
Seventh

Edition

JavaScript
 The Definitive Guide
Master the World's Most-Used
Programming Language

David Flanagan

Praise for JavaScript: The Definitive Guide,
Seventh Edition

“This book is everything you never knew you wanted to know about JavaScript. Take your
JavaScript code quality and productivity to the next level. David’s knowledge of the

language, its intricacies and gotchas, is astounding, and it shines through in this truly
definitive guide to the JavaScript language.”

—Schalk Neethling, Senior Frontend Engineer at
MDN Web Docs

“David Flanagan takes readers on a guided tour of JavaScript that will provide them with
a feature-complete picture of the language and its ecosystem.”

—Sarah Wachs, Frontend Developer and
Women Who Code Berlin Lead

“Any developer interested in being productive in codebases developed throughout
JavaScript’s lifetime (including the latest and emerging features) will be well served by a

deep and reflective journey through this comprehensive and definitive book.”
—Brian Sletten, President of Bosatsu Consulting

David Flanagan

JavaScript: The Definitive Guide
Master the World’s Most-Used

Programming Language

SEVENTH EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95202-3

[LSI]

JavaScript: The Definitive Guide, Seventh Edition
by David Flanagan

Copyright © 2020 David Flanagan. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Angela Rufino
Production Editor: Deborah Baker
Copyeditor: Holly Bauer Forsyth
Proofreader: Piper Editorial, LLC

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 1998: Third Edition
November 2001: Fourth Edition
August 2006: Fifth Edition
May 2011: Sixth Edition
May 2020: Seventh Edition

Revision History for the Seventh Edition
2020-05-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491952023 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. JavaScript: The Definitive Guide, Sev‐
enth Edition, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.EBooksWorld.ir

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491952023

To my parents, Donna and Matt, with love and gratitude.

Table of Contents

Preface. xiii

1. Introduction to JavaScript. 1
1.1 Exploring JavaScript 3
1.2 Hello World 5
1.3 A Tour of JavaScript 5
1.4 Example: Character Frequency Histograms 11
1.5 Summary 14

2. Lexical Structure. 15
2.1 The Text of a JavaScript Program 15
2.2 Comments 16
2.3 Literals 16
2.4 Identifiers and Reserved Words 16
2.5 Unicode 17
2.6 Optional Semicolons 19
2.7 Summary 21

3. Types, Values, and Variables. 23
3.1 Overview and Definitions 23
3.2 Numbers 25
3.3 Text 32
3.4 Boolean Values 38
3.5 null and undefined 40
3.6 Symbols 41
3.7 The Global Object 42
3.8 Immutable Primitive Values and Mutable Object References 43
3.9 Type Conversions 45

vii

3.10 Variable Declaration and Assignment 53
3.11 Summary 60

4. Expressions and Operators. 61
4.1 Primary Expressions 62
4.2 Object and Array Initializers 62
4.3 Function Definition Expressions 63
4.4 Property Access Expressions 64
4.5 Invocation Expressions 66
4.6 Object Creation Expressions 68
4.7 Operator Overview 68
4.8 Arithmetic Expressions 73
4.9 Relational Expressions 78
4.10 Logical Expressions 84
4.11 Assignment Expressions 86
4.12 Evaluation Expressions 88
4.13 Miscellaneous Operators 91
4.14 Summary 96

5. Statements. 97
5.1 Expression Statements 98
5.2 Compound and Empty Statements 99
5.3 Conditionals 100
5.4 Loops 105
5.5 Jumps 112
5.6 Miscellaneous Statements 121
5.7 Declarations 124
5.8 Summary of JavaScript Statements 127

6. Objects. 129
6.1 Introduction to Objects 129
6.2 Creating Objects 130
6.3 Querying and Setting Properties 133
6.4 Deleting Properties 138
6.5 Testing Properties 139
6.6 Enumerating Properties 140
6.7 Extending Objects 142
6.8 Serializing Objects 143
6.9 Object Methods 144
6.10 Extended Object Literal Syntax 146
6.11 Summary 153

viii | Table of Contents

7. Arrays. 155
7.1 Creating Arrays 156
7.2 Reading and Writing Array Elements 159
7.3 Sparse Arrays 160
7.4 Array Length 161
7.5 Adding and Deleting Array Elements 161
7.6 Iterating Arrays 162
7.7 Multidimensional Arrays 164
7.8 Array Methods 165
7.9 Array-Like Objects 177
7.10 Strings as Arrays 179
7.11 Summary 180

8. Functions. 181
8.1 Defining Functions 182
8.2 Invoking Functions 186
8.3 Function Arguments and Parameters 193
8.4 Functions as Values 200
8.5 Functions as Namespaces 203
8.6 Closures 204
8.7 Function Properties, Methods, and Constructor 209
8.8 Functional Programming 213
8.9 Summary 219

9. Classes. 221
9.1 Classes and Prototypes 222
9.2 Classes and Constructors 224
9.3 Classes with the class Keyword 229
9.4 Adding Methods to Existing Classes 236
9.5 Subclasses 237
9.6 Summary 248

10. Modules. 249
10.1 Modules with Classes, Objects, and Closures 250
10.2 Modules in Node 253
10.3 Modules in ES6 255
10.4 Summary 266

11. The JavaScript Standard Library. 267
11.1 Sets and Maps 268
11.2 Typed Arrays and Binary Data 275
11.3 Pattern Matching with Regular Expressions 281

Table of Contents | ix

11.4 Dates and Times 300
11.5 Error Classes 304
11.6 JSON Serialization and Parsing 306
11.7 The Internationalization API 309
11.8 The Console API 317
11.9 URL APIs 320
11.10 Timers 323
11.11 Summary 325

12. Iterators and Generators. 327
12.1 How Iterators Work 328
12.2 Implementing Iterable Objects 329
12.3 Generators 332
12.4 Advanced Generator Features 336
12.5 Summary 339

13. Asynchronous JavaScript. 341
13.1 Asynchronous Programming with Callbacks 342
13.2 Promises 346
13.3 async and await 367
13.4 Asynchronous Iteration 370
13.5 Summary 377

14. Metaprogramming. 379
14.1 Property Attributes 380
14.2 Object Extensibility 384
14.3 The prototype Attribute 386
14.4 Well-Known Symbols 387
14.5 Template Tags 395
14.6 The Reflect API 397
14.7 Proxy Objects 399
14.8 Summary 406

15. JavaScript in Web Browsers. 409
15.1 Web Programming Basics 411
15.2 Events 426
15.3 Scripting Documents 437
15.4 Scripting CSS 452
15.5 Document Geometry and Scrolling 459
15.6 Web Components 464
15.7 SVG: Scalable Vector Graphics 477
15.8 Graphics in a <canvas> 484

x | Table of Contents

15.9 Audio APIs 507
15.10 Location, Navigation, and History 509
15.11 Networking 518
15.12 Storage 536
15.13 Worker Threads and Messaging 548
15.14 Example: The Mandelbrot Set 555
15.15 Summary and Suggestions for Further Reading 568

16. Server-Side JavaScript with Node. 577
16.1 Node Programming Basics 578
16.2 Node Is Asynchronous by Default 583
16.3 Buffers 586
16.4 Events and EventEmitter 588
16.5 Streams 590
16.6 Process, CPU, and Operating System Details 601
16.7 Working with Files 602
16.8 HTTP Clients and Servers 613
16.9 Non-HTTP Network Servers and Clients 617
16.10 Working with Child Processes 620
16.11 Worker Threads 625
16.12 Summary 634

17. JavaScript Tools and Extensions. 635
17.1 Linting with ESLint 636
17.2 JavaScript Formatting with Prettier 637
17.3 Unit Testing with Jest 638
17.4 Package Management with npm 640
17.5 Code Bundling 642
17.6 Transpilation with Babel 644
17.7 JSX: Markup Expressions in JavaScript 645
17.8 Type Checking with Flow 649
17.9 Summary 665

Index. 667

Table of Contents | xi

Preface

This book covers the JavaScript language and the JavaScript APIs implemented by
web browsers and by Node. I wrote it for readers with some prior programming
experience who want to learn JavaScript and also for programmers who already use
JavaScript but want to take their understanding to a new level and really master the
language. My goal with this book is to document the JavaScript language comprehen‐
sively and definitively and to provide an in-depth introduction to the most important
client-side and server-side APIs available to JavaScript programs. As a result, this is a
long and detailed book. My hope, however, is that it will reward careful study and
that the time you spend reading it will be easily recouped in the form of higher pro‐
gramming productivity.

Previous editions of this book included a comprehensive reference section. I no
longer feel that it makes sense to include that material in printed form when it is so
quick and easy to find up-to-date reference material online. If you need to look up
anything related to core or client-side JavaScript, I recommend you visit the MDN
website. And for server-side Node APIs, I recommend you go directly to the source
and consult the Node.js reference documentation.

Conventions Used in This Book
I use the following typographical conventions in this book:

Italic
Is used for emphasis and to indicate the first use of a term. Italic is also used for
email addresses, URLs, and file names.

Constant width

Is used in all JavaScript code and CSS and HTML listings, and generally for any‐
thing that you would type literally when programming.

xiii

https://developer.mozilla.org
https://developer.mozilla.org
https://nodejs.org/api

Constant width italic

Is occasionally used when explaining JavaScript syntax.

Constant width bold

Shows commands or other text that should be typed literally by the user

This element signifies a general note.

This element indicates a warning or caution.

Example Code
Supplemental material (code examples, exercises, etc.) for this book is available for
download at:

https://oreil.ly/javascript_defgd7

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “JavaScript: The Defini‐
tive Guide, Seventh Edition, by David Flanagan (O’Reilly). Copyright 2020 David Fla‐
nagan, 978-1-491-95202-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xiv | Preface

https://oreil.ly/javascript_defgd7
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/javascript_defgd7.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and more information about our books and courses, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many people have helped with the creation of this book. I’d like to thank my editor,
Angela Rufino, for keeping me on track and for her patience with my missed dead‐
lines. Thanks also to my technical reviewers: Brian Sletten, Elisabeth Robson, Ethan
Flanagan, Maximiliano Firtman, Sarah Wachs, and Schalk Neethling. Their com‐
ments and suggestions have made this a better book.

Preface | xv

http://oreilly.com
http://oreilly.com
https://oreil.ly/javascript_defgd7
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

The production team at O’Reilly has done their usual fine job: Kristen Brown man‐
aged the production process, Deborah Baker was the production editor, Rebecca
Demarest drew the figures, and Judy McConville created the index.

