R1 + jXL1
   Z3 = jXL2

Z2 = R2   Z4 = jXL3

E1

+

–

–

+
E2

R1

XL3

XL1

R2
XL2

FIG. 18.21
Example 18.12.

Z2

E1

+

–

–

+
E2

I1

Z4

I2

I3

Z3

Z1

FIG. 18.22
Assigning the mesh currents and subscripted 

impedances for the network in Fig. 18.21.
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and	  I1(Z2 + Z4) - I2Z2 - I3Z4 = E1

 I2(Z1 + Z2 + Z3) - I1Z2 - I3Z3 = 0
 I3(Z3 + Z4) - I2Z3 - I1Z4 = E2

or	  I1(Z2 + Z4) - I2Z2  - I3Z4  = E1

-I1Z2  + I2(Z1 + Z2 + Z3) - I3Z3  = 0
-I1Z4  - I2Z3  + I3(Z3 + Z4) = E2

Note the symmetry about the diagonal axis; that is, note the location of 
-Z2, -Z4, and -Z3 off the diagonal.

18.5 N odal Analysis

General Approach

Independent Sources    Before examining the application of the 
method to ac networks, a review of the appropriate sections on nodal 
analysis in Chapter 8 is suggested since the content of this section is 
limited to the general conclusions of Chapter 8.

The fundamental steps are the following:

1.	 Determine the number of nodes within the network.
2.	 Pick a reference node and label each remaining node with a sub-

scripted value of voltage: V1, V2, and so on.
3.	 Apply Kirchhoff’s current law at each node except the reference. 

Assume that all unknown currents leave the node for each applica-
tion of Kirchhoff’s current law.

4.	 Solve the resulting equations for the nodal voltages.

A few examples will refresh your memory about the content of 
Chapter 8 and the general approach to a nodal-analysis solution.

EXAMPLE 18.13  Determine the voltage across the inductor for the 
network in Fig. 18.23.

E  =
12 V  ∠0°

+

–

R1

XL XC

0.5 k�

10 k�

R2

2 k�

5 k� I  =
4 mA  ∠0°

FIG. 18.23
Example 18.13.

Solution: 

Steps 1 and 2 are as indicated in Fig. 18.24.

Step 3: Note Fig. 18.25 for the application of Kirchhoff’s current law to 
node V1:

gIi = gIo

0 = I1 + I2 + I3

V1 - E

Z1
+

V1

Z2
+

V1 - V2

Z3
= 0
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Rearranging terms gives

	 V1 c 1

Z1
+

1

Z2
+

1

Z3
d - V2 c 1

Z3
d =

E1

Z1
	 (18.1)

Note Fig. 18.26 for the application of Kirchhoff’s current law to 
node V2.

0 = I3 + I4 + I

V2 - V1

Z3
+

V2

Z4
+ I = 0

Z2E

+

–

Z1Z1 Z3

Z4 I

V2V1

FIG. 18.24
Assigning the nodal voltages and subscripted impedances to 

the network in Fig. 18.23.

Z2E

+

–

Z1Z1 Z3

V2V1

I1 I3

I2

FIG. 18.25
Applying Kirchhoff’s current law to the node 

V1 in Fig. 18.24.

Z3

Z4 I

V2V1

I3

I4

FIG. 18.26
Applying Kirchhoff’s current law to the node V2 in Fig. 18.24.

Rearranging terms gives

	 V2 c 1

Z3
+

1

Z4
d - V1 c 1

Z3
d = -I	 (18.2)

Grouping equations 18.1 and 18.2 gives

V1 c 1

Z1
+

1

Z2
+

1

Z3
d  - V2 c 1

Z3
d  =

E
Z1

V1 c 1

Z3
d  - V2 c 1

Z3
+

1

Z4
d  = I

1

Z1
+

1

Z2
+

1

Z3
=

1

0.5 kΩ
+

1

j 10 kΩ
+

1

2 kΩ
= 2.5 mS ∠-2.29°

1

Z3
+

1

Z4
=

1

2 kΩ
+

1

- j 5 kΩ
= 0.539 mS ∠21.80°
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and

 V1[2.5 mS ∠-2.29°] - V2[0.5 mS ∠0°]  = 24 mA ∠0°
V1[0.5 mS ∠0°]  - V2[0.539 mS ∠21.80°] = 4 mA ∠0°

with

V1 =
` 24 mA ∠0°

4 mA ∠0°

` 2.5 mS ∠-2.29° 
0.5 mS ∠0°

-0.5 mS ∠0°
-0.539 mS ∠21.80°

`
-0.5 mS ∠0°

-0.539 mS ∠21.80°
`

=
(24 mA ∠0°)(-0.539 mS ∠21.80°) + (0.5 mS ∠0°)(4 mA ∠0°)

(2.5 mS ∠-2.29°)(-0.539 mS ∠21.80°) + (0.5 mS ∠0°)(0.5 mS ∠0°)

=
-12.94 * 10-6 V ∠21.80° + 2 * 10-6 V ∠0°
-1.348 * 10-6 ∠19.51° + 0.25 * 10-6 ∠0°

=
-(12.01 + j 4.81) * 10-6 V + 2 * 10-6 V

-(1.271 + j 0.45) * 10-6 + 0.25 * 10-6

=
-10.01 V - j 4.81 V

-1.021 - j 0.45
=

11.106 V ∠-154.33°
1.116 ∠-156.21°

V1 = 9.95 V j1.88°

Dependent Current Sources    For dependent current sources, the 
procedure is modified as follows:

	 1.	 Steps 1 and 2 are the same as those applied for independent sources.
	 2.	 Step 3 is modified as follows: Treat each dependent current source 

like an independent source when Kirchhoff’s current law is applied 
to each defined node. However, once the equations are established, 
substitute the equation for the controlling quantity to ensure that 
the unknowns are limited solely to the chosen nodal voltages.

	 3.	 Step 4 is as before.

EXAMPLE 18.14  Write the nodal equations for the network in 
Fig. 18.27 having a dependent current source.

Z1I

Z2

Z3 kI′

V2V1

I′

FIG. 18.27
Applying nodal analysis to a network with a  

current-controlled current source.

Solution: 
Steps 1 and 2 are as defined in Fig. 18.27.

Step 3: At node V1,

I = I1 + I2
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V1

Z1
+

V1 - V2

Z2
- I = 0

and	 V1 c 1

Z1
+

1

Z2
d - V2 c 1

Z2
d = I

At node V2,

 I2 + I3 + kI = 0

 
V2 - V1

Z2
+

V2

Z3
+ k c V1 - V2

Z2
d = 0

and	  V1 c 1 - k

Z2
d - V2 c 1 - k

Z2
+

1

Z3
d = 0

resulting in two equations and two unknowns.

Independent Voltage Sources between Assigned Nodes    For 
independent voltage sources between assigned nodes, the procedure is 
modified as follows:

	 1.	 Steps 1 and 2 are the same as those applied for independent 
sources.

	 2.	 Step 3 is modified as follows: Treat each source between defined 
nodes as a short circuit (recall the supernode classification in 
Chapter 8), and write the nodal equations for each remaining 
independent node. Then relate the chosen nodal voltages to the 
independent voltage source to ensure that the unknowns of the 
final equations are limited solely to the nodal voltages.

	 3.	 Step 4 is as before.

EXAMPLE 18.15  Write the nodal equations for the network in 
Fig. 18.28 having an independent source between two assigned nodes.

Z1I1 Z2 I2

V2V1
E1

+–

FIG. 18.28
Applying nodal analysis to a network with an independent voltage source 

between defined nodes.

Solution: 
Steps 1 and 2 are defined in Fig. 18.28.

Step 3: Replacing the independent source E1 with a short-circuit equiva-
lent results in a supernode that generates the following equation when 
Kirchhoff’s current law is applied to node V1:

I1 =
V1

Z1
+

V2

Z2
+ I2
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with	 V2 - V1 = E1

and we have two equations and two unknowns.

Dependent Voltage Sources between Defined Nodes    For 
dependent voltage sources between defined nodes, the procedure is 
modified as follows:

	 1.	 Steps 1 and 2 are the same as those applied for independent volt-
age sources.

	 2.	 Step 3 is modified as follows: The procedure is essentially the 
same as that applied for independent voltage sources, except that 
now the dependent sources have to be defined in terms of the 
chosen nodal voltages to ensure that the final equations have 
only nodal voltages as their unknown quantities.

	 3.	 Step 4 is as before.

EXAMPLE 18.16  Write the nodal equations for the network in Fig. 18.29 
having a dependent voltage source between two defined nodes.

Solution: 

Steps 1 and 2 are defined in Fig. 18.29.

Step 3: Replacing the dependent source m Vx with a short-circuit equiva-
lent results in the following equation when Kirchhoff’s current law is 
applied at node V1:

I = I1 + I2

V1

Z1
+

(V1 - V2)

Z2
- I =  0

and	 V2 = mVx = m[V1 - V2]

or	 V2 =
m

1 + m
V1

resulting in two equations and two unknowns. Note that because the imped-
ance Z3 is in parallel with a voltage source, it does not appear in the analysis. 
It will, however, affect the current through the dependent voltage source.

Format Approach

A close examination of Eqs. (18.1) and (18.2) in Example 18.13 reveals 
that they are the same equations that would have been obtained using the 
format approach introduced in Chapter 8. Recall that the approach 
required that the voltage source first be converted to a current source, 
but the writing of the equations was quite direct and minimized any 
chances of an error due to a lost sign or missing term.

The sequence of steps required to apply the format approach is the 
following:

1.	 Choose a reference node and assign a subscripted voltage label to 
the (N - 1) remaining independent nodes of the network.

2.	 The number of equations required for a complete solution is equal 
to the number of subscripted voltages (N - 1). Column 1 of each 
equation is formed by summing the admittances tied to the node of 
interest and multiplying the result by that subscripted nodal voltage.

I

V2V1

Vx
+ –

+

–

Z2

�Vx Z3Z1

FIG. 18.29
Applying nodal analysis to a network with a voltage-

controlled voltage source.
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3.	 The mutual terms are always subtracted from the terms of the first 
column. It is possible to have more than one mutual term if the 
nodal voltage of interest has an element in common with more 
than one other nodal voltage. Each mutual term is the product 
of the mutual admittance and the other nodal voltage tied to that 
admittance.

4.	 The column to the right of the equality sign is the algebraic sum of 
the current sources tied to the node of interest. A current source is 
assigned a positive sign if it supplies current to a node and a nega-
tive sign if it draws current from the node.

5.	 Solve the resulting simultaneous equations for the desired nodal 
voltages. The comments offered for mesh analysis regarding inde-
pendent and dependent sources apply here also.

EXAMPLE 18.17  Repeat the analysis of Example 18.14 using the for-
mat approach for nodal analysis. The network with its block impedances 
has been repeated as Fig. 18.30 and Fig. 18.31.

Z2E

+

–

Z1Z1 Z3

Z4 I

V2V1

FIG. 18.30
Network of Fig. 18.24 redrawn with block impedances.

I

Z3

Z4Z1 Z2

V2V1

I1

FIG. 18.31
Network of Fig. 18.30 redrawn with required current 

source I1.

Solution:  The voltage source E and the series resistor R1 of Fig. 18.30 
are first converted to a current source as shown in Fig. 18.31.

Applying the format approach will result in the following equations:

V1(Y1 + Y2 + Y3) - V2Y3 = I1

V2(Y3 + Y4)  - V1Y3 = -I

with I1 = E>Z1.
Substituting values will result in the following equations, which 

match those obtained with the general approach.

V1(2.5 mS ∠-2.29°) - V2(0.5 mS ∠0°)  = 24 mA ∠0°
V1(0.5 mS ∠0°)  - V2(0.539 mS ∠21.80°) = 4 mA ∠0°

The sample result of V1 = 9.95 V j1.88° is then obtained.

EXAMPLE 18.18  Using the format approach to nodal analysis, find 
the voltage across the 4 Ω resistor in Fig. 18.32.

Solution:  Choosing nodes (Fig. 18.33) and writing the nodal equa-
tions, we have

Z1 = R = 4 Ω  Z2 = jXL = j 5 Ω  Z3 = - jXC = - j 2 Ω
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V1(Y1 + Y2) - V2(Y2) = -I1

V2(Y3 + Y2) - V1(Y2) = +I2

or	
V1(Y1 + Y2)

-V1(Y2)

- V2(Y2)

+ V2(Y3 + Y2)

= -I1

= +I2

Y1 =
1

Z1
  Y2 =

1

Z2
  Y3 =

1

Z3

Using determinants yields

 V1 =
`    -I1 -Y2

+I2  Y3 + Y2
`

` Y1 + Y2 -Y2

-Y2 Y3 + Y2
`

=
` -6 A + j 0.2 S

  +4 A + j 0.3 S  
`

` 0.25 S - j 0.2 S + j 0.2 S

+ j 0.2 S + j 0.3 S
`

 =
-(Y3 + Y2)I1 + I2Y2

(Y1 + Y2)(Y3 + Y2) - Y2
2

 =
-(Y3 + Y2)I1 + I2Y2

Y1Y3 + Y2Y3 + Y1Y2

Substituting numerical values, we have

V1 =
-[(1>- j 2 Ω) + (1>j 5 Ω)]6 A ∠0° + 4 A ∠0°(1>j 5 Ω)

(1>4 Ω)(1>- j 2 Ω) + (1>j 5 Ω)(1>- j 2 Ω) + (1>4 Ω)(1>j 5 Ω)

 =
-(+ j 0.5 - j 0.2)6 ∠0° + 4 ∠0°(- j 0.2)

(1>- j 8) + (1>10) + (1>j 20)

 =
(-0.3 ∠90°)(6 ∠0°) + (4 ∠0°)(0.2 ∠-90°)

j 0.125 + 0.1 - j 0.05

 =
-1.8 ∠90° + 0.8 ∠-90°

0.1 + j 0.075

I2  =  4 A  ∠  0°I1  =  6 A  ∠  0° R

XL  =  5 �

XC
4 � 2 �

FIG. 18.32
Example 18.18.

Z1

Z2

I2

V2V1

I1 Z3

Reference

FIG. 18.33
Assigning the nodal voltages and subscripted impedances  

for the network in Fig. 18.32.
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 =
2.6 V ∠-90°

0.125 ∠36.87°
V1 = 20.80 V j−126.87°

Calculator Solution:  Using the TI-89 calculator, enter the parame-
ters for the determinant form for V1 as shown by the sequence in 
Fig. 18.34. Note the different negative signs used to enter the data.

idet ( [ –2 5 2 i , i ;2 2 ,

6(–)det ( [ , i ;2 4 , i ]3 )

3 i ] ) Polar ENTER 20.80E0 ∠ –126.87E0

÷

FIG. 18.34
Determining V1 using the TI-89 calculator.

EXAMPLE 18.19  Using the format approach, write the nodal equa-
tions for the network in Fig. 18.35.

I1  =  10 A  ∠  20°E1  =  20 V  ∠  0°

R2

XC  =  10 �

4 �+

– XL2
5 �

XL1

8 �

R1

7 �

R3 8 �

FIG. 18.35
Example 18.19.

Z2

+

–
E1

Z1 Z3

I1

a

Z4

a�

FIG. 18.36
Assigning the subscripted impedances for the network  

in Fig. 18.35.

Solution:  The circuit is redrawn in Fig. 18.36, where

 Z1 = R1 + jXL1
= 7 Ω + j 8 Ω   E1 = 20 V ∠0°

 Z2 = R2 + jXL2
= 4 Ω + j 5 Ω   I1 = 10 A ∠20°

Z3 = - jXC = - j 10 Ω
Z4 = R3 = 8 Ω

Converting the voltage source to a current source and choosing nodes, 
we obtain Fig. 18.37. Note the “neat” appearance of the network using 
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the subscripted impedances. Working directly with Fig. 18.35 would be 
more difficult and could produce errors.

Write the nodal equations:

 V1(Y1 + Y2 + Y3) - V2(Y3) = +I2

 V2(Y3 + Y4) - V1(Y3) = +I1

Y1 =
1

Z1
  Y2 =

1

Z2
  Y3 =

1

Z3
  Y4 =

1

Z4

which are rewritten as

 V1(Y1 + Y2 + Y3) - V2(Y3)  = +I2

-V1(Y3)  + V2(Y3 + Y4) = +I1

EXAMPLE 18.20  Write the nodal equations for the network in 
Fig. 18.38. Do not solve.

Z1

Z3

I1

V2V1

I2  =  E1
Z1

Z2

Reference

Z4

a�

a

FIG. 18.37
Converting the voltage source in Fig. 18.36 to a current source  

and defining the nodal voltages.

R2
XL2

XL1

R1I1

XC2

XC1

R3

I2

FIG. 18.38
Example 18.20.

Solution:  Choose nodes (Fig. 18.39):

 Z1 = R1   Z2 = jXL1
   Z3 = R2 - jXC2

 Z4 = - jXC1
   Z5 = R3   Z6 = jXL2

and write the nodal equations:

 V1(Y1 + Y2) - V2(Y2) = +I1

 V2(Y2 + Y3 + Y4) - V1(Y2) - V3(Y4) = -I2

 V3(Y4 + Y5 + Y6) - V2(Y4) = +I2
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which are rewritten as

V1(Y1 + Y2) - V2(Y2)  + 0  = +I1

-V1(Y2)  + V2(Y2 + Y3 + Y4) - V3(Y4)  = -I2

0  - V2(Y4)  + V3(Y4 + Y5 + Y6) = +I2

 Y1 =
1

R1
  Y2 =

1

jXL1

  Y3 =
1

R2 - jXC2

 Y4 =
1

- jXC1

  Y5 =
1

R3
  Y6 =

1

jXL2

Note the symmetry about the diagonal for this example and those 
preceding it in this section.

EXAMPLE 18.21  Apply nodal analysis to the network in Fig. 18.40. 
Determine the voltage VL.

Z1

Z2

V2V1

I1 Z3 Z5 Z6

Z4

V3

I2

FIG. 18.39
Assigning the nodal voltages and subscripted impedances for the network 

in Fig. 18.38.

Vi  =  Vi  ∠  0°

+

–
2 k� VLRC

1 k�

I B

E E

C

+

–
4 k� RL 1 k�

Transistor
equivalent
network

XL

IL

100I

(   I)

FIG. 18.40
Example 18.21.

Solution:  In this case, there is no need for a source conversion. The 
network is redrawn in Fig. 18.41 with the chosen nodal voltage and sub-
scripted impedances.
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Apply the format approach:

 Y1 =
1

Z1
=

1

4 kΩ
= 0.25 mS ∠0° = G1 ∠0°

 Y2 =
1

Z2
=

1

1 kΩ
= 1 mS ∠0° = G2 ∠0°

 Y3 =
1

Z3
=

1

2 kΩ ∠90°
= 0.5 mS ∠-90°

 = - j 0.5 mS = - jBL

V1:  (Y1 + Y2 + Y3)V1 = -100 I

and	  V1 =
-100 I

Y1 + Y2 + Y3

 =
-100 I

0.25 mS +  1 mS - j 0.5 mS

 =
-100 * 103 I
1.25 - j 0.5

=
-100 * 103 I

1.3463 ∠-21.80°
 = -74.28 * 103 I ∠21.80°

 = -74.28 * 103 a Vi

1 kΩ
 b  ∠21.80°

 V1 = VL = −(74.28Vi)V j21.80°

18.6  Bridge Networks (ac)

The basic bridge configuration was discussed in some detail in Section 8.8 
for dc networks. We now continue to examine bridge networks by con-
sidering those that have reactive components and a sinusoidal ac voltage 
or current applied.

We first analyze various familiar forms of the bridge network using 
mesh analysis and nodal analysis (the format approach). The balance 
conditions are investigated throughout the section.

Apply mesh analysis to the network in Fig. 18.42. The network is 
redrawn in Fig. 18.43, where

 Z1 =
1

Y1
=

1

G1 + jBC
=

G1

G1
2 + BC

2 - j 
BC

G1
2 + BC

2

 Z2 = R2  Z3 = R3  Z4 = R4 + jXL  Z5 = R5

Applying the format approach:

 (Z1 + Z3)I1 - (Z1)I2 - (Z3)I3 = E
 (Z1 + Z2 + Z5)I2 - (Z1)I1 - (Z5)I3 = 0
 (Z3 + Z4 + Z5)I3 - (Z3)I1 - (Z5)I2 = 0

which are rewritten as

I1(Z1 + Z3)

-I1Z1

-I1Z3 

 

-  I2Z1

+  I2(Z1 + Z2 + Z5)

-  I2Z5

 

-  I3Z3

-  I3Z5

+  I3(Z3 + Z4 + Z5)

= E
= 0

= 0

Note the symmetry about the diagonal of the above equations. For 
balance, IZ5

= 0 A, and

IZ5
= I2 - I3 = 0

Y1

IL

V1

Y3 VL100I Y2

+

–

FIG. 18.41
Assigning the nodal voltage and subscripted 

impedances for the network in Fig. 18.40.

R1

+

–

E

C1

R2

R5

R3

R4

L4

FIG. 18.42
Maxwell bridge.

I1

–

Z5

Z1

Z4

Z2

Z3

+

–
E

I2

I3

FIG. 18.43
Assigning the mesh currents and subscripted 

impedances for the network in Fig. 18.42.



N
A

Bridge Networks (ac)    815

From the above equations,

 I2 =   

Z1 + Z3 E -Z3

-Z1 0 -Z5

-Z3 0 (Z3 + Z4 + Z5)

Z1 + Z3 -Z1 -Z3

-Z1 (Z1 + Z2 + Z5) -Z5

-Z3 -Z5 (Z3 + Z4 + Z5)

 =
E(Z1Z3 + Z1Z4 + Z1Z5 + Z3Z5)

∆

where ∆ signifies the determinant of the denominator (or coefficients). 
Similarly,

I3 =
E(Z1Z3 + Z3Z2 + Z1Z5 + Z3Z5)

∆

and	 IZ5
= I2 - I3 =

E(Z1Z4 - Z3Z2)

∆

For IZ5
= 0, the following must be satisfied (for a finite ∆ not equal to zero):

	 Z1Z4 = Z3Z2  IZ5
= 0	 (18.3)

This condition is analyzed in greater depth later in this section.
Applying nodal analysis to the network in Fig. 18.44 results in the 

configuration in Fig. 18.45, where

Y1 =
1

Z1
=

1

R1 - jXC
  Y2 =

1

Z2
=

1

R2

Y3 =
1

Z3
=

1

R3
  Y4 =

1

Z4
=

1

R4 + jXL
  Y5 =

1

R5

and

 (Y1 + Y2)V1 - (Y1)V2 - (Y2)V3 = I
 (Y1 + Y3 + Y5)V2 - (Y1)V1 - (Y5)V3 = 0
 (Y2 + Y4 + Y5)V3 - (Y2)V1 - (Y5)V2 = 0

R1

I

C1
R2

R5

R3

R4

L4

FIG. 18.44
Hay bridge.

V2
–

Z5

Z1

Z4

Z2

Z3

I
V3

V1

FIG. 18.45
Assigning the nodal voltages and subscripted 

impedances for the network in Fig. 18.44.

which are rewritten as

V1(Y1 + Y2) - V2(Y1)  - V3Y2  = I
-V1(Y1)  + V2(Y1 + Y3 + Y5) - V3Y5  = 0
-V1Y2  - V2Y5  + V3(Y2 + Y4 + Y5) = 0
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Again, note the symmetry about the diagonal axis. For balance, 
VZ5

= 0 V, and

VZ5
= V2 - V3 = 0

From the above equations,

 V2 =

†
Y1 + Y2  I   -Y2

-Y1  0   -Y5

-Y2  0   (Y2 + Y4 + Y5)

†

†
Y1 + Y2 -Y1 -Y2

-Y1  (Y1 + Y3 + Y5) -Y5

-Y2 -Y5  (Y2 + Y4 + Y5)

†

 =
I(Y1Y3 + Y1Y4 + Y1Y5 + Y3Y5)

∆

Similarly,

V3 =
I(Y1Y3 + Y3Y2 + Y1Y5 + Y3Y5)

∆

Note the similarities between the above equations and those obtained 
for mesh analysis. Then

VZ5
= V2 - V3 =

I(Y1Y4 - Y3Y2)

∆

For VZ5
= 0, the following must be satisfied for a finite ∆ not equal to 

zero:

	 Y1Y4 = Y3Y2  VZ5
= 0	 (18.4)

However, substituting Y1 = 1>Z1, Y2 = 1>Z2, Y3 = 1>Z3, and Y4 =
1>Z4, we have

1

Z1Z4
=

1

Z3Z2

or	 Z1Z4 = Z3Z2    VZ5
= 0

corresponding with Eq. (18.3) obtained earlier.
Let us now investigate the balance criteria in more detail by consider-

ing the network in Fig. 18.46, where it is specified that I and V = 0.
Since I = 0,

	 I1 = I3	 (18.5)

and	 I2 = I4	 (18.6)

In addition, for V = 0,

	 I1Z1 = I2Z2	 (18.7)

and	 I3Z3 = I4Z4	 (18.8)

Substituting the preceding current relations into Eq. (18.8), we have

I1Z3 = I2Z4

I1

–

Z1

Z4

Z2

Z3

+

–
E

+
I4

I2

I3 V  =  0

I  =  0

–

FIG. 18.46
Investigating the balance criteria for an ac  

bridge configuration.
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and	 I2 =
Z3

Z4
I1

Substituting this relationship for I2 into Eq. (18.7) yields

I1Z1 = aZ3

Z4
I1bZ2

and	 Z1Z4 = Z2Z3

as obtained earlier. Rearranging, we have

	
Z1

Z3
=

Z2

Z4
	 (18.9)

corresponding to Eq. (8.2) for dc resistive networks.
For the network in Fig. 18.44, which is referred to as a Hay bridge 

when Z5 is replaced by a sensitive galvanometer,

 Z1 = R1 - jXC

 Z2 = R2

 Z3 = R3

 Z4 = R4 + jXL

This particular network is used for measuring the resistance and 
inductance of coils in which the resistance is a small fraction of the 
reactance XL.

Substitute into Eq. (18.9) in the following form:

 Z2Z3 = Z4Z1

 R2R3 = (R4 + jXL)(R1 - jXC)

or	 R2R3 = R1R4 + j(R1XL - R4XC) + XCXL

so that

R2R3 + j 0 = (R1R4 + XCXL) + j(R1XL - R4XC)

For the equations to be equal, the real and imaginary parts must be 
equal. Therefore, for a balanced Hay bridge,

	 R2R3 = R1R4 + XCXL	 (18.10)

and	 0 = R1XL - R4XC	 (18.11)

or substituting	 XL = vL  and  XC =
1

vC

we have	 XC XL = a 1

vC
b (vL) =

L

C

and	 R2R3 = R1R4 +
L

C

with	 R1vL =
R4

vC

Solving for R4 in the last equation yields

R4 = v2LCR1
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and substituting into the previous equation, we have

R2R3 = R1(v
2 LCR1) +

L

C

Multiply through by C and factor:

CR2R3 = L(v2C2R1
2 + 1)

and	 L =
CR2R3

1 + v2C2R1
2	 (18.12)

with

	 R4 =
v2C2R1R2R3

1 + v2C2R1
2	 (18.13)

Eqs. (18.12) and (18.13) are the balance conditions for the Hay 
bridge. Note that each is frequency dependent. For different frequencies, 
the resistive and capacitive elements must vary for a particular coil to 
achieve balance. For a coil placed in the Hay bridge as shown in Fig. 
18.44, the resistance and inductance of the coil can be determined by 
Eqs. (18.12) and (18.13) when balance is achieved.

The bridge in Fig. 18.42 is referred to as a Maxwell bridge when Z5 
is replaced by a sensitive galvanometer. This setup is used for induct-
ance measurements when the resistance of the coil is large enough not to 
require a Hay bridge.

Applying Eq. (18.9) in the form

Z2Z3 = Z4Z1

and substituting

 Z1 =  R1 ∠0° 7  XC1
 ∠-90° =

(R1 ∠0°)(XC1
 ∠-90°)

R1 - jXC1

 =
R1 XC1

 ∠-90°
R1 - jXC1

=
- jR1XC1

R1 - jXC1

 Z2 = R2

 Z3 = R3

and	  Z4 = R4 + jXL4

we have	  (R2)(R3) = (R4 + jXL4
)a - jR1XC1

R1 - jXC1

b

 R2R3 =
- jR1R4XC1

+ R1XC1
XL4

R1 - jXC1

or	 (R2R3)(R1 - jXC1
) = R1XC1

XL4
- jR1R4XC1

and	 R1R2R3 - jR2R3XC1
= R1XC1

XL4
- jR1R4XC1

so that for balance the real parts must be equal:

 R1R2R3 = R1XC1
XL4

 R2R3 = a 1

2pfC1
b (2pfL4)

and	 L4 = C1R2R3	 (18.14)
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and the imaginary parts equal: 

	 R2R3 X C1
= R1R4 X C1

so that	 R4 =
R2R3

R1
	 (18.15)

Note the absence of frequency in Eqs. (18.14) and (18.15).
One remaining popular bridge is the capacitance comparison bridge 

of Fig. 18.47. An unknown capacitance and its associated resistance can 
be determined using this bridge. Application of Eq. (18.9) yields the fol-
lowing results:

	 C4 = C3
R1

R2
	 (18.16)

	 R4 =
R2R3

R1
	 (18.17)

The derivation of these equations appears as a problem at the end of 
the chapter.

18.7  ∆-Y, Y-∆ Conversions

The ∆@Y, Y@∆ (or p@T, T@p as defined in Section 8.9) conversions for 
ac circuits are not derived here since the development corresponds 
exactly with that for dc circuits. Taking the ∆@Y configuration shown 
in Fig. 18.48, we find the general equations for the impedances of the Y 
in terms of those for the ∆:

	 Z1 =
ZBZC

ZA + ZB + ZC
	 (18.18)

	 Z2 =
ZAZC

ZA + ZB + ZC
	 (18.19)

	 Z3 =
ZAZB

ZA + ZB + ZC
	 (18.20)

For the impedances of the ∆ in terms of those for the Y, the equations are

	 ZB =
Z1Z2 + Z1Z3 + Z2Z3

Z2
	 (18.21)

	 ZA =
Z1Z2 + Z1Z3 + Z2Z3

Z1
	 (18.22)

	 ZC =
Z1Z2 + Z1Z3 + Z2Z3

Z3
	 (18.23)

Note that each impedance of the Y is equal to the product of the 
impedances in the two closest branches of the ∆, divided by the sum 
of the impedances in the ∆.

R1

E

C3

R2

Galvanometer

R3 R4

C4

+

–

FIG. 18.47
Capacitance comparison bridge.

ZC

Z3

Z1 Z2

ZB ZA

a b

c

FIG. 18.48
∆@Y configuration.
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Further, the value of each impedance of the ∆ is equal to the sum of 
the possible product combinations of the impedances of the Y, divided 
by the impedances of the Y farthest from the impedance to be 
determined.

Drawn in different forms (Fig. 18.49), they are also referred to as the 
T and p configurations.

Z3

Z1 Z2

ZB ZA

ZC

FIG. 18.49
The T and p configurations.

In the study of dc networks, we found that if all of the resistors of the 
∆ or Y were the same, the conversion from one to the other could be 
accomplished using the equation

R∆ = 3RY  or  RY =
R∆

3

For ac networks,

	 Z∆ = 3ZY  or  ZY =
Z∆

3
	 (18.24)

Be careful when using this simplified form. It is not sufficient for all the 
impedances of the ∆ or Y to be of the same magnitude: The angle asso-
ciated with each must also be the same.

EXAMPLE 18.22  Find the total impedance ZT  of the network in 
Fig. 18.50.

4 �
ZT

4 �

3 � 4 �

2 � 3 �

1 3

2

ZC1 3 1 3

2

ZB ZA

2

Z1

Z3

Z2

FIG. 18.50
Converting the upper ∆ of a bridge configuration to a Y.
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Solution: 

ZB = - j 4  ZA = - j 4  ZC = 3 + j 4

 Z1 =
ZBZC

ZA + ZB + ZC
=

(- j 4 Ω)(3 Ω + j 4 Ω)

(- j 4 Ω) + (- j 4 Ω) + (3 Ω + j 4 Ω)

 =
(4 ∠-90°)(5 ∠53.13°)

3 - j 4
=

20 ∠-36.87°
5 ∠-53.13°

 =  4 Ω ∠16.13° = 3.84 Ω + j 1.11 Ω

 Z2 =
ZAZC

ZA + ZB + ZC
=

(- j 4 Ω)(3 Ω + j 4 Ω)

5 Ω ∠-53.13°
 =  4 Ω ∠16.13° = 3.84 Ω + j 1.11 Ω

Recall from the study of dc circuits that if two branches of the Y or ∆ are 
the same, the corresponding ∆ or Y, respectively, will also have two sim-
ilar branches. In this example, ZA = ZB. Therefore, Z1 = Z2, and

Z3 =
ZAZB

ZA + ZB + ZC
=

(- j 4 Ω)(- j 4 Ω)

5 Ω ∠-53.13°

 =
16 Ω ∠-180°
5 ∠-53.13°

= 3.2 Ω ∠-126.87° = -1.92 Ω - j 2.56 Ω

Replace the ∆ by the Y (Fig. 18.51):

 Z1 = 3.84 Ω + j 1.11 Ω   Z2 = 3.84 Ω + j 1.11 Ω
 Z3 = -1.92 Ω - j 2.56 Ω   Z4 = 2 Ω
 Z5 = 3 Ω

Impedances Z1 and Z4 are in series:

 ZT1
= Z1 + Z4 = 3.84 Ω + j 1.11 Ω + 2 Ω = 5.84 Ω + j 1.11 Ω

 = 5.94 Ω ∠10.76°

Impedances Z2 and Z5 are in series:

 ZT2
= Z2 + Z5 = 3.84 Ω + j 1.11 Ω + 3 Ω = 6.84 Ω + j 1.11 Ω

 = 6.93 Ω ∠9.22°

Impedances ZT1
 and ZT2

 are in parallel:

 ZT3
=

ZT1
ZT2

ZT1
+ ZT2

=
(5.94 Ω ∠10.76°)(6.93 Ω ∠9.22°)

5.84 Ω + j 1.11 Ω + 6.84 Ω + j 1.11 Ω

 =
41.16 Ω ∠19.98°

12.68 + j 2.22
=

41.16 Ω ∠19.98°
12.87 ∠9.93°

= 3.198 Ω ∠10.05°

 =  3.15 Ω + j 0.56 Ω

Impedances Z3 and ZT3
 are in series. Therefore,

 ZT = Z3 + ZT3
= -1.92 Ω - j 2.56 Ω + 3.15 Ω + j 0.56 Ω

 = 1.23 Ω - j 2.0 Ω = 2.35 � j−58.41°

EXAMPLE 18.23  Using both the ∆@Y and Y@∆ transformations, find 
the total impedance ZT for the network in Fig. 18.52.

Solution:  Using the ∆-Y transformation, we obtain Fig. 18.53. In this 
case, since both systems are balanced (same impedance in each branch), 

Z3

2

ZT

Z1 Z2

Z5Z4

1 3

FIG. 18.51
The network in Fig. 18.50 following the substitution 

of the Y configuration.
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the center point d′ of the transformed ∆ will be the same as point d of 
the original Y:

ZY =
Z∆

3
=

3 Ω + j 6 Ω
3

= 1 Ω + j 2 Ω

and (Fig. 18.54)

ZT = 2a 1 Ω + j 2 Ω
2

b = 1 � + j 2 �

6 �

ZT 3 �

2 �

2 �

3 �1

2

6 �

3 �

1 �

2 � 1 �1 �

6 � d

3

FIG. 18.52
Example 18.23.

6 �

3 �

2 �

2 �

3 �1

2

6 �

3 �

1 �

2 �

1 �1 �

6 � d�

1

2

3 3

FIG. 18.53
Converting a ∆ configuration to a Y configuration.

ZT

1

2

d,d�

2 �

1 �

2 �

1 �

1 �

1 �

2 �

2 �

1 �

1 �
2 �

2 �

3

FIG. 18.54
Substituting the Y configuration in Fig. 18.53 into the network in Fig. 18.52.
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Using the Y-∆ transformation (Fig. 18.55), we obtain

Z∆ = 3ZY = 3(1 Ω + j 2 Ω) = 3 Ω + j 6 Ω

6 �

3 �

3 �1

2

6 �

3 �

6 �

2 �

2 �

1 �

2 �

1 �1 �

d

1

2

3 3

FIG. 18.55
Converting the Y configuration in Fig. 18.52 to a ∆.

Each resulting parallel combination in Fig. 18.56 will have the fol-
lowing impedance:

 Z′ =
3 Ω + j 6 Ω

2
= 1.5 Ω + j 3 Ω

and	  ZT =
Z′ (2Z′)

Z′ + 2Z′
=

2(Z′)2

3Z′
=

2Z′
3

 =
2(1.5 Ω + j 3 Ω)

3
= 1 � + j 2 �

which compares with the above result.

6 �

ZT
3 �

1

2

6 �
3 �

6 � 6 �

3 �

3 �

6 �

3 �

6 �3 � 3

FIG. 18.56
Substituting the ∆ configuration in Fig. 18.55 into the network in Fig. 18.52.

18.8 C omputer Analysis

PSpice

Nodal Analysis    The first application of PSpice is to determine the 
nodal voltages for the network in Example 18.18 and compare solutions. 
The network appears as shown in Fig. 18.57 using elements that were 
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determined from the reactance level at a frequency of 1 kHz. There is no 
need to continually use 1 kHz. Any frequency will do, but remember to 
use the chosen frequency to find the network components and when set-
ting up the simulation.

For the current sources, choose ISIN so that the phase angle can 
be specified (even though it is 0°), although the symbol does not have 
the arrow used in the text material. The direction must be recognized 
as pointing from the +  to -  sign of the source. That requires that the 
sources I1 and I2 be set as shown in Fig. 18.57. Reverse the source I2 
by using the Mirror Vertically option obtained by right-clicking the 
source symbol on the screen. Setting up the ISIN source is the same 
as that used with the VSIN source. It can be found under the 
SOURCE library, and its attributes are the same as for the VSIN 
source. For each source, set IOFF to 0 A; the amplitude is the peak 
value of the source current. The frequency will be the same for each 
source. Then select VPRINT1 from the SPECIAL library and place 
it to generate the desired nodal voltages. Finally add the remaining 
elements to the network as shown in Fig. 18.57. For each source, 
double-click the symbol to generate the Property Editor dialog box. 
Set AC at the 6 A level for the I1 source and at 4 A for the I2 source, 
followed by Display and Name and Value for each. It appears as 
shown in Fig. 18.57. Double-clicking on each VPRINT1 option also 
provides the Property Editor, so OK can be added under AC, MAG, 
and PHASE. For each quantity, select Display followed by Name 
and Value and OK. Then select Value and VPRINT1 is displayed 
as Value only. Selecting Apply and leaving the dialog box results in 
the listing next to each source in Fig. 18.57. For VPRINT2, first 
change the listing on Value from VPRINT1 to VPRINT2 before 
selecting Display and Apply.

Now select the New Simulation Profile icon, and enter PSpice 18-1 
as the Name followed by Create. In the Simulation Settings dialog box, 
select AC Sweep, and set the Start Frequency and End Frequency at 
1 kHz with 1 for the Points/Decade. Click OK, and select the Run 
PSpice icon; a SCHEMATIC1 screen results. Exiting (X) brings you 
back to the Orcad Capture window. Selecting PSpice followed by View 
Output File results in the display in Fig. 18.58, providing exactly the 

FIG. 18.57
Using PSpice to verify the results of Example 18.18.

 ** Profile: "SCHEMATIC1-PSpice 18-1" 

****     AC ANALYSIS
***********************************
  FREQ           VM(N02841)   VP(N02841)  
  1.000E+03    2.080E+01       -1.269E+02

****     AC ANALYSIS
***********************************
  FREQ           VM(N02859)   VP(N02859)  
  1.000E+03   8.617E+00       -1.509E+01

FIG. 18.58
Output file for the nodal voltages for the network of 

Fig. 18.57.
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same results as obtained in Example 18.18 with V1 = 20.8 V ∠-126.9°. 
The other nodal voltage is 8.617 V ∠-15.09°.

Current-Controlled Current Source (CCCS)    Our interest now 
turns to controlled sources in the PSpice environment. Controlled 
sources are not particularly difficult to apply once a few important 
elements of their use are understood. The network in Fig. 18.14 has a 
current-controlled current source in the center leg of the configura-
tion. The magnitude of the current source is k times the current 
through resistor R1, where k can be greater or less than 1. The result-
ing schematic, appearing in Fig. 18.59, seems quite complex in the 
area of the controlled source, but once you understand the role of each 
component, the schematic is not that difficult to understand. First, 
since it is the only new element in the schematic, let us concentrate on 
the controlled source. Current-controlled current sources (CCCS) are 
called up under the ANALOG library as F and appear as shown in the 
center in Fig. 18.59. Pay attention to the direction of the current in 
each part of the symbol. In particular, note that the sensing current of 
F has the same direction as the defining controlling current in Fig. 18.14. 
In addition, note that the controlled current source also has the same 
direction as the source in Fig. 18.14. If you double-click on the CCCS 
symbol, the Property Editor dialog box appears with the GAIN (k as 
described above) set at 1. In this example, the gain must be set at 0.7, 
so click on the region below the GAIN label and enter 0.7. Then 
select Display followed by Name and Value-Apply-OK. Exit the 
Property Editor, and GAIN = 0.7 appears with the CCCS as shown 
in Fig. 18.59.

FIG. 18.59
Using PSpice to verify the results of Example 18.8.

The IPRINT option can be found in the SPECIAL library. It is used 
to tell the program to list the current in the branch of interest in the out-
put file. If you fail to tell the program which output data you would like, 
it will simply run through the simulation and list specific features of the 
network but will not provide any voltages or currents. In this case, the 
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current I2 through the resistor R2 is desired. Double-clicking on the 
IPRINT component results in the Property Editor dialog box with a 
number of elements that need to be defined—much like that for 
VPRINT. First enter OK beneath AC and follow with Display-Name 
and Value-OK. Repeat for MAG and PHASE, and then select Apply 
before leaving the dialog box. The OK tells the software program that 
these are the quantities that it is “ok” to generate and provide. The pur-
pose of the Apply at the end of each visit to the Property Editor dialog 
box is to “apply” the changes made to the network under investigation. 
When you exit the Property Editor, the three chosen parameters appear 
on the schematic with the OK directive. You may find that the labels 
will appear all over the IPRINT symbol. No problem—just click on 
each, and move to a more convenient location.

The remaining components of the network should be fairly familiar, 
but don’t forget to Mirror Vertically the voltage source E2. In addi-
tion, do not forget to call up the Property Editor for each source and 
set the level of AC, FREQ, VAMPL, and VOFF and be sure that the 
PHASE is set on the default value of 0°. The value appears with each 
parameter in Fig. 18.59 for each source. Always be sure to select 
Apply before leaving the Property Editor. After placing all the com-
ponents on the screen, you must connect them with a Place wire selec-
tion. Normally, this is pretty straightforward. However, with controlled 
sources, it is often necessary to cross over wires without making a con-
nection. In general, when you’re placing a wire over another wire and 
you don’t want a connection to be made, click a spot on one side of the 
wire to be crossed to create the temporary red square. Then cross the 
wire, and click again to establish another red square. If the connection 
is done properly, the crossed wire should not show a connection point 
(a small red dot). In this example, the top of the controlling current 
was connected first from the E1 source. Then a wire was connected 
from the lower end of the sensing current to the point where a 90° turn 
up the page was to be made. The wire was clicked in place at this point 
before crossing the original wire and clicked again before making the 
right turn to resistor R1. You will not find a small red dot where the 
wires cross.

Now for the simulation. In the Simulation Settings dialog box, 
select AC Sweep/Noise with a Start and End Frequency of 1 kHz. 
There will be 1 Point/Decade. Click OK, and select the Run Spice 
key; a SCHEMATIC1 results that should be exited to obtain the Orcad 
Capture screen. Select PSpice followed by View Output File, and 
scroll down until you read AC ANALYSIS (see Fig. 18.60). The mag-
nitude of the desired current is 1.615 mA with a phase angle of 0°, a 
perfect match with the theoretical analysis to follow. One would expect 
a phase angle of 0° since the network is composed solely of resistive 
elements.

The equations obtained earlier using the supermesh approach were

E - I1Z1 - I2Z2 + E2 = 0  or  I1Z1 + I2Z2 = E1 + E2

and	 kI = kI1 = I1 - I2

resulting in	 I1 =
I2

1 - k
=

I2

1 - 0.7
=

I2

0.3
= 3.333I2

so that	 I1(1 kΩ) + I2(1 kΩ) = 7 V  (from above)

becomes	 (3.333I2)1 kΩ + I2(1 kΩ) = 7 V

 ** Profile: "SCHEMATIC1-PSpice 18-2" 

****     AC ANALYSIS
***************************************
  FREQ           IM(V_PRINT1)    IP(V_PRINT1)  
  1.000E+03   1.615E-03              0.000E+00

FIG. 18.60
The output file for the mesh current I2 in Fig. 18.14.
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or	 (4.333 kΩ)I2 = 7 V

and	 I2 =
7 V

4.333 kΩ
= 1.615 mA j0°

confirming the computer solution.

Multisim

Multisim will now be applied to the multisource network of Fig. 18.24 
to determine the nodal voltage V1. In Example 18.14 the frequency was 
not specified, so a frequency of 10 kHz was chosen to permit finding the 
capacitive and inductive values as indicated in Fig. 18.61.

FIG. 18.61
Multisim analysis of the network of Fig. 18.24

The voltage and current sources were given peak values derived from 
the rms values of Fig. 18.24 along with a phase angle of 0° for each 
source. The construction details are similar to those applied in previous 
chapters with the voltage source obtained through Place Source-
SIGNAL_VOLTAGE_SOURCES-AC_VOLTAGE-OK and the current 
source through Place Source-SIGNAL_CURRENT_SOURCES-AC_
CURRENT-OK. A right-click on the current source will produce a list 
of options of which Flip vertically is chosen to reverse the direction of the 
arrow in the symbol. A double-click of the voltage source will produce an 
AC_VOLTAGE dialog box in which the peak value, frequency, and phase 
angle can be set. Select OK and it will appear on the screen. A similar 
double-click of the current source will result in an AC_CURRENT dialog 
box in which the values of the current source can be set. A multimeter is 
then set in the ac voltage mode and connected as shown in Fig. 18.61.

If the Run option is then chosen, the multimeter will show an rms 
reading of 9.947 V, which is a very close match with the longhand solu-
tion of 9.95 V obtained in Example 18.14.
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Problems

SECTION 18.2  Independent versus Dependent 
(Controlled) Sources

	 1.	 Discuss, in your own words, the difference between a con-
trolled and an independent source.

SECTION 18.3  Source Conversions

	 2.	 Convert the voltage source in Fig. 18.62 to a current source.

3 �

E  =  90 V  ∠  30°
5 �

+

–
5 �

FIG. 18.62
Problem 2.

	 3.	 Convert the current source in Fig. 18.63 to a voltage source.

8 � 3 A � 120°10 � I

FIG. 18.63
Problem 3.

	 4.	 Convert the voltage source in Fig. 18.64(a) to a current 
source and the current source in Fig. 18.64(b) to a voltage 
source.

(a) (b)

R

5 k�

+

–
V
+

–
hI R 40 k�I

(h = 40)

V

(� = 16)

FIG. 18.64
Problem 4.

SECTION 18.4  Mesh Analysis

	 5.	 Write the mesh equations for the network of Fig. 18.65. 
Determine the current through the resistor R. +

E1  =  10 V ∠ 0°
–

R

4 � 8 �

6 �

+

–
E2  =  40 V ∠ 60° 

FIG. 18.65
Problems 5 and 40.

	 6.	 Write the mesh equations for the network of Fig. 18.66.

+

–

R 50 � 40 �

+

–
E2 25 V ∠0°    

60 �

E1  =  6 V ∠    45°

FIG. 18.66
Problem 6.
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	 7.	 Write the mesh equations for the network of Fig. 18.67. 
Determine the current through the resistor R1.

+
E1  =
20  V ∠ 50°

–

R1

12 �
1 �

E3 = 40 V  ∠  0°

12 � 3 �

E2

+

–

+

–
60 V  ∠ 70°

FIG. 18.67
Problems 7 and 21.

	*8.	 Write the mesh equations for the network of Fig. 18.68. 
Determine the current through the resistor R1.

+

–

4 �

+

–

R1

8 �

f = 2 kHz

f = 2 kHz
22 mF 39 mF

220 mH

110 mH

E2  =  120 V ∠ 120°
E  =  60 V ∠0°

FIG. 18.68
Problem 8.

	*9.	 Write the mesh equations for the network of Fig. 18.69. 
Determine the current through the resistor R1.

3 �

10 �

15 �
+

–

4 �

R1

+

–
E1  =  220 V ∠ 0° E2  =  100 V ∠ 90°

15 �

FIG. 18.69
Problems 9 and 41.

	*10.	 Write the mesh equations for the network of Fig. 18.70. 
Determine the current through the resistor R1.

R1

6 �

E1  =  25 V ∠ ∠
 0°

8 �

5 � 4 �

7 �

6 � 4 �

+

–

+

–

E2  =  40 V  60°

FIG. 18.70
Problem 10.
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	*16.	 Write the mesh equations for the network of Fig. 18.76, and 
determine the current through the inductive element.

6 mA ∠ 0° 6 k�

4 k�

1 k�

+

–

0.1 Vs

+
10 V ∠ 0°

–

Vs

FIG. 18.76
Problems 16 and 44.

SECTION 18.5  Nodal Analysis

	17.	 Determine the nodal voltages for the network of Fig. 18.77.

I1  =  2 m A    ∠0° I2  =  6 m A    ∠30°

2 k�

8 k�4 k�

FIG. 18.77
Problem 17.

	18.	 Determine the nodal voltages for the network of Fig. 18.78.

2 �

I2  =  4 A ∠ 80°

3 �

4 �

6 � 8 �

I1  =  0.6 A ∠ 20°

FIG. 18.78
Problems 18 and 45.

5 V∠ 0° 10 k�

2.2 k�

5 k�

+

–

4 mA ∠ 0°

+
20 V∠ 0°

–

FIG. 18.75
Problems 15 and 43.

	*15.	 Write the mesh equations for the network of Fig. 18.75, and 
determine the current through the 10 kΩ resistor.

	11.	 Write the mesh equations for the network of Fig. 18.71. 
Determine the current through the resistor R1.

5 �

E1  =  25 V ∠ 0°

5 �

20 �

15 �+

–

R1

10 �

+

–
E2  =  75 V ∠ 20°

6 �

20 �

10 � 20 �

80 �

FIG. 18.71
Problems 11 and 22.

	12.	 Using mesh analysis, determine the current IL (in terms of V) 
for the network of Fig. 18.72.

XL 4 k�

+

–
28 V

+

–

6 k�

10 k�

rp

Rp

2 k�RL

VL

IL

+

–
V

FIG. 18.72
Problem 12.

XL 4 k�

+

–

60I 40 k�

0.2 k�

R VL

I

XC

R1 8 k�

IL

FIG. 18.73
Problem 13.

10 V∠ 0° 2 k� Vx

+

–

1 k�

6 Vx

+

–

4 k�
+

–

FIG. 18.74
Problems 14 and 42.

	13.	 Using mesh analysis, determine the current IL (in terms of I) 
for the network of Fig. 18.73.

	*14.	 Write the mesh equations for the network of Fig. 18.74, and 
determine the current through the 1 kΩ and 2 kΩ resistors.
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	*25.	 Write the nodal equations for the network in Fig. 18.83, and 
find the voltage across the 1 kΩ resistor.

	19.	 Determine the nodal voltages for the network of Fig. 18.79.

+

–

2 �

5 �

I  =  4A  ∠90º

f = 10 kHz

f = 10 kHz

0.1 mH

4.7 mF

E = 30 V ∠50°

FIG. 18.79
Problem 19.

4 �

+

–
E  =  50 V ∠ 120°

10 �

8 �

2 � I  =  0.8 A ∠ 70°
10 �

FIG. 18.80
Problem 20.

	20.	 Determine the nodal voltages for the network of Fig. 18.80.

	  21.	 Determine the nodal voltages for the network of Fig. 18.69.

	*22.	 Determine the nodal voltages for the network of Fig. 18.71.

	*23.	 Determine the nodal voltages for the network of Fig. 18.81.

I2

5 �

3 A ∠ 150°
4 �

1 �

8 �

4 �

I1  =  2 A ∠ 30°

FIG. 18.81
Problem 23.

6 �

I2  =  6 A ∠ 90°

4 �

5 � 4 �

4 A ∠ 0°

8 �

2 �I1

FIG. 18.82
Problem 24.

	*24.	 Determine the nodal voltages for the network of Fig. 18.82.

5 mA ∠ 0°

2 k�

1 k�

Ix

8 mA ∠ 0°4 k�

4Ix

FIG. 18.83
Problems 25 and 46.

	*26.	 Write the nodal equations for the network of Fig. 18.84, and 
find the voltage across the capacitive element.

12 mA ∠ 0°

2 k�

1 k� 4 mA ∠ 0°3 k�

10 V ∠ 0°
+–

FIG. 18.84
Problems 26 and 47.
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	*27.	 Write the nodal equations for the network of Fig. 18.85, and 
find the voltage across the 2 kΩ resistor.

12 mA ∠ 0°

1 k�

2 k�

2 mA ∠ 0°

+ –Vx

3.3 k�

6Vx

+

–

FIG. 18.85
Problems 27 and 48.

	*28.	 Write the nodal equations for the network of Fig. 18.86, and 
find the voltage across the 2 kΩ resistor.

5 mA ∠ 0°

1 k�

2 k�

+–

I1

1 k�

2Vx

Vx

+

–

3I1

FIG. 18.86
Problems 28 and 49.

R1 1 k�

I1

Ei

+

–
R250 k�50I1 RL 50 k�50I2

R3

1 k�

VL

+

–

I2

FIG. 18.87
Problem 29.

	*29.	 For the network of Fig. 18.87, determine the voltage VL in 
terms of the voltage Ei.

SECTION 18.6  Bridge Networks (ac)

	30.	 For the bridge network in Fig. 18.88:
	 a.	 Is the bridge balanced?
	 b.	 Using mesh analysis, determine the current through the 

capacitive reactance.
	 c.	 Using nodal analysis, determine the voltage across the 

capacitive reactance.

R1

5 k�

Es  =  10 V ∠ 0°

+

–

XL1

2.5 k�

XL2

4 k�

5 k�

XC

Rs 1 k�
R2

8 k�

FIG. 18.88
Problem 30.
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SECTION 18.7  ∆-Y, Y-∆ Conversions

	36.	 Using the ∆@Y or Y@∆ conversion, determine the current I 
for the network of Fig. 18.93.

	31.	 For the bridge network in Fig. 18.89:
	 a.	 Is the bridge balanced?
	 b.	 Using mesh analysis, determine the current through the 

capacitive reactance.
	 c.	 Using nodal analysis, determine the voltage across the 

capacitive reactance.

R1

4 k�

Es  =  10 V ∠ 0°

+

–

XL

4 k� 4 k�

4 k�
XC

Rs 1 k�
R2

4 k�
R3

FIG. 18.89
Problem 31.

	32.	 The Hay bridge in Fig. 18.90 is balanced. Using Eq. (18.3), 
determine the unknown inductance Lx and resistance Rx.

R1

1 k�

E

+

–

Lx

0.1 k�

1 mF IG  =  0

CRs 1 k�
R2

R3

q  =  1000

Rx

0.1 k�

FIG. 18.90
Problem 32.

	33.	 Determine whether the Maxwell bridge in Fig. 18.91 is bal-
anced (v = 2000 rad/s).

R1  =  2 k�

E

+

– Lx

4 k�

2 mF
IG

C1

R2

R3q  =  2000
Rx

0.5 k�

1 k�

6 H

FIG. 18.91
Problem 33.

	34.	 Derive the balance equations (18.16) and (18.17) for the 
capacitance comparison bridge.

	35.	 Determine the balance equations for the inductance bridge 
in Fig. 18.92.

R1

E

+

–
L3 Lx

Rs

R2

R3 Rx

FIG. 18.92
Problem 35.

8 �

E  =  120 V ∠ 0°
+

–

8 �

5 �

I

4 �

6 �

FIG. 18.93
Problem 36.

9 �

E  =  60 V ∠ 0°
+

– 9 �12 �

I

12 �

3 � 3 �

12 �

2 �

9 �

FIG. 18.94
Problem 37.

	37.	 Using the ∆@Y or Y@∆ conversion, determine the current I 
for the network of Fig. 18.94.
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	*44.	 Determine the mesh currents for the network of Fig. 18.76.

	  45.	 Determine the nodal voltages for the network of Fig. 18.78.

	*46.	 Determine the nodal voltages for the network of Fig. 18.83.

	*47.	 Determine the nodal voltages for the network of Fig. 18.84.

	*48.	 Determine the nodal voltages for the network of Fig. 18.85.

	*49.	 Determine the nodal voltages for the network of Fig. 18.86.

Glossary

Bridge network  A network configuration having the appear-
ance of a diamond in which no two branches are in series or 
parallel.

Capacitance comparison bridge  A bridge configuration hav-
ing a galvanometer in the bridge arm that is used to determine 
an unknown capacitance and associated resistance.

Delta (∆) configuration  A network configuration having the 
appearance of the capital Greek letter delta.

Dependent (controlled) source  A source whose magnitude and/
or phase angle is determined (controlled) by a current or volt-
age of the system in which it appears.

Hay bridge  A bridge configuration used for measuring the 
resistance and inductance of coils in those cases where the 
resistance is a small fraction of the reactance of the coil.

Independent source  A source whose magnitude is independent 
of the network to which it is applied. It displays its terminal 
characteristics even if completely isolated.

Maxwell bridge  A bridge configuration used for inductance 
measurements when the resistance of the coil is large enough 
not to require a Hay bridge.

Mesh analysis  A method through which the loop (or mesh) cur-
rents of a network can be determined. The branch currents of 
the network can then be determined directly from the loop 
currents.

Nodal analysis  A method through which the nodal voltages of a 
network can be determined. The voltage across each element 
can then be determined through application of Kirchhoff’s 
voltage law.

Source conversion  The changing of a voltage source to a cur-
rent source, or vice versa, which will result in the same termi-
nal behavior of the source. In other words, the external 
network is unaware of the change in sources.

Wye (Y) configuration  A network configuration having the 
appearance of the capital letter Y.

	  38.	 Using the ∆@Y or Y@∆ conversion, determine the current I 
for the network of Fig. 18.95.

+

–
12 �

I

16 �

3 �3 �

12 � 12 �
3 �

16 � 16 �

E  =  220 V ∠ 0°

FIG. 18.95
Problem 38.

	  39.	 Using the ∆@Y or Y@∆ conversion, determine the current I 
for the network of Fig. 18.96.

+

–

I

5 �

5 �

5 �

5 � 5 �

5 �

E  =  200 V ∠ 30°

FIG. 18.96
Problem 39.

SECTION 18.8  Computer Analysis PSpice  
or Multisim

	  40.	 Determine the mesh currents for the network of Fig. 18.65.

	  41.	 Determine the mesh currents for the network of Fig. 18.69.

	*42.	 Determine the mesh currents for the network of Fig. 18.74.

	*43.	 Determine the mesh currents for the network of Fig. 18.75.



Network Theorems (ac)

19.1  Introduction

This chapter parallels Chapter 9, which dealt with network theorems as applied to dc net-
works. Reviewing each theorem in Chapter 9 before beginning this chapter is recommended 
because many of the comments offered there are not repeated here.

Due to the need for developing confidence in the application of the various theorems to 
networks with controlled (dependent) sources, some sections have been divided into two 
parts: independent sources and dependent sources.

Theorems to be considered in detail include the superposition theorem, Thévenin’s and 
Norton’s theorems, and the maximum power transfer theorem. The substitution and reciproc-
ity theorems and Millman’s theorem are not discussed in detail here because a review of 
Chapter 9 will enable you to apply them to sinusoidal ac networks with little difficulty.

19.2  Superposition Theorem

You will recall from Chapter 9 that the superposition theorem eliminated the need for solv-
ing simultaneous linear equations by considering the effects of each source independently. To 
consider the effects of each source, we had to remove the remaining sources. This was accom-
plished by setting voltage sources to zero (short-circuit representation) and current sources to 
zero (open-circuit representation). The current through, or voltage across, a portion of the 
network produced by each source was then added algebraically to find the total solution for 
the current or voltage.

The only variation in applying this method to ac networks with independent sources is 
that we are now working with impedances and phasors instead of just resistors and real 
numbers.

The superposition theorem is not applicable to power effects in ac networks since we are 
still dealing with a nonlinear relationship. That is, to repeat an earlier postulate:

the sum of the powers delivered by each of two or more ac sources of the same frequency 
is not equal to the power delivered by all the sources. However, for a network with a dc 
source and ac source the total power can be determined by the sum of the powers 
delivered by each source.

Network Theorems (ac)

•	 Be able to apply the superposition theorem to ac 
networks with independent, dependent, and dc 
sources.

•	 Become proficient in applying Thévenin’s theorem 
to ac networks with independent, dependent, and 
dc sources.

•	 Be able to apply Norton’s theorem to ac networks 
with independent, dependent, and dc sources.

•	 Clearly understand the conditions that must be 
met for maximum power transfer to a load in an 
ac network with independent or dependent 
sources.

Objectives

1919

Th
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It can be applied to networks with sources of different frequencies 
only if the total response for each frequency is found independently and 
the results are expanded in a nonsinusoidal expression, as appearing in 
Chapter 26.

One of the most frequent applications of the superposition theorem is 
to electronic systems in which the dc and ac analyses are treated sepa-
rately and the total solution is the sum of the two. It is an important 
application of the theorem because the impact of the reactive elements 
changes dramatically in response to the two types of independent 
sources. In addition, the dc analysis of an electronic system can often 
define important parameters for the ac analysis. Example 19.4 demon-
strates the impact of the applied source on the general configuration of 
the network.

We first consider networks with only independent sources to provide 
a close association with the analysis of Chapter 9.

Independent ac Sources of the Same Frequency

The first two examples are networks with independent ac sources of the 
same frequency. If the sources had different frequencies, the impedances 
of the elements would change with each applied frequency.

EXAMPLE 19.1  Using the superposition theorem, find the current I 
through the 4 Ω reactance (XL2

) in Fig. 19.1.

XL2
4 �

–

+

XC 3 �
I

E2  =  5 V ∠ 0°E1  =  10 V ∠ 0°

–

+

XL1
4 �

FIG. 19.1
Example 19.1.

Solution:  For the redrawn circuit (Fig. 19.2),

 Z1 = + jXL1
= j 4Ω

 Z2 = + jXL2
= j 4Ω

 Z3 = - jXC = - j 3Ω

Considering the effects of the voltage source E1 (Fig. 19.3), we have

 Z2 73 =
Z2Z3

Z2 + Z3
=

( j 4 Ω)(- j 3 Ω)

j 4 Ω - j 3 Ω
=

12 Ω
j

= - j 12 Ω

 = 12 Ω ∠-90°

 Is1
=

E1

Z2 73 + Z1
=

10 V ∠0°
- j 12 Ω + j 4 Ω

=
10 V ∠0°

8 Ω ∠-90°
 = 1.25 A ∠90°

–

+

I

E2E1 –

+

Z1

Z2

Z3

FIG. 19.2
Assigning the subscripted impedances to the network 

in Fig. 19.1.
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and

 I′ =
Z3Is1

Z2 + Z3
  (current divider rule)

 =
(- j 3 Ω)( j 1.25 A)

j 4 Ω - j 3 Ω
=

3.75 A

j 1
= 3.75 A ∠-90°

Considering the effects of the voltage source E2 (Fig. 19.4), we have

I�

E1

–

+

Z1

Z2

Z3

E1

–

+

Z1

Z2�3

Is1
Is1

FIG. 19.3
Determining the effect of the voltage source E1 on the current I of the network 

in Fig. 19.1.

I�
E2

–

+

Z1

Z2

Z3

E2

–

+

Z3

Z1�2

Is2
Is2

FIG. 19.4
Determining the effect of the voltage source E2 on the current I  

of the network in Fig. 19.1.

 Z1 72 =
Z1

N
=

j 4 Ω
2

= j 2 Ω

 Is2
=

E2

Z1 72 + Z3
=

5 V ∠0°
j 2 Ω - j 3 Ω

=
5 V ∠0°

1 Ω ∠-90°
= 5 A ∠90°

and	 I″ =
Is2

2
= 2.5 A ∠90°

The resultant current through the 4 Ω reactance XL2
 (Fig. 19.5) is

 I = I′ - I″
 = 3.75 A ∠-90° - 2.50 A ∠90° = - j 3.75 A - j 2.50 A

 = - j 6.25 A

 I = 6.25 A j−90°

4 � I

I′

I″

XL2

FIG. 19.5
Determining the resultant current for the network  

in Fig. 19.1.
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EXAMPLE 19.2  Using superposition, find the current I through the 
6 Ω resistor in Fig. 19.6.

XC  =  8 �

I

E1  =  20 V ∠ 30°

–

+ R  =  6 �XL  =  6 �

I1 2 A ∠ 0°

FIG. 19.6
Example 19.2.

–

I

Z1 Z2

E1

+

I1

FIG. 19.7
Assigning the subscripted impedances to the  

network in Fig. 19.6.

Solution:  For the redrawn circuit (Fig. 19.7),

Z1 = j 6 Ω  Z2 = 6 Ω - j 8 Ω

Consider the effects of the current source (Fig. 19.8). Applying the cur-
rent divider rule, we have

 I′ =
Z1I1

Z1 + Z2
=

(j 6 Ω)(2 A)

j 6 Ω + 6 Ω - j 8 Ω
=

j 12 A

6 - j 2

 =
12 A ∠90°

6.32 ∠-18.43°
 I′ = 1.9 A ∠108.43°

Consider the effects of the voltage source (Fig. 19.9). Applying Ohm’s 
law gives us

 I″ =
E1

ZT
=

E1

Z1 + Z2
=

20 V ∠30°
6.32 Ω ∠-18.43°

 = 3.16 A ∠48.43°

The total current through the 6 Ω resistor (Fig. 19.10) is

 I = I′ + I″
 = 1.9 A ∠108.43° + 3.16 A ∠48.43°
 = (-0.60 A + j 1.80 A) + (2.10 A + j 2.36 A)

 = 1.50 A + j 4.16A

 I = 4.42 A j70.2°

EXAMPLE 19.3  Using superposition, find the voltage across the 6 Ω 
resistor in Fig. 19.6. Check the results against V6Ω = I16 Ω2, where I is 
the current found through the 6 Ω resistor in Example 19.2.

Solution:  For the current source,

V′6Ω = I′(6 Ω) = (1.9 A ∠108.43°)(6 Ω) = 11.4 V ∠108.43°

For the voltage source,

V″6Ω = I″(6) = (3.16 A ∠48.43°)(6 Ω) = 18.96 V ∠48.43°

I�

Z1 Z2

I1

FIG. 19.8
Determining the effect of the current source I1 on the 

current I of the network in Fig. 19.6.

I�

Z1 Z2

–

E1

+

FIG. 19.9
Determining the effect of the voltage source E1 on 

the current I of the network in Fig. 19.6.

I

I′

R

6 �
I″

FIG. 19.10
Determining the resultant current I for the network 

in Fig. 19.6.
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The total voltage across the 6 Ω resistor (Fig. 19.11) is

 V6Ω = V′6Ω + V″6Ω

 = 11.4 V ∠108.43° + 18.96 V ∠48.43°
 = (-3.60 V + j 10.82 V) + (12.58 V + j 14.18 V)

 = 8.98 V + j 25.0 V

 V6Ω = 26.5 V j70.2°

Checking the result, we have

 V6Ω = I(6 Ω) = (4.42 A ∠70.2°)(6 Ω)

 = 26.5 V j70.2°  (checks)

Independent dc and ac Sources

In the next example a dc source and ac source are present. The analysis 
with each source will be performed independently and the total result for 
the voltage or current will be the sum of the two sources. The total power 
can be determined by the sum of the power delivered by each source as 
demonstrated below:

The effective value of the resulting voltage is determined by the fol-
lowing equation as introduced in Eq. (13.35):

Veff = 2V2
dc + V2

rms

The power to the load is then

P =
V2

eff

R
=

12V2
dc + V2

rms22

R
=

V2
dc

R
+

V2
rms

R
= Pdc + Pac

which breaks down to the sum of the dc and ac power distributions.

EXAMPLE 19.4  For the network of Fig. 19.12:

	 a.	 Determine the sinusoidal expression for the voltage y3.
	 b.	 Calculate the power delivered to R3.

R

6 �

V″6�+ –

V′6�+ –

V6�+ –

FIG. 19.11
Determining the resultant voltage V6Ω for the 

network in Fig. 19.6.

–

+

R2 1 k�

R1

0.5 k�

XL

2 k�

R3 3 k� v3XC 10 k�E2  =  4 V ∠0°
–

+

E1  =  12 V

FIG. 19.12
Example 19.4.

Solutions: 

	 a.	 For the dc analysis, the capacitor can be replaced by an open-circuit 
equivalent and the inductor by a short-circuit equivalent. The result 
is the network in Fig. 19.13.

–

+

R2 1 k�

R1

0.5 k�

R3 3 k� V3

E1  =  12 V

FIG. 19.13
Determining the effect of the dc voltage source E1 on 

the voltage y3 of the network in Fig. 19.12.
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The resistors R1 and R3 are then in parallel, and the voltage V3 
can be determined using the voltage divider rule:

R′ = R1 7R3 = 0.5 kΩ 73 kΩ = 0.429 kΩ

and	   V3 =
R′E1

R′ + R2

 =
(0.429 kΩ)(12 V)

0.429 kΩ +  1 kΩ
=

5.148 V

1.429

 V3  ≅   3.6 V

For the ac analysis, the dc source is set to zero and the network is 
redrawn, as shown in Fig. 19.14.

XC  =  10 k�
–

+
R2  =  1 k�

R1

0.5 k�

R3  =  3 k� V3

XL

2 k�

E2  =  4 V ∠0°
–

+

FIG. 19.14
Redrawing the network in Fig. 19.12 to determine the effect of the  

ac voltage source E2.

The block impedances are then defined as in Fig. 19.15, and 
series-parallel techniques are applied as follows:

 Z1 = 0.5 kΩ ∠0°
 Z2 = (R2 ∠0° 7 (XC ∠-90°)

 =
(1 kΩ ∠0°)(10 kΩ ∠-90°)

1 kΩ - j 10 kΩ
=

10 kΩ ∠-90°
10.05 ∠-84.29°

 = 0.995 kΩ ∠-5.71°
 Z3 = R3 + jXL = 3 kΩ + j 2 kΩ = 3.61 kΩ ∠33.69°

and

 ZT = Z1 + Z2 7Z3

 = 0.5 kΩ + (0.995 kΩ ∠-5.71°) 7 (3.61 kΩ ∠33.69°)
 = 1.312 kΩ ∠1.57°

Calculator Solution:  Performing the above on the TI-89 calculator 
requires the sequence of steps in Fig. 19.16.

–

Is

Z1

Z2E2

+

Z3

ZT

V3

–

+

I3

FIG. 19.15
Assigning the subscripted impedances to the network 

in Fig. 19.14.

. EE 3 . 9 9 5 3EE

1 3 6 1 EE

33 6

3EE . 7

. 3 3 3+

+
(-)

(-)

3

9 9 5

5 7

5

(

( (

(

((2ND

2ND 2ND

2ND

2ND

2ND. .

..

)

) )

)

)

)9

5

6 9 2ND.EE163

MATH  °

MATH  °

MATH  °
MATH  °

∠

∠

∠

∠

Polar ENTER 1311.60  1.55∠

÷
1

FIG. 19.16
Determining the total impedance for the network of Fig. 19.12.
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Is =
E2

ZT
=

4 V ∠0°
1.312 kΩ ∠1.57°

= 3.05 mA ∠-1.57°

The current divider rule gives

 I3 =
Z2Is

Z2 + Z3
=

(0.995 kΩ ∠-5.71°)(3.05 mA ∠-1.57°)
0.995 kΩ ∠-5.71° + 3.61 kΩ ∠33.69°

 = 0.686 mA ∠-32.74°

with

 V3 = (I3 ∠u)(R3 ∠0°)
 = (0.686 mA ∠-32.74°)(3 kΩ ∠0°)
 = 2.06 V j−32.74°

The total solution is

 y3 = y3(dc) + y3(ac)

 = 3.6 V + 2.06 V ∠-32.74°
 y3 = 3.6 + 2.91 sin(Vt − 32.74°)

The result is a sinusoidal voltage having a peak value of 2.91 V 
riding on an average value of 3.6 V, as shown in Fig. 19.17.

	 b.	 The total power delivered is determined by

 PT =
V2

dc

R
+

V2
rms

R

 =
(3.6 V)2

3 kΩ
+

[(0.707)(2.91 V)]2

3 kΩ
 = 4.32 mW + 1.41 mW

 = 5.73 mW

Dependent ac Sources

For dependent sources in which the controlling variable is not deter-
mined by the network to which the superposition theorem is to be 
applied, the application of the theorem is basically the same as for inde-
pendent sources. The solution obtained will simply be in terms of the 
controlling variables.

EXAMPLE 19.5  Using the superposition theorem, determine the cur-
rent I2 for the network in Fig. 19.18. The quantities m and h are constants.

6.51 V

3.6 V

0.69 V
0

v3
32.74°

qt

FIG. 19.17
The resultant voltage y3 for the network  

in Fig. 19.12.

–

+ R2 6 �

XL 8 �

hI

R1

4 �
I2I

–+ V

V

FIG. 19.18
Example 19.5.
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Solution:  With a portion of the system redrawn (Fig. 19.19),

Z1 = R1 = 4 Ω    Z2 = R2 + jXL = 6 Ω + j 8 Ω

For the voltage source (Fig. 19.20),

 I′ =
mV

Z1 + Z2
=

mV

4 Ω + 6 Ω + j 8 Ω
=

mV

10 Ω + j 8 Ω

 =
mV

12.8 Ω ∠38.66°
= 0.078 mV>Ω ∠-38.66°

For the current source (Fig. 19.21),

 I″ =
Z1(hI)

Z1 + Z2
=

(4 Ω)(hI)
12.8 Ω ∠38.66°

= 4(0.078)hI ∠-38.66°

 = 0.312hI ∠-38.66°

The current I2 is

 I2 = I′ + I″
 = 0.078 m V>Ω ∠-38.66° + 0.312hI ∠-38.66°

For V = 10 V ∠0°, I = 20 mA ∠0°, m = 20, and h = 100,

 I2 = 0.078(20)(10 V ∠0°)>Ω ∠-38.66°
+0.312(100)(20 mA ∠0°)∠-38.66°

 = 15.60 A ∠-38.66° + 0.62 A ∠-38.66°
 I2 = 16.22 A j−38.66°

For dependent sources in which the controlling variable is deter-
mined by the network to which the theorem is to be applied, the depend-
ent source cannot be set to zero unless the controlling variable is also 
zero. For networks containing dependent sources (as in Example 19.5) 
and dependent sources of the type just introduced above, the superposi-
tion theorem is applied for each independent source and each dependent 
source not having a controlling variable in the portions of the network 
under investigation. It must be reemphasized that dependent sources are 
not sources of energy in the sense that, if all independent sources are 
removed from a system, all currents and voltages must be zero.

EXAMPLE 19.6  Determine the current IL through the resistor RL in 
Fig. 19.22.

Solution:  Note that the controlling variable V is determined by the 
network to be analyzed. From the above discussions, it is understood 
that the dependent source cannot be set to zero unless V is zero. If we set 
I to zero, the network lacks a source of voltage, and V = 0 with 
mV = 0. The resulting IL under this condition is zero. Obviously, there-
fore, the network must be analyzed as it appears in Fig. 19.22, with the 
result that neither source can be eliminated, as is normally done using 
the superposition theorem.

Applying Kirchhoff’s voltage law, we have

VL = V + mV = (1 + m)V

and	 IL =
VL

RL
=

(1 + m)V

RL

–

Z1

+

Z2

I2

hI V

FIG. 19.19
Assigning the subscripted impedances to the network 

in Fig. 19.18.

–

Z1

  V

+

Z2

I�

FIG. 19.20
Determining the effect of the voltage-controlled 

voltage source on the current I2 for the network in 
Fig. 19.18.

Z1

Z2

I�

hI1

FIG. 19.21
Determining the effect of the current-controlled 

current source on the current I2 for the network in 
Fig. 19.18.

RL VL

mV
– +

ILI1

R1 VI
–

+

FIG. 19.22
Example 19.6.
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The result, however, must be found in terms of I since V and mV are 
only dependent variables.

Applying Kirchhoff’s current law gives us

I = I1 + IL =
V
R1

+
(1 + m)V

RL

and	 I = Va 1

R1
+

1 + m

RL
b

or	 V =
I

(1>R1) + [(1 + m)>RL]

Substituting into the above yields

IL =
(1 + m)V

RL
=

(1 + m)

RL
 a I

(1>R1) + [(1 + m)>RL]
b

Therefore,

IL =
(1 + M)R1I

RL + (1 + M)R1

19.3 T hévenin’s Theorem

Thévenin’s theorem, as stated for sinusoidal ac circuits, is changed 
only to include the term impedance instead of resistance; that is,

any two-terminal linear ac network can be replaced with an equivalent 
circuit consisting of a voltage source and an impedance in series, as 
shown in Fig. 19.23.

Since the reactances of a circuit are frequency dependent, the Thévenin 
circuit found for a particular network is applicable only at one frequency.

The steps required to apply this method to dc circuits are repeated 
here with changes for sinusoidal ac circuits. As before, the only change 
is the replacement of the term resistance with impedance. Again, 
dependent and independent sources are treated separately.

Example 19.9, the last example of the independent source section, 
includes a network with dc and ac sources to establish the groundwork 
for possible use in the electronics area.

Independent ac and dc Sources

1.	 Remove that portion of the network across which the Thévenin 
equivalent circuit is to be found.

2.	 Mark ( , •, and so on) the terminals of the remaining two-terminal 
network.

3.	 Calculate ZTh by first setting all voltage and current sources to 
zero (short circuit and open circuit, respectively) and then finding 
the resulting impedance between the two marked terminals.

4.	 Calculate ETh by first replacing the voltage and current sources 
and then finding the open-circuit voltage between the marked 
terminals.

5.	 Draw the Thévenin equivalent circuit with the portion of the cir-
cuit previously removed replaced between the terminals of the 
Thévenin equivalent circuit.

–

+

ZTh

ETh

FIG. 19.23
Thévenin equivalent circuit for ac networks.
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EXAMPLE 19.7  Find the Thévenin equivalent circuit for the network 
external to resistor R in Fig. 19.24.

Solution: 

Steps 1 and 2 (Fig. 19.25):

Z1 = jXL = j 8 Ω    Z2 = - jXC = - j 2 Ω

R2 �

–

+

E  =  10 V ∠ 0°

XL  =  8 �

XC

Thévenin

FIG. 19.24
Example 19.7.

E  =  10 V ∠ 0°
–

+

Z1

Z2

Thévenin

FIG. 19.25
Assigning the subscripted impedances to the network in Fig. 19.24.

Step 3 (Fig. 19.26):

 ZTh =
Z1Z2

Z1 + Z2
=

(j 8 Ω)(- j 2 Ω)

j 8 Ω - j 2 Ω
=

- j2 16 Ω
j 6

=
16 Ω

6 ∠90°
 = 2.67 � j−90°

Z1

Z2
ZTh

FIG. 19.26
Determining the Thévenin impedance 

for the network in Fig.19.24.

Z1

Z2 ETh

–

+

E

+

–

FIG. 19.27
Determining the open-circuit Thévenin 
voltage for the network in Fig. 19.24.

–

+

ETh  =  3.33 V ∠  – 180°

ZTh

R

ZTh  =  2.67 � ∠ –90°

–

+

ETh  =  3.33 V ∠  – 180° R

XC  =  2.67 �

FIG. 19.28
The Thévenin equivalent circuit for the network in Fig. 19.24.

Step 4 (Fig. 19.27):

 ETh =
Z2E

Z1 + Z2
  (voltage divider rule)

 =
(- j 2 Ω)(10 V)

j 8 Ω - j 2 Ω
=

- j 20 V

j 6
= 3.33 V j−180°

Step 5: The Thévenin equivalent circuit is shown in Fig. 19.28.
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EXAMPLE 19.8  Find the Thévenin equivalent circuit for the network 
external to branch a@a′ in Fig. 19.29.

–

+

R3

7 �

R1

6 �

E1

XL1

8 �

R2 3 �

XL2  
=  5 �

10 V ∠ 0°
XC 4 �

a

–

+

E2 30 V ∠ 15°

a� Thévenin

FIG. 19.29
Example 19.8.

Solution: 

Steps 1 and 2 (Fig. 19.30): Note the reduced complexity with subscripted 
impedances:

 Z1 = R1 + jXL1
= 6 Ω + j 8 Ω

 Z2 = R2 - jXC = 3 Ω - j 4 Ω
 Z3 = + jXL2

= j 5 Ω

E1

–

+

Z1

Z2

Z3

10 V ∠ 0°

a

a� Thévenin

FIG. 19.30
Assigning the subscripted impedances for the network in Fig. 19.29.

Z1

Z2

Z3
a

a�

ZTh

FIG. 19.31
Determining the Thévenin impedance for the network in Fig. 19.29.

Step 3 (Fig. 19.31):

 ZTh = Z3 +
Z1Z2

Z1 + Z2
= j 5 Ω +

(10 Ω ∠53.13°)(5 Ω ∠-53.13°)
(6 Ω + j 8 Ω) + (3 Ω - j 4 Ω)

 = j 5 +
50 ∠0°
9 + j 4

= j 5 +
50 ∠0°

9.85 ∠23.96°
 = j 5 + 5.08 ∠-23.96° = j 5 + 4.64 - j 2.06

 ZTh = 4.64 � + j 2.94 � = 5.49 � j32.36°
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Step 4 (Fig. 19.32): Since a-a′ is an open circuit, IZ3
= 0. Then ETh is 

the voltage drop across Z2:

 ETh =
Z2E

Z2 + Z1
  (voltage divider rule)

 =
(5 Ω ∠-53.13°)(10 V ∠0°)

9.85 Ω ∠23.96°

 ETh =
50 V ∠-53.13°
9.85 ∠23.96°

= 5.08 V j−77.09°

E1

–

+

Z1

Z2

Z3 a

a�

ETh

–

+
IZ3

  =  0

FIG. 19.32
Determining the open-circuit Thévenin voltage for the network  

in Fig. 19.29.

Step 5: The Thévenin equivalent circuit is shown in Fig. 19.33.

–

+

ETh

ZTh

R3

4.64 �  +  j2.94 �
7 �

5.08 V ∠  –77.09°
–

+

E2 30 V ∠  15°
–

+

ETh

4.64 � 7 �

5.08 V ∠  –77.09°

–

+

E2 30 V ∠  15°

2.94 �

R XLa

a′

a

a′

R3

FIG. 19.33
The Thévenin equivalent circuit for the network in Fig. 19.29.

The next example demonstrates how superposition is applied to 
electronic circuits to permit a separation of the dc and ac analyses. The 
fact that the controlling variable in this analysis is not in the portion of 
the network connected directly to the terminals of interest permits an 
analysis of the network in the same manner as applied above for inde-
pendent sources.

EXAMPLE 19.9  Determine the Thévenin equivalent circuit for the 
transistor network external to the resistor RL in the network in Fig. 19.34. 
Then determine VL.
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Solution:  Applying superposition.

dc Conditions  Substituting the open-circuit equivalent for the cou-
pling capacitor C2 will isolate the dc source and the resulting currents 
from the load resistor. The result is that for dc conditions, VL = 0 V. 
Although the output dc voltage is zero, the application of the dc voltage 
is important to the basic operation of the transistor in a number of impor-
tant ways, one of which is to determine the parameters of the “equivalent 
circuit” to appear in the ac analysis to follow.

ac Conditions  For the ac analysis, an equivalent circuit is substituted 
for the transistor, as established by the dc conditions above, that will 
behave like the actual transistor. A great deal more will be said about 
equivalent circuits and the operations performed to obtain the network in 
Fig. 19.35, but for now we limit our attention to the manner in which the 
Thévenin equivalent circuit is obtained. Note in Fig. 19.35 that the 
equivalent circuit includes a resistor of 2.3 k Ω and a controlled current 
source whose magnitude is determined by the product of a factor of 100 
and the current I1 in another part of the network.

–

+

RB 1 M�

RC 2 k�

Rs

0.5 k�

Ei

C1

10 �

12 V

C2

10 �

Transistor

RL  =  1 k�  VL

–

+

Thévenin

hfe = 100
hie = 2.3 k�

FIG. 19.34
Example 19.9.

RB 1 M�

Rs

0.5 k�

–

+

I1

2.3 k� RC 2 k� RL 1 k�  VLEi
100I1

Transistor equivalent
circuit

–

+

Thévenin

FIG. 19.35
The ac equivalent network for the transistor amplifier in Fig. 19.34.

Note in Fig. 19.35 the absence of the coupling capacitors for the ac 
analysis. In general, coupling capacitors are designed to be open circuits 
for dc analysis and short circuits for ac analysis. The short-circuit equiv-
alent is valid because the other impedances in series with the coupling 
capacitors are so much larger in magnitude that the effect of the cou-
pling capacitors can be ignored. Both RB and RC are now tied to ground 
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because the dc source was set to zero volts (superposition) and replaced 
by a short-circuit equivalent to ground.

For the analysis to follow, the effect of the resistor RB will be ignored 
since it is so much larger than the parallel 2.3 k Ω resistor.

ZTh  When Ei is set to zero volts, the current I1 will be zero amperes, 
and the controlled source 100 I1 will be zero amperes also. The result is 
an open-circuit equivalent for the source, as appearing in Fig. 19.36.

It is fairly obvious from Fig. 19.36 that

ZTh = 2 kΩ

eTh  For ETh, the current I1 in Fig. 19.35 will be

I1 =
Ei

Rs + 2.3 kΩ
=

Ei

0.5 kΩ + 2.3 kΩ
=

Ei

2.8 kΩ

and	 100I1 = (100)a Ei

2.8 kΩ
b =

Ei

28 Ω

Referring to Fig. 19.37, we find that

 ETh = -(100I1)RC

 = - a Ei

28 Ω
b (2 * 103 Ω)

 ETh = −71.42Ei

The Thévenin equivalent circuit appears in Fig. 19.38 with the origi-
nal load RL.

Output Voltage vL

VL =
-RLETh

RL + RTh
=

-(1 kΩ)(71.42Ei)

1 kΩ +  2 kΩ

and	 VL = −23.81 Ei

revealing that the output voltage is 23.81 times the applied voltage with 
a phase shift of 180° due to the minus sign.

Dependent Sources

For dependent sources with a controlling variable not in the network 
under investigation, the procedure indicated above can be applied. How-
ever, for dependent sources of the other type, where the controlling vari-
able is part of the network to which the theorem is to be applied, another 
approach must be used. The necessity for a different approach is demon-
strated in an example to follow. The method is not limited to dependent 
sources of the latter type. It can also be applied to any dc or sinusoidal ac 
network. However, for networks of independent sources, the method of 
application used in Chapter 9 and presented in the first portion of this sec-
tion is generally more direct, with the usual savings in time and errors.

The new approach to Thévenin’s theorem can best be introduced at 
this stage in the development by considering the Thévenin equivalent 
circuit in Fig. 19.39(a). As indicated in Fig. 19.39(b), the open-circuit 
terminal voltage (Eoc) of the Thévenin equivalent circuit is the Thévenin 
equivalent voltage; that is,

	 Eoc = ETh 	 (19.1)

RC 2 k� ZTh

FIG. 19.36
Determining the Thévenin impedance for the 

network in Fig. 19.35.

–

+

RC 2 k� ETh

–

+

100I1

FIG. 19.37
Determining the Thévenin voltage for the network  

in Fig. 19.35.

–

+

ETh RL

RTh

2 k�

1 k�  VL

–

+

71.42Ei

FIG. 19.38
The Thévenin equivalent circuit for the network  

in Fig. 19.35.
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If the external terminals are short circuited as in Fig. 19.39(c), the result-
ing short-circuit current is determined by

	 Isc =
ETh

ZTh
	 (19.2)

or, rearranged,

ZTh =
ETh

Isc

and	 ZTh =
Eoc

Isc
	 (19.3)

Eqs. (19.1) and (19.3) indicate that for any linear bilateral dc or ac 
network with or without dependent sources of any type, if the open-
circuit terminal voltage of a portion of a network can be determined 
along with the short-circuit current between the same two terminals, 
the Thévenin equivalent circuit is effectively known. A few exam-
ples will make the method quite clear. The advantage of the method, 
which was stressed earlier in this section for independent sources, 
should now be more obvious. The current Isc, which is necessary to 
find ZTh, is in general more difficult to obtain since all of the sources 
are present.

There is a third approach to the Thévenin equivalent circuit that is 
also useful from a practical viewpoint. The Thévenin voltage is found 
as in the two previous methods. However, the Thévenin impedance is 
obtained by applying a source of voltage to the terminals of interest 
and determining the source current as indicated in Fig. 19.40. For this 
method, the source voltage of the original network is set to zero. The 
Thévenin impedance is then determined by the following equation:

	 ZTh =
Eg

Ig
	 (19.4)

Note that for each technique, ETh = Eoc, but the Thévenin impedance is 
found in different ways.

EXAMPLE 19.10  Using each of the three techniques described in this 
section, determine the Thévenin equivalent circuit for the network in 
Fig. 19.41.

–

+

ZTh

ETh

–

+

ZTh

ETh

–

+

ZTh

ETh

Eoc  =  ETh

–

+

Isc  =
ETh
ZTh

(a)

(b)

(c)

FIG. 19.39
Defining an alternative approach for determining 

the Thévenin impedance.

Ig

–

+

Network Eg

ZTh

FIG. 19.40
Determining ZTh using the approach ZTh = Eg>Ig.

–

+

R1

R2

Thévenin

XC

�V

–

+

FIG. 19.41
Example 19.10.
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Solution:  Since for each approach the Thévenin voltage is found in 
exactly the same manner, it is determined first. From Fig. 19.41, where 
IXC

= 0,
Due to the polarity for V and
defined terminal polarities

VR1
= ETh = Eoc = -

R2(mV)

R1 + R2
= −

MR2V

R1 + R2

The following three methods for determining the Thévenin imped-
ance appear in the order in which they were introduced in this section.

Method 1: See Fig. 19.42.

ZTh = R1 7  R2 − jXC

Method 2: See Fig. 19.43. Converting the voltage source to a current 
source (Fig. 19.44), we have (current divider rule)

 Isc =
-(R1 7  R2)

mV

R1

(R1 7  R2) - jXC

=
-

R1R2

R1 + R2
 amV

R1
b

(R1 7  R2) - jXC

 =

-mR2V

R1 + R2

(R1 7  R2) - jXC

and

 ZTh =
Eoc

Isc
=

-mR2V

R1 + R2

-mR2V

R1 + R2

(R1 7  R2) - jXC

=
1

1

(R1 7  R2) - jXC

 =  R1 7  R2 − jXC

Method 3: See Fig. 19.45.

Ig =
Eg

(R1 7  R2) - jXC

and	 ZTh =
Eg

Ig
= R1 7  R2 − jXC

In each case, the Thévenin impedance is the same. The resulting 
Thévenin equivalent circuit is shown in Fig. 19.46.

R1

R2 ZTh

XC

FIG. 19.42
Determining the Thévenin impedance for the 

network in Fig. 19.41.

–

+
R2

R1

V

XC

Isc

Isc

FIG. 19.43
Determining the short-circuit current for the network 

in Fig. 19.41.

R1 R2 Isc

XC

V
R1

Isc

FIG. 19.44
Converting the voltage source in Fig. 19.43 to a 

current source.

R2

R1
XC Ig

+

–
Eg

ZTh

FIG. 19.45
Determining the Thévenin impedance for the 

network in Fig. 19.41 using the approach 
ZTh = Eg>Ig.

R1  +  R2
ETh  = Thévenin

–

+

�R2V

ZTh  =  R1 � R2  –  jXC

–

+

FIG. 19.46
The Thévenin equivalent circuit for the network in Fig. 19.41.
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EXAMPLE 19.11  Repeat Example 19.10 for the network in Fig. 19.47.

Solution:  From Fig. 19.47, ETh is

ETh = Eoc = -hI(R1 7  R2) = -
h R1R2I

R1 + R2

Method 1: See Fig. 19.48.

ZTh = R1 7  R2 − jXC

Note the similarity between this solution and that obtained for the previ-
ous example.

hI R1 R2

XC

Thévenin

FIG. 19.47
Example 19.11.

R1 R2

XC

ZTh  =  R1 � R2  –  jXC

FIG. 19.48
Determining the Thévenin impedance for the network in Fig. 19.47.

hI R1 R2

XC

Isc

Isc

FIG. 19.49
Determining the short-circuit current for the network 

in Fig. 19.47.

R1 R2

XC

Eg

Ig

–

+

ZTh

FIG. 19.50
Determining the Thévenin impedance using the 

approach ZTh = Eg>Ig.

Method 2: See Fig. 19.49.

Isc =
-(R1 7  R2)hI

(R1 7  R2) - jXC

and	 ZTh =
Eoc

Isc
=

-hI(R1 7  R2)

-(R1 7  R2)hI

(R1 7  R2) - jXC

= R1 7  R2 − jXC

Method 3: See Fig. 19.50.

Ig =
Eg

(R1 7  R2) - jXC

and	 ZTh =
Eg

Ig
= R1 7  R2 − jXC

The following example has a dependent source that will not permit 
the use of the method described at the beginning of this section for inde-
pendent sources. All three methods will be applied, however, so that the 
results can be compared.

EXAMPLE 19.12  For the network in Fig. 19.51 (introduced in Exam-
ple 19.6), determine the Thévenin equivalent circuit between the indi-
cated terminals using each method described in this section. Compare 
your results.

Solution:  First, using Kirchhoff’s voltage law, we write ETh (which is 
the same for each method)

Eth = V + mV = (1 + m)V

I R1

�V

Thévenin

V
+

–

+–

FIG. 19.51
Example 19.12.
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However,	 V = IR1

so	 ETh = (1 + M)IR1

ZTh 

Method 1: See Fig. 19.52. Since I = 0, V and mV = 0, and

ZTh = R1  (incorrect)

Method 2: See Fig. 19.53. Kirchhoff’s voltage law around the indicated 
loop gives us

V + mV = 0

and	 V(1 + m) = 0

Since m is a positive constant, the above equation can be satisfied 
only when V = 0. Substitution of this result into Fig. 19.53 yields the 
configuration in Fig. 19.54, and

Isc = I

with

ZTh =
Eoc

Isc
=

(1 + m)IR1

I
= (1 + M)R1  (correct)

Method 3: See Fig. 19.55.

Eg = V + mV = (1 + m)V

or	 V =
Eg

1 + m

and	 Ig =
V
R1

=
Eg

(1 + m)R1

and	 ZTh =
Eg

Ig
= (1 + M)R1  (correct)

R1

�V  =  0

V  =  0
+

–

+–

ZTh

FIG. 19.52
Determining ZTh incorrectly.

I R1

�V

V
+

–

+–

Isc

Isc

FIG. 19.53
Determining Isc for the network in Fig. 19.51.

I R1 V  =  0
+

–
Isc

I1  =  0 Isc

FIG. 19.54
Substituting V = 0 into the network in Fig. 19.53.

–

+
R1 V Eg

Ig
�V

+–

ZTh

FIG. 19.55
Determining ZTh using the approach ZTh = Eg>Ig.

–

+

(1  +  m)R1

RL

IL

ETh  =  (1  +  m)IR1

FIG. 19.56
The Thévenin equivalent circuit for the network in Fig. 19.51.

The Thévenin equivalent circuit appears in Fig. 19.56, and

IL =
(1 + M)R1I

RL + (1 + M)R1

which compares with the result in Example 19.6.
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The network in Fig. 19.57 is the basic configuration of the transistor 
equivalent circuit applied most frequently today (although many texts in 
electronics use the circle rather than the diamond outline for the source). 
Obviously, it is necessary to know its characteristics and to be adept in 
its use. Note that there are both a controlled voltage and a controlled cur-
rent source, each controlled by variables in the configuration.

EXAMPLE 19.13  Determine the Thévenin equivalent circuit for the 
indicated terminals of the network in Fig. 19.57.

Solution:  Apply the second method introduced in this section.

ETh 

 Eoc = V2

	  I =
Vi - k1V2

R1
=

Vi - k1Eoc

R1

and	  Eoc = -k2IR2 = -k2R2a
Vi - k1Eoc

R1
b

 =
-k2R2Vi

R1
+

k1k2R2Eoc

R1

or	 Eoca1 -
k1k2R2

R1
b =

-k2R2Vi

R1

and	 Eoca
R1 - k1k2R2

R1
b =

-k2R2Vi

R1

so	 Eoc =
−k2R2Vi

R1 − k1k2R2
= ETh 	 (19.5)

Isc  For the network in Fig. 19.58, where

V2 = 0  k1V2 = 0  I =
Vi

R1

and	 Isc = -k2I =
-k2Vi

R1

so	 ZTh =
Eoc

Isc
=

-k2R2Vi

R1 - k1k2R2

-k2Vi

R1

–

+

R2k2Ik1V2Vi

I

R1

Thévenin

–

+

V2

–

+

FIG. 19.57
Example 19.13: Transistor equivalent network.
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and	 ZTh =
R1R2

R1 - k1k2R2
	 (19.6)

Frequently, the approximation k1 ≅ 0 is applied. Then the Thévenin 
voltage and impedance are, respectively,

	 ETh =
−k2R2Vi

R1
   k1 = 0 	 (19.7)

	 ZTh = R2   k1 = 0 	 (19.8)

Apply ZTh = Eg>Ig to the network in Fig. 19.59, where

I =
-k1V2

R1

Isc

–

+

R2k2IVi

I

R1

Isc

FIG. 19.58
Determining Isc for the network in Fig. 19.57.

ZTh

–

+
Eg

Ig

R2k2Ik1V2

I

R1

–

+

FIG. 19.59
Determining ZTh using the procedure ZTh = Eg>Ig.

But	 V2 = Eg

so	 I =
-k1Eg

R1

Applying Kirchhoff’s current law, we have

 Ig = k2I +
Eg

R2
= k2a -

k1Eg

R1
b +

Eg

R2

 = Ega 1

R2
-

k1k2

R1
b
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and	
Ig

Eg
=

R1 - k1k2R2

R1R2

or	 ZTh =
Eg

Ig
=

R1R2

R1 − k1k2R2

as obtained above.

The last two methods presented in this section were applied only to 
networks in which the magnitudes of the controlled sources were 
dependent on a variable within the network for which the Thévenin 
equivalent circuit was to be obtained. Understand that both of these 
methods can also be applied to any dc or sinusoidal ac network contain-
ing only independent sources or dependent sources of the other kind.

19.4 N orton’s Theorem

The three methods described for Thévenin’s theorem will each be altered 
to permit their use with Norton’s theorem. Since the Thévenin and 
Norton impedances are the same for a particular network, certain por-
tions of the discussion are quite similar to those encountered in the pre-
vious section. We first consider independent sources and the approach 
developed in Chapter 9, followed by dependent sources and the new 
techniques developed for Thévenin’s theorem.

You will recall from Chapter 9 that Norton’s theorem allows us to 
replace any two-terminal linear bilateral ac network with an equivalent 
circuit consisting of a current source and an impedance, as in Fig. 19.60.

The Norton equivalent circuit, like the Thévenin equivalent circuit, is 
applicable at only one frequency since the reactances are frequency 
dependent.

Independent ac and dc Sources

The procedure outlined below to find the Norton equivalent of a sinusoi-
dal ac network is changed (from that in Chapter 9) in only one respect: 
the replacement of the term resistance with the term impedance.

1.	 Remove that portion of the network across which the Norton 
equivalent circuit is to be found.

2.	 Mark ( , •, and so on) the terminals of the remaining two-terminal 
network.

3.	 Calculate ZN by first setting all voltage and current sources to zero 
(short circuit and open circuit, respectively) and then finding the 
resulting impedance between the two marked terminals.

4.	 Calculate IN by first replacing the voltage and current sources and 
then finding the short-circuit current between the marked terminals.

5.	 Draw the Norton equivalent circuit with the portion of the circuit 
previously removed replaced between the terminals of the Norton 
equivalent circuit.

The Norton and Thévenin equivalent circuits can be found from each 
other by using the source transformation shown in Fig. 19.61. The source 
transformation is applicable for any Thévenin or Norton equivalent cir-
cuit determined from a network with any combination of independent or 
dependent sources.

ZNIN

FIG. 19.60
The Norton equivalent circuit for ac networks.
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EXAMPLE 19.14  Determine the Norton equivalent circuit for the net-
work external to the 6 Ω resistor in Fig. 19.62.

–

+

ZTh

ETh  =  INZN
ZNIN  =

ETh
ZTh

ZN  =  ZTh

ZTh  =  ZN

FIG. 19.61
Conversion between the Thévenin and Norton equivalent circuits.

–

+

RL 6 �

R1

3 �

E  =  20 V ∠ 0°

XL

4 �

XC 5 �

Norton

FIG. 19.62
Example 19.14.

Solution: 

Steps 1 and 2 (Fig. 19.63):

 Z1 = R1 + jXL = 3 Ω + j 4 Ω = 5 Ω ∠53.13°
 Z2 = - jXC = - j 5 Ω

Step 3 (Fig. 19.64):

 ZN =
Z1Z2

Z1 + Z2
=

(5 Ω ∠53.13°)(5 Ω ∠-90°)
3 Ω + j 4 Ω - j 5 Ω

=
25 Ω ∠-36.87°

3 - j1

 =
25 Ω ∠-36.87°
3.16 ∠-18.43°

= 7.91 Ω ∠-18.44° = 7.50 � − j 2.50 �

Step 4 (Fig. 19.65):

IN = I1 =
E
Z1

=
20 V∠0°

5 Ω ∠53.13°
= 4A j−53.13°

E
–

+

Z1

Z2

Norton

FIG. 19.63
Assigning the subscripted impedances to the network 

in Fig. 19.62.

Z1

Z2 ZN

FIG. 19.64
Determining the Norton impedance for the network 

in Fig. 19.62.

E
–

+

Z1

Z2

I1

IN

IN

FIG. 19.65
Determining IN for the network in Fig. 19.62.
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 Step 5: The Norton equivalent circuit is shown in Fig. 19.66.

R 6 �ZNIN  =  4 A ∠  –  53.13° RL 6 �IN  =  4 A ∠  –  53.13°

R 7.50 �

XC 2.50 �

7.50 �  –  j2.50 �

FIG. 19.66
The Norton equivalent circuit for the network in Fig. 19.62.

EXAMPLE 19.15  Find the Norton equivalent circuit for the network 
external to the 7 Ω capacitive reactance in Fig. 19.67.

R2

1 �
R1 2 �

XC1
4 �

I  =  3 A ∠ 0° XC2 
 =  7 �

XL

5 �

FIG. 19.67
Example 19.15.

Solution: 

Steps 1 and 2 (Fig. 19.68):

 Z1 = R1 - jXC1
= 2 Ω - j 4 Ω

 Z2 = R2 = 1 Ω
 Z3 = + jXL = j 5 Ω

I  =  3 A ∠ 0° Z1

Z2

Z3

FIG. 19.68
Assigning the subscripted impedances to the network in Fig. 19.67.

Step 3 (Fig. 19.69):

 ZN =
Z3(Z1 + Z2)

Z3 + (Z1 + Z2)

 Z1 + Z2 = 2 Ω - j 4 Ω + 1 Ω = 3 Ω - j 4 Ω = 5 Ω ∠-53.13°
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Step 5: The Norton equivalent circuit is shown in Fig. 19.72.

 ZN =
(5 Ω ∠90°)(5 Ω ∠-53.13°)

j 5 Ω + 3 Ω - j 4 Ω
=

25 Ω ∠36.87°
3 + j 1

 =
25 Ω ∠36.87°
3.16 ∠+18.43°

 ZN = 7.91 Ω ∠18.44° = 7.50 � + j 2.50 �

Calculator Solution:  Performing the above on the TI-89 calculator 
results in the sequence in Fig. 19.70:

Z1

Z2

Z3

ZN

Z1

Z2

Z3 ZN

FIG. 19.69
Finding the Norton impedance for the network in Fig. 19.67.

2ND 2ND MATH  °
MATH  °

9 0 ) (( ( 2ND

(-) 5 .3

3

() )

+ - )4 2ND5 2ND Polar ENTER 7.91 ∠18.44°

∠ ∠5 5

2ND1 3

i i

÷

FIG. 19.70
Determining ZN for the network of Fig. 19.67.

I  =  3 A ∠ 0° Z1

Z2

Z3

I1

IN

FIG. 19.71
Determining IN for the network in Fig. 19.67.

Step 4 (Fig. 19.71):

 IN = I1 =
Z1I

Z1 + Z2
  (current divider rule)

 =
(2 Ω - j 4 Ω)(3 A)

3 Ω - j 4 Ω
=

6 A - j 12 A

5 ∠-53.13°
=

13.4 A ∠-63.43°
5 ∠-53.13°

 IN = 2.68 A j−10.3°
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XC2
7 �

7.50 �  +  j2.50 �

ZNIN  =  2.68 A ∠  – 10.3° IN  =  2.68 A ∠  – 10.3°

R 7.50 �

XL 2.50 �

XC2
7 �

FIG. 19.72
The Norton equivalent circuit for the network in Fig. 19.67.

EXAMPLE 19.16  Find the Thévenin equivalent circuit for the network 
external to the 7 Ω capacitive reactance in Fig. 19.67.

Solution:  Using the conversion between sources (Fig. 19.73), we obtain

 ZTh = ZN = 7.50 � + j 2.50 �
 ETh = INZN = (2.68 A ∠-10.3°)(7.91 Ω ∠18.44°)

 = 21.2 V j8.14°

The Thévenin equivalent circuit is shown in Fig. 19.74.

Dependent ac Sources

As stated for Thévenin’s theorem, dependent sources in which the con-
trolling variable is not determined by the network for which the Norton 
equivalent circuit is to be found does not alter the procedure outlined 
above.

For dependent sources of the other kind, one of the following proce-
dures must be applied. Both of these procedures can also be applied to 
networks with any combination of independent sources and dependent 
sources not controlled by the network under investigation.

The Norton equivalent circuit appears in Fig. 19.75(a). In Fig. 
19.75(b), we find that

ZTh  =  ZN

INZNETh

+

–

ZTh

FIG. 19.73
Determining the Thévenin equivalent circuit for the 

Norton equivalent in Fig. 19.72.

21.2 V ∠ 8.14°

R

7.50 �

ETh

+

–

XL

2.50 �

XC2
7 �

FIG. 19.74
The Thévenin equivalent circuit for the network in 

Fig. 19.67.

IN

(a)

ZN IN

(b)

ZN

I  =  0

Isc IN

(c)

ZN

+

–

Eoc  =  INZN

FIG. 19.75
Defining an alternative approach for determining ZN.

	 Isc = IN 	 (19.9)

and in Fig. 19.75(c) that

Eoc = INZN

Rearranging, we have

ZN =
Eoc

IN
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and	 ZN =
Eoc

Isc
	 (19.10)

The Norton impedance can also be determined by applying a source 
of voltage Eg to the terminals of interest and finding the resulting Ig, as 
shown in Fig. 19.76. All independent sources and dependent sources not 
controlled by a variable in the network of interest are set to zero, and

	 ZN =
Eg

Ig
	 (19.11)

For this latter approach, the Norton current is still determined by the 
short-circuit current.

EXAMPLE 19.17  Using each method described for dependent sources, 
find the Norton equivalent circuit for the network in Fig. 19.77.

Solution: 

IN  For each method, IN is determined in the same manner. From Fig. 
19.78 using Kirchhoff’s current law, we have

0 = I + hI + Isc

or	 Isc = -(1 + h)I

Applying Kirchhoff’s voltage law gives us

E + IR1 - IscR2 = 0

and	 IR1 = IscR2 - E

or	 I =
IscR2 - E

R1

so	  Isc = -(1 + h)I = -(1 + h)a IscR2 - E

R1
b

or	  R1Isc = -(1 + h)IscR2 + (1 + h)E

 Isc[R1 + (1 + h)R2] = (1 + h)E

 Isc =
(1 + h)E

R1 + (1 + h)R2
= IN

ZN 

Method 1: Eoc is determined from the network in Fig. 19.79. By Kirch-
hoff’s current law,

0 = I + hI  or  1(h + 1) = 0

For h, a positive constant I must equal zero to satisfy the above. 
Therefore,

I = 0  and  hI = 0

and	 Eoc = E

with	 ZN =
Eoc

Isc
=

E
(1 + h)E

R1 + (1 + h)R2

=
R1 + (1 + h)R2

(1 + h)

+
Network ZN

Ig

Eg

–

FIG. 19.76
Determining the Norton impedance using the 

approach ZN = Eg>Ig.

R2

+
hIE

–

Norton

R1

I

FIG. 19.77
Example 19.17.

R2

+
hIE

–
Isc

R1

I + –VR2

Isc

FIG. 19.78
Determining Isc for the network in Fig. 19.77.

+
hIE

–
Eoc

R1

I
+
V  =  0

–

+

–

FIG. 19.79
Determining Eoc for the network in Fig. 19.77.
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Method 2: Note Fig. 19.80. By Kirchhoff’s current law,

Ig = I + hI = (I + h)I

By Kirchhoff’s voltage law,

Eg - IgR2 - IR1 = 0

or	 I =
Eg - IgR2

R1

Substituting, we have

Ig = (1 + h)I = (1 + h)aEg - IgR2

R1
b

and	 IgR1 = (1 + h)Eg - (1 + h)IgR2

so	 Eg(1 + h) = Ig[R1 + (1 + h)R2]

or	 ZN =
Eg

Ig
=

R1 + (1 + h)R2

1 + h

which agrees with the above.

EXAMPLE 19.18  Find the Norton equivalent circuit for the network 
configuration in Fig. 19.57.

Solution:  By source conversion,

IN =
ETh

ZTh
=

-k2R2Vi

R1 - k1k2R2

R1R2

R1 - k1k2R2

and	 IN =
−k2Vi

R1
	 (19.12)

which is Isc as determined in Example 19.13, and

	 ZN = ZTh =
R2

1 −
k1k2R2

R1

	 (19.13)

For k1 ≅ 0, we have

	 IN =
−k2Vi

R1
   k1 = 0 	 (19.14)

	 ZN = R2   k1 = 0 	 (19.15)

19.5 Maxi mum Power Transfer Theorem

When applied to ac circuits, the maximum power transfer theorem 
states that

maximum power will be delivered to a load when the load impedance 
is the conjugate of the Thévenin impedance across its terminals.

+
hI Eg

–

R1

I +–

ZN

Ig

R2

+– VR1
VR2

FIG. 19.80
Determining the Norton impedance using the 

approach ZN = Eg>Eg.
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That is, for Fig. 19.81, for maximum power transfer to the load,

	 ZL = ZTh  and  uL = -uThZ
	 (19.16)

or, in rectangular form,

	 RL = RTh  and  { jXload = | jXTh 	 (19.17)

The conditions just mentioned will make the total impedance of the cir-
cuit appear purely resistive, as indicated in Fig. 19.82:

ZT = (RTh { jXTh) + (RTh | jXTh)

and	 ZT = 2RTh 	 (19.18)

ETh  =  ETh ∠ vThs

ZTh

ZL

 ZTh ∠ vThz

 =  ZL ∠ vL

FIG. 19.81
Defining the conditions for maximum power transfer to a load.