Editors, reviewers, and contributors to previous editions of this book have included:
Andrew Schulman, Angelo Sirigos, Aristotle Pagaltzis, Brendan Eich, Christian Heil‐
mann, Dan Shafer, Dave C. Mitchell, Deb Cameron, Douglas Crockford, Dr. Tankred
Hirschmann, Dylan Schiemann, Frank Willison, Geoff Stearns, Herman Venter, Jay
Hodges, Jeff Yates, Joseph Kesselman, Ken Cooper, Larry Sullivan, Lynn Rollins, Neil
Berkman, Mike Loukides, Nick Thompson, Norris Boyd, Paula Ferguson, Peter-Paul
Koch, Philippe Le Hegaret, Raffaele Cecco, Richard Yaker, Sanders Kleinfeld, Scott
Furman, Scott Isaacs, Shon Katzenberger, Terry Allen, Todd Ditchendorf, Vidur
Apparao, Waldemar Horwat, and Zachary Kessin.

Writing this seventh edition kept me away from my family for many late nights. My
love to them and my thanks for putting up with my absences.

— David Flanagan, March 2020

xvi | Preface

CHAPTER 1

Introduction to JavaScript

JavaScript is the programming language of the web. The overwhelming majority of
websites use JavaScript, and all modern web browsers—on desktops, tablets, and
phones—include JavaScript interpreters, making JavaScript the most-deployed pro‐
gramming language in history. Over the last decade, Node.js has enabled JavaScript
programming outside of web browsers, and the dramatic success of Node means that
JavaScript is now also the most-used programming language among software devel‐
opers. Whether you’re starting from scratch or are already using JavaScript professio‐
nally, this book will help you master the language.

If you are already familiar with other programming languages, it may help you to
know that JavaScript is a high-level, dynamic, interpreted programming language that
is well-suited to object-oriented and functional programming styles. JavaScript’s vari‐
ables are untyped. Its syntax is loosely based on Java, but the languages are otherwise
unrelated. JavaScript derives its first-class functions from Scheme and its prototype-
based inheritance from the little-known language Self. But you do not need to know
any of those languages, or be familiar with those terms, to use this book and learn
JavaScript.

The name “JavaScript” is quite misleading. Except for a superficial syntactic resem‐
blance, JavaScript is completely different from the Java programming language. And
JavaScript has long since outgrown its scripting-language roots to become a robust
and efficient general-purpose language suitable for serious software engineering and
projects with huge codebases.

1

JavaScript: Names, Versions, and Modes
JavaScript was created at Netscape in the early days of the web, and technically, “Java‐
Script” is a trademark licensed from Sun Microsystems (now Oracle) used to describe
Netscape’s (now Mozilla’s) implementation of the language. Netscape submitted the
language for standardization to ECMA—the European Computer Manufacturer’s
Association—and because of trademark issues, the standardized version of the lan‐
guage was stuck with the awkward name “ECMAScript.” In practice, everyone just
calls the language JavaScript. This book uses the name “ECMAScript” and the abbre‐
viation “ES” to refer to the language standard and to versions of that standard.

For most of the 2010s, version 5 of the ECMAScript standard has been supported by
all web browsers. This book treats ES5 as the compatibility baseline and no longer
discusses earlier versions of the language. ES6 was released in 2015 and added major
new features—including class and module syntax—that changed JavaScript from a
scripting language into a serious, general-purpose language suitable for large-scale
software engineering. Since ES6, the ECMAScript specification has moved to a yearly
release cadence, and versions of the language—ES2016, ES2017, ES2018, ES2019, and
ES2020—are now identified by year of release.

As JavaScript evolved, the language designers attempted to correct flaws in the early
(pre-ES5) versions. In order to maintain backward compatibility, it is not possible to
remove legacy features, no matter how flawed. But in ES5 and later, programs can opt
in to JavaScript’s strict mode in which a number of early language mistakes have been
corrected. The mechanism for opting in is the “use strict” directive described in
§5.6.3. That section also summarizes the differences between legacy JavaScript and
strict JavaScript. In ES6 and later, the use of new language features often implicitly
invokes strict mode. For example, if you use the ES6 class keyword or create an ES6
module, then all the code within the class or module is automatically strict, and the
old, flawed features are not available in those contexts. This book will cover the legacy
features of JavaScript but is careful to point out that they are not available in
strict mode.

To be useful, every language must have a platform, or standard library, for perform‐
ing things like basic input and output. The core JavaScript language defines a mini‐
mal API for working with numbers, text, arrays, sets, maps, and so on, but does not
include any input or output functionality. Input and output (as well as more sophisti‐
cated features, such as networking, storage, and graphics) are the responsibility of the
“host environment” within which JavaScript is embedded.

The original host environment for JavaScript was a web browser, and this is still the
most common execution environment for JavaScript code. The web browser environ‐
ment allows JavaScript code to obtain input from the user’s mouse and keyboard and

2 | Chapter 1: Introduction to JavaScript

by making HTTP requests. And it allows JavaScript code to display output to the user
with HTML and CSS.

Since 2010, another host environment has been available for JavaScript code. Instead
of constraining JavaScript to work with the APIs provided by a web browser, Node
gives JavaScript access to the entire operating system, allowing JavaScript programs to
read and write files, send and receive data over the network, and make and serve
HTTP requests. Node is a popular choice for implementing web servers and also a
convenient tool for writing simple utility scripts as an alternative to shell scripts.

Most of this book is focused on the JavaScript language itself. Chapter 11 documents
the JavaScript standard library, Chapter 15 introduces the web browser host environ‐
ment, and Chapter 16 introduces the Node host environment.

This book covers low-level fundamentals first, and then builds on those to more
advanced and higher-level abstractions. The chapters are intended to be read more or
less in order. But learning a new programming language is never a linear process, and
describing a language is not linear either: each language feature is related to other fea‐
tures, and this book is full of cross-references—sometimes backward and sometimes
forward—to related material. This introductory chapter makes a quick first pass
through the language, introducing key features that will make it easier to understand
the in-depth treatment in the chapters that follow. If you are already a practicing Java‐
Script programmer, you can probably skip this chapter. (Although you might enjoy
reading Example 1-1 at the end of the chapter before you move on.)

1.1 Exploring JavaScript
When learning a new programming language, it’s important to try the examples in
the book, then modify them and try them again to test your understanding of the lan‐
guage. To do that, you need a JavaScript interpreter.

The easiest way to try out a few lines of JavaScript is to open up the web developer
tools in your web browser (with F12, Ctrl-Shift-I, or Command-Option-I) and select
the Console tab. You can then type code at the prompt and see the results as you type.
Browser developer tools often appear as panes at the bottom or right of the browser
window, but you can usually detach them as separate windows (as pictured in
Figure 1-1), which is often quite convenient.

1.1 Exploring JavaScript | 3

Figure 1-1. The JavaScript console in Firefox’s Developer Tools

Another way to try out JavaScript code is to download and install Node from https://
nodejs.org. Once Node is installed on your system, you can simply open a Terminal
window and type node to begin an interactive JavaScript session like this one:

$ node
Welcome to Node.js v12.13.0.
Type ".help" for more information.
> .help
.break Sometimes you get stuck, this gets you out
.clear Alias for .break
.editor Enter editor mode
.exit Exit the repl
.help Print this help message
.load Load JS from a file into the REPL session
.save Save all evaluated commands in this REPL session to a file

Press ^C to abort current expression, ^D to exit the repl
> let x = 2, y = 3;
undefined
> x + y
5
> (x === 2) && (y === 3)
true
> (x > 3) || (y < 3)
false

4 | Chapter 1: Introduction to JavaScript

https://nodejs.org
https://nodejs.org

1.2 Hello World
When you are ready to start experimenting with longer chunks of code, these line-by-
line interactive environments may no longer be suitable, and you will probably prefer
to write your code in a text editor. From there, you can copy and paste to the Java‐
Script console or into a Node session. Or you can save your code to a file (the tradi‐
tional filename extension for JavaScript code is .js) and then run that file of JavaScript
code with Node:

$ node snippet.js

If you use Node in a noninteractive manner like this, it won’t automatically print out
the value of all the code you run, so you’ll have to do that yourself. You can use the
function console.log() to display text and other JavaScript values in your terminal
window or in a browser’s developer tools console. So, for example, if you create a
hello.js file containing this line of code:

console.log("Hello World!");

and execute the file with node hello.js, you’ll see the message “Hello World!”
printed out.

If you want to see that same message printed out in the JavaScript console of a web
browser, create a new file named hello.html, and put this text in it:

<script src="hello.js"></script>

Then load hello.html into your web browser using a file:// URL like this one:

file:///Users/username/javascript/hello.html

Open the developer tools window to see the greeting in the console.

1.3 A Tour of JavaScript
This section presents a quick introduction, through code examples, to the JavaScript
language. After this introductory chapter, we dive into JavaScript at the lowest level:
Chapter 2 explains things like JavaScript comments, semicolons, and the Unicode
character set. Chapter 3 starts to get more interesting: it explains JavaScript variables
and the values you can assign to those variables.

Here’s some sample code to illustrate the highlights of those two chapters:

// Anything following double slashes is an English-language comment.
// Read the comments carefully: they explain the JavaScript code.

// A variable is a symbolic name for a value.
// Variables are declared with the let keyword:
let x; // Declare a variable named x.

1.2 Hello World | 5

// Values can be assigned to variables with an = sign
x = 0; // Now the variable x has the value 0
x // => 0: A variable evaluates to its value.

// JavaScript supports several types of values
x = 1; // Numbers.
x = 0.01; // Numbers can be integers or reals.
x = "hello world"; // Strings of text in quotation marks.
x = 'JavaScript'; // Single quote marks also delimit strings.
x = true; // A Boolean value.
x = false; // The other Boolean value.
x = null; // Null is a special value that means "no value."
x = undefined; // Undefined is another special value like null.

Two other very important types that JavaScript programs can manipulate are objects
and arrays. These are the subjects of Chapters 6 and 7, but they are so important that
you’ll see them many times before you reach those chapters:

// JavaScript's most important datatype is the object.
// An object is a collection of name/value pairs, or a string to value map.
let book = { // Objects are enclosed in curly braces.
 topic: "JavaScript", // The property "topic" has value "JavaScript."
 edition: 7 // The property "edition" has value 7
}; // The curly brace marks the end of the object.

// Access the properties of an object with . or []:
book.topic // => "JavaScript"
book["edition"] // => 7: another way to access property values.
book.author = "Flanagan"; // Create new properties by assignment.
book.contents = {}; // {} is an empty object with no properties.

// Conditionally access properties with ?. (ES2020):
book.contents?.ch01?.sect1 // => undefined: book.contents has no ch01 property.

// JavaScript also supports arrays (numerically indexed lists) of values:
let primes = [2, 3, 5, 7]; // An array of 4 values, delimited with [and].
primes[0] // => 2: the first element (index 0) of the array.
primes.length // => 4: how many elements in the array.
primes[primes.length-1] // => 7: the last element of the array.
primes[4] = 9; // Add a new element by assignment.
primes[4] = 11; // Or alter an existing element by assignment.
let empty = []; // [] is an empty array with no elements.
empty.length // => 0

// Arrays and objects can hold other arrays and objects:
let points = [// An array with 2 elements.
 {x: 0, y: 0}, // Each element is an object.
 {x: 1, y: 1}
];
let data = { // An object with 2 properties
 trial1: [[1,2], [3,4]], // The value of each property is an array.

6 | Chapter 1: Introduction to JavaScript

 trial2: [[2,3], [4,5]] // The elements of the arrays are arrays.
};

Comment Syntax in Code Examples
You may have noticed in the preceding code that some of the comments begin with
an arrow (=>). These show the value produced by the code before the comment and
are my attempt to emulate an interactive JavaScript environment like a web browser
console in a printed book.

Those // => comments also serve as an assertion, and I’ve written a tool that tests the
code and verifies that it produces the value specified in the comment. This should
help, I hope, to reduce errors in the book.

There are two related styles of comment/assertion. If you see a comment of the
form // a == 42, it means that after the code before the comment runs, the variable
a will have the value 42. If you see a comment of the form // !, it means that the
code on the line before the comment throws an exception (and the rest of the com‐
ment after the exclamation mark usually explains what kind of exception is thrown).

You’ll see these comments used throughout the book.

The syntax illustrated here for listing array elements within square braces or mapping
object property names to property values inside curly braces is known as an initializer
expression, and it is just one of the topics of Chapter 4. An expression is a phrase of
JavaScript that can be evaluated to produce a value. For example, the use of . and []
to refer to the value of an object property or array element is an expression.

One of the most common ways to form expressions in JavaScript is to use operators:
// Operators act on values (the operands) to produce a new value.
// Arithmetic operators are some of the simplest:
3 + 2 // => 5: addition
3 - 2 // => 1: subtraction
3 * 2 // => 6: multiplication
3 / 2 // => 1.5: division
points[1].x - points[0].x // => 1: more complicated operands also work
"3" + "2" // => "32": + adds numbers, concatenates strings

// JavaScript defines some shorthand arithmetic operators
let count = 0; // Define a variable
count++; // Increment the variable
count--; // Decrement the variable
count += 2; // Add 2: same as count = count + 2;
count *= 3; // Multiply by 3: same as count = count * 3;
count // => 6: variable names are expressions, too.

// Equality and relational operators test whether two values are equal,

1.3 A Tour of JavaScript | 7

// unequal, less than, greater than, and so on. They evaluate to true or false.
let x = 2, y = 3; // These = signs are assignment, not equality tests
x === y // => false: equality
x !== y // => true: inequality
x < y // => true: less-than
x <= y // => true: less-than or equal
x > y // => false: greater-than
x >= y // => false: greater-than or equal
"two" === "three" // => false: the two strings are different
"two" > "three" // => true: "tw" is alphabetically greater than "th"
false === (x > y) // => true: false is equal to false

// Logical operators combine or invert boolean values
(x === 2) && (y === 3) // => true: both comparisons are true. && is AND
(x > 3) || (y < 3) // => false: neither comparison is true. || is OR
!(x === y) // => true: ! inverts a boolean value

If JavaScript expressions are like phrases, then JavaScript statements are like full sen‐
tences. Statements are the topic of Chapter 5. Roughly, an expression is something
that computes a value but doesn’t do anything: it doesn’t alter the program state in any
way. Statements, on the other hand, don’t have a value, but they do alter the state.
You’ve seen variable declarations and assignment statements above. The other broad
category of statement is control structures, such as conditionals and loops. You’ll see
examples below, after we cover functions.

A function is a named and parameterized block of JavaScript code that you define
once, and can then invoke over and over again. Functions aren’t covered formally
until Chapter 8, but like objects and arrays, you’ll see them many times before you get
to that chapter. Here are some simple examples:

// Functions are parameterized blocks of JavaScript code that we can invoke.
function plus1(x) { // Define a function named "plus1" with parameter "x"
 return x + 1; // Return a value one larger than the value passed in
} // Functions are enclosed in curly braces

plus1(y) // => 4: y is 3, so this invocation returns 3+1

let square = function(x) { // Functions are values and can be assigned to vars
 return x * x; // Compute the function's value
}; // Semicolon marks the end of the assignment.

square(plus1(y)) // => 16: invoke two functions in one expression

In ES6 and later, there is a shorthand syntax for defining functions. This concise syn‐
tax uses => to separate the argument list from the function body, so functions defined
this way are known as arrow functions. Arrow functions are most commonly used
when you want to pass an unnamed function as an argument to another function.
The preceding code looks like this when rewritten to use arrow functions:

const plus1 = x => x + 1; // The input x maps to the output x + 1
const square = x => x * x; // The input x maps to the output x * x

8 | Chapter 1: Introduction to JavaScript

plus1(y) // => 4: function invocation is the same
square(plus1(y)) // => 16

When we use functions with objects, we get methods:
// When functions are assigned to the properties of an object, we call
// them "methods." All JavaScript objects (including arrays) have methods:
let a = []; // Create an empty array
a.push(1,2,3); // The push() method adds elements to an array
a.reverse(); // Another method: reverse the order of elements

// We can define our own methods, too. The "this" keyword refers to the object
// on which the method is defined: in this case, the points array from earlier.
points.dist = function() { // Define a method to compute distance between points
 let p1 = this[0]; // First element of array we're invoked on
 let p2 = this[1]; // Second element of the "this" object
 let a = p2.x-p1.x; // Difference in x coordinates
 let b = p2.y-p1.y; // Difference in y coordinates
 return Math.sqrt(a*a + // The Pythagorean theorem
 b*b); // Math.sqrt() computes the square root
};
points.dist() // => Math.sqrt(2): distance between our 2 points

Now, as promised, here are some functions whose bodies demonstrate common Java‐
Script control structure statements:

// JavaScript statements include conditionals and loops using the syntax
// of C, C++, Java, and other languages.
function abs(x) { // A function to compute the absolute value.
 if (x >= 0) { // The if statement...
 return x; // executes this code if the comparison is true.
 } // This is the end of the if clause.
 else { // The optional else clause executes its code if
 return -x; // the comparison is false.
 } // Curly braces optional when 1 statement per clause.
} // Note return statements nested inside if/else.
abs(-10) === abs(10) // => true

function sum(array) { // Compute the sum of the elements of an array
 let sum = 0; // Start with an initial sum of 0.
 for(let x of array) { // Loop over array, assigning each element to x.
 sum += x; // Add the element value to the sum.
 } // This is the end of the loop.
 return sum; // Return the sum.
}
sum(primes) // => 28: sum of the first 5 primes 2+3+5+7+11

function factorial(n) { // A function to compute factorials
 let product = 1; // Start with a product of 1
 while(n > 1) { // Repeat statements in {} while expr in () is true
 product *= n; // Shortcut for product = product * n;
 n--; // Shortcut for n = n - 1
 } // End of loop

1.3 A Tour of JavaScript | 9

 return product; // Return the product
}
factorial(4) // => 24: 1*4*3*2

function factorial2(n) { // Another version using a different loop
 let i, product = 1; // Start with 1
 for(i=2; i <= n; i++) // Automatically increment i from 2 up to n
 product *= i; // Do this each time. {} not needed for 1-line loops
 return product; // Return the factorial
}
factorial2(5) // => 120: 1*2*3*4*5

JavaScript supports an object-oriented programming style, but it is significantly dif‐
ferent than “classical” object-oriented programming languages. Chapter 9 covers
object-oriented programming in JavaScript in detail, with lots of examples. Here is a
very simple example that demonstrates how to define a JavaScript class to represent
2D geometric points. Objects that are instances of this class have a single method,
named distance(), that computes the distance of the point from the origin:

class Point { // By convention, class names are capitalized.
 constructor(x, y) { // Constructor function to initialize new instances.
 this.x = x; // This keyword is the new object being initialized.
 this.y = y; // Store function arguments as object properties.
 } // No return is necessary in constructor functions.

 distance() { // Method to compute distance from origin to point.
 return Math.sqrt(// Return the square root of x² + y².
 this.x * this.x + // this refers to the Point object on which
 this.y * this.y // the distance method is invoked.
);
 }
}

// Use the Point() constructor function with "new" to create Point objects
let p = new Point(1, 1); // The geometric point (1,1).

// Now use a method of the Point object p
p.distance() // => Math.SQRT2

This introductory tour of JavaScript’s fundamental syntax and capabilities ends here,
but the book continues with self-contained chapters that cover additional features of
the language:

Chapter 10, Modules
Shows how JavaScript code in one file or script can use JavaScript functions and
classes defined in other files or scripts.

Chapter 11, The JavaScript Standard Library
Covers the built-in functions and classes that are available to all JavaScript pro‐
grams. This includes important data stuctures like maps and sets, a regular

10 | Chapter 1: Introduction to JavaScript

expression class for textual pattern matching, functions for serializing JavaScript
data structures, and much more.

Chapter 12, Iterators and Generators
Explains how the for/of loop works and how you can make your own classes
iterable with for/of. It also covers generator functions and the yield statement.

Chapter 13, Asynchronous JavaScript
This chapter is an in-depth exploration of asynchronous programming in Java‐
Script, covering callbacks and events, Promise-based APIs, and the async and
await keywords. Although the core JavaScript language is not asynchronous,
asynchronous APIs are the default in both web browsers and Node, and this
chapter explains the techniques for working with those APIs.

Chapter 14, Metaprogramming
Introduces a number of advanced features of JavaScript that may be of interest to
programmers writing libraries of code for other JavaScript programmers to use.

Chapter 15, JavaScript in Web Browsers
Introduces the web browser host environment, explains how web browsers exe‐
cute JavaScript code, and covers the most important of the many APIs defined by
web browsers. This is by far the longest chapter in the book.

Chapter 16, Server-Side JavaScript with Node
Introduces the Node host environment, covering the fundamental programming
model and the data structures and APIs that are most important to understand.

Chapter 17, JavaScript Tools and Extensions
Covers tools and language extensions that are worth knowing about because they
are widely used and may make you a more productive programmer.

1.4 Example: Character Frequency Histograms
This chapter concludes with a short but nontrivial JavaScript program. Example 1-1 is
a Node program that reads text from standard input, computes a character frequency
histogram from that text, and then prints out the histogram. You could invoke the
program like this to analyze the character frequency of its own source code:

$ node charfreq.js < charfreq.js
T: ########### 11.22%
E: ########## 10.15%
R: ####### 6.68%
S: ###### 6.44%
A: ###### 6.16%
N: ###### 5.81%
O: ##### 5.45%
I: ##### 4.54%

1.4 Example: Character Frequency Histograms | 11

H: #### 4.07%
C: ### 3.36%
L: ### 3.20%
U: ### 3.08%
/: ### 2.88%

This example uses a number of advanced JavaScript features and is intended to
demonstrate what real-world JavaScript programs can look like. You should not
expect to understand all of the code yet, but be assured that all of it will be explained
in the chapters that follow.