ZTh = RTh ± jXTh

ZLETh = ETh –  vThs

+

– ZT

= 

I

RTh  jXTh

±

FIG. 19.82
Conditions for maximum power transfer to ZL.

Since the circuit is purely resistive, the power factor of the circuit 
under maximum power conditions is 1; that is,

	 Fp = 1   (maximum power transfer) 	 (19.19)

The magnitude of the current I in Fig. 19.82 is

I =
ETh

ZT
=

ETh

2RTh

The maximum power to the load is

Pmax = I2RTh = a ETh

2RTh
b

2

RTh

and	 Pmax =
ETh

2

4RTh
	 (19.20)
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EXAMPLE 19.19  Find the load impedance in Fig. 19.83 for maximum 
power to the load, and find the maximum power.

Solution:  Determine ZTh [Fig. 19.84(a)]:

 Z1 = R - jXC = 6 Ω - j 8 Ω = 10 Ω ∠-53.13°
 Z2 = + jXL = j 8 Ω

 ZTh =
Z1Z2

Z1 + Z2
=

(10 Ω ∠-53.13°)(8 Ω ∠90°)
6 Ω - j 8 Ω + j 8 Ω

=
80 Ω ∠36.87°

6 ∠0°
 = 13.33 Ω ∠36.87° = 10.66 Ω + j 8 Ω = 13.3 Ω ∠36.87°

E  =  9 V ∠ 0°

R

6 �
+

–

XC

8 �

XL 8 � ZL

FIG. 19.83
Example 19.19.

(a)

Z2

Z1

ZTh

(b)

E

+
Z2

+

–
ETh

Z1

–

FIG. 19.84
Determining (a) ZTh and (b) ETh for the network external to the load in Fig. 19.83.

and	 ZL = 13.3 Ω ∠-36.87° = 10.66 � − j 8 �

To find the maximum power, we must first find ETh [Fig. 19.84(b)], 
as follows:

 ETh =
Z2E

Z2 + Z1
   (voltage divider rule)

 =
(8 Ω ∠90°)(9 V∠0°)
j 8 Ω + 6 Ω - j 8 Ω

=
72 V ∠90°

6 ∠0°
= 12 V ∠90°

Then	 Pmax =
ETh

2

4RTh
=

(12 V)2

4(10.66 Ω)
=

144

42.64
= 3.38 W

EXAMPLE 19.20  Find the load impedance in Fig. 19.85 for maximum 
power to the load, and find the maximum power.

Solution:  First we must find ZTh (Fig. 19.86).

Z1 = + jXL = j 9 Ω    Z2 = R = 8 Ω

R

8 �
ZL

E  =
10 V ∠ 0°

+

–

XL

9 �

XL

9 �
9 �

XL

FIG. 19.85
Example 19.20.

ZTh

Z1

Z2

Z1

Z11

2

3

FIG. 19.86
Defining the subscripted impedances for 

the network in Fig. 19.85.
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Converting from a ∆ to a Y (Fig. 19.87), we have

Z′1 =
Z1

3
= j 3 Ω  Z2 = 8 Ω

The redrawn circuit (Fig. 19.88) shows

 ZTh = Z′1 +
Z′1(Z′1 + Z2)

Z′1 + (Z′1 + Z2)

 = j 3 Ω +
3 Ω ∠90° (j 3 Ω + 8 Ω)

j 6 Ω + 8 Ω

 = j 3 +
(3 ∠90°)(8.54 ∠20.56°)

10 ∠36.87°

 = j 3 +
25.62 ∠110.56°

10 ∠36.87°
= j 3 + 2.56 ∠73.69°

 = j 3 + 0.72 + j 2.46

 ZTh = 0.72 Ω + j 5.46 Ω

and	 ZL = 0.72 � − j 5.46 �

For ETh, use the modified circuit in Fig. 19.89 with the voltage 
source replaced in its original position. Since I1 = 0, ETh is the voltage 
across the series impedance of Z′2 and Z2. Using the voltage divider 
rule gives us

 ETh =
(Z′1 + Z2)E

Z′1 + Z2 + Z′1
=

(j 3 Ω + 8 Ω)(10 V ∠0°)
8 Ω + j 6 Ω

 =
(8.54 ∠20.56°)(10 V ∠0°)

10 ∠36.87°
 ETh = 8.54 V ∠-16.31°

and	  Pmax =
ETh

2

4RTh
=

(8.54 V)2

4(0.72 Ω)
=

72.93

2.88
 W

 = 25.32 W

If the load resistance is adjustable but the magnitude of the load reac-
tance is not, then the maximum power that can be delivered to the load 
will occur when the load resistance is set to the following value:

	 RL = 2RTh
2 + (XTh + Xload)

2 	 (19.21)

as derived in Appendix E.
In Eq. (19.21), each reactance carries a positive sign if inductive and 

a negative sign if capacitive.
The power delivered is then determined by

	 P = ETh
2 >4Rav 	 (19.22)

where	 Rav =
RTh + RL

2
	 (19.23)

The derivation of the above equations is given in Appendix E. The 
following example demonstrates the use of the above.

ZTh

Z2

1

2

3

Z�1

Z�1 Z�1

FIG. 19.87
Substituting the Y equivalent for the upper ∆ 

configuration in Fig. 19.86.

ZTh
Z�1Z�1

Z2

Z�1

FIG. 19.88
Determining ZTh for the network in Fig. 19.85.

ETh

Z�1Z�1

Z2

Z�1
+

–

I1  =  0

E

+

–

FIG. 19.89
Finding the Thévenin voltage for the network  

in Fig. 19.85.
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EXAMPLE 19.21  For the network in Fig. 19.90:

	 a.	 Determine the value of RL for maximum power to the load if the 
load reactance is fixed at 4 Ω.

	 b.	 Find the power delivered to the load under the conditions of part (a).
	 c.	 Find the maximum power to the load if the load reactance is made 

adjustable to any value, and compare the result to part (b) above.

+

–

RTh

ETh  =  20 V ∠0°

XTh

RL

4 � 7 �

XC  =  4 �

FIG. 19.90
Example 19.21.

Solutions: 

	 a.	 Eq. (19.21):	 RL = 2RTh
2 + (XTh + Xload)

2

 = 2(4 Ω)2 + (7 Ω - 4 Ω)2

 = 116 + 9 = 125

  RL = 5 �

	 b.	 Eq. (19.23):	  Rav =
RTh + RL

2
=

4 Ω + 5 Ω
2

 = 4.5 �

		  Eq. (19.22):	  P =
ETh

2

4Rav

 =
(20 V)2

4(4.5 Ω)
=

400

18
 W

 ≅ 22.22 W

	 d.	 For ZL = 4 Ω - j 7Ω,

 Pmax =
ETh

2

4RTh
=

(20 V)2

4(4 Ω)

 = 25 W

		  exceeding the result of part (b) by 2.78 W.

19.6  Substitution, Reciprocity, 
and Millman’s Theorems

As indicated in the introduction to this chapter, the substitution and 
reciprocity theorems and Millman’s theorem will not be considered 
here in detail. A careful review of Chapter 9 will enable you to apply 
these theorems to sinusoidal ac networks with little difficulty. A number 
of problems in the use of these theorems appear in the Problems section 
at the end of the chapter.
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19.7  Application

Electronic Systems

One of the blessings in the analysis of electronic systems is that the 
superposition theorem can be applied so that the dc analysis and ac 
analysis can be performed separately. The analysis of the dc system 
will affect the ac response, but the analysis of each is a distinct, sepa-
rate process. Even though electronic systems have not been investi-
gated in this text, a number of important points can be made in the 
description to follow that support some of the theory presented in this 
and recent chapters, so inclusion of this description is totally valid at 
this point. Consider the network in Fig. 19.91 with a transistor power 
amplifier and a source with an internal resistance of 800 Ω. Note that 
each component of the design was isolated by a color box to empha-
size the fact that each component must be carefully weighed in any 
good design.

Rs

RB 47 k�

RC 100 �

+

–

Vs

Vo

1V

800 �

(p-p)

Source

CC

Amplifier

VCC = 22 V

β = 200

E

B

C
CC

0.1   F

0.1   F

FIG. 19.91
Transistor amplifier.

As mentioned above, the analysis can be separated into a dc and an ac 
component. For the dc analysis, the two capacitors can be replaced by an 
open-circuit equivalent (Chapter 10), resulting in an isolation of the 
amplifier network as shown in Fig. 19.92. Given the fact that VBE will be 
about 0.7 V dc for any operating transistor, the base current IB can be 
found as follows using Kirchhoff’s voltage law:

IB =
VRB

RB
=

VCC - VBE

RB
=

22 V - 0.7 V

47 kΩ
= 453.2 MA

For transistors, the collector current IC is related to the base current 
by IC = bIB, and

IC = bIB = (200)(453.2 mA) = 90.64 mA

Finally, through Kirchhoff’s voltage law, the collector voltage (also 
the collector-to-emitter voltage since the emitter is grounded) can be 
determined as follows:

VC = VCE = VCC - ICRC = 22 V - (90.64 mA)(100 Ω) = 12.94 V

22 V

RB 47 k�
RC 100 �

VCC

B

E

IB
+

–
VBE

VCE

VCC 22 V

C

β = 200

–

+
IC

+

–

+

–

FIG. 19.92
dc equivalent of the transistor network in Fig. 19.91.
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For the dc analysis, therefore,

IB = 453.2 MA  IC = 90.64 mA  VCE = 12.94 V

which will define a point of dc operation for the transistor. This is an 
important aspect of electronic design since the dc operating point will 
have an effect on the ac gain of the network.

Now, using superposition, we can analyze the network from an ac 
viewpoint by setting all dc sources to zero (replaced by ground connec-
tions) and replacing both capacitors by short circuits as shown in Fig. 
19.93. Substituting the short-circuit equivalent for the capacitors is valid 
because at 10 kHz (the midrange for human hearing response), the reac-
tance of the capacitor is determined by XC = 1>2pfC = 15.92 Ω, 
which can be ignored when compared to the series resistors at the source 
and load. In other words, the capacitor has played the important role of 
isolating the amplifier for the dc response and completing the network 
for the ac response.

Redrawing the network as shown in Fig. 19.94 permits an ac investi-
gation of its response. The transistor has now been replaced by an equiv-
alent network that represents the behavior of the device. This process 
will be covered in detail in your basic electronics courses. This transistor 
configuration has an input impedance of 200 Ω and a current source 
whose magnitude is sensitive to the base current in the input circuit and 
to the amplifying factor for this transistor of 200. The 47 kΩ resistor in 
parallel with the 200 Ω input impedance of the transistor can be ignored, 
so the input current Ii and base current Ib are determined by

Ii ≅ Ib =
Vs

Rs + Ri
=

1 V(p@p)

800 Ω + 200 Ω
=

1 V(p@p)

1 kΩ
= 1 mA(p@p)

Rs

800 �

RB 47 k�
RC 100 �

B

E

C

β = 200

Vs

Vo

1V(p-p)

FIG. 19.93
ac equivalent of the transistor network in Fig. 19.91.

RC RC100 100 ��

Rs

800 �

Ii

Vs 1V(p-p)

+

–

Ri 200 �RB

B

E
47 kΩ

I ≅ 0 A Ib βIb
200Ib

C

Ic

+

–

Transistor equivalent circuit

 Vo 

FIG. 19.94
Network in Fig. 19.93 following the substitution of the transistor  

equivalent network.

The collector current IC is then

Ic = bIb = (200)(1 mA (p@p)) = 200 mA (p@p)

and the output voltage Vo across the resistor RC is

 Vo = -IcRC = -(200 mA (p@p))(100 Ω)

 = -20 V (p@p)

The gain of the system is

 Ay =
Vo

Vs
=

-20 V (p@p)

1 V (p@p)

 = −20

where the minus sign indicates that there is a 180° phase shift between 
input and output.
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FIG. 19.95
Using PSpice to determine the open-circuit Thévenin voltage.

 ** Profile: "SCHEMATIC1-PSpice 19-1" 

****     AC ANALYSIS
***********************************
  FREQ           VM(N02657)    VP(N02657)  
  1.000E+03   5.187E+00        -7.713E+01

FIG. 19.96
The output file for the open-circuit Thévenin voltage 

for the network in Fig. 19.95.

19.8 C omputer Analysis

PSpice

Thévenin’s Theorem    This application parallels the methods used to 
determine the Thévenin equivalent circuit for dc circuits. The network in 
Fig. 19.29 appears as shown in Fig. 19.95 when the open-circuit 
Thévenin voltage is to be determined. The open circuit is simulated by 
using a resistor of 1 T (1 million MΩ). The resistor is necessary to estab-
lish a connection between the right side of inductor L2 and ground—
nodes cannot be left floating for OrCad simulations. Since the magnitude 
and the angle of the voltage are required, VPRINT1 is introduced as 
shown in Fig 19.95. The simulation was an AC Sweep simulation at 
1 kHz, with the results appearing in Fig. 19.96 as taken from the listing 
resulting from the PSpice-View Output File. The magnitude of the 
Thévenin voltage is 5.187 V to compare with the 5.08 V of Example 
19.8, while the phase angle is -77.13° to compare with the -77.09° of 
the same example—excellent results.

Next, the short-circuit current is determined using IPRINT as shown 
in Fig. 19.97, to permit a determination of the Thévenin impedance. The 
resistance Rcoil of 1 mΩ had to be introduced because inductors cannot 
be treated as ideal elements when using PSpice; they must all show some 
series internal resistance. Note that the short-circuit current will pass 
directly through the printer symbol for IPRINT. Incidentally, there is no 
need to exit the SCHEMATIC1 developed above to determine the 
Thévenin voltage. Simply delete VPRINT and R3, and insert IPRINT. 
Then run a new simulation to obtain the results in Fig. 19.98. The mag-
nitude of the short-circuit current is 936.1 mA at an angle of -108.6°. 
The Thévenin impedance is then defined by

ZTh =
ETh

Isc
=

5.187 V ∠-77.13°
936.1 mA ∠-108.6°

= 5.54 Ω ∠31.47°

which is an excellent match with 5.49 Ω ∠32.36° obtained in Exam-
ple 19.8.
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VCVS    The next application will verify the results in Example 19.12 
and provide some practice using controlled (dependent) sources. The net-
work in Fig. 19.51, with its voltage-controlled voltage source (VCVS), 
will have the schematic appearance in Fig. 19.99. The VCVS appears as 
E in the ANALOG library, with the voltage E1 as the controlling voltage 
and E as the controlled voltage. In the Property Editor dialog box, 
change the GAIN to 20, but leave the rest of the columns as is. After 
Display-Name and Value, select Apply and exit the dialog box. This 
results in GAIN = 20 near the controlled source. Take particular note of 
the second ground inserted near E to avoid a long wire to ground that 
may overlap other elements. For this exercise, the current source ISRC is 

FIG. 19.97
Using PSpice to determine the short-circuit current.

 ** Profile: "SCHEMATIC1-PSpice 19-2" 

****     AC ANALYSIS
***************************************
  FREQ           IM(V_PRINT1)    IP(V_PRINT1)  
  1.000E+03   9.361E-01             -1.086E+02

FIG. 19.98
The output file for the short-circuit current for the 

network in Fig. 19.97.

FIG. 19.99
Using PSpice to determine the open-circuit Thévenin voltage for the network  

in Fig. 19.51.
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used because it has an arrow in its symbol, and frequency is not important 
for this analysis since there are only resistive elements present. In the 
Property Editor dialog box, set the AC level to 5 mA and the DC level 
to 0 A; both are displayed using Display-Name and value. VPRINT1 is 
set up as in past exercises. The resistor Roc (open circuit) was given a 
very large value so that it appears as an open circuit to the rest of the net-
work. VPRINT1 provides the open circuit Thévenin voltage between the 
points of interest. Running the simulation in the AC Sweep mode at 
1 kHz results in the output file appearing in Fig. 19.100, revealing that the 
Thévenin voltage is 210 V∠0°. Substituting the numerical values of this 
example into the equation obtained in Example 19.12 confirms the result:

 ETh = (1 + m)IR1 = (1 + 20)(5 mA ∠0°)(2 kΩ)

 = 210 V j0°

Next, determine the short-circuit current using the IPRINT option. 
Note in Fig. 19.101 that the only difference between this network and 
that in Fig. 19.102 is the replacement of Roc with IPRINT and the 
removal of VPRINT1. Therefore, you do not need to completely 
“redraw” the network. Just make the changes and run a new simulation. 
The result of the new simulation as shown in Fig. 19.102 is a current of 
5 mA at an angle of 0°.

 ** Profile: "SCHEMATIC1-PSpice 19-3" 

****     AC ANALYSIS
***********************************
  FREQ           VM(N03308)    VP(N03308)  
  1.000E+03   2.100E+02        0.000E+00

FIG. 19.100
The output file for the open-circuit Thévenin voltage 

for the network in Fig. 19.99.

FIG. 19.101
Using PSpice to determine the short-circuit current for the network in Fig. 19.51.

 ** Profile: "SCHEMATIC1-PSpice 19-4" 

****     AC ANALYSIS
***************************************
  FREQ           IM(V_PRINT2)    IP(V_PRINT2)  
  1.000E+03   5.000E-03             0.000E+00

FIG. 19.102
The output file for the short-circuit current for the 

network in Fig. 19.101.

The ratio of the two measured quantities results in the Thévenin 
impedance:

ZTh =
Eoc

Isc
=

ETh

Isc
=

210 V∠0°
5 mA ∠0°

= 42 k�

which also matches the longhand solution in Example 19.12:

ZTh = (1 + m)R1 = (1 + 20)2 kΩ = (21)2 kΩ = 42 k�
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Multisim

Superposition    This analysis begins with the network in Fig. 19.12 
from Example 19.4 because it has both an ac and a dc source. You will 
find in the analysis to follow that it is not necessary to set up a separate 
network for each source. Once the network is set up, the dc levels will 
appear during simulation, and the ac response can be found from a 
View option.

The resulting schematic appears in Fig. 19.103. The construction is 
quite straightforward with the parameters of the ac source set as fol-
lows: The ac source is set with the sequence: Place Source-SIGNAL_
VOLTAGE_SOURCES-AC_VOLTAGE-OK. Set in the desired 
location on the screen and double-click the source to obtain the AC_
VOLTAGE dialog box. Set Voltage(Pk): to 4 V, Frequency (F): to 
1 kHz, Phase: to 0°, AC analysis magnitude: to 4 V, and finally, AC 
analysis phase: to 0° followed by OK. The dc source is set by the 
sequence: Place Source to obtain the Component dialog box and then 
select POWER_SOURCES-DC_POWER-OK and place in the 
proper location on the screen. The dc voltage across R3 can be dis-
played using the Indicator option obtained by selecting the Place Indi-
cator key pad that looks like a red number 8 on an IC package. The 
VOLTMETER_V option was chosen so that the plus sign of the poten-
tial difference was directly above the negative sign.

FIG. 19.103
Using Multisim to apply superposition to the network in Fig. 19.12.

To perform the analysis, use the following sequence to obtain the AC 
Analysis dialog box: Simulate-Analyses-AC Analysis. In the dialog 
box, make the following settings under the Frequency Parameters 
heading: Start frequency: 1 kHz; Stop frequency: 1 kHz; Sweep Type: 
Decade; Number of points: 1000; Vertical scale: Linear. Then shift to 
the Output option and select V(4) under Variables in circuit followed 
by Add to place it in the Selected variables for analysis column. Move 
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any other variables in the selected list back to the variable list using the 
Remove option. Then select Simulate, and the Grapher View response 
of Fig. 19.104 results. During the simulation process, the dc solution of 
3.6 V appears on the voltmeter display (an exact match with the longhand 
solution). There are two plots in Fig. 19.104: one of magnitude versus 
frequency and the other of phase versus frequency. Left-click anywhere 
on the upper graph, and a red arrow shows up along the left edge of the 
plot, which identifies it as the graph to be operated on. To change the 
label for the vertical axis from Magnitude to Voltage (V) as shown in 
Fig. 19.104, select the Properties option from the listing that appears 
after selecting the Graph keypad from the top toolbar. Then choose Left 
Axis and change the label to Voltage (V) followed by OK, and the label 
appears as shown in Fig. 19.104. Next, to read the levels indicated on 
each graph with a high degree of accuracy, select the Cursor keypad fol-
lowed by the Show Cursor option. The Cursors keypad has a small red 
sine wave with two vertical markers. The result is a set of markers at the 
left edge of each figure. By selecting a marker from the left edge of the 
voltage plot and moving it to 1 kHz, you can find the value of the voltage 
in the accompanying table. Note that at a frequency of 1 kHz or essen-
tially 1 kHz, the voltage is 2.06 V which is an exact match with the 
longhand solution in Example 19.4. If you then drop down and select the 
phase plot, you find at the same frequency that the phase angle is 
-32.66°, which is very close to the -32.74° in the longhand solution.

FIG. 19.104
The output results from the simulation of the network in Fig. 19.103.

Problems

SECTION 19.2  Superposition Theorem

	 1.	 Using superposition, determine the current through the 
inductance XL for the network of Fig. 19.105.

R 3 �

+

E1  =  30 V ∠ 30°
–

IL
XC 6 �

+

E2  =  60 V ∠ 10°
–

XL 8 �

FIG. 19.105
Problem 1.

In general, therefore, the results are an excellent match with the solu-
tions in Example 19.4 using techniques that can be applied to a wide 
variety of networks that have both dc and ac sources.
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	 2.	 Using superposition, determine the current through the 
capacitance XC in Fig. 19.106.

I  =  0.3 A ∠ 60°

IC

XC 5 �

+
E  =  15 V ∠ 0°

–

XL 10 � 

FIG. 19.106
Problem 2.

	*3.	 Using superposition, determine the current IL for the net-
work of Fig. 19.107.

IL

XC2
7 �

R

4 �

+

E  =  12 V ∠ 90°
–

XL

3 �

I  =  0.8 A ∠ 120°

XC1

6 �

FIG. 19.107
Problem 3.

	 4.	 Using superposition, determine the voltage across the 
capacitor C2 for the network of Fig. 19.108.

R1

C1

C2

R2

2 k�

6.8 nF   I  =  6 mA ∠180° E  =  14 V ∠0°
f  =  20 kHz f  =  20 kHz

3.9 k� 

+

–

3.3 nF
VC –+

FIG. 19.108
Problem 4.

	 5.	 Using superposition, determine the current through the 
inductor for the network of Fig. 19.109.

–

+
E = 16 V ∠60°

R1

R2

IL

L

2.2 k�

1 k�

C 0.01   F 20 mH

8 mA ∠30°

f  =  10 kHz

I

FIG. 19.109
Problem 5.

e = 20 sin (1000t + 60°)

47 �

22 �

47 mH 

5 V

L

i

+

–

e

C

4.7 �F 

+–

R2

R1

FIG. 19.110
Problems 6, 23, and 39.

	*6.	 Using superposition, find the sinusoidal expression for the 
current i for the network of Fig. 19.110.
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	 7.	 Using superposition, find the sinusoidal expression for the 
voltage yC for the network of Fig. 19.111.

R2

3 �

1 �XC

+

–

 3 A ∠0°I vC

R1

9 �

15 V

FIG. 19.111
Problems 7, 24, 40, and 54.

	*8.	 Using superposition, find the current I for the network of 
Fig. 19.112.

R1 10 k�

5 k�XC

+–

 I  =  5 mA ∠ 0°
R2 5 k�

 E  =  20 V ∠ 0°

5 k�XL

I

FIG. 19.112
Problems 8, 25, 41, and 55.

	 9.	 Using superposition, determine the current IL(h = 200) for 
the network of Fig. 19.113.

R 15 k�

+–
 E  =  10 V ∠ 0°

10 k�XL

IL

hI

 I  =  2 mA ∠ 0°

FIG. 19.113
Problems 9 and 28.

	10.	 Using superposition, for the network of Fig. 19.114, deter-
mine the voltage VL(m = 20).

R2 4 k� V  =  2 V ∠ 0°  I  =  2 mA ∠ 0°mV
–

+–

+

R1

5 k�

XC

1 k�

–

+

VL

FIG. 19.114
Problems 10, 29, and 44.
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	*11.	 Using superposition, determine the current IL for the net-
work of Fig. 19.115 (m = 25; h = 150).

 V  =  10 V ∠ 0°

mV
– +

–

+

R1 20 k�

R2

7 k�

7 k�XL

IL

 I  =  2 mA ∠ 0°

hI

FIG. 19.115
Problems 11, 30, and 45.

	*12.	 Determine VL for the network of Fig. 19.116 (h = 60).

RL 2 k�

+

–

 E  =  30 V ∠ 47° VLhI

+

–

I

R1  =  2 k�

FIG. 19.116
Problems 12 and 31.

	*13.	 Calculate the current I for the network of Fig. 19.117.

R2 5 k�

+ –

 I1  =  1 mA ∠ 0°

I

20V

R1 2 k�  I2  =  2 mA ∠ 0°
+

–
V

FIG. 19.117
Problems 13, 32, and 46.

I

R2 2 �

+

R1 10 �Vx

–

10 V∠0°

–

E1

+

–

4Vx

+
5 A∠0°

–

Vs

+

FIG. 19.118
Problem 14.

	14.	 Find the voltage Vs for the network in Fig. 19.118.

+

–
 E  =  100 V ∠ 0° XL

2 �

R

5 � XC 2 �

a

b

FIG. 19.119
Problems 15 and 34.

SECTION 19.3  Thévenin’s Theorem

	15.	 Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.119 external to the elements between 
points a and b.
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	16.	 Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.120 external to the elements between a 
and b.

+

–
 E  =  25 V ∠  30°

XL

2 k�

R

6 k�

XC 3 k�

a

b

RL

FIG. 19.120
Problems 16 and 53.

	*17.	 Find the Thévenin equivalent circuit for the portion of the 
networks of Fig. 19.121 external to the elements between 
points a and b.

 I  =  0.2 A ∠ 0°

XL

20 �R1

20 �

XC 32 �

a

b

R2  =  70 �

FIG. 19.121
Problems 17 and 35.

	18.	 Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.122 external to the load impedance ZL.

R2

120 �

470 � I  =  2 mA ∠–90°8  V ∠0°

–

+
E

L

12 mH

ZL

a

b
f  =  1 kHz

R1

FIG. 19.122
Problem 18.

	19.	 Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.123 external to the load impedance ZL.

ZL

E2E1

R3

C1

I 2 k�
R1 2 k� R2 2 k�

0.047   F

C2

0.047   F

5 mA ∠0º10 V  ∠0º 10 V  ∠0º

f  =  1 kHz

a

b

–

+

+

–

FIG. 19.123
Problem 19.

	*20.	 Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.124 external to the elements between 
points a and b.

+

–

 E  =  50 V ∠ 0°

XC2

2 �

R1

6 �

XL

4 �

a

b

XC1

8 �
R2

10 �

FIG. 19.124
Problem 20.
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	*21.	 Find the Thévenin equivalent circuit for the portion of the 
networks of Fig. 19.125 external to the elements between 
points a and b.

–

+

E1  =  120 V ∠ 0°

R

10 �

XC

8 �

XL 8 �
I  =
0.5 A ∠ 60° ZL

a

b

FIG. 19.125
Problems 21 and 26.

	*22.	 Find the Thévenin equivalent circuit for the portion of the 
network of Fig. 19.126 external to the elements between 
points a and b.

R2

15 �

XC

15 �
a

b

I  =  0.5 A ∠ 90° E  =  20 V ∠ 40°
–

+

R1 9 �
I2  =
0.8 ∠ 60°

FIG. 19.126
Problem 22.

	*23.	 a.	� Find the Thévenin equivalent circuit for the network 
external to the resistor R1 in Fig. 19.110.

	 b.	 Using the results of part (a), determine the current i of 
the same figure.

	24.	 a.	 �Find the Thévenin equivalent circuit for the network 
external to the capacitor in Fig. 19.111.

	 b.	 Using the results of part (a), determine the voltage yC 
for the same figure.

	*25.	 a.	� Find the Thévenin equivalent circuit of the network 
external to the inductor in Fig. 19.112.

	 b.	 Using the results of part (a), determine the current I of 
the same figure.

	26.	 Determine the Thévenin equivalent circuit for the network 
external to the 5 kΩ inductive reactance in Fig. 19.127 (in 
terms of V).

–

+

R1 10 k�

R2 10 k� XL 5 k�

XC

1 k�

Th

20V

FIG. 19.127
Problems 26 and 42.

	27.	 Determine the Thévenin equivalent circuit for the network 
external to the 4 kΩ inductive reactance in Fig. 19.128 (in 
terms of I).

R1 40 k� R2 5 k�

Th

XL 4 k�100I

XC

0.2 k�

FIG. 19.128
Problems 27 and 43.

	28.	 Find the Thévenin equivalent circuit for the network exter-
nal to the 10 kΩ inductive reactance in Fig. 19.113.

	29.	 Determine the Thévenin equivalent circuit for the network 
external to the 4 kΩ resistor in Fig. 19.114.

	*30.	 Find the Thévenin equivalent circuit for the network exter-
nal to the 7 kΩ inductive reactance in Fig. 19.115.

	*31.	 Determine the Thévenin equivalent circuit for the network 
external to the 2 kΩ resistor in Fig. 19.116.

	*32.	 Find the Thévenin equivalent circuit for the network exter-
nal to the resistor R1 in Fig. 19.117.
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	*33.	 Find the Thévenin equivalent circuit for the network to the 
left of terminals a-a′ in Fig. 19.129.

R1 2 k�

+

8 V∠0°
5Ix R3 3.3 k�

R2

1 k�

E
–

Thévenin
Ix

a

á

FIG. 19.129
Problem 33.

SECTION 19.4  Norton’s Theorem

	34.	 Find the Norton equivalent circuit for the network external 
to the elements between a and b for the network of Fig. 
19.119.

	35.	 Find the Norton equivalent circuit for the network external 
to the elements between a and b for the network of Fig. 
19.121.

	36.	 Find the Norton equivalent circuit for the network external 
to the elements between a and b for the network of Fig. 
19.128.

	*37.	 Find the Norton equivalent circuit for the portion of the net-
work of Fig. 19.130 external to the elements between points 
a and b.

	*38.	 Find the Norton equivalent circuit for the portion of the net-
work of Fig. 19.131 external to the elements between points 
a and b.

R1

6 �

b

a

XL

8 �

I2  =  0.4 A ∠ 20°ZL

XC 12 �

R2 9 �

–

+

E 20 V ∠ 0°

FIG. 19.130
Problem 37.

XL

4 �

–

+

E1  =  120 V ∠ 30°
–

+

E2  =  108 V ∠ 0°

R1  =  3 �

R3 68 �

R4 40 �

a

b

R2 8 �

XC 8 �

FIG. 19.131
Problem 38.

	*39.	 a.	 �Find the Norton equivalent circuit for the network 
external to the resistor R1 in Fig. 19.110.

	 b.	 Using the results of part (a), determine the current i of 
the same figure.

	*40.	 a.	 �Find the Norton equivalent circuit for the network 
external to the capacitor in Fig. 19.111.

	 b.	 Using the results of part (a), determine the voltage VC 
for the same figure.

	*41.	 a.	� Find the Norton equivalent circuit for the network 
external to the inductor in Fig. 19.112.

	 b.	 Using the results of part (a), determine the current I of 
the same figure.

	42.	 Determine the Norton equivalent circuit for the network 
external to the 5 kΩ inductive reactance in Fig. 19.127.

	43.	 Determine the Norton equivalent circuit for the network 
external to the 4 kΩ inductive reactance in Fig. 19.128.

	44.	 Find the Norton equivalent circuit for the network external 
to the 4 kΩ resistor in Fig. 19.114.

	*45.	 Find the Norton equivalent circuit for the network external 
to the 7 kΩ inductive reactance in Fig. 19.115.

	*46.	 Find the Norton equivalent circuit for the network external 
to the I1 current source in Fig. 19.117.
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	*47.	 For the network in Fig. 19.132, find the Norton equivalent 
circuit for the network external to the 2 kΩ resistor.

R1 1 k�  V R2 3 k� R4 2 k�I  =  2 mA ∠ 0°

R3

4 k�

– +

–

+

(   =  20)
V

FIG. 19.132
Problem 47.

SECTION 19.5  Maximum Power Transfer Theorem

	48.	 Find the load impedance ZL for the network of Fig. 19.133 
for maximum power to the load, and find the maximum 
power to the load.

	49.	 Find the load impedance ZL for the network of Fig. 19.134 
for maximum power to the load, and find the maximum 
power to the load.

–

+

R1

3 �

XC 6 �

XL

4 �

E  =  120 V ∠ 0° ZL

FIG. 19.133
Problem 48.

XL

4 �

I  =  3 A ∠ 60°

ZLR2 2 �R1 3 �

FIG. 19.134
Problem 49.

	*50.	 Find the load impedance ZL for the network of Fig. 19.135 
for maximum power to the load, and find the maximum 
power to the load.

	*51.	 Find the load impedance ZL for the network of Fig. 19.136 
for maximum power to the load, and find the maximum 
power to the load.

–

+

R

10 �

XC1
5 �

XL

4 �

E  =  60 V ∠ 60°

ZL

XC2
6 �

FIG. 19.135
Problem 50.

XL1

4 �

ZL
R2 12 �R1 3 �

9 �

XC 8 �
E1  =  100 V ∠ 0° E2  =  200 V ∠ 90°

XL2

–

+

–

+

FIG. 19.136
Problem 51.
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	52.	 Find the load impedance RL for the network in Fig. 19.137 
for maximum power to the load, and find the maximum 
power to the load.

	  56.	 a.	� For the network in Fig. 19.138, determine the value of 
RL that will result in maximum power to the load.

	 b.	 Using the results of part (a), determine the maximum 
power delivered.

–

+

R1 3 k� R2 60 k� RL

I

50I

E  =  3 V ∠ 0°

FIG. 19.137
Problem 52.

	*53.	 a.	 �Determine the load impedance to replace the resistor RL 
in Fig. 19.120 to ensure maximum power to the load.

	 b.	 Using the results of part (a), determine the maximum 
power to the load.

	*54.	 a.	� Determine the load impedance to replace the capacitor 
XC in Fig. 19.111 to ensure maximum power to the load.

	 b.	 Using the results of part (a), determine the maximum 
power to the load.

	*55.	 a.	 �Determine the load impedance to replace the inductor 
XL in Fig. 19.112 to ensure maximum power to the load.

	 b.	 Using the results of part (a), determine the maximum 
power to the load.

–

+

R

2 k� LOAD

RL

XL 3 k�

XC

2 k�E  =  54 V ∠ 0°

FIG. 19.138
Problem 56.

	*57.	 a.	 �For the network in Fig. 19.139, determine the level of 
capacitance that will ensure maximum power to the 
load if the range of capacitance is limited to 1 nF to 
10 nF.

	 b.	 Using the results of part (a), determine the value of RL 
that will ensure maximum power to the load.

	 c.	 Using the results of parts (a) and (b), determine the 
maximum power to the load.

–

+
RL

E  =  2 V ∠ 0° C 4 nF

C (1  –  10 nF)

LOAD

30 mH

L

f  =  10 kHz

R

1 k�

FIG. 19.139
Problem 57.

SECTION 19.6  Substitution, Reciprocity, and 
Millman’s Theorems

	58.	 For the network in Fig. 19.140, determine two equivalent 
branches through the substitution theorem for the branch a-b. R1 5 k� R2 11 k�

a

b

I  =  4 mA ∠ 0°

FIG. 19.140
Problem 58.
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	59.	 a.	 For the network of Fig. 19.141(a), find the current I.
	 b.	 Repeat part (a) for the network of Fig. 19.141(b).
	 c.	 How do the results of parts (a) and (b) compare?

–

+

R1

1 k�

R2

8 k�

R4

11 k�

R3

4 k�

R5

6 k�
E  =  20 V ∠ 0°

I

R1

1 k�

R2

8 k�

R4

11 k�

R3

4 k�

R5  =  6 k�

E  =  20 V ∠ 0°

I

(a) (b)

–

+

FIG. 19.141
Problem 59.

	60.	 Using Millman’s theorem, determine the current through 
the 4 kΩ capacitive reactance of Fig. 19.142.

Millman’s theorem  A method using voltage-to-current source 
conversions that will permit the determination of unknown 
variables in a multiloop network.

Norton’s theorem  A theorem that permits the reduction of any 
two-terminal linear ac network to one having a single current 
source and parallel impedance. The resulting configuration 
can then be used to determine a particular current or voltage in 
the original network or to examine the effects of a specific 
portion of the network on a particular variable.

Reciprocity theorem  A theorem stating that for single-source 
networks, the magnitude of the current in any branch of a net-
work, due to a single voltage source anywhere else in the net-
work, will equal the magnitude of the current through the 
branch in which the source was originally located if the source 
is placed in the branch in which the current was originally 
measured.

Substitution theorem  A theorem stating that if the voltage 
across and current through any branch of an ac bilateral net-
work are known, the branch can be replaced by any combina-
tion of elements that will maintain the same voltage across 
and current through the chosen branch.

Superposition theorem  A method of network analysis that 
permits considering the effects of each source indepen-
dently. The resulting current and/or voltage is the phasor 
sum of the currents and/or voltages developed by each 
source independently.

Thévenin’s theorem  A theorem that permits the reduction of 
any two-terminal linear ac network to one having a single 
voltage source and series impedance. The resulting configura-
tion can then be employed to determine a particular current or 
voltage in the original network or to examine the effects of a 
specific portion of the network on a particular variable.

Voltage-controlled voltage source (VCVS)  A voltage source 
whose parameters are controlled by a voltage elsewhere in 
the system.

–

+

XL 4 k�R1 2 k�
IC

4 k�

E1  =  100 V ∠ 0° E2  =  50 V ∠ 360°
XC

–

+

FIG. 19.142
Problem 60.

SECTION 19.8  Computer Analysis

PSpice or Multisim

	  61.	 Apply superposition to the network in Fig. 19.6. That is, 
determine the current I due to each source, and then find the 
resultant current.

	*62.	 Determine the current IL for the network in Fig. 19.22 using 
schematics.

	*63.	 Using schematics, determine V2 for the network in Fig. 19.57 
if Vi = 1 V∠0°, R1 = 0.5 kΩ, k1 = 3 * 10-4, k2 = 50, and 
R2 = 20 kΩ.

	*64.	 Find the Norton equivalent circuit for the network in Fig. 
19.77 using schematics.

	*65.	 Using schematics, plot the power to the R-C load in Fig. 
19.90 for values of RL from 1 Ω to 10 Ω.

Glossary

Maximum power transfer theorem  A theorem used to deter-
mine the load impedance necessary to ensure maximum 
power to the load.
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20Power (ac)Power (ac)

20.1  Introduction

The discussion of power in Chapter 14 included only the average or real power delivered to 
an ac network. We now examine the total power equation in a slightly different form and 
introduce two additional types of power: apparent and reactive.

20.2  General Equation

For any system such as in Fig. 20.1, the power delivered to a load at any instant is defined by 
the product of the applied voltage and the resulting current; that is,

p = yi

In this case, since y and i are sinusoidal quantities, let us establish a general case where

 y = Vm sin (vt + u)

and	  i = Im sin vt

•	 Become familiar with the differences between 
average, apparent, and reactive power and how to 
calculate each for any combination of resistive and 
reactive elements.

•	 Understand that the energy dissipated by a load is 
the area under the power curve for the period of 
time of interest.

•	 Become aware of how the real, apparent, and 
reactive power are related in an ac network and 
how to find the total value of each for any 
configuration.

•	 Understand the concept of power-factor correction 
and how to apply it to improve the terminal 
characteristics of a load.

•	 Develop some understanding of energy losses in an 
ac system that are not present under dc conditions.

Objectives

20

P
q

s

Load
p v

+

–

i

FIG. 20.1
Defining the power delivered to a load.
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The chosen y and i include all possibilities because, if the load is purely 
resistive, u = 0°. If the load is purely inductive or capacitive, u = 90° 
or u = -90°, respectively. For a network that is primarily inductive, u 
is positive (y leads i). For a network that is primarily capacitive, u is 
negative (i leads y).

Substituting the above equations for y and i into the power equation 
results in

p = VmIm sin vt sin (vt + u)

If we now apply a number of trigonometric identities, the following 
form for the power equation results:

	 p = VI cos u(1 - cos 2vt) + VI sin u(sin 2vt)	 (20.1)

where V and I are the rms values. The conversion from peak values Vm 
and Im to rms values resulted from the operations performed using the 
trigonometric identities.

It would appear initially that nothing has been gained by putting the 
equation in this form. However, the usefulness of the form of Eq. (20.1) 
is demonstrated in the following sections. The derivation of Eq. (20.1) 
from the initial form appears as an assignment at the end of the chapter.

If Eq. (20.1) is expanded to the form

p  � VI cos v � VI cos v cos 2vt � VI sin v sin 2vt

PeakAverage 2x Peak 2x

there are two obvious points that can be made. First, the average power 
still appears as an isolated term that is time independent. Second, both 
terms that follow vary at a frequency twice that of the applied voltage or 
current, with peak values having a very similar format.

In an effort to ensure completeness and order in presentation, each 
basic element (R, L, and C) is treated separately.

20.3 R esistive Circuit

For a purely resistive circuit (such as that in Fig. 20.2), y and i are in 
phase, and u = 0°, as appearing in Fig. 20.3. Substituting u = 0° into 
Eq. (20.1), we obtain

R

+ v –i

pR

FIG. 20.2
Determining the power delivered to a purely 

resistive load.

Energy

dissipated

Energy

dissipated
(Average)

VI

VI

t

Power
delivered to
element by

source

Power
returned to
source by

element

T1

v

it10

p1

pR

T2

FIG. 20.3
Power versus time for a purely resistive load.
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 pR = VI cos (0°)(1 - cos 2vt) + VI sin (0°) sin 2vt

 = VI(1 - cos 2vt) + 0

or	 pR = VI - VI cos 2vt	 (20.2)

where VI is the average or dc term and -VI cos 2vt is a negative cosine 
wave with twice the frequency of either input quantity (y or i) and a peak 
value of VI. The plot in Fig. 20.3 has the same characteristics as obtained 
in Fig. 14.27.

Note that

 T1 = period of input quantities

 T2 = period of power curve pR

In addition, the power curve passes through two cycles about its aver-
age value of VI for each cycle of either y or i (T1 = 2T2 or f2 = 2f1). 
Consider also that since the peak and average values of the power curve 
are the same, the curve is always above the horizontal axis. This indi-
cates that

the total power delivered to a resistor will be dissipated in the form 
of heat.

The power returned to the source is represented by the portion of the curve 
below the axis, which is zero in this case. The power dissipated by the 
resistor at any instant of time t1 can be found by simply substituting the 
time t1 into Eq. (20.2) to find p1, as indicated in Fig. 20.3. The average 
(real) power from Eq. (20.2), or Fig. 20.3, is VI; or, as a summary,

	 P = VI =
VmIm

2
= I2R =

V2

R
  (watts, W)	 (20.3)

as derived in Chapter 14.
The energy dissipated by the resistor (WR) over one full cycle of the 

applied voltage is the area under the power curve in Fig. 20.3. It can be 
found using the following equation:

W = Pt

where P is the average value and t is the period of the applied voltage; 
that is,

	 WR = VIT1  (joules, J)	 (20.4)

or, since T1 = 1>f1,

	 WR =
VI

f1
  (joules, J)	 (20.5)

EXAMPLE 20.1  For the resistive circuit in Fig. 20.4,

	 a.	 Find the instantaneous power delivered to the resistor at times t1 
through t6.

	 b.	 Plot the results of part (a) for one full period of the applied voltage.
	 c.	 Find the average value of the curve of part (b) and compare the level 

to that determined by Eq. (20.3).
	 d.	 Find the energy dissipated by the resistor over one full period of the 

applied voltage.



886    Power (ac) P
q

s

Solutions: 

	 a.	  t1: yR = 0 V  and  pR = yR iR = 0 W

		   t2: yR = 12 V  and  iR = 12 V>4 Ω = 3 A

		   pR = yRiR = (12 V)(3 A) = 36 W

		   t3: yR = 6 V  and  iR = 6 V>4 Ω = 1.5 A

		   pR = yRiR = (6 V)(1.5 A) = 9 W

		   t4: yR = 0 V  and  pR = yR iR = 0 W

		   t5: yR = -12 V  and  iR = -12 V>4 Ω = −3 A

		   pR = yRiR = (-12 V)(-3 A) = 36 W

		   t6: yR = 0 V  and  pR = yR iR = 0 W

	 b.	 The resulting plot of yR, iR, and pR appears in Fig. 20.5.
	 c.	 The average value of the curve in Fig. 20.5 is 18 W, which is an 

exact match with that obtained using Eq. (20.3). That is,

P =
Vm Im

2
=

(12 V)(3 A)

2
= 18 W

	 d.	 The area under the curve is determined by Eq. (20.5):

WR =
VI

f1
=

Vm Im

2 f1
=

(12 V)(3 A)

2(1 kHz)
= 18 mJ

20.4 App arent Power

From our analysis of dc networks (and resistive elements above), it 
would seem apparent that the power delivered to the load in Fig. 20.6 is 
determined by the product of the applied voltage and current, with no 
concern for the components of the load; that is, P = VI. However, we 
found in Chapter 14 that the power factor (cos u) of the load has a pro-
nounced effect on the power dissipated, less pronounced for more reac-
tive loads. Although the product of the voltage and current is not always 
the power delivered, it is a power rating of significant usefulness in the 
description and analysis of sinusoidal ac networks and in the maximum 
rating of a number of electrical components and systems. It is called the 
apparent power and is represented symbolically by S.* Since it is sim-
ply the product of voltage and current, its units are volt-amperes (VA). 
Its magnitude is determined by

R 4 �

iR
pR

vR = 12 sin �t
f =1 kHz

+

–

vR

0 t6t5t1

12 V
6 V

t4t2 t3 t

–12 V

FIG. 20.4
Example 20.1.

0 t6

9 W

t4t2 t3 t

36

pR (W)

Average18

t1 iR

vR

t5

FIG. 20.5
Power curve for Example 20.1.

*Prior to 1968, the symbol for apparent power was the more descriptive Pa.

I

V

+

–

Z

FIG. 20.6
Defining the apparent power to a load.
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	 S = VI  (volt@amperes, VA)	 (20.6)

or, since	 V = IZ  and  I =
V

Z

then	 S = I2Z  (VA)	 (20.7)

and	 S =
V2

Z
  (VA)	 (20.8)

The average power to the load in Fig. 20.6 is

	  P = VI cos u

However,	  S = VI

Therefore,	 P = S cos u  (W)	 (20.9)

and the power factor of a system Fp is

	 Fp = cos u =
P

S
  (unitless)	 (20.10)

The power factor of a circuit, therefore, is the ratio of the average power 
to the apparent power. For a purely resistive circuit, we have

 P = VI = S

and	  Fp = cos u =
P

S
= 1

In general, power equipment is rated in volt-amperes (VA) or in 
kilovolt-amperes (kVA) and not in watts. By knowing the volt-ampere 
rating and the rated voltage of a device, we can readily determine the 
maximum current rating. For example, a device rated at 10 kVA at 
200 V has a maximum current rating of I = 10,000 VA>200 V = 50 A 
when operated under rated conditions. The volt-ampere rating of a 
piece of equipment is equal to the wattage rating only when the Fp is 1. 
It is therefore a maximum power dissipation rating. This condition 
exists only when the total impedance of a system Z ∠u is such that 
u = 0°.

The exact current demand of a device, when used under normal oper-
ating conditions, can be determined if the wattage rating and power fac-
tor are given instead of the volt-ampere rating. However, the power 
factor is sometimes not available, or it may vary with the load.

The reason for rating some electrical equipment in kilovolt-amperes 
rather than in kilowatts can be described using the configuration in 
Fig. 20.7. The load has an apparent power rating of 10 kVA and a cur-
rent rating of 50 A at the applied voltage, 200 V. As indicated, the 
current demand of 70 A is above the rated value and could damage the 
load element, yet the reading on the wattmeter is relatively low since 
the load is highly reactive. In other words, the wattmeter reading is an 
indication of the watts dissipated and may not reflect the magnitude of 
the current drawn. Theoretically, if the load were purely reactive, the 
wattmeter reading would be zero even if the load was being damaged 
by a high current level.
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20.5  Inductive Circuit and Reactive Power

For a purely inductive circuit (such as that in Fig. 20.8), y leads i by 90°, 
as shown in Fig. 20.9. Therefore, in Eq. (20.1), u = 90°. Substituting 
u = 90° into Eq. (20.1) yields

 pL = VI cos (90°)(1 - cos 2vt) + VI sin (90°)(sin 2vt)

 = 0 + VI sin 2vt

or	 pL = VI sin 2vt	 (20.11)

[10 kVA = (200 V)(50 A)]

XL

R

(XL >> R )

Load

I = 70 A > 50 A

P = VI cos θ

0 10

I

V

±

S = VI

±

200 V

+

–

Wattmeter
(kW)

FIG. 20.7
Demonstrating the reason for rating a load in kVA rather than kW.

+ v –i

pL

FIG. 20.8
Defining the power level for a purely inductive load.

Energy
absorbed VI

Power
delivered to
element by

source

Power
returned to
source by

element
T1

pL

T2

Energy
absorbed

Energy
returned

Energy
returned–VI

iv

θ = 90°

FIG. 20.9
The power curve for a purely inductive load.

where VI sin 2vt is a sine wave with twice the frequency of either input 
quantity (y or i) and a peak value of VI. Note the absence of an average 
or constant term in the equation.

Plotting the waveform for pL (Fig. 20.9), we obtain

 T1 = period of either input quantity

 T2 = period of pL curve

Note that over one full cycle of pL (T2), the area above the horizontal axis 
in Fig. 20.9 is exactly equal to that below the axis. This indicates that 
over a full cycle of pL, the power delivered by the source to the inductor 
is exactly equal to that returned to the source by the inductor.
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The net flow of power to the pure (ideal) inductor is zero over a full 
cycle, and no energy is lost in the transaction.

The power absorbed or returned by the inductor at any instant of time t1 
can be found simply by substituting t1 into Eq. (20.11). The peak value 
of the curve VI is defined as the reactive power associated with a pure 
inductor.

In general, the reactive power associated with any circuit is defined to 
be VI sin u, a factor appearing in the second term of Eq. (20.1). Note that 
it is the peak value of that term of the total power equation that produces 
no net transfer of energy. The symbol for reactive power is Q, and its 
unit of measure is the volt-ampere reactive (VAR).* The Q is derived 
from the quadrature (90°) relationship between the various powers, to be 
discussed in detail in a later section. Therefore,

	 QL = VI sin u  (volt@ampere reactive, VAR)	 (20.12)

where u is the phase angle between V and I.
For the inductor,

	 QL = VI  (VAR)	 (20.13)

or, since V = IXL or I = V>XL,

	 QL = I2XL  (VAR)	 (20.14)

or	 QL =
V2

XL
  (VAR)	 (20.15)

The apparent power associated with an inductor is S = VI, and the 
average power is P = 0, as noted in Fig. 20.9. The power factor is 
therefore

Fp = cos u =
P

S
=

0

VI
= 0

If the average power is zero, and the energy supplied is returned within 
one cycle, why is reactive power of any significance? The reason is not 
obvious but can be explained using the curve in Fig. 20.9. At every 
instant of time along the power curve that the curve is above the axis 
(positive), energy must be supplied to the inductor, even though it will 
be returned during the negative portion of the cycle. This power require-
ment during the positive portion of the cycle requires that the generating 
plant provide this energy during that interval. Therefore, the effect of 
reactive elements such as the inductor can be to raise the power require-
ment of the generating plant, even though the reactive power is not dis-
sipated but simply “borrowed.” The increased power demand during 
these intervals is a cost factor that must be passed on to the industrial 
consumer. In fact, most larger users of electrical energy pay for the 
apparent power demand rather than the watts dissipated since the volt-
amperes used are sensitive to the reactive power requirement (see Sec-
tion 20.7). In other words, the closer the power factor of an industrial 
outfit is to 1, the more efficient is the plant’s operation since it is limiting 
its use of “borrowed” power.

*Prior to 1968, the symbol for reactive power was the more descriptive Pq.
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The energy stored by the inductor during the positive portion of the 
cycle (Fig. 20.9) is equal to that returned during the negative portion and 
can be determined using the following equation:

W = Pt

where P is the average value for the interval and t is the associated inter-
val of time.

Recall from Chapter 14 that the average value of the positive portion 
of a sinusoid equals 2 (peak value>p) and t = T2>2. Therefore,

WL = a 2VI
p

b * aT2

2
b

and	 WL =
VIT2

p
  (J)	 (20.16)

or, since T2 = 1>f2, where f2 is the frequency of the pL curve, we have

	 WL =
VI

pf2
  (J)	 (20.17)

Since the frequency f2 of the power curve is twice that of the input 
quantity, if we substitute the frequency f1 of the input voltage or current, 
Eq. (20.17) becomes

	  WL =
VI

p(2f1)
=

VI
v1

However,	  V = IXL = Iv1L

so that	  WL =
(Iv1L)I
v1

and	  WL = LI2  (J) 	 (20.18)

providing an equation for the energy stored or released by the inductor 
in one half-cycle of the applied voltage in terms of the inductance and 
rms value of the current squared.

EXAMPLE 20.2  For the inductive circuit in Fig. 20.10:

	 a.	 Sketch the waveforms of yL and iL.
	 b.	 Find the instantaneous power level for the inductor at times t1 

through t5.
	 c.	 Plot the results of part (b) for one full period of the applied voltage.
	 d.	 Find the average value of the curve of part (c) over one full cycle of 

the applied voltage and compare the peak value of each pulse with 
the value determined by Eq. (20.13).

	 e.	 Find the energy stored or released for any one pulse of the power curve.

Solutions: 

	 a.	 Both waveforms have been plotted in Fig. 20.11. Note that the volt-
age leads the current by 90° as shown by the fact that the voltage 
passes through 0 V at 0° and the current passes through the horizon-
tal axis at 90°.

The peak value of the current is simply determined by Ohm’s law:

Im =
Vm

XL
=

12 V

4 Ω
= 3 A

XL 4 �

iL pL

vL = 12 sin 200t

+

–

FIG. 20.10
Example 20.2.



Capacitive Circuit    891P
q

s

	 b.	 The resulting power curve appears in Fig. 20.11 with three different 
vertical scales for the voltage, current, and power.

At t1, t3, and t5 either the voltage or current is zero resulting in 
PL = yL iL = 0 W.

At t2, a = 45° and yL = 12 sin a = 12 sin 45° = 12(0.7071) =
8.49 V

and	  iL =
Vm

XL
 sin(a - 90°) =

12 V

4 Ω
 sin(45° -90°)

 = 3 sin(-45°) = -2.12 A,

so that	 PL = yLiL = (8.49 V)(-2.12 A) = −18 W.

The results at t4, or a = 135° are a mirror image of that 
obtained at t2 so that PL = 18 W as shown in Fig. 20.11.

Note the fact that the frequency of the power curve is clearly 
twice that of the applied voltage or current verifying the equation 
PL = VI sin vt.

	 c.	 The average value for the curve in Fig. 20.11 is 0 W over any full 
cycle of the applied voltage.

The peak value of the curve is 18 W, which compares directly 
with that obtained from the product

VI =
Vm Im

2
=

(12 V)(3 A)

2
= 18 W

	 d.	 The energy stored or released during each pulse of the power curve is

WL =
VI
v1

=
Vm Im

2 v1
=

(12 V)(3 A)

2 (200 rad/s)
= 90 mJ

t1

t2

t3 t4

t5

12 V

18 W

3 A

3 A_

12 V_

18 W_

0°

45° 90° 135°

iL

vL

v, i, p

α = ω t

pL

FIG. 20.11
Power curve for Example 20.2.

+ v –
i

pC C

FIG. 20.12
Defining the power level for a purely capacitive 

load.

20.6 C apacitive Circuit

For a purely capacitive circuit (such as that in Fig. 20.12), i leads y by 
90°, as shown in Fig. 20.13. Therefore, in Eq. (20.1), u = -90°. Substi-
tuting u = -90° into Eq. (20.1), we obtain
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 pC = VI cos (-90°)(1-cos 2vt) + VI sin (-90°)(sin 2vt)

 = 0 - VI sin 2vt

or	 pC = -VI sin 2vt	 (20.19)

where -VI sin 2vt is a negative sine wave with twice the frequency of 
either input (y or i) and a peak value of VI. Again, note the absence of an 
average or constant term.

Plotting the waveform for pC (Fig. 20.13) gives us

 T1 = period of either input quantity

 T2 = period of pC curve

Energy
absorbedVI

Power
delivered to
element by

source

Power
returned to
source by

element

T1

pC

T2

Energy
absorbed

Energy
returned

Energy
returned–VI

i v

θ = –90°

FIG. 20.13
The power curve for a purely capacitive load.

Note that the same situation exists here for the pC curve as existed for the 
pL curve. The power delivered by the source to the capacitor is exactly 
equal to that returned to the source by the capacitor over one full cycle.

The net flow of power to the pure (ideal) capacitor is zero over a 
full cycle,

and no energy is lost in the transaction. The power absorbed or returned 
by the capacitor at any instant of time t1 can be found by substituting t1 
into Eq. (20.19).

The reactive power associated with the capacitor is equal to the peak 
value of the pC curve, as follows:

	 QC = VI  (VAR)	 (20.20)

However, since V = IXC and I = V>XC, the reactive power to the capac-
itor can also be written

	 QC = I2XC  (VAR)	 (20.21)

and	 QC =
V2

XC
  (VAR)	 (20.22)

The apparent power associated with the capacitor is

	 S = VI  (VA)	 (20.23)
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and the average power is P = 0, as noted from Eq. (20.19) or Fig. 20.13. 
The power factor is, therefore,

Fp = cos u =
P

S
=

0

VI
= 0

The energy stored by the capacitor during the positive portion of the 
cycle (Fig. 20.13) is equal to that returned during the negative portion 
and can be determined using the equation W = Pt.

Proceeding in a manner similar to that used for the inductor, we can 
show that

	 WC =
VIT2

p
  (J)	 (20.24)

or, since T2 = 1>f2, where f2 is the frequency of the pC curve,

	 WC =
VI

pf2
  (J)	 (20.25)

In terms of the frequency f1 of the input quantities y and i,

WC =
VI

p(2f1)
=

VI
v1

=
V(Vv1C)

v1

and	 WC = CV2  (J)	 (20.26)

providing an equation for the energy stored or released by the capacitor 
in one half-cycle of the applied voltage in terms of the capacitance and 
rms value of the voltage squared.

20.7 T he Power Triangle

The three quantities average power, apparent power, and reactive 
power can be related in the vector domain by

	 S = P + Q	 (20.27)

with

P = P ∠0°  QL = QL ∠90°  QC = QC ∠-90°

For an inductive load, the phasor power S, as it is often called, is 
defined by

S = P + jQL

as shown in Fig. 20.14.
The 90° shift in QL from P is the source of another term for reactive 

power: quadrature power.
For a capacitive load, the phasor power S is defined by

S = P - jQC

as shown in Fig. 20.15.
If a network has both capacitive and inductive elements, the reactive 

component of the power triangle will be determined by the difference 
between the reactive power delivered to each. If QL 7 QC, the resultant 

S

v

P

QL

FIG. 20.14
Power diagram for inductive loads.

S

P

QC

v

FIG. 20.15
Power diagram for capacitive loads.
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power triangle will be similar to Fig. 20.14. If QC 7 QL, the resultant 
power triangle will be similar to Fig. 20.15.

That the total reactive power is the difference between the reactive 
powers of the inductive and capacitive elements can be demonstrated by 
considering Eqs. (20.11) and (20.19). These equations have been used to 
plot the reactive power delivered to each reactive element for a series L-C 
circuit on the same set of axes in Fig. 20.16. The reactive elements were 
chosen such that XL 7 XC. Note that the power curve for each is exactly 
180° out of phase. The curve for the resultant reactive power is therefore 
determined by the algebraic resultant of the two at each instant of time. 
Since the reactive power is defined as the peak value, the reactive compo-
nent of the power triangle is as indicated in Fig. 20.16: I21XL - XC2.

qtVC I

pC   =  –VC I sin 2qt QT

VL I

pL  =  VL I sin 2qt

QT  =  QL  –  QC  =  VL I  –  VC I  =  I(VL  –  VC)  =  I(IXL  –  IXC)

=  I 2XL  –  I 2XC  =  I 2 (XL  –  XC)

FIG. 20.16
Demonstrating why the net reactive power is the difference between that 

delivered to inductive and capacitive elements.

An additional verification can be derived by first considering the imped-
ance diagram of a series R-L-C circuit (Fig. 20.17). If we multiply each 
radius vector by the current squared (I2), we obtain the results shown in 
Fig. 20.18, which is the power triangle for a predominantly inductive circuit.

+

XL

XC

XL  –  XC

Z

R

j

FIG. 20.17
Impedance diagram for a series R-L-C circuit.

Q (resultant)  =  QL  –  QC  =  I2(XL  –  XC)

j

I2XC  =  QC

I2XL  =  QL

S = I
2 Z

PR  =  I2R

FIG. 20.18
The result of multiplying each vector in Fig. 20.17 by I2 for a 

series R-L-C circuit.

Since the reactive power and average power are always angled 90° to 
each other, the three powers are related by the Pythagorean theorem; 
that is,

	 S2 = P2 + Q2	 (20.28)
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Therefore, the third power can always be found if the other two are 
known.

It is particularly interesting that the equation

	 S = VI*	 (20.29)

will provide the vector form of the apparent power of a system. Here, V 
is the voltage across the system, and I* is the complex conjugate of the 
current.

Consider, for example, the simple R-L circuit in Fig. 20.19, where

I =
V
ZT

=
10 V ∠0°

3 Ω + j 4 Ω
=

10 V ∠0°
5 Ω ∠53.13°

= 2 A ∠-53.13°

The real power (the term real being derived from the positive real axis 
of the complex plane) is

P = I2R = (2 A)2(3 Ω) = 12 W

and the reactive power is

QL = I2XL = (2 A)2(4 Ω) = 16 VAR (L)

with	 S = P + jQL = 12 W + j 16 VAR (L) = 20 VA ∠53.13°

as shown in Fig. 20.20. Applying Eq. (20.29) yields

S = VI* = (10 V ∠0°)(2 A ∠+53.13°) = 20 VA ∠53.13°

as obtained above.
The angle u associated with S and appearing in Figs. 20.14, 20.15, 

and 20.20 is the power-factor angle of the network. Since

P = VI cos u

or	 P = S cos u

then	 Fp = cos u =
P

S
	 (20.30)

20.8 T he Total P, Q, and S
The total number of watts, volt-amperes reactive, and volt-amperes, 
and the power factor of any system can be found using the following 
procedure:

1.	 Find the real power and reactive power for each branch of the 
circuit.

2.	 The total real power of the system (PT) is then the sum of the 
average power delivered to each branch.

3.	 The total reactive power (QT) is the difference between the reactive 
power of the inductive loads and that of the capacitive loads.

4.	 The total apparent power is ST = 2PT
2 + QT

2 .
5.	 The total power factor is PT>ST.

There are two important points in the above procedure. First, the 
total apparent power must be determined from the total average and 
reactive powers and cannot be determined from the apparent powers of 
each branch. Second, and more important, it is not necessary to con-
sider the series-parallel arrangement of branches. In other words, the 
total real, reactive, or apparent power is independent of whether the 

4 �XL

+

–

R

3 �

V = 10 V 0°

I

FIG. 20.19
Demonstrating the validity of Eq. (20.29).

S  =  20 VA

P  =  12 W

QL  =  16 VAR

v  =  53.13°

FIG. 20.20
The power triangle for the circuit in Fig. 20.19.
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loads are in series, parallel, or series-parallel. The following examples 
demonstrate the relative ease with which all of the quantities of interest 
can be found.

EXAMPLE 20.3  Find the total number of watts, volt-amperes reactive, 
volt-amperes, and power factor Fp of the network in Fig. 20.21. Draw 
the power triangle and find the current in phasor form.

900 VAR (C)
200 W

1200 VAR (L)
500 W

0 VAR
200 W

E

I

–

+

Load   2 Load   3

Load   1

  =  120 V∠0°

FIG. 20.21
Example 20.3.

TABLE 20.1

Load W VAR VA

1 200 W 0 200 VA

2 500 W 1200 VAR (L) 2(500)2 + (1200)2 =  1300 VA

3 200 W 900 VAR (C) 2(200)2 + (900)2 = 921.95 VA

PT = 900 W QT = 300 VAR (L) ST = 2(900)2 + (300)2 = 948.68 VA
Total power dissipated Resultant reactive power of network (Note that ST ≠  sum of each branch: 

948.68 ≠ 200 + 1300 + 921.95 = 2,421.95)

Solution:  Construct a table such as shown in Table 20.1.

Thus,

Fp =
PT

ST
=

900 W

948.68 VA
= 0.949 lagging(L)

The power triangle is shown in Fig. 20.22.
Since ST = VI = 948.68 VA, I = 948.68 VA>120 V = 7.91 A; and 

since u of cos u = Fp is the angle between the input voltage and current,

I = 7.91 A j−18.38°

The minus sign is associated with the phase angle since the circuit is 
predominantly inductive.

EXAMPLE 20.4 

	 a.	 Find the total number of watts, volt-amperes reactive, volt-amperes, 
and power factor FP for the network in Fig. 20.23.

	 b.	 Sketch a load diagram and power triangle.
	 c.	 Find the energy dissipated by the resistor over one full cycle of the 

input voltage if the frequency of the input quantities is 60 Hz.

PT  =  900 W

QT  =  300 VAR (L)
18.38° =  cos –1 0.949

ST = 948.68 VA

FIG. 20.22
Power triangle for Example 20.3.
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	 d.	 Find the energy stored in, or returned by, the capacitor or inductor 
over one half-cycle of the power curve for each if the frequency of 
the input quantities is 60 Hz.

Solutions: 

	 a.	  I =
E
ZT

=
100 V ∠0°

6 Ω + j 7 Ω - j 15 Ω
=

100 V ∠0°
10 Ω ∠-53.13°

		   =  10 A ∠53.13°
		   VR = (10 A ∠53.13°)(6 Ω ∠0°) = 60 V ∠53.13°
		   VL = (10 A ∠53.13°)(7 Ω ∠90°) = 70 V ∠143.13°
		   VC = (10 A ∠53.13°)(15 Ω ∠-90°) = 150 V ∠-36.87°

		   PT = EI cos u = (100 V)(10 A) cos 53.13° = 600 W

		   = I2R = (10 A)2(6 Ω) = 600 W

		   =
VR

2

R
=

(60 V)2

6
= 600 W

		   ST = EI = (100 V)(10 A) = 1000 VA

		   = I2ZT = (10 A)2(10 Ω) = 1000 VA

		   =
E2

ZT
=

(100 V)2

10 Ω
= 1000 VA

		   QT = EI sin u = (100 V)(10 A) sin 53.13° = 800 VAR

		   = QC - QL

		   = I2(XC - XL) = (10 A)2(15 Ω - 7 Ω) = 800 VAR

		   QT =
VC

2

XC
-

VL
2

XL
=

(150 V)2

15 Ω
-

(70 V)2

7 Ω
		   = 1500 VAR(C) - 700 VAR(L) = 800 VAR (C)

		   Fp =
PT

ST
=

600 W

1000 VA
= 0.6 leading (C)

	 b.	 The load diagram is as shown in Fig. 20.24(a) and the power triangle 
in Fig. 20.24(b).

	 c.	  WR =
VRI

f1
=

(60 V)(10 A)

60 Hz
= 10 J

	 d.	  WL =
VLI
v1

=
(70 V)(10 A)

(2p)(60 Hz)
=

700 J

377
= 1.86 J

		   WC =
VC I

v1
=

(150 V)(10 A)

377 rad/s
=

1500 J

377
= 3.98 J

R

6 �

E  =  100 V ∠0°

–

+

XL

I 7 �

XC 15 �

FIG. 20.23
Example 20.4.
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EXAMPLE 20.5  For the system in Fig. 20.25,

	 a.	 Find the average power, apparent power, reactive power, and Fp for 
each branch.

+

–

E 100 V ∠0° 1500 VAR (C) 
0 W

Load 1

0 VAR 
600 W

Load 2

VA
0 W

700 R (L)

(a)

Load 3

FIG. 20.24
(a) Load diagram and (b) power triangle for Example 20.4.

ST  =  1000 VA

PT    =  600 W 

QT  =  800 VAR (C)

53.13°

(b)

   

R 9 �

E  =  208 V ∠0°
–

+

XC
12 �

6.4 kW 5 Hp

Heating
elements

12
60 W
bulbs

Motor
h  =  82%

Fp  =  0.72
lagging

Capacitive load

FIG. 20.25
Example 20.5.

	 b.	 Find the total number of watts, volt-amperes reactive, volt-amperes, 
and power factor of the system. Sketch the power triangle.

	 c.	 Find the source current I.

Solutions: 

	 a.	 Bulbs:

		  Total dissipation of applied power

 P1 = 12(60 W) = 720 W

 Q1 = 0 VAR

 S1 = P1 = 720 VA

 Fp1
= 1

		  Heating elements:
Total dissipation of applied power

 P2 = 6.4 kW

 Q2 = 0 VAR

 S2 = P2 = 6.4 kVA

 Fp2
= 1
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		  Motor:

 h =
Po

Pi
 S  Pi =

Po

h
=

5(746 W)

0.82
= 4548.78 W = P3

 Fp = 0.72 lagging

 P3 = S3  cos u S S3 =
P3

cos u
=

4548.78 W

0.72
= 6317.75 VA

		  Also, u = cos-1 0.72 = 43.95°, so that

 Q3 = S3 sin u = (6317.75 VA)(sin 43.95°)
 = (6317.75 VA)(0.694) = 4384.71 VAR (L)

		  Capacitive load:

 I =
E
Z

=
208 V ∠0°

9 Ω - j 12 Ω
=

208 V ∠0°
15 Ω ∠-53.13°

= 13.87 A ∠53.13°

 P4 = I2R = (13.87 A)2 # 9 Ω = 1731.39 W

 Q4 = I2XC = (13.87 A)2 # 12 Ω = 2308.52 VAR (C)

 S4 = 2P4
2 + Q4

2 = 2(1731.39 W)2 + (2308.52 VAR)2

 = 2885.65 VA

 Fp =
P4

S4
=

1731.39 W

2885.65 VA
= 0.6 leading

	 b.	  PT = P1 + P2 + P3 + P4

		   = 720 W + 6400 W + 4548.78 W + 1731.39 W

		   = 13,400.17 W

		   QT = {  Q1 {  Q2 {  Q3 {  Q4

		   = 0 + 0 + 4384.71 VAR (L) - 2308.52 VAR (C)

		   = 2076.19 VAR (L)

		   ST = 2PT
2 + QT

2 = 2(13,400.17 W)2 + (2076.19 VAR)2

		   = 13,560.06 VA

		   Fp =
PT

ST
=

13.4 kW

13,560.06 VA
= 0.988 lagging

		   u = cos-1 0.988 = 8.89°

		  Note Fig. 20.26.

	 c.	 ST = EI S I =
ST

E
=

13,559.89 VA

208 V
= 65.19 A

		  Lagging power factor: E leads I by 8.89°, and

I = 65.19 A j−8.89°

EXAMPLE 20.6  An electrical device is rated 5 kVA, 100 V at a 0.6 
power-factor lag. What is the impedance of the device in rectangular 
coordinates?

Solution: 

	  S = EI = 5000 VA

Therefore,	  I =
5000 VA

100 V
= 50 A

ST  =  13,560.06 VA

PT  =  13.4 kW

QT  =  2076.19 VAR (L)8.89°

FIG. 20.26
Power triangle for Example 20.5.
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For FP = 0.6, we have

u = cos - 1 0.6 = 53.13°

Since the power factor is lagging, the circuit is predominantly inductive, 
and I lags E. Or, for E = 100 V∠0°,

I = 50 A ∠-53.13°

However,

ZT =
E
I

=
100 V ∠0°

50 A ∠-53.13°
= 2 Ω ∠53.13° = 1.2 � + j 1.6 �

which is the impedance of the circuit in Fig. 20.27.

ZT 1.6 �XL

R

1.2 �

FIG. 20.27
Example 20.6.

20.9  Power-Factor Correction

The design of any power transmission system is very sensitive to the 
magnitude of the current in the lines as determined by the applied loads. 
Increased currents result in increased power losses (by a squared factor 
since P = I2R) in the transmission lines due to the resistance of the 
lines. Heavier currents also require larger conductors, increasing the 
amount of copper needed for the system, and, quite obviously, they 
require increased generating capacities by the utility company.

Every effort must therefore be made to keep current levels at a mini-
mum. Since the line voltage of a transmission system is fixed, the apparent 
power is directly related to the current level. In turn, the smaller is the net 
apparent power, the smaller is the current drawn from the supply. Mini-
mum current is therefore drawn from a supply when S = P and QT = 0. 
Note the effect of decreasing levels of QT on the length (and magnitude) 
of S in Fig. 20.28 for the same real power. Note also that the power-factor 
angle approaches zero degrees and FP approaches 1, revealing that the 
network is appearing more and more resistive at the input terminals.

The process of introducing reactive elements to bring the power fac-
tor closer to unity is called power-factor correction. Since most loads 
are inductive, the process normally involves introducing elements with 
capacitive terminal characteristics having the sole purpose of improving 
the power factor.

In Fig. 20.29(a), for instance, an inductive load is drawing a current IL 
that has a real and an imaginary component. In Fig. 20.29(b), a capacitive 
load was added in parallel with the original load to raise the power factor 
of the total system to the unity power-factor level. Note that by placing all 
the elements in parallel, the load still receives the same terminal voltage 
and draws the same current IL. In other words, the load is unaware of and 

v

QT

S

Q�T  < QTS�<S

v�<θ

FIG. 20.28
Demonstrating the impact of power-factor correction 

on the power triangle of a network.

Inductive load
+

–

IL

(a)

Fp < 1

L

R

E  =  E  ∠0° 

Is

Fp = 1

IC

E

+

–

(b)

ZT 
R

L

IL

C

Inductive load

FIG. 20.29
Demonstrating the impact of a capacitive element on the power factor of a network.
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unconcerned about whether it is hooked up as shown in Fig. 20.29(a) or 
Fig. 20.29(b).

Solving for the source current in Fig. 20.29(b) gives

 Is = IC + IL

 = jIC(Imag) + IL(Re) + jIL(Imag) = jIC + IL - jIL

 = IL(Re) + j[IL(Imag) + IC (Imag)] = IL + j [IC + IL ]

If XC is chosen such that IC = IL, then

Is = IL + j (0) = IL ∠0°

The result is a source current whose magnitude is simply equal to the 
real part of the inductive load current, which can be considerably less 
than the magnitude of the load current in Fig. 20.29(a). In addition, since 
the phase angle associated with both the applied voltage and the source 
current is the same, the system appears “resistive” at the input terminals, 
and all of the power supplied is absorbed, creating maximum efficiency 
for a generating utility.

Power generating stations are committed to providing sufficient 
power to meet the demands of their customers. There are times, how-
ever, when the system is strained and all efforts must be made to ensure 
that the system is working at the highest levels of efficiency. For an 
industrial plant to demand higher currents simply because the load is too 
inductive and needs higher levels of apparent power cannot be tolerated. 
Penalties will be applied such as those appearing in Table 20.2. Take 
note that the closer the power factor is to 1 the less the penalty. In fact, 
any power factor close to 1 does not suffer a penalty. However, when 
you approach power factors of 0.6 or more, the penalties can be severe. 
Consider a plant with a bank of machinery generating $2000 a month in 
energy costs. A power factor of 0.62 will add 40% to that cost, or $2800 
a month for the entire plant—an $800 in additional cost. Penalties of this 
level have resulted in the development of capacitor bank panels, such as 
shown in Fig. 20.30, that automatically place capacitors in parallel with 

TABLE 20.2
Penalties applied to loads based on the overall 

power factor of the load.

Fp Penalty

1–0.9 None
0.9–0.85 3%
0.85–0.8 10%
0.8–0.75 20%
0.75–0.7 30%
0.7–0.6 40%
0.6–0.5 50%
0.5–0.3 80%
0.3–0 90%

FIG. 20.30
Power-factor correction panel.
(Courtesy of Imsat Maritime, s.a.)
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the load to keep the power factor as close to 1 as possible. As the load 
becomes more and more inductive, additional capacitors are added in 
parallel to maintain a power factor as close to 1 as possible.

EXAMPLE 20.7  An industrial load has the equivalent loading effect of 
Fig. 20.31.

	 a.	 Develop the equivalent load diagram and sketch the power triangle. 
Make note of the current drawn from the 208 V three-phase supply.

	 b.	 Redraw the network with an additional capacitive load that will cre-
ate a unity power factor load for the network.

	 c.	 For an applied frequency of 60 Hz, find the value of the required 
capacitor and the closest standard value.

	 d.	 Calculate the new line current with the power-factor corrective 
capacitor in place. How do they compare?

	 e.	 Sketch the network with the capacitor in place and find the total 
impedance of the network. Then calculate the line current and com-
pare to the results of part (e).

Solution: 

	 a.	  ZT = 8 Ω + j 10 Ω = 12.81 Ω ∠51.34°

		   IL =
E
ZT

=
208 V ∠0°

12.81 Ω ∠51.34°
= 16.24 A ∠-51.34°

		   P = I2
L R = (16.24 A)2 8 Ω = 2109.9 W

		   QL = I2
L XL = (16.24 A)2 10 Ω = 2637.38 VAR (L)

		   S = VI = EIL = (208 V)(16.24 A) = 3377.92 VA

		  The load diagram and power triangle appear in Fig. 20.32.

+

–

IL

R

E  =  ∠0°208 V

XL

8 �

10 �

FIG. 20.31

+

–

IL

E  = ∠0°208 V

QL = 2,637.38 
VAR (L)

P  = 2,109.9 W 

P  = 2109.9 W 

51.34°

QL  = 2637.38 VAR (L)S = 3377.92 VA 

FIG. 20.32

(a)

+

–

IL

E  =  ∠0º208 V

P = 2,109.9 W

CQ  = 2,637.38 
VAR (C) 

LQ   = 2,637.38
VAR (L) 

FIG. 20.33

		  The load draws 16.24 A from the supply.
	 b.	 The network is redrawn in Fig. 20.33 with the power-factor capaci-

tor in place.

	 c.	  XC =
1

2pfC
1 C =

1

2pf XC
=

1

2p(60 Hz)(2637.38 VAR)

		   = 1.006 mF

		   Use C = 1 mF

	 d.	  S = P = VI = EI = (208 V)(IL) = 2109.9 W

		   and IL =
2109.9 W

208 V
= 10.14 A

		  Compared to 16.24 A above—a drop of 37%.



Power-Factor Correction    903P
q

s

	 e.	 The network appears in Fig. 20.34.

 ZT =
(8 Ω + j 10 Ω)(16.4 Ω ∠-90°)

8 Ω + j 10 Ω - j 16.4 Ω
= 20.52 Ω ∠44.17°

 IL =
E
ZT

=
208 V ∠0°

20.52 Ω ∠44.17°
= 10.14 A ∠-44.17°

		  as obtained above.
The value of the inserted capacitor to establish a unity power 

factor was therefore correctly determined through the use of the 
power equations.

EXAMPLE 20.8  A 5 hp motor with a 0.6 lagging power factor and an 
efficiency of 92% is connected to a 208 V, 60 Hz supply.

	 a.	 Establish the power triangle for the load.
	 b.	 Determine the power-factor capacitor that must be placed in parallel 

with the load to raise the power factor to unity.
	 c.	 Determine the change in supply current from the uncompensated to 

the compensated system.

Solutions: 

	 a.	 Since 1 hp = 746 W,

Po = 5 hp = 5(746 W) = 3730 W

	 and	 Pi (drawn from the line) =
Po

h
=

3730 W

0.92
= 4054.35 W

	 Also	 Fp = cos u = 0.6

	 and	 u = cos - 1 0.6 = 53.13°

	 Applying	 tan u =
QL

Pi

	 we obtain	  QL = Pi tan u = (4054.35 W) tan 53.13°
 = 5405.8 VAR (L)

		  and

 S = 2Pi
2 + QL

2 = 2(4054.35 W)2 + (5405.8 VAR)2

 = 6757.25 VA

		  The power triangle appears in Fig. 20.35.
	 b.	 A net unity power-factor level is established by introducing a capaci-

tive reactive power level of 5405.8 VAR to balance QL. Since

QC =
V2

XC

		  then	 XC =
V2

QC
=

(208 V)2

5405.8 VAR (C)
= 8 Ω

		  and	 C =
1

2pf XC
=

1

(2p)(60 Hz)(8 Ω)
= 331.6 MF

	 c.	 At 0.6Fp,

		  S = VI = 6757.25 VA

		  and	 I =
S

V
=

6757.25 VA

208 V
= 32.49 A

+

–

IL

R

E  =  ∠0º208 V

XL

8 �

10 �

ZT

XC 16.4 �

FIG. 20.34

S  =  6757.25 VA

P  =  4054.35 W

QL  =  5404.45 VAR (L)

v  =  53.13°

FIG. 20.35
Initial power triangle for the load in Example 20.8.
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		  At unity Fp,

S = VI = 4054.35 VA

		  and	 I =
S

V
=

4054.35 VA

208 V
= 19.49 A

		  producing a 40% reduction in supply current.

EXAMPLE 20.9 

	 a.	 A small industrial plant has a 10 kW heating load and a 20 kVA 
inductive load due to a bank of induction motors. The heating ele-
ments are considered purely resistive (Fp = 1), and the induction 
motors have a lagging power factor of 0.7. If the supply is 1000 V at 
60 Hz, determine the capacitive element required to raise the power 
factor to 0.95.

	 b.	 Compare the levels of current drawn from the supply.

Solutions: 

	 a.	 For the induction motors,

 S = VI = 20 kVA

 P = S cos u = (20 * 103 VA)(0.7) = 14 kW

 u = cos-1 0.7 ≅ 45.6°

		  and

QL = VI sin u = (20 kVA)(0.714) = 14.28 kVAR (L)

The power triangle for the total system appears in Fig. 20.36.
Note the addition of real powers and the resulting ST:

ST = 2(24 kW)2 + (14.28 kVAR)2 = 27.93 kVA

with	 IT =
ST

E
=

27.93 kVA

1000 V
= 27.93 A

		  The desired power factor of 0.95 results in an angle between S and 
P of

u = cos-1 0.95 = 18.91°

		  changing the power triangle to that in Fig. 20.37:

with	  tan u =
Q′L
PT

S Q′L = PT  tan u = (24 kW)(tan 18.19°)

	  = (24 kW)(0.329) = 7.9 kVAR (L)

		  The inductive reactive power must therefore be reduced by

QL - Q′L = 14.28 kVAR (L) - 7.9 kVAR (L) = 6.38 kVAR (L)

		  Therefore, QC = 6.38 kVAR, and using

QC =
E2

XC

		  we obtain

XC =
E2

QC
=

(103 V)2

6.38 kVAR
= 156.74 Ω

QL  =  14.28 kVAR (L)
ST

30.75° 45.6°
S  

=  2
0 k

VA

P  =  10 kW P  =  14 kW

Heating Induction motors

FIG. 20.36
Initial power triangle for the load in Example 20.9.

v  =  18.19°
PT  =  24 kW

Q�L  =  7.9 kVAR (L)

FIG. 20.37
Power triangle for the load in Example 20.9 after 

raising the power factor to 0.95.
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and	 C =
1

2pf XC
=

1

(2p)(60 Hz)(156.74 Ω)
= 16.93 MF

	 b.	  ST = 2 (24 kW)2 + [7.9 kVAR (L)]2

		   = 25.27 kVA

		   IT =
ST

E
=

25.27 kVA

1000 V
= 25.27 A

		  The new IT is

IT = 25.27 A * 27.93 A (original)

20.10  Power Meters

The power meter in Fig. 20.38 uses a sophisticated electronic package to 
sense the voltage and current levels and has an analog-to-digital conver-
sion unit that displays the levels in digital form. It is capable of provid-
ing a digital readout for distorted nonsinusoidal waveforms, and it can 
provide the phase power, total power, apparent power, reactive power, 
and power factor. It can also measure currents up to 500 A, voltages up 
to 600 V, and frequencies from 30 Hz to 1000 Hz.

The power quality analyzer in Fig. 20.39 can also display the real, 
reactive, and apparent power levels along with the power factor. How-
ever, it has a broad range of other options, including providing the har-
monic content of up to 51 terms for the voltage, current, and power. The 
power range extends from 250 W to 2.5 MW, and the current can be read 
up to 1000 A. The meter can also be used to measure resistance levels 
from 500 Ω to 30 MΩ, capacitance levels from 50 nF to 500 mF, and 
temperature in both °C and °F.

20.11 Eff ective Resistance

The resistance of a conductor as determined by the equation R = r(l>A) 
is often called the dc, ohmic, or geometric resistance. It is a constant 
quantity determined only by the material used and its physical dimen-
sions. In ac circuits, the actual resistance of a conductor (called the 
effective resistance) differs from the dc resistance because of the vary-
ing currents and voltages that introduce effects not present in dc circuits.

These effects include radiation losses, skin effect, eddy currents, and 
hysteresis losses. The first two effects apply to any network, while the 
latter two are concerned with the additional losses introduced by the 
presence of ferromagnetic materials in a changing magnetic field.

Experimental Procedure

The effective resistance of an ac circuit cannot be measured by the ratio 
V>I since this ratio is now the impedance of a circuit that may have both 
resistance and reactance. The effective resistance can be found, how-
ever, by using the power equation P = I2R, where

	 Reff =
P

I2	 (20.31)

A wattmeter and an ammeter are therefore necessary for measuring the 
effective resistance of an ac circuit.

FIG. 20.38
Digital single-phase and three-phase power meter.

(Courtesy of AEMC Instruments)

FIG. 20.39
Power quality analyzer capable of displaying the 
power in watts, the current in amperes, and the 

voltage in volts.
(Courtesy of Fluke Corporation)
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Radiation Losses

Let us now examine the various losses in greater detail. The radiation 
loss is the loss of energy in the form of electromagnetic waves during 
the transfer of energy from one element to another. This loss in energy 
requires that the input power be larger to establish the same current I, 
causing R to increase as determined by Eq. (20.31). At a frequency of 
60 Hz, the effects of radiation losses can be completely ignored. How-
ever, at radio frequencies, this is an important effect and may in fact 
become the main effect in an electromagnetic device such as an antenna.

Skin Effect

The explanation of skin effect requires the use of some basic concepts 
previously described. Remember from Chapter 12 that a magnetic field 
exists around every current-carrying conductor (Fig. 20.40). Since the 
amount of charge flowing in ac circuits changes with time, the magnetic 
field surrounding the moving charge (current) also changes. Recall also 
that a wire placed in a changing magnetic field will have an induced 
voltage across its terminals as determined by Faraday’s law, 
e = N * (df>dt). The higher the frequency of the changing flux as 
determined by an alternating current, the greater is the induced voltage.

For a conductor carrying alternating current, the changing magnetic 
field surrounding the wire links the wire itself, thus developing within the 
wire an induced voltage that opposes the original flow of charge or cur-
rent. These effects are more pronounced at the center of the conductor 
than at the surface because the center is linked by the changing flux inside 
the wire as well as that outside the wire. As the frequency of the applied 
signal increases, the flux linking the wire changes at a greater rate. An 
increase in frequency therefore increases the counter-induced voltage at 
the center of the wire to the point where the current, for all practical pur-
poses, flows on the surface of the conductor. At 60 Hz, the skin effect is 
almost noticeable. However, at radio frequencies, the skin effect is so 
pronounced that conductors are frequently made hollow because the 
center part is relatively ineffective. The skin effect, therefore, reduces the 
effective area through which the current can flow, and it causes the resist-
ance of the conductor, given by the equation Rc = r(l>AT ), to increase.

Hysteresis and Eddy Current Losses

As mentioned earlier, hysteresis and eddy current losses appear when a 
ferromagnetic material is placed in the region of a changing magnetic 
field. To describe eddy current losses in greater detail, we consider the 
effects of an alternating current passing through a coil wrapped around 
a ferromagnetic core. As the alternating current passes through the 
coil, it develops a changing magnetic flux f linking both the coil and 
the core that develops an induced voltage within the core as deter-
mined by Faraday’s law. This induced voltage and the geometric 
resistance of the core RC = r(l>A) cause currents to be developed 
within the core, icore = (eind>RC), called eddy currents. The currents 
flow in circular paths, as shown in Fig. 20.41, changing direction with 
the applied ac potential.

The eddy current losses are determined by

Peddy = ieddy
2  Rcore

I

Φ

FIG. 20.40
Demonstrating the skin effect on the effective 

resistance of a conductor.

Eddy currents

Coil

Ferromagnetic core

+

–

I

E

FIG. 20.41
Defining the eddy current losses of a 

ferromagnetic core.
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The magnitude of these losses is determined primarily by the type of 
core used. If the core is nonferromagnetic—and has a high resistivity 
like wood or air—the eddy current losses can be neglected. In terms of 
the frequency of the applied signal and the magnetic field strength pro-
duced, the eddy current loss is proportional to the square of the fre-
quency times the square of the magnetic field strength:

Peddy ∝ f 2B2

Eddy current losses can be reduced if the core is constructed of thin, 
laminated sheets of ferromagnetic material insulated from one another 
and aligned parallel to the magnetic flux. Such construction reduces the 
magnitude of the eddy currents by placing more resistance in their path.

 Hysteresis losses were described in Section 12.6. You will recall 
that in terms of the frequency of the applied signal and the magnetic 
field strength produced, the hysteresis loss is proportional to the fre-
quency to the 1st power times the magnetic field strength to the nth 
power:

Phys ∝ f 1Bn

where n can vary from 1.4 to 2.6, depending on the material under con-
sideration.

Hysteresis losses can be effectively reduced by the injection of small 
amounts of silicon into the magnetic core, constituting some 2% or 3% 
of the total composition of the core. This must be done carefully, how-
ever, because too much silicon makes the core brittle and difficult to 
machine into the shape desired.

EXAMPLE 20.10 

	 a.	 An air-core coil is connected to a 120 V, 60 Hz source as shown in 
Fig. 20.42. The current is found to be 5 A, and a wattmeter reading 
of 75 W is observed. Find the effective resistance and the induct-
ance of the coil.

	 b.	 A brass core is then inserted in the coil. The ammeter reads 4 A, and 
the wattmeter 80 W. Calculate the effective resistance of the core. 
To what do you attribute the increase in value over that in part (a)?

	 c.	 If a solid iron core is inserted in the coil, the current is found to be 
2 A, and the wattmeter reads 52 W. Calculate the resistance and the 
inductance of the coil. Compare these values to those in part (a), and 
account for the changes.

Wattmeter

I

E

+

–

120 V ∠0°

f  =  60 Hz

CC

PC
Coil

FIG. 20.42
The basic components required to determine the effective resistance and 

inductance of the coil.
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Solutions: 

	 a.	  R =
P

I2 =
75 W

(5 A)2 = 3 �

		   ZT =
E

I
=

120 V

5 A
= 24 Ω

		   XL = 2ZT
2 - R2 = 2 (24 Ω)2 - (3 Ω)2 = 23.81 Ω

		  and	 XL = 2pf L

		  or	 L =
XL

2pf
=

23.81 Ω
377 rad/s

= 63.16 mH

	 b.	 R =
P

I2 =
80 W

(4 A)2 =
80 Ω

16
= 5 �

		  The brass core has less reluctance than the air core. Therefore, a 
greater magnetic flux density B will be created in it. Since 
Peddy ∝ f 2B2, and Phys ∝ f 1Bn, as the flux density increases, the 
core losses and the effective resistance increase.

	 c.	  R =
P

I2 =
52 W

(2 A)2 =
52 Ω

4
= 13 �

		   ZT =
E

I
=

120 V

2 A
= 60 Ω

		   XL = 2ZT
2 - R2 = 2 (60 Ω)2 - (13 Ω)2 = 58.57 Ω

		    L =
XL

2pf
=

58.57 Ω
377 rad/s

= 155.36 mH

		  The iron core has less reluctance than the air or brass cores. There-
fore, a greater magnetic flux density B will be developed in the core. 
Again, since Peddy ∝ f 2B2, and Phys ∝ f 1Bn, the increased flux den-
sity will cause the core losses and the effective resistance to increase.

Since the inductance L is related to the change in flux by the 
equation L = N(df>di), the inductance will be greater for the iron 
core because the changing flux linking the core will increase.

20.12 App lications

Portable Power Generators

Even though it may appear that 120 V ac are just an extension cord away, 
there are times—such as in a remote cabin, on a job site, or while camping— 
that we are reminded that not every corner of the globe is connected to an 
electric power source. As you travel farther away from large urban com-
munities, gasoline generators such as shown in Fig. 20.43 appear in 
increasing numbers in hardware stores, lumber yards, and other retail 
establishments to meet the needs of the local community. Since ac genera-
tors are driven by a gasoline motor, they must be properly ventilated and 
cannot be run indoors. Usually, because of the noise and fumes that result, 
they are placed as far away as possible and are connected by a long, heavy-
duty, weather-resistant extension cord. Any connection points must be 
properly protected and placed to ensure that the connections will not sit in 
a puddle of water or be sensitive to heavy rain or snow. Although there is 
some effort involved in setting up generators and constantly ensuring that 
they have enough gas, most users think that they are priceless.

FIG. 20.43
Single-phase portable generator.

(Yevgeniy11/Fotolia)
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The vast majority of generators are built to provide between 1750 W 
and 5000 W of power, although larger units can provide up to 20,000 W. 
At first encounter, you may assume that 5000 W are more than adequate. 
However, keep in mind that the unit purchased should be rated at least 
20% above your expected load because of surge currents that result 
when appliances, motors, tools, and so on, are turned on. Remember that 
even a light bulb develops a large turn-on current due to the cold, low-
resistance state of the filament. If you work too closely to the rated 
capacity, experiences such as a severe drop in lighting can result when 
an electric saw is turned on—almost to the point where it appears that 
the lights go out altogether. Generators are like any other piece of equip-
ment: If you apply a load that is too heavy, they will shut down. Most 
have protective fuses or circuit breakers to ensure that the excursions 
above rated conditions are monitored and not exceeded beyond reason. 
The 20% protective barrier drops the output power from a 5000 W unit to 
4000 W, and already we begin to wonder about the load we can apply. 
Although 4000 W are sufficient to run a number of 60 W bulbs, a TV, an 
oil burner, and so on, troubles develop whenever a unit is hooked up for 
direct heating (such as heaters, hair dryers, and clothes dryers). Even 
microwaves at 1200 W command quite a power drain. Add a small elec-
tric heater at 1500 W with six 60 W bulbs (360 W), a 250 W TV, and a 
250 W oil burner, and then turn on an electric hair dryer at 1500 W—sud-
denly you are very close to your maximum of 4000 W. It doesn’t take 
long to push the limits when it comes to energy-consuming appliances.

Table 20.3 provides a list of specifications for the broad range of 
portable gasoline generators. Since the heaviest part of a generator is the 
gasoline motor, anything over 5 hp gets pretty heavy, especially when 
you add the weight of the gasoline. Most good units providing over 
2400 W will have receptacles for 120 V and 220 V at various current 
levels, with an outlet for 12 V dc. They are also built so that they tolerate 
outdoor conditions of a reasonable nature and can run continuously for 
long periods of time. At 120 V, a 5000 W unit can provide a maximum 
current of about 42 A.

TABLE 20.3
Specifications for portable gasoline-driven ac generators.

Continuous output power 1750–3000 W 2000–5000 W 2250–7500 W

Horsepower of gas motor 4–11 hp 5–14 hp 5–16 hp

Continuous 
  output current

At 120 V: 15–25 A
At 220 V(3f): 8914 A

At 120 V: 17–42 A
At 220 V(3f): 9923 A

At 120 V: 19–63 A
At 220 V(3f): 10934 A

Output voltage 120 V or 3f: 120 V/220 V 120 V or 3f: 120 V/220 V 120 V or 3f: 120 V/220 V

Receptacles 2 2–4 2–4

Fuel tank ½ to 2 gallons gasoline ½ to 3 gallons gasoline 1 to 5 gallons gasoline

Business Sense

Because of the costs involved, every large industrial plant must continu-
ously review its electric utility bill to ensure its accuracy and to consider 
ways to conserve energy. As described in this chapter, the power factor 
associated with the plant as a whole can have a measurable effect on the 
drain current and therefore the kVA drain on the power line. Power com-
panies are aware of this problem and actually add a surcharge if the 
power factor fades below about 0.9. In other words, to ensure that the 
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load appears as resistive in nature as possible, the power company asks 
users to try to ensure that their power factor is between 0.9 and 1 so that 
the kW demand is very close to the kVA demand.

Consider the following monthly bill for a fairly large industrial plant:

kWh consumption 146.5 MWh
peak kW demand 241 kW
kW demand 233 kW
kVA demand 250 kVA

The rate schedule provided by the local power authority is the following:

Energy	 First 450 kWh @ 22.3¢/kWh Next 12 MWh @ 17.1¢/kWh
	 Additional kWh @ 8.9¢/kWh

Power	 First 240 kW @ free
	 Additional kW @ $12.05/kW

Note that this rate schedule has an energy cost breakdown and a power 
breakdown. This second fee is the one sensitive to the overall power fac-
tor of the plant.

The electric bill for the month is then calculated as follows:

 Cost = (450 kWh)(22.3¢/kWh) + (12 MWh)(17.1¢/kWh)
  + [146.2 MWh - (12 MWh + 450 kWh)](8.9¢/kWh)

 = $100.35 + $2052.00 + $11,903.75

 = $14,056.10

Before examining the effect of the power fee structure, we can find 
the overall power factor of the load for the month with the following 
ratio taken from the monthly statement:

Fp =
P

Pa
=

233 kW

250 kVA
= 0.932

Since the power factor is larger than 0.9, the chances are that there will 
not be a surcharge or that the surcharge will be minimal.

When the power component of the bill is determined, the kVA 
demand is multiplied by the magic number of 0.9 to determine a kW 
level at this power factor. This kW level is compared to the metered 
level, and the consumer pays for the higher level.

In this case, if we multiply the 250 kVA by 0.9, we obtain 225 kW, 
which is slightly less than the metered level of 233 kW. However, both 
levels are less than the free level of 240 kW, so there is no additional 
charge for the power component. The total bill remains at $14,056.10.

If the kVA demand of the bill were 388 kVA with the kW demand 
staying at 233 kW, the situation would change because 0.9 times 
388 kVA would result in 349.2 kW, which is much greater than the 
metered 233 kW. The 349.2 kW would then be used to determine the bill 
as follows:

 349.2 kW - 240 kW = 109.2 kW

 (109.2 kW)($12.05/kW) = $1315.86

which is significant.
The total bill can then be determined as follows:

 Cost = $14.056.10 + $1,315.86

 = $15,371.96
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Thus, the power factor of the load dropped to 233 kW>388 kVA = 0.6, 
which would put an unnecessary additional load on the power plant. It is 
certainly time to consider the power-factor-correction option as 
described in this text. It is not uncommon to see large capacitors sitting 
at the point where power enters a large industrial plant to perform a 
needed level of power-factor correction.

All in all, therefore, it is important to fully understand the impact of a 
poor power factor on a power plant—whether you someday work for the 
supplier or for the consumer.

20.13 C omputer Analysis

PSpice

Power Curve: Resistor    The computer analysis begins with a verifi-
cation of the curves in Fig. 20.3, which show the in-phase relationship 
between the voltage and current of a resistor. The figure shows that the 
power curve is totally above the horizontal axis and that the curve has a 
frequency twice the applied frequency and a peak value equal to twice 
the average value. First, set up the simple schematic of Fig. 20.44. 
Then, use the Time Domain(Transient) option to get a plot versus 
time, and set the Run to time to 1 ms and the Maximum step size to 
1 ms>1000 = 1 ms. Select OK and then the Run PSpice icon to per-
form the simulation. Then Trace-Add Trace-V1(R) results in the curve 
appearing in Fig. 20.45. Next, Trace-Add Trace-I(R) results in the 
curve for the current as appearing in Fig. 20.41. Finally, plot the power 
curve using Trace-Add Trace-V1(R)*I(R) from the basic power equa-
tion, and the curve of Fig. 20.45 results.

FIG. 20.44
Using PSpice to review the power curve for a resistive element in an ac circuit.
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You can distinguish between the curves by looking at the symbol 
next to each quantity at the bottom left of the plot. In this case, however, 
to make it even clearer, a different color was selected for each trace by 
right-clicking on each trace, selecting Trace Property, and choosing the 
color and width of each curve. However, you can also add text to the 
screen by selecting the ABC icon to obtain the Text Label dialog box, 
entering the label such as P(R), and clicking OK. The label can then be 
placed anywhere on the screen. By selecting the Toggle cursor key and 
then clicking on I(R) at the bottom of the screen, you can use the cursor 
to find the maximum value of the current. At X1 = 250 ms or ¼ of the 
total period of the input voltage, the current is a peak at 3.54 A. The peak 
value of the power curve can then be found by right-clicking on 
V1(R)*I(R), right-clicking on the graph, and then finding the peak value 
(also available by clicking on the Cursor Peak icon to the right of the 
Toggle cursor key). It occurs at the same point as the maximum current 
at a level of 50 W. In particular, note that the power curve shows two 
cycles, while both yR and iR show only one cycle. Clearly, the power 
curve has twice the frequency of the applied signal. Also note that the 
power curve is totally above the zero line, indicating that power is being 
absorbed by the resistor through the entire displayed cycle. Further, the 
peak value of the power curve is twice the average value of the curve; 
that is, the peak value of 50 W is twice the average value of 25 W.

The results of the above simulation can be verified by performing the 
longhand calculation using the rms value of the applied voltage. That is,

P =
VR

2

R
=

(10 V)2

4 Ω
= 25 W

Power Curves: Series R-L-C Circuit    The network in Fig. 20.46, 
with its combination of elements, is now used to demonstrate that, no 
matter what the physical makeup of the network, the average value of 
the power curve established by the product of the applied voltage and 
resulting source current is equal to that dissipated by the network. At a 

FIG. 20.45
The resulting plots for the power, voltage, and current for the resistor  

in Fig. 20.44.
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frequency of 1 kHz, the reactance of the 1.273 mH inductor will be 8 Ω,
and the reactance of the capacitor will be 4 Ω, resulting in a lagging net-
work. An analysis of the network results in

ZT = 4 Ω + j 8 Ω - j 4 Ω = 4 Ω + j 4 Ω = 5.657 Ω ∠45°

with	 I =
E
ZT

=
10 V ∠0°

5.657 Ω ∠45°
= 1.768 A ∠-45°

and	 P = I2R = (1.768 A)24 Ω = 12.5 W

In the Time Domain (Transient) listing, insert Run to Time as 20 ms 
and Maximum step size as 1 ms. The three curves in Fig. 20.47 are 
obtained using the Simulation Output Variables V(E:+), I(R), and 
V(E:+)*I(R). The Run to time under the Simulation Profile listing 
was 20 ms, although 1 ms was chosen as the Maximum step size to 
ensure a good plot. In particular, note that the horizontal axis does not 
start until t = 18 ms to ensure that you are in a steady-state mode and 

FIG. 20.46
Using PSpice to examine the power distribution in a series R-L-C circuit.

FIG. 20.47
Plots of the applied voltage e, current iR = is, and power delivered ps = e # is 

for the circuit in Fig. 20.46.
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Problems

SECTIONs 20.1 through 20.8 

	 1.	 For the battery of bulbs (purely resistive) appearing in 
Fig. 20.48:
	a.	 Determine the total power dissipation.
	b.	 Calculate the total reactive and apparent power.
	c.	 Find the source current Is.
	d.	 Calculate the resistance of each bulb for the specified 

operating conditions.
	e.	 Determine the currents I1 and I2.

	 2.	 For the network of Fig. 20.49:
	a.	 Find the average power delivered to each element.
	b.	 Find the reactive power for each element.
	c.	 Find the apparent power for each element.
	d.	 Find the total number of watts, volt-amperes reactive, 

and volt-amperes, and the power factor Fp of the circuit.
	e.	 Sketch the power triangle.
	f.	 Find the energy dissipated by the resistor over one full 

cycle of the input voltage.
	g.	 Find the energy stored or returned by the capacitor and 

the inductor over one half-cycle of the power curve for 
each.

not in a transient stage (where the peak values of the waveforms could 
change with time). Set the horizontal axis to extend from 18 ms to 20 ms 
by selecting Plot-Axis Settings-X Axis-User Defined-18ms to 20ms-
OK. First note that the current lags the applied voltage as expected for 
the lagging network. The phase angle between the two is 45° as deter-
mined above. Second, be aware that the elements are chosen so that the 
same scale can be used for the current and voltage. The vertical axis 
does not have a unit of measurement, so the proper units must be men-
tally added for each plot. Using Plot-Label-Line sequence, you can 
draw a line across the plot at any desired level. Simply follow the 
sequence just introduced and a pencil will appear on the screen. Set the 
pencil at the left edge of your plot and left-click at that level. Then left-
click again and draw a line across the page at the desired level. When 
you reach the right edge of the graph, release the clicker and the line 
will remain in place. For our examination a line should be drawn at the 
average level of 12.5 W. Then set the different colors for the traces by 
right-clicking on a trace and selecting from the choices under Proper-
ties. Note that the 12.5 W level is indeed the average value of the 
power curve. It is interesting to note that the power curve dips below 
the axis for only a short period of time. In other words, during the two 
visible cycles, power is being absorbed by the circuit most of the time. 
The small region below the axis is the return of energy to the network 
by the reactive elements. In general, therefore, the source must supply 
power to the circuit most of the time, even though a good percentage 
of the power may be delivering energy to the reactive elements, not 
being dissipated.

45 W

+

–
E

Is

30 W

60 W

200 V

I1 I2

FIG. 20.48
Problem 1.

3 �
+

–
E  =  50 V ∠0°

f  =  60 Hz

5 � 9 �

R
XC XL

FIG. 20.49
Problem 2.
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E  =  ∠0º120 V

L

R2

R1

200 �

80 mH

ZT

C2 �

–

+
0.02 mF

Is

f  = 2 kHz

FIG. 20.50
Problem 3.

	 3.	 For the network of Fig. 20.50:
	a.	 Determine the total real, reactive, and apparent power 

for each parallel branch.
	b.	 Draw the power triangle.
	c.	 Find the total impedance and power factor of the network.
	d.	 Find the source current Is.

	 4.	 For the system of Fig. 20.51:
	a.	 Find the total number of watts, volt-amperes 

reactive, and volt-amperes, and the power 
factor Fp.

	b.	 Draw the power triangle.
	c.	 Find the current Is.

Load 1

+

–
E  =  180 V ∠30°

Load 2

600 VAR (C)
100 W

300 VAR (L)
0 W

Load 3

0 VAR
300 W

Is

FIG. 20.51
Problem 4.

Load 1

+

–
E  =  200 V ∠0° Load 2

1800 VAR (C) 
400 W

1200 VAR (L)
600 W Load 3

800 VAR (L)
100 W

Is

FIG. 20.52
Problem 5.

	 5.	 For the system of Fig. 20.52:
	a.	 Find PT, QT, and ST.
	b.	 Determine the power factor Fp.
	c.	 Draw the power triangle.
	d.	 Find Is.

+

–
E  =  50 V ∠60°

Load 4

400 VAR (C)
50 W

Is
Load 3

200 VAR (C)
0 W

Load 1

100 VAR (L)
200 W

Load 2

50 VAR (L) 
100 W

FIG. 20.53
Problem 6.

	 6.	 For the system of Fig. 20.53:
	a.	 Find PT, QT, and ST.
	b.	 Find the power factor Fp.
	c.	 Draw the power triangle.
	d.	 Find Is.
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	 7.	 For the network of Fig. 20.54:
	a.	 Find the type and value of each element in each of the 

series loads.
	b.	 Find the total impedance of the circuit.
	c.	 Find the voltage across the current source.
	d.	 Find the power factor of the series load.
	e.	 Find the voltage across the capacitive load.

600 VAR (C ) ∠0º2 A 

ZT

I
f = 5 kHz

+

–

+

–

Vs VC

400 VAR (L)200 W

FIG. 20.54
Problem 7.

R 25 �

+

–
E  =  90 V ∠30° XL

Is

600 VAR (L)
400 W

10 �

FIG. 20.55
Problem 8.

	 8.	 For the circuit of Fig. 20.55:
	a.	 Find the average, reactive, and apparent power for the 

25 Ω resistor.
	b.	 Repeat part (a) for the 10 Ω inductive reactance.
	c.	 Find the total number of watts, volt-amperes reactive, 

volt-amperes, and power factor Fp.
	d.	 Find the current Is.

	*9.	 For the network of Fig. 20.56:
	a.	 Find Is.
	b.	 Find the average power delivered to each element.
	c.	 Find the reactive power for each element.
	d.	 Find the apparent power for each element.
	e.	 Find PT, QT, ST, and Fp for the system.
	f.	 Sketch the power triangle.

2 �

+

–

XL

Is

4 �XC 5 �

R1

2 �

R2

R3

4 �

E  =  20 V ∠0° 

FIG. 20.56
Problem 9.
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	10.	 Repeat Problem 9 for the network of Fig. 20.57.

+

–

E  =  50 V  ∠60°

L

Is
R 3 � 3 �

4 � 4 � f  = 60 Hz

FIG. 20.57
Problem 10.

R 30 �

+

–
E  =  50 V ∠0°

L

Is 0.1 H

C 100 mF

FIG. 20.58
Problem 11.

	*11.	 For the network of Fig. 20.58:
	a.	 Find the average power delivered to each element.
	b.	 Find the reactive power for each element.
	c.	 Find the apparent power for each element.
	d.	 Find the total number of watts, volt-amperes reactive, 

volt-amperes, and power factor Fp of the network.
	e.	 Sketch the power triangle.
	f.	 Find the energy dissipated by the resistor over one full 

cycle of the input voltage.
	g.	 Find the energy stored or returned by the capacitor and the 

inductor over one half-cycle of the power curve for each.

	12.	 An electrical system is rated 15 kVA, 220 V at a 0.6 leading 
power factor.
	a.	 Determine the impedance of the system in rectangular 

coordinates.
	b.	 Find the average power delivered to the system.

	13.	 An electrical system is rated 7.5 kVA, 150 V, at a 0.9 lag-
ging power factor.
	a.	 Determine the impedance of the system in rectangular 

coordinates.
	b.	 Find the average power delivered to the system.

	*14.	 For the system of Fig. 20.59:
	a.	 Find the total number of watts, volt-amperes reactive, 

volt-amperes, and Fp.
	b.	 Find the current Is.
	c.	 Draw the power triangle.
	d.	 Find the type of elements and their impedance in ohms 

within each electrical box. (Assume that all elements of 
a load are in series.)

	e.	 Verify that the result of part (b) is correct by finding the cur-
rent Is using only the input voltage E and the results of part 
(d). Compare the value of Is with that obtained for part (b).

	*15.	 Repeat Problem 14 for the system of Fig. 20.60.

Load 2

+

–
E  =  100 V ∠0°

Load 3

0 VAR
300 W

Is

500 VAR (L)
600 W

Load 1

500 VAR (C)
0 W

FIG. 20.60
Problem 15.

Load 1

+

–
E  =  30 V ∠0°

Load 2

600 VAR (C)
0 W

Is

200 VAR (L)
300 W

FIG. 20.59
Problem 14.
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Load 2

+

–
E  =  100 V ∠0°

Load 3

30 W
40 VAR (L)

Is

100 VAR (L)
Fp  =  0

Load 1

200 W
Fp  =  1

FIG. 20.61
Problem 16.