Example 1-1. Computing character frequency histograms with JavaScript

/**
 * This Node program reads text from standard input, computes the frequency
 * of each letter in that text, and displays a histogram of the most
 * frequently used characters. It requires Node 12 or higher to run.
 *
 * In a Unix-type environment you can invoke the program like this:
 * node charfreq.js < corpus.txt
 */

// This class extends Map so that the get() method returns the specified
// value instead of null when the key is not in the map
class DefaultMap extends Map {
 constructor(defaultValue) {
 super(); // Invoke superclass constructor
 this.defaultValue = defaultValue; // Remember the default value
 }

 get(key) {
 if (this.has(key)) { // If the key is already in the map
 return super.get(key); // return its value from superclass.
 }
 else {
 return this.defaultValue; // Otherwise return the default value
 }
 }
}

// This class computes and displays letter frequency histograms
class Histogram {
 constructor() {
 this.letterCounts = new DefaultMap(0); // Map from letters to counts
 this.totalLetters = 0; // How many letters in all
 }

 // This function updates the histogram with the letters of text.
 add(text) {
 // Remove whitespace from the text, and convert to upper case
 text = text.replace(/\s/g, "").toUpperCase();

12 | Chapter 1: Introduction to JavaScript

 // Now loop through the characters of the text
 for(let character of text) {
 let count = this.letterCounts.get(character); // Get old count
 this.letterCounts.set(character, count+1); // Increment it
 this.totalLetters++;
 }
 }

 // Convert the histogram to a string that displays an ASCII graphic
 toString() {
 // Convert the Map to an array of [key,value] arrays
 let entries = [...this.letterCounts];

 // Sort the array by count, then alphabetically
 entries.sort((a,b) => { // A function to define sort order.
 if (a[1] === b[1]) { // If the counts are the same
 return a[0] < b[0] ? -1 : 1; // sort alphabetically.
 } else { // If the counts differ
 return b[1] - a[1]; // sort by largest count.
 }
 });

 // Convert the counts to percentages
 for(let entry of entries) {
 entry[1] = entry[1] / this.totalLetters*100;
 }

 // Drop any entries less than 1%
 entries = entries.filter(entry => entry[1] >= 1);

 // Now convert each entry to a line of text
 let lines = entries.map(
 ([l,n]) => `${l}: ${"#".repeat(Math.round(n))} ${n.toFixed(2)}%`
);

 // And return the concatenated lines, separated by newline characters.
 return lines.join("\n");
 }
}

// This async (Promise-returning) function creates a Histogram object,
// asynchronously reads chunks of text from standard input, and adds those chunks to
// the histogram. When it reaches the end of the stream, it returns this histogram
async function histogramFromStdin() {
 process.stdin.setEncoding("utf-8"); // Read Unicode strings, not bytes
 let histogram = new Histogram();
 for await (let chunk of process.stdin) {
 histogram.add(chunk);
 }
 return histogram;
}

1.4 Example: Character Frequency Histograms | 13

// This one final line of code is the main body of the program.
// It makes a Histogram object from standard input, then prints the histogram.
histogramFromStdin().then(histogram => { console.log(histogram.toString()); });

1.5 Summary
This book explains JavaScript from the bottom up. This means that we start with low-
level details like comments, identifiers, variables, and types; then build to expressions,
statements, objects, and functions; and then cover high-level language abstractions
like classes and modules. I take the word definitive in the title of this book seriously,
and the coming chapters explain the language at a level of detail that may feel off-
putting at first. True mastery of JavaScript requires an understanding of the details,
however, and I hope that you will make time to read this book cover to cover. But
please don’t feel that you need to do that on your first reading. If you find yourself
feeling bogged down in a section, simply skip to the next. You can come back and
master the details once you have a working knowledge of the language as a whole.

14 | Chapter 1: Introduction to JavaScript

CHAPTER 2

Lexical Structure

The lexical structure of a programming language is the set of elementary rules that
specifies how you write programs in that language. It is the lowest-level syntax of a
language: it specifies what variable names look like, the delimiter characters for com‐
ments, and how one program statement is separated from the next, for example. This
short chapter documents the lexical structure of JavaScript. It covers:

• Case sensitivity, spaces, and line breaks
• Comments
• Literals
• Identifiers and reserved words
• Unicode
• Optional semicolons

2.1 The Text of a JavaScript Program
JavaScript is a case-sensitive language. This means that language keywords, variables,
function names, and other identifiers must always be typed with a consistent capitali‐
zation of letters. The while keyword, for example, must be typed “while,” not “While”
or “WHILE.” Similarly, online, Online, OnLine, and ONLINE are four distinct variable
names.

JavaScript ignores spaces that appear between tokens in programs. For the most part,
JavaScript also ignores line breaks (but see §2.6 for an exception). Because you can
use spaces and newlines freely in your programs, you can format and indent your
programs in a neat and consistent way that makes the code easy to read and
understand.

15

In addition to the regular space character (\u0020), JavaScript also recognizes tabs,
assorted ASCII control characters, and various Unicode space characters as white‐
space. JavaScript recognizes newlines, carriage returns, and a carriage return/line feed
sequence as line terminators.

2.2 Comments
JavaScript supports two styles of comments. Any text between a // and the end of a
line is treated as a comment and is ignored by JavaScript. Any text between the char‐
acters /* and */ is also treated as a comment; these comments may span multiple
lines but may not be nested. The following lines of code are all legal JavaScript
comments:

// This is a single-line comment.

/* This is also a comment */ // and here is another comment.

/*
 * This is a multi-line comment. The extra * characters at the start of
 * each line are not a required part of the syntax; they just look cool!
 */

2.3 Literals
A literal is a data value that appears directly in a program. The following are all
literals:

12 // The number twelve
1.2 // The number one point two
"hello world" // A string of text
'Hi' // Another string
true // A Boolean value
false // The other Boolean value
null // Absence of an object

Complete details on numeric and string literals appear in Chapter 3.

2.4 Identifiers and Reserved Words
An identifier is simply a name. In JavaScript, identifiers are used to name constants,
variables, properties, functions, and classes and to provide labels for certain loops in
JavaScript code. A JavaScript identifier must begin with a letter, an underscore (_), or
a dollar sign ($). Subsequent characters can be letters, digits, underscores, or dollar
signs. (Digits are not allowed as the first character so that JavaScript can easily distin‐
guish identifiers from numbers.) These are all legal identifiers:

16 | Chapter 2: Lexical Structure

i
my_variable_name
v13
_dummy
$str

Like any language, JavaScript reserves certain identifiers for use by the language itself.
These “reserved words” cannot be used as regular identifiers. They are listed in the
next section.

2.4.1 Reserved Words
The following words are part of the JavaScript language. Many of these (such as if,
while, and for) are reserved keywords that must not be used as the names of con‐
stants, variables, functions, or classes (though they can all be used as the names of
properties within an object). Others (such as from, of, get, and set) are used in limi‐
ted contexts with no syntactic ambiguity and are perfectly legal as identifiers. Still
other keywords (such as let) can’t be fully reserved in order to retain backward com‐
patibility with older programs, and so there are complex rules that govern when they
can be used as identifiers and when they cannot. (let can be used as a variable name
if declared with var outside of a class, for example, but not if declared inside a class or
with const.) The simplest course is to avoid using any of these words as identifiers,
except for from, set, and target, which are safe to use and are already in common
use.

as const export get null target void
async continue extends if of this while
await debugger false import return throw with
break default finally in set true yield
case delete for instanceof static try
catch do from let super typeof
class else function new switch var

JavaScript also reserves or restricts the use of certain keywords that are not currently
used by the language but that might be used in future versions:

enum implements interface package private protected public

For historical reasons, arguments and eval are not allowed as identifiers in certain
circumstances and are best avoided entirely.

2.5 Unicode
JavaScript programs are written using the Unicode character set, and you can use any
Unicode characters in strings and comments. For portability and ease of editing, it is
common to use only ASCII letters and digits in identifiers. But this is a programming
convention only, and the language allows Unicode letters, digits, and ideographs (but

2.5 Unicode | 17

not emojis) in identifiers. This means that programmers can use mathematical sym‐
bols and words from non-English languages as constants and variables:

const π = 3.14;
const sí = true;

2.5.1 Unicode Escape Sequences
Some computer hardware and software cannot display, input, or correctly process the
full set of Unicode characters. To support programmers and systems using older tech‐
nology, JavaScript defines escape sequences that allow us to write Unicode characters
using only ASCII characters. These Unicode escapes begin with the characters \u and
are either followed by exactly four hexadecimal digits (using uppercase or lowercase
letters A–F) or by one to six hexadecimal digits enclosed within curly braces. These
Unicode escapes may appear in JavaScript string literals, regular expression literals,
and identifiers (but not in language keywords). The Unicode escape for the character
“é,” for example, is \u00E9; here are three different ways to write a variable name that
includes this character:

let café = 1; // Define a variable using a Unicode character
caf\u00e9 // => 1; access the variable using an escape sequence
caf\u{E9} // => 1; another form of the same escape sequence

Early versions of JavaScript only supported the four-digit escape sequence. The ver‐
sion with curly braces was introduced in ES6 to better support Unicode codepoints
that require more than 16 bits, such as emoji:

console.log("\u{1F600}"); // Prints a smiley face emoji

Unicode escapes may also appear in comments, but since comments are ignored, they
are simply treated as ASCII characters in that context and not interpreted as Unicode.

2.5.2 Unicode Normalization
If you use non-ASCII characters in your JavaScript programs, you must be aware that
Unicode allows more than one way of encoding the same character. The string “é,” for
example, can be encoded as the single Unicode character \u00E9 or as a regular
ASCII “e” followed by the acute accent combining mark \u0301. These two encodings
typically look exactly the same when displayed by a text editor, but they have different
binary encodings, meaning that they are considered different by JavaScript, which
can lead to very confusing programs:

const café = 1; // This constant is named "caf\u{e9}"
const café = 2; // This constant is different: "cafe\u{301}"
café // => 1: this constant has one value
café // => 2: this indistinguishable constant has a different value

18 | Chapter 2: Lexical Structure

The Unicode standard defines the preferred encoding for all characters and specifies
a normalization procedure to convert text to a canonical form suitable for compari‐
sons. JavaScript assumes that the source code it is interpreting has already been nor‐
malized and does not do any normalization on its own. If you plan to use Unicode
characters in your JavaScript programs, you should ensure that your editor or some
other tool performs Unicode normalization of your source code to prevent you from
ending up with different but visually indistinguishable identifiers.

2.6 Optional Semicolons
Like many programming languages, JavaScript uses the semicolon (;) to separate
statements (see Chapter 5) from one another. This is important for making the mean‐
ing of your code clear: without a separator, the end of one statement might appear to
be the beginning of the next, or vice versa. In JavaScript, you can usually omit the
semicolon between two statements if those statements are written on separate lines.
(You can also omit a semicolon at the end of a program or if the next token in the
program is a closing curly brace: }.) Many JavaScript programmers (and the code in
this book) use semicolons to explicitly mark the ends of statements, even where they
are not required. Another style is to omit semicolons whenever possible, using them
only in the few situations that require them. Whichever style you choose, there are a
few details you should understand about optional semicolons in JavaScript.

Consider the following code. Since the two statements appear on separate lines, the
first semicolon could be omitted:

a = 3;
b = 4;

Written as follows, however, the first semicolon is required:

a = 3; b = 4;

Note that JavaScript does not treat every line break as a semicolon: it usually treats
line breaks as semicolons only if it can’t parse the code without adding an implicit
semicolon. More formally (and with three exceptions described a bit later), JavaScript
treats a line break as a semicolon if the next nonspace character cannot be interpreted
as a continuation of the current statement. Consider the following code:

let a
a
=
3
console.log(a)

JavaScript interprets this code like this:

let a; a = 3; console.log(a);

2.6 Optional Semicolons | 19

JavaScript does treat the first line break as a semicolon because it cannot parse the
code let a a without a semicolon. The second a could stand alone as the statement
a;, but JavaScript does not treat the second line break as a semicolon because it can
continue parsing the longer statement a = 3;.

These statement termination rules lead to some surprising cases. This code looks like
two separate statements separated with a newline:

let y = x + f
(a+b).toString()

But the parentheses on the second line of code can be interpreted as a function invo‐
cation of f from the first line, and JavaScript interprets the code like this:

let y = x + f(a+b).toString();

More likely than not, this is not the interpretation intended by the author of the code.
In order to work as two separate statements, an explicit semicolon is required in this
case.

In general, if a statement begins with (, [, /, +, or -, there is a chance that it could be
interpreted as a continuation of the statement before. Statements beginning with /, +,
and - are quite rare in practice, but statements beginning with (and [are not
uncommon at all, at least in some styles of JavaScript programming. Some program‐
mers like to put a defensive semicolon at the beginning of any such statement so that
it will continue to work correctly even if the statement before it is modified and a pre‐
viously terminating semicolon removed:

let x = 0 // Semicolon omitted here
;[x,x+1,x+2].forEach(console.log) // Defensive ; keeps this statement separate

There are three exceptions to the general rule that JavaScript interprets line breaks as
semicolons when it cannot parse the second line as a continuation of the statement
on the first line. The first exception involves the return, throw, yield, break, and
continue statements (see Chapter 5). These statements often stand alone, but they are
sometimes followed by an identifier or expression. If a line break appears after any of
these words (before any other tokens), JavaScript will always interpret that line break
as a semicolon. For example, if you write:

return
true;

JavaScript assumes you meant:

return; true;

However, you probably meant:

return true;

20 | Chapter 2: Lexical Structure

This means that you must not insert a line break between return, break, or continue
and the expression that follows the keyword. If you do insert a line break, your code
is likely to fail in a nonobvious way that is difficult to debug.

The second exception involves the ++ and −− operators (§4.8). These operators can be
prefix operators that appear before an expression or postfix operators that appear
after an expression. If you want to use either of these operators as postfix operators,
they must appear on the same line as the expression they apply to. The third excep‐
tion involves functions defined using concise “arrow” syntax: the => arrow itself must
appear on the same line as the parameter list.

2.7 Summary
This chapter has shown how JavaScript programs are written at the lowest level. The
next chapter takes us one step higher and introduces the primitive types and values
(numbers, strings, and so on) that serve as the basic units of computation for Java‐
Script programs.

2.7 Summary | 21

CHAPTER 3

Types, Values, and Variables

Computer programs work by manipulating values, such as the number 3.14 or the
text “Hello World.” The kinds of values that can be represented and manipulated in a
programming language are known as types, and one of the most fundamental charac‐
teristics of a programming language is the set of types it supports. When a program
needs to retain a value for future use, it assigns the value to (or “stores” the value in) a
variable. Variables have names, and they allow use of those names in our programs to
refer to values. The way that variables work is another fundamental characteristic of
any programming language. This chapter explains types, values, and variables in Java‐
Script. It begins with an overview and some definitions.

3.1 Overview and Definitions
JavaScript types can be divided into two categories: primitive types and object types.
JavaScript’s primitive types include numbers, strings of text (known as strings), and
Boolean truth values (known as booleans). A significant portion of this chapter is
dedicated to a detailed explanation of the numeric (§3.2) and string (§3.3) types in
JavaScript. Booleans are covered in §3.4.

The special JavaScript values null and undefined are primitive values, but they are
not numbers, strings, or booleans. Each value is typically considered to be the sole
member of its own special type. §3.5 has more about null and undefined. ES6 adds a
new special-purpose type, known as Symbol, that enables the definition of language
extensions without harming backward compatibility. Symbols are covered briefly in
§3.6.

Any JavaScript value that is not a number, a string, a boolean, a symbol, null, or unde
fined is an object. An object (that is, a member of the type object) is a collection of
properties where each property has a name and a value (either a primitive value or

23

another object). One very special object, the global object, is covered in §3.7, but more
general and more detailed coverage of objects is in Chapter 6.

An ordinary JavaScript object is an unordered collection of named values. The lan‐
guage also defines a special kind of object, known as an array, that represents an
ordered collection of numbered values. The JavaScript language includes special syn‐
tax for working with arrays, and arrays have some special behavior that distinguishes
them from ordinary objects. Arrays are the subject of Chapter 7.

In addition to basic objects and arrays, JavaScript defines a number of other useful
object types. A Set object represents a set of values. A Map object represents a map‐
ping from keys to values. Various “typed array” types facilitate operations on arrays of
bytes and other binary data. The RegExp type represents textual patterns and enables
sophisticated matching, searching, and replacing operations on strings. The Date type
represents dates and times and supports rudimentary date arithmetic. Error and its
subtypes represent errors that can arise when executing JavaScript code. All of these
types are covered in Chapter 11.

JavaScript differs from more static languages in that functions and classes are not just
part of the language syntax: they are themselves values that can be manipulated by
JavaScript programs. Like any JavaScript value that is not a primitive value, functions
and classes are a specialized kind of object. They are covered in detail in Chapters 8
and 9.

The JavaScript interpreter performs automatic garbage collection for memory man‐
agement. This means that a JavaScript programmer generally does not need to worry
about destruction or deallocation of objects or other values. When a value is no
longer reachable—when a program no longer has any way to refer to it—the inter‐
preter knows it can never be used again and automatically reclaims the memory it
was occupying. (JavaScript programmers do sometimes need to take care to ensure
that values do not inadvertently remain reachable—and therefore nonreclaimable—
longer than necessary.)

JavaScript supports an object-oriented programming style. Loosely, this means that
rather than having globally defined functions to operate on values of various types,
the types themselves define methods for working with values. To sort the elements of
an array a, for example, we don’t pass a to a sort() function. Instead, we invoke the
sort() method of a:

a.sort(); // The object-oriented version of sort(a).

Method definition is covered in Chapter 9. Technically, it is only JavaScript objects
that have methods. But numbers, strings, boolean, and symbol values behave as if
they have methods. In JavaScript, null and undefined are the only values that meth‐
ods cannot be invoked on.

24 | Chapter 3: Types, Values, and Variables

1 This is the format for numbers of type double in Java, C++, and most modern programming languages.

JavaScript’s object types are mutable and its primitive types are immutable. A value of
a mutable type can change: a JavaScript program can change the values of object
properties and array elements. Numbers, booleans, symbols, null, and undefined are
immutable—it doesn’t even make sense to talk about changing the value of a number,
for example. Strings can be thought of as arrays of characters, and you might expect
them to be mutable. In JavaScript, however, strings are immutable: you can access the
text at any index of a string, but JavaScript provides no way to alter the text of an
existing string. The differences between mutable and immutable values are explored
further in §3.8.

JavaScript liberally converts values from one type to another. If a program expects a
string, for example, and you give it a number, it will automatically convert the num‐
ber to a string for you. And if you use a non-boolean value where a boolean is
expected, JavaScript will convert accordingly. The rules for value conversion are
explained in §3.9. JavaScript’s liberal value conversion rules affect its definition of
equality, and the == equality operator performs type conversions as described in
§3.9.1. (In practice, however, the == equality operator is deprecated in favor of the
strict equality operator ===, which does no type conversions. See §4.9.1 for more
about both operators.)

Constants and variables allow you to use names to refer to values in your programs.
Constants are declared with const and variables are declared with let (or with var in
older JavaScript code). JavaScript constants and variables are untyped: declarations do
not specify what kind of values will be assigned. Variable declaration and assignment
are covered in §3.10.

As you can see from this long introduction, this is a wide-ranging chapter that
explains many fundamental details about how data is represented and manipulated in
JavaScript. We’ll begin by diving right in to the details of JavaScript numbers and text.

3.2 Numbers
JavaScript’s primary numeric type, Number, is used to represent integers and to
approximate real numbers. JavaScript represents numbers using the 64-bit floating-
point format defined by the IEEE 754 standard,1 which means it can represent num‐
bers as large as ±1.7976931348623157 × 10308 and as small as ±5 × 10−324.

The JavaScript number format allows you to exactly represent all integers between
−9,007,199,254,740,992 (−253) and 9,007,199,254,740,992 (253), inclusive. If you use
integer values larger than this, you may lose precision in the trailing digits. Note,
however, that certain operations in JavaScript (such as array indexing and the bitwise

3.2 Numbers | 25

operators described in Chapter 4) are performed with 32-bit integers. If you need to
exactly represent larger integers, see §3.2.5.

When a number appears directly in a JavaScript program, it’s called a numeric literal.
JavaScript supports numeric literals in several formats, as described in the following
sections. Note that any numeric literal can be preceded by a minus sign (-) to make
the number negative.

3.2.1 Integer Literals
In a JavaScript program, a base-10 integer is written as a sequence of digits. For
example:

0
3
10000000

In addition to base-10 integer literals, JavaScript recognizes hexadecimal (base-16)
values. A hexadecimal literal begins with 0x or 0X, followed by a string of hexadeci‐
mal digits. A hexadecimal digit is one of the digits 0 through 9 or the letters a (or A)
through f (or F), which represent values 10 through 15. Here are examples of hexa‐
decimal integer literals:

0xff // => 255: (15*16 + 15)
0xBADCAFE // => 195939070

In ES6 and later, you can also express integers in binary (base 2) or octal (base 8)
using the prefixes 0b and 0o (or 0B and 0O) instead of 0x:

0b10101 // => 21: (1*16 + 0*8 + 1*4 + 0*2 + 1*1)
0o377 // => 255: (3*64 + 7*8 + 7*1)

3.2.2 Floating-Point Literals
Floating-point literals can have a decimal point; they use the traditional syntax for
real numbers. A real value is represented as the integral part of the number, followed
by a decimal point and the fractional part of the number.