+

–

I  =  6 A ∠0°

Load 2

1000 W
0.4Fp  (leading)

Load 1

200 W
0.8Fp  (leading)E

FIG. 20.62
Problem 17.

	17.	 For the circuit of Fig. 20.62:
	a.	 Find the total number of watts, volt-amperes reactive, 

volt-amperes, and Fp.
	b.	 Find the voltage E.
	c.	 Find the type of elements and their impedance in each 

box. (Assume that the elements within each box are in 
series.)

	c.	 Find the current drawn from the supply.
	d.	 Calculate the capacitance necessary to establish a unity 

power factor.
	e.	 Find the current drawn from the supply at unity power 

factor, and compare it to the uncompensated level.

	20.	 The loading of a factory on a 1000 V, 60 Hz system includes:

		  20 kW heating (unity power factor)
		  10 kW (Pi) induction motors (0.7 lagging power factor)
		  5 kW lighting (0.85 lagging power factor)

	a.	 Establish the power triangle for the total loading on the 
supply.

	b.	 Determine the power-factor capacitor required to raise 
the power factor to unity.

	c.	 Determine the change in supply current from the 
uncompensated to the compensated system.

SECTION 20.9  Power-Factor Correction

	*18.	 The lighting and motor loads of a small factory establish a 
10 kVA power demand at a 0.7 lagging power factor on a 
208 V, 60 Hz supply.
	a.	 Establish the power triangle for the load.
	b.	 Determine the power-factor capacitor that must be placed 

in parallel with the load to raise the power factor to unity.
	c.	 Determine the change in supply current from the 

uncompensated to the compensated system.
	d.	 Repeat parts (b) and (c) if the power factor is increased 

to 0.9.

	19.	 The load on a 200 V, 60 Hz supply is 8 kW (resistive), 9 kVAR 
(inductive), and 3 kVAR (capacitive).
	a.	 Find the total kilovolt-amperes.
	b.	 Determine the Fp of the combined loads.

	*16.	 For the circuit of Fig. 20.61:
	a.	 Find the total number of watts, volt-amperes reactive, 

volt-amperes, and Fp.
	b.	 Find the current Is.
	c.	 Find the type of elements and their impedance in each box. 

(Assume that the elements within each box are in series.)
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R2

3 �+

–
E  =  60 V ∠0° XC 12 �

f

g
R1

4 �

CC
(Current coil)

a b c

XL

3 �
d

e

R3

2 �

PC (Potential
coil)

FIG. 20.63
Problem 21.

	22.	 The voltage source in Fig. 20.64 delivers 600 VA at 110 V, 
with a supply current that lags the voltage by a power factor 
of 0.85.
	a.	 Determine the voltmeter, ammeter, and wattmeter 

readings.
	b.	 Find the load impedance in rectangular form.

I

I

E

+

–
Wattmeter

CC

PC V LOAD

FIG. 20.64
Problem 22.

SECTION 20.11  Effective Resistance

	23.	 a.	 An air-core coil is connected to a 200 V, 60 Hz source. 
The current is found to be 4 A, and a wattmeter reading 
of 80 W is observed. Find the effective resistance and 
the inductance of the coil.

	b.	 A brass core is inserted in the coil. The ammeter reads 3 
A, and the wattmeter reads 90 W. Calculate the effective 
resistance of the core. Explain the increase over the 
value in part (a).

	c.	 If a solid iron core is inserted in the coil, the current is 
found to be 2 A, and the wattmeter reads 60 W. Calcu-
late the resistance and inductance of the coil. Compare 
these values to the values in part (a), and account for the 
changes.

	24.	 a.	 The inductance of an air-core coil is 0.08 H, and the 
effective resistance is 4 Ω when a 60 V, 50 Hz source is 
connected across the coil. Find the current passing 
through the coil and the reading of a wattmeter across 
the coil.

	b.	 If a brass core is inserted in the coil, the effective resist-
ance increases to 7 Ω, and the wattmeter reads 30 W. 
Find the current passing through the coil and the induct-
ance of the coil.

	c.	 If a solid iron core is inserted in the coil, the effective 
resistance of the coil increases to 10 Ω, and the current 
decreases to 1.7 A. Find the wattmeter reading and the 
inductance of the coil.

SECTION 20.13  Computer Analysis

PSpice or Multisim

	25.	 Using PSpice or Multisim, obtain a plot of reactive power 
for a pure capacitor of 636.62 mF at a frequency of 1 kHz 
for one cycle of the input voltage using an applied voltage 
E = 10 V∠0°. On the same graph, plot both the applied 
voltage and the resulting current. Apply appropriate labels 
to the resulting curves to generate results similar to those in 
Fig. 20.45.

	26.	 Repeat the analysis in Fig. 20.46 for a parallel R-L-C net-
work of the same values and frequency.

Glossary

Apparent power  The power delivered to a load without consid-
eration of the effects of a power-factor angle of the load. It is 
determined solely by the product of the terminal voltage and 
current of the load.

Average (real) power  The delivered power dissipated in the 
form of heat by a network or system.

SECTION 20.10  Power Meters

	21.	 a.	 A wattmeter is connected with its current coil as shown 
in Fig. 20.63 and with the potential coil across points 
f-g. What does the wattmeter read?

	b.	 Repeat part (a) with the potential coil (PC) across a-b, 
b-c, a-c, a-d, c-d, d-e, and f-e.
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Eddy currents  Small, circular currents in a paramagnetic core 
causing an increase in the power losses and the effective 
resistance of the material.

Effective resistance  The resistance value that includes the 
effects of radiation losses, skin effect, eddy currents, and hys-
teresis losses.

Hysteresis losses  Losses in a magnetic material introduced by 
changes in the direction of the magnetic flux within the 
material.

Power-factor correction  The addition of reactive components 
(typically capacitive) to establish a system power factor closer 
to unity.

Radiation losses  The losses of energy in the form of electromag-
netic waves during the transfer of energy from one element to 
another.

Reactive power  The power associated with reactive elements 
that provides a measure of the energy associated with setting 
up the magnetic and electric fields of inductive and capacitive 
elements, respectively.

Skin effect  At high frequencies, a counter-induced voltage 
builds up at the center of a conductor, resulting in an 
increased flow near the surface (skin) of the conductor and a 
sharp reduction near the center. As a result, the effective area 
of conduction decreases and the resistance increases as 
defined by the basic equation for the geometric resistance of 
a conductor.



Resonance

21.1  Introduction

This chapter introduces the very important resonant (or tuned) circuit, which is fundamental 
to the operation of a wide variety of electrical and electronic systems in use today. The reso-
nant circuit is a combination of R, L, and C elements having a frequency response character-
istic similar to the one appearing in Fig. 21.1. Note in the figure that the response is a 
maximum for the frequency fr, decreasing to the right and left of this frequency. In other 
words, for a particular range of frequencies, the response will be near or equal to the maximum. 

Resonance

•	 Become familiar with the frequency response of a 
series resonant circuit and how to calculate the 
resonant and cutoff frequencies.

•	 Be able to calculate a tuned network’s quality 
factor, bandwidth, and power levels at important 
frequency levels.

•	 Become familiar with the frequency response of a 
parallel resonant circuit and how to calculate the 
resonant and cutoff frequencies.

•	 Understand the impact of the quality factor on the 
frequency response of a series or parallel resonant 
network.

•	 Begin to appreciate the difference between 
defining parallel resonance at the frequency either 
where the input impedance is a maximum or 
where the network has a unity power factor.

Objectives

2121

ƒr

ffr

V, I

Increasing
current or
voltage

Increasing frequency

FIG. 21.1
Resonance curve.
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The frequencies to the far left or right have very low voltage or current 
levels and, for all practical purposes, have little effect on the system’s 
response. The radio or television receiver has a response curve for each 
broadcast station of the type indicated in Fig. 21.1. When the receiver is 
set (or tuned) to a particular station, it is set on or near the frequency fr 
in Fig. 21.1. Stations transmitting at frequencies to the far right or left of 
this resonant frequency are not carried through with significant power to 
affect the program of interest. The tuning process (setting the dial to fr) 
as described above is the reason for the terminology tuned circuit. When 
the response is at or near the maximum, the circuit is said to be in a state 
of resonance.

The concept of resonance is not limited to electrical or electronic sys-
tems. If mechanical impulses are applied to a mechanical system at the 
proper frequency, the system will enter a state of resonance in which 
sustained vibrations of very large amplitude will develop. The frequency 
at which this occurs is called the natural frequency of the system. The 
classic example of this effect was the Tacoma Narrows Bridge built in 
1940 over Puget Sound in Washington State. Four months after the 
bridge, with its suspended span of 2800 ft, was completed, a 42 mi/h 
pulsating gale set the bridge into oscillations at its natural frequency. 
The amplitude of the oscillations increased to the point where the main 
span broke up and fell into the water below. It was replaced by the new 
Tacoma Narrows Bridge, completed in 1950.

The resonant electrical circuit must have both inductance and capaci-
tance. In addition, resistance will always be present due either to the lack 
of ideal elements or to the control offered on the shape of the resonance 
curve. When resonance occurs due to the application of the proper fre-
quency (fr), the energy absorbed by one reactive element is the same as 
that released by another reactive element within the system. In other 
words, energy pulsates from one reactive element to the other. There-
fore, once an ideal (pure C, L) system has reached a state of resonance, it 
requires no further reactive power since it is self-sustaining. In a practi-
cal circuit, there is some resistance associated with the reactive elements 
that will result in the eventual “damping” of the oscillations between 
reactive elements.

There are two types of resonant circuits: series and parallel. As the 
name implies, a series resonant circuit is a combination of series ele-
ments that includes a resistor, inductor, and capacitor. As shown in Fig. 
21.2(a), a voltage source of fixed magnitude over the given frequency 
range is applied to the circuit. As the applied frequency increases, there 
will be a range of frequencies where the current through the circuit will 
peak as shown in the same figure. In other words,

a series resonant circuit is one where the resonant curve of interest is 
the current through the circuit due to an applied voltage source.

A parallel resonant circuit has the same component list but in a paral-
lel combination of elements and the applied source is a current source of 
fixed magnitude as shown in Fig. 21.2(b). In other words,

for parallel resonance the resonant curve of interest is the voltage 
across the output terminals of the network due to an applied current 
source.

Both types of resonant circuits, therefore, have different resonant 
parameters and applied sources. We will now investigate each type of 
resonant network in some detail.
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Series Resonance

21.2  Series Resonant Circuit

The basic configuration for the series resonant circuit appears in 
Fig. 21.3.

The total impedance of this network at any frequency is determined by

ZT = R + jXL - jXC = R + j(XL - XC)

Resonant Condition  The resonant conditions described in the 
introduction occurs when

	 XL = XC	 (21.1)

removing the reactive component from the total impedance equation.

Impedance at Resonance  The total impedance at resonance is 
then

	 ZTs
= R	 (21.2)

representing the minimum value of ZT at any frequency. The subscript s 
is employed to indicate series resonant conditions.

I

Imax

0 fresonance f

V

Vmax

0 fresonance f

+

–

E I

+

–

I V

+

–

(a)

(b)

R

R

L

L

C

C

FIG. 21.2
Resonance (a) Series (b) Parallel.

R L

C

–

+

Es

ZT

I

FIG. 21.3
Series resonant circuit.
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Resonant Frequency  The resonant frequency can be determined in 
terms of the inductance and capacitance by examining the defining equa-
tion for resonance [Eq. (21.1)]:

XL = XC

Substituting yields

vL =
1

vC
  so that  v2 =

1

LC

and	 vs =
11LC

	 (21.3)

or	 fs =
1

2p1LC
  

f = hertz (Hz)
L = henries (H)
C = farads (F)

	 (21.4)

Peak Resonant Current  The current through the circuit at reso-
nance is

I =
E ∠0°
R ∠0°

=
E

R
 ∠0°

which is the maximum current for the circuit in Fig. 21.3 for an applied 
voltage E since ZT  is a minimum value. Consider also that the input 
voltage and current are in phase at resonance.

Resonant Voltage Levels  Since the current is the same through the 
capacitor and inductor, the voltage across each is equal in magnitude but 
180° out of phase at resonance:

VL = (I ∠0°)(XL ∠90°) = IXL ∠90°
VC = (I ∠0°)(XC ∠-90°) = IXC ∠-90°

r180° out of phase

and, since XL = XC, the magnitude of VL equals VC at resonance; that is,

	 VLs
= VCs

	 (21.5)

Phasor Diagram at Resonance  Fig. 21.4, a phasor diagram of the 
voltages and current, clearly indicates that the voltage across the resis-
tor at resonance is the input voltage, and E, I, and VR are in phase at 
resonance.

Power Diagram at Resonance  The average power to the resistor 
at resonance is equal to I2R, and the reactive power to the capacitor 
and inductor are I2XC and I2XL, respectively.

The power triangle at resonance (Fig. 21.5) shows that the total 
apparent power is equal to the average power dissipated by the resistor 
since QL = QC. The power factor of the circuit at resonance is

Fp = cos u =
P

S

I

E

VL

VC

VR

FIG. 21.4
Phasor diagram for the series resonant  

circuit at resonance.

QL = I2XL

S = EI

P = I2R = EI

QC = I2XC

FIG. 21.5
Power triangle for the series resonant  

circuit at resonance.
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and	 Fps
= 1	 (21.6)

Plotting the power curves of each element on the same set of axes 
(Fig. 21.6), we note that, even though the total reactive power at any 
instant is equal to zero (note that t = t′), energy is still being absorbed 
and released by the inductor and capacitor at resonance.

′

t
  =

0

t1 t2 t3 t4 t5

pL

pR

pC

pC pL

Power
supplied to

element

Power
returned by

element

pL

′pL′pC

t′

FIG. 21.6
Power curves at resonance for the series resonant circuit.

A closer examination reveals that the energy absorbed by the induc-
tor from time 0 to t1 is the same as the energy released by the capacitor 
from 0 to t1. The reverse occurs from t1 to t2, and so on. Therefore, the 
total apparent power continues to be equal to the average power, even 
though the inductor and capacitor are absorbing and releasing energy. 
This condition occurs only at resonance. The slightest change in fre-
quency introduces a reactive component into the power triangle, which 
increases the apparent power of the system above the average power 
dissipation, and resonance no longer exists.

21.3 T he Quality Factor (Q)

The quality factor Q of a series resonant circuit is defined as the ratio of 
the reactive power of either the inductor or the capacitor to the average 
power of the resistor at resonance; that is,

	 Qs =
reactive power

average power
	 (21.7)

The quality factor is also an indication of how much energy is placed in 
storage (continual transfer from one reactive element to the other) com-
pared to that dissipated. The lower the level of dissipation for the same 
reactive power, the larger is the Qs factor and the more concentrated and 
intense is the region of resonance.

Substituting for an inductive reactance in Eq. (21.7) at resonance 
gives us

Qs =
I2XL

I2R

and	 Qs =
XL

R
=

vsL

R
	 (21.8)
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If the resistance R is just the resistance of the coil (Rl) then

	 Qs = Qcoil = Q1 =
XL

Rl
  R = Rl	 (21.9)

Since the quality factor of a coil is typically the information provided by 
manufacturers of inductors, it is often given the symbol Q without an asso-
ciated subscript. It appears from Eq. (21.9) that Ql increases linearly with 
frequency since XL = 2pfL. That is, if the frequency doubles, then Ql also 
increases by a factor of 2. This is approximately true for the low range to 
the midrange of frequencies such as shown for the coils in Fig. 21.7. Unfor-
tunately, however, as the frequency increases, the effective resistance of 
the coil also increases, due primarily to skin effect phenomena, and the 
resulting Ql decreases. In addition, the capacitive effects between the wind-
ings increases, further reducing the Ql of the coil. For this reason, Ql must 
be specified for a particular frequency or frequency range. For wide fre-
quency applications, a plot of Ql versus frequency is often provided. The 
maximum Ql for most commercially available coils is less than 200, with 
most having a maximum near 100. Note in Fig. 21.7 that for coils of the 
same type, Ql drops off more quickly for higher levels of inductance.

If we substitute

vs = 2pfs

and then	 fs =
1

2p1LC

into Eq. (21.8), we have

 Qs =
vsL

R
=

2pfsL

R
=

2p

R
a 1

2p1LC
b  L

 =
L

R
a 11LC

b = a 1L1L
b L

R1LC

and	 Qs =
1

R A L

C
	 (21.10)

providing Qs in terms of the circuit parameters.
For series resonant circuits used in communication systems, Qs is 

usually greater than 1. By applying the voltage divider rule to the circuit 
in Fig. 21.3, we obtain

VL =
XLE

ZT
=

XLE

R
  (at resonance)

and	 VLs
= QsE	 (21.11)

or	 VC =
XCE

ZT
=

XCE

R

and	 VCs
= QsE	 (21.12)

Since Qs is usually greater than 1, the voltage across the capacitor or 
inductor of a series resonant circuit can be significantly greater than the 
input voltage. In fact, in many cases the Qs is so high that careful design 
and handling (including adequate insulation) are mandatory with respect 
to the voltage across the capacitor and inductor.

Ql

100

80

60

40

20

0
5 10 25 50 100 250

Frequency (kHz) (log scale)

100
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1 mH

1 H 10 mH

500

FIG. 21.7
Ql versus frequency for a series of inductors of 

similar construction.
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In the circuit in Fig. 21.8, for example, which is in the state of resonance,

Qs =
XL

R
=

480 Ω
6 Ω

= 80

and	 VL = VC = QsE = (80)(10 V) = 800 V

which is certainly a potential of significant magnitude.

The phrase commonly used is there is a Q rise in voltage across the 
reactive components in a series resonant circuit.

R  =  6 �

XC  =  480 �

–

+

E  =  10 V ∠0°

XL  =  480 �

FIG. 21.8
High-Q series resonant circuit.

21.4  ZT Versus Frequency

The total impedance of the series R-L-C circuit in Fig. 21.3 at any fre-
quency is determined by

ZT = R + jXL - jXC  or  ZT = R + j(XL - XC)

The magnitude of the impedance ZT versus frequency is determined by

ZT = 2R2 + (XL - XC)2

The total-impedance-versus-frequency curve for the series resonant 
circuit in Fig. 21.3 can be found by applying the impedance-versus-
frequency curve for each element of the equation just derived, written in 
the following form:

	 ZT ( f ) = 2[R( f )]2 + [XL( f ) - XC( f )]2	 (21.13)

where ZT ( f ) “means” the total impedance as a function of frequency. 
For the frequency range of interest, we assume that the resistance R does 
not change with frequency, resulting in the plot in Fig. 21.9. The curve 
for the inductance, as determined by the reactance equation, is a straight 
line intersecting the origin with a slope equal to the inductance of the coil. 
The mathematical expression for any straight line in a two-dimensional 
plane is given by

y = mx + b

Thus, for the coil,

 XL = 2pfL + 0 =  (2pL)( f ) + 0
	 T 	 T 	 T 	 T

 y =  m #  x  + b

(where 2pL is the slope), producing the results shown in Fig. 21.10.
For the capacitor,

XC =
1

2pfC
  or  XC f =

1

2pC

R( f )

R

0 f

FIG. 21.9
Resistance versus frequency.

XL  =  2pfL

XL ( f )

0

∆x

∆y
2pL  = =  m∆y

∆x

f

FIG. 21.10
Inductive reactance versus frequency.
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which becomes yx = k, the equation for a hyperbola, where

 y(variable) = XC

 x(variable) = f

 k(constant) =
1

2pC

The hyperbolic curve for XC( f ) is plotted in Fig. 21.11. In particular, 
note its very large magnitude at low frequencies and its rapid dropoff as 
the frequency increases.

If we place Figs. 21.10 and 21.11 on the same set of axes, we obtain 
the curves in Fig. 21.12. The condition of resonance is now clearly 
defined by the point of intersection, where XL = XC. For frequencies 
less than fs, it is also quite clear that the network is primarily capacitive 
(XC 7 XL). For frequencies above the resonant condition, XL 7 XC, and 
the network is inductive.

Applying

 ZT ( f ) = 2[R( f )]2 + [XL( f ) - XC( f )]2

 = 2[R( f )]2 + [X( f )]2

to the curves in Fig. 21.12, where X( f ) = XL( f ) - XC( f ), we obtain 
the curve for ZT ( f ) as shown in Fig. 21.13. The minimum impedance 
occurs at the resonant frequency and is equal to the resistance R. Note 
that the curve is not symmetrical about the resonant frequency (espe-
cially at higher values of ZT).

The phase angle associated with the total impedance is

	 u = tan-1(XL - XC)

R
	 (21.14)

For the tan-1x function (resulting when XL 7 XC), the larger x is, the 
larger is the angle u (closer to 90°). However, for regions where 
XC 7 XL, one must also be aware that

	 tan-1(-x) = - tan-1x	 (21.15)

At low frequencies, XC 7 XL, and u approaches -90° (capacitive), as 
shown in Fig. 21.14, whereas at high frequencies, XL 7 XC, and u 
approaches 90°. In general, therefore, for a series resonant circuit:

f 6 fs: network capactive; I leads E
f 7 fs: network inductive; E leads I
f = fs: network resistive; E and I are in phase

XC  = 1
2pfC

f0

XC ( f )

FIG. 21.11
Capacitive reactance versus frequency.

XC

X

XL

XC  >  XL XL  >  XC

fs f0

FIG. 21.12
Placing the frequency response of the inductive and 
capacitive reactance of a series R-L-C circuit on the 

same set of axes.

b  ≠  a

ZT ( f )

ffs

a

ZT

R

0

FIG. 21.13
ZT versus frequency for the series resonant circuit.

Circuit capacitive
Leading Fp

v

90°
45°
0°

–45°
–90°

(E leads I)
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Lagging Fp

fs f

FIG. 21.14
Phase plot for the series resonant circuit.
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21.5  Selectivity

If we now plot the magnitude of the current I = E>ZT versus frequency 
for a fixed applied voltage E, we obtain the curve shown in Fig. 21.15, 
which rises from zero to a maximum value of E>R (where ZT is a mini-
mum) and then drops toward zero (as ZT increases) at a slower rate than 
it rose to its peak value. The curve is actually the inverse of the impedance-
versus-frequency curve. Since the ZT curve is not absolutely symmetri-
cal about the resonant frequency, the curve of the current versus 
frequency has the same property.

BW

I

Imax  = E
R

0.707Imax

0 f1 fs f2 f

FIG. 21.15
I versus frequency for the series resonant circuit.

There is a definite range of frequencies at which the current is near its 
maximum value and the impedance is at a minimum. Those frequencies 
corresponding to 0.707 of the maximum current are called the band 
frequencies, cutoff frequencies, half-power frequencies, or corner 
frequencies. They are indicated by f1 and f2 in Fig. 21.15. The range of 
frequencies between the two is referred to as the bandwidth (abbrevi-
ated BW) of the resonant circuit.

Half-power frequencies are those frequencies at which the power 
delivered is one-half that delivered at the resonant frequency; that is,

	 PHPF =
1

2
 Pmax	 (21.16)

The above condition is derived using the fact that

Pmax = Imax
2 R

and	 PHPF = I2R = (0.707Imax)
2R = (0.5)(Imax

2 R) =
1

2
 Pmax

Since the resonant circuit is adjusted to select a band of frequencies, 
the curve in Fig. 21.15 is called the selectivity curve. The term is derived 
from the fact that one must be selective in choosing the frequency to 
ensure that it is in the bandwidth. 

The smaller the bandwidth, the higher is the selectivity. 

The shape of the curve, as shown in Fig. 21.16, depends on each element 
of the series R-L-C circuit. If the resistance is made smaller with a fixed 
inductance and capacitance, the bandwidth decreases and the selectivity 
increases. Similarly, if the ratio L>C increases with fixed resistance, the 
bandwidth again decreases with an increase in selectivity.

BW

BW

fs f0

I
R3 > R2 > R1 (L, C fixed)

R1(smaller)

R2

R3(larger)

fs f0

I

BW2

BW3

BW1

L3 /C3

L2/C2

L1/C1

(R  fixed)L3/C3 > L2/C2 > L1/C1

(a)

(b)

BW

FIG. 21.16
Effect of R, L, and C on the selectivity curve for the 

series resonant circuit.
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In terms of Qs, if R is larger for the same XL, then Qs is less, as deter-
mined by the equation Qs = vsL>R.

A small Qs, therefore, is associated with a resonant curve having a 
large bandwidth and a low level of selectivity, while a large Qs 
indicates the opposite.

For circuits where Qs Ú 10 (indicating a tight curve around the 
resonant frequency), a widely accepted approximation is that the res-
onant frequency bisects the bandwidth and that the resonant curve is 
symmetrical about the resonant frequency.

These conditions are shown in Fig. 21.17, indicating that the cutoff fre-
quencies are then equidistant from the resonant frequency.

For any Qs, the preceding is not true. The cutoff frequencies f1 and 
f2 can be found for the general case (any Qs) by first using the fact that 
a drop in current to 0.707 of its resonant value corresponds to an 
increase in impedance equal to 1>0.707 = 12 times the resonant value, 
which is R.

Substituting 12R into the equation for the magnitude of ZT, we find 
that

 ZT = 2R2 + (XL - XC)2

becomes	  12R = 2R2 + (XL - XC)2

or, squaring both sides, that

2R2 = R2 + (XL - XC)2

and	 R2 = (XL - XC)2

Taking the square root of both sides gives us

R = XL - XC  or  R - XL + XC = 0

Let us first consider the case where XL 7 XC, which relates to 
f2 or v2. Substituting v2L for XL and 1>v2C for XC and bringing both 
quantities to the left of the equal sign, we have

R - v2L +
1

v2C
= 0  or  Rv2 - v2

2L +
1

C
= 0

which can be written

v2
2 -

R

L
v2 -

1

LC
= 0

Solving the quadratic, we have

v2 =
-(-R>L) {  2[-(R>L)]2 - [-(4>LC)]

2

and	 v2 = +
R

2L
{ 1

2BR2

L2 +
4

LC

with	 f2 =
1

2p
c R

2L
+

1

2B aR

L
b

2

+
4

LC
d  (Hz)	 (21.17)

The negative sign in front of the second factor was dropped because
(1>2)2(R>L)2 + 4>LC is always greater than R>(2L). If it were not 
dropped, there would be a negative solution for the radian frequency v2.

Imax

0.707Imax

a

b

a = b

f1 f2fs

FIG. 21.17
Approximate series resonance curve for Qs Ú 10.
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If we repeat the same procedure for XC 7 XL, which relates to v1 or f1 
such that ZT = 2R2 + (XC - XL)2, the solution f1 becomes

	 f1 =
1

2p
c -

R

2L
+

1

2B aR

L
b

2

+
4

LC
d  (Hz)	 (21.18)

The bandwidth (BW) is

BW = f2 - f1 = Eq. (21.17) - Eq. (21.18)

and	 BW = f2 - f1 =
R

2pL
	 (21.19)

Substituting R>L = vs>Qs from Qs = vsL>R and 1>2p = fs>vs from 
vs = 2pfs gives us

BW =
R

2pL
= a 1

2p
b aR

L
b = a fs

vs
b avs

Qs
b

or	 BW =
fs
Qs

	 (21.20)

which is a very convenient form since it relates the bandwidth to the Qs 
of the circuit. As mentioned earlier, Eq. (21.20) verifies that the larger 
the Qs, the smaller is the bandwidth, and vice versa.

Written in a slightly different form, Eq. (21.20) becomes

	
f2 - f1

fs
=

1

Qs
	 (21.21)

The ratio (f2 - f1)>fs is sometimes called the fractional bandwidth, pro-
viding an indication of the width of the bandwidth compared to the reso-
nant frequency.

It can also be shown through mathematical manipulations of the per-
tinent equations that the resonant frequency is related to the geometric 
mean of the band frequencies; that is,

	 fs = 1f1 f2	 (21.22)

21.6  VR, VL, and VC

Plotting the magnitude (effective value) of the voltages VR, VL, and VC 
and the current I versus frequency for the series resonant circuit on the 
same set of axes, we obtain the curves shown in Fig. 21.18. Note that the VR 
curve has the same shape as the I curve and a peak value equal to the 
magnitude of the input voltage E. The VC curve builds up slowly at first 
from a value equal to the input voltage since the reactance of the capaci-
tor is infinite (open circuit) at zero frequency and the reactance of the 
inductor is zero (short circuit) at this frequency. As the frequency 
increases, 1>vC of the equation

VC = IXC = (I )a 1

vC
b



932    Resonance ƒr

becomes smaller, but I increases at a rate faster than that at which 1>vC 
drops. Therefore, VC rises and will continue to rise due to the quickly 
rising current until the frequency nears resonance. As it approaches the 
resonant condition, the rate of change of I decreases. When this occurs, 
the factor 1>vC, which decreased as the frequency rose, overcomes the 
rate of change of I, and VC starts to drop. The peak value occurs at a fre-
quency just before resonance. After resonance, both VC and I drop in 
magnitude, and VC approaches zero.

The higher the Qs of the circuit, the closer fCmax
 will be to fs, and the 

closer VCmax
 will be to QsE. For circuits with Qs Ú 10, fCmax

≅ fs, and
VCmax

≅ QsE.
The curve for VL increases steadily from zero to the resonant fre-

quency since both quantities vL and I of the equation VL = IXL = (I)(vL) 
increase over this frequency range. At resonance, I has reached its maxi-
mum value, but vL is still rising. Therefore, VL reaches its maximum 
value after resonance. After reaching its peak value, the voltage VL drops 
toward E since the drop in I overcomes the rise in vL. It approaches E 
because XL will eventually be infinite, and XC will be zero.

As Qs of the circuit increases, the frequency fL max
 drops toward fs, 

and VLmax
 approaches QsE. For circuits with Qs Ú 10, fLmax

≅ fs, and 
VLmax

≅ QsE.
The VL curve has a greater magnitude than the VC curve for any frequency 

above resonance, and the VC curve has a greater magnitude than the VL curve 
for any frequency below resonance. This again verifies that the series R-L-C 
circuit is predominantly capacitive from zero to the resonant frequency and 
predominantly inductive for any frequency above resonance.

For the condition Qs Ú 10, the curves in Fig. 21.18 appear as shown 
in Fig. 21.19. Note that they each peak (on an approximate basis) at the 
resonant frequency and have a similar shape.

In review,

	 1.	 VC and VL are at their maximum values at or near resonance 
(depending on Qs).

	 2.	 At very low frequencies, VC is very close to the source voltage and 
VL is very close to zero volts, whereas at very high frequencies, VL 
approaches the source voltage and VC approaches zero volts.

	 3.	 Both VR and I peak at the resonant frequency and have the same 
shape.

VL

VCmax
  =  VLmax

VCs
  =  VLs

  =  QE

VR
I

f
fLmax

fCmax

fs0

Imax

E

VC

FIG. 21.18
VR, VL, VC, and I versus frequency for a series resonant circuit.
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21.7  Practical Considerations

In the real world the circuit of Fig. 21.2 should appear as shown in Fig. 
21.20. The resistance R used in all the equations in this chapter up to this 
point must include the source resistance Rs, the resistance of the inductor 
Rl, and any resistance Rd introduced by design to control the shape of the 
resonant curve. For the future, therefore,

	 R = Rs + Rd + Rl	 (21.23)

VCmax
  =  VLmax

  =  QsE

VC

E
VL

VR
Imax

0 f1 fs f2

I

VL

VC

f

FIG. 21.19
VR, VL, VC, and I for a series resonant circuit where Qs Ú 10.

Rs Rd Rl L

C
Coil

Source

–

+

Es

FIG. 21.20
Series resonant circuit.

21.8  Summary

The following is a recap of the important observations, conclusions, and 
equations related to series resonant circuits.

•	 The impedance is a minimum and the current a maximum at the 
resonant frequency of a series resonant circuit.

•	 The applied voltage and resulting current are in phase at resonance 
since the total impedance is purely resistive.

•	 At frequencies below resonance, a series resonant circuit is capaci-
tive (I leads E) and at frequencies above resonance the series reso-
nant circuit is inductive (E leads I).

•	 The sharper the resonant curve the higher the quality factor and 
selectivity of a series resonant circuit.

•	 The higher the resistance the less the resonant current and the 
wider the bandwidth. The larger the ratio L/C the sharper the 
curve and the higher the quality factor.

The important equations are listed in Table 21.1.
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21.9 E xamples (Series Resonance)

EXAMPLE 21.1 

	 a.	 For the series resonant circuit in Fig. 21.21, find I, VR, VL, and VC at 
resonance.

	 b.	 What is the Qs of the circuit?
	 c.	 If the resonant frequency is 5000 Hz, find the bandwidth.
	 d.	 What is the power dissipated in the circuit at the half-power fre-

quencies?

TABLE 21.1
Important equations related to series resonant circuits.

At Resonance Additional Equations

XL = XC

ZTS
= R

fs =
1

2p1LC

VLS
= VCS

= QsE

FPS
= 1

Qs =
XL

R
=

1

RA L

C

PHPF =
1

2
P max 

f1 =
1

2p
c R

2L
+

1

2B aR

L
b

2

+
4

LC
d

f2 =
1

2p
c -

R

2L
+

1

2B aR

L
b

2

+
4

LC
d

BW = f2 - f1 =
R

2pL

fs = 2f1 f2

VR

VC

–

+

E  =  10 V ∠0°

I

+ –

R  =  2 � XL  =  10 �

VL+ –

XC  =  10 �
+

–

FIG. 21.21
Example 21.1.

Solutions: 

	 a.	   ZTs
= R = 2 Ω

 I =
E

ZTs

=
10 V ∠0°
2 Ω ∠0°

= 5 A j0°

 VR = E = 10 V j0°
 VL = (I ∠0°)(XL ∠90°) = (5 A ∠0°)(10 Ω ∠90°)

 = 50 V j90°

 VC = (I ∠0°)(XC ∠-90°) = (5 A ∠0°)(10 Ω ∠-90°)
 = 50 V j−90°

	 b.	 Qs =
XL

R
=

10 Ω
2 Ω

= 5

	 c.	 BW = f2 - f1 =
fs
Qs

=
5000 Hz

5
= 1000 Hz

	 d.	 PHPF =
1

2
Pmax =

1

2
Imax

2 R = a 1

2
b (5 A)2(2 Ω) = 25 W



Examples (Series Resonance)    935ƒr

EXAMPLE 21.2  The bandwidth of a series resonant circuit is 400 Hz.

	 a.	 If the resonant frequency is 4000 Hz, what is the value of Qs?
	 b.	 If R = 10 Ω, what is the value of XL at resonance?
	 c.	 Find the inductance L and capacitance C of the circuit.
	 d.	 What are the probable commercial values of L and C?

Solutions: 

	 a.	 BW =
fs
Qs
  or  Qs =

fs
BW

=
4000 Hz

400 Hz
= 10

	 b.	 Qs =
XL

R
  or  XL = QsR = (10)(10 Ω) = 100 �

	 c.	 XL = 2pfsL  or  L =
XL

2pfs
=

100 Ω
2p(4000 Hz)

= 3.98 mH

 XC =
1

2pfsC
  or  C =

1

2pfsXC
=

1

2p(4000 Hz)(100 Ω)

 = 397.89 nF

	 d.	  L = 3.98 mH ≅ 3.9 mH

 C = 397.89 nF ≅ 390 nF = 0.39 MF

EXAMPLE 21.3  A series R-L-C circuit has a series resonant frequency 
of 12,000 Hz.

	 a.	 If R = 5 Ω, and if XL at resonance is 300 Ω, find the bandwidth.
	 b.	 Find the cutoff frequencies.

Solutions: 

	 a.	  Qs =
XL

R
=

300 Ω
5 Ω

= 60

 BW =
fs
Qs

=
12,000 Hz

60
= 200 Hz

	 b.	 Since Qs Ú 10, the bandwidth is bisected by fs. Therefore,

 f2 = fs +
BW

2
= 12,000 Hz + 100 Hz = 12,100 Hz

and	  f1 = 12,000 Hz - 100 Hz = 11,900 Hz

EXAMPLE 21.4 

	 a.	 Determine the Qs and bandwidth for the response curve in Fig. 21.22.
	 b.	 For C = 100 nF, determine L and R for the series resonant circuit.
	 c.	 Determine the applied voltage.

Solutions: 

	 a.	 The resonant frequency is 2800 Hz. At 0.707 times the peak value,

BW = 200 Hz

and	 Qs =
fs

BW
=

2800 Hz

200 Hz
= 14

I (mA)

200

100

0 2000 3000 4000 f (Hz)

FIG. 21.22
Example 21.4.
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	 b.	   fs =
1

2p1LC
  or  L =

1

4p2f s
2C

 =
1

4p2(2.8 kHz)2(100 nF)

 = 32.3 mH

 Qs =
XL

R
  or  R =

XL

Qs
=

2p(2800 Hz)(32.3 mH)

14

 = 40.6 �

	 c.	  Imax =
E

R
  or  E = ImaxR

 = (200 mA)(40.6 Ω) = 8.12 V

EXAMPLE 21.5  A series R-L-C circuit is designed to resonate at vs =
105 rad/s, have a bandwidth of 0.15vs, and draw 16 W from a 120 V 
source at resonance.

	 a.	 Determine the value of R.
	 b.	 Find the bandwidth in hertz.
	 c.	 Find the nameplate values of L and C.
	 d.	 Determine the Qs of the circuit.
	 e.	 Determine the fractional bandwidth.

Solutions: 

	 a.	 P =
E2

R
  and  R =

E2

P
=

(120 V)2

16 W
= 900 �

	 b.	 fs =
vs

2p
=

105 rad/s

2p
= 15,915.49 Hz

BW = 0.15fs = 0.15(15,915.49 Hz) = 2387.32 Hz

	 c.	 Eq. (21.19):

BW =
R

2pL
  and  L =

R

2pBW
=

900 Ω
2p(2387.32 Hz)

= 60 mH

  fs =
1

2p1LC
  and  C =

1

4p2f s
2L

 =
1

4p2(15,915.49 Hz)2(60 * 10-3)

 = 1.67 nF

	 d.	 Qs =
XL

R
=

2pfsL

R
=

2p(15,915.49 Hz)(60 mH)

900 Ω
= 6.67

	 e.	
f2 - f1

fs
=

BW

fs
=

1

Qs
=

1

6.67
= 0.15

PARALLEL RESONANCE

21.10  Parallel Resonant Circuit

The basic format of the parallel resonant network appears as shown in 
Fig. 21.23. Unfortunately, it is not simply a parallel R-L-C network to 
compare with the nice series configuration encountered for the series 

Rl

XL

XC

FIG. 21.23
Practical parallel L-C network.
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resonant circuit. If it did have the simple parallel element configuration, 
the equations set the conditions for resonance would be quite easy to 
obtain and, in fact, would be a close match of those obtained for series 
resonance. However, since we have learned in an earlier chapter how to 
convert a series configuration to a parallel equivalent, we can follow that 
route to obtain the clean format of Fig. 21.24. The only problem is when 
we do convert to the format of Fig.21.24, the resistance R will not be 
totally resistive and in fact will be a function of the applied frequency. In 
addition the inductive reactance will be a function of the resistance in 
series with the inductive element. However, making the conversion is 
worth our effort as we shall see in the upcoming development.

Let us start our investigation by first converting the series R-L branch 
of Fig. 21.23 to an equivalent parallel R-L configuration using a tech-
nique introduced in Section 15.10. The total impedance of the series R-L 
branch of Fig. 21.23 is the following:

ZR@L = Rl + jXL

and	  YR@L =
1

ZR@L
=

1

Rl + jXL
=

Rl

Rl
2 + XL

2 - j
XL

Rl
2 + XL

2

 =
1

Rl
2 + XL

2

Rl

+
1

jaRl
2 + XL

2

XL
b

=
1

Rp
+

1

jXLp

with	 Rp =
Rl

2 + XL
2

Rl
	 (21.24)

and	 XLp
=

Rl
2 + XL

2

XL
	 (21.25)

as shown in Fig. 21.25.

C VC

+

–
R L

ZT

I

FIG. 21.24
Ideal parallel resonant network.

Rl

XL

Rp
Rl

2 + XL
2

Rl
XLp

Rl
2 + XL

2

XL
=

FIG. 21.25
Equivalent parallel network for a series R-L combination.

Redrawing the network in Fig. 21.23 with the equivalent in Fig. 21.25 
and a practical current source having an internal resistance Rs results in 
the network in Fig. 21.26.

I Rp

+
VpXLp

–
XCRs

ZT

YT

Source

FIG. 21.26
Substituting the equivalent parallel network for the series R-L  

combination in Fig. 21.23.
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If we define the parallel combination of Rs and Rp by the notation

	 R = Rs 7  Rp	 (21.26)

the network in Fig. 21.27 results. It has the same format as the ideal con-
figuration in Fig. 21.24.

We are now at a point where we can define the resonance conditions 
for the practical parallel resonant configuration. Recall that for series 
resonance, the resonant frequency was the frequency at which the 
impedance was a minimum, the current a maximum, and the input 
impedance purely resistive and the network had a unity power factor.

For parallel networks, since the resistance Rp in our equivalent model 
is frequency dependent, the frequency at which maximum VC is 
obtained is not the same as required for the unity-power-factor 
characteristic.

Since both conditions are often used to define the resonant state, the 
frequency at which each occurs is designated by different subscripts.

Resonant Frequency

Unity Power Factor Conditions, fp    For the network in Fig. 21.26,

 YT =
1

Z1
+

1

Z2
+

1

Z3
=

1

R
+

1

jXLp

+
1

- jXC

 =
1

R
- ja 1

XLp

b + ja 1

XC
b

and	 YT =
1

R
+ ja 1

XC
-

1

XLp

b 	 (21.27)

For unity power factor, the reactive component must be zero as 
defined by

1

XC
-

1

XLp

= 0

Therefore,	
1

XC
=

1

XLp

and	 XLp
= XC	 (21.28)

The result is clearly very similar to that obtained for series resonance. 
Finding the equivalent parallel network for the series R-L branch was 
obviously the way to go.

If we now substitute the conditions set by Eq. (21.28) the total admit-
tance of Eq. (21.27) becomes simply

YTP
=

1

R

or the total impedance is simply

ZTP
=

1

YT
=

1

1

R

= R ∠0°

XCR XLp

YT

I

ZT

FIG. 21.27
Substituting R = Rs 7Rp for the network in 

Fig. 21.26.
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and	 ZTp
= R = Rs 7  Rp

so that the total impedance as resonance is

	 ZTp
= Rs 7 aR2

l + X2
L

Rl
b 	 (21.29)

Substituting for XLp
 in Eq. 21.28:

	
Rl

2 + XL
2

XL
= XC	 (21.30)

The resonant frequency, fp, can now be determined from Eq. (21.30) 
as follows:

Rl
2 + XL

2 = XCXL = a 1

vC
bvL =

L

C

or	 XL
2 =

L

C
- Rl

2

with	 2pfpL = A L

C
- Rl

2

and	 fp =
1

2pLA L

C
- Rl

2

Multiplying the top and bottom of the factor within the square root 
sign by C>L produces

fp =
1

2pLB 1 - Rl
2(C>L)

C>L =
1

2pL1C>LB1 -
Rl

2C

L

and	 fp =
1

2p1LCB1 -
Rl

2C

L
	 (21.31)

or	 fp = fsB1 -
Rl

2C

L
	 (21.32)

where fp is the resonant frequency of a parallel resonant circuit (for 
Fp = 1) and fs is the resonant frequency as determined by XL = XC for 
series resonance. Note that unlike a series resonant circuit, the resonant 
frequency fp is a function of resistance (in this case Rl). Note also, how-
ever, the absence of the source resistance Rs in Eqs. (21.31) and (21.32). 
Since the factor 21 - (Rl

2C>L) is less than 1, fp is less than fs. Recog-
nize also that as the magnitude of Rl approaches zero, fp rapidly 
approaches fs.

Maximum Impedance Conditions, fm  At f = fp the input imped-
ance of a parallel resonant circuit will be near its maximum value but not 
quite its maximum value due to the frequency dependence of Rp. The 
frequency at which maximum impedance occurs is defined by fm and is 
slightly more than fp, as demonstrated in Fig. 21.28. The frequency fm is 
determined by differentiating (calculus) the general equation for ZT with 
respect to frequency and then determining the frequency at which the 
resulting equation is equal to zero. The algebra is quite extensive and 

ZT

ZTm

Rl
0 fmfp f

FIG. 21.28
ZT versus frequency for the parallel resonant circuit.
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cumbersome and is not included here. The resulting equation, however, 
is the following:

	 fm = fsB1 -
1

4
aRl

2C

L
b 	 (21.33)

Note the similarities with Eq. (21.32). Since the square root factor of 
Eq. (21.33) is always more than the similar factor of Eq. (21.32), fm is 
always closer to fs and more than fp. In general,

	 fs 7 fm 7 fp	 (21.34)

Once fm is determined, the network in Fig. 21.27 can be used to 
determine the magnitude and phase angle of the total impedance at the 
resonance condition simply by substituting f = fm and performing the 
required calculations. That is,

	 ZTm
= R 7  XLp

 7  XC 
f = fm

	 (21.35)

21.11  Selectivity Curve for Parallel 
Resonant Circuits

The ZT-versus-frequency curve in Fig. 21.28 clearly reveals that a paral-
lel resonant circuit exhibits maximum impedance at resonance ( fm), 
unlike the series resonant circuit, which experiences minimum resist-
ance levels at resonance. Note also that ZT  is approximately Rl at 
f = 0 Hz since ZT = Rs 7  Rl ≅ Rl.

Since the current I of the current source is constant for any value of 
ZT  or frequency, the voltage across the parallel circuit will have the 
same shape as the total impedance ZT, as shown in Fig. 21.29.

For the parallel circuit, the resonance curve of interest is that of the 
voltage VC across the capacitor. The reason for this interest in VC derives 
from electronic considerations that often place the capacitor at the input 
to another stage of a network.

Since the voltage across parallel elements is the same,

	 VC = Vp = IZT	 (21.36)

The resonant value of VC is therefore determined by the value of ZTm
 and 

the magnitude of the current source I.
The quality factor of the parallel resonant circuit continues to be 

determined by the ratio of the reactive power to the real power. That is,

Qp =
Vp

2>XLp

Vp
2>R

where R = Rs 7  Rp, and Vp is the voltage across the parallel branches. 
The result is

	 Qp =
R

XLp

=
Rs 7  Rp

XLp

	 (21.37)

or, since XLp
= XC at resonance,

	 Qp =
Rs 7  Rp

XC
	 (21.38)

Vp( f ) I( f ) ZT ( f )

FIG. 21.29
Defining the shape of the Vp( f ) curve.
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For the ideal current source (Rs = ∞ Ω) or when Rs is sufficiently 
large compared to Rp, we can make the following approximation:

R = Rs 7  Rp ≅ Rp

and	 Qp =
Rs 7  Rp

XLp

=
Rp

XLp

=
(R2

l + X2
L)>Rl

(R2
l + X2

L)>XL

so that	 Qp =
XL

R1
= Ql 

RS W Rp

	 (21.39)

which is simply the quality factor Ql of the coil.
In general, the bandwidth is still related to the resonant frequency and 

the quality factor by

	 BW = f2 - f1 =
fr
Qp

	 (21.40)

The cutoff frequencies f1 and f2 can be determined using the equivalent 
network in Fig. 21.27 and the unity power condition for resonance. The 
half-power frequencies are defined by the condition that the output voltage 
is 0.707 times the maximum value. However, for parallel resonance with a 
current source driving the network, the frequency response for the driving 
point impedance is the same as that for the output voltage. This similarity 
permits defining each cutoff frequency as the frequency at which the input 
impedance is 0.707 times its maximum value. Since the maximum value is 
the equivalent resistance R in Fig. 21.27, the cutoff frequencies are associ-
ated with an impedance equal to 0.707R or (1>12)R.

Setting the magnitude of the input impedance for the network in Fig. 
21.27 equal to this value results in the following:

� Z � = Z =
1B 1

R2 + avC -
1

vL
b

2
= 0.707R =

R12

or	 B 1

R2 + avC -
1

vL
b

2

=
12

R

Squaring both sides gives

1

R2 + avC -
1

vL
b

2

=
2

R2

which results in

avC -
1

vL
b

2

=
1

R2

The resulting fourth-degree equation for v results in two second-degree 
equations for v:

vC -
1

vL
= -

1

R

and	 vC -
1

vL
=

1

R

Solving each for the positive result for v gives

v1 = -
1

2RC
+ B a 1

2RC
b

2

+
1

LC
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and	 v2 =
1

2RC
+ B a 1

2RC
b

2

+
1

LC

so that	 f1 =
1

4pC
c -

1

R
+ A 1

R2 +
4C

L
d 	 (21.41)

	 f2 =
1

4pC
c 1

R
+ A 1

R2 +
4C

L
d 	 (21.42)

The effect of Rl, L, and C on the shape of the parallel resonance curve, as 
shown in Fig. 21.30 for the input impedance, is quite similar to their effect 
on the series resonance curve. Whether or not Rl is zero, the parallel resonant 
circuit frequently appears in a network schematic as shown in Fig. 21.30.

Rl3

ffr0

Rl3
 > Rl2

 > Rl1

L/C fixed

Zp
Rl1

Rl2

Rl

ffr0

Zp
L3

C3

L2

C2

L1

C1
> >

Rl fixed L3/C3

L2/C2

L1/C1

FIG. 21.30
Effect of Rl, L, and C on the parallel resonance curve.

At resonance, an increase in Rl or a decrease in the ratio L>C results 
in a decrease in the resonant impedance, with a corresponding increase 
in the current. The bandwidth of the resonance curves is given by Eq. 
(21.40). For increasing Rl or decreasing L (or L>C for constant C), the 
bandwidth increases as shown in Fig. 21.30.

At low frequencies, the capacitive reactance is quite high, and the 
inductive reactance is low. Since the elements are in parallel, the total 
impedance at low frequencies is therefore inductive. At high frequencies, 
the reverse is true, and the network is capacitive. At resonance ( fp), the 
network appears resistive. These facts lead to the phase plot in Fig. 21.31. 

Resonance (resistive)Circuit inductive
Lagging Fp

Circuit capacitive
Leading Fp

fp f

(Vp leads I)

90°

45°

0°

–90°

–45°

FIG. 21.31
Phase plot for the parallel resonant circuit.
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Note that it is the inverse of that appearing for the series resonant circuit 
because at low frequencies the series resonant circuit was capacitive and 
at high frequencies it was inductive.

21.12 Eff ect of Ql # 10

The content of the previous section may suggest that the analysis of par-
allel resonant circuits is significantly more complex than that encoun-
tered for series resonant circuits. Fortunately, however, this is not the 
case since, for the majority of parallel resonant circuits, the quality fac-
tor of the coil Ql is sufficiently large to permit a number of approxima-
tions that simplify the required analysis.

Inductive Reactance, XLP

If we expand XLp
 as

XLp
=

Rl
2 + XL

2

XL
=

Rl
2(XL)

XL(XL)
+ XL =

XL

Ql
2 + XL

then, for Ql Ú 10, 1>Q2
l V 1, and therefore

XL

Q2
l

+ XL = XLa 1

Q2
l

+ 1b ≅ XL

which results in

	 XLp
≅ XL 

Ql Ú 10
	 (21.43)

and since resonance is defined by XLp
= XC, the resulting condition for 

resonance is reduced to

	 XL ≅ XC 
Ql Ú 10

	 (21.44)

Resonant Frequency, fp (Unity Power Factor)

We can rewrite the factor Rl
2C>L of Eq. (21.32) as

Rl
2C

L
=

1

L

Rl
2C

=
1

(v)

(v)
 

L

Rl
2C

=
1

vL

Rl
2vC

=
1

XLXC

Rl
2

and substitute Eq. (21.44) (XL ≅ XC):

1
XLXC

Rl
2

=
1

XL
2

Rl
2

=
1

Ql
2

Eq. (21.32) then becomes

	 fp = fsA1 -
1

Ql
2 

Ql Ú 10

	 (21.45)

clearly revealing that as Ql increases, fp becomes closer and closer to fs.
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For Ql Ú 10,

1 -
1

Ql
2 ≅ 1

and	 fp ≅ fs =
1

2p1LC
 

Ql Ú 10

	 (21.46)

Resonant Frequency, fm (Maximum Vc)

Using the equivalency Rl
2C>L = 1>Ql

2 derived for Eq. (21.45), we find 
that Eq. (21.33) takes on the form

	 fm ≅ fsB1 -
1

4
a 1

Ql
2 b  

Ql Ú 10

	 (21.47)

The fact that the negative term under the square root will always be 
less than that appearing in the equation for fp reveals that fm will always 
be closer to fs than fp.

For Ql Ú 10, the negative term becomes very small and can be 
dropped from consideration, leaving

	 fm ≅ fs =
1

2p1LC
 

Ql Ú 10

	 (21.48)

In total, therefore, for Ql Ú 10,

	 fp ≅ fm ≅ fs  Ql Ú 10
	 (21.49)

rp

 Rp =
Rl

2 + XL
2

Rl
= Rl +

XL
2

Rl
aRl

Rl
b = Rl +

XL
2

Rl
2Rl

 = Rl + Ql
2Rl = (1 + Ql

2)Rl

For Ql Ú 10, 1 + Ql
2 ≅ Ql

2, and

	 Rp ≅ Ql
2Rl  Ql Ú 10

	 (21.50)

Applying the approximations just derived to the network in Fig. 21.26 
results in the approximate equivalent network for Ql Ú 10 in Fig. 21.32, 
which is certainly a lot “cleaner” in general appearance.

Rs Rp  =  Q2RlZTp

I XLp
  = XL XC

FIG. 21.32
Approximate equivalent circuit for Ql Ú 10.
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Substituting Ql =
XL

Rl
 into Eq. (21.50) gives

Rp ≅ Ql
2Rl = aXL

Rl
b

2

Rl =
XL

2

Rl
=

XLXC

Rl
=

2pfL

Rl(2pfC)

and	 Rp ≅
L

RlC
 

Ql Ú 10

	 (21.51)

ZTp

The total impedance at resonance is now defined by

	 ZTp
≅ Rs 7  Rp = Rs 7  Ql

2Rl 
Ql Ú 10

	 (21.52)

For an ideal current source (Rs = ∞ Ω), or if Rs W Rp, the equation 
reduces to

	 ZTp
≅ Ql

2Rl 
Ql Ú 10, Rs W Rp

	 (21.53)

Qp

The quality factor is now defined by

	 Qp =
R

XLp

≅
Rs 7Ql

2Rl

XL
	 (21.54)

Quite obviously, therefore, Rs does have an impact on the quality fac-
tor of the network and the shape of the resonant curves.

If an ideal current source (Rs = ∞ Ω) is used, or if Rs W Rp,

Qp ≅
Rs 7  Ql

2Rl

XL
=

Ql
2Rl

XL
=

Ql
2

XL>Rl
=

Ql
2

Ql

and	 Qp ≅ Ql  Ql Ú 10, Rs W Rp
	 (21.55)

BW
The bandwidth defined by fp is

	 BW = f2 - f1 =
fp

Qp
	 (21.56)

By substituting Qp from above and performing a few algebraic manipu-
lations, we can show that

	 BW = f2 - f1 ≅
1

2p
c Rl

L
+

1

RsC
d 	 (21.57)

clearly revealing the impact of Rs on the resulting bandwidth. Of course, 
if Rs = ∞ Ω (ideal current source), then

	 BW = f2 - f1 ≅
Rl

2pL
 

Rs = ∞ Ω
	 (21.58)
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iL and ic
A portion of Fig. 21.32 is reproduced in Fig. 21.33, with IT defined as 
shown.

As indicated, ZTp
 at resonance is Ql

2Rl. The voltage across the parallel 
network is, therefore,

VC = VL = VR = ITZTp
= ITQl

2Rl

The magnitude of the current IC can then be determined using Ohm’s 
law as follows:

IC =
VC

XC
=

ITQl
2Rl

XC

Substituting XC = XL when Ql Ú 10 gives

IC =
ITQl

2Rl

XL
= IT 

Ql
2

XL

Rl

= IT 
Ql

2

Ql

and	 IC ≅ QlIT 
Ql Ú 10

	 (21.59)

revealing that the capacitive current is Ql times the magnitude of the cur-
rent entering the parallel resonant circuit. For large Ql, the current IC can 
be significant.

A similar derivation results in

	 IL ≅ QlIT 
Ql Ú 10

	 (21.60)

Conclusions

The equations resulting from the application of the condition Ql Ú 10 
are obviously a great deal easier to apply than those obtained earlier. It is, 
therefore, a condition that should be checked early in an analysis to deter-
mine which approach must be applied. Although the condition Ql Ú 10 
was applied throughout, many of the equations are still good approxima-
tions for Ql 6 10. For instance, if Ql = 5, XLp = XL>Q2

l + Xl =  
(XL>25) + XL = 1.04XL, which is very close to XL. In fact, for Ql = 2, 
XLp

= (XL>4) + XL = 1.25XL, which is not XL, but it is only 25% off. In 
general, be aware that the approximate equations can be applied with good 
accuracy with Ql 6 10. The smaller the level of Ql, however, the less 
valid is the approximation. The approximate equations are certainly valid 
for a range of values of Ql 6 10 if a rough approximation to the actual 
response is desired rather than one accurate to the hundredths place.

21.13  Summary Table

In an effort to limit any confusion resulting from the introduction of fp 
and fm and an approximate approach dependent on Ql, the summary in 
Table 21.2 was developed. You can always use the equations for any Ql, 
but a proficiency in applying the approximate equations defined by Ql 
will pay dividends in the long run.

For the future, the analysis of a parallel resonant network may pro-
ceed as follows:

	 1.	 Determine fs to obtain some idea of the resonant frequency. 
Recall that for most situations, fs, fm, and fp will be relatively 
close to each other.

IT

RP XL XC VC

+

–

ICIL

ZTp
  =  Rp  =  Ql

2Rl

FIG. 21.33
Establishing the relationship between IC and IL and 

the current IT.
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	 2.	 Calculate an approximate Ql using fs from below, and compare it 
to the condition Ql Ú 10. If the condition is satisfied, the approx-
imate approach should be the chosen path unless a high degree of 
accuracy is required.

	 3.	 If Ql is less than 10, the approximate approach can be applied, 
but it must be understood that the smaller the level of Ql, the less 
accurate is the solution. However, considering the typical varia-
tions from nameplate values for many of our components and 
that a resonant frequency to the tenths place is seldom required, 
the use of the approximate approach for many practical situa-
tions is usually quite valid.

21.14 E xamples (Parallel Resonance)

EXAMPLE 21.6  Given the parallel network in Fig. 21.34 composed of 
“ideal” elements:

	 a.	 Determine the resonant frequency fp.
	 b.	 Find the total impedance at resonance.

TABLE 21.2
Parallel resonant circuit ( fs = 1>(2p1LC)).

Any Ql Ql # 10 Q1 # 10, Rs g Q2
l Rl

fp fsB1 -
Rl

2C

L
fs fs

fm fsB1 -
1

4
c Rl

2C

L
d fs fs

ZTp
Rs 7  Rp = Rs 7  aRl

2 + XL
2

Rl
b Rs 7  Ql

2Rl Ql
2Rl

ZTm Rs 7  ZR@L 7  ZC Rs 7  Ql
2Rl Ql

2Rl

Qp

ZTp

XLp

=
ZTp

XC

ZTp

XL
=

ZTp

XC
Ql

BW
fp

Qp
 or 

fm
Qp

fp

Qp
=

fs
Qp

fp

Ql
=

fs
Ql

IL, IC Network analysis IL = IC = QlIT IL = IC = QlIT

ZTp
10 k� 1 mH 1 mF VC

+

–

ICIL

I  =  10 mA Rs

Source “Tank circuit”

L C

FIG. 21.34
Example 21.6.



948    Resonance ƒr

	 c.	 Calculate the quality factor, bandwidth, and cutoff frequencies f1 
and f2 of the system.

	 d.	 Find the voltage VC at resonance.
	 e.	 Determine the currents IL and IC at resonance.

Solutions: 

	 a.	 The fact that Rl is zero ohms results in a very high Ql(=  XL>Rl), 
permitting the use of the following equation for fp:

  fp = fs =
1

2p1LC
=

1

2p1(1 mH) 1 mF)

 = 5.03 kHz

	 b.	 For the parallel reactive elements,

ZL 7  ZC =
(XL ∠90°)(XC ∠-90°)

 + j(XL - XC)

		  but XL = XC at resonance, resulting in a zero in the denominator of 
the equation and a very high impedance that can be approximated 
by an open circuit. Therefore,

ZTp
= Rs 7  ZL 7  ZC = Rs = 10 k�

	 c.	  Qp =
Rs

XLp

=
Rs

2pfpL
=

10 kΩ
2p(5.03 kHz)(1 mH)

= 316.41

 BW =
fp

Qp
=

5.03 kHz

316.41
= 15.90 Hz

		  Eq. (21.41):

  f1 =
1

4pC
c 1

R
- A 1

R2 +
4C

L
d

 =
1

4p(1 mF)
c 1

10 kΩ
- A 1

(10 kΩ)2 +
4(1 mF)

1 mH
d

 = 5.025 kHz

		  Eq. (21.42):

  f2 =
1

4pC
c 1

R
+ A 1

R2 +
4C

L
d

 = 5.041 kHz

	 d.	 VC = IZTp
= (10 mA)(10 kΩ) = 100 V

	 e.	  IL =
VL

XL
=

VC

2pfpL
=

100 V

2p(5.03 kHz)(1 mH)
=

100 V

31.6 Ω
= 3.16 A

 IC =
VC

XC
=

100 V

31.6 Ω
= 3.16 A (=  QpI)

Example 21.6 demonstrates the impact of Rs on the calculations asso-
ciated with parallel resonance. The source impedance is the only factor 
limiting the input impedance and the level of VC.

EXAMPLE 21.7  For the parallel resonant circuit in Fig. 21.35 with 
Rs = ∞ Ω:
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	 a.	 Determine fs, fm, and fp, and compare their levels.
	 b.	 Calculate the maximum impedance and the magnitude of the volt-

age VC at fm.
	 c.	 Determine the quality factor Qp.
	 d.	 Calculate the bandwidth.
	 e.	 Compare the above results with those obtained using the equations 

associated with Ql Ú 10.

Solutions: 

	 a.	  fs =
1

2p1LC
=

1

2p1(0.3 mH)(100 nF)
= 29.06 kHz

  fm = fsB1 -
1

4
c Rl

2C

L
d

 = (29.06 kHz)B1 -
1

4
c (20 Ω)2(100 nF)

0.3 mH
d

 = 25.58 kHz

 fp = fsB1 -
Rl

2C

L
= (29.06 kHz)B1 - c (20 Ω)2(100 nF)

0.3 mH
d

 = 27.06 kHz

		  Both fm and fp are less than fs, as predicted. In addition, fm is closer 
to fs than fp, as forecast. fm is about 0.5 kHz less than fs, whereas fp 
is about 2 kHz less. The differences among fs, fm, and fp suggest a 
low Q network.

	 b.	 ZTm
= (Rl + jXL) 7  - jXC at  f = fm

XL = 2pfmL = 2p(28.58 kHz)(0.3 mH) = 53.87 Ω

XC =
1

2pfmC
=

1

2p(28.58 kHz)(100 nF)
= 55.69 Ω

Rl + jXL = 20 Ω + j 53.87 Ω = 57.46 Ω ∠69.63°

 ZTm
=

(57.46 Ω ∠69.63°)(55.69 Ω ∠-90°)
20 Ω + j 53.87 Ω - j 55.69 Ω

 = 159.34 � j−15.17°
VCmax

= IZTm
= (2 mA)(159.34 Ω) = 318.68 mV

	 c.	 Rs = ∞ Ω; therefore,

Qp =
Rs 7  Rp

XLp

=
Rp

XLp

= Ql =  
XL

Rl

 =
2p(27.06 kHz)(0.3 mH)

20 Ω
=

51 Ω
20 Ω

= 2.55

Rl 20 �

XL 0.3 mH

C 100 nF VC

+

–

ZTp

I  =  2 mA

FIG. 21.35
Example 21.7.
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		  The low Q confirms the conclusion of part (a). The differences 
among fs, fm, and fp are significantly less for higher Q networks.

	 d.	 BW =
fp

Qp
=

27.06 kHz

2.55
= 10.61 kHz

	 e.	 For Ql Ú 10, fm = fp = fs = 29.06 kHz

Qp = Ql =
2pfsL

Rl
=

2p(29.06 kHz)(0.3 mH)

20 Ω
= 2.74

(versus 2.55 above)

ZTp
= Ql

2Rl = (2.74)2 # 20 Ω = 150.15 � j0°
(versus 159.34 Ω ∠-15.17° above)

VCmax
= IZTp

= (2 mA)(150.15 Ω) = 300.3 mV

(versus 318.68 mV above)

BW =
fp

Qp
=

29.06 kHz

2.74
= 10.61 kHz

(versus 10.61 kHz above)

The results reveal that, even for a relatively low Q system, the ap-
proximate solutions are still close compared to those obtained using 
the full equations. The primary difference is between fs and fp (about 
7%), with the difference between fs and fm at less than 2%. For the 
future, using fs to determine Ql will certainly provide a measure of 
Ql that can be used to determine whether the approximate approach is 
appropriate.

EXAMPLE 21.8  For the network in Fig. 21.36 with fp provided:

	 a.	 Determine Ql.
	 b.	 Determine Rp.
	 c.	 Calculate ZTp

.
	 d.	 Find C at resonance.
	 e.	 Find Qp.
	 f.	 Calculate the BW and cutoff frequencies.

Solutions: 

	 a.	 Ql =
XL

Rl
=

2pfpL

Rl
=

2p(0.04 MHz)(1 mH)

10 Ω
= 25.12

	 b.	 Ql Ú 10. Therefore,

Rp ≅ Ql
2Rl = (25.12)2(10 Ω) = 6.31 k�

	 c.	 ZTp
= Rs 7  Rp = 40 kΩ  7  6.31 kΩ = 5.45 k�

	 d.	 Ql Ú 10. Therefore,

fp ≅
1

2p1LC

		  and C =
1

4p2 f 2L
=

1

4p2(0.04 MHz)2(1 mH)
= 15.83 nF

	 e.	 Ql Ú 10. Therefore,

Qp =
ZTp

XL
=

Rs 7  Ql
2Rl

2pfpL
=

5.45 kΩ
2p(0.04 MHz)(1 mH)

= 21.68

CRs

L

40 k�

Rl 10 �

1 mH

fp  =  0.04 MHz

I

FIG. 21.36
Example 21.8.



Examples (Parallel Resonance)    951ƒr

	 f.	 BW =
fp

Qp
=

0.04 MHz

21.68
= 1.85 kHz

 fl =
1

4pC
 c -

1

R
+ A 1

R2 +
4C

L
d

 =
1

4p(15.9 nF)
 c -

1

5.45 kΩ
+ A 1

(5.45 kΩ)2 +
4(15.9 nF)

1 mH
d

 = 5.005 * 106[-183.486 * 10-6 + 7.977 * 10-3]

 = 5.005 * 106[7.794 * 10-3]

 = 39 kHz

  f2 =
1

4pC
c 1

R
+ A 1

R2 +
4C

L
d

 = 5.005 * 106[183.486 * 10-6 + 7.977 * 10-3]

 = 5.005 * 106[8.160 * 10-3]

 = 40.84 kHz

Note that f2 - f1 = 40.84 kHz - 39 kHz = 1.84 kHz, confirm-
ing our solution for the bandwidth above. Note also that the band-
width is not symmetrical about the resonant frequency, with 1 kHz 
below and 840 Hz above.

EXAMPLE 21.9  The equivalent network for the transistor configura-
tion in Fig. 21.37 is provided in Fig. 21.38.

	 a.	 Find fp.
	 b.	 Determine Qp.
	 c.	 Calculate the BW.
	 d.	 Determine Vp at resonance.
	 e.	 Sketch the curve of VC versus frequency.

Solutions: 

	 a.	  fs =
1

2p1LC
=

1

2p1(5 mH)(50 pF)
= 318.31 kHz

 XL = 2pfsL = 2p(318.31 kHz)(5 mH) = 10 kΩ

 Ql =
XL

Rl
=

10 kΩ
100 kΩ

= 100 7 10

		  Therefore, fp = fs = 318.31 kHz. Using Eq. (21.32) results in 
≅ 318.5 kHz.

	 b.	  Qp =
Rs 7  Rp

XL

 Rp = Ql
2Rl = (100)2100 Ω = 1 MΩ

 Qp =
50 kΩ  7  1 MΩ

10 kΩ
=

47.62 kΩ
10 kΩ

= 4.76

		  Note the drop in Q from Ql = 100 to Qp = 4.76 due to Rs.

	 c.	 BW =
fp

Qp
=

318.31 kHz

4.76
= 66.87 kHz

IC  =  2 mA

50 k�

Rl 100 �

L 5 mH

C 50 pF

Vp

FIG. 21.37
Example 21.9.

CRs
50 k�

L

Rl 100 �

5 mH

50 pF

Vp

2 mAI

FIG. 21.38
Equivalent network for the transistor configuration 

in Fig. 21.37.
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		  On the other hand,

 BW =
1

2p
aRl

L
+

1

RsC
b =

1

2p
c 100 Ω

5 mH
+

1

(50 kΩ)(50 pF)
d

 = 66.85 kHz

		  compares very favorably with the above solution.

	 d.	 Vp = IZTp
= (2 mA)(Rs  7   Rp) = (2 mA)(47.62 kΩ) = 95.24 V

	 e.	 See Fig. 21.39.

Vp

95.24 V

67.34 V

0

318.31 –              kHz66.87
2

318.31 +              kHz  =  351.7 kHz66.87
2

318.31 kHz=  284.9 kHz

Qp  =  4.76BW

FIG. 21.39
Resonance curve for the network in Fig. 21.38.

EXAMPLE 21.10  Repeat Example 21.9, but ignore the effects of Rs, 
and compare results.

Solutions: 

	 a.	 fp is the same, 318.31 kHz.
	 b.	 For Rs = ∞  Ω,

Qp = Ql = 100  (versus 4.76)

	 c.	 BW =
fp

Qp
=

318.31 kHz

100
= 3.18 kHz  (versus 66.87 kHz)

	 d.	 ZTp
= Rp = 1 MΩ    (versus 47.62 kΩ)

Vp = IZTp
= (2 mA)(1 MΩ) = 2000 V  (versus 95.24 V)

The results obtained clearly reveal that the source resistance can have 
a significant impact on the response characteristics of a parallel resonant 
circuit.

EXAMPLE 21.11  Design a parallel resonant circuit to have the 
response curve in Fig. 21.40 using a 1 mH, 10 Ω inductor and a current 
source with an internal resistance of 40 kΩ.

Solution: 

BW =
fp

Qp

BW  =  2500 Hz

fp  =  50 kHz f0

Vp

10 V

FIG. 21.40
Example 21.11.
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Therefore,

 Qp =
fp

BW
=

50,000 Hz

2500 Hz
= 20

 XL = 2pfpL = 2p(50 kHz)(1 mH) = 314 Ω

and	  Ql =
XL

Rl
=

314 Ω
10 Ω

= 31.4

 Rp = Ql
2R = (31.4)2(10 Ω) = 9859.6 �

 Qp =
R

XL
=

Rs 7  9859.6 Ω
314 Ω

= 20  (from above)

so that	
(Rs)(9859.6)

Rs + 9859.6
= 6280

resulting in	 Rs = 17.298 kΩ

However, the source resistance was given as 40 kΩ. We must there-
fore add a parallel resistor (R′) that will reduce the 40 kΩ to approxi-
mately 17.298 kΩ; that is,

(40 kΩ)(R′)
40 kΩ + R′

= 17.298 kΩ

Solving for R′ gives

R′ = 30.48 k�

The closest commercial value is 30 k�. At resonance, XL = XC, and

 XC =
1

2pfpC

 C =
1

2pfpXC
=

1

2p(50 kHz)(314 Ω)

and	 C ≅ 0.01 MF  (commercially available)

 ZTp
= Rs 7  Ql

2Rl

 = 17.298 kΩ  7  9859.6 Ω
 = 6.28 kΩ

with	 Vp = IZTp

and	 I =
Vp

ZTp

=
10 V

6.28 kΩ
≅ 1.6 mA

The network appears in Fig. 21.41.

Rs 40 k� R� 30 k�

Rl 10 �

I 1.6 mA

L 1 mH

C 0.01 mF

FIG. 21.41
Network designed to meet the criteria in Fig. 21.40.
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21.15 Appli cations

Stray Resonance

Stray resonance, like stray capacitance and inductance and unexpected 
resistance levels, can occur in totally unexpected situations and can 
severely affect the operation of a system. All that is required to produce 
stray resonance is, for example, a level of capacitance introduced by 
parallel wires or copper leads on a printed circuit board, or simply two 
parallel conductive surfaces with residual charge and inductance levels 
associated with any conductor or components such as tape recorder 
heads, transformers, and so on, that provide the elements necessary for a 
resonance effect. In fact, this resonance effect is a very common effect 
in a cassette tape recorder. The play/record head is a coil that can act like 
an inductor and an antenna. Combine this factor with the stray capaci-
tance and real capacitance in the network to form the tuning network, 
and the tape recorder with the addition of a semiconductor diode can 
respond like an AM radio. As you plot the frequency response of any 
transformer, you normally find a region where the response has a peak-
ing effect (look ahead at Fig. 25.21). This peaking is due solely to the 
inductance of the coils of the transformer and the stray capacitance 
between the wires.

In general, any time you see an unexpected peaking in the fre-
quency response of an element or a system, it is normally caused by a 
resonance condition. If the response has a detrimental effect on the 
overall operation of the system, a redesign may be in order, or a filter 
can be added that will block the frequencies that result in the reso-
nance condition. Of course, when you add a filter composed of induc-
tors and/or capacitors, you must be careful that you don’t add another 
unexpected resonance condition. It is a problem that can be properly 
weighed only by constructing the system and exposing it to the full 
range of tests.

Graphic and Parametric Equalizers

We have all noticed at one time or another that the music we hear in a 
concert hall doesn’t quite sound the same when we play a recording of it 
on our home entertainment center. Even after we check the specifica-
tions of the speakers and amplifiers and find that both are nearly perfect 
(and the most expensive we can afford), the sound is still not what it 
should be. In general, we are experiencing the effects of the local envi-
ronmental characteristics on the sound waves. Some typical problems 
are hard walls or floors (stone, cement) that make high frequencies 
sound louder. Curtains and rugs, on the other hand, absorb high frequen-
cies. The shape of the room and the placement of the speakers and furni-
ture also affect the sound that reaches our ears. Another criterion is the 
echo or reflection of sound that occurs in the room. Concert halls are 
designed very carefully with vaulted ceilings and curved walls to allow 
a certain amount of echo. Even the temperature and humidity character-
istics of the surrounding air affect the quality of the sound. It is certainly 
impossible, in most cases, to redesign your listening area to match a 
concert hall, but with the proper use of electronic systems you can 
develop a response that has all the qualities that you want from a home 
entertainment center.

For a quality system, a number of steps can be taken: characteriza-
tion and digital delay (surround sound) and proper speaker and 
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amplifier selection and placement. Characterization is a process 
whereby a thorough sound absorption check of the room is performed 
and the frequency response determined. A graphic equalizer such as 
appearing in Fig. 21.42(a) is then used to make the response “flat” for 
the full range of frequencies. In other words, the room is made to appear 
as though all the frequencies receive equal amplification in the listening 
area. For instance, if the room is fully carpeted with full draping cur-
tains, there is a considerable amount of high-frequency absorption, 

Full-range
speaker

Full-range
speaker

Amplifier and speaker
(woofer or subwoofer)

Pink noise
throughout

≅10′

Microphone
Graphic
and/or
parametric
equalizers

(Mid-range,
low-power)

(Full-range,
low-power)

(Full-range,
low-power)

“Surround sound”
speakers

(b)

10 Hz 100 Hz 1 kHz 10 kHz 100 kHz f
(log scale)31 Hz 63 Hz 125 Hz 250 Hz 500 Hz 2 kHz 4 kHz 8 kHz 16 kHz

Volume

(c)

(a)

FIG. 21.42
(a) Dual-channel 15-band “Constant Q” graphic equalizer; (b) setup; (c) frequency response.

[(a) Alexey Laputin/Fotolia]
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requiring that the high frequencies have additional amplification to 
match the sound levels of the mid and low frequencies. To characterize 
the typical rectangular-shaped room, a setup such as shown in Fig. 
21.42(b) may be used. The amplifier and speakers are placed in the 
center of one wall, with additional speakers in the corners of the room 
facing the reception area. A mike is then placed in the reception area 
about 10 ft from the amplifier and centered between the two other 
speakers. A pink noise is then sent out from a spectrum analyzer (often 
an integral part of the graphic equalizer) to the amplifier and speakers. 
Pink noise is actually a square-wave signal whose amplitude and fre-
quency can be controlled. A square-wave signal was chosen because a 
Fourier breakdown of a square-wave signal results in a broad range of 
frequencies for the system to check. You will find in Chapter 25 that a 
square wave can be constructed of an infinite series of sine waves of 
different frequencies. Once the proper volume of pink noise is estab-
lished, the spectrum analyzer can be used to set the response of each 
slide band to establish the desired flat response. The center frequencies 
for the slides of the graphic equalizer in Fig. 21.42(a) are provided in 
Fig. 21.42(c), along with the frequency response for a number of adjoin-
ing frequencies evenly spaced on a logarithmic scale. Note that each 
center frequency is actually the resonant frequency for that slide. The 
design is such that each slide can control the volume associated with 
that frequency, but the bandwidth and frequency response stay fairly 
constant. A good spectrum analyzer has each slide set against a decibel 
(dB) scale (decibels are discussed in detail in Chapter 22). The decibel 
scale simply establishes a scale for the comparison of audio levels. At a 
normal listening level, usually a change of about 3 dB is necessary for 
the audio change to be detectable by the human ear. At low levels of 
sound, a 2 dB change may be detectable, but at loud sounds probably a 
4 dB change would be necessary for the change to be noticed. These are 
not strict laws but guidelines commonly used by audio technicians. For 
the room in question, the mix of settings may be as shown in Fig. 
21.42(c). Once set, the slides are not touched again. A flat response has 
been established for the room for the full audio range so that every 
sound or type of music is covered.

A parametric equalizer such as appearing in Fig. 21.43 is similar to a 
graphic equalizer, but instead of separate controls for the individual fre-
quency ranges, it uses three basic controls over three or four broader 
frequency ranges. The typical controls—the gain, center frequency, and 
bandwidth—are typically available for the low-, mid-, and high-
frequency ranges. Each is fundamentally an independent control; that is, 
a change in one can be made without affecting the other two. For the 
parametric equalizer in Fig. 21.43, each of the six channels has a fre-
quency control switch that, in conjunction with the f * 10 switch, gives 
a range of center frequencies from 40 Hz through 16 kHz. It has controls 
for BW (“Q”) from 3 octaves to 1/20 octave, and {18 dB cut and boost. 
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FIG. 21.43
Six-channel parametric equalizer.
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Some like to refer to the parametric equalizer as a sophisticated tone 
control and actually use it to enrich the sound after the flat response has 
been established by the graphic equalizer. The effect achieved with a 
standard tone control knob is sometimes referred to as “boring” com-
pared to the effect established by a good parametric equalizer, primarily 
because the former can control only the volume and not the bandwidth 
or center frequency. In general, graphic equalizers establish the impor-
tant flat response, while parametric equalizers are adjusted to provide 
the type and quality of sound you like to hear. You can “notch out” the 
frequencies that bother you and remove tape “hiss” and the “sharpness” 
often associated with CDs.

One characteristic of concert halls that is more difficult to fake is the 
fullness of sound that concert halls are able to provide. In the concert 
hall, you have the direct sound from the instruments and the reflection of 
sound off the walls and the vaulted ceilings, which were all carefully 
designed expressly for this purpose. Any reflection results in a delay in 
the sound waves reaching the ear, creating the fullness effect. Through 
digital delay, speakers can be placed to the back and side of a listener to 
establish the surround sound effect. In general, the delay speakers are 
much lower in wattage, with 20 W speakers typically used with a 100 W 
system. The echo response is one reason that people often like to play 
their stereos louder than they should for normal hearing. By playing the 
stereo louder, they create more echo and reflection off the walls, bring-
ing into play some of the fullness heard at concert halls.

It is probably safe to say that any system composed of quality compo-
nents, a graphic and parametric equalizer, and surround sound will have 
all the components necessary to have a quality reproduction of the con-
cert hall effect.

21.16 C omputer Analysis

PSpice

Series Resonance    This chapter provides an excellent opportunity to 
demonstrate what computer software programs can do for us. Imagine 
having to plot a detailed resonance curve with all the calculations 
required for each frequency. At every frequency, the reactance of the 
inductive and capacitive elements changes, and the phasor operations 
would have to be repeated—a long and arduous task. However, with 
PSpice, taking a few moments to enter the circuit and establish the 
desired simulation results in a detailed plot in a few seconds that can 
have plot points every microsecond!

For the first time, the horizontal axis is in the frequency domain 
rather than in the time domain as in all the previous plots. For the series 
resonant circuit in Fig. 21.44, the magnitude of the source was chosen to 
produce a maximum current of I = 400 mV>40 Ω = 10 mA at reso-
nance, and the reactive elements establish a resonant frequency of

fs =
1

2p1LC
=

1

2p1(30 mH)(0.1 mF)
≅ 2.91 kHz

The quality factor is

Ql =
XL

Rl
=

546.64 Ω
40 Ω

≅ 13.7

which is relatively high and should give us a nice sharp response.
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The bandwidth is

BW =
fs
Ql

=
2.91 kHz

13.7
≅ 212 Hz

which will be verified using our cursor options.
For the ac source, choose VSIN. All the parameters are set by double-

clicking on the source symbol and entering the values in the Property 
Editor dialog box. For each, select Name and Value under Display 
followed by Apply before leaving the dialog box.

In the Simulation Settings dialog box, select AC Sweep/Noise and set 
the Start Frequency at 1 kHz, the End Frequency at 10 kHz, and the 
Points/Decade at 10,000. The Logarithmic scale and Decade settings 
remain at their default values. Choose 10,000 for Points/Decade to ensure 
a number of data points near the peak value. When the SCHEMATIC1 
screen in Fig. 21.45 appears, Trace-Add Trace-I(R)-OK results in a 

FIG. 21.44
Series resonant circuit to be analyzed using PSpice.

FIG. 21.45
Resonance curve for the current of the circuit in Fig. 21.44.
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logarithmic plot that peaks just to the left of 3 kHz. The spacing between 
grid lines on the X-axis should be increased, so select Plot-Axis Settings-X 
Grid-unable Automatic-Spacing-Log-0.1-OK to create a vertical grid at 
intervals of 1 kHz. Next select the Toggle cursor icon followed by Cur-
sor Max to find the maximum value of the curve and the associated fre-
quency. The Cursor dialog box reveals that X = 2.906 kHz and Y1 is 
10 mA as obtained in the longhand solution. Next, left-click on the 
screen to obtain a moveable cursor and place it to the right of the peak as 
close to 7.07 mA as possible since this defines the upper cutoff fre-
quency. The result is Y2 = 7.008 mA and X = 3.016 kHz. Then right-
click on the screen to obtain a second cursor and place as close as 
possible to the 7.07 mA level to the left of the peak value. The result is 
Y1 = 7.182 mA with X = 2.805 kHz. The resulting bandwidth is then 
Y1 - Y2 = -211 Hz as appearing in the Probe Cursor box—an excel-
lent comparison with the calculated value of 212 Hz.

Parallel Resonance    Let us now investigate the parallel resonant cir-
cuit in Fig. 21.35 and compare the results with the longhand solution. 
The network appears in Fig. 21.46 using ISRC as the ac source volt-
age. Be sure to mirror vertically the source to establish the correct 
direction. Set the following values by double-clicking on each quantity: 
DC = 0 A, AC = 2 mA, and TRAN = 0. In the Simulation Settings 
dialog box, select AC Sweep/Noise, and select the Start Frequency at 
10 kHz since we know that it will resonate near 30 kHz. Choose the End 
Frequency as 100 kHz for a first run to see the results. Set the Points/
Decade at 10,000 to ensure a good number of data points for the peaking 
region. After simulation, Trace-Add Trace-V(C:1)-OK results in the 
plot in Fig. 21.47 with a resonant frequency near 30 kHz. The selected 
range appears to be a good one, but the initial plot needed more grid 

FIG. 21.46
Parallel resonant network to be analyzed using PSpice.
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lines on the x-axis, so use Plot-Axis Settings-X-Grid-unenable Auto-
matic-Spacing-Log-0.1-OK to obtain a grid line at 10 kHz intervals. 
Next select the Toggle cursor pad and choose the Cursor Max pad to 
find the peak value of the curve. The result is Y1 = 319.45 mV at 
X = 28.96 kHz, which is a very close match with the calculated value 
of 318.68 mV at 28.57 kHz for the maximum value of VC. The band-
width is defined at a level of 0.707(319.45 mV) = 225.85 mV. Next, 
left-click the mouse on the screen and drag the cursor line to the right of 
the peak value as close to the 224.85 mV level as possible. This will 
establish the high-cutoff frequency for the resonant curve. The resulting 
frequency is X = 34.65 kHz at Y2 = 225.32 mV as shown in the 
Probe cursor box. Now right-click the mouse on the screen to establish 
a second cursor line and move it as close to the 225.85 mV level as pos-
sible to the left of the peak value. This will establish the low-cutoff fre-
quency for the resonant curve. The result is X = 23.09 kHz at a level of 
Y1 = 225.64 mV. The bandwidth is then defined as the difference in X 
values corresponding with Y1 - Y2. The resulting bandwidth of 
10.66 kHz is very close to the 10.78 kHz obtained in Example 21.7.

You can now look at the phase angle of the voltage across the parallel 
network to find the frequency when the network appears resistive and 
the phase angle is 0°. First use Trace-Delete All Traces followed by 
Trace-Add Trace. The P( ) is found under the Functions listing on the 
right side of the Add Trace dialog box. Insert V(C:1) followed by OK. 
The result is the plot in Fig. 21.48, revealing that the phase angle is close 
to -90° at very high frequencies as the capacitive element with its 
decreasing reactance takes over the characteristics of the parallel net-
work. At 10 kHz, the inductive element has a lower reactance than the 
capacitive element, and the network has a positive phase angle. Using 
the cursor option, move the left cursor along the horizontal axis until the 
phase angle is at its minimum value. As shown in Fig. 21.48, the small-
est angle available with the determined data points is 340.46 mde-
grees ≅ 0.34°, which is certainly very close to 0°. The corresponding 
frequency is 27.02 kHz, which is a close match with the longhand solu-
tion of 27.05 kHz. Clearly, therefore, the frequency at which the phase 
angle is zero and the total impedance appears resistive is less than the 
frequency at which the output voltage is a maximum.

FIG. 21.47
Resonance curve for the voltage across the capacitor in Fig. 21.46.
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Multisim

The results of Example 21.9 are now confirmed using Multisim. The 
network in Fig. 21.38 appears as shown in Fig. 21.49 after all the ele-
ments have been placed as described in earlier chapters. The current 

FIG. 21.48
Phase plot for the voltage yC for the parallel resonant network in Fig. 21.46.

FIG. 21.49
Using Multisim to confirm the results of Example 21.9.
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source is selected with the sequence Place Source–Family–SIGNAL–
CURRENT_SOURCES–AC_CURRENT. Double-clicking on the 
source results in a dialog box where the magnitude is set to 2 mA and the 
frequency to 100 kHz. Keep in mind that the numbered nodal voltages 
are displayed on the network using a right-click of the mouse anywhere 
on the screen followed by Options-Sheet Properties-Net Names—
Show all—OK. The numbered nodes are very helpful when it comes to 
selecting traces to be seen on the screen.

For simulation, first select the sequence Simulate-Analyses-AC 
Analysis to obtain the AC Analysis dialog box. Set the Start frequency 
at 100 kHz, the Stop frequency at 1 MHz, Sweep type at Decade, 
Number of points per decade at 1000, and the Vertical scale at Lin-
ear. Select Output and then under Output variables, select V(1) as a 
Variable for analysis followed by Simulate to run the program. The 
results are the magnitude and phase plots in Fig. 21.50. Starting with the 
Voltage plot, select the Show/Hide Grid key, Show/Hide Legend key, 
and Show/Hide Cursors key. Using the cursor you will find in the AC 
Analysis cursor box that the maximum value is 95.24 V at 318.59 kHz 
(x1). The other (blue) cursor can be used to define the high cutoff frequency 
for the bandwidth by first calculating the 0.707 level of the output volt-
age. The result is 0.707(95.24 V) = 67.33 V. The closest you can come 
to this level with the cursor is 67.62 V (y2) which defines a frequency of 
353.5 kHz (x2). If you now use the red cursor to find the corresponding 
level below the resonant frequency, you find a level of 67.49 V (y1) at 
287.08 kHz (x1). The resulting bandwidth is therefore 353.5 kHz -
287.08 kHz = 66.42 kHz.

FIG. 21.50
Magnitude and phase plots for the voltage yC of the network in Fig. 21.49.

You can now determine the resonant frequency if you define reso-
nance as that frequency that results in a phase angle of 0° for the output 
voltage. By repeating the process described above for the phase plot, set 
the red cursor as close to 0° as possible. The result is 3.55° (y1) at 
316.23 kHz (x1), clearly revealing that the resonant frequency defined 
by the phase angle is less than that defined by the peak voltage. However, 
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	 4.	 For the circuit in Fig. 21.53:
	 a.	 Find the value of L in millihenries if the resonant fre-

quency is 1800 Hz.
	 b.	 Calculate XL and XC. How do they compare?
	 c.	 Find the magnitude of the current Irms at resonance.
	 d.	 Find the power dissipated by the circuit at resonance.
	 e.	 What is the apparent power delivered to the system at 

resonance?
	 f.	 What is the power factor of the circuit at resonance?
	 g.	 Calculate the Q of the circuit and the resulting bandwidth.
	 h.	 Find the cutoff frequencies, and calculate the power dis-

sipated by the circuit at these frequencies.

Problems

SECTIONS 21.2 through 21.7  Series Resonance

	 1.	 Find the resonant vs and fs for the series circuit with the 
following parameters:

	 a.	 R = 12 Ω, L = 1.5 H, C = 10 mF
	 b.	 R = 200 Ω, L = 0.81 H, C = 0.36 mF
	 c.	 R = 25 Ω, L = 0.35 mH, C = 7.0 mF

	 2.	 For the series circuit in Fig. 21.51:
	 a.	 Find the value of XC for resonance.
	 b.	 Determine the total impedance of the circuit at resonance.
	 c.	 Find the magnitude of the current I.
	 d.	 Calculate the voltages VR, VL, and VC at resonance. How 

are VL and VC related? How does VR compare to the 
applied voltage E?

	 e.	 What is the quality factor of the circuit? Is it a high or 
low Q circuit?

	 f.	 What is the power dissipated by the circuit at resonance?

with a Ql of about 100, the difference of 2.36 kHz is not significant. Also 
note that when the second cursor was set on 352.19 kHz, the phase angle 
of -44.24° is close to the 45° expected at the cutoff frequency.

Again, the computer solution is a very close match with the longhand 
solution in Example 20.9 with a perfect match of 95.24 V for the peak 
value and only a small difference in bandwidth with 66.87 kHz in Exam-
ple 20.9 and 66.42 kHz here. For the high cutoff frequency, the com-
puter generated a result of 353.5 kHz, while the theoretical solution was 
351.7 kHz. For the low cutoff frequency, the computer responded with 
287.08 kHz compared to a theoretical solution of 284 kHz.

VR

R  =  5 V 
+

–

E 60 mV

VL+ –

+

–
XC VC

I XL  =  30 V

+ –

FIG. 21.51
Problem 2.

	 3.	 For the series circuit in Fig. 21.52:
	 a.	 Find the value of XL for resonance.
	 b.	 Determine the magnitude of the current I at resonance.
	 c.	 Find the voltages VR, VL, and VC at resonance, and com-

pare their magnitudes.
	 d.	 Determine the quality factor of the circuit. Is it a high- 

or low-Q circuit?
	 e.	 If the resonant frequency is 5 kHz, determine the value 

of L and C.
	 f.	 Find the bandwidth of the response if the resonant fre-

quency is 5 kHz.
	 g.	 What are the low and high cutoff frequencies?

XC

VR

R XLI

+ – VL+ –

VC

+

–

+

–

E 12 V

  =  100 �

2 k�

FIG. 21.52
Problem 3.

C

R

4.7 �I

L

+

–

e 2 mF20  �  10–3 sin qt

FIG. 21.53
Problem 4.

	 5.	 	a.	 Find the bandwidth of a series resonant circuit having a 
resonant frequency of 4500 Hz and a Qs of 15.

	 b.	 Find the cutoff frequencies.
	 c.	 If the resistance of the circuit at resonance is 4 Ω, what 

are the values of XL and XC in ohms?
	 d.	 What is the power dissipated at the half-power frequen-

cies if the maximum current flowing through the circuit 
is 0.6 A?
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SECTIONS 21.8 through 21.12  Parallel Resonance

	13.	 For the “ideal” parallel resonant circuit in Fig. 21.54:
	 a.	 Determine the resonant frequency (fp).
	 b.	 Find the voltage VC at resonance.
	 c.	 Determine the currents IL and IC at resonance.
	 d.	 Find Qp.

	 6.	 A series circuit has a resonant frequency of 10 kHz. The 
resistance of the circuit is 5 Ω, and XC at resonance is 
200 Ω.

	 a.	 Find the bandwidth.
	 b.	 Find the cutoff frequencies.
	 c.	 Find Qs.
	 d.	 If the input voltage is 30 V ∠0°, find the voltage across 

the coil and capacitor in phasor form.
	 e.	 Find the power dissipated at resonance.

	 7.	 	a.	 The bandwidth of a series resonant circuit is 250 Hz. If 
the resonant frequency is 2500 Hz, what is the value of 
Qs for the circuit?

	 b.	 If R = 5 Ω, what is the value of XL at resonance?
	 c.	 Find the value of L and C at resonance.
	 d.	 Find the cutoff frequencies.

	 8.	 The cutoff frequencies of a series resonant circuit are 5600 Hz 
and 6000 Hz.

	 a.	 Find the bandwidth of the circuit.
	 b.	 If Qs is 14.5, find the resonant frequency of the circuit.
	 c.	 If the resistance of the circuit is 2.5 Ω, find the value of 

XL and XC at resonance.
	 d.	 Find the value of L and C at resonance.

	*9.		 a.	� Design a series resonant circuit with an input voltage of 
5 V ∠0° to have the following specifications:
—Peak current of 500 mA at resonance
—Bandwidth of 120 Hz
—Resonant frequency of 8400 Hz

	 b.	 Find the value of L and C and the cutoff frequencies.

	*10.	 Design a series resonant circuit to have a bandwidth of 
600 Hz using a coil with a Ql of 20 and a resistance of 3 Ω. 
Find the values of L and C and the cutoff frequencies.

	*11.	 A series resonant circuit is to resonate at vs = 2p * 106 rad/s 
and draw 20 W from a 120 V source at resonance. If the 
fractional bandwidth is 0.16:

	 a.	 Determine the resonant frequency in hertz.
	 b.	 Calculate the bandwidth in hertz.
	 c.	 Determine the values of R, L, and C.
	 d.	 Find the resistance of the coil if Ql = 80.

	*12.	 A series resonant circuit will resonate at a frequency of 
1 MHz with a fractional bandwidth of 0.2. If the quality fac-
tor of the coil at resonance is 12.5 and its inductance is 
100 mH, determine the following:

	 a.	 The resistance of the coil.
	 b.	 The additional resistance required to establish the indi-

cated fractional bandwidth.
	 c.	 The required value of capacitance.

LRs 4 kV 0.2 mH C  =  10 nF VC

+

–

ICIL

I 2 mA

FIG. 21.54
Problem 13.

	14.	 For the parallel resonant network in Fig. 21.55:
	 a.	 Calculate fs.
	 b.	 Determine Ql using f = fs. Can the approximate 

approach be applied?
	 c.	 Determine fp and fm.
	 d.	 Calculate XL and XC using fp. How do they compare?
	 e.	 Find the total impedance at resonance ( fp).
	 f.	 Calculate VC at resonance ( fp).
	 g.	 Determine Qp and the BW using fp.
	 h.	 Calculate IL and IC at fp.

L 4.7 mH

I 10 mA

Rs  =  ∞ �

C

Rl 8 �

ZTp

0.03 mF VC

+

–

FIG. 21.55
Problem 14.

	*15.	 The network of Fig. 21.56 has a supply with an internal 
resistance of 1 kΩ, an emf of 120 V, and a wide frequency 
range. The inductance of 200 mH has a Ql of 15, which may 
be considered constant for the frequency range of interest. 
The tuning capacitor is fixed at 120 pF.

	 a.	 Find the resonant frequency.
	 b.	 Find the voltage across the tank circuit at resonance.

L 200 mH

= 15

Vtank

+

–

C = 120 pF

1 k� 

E = 120 V�0°

Rs

Ql

FIG. 21.56
Problem 15.
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Rl

XC

IC20 �

XL 100 �

IL
ZTp

Rs 2 k�

I  =  8 mA ∠0°

FIG. 21.57
Problem 16.

	 c.	 Find the power delivered by the source at resonance.
	 d.	 Calculate the power lost in the tank coil due to the inter-

nal resistance, and compare that to the power delivered 
in part (c).

	16.	 For the network in Fig. 21.57:
	 a.	 Find the value of XC at resonance (fp).
	 b.	 Find the total impedance ZTp

 at resonance (fp).
	 c.	 Find the currents IL and IC at resonance (fp).
	 d.	 If the resonant frequency is 25,000 Hz, find the value of 

L and C at resonance.
	 e.	 Find Qp and the BW.

	*17.	 The network shown in Fig. 21.58 is to resonate at 
2 * 106>2p Hz and have a bandwidth of 100,000>2p Hz. 
If the coil has a Ql of 35 (constant for the frequency range 
of interest), calculate the values of R and C. Find the nearest 
commercial values available for R and C. Rl

Ql  = 35

C

1 mH L

R

FIG. 21.58
Problem 17.

	18.	 For the network in Fig. 21.59:
	 a.	 Find the resonant frequencies fs, fp, and fm. What do the 

results suggest about the Qp of the network?
	 b.	 Find the values of XL and XC at resonance ( fp). How do 

they compare?
	 c.	 Find the impedance ZTp

 at resonance (fp).
	 d.	 Calculate Qp and the BW.
	 e.	 Find the magnitude of currents IL and IC at resonance 

( fp).
	 f.	 Calculate the voltage VC at resonance ( fp).

Rl

C

IC1.5 �

L 80 mH

IL

Rs

10 k�

E = 100 V 0.03 mF VC

+

–

+

–

FIG. 21.59
Problem 18.

	*19.	 Repeat Problem 18 for the network in Fig. 21.60.
Rl

C

IC8 �

L 0.5 mH

IL

ZTp

Rs 0.5 k�I 40 mA 1 mF VC

+

–

FIG. 21.60
Problems 19 and 29.
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	20.	 It is desired that the impedance ZT of the high Q circuit in 
Fig. 21.61 be 40 kΩ ∠0° at resonance ( fp).

	 a.	 Find the value of XL.
	 b.	 Compute XC.
	 c.	 Find the resonant frequency ( fp) if L = 18 mH.
	 d.	 Find the value of C.

XL

Rl 40 �

XCZT

FIG. 21.61
Problem 20.

	21.	 For the network in Fig. 21.62:
	 a.	 Find fp.
	 b.	 Calculate the magnitude of VC at resonance ( fp).
	 c.	 Determine the power absorbed at resonance.
	 d.	 Find the BW.

L

Rl

C
0.01 mF

VC

+

–

Ql  =  20

200 mH

20 k�

Rs

+

–

E = 120 V

FIG. 21.62
Problem 21.

	*22.	 For the network in Fig. 21.63:
	 a.	 Find the value of XL for resonance.
	 b.	 Find Ql.
	 c.	 Find the resonant frequency (fp) if the bandwidth is 

1 kHz.
	 d.	 Find the maximum value of the voltage VC.
	 e.	 Sketch the curve of VC versus frequency. Indicate its 

peak value, resonant frequency, and band frequencies.

XL

Rl

20 k� XC 400 � VC

+

–

RsI  =  0.1 mA

8 �

FIG. 21.63
Problem 22.

	*23.	 Repeat Problem 22 for the network in Fig. 21.64.

XL

Rl

40 k� XC 100 � VC

+

–

RsI  =  6 mA ∠0°

12 �

FIG. 21.64
Problem 23.

Rl 6 �

Rs

20 k�
IL

IC

C1 20 nF

C2 10 nF
VC

+

–
L 0.5 mH

E  =  80 V ∠0°

+

–
ZTp

FIG. 21.65
Problem 24.

	*24.	 For the network in Fig. 21.65:
	 a.	 Find fs, fp, and fm.
	 b.	 Determine Ql and Qp at fp after a source conversion is 

performed.
	 c.	 Find the input impedance ZTp

.
	 d.	 Find the magnitude of the voltage VC.
	 e.	 Calculate the bandwidth using fp.
	 f.	 Determine the magnitude of the currents IC and Il.
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SECTION 21.16  Computer Analysis

PSpice or Multisim

	28.	 Verify the results in Example 21.8. That is, show that the 
resonant frequency is 40 kHz, the cutoff frequencies are as 
calculated, and the bandwidth is 1.85 kHz.

	29.	 Find fp and fm for the parallel resonant network in Fig. 
21.60, and comment on the resulting bandwidth as it relates 
to the quality factor of the network.

Glossary

Band (cutoff, half-power, corner) frequencies  Frequencies 
that define the points on the resonance curve that are 0.707 of 
the peak current or voltage value. In addition, they define the 
frequencies at which the power transfer to the resonant circuit 
will be half the maximum power level.

Bandwidth (BW)  The range of frequencies between the band, 
cutoff, or half-power frequencies.

Quality factor (Q)  A ratio that provides an immediate indica-
tion of the sharpness of the peak of a resonance curve. The 
higher the Q, the sharper is the peak and the more quickly it 
drops off to the right and left of the resonant frequency.

Resonance  A condition established by the application of a par-
ticular frequency (the resonant frequency) to a series or paral-
lel R-L-C network. The transfer of power to the system is a 
maximum, and, for frequencies above and below, the power 
transfer drops off to significantly lower levels.

Selectivity  A characteristic of resonant networks directly related 
to the bandwidth of the resonant system. High selectivity is 
associated with small bandwidth (high Q’s), and low selectiv-
ity with larger bandwidths (low Q’s).

	*25.	 For the network in Fig. 21.66, the following are specified:

 fp = 25 kHz

 BW = 1.84 kHz

 L = 2.5 mH

 Ql = 90

		  Find Rs and C.

C

Rl

Ql

L

Rs

FIG. 21.66
Problem 25.

	*26.	 Design the network in Fig. 21.67 to have the following 
characteristics:

	 a.	 BW = 600 Hz
	 b.	 Qp = 32
	 c.	 VCmax

= 2.2 V

0.2 mA    0° C

L

Rl

I

Rs  =  ∞ �

FIG. 21.67
Problem 26.

	*27.	 For the parallel resonant circuit in Fig. 21.68:
	 a.	 Determine the resonant frequency.
	 b.	 Find the total impedance at resonance.
	 c.	 Find Qp.
	 d.	 Calculate the BW.
	 e.	 Repeat parts (a) through (d) for L = 20 mH and 

C = 20 nF.
	 f.	 Repeat parts (a) through (d) for L = 0.4 mH and 

C = 1 nF.
	 g.	 For the network in Fig. 21.68 and the parameters of 

parts (e) and (f), determine the ratio L>C.
	 h.	 Do your results confirm the conclusions in Fig. 21.30 

for changes in the L>C ratio?

Rl 20 �

40 k�

L 200 H

C 2 nFZTp

FIG. 21.68
Problem 27.
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Decibels, Filters, and  
Bode Plots

22.1  Introduction

The unit decibel (dB), defined by a logarithmic expression, is used throughout the indus-
try to define levels of audio, voltage gain, energy, field strength, and so on. It will take 
some exposure to become totally comfortable with this unit of measure, but in time its 
usefulness will become quite apparent. For one thing, it removes the need to work with 
extremely large numbers that often lose their meaning when certain levels are reached. A 
good example of its use is in audio systems, where a 3 dB gain is one that can be detected 
by the human ear and normal listening levels. At low volumes, a 2 dB gain is often detect-
able, but at high levels it may take a 6 dB gain to detect the difference. Normal conversa-
tion occurs at about 60 dB, while damage to the eardrum can begin at 100 dB and higher. 
Additional examples of the use of decibels will be provided throughout the chapter to 
ensure some understanding of the impact of this unit of measurement. As noted above, it 
is used so extensively that it is of paramount importance that its use be completely and 
correctly understood.

The use of logarithms in industry is so extensive that a clear understanding of their 
purpose and use is an absolute necessity. At first exposure, logarithms often appear vague 
and mysterious due to the mathematical operations required to find the logarithm and anti-
logarithm using the longhand table approach that is typically taught in mathematics 
courses. However, almost all of today’s scientific calculators have the common and natu-
ral log functions, eliminating the complexity of applying logarithms and allowing us to 
concentrate on the positive characteristics of using the function.

Logarithms

Basic Relationships    Let us first examine the relationship between the variables of the 
logarithmic function. The mathematical expression

N = (b)x

Decibels, Filters, and  
Bode Plots

•	 Develop confidence in the use of logarithms and 
decibels in the description of power and voltage 
levels.

•	 Become familiar with the frequency response of 
high- and low-pass filters. Learn to calculate the 
cutoff frequency and describe the phase response.

•	 Be able to calculate the cutoff frequencies and 
sketch the frequency response of a pass-band, 
stop-band, or double-tuned filter.

•	 Develop skills in interpreting and establishing the 
Bode response of any filter.

•	 Become aware of the characteristics and operation 
of a crossover network.

Objectives

2222

dB
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states that the number N is equal to the base b taken to the power x. A 
few examples:

 100 = (10)2

 27 = (3)3

 54.6 = (e)4  where e = 2.7183

To find the power x to satisfy the equation

1200 = (10)x

you can determine the value of x using logarithms in the following manner:

x = log10 1200 = 3.079

revealing that

103.079 = 1200

Note that the logarithm was taken to the base 10—the number to be 
taken to the power of x. There is no limitation to the numerical value of 
the base, except that tables and calculators are designed to handle either 
a base of 10 (common logarithm, LOG ) or base e = 2.7183 (natural 
logarithm, IN ). In review, therefore,

	 If N = (b)x, then x = logb N. 	 (22.1)

The base to be used is a function of the area of application. If a con-
version from one base to the other is required, the following equation 
can be applied:

	 loge x = 2.3 log10 x 	 (22.2)

In this chapter, we concentrate solely on the common logarithm. 
However, a number of the conclusions are also applicable to natural 
logarithms.

Some Areas of Application    The following are some of the most 
common applications of the logarithmic function:

	 1.	 The response of a system can be plotted for a range of values that 
may otherwise be impossible or unwieldy with a linear scale.

	 2.	 Levels of power, voltage, and the like can be compared without 
dealing with very large or very small numbers that often cloud 
the true impact of the difference in magnitudes.

	 3.	 A number of systems respond to outside stimuli in a nonlinear 
logarithmic manner. The result is a mathematical model that per-
mits a direct calculation of the response of the system to a par-
ticular input signal.

	 4.	 The response of a cascaded or compound system can be rapidly 
determined using logarithms if the gain of each stage is known 
on a logarithmic basis. This characteristic is demonstrated in an 
example to follow.

Graphs    Graph paper is available in semilog and log-log varieties. 
Semilog paper has only one log scale, with the other a linear scale. Both 
scales of log-log paper are log scales. A section of semilog paper appears 
in Fig. 22.1. Note the linear (even-spaced-interval) vertical scaling and 
the repeating intervals of the log scale at multiples of 10.
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The spacing of the log scale is determined by taking the common log 
(base 10) of the number. The scaling starts with 1, since log10 1 = 0. 
The distance between 1 and 2 is determined by log10 2 = 0.3010, or 
approximately 30% of the full distance of a log interval, as shown on the 
graph. The distance between 1 and 3 is determined by log10 3 = 0.4771, 
or about 48% of the full width. For future reference, keep in mind that 
almost 50% of the width of one log interval is represented by a 3 rather 
than by the 5 of a linear scale. In addition, note that the number 5 is 
about 70% of the full width, and 8 is about 90%. Remembering the per-
centage of full width of the lines 2, 3, 5, and 8 is particularly useful when 
the various lines of a log plot are left unnumbered.

Since

 log10 1 = 0

 log10 10 = 1

 log10 100 = 2

 log10 1000 = 3

the spacing between 1 and 10, 10 and 100, 100 and 1000, and so on, is 
the same as shown in Figs. 22.1 and 22.2.

It is important to realize that

a logarithmic scale cannot start at zero on semilog paper.

In Fig. 22.1, it starts at 1, and each interval is marked by a power of 
10. Any number less than 1 is negative; for example,

log10(0.999) = -4.35 * 10-4

6

5

4

3

2

1

2

Linear
scale

1 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90100

Log scalelog10 2  =  0.3010
≅  30%

log10 4  =  0.6021  ≅  60%

≅  70% ≅  95%
≅  78% ≅  90%

≅  85%

log10 3  =  0.4771  ≅  48%

% of full width

FIG. 22.1
Semilog graph paper.
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Note in Figs. 22.1 and 22.2 that the log scale becomes compressed at 
the high end of each interval. With increasing frequency levels assigned 
to each interval, a single graph can provide a frequency plot extending 
from 1 Hz to 1 MHz, as shown in Fig. 22.2, with particular reference to 
the 30%, 50%, 70%, and 90% levels of each interval.

Positive Impact of Logarithmic Plots

Now that the basic characteristics of a logarithmic plot have been intro-
duced, one of its important benefits can now be demonstrated. Consider 
the logarithmic plot of Fig. 22.3(a) for a transistor amplifier. Note that 
the gain at 60 Hz is clearly visible at 80 and the gain at 2 MHz has 
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Frequency log scale.
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v

FIG. 22.3
Demonstrating the positive impact of logarithmic plots: (a) log plot, (b) MHz scale, (c) low-frequency scale.



Introduction    973dB

dropped to 50. In fact, the gain at any frequency between 1 and 10 MHz 
can be determined from the plot. However, now try to transfer the plot 
of Fig. 22.3(a) to a linear scale as attempted in Fig. 22.3(b) and Fig. 
22.3(c). If we choose a scale from 0 to 10 MHz, the plot point at 2 MHz 
is quite readable but the plot point at 60 Hz is impossible to read. In 
fact, any reading below 10 kHz has been lost. Now, if we take the other 
route and choose the scale of Fig. 22.3(c), we find the plot point at 
60 Hz is easy to read but the frequency of 2 MHz is far off the scale and 
would require a plot extending many feet to the right. Any reading 
above 2 kHz has been lost. Clearly, therefore, the use of logarithmic 
plots is almost mandatory for variables such as frequency that can 
extend through a large range of values.

On many log plots, the tick marks for most of the intermediate levels 
are left off because of space constraints. The following equation can be 
used to determine the logarithmic level at a particular point between 
known levels using a ruler or simply estimating the distances. The 
parameters are defined by Fig. 22.4. We have

	 Value = 10x * 10d1>d2 	 (22.3)

The derivation of Eq. (22.3) is simply an extension of the details regard-
ing distance appearing in Fig. 22.1.

EXAMPLE 22.1  Determine the value of the point appearing on the 
logarithmic plot in Fig. 22.5 using the measurements made by a ruler 
(linear).