Floating-point literals may also be represented using exponential notation: a real
number followed by the letter e (or E), followed by an optional plus or minus sign,
followed by an integer exponent. This notation represents the real number multiplied
by 10 to the power of the exponent.

More succinctly, the syntax is:

[digits][.digits][(E|e)[(+|-)]digits]

26 | Chapter 3: Types, Values, and Variables

For example:

3.14
2345.6789
.333333333333333333
6.02e23 // 6.02 × 10²³
1.4738223E-32 // 1.4738223 × 10⁻³²

Separators in Numeric Literals
You can use underscores within numeric literals to break long literals up into chunks
that are easier to read:

let billion = 1_000_000_000; // Underscore as a thousands separator.
let bytes = 0x89_AB_CD_EF; // As a bytes separator.
let bits = 0b0001_1101_0111; // As a nibble separator.
let fraction = 0.123_456_789; // Works in the fractional part, too.

At the time of this writing in early 2020, underscores in numeric literals are not yet
formally standardized as part of JavaScript. But they are in the advanced stages of the
standardization process and are implemented by all major browsers and by Node.

3.2.3 Arithmetic in JavaScript
JavaScript programs work with numbers using the arithmetic operators . that the lan‐
guage provides. These include + for addition, - for subtraction, * for multiplication, /
for division, and % for modulo (remainder after division). ES2016 adds ** for expo‐
nentiation. Full details on these and other operators can be found in Chapter 4.

In addition to these basic arithmetic operators, JavaScript supports more complex
mathematical operations through a set of functions and constants defined as proper‐
ties of the Math object:

Math.pow(2,53) // => 9007199254740992: 2 to the power 53
Math.round(.6) // => 1.0: round to the nearest integer
Math.ceil(.6) // => 1.0: round up to an integer
Math.floor(.6) // => 0.0: round down to an integer
Math.abs(-5) // => 5: absolute value
Math.max(x,y,z) // Return the largest argument
Math.min(x,y,z) // Return the smallest argument
Math.random() // Pseudo-random number x where 0 <= x < 1.0
Math.PI // π: circumference of a circle / diameter
Math.E // e: The base of the natural logarithm
Math.sqrt(3) // => 3**0.5: the square root of 3
Math.pow(3, 1/3) // => 3**(1/3): the cube root of 3
Math.sin(0) // Trigonometry: also Math.cos, Math.atan, etc.
Math.log(10) // Natural logarithm of 10
Math.log(100)/Math.LN10 // Base 10 logarithm of 100

3.2 Numbers | 27

Math.log(512)/Math.LN2 // Base 2 logarithm of 512
Math.exp(3) // Math.E cubed

ES6 defines more functions on the Math object:

Math.cbrt(27) // => 3: cube root
Math.hypot(3, 4) // => 5: square root of sum of squares of all arguments
Math.log10(100) // => 2: Base-10 logarithm
Math.log2(1024) // => 10: Base-2 logarithm
Math.log1p(x) // Natural log of (1+x); accurate for very small x
Math.expm1(x) // Math.exp(x)-1; the inverse of Math.log1p()
Math.sign(x) // -1, 0, or 1 for arguments <, ==, or > 0
Math.imul(2,3) // => 6: optimized multiplication of 32-bit integers
Math.clz32(0xf) // => 28: number of leading zero bits in a 32-bit integer
Math.trunc(3.9) // => 3: convert to an integer by truncating fractional part
Math.fround(x) // Round to nearest 32-bit float number
Math.sinh(x) // Hyperbolic sine. Also Math.cosh(), Math.tanh()
Math.asinh(x) // Hyperbolic arcsine. Also Math.acosh(), Math.atanh()

Arithmetic in JavaScript does not raise errors in cases of overflow, underflow, or divi‐
sion by zero. When the result of a numeric operation is larger than the largest repre‐
sentable number (overflow), the result is a special infinity value, Infinity. Similarly,
when the absolute value of a negative value becomes larger than the absolute value of
the largest representable negative number, the result is negative infinity, -Infinity.
The infinite values behave as you would expect: adding, subtracting, multiplying, or
dividing them by anything results in an infinite value (possibly with the sign
reversed).

Underflow occurs when the result of a numeric operation is closer to zero than the
smallest representable number. In this case, JavaScript returns 0. If underflow occurs
from a negative number, JavaScript returns a special value known as “negative zero.”
This value is almost completely indistinguishable from regular zero and JavaScript
programmers rarely need to detect it.

Division by zero is not an error in JavaScript: it simply returns infinity or negative
infinity. There is one exception, however: zero divided by zero does not have a well-
defined value, and the result of this operation is the special not-a-number value, NaN.
NaN also arises if you attempt to divide infinity by infinity, take the square root of a
negative number, or use arithmetic operators with non-numeric operands that cannot
be converted to numbers.

JavaScript predefines global constants Infinity and NaN to hold the positive infinity
and not-a-number value, and these values are also available as properties of the
Number object:

Infinity // A positive number too big to represent
Number.POSITIVE_INFINITY // Same value
1/0 // => Infinity
Number.MAX_VALUE * 2 // => Infinity; overflow

28 | Chapter 3: Types, Values, and Variables

-Infinity // A negative number too big to represent
Number.NEGATIVE_INFINITY // The same value
-1/0 // => -Infinity
-Number.MAX_VALUE * 2 // => -Infinity

NaN // The not-a-number value
Number.NaN // The same value, written another way
0/0 // => NaN
Infinity/Infinity // => NaN

Number.MIN_VALUE/2 // => 0: underflow
-Number.MIN_VALUE/2 // => -0: negative zero
-1/Infinity // -> -0: also negative 0
-0

// The following Number properties are defined in ES6
Number.parseInt() // Same as the global parseInt() function
Number.parseFloat() // Same as the global parseFloat() function
Number.isNaN(x) // Is x the NaN value?
Number.isFinite(x) // Is x a number and finite?
Number.isInteger(x) // Is x an integer?
Number.isSafeInteger(x) // Is x an integer -(2**53) < x < 2**53?
Number.MIN_SAFE_INTEGER // => -(2**53 - 1)
Number.MAX_SAFE_INTEGER // => 2**53 - 1
Number.EPSILON // => 2**-52: smallest difference between numbers

The not-a-number value has one unusual feature in JavaScript: it does not compare
equal to any other value, including itself. This means that you can’t write x === NaN
to determine whether the value of a variable x is NaN. Instead, you must write x != x
or Number.isNaN(x). Those expressions will be true if, and only if, x has the same
value as the global constant NaN.

The global function isNaN() is similar to Number.isNaN(). It returns true if its argu‐
ment is NaN, or if that argument is a non-numeric value that cannot be converted to a
number. The related function Number.isFinite() returns true if its argument is a
number other than NaN, Infinity, or -Infinity. The global isFinite() function
returns true if its argument is, or can be converted to, a finite number.

The negative zero value is also somewhat unusual. It compares equal (even using Jav‐
aScript’s strict equality test) to positive zero, which means that the two values are
almost indistinguishable, except when used as a divisor:

let zero = 0; // Regular zero
let negz = -0; // Negative zero
zero === negz // => true: zero and negative zero are equal
1/zero === 1/negz // => false: Infinity and -Infinity are not equal

3.2 Numbers | 29

3.2.4 Binary Floating-Point and Rounding Errors
There are infinitely many real numbers, but only a finite number of them
(18,437,736,874,454,810,627, to be exact) can be represented exactly by the JavaScript
floating-point format. This means that when you’re working with real numbers in
JavaScript, the representation of the number will often be an approximation of the
actual number.

The IEEE-754 floating-point representation used by JavaScript (and just about every
other modern programming language) is a binary representation, which can exactly
represent fractions like 1/2, 1/8, and 1/1024. Unfortunately, the fractions we use
most commonly (especially when performing financial calculations) are decimal frac‐
tions: 1/10, 1/100, and so on. Binary floating-point representations cannot exactly
represent numbers as simple as 0.1.

JavaScript numbers have plenty of precision and can approximate 0.1 very closely.
But the fact that this number cannot be represented exactly can lead to problems.
Consider this code:

let x = .3 - .2; // thirty cents minus 20 cents
let y = .2 - .1; // twenty cents minus 10 cents
x === y // => false: the two values are not the same!
x === .1 // => false: .3-.2 is not equal to .1
y === .1 // => true: .2-.1 is equal to .1

Because of rounding error, the difference between the approximations of .3 and .2 is
not exactly the same as the difference between the approximations of .2 and .1. It is
important to understand that this problem is not specific to JavaScript: it affects any
programming language that uses binary floating-point numbers. Also, note that the
values x and y in the code shown here are very close to each other and to the correct
value. The computed values are adequate for almost any purpose; the problem only
arises when we attempt to compare values for equality.

If these floating-point approximations are problematic for your programs, consider
using scaled integers. For example, you might manipulate monetary values as integer
cents rather than fractional dollars.

3.2.5 Arbitrary Precision Integers with BigInt
One of the newest features of JavaScript, defined in ES2020, is a new numeric type
known as BigInt. As of early 2020, it has been implemented in Chrome, Firefox, Edge,
and Node, and there is an implementation in progress in Safari. As the name implies,
BigInt is a numeric type whose values are integers. The type was added to JavaScript
mainly to allow the representation of 64-bit integers, which are required for compati‐
bility with many other programming languages and APIs. But BigInt values can have
thousands or even millions of digits, should you have need to work with numbers

30 | Chapter 3: Types, Values, and Variables

that large. (Note, however, that BigInt implementations are not suitable for cryptog‐
raphy because they do not attempt to prevent timing attacks.)

BigInt literals are written as a string of digits followed by a lowercase letter n. By
default, the are in base 10, but you can use the 0b, 0o, and 0x prefixes for binary, octal,
and hexadecimal BigInts:

1234n // A not-so-big BigInt literal
0b111111n // A binary BigInt
0o7777n // An octal BigInt
0x8000000000000000n // => 2n**63n: A 64-bit integer

You can use BigInt() as a function for converting regular JavaScript numbers or
strings to BigInt values:

BigInt(Number.MAX_SAFE_INTEGER) // => 9007199254740991n
let string = "1" + "0".repeat(100); // 1 followed by 100 zeros.
BigInt(string) // => 10n**100n: one googol

Arithmetic with BigInt values works like arithmetic with regular JavaScript numbers,
except that division drops any remainder and rounds down (toward zero):

1000n + 2000n // => 3000n
3000n - 2000n // => 1000n
2000n * 3000n // => 6000000n
3000n / 997n // => 3n: the quotient is 3
3000n % 997n // => 9n: and the remainder is 9
(2n ** 131071n) - 1n // A Mersenne prime with 39457 decimal digits

Although the standard +, -, *, /, %, and ** operators work with BigInt, it is important
to understand that you may not mix operands of type BigInt with regular number
operands. This may seem confusing at first, but there is a good reason for it. If one
numeric type was more general than the other, it would be easy to define arithmetic
on mixed operands to simply return a value of the more general type. But neither
type is more general than the other: BigInt can represent extraordinarily large values,
making it more general than regular numbers. But BigInt can only represent integers,
making the regular JavaScript number type more general. There is no way around
this problem, so JavaScript sidesteps it by simply not allowing mixed operands to the
arithmetic operators.

Comparison operators, by contrast, do work with mixed numeric types (but see
§3.9.1 for more about the difference between == and ===):

1 < 2n // => true
2 > 1n // => true
0 == 0n // => true
0 === 0n // => false: the === checks for type equality as well

The bitwise operators (described in §4.8.3) generally work with BigInt operands.
None of the functions of the Math object accept BigInt operands, however.

3.2 Numbers | 31

3.2.6 Dates and Times
JavaScript defines a simple Date class for representing and manipulating the numbers
that represent dates and times. JavaScript Dates are objects, but they also have a
numeric representation as a timestamp that specifies the number of elapsed milli‐
seconds since January 1, 1970:

let timestamp = Date.now(); // The current time as a timestamp (a number).
let now = new Date(); // The current time as a Date object.
let ms = now.getTime(); // Convert to a millisecond timestamp.
let iso = now.toISOString(); // Convert to a string in standard format.

The Date class and its methods are covered in detail in §11.4. But we will see Date
objects again in §3.9.3 when we examine the details of JavaScript type conversions.

3.3 Text
The JavaScript type for representing text is the string. A string is an immutable
ordered sequence of 16-bit values, each of which typically represents a Unicode char‐
acter. The length of a string is the number of 16-bit values it contains. JavaScript’s
strings (and its arrays) use zero-based indexing: the first 16-bit value is at position 0,
the second at position 1, and so on. The empty string is the string of length 0. Java‐
Script does not have a special type that represents a single element of a string. To rep‐
resent a single 16-bit value, simply use a string that has a length of 1.

Characters, Codepoints, and JavaScript Strings
JavaScript uses the UTF-16 encoding of the Unicode character set, and JavaScript
strings are sequences of unsigned 16-bit values. The most commonly used Unicode
characters (those from the “basic multilingual plane”) have codepoints that fit in 16
bits and can be represented by one element of a string. Unicode characters whose
codepoints do not fit in 16 bits are encoded using the rules of UTF-16 as a sequence
(known as a “surrogate pair”) of two 16-bit values. This means that a JavaScript string
of length 2 (two 16-bit values) might represent only a single Unicode character:

let euro = "€";
let love = "❤";
euro.length // => 1: this character has one 16-bit element
love.length // => 2: UTF-16 encoding of ❤ is "\ud83d\udc99"

Most string-manipulation methods defined by JavaScript operate on 16-bit values,
not characters. They do not treat surrogate pairs specially, they perform no normal‐
ization of the string, and don’t even ensure that a string is well-formed UTF-16.

In ES6, however, strings are iterable, and if you use the for/of loop or ... operator
with a string, it will iterate the actual characters of the string, not the 16-bit values.

32 | Chapter 3: Types, Values, and Variables

3.3.1 String Literals
To include a string in a JavaScript program, simply enclose the characters of the
string within a matched pair of single or double quotes or backticks (' or " or `).
Double-quote characters and backticks may be contained within strings delimited by
single-quote characters, and similarly for strings delimited by double quotes and
backticks. Here are examples of string literals:

"" // The empty string: it has zero characters
'testing'
"3.14"
'name="myform"'
"Wouldn't you prefer O'Reilly's book?"
"τ is the ratio of a circle's circumference to its radius"
`"She said 'hi'", he said.`

Strings delimited with backticks are a feature of ES6, and allow JavaScript expressions
to be embedded within (or interpolated into) the string literal. This expression inter‐
polation syntax is covered in §3.3.4.

The original versions of JavaScript required string literals to be written on a single
line, and it is common to see JavaScript code that creates long strings by concatenat‐
ing single-line strings with the + operator. As of ES5, however, you can break a string
literal across multiple lines by ending each line but the last with a backslash (\). Nei‐
ther the backslash nor the line terminator that follow it are part of the string literal. If
you need to include a newline character in a single-quoted or double-quoted string
literal, use the character sequence \n (documented in the next section). The ES6
backtick syntax allows strings to be broken across multiple lines, and in this case, the
line terminators are part of the string literal:

// A string representing 2 lines written on one line:
'two\nlines'

// A one-line string written on 3 lines:
"one\
 long\
 line"

// A two-line string written on two lines:
`the newline character at the end of this line
is included literally in this string`

Note that when you use single quotes to delimit your strings, you must be careful
with English contractions and possessives, such as can’t and O’Reilly’s. Since the apos‐
trophe is the same as the single-quote character, you must use the backslash character
(\) to “escape” any apostrophes that appear in single-quoted strings (escapes are
explained in the next section).

3.3 Text | 33

In client-side JavaScript programming, JavaScript code may contain strings of HTML
code, and HTML code may contain strings of JavaScript code. Like JavaScript, HTML
uses either single or double quotes to delimit its strings. Thus, when combining Java‐
Script and HTML, it is a good idea to use one style of quotes for JavaScript and the
other style for HTML. In the following example, the string “Thank you” is single-
quoted within a JavaScript expression, which is then double-quoted within an HTML
event-handler attribute:

<button onclick="alert('Thank you')">Click Me</button>

3.3.2 Escape Sequences in String Literals
The backslash character (\) has a special purpose in JavaScript strings. Combined
with the character that follows it, it represents a character that is not otherwise repre‐
sentable within the string. For example, \n is an escape sequence that represents a
newline character.

Another example, mentioned earlier, is the \' escape, which represents the single
quote (or apostrophe) character. This escape sequence is useful when you need to
include an apostrophe in a string literal that is contained within single quotes. You
can see why these are called escape sequences: the backslash allows you to escape
from the usual interpretation of the single-quote character. Instead of using it to
mark the end of the string, you use it as an apostrophe:

'You\'re right, it can\'t be a quote'

Table 3-1 lists the JavaScript escape sequences and the characters they represent.
Three escape sequences are generic and can be used to represent any character by
specifying its Unicode character code as a hexadecimal number. For example, the
sequence \xA9 represents the copyright symbol, which has the Unicode encoding
given by the hexadecimal number A9. Similarly, the \u escape represents an arbitrary
Unicode character specified by four hexadecimal digits or one to five digits when the
digits are enclosed in curly braces: \u03c0 represents the character π, for example,
and \u{1f600} represents the “grinning face” emoji.

Table 3-1. JavaScript escape sequences

Sequence Character represented

\0 The NUL character (\u0000)

\b Backspace (\u0008)

\t Horizontal tab (\u0009)

\n Newline (\u000A)

\v Vertical tab (\u000B)

\f Form feed (\u000C)

34 | Chapter 3: Types, Values, and Variables

Sequence Character represented

\r Carriage return (\u000D)

\" Double quote (\u0022)

\' Apostrophe or single quote (\u0027)

\\ Backslash (\u005C)

\xnn The Unicode character specified by the two hexadecimal digits nn

\unnnn The Unicode character specified by the four hexadecimal digits nnnn

\u{n} The Unicode character specified by the codepoint n, where n is one to six hexadecimal digits between 0 and
10FFFF (ES6)

If the \ character precedes any character other than those shown in Table 3-1, the
backslash is simply ignored (although future versions of the language may, of course,
define new escape sequences). For example, \# is the same as #. Finally, as noted ear‐
lier, ES5 allows a backslash before a line break to break a string literal across multiple
lines.

3.3.3 Working with Strings
One of the built-in features of JavaScript is the ability to concatenate strings. If you
use the + operator with numbers, it adds them. But if you use this operator on strings,
it joins them by appending the second to the first. For example:

let msg = "Hello, " + "world"; // Produces the string "Hello, world"
let greeting = "Welcome to my blog," + " " + name;

Strings can be compared with the standard === equality and !== inequality operators:
two strings are equal if and only if they consist of exactly the same sequence of 16-bit
values. Strings can also be compared with the <, <=, >, and >= operators. String com‐
parison is done simply by comparing the 16-bit values. (For more robust locale-aware
string comparison and sorting, see §11.7.3.)

To determine the length of a string—the number of 16-bit values it contains—use the
length property of the string:

s.length

In addition to this length property, JavaScript provides a rich API for working with
strings:

let s = "Hello, world"; // Start with some text.

// Obtaining portions of a string
s.substring(1,4) // => "ell": the 2nd, 3rd, and 4th characters.
s.slice(1,4) // => "ell": same thing
s.slice(-3) // => "rld": last 3 characters
s.split(", ") // => ["Hello", "world"]: split at delimiter string

3.3 Text | 35

// Searching a string
s.indexOf("l") // => 2: position of first letter l
s.indexOf("l", 3) // => 3: position of first "l" at or after 3
s.indexOf("zz") // => -1: s does not include the substring "zz"
s.lastIndexOf("l") // => 10: position of last letter l

// Boolean searching functions in ES6 and later
s.startsWith("Hell") // => true: the string starts with these
s.endsWith("!") // => false: s does not end with that
s.includes("or") // => true: s includes substring "or"

// Creating modified versions of a string
s.replace("llo", "ya") // => "Heya, world"
s.toLowerCase() // => "hello, world"
s.toUpperCase() // => "HELLO, WORLD"
s.normalize() // Unicode NFC normalization: ES6
s.normalize("NFD") // NFD normalization. Also "NFKC", "NFKD"

// Inspecting individual (16-bit) characters of a string
s.charAt(0) // => "H": the first character
s.charAt(s.length-1) // => "d": the last character
s.charCodeAt(0) // => 72: 16-bit number at the specified position
s.codePointAt(0) // => 72: ES6, works for codepoints > 16 bits

// String padding functions in ES2017
"x".padStart(3) // => " x": add spaces on the left to a length of 3
"x".padEnd(3) // => "x ": add spaces on the right to a length of 3
"x".padStart(3, "*") // => "**x": add stars on the left to a length of 3
"x".padEnd(3, "-") // => "x--": add dashes on the right to a length of 3

// Space trimming functions. trim() is ES5; others ES2019
" test ".trim() // => "test": remove spaces at start and end
" test ".trimStart() // => "test ": remove spaces on left. Also trimLeft
" test ".trimEnd() // => " test": remove spaces at right. Also trimRight

// Miscellaneous string methods
s.concat("!") // => "Hello, world!": just use + operator instead
"<>".repeat(5) // => "<><><><><>": concatenate n copies. ES6

Remember that strings are immutable in JavaScript. Methods like replace() and
toUpperCase() return new strings: they do not modify the string on which they are
invoked.