Solution: 
d1

d2
=

7>16″
3>4″

=
0.438″
0.750″

= 0.584

Using a calculator gives

10d1>d2 = 100.584 = 3.837

Applying Eq. (22.3) gives

 Value = 10x * 10d1>d2 = 102 * 3.837

 = 383.7

(c)

50 

100 

125 

f (Hz)

A  (gain)

100600 200 300 400 500 600 700 800 900 1kHz

80 

v

FIG. 22.3
(continued)

10 x

d1

d2

10 x+1

FIG. 22.4
Finding a value on a log plot.

102

7/16"

1033/4"

FIG. 22.5
Example 22.1.
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22.2  Properties of Logarithms

There are a few characteristics of logarithms that should be emphasized:

1.	 The common or natural logarithm of the number 1 is 0:

	 log10 1 = 0 	 (22.4)

just as 10x = 1 requires that x = 0.

2.	 The log of any number less than 1 is a negative number:

 log10 1>2 = log10 0.5 = -0.3

 log10 1>10 = log10 0.1 = -1

3.	 The log of the product of two numbers is the sum of the logs of the 
numbers:

	 log10 ab = log10 a + log10 b 	 (22.5)

4.	 The log of the quotient of two numbers is the log of the numerator 
minus the log of the denominator:

	 log10 
a

b
= log10 a - log10 b 	 (22.6)

5.	 The log of a number taken to a power is equal to the product of the 
power and the log of the number:

	 log10 an = n log10 a 	 (22.7)

Equation (22.5) is particularly important for multistage systems, such 
as in Fig. 22.6, because it reveals that the

total dB gain of a multistage system is the sum of the dB gains of 
each stage.

Confirming: log
10

576 = 2.76 = 0.903 + 0.778 + 1.08 (checks)

Stage 1 Stage 2 Stage 3

Gain = 12Gain = 6Gain = 8

log
10

8 = 0.903 log
10

6 = 0.778 log
10

12 = 1.08

Total gain = 8 × 6 × 12 = 576

Total dB gain = 0.903 + 0.778 + 1.08 = 2.76

FIG. 22.6
Displaying the power of Eq. (22.5).

Calculator Functions

Using the TI-89 calculator, the common logarithm of a number is deter-
mined by first selecting the CATALOG key and then scrolling to find 
the common logarithm function. The time involved in scrolling through 
the options can be reduced by first selecting the key with the first letter 
of the desired function in the  list—in this case, L, as shown below, 
to find the common logarithm of the number 80.

CATALOG  4
:  L

 
 log ( ENTER  8  0  )  

��
 ENTER 	 1.90

For the reverse process, to find N, or the antilogarithm, use the function 
10. In this case, the function 10 is found after the letter Z in the catalog. It 
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is easier if you first select A to start at the top of the listing and then go 
backwards to the power of ten function by using the upward moving scroll 
option. The antilogarithm of the number 0.6 is found as follows:

CATALOG  �
:  A

  10^ ( ENTER  0  .  6  )  
��

 ENTER 	3.98

EXAMPLE 22.2  Evaluate each of the following logarithmic expressions:

	 a.	 log10 0.004

	 b.	 log10 250,000

	 c.	 log10(0.08)(240)

	 d.	 log10 
1 * 104

1 * 10-4

	 e.	 log10(10)4

Solutions: 

	 a.	 −2.40
	 b.	 +5.40
	 c.	  log10(0.08)(240) = log10 0.08 + log10 240 = -1.097 + 2.380

		   = 1.28

	 d.	  log10 
1 * 104

1 * 10-4 = log10 1 * 104 - log10 1 * 10-4 = 4 - (-4)

		   = 8
	 e.	 log10104 = 4 log1010 = 4(1) = 4

22.3 De cibels

Power Gain

Two levels of power can be compared using a unit of measure called the 
bel, which is defined by the following equation:

	 B = log10 
P2

P1
  (bels)	 (22.8)

However, to provide a unit of measure of less magnitude, a decibel is 
defined, where

	 1 bel = 10 decibels (dB)	 (22.9)

The result is the following important equation, which compares 
power levels P2 and P1 in decibels:

	 dB = 10 log10 
P2

P1
  (decibels, dB)	 (22.10)

If the power levels are equal (P2 = P1), there is no change in power 
level, and dB = 0. If there is an increase in power level (P2 7 P1), the 
resulting decibel level is positive. If there is a decrease in power level 
(P2 6 P1), the resulting decibel level will be negative.

For the special case of P2 = 2P1, the gain in decibels is

dB = 10 log10 
P2

P1
= 10 log10 2 = 3 dB
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Therefore, for a speaker system, a 3 dB increase in output requires that 
the power level be doubled. In the audio industry, it is a generally 
accepted rule that an increase in sound level is accomplished with 3 dB 
increments in the output level. In other words, a 1 dB increase is barely 
detectable, and a 2 dB increase just discernible. A 3 dB increase nor-
mally results in a readily detectable increase in sound level. An addi-
tional increase in the sound level is normally accomplished by simply 
increasing the output level another 3 dB. If an 8 W system were in use, a 
3 dB increase would require a 16 W output, whereas an additional 
increase of 3 dB (a total of 6 dB) would require a 32 W system, as dem-
onstrated by the calculations

 dB = 10 log10 
P2

P1
= 10 log10 

16

8
= 10 log10 2 = 3 dB

 dB = 10 log10 
P2

P1
= 10 log10 

32

8
= 10 log10 4 = 6 dB

For P2 = 10P1,

dB = 10 log10 
P2

P1
= 10 log10 10 = 10(1) = 10 dB

resulting in the unique situation where the power gain has the same mag-
nitude as the decibel level.

For some applications, a reference level is established to permit a 
comparison of decibel levels from one situation to another. For commu-
nication systems, a commonly applied reference level is

Pref = 1 mW  (across a 600 Ω load)

Eq. (22.10) is then typically written as

	 dBm = 10 log10 
P

1 mW
`
600 Ω

	 (22.11)

Note the subscript m to denote that the decibel level is determined with a 
reference level of 1 mW.

In particular, for P = 40 mW,

dBm = 10 log10 
40 mW

1 mW
= 10 log10 40 = 10(1.6) = 16 dBm

whereas for P = 4 W,

dBm = 10 log10 
4000 mW

1 mW
= 10 log10 4000 = 10(3.6) = 36 dBm

Even though the power level has increased by a factor of 4000 mW>
40 mW = 100, the dBm increase is limited to 20 dBm. In time, the sig-
nificance of dBm levels of 16 dBm and 36 dBm will generate an immedi-
ate appreciation regarding the power levels involved. An increase of 
20 dBm is also associated with a significant gain in power levels.

Voltage Gain

Decibels are also used to provide a comparison between voltage levels. 
Substituting the basic power equations P2 = V2

2>R2 and P1 = V1
2>R1 into 

Eq. (22.10) results in
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 dB = 10 log10 
P2

P1
= 10 log10 

V2
2>R2

V1
2>R1

 = 10 log10 
V2

2>V1
2

R2>R1
= 10 log10 aV2

V1
b

2

- 10 log10 aR2

R1
b

and	 dB = 20 log10 
V2

V1
- 10 log10 

R2

R1

For the situation where R2 = R1, a condition normally assumed when 
comparing voltage levels on a decibel basis, the second term of the pre-
ceding equation drops out (log101 = 0), and

	 dBy = 20 log10 
V2

V1
  (dB)	 (22.12)

Note the subscript y to define the decibel level obtained.

EXAMPLE 22.3  Find the voltage gain in dB of a system where the 
applied signal is 2 mV and the output voltage is 1.2 V.

Solution: 

dBy = 20 log10 
Vo

Vi
= 20 log10 

1.2 V

2 mV
= 20 log10 600 = 55.56 dB

for a voltage gain Ay = Vo>Vi of 600.

EXAMPLE 22.4  If a system has a voltage gain of 36 dB, find the 
applied voltage if the output voltage is 6.8 V.

Solution: 

 dBy = 20 log10 
Vo

Vi

 36 = 20 log10 
Vo

Vi

 1.8 = log10 
Vo

Vi

From the antilogarithm,

Vo

Vi
= 63.1

and	 Vi =
Vo

63.1
=

6.8 V

63.1
= 107.8  mV

Table 22.1 compares the magnitude of specific gains to the resulting 
decibel level. In particular, note that when voltage levels are compared, 
a doubling of the level results in a change of 6 dB rather than 3 dB as 
obtained for power levels.

In addition, note that an increase in gain from 1 to 100,000 results in a 
change in decibels that can easily be plotted on a single graph. Also note 
that doubling the gain (from 1 to 2 and 10 to 20) results in a 6 dB increase 
in the decibel level, while a change of 10 to 1 (from 1 to 10, 10 to 100, 
and so on) always results in a 20 dB decrease in the decibel level.

TABLE 22.1

Vo ,Vi dB = 20 log10 (Vo ,Vi)

1 0 dB
2 6 dB

10 20 dB
20 26 dB

100 40 dB
1,000 60 dB

100,000 100 dB
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Human Auditory Response

One of the most frequent applications of the decibel scale is in the com-
munication and entertainment industries. The human ear does not 
respond in a linear fashion to changes in source power level; that is, a 
doubling of the audio power level from 1>2 W to 1 W does not result in 
a doubling of the loudness level for the human ear. In addition, a change 
from 5 W to 10 W is received by the ear as the same change in sound 
intensity as experienced from 1>2 W to 1 W. In other words, the ratio 
between levels is the same in each case (1 W>0.5 W = 10 W>5 W = 2), 
resulting in the same decibel or logarithmic change defined by 
Eq.  (22.7). The ear, therefore, responds in a logarithmic fashion to 
changes in audio power levels.

To establish a basis for comparison between audio levels, a refer-
ence level of 0.0002 microbar (mbar) was chosen, where 1 mbar is 
equal to the sound pressure of 1 dyne per square centimeter, or about 1 
millionth of the normal atmospheric pressure at sea level. The 
0.0002 mbar level is the threshold level of hearing. Using this refer-
ence level, the sound pressure level in decibels is defined by the fol-
lowing equation:

	 dBs = 20 log10 
P

0.0002 mbar
	 (22.13)

where P is the sound pressure in microbars.
Meters designed to measure audio levels are calibrated to the levels 

defined by Eq. (22.13) and shown in Table 22.2.
In particular take note of the sound level for iPods and MP3 players, 

for which it is suggested, based on research, that they should not be used 
for more than 1 hour a day at 60% volume to prevent permanent hearing 
damage. Always remember that hearing damage is usually not reversi-
ble, so that any loss is for the long term.

A common question regarding audio levels is how much the power 
level of an acoustical source must be increased to double the sound 
level received by the human ear. The question is not as simple as it first 
seems due to considerations such as the frequency content of the sound, 
the acoustical conditions of the surrounding area, the physical charac-
teristics of the surrounding medium, and—of course—the unique char-
acteristics of the human ear. However, a general conclusion can be 
formulated that has practical value if we note the power levels of an 
acoustical source appearing to the left in Table 22.2. Each power level 
is associated with a particular decibel level, and a change of 10 dB in 
the scale corresponds to an increase or a decrease in power by a factor 
of 10. For instance, a change from 90 dB to 100 dB is associated with a 
change in wattage from 3 W to 30 W. Through experimentation, it has 
been found that on an average basis the loudness level doubles for every 
10 dB change in audio level—a conclusion somewhat verified by the 
examples to the right in Table 22.2.

To double the sound level received by the human ear, the power 
rating of the acoustical source (in watts) must be increased by a 
factor of 10.

In other words, doubling the sound level available from a 1 W acoustical 
source requires moving up to a 10 W source.
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Further:

At normal hearing levels, it would take a change of about 3 dB 
(twice the power level) for the change to be noticeable to the 
human ear.

At low levels of sound, a change of 2 dB may be noticeable, but it may 
take a 6 dB (four times the power level) change for much higher levels 
of sound.

One final example of the use of dB as a unit of measurement is the 
LRAD (Long Range Acoustic Device) appearing in Fig. 22.7. It emits 
a tone between 2100 Hz and 3100 Hz at 145 dB that is effective at up 
to 500 m, or almost two football fields. The sound at its peak is thou-
sands of times louder than a smoke alarm. It can be used to transmit 
critical information and instructions and is capable of strong deterrent 
tones against intruders.

Instrumentation

A number of modern VOMs and DMMs have a dB scale designed to 
provide an indication of power ratios referenced to a standard level of 
1 mW at 600 Ω. Since the reading is accurate only if the load has a 

160
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90

80

70

60

50

40

30

20

10

Jet engine

Jackhammer

Community siren

Threshold of pain

Health club, movie theater

Live music concert, iPods and MP3 players at full volume

Chain saw
Very loud music, motorcycle

Loud music, heavy truck, subway train

Orchestra, highway traffic, alarm clock

Average conversation
Quiet music

Average residence, computer system

Background music

Whispering

Faint sounds, paper rustling

Quiet office, computer hard drive

Threshold of hearing

Dynamic range ≅ 120 dBs

Output Power.
Average value

in watts.

dBs

300
100
30
10
3
1

0.3
0.1

0.03
0.01

0.003
0.001

0.0003

0.0002   bar of pressure

TABLE 22.2
Typical sound levels and their decibel levels.
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characteristic impedance of 600 Ω, the 1 mW, 600 Ω reference level is 
normally printed somewhere on the face of the meter, as shown in 
Fig. 22.8. The dB scale is usually calibrated to the lowest ac scale of the 
meter. In other words, when making the dB measurement, choose the 
lowest ac voltage scale, but read the dB scale. If a higher voltage scale is 
chosen, a correction factor must be used, which is sometimes printed on 
the face of the meter but is always available in the meter manual. If the 
impedance is other than 600 Ω or not purely resistive, other correction 
factors must be used that are normally included in the meter manual. 
Using the basic power equation P = V2>R reveals that 1 mW across a 
600 Ω load is the same as applying 0.775 V rms across a 600 Ω load; 
that is, V = 1PR = 1(1 mW)(600Ω) = 0.775V. The result is that an 
analog display will have 0 dB [defining the reference point of 1 mW, 
dB = 10 log10 P2>P1 = 10 log10 (1 mW>1 mW(ref) = 0 dB) and 0.775 V 
rms on the same pointer projection, as shown in Fig. 22.8. A voltage of 
2.5 V across a 600 Ω load results in a dB level of dB = 20 log10 V2>V1 =
20 log10 2.5 V>0.775 = 10.17 dB, resulting in 2.5 V and 10.17 dB 
appearing along the same pointer projection. A voltage of less than 
0.775 V, such as 0.5 V, results in a dB level of dB = 20 log10 
V2>V1 = 20 log10 0.5 V>0.775 V = -3.8 dB, also shown on the scale 

1 mW, 600 �

1.5
1

.5

0

2.0
2.5

33VAC

65432102468
12

7 8 9
10

11+DB–D
B

FIG. 22.8
Defining the relationship between a dB scale referenced to  

1 mW, 600 Ω and a 3 V rms voltage scale.

FIG. 22.7
LRAD (Long Range Acoustic Device) 1000X. 

(Courtesy of the LRAD Corporation.)
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in Fig. 22.8. Although a reading of 10 dB reveals that the power level is 
10 times the reference, don’t assume that a reading of 5 dB means that 
the output level is 5 mW. The 10 : 1 ratio is a special one in logarithmic 
use. For the 5 dB level, the power level must be found using the anti-
logarithm (3.126), which reveals that the power level associated with 
5 dB is about 3.1 times the reference or 3.1 mW. A conversion table is 
usually provided in the manual for such conversions.

22.4  Filters

Any combination of passive (R, L, and C) and/or active (transistors or 
operational amplifiers) elements designed to select or reject a band of 
frequencies is called a filter. In communication systems, filters are used 
to pass those frequencies containing the desired information and to reject 
the remaining frequencies. In stereo systems, filters can isolate particu-
lar bands of frequencies for increased or decreased emphasis by the out-
put acoustical system (amplifier, speaker, and so on). Filters are used to 
filter out any unwanted frequencies, commonly called noise, due to the 
nonlinear characteristics of some electronic devices or signals picked up 
from the surrounding medium. In general, there are two classifications 
of filters:

	 1.	 Passive filters are those filters composed of series or parallel 
combinations of R, L, and C elements.

	 2.	 Active filters are filters that employ active devices such as tran-
sistors and operational amplifiers in combination with R, L, and 
C elements.

Since this text is limited to passive devices, the analysis of this chap-
ter is limited to passive filters. In addition, only the most fundamental 
forms are examined in the next few sections. The subject of filters is a 
very broad one that continues to receive extensive research support from 
industry and the government as new communication systems are devel-
oped to meet the demands of increased volume and speed. There are 
courses and texts devoted solely to the analysis and design of filter sys-
tems, which can become quite complex and sophisticated. In general, 
however, all filters belong to the four broad categories of low-pass, 
high-pass, band-pass, and band-stop, as depicted in Fig. 22.9. For each 
form, there are critical frequencies that define the regions of pass-bands 
and stop-bands (often called reject bands). Any frequency in the pass-
band will pass through to the next stage with at least 70.7% of the maxi-
mum output voltage. Recall the use of the 0.707 level to define the 
bandwidth of a series or parallel resonant circuit (both with the general 
shape of the pass-band filter).

For some band-stop filters, the band-stop is defined by conditions 
other than the 0.707 level. In fact, for many stop-band filters, the condi-
tion that Vo = 1>1000V max  (corresponding to -60 dB in the discussion 
to follow) is used to define the stop-band region, with the pass-band 
continuing to be defined by the 0.707 V level. The resulting frequencies 
between the two regions are then called the transition frequencies and 
establish the transition region.

At least one example of each filter in Fig. 22.9 is discussed in some 
detail in the sections to follow. Take particular note of the relative sim-
plicity of some of the designs.
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22.5   R-C Low-Pass Filter

The R-C filter, incredibly simple in design, can be used as a low-pass or 
a high-pass filter. If the output is taken off the capacitor, as shown in 
Fig. 22.10, it responds as a low-pass filter. If the positions of the resistor 
and capacitor are interchanged and the output is taken off the resistor, 
the response is that of a high-pass filter.

A glance at Fig. 22.9(a) reveals that the circuit should behave in a 
manner that results in a high-level output for low frequencies and a 
declining level for frequencies above the critical value. Let us first 
examine the network at the frequency extremes of f = 0 Hz and very 
high frequencies to test the response of the circuit.

Band-stop filter:

Band-pass filter:

(d)
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0

Vmax

0.707Vmax

Band-stopBand-pass Band-pass
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Vmax

0.707Vmax

Band-stopBand-pass Band-pass

f1 fo f2 f

(c)

Vo

0

Vmax

0.707Vmax

Band-stop
Band-pass

Band-stop
f1 fo f2 f

High-pass filter:

(b)

Vo

0

Vmax

0.707Vmax

Band-stop Band-pass
fc f

Low-pass filter:

(a)

Vo

0

Vmax

0.707Vmax

Band-pass Band-stop
fc f

Band-stop filter:

Band-pass filter:

(d)

Vo

0

Vmax

0.707Vmax

Band-stopBand-pass Band-pass

f1 fo f2 f

(c)

Vo

0

Vmax

0.707Vmax

Band-stop
Band-pass

Band-stop
f1 fo f2 f

High-pass filter:

(b)

Vo

0

Vmax

0.707Vmax

Band-stop Band-pass
fc f

Low-pass filter:

(a)

Vo

0

Vmax

0.707Vmax

Band-pass Band-stop
fc f

FIG. 22.9
Defining the four broad categories of filters.

–

+ R

C Vo

–

+

FIG. 22.10
Low-pass filter.
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At f = 0 Hz,

XC =
1

2p f C
= ∞ Ω

and the open-circuit equivalent can be substituted for the capacitor, as 
shown in Fig. 22.11, resulting in Vo = Vi.

At very high frequencies, the reactance is

XC =
1

2p f C
≅ 0 Ω

and the short-circuit equivalent can be substituted for the capacitor, as 
shown in Fig. 22.12, resulting in Vo = 0 V.

A plot of the magnitude of Vo versus frequency results in the curve in 
Fig. 22.13. Our next goal is now clearly defined: Find the frequency at 
which the transition takes place from a pass-band to a stop-band.

–

+ R

Vi

–

+

Vo  =  Vi

FIG. 22.11
R-C low-pass filter at low frequencies.

–

+ R

Vi

–

+

Vo  =  0 V

FIG. 22.12
R-C low-pass filter at high frequencies.

0

Vo

Vo  =  0.707Vi

Band-stopBand-pass f (log scale)fc

Vi

FIG. 22.13
Vo versus frequency for a low-pass R-C filter.

For filters, a normalized plot is used more often than the plot of Vo 
versus frequency in Fig. 22.13.

Normalization is a process whereby a quantity such as voltage, 
current, or impedance is divided by a quantity of the same unit of 
measure to establish a dimensionless level of a specific value or range.

A normalized plot in the filter domain can be obtained by dividing the 
plotted quantity such as Vo in Fig. 22.13 with the applied voltage Vi for the 
frequency range of interest. Since the maximum value of Vo for the low-
pass filter in Fig. 22.10 is Vi, each level of Vo in Fig. 22.11 is divided by the 
level of Vi. The result is the plot of Ay = Vo>Vi in Fig. 22.14. Note that the 
maximum value is 1 and the cutoff frequency is defined at the 0.707 level.

Av  =

0

0.707

Band-stopBand-pass f (log scale)fc

Vo
Vi

1

FIG. 22.14
Normalized plot of Fig. 22.13.
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At any intermediate frequency, the output voltage Vo in Fig. 22.10 
can be determined using the voltage divider rule:

Vo =
XC ∠-90°Vi

R - jXC

or

Ay =
Vo

Vi
=

XC ∠-90°
R - jXC

=
XC ∠-90°2R2 + XC

2  l- tan-1(XC>R)

and

Ay =
Vo

Vi
=

XC2R2 + XC
2

 ∠-90° + tan-1aXC

R
b

The magnitude of the ratio Vo>Vi is therefore determined by

	 Ay =
Vo

Vi
=

XC2R2 + X2
C

=
1B a R

XC
b

2

+ 1

	 (22.14)

and the phase angle is determined by

	 u = -90° + tan-1 
XC

R
= - tan-1 

R

XC
	 (22.15)

For the special frequency at which XC = R, the magnitude becomes

Ay =
Vo

Vi
=

1B a R

XC
b

2

+ 1

=
111 + 1

=
112

= 0.707

which defines the critical or cutoff frequency in Fig. 22.14.
The frequency at which XC = R is determined by

1

2pfcC
= R

and	 fc =
1

2pRC
	 (22.16)

The impact of Eq. (22.16) extends beyond its relative simplicity. 
For any low-pass filter, the application of any frequency less than fc 
results in an output voltage Vo that is at least 70.7% of the maximum. 
For any frequency above fc, the output is less than 70.7% of the 
applied signal.

Solving for Vo and substituting Vi = Vi ∠0° gives

Vo = c XC2R2 + X2
C

 ∠u d  Vi = c XC2R2 + X2
C

 ∠u dVi ∠0°

and	 Vo =
XC Vi2R2 + XC

2
 ∠u

The angle u is, therefore, the angle by which Vo leads Vi. Since 
u = - tan-1R>XC is always negative (except at f = 0 Hz), it is clear that 
Vo will always lag Vi, leading to the label lagging network for the network 
in Fig. 22.10.
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At high frequencies, XC is very small and R>XC is quite large, resulting 
in u = - tan-1R>XC approaching -90°.

At low frequencies, XC is quite large and R>XC is very small, resulting 
in u = - tan-1R>XC approaching 0°.

At XC = R, or  f = fc, - tan-1R>XC = - tan-1 1 = -45°.
A plot of u versus frequency results in the phase plot in Fig. 22.15.

0°

–45°

–90°

v (Vo leads Vi)
Band-stopBand-pass fc

f (log scale)

FIG. 22.15
Angle by which Vo leads Vi.

Band-stopBand-pass

0°

45°

90°

v (Vo lags Vi)

f (log scale)fc

FIG. 22.16
Angle by which Vo lags Vi.

The plot is of Vo leading Vi, but since the phase angle is always nega-
tive, the phase plot in Fig. 22.16 (Vo lagging Vi) is more appropriate. 
Note that a change in sign requires that the vertical axis be changed to 
the angle by which Vo lags Vi. In particular, note that the phase angle 
between Vo and Vi is less than 45° in the pass-band and approaches 0° at 
lower frequencies.

In summary, for the low-pass R-C filter in Fig. 22.10:

fc =
1

2pRC

For f 6 fc, Vo 7 0.707Vi

whereas for f 7 fc, Vo 6 0.707Vi

At fc, Vo lags Vi by 45°

The low-pass filter response in Fig. 22.9(a) can also be obtained 
using the R-L combination in Fig. 22.17 with

	 fc =
R

2pL
	 (22.17)

In general, however, the R-C combination is more popular due to the 
smaller size of capacitive elements and the nonlinearities associated 

–

+

R Vo

–

+

Vi

L

FIG. 22.17
Low-pass R-L filter.
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with inductive elements. The details of the analysis of the low-pass R-L 
can be an exercise for independent study.

EXAMPLE 22.5 

	 a.	 Sketch the output voltage Vo versus frequency for the low-pass R-C 
filter in Fig. 22.18.

	 b.	 Determine the voltage Vo at f = 100 kHz  and 1 MHz, and compare 
the results to the results obtained from the curve in part (a).

	 c.	 Sketch the normalized gain Ay = Vo>Vi.

Solutions: 

	 a.	 Eq. (22.16):

fc =
1

2pRC
=

1

2p(1 kΩ)(500 pF)
= 318.31 kHz

		  At fc, Vo = 0.707(20 V) = 14.14 V. See Fig. 22.19.

–

+

Vi  =  20 V ∠ 0°

R

1 k�

C 500 pF

–

+

Vo

FIG. 22.18
Example 22.5.

0.707Vi

10 V

Vi  =  20 V

6.1V

10 kHz 100 kHz 1 MHz 10 MHz f (log scale)

Band-stopBand-pass

Vo (volts)

19.08 V
14.14 V

318.31 kHz

fc

FIG. 22.19
Frequency response for the low-pass R-C network in Fig. 22.18.

	 b.	 Eq. (22.14):

Vo =
ViB a R

XC
b

2

+ 1

		  At f = 100 kHz,

XC =
1

2pf C
=

1

2p(100 kHz)(500 pF)
= 3.18 kΩ

		  and Vo =
20 VB a 1 kΩ

3.18 kΩ
b

2

+ 1

= 19.08 V

		  At f = 1 MHz,

XC =
1

2pf C
=

1

2p(1 MHz)(500 pF)
= 0.32 kΩ

		  and Vo =
20 VB a 1 kΩ

0.32 kΩ
b

2

+ 1

= 6.1 V

		  Both levels are verified by Fig. 22.19.
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	 c.	 Dividing every level in Fig. 22.19 by Vi = 20 V results in the nor-
malized plot in Fig. 22.20.

0.707

0.5

1

0.305

10 kHz 100 kHz 1 MHz 10 MHz f (log scale)

318.31 kHz

fc

Av  =
Vo
Vi

0.954

FIG. 22.20
Normalized plot of Fig. 22.19.

22.6  R-C High-Pass Filter

As noted in Section 22.5, a high-pass R-C filter can be constructed by 
simply reversing the positions of the capacitor and resistor, as shown in 
Fig. 22.21.

At very high frequencies, the reactance of the capacitor is very small, 
and the short-circuit equivalent can be substituted, as shown in Fig. 22.22. 
The result is that Vo = Vi.

At  f = 0 Hz, the reactance of the capacitor is quite high, and the 
open-circuit equivalent can be substituted, as shown in Fig. 22.23. In 
this case, Vo = 0 V.

–

+

R

C

Vi

–

+

Vo

FIG. 22.21
High-pass filter.

–

+

RVi

–

+

Vo  = Vi

FIG. 22.22
R-C high-pass filter at very high frequencies.

–

+

RVi

–

+

Vo  =  0 V

FIG. 22.23
R-C high-pass filter at f = 0 Hz.

A plot of the magnitude versus frequency is provided in Fig. 22.24, 
with the normalized plot in Fig. 22.25.

Vo

Vo  =  Vi

Vo  =  0.707Vi

0

Band-stop Band-passP
f (log scale)fc

FIG. 22.24
Vo versus frequency for a high-pass R-C filter.
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At any intermediate frequency, the output voltage can be determined 
using the voltage divider rule:

Vo =
R ∠0° Vi

R - jXC
or

Vo

Vi
=

R ∠0°
R - jXC

=
R ∠0°2R2 + XC

2  ∠- tan-1 (XC>R)

and	
Vo

Vi
=

R2R2 + XC
2

 ∠ tan-1(XC>R)

The magnitude of the ratio Vo>Vi is therefore determined by

	 Ay =
Vo

Vi
=

R2R2 + XC
2

=
1B1 + aXC

R
b

2
	 (22.18)

and the phase angle u by

	 u = tan-1 
XC

R
	 (22.19)

For the frequency at which XC = R, the magnitude becomes

Vo

Vi
=

1B1 + aXC

R
b

2
=

111 + 1
=

112
= 0.707

as shown in Fig. 22.25.
The frequency at which XC = R is determined by

XC =
1

2pfcC
= R

and	 fc =
1

2pRC
	 (22.20)

For the high-pass R-C filter, the application of any frequency greater 
than fc results in an output voltage Vo that is at least 70.7% of the magni-
tude of the input signal. For any frequency below fc, the output is less 
than 70.7% of the applied signal.

For the phase angle, high frequencies result in small values of XC, 
and the ratio XC>R approaches zero with tan-1(XC>R) approaching 0°, 
as shown in Fig. 22.26. At low frequencies, the ratio XC>R becomes 

0

Band-stop Band-pass
f (log scale)

0.707

1

Av  =
Vo
Vi

fc

FIG. 22.25
Normalized plot of Fig. 22.24.
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quite large, and tan-1(XC>R) approaches 90°. For the case XC = R, 
tan-1(XC>R) = tan-11 = 45°. Assigning a phase angle of 0° to Vi such 
that Vi = Vi ∠0°, we obtain the phase angle associated with Vo as u, 
resulting in Vo = Vo ∠u and revealing that u is the angle by which Vo 
leads Vi. Since the angle u is the angle by which Vo leads Vi throughout 
the frequency range in Fig. 22.26, the high-pass R-C filter is referred to 
as a leading network.

In summary, for the high-pass R-C filter:

  fc =
1

2pRC

For f 6 fc,  Vo 6 0.707Vi

whereas for f 7 fc,  Vo 7 0.707Vi

At fc, Vo leads Vi by 45°

The high-pass filter response in Fig. 22.25 can also be obtained using 
the same elements in Fig. 22.17 but interchanging their positions, as 
shown in Fig. 22.27.

EXAMPLE 22.6  Given R = 20 kΩ and C = 1200 pF:

	 a.	 Sketch the normalized plot if the filter is used as both a high-pass 
and a low-pass filter.

	 b.	 Sketch the phase plot for both filters in part (a).
	 c.	 Determine the magnitude and phase of Ay = Vo>Vi at f = 1

2 fc for 
the high-pass filter.

Solutions: 

	 a.	   fc =
1

2pRC
=

1

(2p)(20 kΩ)(1200 pF)

		   = 6631.46 Hz
		  The normalized plots appear in Fig. 22.28.

Band-stop Band-pass

0°

45°

90°

v (Vo leads Vi)

f (log scale)fc

FIG. 22.26
Phase-angle response for the high-pass R-C filter.

–

+R

Vo

–

+

Vi L

FIG. 22.27
High-pass R-L filter.

1

0.707

0

Low-pass

fc  =  6631.46 Hz f (log scale)

Av  =
Vo
Vi

1

0.707

0 fc  =  6631.46 Hz f (log scale)

Av  =
Vo
Vi

High-pass

FIG. 22.28
Normalized plots for a low-pass and a high-pass filter using the same elements.
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	 c.	 f =
1

2
 fc =

1

2
 (6631.46 Hz) = 3315.73 Hz

		   XC =
1

2pf C
=

1

(2p)(3315.73 Hz)(1200 pF)
		   ≅ 40 kΩ

		   Ay =
Vo

Vi
=

1B1 + aXC

R
b

2
=

1B1 + a 40 kΩ
20 kΩ

b
2

=
121 + (2)2

		   =
115

= 0.4472

		  u = tan-1 
XC

R
= tan-1 

40 kΩ
20 kΩ

= tan-1 2 =  63.43°

		  and	 Ay =
Vo

Vi
= 0.447 j63.43°

90°

45°

0

fc  =  6631.46 Hz f (log scale)

Low-pass

� (Vo lags Vi)

90°

45°

0

fc  =  6631.46 Hz f (log scale)

� (Vo leads Vi)

High-pass

FIG. 22.29
Phase plots for a low-pass and a high-pass filter using the same elements.

22.7  Band-Pass Filters

The most direct way to obtain the pass-band characteristics of Fig. 22.9(c) is 
to use a series or parallel resonant circuit as described in Chapter 21. In each 
case, however, Vo will not be equal to Vi in the pass-band, but a frequency 
range in which Vo will be equal to or greater than 0.707 Vmax can be defined.

For the series resonant circuit in Fig. 22.30, XL = XC at resonance, 
and

	 Vomax
=

R

R + Rl
 Vi 

f = fs

	 (22.21)

f

Rl

Band-pass filter

Band-pass

Vi

–

+

Vi

f

L C
R Vo

–

+

Vi

0.707Vomax

0

Vo

Vi

f1 f2fs

Vomax

BW

Rl

FIG. 22.30
Series resonant band-pass filter.

	 b.	 The phase plots appear in Fig. 22.29.
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and	 fs =
1

2p1LC
	 (22.22)

with	 Qs =
XL

R + Rl
	 (22.23)

and	 BW =
fs
Qs

	 (22.24)

For the parallel resonant circuit in Fig. 22.31, ZTp
 is a maximum value 

at resonance, and

	 Vomax
=

ZTp
Vi

ZTp
+ R

 
f = fp

	 (22.25)

with	 ZTp
= Ql

2Rl 
Ql Ú 10

	 (22.26)

and	 fp =
1

2p1LC
 

Ql Ú 10

	 (22.27)

For the parallel resonant circuit

	 Qp =
XL

Rl
	 (22.28)

and	 BW =
fp

Qp
	 (22.29)

ZTp

0

Vi

Vi

–

+

Rl

L
CVi Vo

–

+

Band-pass filter

Band-pass

Vi

0

0.707Vomax

Vomax

f1 f2fp

BW

Vo  
=  VC

f

R

FIG. 22.31
Parallel resonant band-pass filter.

As a first approximation that is acceptable for most practical applica-
tions, it can be assumed that the resonant frequency bisects the bandwidth.

EXAMPLE 22.7 

	 a.	 Determine the frequency response for the voltage Vo for the series 
circuit in Fig. 22.32.

	 b.	 Plot the normalized response Ay = Vo>Vi.
	 c.	 Plot a normalized response defined by A′y = Ay>Aymax

.

–

+

R 33 �

Rl

2 �

–

+

Vo

L C

1 mH
0.01 mF

Vi  =  20 mV ∠ 0°

FIG. 22.32
Series resonant band-pass filter for Example 22.7.
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Solutions: 

	 a.	  fs =
1

2p2LC
=

1

2p2(1  mH)(0.01 mF)
= 50,329.21 Hz

		   Qs =
XL

R + Rl
=

2p(50,329.21 Hz)(1 mH)

33 Ω + 2 Ω
= 9.04

		   BW =
fs
Qs

=
50,329.21 Hz

9.04
= 5.57 kHz

		  At resonance:

 Vomax
=

RVi

R + Rl
=

33 Ω(Vi)

33 Ω + 2 Ω
= 0.943Vi = 0.943(20 mV)

 = 18.86 mV

		  At the cutoff frequencies:

 Vo = (0.707)(0.943Vi) = 0.667Vi = 0.667(20 mV)

 = 13.34 mV

		  Note Fig. 22.33.

Vo

18.86 mV

13.34 mV

fs  ≅  50.3 kHz f (log scale)

0

BW  =  5.57 kHz

FIG. 22.33
Band-pass response for the network.

	 b.	 Dividing all levels in Fig. 22.32 by Vi = 20 mV results in the nor-
malized plot in Fig. 22.34(a).

	 c.	 Dividing all levels in Fig. 22.34(a) by Aymax
= 0.943 results in the 

normalized plot in Fig. 22.34(b).

(b)

0.943

0.667

0
fs f (log scale)

Av  =
Vo
Vi

=
Vo

20 mV

(a)

BW

{

Av  = =
Av

Avmax

Av
0.943

1

0.707

0
fs f (log scale)

BW

{

FIG. 22.34
Normalized plots for the band-pass filter in Fig. 22.32.

Another way to produce a band-pass filter is to use a low-pass and a 
high-pass filter in cascade, as shown in Fig. 22.35.
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The components are chosen to establish a cutoff frequency for the 
high-pass filter that is lower than the critical frequency of the low-pass 
filter, as shown in Fig. 22.36. A frequency f1 may pass through the low-
pass filter but have little effect on Vo due to the reject characteristics of 
the high-pass filter. A frequency f2 may pass through the high-pass filter 
unmolested but be prohibited from reaching the high-pass filter by the 
low-pass characteristics. A frequency fo near the center of the pass-band 
passes through both filters with very little degeneration.

–

+ High-pass
filter

Low-pass
filter

Vi

–

+

Vo

FIG. 22.35
Band-pass filter.

(High-pass) (Low-pass)

High-pass

Low-pass

BW
Vmax

0.707Vmax

Vo

0 f1 fo ff2fc fc

FIG. 22.36
Band-pass characteristics.

The network in Example 22.8 generates the characteristics of Fig. 22.36. 
However, for a circuit such as the one shown in Fig. 22.37, there is a 
loading between stages at each frequency that affects the level of Vo. 
Through proper design, the level of Vo may be very near the level of Vi in 
the pass-band, but it will never equal it exactly. In addition, as the criti-
cal frequencies of each filter get closer and closer together to increase 
the quality factor of the response curve, the peak values within the pass-
band continue to drop. For cases where Vomax

≠ Vimax
, the bandwidth is 

defined at 0.707 of the resulting Vomax.

EXAMPLE 22.8  For the band-pass filter in Fig. 22.37:

	 a.	 Determine the critical frequencies for the low- and high-pass filters.
	 b.	 Using only the critical frequencies, sketch the response characteristics.
	 c.	 Determine the actual value of Vo at the high-pass critical frequency 

calculated in part (a), and compare it to the level that defines the 
upper frequency for the pass-band.

Solutions: 

	 a.	 High-pass filter:

fc =
1

2pR1C1
=

1

2p(1 kΩ)(1500 pF)
= 106.1 kHz

–

+

R1 1 k� C2 4 pF

R2

40 k�

C1

1500 pF

Vi

–

+

Vo

High-pass
filter

Low-pass
filter

FIG. 22.37
Band-pass filter.
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	 c.	 At f = 994.72 kHz,

XC1
=

1

2pf C1
≅ 107 Ω

		  and	 XC2
=

1

2pf C2
= R2 = 40 kΩ

		  resulting in the network in Fig. 22.39.

The parallel combination R1 7  (R2 - jXC2
) is essentially 0.976 kΩ ∠0° 

because the R2 - XC2
 combination is so large compared to the parallel 

resistor R1.
Then

V′ =
0.976 kΩ ∠0°(Vi)

0.976 kΩ - j 0.107 kΩ
≅ 0.994Vi ∠6.26°

with

 Vo =
(40 kΩ ∠-90°)(0.994Vi ∠6.26°)

40 kΩ - j 40 kΩ
 Vo ≅ 0.703Vi ∠-39°

so that

Vo ≅ 0.703Vi at f = 994.72 kHz

Since the bandwidth is defined at 0.636 Vi the upper cutoff frequency 
will be higher than 994.72 kHz, as shown in Fig. 22.38.

Band-pass
0.636Vi

0.707Vi

0.9Vi

Vi

Vo

fc ≅ 106 kHz
Actual fc

fc ≅ 995 kHz Actual fc
0 f

FIG. 22.38
Band-pass characteristics for the filter in Fig. 22.37.

		  Low-pass filter:

fc =
1

2pR2C2
=

1

2p(40 kΩ)(4 pF)
= 994.72 kHz

	 b.	 In the mid-region of the pass-band at about 500 kHz, an analysis of 
the network reveals that Vo ≅ 0.9Vi, as shown in Fig. 22.38. The 
bandwidth is therefore defined at a level of 0.707(0.9 Vi) = 0.636 Vi, 
as also shown in Fig. 22.38.

–

+

R1  =  1 k� XC2
40 k�

R2

40 k�

XC1

107 �

Vi

–

+

Vo
–

+
V'

FIG. 22.39
Network of Fig. 22.37 at f = 994.72 kHz.

22.8  Band-Stop Filters

Since the characteristics of a band-reject filter (also called stop-band or 
notch filter) are the inverse of the pattern obtained for the band-pass fil-
ter, a band-stop filter can be designed by simply applying Kirchhoff’s 
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voltage law to each circuit. That is, since the sum of the voltages around 
a closed loop must equal zero at any instant, if we take the output off the 
series resistor in a series resonant circuit and the series resistive load in a 
parallel resonant circuit, we will obtain the desired band-stop response. 
The above is demonstrated by the waveforms of Fig. 22.40.

=

0

Vi

Vi

0

Vi

Vo

ff fo

Band-stopBand-pass

0 ffo

+

FIG. 22.40
Demonstrating how an applied signal of fixed magnitude can be broken down into a band-pass and band-stop response curve.

For the series resonant circuit in Fig. 22.41, Eqs. (22.22) through 
(22.24) still apply, but now, at resonance,

	 Vomin
=

RlVi

Rl + R
	 (22.30)

Rl
Vi

–

+

Vi

0

R

C

Vi

–

+

VoL

Band-stop filter

BW

Vo

Vomax  =  Vi

0.707Vi

0

Vomin

f1 fs f2 f

FIG. 22.41
Band-stop filter using a series resonant circuit.

For the parallel resonant circuit in Fig. 22.42, Eqs. (22.26) through 
(22.29) are still applicable, but now, at resonance,

	 Vomin
=

RVi

R + ZTp

	 (22.31)

–

+

Vi

Vi

0

Vi

–

+

Vo

Rl

Band-stop filter

R

L

C

BW

Vo

Vomax  =  Vi

0.707Vi

0

Vomin

f1 fp f2 f

FIG. 22.42
Band-stop filter using a parallel resonant network.
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The maximum value of Vo for the series resonant circuit is Vi at the 
low end due to the open-circuit equivalent for the capacitor and Vi at the 
high end due to the high impedance of the inductive element.

For the parallel resonant circuit, at f = 0 Hz, the inductor can be 
replaced by a short-circuit equivalent, and the capacitor can be replaced 
by its open circuit, and Vo = RVi>(R + Rl). At the high-frequency end, 
the capacitor approaches a short-circuit equivalent, and Vo increases 
toward Vi.

Band-stop filters can also be constructed using a low-pass and a high-
pass filter. However, rather than the cascaded configuration used for the 
pass-band filter, a parallel arrangement is required, as shown in Fig. 22.43. 
A low-frequency f1 can pass through the low-pass filter, and a higher-
frequency f2 can use the parallel path, as shown in Figs. 22.43 and 22.44. 
However, a frequency such as fo in the reject-band is higher than the 
low-pass critical frequency and lower than the high-pass critical fre-
quency, and it is therefore prevented from contributing to the levels of Vo 
above 0.707 Vmax.

Vi

–

+

Low-pass
filter

High-pass
filter

Vo

–

+

f2 (high)

f1 (low)

fo

fo

f1 (low)

f2 (high)

FIG. 22.43
Band-stop filter.

f1

BW

fc fo fc f2 f  (log scale)

Vo

Vomax

0.707Vomax

(Low-pass) (High-pass)

FIG. 22.44
Band-stop characteristics.

22.9 D ouble-Tuned Filter

Some network configurations display both a band-pass and a band-
stop characteristic, such as shown in Fig. 22.45. Such networks are 
called double-tuned filters. For the network in Fig. 22.45(a), the par-
allel resonant circuit establishes a band-stop for the range of frequen-
cies not permitted to establish a significant VL. The greater part of the 
applied voltage appears across the parallel resonant circuit for this 
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frequency range due to its very high impedance compared with RL. For 
the band-pass, the parallel resonant circuit is designed to be capacitive 
(inductive if Ls is replaced by Cs). The inductance Ls is chosen to 
cancel the effects of the resulting net capacitive reactance at the reso-
nant band-pass frequency of the tank circuit, thereby acting as a series 
resonant circuit. The applied voltage then appears across RL at this 
frequency.

For the network in Fig. 22.45(b), the series resonant circuit still deter-
mines the pass-band, acting as a very low impedance across the parallel 
inductor at resonance. At the desired stop-band resonant frequency, the 
series resonant circuit is capacitive. The inductance Lp is chosen to 
establish parallel resonance at the resonant stop-band frequency. The 
high impedance of the parallel resonant circuit results in a very low load 
voltage VL.

For rejected frequencies below the pass-band, the networks should 
appear as shown in Fig. 22.45. For the reverse situation, Ls in Fig. 22.45(a) 
and Lp in Fig. 22.45(b) are replaced by capacitors.

EXAMPLE 22.9  For the network in Fig. 22.45(b), determine Ls and 
Lp for a capacitance C of 510 pF if a frequency of 200 kHz is to be 
rejected and a frequency of 600 kHz accepted. Assume Rs and Rp are 
zero ohms.

Solution:  For series resonance, we have

fs =
1

2p1LC
and

Ls =
1

4p2f s
2C

=
1

4p2(600 kHz)2(510 pF)
= 137.9 MH, use 150 MH

At 200 kHz,

XLs
= vL = 2pfsLs = (2p)(200 kHz)(150 mH) = 188.5 Ω

and	 XC =
1

vC
=

1

(2p)(200 kHz)(510 pF)
= 1560.3 Ω

For the series elements,

j(XLs
- XC) = j(188.5 Ω - 1560.3 Ω) = - j 1371.8 Ω = - jX′C

(a)

+

–

+

–

Rs

RL

Ls

Rp Lp

VLVi

C

(b)

+

–

+

–

RLRp Lp VLVi

Rs Ls C

FIG. 22.45
Double-tuned networks.
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At parallel resonance (Ql Ú 10 assumed),

XLp
= X′C

and	 Lp =
XLp

v
=

1371.8 Ω 

(2p)(200 kHz)
= 1.09 mH, use 1.1 mH

The frequency response for the preceding network appears as one of the 
examples of PSpice in the last section of the chapter.

22.10 O ther Filter Configurations

There are a variety of other passive configurations and a host of designs 
with active elements. All the passive designs must have reactive ele-
ments with some having a number of the same kind or a mix of inductors 
and capacitors. A number use either the T or p configuration as shown 
in Fig. 22.46. The filters of Fig. 22.46 are both low-pass filters but by 
interchanging the positions of the inductors and capacitors they can both 
function as high-pass filters.

For filters in general,

the two most important characteristics of any filter include the flatness 
(low ripple content) in the band-pass or band-stop sections and how 
quickly the response drops off or rises at the transition frequency.

Some designs such as the Butterworth low-pass filter of Fig. 22.47(a) 
have a very low ripple content in the pass-band but suffer from a slow 
roll-off rate. A Chebyshev filter having the same basic set of components 
but of different values has a much higher level of ripple content in the 
pass-band but a much sharper drop-off as shown in Fig. 22.47(b).

L1 L2

C

+

–

+

–

V  oVi

(a)

L

C1 C2

+

–

+

–

VoVi

(b)

FIG. 22.46
Low-pass filters (a) T and (b) p.

L1 L2

+

–

Vi RL

+

–

Vo

L3

C1 C2 C3

(a)

0

1.0

0.707

f

Vo

fc fc

(b)

0

1.0 Ripple

0.707

f

Vo

L1 L2

+

–

Vi RL

+

–

Vo

L3

C1 C2 C3

(a)

0

1.0

0.707

f

Vo

fc fc

(b)

0

1.0 Ripple

0.707

f

Vo

FIG. 22.47
(a) Butterworth filter with response. (b) Chebyshev filter response composed of same elements  

as the Butterworth filter but with different values.
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The response of a filter can usually be improved using a multistage 
approach such as shown in Fig. 22.47(a) for the Butterworth filter. As 
the number of stages increases, the drop-off rate improves as shown in 
Fig. 22.48.

f0

1
2

3
4

0.707

1.0

Vo

fc

FIG. 22.48
Effect of the stage count on the Butterworth filter response.

There is no requirement that a band-pass or band-stop filter has both 
inductors and capacitors to perform properly. There is the requirement, 
however, that

every band-pass or band-stop filter must have at least two reactive 
elements to permit defining both the low and high cutoff frequencies.

The overall behavior of any filter can usually be determined by sim-
ply looking at the placement of elements and testing the behavior of the 
network at very high and low frequencies. For the Butterworth stage of 
Fig. 22.49(a), if we consider very low frequencies, the inductors are 
approaching a short-circuit state and the capacitor an open-circuit state as 
indicated in the same figure. The result is a direct passage to the output 

(a)

L

C1 C2

+

–

+

–

Vi RLVo

+

–

+

–

Vi

≅

≅ ≅ RL V  ≅ VLo

(b)

+

–

+

–

Vi

≅

≅ ≅ RL V  ≅ 0 Vo

Very
high

frequencies
⇒

Very
low

frequencies

FIG. 22.49
(a) Butterworth equivalent at very low frequencies and (b) at very high frequencies.
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through the short-circuited inductors. At very high frequencies the capaci-
tor takes on the characteristics of a short circuit, preventing the applied 
signal from passing through to the output as shown in Fig. 22.49(b). At the 
same time the reactance of the inductor L becomes so large that it behaves 
like an open circuit to further prevent the signal from passing through to 
the load. The result is a behavior matching that of a low-pass filter.

For the band-pass filter of Fig.22.37 repeated here as Fig. 22.50(a) 
for convenience, the capacitor C1 is part of a high-pass filter and the 
capacitor C2 is part of a low-pass filter. Note in particular that C1 is 375 
times larger than C2 so its reactance will be 375 times smaller at any 
applied frequency. The result of such a difference is that the cutoff fre-
quencies defined by each will be far apart.

(a)

C2

C1

+

–

+

–

Vi RLR1

R2

Vo4 pF

1500 pF 40 kΩ

1 kΩ

(b)

C2 RLVC2

+

–

+

–

V   =  VC2o

High
frequencies

(c)

R1

+ –

+

–

+

–

Vi

+

–

V′i ≅ RL V  ≅ o

C1

VC1

RL(Vi′)
RL + R2

———

R2
Low

frequencies

FIG. 22.50
(a) Band-pass filter, (b) capacitive control at high frequencies, (c) low-frequency control 

of capacitor C1.

The first step in describing the behavior of the network of Fig. 22.50(a) 
is to note that the output is taken directly across the capacitor C2 as shown 
in Fig. 22.50(b). The result is that the reactance of the capacitor and the 
voltage across it will drop with increase in frequency. In other words, the 
capacitor C2 and resistor R2 are defining the high cutoff frequency as 
fc2

= 1>2 pR2C2. At the low-frequency end we find that the reactance of 
the capacitor C1 will decrease as the frequency increases, resulting in less 
and less of the applied voltage dropping across the capacitor with more 
appearing across the resistor R1 as shown in Fig. 22.50(c). In other words, 
at very low frequencies most of the applied voltage drops across the capac-
itor C1 because the reactance of the capacitor is so high. As the frequency 
increases, the reactance of the capacitor C1 decreases and more and more 
voltage appears across the resistor R1. Most of the voltage V′i  will then be 
passed on to the output of the filter through a voltage divider action. The 
low cutoff frequency is therefore determined by fc1

= 1>2 pR1C1.
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The actual behavior of the filter can be confirmed, or in fact deter-
mined, by simply choosing a frequency such as the cutoff frequency and 
calculating the output voltage using the resulting reactance of the reac-
tive elements. If the band-pass or band-stop values of the output of any 
configuration are desired, simply apply a frequency that should be in 
those regions and calculate the output voltage.

The sole purpose for the preceding discussion is to introduce an 
approach for analyzing the behavior of a filter without an extensive 
mathematical analysis—to develop a sense for its behavior simply by 
noting the placement of the reactive elements and their expected 
response for various frequency regions.

22.11  Bode Plots

There is a technique for sketching the frequency response of such factors 
as filters, amplifiers, and systems on a decibel scale that can save a great 
deal of time and effort and provide an excellent way to compare decibel 
levels at different frequencies.

The curves obtained for the magnitude and/or phase angle versus 
frequency are called Bode plots (Fig. 22.51). Through the use of 
straight-line segments called idealized Bode plots, the frequency 
response of a system can be found efficiently and accurately.

To ensure that the derivation of the method is correctly and clearly 
understood, the first network to be analyzed is examined in some detail. 
The second network is treated in a shorthand manner, and finally a 
method for quickly determining the response is introduced.

High-Pass R-C Filter

Let us start by reexamining the high-pass filter in Fig. 22.52. The high-
pass filter was chosen as our starting point because the frequencies of 
primary interest are at the low end of the frequency spectrum.

The voltage gain of the system is given by

 Ay =
Vo

Vi
=

R

R - jXC
=

1

1 - j 
XC

R

=
1

1 - j 
1

2pf CR

 =
1

1 - ja 1

2pRC
b 1

f

If we substitute	 fc =
1

2pRC
	 (22.32)

which we recognize as the cutoff frequency of earlier sections, we obtain

	 Ay =
1

1 - j( fc>f )
	 (22.33)

We will find in the analysis to follow that the ability to reformat the 
gain to one having the general characteristics of Eq. (22.33) is critical to 
the application of the Bode technique. Different configurations result in 
variations of the format of Eq. (22.33), but the desired similarities 
become obvious as we progress through the material.

American (Madison, WI; Summit, NJ;  
Cambridge, MA)

(1905–81)
V.P. at Bell Laboratories
Professor of Systems Engineering, 

Harvard University

In his early years at Bell Laboratories, Hendrik Bode 
was involved with electric filter and equalizer 
design. He then transferred to the Mathematics 
Research Group, where he specialized in research 
pertaining to electrical networks theory and its appli-
cation to long-distance communication facilities. In 
1948 he was awarded the Presidential Certificate of 
Merit for his work in electronic fire control devices. 
In addition to the publication of the book Network 
Analysis and Feedback Amplifier Design in 1945, 
which is considered a classic in its field, he was 
granted 25 patents in electrical engineering and sys-
tems design. Upon retirement, Bode was elected 
Gordon McKay Professor of Systems Engineering at 
Harvard University. He was a fellow of the IEEE 
and American Academy of Arts and Sciences.

FIG. 22.51
Hendrik Wade Bode.

The Ohio State University

–

+

RVi

C

–

+

Vo

FIG. 22.52
High-pass filter.
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In magnitude and phase form,

	 Ay =
Vo

Vi
= Ay ∠u =

121 + ( fc>f )2
 ∠tan-1( fc>f )	 (22.34)

providing an equation for the magnitude and phase of the high-pass filter 
in terms of the frequency levels.

Using Eq. (22.12) gives

AydB
= 20 log10Ay

and, substituting the magnitude component of Eq. (22.34) gives

AydB
= 20 log10 

121 + ( fc>f )2
= 20 log10 1 - 20 log 1021 + ( fc>f )2

and	 AydB
= -20 log10 B1 + a fc

f
b

2

Recognizing that log10 1x = log10 x
1>2 = 1

2 log10 x, we have

 AydB
= -

1

2
 (20)log10 c 1 + a fc

f
b

2

d

 = -10 log10 c 1 + a fc
f
b

2

d

For frequencies where f V fc or ( fc>f )2 W 1,

1 + a fc
f
b

2

≅ a fc
f
b

2

and	 AydB
= -10 log10a

fc
f
b

2

but	 log10 x
2 = 2 log10 x

resulting in	 AydB
= -20 log10 

fc
f

However, logarithms are such that

- log10 b = + log10 
1

b

and substituting b = fc>f, we have

	 AydB
= +20 log10 

f

fc
 

f V fc

	 (22.35)

First note the similarities between Eq. (22.35) and the basic equation 
for gain in decibels: GdB = 20 log10 Vo>Vi. The comments regarding 
changes in decibel levels due to changes in Vo>Vi can therefore be applied 
here also, except now a change in frequency by a 2 : 1 ratio results in a 
6 dB change in gain. A change in frequency by a 10 : 1 ratio results in a 
20 dB change in gain.

Two frequencies separated by a 2 : 1 ratio are said to be an octave apart.
For Bode plots, a change in frequency by one octave will result in 

a 6 dB change in gain.

0
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Two frequencies separated by a 10 : 1 ratio are said to be a decade apart.
For Bode plots, a change in frequency by one decade will result in 

a 20 dB change in gain.

One may wonder about all the mathematical development to obtain 
an equation that initially appears confusing and of limited value. As 
specified, Eq. (22.35) is accurate only for frequency levels much less 
than fc.

First, realize that the mathematical development of Eq. (22.35) does 
not have to be repeated for each configuration encountered. Second, the 
equation itself is seldom applied but simply used to define a straight line 
on a log plot that permits a sketch of the frequency response of a system 
with a minimum of effort and a high degree of accuracy.

To plot Eq. (22.35), consider the following levels of increasing 
frequency:

For f = fc>10,  f>fc = 0.1   and   +20 log10 0.1 = -20 dB

For f = fc>4,  f>fc = 0.25   and   +20 log10 0.25 = -12 dB

For f =  fc>2,  f>fc = 0.51   and   +20 log10 0.5 = -6 dB

For f = fc,  f>fc = 1   and   +20 log10 1 = 0 dB

Note from the above equations that as the frequency of interest 
approaches fc, the dB gain becomes less negative and approaches the final 
normalized value of 0 dB. The positive sign in front of Eq. (22.35) can 
therefore be interpreted as an indication that the dB gain will have a posi-
tive slope with an increase in frequency. A plot of these points on a log 
scale results in the straight-line segment in Fig. 22.53 to the left of fc.

–7 dB

0
f (log scale)

–3

–6

–9

–12

–15

–18

Actual frequency response

–6 dB/octave or –20 dB/decade

–21 +20 log10

 fc
10

 fc
4

 fc
2  fc 2 fc 3 fc 5 fc 10 fc

–20 log10 1  =  0 dB

Idealized Bode plotAv(dB) (linear scale)

 f
 fc

–20

–1 dB

FIG. 22.53
Idealized Bode plot for the low-frequency region.

For the future, note that the resulting plot is a straight line intersecting 
the 0 dB line at fc. It increases to the right at a rate of +6 dB per octave 
or +20 dB per decade. In other words, once fc is determined, find fc>2, 
and a plot point exists at -6 dB (or find fc>10, and a plot point exists at 
-20 dB).

Bode plots are straight-line segments because the dB change per 
decade or octave is constant.

The actual response approaches an asymptote (straight-line segment) 
defined by AydB

= 0 dB since at high frequencies

f W fc  and  fc>f ≅ 0
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with	  AydB
= 20 log10 

121 + ( fc>f )2
= 20 log10 

111 + 0

	  = 20 log10 1 = 0 dB

The two asymptotes defined above intersect at fc, as shown in Fig. 22.53, 
forming an envelope for the actual frequency response.

At f =  fc, the cutoff frequency,

 AydB
= 20 log10 

121 + (fc>f)2
= 20 log10 

111 + 1
= 20 log10 

112

 = −3 dB

At  f = 2fc,

 AydB
= -20 log10 B1 + a fc

2fc
b

2

= -20 log10 B1 + a 1

2
b

2

 = -20 log10 11.25 = −1 dB

as shown in Fig. 22.53.
At f = fc>2,

 AydB
= -20 log10 B1 + a fc

fc>2
b

2

= -20 log10 21 + (2)2

 = -20 log10 15

 = −7 dB

separating the idealized Bode plot from the actual response by 
7 dB - 6 dB = 1 dB, as shown in Fig. 22.53.

Reviewing the above,

at  f = fc, the actual response curve is 3 dB down from the idealized 
Bode plot, whereas at f = 2fc and fc ,2, the actual response curve is 
1 dB down from the asymptotic response.

The phase response can also be sketched using straight-line asymp-
totes by considering a few critical points in the frequency spectrum.

Eq. (22.34) specifies the phase response (the angle by which Vo leads 
Vi) by

	 u = tan-1 
fc
f

	 (22.36)

For frequencies well below fc( f V fc), u =  tan-1 ( fc>f ) approaches 
90°, and for frequencies well above fc( f W fc), u = tan-1 ( fc>f ) will 
approach 0°, as discovered in earlier sections of the chapter. At 
f = fc, u = tan-1 ( fc>f ) = tan-1 1 = 45°.

Defining f V fc for f = fc>10 (and less) and f W fc for f = 10 fc 
(and more), we can define

an asymptote at U = 90° for f f fc ,10, an asymptote at U = 0° for 
f g 10 fc, and an asymptote from fc ,10 to 10 fc that passes through 
U = 45° at  f = fc.

The asymptotes defined above all appear in Fig. 22.54. Again, the Bode 
plot for Eq. (22.36) is a straight line because the change in phase angle 
will be 45° for every tenfold change in frequency.

Substituting f = fc>10 into Eq. (22.36) gives

u = tan-1a fc
fc>10

b = tan-1 10 = 84.29°
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for a difference of 90° - 84.29° _ 5.7° from the idealized response.
Substituting f = 10fc gives

u = tan-1a fc
10fc

b = tan-1 
1

10
≅ 5.7°

In summary, therefore,

at f = fc, U = 45°, whereas at f = fc ,10 and 10 fc, the difference 
between the actual phase response and the asymptotic plot is 5.7°.

EXAMPLE 22.10 

	 a.	 Sketch AydB
 versus frequency for the high-pass R-C filter in Fig. 22.55.

	 b.	 Determine the decibel level at f = 1 kHz.
	 c.	 Sketch the phase response versus frequency on a log scale.

Solutions: 

	 a.	 fc =
1

2pRC
=

1

(2p)(1 kΩ)(0.1mF)
= 1591.55 Hz

		  The frequency fc is identified on the log scale as shown in Fig. 22.56. 
A straight line is then drawn from fc with a slope that will intersect 
-20 dB at fc>10 = 159.15 Hz or -6 dB at fc>2 = 795.77 Hz. A 
second asymptote is drawn from fc to higher frequencies at 0 dB. 
The actual response curve can then be drawn through the -3 dB 
level at fc approaching the two asymptotes of Fig. 22.56. Note the 
1 dB difference between the actual response and the idealized Bode 
plot at f = 2fc and 0.5fc.

Note that in the solution to part (a), there is no need to use Eq. 
(22.35) or to perform any extensive mathematical manipulations.

	 b.	 Eq. (22.33):

 � AydB
� = 20 log10 

1B1 + afc
f
b

2
= 20 log10 

1B1 + a1591.55 Hz

1000
b

2

 = 20 log10 
121 + (1.592)2

= 20 log10 0.5318 = −5.49 dB

		  as verified by Fig. 22.56.

Actual response

Difference  =  5.7°

45°45°

90°

=  90°
(Vo leads Vi)

10 fc

Difference  =  5.7°
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 fc
100

0°

=  0°

FIG. 22.54
Phase response for a high-pass R-C filter.
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R 1 k�

C

+

–

Vi
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–
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FIG. 22.55
Example 22.10.
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	 c.	 See Fig. 22.57. Note that u = 45° at f = fc = 1591.55 Hz, and the 
difference between the straight-line segment and the actual response 
is 5.7° at f = fc>10 = 159.2 Hz and f = 10fc = 15,923.6 Hz.

0
f (log scale)

–3

–6

–9

–12

–15

–18

Actual response curve

–21

 fc
10

–24

dB
=  159.15 Hz

10 kHz5 kHz

1 dB

2 fc2 kHz

fc  =  1591.55 Hz

1 kHz

–3 dB at  f  =  fc

200 Hz 300 Hz

 fc
2

=  795.77 Hz

100 Hz

–20 dB

1 dB

FIG. 22.56
Frequency response for the high-pass filter in Fig. 22.55.

0° f (log scale)

 fc

θ (Vo leads Vi)

=  159.15 Hz
10 kHz1 kHz

fc  =  1591.55 Hz

100 Hz

45°

90°

10 Hz
10

100 kHz

10 fc  =  15,915.5 Hz

45°

Difference  =  5.7°

Difference  =  5.7°

FIG. 22.57
Phase plot for the high-pass R-C filter.

Low-Pass R-C Filter

For the low-pass filter in Fig. 22.58,

 Ay =
Vo

Vi
=

- jXC

R - jXC
=

1

R

- jXC

+ 1

 =
1

1 + j 
R

XC

=
1

1 + j 
R

1

2pfC

=
1

1 + j 
f

1

2pRC

R

C

+

–

Vi

+

–

Vo

FIG. 22.58
Low-pass filter.
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and	 Ay =
1

1 + j( f>fc)
	 (22.37)

with	 fc =
1

2pRC
	 (22.38)

as defined earlier.
Note that now the sign of the imaginary component in the denomina-

tor is positive and fc appears in the denominator of the frequency ratio 
rather than in the numerator, as in the case of fc for the high-pass filter.

In terms of magnitude and phase,

	 Ay =
Vo

Vi
= Ay ∠u =

121 + (f>fc)
2
 ∠- tan-1(f>fc)	 (22.39)

An analysis similar to that performed for the high-pass filter results in

	 AydB
= -20 log10 

f

fc
 

f W fc

	 (22.40)

Note in particular that the equation is exact only for frequencies much 
greater than fc, but a plot of Eq. (22.40) does provide an asymptote that 
performs the same function as the asymptote derived for the high-pass 
filter. In addition, note that it is exactly the same as Eq. (22.35), except 
for the minus sign, which suggests that the resulting Bode plot will have 
a negative slope [recall the positive slope for Eq. (22.35)] for increasing 
frequencies beyond fc.

A plot of Eq. (22.40) appears in Fig. 22.59 for fc = 1 kHz. Note the 
6 dB drop at f = 2fc and the 20 dB drop at f = 10fc.

2 kHz (log scale)

f (log scale)
–3

–6

–9

–12

–15

–18

Actual
frequency
response

–21

–24

dB

10 kHz
2 fc

1 kHz0.1 kHz
10 fcfc

2
1  fc

1 dB difference
–6 dB

1 dB difference

–20 dB

FIG. 22.59
Bode plot for the high-frequency region of a low-pass R-C filter.

At f W fc, the phase angle u = - tan-1( f>fc) approaches -90°, 
whereas at f V fc, u = - tan-1( f>fc) approaches 0°. At f = fc, u =
- tan-11 = -45°, establishing the plot in Fig. 22.60. Note again the 45° 
change in phase angle for each tenfold increase in frequency.

Even though the preceding analysis has been limited solely to the R-C 
combination, the results obtained will have an impact on networks that 
are a great deal more complicated. One good example is the high- and 
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low-frequency response of a standard transistor configuration. Some 
capacitive elements in a practical transistor network affect the low-
frequency response, and others affect the high-frequency response. In 
the absence of the capacitive elements, the frequency response of a 
transistor ideally stays level at the midband value. However, the cou-
pling capacitors at low frequencies and the bypass and parasitic capaci-
tors at high frequencies define a bandwidth for numerous transistor 
configurations. In the low-frequency region, specific capacitors and 
resistors form an R-C combination that defines a low cutoff frequency. 
There are then other elements and capacitors forming a second R-C 
combination that define a high cutoff frequency. Once the cutoff fre-
quencies are known, the -3 dB points are set, and the bandwidth of the 
system can be determined.

22.12  Sketching the Bode Response

In the previous section, we found that normalized functions of the form 
appearing in Fig. 22.61 had the Bode envelope and the dB response indi-
cated in the same figure. In this section, we introduce additional func-
tions and their responses that can be used in conjunction with those in 
Fig. 22.61 to determine the dB response of more sophisticated systems 
in a systematic, time-saving, and accurate manner.

f (log scale)0°

–45°

v  =  –90°

v (Vo leads Vi)

100 fcfc

 fc/10

Difference  =  5.7°

Difference  =  5.7°
–90°

10 fc

45°

v  =  0°fc/100

FIG. 22.60
Phase plot for a low-pass R-C filter.

dB

–3 dB

fc

f

–6 dB/octave (for increasing f )

(a)

Low-pass:

dB

0 dBfc

f

+6 dB/octave (for increasing f )

(b)

High-pass:
–3 dB

1

1  +  j
f
fc

1

1  +  j
f

fc

FIG. 22.61
dB response of (a) low-pass filter and (b) high-pass filter.
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As an avenue toward introducing an additional function that appears 
quite frequently, let us examine the high-pass filter in Fig. 22.62, which 
has a high-frequency output less than the full applied voltage.

Before developing a mathematical expression for Ay = Vo>Vi, let us 
first make a rough sketch of the expected response.

At f = 0 Hz, the capacitor assumes its open-circuit equivalence, and 
Vo = 0 V. At very high frequencies, the capacitor can assume its short-
circuit equivalence, and

Vo =
R2

R1 + R2
 Vi =

4 kΩ
1 kΩ + 4 kΩ

 Vi = 0.8 Vi

The resistance to be used in the equation for cutoff frequency can be 
determined by determining the Thévenin resistance “seen” by the capac-
itor. Setting Vi = 0 V and solving for RTh (for the capacitor C) results in 
the network in Fig. 22.63, where it is quite clear that

RTh = R1 + R2 = 1 kΩ + 4 kΩ = 5 kΩ

Therefore,

fc =
1

2pRThC
=

1

2p(5 kΩ)(1 nF)
= 31.83 kHz

A sketch of Vo versus frequency is provided in Fig. 22.64(a). A nor-
malized plot using Vi as the normalizing quantity results in the response 
in Fig. 22.64(b). If the maximum value of Ay is used in the normaliza-
tion process, the response in Fig. 22.64(c) is obtained. For all the plots 
obtained in the previous section, Vi was the maximum value, and the 
ratio Vo>Vi had a maximum value of 1. For many situations, this will not 
be the case, and we must be aware of which ratio is being plotted versus 
frequency. The dB response curves for the plots in Figs. 22.64(b) and 
22.64(c) can both be obtained quite directly using the foundation estab-
lished by the conclusions depicted in Fig. 22.61, but we must be aware 
of what to expect and how they will differ. In Fig. 22.64(b), we are 
comparing the output level to the input voltage. In Fig. 22.64(c), we are 
plotting Ay versus the maximum value of Ay. On most data sheets and 
for the majority of the investigative techniques commonly used, the 
normalized plot in Fig. 22.64(c) is used because it establishes 0 dB as 
an asymptote for the dB plot. To ensure that the impact of using either 
Fig. 22.64(b) or Fig. 22.64(c) in a frequency plot is understood, the 
analysis of the filter in Fig. 22.62 includes the resulting dB plot for both 
normalized curves.

1 nF

R2 4 k�

C

+

–

Vi

+

–

Vo

R1

1 k�

FIG. 22.62
High-pass filter with attenuated output.

R2

R1

Vi  =  0 V

RTh

FIG. 22.63
Determining RTh for the equation for cutoff frequency.

(a)

ffc
0

Vo

0.566Vi

0.8Vi

Vi  =  0.8Vi
R2

R1  +  R2

(c)

ffc
0

Av   =

0.707

1
1

Av

Avmax

 =
Av
0.8

(b)

ffc
0

Av  =

0.566

0.8

R2

R1  +  R2

Vo

Vi

FIG. 22.64
Finding the normalized plot for the gain of the high-pass filter in Fig. 22.63 with attenuated output.
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For the network in Fig. 22.63,

Vo =
R2Vi

R1 + R2 - jXC
= R2 c 1

R1 + R2 - jXC
dVi

Dividing the top and bottom of the equation by R1 + R2 results in

Vo =
R2

R1 + R2
 £

1

1 - j 
XC

R1 + R2

§Vi

but	  - j 
XC

R1 + R2
= - j 

1

v(R1 + R2)C
= - j 

1

2pf (R1 + R2)C

 = - j 
fc
f
 with fc =

1

2pRThC
 and RTh = R1 + R2

so that	 Vo =
R2

R1 + R2
 c 1

1 - j( fc>f )
dVi

If we divide both sides by Vi, we obtain

	 Ay =
Vo

Vi
=

R2

R1 + R2
 c 1

1 - j( fc>f )
d 	 (22.41)

from which the magnitude plot in Fig. 22.64(b) can be obtained. If we 
divide both sides by Aymax

= R2>(R1 + R2), we have

	 Ay′ =
Ay

Aymax

=
1

1 - j( fc>f )
	 (22.42)

from which the magnitude plot in Fig. 22.64(c) can be obtained.
Based on the previous section, a dB plot of the magnitude of 

A′y = Ay>Aymax
 is now quite direct using Fig. 22.61(b). The plot appears 

in Fig. 22.65.

fc  =  31.83 kHz

–3 dB
f

0

Av�
dB

  =
Av

Avmax   dB

FIG. 22.65
dB plot for A′y for the high-pass filter in Fig. 22.62.

For the gain Ay = Vo>Vi, we can apply Eq. (22.5):

20 log10 ab = 20 log10 a + 20 log10 b
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where

20 log10e
R2

R1 + R2
c 1

1 - j( fc>f )
d f

= 20 log10 
R2

R1 + R2
+ 20 log10 

121 + ( fc>f )2

The second term results in the same plot in Fig. 22.65, but the first 
term must be added to the second to obtain the total dB response.

Since R2>(R1 + R2) must always be less than 1, we can rewrite the 
first term as

20 log10
R2

R1 � R2 R2

R1 � R2

R2

1
R1 � R2

� 20 log10 � 20 log101 � 20 log10

0

and	 20 log10 
R2

R1 + R2
= -20 log10 

R1 + R2

R2
	 (22.43)

providing the drop in dB from the 0 dB level for the plot. Adding one log 
plot to the other at each frequency, as permitted by Eq. (22.5), results in 
the plot in Fig. 22.66.

+

–1.94 dB  –3 dB  =  –4.94 dB

–1.94 dB

AvdB
 =

Vo

Vi   dB

f

0
fc  =  31.83 kHz

f

0

20 log10
1

1  +

fc  =  31.83 kHz

� fC
f

2
dB

f

0

20 log10
R2

R1  +  R2  dB

–20 log10 R2

R1  +  R2 =  –1.94 dB

=

FIG. 22.66

Obtaining a dB plot of AydB =
Vo

Vi
`
dB

For the network in Fig. 22.62, the gain Ay = Vo>Vi can also be found 
in the following manner:

Vo =
R2Vi

R1 + R2 - jXC

 Ay =
Vo

Vi
=

R2

R1 + R2 - jXC
=

jR2

j(R1 + R2) + XC

 =
jR2>XC

j(R1 + R2)>XC + 1
=

j vR2C

1 + j v(R1 + R2)C

 =
j 2pf R2C

1 + j 2pf (R1 + R2)C

and	 Ay =
Vo

Vi
=

j( f>f1)

1 + j( f>fc)
	 (22.44)
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with	 f1 =
1

2pR2C
  and  fc =

1

2p(R1 + R2)C

The denominator of Eq. (22.44) is a match of the denominator of the 
low-pass function in Fig. 22.61(a). The numerator, however, is a new 
function that defines a unique Bode asymptote that will prove useful for 
a variety of network configurations.

Applying Eq. (22.5) gives

 20 log10 
Vo

Vi
= 20 log10 c

f

f1
d c 121 + ( f>fc)

2
d

 = 20 log10( f>f1) + 20 log10 
121 + ( f>fc)

2

Let us now consider specific frequencies for the first term.
At f = f1:

20 log10 
f

f1
= 20 log10 1 = 0 dB

At f = 2f1:

20 log10 
f

f1
= 20 log10 2 = +6 dB

At f = 1
2 f1:

20 log10 
f

f1
= 20 log10 0.5 = -6 dB

A dB plot of 20 log10 ( f>fi) is provided in Fig. 22.67. Note that the asymp-
tote passes through the 0 dB line at f = f1 and has a positive slope of 
+6 dB/octave (or 20 dB/decade) for frequencies above and below f1 for 
increasing values of f.

If we examine the original function Ay, we find that the phase angle 
associated with j f>f1 = f>f1 ∠90° is fixed at 90°, resulting in a phase 
angle for Ay of 90° - tan-1( f>fc) = + tan-1( fc>f ).

Now that we have a plot of the dB response for the magnitude of the 
function f>f1, we can plot the dB response of the magnitude of Ay using 
a procedure outlined by Fig. 22.68.

Solving for f1 and fc gives

 f1 =
1

2pR2C
=

1

2p(4 kΩ)(1 nF)
= 39.79 kHz

with	  fc =
1

2p(R1 + R2)C
=

1

2p(5 kΩ)(1 nF)
= 31.83 kHz

For this development, the straight-line asymptotes for each term 
resulting from the application of Eq. (22.5) are drawn on the same fre-
quency axis to permit an examination of the impact of one line section 
on the other. For clarity, the frequency spectrum in Fig. 22.68 has been 
divided into two regions.

In region 1, we have a 0 dB asymptote and one increasing at 6 dB/-
octave for increasing frequencies. The sum of the two as defined by 
Eq. (22.5) is simply the 6 dB/octave asymptote shown in the figure.

In region 2, one asymptote is increasing at 6 dB, and the other is decreas-
ing at -6 dB/octave for increasing frequencies. The net effect is that one 
cancels the other for the region greater than f = fc, leaving a horizontal 

f1 f

0 dB

20 log10
f
f1

+6 dB/octave

FIG. 22.67
dB plot of f>f1.
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asymptote beginning at f = fc. A careful sketch of the asymptotes on a log 
scale reveals that the horizontal asymptote is at -1.94 dB, as obtained ear-
lier for the same function. The horizontal level can also be determined by 
simply plugging f = fc into the Bode plot defined by f>f1; that is,

 20 log 
f

f1
= 20 log10 

fc
f1

= 20 log10 
31.83 kHz

39.79 kHz
.

 = 20 log10 0.799 = -1.94 dB

The actual response can then be drawn using the asymptotes and the 
known differences at f = fc(-3 dB) and at f = 0.5fc or 2 fc(-1 dB).

In summary, therefore, the same dB response for Ay = Vo>Vi can be 
obtained by isolating the maximum value or defining the gain in a differ-
ent form. The latter approach permitted the introduction of a new function 
for our catalog of idealized Bode plots that will prove useful in the future.

22.13  Low-Pass Filter with 
Limited Attenuation

Our analysis now continues with the low-pass filter in Fig. 22.69, which 
has limited attenuation at the high-frequency end. That is, the output will 
not drop to zero as the frequency becomes relatively high. The filter is 
similar in construction to Fig. 22.62, but note that now Vo includes the 
capacitive element.

At f = 0 Hz, the capacitor can assume its open-circuit equivalence, 
and Vo = Vi. At high frequencies, the capacitor can be approximated by 
a short-circuit equivalence, and

Vo =
R2

R1 + R2
Vi

A plot of Vo versus frequency is provided in Fig. 22.70(a). A sketch 
of Ay = Vo>Vi appears as shown in Fig. 22.70(b).

Actual response

1.94 dB f (log scale)

f10 fc

Av  dB

–3 dB

1 2

FIG. 22.68
Plot of Ay�dB for the network in Fig. 22.62.

R2

R1

Vi

C

+

–

Vo

+

–

FIG. 22.69
Low-pass filter with limited attenuation.
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An equation for Vo in terms of Vi can be derived by first applying the 
voltage divider rule:

Vo =
(R2 - jXC)Vi

R1 + R2 - jXC

and	  Ay =
Vo

Vi
=

R2 - jXC

R1 + R2 - jXC
=

R2>XC - j

(R1 + R2)>XC - j

	  =
( j)(R2XC - j)

( j)((R1 + R2)>XC - j)

	  =
j(R2>XC) + 1

j((R1 + R2)>XC) + 1
=

1 + j 2pf R2C

1 + j 2pf (R1 + R2)C

so that	 Ay =
Vo

Vi
=

1 + j( f>f1)

1 + j( f>fc)
	 (22.45)

with	 f1 =
1

2pR2C
  and  fc =

1

2p(R1 + R2)C

The denominator of Eq. (22.45) is simply the denominator of the 
low-pass function in Fig. 22.61(a). The numerator, however, is new and 
must be investigated.

Applying Eq. (22.5) gives

AydB
= 20 log10 

Vo

Vi
= 20 log1021 + ( f>f1)

2 + 20 log10 
121 + ( f>fc)

2

For f W f1, ( f>f1)
2 W 1, and the first term becomes

20 log102( f>f1)
2 = 20 log10(( f>f1)

2)1>2 = 20 log10( f>f1)� f  W f1

which defines the idealized Bode asymptote for the numerator of 
Eq. (22.45).

At f = f1, 20 log10 1 = 0 dB, and at f = 2f1, 20 log10 2 = 6 dB. For 
frequencies much less than f1, ( f>f1)

2 V 1, and the first term of the 
Eq. (22.5) expansion becomes 20 log1011 = 20 log10 1 = 0 dB, which 
establishes the low-frequency asymptote.

The full idealized Bode response for the numerator of Eq. (22.45) is 
provided in Fig. 22.71.

We are now in a position to determine Ay�dB by plotting the asymp-
tote for each function of Eq. (22.45) on the same frequency axis, as 
shown in Fig. 22.72. Note that fc must be less than f1 since the 

(a)

f  (log scale)fc

Vo

0.707Vi

 Vi

Av  =
Vo

Vi

R2

R1  +  R2
Vi

(b)

f  (log scale)fc

0.707
R2

R1  +  R2

1

FIG. 22.70
Low-pass filter with limited attenuation.
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denominator of f1 includes only R2, whereas the denominator of fc 
includes both R2 and R1.

Since R2>(R1 + R2) will always be less than 1, we can use an earlier 
development to obtain an equation for the drop in dB below the 0 dB 
axis at high frequencies. That is,

20 log10 R2>(R1 � R2) � 20 log10 1>((R1 � R2)>R2)

� 20 log10 1 � 20 log10((R1 � R2)>R2)

0

and	 20 log10 
R2

R1 + R2
= -20 log10 

R1 + R2

R2
	 (22.46)

as shown in Fig. 22.72.
In region 1 in Fig. 22.72, both asymptotes are at 0 dB, resulting in a 

net Bode asymptote at 0 dB for the region. At f = fc, one asymptote 
maintains its 0 dB level, whereas the other is dropping by 6 dB/octave. 

0 dB ff1

3 dB

Actual response

+6 dB/octave

20 log10√ f
f1

21  +

FIG. 22.71
Idealized and actual Bode response for the magnitude of (1 + j ( f>f1)).

f  (log scale)

Av  =

 f1

Actual response

 fc

dB

Vo

Vi

–20 log10
R1  +  R2

R2

321

0 dB

FIG. 22.72
AydB

 versus frequency for the low-pass filter with limited attenuation of Fig. 22.69.
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The sum of the two is the 6 dB drop per octave shown for the region. In 
region 3, the -6 dB/octave asymptote is balanced by the +6 dB/octave 
asymptote, establishing a level asymptote at the negative dB level 
attained by the fc asymptote at f = f1. The dB level of the horizontal 
asymptote in region 3 can be determined by using Eq. (22.46) or by sub-
stituting f = f1 into the asymptotic expression defined by fc.

The full idealized Bode envelope is now defined, permitting a sketch 
of the actual response by shifting 3 dB in the right direction at each cor-
ner frequency, as shown in Fig. 22.72.

The phase angle associated with Ay can be determined directly from 
Eq. (22.45). That is,

	 u = tan -1f>f1 - tan -1f>fc	 (22.47)

A full plot of u versus frequency can be obtained by substituting vari-
ous key frequencies into Eq. (22.47) and plotting the result on a log scale.

The first term of Eq. (22.47) defines the phase angle established by 
the numerator of Eq. (22.45). The asymptotic plot established by the 
numerator is provided in Fig. 22.73. Note the phase angle of 45° at 
f = f1 and the straight-line asymptote between f1>10 and 10f1.

f

v  1  +  j

Actual phase angle

f
f1

0°

45°

90°

v  =  0° f1
10

f1 10 f1

v  =  90°

FIG. 22.73
Phase angle for (1 + j (f>f1)).

Now that we have an asymptotic plot for the phase angle of the numera-
tor, we can plot the full phase response by sketching the asymptotes for 
both functions of Eq. (22.45) on the same graph, as shown in Fig. 22.74.

0°
f

–45°

–90°

1

v (Av)

fc/10

45°

90°

f1/10

fc f1

10 fc 10 f1

2 3 4 5

FIG. 22.74
Phase angle for the low-pass filter in Fig. 22.69.
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The asymptotes in Fig. 22.74 clearly indicate that the phase angle will 
be 0° in the low-frequency range and 0° (90° - 90° = 0°) in the high-
frequency range. In region 2, the phase plot drops below 0° due to the 
impact of the fc asymptote. In region 4, the phase angle increases since 
the asymptote due to fc remains fixed at -90°, whereas that due to f1 is 
increasing. In the midrange, the plot due to f1 is balancing the continued 
negative drop due to the fc asymptote, resulting in the leveling response 
indicated. Due to the equal and opposite slopes of the asymptotes in the 
midregion, the angles of f1 and fc will be the same, but note that they are 
less than 45°. The maximum negative angle will occur between f1 and fc. 
The remaining points on the curve of Fig. 22.74 can be determined by 
simply substituting specific frequencies into Eq. (22.45). However, it is 
also useful to know that the most dramatic (the quickest) changes in the 
phase angle occur when the dB plot of the magnitude also goes through 
its greatest changes (such as at f1 and fc).

22.14 Hig h-Pass Filter with 
Limited Attenuation

The filter in Fig. 22.75 is designed to limit the low-frequency attenua-
tion in much the same manner as described for the low-pass filter of the 
previous section.

At f = 0 Hz, the capacitor can assume its open-circuit equivalence, 
and Vo = [R2>(R1 + R2)]Vi. At high frequencies, the capacitor can be 
approximated by a short-circuit equivalence, and Vo = Vi.

The resistance to be used when determining fc can be found by find-
ing the Thévenin resistance for the capacitor C, as shown in Fig. 22.76. 
A careful examination of the resulting configuration reveals that 
RTh = R1 }R2 and fc = 1>2p(R1 }R2)C.

A plot of Vo versus frequency is provided in Fig. 22.77(a), and a 
sketch of Ay = Vo>Vi appears in Fig. 22.77(b).

An equation for Ay = Vo>Vi can be derived by first applying the 
voltage divider rule:

Vo =
R2Vi

R2 + R1 } - jXC

R2

C+

–

Vi

+

–

Vo

R1

FIG. 22.75
High-pass filter with limited attenuation.

R2
RThVi  =  0 V

R1

FIG. 22.76
Determining R for the fc calculation for the filter in 

Fig. 22.75.

(a)

ffc

0

Vo

0.707Vi

 Vi

Vi

R2

R1  +  R2

(b)

ffc

0

0.707

R2

R1  +  R2

1

Av  =
Vo

Vi

FIG. 22.77
High-pass filter with limited attenuation.
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and	  Ay =
Vo

Vi
=

R2

R2 + R1 } - jXC
=

R2

R2 +
R1(- jXC)

R1 - jXC

 =
R2(R1 - jXC)

R2(R1 - jXC) - j R1XC
=

R1R2 - j R2XC

R1R2 - j R2XC - j R1XC

 =
R1R2 - j R2XC

R1R2 - j (R1 + R2)XC
=

1 - j 
R2XC

R1R2

1 - j 
(R1 + R2)

R1R2
XC

 =
1 - j 

XC

R1

1 - j 
XC

R1R2

R1 + R2

=
1 - j 

XC

R1

1 - j 
XC

R1 }  R2

=
1 - j 

1

2pf R1C

1 - j 
1

2pf (R1 }R2)C

so that	 Ay =
Vo

Vi
=

1 - j ( f1>f )

1 - j ( fc>f )
	 (22.48)

with	 f1 =
1

2pR1C
  and  fc =

1

2p(R1 }R2)C

The denominator of Eq. (22.48) is simply the denominator of the 
high-pass function in Fig. 22.61(b). The numerator, however, is new and 
must be investigated.

Applying Eq. (22.5) gives

AydB
= 20 log10

Vo

Vi
= 20 log1021 + ( f1>f )2 + 20 log10

121 + ( fc>f )2

For f V f1, ( f1>f )2 W 1, and the first term becomes

20 log102( f1>f )2 = 20 log10( f1>f ) � f V  f1

which defines the idealized Bode asymptote for the numerator of 
Eq. (22.48).

 At f = f1,   20 log10 1 = 0 dB

 At f = 0.5f1,   20 log10 2 = 6 dB

 At f = 0.1f1,   20 log10 10 = 20 dB

For frequencies greater than f1,  f1>f V 1 and 20 log10 1 = 0 dB, 
which establishes the high-frequency asymptote. The full idealized Bode 
plot for the numerator of Eq. (22.48) is provided in Fig. 22.78.

We are now in a position to determine AydB
 by plotting the asymptotes 

for each function of Eq. (22.48) on the same frequency axis, as shown in 
Fig. 22.79. Note that fc must be more than f1 since R1 }R2 must be less 
than R1.

When determining the linearized Bode response, let us first examine 
region 2, where one function is 0 dB and the other is dropping at 6 dB/ 
octave for decreasing frequencies. The result is a decreasing asymptote 
from fc to f1. At the intersection of the resultant of region 2 with f1, we 
enter region 1, where the asymptotes have opposite slopes and cancel 
the effect of each other. The resulting level at f1 is determined by 
-20 log10(R1 + R2)>R2, as found in earlier sections. The drop can also 
be determined by substituting f = f1 into the asymptotic equation 
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defined for fc. In region 3, both are at 0 dB, resulting in a 0 dB asymp-
tote for the region. The resulting asymptotic and actual responses both 
appear in Fig. 22.79.

The phase angle associated with Ay can be determined directly from 
Eq. (22.48); that is,

	 u = - tan-1 
f1
f

+ tan-1 
fc
f

	 (22.49)

A full plot of u versus frequency can be obtained by substituting vari-
ous key frequencies into Eq. (22.49) and plotting the result on a log scale.

The first term of Eq. (22.49) defines the phase angle established by 
the numerator of Eq. (22.48). The asymptotic plot resulting from the 

f (log scale)

0

f1
3 dB

0 dB

Actual response–6 dB/octave

1  +
f1
f

220 log10√

FIG. 22.78
Idealized and actual Bode response for the magnitude of (1 - j ( f1>f )).

f (log scale)

0 f1

R1  +  R2

Actual response

AvdB

1

fc

–20 log10 R2

2 3

FIG. 22.79
AydB

 versus frequency for the high-pass filter with limited attenuation in Fig. 22.75.
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numerator is provided in Fig. 22.80. Note the leading phase angle of 45° 
at f = f1 and the straight-line asymptote from f1>10 to 10f1.

Now that we have an asymptotic plot for the phase angle of the numer-
ator, we can plot the full phase response by sketching the asymptotes for 
both functions of Eq. (22.48) on the same graph, as shown in Fig. 22.81.

The asymptotes in Fig. 22.81 clearly indicate that the phase angle 
will be 0° in the low-frequency range and 0° (90° - 90° = 0°) in the 
high-frequency range. In region 2, the phase angle is increasing above 0° 
because one angle is fixed at 90° and the other is becoming less nega-
tive. In region 4, one is 0° and the other is decreasing, resulting in a 
decreasing u for this region. In region 3, the positive angle is always 
greater than the negative angle, resulting in a positive angle for the entire 
region. Since the slopes of the asymptotes in region 3 are equal but 
opposite, the angles at fc and f1 are the same. Fig. 22.81 reveals that the 
angle at fc and f1 will be less than 45°. The maximum angle occurs 

f (log scale)
0°

f1

v  1  –  j
f1
f

Actual response
–45°

–90°
v  =  –90°

f1/10 v  =  0°10f1

FIG. 22.80
Phase angle for (1 - j ( f1>f )).

f (log scale)
0°

v (Av)

4

–45°

–90°

f1/10 10f1

45°

90°

fc/10 f1 fc 10fc

321 5

FIG. 22.81
Phase response for the high-pass filter in Fig. 22.75.
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between fc and f1, as shown in the figure. Note again that the greatest 
change in u occurs at the corner frequencies, matching the regions of 
greatest change in the dB plot.

EXAMPLE 22.11  For the filter in Fig. 22.82:

	 a.	 Sketch the curve of AydB
 versus frequency using a log scale.

	 b.	 Sketch the curve of u versus frequency using a log scale.

Solutions: 

	 a.	 For the break frequencies,

   f1 =
1

2pR1C
=

1

2p(9.1 kΩ)(0.47 mF)
= 37.2 Hz

 fc =
1

2pa R1R2

R1 + R2
bC

=
1

2p(0.9 kΩ)(0.47 mF)
= 376.25 Hz

		  The maximum low-level attenuation is

 -20 log10 
R1 + R2

R2
= -20 log10 

9.1 kΩ + 1 kΩ
1 kΩ

 = -20 log10 10.1 = −20.09 dB

		  The resulting plot appears in Fig. 22.83.

9.1 k�

R2 Vo

R1

C

0.47 mF 1 k�

+

–

Vi

+

–

FIG. 22.82
Example 22.11.

f (log scale)
0

–3 dB

–17 dB
–20 dB

+20 dB

AvdB

–3 dB

1000 Hz 0 dB

f1

10 Hz 37.2 Hz 100 Hz
fc

376.25 Hz

FIG. 22.83
AydB

 versus frequency for the filter in Fig. 22.82.

	 b.	 For the break frequencies:

		  At f = f1 = 37.2 Hz,

 u = - tan-1 
f1
f

+ tan-1 
fc
f

 = - tan-1 1 + tan-1 
376.25 Hz

37.2 Hz

 = -45° + 84.35°
 = 39.35°
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		  At f = fc = 376.26 Hz,

 u = - tan-1 
37.2 Hz

376.26 Hz
+ tan-1 1

 = -5.65° + 45°
 = 39.35°

		  At a frequency midway between fc and f1 on a log scale, for exam-
ple, 120 Hz,

 u = - tan-1 
37.2 Hz

120 Hz
+ tan-1 

376.26 Hz

120 Hz

 = -17.22° + 72.31°
 = 55.09°

		  The resulting phase plot appears in Fig. 22.84.

f (log scale)
0°

45°

v

376.25 Hz

1000 Hzf110 Hz

37.2 Hz

100 Hz

90°

120 Hz

fc

39.35° 39.35°
55.09°

FIG. 22.84
u (the phase angle associated with Ay) versus frequency for the filter in Fig. 22.82.

22.15  Additional Properties 
of Bode Plots

Bode plots are not limited to filters but can be applied to any system for 
which a dB-versus-frequency plot is desired. Although the previous sec-
tions did not cover all the functions that lend themselves to the idealized 
linear asymptotes, many of those most commonly encountered have 
been introduced.

We now examine some of the special situations that can develop that 
further demonstrate the adaptability and usefulness of the linear Bode 
approach to frequency analysis.

In all the situations described in this chapter, there was only one term 
in the numerator or denominator. For situations where there is more than 
one term, there will be an interaction between functions that must be 
examined and understood. In many cases, the use of Eq. (22.5) will 
prove useful. For example, if Ay has the format

	 Ay =
200(1 - j f2>f )( j f>f1)

(1 - j f1>f )(1 + j f>f2)
=

(a)(b)(c)

(d)(e)
	 (22.50)

we can expand the function in the following manner:

 AydB
= 20 log10 

(a)(b)(c)

(d)(e)

 = 20 log10 a + 20 log10 b + 20 log10 c - 20 log10 d - 20 log10 e
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revealing that the net or resultant dB level is equal to the algebraic sum 
of the contributions from all the terms of the original function. We can, 
therefore, add algebraically the linearized Bode plots of all the terms in 
each frequency interval to determine the idealized Bode plot for the full 
function.

If two terms happen to have the same format and corner frequency, as 
in the function

Ay =
1

(1 - j f1>f )(1 - j f1>f )

the function can be rewritten as

Ay =
1

(1 - j f1>f )2

so that	  AydB
= 20 log10 

1

(21 + ( f1>f )2)2

	  = -20 log10(1 + ( f1>f )2)

for f V f1, ( fl>f )2 W 1, and

AydB
= -20 log10( f1>f )2 = -40 log10 f1>f

versus the -20 log10( f1>f ) obtained for a single term in the denomi-
nator. The resulting dB asymptote will drop, therefore, at a rate of 
-12 dB/octave (-40 dB/decade) for decreasing frequencies rather than 
-6 dB/octave. The corner frequency is the same, and the high-frequency 
asymptote is still at 0 dB. The idealized Bode plot for the above function 
is provided in Fig. 22.85.

Note the steeper slope of the asymptote and the fact that the actual 
curve now passes -6 dB below the corner frequency rather than -3 dB, 
as for a single term.

AvdB

0

f1
1
2 f1 0 dB

Actual response

–6 dB

–12 dB/octave

–2 dB
–12 dB

–6 dB

–6 dB/octave

FIG. 22.85

Plotting the linearized Bode plot of 
1

(1 - j ( f1>f ))2.
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Keep in mind that if the corner frequencies of the two terms in the 
numerator or denominator are close but not exactly equal, the total dB 
drop is the algebraic sum of the contributing terms of the expansion. For 
instance, consider the linearized Bode plot in Fig. 22.86 with corner fre-
quencies f1 and f2.

In region 3, both asymptotes are 0 dB, resulting in an asymptote at 
0 dB for frequencies greater than f2. For region 2, one asymptote is at 
0 dB, whereas the other drops at -6 dB/octave for decreasing frequen-
cies. The net result for this region is an asymptote dropping at -6 dB, as 
shown in the same figure. At f1, we find two asymptotes dropping off at 
-6 dB for decreasing frequencies. The result is an asymptote dropping 
off at -12 dB/octave for this region.

If f1 and f2 are at least two octaves apart, the effect of one on the plot-
ting of the actual response for the other can almost be ignored. In other 
words, for this example, if f1 6 1

4 f2, the actual response is down -3 dB 
at f = f2 and f1.

The above discussion can be expanded for any number of terms at the 
same frequency or in the same region. For three equal terms in the 
denominator, the asymptote will drop at -18 dB/octave, and so on. 
Eventually, the procedure will become self-evident and relatively 
straightforward to apply. In many cases, the hardest part of finding a 
solution is to put the original function in the desired form.

EXAMPLE 22.12  A transistor amplifier has the following gain:

0

f1 f2 0 dB

f

–3 dB for f1  ≤ 1
4 f2 (2 octaves below)

–6 dB/octave

–3 dB for f1  ≤ 1
4 f2 (2 octaves below)

–12 dB/octave

Actual response

AvdB

FIG. 22.86

Plot of AydB for 
1

(1 - j ( f1>f ))(1 - j ( f2>f ))
 with f1 6 f2.

Ay =
100

a1 - j 
50 Hz

f
b a1 - j 

200 Hz

f
b a1 + j 

f

10 kHz
b a1 + j 

f

20 kHz
b

	 a.	 Sketch the normalized response A′y = Ay>Aymax
, and determine the 

bandwidth of the amplifier.
	 b.	 Sketch the phase response, and determine a frequency where the 

phase angle is close to 0°.
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Solutions: 

	 a.	  A′y =
Ay

Aymax

=
Ay

100

		   =
1

a1 - j 
50 Hz

f
b a1 - j 

200 Hz

f
b a1 + j 

f

10 kHz
b a1 + j 

f

20 kHz
b

		   =
1

(a)(b)(c)(d)
= a 1

a
b a 1

b
b a 1

c
b a 1

d
b

		  and

A′ydB
= -20 log10 a - 20 log10 b - 20 log10 c - 20 log10 d

		  clearly substantiating the fact that the total number of decibels is 
equal to the algebraic sum of the contributing terms.

A careful examination of the original function reveals that the 
first two terms in the denominator are high-pass filter functions, 
whereas the last two are low-pass functions. Fig. 22.87 demon-
strates how the combination of the two types of functions defines a 
bandwidth for the amplifier. The high-frequency filter functions 
have defined the low cutoff frequency, and the low-frequency filter 
functions have defined the high cutoff frequency.

Plotting all the idealized Bode plots on the same axis results in 
the plot in Fig. 22.88. Note for frequencies less than 50 Hz that the 

0
f1 f

0.707Avmax

Avmax

Av  =
Vo

Vi

High-pass +
0

f2 f

0.707Avmax

Avmax

Av  =
Vo

Vi

Low-pass

0
f2 f

0.707Avmax

Avmax

Av  =
Vo

Vi

BW

f1

BW  =  f2  –  f1

FIG. 22.87
Finding the overall gain versus frequency for Example 22.12.

2 3 4 5 6 7 8 9 1 32 4 5 6 7 8 91 32 4 5 6 7 89 1 32 4 5 6 7 89 1
100
kHz

20 kHz10 kHz1 kHz200 Hz100 Hz50 Hz10 Hz

A′vdB

0

–3 dB

–6 dB

–12 dB

–20 dB

BW

FIG. 22.88
A′ydB

 versus frequency for Example 22.12.
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resulting asymptote drops off at -12 dB/octave. In addition, since 
50 Hz and 200 Hz are separated by two octaves, the actual response 
will be down by only about -3 dB at the corner frequencies of 50 Hz 
and 200 Hz.

For the high-frequency region, the corner frequencies are not 
separated by two octaves, and the difference between the idealized 
plot and the actual Bode response must be examined more carefully. 
Since 10 kHz is one octave below 20 kHz, we can use the fact that 
the difference between the idealized response and the actual 
response for a single corner frequency is 1 dB. If we add an addi-
tional -1 dB drop due to the 20 kHz corner frequency to the -3 dB 
drop at f = 10 kHz, we can conclude that the drop at 10 kHz will 
be -4 dB, as shown on the plot. To check the conclusion, let us 
write the full expression for the dB level at 10 kHz and find the 
actual level for comparison purposes.

 A′ydB
= -20 log10 B1 + a 50 Hz

10 kHz
b

2

- 20 log10 B1 + a 200 Hz

10 kHz
b

2

 - 20 log10 B1 + a 10 kHz

10 kHz
b

2

- 20 log10 B1 + a 10 kHz

20 kHz
b

2

 = -0.00011 dB - 0.0017 dB - 3.01 dB - 0.969 dB

 = -3.98dB ≅ −4 dB    as before

An examination of the above calculations reveals that the last two 
terms predominate in the high-frequency region and essentially 
eliminate the need to consider the first two terms in that region. For 
the low-frequency region, examining the first two terms is sufficient.

Proceeding in a similar fashion, we find a -4 dB difference at 
f = 20 kHz, resulting in the actual response appearing in Fig. 22.88. 
Since the bandwidth is defined at the -3 dB level, a judgment must 
be made as to where the actual response crosses the -3 dB level in the 
high-frequency region. A rough sketch suggests that it is near 8.5 kHz. 
Plugging this frequency into the high-frequency terms results in

 A′ydB
= -20 log10 B1 + a 8.5 kHz

10 kHz
b

2

- 20 log10 B1 + a 8.5 kHz

20 kHz
b

2

 = -2.148 dB - 0.645 dB ≅ −2.8 dB

		  which is relatively close to the -3 dB level, and

BW = fhigh - flow = 8.5 kHz - 200 Hz = 8.3 kHz

		  In the midrange of the bandwidth, A′ydB
 approaches 0 dB. At f =

1 kHz:

 A′ydB
= -20 log10 B1 + a 50 Hz

1 kHz
b

2

- 20 log10 B1 + a 200 Hz

1 kHz
b

2

 - 20 log10 B1 + a 1 kHz

10 kHz
b

2

- 20 log10 B1 + a 1 kHz

20 kHz
b

2

 = -0.0108 dB - 0.1703 dB - 0.0432 dB - 0.0108 dB

 = −0.235 dB @ −
1
5

 dB

		  which is certainly close to the 0 dB level, as shown on the plot.
	 b.	 The phase response can be determined by substituting a number of 

key frequencies into the following equation, derived directly from 
the original function Ay:
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u = tan-1 
50 Hz

f
+ tan-1 

200 Hz

f
- tan-1 

f

10 kHz
- tan-1 

f

20 kHz

However, let us make full use of the asymptotes defined by each 
term of Ay and sketch the response by finding the resulting phase 
angle at critical points on the frequency axis. The resulting asymp-
totes and phase plot are provided in Fig. 22.89. Note that at 
f = 50 Hz, the sum of the two angles determined by the straight-
line asymptotes is 45° + 75° = 120°(actual = 121°). At f = 1 kHz, 
if we subtract 5.7° for one corner frequency, we obtain a net angle 
of 14° - 5.7° ≅ 8.3°(actual = 5.6°).

2 3 4 5 6 7 8 91 32 4 5 6 7 8 9 1 32 4 5 6 7 8 91 32 4 5 6 7 8 9 1
100
kHz

20 kHz10 kHz1 kHz200 Hz100 Hz50 Hz10 Hz180°

90°

0°

1

–90°

–180°

FIG. 22.89
Phase response for Example 22.12.

At 10 kHz, the asymptotes leave us with u ≅ -45° - 32° = -77°
(actual = -71.56°). The net phase plot appears to be close to 0° at 
about 1300 Hz. To check on our assumptions and the use of the 
asymptotic approach, plug f = 1300 Hz into the equation for u:

 u = tan-1 
50 Hz

1300 Hz
+ tan-1 

200 Hz

1300 Hz
- tan-1 

1300 Hz

10 kHz
- tan-1 

1300 Hz

20 kHz

 = 2.2° + 8.75° - 7.41° - 3.72°
 = -0.18° ≅ 0°  as predicted

In total, the phase plot appears to shift from a positive angle of 
180° (Vo leading Vi) to a negative angle of 180° as the frequency 
spectrum extends from very low frequencies to high frequencies. In 
the midregion, the phase plot is close to 0° (Vo in phase with Vi), 
much like the response to a common-base transistor amplifier.

Table 22.3 consolidates some of the material introduced in this chap-
ter and provides a reference for future investigations. It includes the lin-
earized dB and phase plots for the functions appearing in the first 
column. There are many other functions, but these provide a foundation 
onto which others can be added.

Reviewing the development of the filters in Sections 22.13 and 22.14 
shows that establishing the function Ay in the proper form is the most 
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AvdB

+6 dB/octave

f1 f
0

0 dB

AvdB

–6 dB/octave

f1

f
0

0 dB

AvdB

–6 dB/octave

f1

f

0

0 dB

AvdB

+6 dB/octave

f1 f
0

0 dB

AvdB

–6 dB/octave

f1 f
0 0°f1

f
0°

45°

90°

–45°

–90°
–90°

–45°

f1/10 10f1

v (Vo leads Vi)

f1 f
0°

45°

90°

–90°

+45°

10
10f1

v (Vo leads Vi)
+90°

f1

0°

f1 f
0°

45°

90°

10
10f1

v (Vo leads Vi)
+90°

f1

f1 f
0°

45°

90°

+45°

10
10f1

v (Vo leads Vi)
+90°

f1

0°

f1/10

f
0°

45°

90°

–45°

–90°

–45°

10f1

v (Vo leads Vi)

–90°

0° f1

Av � 1 � j  
f1
f

Av � 1 � j f1
f

Av �  j f1
f

Av �
1

1 � j  f1

f

Av �
1

Function dB Plot Phase Plot

1 � j  f
 f1

TABLE 22.3
Idealized Bode plots for various functions.
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difficult part of the analysis. However, with practice and an awareness 
of the desired format, you will discover methods that will significantly 
reduce the effort involved.

22.16 C rossover Networks

The topic of crossover networks is included primarily to present an 
excellent demonstration of filter operation without a high level of com-
plexity. Crossover networks are used in audio systems to ensure that the 
proper frequencies are channeled to the appropriate speaker. Although 
less expensive audio systems have only one speaker to cover the full 
audio range from about 20 Hz to 20 kHz, better systems have at least 
three speakers to cover the low range (20 Hz to about 500 Hz), the mid-
range (500 Hz to about 5 kHz), and the high range (5 kHz and up). The 
term crossover comes from the fact that the system is designed to have a 
crossover of frequency spectrums for adjacent speakers at the -3 dB 
level, as shown in Fig. 22.90. Depending on the design, each filter can 
drop off at 6 dB, 12 dB, or 18 dB, with complexity increasing with the 
desired dB drop-off rate. The three-way crossover network in Fig. 22.90 
is quite simple in design, with a low-pass R-L filter for the woofer, an 
R-L-C pass-band filter for the midrange, and a high-pass R-C filter for 
the tweeter. The basic equations for the components are provided below. 
Note the similarity between the equations, with the only difference for 
each type of element being the cutoff frequency. We have

	 Llow =
R

2pf1
  Lmid =

R

2pf2
	 (22.51)

	 Cmid =
1

2pf1R
  Chigh =

1

2pf2R
	 (22.52)

For the crossover network in Fig. 22.90 with three 8 Ω speakers, the 
resulting values are

 Llow =
R

2pf1
=

8 Ω
2p(400 Hz)

= 3.183 mH S 3.3 mH

(commercial value)

 Lmid =
R

2pf2
=

8 Ω
2p(5 kHz)

= 254.65 mH S 270 mH

(commercial value)

 Cmid =
1

2pf1R
=

1

2p(400 Hz)(8 Ω)
= 49.736 mF S 47 mF

(commercial value)

 Chigh =
1

2pf2R
=

1

2p(5 kHz)(8 Ω)
= 3.979 mF S 3.9 mF

(commercial value)

as shown in Fig. 22.90.
For each filter, a rough sketch of the frequency response is included 

to show the crossover at the specific frequencies of interest. Because all 
three speakers are in parallel, the source voltage and impedance for each 
are the same. The total loading on the source is obviously a function of 

8 �
Llow = 3.3 mH

Vi

+

–

–3 dB

400 Hz0 dB

–3 dB

400 Hz0 dB

–3 dB

5 kHz

8 �

8 �

–3 dB

5 kHz0 dB

Cmid = 47   F Lmid = 270   H

Chigh = 3.9   F

FIG. 22.90
Three-way, crossover network with  

6 dB per octave.
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the frequency applied, but the total delivered is determined solely by the 
speakers since they are essentially resistive in nature.

To test the system, let us apply a 4 V signal at a frequency of 1 kHz (a 
predominant frequency of the typical human auditory response curve) 
and see which speaker has the highest power level.

At f = 1 kHz,

 XLlow
= 2pf Llow = 2p(1 kHz)(3.3 mH) = 20.74 Ω

 Vo =
(ZR ∠0°)(Vi ∠0°)

ZT
=

(8 Ω ∠0°)(4 V ∠0°)
8 Ω + j 20.74 Ω

 = 1.44 V ∠-68.90°
 XLmid

= 2pf Lmid = 2p(1 kHz)(270 mH) = 1.696 Ω

 XCmid
=

1

2pf Cmid
=

1

2p(1 kHz)(47 mF)
= 3.386 Ω

 Vo =
(ZR ∠0°)(Vi ∠0°)

ZT
=

(8 Ω ∠0°)(4 V ∠0°)
8 Ω + j 1.696 Ω - j 3.386 Ω

 = 3.94 V ∠11.93°

 XChigh
=

1

2pf Chigh
=

1

2p(1 kHz)(3.9 mF)
= 40.81 Ω

 Vo =
(ZR ∠0°)(Vi ∠0°)

ZT
=

(8 Ω ∠0°)(4 V ∠0°)
8 Ω - j 40.81 Ω

 = 0.77 V ∠78.91°

Using the basic power equation P = V2>R, we find the power to the 
woofer,

Plow =
V2

R
=

(1.44V)2

8 Ω
= 0.259 W

to the midrange speaker,

Pmid =
V2

R
=

(3.94 V)2

8 Ω
= 1.94 W

and to the tweeter,

Phigh =
V2

R
=

(0.77 V)2

8 Ω
= 0.074 W

resulting in a power ratio of 7.5 : 1 between the midrange and the woofer 
and 26 : 1 between the midrange and the tweeter. Obviously, the response 
of the midrange speaker totally overshadows that of the other two.

22.17  Applications

Attenuators

Attenuators are, by definition, any device or system that can reduce the 
power or voltage level of a signal while introducing little or no distor-
tion. There are two general types: passive and active. The passive type 
uses only resistors, while the active type uses electronic devices such as 
transistors and integrated circuits. Since electronics is a subject for the 
courses to follow, only the resistive type is covered here. Attenuators are 
commonly used in audio equipment (such as the graphic and parametric 
equalizers introduced in Chapter 21), antenna systems, AM or FM sys-
tems where attenuation may be required before the signals are mixed, and 
any other application where a reduction in signal strength is required.
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The unit in Fig. 22.91 has coaxial input and output terminals and 
switches to set the level of dB reduction. It has a flat response from dc to 
about 6 GHz, which essentially means that its introduction into the net-
work will not affect the frequency response for this band of frequencies. 
The design is rather simple, with resistors connected in either a tee (T) or 
a wye (Y) configuration, as shown in Figs. 22.92 and 22.93, respectively, 
for a 50 Ω coaxial system. In each case, the resistors are chosen to ensure 
that the input impedance and output impedance match the line. That is, 
the input and output impedances of each configuration will be 50 Ω. For 
a number of dB attenuations, the resistor values for the T and Y are pro-
vided in Figs. 22.92 and 22.93. Note in each design that two of the resis-
tors are the same, while the third is a much smaller or larger value.

FIG. 22.91
Passive coax attenuator.

Attenuation R1 R2

R1 R1

R2

1 dB

2 dB

3 dB

5 dB

10 dB

20 dB

2.9 �

5.7 �

8.5 �

14.0 �

26.0 �

41.0 �

433.3 �

215.2 �

141.9 �

82.2 �

35.0 �

10.0 �

FIG. 22.92
Tee (T) configuration.

R2

R1 R1

Attenuation R1 R2

1 dB

2 dB

3 dB

5 dB

10 dB

20 dB

5.8 �

11.6 �

17.6 �

30.4 �

71.2 �

247.5 �

870.0 �

436.0 �

292.0 �

178.6 �

96.2 �

61.0 �

FIG. 22.93
Wye (Y) configuration.

For the 1 dB attenuation, the resistor values were inserted for the T 
configuration in Fig. 22.94(a). Terminating the configuration with a 
50 Ω load, we find through the following calculations that the input 
impedance is, in fact, 50 Ω:

 Ri = R1 + R2 } (R1 + RL) = 2.9 Ω + 433.3 Ω } (2.9 Ω + 50 Ω)

 = 2.9 Ω + 47.14 Ω
 = 50.04 �

Ri = 50 �

R1

2.9 �

R1

2.9 �

RL 50 �R2 433.3 �

1 dB attenuator

(a)

Rs

50 �

R1

2.9 �

R1

2.9 �

Vs = 0 V R2 433.3 � Ro = 50 �

(b)

FIG. 22.94
1 dB attenuator: (a) loaded; (b) finding Ro.
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Looking back from the load as shown in Fig. 22.94(b) with the source 
set to zero volts, we find through the following calculations that the out-
put impedance is also 50 Ω:

 Ro = R1 + R2 } (R1 + Rs) = 2.9 Ω + 433.3 Ω } (2.9 Ω + 50 Ω)

 = 2.9 Ω + 47.14 Ω
 = 50.04 �

In Fig. 22.95, a 50 Ω load has been applied, and the output voltage is 
determined as follows:

R′ = R2 } (R1 + RL) = 47.14 Ω  from above

and	 VR2
=

R′Vs

R′ + R1
=

47.14 ΩVs

47.14 Ω + 2.9 Ω
= 0.942Vs

with	 VL =
RLVR2

RL + R1
=

50 Ω(0.942Vs)

50 Ω + 2.9 Ω
= 0.890Vs

+

–
Vs

R2 433.3 �

+

–
VL

R′

Rs

50 �

R1

2.9 �

R1

2.9 �

RL 50 �

FIG. 22.95
Determining the voltage levels for the 1 dB attenuator in Fig. 22.94(a).

Calculating the drop in dB results in the following:

 AydB
= 20 log10 

VL

Vs
= 20 log10 

0.890Vs

Vs

 = 20 log10 0.890 = −1.01 dB

substantiating the fact that there is a 1 dB attenuation.
As mentioned earlier, there are other methods for attenuation that are 

more sophisticated in design and beyond the scope of the coverage of 
this text. However, the above designs are quite effective, relatively inex-
pensive, and perform quite well.

Noise Filters

Noise is a problem that can occur in any electronic system. In general, 
the presence of any unwanted signal can affect the overall operation of a 
system. It can come from a power source (60 Hz hum), from feedback 
networks, from mechanical systems connected to electrical systems, 
from stray capacitive and inductive effects, or possibly from a local sig-
nal source that is not properly shielded—the list is endless. To solve a 
noise problem, an analyst needs a broad practical background, a sense 
for the origin for the unwanted noise, and the ability to remove it in the 
simplest, most direct way. Generally noise problems arise during the 
testing phase, not during the original design phase. Although sophisti-
cated methods may be needed, most situations are resolved simply by 
rearranging an element or two of a value sensitive to the problem.
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In Fig. 22.96, two capacitors have been strategically placed in the tape 
recording and playback sections of a tape recorder to remove the undesir-
able high-frequency noise (rushing sound) that can result from unex-
pected, randomly placed particles on a magnetic tape, noise coming down 
the line, or noise introduced from the local environment. During the 
record mode, with the switches in the positions shown (R), the 100 pF 
capacitor at the top of the schematic acts as a short circuit to the high-
frequency noise. The capacitor C1 is included to compensate for the fact 
that recording on a tape is not a linear process versus frequency. In other 
words, certain frequencies are recorded at higher amplitudes than others.

Fig. 22.97 is a sketch of recording level versus frequency, clearly 
indicating that the human audio range of about 40 Hz to 20 kHz is very 
poor for the tape recording process, starting to rise only after 20 kHz. 
Thus, tape recorders must include a fixed biasing frequency that, when 
added to the actual audio signal, brings the frequency range to be ampli-
fied to the region of high-amplitude recording. On some tapes, the actual 

(b)

R3

Playback
head

P

R

P

R

Rs

CC

Coupling
capacitor

Amplifier
and notch
filter

Filter to reduce
stray pickup

100 pF

Cs

Playback phase

Short circuit to
high-frequency
noiseCn

C1

100 pF
Compensation control of high frequencies

R1

R2 CC
Applied
signal

Recording
head

P

R

P

R

R3

Playback
network

Record phase

(a)

Coupling
capacitor

FIG. 22.96
Noise reduction in a tape recorder.

Recording level

0 20 kHz 30 kHz

Bias frequency

High frequency
drop-off

f

FIG. 22.97
Noise reduction in a tape recorder.



1034    Decibels, Filters, and Bode Plots dB

bias frequency is provided, while on others, the phrase normal bias is 
used. Even after you pass the bias frequency, there is a frequency range 
that follows that drops off considerably. Compensation for this drop-off 
is provided by the parallel combination of the resistor R1 and the capaci-
tor C1 mentioned above. At frequencies near the bias frequency, the 
capacitor is designed to act essentially like an open circuit (high reac-
tance), and the head current and voltage are limited by the resistors R1 
and R2. At frequencies in the region where the tape gain drops off with 
frequency, the capacitor begins to take on a lower reactance level and 
reduce the net impedance across the parallel branch of R1 and C1. The 
result is an increase in head current and voltage due to the lower net 
impedance in the line, resulting in a leveling in the tape gain following 
the bias frequency. Eventually, the capacitor begins to take on the char-
acteristics of a short circuit, effectively shorting out the resistance R1, 
and the head current and voltage will be a maximum. During playback, 
this bias frequency is eliminated by a notch filter so that the original 
sound is not distorted by the high-frequency signal.

During playback (P), the upper circuit in Fig. 22.96 is set to ground by 
the upper switch, and the lower network comes into play. Again note the 
second 100 pF capacitor connected to the base of the transistor to short to 
ground any undesirable high-frequency noise. The resistor is there to 
absorb any power associated with the noise signal when the capacitor 
takes on its short-circuit equivalence. Keep in mind that the capacitor was 
chosen to act as a short-circuit equivalent for a particular frequency range 
and not for the audio range, where it is essentially an open circuit.

Alternators in a car are notorious for developing high-frequency 
noise down the line to the radio, as shown in Fig. 22.98(a). This problem 
is usually alleviated by placing a high-frequency filter in the line as 
shown. The inductor of 1 H offers a high impedance for the range of 
noise frequencies, while the capacitor (1000 mF to 47,000 mF) acts as a 
short-circuit equivalent to any noise that happens to get through. For the 
speaker system in Fig. 22.98(b), the push-pull power arrangement of 
transistors in the output section can often develop a short period of time 
between pulses where the strong signal voltage is zero volts. During this 

(b)

R

CC

Push-pull response
V

Vs ≅ 0 V

t

Push-pull
amplifier

Cb

Short-circuit path
for unwanted high-frequency
oscillation

Car
alternator

High-frequency
noise

1 H

L

C

Radio

(1000   F
to

47,000   F)

(a)

FIG. 22.98
Noise generation: (a) due to a car alternator; (b) from a push-pull amplifier.
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short period, the coil of the speaker rears its inductive effects, sees an 
unexpected path to ground like a switch opening, and quickly cuts off 
the speaker current. Through the familiar relationship yL = L(diL>dt), 
an unexpected voltage develops across the coil and sets a high-frequency 
oscillation on the line that finds its way back to the amplifier and causes 
further distortion. This effect can be subdued by placing an R-C path to 
ground that offers a low-resistance path from the speaker to ground for a 
range of frequencies typically generated by this signal distortion. Since 
the capacitor assumes a short-circuit equivalence for the range of noise 
disturbance, the resistor was added to limit the current and absorb the 
energy associated with the signal noise.

In regulators, such as the 5 V regulator in Fig. 22.99(a), when a spike 
in current comes down the line for any number of reasons, there is a volt-
age drop along the line, and the input voltage to the regulator drops. The 
regulator, performing its primary function, senses this drop in input volt-
age and increases its amplification level through a feedback loop to main-
tain a constant output. However, the spike is of such short duration that 
the output voltage has a spike of its own because the input voltage has 
quickly returned to its normal level, and with the increased amplification 
the output jumps to a higher level. Then the regulator senses its error and 
quickly cuts its gain. The sensitivity to changes in the input level has 
caused the output level to go through a number of quick oscillations that 
can be a real problem for the equipment to which the dc voltage is applied: 
A high-frequency noise signal has been developed. One way to subdue 
this reaction and, in fact, slow the system response down so that very 
short interval spikes have less impact is to add a capacitor across the out-
put as shown in Fig. 22.99(b). Since the regulator is providing a fixed dc 
level, a large capacitor of 1 mF can be used to short-circuit a wide range 
of high-frequency disturbances. However, you don’t want to make the 
capacitor too large or you’ll get too much damping, and large overshoots 
and undershoots can develop. To maximize the input of the added capac-
itor, you must place it physically closer to the regulator to ensure that 
noise is not picked up between the regulator and capacitor and to avoid 
developing any delay time between output signal and capacitive reaction.

In general, as you examine the schematic of working systems and see 
elements that don’t appear to be part of any standard design procedure, 
you can assume that they are either protective devices or due to noise on 
the line that is affecting the operation of the system. Noting their type, 
value, and location often reveals their purpose and modus operandi.

(a)

Input

Feedback

Output
5 V

Regulator

i

i t

Vo

0 t

5 V

High-frequency
noise

(b)

Input Output
5 V

Regulator

i

i 0 t

5 V

Filter

High-frequency
noise stabilizer–
bypass to ground
(open circuit for
5 V dc level)

1   F

Vo

FIG. 22.99
Regulator: (a) effect of spike in current on the input side; (b) noise reduction.
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22.18 C omputer Analysis

PSpice

Double-Tuned Filter    Our analysis now turns to a fairly complex-
looking filter for which an enormous amount of time would be required to 
generate a detailed plot of gain versus frequency using a handheld calcula-
tor. It is the same filter examined in Example 22.9, so we have a chance to 
test our theoretical solution. The schematic appears in Fig. 22.100 with 
VAC again chosen since the frequency range of interest is set by the Sim-
ulation Profile. Again, the attributes for the source are set in the Property 
Editor box rather than by selecting the components from the screen. Note 
the need for the two resistors in series with the inductors since inductors 
cannot be considered ideal elements. The small value of the resistive ele-
ments, however, has no effect on the results obtained.

FIG. 22.100
Using PSpice to analyze a double-tuned filter.

In the Simulation Settings dialog box, select AC Sweep again with a 
Start Frequency of 100 Hz and an End Frequency of 10 MHz (be sure 
to enter this value as 10MEGHZ) to ensure that the full-range effect is 
provided. Then use the axis controls to close in on the desired plot. The 
Points/Decade remains at 10k, although with this range of frequencies it 
may take a few seconds to simulate. Then Run PSpice and once the 
SCHEMATIC1 appears, Trace-Add Trace-V(RL:1)-OK results in 
the plot in Fig. 22.101. Quite obviously, there is a reject-band around 
200 kHz and a pass-band around 600 kHz. Note that up to 10 kHz, there 
is another pass-band as the inductor Lp provides an almost direct path of 
low impedance from input to output. At frequencies approaching 10 MHz, 
there is a continous stop-band due to the open-circuit equivalence of the 
Lp inductor. The deepest cutoff frequency and maximum band-pass fre-
quency can be found using the Toggle cursor key. Left-clicking the 
Toggle cursor key and selecting Cursor Trough will result in the cur-
sor identifying the low point near 200 kHz at 199.25 kHz. Then right-
click on the screen to set up another cursor followed by a left-click and 
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Cursor Max will identify the peak frequency for the band-pass region 
centered around 600 kHz at 605.9 kHz.

Let us now concentrate on the range from 10 kHz to 1 MHz, where 
most of the filtering action is taking place. That was the advantage of 
choosing such a wide range of frequencies when the Simulation Set-
tings were set up. The data have been established for the broad range of 
frequencies, and you can simply select a band of interest once the 
region of most activity is defined. If the frequency range were too nar-
row in the original simulation, another simulation would have to be 
defined. Select Plot-Axis Settings-X Axis-User Defined-10kHz to 
1MEGHz-OK to obtain the plot at the bottom of Fig. 22.102. A dB plot 

FIG. 22.101
Magnitude plot versus frequency for the voltage across RL of the network in 

Fig. 22.100.

FIG. 22.102
dB and magnitude plot for the voltage across RL of the network in Fig. 22.100.
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of the results can also be displayed in the same figure by selecting Plot-
Add Plot to Window-Trace-Add Trace-DB(V(RL:1))-OK, resulting 
in the plot at the top of the figure. Using the left-click cursor option and 
the Cursor Trough key, you find that the minimum is at -46.1 dB at a 
frequency of essentially 200 kHz, which is an excellent characteristic 
for a band-stop filter. Using the right-click cursor and setting it on 
620 kHz, you find that the drop is -26.8 mdB, which is excellent for 
the pass-band region.

Multisim

High-Pass Filter    The Multisim computer analysis is an investigation 
of the high-pass filter in Fig. 22.103. The cutoff frequency is determined 
by f = 1>2pRC = 1.592 kHz, with the voltage across the resistor 
approaching 1 V at high frequencies at a phase angle of 0°.

FIG. 22.103
High-pass R-C filter to be investigated using PSpice.

For this analysis, the Component: AC_POWER under POWER_ 
SOURCES was chosen. The components of the source were set in the 
AC_POWER dialog box as shown in Fig. 22.103. Use the sequence 
Simulate-Analyses-AC Analysis to obtain the AC Analysis dialog box. 
Select the following settings: Start frequency: 10 Hz, Stop frequency: 
100 kHz, Sweep type: Decade (logarithmic), Number of points per 
decade: 1000, Vertical scale: Linear. Under the Output option, move 
V(2) to Selected variables for analysis using the Add option and 
remove the V(1) option using the Remove option. Select Simulate to 
obtain the response in Fig. 22.103. Add the grid option to the phase 
plot, and then select Show/Hide Cursors to permit a determination of 
the magnitude and phase angle at the cutoff frequency. As shown in 
Fig. 22.103, the magnitude is 0.718 at 1.64 kHz and the phase angle is 
44.78° at 1.60 kHz—very close to the expected results.
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SECTION 22.3  Decibels

	 9.	 a.	 Determine the number of bels that relate power levels of 
P2 = 320 mW and P1 = 5 mW.

	b.	 Determine the number of decibels for the power levels 
of part (a), and compare results.

	10.	 A power level of 150 W is 8 dB above what power level?

	11.	 If a 2 W speaker is replaced by one with a 40 W output, 
what is the increase in decibel level?

	12.	 Determine the dBm level for an output power of 220 mW.

	13.	 Find the dBy gain of an amplifier that raises the voltage 
level from 0.2 mV to 18.8 mV.

	14.	 Find the output voltage of an amplifier if the applied volt-
age is 15 mV and a dBy gain of 26 dB is attained.

	15.	 If the sound pressure level is increased from 0.002 mbar to 
0.036 mbar, what is the increase in dBs level?

	16.	 What is the required increase in acoustical power to raise a 
sound level from that of quiet music to very loud music? 
Use Fig. 22.7.

	17.	 a.	 Using semilog paper, plot XL versus frequency for 
a  10 mH coil and a frequency range of 100 Hz to 
1 MHz. Choose the best vertical scaling for the range 
of XL.

	b.	 Repeat part (a) using log-log graph paper. Compare to 
the results of part (a). Which plot is more informative?

	c.	 Using semilog paper, plot XC versus frequency for a 
1 mF capacitor and a frequency range of 10 Hz to 100 kHz. 
Again choose the best vertical scaling for the range 
of XC.

	d.	 Repeat part (a) using log-log graph paper. Compare to 
the results of part (c). Which plot is more informative?

	18.	 a.	 For the meter of Fig. 22.8, find the power delivered to a 
load for an 8 dB reading.

	b.	 Repeat part (a) for a -5 dB reading.

Problems

SECTION 22.1  Logarithms

	 1.	 a.	 Determine the frequencies (in kHz) at the points indi-
cated on the plot in Fig. 22.104(a).

	b.	 Determine the voltages (in mV) at the points indicated 
on the plot in Fig. 22.104(b).

(a)

103

?
?

104

?

( f )

?

10–1

(b)

100

?

(V)

?

FIG. 22.104
Problem 1.

SECTION 22.2  Properties of Logarithms

	 2.	 Determine log10 x for each value of x.
	a.	 100,000	 b.	 0.0001
	c.	 108	 d.	 10 - 6

	e.	 20	 f.	 8643.4
	g.	 56,000	 h.	 0.318

	 3.	 Given N = log10 x, determine x for each value of N.
	a.	 3	 b.	 12
	c.	 0.2	 d.	 0.04
	e.	 10	 f.	 3.18
	g.	 1.001	 h.	 6.1

	 4.	 Determine loge x for each value of x.
	a.	 100,000	 b.	 0.0001
	c.	 20	 d.	 8643.4

		  Compare with the solutions to Problem 2.

	 5.	 Determine log10 54 = log10 (9)(6), and compare to log10 9 +
log10 6.

	 6.	 Determine log10 0.4 = log10 18>45, and compare to 
log10 18 - log10 45.

	 7.	 Verify that log10 0.25 is equal to - log10 1>0.25 = - log10 4.

	 8.	 Find log10 (5)5, and compare with 5 log10 5.

SECTION 22.5  R-C Low-Pass Filter

	19.	 For the R-C low-pass filter in Fig. 22.105:
	a.	 Sketch Ay = Vo>Vi versus frequency using a log scale 

for the frequency axis. Determine Ay = Vo>Vi at 
0.1fc, 0.5fc, fc, 2fc, and 10fc.

	b.	 Sketch the phase plot of u versus frequency, where u is 
the angle by which Vo leads Vi. Determine u at 
f = 0.1fc, 0.5fc, fc, 2fc, and 10fc.

R

2.2  k�

C 0.02 mFVi

–

+

Vo

–

+

FIG. 22.105
Problem 19.
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	*20.	 For the network in Fig. 22.106:
	a.	 Determine Vo at a frequency one octave above the criti-

cal frequency.
	b.	 Determine Vo at a frequency one decade below the criti-

cal frequency.
	c.	 Do the levels of parts (a) and (b) verify the expected 

frequency plot of Vo versus frequency for the filter?

	24.	 For the network in Fig. 22.109:
	a.	 Determine Ay = Vo>Vi at f = fc for the high-pass filter.
	b.	 Determine Ay = Vo>Vi at two octaves above fc. Is the 

rise in Vo significant from the f = fc level?
	c.	 Determine Ay = Vo>Vi at two decades above fc. Is the 

rise in Vo significant from the f = fc level?
	d.	 If Vi = 15 mV, what is the power delivered to R at the 

critical frequency?

R

3.2 k�

C 0.2 mFVi     =   10  mV

–

+

Vo

–

+

FIG. 22.106
Problem 20.

	21.	 Design an R-C low-pass filter to have a cutoff frequency of 
500 Hz using a resistor of 1.2 kΩ. Then sketch the result-
ing magnitude and phase plot for a frequency range of 0.1fc 
to 10fc.

	22.	 For the low-pass filter in Fig. 22.107:

R

5  k�

C 450 pFVi

–

+

Vo

–

+

FIG. 22.107
Problem 22.

	a.	 Determine fc.
	b.	 Find Ay = Vo>Vi at f = 0.1fc, and compare to the maxi-

mum value of 1 for the low-frequency range.
	c.	 Find Ay = Vo>Vi at f = 10fc, and compare to the mini-

mum value of 0 for the high-frequency range.
	d.	 Determine the frequency at which Ay = 0.01 or 

Vo = 1
100Vi.

SECTION 22.6   R-C High-Pass Filter

	23.	 For the R-C high-pass filter in Fig. 22.108:
	a.	 Sketch Ay = Vo>Vi versus frequency using a log scale 

for the frequency axis. Determine Ay = Vo>Vi at fc, one 
octave above and below fc, and one decade above and 
below fc.

	b.	 Sketch the phase plot of u versus frequency, where u is 
the angle by which Vo leads Vi. Determine u at the same 
frequencies noted in part (a).

R 2.2  k�

C

0.02 mF

Vi

–

+

Vo

–

+

FIG. 22.108
Problem 23.

R 130 k�

C

52 pF

Vi

–

+

Vo

–

+

FIG. 22.109
Problem 24.

	25.	 Design a high-pass R-C filter to have a cutoff or corner fre-
quency of 2 kHz, given a capacitor of 0.1 mF. Choose the 
closest commercial value for R, and then recalculate the 
resulting corner frequency. Sketch the normalized gain 
Ay = Vo>Vi for a frequency range of 0.1fc to 10fc.

	26.	 For the high-pass filter in Fig. 22.110:
	a.	 Determine fc.
	b.	 Find Ay = Vo>Vi at f = 0.01fc, and compare to the min-

imum level of 0 for the low-frequency region.
	c.	 Find Ay = Vo>Vi at f = 100fc, and compare to the maxi-

mum level of 1 for the high-frequency region.
	d.	 Determine the frequency at which Vo = 1

2Vi.

R 100 k�

C

20 pF

Vi

–

+

Vo

–

+

FIG. 22.110
Problems 26 and 54.
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SECTION 22.7  Band-Pass Filters

	27.	 For the band-pass filter in Fig. 22.111:
	a.	 Sketch the frequency response of Ay = Vo>Vi against a 

log scale extending from 10 Hz to 10 kHz.
	b.	 What are the bandwidth and the center frequency?

	a.	 Determine the frequency response of Ay = Vo>Vi for a 
frequency range of 100 Hz to 1 MHz.

	b.	 Find the quality factor Qp and the BW of the response.

R1 0.1 k�

C1

2 mF

Vi

–

+

Vo

–

+

8200 pFC2

R2

10 k�

FIG. 22.111
Problems 27 and 28.

	*28.	 Design a band-pass filter such as the one appearing in 
Fig. 22.111 to have a low cutoff frequency of 4 kHz and 
a high cutoff frequency of 80 kHz.

	29.	 For the band-pass filter in Fig. 22.112:
	a.	 Determine fs.
	b.	 Calculate Qs and the BW for Vo.
	c.	 Sketch Ay = Vo>Vi for a frequency range of 1 kHz to 

1 MHz.
	d.	 Find the magnitude of Vo at f = fs and the cutoff fre-

quencies.

R 0.16 k�

C

560 pF

Vi  =  1 V ∠ 0°

–

+

Vo

–

+

Rl

12 �

L

4.7 mH

FIG. 22.112
Problem 29.

	30.	 For the band-pass filter in Fig. 22.113:

Vi

–

+

Vo

–

+

R

L

Rl 16 �

1 mH

0.001 mFC2

3.3 k�

FIG. 22.113
Problems 30 and 55.

SECTION 22.8  Band-Stop Filters

	*31.	 For the band-stop filter in Fig. 22.114:
	a.	 Determine Qs.
	b.	 Find the bandwidth and the half-power frequencies.
	c.	 Sketch the frequency characteristics of Ay = Vo>Vi.
	d.	 What is the effect on the curve of part (c) if a load of 

4 kΩ is applied?

–

+

R

Rl 10 �

XL 7 k�

XC 7 k�

Vi

–

+

Vo RL 4 k�

fs =  5 kHz

0.44 k�

FIG. 22.114
Problem 31.

	*32.	 For the band-pass filter in Fig. 22.115:
	a.	 Determine Qp (RL = ∞ Ω, an open circuit).
	b.	 Sketch the frequency characteristics of Ay = Vo>Vi.
	c.	 Find Qp (loaded) for RL = 100 kΩ, and indicate the 

effect of RL on the characteristics of part (b).
	d.	 Repeat part (c) for RL = 20 kΩ.

–

+

R1

1 k�

XL 5 k�

Vi

–

+

Vo

fp =  20 kHz

Rl 10 �

XC 400 � RL

FIG. 22.115
Problem 32.

SECTION 22.9  Double-Tuned Filter

	33.	 a.	 For the network in Fig. 22.45(a), if Lp = 400 mH(Q 7
10), Ls = 60 mH, and C = 120 pF, determine the 
rejected and accepted frequencies.

	b.	 Sketch the response curve for part (a).
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	34.	 a.	 For the network in Fig. 22.45(b), if the rejected fre-
quency is 30 kHz and the accepted is 100 kHz, deter-
mine the values of Ls and Lp(Q 7 10) for a capacitance 
of 200 pF.

	b.	 Sketch the response curve for part (a).

	a.	 In words, without any calculations, describe the net-
work response to a wide range of frequencies.

	b.	 Plot the response of the filter to a range of frequencies 
extending from 0 Hz to 1 MHz.

SECTION 22.10  Other Filter Configurations

	*35.	 For the low-pass T filter of Fig. 22.116:
	a.	 In words, without any calculations, describe the net-

work response to a wide range of frequencies.
	b.	 Plot the response of the filter to a range of frequencies 

extending from 0 Hz to 1 MHz.

220 Ω

L1 L2

0.47 mH 0.22 mH
+

–

+

–

C 5 nF RLVi = 10 V ∠0° VL 

FIG. 22.116
Problem 35.

	*36.	 For the high-pass p filter of Fig. 22.117:
	a.	 In words, without any calculations, describe the net-

work response to a wide range of frequencies.
	b.	 Plot the response of the filter to a range of frequencies 

extending from 0 Hz to 1 MHz.

1.2 kΩL1 L2220 mH 100 mH

0.12 µF

+

–

+

–

RLVi = 20 V ∠0° VL 

FIG. 22.117
Problem 36.

L1 L2

1 mH 1 mH
+

–

C 5 nF C 5 nFVi = 60 V ∠0° 1 2

+

–

VL RL = 2.2  kΩ

FIG. 22.118
Problem 37.

	*37.	 For the Butterworth filter of Fig. 22.118:

R 0.47 k�

C

0.047 mF

Vi

–

+

Vo

–

+

FIG. 22.119
Problem 38.

	*39.	 a.	 Sketch the response of the magnitude of Vo (in terms of 
Vi) versus frequency for the high-pass filter in Fig. 22.120.

	b.	 Using the results of part (a), sketch the response 
Ay = Vo>Vi for the same frequency range.

	c.	 Sketch the idealized Bode plot.
	d.	 Sketch the actual response, indicating the dB difference 

between the idealized and the actual response at 
f = fc, 0.5fc, and 2fc.

	e.	 Determine AydB
 at f = 1.5fc from the plot of part (d), 

and then determine the corresponding magnitude of 
Ay = Vo>Vi.

	f.	 Sketch the phase response for the same frequency range 
(the angle by which Vo leads Vi).

R1C

0.02 mF
Vi

–

+

Vo

–

+

R2 12 k�

6.8 k�

FIG. 22.120
Problem 39.

SECTION 22.11  Bode Plots

	38.	 a.	 Sketch the idealized Bode plot for Ay = Vo>Vi for the 
high-pass filter in Fig. 22.119.

	b.	 Using the results of part (a), sketch the actual frequency 
response for the same frequency range.

	c.	 Determine the decibel level at fc, 
1
2 fc, 2fc, 

1
10 fc, and 

10fc.
	d.	 Determine the gain Ay = Vo>Vi as f = fc, 

1
2 fc, and 2fc.

	e.	 Sketch the phase response for the same frequency range.
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	40.	 a.	 Sketch the idealized Bode plot for Ay = Vo>Vi for the 
low-pass filter in Fig. 22.121.

	b.	 Using the results of part (a), sketch the actual frequency 
response for the same frequency range.

	c.	 Determine the decibel level at fc, 
1
2 fc, 2 fc, 

1
10 fc, and 10 fc.

	d.	 Determine the gain Ay = Vo>Vi at f = fc, 
1
2 fc, and 2fc.

	e.	 Sketch the phase response for the same frequency range.

R2 39 k�

C

0.01 mF
Vi

–

+

Vo

–

+

R3 68 k�

R1

10 k�

FIG. 22.123
Problem 42.

R

12 k�

C 1000 pFVi

–

+

Vo

–

+

FIG. 22.121
Problem 40.

	*41.	 a.	 Sketch the response of the magnitude of Vo (in terms 
of Vi) versus frequency for the low-pass filter in 
Fig. 22.122.

	b.	 Using the results of part (a), sketch the response 
Ay = Vo>Vi for the same frequency range.

	c.	 Sketch the idealized Bode plot.
	d.	 Sketch the actual response indicating the dB difference 

between the idealized and the actual response at 
f = fc, 0.5fc, and 2fc.

	e.	 Determine AydB
 at f = 0.25fc from the plot of part (d), 

and then determine the corresponding magnitude of 
Ay = Vo>Vi.

	f.	 Sketch the phase response for the same frequency range 
(the angle by which Vo leads Vi).

Vi

–

+

Vo

–

+

R1

4.7 k�

R2 27 k�
C  =  0.039 mF

FIG. 22.122
Problem 41.

SECTION 22.12  Sketching the Bode Response

	42.	 For the filter in Fig. 22.123:
	a.	 Sketch the curve of AydB

 versus frequency using a log 
scale.

	b.	 Sketch the curve of u versus frequency for the same fre-
quency range as in part (a).

	*43.	 For the filter in Fig. 22.124:
	a.	 Sketch the curve of AydB

 versus frequency using a log 
scale.

	b.	 Sketch the curve of u versus frequency for the same fre-
quency range as in part (a).

R1

12 k�

C

0.1 mF

Vi

–

+

Vo

–

+

R2 R3

5.6 k�

8.2 k�

FIG. 22.124
Problem 43.

SECTION 22.13  Low-Pass Filter with  
Limited Attenuation

	44.	 For the filter in Fig. 22.125:
	a.	 Sketch the curve of AydB

 versus frequency using the ide-
alized Bode plots as a guide.

	b.	 Sketch the curve of u versus frequency.

R2 10 k�

C 800 pF

Vi

–

+

Vo

–

+

R1

91 k�

FIG. 22.125
Problem 44.
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	*45.	 For the filter in Fig. 22.126:
	a.	 Sketch the curve of AydB

 versus frequency using the 
idealized Bode plots as a guide.

	b.	 Sketch the curve of u versus frequency.

R3

C 0.01 mF

Vi

–

+

Vo

–

+

R2

12 k�

R1 20 k�

5.6 k�

FIG. 22.126
Problem 45.

SECTION 22.14  High-Pass Filter with  
Limited Attenuation

	46.	 For the filter in Fig. 22.127:
	a.	 Sketch the curve of AydB

 versus frequency using the ide-
alized Bode plots as an envelope for the actual response.

	b.	 Sketch the curve of u (the angle by which Vo leads Vi) 
versus frequency. R2

C

0.05 mF
Vi

–

+

Vo

–

+

R1

3.3 k�

0.47 k�

FIG. 22.127
Problem 46.

R3 4.7 k�

C

0.1 mFVi

–

+

Vo

–

+

R2

1.2 k�R1

2 k�

FIG. 22.128
Problem 47.

	*47.	 For the filter in Fig. 22.128:
	a.	 Sketch the curve of AydB

 versus frequency using the ide-
alized Bode plots as an envelope for the actual response.

	b.	 Sketch the curve of u (the angle by which Vo leads Vi) 
versus frequency.

SECTION 22.15  Additional Properties of Bode Plots

	48.	 A bipolar transistor amplifier has the following gain:

Ay =
160

a1 - j 
100 Hz

f
b a1 - j 

130 Hz

f
b a1 + j 

f

20 kHz
b a1 + j 

f

50 kHz
b

	a.	 Sketch the normalized Bode response A′ydB
 =  

(Ay>Aymax
) � dB, and determine the bandwidth of the 

amplifier. Be sure to note the corner frequencies.
	b.	 Sketch the phase response, and determine a frequency 

where the phase angle is relatively close to 45°.
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	a.	 Sketch the normalized Bode response A′ydB
 =  

(Ay>Aymax
� dB), and determine the bandwidth of the 

amplifier. When you normalize, be sure that the maxi-
mum value of A′y is +1. Clearly indicate the cutoff fre-
quencies on the plot.

	b.	 Sketch the phase response, and note the regions of 
greatest change in phase angle. How do the regions cor-
respond to the frequencies appearing in the function Ay?

	50.	 A transistor amplifier has a midband gain of -140, a high 
cutoff frequency of 38 kHz, and a bandwidth of 36 kHz. In 
addition, the actual response is also about -18 dB at 
f = 50 Hz. Write the transfer function Ay for the amplifier.

	51.	 Sketch the Bode plot of the following function:

Ay =
0.05

0.05 - j 100>f

	52.	 Sketch the Bode plot of the following function:

Ay =
200

200 + j 0.1 f

	53.	 Sketch the Bode plot of the following function:

Ay =
jf>1000

(1 + jf>1000)(1 + jf>10,000)

	*54.	 Sketch the Bode plot of the following function:

Ay =
(1 + jf>1000)(1 + jf>2000)

(1 + jf>3000)2

	*55.	 Sketch the Bode plot of the following function (note the 
presence of v rather than f ):

Ay =
40(1 + j 0.001 v)

( j 0.001 v)(1 + j 0.0002 v)

8 �

0.39 mH

Llow 4.7 mH
Vi = 1 V 0°

+

–

–3 dB

400 Hz0 dB

–3 dB

400 Hz0 dB

–3 dB

5 kHz

8 �

8 �

–3 dB

5 kHz0 dB

Lhigh

L1(mid)

8 �

L2(mid)

C1(mid) 39   F

Clow

Chigh 2.7   F

39   F

0.39 mH

4.7 mH

C2(mid) 2.7   F

∠

FIG. 22.129
Problems 56 and 60.

	49.	 A JFET transistor amplifier has the following gain:

Ay =
-5.6

a1 - j 
10 Hz

f
b a1 - j 

45 Hz

f
b a1 - j 

68 Hz

f
b a1 + j 

f

23 kHz
b a1 + j 

f

50 kHz
b

SECTION 22.16  Crossover Networks

	*56.	 The three-way crossover network in Fig. 22.129 has a 12 dB 
rolloff at the cutoff frequencies.
	a.	 Determine the ratio Vo>Vi for the woofer and tweeter at 

the cutoff frequencies of 400 Hz and 5 kHz, respec-
tively, and compare to the desired level of 0.707.

	b.	 Calculate the ratio Vo>Vi for the woofer and tweeter at a 
frequency of 3 kHz, where the midrange speaker is 
designed to predominate.

	c.	 Determine the ratio Vo>Vi for the midrange speaker at a 
frequency of 3 kHz, and compare to the desired level of 1.

SECTION 22.18  Computer Analysis

PSpice or Multisim

	57.	 Using schematics, obtain the magnitude and phase response 
versus frequency for the network in Fig. 22.110.

	58.	 Using schematics, obtain the magnitude and phase response 
versus frequency for the network in Fig. 22.113.

	*59.	 Obtain the dB and phase plots for the network in Fig. 22.82, 
and compare with the plots in Figs. 22.83 and 22.84.

	*60.	 Using schematics, obtain the magnitude and dB plot versus 
frequency for each filter in Fig. 22.129, and verify that the 
curves drop off at 12 dB per octave.

Glossary

Active filter  A filter that uses active devices such as transistors 
or operational amplifiers in combination with R, L, and C 
elements.

Bode plot  A plot of the frequency response of a system using 
straight-line segments called asymptotes.

Decibel  A unit of measurement used to compare power levels.
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Microbar (Mbar)  A unit of measurement for sound pressure 
levels that permits comparing audio levels on a dB scale.

Pass-band (band-pass) filter  A network designed to pass sig-
nals within a particular frequency range.

Passive filter  A filter constructed of series, parallel, or series-
parallel R, L, and C elements.

Semilog paper  Graph paper with one log scale and one linear 
scale.

Stop-band filter  A network designed to reject (block) signals 
within a particular frequency range.

Double-tuned filter  A network having both a pass-band and a 
stop-band region.

Filter  Networks designed to either pass or reject the transfer of 
signals at certain frequencies to a load.

High-pass filter  A filter designed to pass high frequencies and 
reject low frequencies.

Log-log paper  Graph paper with vertical and horizontal log 
scales.

Low-pass filter  A filter designed to pass low frequencies and 
reject high frequencies.



23TransformersTransformers

23.1  Introduction

Chapter 11 discussed the self-inductance of a coil. We shall now examine the mutual induct-
ance that exists between coils of the same or different dimensions. Mutual inductance is a 
phenomenon basic to the operation of the transformer, an electrical device used today in 
almost every field of electrical engineering. This device plays an integral part in power distri-
bution systems and can be found in many electronic circuits and measuring instruments. In 
this chapter, we discuss three of the basic applications of a transformer: to build up or step 
down the voltage or current, to act as an impedance matching device, and to isolate (no phys-
ical connection) one portion of a circuit from another. In addition, we will introduce the dot 
convention and will consider the transformer equivalent circuit. The chapter concludes with 
a word about writing mesh equations for a network with mutual inductance.

23.2  Mutual Inductance

A transformer is constructed of two coils placed so that the changing flux developed by one 
links the other, as shown in Fig. 23.1. This results in an induced voltage across each coil. To 
distinguish between the coils, we will apply the transformer convention that

the coil to which the source is applied is called the primary, and the coil to which the load 
is applied is called the secondary.

•	 Become familiar with the flux linkages that exist 
between the coils of a transformer and how the 
voltages across the primary and secondary are 
established.

•	 Understand the operation of an iron-core and 
air-core transformer and how to calculate the 
currents and voltages of the primary and 
secondary circuits.

•	 Be aware of how the transformer is used for 
impedance matching purposes to ensure a high 
level of power transfer.

•	 Become aware of all the components that make 
up the equivalent circuit of a transformer and 
how they affect its performance and frequency 
response.

•	 Understand how to use and interpret the dot 
convention of mutually coupled coils in a network.

•	 Become familiar with the function and operation 
of a current transformer.

•	 Become aware of the differences between a 
ballast and a transformer.

Objectives

23
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For the primary of the transformer in Fig. 23.1, an application of Faraday’s 
law [Eq. (11.9)] results in

	 ep = Np 
dfp

dt
  (volts, V)	 (23.1)

revealing that the voltage induced across the primary is directly related 
to the number of turns in the primary and the rate of change of magnetic 
flux linking the primary coil. Or, from Eq. (11.11),

	 ep = Lp 
dip

dt
  (volts, V)	 (23.2)

revealing that the induced voltage across the primary is also directly 
related to the self-inductance of the primary and the rate of change of 
current through the primary winding.

The magnitude of es, the voltage induced across the secondary, is 
determined by

	 es = Ns 
dfm

dt
  (volts, V)	 (23.3)

where Ns is the number of turns in the secondary winding and fm is the 
portion of the primary flux fp that links the secondary winding.

If all of the flux linking the primary links the secondary, then

fm = fp

and	 es = Ns 
dfp

dt
  (volts, V)	 (23.4)

The coefficient of coupling (k) between two coils is determined by

	 k (coefficient of coupling) =
fm

fp
	 (23.5)

Since the maximum level of Fm is Fp, the coefficient of coupling 
between two coils can never be greater than 1.

The coefficient of coupling between various coils is indicated in 
Fig. 23.2. In Fig. 23.2(a), the ferromagnetic steel core ensures that most 
of the flux linking the primary also links the secondary, establishing a 
coupling coefficient very close to 1. In Fig. 23.2(b), the fact that both 

ip
Changing flux

pattern

–

+

ep

–

+

es

Primary (Lp , Np)

–

+
vg

Transformer

Secondary (Ls, Ns)

fm(mutual)

fp

FIG. 23.1
Defining the components of a transformer.

+ –es

+ –ep

  m

Any core

(b)

k ≅ 1

Air
core

+ –ep + –es

k  = <<  1 (0.01       0.3)

  p

  p

  m

  m

(c)

Steel core

+
ep
–

+
es
–

  p  m ≅

(a)

k ≅ 1

FIG. 23.2
Windings having different coefficients of coupling.
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coils are overlapping results in the flux of one coil linking the other coil, 
with the result that the coefficient of coupling is again very close to 1. In 
Fig. 23.2(c), the absence of a ferromagnetic core results in low levels of 
flux linkage between the coils. The closer the two coils are, the greater is 
the flux linkage, and the higher is the value of k, although it will never 
approach a level of 1. Those coils with low coefficients of coupling are 
said to be loosely coupled.

For the secondary, we have

es = Ns 
dfm

dt
= Ns 

dkfp

dt

and	 es = kNs 
dfp

dt
  (volts, V)	 (23.6)

The mutual inductance between the two coils in Fig. 23.1 is deter-
mined by

	 M = Ns 
dfm

dip
  (henries, H)	 (23.7)

or	 M = Np 
dfm

dis
  (henries, H)	 (23.8)

Note in the above equations that the symbol for mutual inductance 
is the capital letter M and that its unit of measurement, like that of 
self-inductance, is the henry. In words, Eqs. (23.7) and (23.8) state 
that the

mutual inductance between two coils is proportional to the 
instantaneous change in flux linking one coil due to an instantaneous 
change in current through the other coil.

In terms of the inductance of each coil and the coefficient of cou-
pling, the mutual inductance is determined by

	 M = k1LpLs  (henries, H)	 (23.9)

The greater the coefficient of coupling (greater flux linkages), or the 
greater the inductance of either coil, the higher is the mutual inductance 
between the coils. Relate this fact to the configurations in Fig. 23.2.

The secondary voltage es can also be found in terms of the mutual 
inductance if we rewrite Eq. (23.3) as

es = Nsa
dfm

dip
b a dip

dt
b

and, since M = Ns (dfm>dip), it can also be written

	 es = M 
dip

dt
  (volts, V)	 (23.10)

Similarly,	 ep = M 
dis
dt
  (volts, V)	 (23.11)
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EXAMPLE 23.1  For the transformer in Fig. 23.3:

	 a.	 Find the mutual inductance M.
	 b.	 Find the induced voltage ep if the flux fp changes at the rate of 

450 mWb/s.
	 c.	 Find the induced voltage es for the same rate of change indicated in 

part (b).
	 d.	 Find the induced voltages ep and es if the current ip changes at the 

rate of 0.2 A/ms.

Solutions: 

	 a.	  M = k1LpLs = 0.61(200 mH)(800 mH)

		   = 0.6216 * 10-2 = (0.6)(400 * 10-3) = 240 mH

	 b.	  ep = Np

dfp

dt
= (50)(450 mWb/s) = 22.5 V

	 c.	  es = k Ns

dfp

dt
= (0.6)(100)(450 mWb/s) = 27 V

	 d.	  ep = Lp

dip

dt
= (200 mH)(0.2 A/ms)

		   = (200 mH)(200 A/s) = 40 V

		   es = M 
dip

dt
= (240 mH)(200 A/s) = 48 V

23.3 T he Iron-Core Transformer

An iron-core transformer under loaded conditions is shown in Fig. 23.4. 
The iron core will serve to increase the coefficient of coupling between 
the coils by increasing the mutual flux fm. Recall from Chapter 11 that 
magnetic flux lines always take the path of least reluctance, which in this 
case is the iron core.

In the analyses in this chapter, we assume that all of the flux linking 
coil 1 will link coil 2. In other words, the coefficient of coupling is its 

ip

–

+
ep

–

+
es

Lp  =  200 mH
Np  = 50 turns

  p

Ls  =  800 mH
Ns  = 100 turns

k  =  0.6

FIG. 23.3
Example 23.1

�

�

vL
vg ep

ip

Magnetic flux

Secondary windings

Laminated ferromagnetic
strips of metal

is

es

Primary windings

Np Ns

L
O

A
D

Φm

Φm

FIG. 23.4
Iron-core transformer.
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maximum value, 1, and fm = fp = fs. In addition, we first analyze the 
transformer from an ideal viewpoint; that is, we neglect losses such as the 
geometric or dc resistance of the coils, the leakage reactance due to 
the flux linking either coil that forms no part of fm, and the hysteresis and 
eddy current losses. This is not to convey the impression, however, that 
we are far from the actual operation of a transformer. Most transformers 
manufactured today can be considered almost ideal. The equations we 
develop under ideal conditions are, in general, a first approximation to 
the actual response, which is never off by more than a few percentage 
points. The losses are considered in greater detail in Section 23.6.

When the current ip through the primary circuit of the iron-core trans-
former is a maximum, the flux fm linking both coils is also a maximum. 
In fact, the magnitude of the flux is directly proportional to the current 
through the primary windings. Therefore, the two are in phase, and for 
sinusoidal inputs, the magnitude of the flux varies as a sinusoid also. 
That is, if

 ip = 12Ip sin vt

then	  fm = Φm sin vt

The induced voltage across the primary due to a sinusoidal input can 
be determined by Faraday’s law:

ep = Np

dfp

dt
= Np 

dfm

dt

Substituting for fm gives us

ep = Np 
d

dt
(Φm sin vt)

and differentiating, we obtain

ep = vNpΦm cos vt

or	  ep = vNpΦm sin (vt + 90°)

indicating that the induced voltage ep leads the current through the pri-
mary coil by 90°.

The effective value of ep is

Ep =
vNpΦm12

=
2pfNpΦm12

and	 Ep = 4.44 fNpΦm	 (23.12)

which is an equation for the rms value of the voltage across the primary 
coil in terms of the frequency of the input current or voltage, the number 
of turns of the primary, and the maximum value of the magnetic flux 
linking the primary.

For the case under discussion, where the flux linking the secondary 
equals that of the primary, if we repeat the procedure just described for 
the induced voltage across the secondary, we get

	 Es = 4.44 fNsΦm	 (23.13)

Dividing Eq. (23.12) by Eq. (23.13) as

Ep

Es
=

4.44 fNpΦm

4.44 fNsΦm
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we obtain

	
Ep

Es
=

Np

Ns
	 (23.14)

revealing an important relationship for transformers:

The ratio of the magnitudes of the induced voltages is the same as the 
ratio of the corresponding turns.

If we consider that

ep = Np
dfm

dt
  and  es = Ns 

dfm

dt

and divide one by the other, that is,

ep

es
=

Np(dfm>dt)

Ns(dfm>dt)

then	
ep

es
=

Np

Ns

The instantaneous values of e1 and e2 are therefore related by a con-
stant determined by the turns ratio. Since their instantaneous magni-
tudes are related by a constant, the induced voltages are in phase, and 
Eq. (23.14) can be changed to include phasor notation; that is,

	
Ep

Es
=

Np

Ns
	 (23.15)

or, since Vg = E1 and VL = E2 for the ideal situation,

	
Vg

VL
=

Np

Ns
	 (23.16)

The ratio Np>Ns, usually represented by the lowercase letter a, is 
referred to as the transformation ratio:

	 a =
Np

Ns
	 (23.17)

If a 6 1, the transformer is called a step-up transformer since the volt-
age Es 7 Ep; that is,

Ep

Es
=

Np

Ns
= a  or  Es =

Ep

a

and, if a 6 1,	 Es 7 Ep

If a 7 1, the transformer is called a step-down transformer since 
Es 6 Ep; that is,

Ep = aEs

and, if a 7 1, then	 Ep 7 Es
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EXAMPLE 23.2  For the iron-core transformer in Fig. 23.5:

	 a.	 Find the maximum flux Φm.
	 b.	 Find the secondary turns Ns.

Np = 50

ip +

Ep = 200 V

–

+ Is

–

f = 60 Hz

k = 1 Es = 2400 V

Ns

Φm

Φm

FIG. 23.5
Example 23.2.

Solutions: 

	 a.	 Ep = 4.44NpfΦm

Therefore,	 Φm =
Ep

4.44 Np f
=

200 V

(4.44)(50 t)(60 Hz)

and	 Φm = 15.02 mWb

	 b.	
Ep

Es
=

Np

Ns

Therefore,	  Ns =
NpEs

Ep
=

(50 t)(2400 V)

200 V

	  = 600 turns

The induced voltage across the secondary of the transformer in 
Fig. 23.4 establishes a current is through the load ZL and the secondary 
windings. This current and the turns Ns develop an mmf Nsis that is not 
present under no-load conditions since is = 0 and Nsis = 0. Under 
loaded or unloaded conditions, however, the net ampere-turns on the core 
produced by both the primary and the secondary must remain unchanged 
for the same flux fm to be established in the core. The flux fm must 
remain the same to have the same induced voltage across the primary and 
to balance the voltage impressed across the primary. To counteract the 
mmf of the secondary, which is tending to change fm, an additional cur-
rent must flow in the primary. This current is called the load component 
of the primary current and is represented by the notation i′p.

For the balanced or equilibrium condition,

Npi′p = Nsis

The total current in the primary under loaded conditions is

ip = i′p + ifm

where ifm
 is the current in the primary necessary to establish the flux fm. 

For most practical applications, i′p 7 ifm
. For our analysis, we assume 

ip ≅  i′p , so

Npip = Nsis
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Since the instantaneous values of ip and is are related by the turns 
ratio, the phasor quantities Ip and Is are also related by the same ratio:

NpIp = NsIs

or	
Ip

Is
=

Ns

Np
	 (23.18)

The primary and secondary currents of a transformer are therefore 
related by the inverse ratios of the turns.

Keep in mind that Eq. (23.18) holds true only if we neglect the effects of 
ifm

. Otherwise, the magnitudes of Ip and Is are not related by the turns 
ratio, and Ip and Is are not in phase.

For the step-up transformer, a 6 1, and the current in the secondary, 
Is = aIp, is less in magnitude than that in the primary. For a step-down 
transformer, the reverse is true.

23.4 R eflected Impedance and Power

In the previous section we found that

Vg

VL
=

Np

Ns
= a  and  

Ip

Is
=

Ns

Np
=

1
a

Dividing the first by the second, we have

Vg>VL

Ip>Is
=

a

1>a

or	
Vg>Ip

VL>Is
= a2  and  

Vg

Ip
= a2 

VL

Is

However, since

Zp =
Vg

Ip
  and  ZL =  

VL

Is

then	 Zp = a2ZL	 (23.19)

That is, the impedance of the primary circuit of an ideal transformer is 
the transformation ratio squared times the impedance of the load. If a 
transformer is used, therefore, an impedance can be made to appear 
larger or smaller at the primary by placing it in the secondary of a step-
down (a 7 1) or step-up (a 6 1) transformer, respectively. Note that if 
the load is capacitive or inductive, the reflected impedance is also 
capacitive or inductive.

For the ideal iron-core transformer,

Ep

Es
= a =

Is

Ip

or	 EpIp = EsIs	 (23.20)

and	 Pin = Pout  (Ideal conditions)	 (23.21)
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EXAMPLE 23.3  For the iron-core transformer in Fig. 23.6:

	 a.	 Find the magnitude of the current in the primary and the impressed 
voltage across the primary.

	 b.	 Find the input resistance of the transformer.

Solutions: 

	 a.	  
Ip

Is
=

Ns

Np

		   Ip =
Ns

Np
 Is = a 5 t

40 t
b (0.1 A) = 12.5 mA

		   VL = Is ZL = (0.1 A)(2 kΩ) = 200 V

		  Also,	  
Vg

VL
=

Np

Ns

			    Vg =
Np

Ns
VL = a 40 t

5 t
b (200 V) = 1600 V

	 b.	  Zp = a2 ZL

		   a =
Np

Ns
= 8

		   Zp = (8)2(2 kΩ) = Rp = 128 k�

EXAMPLE 23.4  For the residential supply appearing in Fig. 23.7, 
determine (assuming a totally resistive load) the following:

	 a.	 the value of R to ensure a balanced load
	 b.	 the magnitude of I1 and I2

	 c.	 the line voltage VL

	 d.	 the total power delivered for a balanced three-phase load
	 e.	 the turns ratio a = Np>Ns

Np = 40 t

+ Ip

Zp
Vg

–

Ns = 5 t

Is = 100 mA
Denotes iron core

R 2 k�

+

VL

–

FIG. 23.6
Example 23.3.

Ip

–

+

Ten 60 W bulbs

TV
200 W

Air
conditioner

2000 W

120 V

120 V

Vp = 2400 V

VL

–

+ R R

N1 N2

I1

I2

Main service
Residential service:
120/240 V, 3-wire,
single-phase

240 V

FIG. 23.7
Single-phase residential supply.
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Solutions: 

	 a.	  PT = (10)(60 W) + 200 W + 2000 W

		   = 600 W + 200 W + 2000 W = 2800 W

		   PIn = Pout

		  Vp Ip = Vs Is = 2800 W (purely resistive load)

		  (2400 V)Ip = 2800 W and Ip = 1.17 A 

		  R =
Vp

Ip
=

2400 V

1.17 A
= 2051.28 �

	 b.	 P1 = 600 W = VI1 = (120 V)I1

		  and	  I1 = 5 A

			    P2 = 2000 W = VI2 = (240 V)I2

		  and	  I2 = 8.33 A

	 c.	 VL = 13Vp = 1.73(2400 V) = 4152 V

	 d.	 PT = 3Pp = 3(2800 W) = 8.4 kW

	 e.	 a =
Np

Ns
=

Vp

Vs
=

2400 V

240 V
= 10

EXAMPLE 23.5 

	 a.	 The source impedance for the supply in Fig. 23.8(a) is 500 Ω, 
which is a poor match with the 8 Ω input impedance of the speaker. 
You can expect only that the power delivered to the speaker will be 
significantly less than the maximum possible level. Determine the 
power to the speaker under the conditions in Fig. 23.8(a).

	 b.	 In Fig. 23.8(b), a commercially available 500 Ω to 8 Ω audio im-
pedance matching transformer was introduced between the speaker 
and the source. Determine the input impedance of the transformer 
and the power delivered to the speaker.

	 c.	 Compare the power delivered to the speaker under the conditions of 
parts (a) and (b).

	 d.	 Find the approximate turns ratio for the transformer.

23.5  Impedance Matching, Isolation,  
and Displacement

Transformers can be particularly useful when you are trying to ensure 
that a load receives maximum power from a source. Recall that maxi-
mum power is transferred to a load when its impedance is a match with 
the internal resistance of the supply. Even if a perfect match is unattain-
able, the closer the load matches the internal resistance, the greater is 
the power to the load and the more efficient is the system. Unfortu-
nately, unless it is planned as part of the design, most loads are not a 
close match with the internal impedance of the supply. However, trans-
formers have a unique relationship between their primary and second-
ary impedances that can be put to good use in the impedance matching 
process. Example 23.5 demonstrates the significant difference in the 
power delivered to the load with and without an impedance matching 
transformer.
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Solutions: 

	 a.	 The source current:

Is =
E

RT
=

120 V

500 Ω + 8 Ω
=

120 V

508 Ω
= 236.2 mA

		  The power to the speaker:

P = I2R = (236.2 mA)2 # 8 Ω ≅ 446.3 mW @ 0.45 W

		  or less than 1>2 W.
	 b.	 Since the input impedance of the transformer matches that of the 

source, maximum power transfer conditions have been established, 
and the source current is now determined by

Is =
E

RT
=

120 V

500 Ω + 500 Ω
=

120 V

1000 Ω
= 120 mA

		  The power to the primary (which equals that to the secondary for 
the ideal transformer) is

P = I2R = (120 mA)2 # 500 Ω = 7.2 W

		  The result is not in milliwatts, as obtained above, and exceeds 7 W, 
which is a significant improvement.

	 c.	 Comparing levels, we see that 7.2 W>446.3 mW = 16.1, or more 
than 16 times the power is delivered to the speaker using the imped-
ance matching transformer.

	 d.	  Zp = a2ZL

 a = B Zp

ZL
= A500 Ω

8 Ω
= 7.91 ≅ 8 : 1

Another important application of the impedance matching capabili-
ties of a transformer is the matching of the 300 Ω twin line transmis-
sion line from a television antenna to the 75 Ω input impedance of a 
television (ready-made for the 75 Ω coaxial cable), as shown in Fig. 
23.9. A match must be made to ensure the strongest signal to the televi-
sion receiver.

Using the equation Zp = a2ZL, we find

300 Ω = a275 Ω

and	 a = A300 Ω
75 Ω

= 14 = 2

with	 Np : Ns = 2 : 1  (a step@down transformer)

(a) (b)

+

Vg

–

8 �

120 V

Rs

500 �

: 500 � 8 �

Zp

+

Vg

–

8 �

120 V

Rs

500 �

FIG. 23.8
Example 23.5.

75 �

TV input

300 �:75 �

FIG. 23.9
Television impedance matching transformer.
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EXAMPLE 23.6  Impedance matching transformers are also quite evi-
dent in public address systems, such as the one appearing in the 70.7 V 
system in Fig. 23.10. Although the system has only one set of output 
terminals, up to four speakers can be connected to this system (the num-
ber is a function of the chosen system). Each 8 Ω speaker is connected 
to the 70.7 V line through a 10 W audio-matching transformer (defining 
the frequency range of linear operation).

	 a.	 If each speaker in Fig. 23.10 can receive 10 W of power, what is the 
maximum power drain on the source?

	 b.	 For each speaker, determine the impedance seen at the input side of 
the transformer if each is operating under its full 10 W of power.

	 c.	 Determine the turns ratio of the transformers.
	 d.	 At 10 W, what are the speaker voltage and current?
	 e.	 What is the load seen by the source with one, two, three, or four 

speakers connected?

Public address
system

Very low output impedance

70.7 V
+

–

8 � 10 W
matching audio
transformers

8 � speakers

FIG. 23.10
Public address system.

Solutions: 

	 a.	 Ideally, the primary power equals the power delivered to the load, 
resulting in a maximum of 40 W from the supply.

	 b.	 The power at the primary is

Pp = VpIp = (70.7 V)Ip = 10 W

and	 Ip =
10 W

70.7 V
= 141.4 mA

so that	 Zp =
Vp

Ip
=

70.7 V

141.4 mA
= 500 �

	 c.	 Zp = a2ZL 1 a = B Zp

ZL
= A500 Ω

8 Ω
= 162.5 = 7.91 @ 8 : 1

	 d.	 Vs = VL =
Vp

a
=

70.7 V

7.91
= 8.94 V @ 9 V

	 e.	 All the speakers are in parallel. Therefore,

One speaker:	 RT = 500 �

Two speakers:	 RT =
500 Ω

2
= 250 �
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Three speakers:	 RT =
500 Ω

3
= 167 �

Four speakers:	 RT =
500 Ω

4
= 125 �

		  Even though the load seen by the source varies with the number of 
speakers connected, the source impedance is so low (compared to 
the lowest load of 125 Ω) that the terminal voltage of 70.7 V is es-
sentially constant. This is not the case where the desired result is to 
match the load to the input impedance; rather, it was to ensure 70.7 V 
at each primary, no matter how many speakers were connected, and 
to limit the current drawn from the supply.

The transformer is frequently used to isolate one portion of an elec-
trical system from another. Isolation implies the absence of any direct 
physical connection. As a first example of its use as an isolation device, 
consider the measurement of line voltages on the order of 40,000 V 
(Fig. 23.11).

Lines

40,000 V

+

–

Np

Ns
=  400  =  a

Voltmeter

100 V
+

–
V

FIG. 23.11
Isolating a high-voltage line from the point of measurement.

To apply a voltmeter across 40,000 V would obviously be a danger-
ous task due to the possibility of physical contact with the lines when 
making the necessary connections. Including a transformer in the trans-
mission system as original equipment can bring the potential down to a 
safe level for measurement purposes and can determine the line voltage 
using the turns ratio. Therefore, the transformer serves both to isolate 
and to step down the voltage.

As a second example, consider the application of the voltage yx to the 
vertical input of the oscilloscope (a measuring instrument) in Fig. 23.12. 
If the connections are made as shown, and if the generator and oscillo-
scope have a common ground, the impedance Z2 has been effectively 
shorted out of the circuit by the ground connection of the oscilloscope. 
The input voltage to the oscilloscope is therefore meaningless as far as 
the voltage yx is concerned. In addition, if Z2 is the current-limiting 
impedance in the circuit, the current in the circuit may rise to a level that 
causes severe damage to the circuit. If a transformer is used as shown in 
Fig. 23.13, this problem is eliminated, and the input voltage to the oscil-
loscope will be yx.

vx

+

–

Vertical channel

vg

+

–
+

–

Oscilloscope

Z1

Z2

FIG. 23.12
Demonstrating the shorting effect introduced by the 

grounded side of the vertical channel of an 
oscilloscope.

Z1vx

+

– Oscilloscope

1 1:

Z2

V

FIG. 23.13
Correcting the situation of Fig. 23.12 using an 

isolation transformer.
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The linear variable differential transformer (LVDT) is a sensor that 
can reveal displacement using transformer effects. In its simplest form, 
the LVDT has a central winding and two secondary windings, as shown 
in Fig. 23.14(a). A ferromagnetic core inside the windings is free to 
move as dictated by some external force. A constant, low-level ac volt-
age is applied to the primary, and the output voltage is the difference 
between the voltages induced in the secondaries. If the core is in the 
position shown in Fig. 23.14(b), a relatively large voltage is induced 
across the secondary winding labeled coil 1, and a relatively small volt-
age is induced across the secondary winding labeled coil 2 (essentially 
an air-core transformer for this position). The result is a relatively large 
secondary output voltage. If the core is in the position shown in Fig. 
23.14(c), the flux linking each coil is the same, and the output voltage 
(being the difference) will be quite small. In total, therefore, the position 
of the core can be related to the secondary voltage, and a position-
versus-voltage graph can be developed as shown in Fig. 23.14(d). Due 
to the nonlinearity of the B-H curve, the curve becomes somewhat non-
linear if the core is moved too far out of the unit.

(a)

Ferromagnetic core

Primary winding

Secondary
coil 1

Secondary
coil 2

End plate

(b)

xmax

e1max
+ –

e2min
+ –

e1 – e2 = eTmax

xmin

(e1 = e2)

+ – + –

e1 – e2 = eTmin

(c)

(d)

0

eT (induced voltage)

xmax x displacement

eTmax

e1 e2

FIG. 23.14
LVDT transformer: (a) construction; (b) maximum displacement; (c) minimum displacement;  

(d) graph of induced voltage versus displacement.

23.6 E quivalent Circuit (Iron-Core 
Transformer)

For the nonideal or practical iron-core transformer, the equivalent circuit 
appears as in Fig. 23.15. As indicated, part of this equivalent circuit 
includes an ideal transformer. The remaining elements of Fig. 23.15 are 
those elements that contribute to the nonideal characteristics of the 
device. The resistances Rp and Rs are simply the dc or geometric resist-
ance of the primary and secondary windings, respectively. For the pri-
mary and secondary coils of a transformer, there is a small amount of 
flux that links each coil but does not pass through the core, as shown in 
Fig. 23.16 for the primary winding. This leakage flux, representing a 
definite loss in the system, is represented by an inductance Lp in the pri-
mary circuit and an inductance Ls in the secondary.



Equivalent Circuit (Iron-Core Transformer)    1061

The resistance Rc represents the hysteresis and eddy current losses 
(core losses) within the core due to an ac flux through the core. The 
inductance Lm (magnetizing inductance) is the inductance associated 
with the magnetization of the core, that is, the establishing of the flux 
fm in the core. The capacitances Cp and Cs are the lumped capaci-
tances of the primary and secondary circuits, respectively, and Cw rep-
resents the equivalent lumped capacitances between the windings of 
the transformer.

Since i′p is normally considerably larger than ifm
 (the magnetizing 

current), we will ignore ifm
 for the moment (set it equal to zero), 

resulting in the absence of Rc and Lm in the reduced equivalent circuit 
in Fig. 23.17. The capacitances Cp, Cw, and Cs do not appear in the 
equivalent circuit in Fig. 23.17 since their reactance at typical operat-
ing frequencies do not appreciably affect the transfer characteristics 
of the transformer.

–

+

Ep

Rp Lp

RcCp Np Ns RLCs EsLm

RsLs

–

+
ip

ifm
i'p

Cw

Ideal transformer

FIG. 23.15
Equivalent circuit for the practical iron-core transformer.

Φm

Φleakage

Φm

Φleakage

FIG. 23.16
Identifying the leakage flux of the primary.

–

+

Ep

Rp Lp Np Ns

RL

RsLs

–

+

Es

Ideal transformer

a  =
Np

Ns

FIG. 23.17
Reduced equivalent circuit for the nonideal iron-core transformer.

If we now reflect the secondary circuit through the ideal transformer 
using Eq. (23.19), as shown in Fig. 23.18(a), we will have the load and 
generator voltage in the same continuous circuit. The total resistance 
and inductive reactance of the primary circuit are determined by

	 Requivalent = Re = Rp + a2Rs	 (23.22)

and	 Xequivalent = Xe = Xp + a2Xs	 (23.23)
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which result in the useful equivalent circuit of Fig. 23.18(b). The load 
voltage can be obtained directly from the circuit in Fig. 23.18(b) through 
the voltage divider rule:

aVL =
RiVg

(Re + Ri) + jXe

and	 VL =
aRLVg

(Re + a2RL) + jXe
	 (23.24)

The network in Fig. 23.18(b) also allows us to calculate the generator 
voltage necessary to establish a particular load voltage. The voltages across 
the elements in Fig. 23.18(b) have the phasor relationship indicated in 
Fig. 23.19(a). Note that the current is the reference phasor for drawing the 
phasor diagram. That is, the voltages across the resistive elements are in 
phase with the current phasor, while the voltage across the equivalent 
inductance leads the current by 90°. The primary voltage, by Kirchhoff’s 
voltage law, is then the phasor sum of these voltages, as indicated in Fig. 
23.19(a). For an inductive load, the phasor diagram appears in Fig. 23.19(b). 
Note that aVL leads I by the power-factor angle of the load. The remainder 
of the diagram is then similar to that for a resistive load. (The phasor dia-
gram for a capacitive load is left to the reader as an exercise.)

The effect of Re and Xe on the magnitude of Vg for a particular VL is 
obvious from Eq. (23.24) or Fig. 23.19. For increased values of Re or Xe, 
an increase in Vg is required for the same load voltage. For Re and 
Xe = 0, VL and Vg are simply related by the turns ratio.

EXAMPLE 23.7  For a transformer having the equivalent circuit in 
Fig. 23.20:

–

+

Ep

a2Rs Xp

Np Ns

RL  VL

–

+

Es

Ideal transformer

a2XsRp

Vg

–

+

–

+

Xe

Np Ns

RL  VL

Ideal transformer

Re

Vg

–

+

–

+

–

+

aVL

Ri  =  a2RL

(a) (b)

a  =
Np

Ns
a  =

Np

Ns

FIG. 23.18
Reflecting the secondary circuit into the primary side of the iron-core transformer.

aVLI

Vg
IXe

IXe

IRe

Vg

I

aVL

(power-factor angle of the load)

(a)

(b)

IRe

FIG. 23.19
Phasor diagram for the iron-core transformer 
with (a) unity power-factor load (resistive) and 

(b) lagging power-factor load (inductive).

Ip  =  10 A ∠ 0°

Xp

RL

Ideal transformer

Rp

Vg

–

+
VL

–

+1 � 2 � 2 : 1

RsXs

1 �2 �

60 �

FIG. 23.20
Example 23.7
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	 a.	 Determine Re and Xe.
	 b.	 Determine the magnitude of the voltages VL and Vg.
	 c.	 Determine the magnitude of the voltage Vg to establish the same 

load voltage in part (b) if Re and Xe = 0 Ω. Compare with the result 
of part (b).

Solutions: 

	 a.	 Re = Rp + a2Rs = 1 Ω + (2)2(1 Ω) = 5 �
		  Xe = Xp + a2Xs = 2 Ω + (2)2(2 Ω) = 10 �
	 b.	 The transformed equivalent circuit appears in Fig. 23.21.

aVL = (Ip)(a
2RL) = 2400 V

		  Thus,

VL =
2400 V

a
=

2400 V

2
= 1200 V

		  and

 Vg = Ip(Re + a2RL + jXe)
 = 10 A(5 Ω + 240 Ω + j 10 Ω) = 10 A(245 Ω + j 10 Ω)

 Vg = 2450 V + j 100 V = 2452.04 V ∠2.34°
 = 2452.04 V j2.34°

Vg

–

+

Ip  =  10 A ∠ 0° Re

5 �

Xe

10 �

aVL a2RL  =  (4)(60 �)  =  240 �
–

+

FIG. 23.21
Transformed equivalent circuit of Fig. 23.20.

	 c.	 For Re and Xe = 0, Vg = aVL = (2)(1200 V) = 2400 V.
Therefore, it is necessary to increase the generator voltage by 

52.04 V (due to Re and Xe) to obtain the same load voltage.

23.7  Frequency Considerations

For certain frequency ranges, the effect of some parameters in the equiva-
lent circuit of the iron-core transformer in Fig. 23.15 should not be ignored. 
Since it is convenient to consider a low-, mid-, and high-frequency region, 
the equivalent circuits for each are now introduced and briefly examined.

For the low-frequency region, the series reactance (2pfL) of the pri-
mary and secondary leakage reactances can be ignored since they are 
small in magnitude. The magnetizing inductance must be included, 
however, since it appears in parallel with the secondary reflected cir-
cuit, and small impedances in a parallel network can have a dramatic 
impact on the terminal characteristics. The resulting equivalent network 
for the low-frequency region is provided in Fig. 23.22(a). As the fre-
quency decreases, the reactance of the magnetizing inductance reduces 
in magnitude, causing a reduction in the voltage across the secondary 
circuit. For f = 0 Hz, Lm is ideally a short circuit, and VL = 0. As the 

Rp

–

+

Rc a2RL aVL

a2Rs

LmVg

–

+

(a)

Rp

–

+

a2RL aVL

a2Rs

Vg

–

+

(b)

Rc

FIG. 23.22
(a) Low-frequency reflected equivalent circuit; 

(b) mid-frequency reflected circuit.
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frequency increases, the reactance of Lm is eventually sufficiently large 
compared with the reflected secondary impedance to be neglected. The 
mid-frequency reflected equivalent circuit then appears as shown in 
Fig. 23.22(b). Note the absence of reactive elements, resulting in an in-
phase relationship between load and generator voltages.

For higher frequencies, the capacitive elements and primary and sec-
ondary leakage reactances must be considered, as shown in Fig. 23.23. 
For discussion purposes, the effects of Cw and Cs appear as a lumped 
capacitor C in the reflected network in Fig. 23.23; Cp does not appear 
since the effect of C predominates. As the frequency of interest increases, 
the capacitive reactance (XC = 1>2pfC) decreases to the point that it 
will have a shorting effect across the secondary circuit of the trans-
former, causing VL to decrease in magnitude.

–

+

Rc

Rp

Vg

Xp a2Xs a2Rs

a2RL aVLC

–

+

FIG. 23.23
High-frequency reflected equivalent circuit.

A typical iron-core transformer-frequency response curve appears in 
Fig. 23.24. For the low- and high-frequency regions, the primary ele-
ment responsible for the drop-off is indicated. The peaking that occurs 
in the high-frequency region is due to the series resonant circuit estab-
lished by the inductive and capacitive elements of the equivalent circuit. 
In the peaking region, the series resonant circuit is in, or near, its reso-
nant or tuned state.

VL (for fixed Vg)

(Lm)

0

(C)

100 1000 10,000 100,000 f (Hz)
(log scale)

Fairly flat
response region

(VL least sensitive to f )

FIG. 23.24
Transformer-frequency response curve.

23.8 S eries connection of Mutually 
Coupled Coils

In Chapter 11, we found that the total inductance of series isolated coils 
was determined simply by the sum of the inductances. For two coils that 
are connected in series but also share the same flux linkages, such as 
those in Fig. 23.25(a), a mutual term is introduced that alters the total 
inductance of the series combination. The physical picture of how the 
coils are connected is indicated in Fig. 23.25(b). An iron core is included, 
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although the equations to be developed are for any two mutually coupled 
coils with any value of coefficient of coupling k. When referring to the 
voltage induced across the inductance L1 (or L2) due to the change in 
flux linkages of the inductance L2 (or L1, respectively), the mutual 
inductance is represented by M12. This type of subscript notation is par-
ticularly important when there are two or more mutual terms.

Due to the presence of the mutual term, the induced voltage e1 is 
composed of that due to the self-inductance L1 and that due to the mutual 
inductance M12. That is,

e1 = L1
di1
dt

+ M12
di2
dt

However, since i1 = i2 = i,

e1 = L1
di

dt
+ M12

di

dt

or	 e1 = (L1 + M12) 
di

dt
  (volts, V)	 (23.25)

and, similarly,

	 e2 = (L2 + M12) 
di

dt
  (volts, V)	 (23.26)

For the series connection, the total induced voltage across the series 
coils, represented by eT, is

eT = e1 + e2 = (L1 + M12) 
di

dt
+ (L2 + M12) 

di

dt

or	 eT = (L1 + L2 + M12 + M12) 
di

dt

and the total effective inductance is

	 LT(+) = L1 + L2 + 2M12  (henries, H)	 (23.27)

The subscript (+) was included to indicate that the mutual terms have 
a positive sign and are added to the self-inductance values to determine 
the total inductance. If the coils are wound such as shown in Fig. 23.26, 
where f1 and f2 are in opposition, the induced voltages due to the 
mutual terms oppose that due to the self-inductance, and the total induct-
ance is determined by

	 LT(-) = L1 + L2 - 2M12  (henries, H)	 (23.28)

Through Eqs. (23.27) and (23.28), the mutual inductance can be 
determined by

	 M12 =
1

4
 (LT(+) - LT(-))	 (23.29)

Eq. (23.29) is very effective in determining the mutual inductance 
between two coils. It states that the mutual inductance is equal to one-
quarter the difference between the total inductance with a positive and 
negative mutual effect.

+ –e1 + –e2

Iron core

M  =  M12 (+)
L1 L2

(a)

L1 L2

M12 (+)

+ –e1 + –e2
i2

(b)

i1

  1   2

FIG. 23.25
Mutually coupled coils connected in series.

M12 (–) L2L1

  1   2i1 i2

FIG. 23.26
Mutually coupled coils connected in series with 

negative mutual inductance.
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From the preceding, it should be clear that the mutual inductance 
directly affects the magnitude of the voltage induced across a coil since 
it determines the net inductance of the coil. Additional examination 
reveals that the sign of the mutual term for each coil of a coupled pair is 
the same. For LT(+) they are both positive, and for LT(-) they are both 
negative. On a network schematic where it is inconvenient to indicate 
the windings and the flux path, a system of dots is used that determines 
whether the mutual terms are to be positive or negative. The dot conven-
tion is shown in Fig. 23.27 for the series coils in Figs. 23.25 and 23.26.

If the current through each of the mutually coupled coils is going 
away from (or toward) the dot as it passes through the coil, the mutual 
term will be positive, as shown for the case in Fig 23.27(a). If the arrow 
indicating current direction through the coil is leaving the dot for one 
coil and entering the dot for the other, the mutual term is negative.

A few possibilities for mutually coupled transformer coils are indi-
cated in Fig. 23.28(a). The sign of M is indicated for each. When deter-
mining the sign, be sure to examine the current direction within the coil 
itself. In Fig. 23.28(b), one direction is indicated outside for one coil and 
through for the other. It initially may appear that the sign should be pos-
itive since both currents enter the dot, but the current through coil 1 is 
leaving the dot; hence a negative sign is in order.

L1 L2
(a)

L1 L2
(b)

FIG. 23.27
Dot convention for the series coils in (a) Fig. 23.25 

and (b) Fig. 23.26.

(a) (b)

M (+) M (+) M (–) M (–)

FIG. 23.28
Defining the sign of M for mutually coupled transformer coils.

The dot convention also reveals the polarity of the induced voltage 
across the mutually coupled coil. If the reference direction for the cur-
rent in a coil leaves the dot, the polarity at the dot for the induced voltage 
of the mutually coupled coil is positive. In the first two figures in 
Fig. 23.28(a), the polarity at the dots of the induced voltages is positive. 
In the third figure in Fig. 23.28(a), the polarity at the dot of the right coil 
is negative, while the polarity at the dot of the left coil is positive, since 
the current enters the dot (within the coil) of the right coil. The com-
ments for the third figure in Fig. 23.28(a) can also be applied to the last 
figure in Fig. 23.28(a).

EXAMPLE 23.8  Find the total inductance of the series coils in Fig. 23.29.

Solution: 
	 Current vectors leave dot.

	 b
Coil 1:  L1 + M12 - M13
	 a
	 One current vector enters dot, while one leaves.

Coil 2:  L2 + M12 - M23

Coil 3:  L3 - M23 - M13

M12  =  2 H M23  =  3 H

L1 =  5 H L2  =  10 H L3  =  15 Hi

M13  =  1 H

FIG. 23.29
Example 23.8.



Air-Core Transformer    1067

and

 LT = (L1 + M12 - M13) + (L2 + M12 - M23) + (L3 - M23 - M13)

 = L1 + L2 + L3 + 2M12 - 2M23 - 2M13

Substituting values, we find

 LT = 5 H + 10 H + 15 H + 2(2 H) - 2(3 H) - 2(1 H)

 = 34 H - 8 H = 26 H

EXAMPLE 23.9  Write the mesh equations for the transformer network 
in Fig. 23.30.

Solution:  For each coil, the mutual term is positive, and the sign of M 
in Xm = vM ∠90° is positive, as determined by the direction of I1 and 
I2. Thus,

E1 - I1R1 - I1XL1
 ∠90° - I2Xm ∠90° = 0

or	 E1 - I1(R1 + jXL1
) - I2Xm ∠90° = 0

For the other loop,

-I2XL2
 ∠90° - I1Xm ∠90° - I2RL = 0

or	 I2(RL + jXL2
) - I1Xm ∠90° = 0

23.9 Ai r-Core Transformer

As the name implies, the air-core transformer does not have a ferromag-
netic core to link the primary and secondary coils. Rather, the coils are 
placed sufficiently close to have a mutual inductance that establishes the 
desired transformer action. In Fig. 23.31, current direction and polarities 
have been defined for the air-core transformer. Note the presence of a 
mutual inductance term M, which is positive in this case, as determined 
by the dot convention.

Rp

+

–

vg

Zi

ip +

–

ep Lp esLs

+

–

vL

is+

–

Rs

ZL

Ideal transformer

M

FIG. 23.31
Air-core transformer equivalent circuit.

L1

–

+
L2E1 I1 I2 RL

R1
M

FIG. 23.30
Example 23.9.

From past analysis in this chapter, we now know that

	 ep = Lp 
dip

dt
+ M

dis
dt

	 (23.30)

for the primary circuit.
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We found in Chapter 11 that for the pure inductor, with no mutual 
inductance present, the mathematical relationship

y1 = L
di1
dt

resulted in the following useful form of the voltage across an inductor:

V1 = I1XL ∠90°  where  XL = vL

Similarly, it can be shown, for a mutual inductance, that

y1 = M
di2
dt

results in

	 V1 = I2Xm ∠90°  where Xm = vM	 (23.31)

Eq. (23.30) can then be written (using phasor notation) as

	 Ep = IpXLp
 ∠90° + IsXm ∠90°	 (23.32)

and	 Vg = IpRp ∠0° + IpXLp
 ∠90° + IsXm ∠90°

or	 Vg = Ip(Rp + jXLp
) + IsXm ∠90°	 (23.33)

For the secondary circuit,

	 Es = IsXLs
 ∠90° + IpXm ∠90°	 (23.34)

and	 VL = IsRs ∠0° + IsXLs
 ∠90° + IpXm ∠90°

or	 VL = I(Rs + jXLs
) + IpXm ∠90°	 (23.35)

Substituting	 VL = -IsZL

into Eq. (23.35) results in

0 = Is(Rs + jXLs
+ ZL) + IpXm ∠90°

Solving for Is, we have

Is =
-IpXm ∠90°

Rs + jXLs
+ ZL

and substituting into Eq. (23.33), we obtain

Vg = Ip(Rp + jXLp
) + a -IpXm ∠90°

Rs + jXLs
+ ZL

bXm ∠90°

Thus, the input impedance is

Zi =
Vg

Ip
= Rp + jXLp

-
(Xm ∠90°)2

Rs + jXLs
+ ZL

or, defining

Zp = Rp + jXLp
  Zs = Rs + jXLs

  and  Xm ∠90° = + jvM
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we have

Zi = Zp -
(+ jvM)2

Zs + ZL

and	 Zi = Zp -
(vM)2

Zs + ZL
	 (23.36)

The term (vM)2>(Zs + ZL) is called the coupled impedance, and it is 
independent of the sign of M since it is squared in the equation. Consider 
also that since (vM)2 is a constant with 0° phase angle, if the load ZL is 
resistive, the resulting coupled impedance term appears capacitive due 
to division of (Zs + RL) into (vM)2. This resulting capacitive reactance 
opposes the series primary inductance Lp, causing a reduction in Zi. 
Including the effect of the mutual term, the input impedance to the net-
work appears as shown in Fig. 23.32.

EXAMPLE 23.10  Determine the input impedance to the air-core trans-
former in Fig. 23.33.

   2M2

Zs + ZL
––––––

Zi

Rp Lp

Coupled
impedance

FIG. 23.32
Input characteristics for the air-core transformer.

Rp

Lp  =  6 H

M  =  0.9 H

Ls  =  1 H

Rs

0.5 �3 �

q  =  400

RL 40 �Zi

FIG. 23.33
Example 23.10.

Solution: 

 Zi = Zp +
(vM)2

Zs + ZL

 = Rp + jXLp
+

(vM)2

Rs + jXLs
+ RL

 = 3 Ω + j 2.4 kΩ +
((400 rad/s)(0.9 H))2

0.5 Ω + j 400 Ω + 40 Ω

 ≅  j 2.4 kΩ +
129.6 * 103 Ω
40.5 + j 400

 = j 2.4 kΩ + 322.4 Ω ∠-84.22°	 8
	 capacitive

 = j 2.4 kΩ + (0.0325 kΩ - j 0.3208 kΩ)

 = 0.0325 kΩ + j (2.40 - 0.3208) kΩ

and	 Zi = Ri + jXLi
= 32.5 � + j 2079 � = 2079.25 � j89.10°
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23.10 N ameplate Data

A typical iron-core power transformer rating included in the nameplate 
data for the transformer might be the following:

5 kVA  2000>100 V  60 Hz

The 2000 V or the 100 V can be either the primary or the secondary volt-
age; that is, if 2000 V is the primary voltage, then 100 V is the secondary 
voltage, and vice versa. The 5 kVA is the apparent power (S = VI) rat-
ing of the transformer. If the secondary voltage is 100 V, then the maxi-
mum load current is

IL =
S

VL
=

5000 VA

100 V
= 50 A

and if the secondary voltage is 2000 V, then the maximum load current is

IL =
S

VL
=

5000 VA

2000 V
= 2.5 A

The transformer is rated in terms of the apparent power rather than 
the average, or real, power for the reason demonstrated by the circuit in 
Fig. 23.34. Since the current through the load is greater than that deter-
mined by the apparent power rating, the transformer may be perma-
nently damaged. Note, however, that since the load is purely capacitive, 
the average power to the load is zero. The wattage rating is therefore 
meaningless regarding the ability of this load to damage the transformer.

The transformation ratio of the transformer under discussion can be 
either of two values. If the secondary voltage is 2000 V, the transforma-
tion ratio is a = Np>Ns = Vg>VL = 100 V>2000 V = 1>20, and the 
transformer is a step-up transformer. If the secondary voltage is 100 V, 
the transformation ratio is a = Np>Ns = Vg>VL = 2000 V>100 V = 20, 
and the transformer is a step-down transformer.

The rated primary current can be determined by applying Eq. (23.18):

Ip =
Is

a

which is equal to [2.5 A>(1>20)] = 50 A if the secondary voltage is 
2000 V, and (50 A>20) = 2.5 A if the secondary voltage is 100 V.

To explain the necessity for including the frequency in the nameplate 
data, consider Eq. (23.12):

Ep = 4.44fpNpΦm

and the B-H curve for the iron core of the transformer (Fig. 23.35).

IL = –––––– = 4 A > 2.5 A (rated)2000 V
500 �

+

2000 V XC = 500 �

Iron core
–

Secondary

FIG. 23.34
Demonstrating why transformers are rated  

in kVA rather than kW.

Knee of curve

B  =
�m

Acore

�B  =
��m
Acore

�H  =
N1�I1
Icore

H  =
N1I1
Icore

0

FIG. 23.35
Demonstrating why the frequency of application is important for transformers.
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The point of operation on the B-H curve for most transformers is at 
the knee of the curve. If the frequency of the applied signal drops and Np 
and Ep remain the same, then Φm must increase in magnitude, as deter-
mined by Eq. (23.12):

Φmc =
Ep

4.44fpTNp

The result is that B increases, as shown in Fig. 23.35, causing H to 
increase also. The resulting ∆I could cause a very high current in the 
primary, resulting in possible damage to the transformer.

23.11 T ypes of Transformers

Transformers are available in many different shapes and sizes. Some of 
the more common types include the power transformer, audio trans-
former, IF (intermediate frequency) transformer, and RF (radio fre-
quency) transformer. Each is designed to fulfill a particular requirement 
in a specific area of application. The symbols for some of the basic types 
of transformers are shown in Fig. 23.36.

Air-core Iron-core Variable-core

FIG. 23.36
Transformer symbols.

The method of construction varies from one transformer to another. 
Two of the many different ways in which the primary and secondary 
coils can be wound around an iron core are shown in Fig. 23.37. In either 
case, the core is made of laminated sheets of ferromagnetic material sepa-
rated by an insulator to reduce the eddy current losses. The sheets them-
selves also contain a small percentage of silicon to increase the electrical 
resistivity of the material and further reduce the eddy current losses.

Laminated sheets

Secondary Primary

Secondary

(b) Shell type(a) Core type

Primary

FIG. 23.37
Types of ferromagnetic core construction.

(c) Amorphous metal alloy
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In recent years there has been a move toward using an amorphous 
metal alloy to form the core of the transformer. Using this alloy can 
result in a 70 to 80% drop in the no-load losses of a transformer. No-load 
losses are those that occur in the absence of a load on the transformer to 
draw current through the windings. Keep in mind that a distribution 
transformer is active 24 hours a day even if a load is not applied. Under 
no-load conditions the applied sinusoidal voltages will continue to 
establish hysteresis and eddy current losses in the core. Reducing this 
loss to the levels indicated above is a benefit that cannot be ignored. In a 
standard silicon-steel core the atoms of the core have an organized crys-
talline structure. In an amorphous alloy a random distribution of atoms 
results in a variety of positive electrical characteristics for the trans-
former. Most important in the fact that there is less “friction” in the iron 
core from the magnetizing and demagnetizing of the core that occur dur-
ing each cycle of the current in the windings. The result is a significant 
reduction in hysteresis losses. In addition, the alloy is quite malleable 
and can be made in sheets as thin as 0.03 m, which is about 1/9 the thick-
ness of the laminated sheets of a standard transformer. The additional 
layers increase the resistance in the path of the eddy currents that will try 
to flow in the core material and contribute to the core losses.

An amorphous alloy is produced by first heating the metal to a very 
high temperature to put it in a liquid state. If it is then rapidly cooled, 
resulting in a metal with the desired random molecular structure. The 
amorphous core of Fig. 23.37(c) is constructed by tightly winding the 
very thin layers of the amorphous alloy around a rectangular block to 
create the inner shape shown in the figure.

A variation of the core-type transformer appears in Fig. 23.38. This 
transformer is designed for low-profile (the 1.1 VA size has a maximum 
height of only 1 in.) applications in power, control, and instrumentation 
applications. There are actually two transformers on the same core, with 
the primary and secondary of each wound side by side. The schematic is 
provided in Fig. 23.38 for a single 115 V, 50/60 Hz input using a series 
connection with centertap for the output. For this unit, the output voltage 
is 10 V line to centertap with a current rating of 0.11 A, satisfying the 
condition that (10 V) (0.11 A) = 1.1 VA as indicated above. Note the dot 
convention and the commercial representation of the transformer coils.

The autotransformer [Fig. 23.39(b)] is a type of power transformer 
that, instead of employing the two-circuit principle (complete isolation 
between coils), has one winding common to both the input and the output 

1

11 5 V
50/60 Hz

2

3

4

5

6

7

8

ac
output

Series connection
with centertap

ac
output

CT

FIG. 23.38
Laminated power transformer.
(Tamura Corporation of America)

+

–

+

–

+

–

+

–

+

–

+

–

++

–

EpVR  =  120 V Es VL  =  6 V

I2  =  1 A

—  A1
20

Vg  =  120 V Ep  =  120 V

VL  =  126 V

Es  =  6 V

I2  =  1 A

I1  =  —  A1
20 I1  =  1—  A1

20 –

(a) (b)

FIG. 23.39
(a) Two-circuit transformer; (b) autotransformer.
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circuits. The induced voltages are related to the turns ratio in the same 
manner as that described for the two-circuit transformer. If the proper 
connection is used, a two-circuit power transformer can be used as an 
autotransformer. The advantage of using it as an autotransformer is that a 
larger apparent power can be transformed. This can be demonstrated by 
the two-circuit transformer of Fig. 23.39(a), shown in Fig. 23.39(b) as an 
autotransformer.

For the two-circuit transformer, note that S = ( 1
20 A)(120 V) = 6 VA, 

whereas for the autotransformer, S = (1 1
20 A)(120 V) = 126 VA, which 

is many times that of the two-circuit transformer. Note also that the cur-
rent and voltage of each coil are the same as those for the two-circuit 
configuration. The disadvantage of the autotransformer is obvious: loss 
of the isolation between the primary and secondary circuits.

A pulse transformer designed for printed-circuit applications where 
high-amplitude, long-duration pulses must be transferred without 
saturation appears in Fig. 23.40. Turns ratios are available from 1 : 1 to 
5 : 1 at maximum line voltages of 240 V rms at 60 Hz. The upper unit is 
for printed-circuit applications with isolated dual primaries, whereas the 
lower unit is the bobbin variety with a single primary winding.

The ultra-wideband audio transformer in Fig. 23.41 is designed to 
work in the frequency range of 300 Hz to 100 kHz. The unit is quite 
small, with dimensions of 0.31 in. by 0.41 in. for the area and 0.465 in. 
for the height. The ac impedance at the primary is 200 kΩ CT, and it is 
1 kΩ CT at secondary. The turns ratio is 14.1 CT:1 CT, with a maxi-
mum power rating of 10 mW. The dc resistance of the primary is 5.3 kΩ, 
with 120 Ω at the secondary.

23.12 T apped and Multiple-Load 
Transformers

For the center-tapped (primary) transformer in Fig. 23.42, where the 
voltage from the center tap to either outside lead is defined as Ep>2, the 
relationship between Ep and Es is

	
Ep

Es
=

Np

Ns
	 (23.37)

FIG. 23.40
Pulse transformers.

(DALE Electronics, Inc./Vishay Intertechnology, Inc.)

1

4
5
6

2
3

FIG. 23.41
Ultra-wideband transformer.

(Tamura Corporation of America)

+ A

B

CTE pZ i(A – B )

E p

2

E p

2

Z1/2

Z1/2

N p

2

N p

2

Ns E s

+

–

Z L

–

FIG. 23.42
Ideal transformer with a center-tapped primary.

For each half-section of the primary,

Z1>2 = aNp>2

Ns
b

2

ZL =
1

4
aNp

Ns
b

2

ZL
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with	 Zi(A - B)
= aNp

Ns
b

2

ZL

Therefore,	 Z1>2 =
1

4
 Zi	 (23.38)

For the multiple-load transformer in Fig. 23.43, the following 
equations apply:

	
Ei

E2
=

N1

N2
  

Ei

E3
=

N1

N3
  

E2

E3
=

N2

N3
	 (23.39)

The total input impedance can be determined by first noting that, for 
the ideal transformer, the power delivered to the primary is equal to the 
power dissipated by the load; that is,

P1 = PL2
+ PL3

and for resistive loads (Zi = Ri, Z2 = R2, and Z3 = R3),

Ei
2

Ri
=

E2
2

R2
+

E3
2

R3

or, since	 E2 =
N2

N1
Ei  and  E3 =

N3

N1
E1

then	
Ei

2

Ri
=

[(N2>N1)Ei]
2

R2
+

[(N3>N1)Ei]
2

R3

and	
Ei

2

Ri
=

Ei
2

(N1>N2)
2R2

+
Ei

2

(N1>N3)
2R3

Thus,	
1

Ri
=

1

(N1>N2)
2R2

+
1

(N1>N3)
2R3

	 (23.40)

indicating that the load resistances are reflected in parallel.
For the configuration in Fig. 23.44, with E2 and E3 defined as shown, 

Eqs. (23.39) and (23.40) are applicable.

23.13 N etworks With Magnetically 
Coupled Coils

For multiloop networks with magnetically coupled coils, the mesh-
analysis approach is most frequently applied. A firm understanding of 
the dot convention discussed earlier should make the writing of the 
equations quite direct and free of errors. Before writing the equations for 
any particular loop, first determine whether the mutual term is positive 
or negative, keeping in mind that it will have the same sign as that for 
the other magnetically coupled coil. For the two-loop network in 
Fig. 23.45, for example, the mutual term has a positive sign since the 
current through each coil leaves the dot. For the primary loop,

E1 - I1Z1 - I1ZL1
- I2Zm - Z2(I1 - I2) = 0

where M of Zm = vM ∠90° is positive, and

I1(Z1 + ZL1
+ Z2) - I2(Z2 - Zm) = E1

+

–

E2 Z2N2

+

–

E3 Z3N3

Zi
Ei N1

+

–

FIG. 23.43
Ideal transformer with multiple loads.

E2

N2

+

–

E3

N3
Zi

Ei N1

+

–

Z3

Z2

+

–

FIG. 23.44
Ideal transformer with a tapped secondary 

and multiple loads.

+

–

I2

E1
+

–

Z3

+

–
Z2

Z1

+

–

+ –

I1

I1 I2

M

FIG. 23.45
Applying mesh analysis to magnetically 

coupled coils.
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Note in the above that the mutual impedance was treated as if it were 
an additional inductance in series with the inductance L1 having a sign 
determined by the dot convention and the voltage across which is deter-
mined by the current in the magnetically coupled loop.

For the secondary loop,

-Z2(I2 - I1) - I2ZL2
- I1Zm - I2Z3 = 0

or	 I2(Z2 + ZL2
+ Z3) - I1(Z2 - Zm) = 0

For the network in Fig. 23.46, we find a mutual term between L1 and 
L2 and L1 and L3, labeled M12 and M13, respectively.

For the coils with the dots (L1 and L3), since each current through the 
coils leaves the dot, M13 is positive for the chosen direction of I1 and I3. 
However, since the current I1 leaves the dot through L1, and I2 enters the 
dot through coil L2, M12 is negative. Consequently, for the input circuit,

E1 - I1Z1 - I1ZL1
- I2(-Zm12

) - I3Zm13
= 0

or	 E1 - I1(Z1 + ZL1
) + I2Zm12

- I3Zm13
= 0

For loop 2,

 -I2Z2 - I2ZL2
- I1(-Zm12

) = 0

 -I1Zm12
+ I2(Z2 + ZL2

) = 0

and for loop 3,

 -I3Z3 - I3ZL3
- I1Zm13

= 0

or	  I1Zm13
+ I3(Z3 + ZL3

) = 0

In determinant form,

I1(Z1 + ZL1
) - I2Zm12

+ I3Zm13
= E1

-I1Zm12
+ I2(Z2 + ZL2

) + 0 = 0
I1Zm13

+ 0 + I3(Z3 + ZL3
) = 0

23.14 C urrent Transformers

A number of transformers called instrument transformers are designed 
to perform a specific measurement or function. The current trans-
former is designed to measure the current in a line without breaking the 
line to insert the meter in series with the conduction path. Due to the 
high currents and voltages encountered in a high-power distribution sys-
tem, the use of current transformers is a welcome option from a safety 
viewpoint.

The basic construction is quite simple, as shown in Fig. 23.47(a). The 
line in which the current is to be measured is the primary, whereas the sec-
ondary is a coil of many turns as shown in the figure. The result is a pri-
mary with only one turn and a secondary built a lot like an inductive toroid 
with many turns of fine wire. A commercial unit appears in Fig. 23.47(b). 
Some models have more than one turn in the primary winding although the 
majority have only one. Most current transformers are rated by their maxi-
mum current ratings rather than by the number of turns in the primary and 
secondary. A 5000 : 5 current transformer has a rated maximum current of 
5 A in the secondary circuit and 5000 A in the primary. Certainly, 5000 A 
in a power distribution system is a level to be concerned about validating 
the safety provided by the current transformer approach. The turns ratio is 
obviously 5000 : 5 = 1000 : 1 and will determine the current levels for all 

I2

L2

I3 Z3

I3

+

–

Z2I2

L3

Z1

I1
L1

I1

M12

M13

E1

FIG. 23.46
Applying mesh analysis to a network with two 

magnetically coupled coils.
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levels of current less than the maximum values. For a 200 : 1 current trans-
former the primary current is 200 times that of the secondary and the rated 
current in the secondary is 1 A with 200 A in the primary.

It is important that a load always be applied to the secondary of the 
current transformer. If left in the open-circuit state, very high voltages 
can develop across the terminals as determined by the basic transformer 
equation. If the primary voltage of the current transformer is 240 V and 
the turns ratio is 100 : 1, the voltage at the secondary could be 24 kV, 
which could cause serious damage if not loaded down.

If the line in which the current to be measured is already in place, 
then a clamp-on meter must be used as appearing in Fig. 13.80. Squeez-
ing the trigger will open the clamp (split the core) and, when released, 
the clamp will form a continuous toroid around the current-carrying 
wire. In such cases the load on the secondary is internal to the meter.

23.15 App lications

The transformer has appeared throughout the text in a number of 
described applications, from the basic dc supply to the flyback trans-
former of a simple flash camera. Transformers were used to increase or 
decrease the voltage or current level, to act as an impedance matching 
device, or in some cases to play a dual role of transformer action and 
reactive element. They are so common in such a wide variety of systems 
that it is important to become very familiar with their general character-
istics. For most applications, transformer design can be considered 
100% efficient. That is, the power applied is the power delivered to the 
load. In general, however, transformers are frequently the largest ele-
ment of a design and, because of the nonlinearity of the B-H curve, can 
cause some distortion of the transformed waveform. Therefore, they are 
useful only in situations where the applied voltage is changing with 
time. The application of a dc voltage to the primary results in 0 V at the 
secondary, but the application of a voltage that changes with time, no 

Isecondary

Secondary

Primary

Iprimary

Isecondary

(a)

FIG. 23.47
Current transformer: (a) Basic construction; (b) commercial unit.

(Leviton Manufacturing Co., Inc.)

(b)
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matter what its general appearance, results in a voltage on the secondary. 
Remember that even though it can provide isolation between the pri-
mary and secondary circuits, a transformer can transform the load 
impedance to the primary circuit at a level that can significantly affect 
the behavior of the network. Even the smallest impedance in the second-
ary can be made to appear very large in the primary when a step-down 
transformer is used.

Transformers, like every other component you may use, have power 
ratings. The larger the power rating, the larger is the resulting trans-
former, primarily because of the larger conductors in the windings to 
handle the current. The size of a transformer is also a function of the 
frequency involved. The lower the frequency, the larger is the required 
transformer, as is easily recognized by the size of large power trans-
formers (also affected by the current levels as mentioned above). For the 
same power level, the higher the frequency of transformation, the 
smaller the transformer can be. Because of eddy current and hysteresis 
losses in a transformer, the design of the core is quite important. A solid 
core would introduce high levels of such losses, whereas a core con-
structed of sheets of high-permeability steel with the proper insulation 
between the sheets or the use of an amorphous metal core would reduce 
the losses significantly.

Although very fundamental in their basic structure, transformers are 
among the basic building blocks of electric and electronic systems. 
There is not a publication on new components that does not include a 
new design for the variety of applications being developed every day.

Soldering Gun

Soldering and welding are two operations that are best performed by the 
application of heat that is unaffected by the thermal characteristics of the 
materials involved. In other words, the heat applied should not be sensi-
tive to the changing parameters of the welding materials, the metals 
involved, or the welding conditions. The arc (a heavy current) estab-
lished in the welding process should remain fixed in magnitude to ensure 
an even weld. This is best accomplished by ensuring a fixed current 
through the system even though the load characteristics may change—
that is, by ensuring a constant current supply of sufficient amperage to 
establish the required arc for the welding equipment or even heating of 
the soldering iron tip. A further requirement for the soldering process is 
that the heat developed be sufficient to raise the solder to its melting 
point of about 800°F.

The soldering gun of Fig. 23.48(a) employs a unique approach to 
establishing a fixed current through the soldering tip. The soldering tip is 
actually part of a secondary winding of transformer having only one turn 
as its secondary, as shown in Fig. 23.48(b). Because of the heavy currents 
that will be established in this single-turn secondary, it is quite large in 
size to ensure that it can handle the current and to minimize its resistance 
level. The primary of the transformer has many turns of thinner wire to 
establish the turns ratio necessary to establish the required current in the 
secondary. The Universal® unit of Fig. 23.48 is rated 140 W>100 W, 
indicating that it has two levels of power controlled by the trigger. As you 
pull the trigger, the first-setting will be at 100 W, and a fully depressed 
trigger will provide 140 W of power. The inductance of the primary is 
285 mH at the 140 W setting and 380 mH at the 100 W setting, indicating 
that the switch controls how many windings of the primary will be part of 
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the transformer action for each wattage rating, as shown in Fig. 23.48(c). 
Since inductance is a direct function of the number of turns, the 140 W 
setting has fewer turns than the 100 W setting. The dc resistance of the 
primary was found to be about 11.2 Ω for the 140 W setting and 12.8 Ω 
for the 100 W setting, which makes sense also since more turns will 
require a longer wire, and the resistance should increase accordingly.

Under rated operating conditions, the primary current for each setting 
can be determined using Ohm’s law in the following manner:

For 140 W,

Ip =
P

Vp
=

140 W

120 V
= 1.17 A

For 100 W,

Ip =
P

Vp
=

100 W

120 V
= 0.83 A

As expected, the current demand is more for the 140 W setting that for 
the 100 W setting. Using the measured values of input inductance and 

(a)

(b)

Applied
ac power

140 W

100 W

Primary

Core

Secondary

(c)

Primary

Is
Secondary

140 W 100 W

Ip

120 V ac

OFF

FIG. 23.48
Soldering gun: (a) appearance; (b) internal construction; (c) turns ratio control.
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resistance for the 140 W setting gives the equivalent circuit of Fig. 
23.49(a). Using the applied 60 Hz to determine the reactance of the coil 
and then determining the total impedance seen by the primary results in 
the following for the source current:

 XL = 2pfL = 2p(60 Hz)(285 mH) = 107.44 Ω
and	  ZT = R + jXL = 11.2 Ω + j 107.44 Ω = 108.02 Ω ∠84.05°

so that	 � Ip � = ` E

ZT
` =

120 V

108.02 Ω
= 1.11 A

which is a close match with the rated level.
For the 100 W level of Fig. 23.49(b), the following analysis would 

result:

 XL = 2pfL = 2p(60 Hz)(380 mH) = 143.26 Ω
and	  ZT = R + jXL = 12.8 Ω + j 143.26 Ω = 143.83 Ω ∠84.89°

so that	 � Ip � = ` E

ZT
` =

120 V

143.83 Ω
= 0.83 A

which is a match to hundredths place with the value calculated from 
rated conditions.

Removing the tip and measuring the primary and secondary voltages 
resulted in 120 V>0.38 V for the 140 W setting and 120 V>0.31 V for the 
100 W setting, respectively. Since the voltages of a transformer are 
directly related to the turns ratio, the ratio of the number of turns in the 
primary (Np) to that of the secondary (Ns) can be estimated by the fol-
lowing for each setting:

For 140 W,

Np

Ns
=

120 V

0.38 V
≅ 316

For 100 W,

Np

Ns
=

120 V

0.31 V
≅ 387

Looking at the photograph of Fig. 23.48(b), one would certainly con-
sider that there are 300 or more turns in the primary winding.

The currents of a transformer are related by the turns ratio in the fol-
lowing manner, permitting a calculation of the secondary current for 
each setting:

For 140 W,

Is =
Np

Ns
Ip = 316(1.17 A) ≅ 370 A

For 100 W,

Is =
Np

Ns
Ip = 387(0.83 A) ≅ 321 A

Quite clearly, the secondary current is much higher for the 140 W set-
ting. Using an Amp-Clamp® showed that the current in secondary 
exceeded 300 A when the power was first applied and the soldering tip 
was cold. However, as the tip heated up because of the high current lev-
els, the current through the primary dropped to about 215 A for the 
140 W setting and to 180 A for the 100 W setting. These high currents 
are part of the reason that the lifetime of most soldering tips on soldering 

Rp 12.8 �

Lp 380 mH

+

120 V
60 Hz

–

Ip

100 W
(b)

Rp 11.2 �

Lp 285 mH

+

120 V
60 Hz

–

Ip

140 W
(a)

FIG. 23.49
Equivalent circuits for the soldering iron  

of Fig. 23.48(a): at 140-W setting;  
(b) at 100-W setting.
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guns is about 20 hours. Eventually, the tip will simply begin to melt. 
Using these levels of current and the given power rating, we can approx-
imate the resistance of the secondary as follows:

For 140 W,

R =
P

I2 =
140 W

(215 A)2 ≅ 3 m�

For 100 W,

R =
P

I2 =
100 W

(180 A)2 ≅ 3 m�

which is low, as expected when you consider the cross-sectional area of 
the secondary and the fact that the tip is a short section of low-resistance, 
tin-plated copper.

One of the obvious advantages of the soldering gun versus the iron is 
that the iron is off when you release the trigger, thus reducing energy 
costs and extending the life of the tip. Applying dc current rather than ac 
to develop a constant current would be impractical because the high cur-
rent demand would require a series of large batteries in parallel.

The above investigation was particularly interesting because of the 
manner in which the constant current characteristic was established, the 
levels of current established, and the excellent manner in which some of 
the theory introduced in the text was verified.

Low-Voltage Compensation

At times during the year, peak demands from the power company can 
result in a reduced voltage down the line. In midsummer, for example, 
the line voltage may drop from 120 V to 100 V because of the heavy 
load often due primarily to air conditioners. However, air conditioners 
do not run as well under low-voltage conditions, so the following option 
using an autotransformer may be the solution.

In Fig. 23.50(a), an air conditioner drawing 10 A at 120 V is con-
nected through an autotransformer to the available supply, which has 
dropped to 100 V. Assuming 100% efficiency, the current drawn from 
the line would have to be 12 A to ensure that Pi = Po = 1200 W. Using 
the analysis introduced in Section 23.11, we find that the current in the 
primary winding is 2 A with 10 A in the secondary. The 12 A exist only 
in the line connecting the source to the primary. If the voltage level is 

(b)

Step-up isolation
transformer

Source

100 V

12 A
10 A

+

–

–

+

(a)

100 V

+

–

Source

12 A

2 A

10 A

Autotransformer

+

–

120 V air conditioner

120 V air conditioner

FIG. 23.50
Maintaining a 120 V supply for an air conditioner: (a) using an autotransformer;  

(b) using a traditional step-up transformer.



Applications    1081

increased using the traditional step-up transformer shown in Fig. 23.50(b), 
the same currents result at the source and load. However, note that the 
current through the primary is now 12 A, which is 6 times that in the 
autotransformer. The result is that the winding in the autotransformer can 
be much thinner due to the significantly lower current level.

Let us now examine the turns ratio required and the number of turns 
involved for each setup (associating one turn with each volt of the pri-
mary and secondary).

For the autotransformer,

Ns

Np
=

Vs

Vp
=

20 V

100 V
 1  

20 t

100 t

For the traditional transformer,

Ns

Np
=

Vs

Vp
=

120 V

100 V
 1  

120 t

100 t

In total, therefore, the autotransformer has only 10 turns in the second-
ary, whereas the traditional has 120. For the autotransformer, we need 
only 10 turns of heavy wire to handle the current of 10 A, not the full 
120 required for the traditional transformer. In addition, the total number 
of turns for the autotransformer is 110, compared to 220 for the tradi-
tional transformer.

The net result of all the above is that even though the protection 
offered by the isolation feature is lost, the autotransformer can be much 
smaller in size and weight and, therefore, less costly.

Ballast Transformer

Until just recently, all fluorescent lights like those in Fig. 23.51(a) had 
a ballast transformer as shown in Fig. 23.51(b). In many cases, its 
weight alone is almost equal to that of the fixture itself. In recent years, 

(a)

(b)

Power
leads

Ballast

FIG. 23.51
Fluorescent lamp: (a) general appearance;  

(b) internal view with ballast.
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a solid-state equivalent transformer has been developed that in time 
will replace most of the ballast transformers.

The basic connections for a single-bulb fluorescent light are provided 
in Fig. 23.52(a). Note that the transformer is connected as an autotrans-
former with the full applied 120 V across the primary. When the switch is 
closed, the applied voltage and the voltage across the secondary will add 
and establish a current through the filaments of the fluorescent bulb. The 
starter is initially a short circuit to establish the continuous path through 
the two filaments. In older fluorescent bulbs, the starter was a cylinder 
with two contacts, as shown in Fig. 23.52(b), which had to be replaced on 
occasion. It sat right under the fluorescent bulb near one of the bulb con-
nections. Now, as shown by the sketch of the inside of a ballast trans-
former in Fig. 23.52(c), the starter is now commonly built into the ballast 
and can no longer be replaced. The voltage established by the auto-
transformer action is sufficient to heat the filaments but not light the fluo-
rescent bulb. The fluorescent lamp is a long tube with a coating of 
fluorescent paint on the inside. It is filled with an inert gas and a small 
amount of liquid mercury. The distance between the electrodes at the 
ends of the lamp is too much for the applied autotransformer voltage to 
establish conduction. To overcome this problem, the filaments are first 
heated as described above to convert the mercury (a good conductor) 
from a liquid to a gas. Conduction can then be established by the 

Ballast

+–

120 V

Ifilament

+

–
60 Hz

On/Off
switch

Black

White

White

Filament starter

Blue

Blue

Fluorescent bulb

Filaments

Ifilament Ifilament Ifilament

(a)

(c)

Oil-impregnated,
heat-absorbing
material throughout
inside of container

Windings
Laminated core

Filament starter

FIG. 23.52
(a) Schematic of single-bulb fluorescent lamp; (b) starter; (c) internal view  

of ballast transformer.

(b)
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application of a large potential across the electrodes. This potential is 
established when the starter (a thermal switch that opens when it reaches 
a particular temperature) opens and causes the inductor current to drop 
from its established level to zero amperes. This quick drop in current 
establishes a very high spike in voltage across the coils of the autotrans-
former as determined by yL = L(diL>dt). This significant spike in volt-
age also appears across the bulb and establishes current between the 
electrodes. Light is then given off as the electrons hit the fluorescent sur-
face on the inside of the tube. It is the persistence of the coating that helps 
hide the oscillation in conduction level due to the low-frequency (60 Hz) 
power that can result in a flickering light. The starter remains open until 
the next time the bulb is turned on. The flow of charge between elec-
trodes is then maintained solely by the voltage across the autotransformer. 
This current is relatively low in magnitude because of the reactance of the 
secondary winding in the resulting series circuit. In other words, the 
autotransformer has shifted to one that is now providing a reactance 
to the secondary circuit to limit the current through the bulb. With-
out this limiting factor, the current through the bulb would be too high, 
and the bulb would quickly burn out. This action of the coils of the trans-
former generating the required voltage and then acting as a coil to limit 
the current has resulted in the general terminology of swinging choke.

The fact that the light is not generated by an IR drop across a filament of 
a bulb is the reason fluorescent lights are so energy efficient. In fact, in an 
incandescent bulb, about 75% of the applied energy is lost in heat, with 
only 25% going to light emission. In a fluorescent bulb, more than 70% 
goes to light emission and 30% to heat losses. As a rule of thumb, the light-
ing from a 40 W fluorescent lamp [such as the unit in Fig. 23.51(a) with its 
two 20 W bulbs] is equivalent to that of a 100 W incandescent bulb.

One other interesting difference between incandescent and fluores-
cent bulbs is the method of determining whether they are good or bad. 
For the incandescent light, it is immediately obvious when it fails to give 
light at all. For the fluorescent bulb, however, assuming that the ballast 
is in good working order, the bulb begins to dim as its life wears on. The 
electrodes become coated and less efficient, and the coating on the inner 
surface begins to deteriorate.

 Rapid-start fluorescent lamps are different in operation only in that 
the voltage generated by the transformer is sufficiently large to atomize 
the gas upon application and initiate conduction, thereby removing the 
need for a starter and eliminating the warm-up time of the filaments. In 
time, the solid-state ballast will probably be the unit of choice because of 
its quick response, higher efficiency, and lighter weight, but the transition 
will take some time. The basic operation will remain the same, however.

Because of the fluorine gas (hence the name fluorescent bulb) and the 
mercury in fluorescent lamps, they must be discarded with care. Ask 
your local disposal facility where to take bulbs. Breaking them for inser-
tion in a plastic bag could be very dangerous. If you happen to break a 
bulb and get cut in the process, go immediately to a medical facility 
since you could sustain fluorine or mercury poisoning.

Recent Developments

As pointed out in Chapter 4, the compact flourescent bulb (CFL) has had 
a tremendous impact on the “green” movement, with entire countries 
determined to be fully flourescent within the next 3 to 4 years. However, 
the design of the CFL is electronic in nature and does not use the ballast 
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and starter mechanism described above, although its actual mode of oper-
ation is the same. Note in Fig. 4.26 the package of electronics crowded 
into each CFL, resulting in the higher cost compared to incandescent 
lighting. In fact, take particular note of the small transformer in the center 
of the package that is used to help establish the required firing voltage. 
Further impact on the lighting industry is bound to come from the grow-
ing interest in light-emitting diodes (LEDs), which have even longer life-
times than CFLs and do not require a firing mechanism of any kind. As 
with any new source of light, however, there are both positive and nega-
tive aspects to each approach. Some suggest that the future holds a mix-
ture of use, depending on the application, cost involved, and effect on the 
environment. On the very positive side, however, it is nice to have 
options, and those being develops seem to be full of promise.

23.16 C omputer Analysis

PSpice

PSpice will now be used to analyze the simple transformer network of 
Fig. 23.53.

+

–
Zi

Ep Es RL 100 �

R1

10 �

Vg  =  20 V ∠ 0°

1 : 4
+

–

+

–

FIG. 23.53
Applying PSpice to a step-up transformer.

A theoretical solution of the network yields the following:

 Zi = a2ZL

 = a 1

4
b

2

100 Ω

 = 6.25 Ω

and	 Ep =
(6.25 Ω)(20 V)

6.25 Ω + 10 Ω
= 7.692 V

with	 Es =
1
a

Ep =
1

(1>4)
(7.692 V) = 4(7.692 V) = 30.77 V

and	 VL = Es = 30.77 V

The transformer is found under the Part List in the ANALOG library 
as XFRM_LINEAR. Selecting and placing the model will result in two 
back-to-back inductors on the screen of Fig. 23.54. The turns ratio is 
related to the inductor values by the following equation:

	
N1

N2
= AL1

L2
	 (23.41)

where the inductors have to be of some significant value, such as henries, 
in this description.
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For this example:

N1

N2
=

1

4
= AL1

L2

and	 a 1

4
b

2

=
1

16
=

L1

L2

or	 L2 = 16L1

and by selecting L1 to be 1 H, L2 is 16 H (no success with mH levels). 
The level of inductance is installed by double-clicking on the trans-

former symbol to obtain the Property dialog box. Then shift until L1 
appears and install as 1 H followed by L2 as 16 H. In each case set the 
Display as Name and Value and be sure to Apply each to the sche-
matic. Finally, select PAGE1* to get back to the schematic and both 
inductor levels will appear.

If you choose to place the fact that N1 = 1 and N2 = 4, first select 
Place at the top of the screen and drop to Text to obtain the Place Text 
dialog box. Type in both values, select OK, and place in the desired 
location followed by End Mode.

The source is VSIN and is set to the values shown by simply clicking 
on each value and setting as indicated on the schematic. The remaining 
parts of the network are set as in previous examples.

For the PSpice excitation, select AC Sweep and 1 kHz for the Start and 
End Frequencies with just one point of interest in the Simulation Settings 
dialog box. Run PSpice and a screen will appear with a screen centered on 
the chosen frequency of 1 kHz. Then Trace-Add Trace-V(RL:1) will 
result in a plot point at 30.1 V for the secondary voltage, which is very 
close to the calculated level of 30.77 V. Then with Trace-Add Trace-
V(R1:2) we can add the primary voltage to the plot, which is about 7.7 V 
and very close to the calculated level of 7.69 V. A more accurate reading of 
the plot points can be obtained by selecting the Mark Data Points option 
and bringing the arrow as close to each point as possible. For the secondary 
voltage the plot point showed an intersection of X = 1 kHz with 
Y = 30.8 V at the bottom of the screen and for the primary voltage 
X = 1 kHz with Y = 7.77 V clearly validating the longhand solution.

FIG. 23.54
Using PSpice to determine the primary and secondary voltages  

of the network.
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Finally, the results can also be obtained leaving the screen and selecting 
PSpice-Output File resulting in the AC ANALYSIS listing of Fig. 23.55. 
The solutions are 7.69 V for the primary voltage and 30.77 V for the sec-
ondary voltage, which again are very close to the calculated values.

 ** Profile: "SCHEMATIC1-PSpice 23-1" 

****     AC ANALYSIS                      
***************************************************************
  FREQ           VM(N01728)   VP(N01728)  
  1.592E+02     7.692E+00       2.203E-01

****     AC ANALYSIS                      TEMPERATURE =   27.000 DEG C
***************************************************************
  FREQ           VM(N01710)   VP(N01710)  
  1.592E+02    3.077E+01        2.203E-01

FIG. 23.55

The output file for the network of Fig. 23.54.

Multisim

Multisim is now applied to the same transformer configuration just inves-
tigated using PSpice. In Fig. 23.56, obtain the source by first selecting 
Place Source to open the Select a Component dialog box. Select 

FIG. 23.56
Multisim analyses of the network of Fig. 23.53.
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Problems

SECTION 23.2  Mutual Inductance

	 1.	 For the air-core transformer in Fig. 23.57:
	a.	 Find the value of Ls if the mutual inductance M is equal 

to 40 mH.
	b.	 Find the induced voltages ep and es if the flux linking the 

primary coil changes at the rate of 0.08 Wb/s.
	c.	 Find the induced voltages ep and es if the current ip 

changes at the rate of 0.3 A/ms.

	a.	 Find the magnitude of the induced voltage Es.
	b.	 Find the maximum flux Φm.

	 5.	 Repeat Problem 4 for Np = 240 and Ns = 30.

	 6.	 Find the applied voltage of an iron-core transformer if the 
secondary voltage is 240 V, and Np = 60 with Ns = 720.

	 7.	 If the maximum flux passing through the core of Problem 4 
is 3.75 mWb, find the frequency of the input voltage.

SECTION 23.4  Reflected Impedance and Power

	 8.	 For the iron-core transformer in Fig. 23.59:
	a.	 Find the magnitude of the current IL and the voltage VL 

if a = 1>4, Ip = 3 A, and ZL = 3 Ω resistor.
	b.	 Find the input resistance for the data specified in part (a).

SIGNAL_VOLTAGE followed by AC_VOLTAGE and click OK. For 
the source, peak values are set, hence the difference in the set value in Fig. 
23.56 and the rms multimeter reading. Obtain the transformer by selecting 
Place, Show Basic-Family-BASIC_Place Virtual Transformer. Then 
double-click on transformer symbol to obtain 1P1S dialog box. Then set 
Primary coil to 1 and Secondary coil to 4 followed by OK.

The rest of the configuration is constructed using techniques described 
earlier. A simulation results in the meter displays in Fig. 23.56. Chang-
ing the rms reading of 20.893 V to a peak value results in 29.54 V which 
is a close match to that obtained using PSpice.

Np = 20

Ip +

Ep = 40 V

–

+ Is

Es

–

f = 60 Hz

Ns = 120Φm

Φm

FIG. 23.58
Problems 4, 5, and 7.

+

–

+

–

ep es

Np = 20 Ls

k = 0.8

Lp = 50 mH Ns = 80

ip

FIG. 23.57
Problems 1, 2 and 3.

	 2.	 a.	 Repeat Problem 1 if k is changed to 1.
	b.	 Repeat Problem 1 if k is changed to 0.2.
	c.	 Compare the results of parts (a) and (b).

	 3.	 Repeat Problem 1 for k = 0.3, Np = 300 turns, and Ns =  
25 turns.

SECTION 23.3  The Iron-Core Transformer

	 4.	 For the iron-core transformer (k = 1) in Fig. 23.58:

+ Ip

Vg

–

+

VL

–

IL

Np Ns

ZL

FIG. 23.59
Problems 8 through 12.

	 9.	 Find the input impedance for the iron-core transformer of 
Fig. 23.59 if a = 3, Ip = 5 A, and Vg = 140 V.

	10.	 Find the voltage Vg and the current Ip if the input impedance 
of the iron-core transformer in Fig. 23.59 is 5 Ω, and 
VL = 500 V and a = 1>5.

	11.	 If VL = 220 V, ZL = 20 Ω  resistor, Ip = 0.04 A, and 
Ns = 60, find the number of turns in the primary circuit of 
the iron-core transformer in Fig. 23.59.

	12.	 a.	 If Np = 600, Ns = 1200, and Vg = 120 V, find the 
magnitude of Ip for the iron-core transformer in Fig. 
23.59 if ZL = 10 Ω + j 10 Ω.

	b.	 Find the magnitude of the voltage VL and the current IL 
for the conditions of part (a).
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SECTION 23.7  Frequency Considerations

	17.	 Discuss in your own words the frequency characteristics of 
the transformer. Use the applicable equivalent circuit and 
frequency characteristics appearing in this chapter.

SECTION 23.8  Series Connection of Mutually 
Coupled Coils

	18.	 Determine the total inductance of the series coils in 
Fig. 23.62.

SECTION 23.6  Equivalent Circuit (Iron-Core 
Transformer)

	14.	 For the transformer in Fig. 23.61, determine
	a.	 the equivalent resistance Re.
	b.	 the equivalent reactance Xe.
	c.	 the equivalent circuit reflected to the primary.
	d.	 the primary current for Vg = 50 V ∠0°.
	e.	 the load voltage VL.
	f.	 the phasor diagram of the reflected primary circuit.
	g.	 the new load voltage if we assume the transformer to be 

ideal with a 4 : 1 turns ratio. Compare the result with 
that of part (e).

	15.	 For the transformer in Fig. 23.61, if the resistive load is 
replaced by an inductive reactance of 20 Ω:
	a.	 Determine the total reflected primary impedance.
	b.	 Calculate the primary current, Ip.
	c.	 Determine the voltage across Re and Xe, and find the 

reflected load.
	d.	 Draw the phasor diagram.

	16.	 Repeat Problem 15 for a capacitive load having a reactance 
of 20 Ω.

36 �

+

–

Vg  =  20 V

Zs  =  R  =  4 �

FIG. 23.60
Problem 13.

SECTION 23.5  Impedance Matching, Isolation, and 
Displacement

	13.	 a.	 For the circuit in Fig. 23.60, find the transformation 
ratio required to deliver maximum power to the speaker.

	b.	 Find the maximum power delivered to the speaker.

RL 12 �

Rp

4 �+

–

Vg  =  120 V ∠0°

Xp

12 �

Ip Rs

1 �

Xs

2 �

4 : 1

+

–

VL

Ideal transformer

FIG. 23.61
Problem 14 through 16, 30, and 31.

L1  =  5 H

M12  =  1 H

i L2  =  8 H

FIG. 23.62
Problem 18.

L1  =  300 mH

k  =  0 .9

i L2  =  600 mH

FIG. 23.63
Problem 19.

	19.	 Determine the total inductance of the series coils in 
Fig. 23.63.

	20.	 Determine the total inductance of the series coils in 
Fig. 23.64.

L1  =  3 H

M12  =  0.2 H

L2  =  1.5 H L3  =  6 H

k  =  1
M13  =  0.1 H

FIG. 23.64
Problem 20.
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SECTION 23.12  Tapped and Multiple-Load 
Transformers

	25.	 For the center-tapped transformer in Fig. 23.42, where Np =
100, Ns = 25, ZL = R ∠0° = 5 Ω ∠0°, and Ep = 100 V ∠0°:
	a.	 Determine the load voltage and current.
	b.	 Find the impedance Zi.
	c.	 Calculate the impedance Z1>2.

	26.	 For the multiple-load transformer in Fig. 23.43, where N1 =
90,  N2 = 15,  N3 = 45,  Z2 = R2 ∠0° = 8 Ω ∠0°,  Z3 =
RL j0° = 5 Ω ∠0°, and Ei = 60 V ∠0°:
	a.	 Determine the load voltages and currents.
	b.	 Calculate Z1.

	27.	 For the multiple-load transformer in Fig. 23.44, where N1 =
120,  N2 = 40,  N3 = 30,  Z2 = R2 ∠0° = 12 Ω ∠0°,  Z3 =
R3 j0° = 10 Ω ∠0°, and E1 = 120 V ∠60°:
	a.	 Determine the load voltages and currents.
	b.	 Calculate Z1.

SECTION 23.13  Networks with Magnetically  
Coupled Coils

	28.	 Write the mesh equations for the network of Fig. 23.68.

	21.	 Write the mesh equations for the network in Fig. 23.65.

I2 RL

R1

E

M12

L1 L2

I1

+

–

FIG. 23.65
Problem 21.

SECTION 23.9  Air-Core Transformer

	22.	 Determine the input impedance to the air-core transformer 
in Fig. 23.66. Sketch the reflected primary network.

Rp

2 �

Rs

1 �

k  =  0.05

2 H8 H R  =  20 �q  =  1000

FIG. 23.66
Problems 22 and 32.

VL  =  48 V

Es

+

–

Ep

+

–
Ip

Is

+

–

+

–

Vg  =  240 V

I1  =  2 A

FIG. 23.67
Problem 24.

SECTION 23.10  Nameplate Data

	23.	 An ideal transformer is rated 12 kVA, 3600/120 V, 60 Hz.
	a.	 Find the transformation ratio if the 120 V is the second-

ary voltage.
	b.	 Find the current rating of the secondary if the 120 V is 

the secondary voltage.
	c.	 Find the current rating of the primary if the 120 V is the 

secondary voltage.
	d.	 Repeat parts (a) through (c) if the 3600 V is the second-

ary voltage.

SECTION 23.11  Types of Transformers

	24.	 Determine the primary and secondary voltages and currents 
for the autotransformer in Fig. 23.67.

I2

E

Z1

+

–
I1

Z2L2

L1M12

FIG. 23.68
Problem 28.

Z3
L2

L3

L1I1

Z4

Z2E1

+

–

Z1

I2

I3

M12

M13

FIG. 23.69
Problem 29.

	29.	 Write the mesh equations for the network of Fig. 23.69.

SECTION 23.14  Current Transformers

	30.	 A current transformer has a secondary with 250 turns and a 
current reading of 400 mA. What is the magnitude of the 
current being measured? Does the result clearly show one 
of the benefits of using current transformers?
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Multiple-load transformers  Transformers having more than a 
single load connected to the secondary winding or windings.

Mutual inductance  The inductance that exists between mag-
netically coupled coils of the same or different dimensions.

Nameplate data  Information such as the kilovolt-ampere rating, 
voltage transformation ratio, and frequency of application that 
is of primary importance in choosing the proper transformer 
for a particular application.

Primary  The coil or winding to which the source of electrical 
energy is normally applied.

Reflected impedance  The impedance appearing at the primary 
of a transformer due to a load connected to the secondary. Its 
magnitude is controlled directly by the transformation ratio.

Secondary  The coil or winding to which the load is normally 
applied.

Step-down transformer  A transformer whose secondary volt-
age is less than its primary voltage. The transformation ratio a 
is greater than 1.

Step-up transformer  A transformer whose secondary voltage is 
greater than its primary voltage. The magnitude of the trans-
formation ratio a is less than 1.

Tapped transformer  A transformer having an additional con-
nection between the terminals of the primary or secondary 
windings.

Transformation ratio (a)  The ratio of primary to secondary 
turns of a transformer.

SECTION 23.16  Computer Analysis

PSpice or Multisim

	*31.	 Generate the schematic for the network in Fig. 23.61, and 
find the voltage VL.

	*32.	 Develop a technique using PSpice or Multisim to find the 
input impedance at the source for the network in Fig. 23.61.

	*33.	 Using a transformer from the library, find the load voltage 
for the network in Fig. 23.66 for an applied voltage of 
40 V ∠0°.

Glossary

Autotransformer  A transformer with one winding common to 
both the primary and the secondary circuits. A loss in isola-
tion is balanced by the increase in its kilovolt-ampere rating.

Coefficient of coupling (k)  A measure of the magnetic coupling of 
two coils that ranges from a minimum of 0 to a maximum of 1.

Current transformer  A transformer designed to read high line 
currents without having to “break” the circuit.

Dot convention  A technique for labeling the effect of the mutual 
inductance on a net inductance of a network or system.

Leakage flux  The flux linking the coil that does not pass through 
the ferromagnetic path of the magnetic circuit.

Loosely coupled  A term applied to two coils that have a low 
coefficient of coupling.
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24.1  Introduction

An ac generator designed to develop a single sinusoidal voltage for each rotation of the shaft 
(rotor) is referred to as a single-phase ac generator. If the number of coils on the rotor is 
increased in a specified manner, the result is a polyphase ac generator, which develops more 
than one ac phase voltage per rotation of the rotor. In this chapter, the three-phase system is 
discussed in detail since it is the system most frequently used for power transmission.

In general, three-phase systems are preferred over single-phase systems for the transmis-
sion of power for many reasons, including the following:

	 1.	 Thinner conductors can be used to transmit the same kVA at the same voltage, which 
reduces the amount of copper required (typically about 25% less) and in turn reduces 
construction and maintenance costs.

	 2.	 The lighter lines are easier to install, and the supporting structures can be less massive 
and farther apart.

	 3.	 Three-phase equipment and motors have preferred running and starting characteristics 
compared to single-phase systems because of a more even flow of power to the trans-
ducer than can be delivered with a single-phase supply.

	 4.	 In general, most larger motors are three phase because they are essentially self-starting 
and do not require a special design or additional starting circuitry.

The frequency generated is determined by the number of poles on the rotor (the rotating 
part of the generator) and the speed with which the shaft is turned. In the United States, the 
line frequency is 60 Hz, whereas in Europe the chosen standard is 50 Hz. Both frequencies 
were chosen primarily because they can be generated by a relatively efficient and stable 
mechanical design that is sensitive to the size of the generating systems and the demand that 

•	 Become familiar with the operation of a three-
phase generator and the magnitude and phase 
relationship connecting the three phase voltages.

•	 Be able to calculate the voltages and currents  
for a three-phase Y-connected generator and 
Y-connected load.

•	 Understand the significance of the phase sequence 
for the generated voltages of a three-phase 
Y-connected or �-connected generator.

•	 Be able to calculate the voltages and currents  
for a three-phase �-connected generator and  
�-connected load.

•	 Understand how to calculate the real, reactive, 
and apparent power to all the elements of a Y- or 
�-connected load and be able to measure the 
power to the load.

•	 Develop an understanding of how power is 
distributed from the substations to residential  
and commercial establishments.

Objectives

24
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must be met during peak periods. On aircraft and ships, the demand lev-
els permit the use of a 400 Hz line frequency.

The three-phase system is used by almost all commercial electric 
generators. This does not mean that single-phase and two-phase generat-
ing systems are obsolete. Most small emergency generators, such as the 
gasoline type, are one-phase generating systems. The two-phase system 
is commonly used in servomechanisms, which are self-correcting con-
trol systems capable of detecting and adjusting their own operation. Ser-
vomechanisms are used in ships and aircraft to keep them on course 
automatically, or, in simpler devices such as a thermostatic circuit, to 
regulate heat output. In many cases, however, where single-phase and 
two-phase inputs are required, they are supplied by one and two phases 
of a three-phase generating system rather than generated independently.

The number of phase voltages that can be produced by a polyphase 
generator is not limited to three. Any number of phases can be obtained 
by spacing the windings for each phase at the proper angular position 
around the stator. Some electrical systems operate more efficiently if 
more than three phases are used. One such system involves the process 
of rectification, which is used to convert an alternating output to one 
having an average, or dc, value. The greater the number of phases, the 
smoother is the dc output of the system.

24.2 T hree-Phase Generator

The three-phase generator in Fig. 24.1(a) has three induction coils placed 
120° apart on the stator, as shown symbolically by Fig. 24.1(b). Since 
the three coils have an equal number of turns, and each coil rotates with 
the same angular velocity, the voltage induced across each coil has the 
same peak value, shape, and frequency. As the shaft of the generator is 
turned by some external means, the induced voltages eAN, eBN, and eCN 
are generated simultaneously, as shown in Fig. 24.2. Note the 120° phase 
shift between waveforms and the similarities in appearance of the three 
sinusoidal functions.

A

(a)

B
C

N

120°

A

BC

+

–

eAN

N

–

N

N

120°

120°

eBN

eCN +

+

–

(b)

FIG. 24.1
(a) Three-phase generator; (b) induced voltages of a three-phase generator.

In particular, note that

at any instant of time, the algebraic sum of the three phase voltages 
of a three-phase generator is zero.

This is shown at vt = 0 in Fig. 24.2, where it is also evident that when 
one induced voltage is zero, the other two are 86.6% of their positive or 
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negative maximums. In addition, when any two are equal in magnitude 
and sign (at 0.5Em), the remaining induced voltage has the opposite polar-
ity and a peak value.

The respective sinusoidal expressions for the induced voltages in 
Fig. 24.2 are

	

eAN = Em(AN) sin vt

eBN = Em(BN) sin(vt - 120°)
eCN = Em(CN) sin(vt - 240°) = Em(CN) sin(vt + 120°)

	 (24.1)

The phasor diagram of the induced voltages is shown in Fig. 24.3, 
where the effective value of each is determined by

 EAN = 0.707Em(AN)

 EBN = 0.707Em(BN)

 ECN = 0.707Em(CN)

and	  EAN = EAN ∠0°
	  EBN = EBN ∠-120°
	  ECN = ECN ∠+120°

By rearranging the phasors as shown in Fig. 24.4 and applying a law 
of vectors that states that the vector sum of any number of vectors drawn 
such that the “head” of one is connected to the “tail” of the next and the 
head of the last vector is connected to the tail of the first is zero, we can 
conclude that the phasor sum of the phase voltages in a three-phase sys-
tem is zero. That is,

	 EAN + EBN + ECN = 0	 (24.2)

24.3  Y-Connected Generator

If the three terminals denoted N in Fig. 24.1(b) are connected together, 
the generator is referred to as a Y-connected three-phase generator 
(Fig. 24.5). As indicated in Fig. 24.5, the Y is inverted for ease of 

0.866 Em(CN)

0

60°
0.866 Em(BN)

120° 120°

p
2

p

eAN

0.5 Em(CN)

0.5 Em(CN)

eBN eCN

3
2p

2p 5
2p

3p 7
2p

4p qt

e

FIG. 24.2
Phase voltages of a three-phase generator.

120°

120°

120°

ECN

EAN

EBN

FIG. 24.3
Phasor diagram for the phase voltages of a  

three-phase generator.

EBN

EAN

ECN

FIG. 24.4
Demonstrating that the vector sum of the phase 

voltages of a three-phase generator is zero.
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notation and for clarity. The point at which all the terminals are con-
nected is called the neutral point. If a conductor is not attached from this 
point to the load, the system is called a Y-connected, three-phase, three-
wire generator. If the neutral is connected, the system is a Y-connected, 
three-phase, four-wire generator. The function of the neutral will be dis-
cussed in detail when we consider the load circuit.

The three conductors connected from A, B, and C to the load are called 
lines. For the Y-connected system, it should be obvious from Fig. 24.5 
that the line current equals the phase current for each phase; that is,

	 IL = Ifg	 (24.3)

where f is used to denote a phase quantity, and g is a generator parameter.
The voltage from one line to another is called a line voltage. On the 

phasor diagram (Fig. 24.6), it is the phasor drawn from the end of one 
phase to another in the counterclockwise direction.

Applying Kirchhoff’s voltage law around the indicated loop in 
Fig. 24.6, we obtain

EAB - EAN + EBN = 0

or	 EAB = EAN - EBN = EAN + ENB

The phasor diagram is redrawn to find EAB as shown in Fig. 24.7. Since 
each phase voltage, when reversed (ENB), bisects the other two, a = 60°. 
The angle b is 30° since a line drawn from opposite ends of a rhombus 
divides in half both the angle of origin and the opposite angle. Lines 
drawn between opposite corners of a rhombus also bisect each other at 
right angles.

The length x is

x = EAN cos 30° =
13

2
 EAN

and	 EAB = 2x = (2)
13

2
 EAN = 13EAN

Line

L
O
A
D

IL

Line

IL

Line

IL

Neutral

Ifg

+

EAN

–

A

N

Ifg

+
ECN

– Ifg

EBN
+

–

C B

FIG. 24.5
Y-connected generator.

(phase voltage)

+
EAN

– A

N

+

ECN

–

C

B

EBN

+
–

EBC

(line voltage)EAB

ECA

FIG. 24.6
Line and phase voltages of the Y-connected  

three-phase generator.

120°

120°

ECN

EAN

EBN

α  =  60°

α  =  60°

ENB

EAB

=  30°x

x

FIG. 24.7
Determining a line voltage for a three-phase 

generator.
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Noting from the phasor diagram that u of EAB = b = 30°, we obtain the 
result

 EAB = EAB ∠30° = 13EAN ∠30°
and	  ECA = 13ECN ∠150°

 EBC = 13EBN ∠270°

In words, the magnitude of the line voltage of a Y-connected generator 
is 13 times the phase voltage:

	 EL = 13Ef	 (24.4)

with the phase angle between any line voltage and the nearest phase 
voltage at 30°.

In sinusoidal notation,

 eAB = 12EAB sin(vt + 30°)
 eCA = 12ECA sin(vt + 150°)

and	  eBC = 12EBC sin(vt + 270°)

The phasor diagram of the line and phase voltages is shown in Fig. 24.8. 
If the phasors representing the line voltages in Fig. 24.8(a) are rear-
ranged slightly, they will form a closed loop [Fig. 24.8(b)]. Therefore, 
we can conclude that the sum of the line voltages is also zero; that is,

	 EAB + ECA + EBC + 0	 (24.5)

(b)

EAB

EBC

ECA

120°

120°

120°

ECN

EAN

EBN

30°

30°
EABECA

EBC

30°

(a)

FIG. 24.8
(a) Phasor diagram of the line and phase voltages of a three-phase generator; 

(b) demonstrating that the vector sum of the line voltages of a  
three-phase system is zero.

Fixed point P

EAN
A

N

ECN

C

B

EBN

Rotation

FIG. 24.9
Determining the phase sequence from the phase 

voltages of a three-phase generator.

24.4  Phase Sequence 
(Y-Connected Generator)

The phase sequence can be determined by the order in which the pha-
sors representing the phase voltages pass through a fixed point on the 
phasor diagram if the phasors are rotated in a counterclockwise direc-
tion. For example, in Fig. 24.9 the phase sequence is ABC. However, 
since the fixed point can be chosen anywhere on the phasor diagram, the 
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sequence can also be written as BCA or CAB. The phase sequence is 
quite important in the three-phase distribution of power. In a three-phase 
motor, for example, if two phase voltages are interchanged, the sequence 
will change, and the direction of rotation of the motor will be reversed. 
Other effects will be described when we consider the loaded three-phase 
system.

The phase sequence can also be described in terms of the line volt-
ages. Drawing the line voltages on a phasor diagram in Fig. 24.10, we 
are able to determine the phase sequence by again rotating the phasors 
in the counterclockwise direction. In this case, however, the sequence 
can be determined by noting the order of the passing first or second 
subscripts. In the system in Fig. 24.10, for example, the phase 
sequence of the first subscripts passing point P is ABC, and the phase 
sequence of the second subscripts is BCA. But we know that BCA is 
equivalent to ABC, so the sequence is the same for each. Note that the 
phase sequence is the same as that of the phase voltages described in 
Fig. 24.9.

If the sequence is given, the phasor diagram can be drawn by sim-
ply picking a reference voltage, placing it on the reference axis, and 
then drawing the other voltages at the proper angular position. For a 
sequence of ACB, for example, we might choose EAB to be the refer-
ence [Fig. 24.11(a)] if we wanted the phasor diagram of the line volt-
ages, or EAN for the phase voltages [Fig. 24.11(b)]. For the sequence 
indicated, the phasor diagrams would be as in Fig. 24.11. In phasor 
notation,

Line  
voltages

 •
EAB = EAB ∠0°     (reference)

ECA = ECA ∠-120°
EBC = EBC ∠+120°

Phase  
voltages

 •
EAN = EAN ∠0°     (reference)

ECN = ECN ∠-120°
EBN = EBN ∠+120°

P

EAB
A

ECA

C

B

EBC

Rotation

FIG. 24.10
Determining the phase sequence from the line 

voltages of a three-phase generator.

P

EAB

A

EBC

B

C

ECA

ACB

(a)

P

EAN

A

EBN

B

C

ECN

ACB

(b)

FIG. 24.11
Drawing the phasor diagram from the phase sequence.
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24.5  Y-Connected Generator 
with a Y-Connected Load

Loads connected to three-phase supplies are of two types: the Y and the 
∆. If a Y-connected load is connected to a Y-connected generator, the 
system is symbolically represented by Y-Y. The physical setup of such a 
system is shown in Fig. 24.12.

IL

IL

EL

Ifg

+

–

A

N

Ifg

+

–

C

Ifg

+

–
Ef

Ef

EL

IL
c

EL

IfL

IN

a
IfL

Ef Vf

+

–

n

IfL

b
Vf Vf

+

–

+

–

Z1

Z3 Z2

B

FIG. 24.12
Y-connected generator with a Y-connected load.

If the load is balanced, the neutral connection can be removed with-
out affecting the circuit in any manner; that is, if

Z1 = Z2 = Z3

then IN will be zero. (This will be demonstrated in Example 24.1.) Note 
that in order to have a balanced load, the phase angle must also be the 
same for each impedance—a condition that was unnecessary in dc cir-
cuits when we considered balanced systems.

In practice, if a factory, for example, had only balanced, three-phase 
loads, the absence of the neutral would have no effect since, ideally, the 
system would always be balanced. The cost would therefore be less 
since the number of required conductors would be reduced. However, 
lighting and most other electrical equipment use only one of the phase 
voltages, and even if the loading is designed to be balanced (as it should 
be), there is never perfect continuous balancing since lights and other 
electrical equipment are turned on and off, upsetting the balanced condi-
tion. The neutral is therefore necessary to carry the resulting current 
away from the load and back to the Y-connected generator. This is dem-
onstrated when we consider unbalanced Y-connected systems.

We shall now examine the four-wire Y-Y-connected system. The cur-
rent passing through each phase of the generator is the same as its cor-
responding line current, which in turn for a Y-connected load is equal to 
the current in the phase of the load to which it is attached:

	 Ifg = IL = IfL	 (24.6)

For a balanced or an unbalanced load, since the generator and load 
have a common neutral point, then

	 Vf = Ef	 (24.7)
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In addition, since IfL = Vf>Zf, the magnitude of the current in each 
phase is equal for a balanced load and unequal for an unbalanced load. 
Recall that for the Y-connected generator, the magnitude of the line volt-
age is equal to 13 times the phase voltage. This same relationship can 
be applied to a balanced or an unbalanced four-wire Y-connected load:

	 EL = 13Vf	 (24.8)

For a voltage drop across a load element, the first subscript refers to 
that terminal through which the current enters the load element, and the 
second subscript refers to the terminal from which the current leaves. In 
other words, the first subscript is, by definition, positive with respect to 
the second for a voltage drop. Note Fig. 24.13, in which the standard 
double subscripts for a source of voltage and a voltage drop are indicated.

EXAMPLE 24.1  The phase sequence of the Y-connected generator in 
Fig. 24.13 is ABC.

	 a.	 Find the phase angles u2 and u3.
	 b.	 Find the magnitude of the line voltages.
	 c.	 Find the line currents.
	 d.	 Verify that, since the load is balanced, IN = 0.

A

+

–

120 V    0°EAN

120 V    θ3

ECN EBN
+

–

+

–
N

C B

a

+

–

3 �Ian

+

–

+

– n

c b

Van

4 �

4 � Vbn

3 �

Vcn

3 �

Icn Ibn

IAa

EAB

IN

IBb

ECA

ICc
EBC

4 � Balanced
load

120 V    θ2

FIG. 24.13
Example 24.1.

Solutions: 

	 a.	 For an ABC phase sequence,

u2 = −120°  and  u3 = +120°

	 b.	 EL = 13Ef = (1.73)(120  V) = 208  V. Therefore,

EAB = EBC = ECA = 208 V

	 c.	 Vf = Ef. Therefore,

 Van = EAN  Vbn = EBN  Vcn = ECN

 IfL = Ian =
Van

Zan
=

120 V ∠0°
3 Ω + j 4 Ω

=
120 V ∠0°

5 Ω ∠53.13°
 = 24 A ∠-53.13°
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 Ibn =
Vbn

Zbn
=

120 V ∠-120°
5 Ω ∠53.13°

= 24 A ∠-173.13°

 Icn =
Vcn

Zcn
=

120 V ∠+120°
5 Ω ∠53.13°

= 24 A ∠66.87°

		  and, since IL = IfL,

 IAa = Ian = 24 A j−53.13°
 IBb = Ibn = 24 A j−173.13°
 ICc = Icn = 24 A j66.87°

	 d.	 Applying Kirchhoff’s current law, we have

IN = IAa + IBb + ICc

		  In rectangular form,

IAa = 24 A ∠-53.13°  =  14.40 A - j 19.20 A

IBb = 24 A ∠-173.13° =  -22.83 A - j 2.87 A

ICc = 24 A ∠66.87°  =  9.43 A + j 22.07 A

g (IAa + IBb + ICc)  =  0 + j 0

		  and IN is in fact equals to zero, as required for a balanced load.

24.6  Y-� System

There is no neutral connection for the Y-∆ system in Fig. 24.14. Any 
variation in the impedance of a phase that produces an unbalanced sys-
tem simply varies the line and phase currents of the system.

For a balanced load,

	 Z1 = Z2 = Z3	 (24.9)

The voltage across each phase of the load is equal to the line voltage 
of the generator for a balanced or an unbalanced load:

	 Vf = EL	 (24.10)

IL

IL

EL

Ifg

+

–

A

N
Ifg

+

–

C
B

Ifg

+

–

Ef

Ef

EL

IL
c

EL

IfL

a

IfL

Ef

Vf
+–

b

Vf

+

–

Z2

IfL

Z3 Z1

Vf

–

+

FIG. 24.14
Y-connected generator with a ∆-connected load.
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The relationship between the line currents and phase currents of a 
balanced ∆ load can be found using an approach very similar to that 
used in Section 24.3 to find the relationship between the line voltages 
and phase voltages of a Y-connected generator. For this case, however, 
Kirchhoff’s current law is used instead of Kirchhoff’s voltage law.

The result is

	 IL = 13If	 (24.11)

and the phase angle between a line current and the nearest phase current is 
30°. A more detailed discussion of this relationship between the line and 
phase currents of a ∆-connected system can be found in Section 24.7.

For a balanced load, the line currents will be equal in magnitude, as 
will the phase currents.

EXAMPLE 24.2  For the three-phase system in Fig. 24.15:

	 a.	 Find the phase angles u2 and u3.
	 b.	 Find the current in each phase of the load.
	 c.	 Find the magnitude of the line currents.

ECA  =  150 V ∠ v3

IAa

ICc

A

C

B

IBb
c

a

+–

b

+

Ica3-phase, 3-wire,
Y-connected generator
Phase sequence:  ABC

EAB  =  150 V ∠ 0°

XL  =  8 �

Vbc

–

– +

R  =  6 �

Iab

Ibc XL  =  8 �

R  =  6 �

R  =  6 �

Vca Vab

XL  =  8 �

EBC  =  150 V ∠ v2

FIG. 24.15
Example 24.2.

Solutions: 

	 a.	 For an ABC sequence,

u2 = −120°  and  u3 = +120°

	 b.	 Vf = EL. Therefore,

Vab = EAB    Vca = ECA    Vbc = EBC

		  The phase currents are

 Iab =
Vab

Zab
=

150 V ∠0°
6 Ω + j 8 Ω

=
150 V ∠0°

10 Ω ∠53.13°
= 15 A j−53.13°

 Ibc =
Vbc

Zbc
=

150 V ∠-120°
10 Ω ∠53.13°

= 15 A j−173.13°

 Ica =
Vca

Zca
=

150 V ∠+120°
10 Ω ∠53.13°

= 15 A j66.87°



∆-Connected Generator    1101

	 c.	 IL = 13If = (1.73)(15 A) = 25.95 A. Therefore,

IAa = IBb = ICc = 25.95 A

24.7  �-Connected Generator

If we rearrange the coils of the generator in Fig. 24.16(a) as shown in 
Fig. 24.16(b), the system is referred to as a three-phase, three-wire, 
�-connected ac generator. In this system, the phase and line voltages 
are equivalent and equal to the voltage induced across each coil of the 
generator; that is,

EAB = EAN and eAN = 12EAN sin vt

EBC = EBN and eBN = 12EBN sin(vt - 120°)

ECA = ECN and eCN = 12ECN sin(vt + 120°)

 
Phase
sequence
ABC

∂

or	 EL = Efg	 (24.12)

eAN

A

 +

–
N

N
N

 +  +

––
eCN eBN

BC

(a)

ECA

A

+

–

 +

 +

–

C

(b)

IAC

EAB

ECN EAN

–

B– +EBC ICB ICc

IBb

Load

EBN

–

 +

–

IBA IAa

 +

FIG. 24.16
∆-connected generator.

Note that only one voltage (magnitude) is available instead of the two 
available in the Y-connected system.

Unlike the line current for the Y-connected generator, the line current 
for the ∆-connected system is not equal to the phase current. The rela-
tionship between the two can be found by applying Kirchhoff’s current 
law at one of the nodes and solving for the line current in terms of the 
phase currents; that is, at node A,

IBA = IAa + IAC

or	 IAa = IBA - IAC = IBA + ICA

The phasor diagram is shown in Fig. 24.17 for a balanced load.
Using the same procedure to find the line current as was used to find 

the line voltage of a Y-connected generator produces the following:

IAa = 13IBA ∠-30°
IBb = 13ICB ∠-150°
ICc = 13IAC ∠90°

In general,

	 IL = 13Ifg	 (24.13)
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with the phase angle between a line current and the nearest phase current 
at 30°. The phasor diagram of the currents is shown in Fig. 24.18.

Just as for the voltages of a Y-connected generator, the phasor sum of 
the line currents or phase currents for ∆-connected systems with bal-
anced loads is zero.

24.8  Phase Sequence (�-Connected 
Generator)

Even though the line and phase voltages of a ∆-connected system are the 
same, it is standard practice to describe the phase sequence in terms of the 
line voltages. The method used is the same as that described for the line 
voltages of the Y-connected generator. For example, the phasor diagram 
of the line voltages for a phase sequence ABC is shown in Fig. 24.19. In 
drawing such a diagram, one must take care to have the sequence of the 
first and second subscripts the same. In phasor notation,

 EAB = EAB ∠0°
 EBC = EBC ∠-120°
 ECA = ECA ∠120°

24.9  �-�, �-Y Three-Phase Systems

The basic equations necessary to analyze either of the two systems 
(∆-∆, ∆-Y) have been presented in this chapter. Following are two 
descriptive examples, one with a ∆-connected load, and one with a 
Y-connected load.

EXAMPLE 24.3  For the ∆-∆ system shown in Fig. 24.20:

	 a.	 Find the phase angles u2 and u3 for the specified phase sequence.
	 b.	 Find the current in each phase of the load.
	 c.	 Find the magnitude of the line currents.

120°

120°

IAa

ICB

IBA

IAC

60°

ICA

30°

30°

IAa  =  �3 IBA

IBA

�3
2

IBA

�3
2

FIG. 24.17
Determining a line current from the phase currents of a  

∆-connected, three-phase generator.

120°

120°
120°

ICB

IBA

IAC

30°

30°
IBb

ICc

30°

IAa

FIG. 24.18
The phasor diagram of the currents of a  

three-phase, ∆-connected generator.

P

EAB

ECA

EBC

Rotation

Phase sequence:  ABC

FIG. 24.19
Determining the phase sequence for a ∆-connected, 

three-phase generator.
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Solutions: 

	 a.	 For an ACB phase sequence,

u2 = 120°  and  u3 = −120°

	 b.	 Vf = EL. Therefore,

Vab = EAB    Vca = ECA    Vbc = EBC

		  The phase currents are

 Iab =
Vab

Zab
=

120 V ∠0°
(5 Ω ∠0°)(5 Ω ∠-90°)

5 Ω - j 5 Ω

=
120 V ∠0°

25 Ω ∠-90°
7.071 ∠-45°

 =
120 V ∠0°

3.54 Ω ∠-45°
= 33.9 A j45°

 Ibc =
Vbc

Zbc
=

120 V ∠120°
3.54 Ω ∠-45°

= 33.9 A j165°

 Ica =
Vca

Zca
=

120 V ∠-120°
3.54 Ω ∠-45°

= 33.9 A j−75°

	 c.	 IL = 13If = (1.73)(34 A) = 58.82 A. Therefore,

IAa = IBb = ICc = 58.82 A

EXAMPLE 24.4  For the ∆-Y system shown in Fig. 24.21:

	 a.	 Find the voltage across each phase of the load.
	 b.	 Find the magnitude of the line voltages.

Solutions: 

	 a.	 IfL = IL. Therefore,

 Ian = IAa = 2 A ∠0°
 Ibn = IBb = 2 A ∠-120°
 Icn = ICc = 2 A ∠120°

IAa

ICc

A

C

B

EBC  =  120 V ∠ v2

IBb

c

a

+–

b

+

Ica

3-phase, 3-wire
∆-connected ac generator

Phase sequence:  ACB

ECA  =  120 V ∠ v3

EAB  =  120 V ∠ 0°

Vbc

–

– +
Iab

Ibc

5 �

Vca

Vab

5 �

5 � 5 �

5 �5 �

FIG. 24.20
Example 24.3: ∆-∆ system.
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		  The phase voltages are

 Van = IanZan = (2 A ∠0°)(10 Ω ∠-53.13°) = 20 V j−53.13°
 Vbn = IbnZbn = (2 A ∠-120°)(10 Ω ∠-53.13°) = 20 V j−173.13°
 Vcn = IcnZcn = (2 A ∠120°)(10 Ω ∠-53.13°) = 20 V j66.87°

	 b.	 EL = 13Vf = (1.73)(20 V) = 34.6 V. Therefore,

EBA = ECB = EAC = 34.6 V

A

C

B

ICc  =  2 A ∠ 120°

c

a

+ b

Icn

ECA

EAB

Vbn

6 �

8 �

3-phase, 3-wire
∆-connected generator

Phase sequence:
ABC

IAa  =  2 A ∠ 0°

EBC

IBb  =
2 A ∠ –120°

+

+

–

IbnVcn

Ian

Van

n

– –6 �
8 �

6 �
8 �

FIG. 24.21
Example 24.4: ∆-Y system.

IL

IL

EL

IL

+

–

+

–

I�

V�

I�

V�

a

bc

I� V�

Z  =  R  ±  jX

+

– n

EL
EL

Z

Z Z

FIG. 24.22
Y-connected balanced load.

24.10  Power

Y-Connected Balanced Load

Please refer to Fig. 24.22 for the following discussion.
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Average Power    The average power delivered to each phase can be 
determined by

	 Pf = Vf If cos uVf
If = I2

f Rf =
V2

R

Rf

  (watts, W)	 (24.14)

where uIf
Vf indicates that u is the phase angle between Vf and If.

The total power delivered can be determined by Eq. (24.15) or 
Eq. (24.16):

	 PT = 3Pf  (W)	 (24.15)

or, since	 Vf =
EL13
  and  If = IL

then	 PT = 3
EL13

 IL cos uIf
Vf

But	 a 313
b (1) = a 313

b a 1313
b =

313

3
= 13

Therefore,

	 PT = 13ELIL cos uVf
If = 3I2

LRf  (W)	 (24.16)

Reactive Power    The reactive power of each phase (in volt-amperes 
reactive) is

	 Qf = Vf If sin uVf
If = I2

f Xf =
V2
f

Xf

  (VAR)	 (24.17)

The total reactive power of the load is

	 QT = 3Qf  (VAR)	 (24.18)

or, proceeding in the same manner as above, we have

	 QT = 13EL IL sin uVf
If = 3I2

L  Xf  (VAR)	 (24.19)

Apparent Power    The apparent power of each phase is

	 Sf = Vf If  (VA)	 (24.20)

The total apparent power of the load is

	 ST = 3Sf  (VA)	 (24.21)

or, as before,

	 ST = 13EL IL  (VA)	 (24.22)
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Power Factor    The power factor of the system is given by

	 Fp =
PT

ST
= cos uIf

Vf  (leading or lagging)	 (24.23)

EXAMPLE 24.5  For the Y-connected load in Fig. 24.23:

a

+

–n

c

XL  =  4 �

R  =  3 �

XL  =  4 �

+

R  =  3 � R  =  3 �

XL  =  4 �

+

–

EL  =  173.2  V    – 120°

EL  =  173.2  V    + 120°
EL  =  173.2  V    0°

b

–

I� V�

I�

V� V�

I�

FIG. 24.23
Example 24.5.

	 a.	 Find the average power to each phase and the total load.
	 b.	 Determine the reactive power to each phase and the total reactive 

power.
	 c.	 Find the apparent power to each phase and the total apparent power.
	 d.	 Find the power factor of the load.

Solutions: 

	 a.	 The average power is

 Pf = Vf If cos uIf
Vf = (100 V)(20 A) cos 53.13° = (2000)(0.6)

 = 1200 W

 Pf = If
2 Rf = (20 A)2(3 Ω) = (400)(3) = 1200 W

 Pf =
VR

2

Rf

=
(60 V)2

3 Ω
=

3600

3
= 1200 W

 PT = 3Pf = (3)(1200 W) = 3600 W

		  or

PT = 13EL IL cos uIf
Vf = (1.732)(173.2 V)(20 A)(0.6) = 3600 W

	 b.	 The reactive power is

 Qf = Vf If sin uIf
Vf = (100 V)(20 A) sin 53.13° = (2000)(0.8)

 = 1600 VAR

or	  Qf = I2
f Xf = (20 A)2(4 Ω) = (400)(4) = 1600 VAR

 QT = 3Qf = (3)(1600 VAR) = 4800 VAR

		  or

QT = 13EL IL sin uIf
Vf = (1.732)(173.2 V)(20 A)(0.8) = 4800 VAR
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	 c.	 The apparent power is

 Sf = Vf If = (100 V)(20 A) = 2000 VA

 ST = 3Sf = (3)(2000 VA) = 6000 VA

or	 ST = 13ELIL = (1.732)(173.2 V)(20 A) = 6000 VA

	 d.	 The power factor is

Fp =
PT

ST
=

3600 W

6000 VA
= 0.6 lagging

IL

EL

Z Z

Z

+

–

I�

+

–
V�

I�

EL

IL

EL

IL

V�– +

Z  =  R    ±  jX

I�

V�

FIG. 24.24
∆-connected balanced load.

Average Power  

	 Pf = Vf If cos uVf
If = I2

f Rf =
V2

R

Rf

  (W)	 (24.24)

	 PT = 3Pf  (W)	 (24.25)

Reactive Power  

	 Qf = Vf If sin uVf
If = I2

f Xf =
V2
f

Xf

  (VAR)	 (24.26)

	 QT = 3Qf  (VAR)	 (24.27)

Apparent Power  

	 Sf = Vf If  (VA)	 (24.28)

	 ST = 3Sf = 13EL IL  (VA)	 (24.29)

Power Factor  

	 Fp =
PT

ST
	 (24.30)

�-Connected Balanced Load

Please refer to Fig. 24.24 for the following discussion.



1108    Polyphase Systems

EXAMPLE 24.6  For the ∆-Y connected load in Fig. 24.25, find the 
total average, reactive, and apparent power. In addition, find the power 
factor of the load.

EL  =  200 V ∠ 0°

6 �

EL  =  200 V ∠ –120°

EL  =  200 V ∠ +120°

8 �

4 � 4 �

4 �
6 �

8 � 6 �

8 �

3 �

3 �3 �

FIG. 24.25
Example 24.6.

Solution:  Consider the ∆ and Y separately.

For the �:

 Z∆ = 6 Ω - j 8 Ω = 10 Ω ∠-53.13°

 If =
EL

Z∆
=

200 V

10 Ω
= 20 A

 PT∆
= 3If

2 Rf = (3)(20 A)2(6 Ω) = 7200 W

 QT∆
= 3If

2 Xf = (3)(20 A)2(8 Ω) = 9600 VAR (C)

 ST∆
= 3Vf If = (3)(200 V)(20 A) = 12,000 VA

For the Y:

 ZY = 4 Ω + j 3 Ω = 5 Ω ∠36.87°

 If =
EL>13

ZY
=

200 V>13

5 Ω
=

116 V

5 Ω
= 23.12 A

 PTY
= 3If

2 Rf = (3)(23.12 A)2(4 Ω) = 6414.41 W

 QTY
= 3If

2 Xf = (3)(23.12 A)2(3 Ω) = 4810.81 VAR (L)

 STY
= 3Vf If = (3)(116 V)(23.12 A) = 8045.76 VA

For the total load:

 PT = PT∆
+ PTY

= 7200 W + 6414.41 W = 13,614.41 W

 QT = QT∆
- QTY

= 9600 VAR (C) - 4810.81 VAR (L)

 = 4789.19 VAR (C)

 ST = 2PT
2 + QT

2 = 2(13,614.41 W)2 + (4789.19 VAR)2

 = 14,432.2 VA

 Fp =
PT

ST
=

13,614.41 W

14,432.20 VA
= 0.943 leading
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EXAMPLE 24.7  Each transmission line of the three-wire, three-phase 
system in Fig. 24.26 has an impedance of 15 Ω + j 20 Ω. The system 
delivers a total power of 160 kW at 12,000 V to a balanced three-phase 
load with a lagging power factor of 0.86.

A

N

C B

15 � 20 �

15 � 20 �

15 � 20 �

Z1  =  Z2  =  Z3

a

n
12 k VEAB

c

Z2

Z1

Z3

b

FIG. 24.26
Example 24.7.

	 a.	 Determine the magnitude of the line voltage EAB of the generator.
	 b.	 Find the power factor of the total load applied to the generator.
	 c.	 What is the efficiency of the system?

Solutions: 

	 a.	  Vf (load) =
VL13

=
12,000 V

1.73
= 6936.42 V

		   PT (load) = 3VfIf cos u

		  and

		   If =
PT

3Vf cos u
=

160,000 W

3(6936.42 V)(0.86)

		   = 8.94 A

		  Since u = cos-1 0.86 = 30.68°, assigning Vf an angle of 0° or 
Vf = Vf ∠0°, a lagging power factor results in

If = 8.94 A ∠-30.68°

		  For each phase, the system will appear as shown in Fig. 24.27, 
where

EAN - If Zline - Vf = 0

If  =  8.94 A ∠ –30.68°
A

15 � IfIL 20 �

EAN

+

–

+

–

VfZ1

Zline

FIG. 24.27
The loading on each phase of the system in Fig. 24.26.
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		  or

 EAN = IfZline + Vf

 = (8.94 A ∠-30.68°)(25 Ω ∠53.13°) + 6936.42 V ∠0°
 = 223.5 V ∠22.45° + 6936.42 V ∠0°
 = 206.56 V + j 85.35 V + 6936.42 V

 = 7142.98 V + j 85.35 V

 = 7143.5 V ∠0.68°

Then	  EAB = 13Efg = (1.73)(7143.5 V)

	  = 12,358.26 V

	 b.	  PT = Pload + Plines

		   = 160 kW + 3(IL)2 Rline

		   = 160 kW + 3(8.94 A)215 Ω
		   = 160,000 W + 3596.55 W

		   = 163,596.55 W

and	 PT = 13VLIL cos  uT

or	 cos uT =
PT13VLIL

=
163,596.55 W

(1.73)(12,358.26 V)(8.94 A)

and	 FP = 0.856 6 0.86 of load

	 c.	  h =
Po

Pi
=

Po

Po + Plosses
=

160 kW

160 kW + 3596.55 W
= 0.978

		   = 97.8%

24.11 T hree-Wattmeter Method

The power delivered to a balanced or an unbalanced four-wire, 
Y-connected load can be found by the three-wattmeter method, 
that is, by using three wattmeters in the manner shown in Fig. 24.28. 
Each wattmeter measures the power delivered to each phase. The 

+–

Z1

Line

Neutral

P3

P1

P2

+–CC1

PC1

CC2

PC2

CC3

PC3

+–

+–

+–

+–

Line

a

b
c

n

Line

Z3 Z2

FIG. 24.28
Three-wattmeter method for a Y-connected load.
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potential coil of each wattmeter is connected parallel with the load, 
while the current coil is in series with the load. The total average 
power of the system can be found by summing the three wattmeter 
readings; that is,

	 PTY
= P1 + P2 + P3	 (24.31)

For the load (balanced or unbalanced), the wattmeters are connected as 
shown in Fig. 24.29. The total power is again the sum of the three watt-
meter readings:

	 PT∆
= P1 + P2 + P3	 (24.32)

If in either of the cases just described the load is balanced, the power 
delivered to each phase will be the same. The total power is then just 
three times any one wattmeter reading.

+–

P1

P2

+–

CC1

PC1

CC2

PC2

CC3

P3
+–

+–
+–

Line

a

b
c

Line

Line

Z2

PC3

+– Z3 Z1

FIG. 24.29
Three-wattmeter method for a ∆-connected load.

24.12 T wo-Wattmeter Method

The power delivered to a three-phase, three-wire, ∆- or Y-connected, 
balanced or unbalanced local can be found using only two wattmeters if 
the proper connection is employed and if the wattmeter readings are 
interpreted properly. The basic connections of this two-wattmeter 
method are shown in Fig. 24.30. One end of each potential coil is con-
nected to the same line. The current coils are then placed in the remain-
ing lines.

The connection shown in Fig. 24.31 also satisfies the require-
ments. A third hookup is also possible, but this is left to the reader as 
an exercise.

The total power delivered to the load is the algebraic sum of the two 
wattmeter readings. For a balanced load, we now consider two methods 
of determining whether the total power is the sum or the difference of 
the two wattmeter readings. The first method to be described requires 
that we know or are able to find the power factor (leading or lagging) of 

Line

a

�- or Y-
connected

load

Line

Line

c

b

+–

+–
+–

+–P1
CC1

PC1

P2
CC2

PC2

FIG. 24.31
Alternative hookup for the two-wattmeter 

method.

Line

a

�- or Y-
connected

load

Line

Line

c

b

+–

+–
+–

+–
P1 CC1

PC1

P2
CC2

PC2

FIG. 24.30
Two-wattmeter method for a ∆- or a 

Y-connected load.
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any one phase of the load. When this information has been obtained, it 
can be applied directly to the curve in Fig. 24.32.

The curve in Fig. 24.32 is a plot of the power factor of the load 
(phase) versus the ratio Pl>Ph, where Pl and Ph are the magnitudes of the 
lower- and higher-reading wattmeters, respectively. Note that for a 
power factor (leading or lagging) greater than 0.5, the ratio has a posi-
tive value. This indicates that both wattmeters are reading positive, and 
the total power is the sum of the two wattmeter readings; that is, 
PT = Pl + Ph. For a power factor less than 0.5 (leading or lagging), the 
ratio has a negative value. This indicates that the smaller-reading watt-
meter is reading negative, and the total power is the difference of the two 
wattmeter readings; that is, PT = Ph - Pl.

A closer examination reveals that, when the power factor is 1 
(cos 0° = 1), corresponding to a purely resistive load, Pl>Ph = 1 or 
Pl = Ph, and both wattmeters have the same wattage indication. At a 
power factor equal to 0 (cos 90° = 0), corresponding to a purely reac-
tive load, Pl>Ph = -1 or Pl = -Ph, and both wattmeters again have the 
same wattage indication but with opposite signs. The transition from a 
negative to a positive ratio occurs when the power factor of the load is 
0.5 or u = cos-1 0.5 = 60°. At this power factor, Pl>Ph = 0, so that 
Pl = 0, while Ph reads the total power delivered to the load.

The second method for determining whether the total power is the 
sum or difference of the two wattmeter readings involves a simple labo-
ratory test. For the test to be applied, both wattmeters must first have an 
up-scale deflection. If one of the wattmeters has a below-zero indication, 
an up-scale deflection can be obtained by simply reversing the leads of 
the current coil of the wattmeter. To perform the test:

	 1.	 Take notice of which line does not have a current coil sensing the 
line current.

	 2.	 For the lower-reading wattmeter, disconnect the lead of the 
potential coil connected to the line without the current coil.

	 3.	 Take the disconnected lead of the lower-reading wattmeter’s 
potential coil, and touch a connection point on the line that has 
the current coil of the higher-reading wattmeter.

	 4.	 If the pointer deflects downward (below zero watts), the wattage 
reading of the lower-reading wattmeter should be subtracted 
from that of the higher-reading wattmeter. Otherwise, the read-
ings should be added.

0.2

0–0.25–0.5–0.75–1.0 +0.25 +0.5 +0.75 +1.0

Po
w

er
 f

ac
to

r
L

ea
d 

or
 la

g

0.4

0.6

0.8

1.0

0.5

Fp

PT  =  Ph  –  Pl PT  =  Pl  +  Ph

Pl Ph/

FIG. 24.32
Determining whether the readings obtained using the two-wattmeter method 

should be added or subtracted.
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For a balanced system, since

PT = Ph { P1 = 13ELIL cos uIf
Vf

the power factor of the load (phase) can be found from the wattmeter 
readings and the magnitude of the line voltage and current:

	 Fp = cos uIf
Vf =

Ph { Pl13EL IL
	 (24.33)

EXAMPLE 24.8  For the unbalanced ∆-connected load in Fig. 24.33 
with two properly connected wattmeters:

15 �

EBC  =  208 V ∠ –120°

EAB  =  208 V ∠ 0°

20 �

a
A

10 �

12 �

R2

R1

XL

12 �

bc

XC
Iab

Ica

R3

Ibc

IBb

IAa

ICc

+–

+–

ECA =  208 V ∠ 120°

+–
+–

B

C

W1

W2

FIG. 24.33
Example 24.8.

	 a.	 Determine the magnitude and angle of the phase currents.
	 b.	 Calculate the magnitude and angle of the line currents.
	 c.	 Determine the power reading of each wattmeter.
	 d.	 Calculate the total power absorbed by the load.
	 e.	 Compare the result of part (d) with the total power calculated using 

the phase currents and the resistive elements.

Solutions: 

	 a.	  Iab =
Vab

Zab
=

EAB

Zab
=

208 V ∠0°
10 Ω ∠0°

= 20.8 A j0°

		   Ibc =
Vbc

Zbc
=

EBC

Zbc
=

208 V ∠-120°
15 Ω + j 20 Ω

=
208 V ∠-120°
25 Ω ∠53.13°

		   = 8.32 A j−173.13°

		   Ica =
Vca

Zca
=

ECA

Zca
=

208 V ∠+120°
12 Ω + j 12 Ω

=
208 V ∠+120°
16.97 Ω ∠-45°

		   = 12.26 A j165°

	 b.	  IAa = Iab - Ica

		   = 20.8 A ∠0° - 12.26 A ∠165°
		   = 20.8 A - (-11.84 A + j 3.17 A)

		   = 20.8 A + 11.84 A - j 3.17 A = 32.64 A - j 3.17 A

		   = 32.79 A j−5.55°
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		   IBb = Ibc - Iab

		   = 8.32 A ∠-173.13° - 20.8 A ∠0°
		   = (-8.26 A - j 1 A) - 20.8 A

		   = -8.26 A - 20.8 A - j 1 A = -29.06 A - j 1 A

		   = 29.08 A j−178.03°

 ICc = Ica - Ibc

 = 12.26 A ∠165° - 8.32 A ∠-173.13°
 = (-11.84 A + j 3.17 A) - (-8.26 A - j 1 A)

 = -11.84 A + 8.26 A + j (3.17 A + 1 A) = -3.58 A + j 4.17 A

 = 5.5 A j130.65°

	 c.	  P1 = Vab IAa cos  uIAa

Vab  Vab = 208 V ∠0°
			    IAa = 32.79 A ∠-5.55°
		   = (208 V)(32.79 A) cos 5.55°
		   = 6788.35 W

		   Vbc = EBC = 208 V ∠-120°

		  but	  Vcb = ECB = 208 V ∠-120° + 180°
			    = 208 V ∠60°
		  with	  ICc = 5.5 A ∠130.65°
			    P2 = VcbICc cos uICc

Vcb

			    = (208 V)(5.5 A) cos 70.65°
			    = 379.1 W

	 d.	  PT = P1 + P2 = 6788.35 W + 379.1 W

		   = 7167.45 W

	 e.	  PT = (Iab)
2R1 + (Ibc)

2R2 + (Ica)
2R3

		   = (20.8 A)210 Ω + (8.32 A)215 Ω + (12.26 A)212 Ω
		   = 4326.4 W + 1038.34 W + 1803.69 W

		   = 7168.43 W

		  (The slight difference is due to the level of accuracy carried through 
the calculations.)

24.13 U nbalanced, Three-Phase, 
Four-Wire, Y-Connected Load

For the three-phase, four-wire, Y-connected load in Fig. 24.34, condi-
tions are such that none of the load impedances are equal—hence we 
have an unbalanced polyphase load. Since the neutral is a common 
point between the load and source, no matter what the impedance of 
each phase of the load and source, the voltage across each phase is the 
phase voltage of the generator:

	 Vf = Ef	 (24.34)

The phase currents can therefore be determined by Ohm’s law:

	 If1
=

Vf1

Z1
=

Ef1

Z1
  and so on	 (24.35)
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The current in the neutral for any unbalanced system can then be found 
by applying Kirchhoff’s current law at the common point n:

	 IN = If1
+ If2

+ If3
= IL1

+ IL2
+ IL3

	 (24.36)

Because of the variety of equipment found in an industrial environ-
ment, both three-phase power and single-phase power are usually pro-
vided with the single-phase obtained off the three-phase system. In 
addition, since the load on each phase is continually changing, a four-wire 
system (with a neutral) is normally used to ensure steady voltage levels 
and to provide a path for the current resulting from an unbalanced load. 
The system in Fig. 24.35 has a three-phase transformer dropping the line 
voltage from 13,800 V to 208 V. All the lower-power-demand loads, such 
as lighting, wall outlets, security, and so on, use the single-phase, 120 V 
line to neutral voltage. Higher power loads, such as air conditioners, elec-
tric ovens or dryers, and so on, use the single-phase, 208 V available 
from line to line. For larger motors and special high-demand equipment, 
the full three-phase power can be taken directly off the system, as shown 

Line

IL1

Line

Line

Neutral

IfL1

+

–

+

–

+

–

IN

IL2

Vf1 Z1

IL3

IfL2

Vf2

Z2Z3

Vf3

IfL3

EL

EL EL

FIG. 24.34
Unbalanced Y-connected load.

208 V –120°

208 V 120°
208 V 0°

Secondary
3 transformer

120 V 208 V

120 V

208 V

208 V
balanced

load

3

∠

∠
∠

FIG. 24.35
3f>1f, 208 V>120 V industrial supply.
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in Fig. 24.35. In the design and construction of a commercial establish-
ment, the National Electric Code requires that every effort be made to 
ensure that the expected loads, whether they be single- or multiphase, 
result in a total load that is as balanced as possible between the phases, 
thus ensuring the highest level of transmission efficiency.

24.14 U nbalanced, Three-Phase, 
Three-Wire, Y-Connected Load

For the system shown in Fig. 24.36, the required equations can be 
derived by first applying Kirchhoff’s voltage law around each closed 
loop to produce

EAB - Van + Vbn = 0

EBC - Vbn + Vcn = 0

ECA - Vcn + Van = 0

Z1

Z2Z3

ECA

EBC

EAB
ECA

+

–

Vcn

+

–

Van

+

–

Ian

EAB
+

–

Ibn

Icn

–

+
Vbn

EBC
+–

n

a

c b

FIG. 24.36
Unbalanced, three-phase, three-wire, Y-connected load.

Substituting, we have

Van = IanZ1  Vbn = IbnZ2  Vcn = IcnZ3

	 EAB = IanZ1 - IbnZ2	 (24.37a)

	 EBC = IbnZ2 - IcnZ3	 (24.37b)

	 ECA = IcnZ3 - IanZ1	 (24.37c)

Applying Kirchhoff’s current law at node n results in

Ian + Ibn + Icn = 0  and  Ibn = -Ian - Icn

Substituting for Ibn in Eqs. (24.37a) and (24.37b) yields

 EAB = IanZ1 - [-(Ian + Icn)]Z2

 EBC = -(Ian + Icn)Z2 - IcnZ3

which are rewritten as

 EAB = Ian(Z1 + Z2) + IcnZ2

 EBC = Ian(-Z2) + Icn[-(Z2 + Z3)]
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Using determinants, we have

 Ian =
` EAB Z2

EBC -(Z2 + Z3)
`

` Z1 + Z2 Z2

-Z2 -(Z2 + Z3)
`

 =
-(Z2 + Z3)EAB - EBCZ2

-Z1Z2 - Z1Z3 - Z2Z3 - Z2
2 + Z2

2

 Ian =
-Z2(EAB + EBC) - Z3EAB

-Z1Z2 - Z1Z3 - Z2Z3

Applying Kirchhoff’s voltage law to the line voltages gives

EAB + ECA + EBC = 0  or  EAB + EBC = -ECA

Substituting for (EAB + ECB) in the above equation for Ian gives

Ian =
-Z2(-ECA) - Z3EAB

-Z1Z2 - Z1Z3 - Z2Z3

and	 Ian =
EABZ3 - ECAZ2

Z1Z2 + Z1Z3 + Z2Z3
	 (24.38)

In the same manner, it can be shown that

	 Icn =
ECAZ2 - EBCZ1

Z1Z2 + Z1Z3 + Z2Z3
	 (24.39)

Substituting Eq. (24.39) for Icn in the right-hand side of Eq. (24.37b), we 
obtain

	 Ibn =
EBCZ1 - EABZ3

Z1Z2 + Z1Z3 + Z2Z3
	 (24.40)

EXAMPLE 24.9  A phase-sequence indicator is an instrument such 
as shown in Fig. 24.37(a) that can display the phase sequence of a 
polyphase circuit. A network that performs this function appears in 
Fig. 24.37(b). The applied phase sequence is ABC. The bulb corre-
sponding to this phase sequence burns more brightly than the bulb 
indicating the ACB sequence because a greater current is passing 
through the ABC bulb. Calculating the phase currents demonstrates 
that this situation does in fact exist:

Z1 = XC =
1

vC
=

1

(377 rad/s)(16 * 10-6 F)
= 166 Ω

By Eq. (24.39),

 Icn =
ECAZ2 - EBCZ1

Z1Z2 + Z1Z3 + Z2Z3

 =
(200 V ∠120°)(200 Ω ∠0°) - (200 V ∠-120°)(166 Ω ∠-90°)

(166 Ω ∠-90°)(200 Ω ∠0°) + (166 Ω ∠-90°)(200 Ω ∠0°) + (200 Ω ∠0°)(200 Ω ∠0°)
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Icn =
40,000 V ∠120° + 33,200 V ∠-30°

33,200 Ω ∠-90° + 33,200 Ω ∠-90° + 40,000 Ω ∠0°

Dividing the numerator and denominator by 1000 and converting both to 
the rectangular domain yields

 Icn =
(-20 + j 34.64) + (28.75 - j 16.60)

40 - j 66.4

 =
8.75 + j 18.04

77.52 ∠-58.93°
=

20.05 ∠64.13°
77.52 ∠-58.93°

 Icn = 0.259 A j123.06°

By Eq. (24.40),

 Ibn =
EBCZ1 - EABZ3

Z1Z2 + Z1Z3 + Z2Z3

 =
(200 V ∠-120°)(166 ∠-90°) - (200 V ∠0°)(200 ∠0°)

77.52 * 103 Ω  ∠-58.93°

 Ibn =
33,200 V ∠-210° - 40,000 V ∠0°

77.52 * 103 Ω  ∠-58.93°

Dividing by 1000 and converting to the rectangular domain yields

 Ibn =
-28.75 + j 16.60 - 40.0

77.52 ∠-58.93°
=

-68.75 + j 16.60

77.52 ∠-58.93°

 =
70.73 ∠166.43°
77.52 ∠-58.93°

= 0.91 A j225.36°

and Ibn 7 Icn by a factor of more than 3 : 1. Therefore, the bulb indicat-
ing an ABC sequence will burn more brightly due to the greater current. 
If the phase sequence were ACB, the reverse would be true.

(a)

FIG. 24.37
(a) Phase sequence indicator. (b) Phase sequence detector network.

[(a) Courtesy of Fluke Corporation]

EAB  =  200 V ∠ 0°

200 �

EBC  =  200 V ∠ –120°

ECA  =  200 V ∠ +120°

f  =  60 Hz

16 mF

ACB

a (1)

(3) c b (2)

Z1
Bulbs (150 W)
200 � internal

resistance

200 �

ABC

n
Z3 Z2

(b)
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24.15 R esidential and Industrial Service 
Distribution Systems

In North America the standard electrical distribution system for the 
home utilizes one phase of a three-phase distribution system such as 
shown for the delta configuration of Fig. 24.38. The fact that one phase 
is split by the center-tapped connection results in the terminology 
single split-phase distribution system. The result is a three-wire 
source grounded at the center tap with 120 V available from any one 
leg to the neutral and 240 V from line to line. If you look at the trans-
former feeding the power to the home from the utility pole, you will 
see three distinct lines to the residence as depicted in Fig. 24.38. The 
national code does not specify a color for the hot lines but does require 
that the neutral be white in color and the ground must be in green.

 

 

Δ - connected

Line

Line

Neutral

120 V

+

–
240 V

+

–

+

–

120 V

+

–

Singlephase
transformer

 system
3ϕ - distribution

Distribution 
Voltage

7.2 kV

(b)(a)

FIG. 24.38
Single split-phase, three-wire distribution system.

The distribution voltage of Fig. 24.38 typically ranges from 2.4 kV 
to 34.5 kV with the 7.2 kV shown in the figure as a common level. 
Before reaching the distribution level, the voltage on the cross-coun-
try lines may be as high as 120 kV, keeping in mind that the higher 
the voltage the less the current and the smaller the required size of the 
transmission lines. Often times different levels for the 120 V standard 
may appear as 110 V, 115 V, or 127 V, but basically all refer to the 
same level generated by the single split-phase scenario. On the high 
side, voltages such as 220 V and 230 V may appear but again the gen-
eration is provided by the same split-phase process. The lower voltage 
of 120 V is used for household needs such as outlets and lighting 
depicted in Fig. 24.39. The higher voltage of 240 V is for higher-
demand appliances such as clothes dryers, air conditioners, and cook-
ing stoves.

Note for the outlets of Fig. 24.39 that the hot leg is connected to the 
side of the outlet with the smaller opening and the neutral to the wider 
opening, revealing why plugs are to be inserted in a particular manner. 
The ground lead is connected to the third round opening below the other 
two connections. Although it would appear that the ground and neutral 
are connected and should only require one wire, keep in mind that the 
reason for having two leads is to ensure that an appliance is grounded to 
prevent electrical shock if the hot lead touches any part of the appliance. 
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This effect is explained in detail in Section 16.4. For the high-voltage 
appliance, a special plug is used with two terminals connected to the line 
voltages and one to the neutral.

For a variety of reasons you may find that the available voltage is 
208 V rather than 240 V required by your appliance. With such labels it 
is always best to purchase equipment with the specified voltage. How-
ever, if a 240 V clothes dryer is connected to a 208 V source, it will 
probably function correctly but will take longer to dry the clothes. Hook-
ing up a 208 V dryer to a 240 V source is not recommended because it 
may result in overheating with serious consequences. The appearance of 
a 208 V source may be due to the fact that a three-phase supply was 
necessary for the operation of special equipment in the facility whether 
it be an apartment structure or commercial establishment.

In situations where a three-phase supply is required by commercial 
establishments or larger structures, a three-phase transformer in a Y con-
nection is normally employed, as shown in Fig. 24.40. For the four-wire 
system of Fig. 24.40, 120 V is available from each phase to neutral as 
described in this chapter and 208 V from line to line. Three-phase sup-
plies are required for a variety of equipment, such as motors, since the 
phase sequence determines the direction of rotation and for handling the 
heavier loads often encountered.

There are occasions when the three-phase supply is required in addi-
tion to the 240 V level. This can be accomplished using a step-down 

+

–

Distribution 
voltage

Neutral (white wire)

(white wire)

Neutral

Neutral bar

 Bus bars
Ground

Line

Line

Line

Line (usually black wire)

Main 
breaker

Line

240 V 
outlet

120 V 
outlets

Individual
circuit 
breaker

FIG. 24.39
Household distribution of electrical power.

 Neutral

Phase A
Phase B

Phase C

120 V

120 V

208 V

Earth
ground

3ϕ Y- connected

FIG. 24.40
3f Y-connected, four-wire distribution system.



Problems    1121

Problems

SECTION 24.5  Y-Connected Generator  
with a Y-Connected Load

	 1.	 A balanced Y load having a 15 Ω  resistance in each leg 
is connected to a three-phase, four-wire, Y-connected 
generator having a line voltage of 228 V. Calculate the 
magnitude of
	a.	 the phase voltage of the generator.
	b.	 the phase voltage of the load.
	c.	 the phase current of the load.
	d.	 the line current.

	 2.	 Repeat Problem 1 if each phase impedance is changed to a 
14 Ω resistor in series with a 20 Ω capacitive reactance.

	 3.	 Repeat Problem 1 if each phase impedance is changed to an 
8 Ω resistor in parallel with an 8 Ω capacitive reactance.

	 4.	 The phase sequence for the Y-Y system in Fig. 24.42 is 
ABC.
	a.	 Find the angles u2 and u3 for the specified phase sequence.
	b.	 Find the voltage across each phase impedance in phasor 

form.
	c.	 Find the current through each phase impedance in pha-

sor form.
	d.	 Draw the phasor diagram of the currents found in part 

(c), and show that their phasor sum is zero.
	e.	 Find the magnitude of the line currents.
	f.	 Find the magnitude of the line voltages.

	 5.	 Repeat Problem 4 if the phase impedances are changed to 
a 9 Ω resistor in series with a 12 Ω inductive reactance.

	 6.	 Repeat Problem 4 if the phase impedances are changed 
to a 6 Ω  resistance in parallel with an 8 Ω  capacitive 
reactance.

transformer with a center tap on one of the windings as shown in 
Fig. 24.41. The connections required for each voltage level are indicated 
in the same figure. Such a system is called a high-leg delta or 240 V 
split-phase delta.

120 V

240 V

120 V 208 V

High

240 V

240 V

Phase A

leg

CT

Phase B

Phase C

FIG. 24.41
Split-phase 240 V delta distribution system.
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20 �
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C B c b
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+

–
N

– 120  V �02

+

FIG. 24.42
Problems 4, 5, 6, and 31.
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+

EAB3-phase, 3-wire
Y-connected generator

A

B

C

1 �

Line resistance

a

16 �

12 �

n
12 �

16 �

c b

12 �

16 �
V  = 50 V

–

1 �

1 �

FIG. 24.44
Problem 8.

	 7.	 For the system in Fig. 24.43, find the magnitude of the 
unknown voltages and currents.

a

10 �

10 �

3-phase, 3-wire
Y-connected

4-wire generator

Phase sequence: ABC

10 �

Ian

n
–
–

+

Van

IAa

A

EAB  =  220 V ∠0°

EBC  =  220 V ∠ + 120°

N

B

C

ECA  =  220 V ∠ –120°

IBb

ICc

Icn Ibn

bc
+

10 �

Vbn

–
Vcn

+
10 �

10 �

FIG. 24.43
Problems 7, 32, and 44.

	*8.	 Compute the magnitude of the voltage EAB for the balanced 
three-phase system in Fig. 24.44.

	*9.	 For the Y-Y system in Fig. 24.45:
	a.	 Find the magnitude and angle associated with the volt-

ages EAN, EBN, and ECN.
	b.	 Determine the magnitude and angle associated with 

each phase current of the load: Ian, Ibn, and Icn.
	c.	 Find the magnitude and phase angle of each line cur-

rent: IAa, IBb, and ICc.
	d.	 Determine the magnitude and phase angle of the voltage 

across each phase of the load: Van, Vbn, and Vcn.
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A 30 �
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FIG. 24.45
Problem 9.
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R  =  2 �

2 � 20 �

2 � 20 �

XL

R XL

14.7 kV∠0°
FPLagging

250 kW⁄

FIG. 24.46
Problem 10.

	*10.	 For the Y-Y system of Fig. 24.46 the impedance of each 
line is 2 + j 20 ohms and the line-to-line voltage at the 
source is 14.7 kV∠0°. The balanced load draws a total 
power of 750 kW at a current of 80 ampere with a lagging 
power factor.
	a.	 Find the total load loss of the system including the line 

loss.
	b.	 Find the phase voltage of the supply.
	c.	 Find the power factor of the load (including the line 

loss) on the supply.
	d.	 Is the power factor leading or lagging?
	e.	 Find the magnitude and phase angle of each phase of the 

balanced load.
	f.	 Find the power factor of the load (not including the line 

loss).
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	b.	 Find the voltage across each phase impedance in phasor 
form.

	c.	 Draw the phasor diagram of the voltages found in part 
(b), and show that their sum is zero around the closed 
loop of the ∆ load.

	d.	 Find the current through each phase impedance in phasor 
form.

	e.	 Find the magnitude of the line currents.
	f.	 Find the magnitude of the generator phase voltages.

	15.	 Repeat Problem 14 if the phase impedances are changed to 
a 100 Ω resistor in series with a capacitive reactance of 
100 Ω.

	16.	 Repeat Problem 14 if the phase impedances are changed to a 
3 Ω resistor in parallel with an inductive reactance of 4 Ω.

	17.	 For the system in Fig. 24.48, find the magnitude of the 
unknown voltages and currents.

SECTION 24.6  Y@� System

	11.	 A balanced ∆ load having a 20 Ω resistance in each leg is 
connected to a three-phase, three-wire, Y-connected gener-
ator having a line voltage of 208 V. Calculate the magni-
tude of
	a.	 the phase voltage of the generator.
	b.	 the phase voltage of the load.
	c.	 the phase current of the load.
	d.	 the line current.

	12.	 Repeat Problem 11 if each phase impedance is changed to a 
6.8 Ω resistor in series with a 14 Ω inductive reactance.

	13.	 Repeat Problem 11 if each phase impedance is changed to 
an 18 Ω  resistance in parallel with an 18 Ω  capacitive 
reactance.

	14.	 The phase sequence for the Y@∆ system in Fig. 24.47 is ABC.
	a.	 Find the angles u2 and u3 for the specified phase 

sequence.

b
22 �

c

a

B

N

C

A

EBC  =  208 V ∠v2

ECA  =  208 V ∠v3

EAB  =  208 V ∠0°

22 � 22 �

FIG. 24.47
Problems 14, 15, 16, 35, and 47.
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bc

–

–

Vca

+
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10 �

Iab

Ibc

Vbc +–

FIG. 24.48
Problems 17, 36, and 49.



Problems    1125

	*18.	 For the ∆-connected load in Fig. 24.49:
	a.	 Find the magnitude and angle of each phase current 

Iab, Ibc, and Ica.
	b.	 Calculate the magnitude and angle of each line current 

IAa, IBb, and ICc.
	c.	 Determine the magnitude and angle of the voltages 

EAB, EBC, and ECA.

20 �10 �

+

–

20 �10 �

20 �10 �

1 k�

0.3 k� 1 k�

0.3 k�0.3 k�

1 k�

a
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ICc
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+

–
EAB

B

+

–
EBC

C

Ica

Iab

Ibc
b

Vab  =  16 kV ∠0°
Vbc  =  16 kV ∠–120°
Vca  =  16 kV ∠+120°

A

FIG. 24.49
Problem 18.
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EAB = 120 V ∠0°

ECA = 120 V ∠ + 120°

FIG. 24.50
Problems 22, 23, 24, and 38.

	*22.	 For the system in Fig. 24.50, find the magnitude of the 
unknown voltages and currents.

	23.	 Repeat Problem 22 if each phase impedance is changed to a 
10 Ω resistor in series with a 20 Ω inductive reactance.

	24.	 Repeat Problem 22 if each phase impedance is changed to a 
20 Ω resistor in parallel with a 15 Ω capacitive reactance.

	25.	 A balanced ∆ load having a 220 Ω resistance in each leg is 
connected to a three-phase, ∆-connected generator having a 
line voltage of 440 V. Calculate the magnitude of
	a.	 the phase voltage of the generator.
	b.	 the phase voltage of the load.
	c.	 the phase current of the load.
	d.	 the line current.

SECTION 24.9  �@�, �@Y Three-Phase Systems

	19.	 A balanced Y load having a 30 Ω resistance in each leg is 
connected to a three-phase, ∆-connected generator having a 
line voltage of 208 V. Calculate the magnitude of
	a.	 the phase voltage of the generator.
	b.	 the phase voltage of the load.
	c.	 the phase current of the load.
	d.	 the line current.

	20.	 Repeat Problem 19 if each phase impedance is changed to a 
12 Ω resistor in series with a 12 Ω inductive reactance.

	21.	 Repeat Problem 19 if each phase impedance is changed to a 
15 Ω resistor in parallel with a 20 Ω capacitive reactance.
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	26.	 Repeat Problem 25 if each phase impedance is changed to a 
12 Ω resistor in series with a 9 Ω capacitive reactance.

	27.	 Repeat Problem 25 if each phase impedance is changed to a 
22 Ω resistor in parallel with a 22 Ω inductive reactance.

	28.	 The phase sequence for the ∆@∆ system in Fig. 24.51 is 
ABC.
	a.	 Find the angles u2 and u3 for the specified phase 

sequence.
	b.	 Find the voltage across each phase impedance in phasor 

form.

20 �

aA

BC

20 �

20 �
c

ECA  =  100 V ∠v3

EAB  =  100 V ∠0°

EBC  =  100 V ∠v2

b

FIG. 24.51
Problem 28.

	c.	 Draw the phasor diagram of the voltages found in part 
(b), and show that their phasor sum is zero around the 
closed loop of the ∆ load.

	d.	 Find the current through each phase impedance in phasor 
form.

	e.	 Find the magnitude of the line currents.

	29.	 Repeat Problem 28 if each phase impedance is changed to a 
12 Ω resistor in series with a 16 Ω inductive reactance.

	30.	 Repeat Problem 28 if each phase impedance is changed to a 
20 Ω resistor in parallel with a 20 Ω capacitive reactance.

SECTION 24.10  Power

	31.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 2.

	32.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 4.

	33.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 7.

	34.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 13.

	35.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 15.

	36.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 17.

	37.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 21.

	38.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 23.

	39.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 27.

	40.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the three-phase system in Problem 29.

	41.	 A balanced, three-phase, ∆-connected load has a line volt-
age of 200 V and a total power consumption of 4800 W at a 

lagging power factor of 0.8. Find the impedance of each 
phase in rectangular coordinates.

	42.	 A balanced, three-phase, Y-connected load has a line volt-
age of 208 and a total power consumption of 1600 W at a 
leading power factor of 0.8. Find the impedance of each 
phase in rectangular coordinates.

	*43.	 Find the total watts, volt-amperes reactive, volt-amperes, 
and Fp of the system in Fig. 24.52.

a

20 �15 �
3 �

4 � 4 �
4 �

n 15 �

b

20 �15 �

3 �3 �

c

20 �

EBC = 125 V � –120°

ECA = 125 V � + 120°

EAB = 125 V �0°

FIG. 24.52
Problem 43.
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	*44.	 The Y-Y system in Fig. 24.53 has a balanced load and a line 
impedance Zline = 4 Ω + j 20 Ω, If the line voltage at the 
generator is 16,000 V and the total power delivered to the 
load is 1200 kW at 80 A, determine each of the following:
	a.	 The magnitude of each phase voltage of the generator.
	b.	 The magnitude of the line currents.
	c.	 The total power delivered by the source.
	d.	 The power factor angle of the entire load “seen” by the 

source.
	e.	 The magnitude and angle of the current IAa if EAN =

EAN ∠0°.
	f.	 The magnitude and angle of the phase voltage Van.
	g.	 The impedance of the load of each phase in rectangular 

coordinates.
	h.	 The difference between the power factor of the load and 

the power factor of the entire system (including Zline).
	i.	 The efficiency of the system.

Z1

Z2 Z3

A

N

C B

IAa

EAB = 16 kV

4 � 20 �

4 � 20 �

4 � 20 �

c b

n

+

–

EAN

+

–

Van

a
Ian = 80 A

Z1 = Z2 = Z3

lagging Fp

FIG. 24.53
Problem 44.

C

N

A
A'

N'

B'C'

ZL

ZL ZL

B

XL  =  10 �

R

R  =  1 �

1 � 10 �

1 � 10 �

XL

R XL

12.4 kV∠0°
F  = 0.6 laggingP

800 kW⁄

FIG. 24.54
Problem 45.

	*45.	 The three-phase Y-Y system of Fig. 24.54 has a balanced 
load that receives a total of 2400 kW at a 0.6 lagging power 
factor. The line-to-line voltage at the load is 12.4 kV ∠0° 
and the impedance of each line is 1 + j 10 ohms.
	a.	 Find the magnitude of the phase voltage at the load.
	b.	 Find the magnitude of the phase and line currents.
	c.	 Find the magnitude of the phase voltage at the source.
	d.	 Find the magnitude of the line-to-line voltage at the source.
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SECTION 24.11  Three-Wattmeter Method

	46.	 a.	 Sketch the connections required to measure the total 
watts delivered to the load in Fig. 24.43 using three 
wattmeters.

	b.	 Determine the total wattage dissipation and the reading 
of each wattmeter.

	47.	 Repeat Problem 46 for the network in Fig. 24.47.

R3 10 �

ECA  =  208 V ∠120°

+–
+–

A

W1

+–
+–

W2

B

C

IAa

IBb

ICc

–

+

EAB  =  208 V ∠0°

EBC  =  208 V ∠–120°

–

+

–

+

10 �XC

R1

R2

10 �

10 �

Iab

a

Ibc

Ica

c

b

10 �

XL

FIG. 24.56
Problem 50.

∆- or Y-
connected

load

+–
+–

Wattmeter

CC
PC

FIG. 24.55
Problem 48.

SECTION 24.13  Unbalanced, Three-Phase, Four-Wire, 
Y-Connected Load

	*51.	 For the system in Fig. 24.57:
	a.	 Calculate the magnitude of the voltage across each 

phase of the load.
	b.	 Find the magnitude of the current through each phase of 

the load.
	c.	 Find the total watts, volt-amperes reactive, volt-amperes, 

and Fp of the system.
	d.	 Find the phase currents in phasor form.
	e.	 Using the results of part (c), determine the current IN.

2 �

EBC = 208 V � –120°

ECA = 208 V � –240°

EAB = 208 V �0°

2 �

c b

n

10 �

10 �

12 �

12 �

a

FIG. 24.57
Problem 51.

SECTION 24.12  Two-Wattmeter Method

	48.	 a.	 For the three-wire system in Fig. 24.55, properly con-
nect a second wattmeter so that the two measure the 
total power delivered to the load.

	b.	 If one wattmeter has a reading of 200 W and the other a 
reading of 85 W, what is the total dissipation in watts if 
the total power factor is 0.8 leading?

	c.	 Repeat part (b) if the total power factor is 0.2 lagging 
and Pl = 100 W.

	49.	 Sketch three different ways that two wattmeters can be con-
nected to measure the total power delivered to the load in 
Problem 17.

	*50.	 For the Y@∆ system in Fig. 24.56:
	a.	 Determine the magnitude and angle of the phase currents.
	b.	 Find the magnitude and angle of the line currents.
	c.	 Determine the reading of each wattmeter.
	d.	 Find the total power delivered to the load.
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SECTION 24.14  Unbalanced, Three-Phase, Three-
Wire, Y-Connected Load

	*52.	 For the three-phase, three-wire system in Fig. 24.58, find 
the magnitude of the current through each phase of the load, 
and find the total watts, volt-amperes reactive, volt-
amperes, and Fp of the load.

Line voltage  The potential difference that exists between the 
lines of a single-phase or polyphase system.

Neutral connection  The connection between the generator and 
the load that, under balanced conditions, will have zero cur-
rent associated with it.

Phase current  The current that flows through each phase of a 
single-phase (or polyphase) generator or load.

Phase sequence  The order in which the generated sinusoidal 
voltages of a polyphase generator will affect the load to which 
they are applied.

Phase voltage  The voltage that appears between the line and 
neutral of a Y-connected generator and from line to line in a 
∆-connected generator.

Polyphase ac generator  An electromechanical source of ac 
power that generates more than one sinusoidal voltage per 
rotation of the rotor. The frequency generated is determined 
by the speed of rotation and the number of poles of the 
rotor.

Single-phase ac generator  An electromechanical source of ac 
power that generates a single sinusoidal voltage having a fre-
quency determined by the speed of rotation and the number of 
poles of the rotor.

Three-wattmeter method  A method for determining the total 
power delivered to a three-phase load using three wattmeters.

Two-wattmeter method  A method for determining the total 
power delivered to a ∆- or Y-connected three-phase load 
using only two wattmeters and considering the power factor 
of the load.

Unbalanced polyphase load  A load not having the same imped-
ance in each phase.

Y-connected three-phase generator  A three-phase source of ac 
power in which the three phases are connected in the shape of 
the letter Y.

EBC = 200 V � –120°

ECA = 200 V � –240°

EAB = 200 V �0°

20 �

c b

n

16 �

12 �

3 �

4 �

a

FIG. 24.58
Problem 52.

Glossary

�-connected ac generator  A three-phase generator having the 
three phases connected in the shape of the capital Greek letter 
delta (∆).

Line current  The current that flows from the generator to the 
load of a single-phase or polyphase system.
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Pulse Waveforms  
and the   Response

25.1  Introduction

Our analysis thus far has been limited to alternating waveforms that vary in a sinusoidal man-
ner. This chapter introduces the basic terminology associated with the pulse waveform and 
examines the response of an R-C circuit to a square-wave input. The importance of the pulse 
waveform to the electrical/electronics industry cannot be overstated. A vast array of instru-
mentation, communication systems, computers, radar systems, and so on, all use pulse signals 
to control operation, transmit data, and display information in a variety of formats.

The response to a pulse signal of the networks described thus far is quite different from 
that obtained for sinusoidal signals. In fact, we must refer to the dc chapter on capacitors 
(Chapter 10) for a few fundamental concepts and equations that will help us in the analysis to 
follow. This chapter is just an introduction, designed to provide the fundamentals that will be 
helpful when the pulse waveform is encountered in specific areas of application.

25.2  Ideal Versus Actual

The ideal pulse in Fig. 25.1 has vertical sides, sharp corners, and a flat peak characteristic; it 
starts instantaneously at t1 and ends just as abruptly at t2.

Pulse Waveforms  
and the   Response

•	 Become familiar with the specific terms that 
define a pulse waveform and how to calculate 
various parameters such as the pulse width, rise 
and fall times, and tilt.

•	 Be able to calculate the pulse repetition rate and 
the duty cycle of any pulse waveform.

•	 Become aware of the parameters that define the 
response of an R-C network to a square-wave 
input.

•	 Understand how a compensator probe of an 
oscilloscope is used to improve the appearance of 
an output pulse waveform.

Objectives

2525

Amplitude

tp (pulse width)
t1 t2

Falling
or
trailing
edge

Rising
or

leading
edge

v

0 t

Ideal
pulse

FIG. 25.1
Ideal pulse waveform.
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The waveform in Fig. 25.1 is applied in the analysis in this chapter 
and probably in the initial investigation of areas of application beyond 
the scope of this text. Once the fundamental operation of a device, pack-
age, or system is clearly understood using ideal characteristics, the effect 
of an actual (or true or practical) pulse must be considered. If an 
attempt were made to introduce all the differences between an ideal and 
actual pulse in a single figure, the result would probably be complex and 
confusing. A number of waveforms are therefore used to define the crit-
ical parameters.

The reactive elements of a network, in their effort to prevent instanta-
neous changes in voltage (capacitor) and current (inductor), establish a 
slope to both edges of the pulse waveform, as shown in Fig. 25.2. The 
rising edge of the waveform in Fig. 25.2 is defined as the edge that 
increases from a lower to a higher level.

Falling
or
trailing
edge

Rising
or

leading
edge

v

0 ttp (pulse width)

Amplitude0.5V1

V1

FIG. 25.2
Actual pulse waveform.

The falling edge is defined by the region or edge where the waveform 
decreases from a higher to a lower level. Since the rising edge is the 
first to be encountered, it is also called the leading edge. The falling 
edge always follows the leading edge and is therefore often called the 
trailing edge.

Both regions are defined in Figs. 25.1 and 25.2.

Amplitude

For most applications, the amplitude of a pulse waveform is defined 
as the peak-to-peak value. Of course, if the waveforms all start and 
return to the zero-volt level, then the peak and peak-to-peak values are 
synonymous.

For the purposes of this text, the amplitude of a pulse waveform is the 
peak-to-peak value, as illustrated in Figs. 25.1 and 25.2.

Pulse Width

The pulse width (tp), or pulse duration, is defined by a pulse level 
equal to 50% of the peak value.

For the ideal pulse in Fig. 25.1, the pulse width is the same at any level, 
whereas tp for the waveform in Fig. 25.2 is a very specific value.
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Base-Line Voltage

The base-line voltage (Vb) is the voltage level from which the pulse is 
initiated.

The waveforms in Figs. 25.1 and 25.2 both have a 0 V base-line voltage. 
In Fig. 25.3(a) the base-line voltage is 1 V, whereas in Fig. 25.3(b) the 
base-line voltage is -4 V.

Amplitude  =  4 V

v

0 t

Vb  =  1 V

 5 V

(a)

Amplitude  =  – 6 V

v

0 t
Vb  =  – 4 V

(b)

–10 V

FIG. 25.3
Defining the base-line voltage.

Positive-Going and Negative-Going Pulses

A positive-going pulse increases positively from the base-line voltage, 
whereas a negative-going pulse increases in the negative direction 
from the base-line voltage.

The waveform in Fig. 25.3(a) is a positive-going pulse, whereas the 
waveform in Fig. 25.3(b) is a negative-going pulse.

Even though the base-line voltage in Fig. 25.4 is negative, the wave-
form is positive-going (with an amplitude of 10 V) since the voltage 
increased in the positive direction from the base-line voltage.

Rise Time (tr) and Fall Time (tf)

The time required for the pulse to shift from one level to another is of 
particular importance. The rounding (defined in Fig. 25.5) that occurs at 
the beginning and end of each transition makes it difficult to define the 
exact point at which the rise time should be initiated and terminated. For 
this reason,

tp

v

0 t

Amplitude  =  10 V

– 1 V

9 V

Vb

FIG. 25.4
Positive-going pulse.

v

0 ttr

(90%) 0.9V1

V1

(10%) 0.1V1

tf

FIG. 25.5
Defining tr and tf.
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the rise time and the fall time are defined by the 10% and 90% levels, 
as indicated in Fig. 25.5.

Note that there is no requirement that tr equal tf.

Tilt

Fig. 25.6 illustrates an undesirable but common distortion normally 
occurring due to a poor low-frequency response characteristic of the sys-
tem through which a pulse has passed. The drop in peak value is called 
tilt, droop, or sag. The percentage tilt is defined by

	 % tilt =
V1 - V2

V
* 100%	 (25.1)

where V is the average value of the peak amplitude as determined by

	 V =
V1 + V2

2
	 (25.2)

Naturally, the less the percentage tilt or sag, the more ideal is the 
pulse. Due to rounding, it may be difficult to define the values of V1 and 
V2. It is then necessary to approximate the sloping region by a straight-
line approximation and use the resulting values of V1 and V2.

Other distortions include the preshoot and overshoot appearing in 
Fig. 25.7, normally due to pronounced high-frequency effects of a sys-
tem, and ringing, due to the interaction between the capacitive and 
inductive elements of a network at their natural or resonant frequency.

EXAMPLE 25.1  Determine the following for the pulse waveform in 
Fig. 25.8:

	 a.	 whether it is positive- or negative-going
	 b.	 base-line voltage
	 c.	 pulse width
	 d.	 maximum amplitude
	 e.	 tilt

“Tilt”

Base voltage

v

0 t

V

V1 V2

FIG. 25.6
Defining tilt.

Overshoot

Ringing

Preshoot
t0

v

FIG. 25.7
Defining preshoot, overshoot, and ringing.

8

t (ms)0

v (V)

7

1 2 3 4 5 6 8 9 10 11 13 14 15

– 4

127

FIG. 25.8
Example 25.1.
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Solutions: 

	 a.	 positive-going
	 b.	 Vb = −4 V
	 c.	 tp = (12 - 7) ms = 5 ms
	 d.	 Vmax = 8 V + 4 V = 12 V

	 e.	 V =
V1 + V2

2
=

12 V + 11 V

2
=

23 V

2
= 11.5 V

% tilt =
V1 - V2

V
* 100% =

12 V - 11 V

11.5 V
* 100% = 8.7%

		  (Remember, V is defined by the average value of the peak amplitude.)

EXAMPLE 25.2  Determine the following for the pulse waveform in 
Fig. 25.9:

	 a.	 whether it is positive- or negative-going
	 b.	 base-line voltage
	 c.	 tilt
	 d.	 amplitude
	 e.	 tp
	 f.	 tr and tf

Solutions: 

	 a.	 positive-going
	 b.	 Vb = 0 V
	 c.	 % tilt = 0%
	 d.	 amplitude = (4 div.)(10 mV/div.) = 40 mV
	 e.	 tp = (3.2 div.)(5 ms/div.) = 16 Ms
	 f.	 tr = (0.4 div.)(5 ms/div.) = 2 Ms
		  tf = (0.8 div.)(5 ms/div.) = 4 Ms

25.3  Pulse Repetition Rate and Duty Cycle

A series of pulses such as those appearing in Fig. 25.10 is called a pulse 
train. The varying widths and heights may contain information that can 
be decoded at the receiving end.

If the pattern repeats itself in a periodic manner as shown in Fig. 25.11(a) 
and (b), the result is called a periodic pulse train.

The period (T) of the pulse train is defined as the time differential 
between any two similar points on the pulse train, as shown in Figs. 25.11(a) 
and (b).

Vertical sensitivity  =  10 mV/div.

t0

v

tr

10%

90%

tf

Horizontal sensitivity  =  5 ms/div.

tp

FIG. 25.9
Example 25.2.

0

v

t

FIG. 25.10
Pulse train.

0

v

t

tp

T

T

(a)

2
T T

(1 ms)
2T

(2 ms)
3T

(3 ms)

0

v

t

tp

T

T

(b)

2
T T

(1 ms)
2T

(2 ms)
3T

(3 ms)
0.2T

FIG. 25.11
Periodic pulse trains.
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The pulse repetition frequency (prf), or pulse repetition rate (prr), 
is defined by

	 prf (or prr) =
1

T
  Hz or pulses/s	 (25.3)

Applying Eq. (25.3) to each waveform in Fig. 25.11 results in the 
same pulse repetition frequency since the periods are the same. The 
result clearly reveals that

the shape of the periodic pulse does not affect the determination of 
the pulse repetition frequency.

The pulse repetition frequency is determined solely by the period of the 
repeating pulse. The factor that reveals how much of the period is 
encompassed by the pulse is called the duty cycle, defined as follows:

Duty cycle =
pulse width

period
* 100%

or	 Duty cycle =
tp

T
* 100%	 (25.4)

For Fig. 25.11(a) (a square-wave pattern),

Duty cycle =
0.5T

T
* 100% = 50%

and for Fig. 25.11(b),

Duty cycle =
0.2T

T
* 100% = 20%

The above results clearly reveal that

the duty cycle provides a percentage indication of the portion of the 
total period encompassed by the pulse waveform.

EXAMPLE 25.3  Determine the pulse repetition frequency and the duty 
cycle for the periodic pulse waveform in Fig. 25.12.

0

v (mV)

–10

5 10 15 20 25 30

Vb  =  3 mV

t (ms)

FIG. 25.12
Example 25.3.

Solution: 

 T = (15 - 6) ms = 9 ms

 prf =
1

T
=

1

9 ms
≅ 111.11 kHz
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 Duty cycle =
tp

T
* 100% =

(8 - 6) ms

9 ms
* 100%

 =
2

9
* 100% ≅ 22.22%

EXAMPLE 25.4  Determine the pulse repetition frequency and the 
duty cycle for the oscilloscope pattern in Fig. 25.13 having the indi-
cated sensitivities.

Vertical sensitivity  =  0.2 V/div.
v

div.
t

Horizontal sensitivity  =  1 ms/div.

FIG. 25.13
Example 25.4.

Solution: 

 T = (3.2 div.)(1 ms/div.) = 3.2 ms

 tp = (0.8 div.)(1 ms/div.) = 0.8 ms

 prf =
1

T
=

1

3.2 ms
= 312.5 Hz

 Duty cycle =
tp

T
* 100% =

0.8 ms

3.2 ms
* 100% = 25%

EXAMPLE 25.5  Determine the pulse repetition rate and duty cycle for 
the trigger waveform in Fig. 25.14.

Horizontal sensitivity  =  10 �s/div.

v

div.

t

0.5 V

V

0

FIG. 25.14
Example 25.5.

Solution: 

 T = (2.6 div.)(10 ms/div.) = 26 ms

 prf =
1

T
=

1

26 ms
= 38.46 kHz
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 tp ≅ (0.2 div.)(10 ms/div.) = 2 ms

 Duty cycle =
tp

T
* 100% =

2 ms

26 ms
* 100% = 7.69%

25.4 Av erage Value

The average value of a pulse waveform can be determined using one of 
two methods. The first is the procedure outlined in Section 13.7, which 
can be applied to any alternating waveform. The second can be applied 
only to pulse waveforms since it utilizes terms specifically related to 
pulse waveforms; that is,

	 Vav = (duty cycle)(peak value) + (1 - duty cycle)(Vb)	 (25.5)

In Eq. (25.5), the peak value is the maximum deviation from the refer-
ence or zero-volt level, and the duty cycle is in decimal form. Eq. (25.5) 
does not include the effect of any tilt pulse waveforms with sloping sides.

EXAMPLE 25.6  Determine the average value for the periodic pulse 
waveform in Fig. 25.15.

8

T
t (�s)0

v (mV)

7

5 10 2015

6
5
4
3
2
1

Vav

FIG. 25.15
Example 25.6.

Solution:  By the method in Section 13.7,

 G =
area under curve

T

 T = (12 - 2) ms = 10 ms

 G =
(8 mV)(4 ms) + (2 mV)(6 ms)

10 ms
=

32 * 10-9 V + 22 * 10-9 V

10 * 10-6

 =
44 * 10-9 V

10 * 10-6 = 4.4 mV

By Eq. (25.5),

Vb = +2 mV

Duty cycle =
tp

T
=

(6 - 2) ms

10 ms
=

4

10
= 0.4  (decimal form)

Peak value (from 0 V reference) = 8 mV
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 Vav = (duty cycle)(peak value) + (1 - duty cycle)(Vb)

 = (0.4)(8 mV) + (1 - 0.4)(2 mV)

 = 3.2 mV + 1.2 mV = 4.4 mV

as obtained above.

EXAMPLE 25.7  Given a periodic pulse waveform with a duty cycle of 
28%, a peak value of 7 V, and a base-line voltage of -3 V:

	 a.	 Determine the average value.
	 b.	 Sketch the waveform.
	 c.	 Verify the result of part (a) using the method of Section 13.7.

Solutions: 

	 a.	 By Eq. (25.5),

 Vav = (duty cycle)(peak value) + (1 - duty cycle)(Vb)

 = (0.28)(7 V) + (1 - 0.28)(-3 V) = 1.96 V + (-2.16 V)

 = −0.2 V

	 b.	 See Fig. 25.16.

	 c.	  G =
(7 V)(0.28T) - (3 V)(0.72T)

T
= 1.96 V - 2.16 V

 = −0.2 V

		  as obtained above.

Instrumentation

The average value (dc value) of any waveform can be easily determined 
using the oscilloscope. If the mode switch of the scope is set in the ac 
position, the average or dc component of the applied waveform is 
blocked by an internal capacitor from reaching the screen. The pattern 
can be adjusted to establish the display in Fig. 25.17(a). If the mode 
switch is then placed in the dc position, the vertical shift (positive or 
negative) reveals the average or dc level of the input signal, as shown in 
Fig. 25.17(b).

25.5 T ransient R-C Networks

In Chapter 10, the general solution for the transient behavior of an R-C 
network with or without initial values was developed. The resulting equa-
tion for the voltage across a capacitor is repeated here for convenience:

	 yC = Vf + (Vi - Vf)e
-t>RC	 (25.6)

Recall that Vi is the initial voltage across the capacitor when the 
transient phase is initiated as shown in Fig. 25.18. The voltage Vf  is the 
steady-state (resting) value of the voltage across the capacitor when 
the transient phase has ended. The transient period is approximated as 
5t, where t is the time constant of the network and is equal to the 
product RC.

0

v

7 V

t–3 V
T

0.28T

FIG. 25.16
Solution to part (b) of Example 25.7.

Horizontal sensitivity  =  5 �s/div.

v

div.

t
0

Vertical sensitivity  =  5 mV/div.

ac mode

(a)

Horizontal sensitivity  =  5 �s/div.

v

div.

t
0

Vertical sensitivity  =  5 mV/div.

dc mode

(b)

Vav  =  4 mV

FIG. 25.17
Determining the average value of a pulse waveform 

using an oscilloscope.

0

vC

Vf

t

Vi

Vf   –  Vi

5t

FIG. 25.18
Defining the parameters of Eq. (25.6).
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For the situation where the initial voltage is zero volts, the equation 
reduces to the following familiar form, where Vf  is often the applied 
voltage:

	 yC = Vf (1 - e-t>RC) 
Vi = 0 V

	 (25.7)

For the case in Fig. 25.19, Vi = -2 V, Vf = +5 V, and

 yC = Vi + (Vf - Vi)(1 - e-t>RC)

 = -2 V + [5 V - (-2 V)](1 - e-t>RC)

 yC = -2 V + 7 V(1 - e-t>RC)

For the case where t = t = RC,

 yC = -2 V + 7 V(1 - e-t>t) = -2 V + 7 V(1 - e-1)

 = -2 V + 7 V(1 - 0.368) = -2 V + 7 V(0.632)

 yC = 2.424 V

as verified by Fig. 25.19.

EXAMPLE 25.8  The capacitor in Fig. 25.20 is initially charged to 2 V 
before the switch is closed. The switch is then closed.

	 a.	 Determine the mathematical expression for yC.
	 b.	 Determine the mathematical expression for iC.
	 c.	 Sketch the waveforms of yC and iC.

Solutions: 

	 a.	 Vi = 2 V

Vf (after 5t) = E = 8 V

t = RC = (100 kΩ)(1 mF) = 100 ms

		  By Eq. (25.6),

 yC = Vf + (Vi - Vf)e
-t>RC

 = 8 V + (2 V - 8 V)e-t>t

and	 yC = 8 V − 6 Ve−t,T

	 b.	 When the switch is first closed, the voltage across the capacitor can-
not change instantaneously, and VR = E - Vi = 8 V - 2 V = 6 V. 
The current therefore jumps to a level determined by Ohm’s law:

IRmax
=

VR

R
=

6 V

100 kΩ
= 0.06 mA

		  The current then decays to zero amperes with the same time con-
stant calculated in part (a), and

iC = 0.06 mAe−t,T

	 c.	 See Fig. 25.21.

EXAMPLE 25.9  Sketch yC for the step input shown in Fig. 25.22. 
Assume that the -4 mV has been present for a period of time in excess 
of five time constants of the network. Then determine when yC = 0V if 
the step changes levels at t = 0 s.

0

vC

t

5 V

2.424 V

–2 V
t 5t

FIG. 25.19
Example of the use of Eq. (25.6).

R

100 k�

C 1 mF 2 V
+

–
E 8 V

+

–

FIG. 25.20
Example 25.8.

0

vC  (V)

t (s)0.1

8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

5t

0

iC  (mA)

t (s)0.1

0.1

0.06

0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 25.21
yC and iC for the network in Fig. 25.20.
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Solution: 

Vi = -4 mV  Vf = 10 mV

t = RC = (1 kΩ)(0.01 mF) = 10 ms

By Eq. (25.6),

 yC = Vf + (Vi - Vf)e
-t>RC

 = 10 mV + (-4 mV - 10 mV)e-t>10ms

and	 yC = 10 mV − 14 mV e−t,10Ms

The waveform appears in Fig. 25.23.
Substituting yC = 0 V into the above equation yields

yC = 0 V = 10 mV - 14 mV e-t>10ms

and	
10 mV

14 mV
= e-t>10ms

or	 0.714 = e-t>10ms

but	 loge0.714 = loge(e
-t>10ms) =

- t

10 ms

and	 t = -(10 ms)loge0.714 = -(10 ms)(-0.377) = 3.37 Ms

as indicated in Fig. 25.23.

25.6  R-C Response to Square-Wave Inputs

The square wave in Fig. 25.24 is a particular form of pulse waveform. It 
has a duty cycle of 50% and an average value of zero volts, as calculated 
as follows:

10 mV
vi

0 t
–4 mV

R

1 k�

C 0.01 mF vC

+

–+

–
4 mVvi

+

–

FIG. 25.22
Example 25.9.

10

vC (mV)

0 t (ms)
–4

10 20 30 40 50 60 70 80

t   =  3.37 ms

5t

FIG. 25.23
yC for the network in Fig. 25.22.

v

0 tT T 2T 3T

V1

–V1

2

FIG. 25.24
Periodic square wave.
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 Duty cycle =
tp

T
* 100% =

T>2
T

* 100% = 50%

 Vav =
(V1)(T>2) + (-V1)(T>2)

T
=

0

T
= 0 V

The application of a dc voltage V1 in series with the square wave in 
Fig. 25.24 can raise the base-line voltage from -V1 to zero volts and the 
average value to V1 volts.

If a square wave such as developed in Fig. 25.25 is applied to an R-C 
circuit as shown in Fig. 25.26, the period of the square wave can have a 
pronounced effect on the resulting waveform for yC.

v

0 tT T 2T

2V1

2
T
2

–

v

V1

+

–

+

–

FIG. 25.25
Raising the base-line voltage of a square wave to zero volts.

vi

0 tT T 2T
2

V

R

vi

+

–

vC

+

–

C

FIG. 25.26
Applying a periodic square-wave pulse train to an R-C network.

For the analysis to follow, we will assume that steady-state conditions 
will be established after a period of five time constants has passed. The 
types of waveforms developed across the capacitor can then be separated 
into three fundamental types: T>2 7 5t, T>2 = 5t, and T>2 6 5t.

T ,2 + 5T

The condition T>2 7 5t, or T 7 10t, establishes a situation where the 
capacitor can charge to its steady-state value in advance of t = T>2. The 
resulting waveforms for yC and iC appear as shown in Fig. 25.27. Note how 

vC

0 tT T 2T
2

V

T
2

>

(a)

iC

0 t

T

T 2T

2

(b)

V
R

V
R

–

5t

5t

5t

5t

5t

FIG. 25.27
yC and iC for T>2 7 5t.
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closely the voltage yC shadows the applied waveform and how iC is noth-
ing more than a series of very sharp spikes. Note also that the change of Vi 
from V to zero volts during the trailing edge results in a rapid discharge of 
yC to zero volts. In essence, when Vi = 0, the capacitor and resistor are in 
parallel and the capacitor discharges through R with a time constant equal 
to that encountered during the charging phase but with a direction of charge 
flow (current) opposite to that established during the charging phase.

T ,2 = 5T

If the frequency of the square wave is chosen such that T>2 = 5t or 
T = 10t, the voltage yC reaches its final value just before beginning its 
discharge phase, as shown in Fig. 25.28. The voltage yC no longer 
resembles the square-wave input and, in fact, has some of the character-
istics of a triangular waveform. The increased time constant has resulted 
in a more rounded yC, and iC has increased substantially in width to 
reveal the longer charging period.

vC

0 tT T 2T
2

V

T
2

=

(a)

iC

0 tT T 2T
2

(b)

V
R

V
R

–
5t

5t
5t

5t

5t

FIG. 25.28
yC and iC for T>2 = 5t.

T ,2 * 5T

If T>2 6 5t or T 6 10t, the voltage yC will not reach its final value 
during the first pulse (Fig. 25.29), and the discharge cycle will not return 
to zero volts. In fact, the initial value for each succeeding pulse changes 
until steady-state conditions are reached. In most instances, it is a good 
approximation to assume that steady-state conditions have been estab-
lished in five cycles of the applied waveform.

vC

0 tT 2T

V

T
2

<

(a)

3T

iC

0 tT 2T

(b)

V
R

V
R

–

3TT
2

T
2

5t

5t 5t

FIG. 25.29
yC and iC for T>2 6 5t.

As the frequency increases and the period decreases, there will be a 
flattening of the response for yC until a pattern like that in Fig. 25.30 
results. Fig. 25.30 begins to reveal an important conclusion regarding 
the response curve for yC:
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Under steady-state conditions, the average value of yC will equal the 
average value of the applied square wave.

Note in Figs. 25.29 and 25.30 that the waveform for yC approaches an 
average value of V>2.

EXAMPLE 25.10  The 1000 Hz square wave in Fig. 25.31 is applied to 
the R-C circuit of the same figure.

	 a.	 Compare the pulse width of the square wave to the time constant of 
the circuit.

	 b.	 Sketch yC.
	 c.	 Sketch iC.

vC

0 tT T 2T
2

V

T
2

<<

3T

5t

FIG. 25.30
yC for T>2 V 5t or T V 10t.

5 k�

vi

0 tT T
2

V  =  10 mV

R

vi

+

–

vC

+

–
C

f  =  1000 Hz

0.01 mF

iC

FIG. 25.31
Example 25.10.

Solutions: 

	 a.	  T =
1

f
=

1

1000
= 1 ms

 tp =
T

2
= 0.5 ms

 t = RC = (5 * 103 Ω)(0.01 * 10-6 F) = 0.05 ms

 
tp
t

=
0.5 ms

0.05 ms
= 10 and

 tp = 10t =
T
2

		  The result reveals that yC charges to its final value in half the pulse 
width.

	 b.	 For the charging phase, Vi = 0 V and Vf = 10 mV, and

 yC = Vf + (Vi - Vf)e
-t>RC

 = 10 mV + (0 - 10 mV)e-t>t

and	 yC = 10 mV(1 − e − t,T)

		  For the discharge phase, Vi = 10 mV and Vf = 0 V, and

 yC = Vf + (Vi - Vf)e
-t>t

 = 0 V + (10 mV - 0 V)e-t>t

and	 yC = 10 mVe−t,T

		  The waveform for yC appears in Fig. 25.32.
	 c.	 For the charging phase at t = 0 s, VR = V  and IRmax

= V>R =  
10 mV>5 kΩ = 2 mA and

iC = Imaxe
-t>t = 2 MAe−t,T

vC

0 tT T
2

10 mV

5t

tp  =  10t

FIG. 25.32
yC for the R-C network in Fig. 25.31.
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		  For the discharge phase, the current will have the same mathemati-
cal formulation but the opposite direction, as shown in Fig. 25.33.

EXAMPLE 25.11  Repeat Example 25.10 for f = 10 kHz.

Solution: 

 T =
1

f
=

1

10 kHz
= 0.1 ms

and	  
T

2
= 0.05 ms

with	  t = tp =
T

2
= 0.05 ms

In other words, the pulse width is exactly equal to the time constant of 
the network. The voltage yC will not reach the final value before the first 
pulse of the square-wave input returns to zero volts.

For t in the range t = 0 to T>2, Vi = 0 V and Vf = 10 mV, and

yC = 10 mV(1 - e-t>t)

Recall from Chapter 10 that at t = t, yC = 63.2% of the final value. 
Substituting t = t into the equation above yields

 yC = (10 mV)(1 - e-1) = (10 mV)(1 - 0.368)

 = (10 mV)(0.632) = 6.32 mV

as shown in Fig. 25.34.

iC

0 tT T
2

2 mA

2T

–2 mA

5t

FIG. 25.33
iC for the R-C network in Fig. 25.31.

vC

0 tT T
2

V  =  10 mV

(t)
(2t)

2T
(4t)(3t)

3T
(6t)(5t)

4T
(8t)(7t) (9t)

2.69 mV2.68 mV2.64 mV2.33 mV

7.31 mV7.29 mV7.18 mV6.32 mV 7.31 mV

2.69 mV

FIG. 25.34
yC response for tp = t = T>2.

For the discharge phase between t = T>2 and T, Vi = 6.32 mV and 
Vf = 0 V, and

 yC = Vf + (Vi - Vf)e
-t>t

 = 0 V + (6.32 mV - 0 V)e-t>t

 yC = 6.32 mVe-t>t

with t now being measured from t = T>2 in Fig. 25.34. In other words, 
for each interval in Fig. 25.34, the beginning of the transient waveform 
is defined as t = 0 s. The value of yC at t = T  is therefore determined 
by substituting t = t into the above equation, and not 2t as defined by 
Fig. 25.34.

Substituting t = t gives

 yC = (6.32 mV)(e-1) = (6.32 mV)(0.368)

 = 2.33 mV

as shown in Fig. 25.34.
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For the next interval, Vi = 2.33 mV and Vf = 10 mV, and

 yC = Vf + (Vi - Vf)e
-t>t

 = 10 mV + (2.33 mV - 10 mV)e-t>t

 yC = 10 mV - 7.67 mVe-t>t

At t = t (since  t = T = 2t is now t = 0 s for this interval),

 yC = 10 mV - 7.67 mVe-1

 = 10 mV - 2.82 mV

 yC = 7.18 mV

as shown in Fig. 25.34.
For the discharge interval, Vi = 7.18 mV and Vf = 0 V, and

 yC = Vf + (Vi - Vf)e
-t>t

 = 0 V + (7.18 mV - 0)e-t>t

 yC = 7.18 mVe-t>t

At t = t (measured from 3t in Fig. 25.34),

 yC = (7.18 mV)(e-1) = (7.18 mV)(0.368)

 = 2.64 mV

as shown in Fig. 25.34.
Continuing in the same manner, we generate the remaining waveform 

for yC as depicted in Fig. 25.34. Note that repetition occurs after t = 8t, 
and the waveform has essentially reached steady-state conditions in a 
period of time less than 10t, or five cycles of the applied square wave.

A closer look reveals that both the peak and the lower levels contin-
ued to increase until steady-state conditions were established. Since the 
exponential waveforms between t = 4T  and t = 5T  have the same time 
constant, the average value of yC can be determined from the steady-
state 7.31 mV and 2.69 mV levels as follows:

Vav =
7.31 mV + 2.69 mV

2
=

10 mV

2
= 5 mV

which equals the average value of the applied signal, as stated earlier in 
this section.

We can use the results in Fig. 25.34 to plot iC. At any instant of time,

yi = yR + yC  or  yR = yi - yC

and	 iR = iC =
yi - yC

R

At t = 0+, yC = 0 V, and

iR =
yi - yC

R
=

10 mV - 0

5 kΩ
= 2 mA

as shown in Fig. 25.35.
As the charging process proceeds, the current iC decays at a rate de-

termined by

iC = 2 mAe-t>t

At t = t,

 iC = (2 mA)(e-t>t) = (2 mA)(e-1) = (2 mA)(0.368)

 = 0.736 mA

as shown in Fig. 25.35.
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For the trailing edge of the first pulse, the voltage across the capacitor 
cannot change instantaneously, resulting in the following when yi drops 
to zero volts:

iC = iR =
yi - yC

R
=

0 - 6.32 mV

5 kΩ
= -1.264 mA

as illustrated in Fig. 25.35. The current then decays as determined by

iC = -1.264 mAe-t>t

and at t = t (actually t = 2t in Fig. 25.35),

 iC = (-1.264 mA)(e-t>t) = (-1.264 mA)(e-1)

 = (-1.264 mA)(0.368) = -0.465 mA

as shown in Fig. 25.35.
At t = T(t = 2t), yC = 2.33 mV, and yi returns to 10 mV, resulting in

iC = iR =
yi - yC

R
=

10 mV - 2.33 mV

5 kΩ
= 1.534 mA

The equation for the decaying current is now

iC = 1.534 mAe-t>t

and at t = t (actually t = 3t in Fig. 25.35),

iC = (1.534 mA)(0.368) = 0.565 mA

The process continues until steady-state conditions are reached at the 
same time they were attained for yC. Note in Fig. 25.35 that the posi-
tive peak current decreased toward steady-state conditions while the 
negative peak became more negative. Note that the current waveform 
becomes symmetrical about the axis when steady-state conditions are 
established. The result is that the net average current over one cycle is 
zero, as it should be in a series R-C circuit. Recall from Chapter 10 that 
the capacitor under dc steady-state conditions can be replaced by an 
open-circuit equivalent, resulting in IC = 0A.

Although both examples just provided started with an uncharged 
capacitor, the same approach can be used effectively for initial conditions. 
Simply substitute the initial voltage on the capacitor as Vi in Eq. (25.6) and 
proceed as before.

iC

0 tT T
2

2 mA

(t)
(2t)

2T
(4t)(3t)

3T
(6t)(5t)

4T
(8t)(7t) (9t)

0.538 mA0.539 mA0.542 mA0.565 mA

1.464 mA1.472 mA1.534 mA 1.462 mA

0.736 mA

–0.538 mA

–1.462 mA–1.462 mA–1.458 mA–1.436 mA–1.264 mA

–0.528 mA–0.465 mA –0.538 mA–0.537 mA

FIG. 25.35
iC response for tp = t = T>2.
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25.7 O scilloscope Attenuator 
And compensating Probe

The *10 attenuator probe used with oscilloscopes is designed to 
reduce the magnitude of the input voltage by a factor of 10. If the input 
impedance to a scope is 1 MΩ, the *10 attenuator probe will have an 
internal resistance of 9 MΩ, as shown in Fig. 25.36.

0 V

200 V

–

+

Rs 1 M�

Vertical

Scope

20 V
0 V

Rp

9 M�

Probe

FIG. 25.36
*10 attenuator probe.

Applying the voltage divider rule gives

Vscope =
(1 MΩ)(Vi)

1 MΩ + 9 MΩ
=

1

10
Vi

In addition to the input resistance, oscilloscopes have some internal 
input capacitance, and the probe adds an additional capacitance in paral-
lel with the oscilloscope capacitance, as shown in Fig. 25.37. The probe 
capacitance is typically about 10 pF for a 1 m (3.3 ft) cable, reaching 
about 15 pF for a 3 m (9.9 ft) cable. The total input capacitance is there-
fore the sum of the two capacitive elements, resulting in the equivalent 
network in Fig. 25.38.

For the analysis to follow, let us determine the Thévenin equivalent 
circuit for the capacitor Ci:

 ETh =
(1 MΩ)(Vi)

1 MΩ + 9 MΩ
=

1

10
Vi

and	  RTh = 9 MΩ 71 MΩ = 0.9 MΩ

The Thévenin network is shown in Fig. 25.39.
For Vi = 200 V (peak),

ETh = 0.1Vi = 20 V (peak)

Rs = 1 M�20 pFCs

Vscope

Scope
Cable

10 pF
(1 meter
cable)

Cc

Vi

9 M�

Rp

Probe

FIG. 25.37
Capacitive elements present in an attenuator probe arrangement.

Ci = Cc + Cs = 30 pF1 M�Rs

VscopeVi

9 M�

Rp

FIG. 25.38
Equivalent network in Fig. 25.37.

–

+

RTh

0.9 M�

30 pFCiVi
–

+
vCETh 0.1

FIG. 25.39
Thévenin equivalent for Ci in Fig. 25.38.
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and for yC, Vf = 20 V and Vi = 0 V, with

t = RC = (0.9 * 106 Ω)(30 * 10-12 F) = 27 ms

For an applied frequency of 5 kHz,

T =
1

f
= 0.2 ms  and  

T

2
= 0.1 ms = 100 ms

with 5t = 135 ms 7 100 ms, as shown in Fig. 25.40, clearly producing 
a severe rounding distortion of the square wave and a poor representa-
tion of the applied signal.

To improve matters, a variable capacitor is often added in parallel 
with the resistance of the attenuator, resulting in a compensated attenu-
ator probe such as the one shown in Fig. 25.41. In Chapter 23, it was 
demonstrated that a square wave can be generated by a summation of 
sinusoidal signals of particular frequency and amplitude. If we therefore 
design a network such as the one shown in Fig. 25.42 that ensures that 
Vscope is 0.1Vi for any frequency, then the rounding distortion is removed, 
and Vscope has the same appearance as Vi.

Applying the voltage divider rule to the network in Fig. 25.42 gives

	 Vscope =
ZsVi

Zs + Zp
	 (25.8)

If the parameters are chosen or adjusted such that

	 RpCp = RsCi	 (25.9)

the phase angle of Zs and Zp will be the same, and Eq. (25.8) will reduce to

	 Vscope =
RsVi

Rs + Rp
	 (25.10)

which is insensitive to frequency since the capacitive elements have 
dropped out of the relationship.

In the laboratory, simply adjust the probe capacitance using a stand-
ard or known square-wave signal until the desired sharp corners of the 
square wave are obtained. If you avoid the calibration step, you may 
make a rounded signal look square since you assumed a square wave at 
the point of measurement.

Too much capacitance results in an overshoot effect, whereas too lit-
tle continues to show the rounding effect.

25.8 App lication

TV Remote

The TV remote works in many ways like a garage door opener or car 
alarm transmitter. There is no visible connection between the transmitter 
and the receiver, and each transmitter is linked to its receiver with a spe-
cial code. The only major difference is that the TV remote uses an infra-
red frequency, while the other two use a much lower radio frequency.

The TV remote in Fig. 25.43(a) has been opened to reveal the internal 
construction of its keypad and face in Fig. 25.43(b). The three components 
in Fig. 25.43(b) are lined up to show how the holes in the cover match the 

20 V

Vscope

Vscope = 0.1Vi

vC = vscope

0 t
127    s

100    s

FIG. 25.40
The scope pattern for the conditions in Fig. 25.38 

with Vi = 200 V peak.

FIG. 25.41
Commercial compensated 10 : 1 attenuator probe.

(Courtesy of Tektronix, Inc.)

Probe

Rs 1M�

Rp

9 M�
+

Ci Vscope

–

Zs

+

Vi

–

Zp

Cp

FIG. 25.42
Compensated attenuator and input impedance to a 

scope, including the cable capacitance.
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actual keys in the switch membrane and where each button on the keypad 
hits on the face of the printed circuit board. Note on the printed circuit 
board that there is a black pad to match each key on the membrane. The 
back side of the switch membrane in Fig. 25.43(c) shows the soft carbon 
contacts that make contact with the carbon contacts on the printed board 
when the buttons are depressed. An enlarged view of one of the contacts 
(S31) in Fig. 25.43(c) is shown in Fig. 25.43(d) to illustrate the separation 
between circuits and the pattern used to ensure continuity when the solid 
round carbon pad at the bottom of the key is put in place.

All the connections established when a key is pressed are passed on to a 
relatively large switch-matrix-encoder IC chip appearing on the back side 

(a) (b)

(c) (d)

FIG. 25.43
TV remote: (a) external appearance; (b) internal construction; (c) carbon keypads;  

(d) enlarged view of S31 keypad.
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of the printed circuit board as shown in Fig. 25.44. For the pad (S31) in Fig. 
25.43(d), three wires of the matrix appearing in Fig. 25.43(b) are connected 
when the corresponding key (number 5) is pressed. The encoder then reacts 
to this combination and sends out the appropriate signal as an infrared (IR) 
signal from the IR LED appearing at the end of the remote control, as 
shown in Fig. 25.43(b) and Fig. 25.44. The second, smaller LED (red on 
actual unit) appearing at the top of Fig. 25.43(b) blinks during transmis-
sion. Once the batteries are inserted, the CMOS electronic circuitry that 
controls the operation of the remote is always on. This is possible only 
because of the very low power drain of CMOS circuitry. The power (PWR) 
button is used only to turn the TV on and activate the receiver.

The signal sent out by the majority of remotes is one of the two types 
appearing in Fig. 25.45. In each case there is a key pulse to initiate the signal 
sequence and to inform the receiver that the coded signal is about to arrive. 
In Fig. 25.45(a), a 4-bit binary-coded signal is transmitted using pulses in 
specific locations to represent the “ones” and using the absence of a pulse to 
represent the “zeros.” That coded signal can then be interpreted by the 
receiver unit and the proper operation performed. In Fig. 25.45(b), the signal 
is frequency controlled. Each key has a different frequency associated with 
it. The result is that each key has a specific transmission frequency. Since 
each TV receiver responds to a different pulse train, a remote must be coded 
for the TV under control. There are fixed program remotes that can be used 
with only one TV. Then there are smart remotes that are preprogrammed 
internally with a number of remote control codes. You have to set up 
remotes of this type according to the TV you have, using a three-digit cod-
ing system accessed through the TV setup screen. Learning remotes are 
those that can use the old remote to learn the code and then store it for future 
use. In this case, one remote is set directly in front of the other, and the infor-
mation is transferred from one to the other when both are energized. 
Remotes are also available that are a combination of the last two.

The remote in Fig. 25.43 uses four AAA batteries in series for a total 
of 6 V. It has its own local crystal oscillator separate from the IC, as 
shown by the discrete elements to the top right and midleft of the printed 
circuit board in Fig. 25.43(c). The crystal itself, which is relatively large 

Crystal
(crystal oscillator)

Switch-matrix-
encoder IC

Resistor

IR LED

Capacitor

FIG. 25.44
Back side of TV remote in Fig. 25.43.

V

Key pulse

(a)

V

Key pulse

1 10 0 0 0 1 0 1 10 t
ON CHANNEL 2 OFF

ON OFF
High
frequency

Low
frequency Mid-frequency

INCREASE VOLUME

(b)

FIG. 25.45
Signal transmission: (a) pulse train; (b) variation.
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compared to the other elements, appears on the other side of the board 
just above the electrolytic capacitor in Fig. 25.44. The oscillator gener-
ates the pulse signal required for proper IC operation. Note how flush 
most of the discrete elements are in Fig. 25.43(b) and the rather large 
electrolytic capacitor on the back of the printed circuit board in Fig. 
25.44. The specifications on the unit give it a range control of 25 ft with 
a 30° coverage arc as shown in Fig. 25.46. The arc coverage of your unit 
can easily be tested by pointing it directly at the TV and then moving it 
in any direction until it no longer controls the TV.

25.9 C omputer Analysis

PSpice

R-C Response    Our analysis begins with a verification of the results 
of Example 25.10, which examined the response of the series R-C cir-
cuit appearing on the schematic in Fig. 25.47 to a pulse input. The 
source is one used in Chapters 10 and 11 to replicate the action of a 
switch in series with a dc source. The defining attributes for the pulse 
waveform are repeated for convenience in Fig. 25.48. Recall that the 
PW was made long enough so that the full transient period could be 
examined. In this analysis, the pulse width is adjusted to permit view-
ing the transient behavior of an R-C network between changing levels 
of the applied pulse. Initially the PW is set at 10 times the time constant 
of the network so that the full transient response can occur between 
changes in voltage level. The time constant of the network is 
t = RC = (5 kΩ)(0.01 mF) = 0.05 ms, resulting in a PW of 0.5 ms 
in Fig. 25.47. To establish a square-wave appearance, the period was 
chosen as twice the pulse width or 1 ms as shown in the VPulse listing.

30° 25′

TV remote

FIG. 25.46
Range and coverage arc for TV remote in Fig. 25.43.

FIG. 25.47
Using PSpice to verify the results of Example 25.10.

PW

V2
TRV

TF

V1
0 PER

TD

t

FIG. 25.48
Defining the PSpice Vpulse parameters.
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In the Simulation Settings dialog box, select Time Domain(Transient) 
to get a response versus time. Select the Run to time at 2 ms so that two 
full cycles result. Leave the Start saving data after on the default value of 
0 s, and set the Maximum step size at 2 ms>1000 = 2 ms. After simula-
tion, apply Trace-Add Trace-I(C)-OK, and the bottom plot in Fig. 25.49 
is the result. Note that the maximum current is 2 mA as determined by 
ICmax

= 10 mV>5 kΩ, and the full transient response appears within each 
pulse. Note also that the current dropped below the axis to reveal a change 
in direction when the applied voltage dropped from the 10 mV level to 0 V. 
Through Plot-Add Plot to Window-Trace-Add Trace-V(Vpulse:+)- 
OK-Trace-Add Trace-V(C:1)-OK, the plots of the applied voltage and 
the voltage across the capacitor can be displayed in the upper graph in Fig. 
25.49. First, select the upper graph in Fig. 25.49 so that you can move the 
SELg , and then select the Toggle cursor key. Now left-click on V(C:1) 
at the bottom right of the graph and left-click again to set a cursor on the 
graph. Setting the cursor at five time constants reveals that the transient 
voltage has reached 10 mV. Setting the right-click cursor at ten time con-
stants reveals that VC has also reached the 10 mV level.

FIG. 25.49
Plot of ypulse, yC, and iC for the circuit in Fig. 25.47.

Setting tp = T = T ,2    The parameters of the source will now be 
modified by changing the frequency of the pulse waveform to 10 kHz with 
a period of 0.1 ms and a pulse width of 0.05 ms. For Vpulse, the changes 
are PW = 0.05 ms and PER = 0.1 ms. The time constant of the network 
remains the same at 0.05 ms, so the pulse width equals the time constant of 
the circuit. The result is that it will take a number of pulses before the 
voltage across the capacitor reaches its final value of 10 mV. Under the 
Simulation Settings, change the Run to time to 0.5 ms = 500 ms, or 
five cycles of the applied voltage. Change the Maximum step size to 
500 ms>1000 = 500 ns = 0.5 ms. Under the SCHEMATIC1 window, 
select Trace-Add Trace-V(C:1)-OK to obtain the transient voltage 
across the capacitor. Select Trace-Add Trace-V(Vpulse:+)-OK to place 
the applied voltage on the same screen. Note in the resulting plots in 
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Problems

SECTION 25.2  Ideal versus Actual

	 1.	 Determine the following for the pulse waveforms of Fig. 25.51:
	 a.	 whether it is positive- or negative-going
	 b.	 base-line voltage

	 c.	 pulse width
	 d.	 amplitude
	 e.	 % tilt

	 2.	 Repeat Problem 1 for the pulse waveforms of Fig. 25.52.

Fig. 25.50 that the voltage builds up from 0 V until it appears to reach a 
fairly steady state after 400 ms. At 400 ms, use a left cursor (Y1) to find 
the minimum point with 2.68 mV resulting—a close match with the long-
hand calculation of Example 25.11 of 2.69 mV. At 450 ms, the right-click 
cursor (Y2) provides a level of 7.32 mV, which is again a close match with 
the calculated level of 7.31 mV.

FIG. 25.50
Plot of yC for the circuit in Fig. 25.47 with tp = t = T>2.
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FIG. 25.51
Problems 1, 8, and 12.
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FIG. 25.52
Problems 2 and 9.
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SECTION 25.3  Pulse Repetition Rate and Duty Cycle

	 8.	 Determine the pulse repetition frequency and duty cycle for 
the waveforms of Fig. 25.51.

	 9.	 Determine the pulse repetition frequency and duty cycle for 
the waveforms of Fig. 25.52.

	10.	 Determine the pulse repetition frequency and duty cycle for 
the waveform in Fig. 25.53.

SECTION 25.4  Average Value

	11.	 For the waveform in Fig. 25.56, determine the
	 a.	 period.
	 b.	 pulse width.
	 c.	 pulse repetition frequency.
	 d.	 average value.
	 e.	 effective value.

	 3.	 Repeat Problem 1 for the pulse waveform in Fig. 25.53.

v

0 t

div.

Vertical sensitivity  =  10 mV/div.
Horizontal sensitivity  =  2 ms/div.

FIG. 25.53
Problems 3, 4, 10, and 13.

	 4.	 Determine the rise and fall times for the waveform in Fig. 
25.53.

	 5.	 Sketch a pulse waveform that has a base-line voltage of 
-5 mV, a pulse width of 2 ms, an amplitude of 15 mV, a 
10% tilt, a period of 10 ms, and vertical sides and is positive-
going.

	 6.	 For the waveform in Fig. 25.54, established by straight-line 
approximations of the original waveform:

	 a.	 Determine the rise time.
	 b.	 Find the fall time.
	 c.	 Find the pulse width.
	 d.	 Calculate the frequency.

v

0 t (ms)

20 mV

2 2220 3212

FIG. 25.54
Problems 6 and 14.

	 7.	 For the waveform in Fig. 25.55:
	 a.	 Determine the period.
	 b.	 Find the frequency.
	 c.	 Find the maximum and minimum amplitudes.

v

0 tVertical sensitivity  =  0.2 V/div.
Horizontal sensitivity  =  50 ms/div.

FIG. 25.55
Problems 7 and 15.

v (mV)

0

t (ms)

6

–2

3 9 11 17 191

FIG. 25.56
Problem 11.

	12.	 Determine the average value of the periodic pulse wave-
form in Fig. 25.51.

	13.	 To the best accuracy possible, determine the average value 
of the waveform in Fig. 25.53.

	14.	 Determine the average value of the waveform in Fig. 25.54.

	15.	 Determine the average value of the periodic pulse train in 
Fig. 25.55.

SECTION 25.5  Transient R-C Networks

	16.	 The capacitor in Fig. 25.57 is initially charged to 6 V, with 
the polarity indicated in the figure. The switch is then 
closed at t = 0 s.

	 a.	 What is the mathematical expression for the voltage yC?
	 b.	 Sketch yC versus t.
	 c.	 What is the mathematical expression for the current iC?
	 d.	 Sketch iC versus t.

R

8 k�

C 0.02 mF

iC

6 V

–

+–

+
vCE 26 V

+

–

FIG. 25.57
Problem 16.
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	17.	 For the input voltage yi appearing in Fig. 25.58, sketch the 
waveform for yo. Assume that steady-state conditions were 
established with yi = 2 V.

R

2 k�

C 10 mF vo

+

–
vi

+

–

vi

0 t

 

10V

2 V

FIG. 25.58
Problem 17.

	18.	 The switch in Fig. 25.59 is in position 1 until steady-state con-
ditions are established. Then the switch is moved (at t = 0 s) 
to position 2. Sketch the waveform for the voltage yC.

R

1 k�

C 1000 mF

iC

–

+
vC

10 V 2 V

21

+

–

+

–

FIG. 25.59
Problems 18 and 19.

	19.	 Sketch the waveform for iC for Problem 18.

SECTION 25.6  R-C Response to Square-Wave Inputs

	20.	 Sketch the voltage yC for the network in Fig. 25.60 due to 
the square-wave input of the same figure with a frequency of

	 a.	 100 Hz.
	 b.	 500 Hz.
	 c.	 5000 Hz.

R

5 k�

C 0.04 mF vc

+

–
vi

+

–

ic

20 V

vi

0 tT
2

T

FIG. 25.60
Problems 20, 21, 23, 24, 27, and 28.
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	*29.	 Using schematics, obtain the waveform appearing on the 
scope in Fig. 25.37 with a 20 V pulse input at a frequency of 
5 kHz.

	*30.	 Place a capacitor in parallel with Rp in Fig. 25.37 that will 
establish an in-phase relationship between yscope and yi. 
Using schematics, obtain the waveform appearing on the 
scope in Fig. 25.37 with a 20 V pulse input at a frequency of 
5 kHz.

Glossary

Actual (true, practical) pulse  A pulse waveform having a lead-
ing edge and a trailing edge that are not vertical, along with 
other distortion effects such as tilt, ringing, or overshoot.

Amplitude of a pulse waveform  The peak-to-peak value of a 
pulse waveform.

Attenuator probe  A scope probe that will reduce the strength of 
the signal applied to the vertical channel of a scope.

Base-line voltage  The voltage level from which a pulse is initiated.
Compensated attenuator probe  A scope probe that can reduce 

the applied signal and balance the effects of the input capaci-
tance of a scope on the signal to be displayed.

Duty cycle  Factor that reveals how much of a period is encom-
passed by the pulse waveform.

Fall time (tf)  The time required for the trailing edge of a pulse 
waveform to drop from the 90% to the 10% level.

Ideal pulse  A pulse waveform characterized as having vertical 
sides, sharp corners, and a flat peak response.

Negative-going pulse  A pulse that increases in the negative 
direction from the base-line voltage.

Periodic pulse train  A sequence of pulses that repeats itself 
after a specific period of time.

Positive-going pulse  A pulse that increases in the positive direc-
tion from the base-line voltage.

Pulse repetition frequency (pulse repetition rate)  The fre-
quency of a periodic pulse train.

Pulse train  A series of pulses that may have varying heights and 
widths.

Pulse width (tp)  The pulse width defined by the 50% voltage level.
Rise time (tr)  The time required for the leading edge of a pulse 

waveform to travel from the 10% to the 90% level.
Square wave  A periodic pulse waveform with a 50% duty cycle.
Tilt (droop, sag)  The drop in peak value across the pulse width 

of a pulse waveform.

	21.	 Sketch the current iC for each frequency in Problem 20.

	22.	 Sketch the response yC of the network in Fig. 25.60 to the 
square-wave input in Fig. 25.61.

20 V
vi

tT
2

T

–20 V

f  =  500 Hz

FIG. 25.61
Problem 22.

	23.	 If the capacitor in Fig. 25.60 is initially charged to 20 V, 
sketch the response yC to the same input signal (in Fig. 
25.60) at a frequency of 500 Hz.

	24.	 Repeat Problem 23 if the capacitor is initially charged to 
-10 V.

SECTION 25.7  Oscilloscope Attenuator and 
Compensating Probe

	25.	 Given the network in Fig. 25.42 with Rp = 9 MΩ and Rs =
1 MΩ, find Vscope in polar form if Cp = 3 pF, Cs = 18 pF,
Cc = 9 pF, and yi = 12 (100)sin  2p 10,000t. That is, 
determine Zs and Zp, substitute into Eq. (25.8), and com-
pare the results obtained with Eq. (25.10). Is it verified that 
the phase angle of Zs and Zp is the same under the condi-
tion RpCp = RsCs?

	26.	 Repeat Problem 25 at v = 105 rad/s.

SECTION 25.9  Computer Analysis

PSpice

	  27.	 Using schematics, obtain the waveforms for yC and iC for 
the network in Fig. 25.60 for a frequency of 1 kHz.

	*28.	 Using schematics, place the waveforms of yi, yC, and iC on 
the same printout for the network in Fig. 25.60 at a fre-
quency of 2 kHz.
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26Nonsinusoidal CircuitsNonsinusoidal Circuits

26.1  Introduction

Any waveform that differs from the basic description of the sinusoidal waveform is referred 
to as nonsinusoidal. The most obvious and familiar are the dc, square-wave, triangular, saw-
tooth, and rectified waveforms in Fig. 26.1.

•	 Become familiar with the components of the 
Fourier series expansion for any sinusoidal or 
nonsinusoidal function.

•	 Understand how the appearance and time axis 
plot of a waveform can identify which terms of a 
Fourier series will be present.

•	 Be able to determine the response of a network to 
any input defined by a Fourier series expansion.

•	 Learn how to add two or more waveforms defined 
by Fourier series expansions.

Objectives

26
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(b)
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(c)
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v

(d)

t

v

(e)

FIG. 26.1
Common nonsinusoidal waveforms: (a) dc; (b) square-wave; (c) triangular;  

(d) sawtooth; (e) rectified.

The output of many electrical and electronic devices are nonsinusoidal, even though the 
applied signal may be purely sinusoidal. For example, the network in Fig. 26.2 uses a diode to 
clip off the negative portion of the applied signal in a process called half-wave rectification, 
which is used in the development of dc levels from a sinusoidal input. You will find in your 
electronics courses that the diode is similar to a mechanical switch, but it is different because it 
can conduct current in only one direction. The output waveform is definitely nonsinusoidal, but 
note that it has the same period as the applied signal and matches the input for half the period.

This chapter demonstrates how a nonsinusoidal waveform like the output in Fig. 26.2 can 
be represented by a series of terms. It also explains how to determine the response of a net-
work to such an input.



1160    Nonsinusoidal Circuits

NON

26.2  Fourier Series

Fourier series refers to a series of terms, developed in 1822 by Baron 
Jean Fourier (Fig. 26.3), that can be used to represent a nonsinusoidal 
periodic waveform. In the analysis of these waveforms, we solve for 
each term in the Fourier series:

0

R

e

T
2

T t 0

vo

T
2

T t

+ +

– –
vo

Ideal diode

e

FIG. 26.2
Half-wave rectifier producing a nonsinusoidal waveform.

f (t) � A0 �   A1 sin vt � A2 sin 2vt � A3 sin 3vt � . . . � An sin nvt

dc or
average value

sine terms

�  B1 cos vt � B2 cos 2vt � B3 cos 3vt � . . . � Bn cos nvt

cosine terms

 	 (26.1)

Depending on the waveform, a large number of these terms may be 
required to sufficiently represent a nonsinusoidal waveform. It is still 
incredible, however, that a waveform such as the square-wave or trian-
gular wave can be represented by a dc term and series of sinusoidal 
functions having the smooth oscillating shape of a standard sinusoidal 
waveform. The manner in which the terms generate the desired shape 
will be demonstrated in Section 26.3.

As shown in Eq. (26.1), the Fourier series has three basic parts. The 
first is the dc term A0, which is the average value of the waveform over 
one full cycle. The second is a series of sine terms. There are no restric-
tions on the values or relative values of the amplitudes of these sine 
terms, but each will have a frequency that is an integer multiple of the 
frequency of the first sine term of the series. The third part is a series of 
cosine terms. There are again no restrictions on the values or relative 
values of the amplitudes of these cosine terms, but each will have a fre-
quency that is an integer multiple of the frequency of the first cosine 
term of the series. For a particular waveform, it is quite possible that all 
of the sine or cosine terms are zero. Characteristics of this type can be 
determined by simply examining the nonsinusoidal waveform and its 
position on the horizontal axis.

The first term of the sine and cosine series is called the fundamental 
component. It represents the minimum frequency term ( f0) required to 
represent a particular waveform, and it also has the same frequency as 
the waveform being represented. A fundamental term, therefore, must 
be present in any Fourier series representation. The other terms with 
higher-order frequencies (integer multiples of the fundamental) are 
called the harmonic terms. A term that has a frequency equal to twice 
the fundamental is the second harmonic; three times, the third harmonic; 
and so on.

French (Auxerre, Grenoble, Paris) 
(1768–1830)
Mathematician, Egyptologist, and Administrator
Professor of Mathematics, École Polytechnique

Best known for an infinite mathematical series of sine 
and cosine terms called the Fourier series, which he 
used to show how the conduction of heat in solids can 
be analyzed and defined. Although he was primarily a 
mathematician, a great deal of Fourier’s work revolved 
around real-world physical occurrences such as heat 
transfer, sunspots, and the weather. He joined the 
École Polytechnique in Paris as a faculty member 
when the institute first opened. Napoleon requested his 
aid in the research of Egyptian antiquities, resulting in 
a three-year stay in Egypt as Secretary of the Institut 
d’Égypte. Napoleon made him a baron in 1809, and he 
was elected to the Académie des Sciences in 1817.

FIG. 26.3
Baron Jean Fourier.
Akg-images/Newscom
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In terms of the fundamental frequency ( f0), Eq. (26.1) will appear as 
follows:

 f (t) = A0 + A1 sin 2pf0t + A2 sin 2(2pf0)t + A3 sin 3(2pf0)t + g+ An sin n(2pf0)t + g
 + B1 cos 2pf0t + B2 cos 2(2pf0)t + B3 cos 3(2pf0)t + g+ Bn cos n(2pf0)t

and finally:

 f (t) = A0 + A1 sin 2pf0t + A2 sin 2p(2f0)t + A3 sin 2p(3f0)t + g+ An sin 2p(nf0)t + g
 + B1 cos 2pf0t + B2 cos 2p(2f0)t + B3 cos 2p(3f0)t + g+ Bn cos 2p(nf0)t	 (26.2)

Again, take special note of the fact that the fundamental frequency 
and multiples thereof appear in the harmonic terms of the expansion—a 
truly surprising result of immense importance.

Average Value: A0

The dc term of the Fourier series is the average value of the waveform 
over one full cycle. If the net area above the horizontal axis equals that 
below in one full period, A0 = 0, and the dc term does not appear in the 
expansion. If the area above the axis is greater than that below over one 
full cycle, A0 is positive and will appear in the Fourier series representa-
tion. If the area below the axis is greater, A0 is negative and will appear 
with the negative sign in the expansion.

Odd Function (Point Symmetry)

If a waveform is such that its value for + t is the negative of that for 
− t, it is called an odd function or is said to have point symmetry.

Fig. 26.4(a) is an example of a waveform with point symmetry. Note 
that the waveform has a peak value at t1 that matches the magnitude 
(with the opposite sign) of the peak value at - t1. For waveforms of this 
type, all the parameters B1S ∞ of Eq. (26.1) will be zero. In fact,

waveforms with point symmetry can be fully described by just the dc 
and sine terms of the Fourier series.

f (t)
Nonsinusoidal
waveform

Odd
function

Average value  =  0
(A0  =  0)

–t1

0
Point
symmetry
(about this
point)

t1 t

(a)

t

(b)

f (t)

Sine wave

Point
symmetry

Average value  =  0
(A0  =  0)

0

FIG. 26.4
Point symmetry.
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Note in Fig. 26.4(b) that a sine wave is an odd function with point 
symmetry.

For both waveforms in Fig. 26.4, the following mathematical rela-
tionship is true:

	 f (t) = - f (- t)  (odd function)	 (26.3)

In words, it states that the magnitude of the function at + t is equal to the 
negative of the magnitude at - t [t1 in Fig. 26.4(a)].

Even Function (Axis Symmetry)

If a waveform is symmetric about the vertical axis, it is called an even 
function or is said to have axis symmetry.

Fig. 26.5(a) is an example of such a waveform. Note that the value of the 
function at t1 is equal to the value at - t1. For waveforms of this type, all 
the parameters A1S ∞ will be zero. In fact,

waveforms with axis symmetry can be fully described by just the dc 
and cosine terms of the Fourier series.

Note in Fig. 26.5(b) that a cosine wave is an even function with axis 
symmetry.

For both waveforms in Fig. 26.5, the following mathematical rela-
tionship is true:

	 f (t) = f (- t)  (even function)	 (26.4)

In words, it states that the magnitude of the function is the same at + t1 as 
at - t [t1 in Fig. 26.5(a)].

f (t)

Even function

Average
value (A0)

t1–t1 0 t

Symmetry about vertical axisNonsinusoidal waveform

(a)

f (t)

Cosine wave

Average  =  0 (A0  =  0)

t

Symmetry about vertical axis

0

(b)

FIG. 26.5
Axis symmetry.

Mirror or Half-Wave Symmetry

If a waveform has half-wave or mirror symmetry as demonstrated by 
the waveform of Fig. 26.6, the even harmonics of the series of sine 
and cosine terms will be zero.
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In functional form, the waveform must satisfy the following 
relationship:

	 f(t) = - f a t +
T

2
b 	 (26.5)

Eq. (26.5) states that the waveform encompassed in one time interval 
T>2 will repeat itself in the next T>2 time interval, but in the negative 
sense (t1 in Fig. 26.6). For example, the waveform in Fig. 26.6 from zero 
to T>2 will repeat itself in the time interval T>2 to T but below the hori-
zontal axis.

Repetitive on the Half-Cycle

The repetitive nature of a waveform can determine whether specific har-
monics will be present in the Fourier series expansion. In particular,

if a waveform is repetitive on the half-cycle as demonstrated by the 
waveform in Fig. 26.7, the odd harmonics of the series of sine and 
cosine terms are zero.

f (t)

–T T
2

– T 3
2T t0 t1

T
2t1 +

T
2

FIG. 26.6
Mirror symmetry.

t

f (t)

t1 t1 + T
2

TT
2

FIG. 26.7
A waveform repetitive on the half-cycle.

In functional form, the waveform must satisfy the following 
relationship:

	 f(t) = f a t +
T

2
b 	 (26.6)

Eq. (26.6) states that the function repeats itself after each T>2 time 
interval (t1 in Fig. 26.7). The waveform, however, will also repeat itself 
after each period T. In general, therefore, for a function of this type, if 
the period T of the waveform is chosen to be twice that of the minimum 
period (T>2), the odd harmonics will all be zero.
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Mathematical Approach

The constants A0, A1Sn, and B1Sn can be determined by using the fol-
lowing integral calculus formulas:

	 A0 =
1

T L
T

0
f(t) dt	 (26.7)

	 An =
2

T L
T

0
f(t) sin  nvt dt	 (26.8)

	 Bn =
2

T L
T

0
f(t) cos nvt dt	 (26.9)

These equations have been presented for recognition purposes only; 
they are not used in the following analysis.

Instrumentation

Three types of instrumentation are available that reveal the dc, funda-
mental, and harmonic content of a waveform: the spectrum analyzer, 
wave analyzer, and Fourier analyzer. The purpose of such instrumenta-
tion is not solely to determine the composition of a particular waveform, 
but also to reveal the level of distortion that may have been introduced 
by a system. For instance, an amplifier may be increasing the applied 
signal by a factor of 50, but in the process it may have distorted the 
waveform in a way that is quite unnoticeable from the oscilloscope dis-
play. The amount of distortion appears in the form of harmonics at fre-
quencies that are multiples of the applied frequency. Each of the above 
instruments reveals which frequencies are having the most impact on the 
distortion, permitting their removal with properly designed filters.

The spectrum analyzer is shown in Fig. 26.8. It has the appearance of 
an oscilloscope, but rather than display a waveform that is voltage (ver-
tical axis) versus time (horizontal axis), it generates a display scaled off 
in dB (vertical axis) versus frequency (horizontal axis). Such a display is 
said to be in the frequency domain, in contrast to the time domain of the 
standard oscilloscope. The height of the vertical line in the display of 

FIG. 26.8
Spectrum analyzer.

(Courtsey of Tektronix, Inc.)
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Fig. 26.8 reveals the impact of that frequency on the shape of the wave-
form. Spectrum analyzers are unable to provide the phase angle associ-
ated with each component.

EXAMPLE 26.1  Determine which components of the Fourier series 
are present in the waveforms in Fig. 26.9.

tTT
2

0

10 V

e

tTT
2

5 mA

i

(a)

–5 mA

(b)

  

tTT
2

0

10 V

e

tTT
2

5 mA

i

(a)

–5 mA

(b)

FIG. 26.9
Example 26.1.

Solutions: 

	 a.	 The waveform has a net area above the horizontal axis and therefore 
will have a positive dc term A0.

The waveform has axis symmetry, resulting in only cosine terms 
in the expansion.

The waveform has half-cycle symmetry, resulting in only even 
terms in the cosine series.

	 b.	 The waveform has the same area above and below the horizontal 
axis within each period, resulting in A0 = 0.

The waveform has point symmetry, resulting in only sine terms 
in the expansion.

EXAMPLE 26.2  Write the Fourier series expansion for the waveforms 
in Fig. 26.10.

v
20 V

0

(a)

t

i

t

Sinusoidal
waveform

5 mA

0

(b)

v

t0

Vav  =  8 V

20 V

(c)

FIG. 26.10
Example 26.2.
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Solutions: 

	 a.	 A0 = 20    A1Sn = 0    B1Sn = 0

		  y = 20

	 b.	 A0 = 0    A1 = 5 * 10-3    A2Sn = 0    B1Sn = 0

		  i = 5 : 10−3 sin Vt

	 c.	 A0 = 8    A1Sn = 0    B1 = 12    B2Sn = 0

		  y = 8 + 12 cos Vt

EXAMPLE 26.3  Sketch the following Fourier series expansion:

y = 2 + 1 cos a + 2 sin a

Solution:  Note Fig. 26.11.

v

4

3

2

1

v  =  2 + 1 cos � + 2 sin �

26.57°

0

2 sin �

1 cos �

�  =  qt

2.236 V

2

FIG. 26.11
Example 26.3.

The solution could be obtained graphically by first plotting all of the 
functions and then considering a sufficient number of points on the hori-
zontal axis, or phasor algebra could be used as follows:

 1 cos  a + 2 sin a = 1 V ∠90° + 2 V ∠0° = j 1 V + 2 V

 = 2 V + j 1 V = 2.236 V ∠26.57°
 = 2.236 sin (a + 26.57°)

and	 y = 2 + 2.236 sin (A + 26.57°)

which is simply the sine wave portion riding on a dc level of 2 V. That is, 
its positive maximum is 2 V + 2.236 V = 4.236 V, and its minimum is 
2 V - 2.236 V = -0.236 V.

EXAMPLE 26.4  Sketch the following Fourier series expansion:

i = 1 sin vt + 1 sin 2vt

Solution:  See Fig. 26.12. Note that in this case the sum of the two 
sinusoidal waveforms of different frequencies is not a sine wave. Recall 
that complex algebra can be applied only to waveforms having the same 
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frequency. In this case, the solution is obtained graphically point by 
point, as shown for t = t1.

26.3  Fourier Expansion of a Square Wave

Because of the sharp edges of a square wave, it is understandably diffi-
cult to believe that a series of sinusoidal terms can generate a waveform 
anywhere near the shape of a square wave. However, in this section, 
using only four terms, it will be demonstrated that the Fourier series is a 
valid representation with unique qualities.

First note that the average value of the square wave of Fig. 26.13 
is zero so there is no dc term A0 in the expansion. It is an odd func-
tion, so all the constants B1Sn equal zero; only sine terms are present 
in the series expansion. Since the waveform satisfies the criteria for 
f (t) = - f (t + T>2), the even harmonics are also zero.

i
i  =  1 sin qt + 1 sin 2qt

qt

1 sin 2qt
t1
(i  =  0)1 sin qt

FIG. 26.12
Example 26.4.

v

0

Vm

–Vm

T
2

2 �t

Odd function with
half-wave symmetry

FIG. 26.13
Square wave.

The expression obtained after evaluating the various coefficients 
using Eq. (26.9) is

y =
4
p

 Vmasin vt +
1

3
 sin 3vt +

1

5
 sin 5vt +

1

7
 sin 7vt + g+  

1
n

 sin nvtb 	 (26.10)
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Note that the fundamental does indeed have the same frequency as that 
of the square wave. If we add the fundamental and third harmonics, we 
obtain the results shown in Fig. 26.14.

Even with only the first two terms, a few characteristics of the square 
wave are beginning to appear. If we add the next two terms (Fig. 26.15), 
the width of the pulse increases, and the number of peaks increases.

v

Vm

Vm

0

Fundamental

Fundamental + third harmonic

Vm
3

p
p

(T) 2p qt

Third harmonic

.

3
2

T
2

p
2

4
p

4
p

FIG. 26.14
Fundamental plus third harmonic.

v

Vm

Number of peaks  =  number of terms added

Fundamental + 3rd, 5th, 7th harmonics

Square wave

0 p 2p qtp
2 p3

2

FIG. 26.15
Fundamental plus third, fifth, and seventh harmonics.

As we continue to add terms, the series better approximate the square 
wave. Note, however, that the amplitude of each succeeding term dimin-
ishes to the point at which it is negligible compared with those of the first 
few terms. A good approximation is to assume that the waveform is com-
posed of the harmonics up to and including the ninth. Any higher harmon-
ics would be less than one-tenth the fundamental. If the waveform just 
described were shifted above or below the horizontal axis, the Fourier 
series would be altered only by a change in the dc term. Fig. 26.16(c), for 
example, is the sum of Fig. 26.16(a) and (b). The Fourier series for the 
complete waveform is, therefore,

=+
v

2Vm

0 �t

(c)

v2

0

Vm

–Vm
�t

(b)

v1

0

Vm

�t

(a)

3232

FIG. 26.16
Shifting a waveform vertically with the addition of a dc term.

 y = y1 + y2 = Vm + Eq. (26.10)

 = Vm +
4
p

 Vmasin vt +
1

3
 sin 3vt +

1

5
 sin 5vt +

1

7
 sin 7vt + gb

and	  y = Vm c 1 +
4
p

 asin vt +
1

3
 sin 3vt +

1

5
 sin 5vt +

1

7
 sin 7vt + gb d
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26.4  Fourier Expansion of a Half-Wave 
Rectified Waveform

The Fourier expansion of the half-wave rectified waveform of Fig. 26.2 is

y = 0.318Vm + 0.500Vm sin vt - 0.212Vm cos 2vt - 0.042Vm cos 4vt + g	 (26.11)

Note that it has an average value that is 31.8% of the peak value 
(excellent for the generation of a dc level from a sinusoidal voltage) and 
the third harmonic is not part of the series. In addition, the peak value of 
each harmonic drops drastically after the fundamental frequency, which 
is an indication that the half-wave waveform has a shape and frequency 
very similar to a standard sinusoidal waveform.

For Vm = 10 V, the series will appear as the following:

y = 3.18 + 5 sin vt - 2.12 cos 2vt - 0.42 cos 4vt

A dc level can be added to shift the half-wave waveform up or down 
on the vertical by simply proceeding as follows (for a vertical shift of 
+4 V).

 yT = y1 + y2

 = 4 + 3.18 + 5 sin vt - 2.12 cos 2vt - 0.42 cos 4vt

 = 7.18 + 5 sin vt - 2.12 cos 2vt - 0.42 cos 4vt

A plot of the above numerical addition appears in Fig. 26.17.

+
tt1 t2

4 V

0

v1

(a)

tt2

0 V

t1

10 V

0

(b)

=

(c)

tt

14 V

1

4 V

t2

4 V

vT

Average level = 7.18  V

FIG. 26.17
Creating a positive vertical shift in a nonsinusoidal waveform.

Note in the resulting waveform that at f1 the half-wave waveform is 
at a peak and, when added to the dc shift, results in a peak value of 14 V. 
At f2 when the half-wave waveform is at a 0 V level, the applied dc level 
of 4 V results. As obtained in the above mathematical addition, the aver-
age value is now 7.18 V as shown in the resulting waveform.

If we introduce a negative dc level of 10 V (the peak value of the 
half-wave waveform), the following numerical solution will result:

 yT = y1 + y2

 = -10 + 3.18 + 5 sin vt - 2.12 cos 2vt - 0.42 cos 4vt

 = -6.82 + 5 sin vt - 2.12 cos 2vt - 0.42 cos 4vt

The waveforms of Fig. 26.18 show the result of the above calculation. 
At t = 0 s, the dc source is at -10 V and the half-wave rectified wave-
form is at 0 V, so the result is a plot point of -10 V in the resulting wave-
form. At f1 the dc level and peak of the half-wave waveform are an equal 
and opposite match, so the resulting waveform is at zero volts. At f2 the 
half-wave waveform is at 0 V and the dc level at -10 V, so the resulting 
waveform is again at -10 V. The average value is now -6.82 V.
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26.5  Fourier Spectrum

Once the frequency components of a non-sinusoidal waveform have 
been determined the waveform can be defined by the magnitude of the 
harmonics and their associated frequencies rather than against time as 
appearing in all the previous chapters. The resulting plot is referred to as 
a Frequency Spectrum or Frequency Domain plot.

For instance, for the square wave of Fig. 26.20a plotted vs time and 
having the following fourier expansion:

 y(t) = 8 + 10.19 sin 2pf0t + 3.40 sin 2p(3f0)t + 2.04 sin (5f0)t

 + 1.46 sin 2p(7f0)t + 1.13 sin 2p(9f0)t + g
the Fourier Spectrum will appear as shown in Fig. 26.20b. Note on the 
Fourier Spectrum that the value of the function is 8V at f = 0 Hz cor-
responding with the dc level in the above series expansion. At the funda-
mental frequency f0 (first harmonic) of 5 kHz the peak value of the 

If a nonsinusoidal waveform is shifted to the right or left, the phase 
shift would be subtracted from or added to, respectively, the sine and 
cosine terms. The dc term would not change with a shift to the right or left.

If the half-wave rectified signal is shifted 90° to the left, as in Fig. 26.19, 
the Fourier series becomes

v � 0.318Vm  � 0.500Vm sin(� � 90°) � 0.212Vm cos 2(� � 90°) � 0.0424Vm cos 4(� � 90°) � •   •   •

   � 0.318Vm  � 0.500Vm cos � � 0.212Vm cos(2� � 180°) � 0.0424Vm cos(4� � 360°) � •   •   •

   v � 0.318Vm  � 0.500Vm cos � � 0.212Vm cos 2� � 0.0424Vm cos 4�� •   •   •

cos �

and

v

– 0 p 2p 3p �

Vm

p
2

p3
2

p5
2

p
2

FIG. 26.19
Changing the phase angle of a waveform.

(a) (b)

−10 V

+0 tt1 t2

v1

tt2

0 V
0

v2

=
t1

10 V

vT

(c)

0 V

−10 V

Average level = −6.82 V
tt2t1

−10 V 

FIG. 26.18
Creating a negative vertical shift in a nonsinusoidal waveform.
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0 0.1 0.3

f = 5 kHzv

0 V

16 V

(a)

Average value = 8 V

1
f 5 kHZ

1T = = 0.2 ms=

 (ms)t

 8    V

50 f (kH  )Z 

10.19 V

2.04 V 1.46 V 1.13 V

3.4 V

15 25 35 45

(b)

(3f )0 (5f )0 (7f )0 (9f )0(   )f0

v

FIG. 26.20
(a) Time and (b) frequency spectrum for a 16 V square-wave signal.

f = 0 Hz

f f0

(a)

v

 500 kHz

f = 500 kHz

0

(b)

t

v v

6 V

6 V

12 V
+

–

12 V

FIG. 26.21
Frequency spectrum representation of (a) dc source and (b) sinusoidal ac source.

contribution is 10.19 V. For the next harmonic at 3f0 or 15 kHz the peak 
value is 3.40V and for the harmonic at 5f0 or 25 kHz the peak value is 
2.04 V. At 5f0 it drops to 1.46 V and at 7f0 only 1.13 V. Note how quickly 
the terms drop with increase in frequency.

For a single dc source of 12 V the Fourier spectrum would appear as 
shown in Fig. 26.21a and for a sine wave with a peak value of 6 V and a 
frequency of 500 kHz it would appear as shown in Fig. 26.21b.

26.6 Ci rcuit Response to  
A Nonsinusoidal Input

The Fourier series representation of a nonsinusoidal input can be 
applied to a linear network using the principle of superposition. Recall 
that this theorem allowed us to consider the effects of each source of a 
circuit independently. If we replace the nonsinusoidal input with the 
terms of the Fourier series deemed necessary for practical considera-
tions, we can use superposition to find the response of the network to 
each term (Fig. 26.22).
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The total response of the system is then the algebraic sum of the val-
ues obtained for each term. The major change between using this theo-
rem for nonsinusoidal circuits and using it for the circuits previously 
described is that the frequency will be different for each term in the non-
sinusoidal application. Therefore, the reactances

XL = 2pf L  and  XC =
1

2pfC

will change for each term of the input voltage or current.
In Chapter 13, we found that the rms value of any waveform was 

given by B 1

T L
T

0

f 2(t) dt

If we apply this equation to the Fourier series

e  =  A0 + A1 sin � + . . . + An sin n� + . . .
+ B1 cos � + . . . + Bn cos n� + . . .

+

–

e Linear
network

Linear network

+

–

A1 sin �

+

–

An sin n�

+

–

B1 cos �

+

–

Bn cos n�

A0

+

–

FIG. 26.22
Setting up the application of a Fourier series of terms to a linear network.

y(a) = V0 + Vm1 
sin a + g+  Vmn sin na + V′m1 cos a + g+  V′mn cos na

then

Vrms = CV0
2 +

Vm1

2 + . . . + Vmn

2 + V′m1

2 + . . . + V′mn

2

2
	 (26.12)

However, since

Vm1

2

2
= a Vm112

b a Vm112
b = (V1rms

)(V1rms
) = V2

1rms

then

Vrms = 2V0
2 + V1rms

2 + g+  Vnrms

2 + V′1rms

2 + g+  V′nrms

2 	 (26.13)

Similarly, for

i(a) = I0 + Im1 sin a + g+  Imn sin na + I′m1 
cos a + g+  I′mn cos na
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we have

Irms = CI0
2 +

Im1

2 + g+  Imn

2 + I′m1

2 + g+  I′mn

2

2
	 (26.14)

and

Irms = 2I0
2 + I1rms

2 + g + Inrms

2 + I′1rms

2 + g + I′nrms

2 	 (26.15)

The total power delivered is the sum of that delivered by the corre-
sponding terms of the voltage and current. In the following equations, all 
voltages and currents are rms values:

	 PT = V0 I0 + V1 I1 cos u1 + g+  Vn In cos un + g	 (26.16)

	 PT = I0
2R + I1

2R + g + In
2R + g	 (26.17)

or	 PT = I rms
2 R	 (26.18)

with Irms as defined by Eq. (26.14), and, similarly,

	 PT =
V rms

2

R
	 (26.19)

with Vrms as defined by Eq. (26.12).

EXAMPLE 26.5 

	 a.	 Sketch the input resulting from the combination of sources in 
Fig. 26.23.

	 b.	 Determine the rms value of the input in Fig. 26.23.

Solutions: 

	 a.	 Note Fig. 26.24.
	 b.	 Eq. (26.13):

 Vrms = BV0
2 +

Vm
2

2

 = B (4 V)2 +
(6 V)2

2
= B16 +

36

2
  V = 134 V

 = 5.83 V

v

+

4 V
–

+

–

6 sin �t

+

–

FIG. 26.23
Example 26.5.

It is particularly interesting to note from Example 26.5 that the rms 
value of a waveform having both dc and ac components is not simply the 
sum of the effective values of each. In other words, there is a temptation in 
the absence of Eq. (26.13) to state that Vrms = 4 V + 0.707(6 V) = 8.24 V, 
which is incorrect and, in fact, exceeds the correct level by some 41%.

Instrumentation

It is important to realize that not every DMM will read the rms value of 
nonsinusoidal waveforms such as the one appearing in Fig. 26.24. Many 
are designed to read the rms value of sinusoidal waveforms only. It is 

6 V

4 V

v  =  4 V + 6 sin qt

0 qt

FIG. 26.24
Wave pattern generated by the source in Fig. 26.23.
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important to read the manual provided with the meter to see if it is a true 
rms meter that can read the rms value of any waveform.

We learned in Chapter 13 that the rms value of a square wave is the 
peak value of the waveform. Let us test this result using the Fourier 
expansion and Eq. (26.12).

EXAMPLE 26.6  Determine the rms value of the square wave of 
Fig. 26.13 with Vm = 20 V using the first six terms of the Fourier expan-
sion, and compare the result to the actual rms value of 20 V.

Solution: 

 y =
4
p

 (20 V) sin vt +
4
p

 a 1

3
b (20 V) sin 3vt +

4
p

 a 1

5
b (20 V) sin 5vt +

4
p
a 1

7
b (20 V) sin 7vt

 +  
4
p

 a 1

9
b (20 V) sin 9vt +

4
p

 a 1

11
b (20 V) sin 11vt

 y = 25.465 sin vt + 8.488 sin 3vt + 5.093 sin  5vt + 3.638 sin 7vt + 2.829 sin 9vt + 2.315 sin 11vt

Eq. (26.12):

 Vrms = CV0
2 +

Vm1

2 + Vm2

2 + Vm3

2 + Vm4

2 + Vm5

2 + Vm6

2

2

 = C(0 V)2 +
(25.465 V)2 + (8.488 V)2 + (5.093 V)2 + (3.638 V)2 + (2.829 V)2 + (2.315 V)2

2

 = 19.66 V

The solution differs less than 0.4 V from the correct answer of 20 V. 
However, each additional term in the Fourier series brings the result 
closer to the 20 V level. An infinite number results in an exact solution 
of 20 V.

EXAMPLE 26.7  The input to the circuit in Fig. 26.25 is

e = 12 + 10 sin 2t

	 a.	 Find the current i and the voltages yR and yC.
	 b.	 Find the rms values of i, yR, and yC.
	 c.	 Find the power delivered to the circuit.

Solutions: 

	 a.	 Redraw the original circuit as shown in Fig. 26.26. Then apply 
superposition:

e

vR

R  =  3 �
+

–

C  = F1
8

vC

i

FIG. 26.25
Example 26.7.

10 sin 2t

vR

R  =  3 �

+

–

vC

i

XC  = 1
�C

1
(2 rad/s)(  F)

= 1
8

=  4 �
12 V

+

–

FIG. 26.26
Circuit in Fig. 26.25 with the components of the Fourier series input.
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1.	 For the 12 V dc supply portion of the input, I = 0 since the ca-
pacitor is an open circuit to dc when yC has reached its final 
(steady-state) value. Therefore,

VR = IR = 0 V  and  VC = 12 V

2.	 For the ac supply,

Z = 3 Ω - j 4 Ω = 5 Ω ∠-53.13°

	 and	 I =
E
Z

=

1012
 V ∠0°

5 Ω ∠-53.13°
=

212
 A ∠+53.13°

 VR = (I ∠u)(R ∠0°) = a 212
 A ∠+53.13°b (3 Ω ∠0°)

 =
612

 V ∠+53.13°

	 and

 VC = (I ∠u)(XC ∠-90°) = a 212
 A ∠+53.13°b (4 Ω ∠-90°)

 =
812

 V ∠-36.87°

	 In the time domain,

i = 0 + 2 sin (2t + 53.13°)

Note that even though the dc term was present in the expression for 
the input voltage, the dc term for the current in this circuit is zero:

	 yR = 0 + 6 sin (2t + 53.13°)
and	 yC = 12 + 8 sin (2t − 36.87°)

	 b.	 Eq. (26.15): Irms = B (0)2 +
(2 A)2

2
= 12 A = 1.414 A

		  Eq. (26.13): VRrms
= B (0)2 +

(6 V)2

2
= 118 V = 4.243 V

		  Eq. (26.13): VCrms
= B (12 V)2 +

(8 V)2

2
= 1176 V = 13.267 V

	 c.	 P = I rms
2 R = a 212

 Ab
2

(3 Ω) = 6 W

EXAMPLE 26.8  Find the response of the circuit in Fig. 26.27 to the 
input shown.

 e = 0.318Em + 0.500Em sin vt - 0.212Em cos 2vt

 -0.0424Em cos 4vt + g
Solution:  For discussion purposes, only the first three terms are used 
to represent e. Converting the cosine terms to sine terms and substituting 
for Em gives us

e = 63.60 + 100.0 sin vt - 42.40 sin (2vt + 90°)

Using phasor notation, we see that the original circuit becomes like the 
one shown in Fig. 26.28.

e

vR

R  =  6 �
+

–

vL

i

L  =  0.1 H

q  =  377 rad/s

Em  =  200

0 p 2p 3p qt

(b)

(a)

e

FIG. 26.27
Example 26.8.
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Applying Superposition  For the dc term (E0 = 63.6 V):

 XL = 0  (short for dc)

 ZT = R ∠0° = 6 Ω ∠0°

 I0 =
E0

R
=

63.6 V

6 Ω
= 10.60 A

 VR0
= I0R = E0 = 63.60 V

 VL0
= 0

The average power is

P0 = I2
0 R = (10.60 A)2(6 Ω) = 674.2 W

For the fundamental term (E1 = 70.71 V ∠0°, v = 377):

 XL1
= vL = (377 rad/s)(0.1 H) = 37.7 Ω

 ZT1
= 6 Ω + j 37.7 Ω = 38.17 Ω ∠80.96°

 I1 =
E1

ZT1

=
70.71 V ∠0°

38.17 Ω ∠80.96°
= 1.85 A ∠-80.96°

 VR1
= (I1 ∠u)(R ∠0°) = (1.85 A ∠-80.96°)(6 Ω ∠0°)

 = 11.10 V∠-80.96°
 VL1

= (I1 ∠u)(XL1 ∠90°) = (1.85 A ∠-80.96°)(37.7 Ω ∠90°)
 = 69.75 V∠9.04°

The average power is

P1 = I1
2R = (1.85 A)2(6 Ω) = 20.54 W

For the second harmonic (E2 = 29.98 V∠-90°, v = 754): The phase 
angle of E2 was changed to -90° to give it the same polarity as the input 
voltages E0 and E1. We have

 XL2
= vL = (754 rad/s)(0.1 H) = 75.4 Ω

 ZT2
= 6 Ω + j 75.4 Ω = 75.64 Ω ∠85.45°

 I2 =
E2

ZT2

=
29.98 V ∠-90°

75.64 Ω ∠85.45°
= 0.396 A ∠-174.45°

 VR2
= (I2 ∠u)(R ∠0°) = (0.396 A ∠-174.45°)(6 Ω ∠0°)

 = 2.38 V ∠-174.45°
 VL2

= (I2 ∠u)(XL2 ∠90°) = (0.396 A ∠-174.45°)(75.4 Ω ∠90°)
 = 29.9 V ∠-84.45°

VR

6 �

+ –

I1 I2

L  =  0.1 H VL

+

–

I0

E0  =  63.6 V

E1  =  70.71 V ∠0°
+

–

E2  =  29.98 V ∠90°
+

–

q  =  377 rad/s

2q  =  754 rad/s

ZT

+

–

FIG. 26.28
Circuit in Fig. 26.27 with the components of the Fourier series input.



Addition and Subtraction of Nonsinusoidal Waveforms     1177

NON

The average power is

P2 = I2
2R = (0.396 A)2(6 Ω) = 0.941 W

The Fourier series expansion for i is

i = 10.6 + 12(1.85) sin (377t − 80.96°) + 12(0.396) sin (754 t − 174.45°)

and

Irms = 2(10.6 A)2 + (1.85 A)2 + (0.396 A)2 = 10.77 A

The Fourier series expansion for yR is

yR = 63.6 + 12(11.10) sin (377t − 80.96°) + 12(2.38) sin (754 t − 174.45°)

and

VRrms
= 2(63.6 V)2 + (11.10 V)2 + (2.38 V)2 = 64.61 V

The Fourier series expansion for yL is

yL = 12(69.75) sin (377t + 9.04°) + 12(29.93) sin (754 t - 84.45°)

and	 VLrms
= 2(69.75 V)2 + (29.93 V)2 = 75.90 V

The total average power is

PT = I rms
2 R = (10.77 A)2(6 Ω) = 695.96 W = P0 + P1 + P2

26.7  Addition and Subtraction  
of Nonsinusoidal Waveforms

The Fourier series expression for the waveform resulting from the addition 
or subtraction of two nonsinusoidal waveforms can be found using phasor 
algebra if the terms having the same frequency are considered separately.

For example, the sum of the following two nonsinusoidal waveforms 
is found using this method:

 y1 = 30 + 20 sin 20t + g + 5 sin (60t + 30°)
 y2 = 60 + 30 sin 20t + 20 sin 40t + 10 cos 60t

	 1.	 dc terms:

VT0
= 30 V + 60 V = 90 V

	 2.	 v = 20:

VT1(max) = 30 V + 20 V = 50 V

and	 yT1
= 50 sin 20t

	 3.	 v = 40:

yT2
= 20 sin 40t

	 4.	 v = 60:

5 sin (60t + 30°) = (0.707)(5) V ∠30° = 3.54 V ∠30°
 10 cos 60t = 10 sin (60t + 90°) 1 (0.707)(10) V ∠90°

 = 7.07 V ∠90°
 VT3

= 3.54 V ∠30° + 7.07 V ∠90°
 = 3.07 V + j 1.77 V + j 7.07 V = 3.07 V + j 8.84 V

 VT3
= 9.36 V ∠70.85°
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and	 yT3
= 13.24 sin (60t + 70.85°)

		  with

yT = y1 + y2 = 90 + 50 sin 20t + 20 sin 40t + 13.24 sin (60t + 70.85°)

26.8 C omputer Analysis

PSpice

Fourier Series    The computer analysis begins with a verification 
of the waveform in Fig. 26.15, demonstrating that only four terms of 
a Fourier series can generate a waveform that has a number of charac-
teristics of a square wave. The square wave has a peak value of 10 V 
at a frequency of 1 kHz, resulting in the following Fourier series using 
Eq. (26.10) (and recognizing that v = 2pf = 6283.19 rad/s):

 y =
4
p

 (10 V)asin vt +
1

3
 sin 3vt +

1

5
 sin 5vt +

1

7
 sin 7vtb

 = 12.732 sin vt + 4.244 sin 3vt + 2.546 sin 5vt + 1.819 sin 7vt

Each term of the Fourier series is treated as an independent ac source, 
as shown in Fig. 26.29 with its peak value and applicable frequency. The 

FIG. 26.29
Using PSpice to apply four terms of the Fourier expansion of a 10 V square 

wave to a load resistor of 1 kΩ.
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FIG. 26.30
The resulting waveform of the voltage across the resistor R in Fig. 26.29.

Fourier Components    A frequency spectrum plot revealing the 
magnitude and frequency of each component of a Fourier series can be 
obtained by returning to Plot and selecting Axis Settings followed by 

sum of the source voltages appears across the resistor R and generates 
the waveform in Fig. 26.30.

Each source used VSIN, and since we want to display the result 
against time, choose Time Domain(Transient) in the Simulation 
Settings. For each source, select the Property Editor dialog box. 
Set AC, FREQ, PHASE, VAMPL, and VOFF (at 0 V). (Due to 
limited space, only VAMPL, FREQ, and PHASE are displayed in 
Fig. 26.29.) Under Display, set all of the remaining quantities on Do 
Not Display.

Set the Run to time at 2 ms, so that two cycles of the fundamental 
frequency of 1 kHz appear. The Start saving data after remains at the 
default value of 0 s, and the Maximum step size at 1 ms, even though 
2 ms>1000 = 2 ms, because we want to have additional plot points for 
the complex waveform. Once the SCHEMATIC1 window appears, 
Trace-Add Trace-V(R:1)-OK results in the waveform in Fig. 26.30. 
To make the horizontal line at 0 V heavier, right-click on the line, select 
Properties, and then choose the green color and wider line. Click OK, 
and the wider line in Fig. 26.30 results, making it a great deal clearer 
where the 0 V line is located. Through the same process, make the curve 
yellow and wider as shown in the same figure. Using the cursors, you 
find that the first peak reaches 11.84 V at 0.063 ms and then drops to 
8.920 V at 0.124 ms. The average value of the waveform is clearly 
+10 V in the positive region, as shown by the dashed line entered using 
Plot-Label-Line. In every respect, the waveform is beginning to have 
the characteristics of a periodic square wave with a peak value of 10 V 
and a frequency of 1 kHz.
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Problems

SECTION 26.2  Fourier Series

	 1.	 For the waveforms in Fig. 26.32, determine whether the fol-
lowing will be present in the Fourier series representation:
	a.	 dc term
b.	 cosine terms
	c.	 sine terms
d.	 even-ordered harmonics
	e.	 odd-ordered harmonics

	 2.	 If the Fourier series for the waveform in Fig. 26.33(a) is

i =
2Im

p
a1 +

2

3
 cos 2vt -

2

15
 cos 4vt +

2

35
 cos 6vt + g

		  find the Fourier series representation for waveforms (b) 
through (d).

	 3.	 Sketch the following nonsinusoidal waveforms with 
a = vt as the abscissa:
	a.	 y = -4 + 2 sin a
	b.	 y = (sin a)2

	c.	 i = 2 - 2 cos a

	 4.	 Sketch the following nonsinusoidal waveforms with a as 
the abscissa:
	a.	 i = 3 sin a - 6 sin 2a
	b.	 y = 2 cos 2a + sin a

	 5.	 Sketch the following nonsinusoidal waveforms with vt as 
the abscissa:
	a.	 i = 50 sin vt + 25 sin 3vt
	b.	 i = 50 sin a - 25 sin 3a
	c.	 i = 4 + 3 sin vt + 2 sin 2vt - 1 sin 3vt

X Axis and then Fourier under Processing Options. Click OK, and a 
number of spikes appear on the far left of the screen, with a frequency 
spectrum that extends from 0 Hz to 600 kHz. Select Plot-Axis Settings 
again, go to Data Range, and select User Defined to change the range 
to 0 Hz to 10 kHz since this is the range of interest for this waveform. 
Click OK, and the graph in Fig. 26.31 results, giving the magnitude and 
frequency of the components of the waveform. Using the left cursor, 
you find that the highest peak is 12.74 V at 1 kHz, comparing very well 
with the source VI having a peak value of 12.732 V at 1 kHz. Using the 
right-click cursor, you can move over to 3 kHz and find a magnitude of 
4.248 V, again comparing very well with source V2 with a peak value 
of 4.244 V.

FIG. 26.31
The Fourier components of the waveform in Fig. 26.30.
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Problem 1.
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(c)

0

i
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(b)
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0

i

Im

t

t0
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FIG. 26.33
Problem 2.
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	*18.	 Find the Fourier series expression for the voltage yo in 
Fig. 26.37.

SECTION 26.5  Fourier Spectrum

	 6.	 Sketch the Fourier spectrum for the waveforms of Fig. 
26.10(a) and Fig. 26.10(b).

	 7.	 Sketch the Fourier spectrum for the waveform of Exam-
ple 26.4.

	 8.	 Sketch the Fourier spectrum for the waveform of Fig. 26.24.

e

vR

R  =  15 �
+

–

vC

i

C  =  125 mF

FIG. 26.35
Problem 16.

e

vR

R  =  12 �
+

–

vL

i

L  =  0.02 H

FIG. 26.34
Problems 13, 14, and 15.

	a.	 Find the nonsinusoidal expression for the current i.
	b.	 Calculate the rms value of the current.
	c.	 Find the expression for the voltage across the resistor.
	d.	 Calculate the rms value of the voltage across the resistor.
	e.	 Find the expression for the voltage across the reactive 

element.
	f.	 Calculate the rms value of the voltage across the reac-

tive element.
	g.	 Find the average power delivered to the resistor.

	14.	 Repeat Problem 13 for

e = 24 + 30 sin 400t + 10 sin 800t

	15.	 Repeat Problem 13 for the following input voltage:

e = -60 + 20 sin 300t - 10 sin 600t

SECTION 26.6  Circuit Response  
to a Nonsinusoidal Input

	 9.	 Find the average and effective values of the following non-
sinusoidal waves:
	a.	 y = 100 + 50 sin vt + 25 sin 2vt
	b.	 i = 3 + 2 sin(vt - 53°) + 0.8 sin(2vt - 70°)

	10.	 Find the rms value of the following nonsinusoidal waves:
	a.	 y = 20 sin vt + 15 sin 2vt - 10 sin 3vt
	b.	 i = 6 sin(vt + 20°) + 2 sin(2vt + 30°) - 1 sin(3vt 

+  60°)
	11.	 Find the total average power to a circuit whose voltage and 

current are as indicated in Problem 9.

	12.	 Find the total average power to a circuit whose voltage and 
current are as indicated in Problem 10.

	13.	 The Fourier series representation for the input voltage to the 
circuit in Fig. 26.34 is

e = 18 + 30 sin 400t

	16.	 Repeat Problem 13 for the circuit in Fig. 26.35.

	*17.	 The input voltage in Fig. 26.36(a) to the circuit in Fig. 26.36(b) 
is a full-wave rectified signal having the following Fourier 
series expansion:

 e =
(2)(100 V)

p
 a1 +

2

3
 cos 2vt -

2

15
 cos 4vt

 +
2

53
 cos 6vt + gb

		  where v = 377.
	a.	 Find the Fourier series expression for the voltage yo 

using only the first three terms of the expression.
	b.	 Find the rms value of yo.
	c.	 Find the average power delivered to the 1 kΩ resistor.

e
100 V

0 qt

(a)

1 k�0.1 H
+
vo

–

1 mF

+
e
–

(b)

p
2

p3
2

– p
2

FIG. 26.36
Problem 17.
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SECTION 26.8  Computer Analysis

PSpice

	22.	 Plot the waveform in Fig. 26.11 for two or three cycles. 
Then obtain the Fourier components, and compare them to 
the applied signal.

	23.	 Plot a half-rectified waveform with a peak value of 20 V 
using Eq. (26.11). Use the dc term, the fundamental term, 
and four harmonics. Compare the resulting waveform to the 
ideal half-rectified waveform.

	24.	 Demonstrate the effect of adding two more terms to the 
waveform in Fig. 26.30, and generate the Fourier spectrum.

Glossary

Axis symmetry  A sinusoidal or nonsinusoidal function that has 
symmetry about the vertical axis.

Even harmonics  The terms of the Fourier series expansion that 
have frequencies that are even multiples of the fundamental 
component.

Fourier series  A series of terms, developed in 1826 by Baron 
Jean Fourier, that can be used to represent a nonsinusoidal 
function.

Fundamental component  The minimum frequency term 
required to represent a particular waveform in the Fourier 
series expansion.

Half-wave (mirror) symmetry  A sinusoidal or nonsinusoidal 
function that satisfies the relationship

f (t) = - f a t +
T

2
b

Harmonic terms  The terms of the Fourier series expansion that 
have frequencies that are integer multiples of the fundamental 
component.

Nonsinusoidal waveform  Any waveform that differs from the 
fundamental sinusoidal function.

Odd harmonics  The terms of the Fourier series expansion that 
have frequencies that are odd multiples of the fundamental 
component.

Point symmetry  A sinusoidal or nonsinusoidal function that sat-
isfies the relationship f (a) = - f (-a).

200 �1.2 mH
+
vo

–

200 mF

i

(b)

i

(a)

0 p 2p 3p
qt

–p

q  =  377
10 mA

FIG. 26.37
Problem 18.

SECTION 26.7  Addition and Subtraction  
of Nonsinusoidal Waveforms

	19.	 Perform the indicated operations on the following nonsinu-
soidal waveforms:
	a.	 [60 + 70 sin vt + 20 sin(2vt + 90°) + 10 sin(3vt +  

60°)] + [20 + 30 sin vt - 20 cos 2vt + 5 cos 3vt]
	b.	 [20 + 60 sin a + 10 sin(2a - 180°) + 5 cos(3a +  

90°)] - [5 - 10 sin a + 4 sin(3a - 30°)]
	20.	 Find the nonsinusoidal expression for the current is of the 

diagram in Fig. 26.38.

i2 = 15 + 45 sin 20t - 0.5 sin(40t + 90°)
i1 = 25 + 5 sin(20t + 90°) + 0.5 sin(40t + 30°)

i1

is

i2

FIG. 26.38
Problem 20.

	21.	 Find the nonsinusoidal expression for the voltage e of the 
diagram in Fig. 26.39.

y1 = 30 - 300 sin 600t + 100 cos 1200t + 75 sin 1800t

y2 = -20 + 250 sin(600t + 30°) + 50 sin(1800t + 60°)

e
+

–

v1+ –

v2

+

–

FIG. 26.39
Problem 21.
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Appendix A
Conversion Factors

To Convert from To Multiply by

Btus Calorie-grams
Ergs
Foot-pounds
Hp-hours
Joules
Kilowatthours
Wattseconds

251.996
1.054 * 1010

777.649
0.000393
1054,35
0.000293
1054.35

Centimeters Angstrom units
Feet
Inches
Meters
Miles (statute)
Millimeters

1 * 108

0.0328
0.3937
0.01
6.214 * 10-6

10

Circular mils Square centimeters
Square inches

5.067 * 10-6

7.854 * 10-7

Cubic inches Cubic centimeters
Gallons (U.S. liquid)

16.387
0.00433

Cubic meters Cubic feet 35.315

Days Hours
Minutes
Seconds

24
1440
86,400

Dynes Gallons (U.S. liquid)
Newtons
Pounds

264.172
0.00001
2.248 * 10-6

Electronvolts Ergs 1.60209 * 10-12

Ergs Dyne-centimeters
Electronvolts
Foot-pounds
Joules
Kilowatthours

1.0
6.242 * 1011

7.376 * 10-8

1 * 10-7

2.777 * 10-14

Feet Centimeters
Meters

30.48
0.3048

Foot-candles Lumens/square foot
Lumens/square meter

1.0
10.764

Foot-pounds Dyne-centimeters
Ergs
Horsepower-hours
Joules
Newton-meters

1.3558 * 107

1.3558 * 107

5.050 * 10-7

1.3558
1.3558

Gallons (U.S. liquid) Cubic inches
Liters
Ounces
Pints

231
3.785
128
8
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To Convert from To Multiply by

Gauss Maxwells/square centimeter
Lines/square centimeter
Lines/square inch

1.0
1.0
6.4516

Gilberts Ampere-turns 0.7958

Grams Dynes
Ounces
Pounds

980.665
0.0353
0.0022

Horsepower Btus/hour
Ergs/second
Foot-pounds/second
Joules/second
Watts

2547.16
7.46 * 109

550.221
746
746

Hours Seconds 3600

Inches Angstrom units
Centimeters
Feet
Meters

2.54 * 108

2.54
0.0833
0.0254

Joules Btus
Ergs
Foot-pounds
Horsepower-hours
Kilowatthours
Wattseconds

0.000948
1 * 107

0.7376
3.725 * 10-7

2.777 * 10-7

1.0

Kilograms Dynes
Ounces
Pounds

980,665
35.2
2.2

Lines Maxwells 1.0

Lines/square centimeter Gauss 1.0

Lines/square inch Gauss
Webers/square inch

0.1550
1 * 10-8

Liters Cubic centimeters
Cubic inches
Gallons (U.S. liquid)
Ounces (U.S. liquid)
Quarts (U.S. liquid)

1000.028
61.025
0.2642
33.815
1.0567

Lumens Candle power (spher.) 0.0796

Lumens/square centimeter Lamberts 1.0 

Lumens/square foot Foot-candles 1.0

Maxwells Lines
Webers

1.0
1 * 10-8

Meters Angstrom units
Centimeters
Feet
Inches
Miles (statute)

1 * 1010

100
3.2808
39.370
0.000621



To Convert from To Multiply by

Miles (statute) Feet
Kilometers
Meters

5280
1.609
1609.344

Miles/hour Kilometers/hour 1.609344

Newton–meters Dyne–centimeters
Kilogram-meters

1 * 107

0.10197

Oersteds Ampere-turns/inch
Ampere-turns/meter
Gilberts/centimeter

2.0212
79.577
1.0

Quarts (U.S. liquid) Cubic centimeters
Cubic inches
Gallons (U.S. liquid)
Liters
Pints (U.S. liquid)
Ounces (U.S. liquid)

946.353
57.75
0.25
0.9463
2
32

Radians Degrees 57.2958

Slugs Kilograms
Pounds

14.5939
32.1740

Watts Btus/hour
Ergs/second
Horsepower
Joules/second

3.4144
1 * 107

0.00134
1.0

Webers Lines
Maxwells

1 * 108

1 * 108

Years Days
Hours
Minutes
Seconds

365
8760
525,600
3.1536 * 107
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Determinants are used to find the mathematical solutions for the 
variables in two or more simultaneous equations. Once the procedure 
is properly understood, solutions can be obtained with a minimum of 
time and effort and usually with fewer errors than when using other 
methods.

Consider the following equations, where x and y are the unknown 
variables and a1, a2, b1, b2, c1, and c2 are constants:

Col. 1  Col. 2  Col. 3

	 a1x  +  b1y  =  c1	 (B.1a)

	 a2x  +  b2y  =  c2	 (B.1b)

It is certainly possible to solve for one variable in Eq. (B.1a) and sub-
stitute into Eq. (B.1b). That is, solving for x in Eq. (B.1a) gives

	 x =
c1 - b1y

a1

and substituting the result in Eq. (B.1b) gives

	 a2a
c1 - b1y

a1
b + b2y = c2

It is now possible to solve for y since it is the only variable remaining, 
and then substitute into either equation for x. This is acceptable for two 
equations, but it becomes a very tedious and lengthy process for three or 
more simultaneous equations.

Using determinants to solve for x and y requires that the following 
formats be established for each variable:

	 Col.	 Col.	 Col.	 Col.
	 1	 2	 1	 2

	 x =
` c1 b1

c2 b2
`

` a1 b1

a2 b2
`
    y =

` a1 c1

a2 c2
`

` a1 b1

a2 b2
`
	 (B.2)

First note that only constants appear within the vertical brackets, and 
that the denominator of each is the same. In fact, the denominator is sim-
ply the coefficients of x and y in the same arrangement as in Eqs. (B.1a) 
and (B.1b). When solving for x, replace the coefficients of x in the nu-
merator by the constants to the right of the equal sign in Eqs. (B.1a) and 
(B.1b), and repeat the coefficients of the y variable. When solving for y, 
replace the y coefficients in the numerator by the constants to the right of 
the equal sign, and repeat the coefficients of x.

Each configuration in the numerator and denominator of Eq. (B.2) is 
referred to as a determinant (D), which can be evaluated numerically in 
the following manner:

1189
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Determinants
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Determinant = D = `

Col.

1 

a1

a2

 Col.

2 

b1

b2

 

 

` = a1b2 - a2b1

	 (B.3)

The expanded value is obtained by first multiplying the top left ele-
ment by the bottom right and then subtracting the product of the lower 
left and upper right elements. This particular determinant is referred to as 
a second-order determinant since it contains two rows and two columns.

It is important to remember when using determinants that the col-
umns of the equations, as indicated in Eqs. (B.1a) and (B.1b), must be 
placed in the same order within the determinant configuration. That is, 
since a1 and a2 are in column 1 of Eqs. (B.1a) and (B.1b), they must be 
in column 1 of the determinant. (The same is true for b1 and b2.)

Expanding the entire expression for x and y, we have the following:

	 x =
` c1 b1

c2 b2
`

` a1 b1

a2 b2
`

=
c1b2 - c2b1

a1b2 - a2b1
	 (B.4a)

	 y =
` a1 c1

a2 c2
`

` a1 b1

a2 b2
`

=
a1c2 - a2c1

a1b2 - a2b1
	 (B.4b)

EXAMPLE B.1	 Evaluate the following determinants:

	 a.	 ` 2 2

3 4
` = (2)(4) - (3)(2) = 8 - 6 = 2

	 b.	 ` 4 -1

6 2
` = (4)(2) - (6)(-1) = 8 + 6 = 14

	 c.	 ` 0 -2

-2 4
` = (0)(4) - (-2)(-2) = 0 - 4 = −4

	 d.	 ` 0 0

3 10
` = (0)(10) - (3)(0) = 0

EXAMPLE B.2	 Solve for x and y:

2x + y = 3

3x + 4y = 2

Solution: 

x =
` 3 1

2 4
`

` 2 1

3 4
`

=
(3)(4) - (2)(1)

(2)(4) - (3)(1)
=

12 - 2

8 - 3
=

10

5
= 2

y =
` 2 3

3 2
`

5
=

(2)(2) - (3)(3)

5
=

4 - 9

5
=

-5

5
= −1
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Check: 

 2x + y = (2)(2) + (-1)

 = 4 - 1 = 3  (checks)

 3x + 4y = (3)(2) + (4)(-1)

 = 6 - 4 = 2  (checks)

EXAMPLE B.3	 Solve for x and y:

 -x + 2y = 3

 3x - 2y = -2

Solution:  In this example, note the effect of the minus sign and the 
use of parentheses to ensure that the proper sign is obtained for each 
product:

 x =
` 3 2

-2 -2
`

` -1 2

3 -2
`

=
(3)(-2) - (-2)(2)

(-1)(-2) - (3)(2)

 =
-6 + 4

2 - 6
=

-2

-4
=

1
2

 y =
` -1 3

3 -2
`

-4
=

(-1)(-2) - (3)(3)

-4

 =
2 - 9

-4
=

-7

-4
=

7
4

EXAMPLE B.4	 Solve for x and y:

 x = 3 - 4y

 20y = -1 + 3x

Solution:  In this case, the equations must first be placed in the format 
of Eqs. (B.1a) and (B.1b):

x + 4y = 3

-3x + 20y = -1

 x =
` 3 4

-1 20
`

` 1 4

-3 20
`

=
(3)(20) - (-1)(4)

(1)(20) - (-3)(4)

 =
60 + 4

20 + 12
=

64

32
= 2

 y =
` 1 3

-3 -1
`

32
=

(1)(-1) - (-3)(3)

32

 =
-1 + 9

32
=

8

32
=

1
4
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The use of determinants is not limited to the solution of two 
simultaneous equations; determinants can be applied to any number of 
simultaneous linear equations. First we examine a shorthand method 
that is applicable to third-order determinants only since most of the 
problems in the text are limited to this level of difficulty. We then 
investigate the general procedure for solving any number of simultane-
ous equations.

Consider the three following simultaneous equations

Col. 1

a1x

a2x

a3x

  

+
+
+

Col. 2

b1y

b2y

b3y

  

+
+
+

Col. 3

c1z

c2z

c3z

  

=
=
=

Col. 4

d1

d2

d3

in which x, y, and z are the variables, and a1, 2, 3, b1, 2, 3, c1, 2, 3, and d1, 2, 3 
are constants.

The determinant configuration for x, y, and z can be found in a man-
ner similar to that for two simultaneous equations. That is, to solve for x, 
find the determinant in the numerator by replacing column 1 with the el-
ements to the right of the equal sign. The denominator is the determinant 
of the coefficients of the variables (the same applies to y and z). Again, 
the denominator is the same for each variable. We have

x =

†
d1 b1 c1

d2 b2 c2

d3 b3 c3

†

D
, y =

†
a1 d1 c1

a2 d2 c2

a3 d3 c3

†

D
, z =

†
a1 b1 d1

a2 b2 d2

a3 b3 d3

†

D

where	 D = †
a1 b1 c1

a2 b2 c2

a3 b3 c3

†

A shorthand method for evaluating the third-order determinant con-
sists of repeating the first two columns of the determinant to the right of 
the determinant and then summing the products along specific diagonals 
as follows:

D �  
a1
a2
a3

b1
b2
b3

a1
a2
a3

b1
b2
b3

c1
c2
c3

4(�) 5(�) 6(�)

1(�) 2(�) 3(�)

The products of the diagonals 1, 2, and 3 are positive and have the 
following magnitudes:

+a1b2c3 + b1c2a3 + c1a2b3

The products of the diagonals 4, 5, and 6 are negative and have the 
following magnitudes:

-a3b2c1 - b3c2a1 - c3a2b1

The total solution is the sum of the diagonals 1, 2, and 3 minus the 
sum of the diagonals 4, 5, and 6:
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+(a1b2c3 + b1c2a3 + c1a2b3) - (a3b2c1 + b3c2c1 + c3a2b1)	 (B.5)

Warning: This method of expansion is good only for third-order de-
terminants! It cannot be applied to fourth- and higher-order systems.

EXAMPLE B.5	 Evaluate the following determinant:

    1
�2
   0

2
1
4

2
1
4

1
�2

0

3
0
2

    1
�2
   0

2
1
4

3
0
2

(�) (�) (�)

(�) (�) (�)

Solution: 

[(1)(1)(2) + (2)(0)(0) + (3)(-2)(4)]
- [(0)(1)(3) + (4)(0)(1) + (2)(-2)(2)]

= (2 + 0 - 24) - (0 + 0 - 8) = (-22) - (-8)

= -22 + 8 = −14

EXAMPLE B.6  Solve for x, y, and z:

 1x + 0y - 2z = -1

 0x + 3y + 1z = +2

 1x + 2y + 3z = 0

Solution:   

 �1
   2
   0

0
3
2

 �1
   2
   0

0
3
2

�2
   1
    3

 1
 0
 1

 1
 0
 1

0
3
2

0
3
2

�2
   1
    3

x �

=
[(-1)(3)(3) + (0)(1)(0) + (-2)(2)(2)] - [(0)(3)(-2) + (2)(1)(-1) + (3)(2)(0)]

[(1)(3)(3) + (0)(1)(1) + (-2)(0)(2)] - [(1)(3)(-2) + (2)(1)(1) + (3)(0)(0)]

=
(-9 + 0 - 8) - (0 - 2 + 0)

(9 + 0 + 0) - (-6 + 2 + 0)

=
-17 + 2

9 + 4
= −

15
13

 

 1
 0
 1

�1
   2
   0

 1
 0
 1

�1
   2
   0

�2
   1
    3

y �
13

=
[(1)(2)(3) + (-1)(1)(1) + (-2)(0)(0)] - [(1)(2)(-2) + (0)(1)(1) + (3)(0)(-1)]

13

=
(6 - 1 + 0) - (-4 + 0 + 0)

13

=
5 + 4

13
=

9
13

 



1194    appendixes

or from 0x + 3y + 1z = +2,

z = 2 - 3y = 2 - 3a 9

13
b =

26

13
-

27

13
= −

1
13

Check: 

1x + 0y - 2z = -1

 

0x + 3y + 1z = +2

 

1x + 2y + 3z = 0

u   

-
15

13
+ 0 +

2

13
= -1

0 +
27

13
+

-1

13
= +2

-
15

13
+

18

13
+

-3

13
= 0

v   

-
13

13
= -1 

26

13
= +2 

-
18

13
+

18

13
= 0 

The general approach to third-order or higher determinants requires 
that the determinant be expanded in the following form. There is more 
than one expansion that will generate the correct result, but this form is 
typically used when the material is first introduced.

√

√

√

 1
 0
 1

0
3
2

0
3
2

 1
 0
 1

�1
   2
    0

z �
13

=
[(1)(3)(0) + (0)(2)(1) + (-1)(0)(2)] - [(1)(3)(-1) + (2)(2)(1) + (0)(0)(0)]

13

=
(0 + 0 + 0) - (-3 + 4 + 0)

13

=
0 - 1

13
= −

1
13

a1
a2 
a3

b1
b2 
b3

c1
c2 
c3

b2 
b3

c2 
c3D � � a1 � b1

Multiplying
factor

Multiplying
factor

Minor

Cofactor

a2 
a3

c2 
c3

Minor

Cofactor

� � c1

Multiplying
factor

a2 
a3

b2 
b3

Minor

Cofactor

��

This expansion was obtained by multiplying the elements of the 
first row of D by their corresponding cofactors. It is not a require-
ment that the first row be used as the multiplying factors. In fact, any 
row or column (not diagonals) may be used to expand a third-order 
determinant.

The sign of each cofactor is dictated by the position of the multi-
plying factors (a1, b1, and c1 in this case) as in the following standard 
format:

� �

�

��

�

�

�

�
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Note that the proper sign for each element can be obtained by assigning 
the upper left element a positive sign and then changing signs as you 
move horizontally or vertically to the neighboring position.

For the determinant D, the elements would have the following signs:

†
a1

(+) b1
(-) c1

(+)

a2
(-) b2

(+) c2
(-)

a3
(+) b3

(-) c3
(+)

†

The minors associated with each multiplying factor are obtained 
by covering up the row and column in which the multiplying factor is 
located and writing a second-order determinant to include the remaining 
elements in the same relative positions that they have in the third-order 
determinant.

Consider the cofactors associated with a1 and b1 in the expansion of 
D. The sign is positive for a1 and negative for b1 as determined by the 
standard format. Following the procedure outlined above, we can find 
the minors of a1 and b1 as follows:

a1(minor) � a2 b2 c2

a3 b3 c3

a1 b1 c1

�
b2 c2

b3 c3

� a2 b2 c2

a3 b3 c3

a1 b1 c1

b1(minor) �
a2 c2

a3 c3

It was pointed out that any row or column may be used to expand the 
third-order determinant, and the same result will still be obtained. Using 
the first column of D, we obtain the expansion

D = †
a1 b1 c1

a2 b2 c2

a3 b3 c3

† = a1a + ` b2 c2

b3 c3
` b + a2a - ` b1 c1

b3 c3
` b + a3a + ` b1 c1

b2 c2
` b

The proper choice of row or column can often effectively reduce 
the amount of work required to expand the third-order determinant. 
For example, in the following determinants, the first column and 
third row, respectively, would reduce the number of cofactors in the 
expansion:

 D = †
2 3 -2

0 4 5

0 6 7

† = 2a + ` 4 5

6 7
` b + 0 + 0 = 2(28 - 30)

 = −4

 D = †
1 4 7

2 6 8

2 0 3

† = 2a + ` 4 7

6 8
` b + 0 + 3a + ` 1 4

2 6
` b

 = 2(32 - 42) + 3(6 - 8) = 2(-10) + 3(-2)

 = −26
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EXAMPLE B.7	 Expand the following third-order determinants:

	 a.	  D = †
1 2 3

3 2 1

2 1 3

† = 1a + ` 2 1

1 3
` b + 3a - ` 2 3

1 3
` b + 2a + ` 2 3

2 1
` b

 = 1[6 - 1] + 3[-(6 - 3)] + 2[2 - 6]

 = 5 + 3(-3) + 2(-4)

 = 5 - 9 - 8

 = −12

	 b.	 D = †
0 4 6

2 0 5

8 4 0

† = 0 + 2a - ` 4 6

4 0
` b + 8a + ` 4 6

0 5
` b

 = 0 + 2[-(0 - 24)] + 8[(20 - 0)]

 = 0 + 2(24) + 8(20)

 = 48 + 160

 = 208



Letter Capital Lowercase Some Applications

Alpha Α a Area, angles, coefficients
Beta Β b Angles, coefficients, flux density
Gamma Γ g Specific gravity, conductivity
Delta ∆ d Density, variation
Epsilon Ε e Base of natural logarithms
Zeta Ζ z Coefficients, coordinates, impedance
Eta Η h Efficiency, hysteresis coefficient
Theta ϴ u Phase angle, temperature
Iota Ι i

Kappa Κ k Dielectric constant, susceptibility
Lambda Λ l Wavelength
Mu Μ m Amplification factor, micro, 

permeability
Nu Ν n Reluctivity
Xi Ξ j

Omicron Ο o

Pi Π p 3.1416
Rho Ρ r Resistivity
Sigma Σ s Summation
Tau Τ t Time constant
Upsilon Υ y

Phi Φ f Angles, magnetic flux
Chi Χ x

Psi Ψ c Dielectric flux, phase difference
Omega Ω v Ohms, angular velocity

Appendix C
Greek Alphabet
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SI (MKS) CGS English

Φ webers (Wb) 
1 Wb

maxwells 
=  108 maxwells

lines  
=  108 lines

B T gauss 
(maxwells/cm2)

lines/in.2

1 T = 1 Wb/m2 =  104 gauss =  6.452 * 104 lines/in.2

A 1 m2 =  104 cm2 =  1550 in.2

mo 4p * 10-7 Wb/Am =  1 gauss/oersted =  3.20 lines/Am

f NI (ampere-turns, At) 0.4pNI (gilberts) NI (At)
1 At =  1.257 gilberts 1 gilbert - 0.7958 At

H NI/l (At/m) 0.4pNI/l (oersteds) NI/l(At/in.) 
1At/m =  1.26 * 10-2 oersted =  2.54 * 10-2 At/in.

Hg 7.97 * 105Bg (At/m) Bg (oersteds) 0.313Bg (At/in.)
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Appendix D
Magnetic Parameter Conversions



This appendix derives the maximum power transfer conditions for the 
situation where the resistive component of the load is adjustable but the 
load reactance is set in magnitude.*

For the circuit in Fig. E.1, the power delivered to the load is deter-
mined by

	 P =
V2

RL

RL

1199

Appendix E 
Maximum Power Transfer Conditions

*With sincerest thanks for the input of Professor Harry J. Franz of the Beaver Campus of 
Pennsylvania State University.

ZTh

ZLRL

I

ZT

RTh

ETh

+

–

IXTh

XL

FIG. E.1

Applying the voltage divider rule gives

	 VRL
=

RLETh

RL + RTh + XTh ∠90° + XL ∠90°

The magnitude of VRL
 is determined by

	 VRL
=

RLETh2(RL + RTh)
2 + (XTh + XL)2

and	 VRL

2 =
RL

2ETh
2

(RL + RTh)
2 + (XTh + XL)2

with	 P =
VRL

2

RL
=

RLETh
2

(RL + RTh)
2 + (XTh + XL)2

Using differentiation (calculus), we find that maximum power will 
be transferred when dP>dRL = 0. The result of the preceding operation 
is that

	 RL = 2RTh
2 + (XTh + XL)2    [Eq. (19.21)]

The magnitude of the total impedance of the circuit is

	 ZT = 2(RTh + RL)2 + (XTh + XL)2
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Substituting this equation for RL and applying a few algebraic maneu-
vers results in

	 ZT = 2RL(RL + RTh)

and the power to the load RL as

	  P = I2RL =
ETh

2

Z2
T

RL =
ETh

2 RL

2RL(RL + RTh)

	  =
ETh

2

4aRL + RTh

2
b

	  =
ETh

2

4Rav

with	  Rav =
RL + RTh

2



Chapter 1

	 1.	 —
	 3.	 —
	 5.	 (a)  96 mph  (b)  119 km/h
	 7.	 (a)  139.33 ft/s  (b)  0.43 s 

(c)  40.91 mph
	 9.	 —
	11.	 MKS, CGS, °C = 20°;  

SI, K = 293.15
	13.	 (a)  155.76 lb  (b)  65.91 kg 

(c)  182.88 cm  (d)  5′10.8″
	15.	 (a)  14.6  (b)  56.0  (c)  1046.1 

(d)  0.1  (e)  3.1
	17.	 (a)  14.603  (b)  56.042 

(c)  1046.060  (d)  0.063 
(e)  3.142

	19.	 (a)  15 * 103  (b)  5 * 10-3 
(c)  2.4 * 106  (d)  60 * 103 
(e)  4.02 * 10-4  (f)  2 * 10-10

	21.	 (a)  1 * 107  (b)  10-1 
(c)  1 * 109  (d)  1 * 10-4 
(e)  1 * 10-1  (f)  1 * 1020

	23.	 (a)  10 * 10-3  (b)  10 * 10-6 
(c)  10 * 106  (d)  1 * 10-9 
(e)  1 * 1042  (f)  1 * 103

	25.	 (a)  1 * 106  (b)  10 * 10-3 
(c)  100 * 1030  (d)  1 * 10-63

	27.	 (a)  300  (b)  2 * 105 
(c)  9 * 1012  (d)  150 * 10-9 
(e)  24 * 1012  (f)  800 * 1018 
(g)  5.64 * 104

	29.	 Scientific  (a)  5.0 * 10-2 
(b)  4.5 * 101 
(c)  3.125 * 10-2 
(d)  3.142 * 100

		  Engineering  (a)  50.0 * 10-3 
(b)  0.045 * 103   
(c)  31.25 * 10-3 
(d)  3.142 * 100

	31.	 (a)  0.06 * 106  (b)  400 * 10-6 
(c)  0.005 * 109 
(d)  1200 * 109

	33.	 (a)  90 s  (b)  72 s   
(c)  50 * 103 ms  (d)  160 mm 
(e)  120 ns  (f)  4629.6 days

	35.	 (a)  2.54 m  (b)  1.22 mm 
(c)  26.70 N  (d)  0.13 lb 
(e)  4921.26 ft  (f)  3.22 m

	37.	 26.82 m/s
	39.	 3600 quarters
	41.	 1382.4 m
	43.	 44.82 min/mile

	45.	 (a)  4.74 * 10-3 Btu 
(b)  7.1 * 10-4 m3   
(c)  1.21 * 105 s 
(d)  2113.38 pints

	47.	 14.4
	49.	 0.928
	51.	 7.071
	53.	 1.20 * 1012

Chapter 2

	 1.	 —
	 3.	 (a)  30.97 N  (b)  0.31 N 

(c)  345 mN 
(d)  345 mN : 30.97 N ≅ 1 : 90,000

	 5.	 F2 = (r2>2r2)F1

	 7.	 (a)  72 mN 
(b)  Q1 = 20 mC, Q2 = 40 mC

	 9.	 0.48 J
	11.	 68.89 mJ
	13.	 11.43 mA
	15.	 2.88 C
	17.	 3 s
	19.	 7.49 * 1018 electrons
	21.	 29.48 mA
	23.	 5.0 V
	25.	 5.55 A
	27.	 51.2 Ah
	29.	 67% more starting current with 

75 Ah
	31.	 13.89%
	33.	 172.8 kJ
	35.	 —
	37.	 (a)  38.1 kV  (b)  342.9 kV 

(c)  9:1

Chapter 3

	 1.	 (a)  400 mils  (b)  31.25 mils 
(c)  200 mils  (d)  787.4 mils 
(e)  240 mils   
(f)  1.181 * 103 mils

	 3.	 (a)  0.042 in.  (b)  0.029 in. 
(c)  0.2 in.  (d)  0.045 in. 
(e)  2.9 * 10-3 in . 
(f)  77.50 * 10-3 in .

	 5.	 (a)  544 cm   
(b)  23.32 * 10-3 in .

	 7.	 (a)  30.70 * 10-3 in .  (b)  larger 
(c)  smaller

	 9.	 (a)  295.7 ft  (b)  1.48 lb 
(c)  F: -40° S 221°

	11.	 (a)  21.71 mΩ  (b)  35.59 mΩ

	13.	 883.54 mΩ
	15.	 (a)   #9 : #12 = 2 : 1, yes 

(b)  Area: #0 : #12 = 16.16 : 1, 
yes; Amperage: #0 : #12 = 7.5 : 1

	17.	 (a)  #2  (b)  #0
	19.	 5.15 Ω
	21.	 2.396 Ω
	23.	 (a)  45.45°C  (b)  -209.05°C
	25.	 (a)  ≅ 0.00393  (b)  83.61°C
	27.	 1.942 Ω
	29.	 100.30 Ω
	31.	 13.5 kΩ
	33.	 —
	35.	 (a)  violet, gray, black, silver 

(b)  blue, blue, silver, silver 
(c)  yellow, yellow, orange, silver 
(d)  blue, violet, green, silver

	37.	 423 Ω - 517 Ω, yes
	39.	 (a)  0.72 kΩ  (b)  2.2 kΩ 

(c)  39 Ω  (d)  0.12 MΩ
	41.	 (a)  629.69 mS  (b)  384.11 mS
	43.	 2000 S
	45.	 —
	47.	 —
	49.	 (a)  21.71 mΩ  (b)  35.59 mΩ 

(c)  increases  (d)  decreases
	51.	 0.1875 in.
	53.	 —
	55.	 —
	57.	 —
	59.	 (a)  10 fc 1 3 kΩ, 100 fc 1 0.4 kΩ 

(b)  negative  (c)  no 
(d)  -321.43 Ω>fc

Chapter 4

	 1.	 1.23 V
	 3.	 16 kΩ
	 5.	 1.0 V
	 7.	 54.55 Ω
	 9.	 32.61 Ω
	11.	 1.2 kΩ
	13.	 (a)  12.63 Ω  (b)  8.21 * 106 J
	15.	 —
	17.	 —
	19.	 —
	21.	 14 s
	23.	 2.86 s
	25.	 207.36 mW
	27.	 V = 11.74 V and I = 170.25 mA
	29.	 208.33 V
	31.	 9.61 V
	33.	 32 Ω, 120 V
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	35.	 70.71 mA, 1.42 kV
	37.	 1440 J
	39.	 8 h
	41.	 (a)  125 kW  (b)  543.48 A 

(c)  315 kWh
	43.	 (a)  $4/day  (b)  26.7 c/h 

(c)  2.23 kWh  (d)  37 bulbs 
(e)  no

	45.	 $49.14
	47.	 (a)  11 kW   

(b)  yes, 11 kW 7 8.98 kW 
(c)  26.94 kWh

	49.	 65.95c
	51.	 12.43 A
	53.	 (a)  166 W  (b)  23.15%
	55.	 (a)  1657.78 W  (b)  13.81 A 

(c)  17.76 A
	57.	 88%
	59.	 91.11%
	61.	 h1 = 50%, h2 = 100%

Chapter 5

	 1.	 (a)  E and R1  (b)  R1 and R2 
(c)  E1, R1, and E2 
(d)  E and R1; R3, R4, and R5

	 3.	 (a)  8.49 kΩ  (b)  12.1 Ω 
(c)  11.4 Ω

	 5.	 (a)  7.7 kΩ  (b)  17.5 kΩ
	 7.	 (a)  167 Ω  (b)  5.32 kΩ
	 9.	 (a)  3.4 kΩ  (b)  0 Ω  (c)  ∞  Ω
	11.	 (a)  the most: R3; the least: R1 

(b)  R3, 93 kΩ, 0.65 mA 
(c)  V1 = 1.43 V, V2 = 4.42 V, 
V3 = 54.6 V

	13.	 I:  (a)  4 A  (b)  36 V  (c)  3 Ω 
(d)  V4.7 Ω = 18.8 V, 
V1.3 Ω = 5.2 V, V3 Ω = 12 V

		  II:  (a)  3 mA  (b)  25.5 V 
(c)  3 kΩ  (d)  V2.2 kΩ = 6.6 V, 
V3 kΩ = 9 V, V3.3 kΩ = 9.9 V

	15.	 (a)  333.33 mA, 0 V 
(b)  0 A, 53.33 V

	17.	 R = 7 Ω, V1 = 6 V, V2 = 4 V, 
V3 = 14 V, E = 24 V

	19.	 (a)  0.53 A  (b)  8 W  (c)  15 V 
(d)  all out!

	21.	 (a)  -1 V  (b)  -8 V  (c)  -1 V
	23.	 (a)  2 kΩ, 10 V   

(b)  1.5 kΩ, 42 V
	25.	 (a)  1.25 A  (b)  5 V  (c)  35 V
	27.	 (a)  V1 = 8.6 V, V2 = 1.9 V 

(b)  V1 = 11 V, V2 = 7 V
	29.	 (a)  10 kΩ 

(b)  V3 : V2 = 10 : 1, V3 : V1 = 100 : 1 
(c)  V3 = 54.05 V 
(d)  V′ = 59.46 V

	31.	 (a)  V1 = 12 V, V2 = 68 V, 
E = 100 V   
(b)  V1 = 40 V, V3 = 70 V

	33.	 V2 = 4 V, V4 = 5 V, I = 1 mA, 
E = 30 V

	35.	 (a)  Rbulb = 160 Ω, Rx = 80 Ω 
(b)  1

4 W
	37.	 VR1

= 16 V, VR2
= 56 V, 

VR3
= 8 V

	39.	 (a)  Va = 17 V, Vb = 21 V, 
Vab = -4 V 
(b)  Va = -6 V, Vb = 10 V, 
Vab = -16 V 
(c)  Va = -5 V, Vb = -8 V, 
Vab = 3 V

	41.	 (a)  Va = 27 V, Vb = 31.5 V, 
Vc = 40.5 V, Vd = -13.5 V, Ve = 0 V 
(b)  Vab = -4.5 V, Vdc = -54 V, 
Vcb = 9 V,  
(c)  Vac = -13.5 V, Vdb = -45 V

	43.	 R2 = 2.25 kΩ, R3 = 0.75 kΩ, 
R4 = 1.25 kΩ, R1 = 2 kΩ

	45.	 V0 = 0 V, V4 = 15 V, V7 = 4 V, 
V10 = 12 V, V23 = 12 V, 
V30 = -8 V, V67 = 0 V, 
V56 = -1 V, I = 3 A

	47.	 (a)  2.86 Ω  (b)  8.93%
	49.	 (a)  3.33 mA 

(b)  3.175 mA, no

Chapter 6

	 1.	 (a)  R2 and R3  (b)  E and R3 
(c)  R2 and R3  (d)  R2 and R3 
(e)  E, R1, R2, R3, and R4 
(f)  E, R1, R2, and R3 
(g)  E2, R2, and R3

	 3.	 (a)  R3 and R4 
(b)  E and R1, R6 and R7

	 5.	 (a)  2 kΩ  (b)  5 Ω  (c)  1.99 Ω
	 7.	 (a)  8 Ω  (b)  18 kΩ  (c)  6.8 kΩ
	 9.	 (a)  2.2 kΩ  (b)  ≅2 kΩ  

(c)  2.048 kΩ  (d)  2.06 kΩ 
(e)  reduced

	11.	 120 Ω
	13.	 (a)  I1 = 5 A, I2 = 1.667 A, 

I3 = 0.417 A  (b)  2.83 Ω   
(c)  7.07 A  (d)  7.07 A   
(e)  they match

	15.	 (a)  ≅900 Ω  (b)  862.07 Ω 
(c)  I3 the most, I4 the least 
(d)  IR1

= 3.0 mA, IR2
= 6.0 mA,  

IR3
= 60.0 mA, IR4

= 0.66 mA. 
(e)  I3 = 69.6 mA, I5 = 69.66 mA 
(checks)  (f)  always greater

	17.	 (a)  26.83 V  (b)  8.94 Ω   
(c)  2.24 A  (d)  9.71 A   
(e)  260.5 W 
(f)  PR1

= 59.99 W, PR2
= 80.52 W 

(g)  Ps = 260.5 W (checks)
	19.	 (a)  48 V  (b)  2.67 mA 

(c)  22.67 mA  (d)  192 mW
	21.	 —

	23.	 (a)  66.67 mA  (b)  225 Ω 
(c)  0.533 A  (d)  8 W   
(e)  64 W 
(f)  none, Is drops by 66.67 mA

	25.	 (a)  Ibulbs = 2.5 A, Imicro = 10 A, 
ITV = 2.67 A, IDVD = 208.33 mA 
(b)  15.38 A, no  (c)  7.8 Ω 
(d)  1845.60 W, same

	27.	 Is = 15 mA, I2 = 1 mA
	29.	 (a)  I2 = 5 A, I3 = 3 A, 

I4 = Is = 8 A 
(b)  Is = 40 mA, I3 = 16 mA, 
I4 = 24 mA, I5 = 40 mA

	31.	 (a)  R1 = 5 Ω, I2 = 1 A, R = 10 Ω 
(b)  E = 12 V, I2 = 1.33 A, 
I3 = 1 A, R3 = 12 Ω, I = 4.33 A, 
RT = 2.77 Ω

	33.	 I2 = 2 A, I3 = 15 A, I4 = 1.5 A, 
IT = 28.5 A

	35.	 I1 = 3.27 A, I2 = 1.64 A, 
I3 = 1.09 A, I4 = 6 A

	37.	 (a)  I = I2 = 13 A, I1 = 12 A 
(b)  I = I3 = 24 mA, I2 = 12 mA, 
I1 = 8 mA

	39.	 R1 = 2.154 kΩ, R2 = 1.077 kΩ, 
R3 = 0.538 kΩ

	41.	 I1 = 2 A, I2 = I3 = 4 A
	43.	 (a)  V2 = 16.48 V   

(b)  V2 = 16.47 V 
(c)  V2 = 16.32 V 
(d)  — 
	 (a)  V2 = 13.33 V 
	 (b)  V2 = 13.25 V 
	 (c)  V2 = 11.43 V 
(e)  —

	45.	 6 kΩ resistor not connected at one 
or both ends

	47.	 (a)  open-circuit   
(b)  E2 = +4 V

Chapter 7

	 1.	 (a)  R1, R2, and E in series; R3, R4, 
and R5 in parallel 
(b)  E and R1 in series; R2, R3, and 
R4 in parallel 
(c)  E and R1 in series; R3 and R4 
in parallel

	 3.	 (a)  12.44 Ω  (b)  15 Ω   
(c)  11.65 Ω

	 5.	 5.41 kΩ
	 7.	 (a)  yes  (b)  6 A  (c)  yes   

(d)  6 V  (e)  3.73Ω  (f)  1 A 
(g)  20 W

	 9.	 (a)  I3 = 4 A, I4 = 1.33 A 
(b)  V1 = 44 V, V3 = 36 V

	11.	 (a)  Va = 36 V, Vb = 60 V, 
Vc = 20 V 
(b)  I1 = 24 mA, I2 = 35.5 mA

	13.	 10 Ω, 30 Ω
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	15.	 (a)  Is = 16 mA, I2 = 2.33 mA, 
I6 = 2 mA 
(b)  V1 = 28 V, V5 = 7.2 V 
(c)  261.33 mW

	17.	 I1 = 638.298 mA, 
I2 = 209.02 mA

	19.	 (a)  3.607 A 
(b)  I2 = 1.31 A, I3 = 0.66 A 
(c)  9.18 V

	21.	 (a)  2 A  (b)  0 V  (c)  2 A
	23.	 (a)  Va = -6 V, Vb = -20 V 

(b)  9 A  (c)  14 V
	25.	 11.25 Ω
	27.	 (a)  24 A  (b)  8 A 

(c)  V3 = 48 V, V5 = 24 V, 
V7 = 16 V 
(d)  P7 = 128 W, Ps = 5760 W

	29.	 (a)  76.8 V 
(b)  RL2

= 4 kΩ, RL3
= 4 kΩ 

(c)  R1 = 0.5 kΩ, R2 = 0.8 kΩ, 
R3 = 2.67 kΩ

	31.	 R1 = 390 Ω, R2 = 270 Ω
	33.	 (a)  Vab = 32 V, Vbc = 8 V 

(b)  Vab = 31.51 V, Vbc = 8.49 V 
(c)  16.02 W  (d)  16 W

	35.	 (a)  no  (b)  6 kΩ resistor “open”
	37.	 (a)  12 A  (b)  0.5 A  (c)  0.5 A 

(d)  6 A
	39.	 150 mA, Rshunt = 1 Ω; 300 mA, 

Rshunt = 0.5 Ω; 600 mA, 
Rshunt = 0.25 Ω

	41.	 2 V, Rs = 1 kΩ;  
20 V, Rs = 19 kΩ;  
200 V, Rs = 199 kΩ

	43.	 (a)  Rs = 23 kΩ 
(b)  8.33 Ω, 25 kΩ, 75 kΩ

	45.	 (a)  1 kΩ  (b)  6 Ω

Chapter 8

	 1.	 (a)  I1 = 6.4 A, I2 = 1.6 A 
(b)  9.6 V

	 3.	 36 V
	 5.	 V3 = 2.56 V, I2 = 0.16 A
	 7.	 (a)  I = 4.23 A, Rp = 5.2 Ω 

(b)  I = 3.75 A, Rp = 3.2 kΩ
	 9.	 (a)  10.36 mA  (b)  10.36 mA
	11.	 (a)  4.4 A  (b)  35.2 V
	13.	 (a)  7 A  (b)  -7 V   

(c)  1.17 A
	15.	 (a)  IR1

(cw) = -1
7 A, 

IR2
(ccw) = 5

7 A, IR3
(down) = 4

7 A 
(b)  4.57 V

	17.	 IR1
(cw) = 2.02 mA,  

IR2
(ccw) = 11.01 mA, 

IR3
(down) = 13.03 mA

	19.	 IR3
(cw) = -382.17 mA

	21.	 (a)  IE1
(ccw) = 4.75 A, 

IE2
(up) = 5.0 A 

(b)  PE2
= 75 W, PR3

= 750 mW

	23.	 (a)  IR1
(cw) = 2.03 mA,  

IR3
= IR4

(cw) = 1.23 mA,  
IR2

(ccw) = 0.8 mA   
(b)  Va = 4.65 V

	25.	 (a)  — 
(b)  All cw: I1 = 1.21 mA, 
I2 = -0.48 mA, I3 = -0.62 mA 
(c)  IE1

(down) = 1.69 mA, 
IE2

(up) = 0.62 mA
	27.	 (a)  — 

(b)  All cw: top left, 
I1 = -0.597 A; top right, 
I2 = -2.13 A; bottom left, 
I3 = -2.27 A; bottom right, 
I4 = -2.03 A  (c)  9.18 W

	29.	 (a)  IB = 63.02 mA, IC = 4.42 mA, 
IE = 4.48 mA 
(b)  VB = 2.98 V, VE = 2.28 V, 
VC = 10.28 V  (c)  70.14

	31.	 I4Ω = 5.53 A, I6Ω = 2.47 A, 
I8Ω = 0.53 A, I1Ω = 8.53 A

	33.	 (a)  —  (b)  3.25 A (up)
	35.	 (a)  — 

(b)  All cw: I1 = 4.87 A, 
I2 = -382.17 mA, I3 = -1.261 A 
(c)  IR2

(down) = 5.252 A
	37.	 (a)  —  (b)  -7 V
	39.	 (a)  — 

(b)  All cw: I1 = 3.884 A, 
I2 = -0.174 A, I3 = 1.01 A 
(c)  Va = 0 V, Vb = 8.08 V 
(d)  Vab = -8.08 V

	41.	 (a)  —  (b)  V1 = -10.27 V, 
V2 = -11.36 V  (c)  1.09 V 
(d)  I2Ω(up) = 5.14 A, 
I4Ω(up) = 2.84 A

	43.	 (a)  — 
(b)  V1 = 4.8 V, V2 = 6.4 V 
(c)  22.4 W

	45.	 (a)  — 
(b)  V1 = -14.86 V, V2 = -12.57 V 
(c)  I6Ω(up) = 2.48 A

	47.	 (a)  — 
(b)  V1 = -5.43 V, V2 = 8.53 V 
(c)  -13.96 V

	49.	 3 A
	51.	 V1 = 48 V, V2 = 64 V
	53.	 (a)  V1 = -20.45 V, 

V2 = -29.77 V 
(b)  V6Ω(+ - ) = -44.68 V

	55.	 (a)  left to right: V1 = -6.55 V, 
V2 = -3.11 V, V3 = -1.24 V 
(b)  I9Ω(up) = 0.728 A

	57.	 (a)  one node: V1 = 8.12 V 
(b)  Vab = -V1 = -8.12 V

	59.	 (a)  —  (b)  IRs
= -0.86 A 

(c)  no  (d)  no
	61.	 (a)  —  (b)  0 mA  (c)  yes 

(d)  yes
	63.	 IRs

= 5 mA

	65.	 7.36 A
	67.	 26.67 mA
	69.	 0.83 mA
	71.	 4.2 Ω

Chapter 9

	 1.	 (a)  0.1 A (up)  (b)  0.1 A (up) 
(c)  same

	 3.	 5.295 A (down)
	 5.	 VR3

| = 4.6 V
	 7.	 I1(down) = 1.836 mA
	 9.	 (a)  RTh = 7.6 Ω, ETh = 10.8 V 

(b)  5 Ω  : 0.86 A, 40 Ω  : 226.89 mA, 
120 Ω  : 84.64 mA

	11.	 (a)  RTh = 7.5 Ω, ETh = 10 V 
(b)  2 Ω  : 2.22 W, 100 Ω  : 0.87 W

	13.	 RTh = 1.58 kΩ, ETh | 1.15 V
	15.	 (a)  RTh = 1 kΩ, ETh = 3 V 

(b)  0.273 mA
	17.	 (a)  RTh = 4.03 kΩ, ETh = 8 V 

(b)  {2.75 V
	19.	 (a)  RTh = 8.36 kΩ, ETh = 3.28 V 

(b)  4.44 mA  (c)  43.06 mA 
(d)  10.23 V

	21.	 RTh = 2 Ω, ETh = 2 V
	23.	 (a)  RN = 4.1 kΩ, IN = 23.41 mA 

(b)  RTh = 4.1 kΩ, ETh = 96 V 
(c)  same

	25.	 RN = 1.58 kΩ, IN = 0.73 mA
	27.	 RN = 10 Ω, IN = 200 mA
	29.	 RN = 2 Ω, IN = 1 A
	31.	 (a)  7.6 Ω  (b)  3.84 W
	33.	 (a)  9.556 Ω  (b)  22.51 W
	35.	 (a)  218 Ω  (b)  96.84 W  (c)  —
	37.	 (a)  open-circuit, ∞  Ω   

(b)  —
	39.	 6.12 A, 18.37 V
	41.	 0.314 A, 94.14 V
	43.	 2.32 mA, 15.78V
	45.	 —
	47.	 (a)  0.625 mA  (b)  0.625 mA 

(c)  yes
	49.	 (a)  6 V  (b)  6 V  (c)  yes

Chapter 10

	 1.	 (a)  36 * 103 N/C 
(b)  36 * 109 N/C, 1 * 106 : 1

	 3.	 50 mF
	 5.	 (a)  19.69 V/m  (b)  1.97 kV/m 

(c)  100 : 1
	 7.	 348.43 pF
	 9.	 2.55 mm
	11.	 (a)  24.78 nF  (b)  400 kV/m 

(c)  1.98 mC
	13.	 30.04 kV
	15.	 0.35 mF
	17.	 670 mF, 663.3 mF S 676.7 mF
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	19.	 (a)  100 ms 
(b)  yC = 20 V(1 - e-t>100 ms) 
(c)  1t = 12.64 V, 3t = 19 V, 
5t = 19.87 V 
(d)  iC = 2 mA e-t>100 ms, 
yR = 20 V e-t>100 ms  (e)  —

	21.	 (a)  5.5 ms 
(b)  yC = 100 V(1 - e-t>5.5 ms) 
(c)  1t = 63.21 V, 3t = 95.02 V, 
5t = 99.33 V 
(d)  iC = 18.18 mA e-t>5.5 ms, 
yR2

= 60 V e-t>5.5 ms 
(e)  —

	23.	 (a)  200 ms  (b)  7.86 V   
(c)  20 V

	25.	 (a)  263.2 ms 
(b)  yC = 22 V(1 - e-t>263.2 ms), 
iC = 4.68 mA e-t>263.2 ms 
(c)  21.51 V, 0.105 mA 
(d)  yC = 21.51 V e-t>263.2 ms, 
iC = 4.58 mA e-t>263.2 ms 
(e)  —

	27.	 (a)  yC = 40 V(1 - e-t>5.64 ms), 
iC = 333.33 mA e-t>5.64 ms 
(b)  yC = 39.73 V e-t>12.69 ms, 
iC = -331 mA e-t>12.69 ms 
(c)  — 

	29.	 (a)  yC = 40 V - 34 V e-t>22.1 ms 
(b)  iC = 7.23 mA e-t>22.1 ms 
(c)  —

	31.	 (a)  yC = 40 V  (b)  iC = 0 A 
(c)  —

	33.	 yC = -20 V + 10 V e-t>2.71 ms, 
iC = -12.2 mA e-t>2.71 ms

	35.	 (a)  yC = 18 V(1 - e-t>3.75 s) 
(b)  16.75 V 
(c)  Q2.0 mF = 357.6 mC, 
Q47 mF = 840.36 mC

	37.	 (a)  55.59 mV  (b)  139.99 mV 
(c)  2.5 ms  (d)  8.54 ms

	39.	 R = 52.09 kΩ
	41.	 (a)  22.07 V  (b)  0.81 mA 

(c)  3.58 s
	43.	 (a)  yC = -27.2 V +  

37.2 V e-t>18.26 ms, 
iC = -4.48 mA e-t>18.26 ms 
(b)  —

	45.	 (a)  yC = 3.27 V(1 - e-t>53.80 ms), 
iC = 1.22 mA e-t>53.80 ms

	47.	 (a)  18.85 V  (b)  1.66 s 
(c)  3.65 s

	49.	 0 S 20 ms: -1.18 A; 20 S 30 ms: 
4.7 A; 30 S 60 ms: -1.57 A 
60 S 70 ms: 0 A; 70 S 80 ms: 
4.7 A; 80 S 100 ms: -1.175 A

	51.	 7.44 mF
	53.	 Q20 mF = 400 mC, V20 mF = 20 V;  

Q10 mF = 181.8 mC, V10 mF =  
18.18 V; Q100 mF = 181.8 mC, 
V100 mF = 1.818 V

	55.	 Q1 = 4.37 mC, V1 = 19.86 V; 
Q2 = 3.346 mC, V2 = 10.14 V; 
Q3 = 1.014 mC, V3 = 10.14 V

	57.	 28 nJ
	59.	 W100 mF = 1.75 mJ, 

W200 mF = 970 mJ

Chapter 11

	 1.	 (a)  0.02 Wb/m2  (b)  0.02 T 
(c)  88 At   
(d)  0.2 * 103 gauss

	 3.	 (a)  21.15 mH   
(b)  increased

	 5.	 (a)  42.3 mH  (b)  1.57 mH 
(c)  75.2 mH  (d)  1.76 mH

	 7.	 8.4 V
	 9.	 10 turns
	11.	 (a)  23.5 ms 

(b)  iL = 2 mA(1 - e-t>23.5 ms) 
(c)  yL = 40 V e-t>23.5 ms, 
yR = 40 V(1 - e-t>23.5 ms) 
(d)  iL : 1t = 1.264 mA, 
3t = 1.9 mA, 5t = 1.986 mA 
yL : 1t = 14.72 V, 3t = 1.96 V, 
5t = 280 mV 
(e)  —

	13.	 (a)  yL = 16 V e-t>0.6 ms 
(b)  is = 0.8 mA (1 - e-t>0.6 ms)

	15.	 (a)  iL = 9.23 mA 
-  1.23 mA e-t>30.77 ms, 
yL = 4.8 V e-t>30.77 ms  (b)  —

	17.	 (a)  yR2
= 12.94 V e-t>29.41 ms 

(b)  iL = 5.88 mA (1 - e-t>29.41 ms) 
(c)  —

	19.	 (a)  iL = 2 mA + 4 mA e-t>19.23 ms, 
yL = -41.6 V e-t>19.23 ms 
(b)  —

	21.	 (a)  iL = 6 mA (1 - e-t>2.35 ms), 
yL = 12 V e-t>2.35 ms 
(b)  iL = 2.08 mA e-t>83.3 ns, 
yL = -24.96 V e-t>83.3 ns 
(c)  —

	23.	 (a)  iL = 1.3 mA (1 - e-t>7.56 ms), 
yL = 8.09 V e-t>7.56 ms 
(b)  0.822 mA, 2.98 V

	25.	 (a)  iL = -4.54 mA(1 - e-t>6.67 ms), 
yL = -6.81 V e-t>6.67 ms 
(b)  -3.53 mA, 1.52 V 
(c)  iL = -3.53 mA e-t>2.13 ms, 
yL = -16.59 V e-t>2.13 ms 
(d)  —

	27.	 (a)  iL = 0.68 mA +  
1.32 mA e-t>0.49 ms, 
yL = -5.43 V e-t>0.49 ms 
(b)  —

	29.	 (a)  0.92 ms  (b)  16.2 V 
(c)  0.81 V

	31.	 (a)  14.28 mA  (b)  149.99 mA 
(c)  10.397 ms  (d)  69.08 ms

	33.	 (a)  13.33 V  (b)  7.98 mA 
(c)  4.12 ms  (d)  0.244 V

	35.	 0 S 2 ms: 0 V, 2 S 6 ms: 
-37.5 mV, 6 S 10 ms: 0 V, 
10 S 14 ms: 25 mV,14 S 17 ms: 
0 V, 17 S 19 ms: -12.5 mV

	37.	 11.72 mH
	39.	 2.45 mH, 5.7 kΩ
	41.	 18 mF, 25 mH
	43.	 (a)  iL = 3.56 mA (1 - e-t>8.31 ms), 

yL = 4.29 V e-t>8.31 ms 
(b)  —

	45.	 I1 = 8.04 A, I2 = 1.79 A
	47.	 I1 = 3 A, I2 = 0 A, V1 = 12 V, 

V2 = 0 V

Chapter 12

	 1.	 Φ : CGS : 5 * 104 maxwells;
English : 5 * 104 lines
B: CGS: 8 gauss; English: 
51.62 lines/in.2

	 3.	 (a)  0.04 T
	 5.	 609.76 * 103At/Wb
	 7.	 2187.23 At/m
	 9.	 2.13 A
	11.	 (a)  15 t   

(b)  13.34 * 10-4 Wb/Am
	13.	 2.70 A
	15.	 1.35 N
	17.	 (a)  2.02 A  (b)  2 N
	19.	 8.16 mWb
	21.	 (a)  B = 1.5 T (1 - e-H>700 At/m) 

(b)  900 At/m: graph = 1.1 T, 
Eq. = 1.09 T; 1800 At/m: graph =  
1.38 T, Eq. = 1.39 T; 2700 At/m: 
graph = 1.47 T, Eq. = 1.47 T 
Excellent results 
(c)  H = -700 loge(1 - B

1.5 T) 
(d)  1 T: graph = 750 At/m, Eq. = 
769.03 At/m; 1.4 T: graph =  
1920 At/m, Eq. = 1895.64 At/m 
(e)  40.1 mA vs. 44 mA in  
Example 12.1

Chapter 13

	 1.	 (a)  10 V 
(b)  15 ms: -10 V, 20 ms: 0 V 
(c)  20 V  (d)  20 ms   
(e)  2 cycles

	 3.	 (a)  40 mV 
(b)  1.5 ms: -40 mV, 
5.1 ms: -40 mV 
(c)  80 mV  (d)  2 ms 
(e)  3.5 cycles

	 5.	 (a)  4 ms  (b)  20 ns   
(c)  35.71 ms  (d)  0.5 s

	 7.	 2.5 ms
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	 9.	 9 Hz
	11.	 (a)  28 mV  (b)  56 mV   

(c)  10 ms  (d)  5 cycles
	13.	 (a)  60°  (b)  216°  (c)  18° 

(d)  108°
	15.	 (a)  942.48 rad/s   

(b)  3.14 * 103 rad/s 
(c)  25.13 * 103 rad/s 
(d)  50.27 * 103 rad/s

	17.	 5.56 ms
	19.	 (a)  20, 60 Hz  (b)  12, 120 Hz 

(c)  106, 1591.55 Hz   
(d)  8, 1.6 kHz

	21.	 —
	23.	 0.26 A
	25.	 11.54° and 168.46°
	27.	 —
	29.	 (a)  y = 6 * 10-3 sin(2p 2000t +

30°) 
(b)  i = 20 * 10-3 sin(2p 60t - 60°)

	31.	 y = 12 * 10-3 sin(2p 2000t +  
135°)

	33.	 y leads i by 90°
	35.	 y leads i by 10°
	37.	 1>3 ms
	39.	 1>12 ms
	41.	 1 V
	43.	 0.786 mV
	45.	 (a)  0 V  (b)  0 V  (c)  same
	47.	 (a)  0.4 ms  (b)  2.5 kHz 

(c)  -25 mV  (d)  —
	49.	 (a)  91.92 V  (b)  3.54 mA 

(c)  6.36 mV
	51.	 1.414 V
	53.	 G = 0 V, Vrms = 8 V
	55.	 (a)  —  (b)  360 sV2  (c)  5.48 V 

(d)  3.67 V  (e)  Vrms ≅ 1.5 G

Chapter 14

	 1.	 —
	 3.	 (a)  3770 cos 377t 

(b)  8 * 103 cos(400t + 60°) 
(c)  4440.63 cos(157t - 20°) 
(d)  200 cos t

	 5.	 (a)  1.56 * 103 sin 500t    
(b)  39 sin(600t - 120°)

	 7.	 (a)  31.91 mH  (b)  1.23 H
	 9.	 (a)  y = 0.5 sin(200t + 90°) 

(b)  y = 0.8 sin(vt + 150°) 
(c)  y = 120 sin(vt - 120°)

	11.	 (a)  i = 3 sin(vt - 90°) 
(b)  i = 0.75 sin(vt - 70°)

	13.	 (a)  ∞ Ω  (b)  4.973 kΩ 
(c)  159.15 Ω  (d)  0.159 Ω

	15.	 (a)  4.08 kHz  (b)  0.68 Hz 
(c)  408.1 kHz  (d)  20.40 Hz

	17.	 (a)  i = 7.5 * 10-3 sin(250t + 90°) 
(b)  i = 33.96 * 10-6 sin(377t +
90°)

	19.	 (a)  y = 800 sin(500t - 90°) 
(b)  y = 26.53 sin(377t - 135°)

	21.	 (a)  C = 15.92 mF   
(b)  L = 254.78 mH   
(c)  R = 5 Ω

	23.	 —
	25.	 318.47 mH
	27.	 3.58 nF
	29.	 224 W
	31.	 i = 40 sin(vt - 40°)
	33.	 (a)  i = 53.33 sin(1500t - 45°)   

(b)  0 W
	35.	 i1 = 2.4 sin(104t + 150°), 

i2 = 12 sin(104t + 150°)
	37.	 (a)  7.21 ∠56.31°  (b)  4.24 ∠45° 

(c)  15.81 ∠71.57° 
(d)  502.5 ∠5.71° 
(e)  2236.07 ∠-63.43° 
(f)  0.45 ∠-63.43°

	39.	 (a)  4.6 + j 3.86   
(b)  -6.0 + j 10.39   
(c)  - j 2000 
(d)  -6 * 10-3 - j 2.2 * 10-3 
(e)  47.97 + j 1.68 
(f)  4.7 * 10-4 - j 1.71 * 10-4

	41.	 (a)  9.4 + j 8.4   
(b)  246.2 + j 51.7 
(c)  5.74 * 10-6 + j 66

	43.	 (a)  12.17 ∠54.70° 
(b)  98.37 ∠13.38° 
(c)  28.07 ∠-115.91°

	45.	 (a)  8.00 ∠20°  (b)  49.68 ∠-64.0° 
(c)  40 * 10-3 ∠40°

	47.	 (a)  4  (b)  -4.15 - j 4.23 
(c)  6.69 - j 6.46

	49.	 (a)  5.06 ∠88.44°   
(b)  426 ∠109.81°

	51.	 (a)  x = 3, y = 6 or x = 6, y = 3 
(b)  u = 30°

	53.	 (a)  21.21 ∠-180° 
(b)  4.24 * 10-6 ∠90° 
(c)  3.96 * 10-6 ∠70°

	55.	 ein = 75.48 sin(377t + 100.8°)
	57.	 ein = 115.7 sin(377t + 39.77°)
	59.	 —
	61.	 —

Chapter 15

	 1.	 (a)  14.14 mA ∠30° 
(b)  28.28 V ∠30°  (c)  — 
(d)  yR = 40 sin(1000t + 30°) 
(e)  —

	 3.	 (a)  7.071 mA ∠40° 
(b)  14.14 V ∠130°  (c)  — 
(d)  yL = 20 sin(250t + 130°) 
(e)  —

	 5.	 (a)  4.24 mA ∠20°, 11.31 V ∠110° 
(b)  2.67 kΩ ∠90°  (c)  2.23 H 
(d)  —  (e)  —

	 7.	 (a)  5 kΩ ∠-90°   
(b)  3.54 mA ∠-80° 
(c)  17.7 mV ∠-170° 
(d)  —  (e)  yC = 25.02 * 10-3 
sin(20,000t - 170°)  (f)  —

	 9.	 —
	11.	 —
	13.	 (a)  5.83 Ω ∠59.04 

(b)  10.05 kΩ ∠84.29° 
(c)  471.70 Ω ∠-4.86°

	15.	 (a)  10 Ω ∠36.87°  (b)  — 
(c)  I = 10 A ∠-36.87°, 
VR = 80 V ∠-36.87°, 
VL = 60 V ∠53.13° 
(d)  —  (e)  —  (f)  800 W 
(g)  0.8 lagging 
(h)  i = 14.14 sin(vt - 36.87°), 
yR = 113.12 sin(vt - 36.87°), 
yL = 84.84 sin(vt + 53.13°) 
(i)  —

	17.	 (a)  5.66 Ω ∠-45°  (b)  — 
(c)  16 mH, 265 mF 
(d)  I = 8.83 A ∠45°, 
VR = 35.32 V ∠45°, 
VL = 52.98 V ∠135°, 
VC = 88.30 V ∠-45° 
(e)  —  (f)  —  (g)  311.88 W 
(h)  0.707 leading 
(i)  i = 12.49 sin(377t + 45°), 
e = 70.7 sin 377t, 
yR = 49.94 sin(377t + 45°), 
yL = 74.91 sin(377t + 135°), 
yC = 124.86 sin(377t - 45°)

	19.	 (a)  85.44 Ω ∠69.44° 
(b)  468.16 mA ∠-9.44° 
(c)  14.04 V ∠-9.44° 
(d)  0.351 lagging

	21.	 (a)  8 mA ∠30°   
(b)  85.04 V ∠78.81°   (c)  16 V ∠30°

	23.	 (a)  3.36 H  (b)  10.3 kΩ 
(c)  6.2 H

	25.	 3.6 Ω + j 1.74 Ω
	27.	 (a)  V1 = 120 V ∠6.87°, 

V2 = 160 V ∠96.87° 
(b)  V1 = 89.27 V ∠50.75°, 
V2 = 49.097 V ∠-39.25°

	29.	 (a)  I = 655.1 mA ∠50.65°, 
VR = 19.65 V ∠50.65°, 
VC = 16.80 V ∠-39.35° 
(b)  0.983 leading  (c)  12.87 W 
(d)  —  (e)  — 
(f)  VR = 19.66 V ∠50.65°, 
VC = 16.80 V ∠-39.35° 
(g)  ZT = 30 Ω - j 5.64 Ω

	31.	 —
	33.	 (a)  1.54 kHz  (b)  — 

(c)  100 Hz: ZT ≅ XC = 3.39 kΩ 
10 kHz: ZT ≅ R = 220 Ω 
(d)  —  (e)  u = -88.51° ≅ -90°  
(capacitive)
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	35.	 I:  (a)  y1 leads y2 by 72° 
(b)  y1p@p

= 2.5 V, 
V1(rms) = 0.88 V, y2p@p

= 1.2 V, 
V2(rms) = 0.42 V   
(c)  1.25 kHz 
II:  (a)  y1 leads y2 by 132° 
(b)  y1p@p

= 5.6 V, 
V1(rms) = 1.98 V, y2p@p

= 8 V, 
V2(rms) = 2.83 V   
(c)  16.67 kHz

Chapter 16

	 1.	 (a)  1.897 Ω ∠18.43°, 
1.799 Ω + j 0.599 Ω 
(b)  5.885 kΩ ∠-11.32°, 
5.77 kΩ - j 1.15 kΩ 
(c)  1.23 kΩ ∠90°, j 1.23 kΩ

	 3.	 (a)  147.06 mS ∠0°, 147.06 mS 
(b)  5 mS ∠-90°, - j 5 mS 
(c)  500 mS ∠90°, j 500 mS

	 5.	 I:  (a)  8.94 Ω ∠63.43° 
(b)  0.112 S ∠-63.43° 
(c)  G - jBL = 50.09 mS -  
j 100.17 mS  (d)  — 
II:  (a)  80.06 Ω ∠-48.54° 
(b)  12.49 mS ∠48.54° 
(c)  G + jBC = 8.27 mS +  
j 9.36 mS  (d)  — 
III:  (a)  1140.47 Ω ∠-70° 
(b)  2.43 mS ∠14.03° 
(c)  G + jBC = 2.36 mS + j 0.59 mS 
(d)  —

	 7.	 (a)  YT = G - jBL = 82.43 mS -  
j 103.67 mS  (b)  — 
(c)  R = 12.13 kΩ, L = 767.92 mH 
(d)  Both have resistive and induc-
tive components.

	 9.	 (a)  111.8 mS ∠-26.57°  (b)  — 
(c)  E = 17.89 V ∠26.57°, 
IR = 1.79 A ∠26.57°, 
IL = 0.89 A ∠-63.43° 
(d)  —  (e)  —  (f)  32.04 W 
(g)  0.894 lagging 
(h)  e = 25.30 sin(377t + 26.57°), 
iR = 2.53 sin(577t + 26.57°), 
iL = 1.26 sin(377t - 63.43°), 
is = 2.83 sin 377t 
(i)  —

	11.	 (a)  ZT = 65.21 Ω ∠32.91° 
(b)  YT = 15.34 mS ∠-32.91° 
(c)  — 
(d)  Is = 184.02 mA ∠-32.91° 
(e)  IC = 200 mA ∠90° 
(f)  e = 16.97 sin vt, 
is = 260.2 *10-3 sin(vt - 32.91°) 
(g)  0.84 lagging

	13.	 (a)  YT = 0.36 mS ∠-22.22°, 
ZT = 2.78 kΩ ∠22.22° 
(b)  — 

(d)  E = 9.83 V ∠2.22°, 
IR = 3.28 mA ∠2.22°, 
IL = 2.52 mA ∠-87.78°, 
IC = 1.18 mA ∠92.22° 
(e)  —  (f)  —  (g)  32.28 mW 
(h)  0.925 leading 
(i)  e = 13.9 sin(1000t + 2.22°), 
iR = 4.64 * 10-3 sin(1000t + 2.22°), 
iL = 3.56 * 10-3 sin(1000t - 87.78°), 
iC = 1.67 * 10-3 sin(1000t + 92.22°)

		  (j)  —
	15.	 —
	17.	 —
	19.	 —
	21.	 (a)  ZT = 7.02 kΩ - j 2.88 kΩ 

(b)  ZT = 17.48 Ω + j 29.72 Ω
	23.	 R′ }XL = 4.40 Ω } 5.435 Ω

Chapter 17

	 1.	 (a)  3.12 Ω ∠-8.38° 
(b)  3.5 A ∠22.65° 
(c)  3.5 A ∠22.65° 
(d)  2.77 A ∠-56.30° 
(e)  14 V ∠112.65°

	 3.	 (a)  19.86 Ω ∠37.17° 
(b)  3.02 A ∠-37.17° 
(c)  128.377 A ∠23.3° 
(d)  47.81 V ∠-37.17° 
(e)  144.42 W

	 5.	 (a)  0.25 A ∠36.86° 
(b)  89.44 V ∠-26.57° 
(c)  20 W

	 7.	 (a)  1.42 A ∠18.26° 
(b)  26.57 V ∠4.76°  (c)  54.07 W

	 9.	 (a)  15.12 V ∠6.85° 
(b)  10 V ∠-41.69° 
(c)  15.12 V ∠6.85°

	11.	 (a)  537.51 Ω ∠56.07° 
(b)  93 mA ∠-56.07° 
(c)  I1 = 0.0214 mA ∠-80.34°, 
I2 = 13.48 mA ∠123.93° 
(d)  V1 = 16.93 V ∠213.93°, 
Vab = 41.49 V ∠33.92° 
(e)  2.6 W  (f)  0.558 lagging

	13.	 (a)  1.52 Ω ∠-38.89° 
(b)  42.43 V ∠45° 
(c)  14.14 A ∠45° 
(d)  39.47 A ∠38.89°

	15.	 17.72 mW
	17.	 0.42 A ∠174.45°

Chapter 18

	 1.	 —
	 3.	 Zs = 14.06 Ω ∠51.34°, 

E = 42.18 V ∠171.34°
	 5.	 5.15 A ∠-24.5°
	 7.	 2.55 A ∠132.72°
	 9.	 48.33 A ∠-77.57°

	11.	 0.68 A ∠-162.9°
	13.	 51.49 I ∠149.31°
	15.	 2.69 mA ∠-174.8°
	17.	 V1 = 22.89 V ∠-179.73°, 

V2 = 14.46 V ∠-131.28°
	19.	 V1 = 17.92 V ∠59.25°, 

V2 = 13.95 V ∠93.64°
	21.	 V1 = E1 = 220 V ∠0°, 

V2 = 96.30 V ∠-12.32°, 
V3 = E2 = 100 V ∠90°

	23.	 V1 = 5.74 V ∠122.76°, 
V2 = 4.04 V ∠145.03°, 
V3 = 25.94 V ∠78.07°

	25.	 V1 = 15.13 V ∠1.29°, 
V2 = 17.24 V ∠3.73°, 
V3 = 10.59 V ∠-0.11°

	27.	 10.67 V ∠180°
	29.	 -2451.92 Ei

	31.	 (a)  no  (b)  1.73 mA ∠-71.54° 
(c)  7.03 V ∠-18.46°

	33.	 no
	35.	 Rx = R2R3>R1, Lx = R2L3>R1

	37.	 7.02 A ∠20.56°
	39.	 63.29 A ∠101.57°

Chapter 19

	 1.	 6.09 A ∠-32.12°
	 3.	 3.92 A ∠135.82°
	 5.	 2.04 mA ∠72.07°
	 7.	 yC = 15 V + 3.17 sin(vt - 85.24°)
	 9.	 332.225 mA ∠-33.69°
	11.	 208 mA ∠-20.32°
	13.	 2.94 mA ∠0°
	15.	 ZTh = 1.86 Ω ∠21.80°, 

ETh = 92.85 V ∠21.80°
	17.	 ZTh = 21.47 Ω ∠32.47°, 

ETh = 4.29 V ∠32.47°
	19.	 ZTh = 1.14 kΩ ∠-29.92°, 

ETh = 5.68 V ∠89.27°
	21.	 ZTh = 5.00 Ω ∠-38.66°, 

ETh = 77.14 V ∠50.41°
	23.	 (a)  AC: ZTh = 66.04 Ω ∠57.36°, 

ETh = 6.21 V ∠207.36°
DC: RTh = 22 Ω, ETh = -5 V 
(b)  i = -72.46 mA +  
62.36 * 10-3 sin(1000t + 173.42°)

	25.	 (a)  ZTh = 4.47 kΩ ∠-26.57°, 
ETh = 31.31 V ∠-26.57° 
(b)  6.26 mA ∠63.44°

	27.	 ZTh = 4.44 kΩ ∠-0.03°, 
ETh = -444.45 * 10-3 I ∠0.26°

	29.	 ZTh = 5.10 kΩ ∠-11.31°, 
ETh = -50 V ∠0°

	31.	 ZTh = -32.79 Ω ∠0°, 
ETh = 30 V ∠47°

	33.	 ZTh = 607.42 Ω ∠0°, 
ETh = 1.62 V ∠0°

	35.	 ZN = 21.47 Ω ∠32.47°, 
IN = 0.2 A ∠0°
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	37.	 ZN = 9.66 Ω ∠14.93°, 
IN = 2.15 A ∠-42.87°

	39.	 (a)  AC: ZN = 66.04 Ω ∠57.36°, 
IN = 94 mA ∠150°
DC: RN = 22 Ω, IN = 227.27 mA 
(b)  i = -72.46 mA + 62.68 * 10-3 
sin(1000t + 173.22°)

	41.	 (a)  ZN = 4.47 kΩ ∠-26.57°, 
IN = 7 mA ∠0° 
(b)  6.26 mA ∠63.44°

	43.	 ZN = 4.44 kΩ ∠-0.03°, 
IN = 100 I ∠0.29°

	45.	 ZN = 27 kΩ ∠0°, 
IN = 222.22 mA ∠0°

	47.	 ZN = 6.65 kΩ ∠0°, 
IN = 0.79 mA ∠0°

	49.	 ZL = 1.51 Ω - j 0.39 Ω, 
Pmax = 3.64 W

	51.	 ZL = 2.48 Ω + j 5.15 Ω, 
Pmax = 618.33 W

	53.	 ZL = 1.38 kΩ - j 5.08 kΩ, 
Pmax = 78.30 mW

	55.	 (a)  ZL = 4 kΩ + j 2 kΩ 
(b)  Pmax = 61.27 mW

	57.	 (a)  7.31 nF  (b)  2940.27 Ω 
(c)  Pmax = 1 mW

	59.	 (a)  0.83 mA ∠0°   
(b)  0.83 mA ∠0°  (c)  the same

Chapter 20

	 1.	 (a)  135 W 
(b)  QT = 0 VAR, ST = 135 VA 
(c)  0.675 A 
(d)  R1 = 274.34 Ω, R2 = 411.51 Ω 
(e)  I1 = 0.405 A, I2 = 0.207 A

	 3.	 (a)  R: P = 7.2 W, Q = 0 VAR, 
S = 7.2 VA 
C: P = 0 W, QC = 3.62 VAR(C), 
S = 3.62 VA 
R@L: P = 2.77 W, 
QL = 13.84 VAR(L), S = 14.11 VA 
(b)  —  (c)  ZT = 1 kΩ ∠45.67°, 
FP = 0.698 lagging 
(d)  Is = 120 mA ∠-45.67°

	 5.	 (a)  PT = 1100 W, QT = 200 VAR, 
ST = 1118.03 VA 
(b)  0.984  (c)  Power Triangle 
(d)  5.59 A ∠10.30°

	 7.	 (a)  R = 50 Ω, L = 3.18 mH, 
C = 212.2 nF 
(b)  70.71 Ω ∠-45° 
(c)  141.42 V ∠-45° 
(d)  0.7071 leading 
(e)  300 V ∠-90°

	 9.	 (a)  5.57 A ∠3.03° 
(b)  PR1

= 62.05 W, PR2
= 39.52 W, 

PR3
= 9.86 W, PxL

= PxC
= 0 W 

(c)  QR1
= QR2

= QR3
= 0 VAR, 

QC = 15.81 VAR, QL = 9.86 VAR 

(d)  ST (R1) = 62.05 VA, ST (R2) = 
39.52 VA, ST (R3) = 9.86 VA,
ST (C) = 15.81 VA, ST (L) =  
9.86 VA 
(e)  PT = 111.43 W, 
QT = 5.95 VAR(C), 
ST = 111.59 VA, 
FP = 0.998 leading 
(f)  —

	11.	 (a)  PL = PC = 0 W, PR = 38.99 W 
(b)  QR = 0 VAR, QL =  
126.74 VAR, QC = 46.92 VAR 
(c)  SR = 38.99 VA, SL =  
126.74 VA, SC = 46.92 VA 
(d)  ST = 38.99 W, QT =  
79.82 VAR (L), ST = 88.83 VA, 
Fp = 0.439 (lagging) 
(e)  —  (f)  WR = 0.31 J 
(g)  WL = 0.32 J, WC = 0.12 J

	13.	 (a)  Z = 2.7 Ω + j 1.04 Ω 
(b)  6.75 kW

	15.	 (a)  PT = 900 W, QT = 0 VAR, 
ST = 900 VA 
(b)  Is = 9 A ∠0°  (c)  — 
(d) � 1: XC = 20 Ω 

2: R = 2.83 Ω
3: R = 5.66 Ω, XL = 4.72 Ω

		  (e)  —
	17.	 (a)  PT = 1200 W, 

QT = 2441.28 VAR(C), 
ST = 2720.27 VA, 
FP = 0.441 (leading) 
(b)  E = 453.38 V ∠-68.83° 
(c) � 1: R = 657.80 Ω, 

    XC = 493.35 Ω
2: R = 32.89 Ω, XC = 75.36 Ω

	19.	 (a)  10 kVA   
(b)  0.8 (lagging)  (c)  50.0 A 
(d)  397.87 mF  (e)  40 A

	21.	 (a)  199.83 W 
(b)  a-b: 88.74 W, b-c: 66.55 W, 
a-c: 155.29 W, a-d: 155.29 W, 
c-d: 0 W, d-e: 0 W, f-e: 44.37 W

	23.	 (a)  R = 5 Ω, L = 132.03 mH 
(b)  R = 10 Ω 
(c)  R = 15 Ω, L = 262.39 mH

Chapter 21

	 1.	 (a)  vs = 258.19 rad/s, f = 41.09 Hz 
(b)  vs = 1851.85 rad/s, 
fs = 294.73 Hz

	 3.	 (a)  2 kΩ  (b)  120 mA 
(c)  VR = 12 V, VL = 240 V, 
VC = 240 V  (d)  20 
(e)  L = 63.7 mH, C = 15,920 pF 
(f)  250 Hz 
(g)  f1 = 4.88 kHz, f2 = 5.13 kHz

	 5.	 (a)  300 Hz 
(b)  f1 = 4.7 kHz, f2 = 4.4 kHz 

(c)  XL = XC = 60 Ω 
(d)  720 mW

	 7.	 (a)  10  (b)  50 Ω 
(c)  3.2 mH, 1.27 mF 
(d)  f1 = 2.6 kHz, f2 = 2.4 kHz

	 9.	 (a)  R = 10 Ω, L = 13.26 mH, 
C = 27.07 mF, f1 = 8.34 kHz, 
f2 = 8.46 kHz

	11.	 (a)  1 MHz  (b)  160 kHz 
(c)  R = 720 Ω, L = 0.716 mH, 
C = 35.38 pF   
(d)  56.23 Ω

	13.	 (a)  112.60 kHz  (b)  8 kV 
(c)  56.57 mA  (d)  28.28

	15.	 (a)  1.027 MHz  (b)  114.1 V 
(c)  13.69 W  (d)  669 mW

	17.	 R = 91 kΩ (closest to 93.33 kΩ), 
C = 240 pF (closest to 250 pF)

	19.	 (a)  fs = 7.12 kHz, fp = 6.65 kHz, 
fm = 7.01 kHz 
(b)  XL = 20.88 Ω, XC = 23.94 Ω 
(c)  55.56 Ω 
(d)  Qp = 2.32, BW = 2.87 kHz 
(e)  IC = 92.73 mA, IL = 99.28 mA 
(f)  2.22 V

	21.	 (a)  3558.81 Hz  (b)  223.61 V 
(c)  588.42 mW  (d)  975.02 Hz

	23.	 (a)  98.54 Ω  (b)  8.21 
(c)  8.05 kHz  (d)  4.83 V 
(e)  f1 = 7.55 kHz,  f2 = 8.55 kHz

	25.	 Rs = 6.29 kΩ, C = 16,210 pF
	27.	 (a)  251.65 kHz  (b)  4.44 kΩ 

(c)  14.05  (d)  17.91 kHz 
(e)  fs = 251.65 kHz, 
ZTp

= 49.94 Ω, Qp = 2.04, 
BW = 95.55 kHz 
(f)  fs = 251.65 kHz, 
ZTp

= 13.33 kΩ, Qp = 21.08, 
BW = 11.94 kHz 
(g)  Network: L>C = 100 * 103; 
part (e): L>C = 1 * 103; 
part (f): L>C = 400 * 103 
(h)  As the L>C ratio increased, 
BW decreased and Vp increased.

Chapter 22

	 1.	 (a)  left: 1.54 kHz, right: 5.62 kHz 
(b)  bottom: 0.22 V, top: 0.52 V

	 3.	 (a)  1000  (b)  1012  (c)  1.59 
(d)  1.1  (e)  1010  (f)  1513.56 
(g)  10.02  (h)  1,258,925.41

	 5.	 1.732
	 7.	 -0.602
	 9.	 (a)  1.806   

(b)  18.06 dB
	11.	 13.01
	13.	 39.46
	15.	 44.08 dBs

	17.	 —
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	19.	 (a)  fc = 3617.16 Hz;
f = fc: Ay = 0.707;
f = 0.1fc: Ay = 0.995;
f = 0.5fc: Ay = 0.894;
f = 2fc: Ay = 0.447;
f = 10fc: Ay = 0.0995 
(b)  f = fc: u = -45°;
f = 0.1fc: u = -5.71°;
f = 0.5fc: u = -26.57°;
f = 2fc: u = -63.43°;
f = 10fc: u = -84.29°

	21.	 C = 0.265 mF
	23.	 (a)  fc = 3.62 kHz;

f = fc: Ay = 0.707;
f = 2fc: Ay = 0.894;
f = 0.5fc: Ay = 0.447;
f = 10fc: Ay = 0.995;
f = 1

10 fc: Ay = 0.995 
(b)  f = fc: u = 45°; f = 2fc: u =
26.57°; f = 0.5fc: u = 63.43°;
f = 10fc: u = 5.71°; f = 1

10 fc;
u = 84.29°

	25.	 R = 795.77Ω, Rstandard =
750 Ω + 47 Ω = 797 Ω

	27.	 (a)  low-pass section: 
fc1

= 795.77 Hz; 
high-pass section: fc2

= 1.94 kHz;
f = fc1

: Vo = 0.654Vi;
f = fc2

: Vo = 0.64Vi;

		  At f = fc1
+

BW

2
= 1.37 kHz;

		  Vo = 0.706 Vi 
(b)  BW defined at 0.5Vi;
f = 500 Hz:Vo = 0.515Vi;
f = 4 kHz:Vo = 0.429Vi; 
from plot BW ≅ 2.9 kHz 
with fcenter = 1.93 kHz

	29.	 (a)  fs = 98.1 kHz 
(b)  Qs = 16.84, BW = 5.83 kHz 
(c)  f = fs: Ay = 0.93;
f1 = 95.19 kHz, f2 = 101.02 kHz;
f = f1: Vo = 0.64 V;
f = f2: Vo = 0.66 V 
(d)  f = fs: Vomax

= 0.93 V;
f1 = 95.19 kHz, Vo = 0.66 V;
f2 = 101.02 kHz: Vo = 0.66 V

	31.	 (a)  Qs = 15.56 
(b) BW = 321.34 Hz, f1 = 4.8 kHz,
f2 = 5.2 kHz 
(c)  f = fs, Vo = 0.022 mV, 
(d)  f = fs: Vo = 0.022 mV

	33.	 (a)  fp = 726.44 kHz (band@stop);
f(band@pass) = 2.01 MHz

	39.	 (a)  fc = 1.83 kHz   
(b)  —  (c)  — 
(d)  f = fc: 3 dB, f = 0.5fc: 1 dB, 
f = 2fc: 1 dB; low-frequency drop 
of -1.39 dB   
(e)  Ay = 0.84 
(f)  —

	41.	 (a)  fc = 1.02 kHz; 
f = 0 Hz: Vo = 0.852 Vi, 
f = fc: Vo = 0.602Vi 
(b)  —  (c)  — 
(d)  f = fc: 3 dB, f = 0.5fc: 1 dB, 
f = 2fc:1 dB  (e)  Ay = 0.80   
(f)  —

	43.	 (a)  fc = 132.41 Hz; 
f = ∞Hz: Vo = 0.465Vi, 
f = fc: Vo = 0.329Vi; high-
frequency drop of -6.65 dB 
(b)  f = fc>10: u = 84.3°, 
f = fc: u = 45°, f = 10fc: u = 5.7°

	45.	 (a)  note text section 22.13, 
f1 = 2.84 kHz, fc = 904.3 Hz; 
high-frequency level drop of 
-9.95 dB 
(b)  f = 1.5 kHz: u = -31.09°; 
low and high end at 0°

	47.	 (a)  note text section 22.14, 
f1 = 964.58 Hz, fc = 7334.33 Hz; 
low-frequency drop of -17.62 dB, 
high-frequency level of 0 dB 
(b)  f = 3 kHz (near peak): 
u ≅ 50°

	49.	 (a)  BW = 19,910 Hz, 
f1 = 90 Hz, f2 = 20 kHz 
(b)  f = 100 Hz: u = 63.8°, 
f = 1 kHz: u ≅ 0°

	51.	 f (-3 dB) = 2 kHz
	53.	 f1(-3 dB) = 1 kHz, 

f2(-3 dB) = 10 kHz
	55.	 f (+3 dB) = 159.16 Hz, 

f (-3 dB) = 795.78 Hz 
f (0 dB) ≅ 300 Hz

Chapter 23

	 1.	 (a)  50 mH 
(b)  ep = 1.6 V, es = 5.12 V 
(c)  ep = 15 V, es = 12 V

	 3.	 (a)  355.56 mH 
(b)  ep = 24 V, es = 0.6 V 
(c)  ep = 15 V, es = 12 V

	 5.	 (a)  5 V  (b)  625.59 mWb
	 7.	 120 Hz
	 9.	 28 Ω
	11.	 16,500 turns
	13.	 (a)  3  (b)  2.78 W
	15.	 (a)  364.55 Ω ∠86.86° 

(b)  329.17 mA ∠-86.86° 
(c)  VRe

= 6.58 V ∠-86.86°,
VXe

= 14.48 V ∠3.14°,
VXL

= 105.33 V ∠3.14°
	17.	 —
	19.	 1.64 H
	21.	 I1(ZR1

+ ZL1
) + I2(Zm) = E1 

I1(Zm) + I2(ZL2
+ ZRL

) = 0
	23.	 (a)  30  (b)  100 A  (c)  3.33 A 

(d)  Is = 3.33 A, Ip = 100 A

	25.	 (a)  VL = 25 V ∠0° 
(b)  IL = 5 A ∠0° 
(b)  ZL = 80 Ω ∠0° 
(c)  Z1>2 = 20 Ω ∠0°

	27.	 (a)  E2 = 40 V ∠0°,
I2 = 3.33 A ∠60°,
E3 = 30 V ∠60°, I3 = 3 A ∠60° 
(b)  R1 = 64.52 Ω

	29.	 [Z1 + ZL1
] I1 - ZM12

I2 + ZM13
= 

E1; ZM12
I1 - [Z2 + Z3 + ZL2

]I2

+  Z2I3 = 0; 
ZM13

I1 + Z2I2 +  
[Z2 + Z4 + ZL3

]I3 = 0

Chapter 24

	 1.	 (a)  131.64 V  (b)  131.64 V 
(c)  8.78 A  (d)  8.78 A

	 3.	 (a)  131.64 V  (b)  131.64 V 
(c)  23.26 A  (d)  23.26 A

	 5.	 (a)  u2 = -120°, u3 = +120° 
(b)  Van = 120 V ∠0°, Vbn =  
120 V ∠-120°, Vcn = 120 V ∠120° 
(c)  Ian = 8 A ∠-53.13°,
Ibn = 8 A ∠-173.13°,
Icn = 8 A ∠66.87° 
(e)  8 A  (f)  207.85 V

	 7.	 Vf = 127.0 V, If = 8.98 A, 
IL = 8.98 A

	 9.	 (a)  EAN = 12.7 kV ∠-30°,
EBN = 12.7 kV ∠-150°,
ECN = 12.7 kV ∠90° 
(b–c)  Ian = IAa =
11.29 A ∠-97.54°, Ibn = IBb =
11.29 A ∠-217.54°, Icn =
ICc = 11.29 A ∠22.46°

	11.	 (a)  120.1 V  (b)  208 V 
(c)  10.4 A  (d)  18 A

	13.	 (a)  120.1 V  (b)  208 V 
(c)  16.34 A  (d)  28.30 A

	15.	 (a)  u2 = -120°, u3 = 120° 
(b)  Vab = 208 V ∠0°, 
Vbc = 208 V ∠-120°, 
Vca = 208 V ∠120° 
(c)  — 
(d)  Iab = 1.47 A ∠45°, 
Ibc = 1.47 A ∠-75°, 
Ica = 1.47 A ∠165° 
(e)  2.55 A   
(f)  120.1 V

	17.	 Vab = Vbc = Vca = 220 V, 
Iab = Ibc = Ica = 15.56 A

	19.	 (a)  208 V  (b)  120.1 V 
(c)  4.00 A  (d)  4 A

	21.	 (a)  208 V  (b)  120.1 V 
(c)  10 A  (d)  10 A

	23.	 Van = Vbn = Vcn = 69.28 V, 
Ian = Ibn = Icn = 3.10 A, 
IAa

= IBb
= ICc

= 3.10 A
	25.	 (a)  440 V  (b)  440 V
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	27.	 (a)  440 V  (b)  440 V 
(c)  28.28 A  (d)  48.98 A

	29.	 (a)  u2 = -120°, u3 = 120° 
(b)  Vab = 100 V ∠0°, 
Vbc = 100 V ∠-120°, 
Vca = 100 V ∠120° 
(c)  — 
(d)  Iab = 5 A ∠-53.13°, 
Ibc = 5 A ∠-173.13°, 
Ica = 5 A ∠66.87° 
(e)  IAa = IBb = ICc = 8.66 A

	31.	 1220.19 W, 1743.13 VAR (C),  
2127.76 VA, 0.6 (leading)

	33.	 2419.21 W, 2419.21 VAR (C), 
3421.28 VA, 0.7071 (leading)

	35.	 649.15 W, 649.15 VAR (C), 
918.04 VA, 0.7071 (leading)

	37.	 2884.80 W, 2163.60 VAR (C), 
3605.97 VA, 0.8 (leading)

	39.	 26.4 kW, 26.4 kVAR (L),  
37.34 kVA, 0.7071 (lagging)

	41.	 Zf = 16 Ω + j 12 Ω
	43.	 2999.02 W, 998.7 VAR (C),  

3161 VA, 0.949 (leading)
	45.	 (a)  7,159.35 V 

(b)  IL = If = 186.19 A 
(c)  Ef = 8,810 V 
(d)  EL = 15,259 V

	47.	 (a)  — 
(b)  PT = 5899.64 W, 
Pmeter = 1966.55 W

	49.	 —
	51.	 (a)  120.1 V 

(b)  Ian = 8.49 A, Ibn = 7.08 A, 
Icn = 42.47 A 
(c)  4.93 kW, 4.93 kVAR (L),  
6.97 kVA, 0.7071 (lagging) 
(d)  Ian = 8.49 A ∠-75°, 
Ibn = 7.08 A ∠-195°, 
Icn = 42.47 A ∠45° 
(e)  35.09 A ∠-43.00°

Chapter 25

	 1.	 I:  (a)  positive going  (b)  0 V 
(c)  2 ms  (d)  12 V  (e)  0% 
II:  (a)  positive going   
(b)  -6 V  (c)  1 ms  (d)  8 V 
(e)  28.57%

	 3.	 (a)  positive going  (b)  10 mV 
(c)  3.2 ms  (d)  20 mV 
(e)  6.9%

	 5.	 —
	 7.	 (a)  120 ms  (b)  8.33 kHz 

(c)  max = 440 mV, min = 80 mV
	 9.	 (a)  prf = 200 Hz, 

duty cycle = 20% 
(b)  prf = 166.67 kHz, 
duty cycle = 50%

	11.	 (a)  8 ms  (b)  3 ms  (c)  125 kHz 
(d)  0 V  (e)  3.46 mV

	13.	 8.44 mV
	15.	 117 mV
	17.	 yC = 10 V - 8 V e-t >20 ms

	19.	 iC = -8 mA e-t

	21.	 iC = 4 mA e-t>0.2 ms, t = 0.2 ms 
(a)  T = 10 ms  (b)  T = 2 ms 
(c)  T = 0.2 ms

	23.	 0 S T
2: 20 V; T2 S T: 20 V e-t>0.2 ms;

		  T S 3
2T: 20 V (1 - e-t>0.2 ms); 

3
2T S 2T: 20 V e-t>0.2 ms

	25.	 Vscope ≅ 10 V ∠0°

Chapter 26

	 1.	 I:  (a)  no  (b)  no  (c)  yes 
(d)  no  (e)  yes 
II:  (a)  yes  (b)  yes  (c)  yes 
(d)  yes  (e)  yes 
III:  (a)  yes  (b)  yes  (c)  no 
(d)  yes  (e)  yes 
IV:  (a)  no  (b)  no  (c)  yes 
(d)  yes  (e)  yes

	 3.	 —
	 5.	 —
	 7.	 f = v

2p: mag = 1, f = v
p: mag = 1

	 9.	 (a)  Vay = 100 V, Veff = 107.53 V 
(b)  Iay = 3 A, Ieff = 3.36 A

	11.	 333.52 W
	13.	 (a)  i = 1.5 + 2.08 sin(400t -  

33.69°)  (b)  2.10 A 
(c)  yR = 18 + 24.96 sin(400t -  
33.69°)  (d)  25.21 V 
(e)  yL = 0 + 16.64 sin(400t +  
56.31°)  (f)  11.77 V   
(g)  52.97 W

	15.	 (a)  i = -5 + 1.49 sin(300t -  
26.57°) - 0.59 sin(600t - 45°) 
(b)  5.13 A 
(c)  yR = -60 + 17.88 sin(300t - 
26.57°) - 7.07 sin(600t - 45°) 
(d)  61.52 V 
(e)  yL = 8.94 sin(300t +  
63.43°) - 7.07 sin(600t + 45°) 
(f)  6.8 V  (g)  315.8 W

	17.	 (a)  yo = 2.54 sin(754t -  
94.57°) - 2.45 sin(1508t - 101.1°) 
(b)  2.50 V  (c)  6.25 mW

	19.	 (a)  80 + 100 sin vt +  
14.55 sin(3vt + 69.9°) 
(b)  15 + 70 sin a + 10 sin(2a -  
180°) + 8.69 sin (3a + 166.7°)

	21.	 e = 10 + 150.32 sin(600t +  
123.74°) + 100 sin(1200t +  
90°) + 108.97 sin(1800t + 23.41°)

	23.	 —



A
absolute zero, 89
ac circuits

applications, 608–610
average power, 637–642
average value, 590–596
capacitance, 625–631
complex numbers (see complex numbers)
computer analysis, 611–614, 662–665
converters, 602–605
definitions, 571–572
direction, 576
frequency response, 631–637, 688–701, 

734–744
frequency spectrum, 573–576
generator, 570
inductors, 624–625
instrumentation, 605–608
inverters, 602–605
overview, 569–570
parallel (see parallel ac circuits)
phase relations, 584–590
polarity, 576
power factor, 642–643
series (see series ac circuits)
series-parallel (see series-parallel ac circuits)
sinusoidal ac voltage, 569, 570–572, 581–584

accuracy, 25–27
ac generator, 570
active filters, 981. See also filters
actual/true/practical pulse, 1132
addition, using powers of ten, 28–29
admittance, parallel ac circuits, 723–727
admittance diagram, 725

parallel R-C circuits, 730
parallel R-L-C circuits, 732
parallel R-L circuits, 729

air-core inductors, 502
air-core transformers, 1067–1069
air gaps, 555–557
air trimmer capacitor, 441–442
alternating waveform, 569
alternator. See ac generator
aluminum, 85
American Wire Gage (AWG) sizes, 85, 86
ammeters, 70–73. See also instrumentation

loading effects, 189
in series dc circuits, 165
series-parallel dc circuits, 294–295

ampere, 17, 55
Ampère, André Marie, 17, 19, 55, 493
ampere-hour (Ah) rating, 66–67

defined, 67
drain current vs., 68
temperature vs., 68

Ampère’s circuital law, 493, 550–551
ampere-turns (At), 496

amplitude, of pulse waveforms, 1132
analogies

parallel resistors, 222
series dc circuits, 164
series resistors, 160

analog-to-digital converter (ADC), 589
analysis methods (ac), 793–827

bridge networks, 814–819
computer analysis, 823–827
independent vs. dependent sources, 793–794
mesh analysis (see mesh analysis (ac))
nodal analysis (see nodal analysis (ac))
source conversion, 794–797

analysis methods (dc), 311–362
applications, 355–360
branch-current analysis, 318–324
bridge networks, 346–349
computer analysis, 361–362
current source, 311–318
mesh analysis (see mesh analysis (dc))
nodal analysis (see nodal analysis (dc))

angular velocity, 578
answering machines/phones, 77–78
apparent power, 883, 886–888, 893

capacitor, 892
defined, 886
Δ-connected balanced load, 1107
power factor, 887
total, 895–900
Y-connected balanced load, 1105

applications
ac circuits, 608–610
analysis methods, 355–360
answering machines/phones dc supply, 77–78
attenuators, 1030–1032
ballast transformer, 1081–1083
business sense, 909–911
capacitors, 474–479
car battery, boosting, 297–299
car battery charger, 75–77
constant-current alarm systems, 355–357
dimmer control in automobile, 113–114
dimmer switch, 525–528
electrical system of automobile, 249–252
electric baseboard heating element, 110–113
electronic circuits, 300–301
electronic systems, 866–867
energy, 135–143
flashlight, 73–75
fluorescent vs. CFL/LED bulbs, 135–139
GFCI (ground fault circuit interrupter),  

777–780
graphic and parametric equalizers, 954–957
Hall effect sensor, 562–563
holiday lights, 193–195
household wiring, 141–143, 252–254,  

749–751

inductors, 525–528
low-voltage, 1080–1081
magnetic circuits, 561–565
magnetic reed switch, 563–564
magnetic resonance imaging, 564–565
microwave oven, 139–141, 195–196
noise filters, 1032–1035
parallel ac circuits, 749–753
parallel computer bus connections,  

254–255
parallel dc circuits, 249–255
phase-shift power control, 751–753
portable power generators, 908–909
resonance, 954–957
safety concerns (high voltages and dc vs. 

ac), 609–610
series ac circuits, 704–707
series control, 193
series dc circuits, 192–197
series-parallel ac circuits, 777–780
series-parallel dc circuits, 297–301
soldering gun, 1077–1080
speakers/microphones, 561–562, 704–707
strain gauges, 114–115
surge protector, 476–479
theorems (ac networks), 866–867
touch pad, 474–476
transformers, 1076–1084
transient response with initial conditions, 

529–531
TV remote, 1149–1152
(120 V at 60 Hz) vs. (220 V at 50 Hz),  

608–609
Wheatstone bridge smoke detector,  

357–359
applied voltage, 52, 53, 55

of series dc circuits, 170
approximate numbers, 25, 26
Armstrong, Edwin, 20
artificial intelligence, 15
atoms, 47–50
attenuator probe, oscilloscopes, 1148–1149
attenuators, 1030–1032
automobile

dimmer control, 113–114
electrical system, 249–252

autotransformer, 1072
average current, 468
average induced voltage, 519–521
average power, 597, 637–642, 885, 893

Δ-connected balanced load, 1107
total, 895–900
Y-connected balanced load, 1105

average value, 590–596
Fourier series, 1161
pulse waveforms, 1138–1139
square wave, 1144
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B
Babbage, Charles, 20
Baird, John, 20
ballast transformer, 1081–1083
band frequencies, 929
band-pass filters, 981, 982, 990–994, 1000.  

See also filters
band-stop filters, 981, 982, 994–996.  

See also filters
bandwidth

defined, 929
fractional, 931
parallel resonant circuits, 941, 945

Bardeen, John, 21
base-line voltage, 1133
batteries, 57–63

cells (see cells)
defined, 57
fuel cells, 64–66
lead–acid, 58–59, 240
life factors, 67–69
lithium-ion (Li-ion), 58, 60–61
nickel-metal-hydride (NiMH), 59–60
in parallel dc circuits, 240–241
primary cells, 57–58
secondary cells, 57

block diagram approach
defined, 273
format, 273
series-parallel dc circuits, 273–276

Bode, Hendrik Wade, 1001
Bode plots, 1001–1008
boldface notation, 644
branch-current analysis, 318–324
Brattain, Walter H., 21
breadboards. See protoboards (breadboards)
breakdown voltage, 433
bridge networks (ac), 780–784, 814–819
bridge networks (dc), 346–349

formats for, 346
mesh analysis, 347
nodal analysis, 347
symmetrical lattice, 346–347

bubbles, 550
business sense application, 909–911
Butterworth low-pass filter, 998

response of, 999

C
calculators, 37–41

fundamentals, 38–39
TI-89, 37–38

calibration factor, 605
capacitance, 429–433

equation for, 434
stray, 473–474

capacitance comparison bridge, 819
capacitance sensing, 474
capacitance to digital converter (CDC), 475
capacitive shunt approach, 475–476
capacitors, 19, 427–484, 635–636. See also 

specific capacitors
ac circuits, 625–631
applications, 474–479
average power, 641
charging phase, 445–453

computer analysis, 479–484
construction, 433–437
current ic, 467–469
defined, 430
discharging phase, 454–460
electric field, 427–429
energy storage, 473
equivalent series resistance, 443
fixed, 437–441
ideal, 632–633
initial conditions, 460–463
instantaneous values, 463–464
labeling, 443–444
leakage current, 442–443
measurement of, 444–445
in parallel, 469–472
in series, 469–472
series ac circuits, 675–677
standard values, 445
temperature effects, 443
testing of, 444–445
Thévenin equivalent, 464–467
transients (see transients (capacitive 

networks))
car battery charger, 75–77
carbon-film resistors, 91–92
CDC. See capacitance to digital converter (CDC)
cells. See also batteries

defined, 57
fuel, 64–66
photoconductive, 109
primary, 57–58
secondary, 57, 58–61
solar, 57, 61–63

center-tapped transformer, 1073–1074
ceramic capacitors, 440–441
ceramic trimmer capacitor, 442
CGS system, 23, 24
charging phase, capacitors, 445–454
chassis ground, 774–775
Chebyshev filter, 998
chokes, 505

RF, 502
circuit analysis, 17
circuit breakers, 134–135
circular mils (CM), 83–85
circular wires, 82–85
clamp-on meters, 607
closed loop, 170
CM. See circular mils (CM)
coefficient of coupling, 1048–1049
coercive force, 547
coils. See inductors
color coding, 96–100
common-mode choke coil, 502
compact fluorescent bulb (CFL), fluorescent 

vs., 135–139
compensated attenuator probes, 1149
complex circuits. See series-parallel dc circuits
complex conjugate, 647
complex numbers, 643–655

addition, 648
calculator methods with, 653–655
conjugate, 647
conversion between forms, 645–646
division, 651–653

mathematical operations with, 647–653
multiplication, 650–651
polar form, 644–645
reciprocal of, 647–648
rectangular form, 643–644
subtraction, 648–649

computer analysis, 78, 143–154. See also 
Multisim; PSpice

ac circuits, 611–614, 662–665
analysis methods (ac), 823–827
analysis methods (dc), 361–362
capacitors, 479–484
inductors, 528–533
languages, 41
nonsinusoidal circuits, 1178–1180
parallel ac circuits, 753–757
parallel dc circuits, 255–257
power (ac), 911–914
pulse waveforms, 1152–1154
resonance, 957–963
series ac circuits, 708–712
series dc circuits, 197–199
series-parallel ac circuits, 780–787
series-parallel dc circuits, 301
software packages, 41–42
theorems (ac networks), 868–872
theorems (dc networks), 412–418
transformers, 1084–1087

computers, 20
conductance, 101, 723
conductance sensing, 474
conductors

defined, 69
resistance of, impact of temperature on, 88

conjugate. See complex conjugate
constant-current alarm systems, 355–357
conventional flow, 56, 158
conversion tables, 36–37
converters, 602–605
Cooper effect, 107
copper, 48–49, 85

as conductor, 69
corner frequencies, 929, 1026
cosine wave, 585
coulomb (C), 50, 51
Coulomb, Charles Augustin, 19, 49
Coulomb’s law, 49, 428
coupled impedance, 1069
critical temperature, 107, 108
crossover networks, 1029–1030
current, 47, 53–56

direct (see dc current)
source, 739–741

current-controlled current source (CCCS), 
825–827

current divider rule (CDR), 234–239
defined, 234
equation, 236
parallel ac circuits, 734
two parallel resistors, 237–239

current sensitivity (CS), 294
current sources, 311–318

conversions, 314–318
dependent, 800, 806–807
ideal, 312
independent, 799



1212    Index

current sources (continued)
Ohm’s law and, 314
in parallel, 316–318
removal from network, 374
in series, 318

current transformers, 1075–1076
cutoff frequencies, 929, 941
cycle, waveforms, 572

D
d’Arsonval movement. See iron-vane movement
dc circuits

methods of analysis (see analysis  
methods (dc))

network theorems (see theorems (dc 
networks))

parallel (see parallel dc circuits)
series (see series dc circuits)
series-parallel (see series-parallel dc circuits)

dc current, 157
defined, 56
voltage sources, 56–66 (See also specific 

sources)
dc generator, 63
decibels (dB), 975–981

defined, 969
human auditory response, 978–979
instrumentation, 979–981
levels, 979
power gain, 975–976
voltage gain, 976–977

defined polarity and current, 122
degrees, 577, 578
delay line coil, 502
delta (Δ) configuration

conversion to wye (Y) configuration, 349–355
resistance, 350

Δ-connected balanced load, 1107–1110
Δ-connected generators, 1101–1102
Δ-Δ systems, 1102–1104
Δ-Y systems, 1102–1104
dependent sources

conversion, 796–797
current, 806–807
independent sources vs., 793–794
Norton’s theorem (ac circuits), 859–861
superposition theorem (ac circuits), 841–843
Thévenin’s theorem (ac circuits), 848–855
voltage, 799, 808

derivative, 621–623
defined, 621
sine wave, 623

derivative, of voltage, 467
determinants, 1189–1196
determinants method, 319
diamagnetic material, 496
dielectric constant, 433
dielectrics

defined, 432
dielectric strength, 433
difference engine, 20
digital multimeter (DMM), 71, 102, 103

for average value, 594–595
dB scale, 979

digital storage scope (DSO), 589
dimmer control, in automobile, 113–114

dimmer switch, 525–528
diodes, 75, 124
dipped capacitors, 441
disc capacitors. See ceramic capacitors
distribution system, electrical. See electrical 

distribution system
division

complex numbers, 651–653
using powers of ten, 29–30

domain theory, magnetism, 548, 550
double-subscript notation, 179
double-tuned filters, 996–998

defined, 996
network illustration, 997
PSpice, 1036–1038

droop, 1134
ductility, 85, 246
DuFay, Charles, 18
duty cycle, 1136

E
earth ground, 774
eddy currents, 906–907
Edison, Thomas, 19
Edison effect, 19
effective resistance, 905–908
effective/rms value, 596–602, 1051
efficiency, 131–134
electrical distribution system

residential/industrial service, 1119–1121
electrical telescope, 20
electric baseboard heating element, 110–113
electric field, 427–429
electric field strength, 427, 431
electric flux lines, 427–429
electrodynamometer movement, 606–607
electrolysis, 64–65
electrolytes, 57
electrolytic capacitors, 439–440, 445
electromagnet, 543. See also permanent magnet
electromagnetic induction, 19
electromagnetic interference (EMI), 476, 478
electromagnetic theory of light, 19
electromagnetism, 19, 494
electromotive force (emf), 56
electron flow, 53–54, 56, 158
electronic devices, 20
electronic systems, 866–867
electrons, 47

free, 50
electron volt, 52–53
energy, 125, 127–131

applications, 135–143
capacitors, 473
flow of, 131
inductors, 524–525
potential, 52
units comparison, 24

engineering notation, 31, 38
ENIAC, 20
equivalent circuits, 745–749
equivalent series resistance (ESR), 443,  

636–637
even function (axis symmetry), 1162
even harmonics, 1167
exact numbers, 25

F
falling edge, waveform, 1132
fall time, 1133–1134
Faraday, Michael, 19, 430
Faraday’s law, 504, 570, 1051
ferromagnetic material, 496, 544
film capacitors, 440
film resistor, 91–92
filters, 981–1001

active, 981
band-pass, 981, 982, 990–994, 1000
band-stop, 981, 982, 994–996
Chebyshev, 998
configurations, 998–1001
defined, 981
double-tuned, 996–998
high-pass, 981, 982, 987–990
low-pass, 981, 982–987
noise, 1032–1035
passive, 981
stop-band, 981

final value. See steady-state value
five-band color code, 98
fixed capacitors, 437–441. See also capacitors
fixed inductors, 500–501
fixed-point notation, 30
fixed resistors, 91–93

color coding for, 97
flashlight, 73–75
Fleming, John Ambrose, 20
Fleming’s valve, 20
floating-point notation, 30–31
fluorescent vs. CFL/LED bulbs, 135–139
flux, 551
flux density, 496, 543

residual, 547
foil capacitors, 440
Fourier, Baron Jean, 1160
Fourier analyzer, 1164
Fourier expansion

of half-wave rectified waveform,  
1169–1170

of square wave, 1167–1168
Fourier series, 1160–1167

average value, 1161
PSpice, 1178–1179

Fourier Spectrum, 1170–1171
fractional bandwidth, 931
Franklin, Benjamin, 18
free electron, 50
frequency

band, 929
corner, 929, 1026
cutoff, 929, 941
defined, 572
half-power, 929
natural, 922
quality factor vs., 926
resonant, 924, 943–945
response (see frequency response)
spectrum, 573–576
of square wave, 1143
total impedance vs., 927–928
transformers, 1063–1064

frequency counter, 607
Frequency Domain, 1170–1171
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frequency response, 631–637
ideal, 631–633
parallel elements, 734–744
parallel R-L-C circuits, 735
parallel R-L circuits, 736–741
practical, 633–637
series ac circuits, 688–701

Frequency Spectrum, 1170–1171
fringing, 431, 555
fuel cells, 64–66
full-wave rectified waveform, 605
function generators, 571, 588
fundamental component, 1160
fuses, 134–135

G
Galvani, Luigi, 19
generator (dc), 63
GFCI. See ground fault circuit interrupt (GFCI)
Gilbert, William, 18
gold, 85
graphic equalizers, 954–957
Gray, Stephen, 18
ground connection, 178–179, 182–184
ground fault circuit interrupt (GFCI), 135, 

777–780
grounding, 774–777. See also specific grounds

H
half-power frequencies, 929
half-wave rectified waveform, Fourier 

expansion of, 1169–1170
half-wave rectifier, 605
half-wave symmetry, 1162–1163
Hall effect sensor, 562–563
harmonic terms, 1160
hash choke coil, 502
Hay bridge, 817
helium atom, 48
henries (H), 498
Henry, Joseph, 498
hertz (Hz), 572
Hertz, Heinrich Rudolph, 19, 572
high-pass filters, 981, 982. See also filters

with limited attenuation, 1017–1022
Multisim, 1038
R-C, 987–990, 1001–1006

holiday lights, 193–195
horsepower (hp), 125
household dimmer switch, 525–528
hydrogen atom, 47, 48
hysteresis, 546–550
hysteresis losses, 907

I
IC. See integrated circuit (IC)
ideal pulse, 1131
impedance diagrams, 677–678

series R-L-C circuits, 683–684
impedances

coupled, 1069
matching, 1056–1060
maximum, 939–940
measurements, 608
Norton’s theorem (ac circuits), 855,  

856, 858

parallel R-C circuits, 732
parallel R-L-C circuits, 734
parallel R-L circuits, 730, 736–739
reflected, 1054–1056
resistive element, 672
series configuration, 678–685
Thévenin’s theorem (ac circuits), 845, 849
total (see total impedance)

independent sources
conversion, 794–796
current, 799
nodal analysis (ac), 804–806
Norton’s theorem (ac circuits), 855–859
superposition theorem, 836–841
voltage, 797–798, 807–808
vs. dependent sources, 793–794

induced voltage, 504–506, 1053
inductance, 498–504

mutual, 1047–1050
inductors, 473–474, 493–533, 634–635. See 

also specific inductors
ac circuits, 624–625
applications, 525–528
average induced voltage, 519–521
average power, 641
coefficient of coupling, 1048–1049
color-coding system, 503
computer analysis, 528–533
construction, 498–500
defined, 498
energy storage, 524–525
fixed, 500–501
ideal, 631
induced voltage, 504–506
initial conditions, 509–511
instantaneous values, 518–519
labeling, 503–504
loosely coupled, 1049
magnetic field, 493–497
measurement of, 504
in parallel, 521–522
practical equivalent, 502–503
in series, 521–522
series ac circuits, 673–675
steady-state conditions, 522–524
symbols, 500
testing of, 504
Thévenin equivalent, 516–518
variable, 501, 502
voltage, 512, 513

industrial electrical distribution system,  
1119–1121

inferred absolute temperature, 88–90
initial conditions

capacitive networks, 460–463
inductive networks, 509–511
transient response with, 529–531

initial value, 460
instantaneous values

capacitive networks, 463–464
defined, 571
inductive networks, 518–519
transformers, 1052

instrumentation
ac circuits, 605–608
ammeters, 70–73, 165, 189, 227, 294–295

decibels, 979–981
digital multimeter (DMM), 71, 102, 103, 

594–595
loading effects, 189–191
nonsinusoidal circuits, 1164–1167,  

1173–1174
ohmmeters, 102–103, 608
oscilloscopes, 588–590
parallel dc circuits, 226–228
parallel resistors, 222–223
pulse waveforms, 1139
series dc circuits, 164–166
voltmeters, 70–73, 165, 226–227, 295
volt-ohm-milliammeter (VOM), 71, 102, 103

instrument transformers, 1075
insulators

breakdown strength of, 69
defined, 69
resistance of, impact of temperature on, 88
types of, 70

integrated circuit (IC), 2, 7. See also ac 
circuits; dc circuits

Integration, 593
internal resistance

of voltage sources, 184–189
inverter, 571
inverters, 602–605
iron-core transformers, 1050–1054

equivalent circuit, 1060–1063
nameplate data, 1070–1071
phasor diagram for, 1062
reduced equivalent circuit, 1061
reflected impedance, 1054–1056

iron-vane movement, 293–294, 605

J
Joule (J), 23, 51, 128
Joule, James Prescott, 128

K
kelvin (K), 23
kilogram (kg), 23, 25
kilowatthour meter, 128
Kirchhoff, Gustav Robert, 19, 169
Kirchhoff’s current law (KCL), 230–234

application of, 231–234
defined, 230
equation, 230
nodal analysis and, 335, 338–339
parallel ac network, 728
parallel R-C circuits, 731
parallel R-L-C circuits, 733
parallel R-L circuits, 729
unbalanced Y-connected loads, 1115

Kirchhoff’s voltage law (KVL), 169–173
in branch-current analysis, 319
capacitors and, 450
closed loop, 170
defined, 170
in mesh analysis (ac), 797
in mesh analysis (dc), 325
series R-C circuits, 682
series R-L-C circuits, 684
series R-L circuits, 680
symbolic form, 170
unbalanced Y-connected loads, 1117
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L
labeling

capacitors, 443–444
inductors, 503–504

ladder networks
ac, 773–774
dc, 283–285

lagging, 585
power factor, 642

languages, computer, 41
lead-acid batteries, 58–59, 240
leading, 585

power factor, 642
leakage current, 442–443
leakage flux, 1060, 1061
Leibniz wheel, 20
Lenz’s law, 505
Leyden jar, 18
light-emitting diode (LED), fluorescent vs., 

135–139
line conditioner. See surge protector
line current, 1094
line voltage, 1094
lithium-ion (Li-ion) batteries, 58, 60–61
load regulation. See voltage regulation
logarithmic plot, characteristics of, 972–973
logarithmic scale, 971
logarithms

applications of, 970
graphs, 970–972
natural, 974
properties of, 974–975
relationship with variables, 969–972
usage of, 969

log-log graph paper, 970
loop currents, 324
low-pass filters, 981, 982. See also filters

Butterworth, 998
with limited attenuation, 1013–1017
R-C, 982–987, 1006–1008

low-voltage application, 1080–1081

M
magnetic circuits, 543–565

air gaps, 555–557
Ampére’s circuital law, 550–551
applications, 561–565
domain theory, 548, 550
flux, 551
flux density, 543
hysteresis, 546–550
magnetic field, 543–544
magnetizing force, 545–546
Ohm’s law for, 544–545
reluctance, 544
series, 551–555
series-parallel, 557–561

magnetic field, 493–497, 543–544
magnetic flux lines

defined, 494
magnetic circuits, 545
materials, 496

magnetic reed switch, 563–564
magnetic resonance imaging (MRI), 564–565
magnetism, domain theory of, 548, 550
magnetizing force, 545–546

magnetomotive force, 496, 543, 545
magnets, permanent. See permanent magnets
malleability, 85
Marconi, Guglielmo, 20
matrix approach, 474–475
maximum power transfer theorem (ac circuits), 

861–865
conditions for, 862
defined, 861

maximum power transfer theorem (dc circuits), 
397–406

defined, 397
efficiency, 400, 401
load resistance, 402
PSpice, 413–417
validation of, 397

maximum voltage rating, 94
maximum working voltage, 433
Maxwell, James Clerk, 19
Maxwell bridge, 818
Maxwell’s equations, 19
megohmmeter, 296–297
memristors, 105–106

action of, 106
defined, 105
illustrated, 105

menu, 42
mesh analysis (ac), 797–804

bridge network, 814
dependent current sources, 800
dependent voltage sources, 799
format approach, 800–804
independent current sources, 799
independent voltage sources, 797–798
Kirchhoff’s voltage law, 797

mesh analysis (dc), 324–334
bridge networks, 347
defined, 324
format approach, 330–334
general approach, 324–330
Kirchhoff’s voltage law and, 325
procedure, 324–325, 331
supermesh approach/current, 328–330

mesh/loop currents, 324
metal-film resistor, 92
meter (m), 23, 24–25
meters. See also specific meters

ac, 605–608
capacitance, 444
clamp-on, 607
power, 905
in series dc circuits, 164–166

methods of analysis
ac (see analysis methods (ac))
dc (see analysis methods (dc))

mica capacitors, 441
microammeter, 70
microbar (μbar), 978
microphones, 561–562
microwave oven, 139–141, 195–196
milliammeter, 70
milligaussmeter, 497
Millman’s theorem, 406–409

ac circuits, 865
application effect, 406
dual effect, 409

equivalent resistance, 407
voltage source conversion to current source, 

406–407
mirror symmetry, 1162–1163
MKS system, 23, 24
molded coils, 502

color coding, 503
multiple-load transformers, 1073–1074
multiplication, using powers of ten, 29
Multisim, 149–154

ac circuits, 611–614, 664–665
analysis methods (ac), 827
analysis methods (dc), 361–362
capacitors, 483–484
high-pass filter, 1038
installation, 149–151
ladder network voltage, 784–787
Ohm’s law, 151–154
parallel ac circuits, 755–757
parallel dc circuits, 256–257
resonance, 961–963
series dc circuits, 197–198
series-parallel ac circuits, 784–787
series R-L-C circuit, 711–712
superposition theorem, 417–418
superposition theorem (ac circuits), 871–872
transient RL response, 531–533

mutual inductance, 1047–1050
mutually coupled coils, 1064–1067

N
nameplate data, 1070–1071
nanochips, 16
nanotechnology, 16
nanovoltmeter, 296
natural frequency, 922
negative-going pulse, 1133
neutral connection, 1097
neutrons, 48
Newton (N), 23
nickel-metal-hydride (NiMH) batteries, 59–60
Nipkow, Paul, 20
nodal analysis (ac), 804–814

bridge networks, 815
computer analysis, 823–825
dependent current sources, 806–807
dependent voltage sources, 808
format approach, 808–814
general approach, 804–808
independent sources, 804–806
independent voltage sources, 807–808

nodal analysis (dc), 334–346
bridge networks, 347
format approach, 342–346
general approach, 334–341
Kirchhoff’s current law and, 335, 338–339
procedure, 335, 342
supernode approach, 339–341

nodal voltage, 359–360
nodes, 231, 334
noise filters, 1032–1035
nonsinusoidal circuits, 1159–1180

computer analysis, 1178–1180
defined, 1159
even function (axis symmetry), 1162
Fourier series, 1160–1167
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Fourier Spectrum, 1170–1171
half-wave/mirror symmetry, 1162–1163
half-wave rectified waveform, Fourier 

expansion of, 1169–1170
input response, 1171–1177
instrumentation, 1164–1167, 1173–1174
odd function (point symmetry), 1161–1162
repetitive on half cycle, 1163
square wave, Fourier expansion of, 1167–1168

normalization, 983
normal magnetization curve, 547, 548
Norton, Edward L., 393
Norton’s theorem (ac circuits), 855–861

defined, 855
dependent sources, 859–861
equivalent circuit, 855–856, 857
impedance, 855, 856, 858
independent sources, 855–859

Norton’s theorem (dc circuits), 393–396
defined, 393
experimental procedure, 396
procedure of, 393–394

notation
double-subscript, 179
series dc circuits, 178–182
single-subscript, 179–180

nucleus, 47, 48

O
odd function (point symmetry), 1161–1162
Oersted, Hans Christian, 19, 493
Ohm, George Simon, 17, 19, 120
ohmmeters, 102–103

in impedance measurement, 608
in parallel network resistance measurement, 

222–223
series, 296
in series-parallel dc circuits, 296–297
in Thévenin resistance measurement, 390–391

ohms, 17, 81
Ohm’s law, 19, 119–125

and current source, 314
defined, 120
and equation for power, 126
for magnetic circuits, 544–545
Multisim, 151–154
parallel ac network, 727
phase currents, 1114–1115
plotting, 122–125
PSpice, 146–149
series ac circuits, 679
and series-parallel dc circuits, 270
and series R-L circuits, 680
in voltage drop magnitude, 162–163
and voltage source, 315

ohm/volt (Ω/V) rating, 245
oil capacitors, 441
open circuits

capacitor and, 449
parallel dc circuits, 241–242
series-parallel dc circuits, 290–293

oscillators, 604
oscilloscopes, 588–590

attenuator probe, 1148–1149
for average value, 594–596
in dc voltage measurement, 595

defined, 588
ground, 775
input resistance, 1148
storage, 589

P
parallel ac circuits, 721–757

admittance, 723–727
analysis of, 721
applications, 749–753
computer analysis, 753–757
current divider rule, 734
equivalent, 746–747
frequency response, 734–744
networks, 727–734
R-C, 730–732, 741–744
R-L, 728–730, 736–741
R-L-C, 732–734, 735, 744
summary, 744–745
total impedance, 721–723

parallel capacitors, 469–472
parallel computer bus connections, 254–255
parallel current sources, 316–318
parallel dc circuits, 213–257

advantages of, 249
ammeter, 227
applications, 249–255
computer analysis, 255–257
current, 223
current divider rule, 234–239
defined, 213
duality, 224
instrumentation, 226–228
Kirchhoff’s current law and, 230–234
open, 241–242
power distribution in, 228–230
protoboards (breadboards), 248–249
resistors, 213–223
short, 242–244
summary table, 246–247
troubleshooting techniques, 247–248
voltage, 223
voltage sources in, 240–241
voltmeters in, 226–227, 244–245

parallel inductors, 521–522
parallel resistors, 213–223

analogies, 222
combination, 214
current through, 235–239
defined, 213
equal, 218–219
instrumentation, 222–223
interchanging, 220
schematic representation, 214
total resistance, 215, 218–219
two, 219–222, 237–239

parallel resonant circuits, 922, 936–953
bandwidth, 941, 945
cutoff frequencies, 941
examples, 947–953
maximum impedance, 939–940
quality factor, 945
selectivity curve for, 940–943
summary table, 946–947
total impedance, 945
unity power factor., 938–939

paramagnetic material, 496
parametric equalizers, 954–957
parts per million per degree Celsius (PPM/°C), 91
Pascal, Blaise, 20
passive filters, 981. See also filters
peak amplitude, 571
peak-to-peak value, 571
peak value, 571
period (T), 572
periodic pulse train, 1135
periodic waveform, 572
permanent magnets

defined, 493, 550
flux distribution, 494
magnetic field distribution, 543

permeability
of air, 496
defined, 496
ferromagnetic materials, 544
relative, 497, 499, 544

phase angle, measurement of, 701–704
phase current, 1094
phase relations, 584–590

defined, 586
function generators, 588
lagging, 585
leading, 585
oscilloscope and, 588–590
phasor diagram, 673

phase sequence
Δ-connected generators, 1102
indicators, 1117–1118
Y-connected generator, 1095–1096

phase-shift power control, 751–753
phase voltages, 1092
phasor diagrams

defined, 656
illustration, 677
for iron-core transformers, 1062
magnitudes, 673
parallel R-C circuits, 731
parallel R-L-C circuits, 733
parallel R-L circuits, 729
series R-C circuits, 682
series resonant circuits, 924
series R-L-C circuits, 684
series R-L circuits, 680
Y-connected generator, 1095

phasors, 655–661, 672
defined, 656
diagrams (see phasor diagrams)

phenolic inductor, 501
photoconductive cell, 109
pi (p), 350, 577
polar form, complex numbers, 644–645

conversion to rectangular form, 645, 646
polarities, 121
polyester capacitors, 440
polyphase systems, 1091–1121

defined, 1091
Δ-connected balanced load, 1107–1110
Δ-connected generators, 1101–1102
Δ-Δ systems, 1102–1104
Δ-Y systems, 1102–1104
phase sequence, 1095–1096, 1102
phase voltages, 1092
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polyphase systems (continued)
power, 1104–1110
three-phase generator, 1092–1093
three-wattmeter method, 1110–1111
two-wattmeter method, 1111–1114
unbalanced, 1114–1118
Y-connected three-phase generator,  

1093–1095
Y-Δ system, 1099–1101

polypropylene capacitors, 440
Popov, Aleksandr, 20
portable power generators, 908–909
positive-going pulse, 1133
positive ion, 50
potential difference, 52, 55, 119
potential energy, 52
potentiometer

defined, 94
internal construction of, 95
loading, 288–290
resistance components of, 95–96
in Thévenin resistance measurement, 391, 392

pound (lb), 23
power (ac), 883–914

apparent, 883, 886–888
applications, 908–911
average, 597, 637–642, 885
capacitive circuit, 891–893
computer analysis, 911–914
effective resistance, 905–908
general equation, 883–884
inductive circuit, 888–891
parallel R-L-C circuits, 733
parallel R-L circuits, 729
power-factor correction, 900–905
reactive, 883, 888–891
resistive circuit, 884–886
series R-C circuits, 682
series R-L-C circuits, 684–685
series R-L circuits, 680–681
vs. time, 638

power (dc), 125–127
defined, 125
distribution in parallel circuit, 228–230
electrical unit of measurement, 125
equation for, 126
superposition theorem and, 375

power factor, 642–643
Δ-connected balanced load, 1107
parallel R-C circuits, 731
parallel R-L-C circuits, 733–734
parallel R-L circuits, 729
series R-C circuits, 682
series R-L-C circuits, 685
series R-L circuits, 681
Y-connected balanced load, 1106

power-factor correction, 900–905
power meters, 905
powers of ten, 27–30, 32–34, 40–41
power supplies, 63–64
power triangle, 893–895
PPM/°C, 91, 443
practical pulse. See actual/true/practical pulse
primary cells, 57–58
program, computer, 41

protoboards (breadboards)
defined, 191
network setups, 191–192
parallel dc circuits, 248–249
series dc circuits, 191–192

proton, 47
PSpice, 145–149

ac bridge network, 780–784
ac circuits, 611, 662–664
analysis methods (ac), 823–827
analysis methods (dc), 361
average capacitive current, 482–483
current-controlled current source (CCCS), 

825–827
double-tuned filters, 1036–1038
Fourier series, 1178–1179
installation, 145–146
maximum power transfer theorem, 413–417
nodal analysis, 823–825
Ohm’s law, 146–149
parallel ac circuits, 753–755
parallel dc circuits, 255–256
parallel resonance, 959–961
power curve: resistor, 911–912
power curves: series R-L-C circuit,  

912–914
R-C response, 1152–1154
series dc circuits, 197–198
series-parallel ac circuits, 780–784
series-parallel dc circuits, 301
series resonance, 957–959
series R-L-C circuit, 708–711
Thévenin’s theorem (ac circuits), 868–869
Thévenin’s theorem (dc circuits), 412–413
transformers, 1084–1087
transient RC response, 479–482
transient RL response, 528–529
voltage-controlled voltage source, 869–870

pulse repetition rate, 1136
pulse train, 1135
pulse transformer, 1073
pulse waveforms, 1131–1154

amplitude of, 1132
average value, 1138–1139
base-line voltage, 1133
computer analysis, 1152–1154
duty cycle, 1135–1138
fall time, 1133–1134
ideal, 1131
instrumentation, 1139
negative-going, 1133
positive-going, 1133
pulse width, 1132
rise time, 1133–1134
tilt, 1134

pulse width, 1132
Pythagorean theorem, 894

Q
quadrature power. See reactive power
quality factor (Q), 925–927

coil, 926
defined, 925
frequency vs., 926
parallel resonant circuits, 945

R
radians, 577, 578
radiation loss, 906
radio, 19–20
radio-frequency interference (RFI), 476, 478
R-C circuits

parallel, 730–732, 741–744
series, 680–683, 689–690
transient, 1139–1141

R-C high-pass filter, 987–990, 1001–1006
R-C low-pass filters, 982–987, 1006–1008
R-C response

PSpice, 1152–1154
to square-wave inputs, 1141–1148

reactance
capacitive, 626
inductive, 625, 943

reactive power, 883, 888–891, 893
Δ-connected balanced load, 1107
total, 895–900
Y-connected balanced load, 1105

real power. See average power
reciprocal, of complex numbers, 647–648
reciprocity theorem

ac circuits, 865
dc circuits, 411–412

rectangular form, complex numbers,  
643–644

conversion to polar form, 645, 646
rectification, 63
rectifier. See diodes
reduce and return approach

series-parallel dc circuits, 270–273
relative permeability, 497, 499, 544
relative permittivity, 432–433
reluctance, 544
residential electrical distribution system,  

1119–1121
residual flux density, 547
resistance, 81–115. See also resistors

circular wires, 82–85
color coding, 96–100
conductance, 101
defined, 81
internal, of voltage sources, 184–189
mathematical manipulations, 120
memristors, 105–106
metric units, 103–105
photoconductive cell, 109
sheet, 104
superconductors, 106–108
temperature and, 88–91
thermistor, 108–109
varistors, 109–110

resistive ac circuit, 672–673
resistivity, 82, 103
resistors, 624, 633–634. See also resistance

average power, 640
fixed, 91–93
ideal, 631
maximum voltage rating, 94
parallel, 213–223
series, 158–160
series ac circuits, 672–673
standard values of, 98, 99
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surface mount, 100
variable, 94–96

resonance, 921–963
applications, 954–957
computer analysis, 957–963
parallel circuit, 922, 936–953
series circuit, 922, 923–936
stray, 954

resonant frequency, 924
RF chokes, 502
rheostats, 94
rise time, 1133–1134
rising edge, waveform, 1132
R-L-C circuits

parallel, 732–734, 744
series, 683–684, 699–701

R-L circuits
parallel, 728–730, 736–741
series, 680–681, 696–699

Röntgen, Wilhelm, 19
root-mean-square (rms) value. See effective/

rms value
rounding off, 26

S
sag, 1134
saturation, 550
scientific notation, 31
second (s), 23
secondary cells, 57, 58–61
selectivity

series resonant circuits, 929–931
selectivity curve, 929

for parallel resonant circuits, 940–943
semiconductors

defined, 70
materials, 70
resistance of, impact of temperature on, 88

semilog graph paper, 970–971
series ac circuits, 671–712

applications, 704–707
capacitive elements, 675–677
components, 671
computer analysis, 708–712
frequency response for, 688–701
inductive elements, 673–675
Ohm’s law, 679
R-C, 681–683, 689–690
resistive elements, 672–673
R-L, 680–681, 696–699
R-L-C, 683–685, 699–701
voltage divider rule, 685–688

series alarm circuit, 196–197
series capacitors, 469–472
series current sources, 318
series dc circuits, 157–199

ammeter, 165
analogies, 164
applications, 192–197
applied voltage of, 170
computer analysis, 197–199
connection of supplies, 169
defined, 161
elements of, 177–178
instrumentation, 164–166, 189–191

Kirchhoff’s voltage law, 169–173
notation, 178–182
overview, 157–158
power distribution in, 166–167
protoboards (breadboards), 191–192
resistors, 158–160
schematic representation, 161
summary table, 246–247
voltage divider rule, 175–177
voltage division in, 173–177
voltage measurement, 165–166
voltage regulation, 184–189
voltage sources in, 167–169
voltmeters, 165

series inductors, 521–522
series magnetic circuits, 551–555
series ohmmeter, 296
series-parallel ac circuits, 763–787

applications, 777–780
computer analysis, 780–787
defined, 763
grounding, 774–777
illustrative examples, 763–773
ladder networks, 773–774

series-parallel dc circuits, 269–301
ammeter, 294–295
applications, 297–301
block diagram approach, 273–276
computer analysis, 301
defined, 269
examples of, 276–283
ladder network, 283–285
network illustration, 269–270
ohmmeter, 296–297
Ohm’s law and, 270
open, 290–293
potentiometer loading, 288–290
reduce and return approach, 270–273
short, 290–293
voltage divider supply, 285–288
voltmeter, 295

series-parallel magnetic circuits, 557–561
series resistors, 158–160

analogies, 160
instrumentation, 160

series resonant circuits, 922, 923–936
examples, 934–936
quality factor (Q), 925–927
selectivity, 929–931
summary, 933–934
total impedance, 923, 927–928
voltage, 931–933

sheet resistance, 104
shells, 48
Shockley, William, 21
short circuits

capacitor and, 449
current, in Thévenin resistance 

measurement, 391, 392–393
defined, 242
examples of, 243–244
inductor characteristics, 509
inductor equivalents, 522, 524
parallel dc circuits, 242–244
series-parallel dc circuits, 290–293

siemens (S), 101, 724
significant figures/digits, 25–27
silver, 85
single-phase ac generator, 1091
single-pole-double-throw (SPDT) relays, 358
single split-phase distribution system, 1119
single-subscript notation, 179–180
sinusoidal alternating current, 157
sinusoidal voltage, 569, 570–572, 581–584

element response to, 624–631
sinusoidal waveforms, 577–581. See also ac 

circuits
angular velocity, 578
areas of positive (negative) pulse, 593
defined, 577
derivative of, 623
function, 581
generating through vertical projection, 579
mathematical format for, 581
phase relations, 584–590

SI system, 23–24
skin effect, 906
slug, 23
smart meter, 128–129
software packages, 41–42
solar cells, 57, 61–63
soldering gun, 1077–1080
solid-state era, 21
source current

parallel R-C circuits, 743–744
parallel R-L circuits, 739–741

speakers, 561–562, 704–707
specific gravity, 59
spectrum analyzer, 1164
square wave

average value, 1144
defined, 1141
Fourier expansion of, 1167–1168
frequency of, 1143
inputs, R-C response to, 1141–1148
periodic, 1141
steady-state conditions, 1147

static electricity, 18
steady-state conditions, 522–524
steady-state region, 460
steady-state value, 461
Steinmetz, Charles Proteus, 659
step-down transformer, 1052
step-up transformer, 1052
stop-band filters, 981. See also filters
strain gauges, 114–115
stray capacitances, 473–474
stray resonance, 954
substitution theorem

ac circuits, 865
dc circuits, 409–411

subtraction, using powers of ten, 28–29
superconductors, 106–108
supermesh approach/current, 328–330
supernode approach, 339–341
superposition theorem (ac circuits), 835–843

applications of, 836
defined, 835
dependent sources, 841–843
independent sources, 836–841
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superposition theorem (continued)
Multisim, 871–872
power effects and, 835

superposition theorem (dc circuits), 373–380
defined, 374
Multisim, 417–418
power effects, 375
usage of, 373

surface-mount inductors, 502
surface mount resistors, 100
surge protector, 476–479
susceptance

capacitive element, 724
inductive element, 724

symbols, 36
symmetrical lattice network, 346–347
systems of units, 23–25, 34–36

CGS, 23, 24
MKS, 23, 24
SI, 23–24

T
t(0+), 451–452
t(0−), 451–452
tee (T), 350
Teflon® capacitors, 440
television, 20
temperature

ampere-hour (Ah) rating vs., 68
critical, 107, 108
effects on capacitors, 443
inferred absolute, 88–90
and resistance, 88–91

temperature coefficient, 443
temperature coefficient of resistance, 90–91
terminal voltage, 68, 69
Tesla, Nikola, 496
teslas (T), 496
theorems (ac networks), 835–872

applications, 866–867
computer analysis, 868–872
maximum power transfer, 861–865
Millman’s, 865
Norton’s, 855–861
reciprocity, 865
substitution, 865
superposition, 835–843
Thévenin’s, 843–855

theorems (dc networks), 373–418
computer analysis, 412–418
maximum power transfer, 397–406
Millman’s, 406–409
Norton’s, 393–396
reciprocity, 411–412
substitution, 409–411
superposition, 373–380
Thévenin’s, 380–393

thermistor, 108–109
Thévenin, Leon-Charles, 381
Thévenin’s theorem (ac circuits), 843–855

defined, 843
dependent sources, 848–855
equivalent circuit, 843–845, 849, 855–856
impedance, 845, 849
independent sources, 843–848

PSpice, 868–869
voltage, 848

Thévenin’s theorem (dc circuits), 380–393
defined, 381
ETh measurement, 390
experimental procedures, 389–393
procedure of, 381–382
PSpice, 412–413
RTh measurement, 390–393
and terminal identification, 382, 384, 386
usage of, 380–381

three-phase generator, 1092–1093
Y-connected, 1093–1099

three-symbol approach, color coding, 100
three-wattmeter method, 1110–1111
three-wire conductors, 775–776
TI-103 calculator, 37–38

complex numbers, 653–655
logarithms, 974–975
Norton’s theorem (ac circuits), 858
sinusoidal functions, 583–584
superposition theorem (ac circuits), 840
total admittance, 770–771
total impedance, 772
voltage divider rule (ac), 686

tilt, 1134
time

power vs., 638
as unit of measurement, 577

time charts, 18
time constant, 447, 450

effect on response, 456–460
toroid coil, 502
total impedance

defined, 764
parallel ac circuits, 721–723
parallel R-C circuits, 741–743
parallel resonant circuits, 945
series R-C circuit, 690–692
series resonant circuits, 923, 927–928
series R-L-C circuit, 699–700
series R-L circuit, 696–697

touch pad, 474–476
transformation ratio, 1052
transformers, 75, 1047–1087

air-core, 1067–1069
applications, 1076–1084
center-tapped, 1073–1074
components of, 1048
computer analysis, 1084–1087
current, 1075–1076
frequency, 1063–1064
impedance matching, 1056–1060
instrument, 1075
iron-core, 1050–1054
isolation, 1059
multiple-load, 1073–1074
mutual inductance, 1047–1050
mutually coupled, 1064–1067
nameplate data, 1070–1071
reflected impedance, 1054–1056
step-down, 1052
step-up, 1052
symbols, 1071
types of, 1071–1073 (See also specific types)

transient period, 445
transients (capacitive networks), 445–460

charging phase, 445–453
discharging phase, 454–460
exponential functions, solving for, 452–453
time constant (see time constant)
t(0−)/t(0+), 451–452
universal equation for, 461

transients (inductive networks), 506–509,  
511–515

Kirchhoff’s voltage law and, 508
release phase, 511–515
R-L, 506–509, 511–515
storage phase, 506–509

transistors
dc levels, 280
defined, 21

troubleshooting
defined, 247
techniques, 247–248

true pulse. See actual/true/practical pulse
True rms Multimeter, 601–602
tungsten, 85
turns ratio, 76
TV remote application, 1149–1152
12 V car battery charger, 75–77
two-symbol marking, 100
two-terminal device, 158
two-wattmeter method, 1111–1114

U
ultra-wideband audio transformer, 1073
unbalanced systems, 1114–1118. See also 

polyphase systems
three-phase, four-wire, Y-connected load, 

1114–1116
three-phase, three-wire, Y-connected load, 

1116–1118
units of measurement, 21–22

V
van Musschenbroek, Pieter, 18
variable capacitors, 441–442

symbol, 437
variable inductors, 501, 502
variable resistors, 94–96. See also 

potentiometer
varistors, 109–110
virtual ground, 475
volt, 17, 51
Volta, Alessandro, 17, 19, 51
voltage, 47, 50–53

applied, 52, 53, 55, 170
average induced, 519–521
average value, 591
base-line, 1133
breakdown, 433
defining between two points, 51
dependent sources, 799, 808
derivative of, 467
division, in series circuit, 173–177
independent sources, 797–798, 807–808
induced, 504–506, 1053
inductor, 512, 513
ladder network, 784–787
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line, 1094
mathematical manipulations, 120
maximum, 245
maximum rating, 94
nodal, 359–360
parallel dc circuits, 223
phase, 1092
phase angle measurement between,  

703–704
polarity for, 576
resonance, 924
series R-C circuit, 693–696
series resonant circuit, 931–933
series R-L ac circuit, 697–699
sinusoidal, 569, 570–572
sources (see voltage sources)
terminal, 68, 69
Thévenin, 390, 848

voltage divider rule (VDR), 175–177, 286
ac circuits, 685–688
defined, 175

voltage divider supply, 285–288, 301
defined, 285
illustration, 285
loaded conditions, 286–288
no-load conditions, 285–286

voltage gain, 976–977
high-pass filter, 1001

voltage regulation
defined, 187
series dc circuits, 184–189

voltage sources, 56–66
batteries, 57–63
and current source, 312

dependent, 841–843
and ground connection, 178–179
ideal, 312
Ohm’s law and, 315
in parallel dc circuits, 240–241
removal from network, 374
in series dc circuits, 167–169

voltaic cell, 19
volt-ampere reactive (VAR), 889
voltmeters, 70–73. See also instrumentation

loading effects, 244–245
in parallel dc circuits, 226–227
in series dc circuits, 165
series-parallel dc circuits, 295
Thévenin voltage measurement with, 390

volt-ohm-milliammeter (VOM), 71, 102, 103, 
605

analog, 244–245
dB scale, 979

von Guericke, Otto, 18
von Leibniz, Gottfried Wilhelm, 20
von Siemens, Werner, 101

W
watt (W), 125
Watt, James, 125
wattage ratings, of household items, 131
wave analyzer, 1164
waveforms

alternating, 569
cycle, 572
defined, 571
full-wave rectified, 605
nonsinusoidal (see nonsinusoidal circuits)

periodic, 572
pulse (see pulse waveforms)
sinusoidal, 577–581

Weber, Wilhelm Eduard, 495
webers (Wb), 495
Wheatstone bridge smoke detector, 357–359
Wien bridge oscillator, 604
wire tables, 85–87
wiring, household, 141–143, 252–254, 749–751
wye (Y) configuration

conversion to delta (Δ) configuration,  
349–355

resistance, 350

X
X-rays, 19

Y
Y-connected load

balanced, 1104–1107
unbalanced, 1114–1118
Y-connected generators with, 1097–1099

Y-connected three-phase generator,  
1093–1099

defined, 1093
line current, 1094
phase current, 1094
phase sequence, 1095–1096
phasor diagram, 1095
Y-connected load with, 1097–1099

Y-Δ conversion
ac, 819–823
dc, 349–355

Y-Δ system, 1099–1101
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