Strings can also be treated like read-only arrays, and you can access individual char‐
acters (16-bit values) from a string using square brackets instead of the charAt()
method:

let s = "hello, world";
s[0] // => "h"
s[s.length-1] // => "d"

36 | Chapter 3: Types, Values, and Variables

3.3.4 Template Literals
In ES6 and later, string literals can be delimited with backticks:

let s = `hello world`;

This is more than just another string literal syntax, however, because these template
literals can include arbitrary JavaScript expressions. The final value of a string literal
in backticks is computed by evaluating any included expressions, converting the val‐
ues of those expressions to strings and combining those computed strings with the
literal characters within the backticks:

let name = "Bill";
let greeting = `Hello ${ name }.`; // greeting == "Hello Bill."

Everything between the ${ and the matching } is interpreted as a JavaScript expres‐
sion. Everything outside the curly braces is normal string literal text. The expression
inside the braces is evaluated and then converted to a string and inserted into the
template, replacing the dollar sign, the curly braces, and everything in between them.

A template literal may include any number of expressions. It can use any of the escape
characters that normal strings can, and it can span any number of lines, with no spe‐
cial escaping required. The following template literal includes four JavaScript expres‐
sions, a Unicode escape sequence, and at least four newlines (the expression values
may include newlines as well):

let errorMessage = `\
\u2718 Test failure at ${filename}:${linenumber}:
${exception.message}
Stack trace:
${exception.stack}
`;

The backslash at the end of the first line here escapes the initial newline so that the
resulting string begins with the Unicode ✘ character (\u2718) rather than a newline.

Tagged template literals
A powerful but less commonly used feature of template literals is that, if a function
name (or “tag”) comes right before the opening backtick, then the text and the values
of the expressions within the template literal are passed to the function. The value of
this “tagged template literal” is the return value of the function. This could be used,
for example, to apply HTML or SQL escaping to the values before substituting them
into the text.

ES6 has one built-in tag function: String.raw(). It returns the text within backticks
without any processing of backslash escapes:

`\n`.length // => 1: the string has a single newline character
String.raw`\n`.length // => 2: a backslash character and the letter n

3.3 Text | 37

Note that even though the tag portion of a tagged template literal is a function, there
are no parentheses used in its invocation. In this very specific case, the backtick char‐
acters replace the open and close parentheses.

The ability to define your own template tag functions is a powerful feature of Java‐
Script. These functions do not need to return strings, and they can be used like con‐
structors, as if defining a new literal syntax for the language. We’ll see an example in
§14.5.

3.3.5 Pattern Matching
JavaScript defines a datatype known as a regular expression (or RegExp) for describing
and matching patterns in strings of text. RegExps are not one of the fundamental
datatypes in JavaScript, but they have a literal syntax like numbers and strings do, so
they sometimes seem like they are fundamental. The grammar of regular expression
literals is complex and the API they define is nontrivial. They are documented in
detail in §11.3. Because RegExps are powerful and commonly used for text process‐
ing, however, this section provides a brief overview.

Text between a pair of slashes constitutes a regular expression literal. The second
slash in the pair can also be followed by one or more letters, which modify the mean‐
ing of the pattern. For example:

/^HTML/; // Match the letters H T M L at the start of a string
/[1-9][0-9]*/; // Match a nonzero digit, followed by any # of digits
/\bjavascript\b/i; // Match "javascript" as a word, case-insensitive

RegExp objects define a number of useful methods, and strings also have methods
that accept RegExp arguments. For example:

let text = "testing: 1, 2, 3"; // Sample text
let pattern = /\d+/g; // Matches all instances of one or more digits
pattern.test(text) // => true: a match exists
text.search(pattern) // => 9: position of first match
text.match(pattern) // => ["1", "2", "3"]: array of all matches
text.replace(pattern, "#") // => "testing: #, #, #"
text.split(/\D+/) // => ["","1","2","3"]: split on nondigits

3.4 Boolean Values
A boolean value represents truth or falsehood, on or off, yes or no. There are only two
possible values of this type. The reserved words true and false evaluate to these two
values.

Boolean values are generally the result of comparisons you make in your JavaScript
programs. For example:

a === 4

38 | Chapter 3: Types, Values, and Variables

This code tests to see whether the value of the variable a is equal to the number 4. If it
is, the result of this comparison is the boolean value true. If a is not equal to 4, the
result of the comparison is false.

Boolean values are commonly used in JavaScript control structures. For example, the
if/else statement in JavaScript performs one action if a boolean value is true and
another action if the value is false. You usually combine a comparison that creates a
boolean value directly with a statement that uses it. The result looks like this:

if (a === 4) {
 b = b + 1;
} else {
 a = a + 1;
}

This code checks whether a equals 4. If so, it adds 1 to b; otherwise, it adds 1 to a.

As we’ll discuss in §3.9, any JavaScript value can be converted to a boolean value. The
following values convert to, and therefore work like, false:

undefined
null
0
-0
NaN
"" // the empty string

All other values, including all objects (and arrays) convert to, and work like, true.
false, and the six values that convert to it, are sometimes called falsy values, and all
other values are called truthy. Any time JavaScript expects a boolean value, a falsy
value works like false and a truthy value works like true.

As an example, suppose that the variable o either holds an object or the value null.
You can test explicitly to see if o is non-null with an if statement like this:

if (o !== null) ...

The not-equal operator !== compares o to null and evaluates to either true or false.
But you can omit the comparison and instead rely on the fact that null is falsy and
objects are truthy:

if (o) ...

In the first case, the body of the if will be executed only if o is not null. The second
case is less strict: it will execute the body of the if only if o is not false or any falsy
value (such as null or undefined). Which if statement is appropriate for your pro‐
gram really depends on what values you expect to be assigned to o. If you need to
distinguish null from 0 and "", then you should use an explicit comparison.

3.4 Boolean Values | 39

Boolean values have a toString() method that you can use to convert them to the
strings “true” or “false”, but they do not have any other useful methods. Despite the
trivial API, there are three important boolean operators.

The && operator performs the Boolean AND operation. It evaluates to a truthy value
if and only if both of its operands are truthy; it evaluates to a falsy value otherwise.
The || operator is the Boolean OR operation: it evaluates to a truthy value if either
one (or both) of its operands is truthy and evaluates to a falsy value if both operands
are falsy. Finally, the unary ! operator performs the Boolean NOT operation: it evalu‐
ates to true if its operand is falsy and evaluates to false if its operand is truthy. For
example:

if ((x === 0 && y === 0) || !(z === 0)) {
 // x and y are both zero or z is non-zero
}

Full details on these operators are in §4.10.

3.5 null and undefined
null is a language keyword that evaluates to a special value that is usually used to
indicate the absence of a value. Using the typeof operator on null returns the string
“object”, indicating that null can be thought of as a special object value that indicates
“no object”. In practice, however, null is typically regarded as the sole member of its
own type, and it can be used to indicate “no value” for numbers and strings as well as
objects. Most programming languages have an equivalent to JavaScript’s null: you
may be familiar with it as NULL, nil, or None.

JavaScript also has a second value that indicates absence of value. The undefined
value represents a deeper kind of absence. It is the value of variables that have not
been initialized and the value you get when you query the value of an object property
or array element that does not exist. The undefined value is also the return value of
functions that do not explicitly return a value and the value of function parameters
for which no argument is passed. undefined is a predefined global constant (not a
language keyword like null, though this is not an important distinction in practice)
that is initialized to the undefined value. If you apply the typeof operator to the unde
fined value, it returns “undefined”, indicating that this value is the sole member of a
special type.

Despite these differences, null and undefined both indicate an absence of value and
can often be used interchangeably. The equality operator == considers them to be
equal. (Use the strict equality operator === to distinguish them.) Both are falsy values:
they behave like false when a boolean value is required. Neither null nor undefined

40 | Chapter 3: Types, Values, and Variables

have any properties or methods. In fact, using . or [] to access a property or method
of these values causes a TypeError.

I consider undefined to represent a system-level, unexpected, or error-like absence of
value and null to represent a program-level, normal, or expected absence of value. I
avoid using null and undefined when I can, but if I need to assign one of these val‐
ues to a variable or property or pass or return one of these values to or from a func‐
tion, I usually use null. Some programmers strive to avoid null entirely and use
undefined in its place wherever they can.

3.6 Symbols
Symbols were introduced in ES6 to serve as non-string property names. To under‐
stand Symbols, you need to know that JavaScript’s fundamental Object type is an
unordered collection of properties, where each property has a name and a value.
Property names are typically (and until ES6, were exclusively) strings. But in ES6 and
later, Symbols can also serve this purpose:

let strname = "string name"; // A string to use as a property name
let symname = Symbol("propname"); // A Symbol to use as a property name
typeof strname // => "string": strname is a string
typeof symname // => "symbol": symname is a symbol
let o = {}; // Create a new object
o[strname] = 1; // Define a property with a string name
o[symname] = 2; // Define a property with a Symbol name
o[strname] // => 1: access the string-named property
o[symname] // => 2: access the symbol-named property

The Symbol type does not have a literal syntax. To obtain a Symbol value, you call the
Symbol() function. This function never returns the same value twice, even when
called with the same argument. This means that if you call Symbol() to obtain a Sym‐
bol value, you can safely use that value as a property name to add a new property to
an object and do not need to worry that you might be overwriting an existing prop‐
erty with the same name. Similarly, if you use symbolic property names and do not
share those symbols, you can be confident that other modules of code in your pro‐
gram will not accidentally overwrite your properties.

In practice, Symbols serve as a language extension mechanism. When ES6 introduced
the for/of loop (§5.4.4) and iterable objects (Chapter 12), it needed to define stan‐
dard method that classes could implement to make themselves iterable. But standard‐
izing any particular string name for this iterator method would have broken existing
code, so a symbolic name was used instead. As we’ll see in Chapter 12, Symbol.itera
tor is a Symbol value that can be used as a method name to make an object iterable.

The Symbol() function takes an optional string argument and returns a unique Sym‐
bol value. If you supply a string argument, that string will be included in the output

3.6 Symbols | 41

of the Symbol’s toString() method. Note, however, that calling Symbol() twice with
the same string produces two completely different Symbol values.

let s = Symbol("sym_x");
s.toString() // => "Symbol(sym_x)"

toString() is the only interesting method of Symbol instances. There are two other
Symbol-related functions you should know about, however. Sometimes when using
Symbols, you want to keep them private to your own code so you have a guarantee
that your properties will never conflict with properties used by other code. Other
times, however, you might want to define a Symbol value and share it widely with
other code. This would be the case, for example, if you were defining some kind of
extension that you wanted other code to be able to participate in, as with the
Symbol.iterator mechanism described earlier.

To serve this latter use case, JavaScript defines a global Symbol registry. The
Symbol.for() function takes a string argument and returns a Symbol value that is
associated with the string you pass. If no Symbol is already associated with that string,
then a new one is created and returned; otherwise, the already existing Symbol is
returned. That is, the Symbol.for() function is completely different than the Sym
bol() function: Symbol() never returns the same value twice, but Symbol.for()
always returns the same value when called with the same string. The string passed to
Symbol.for() appears in the output of toString() for the returned Symbol, and it
can also be retrieved by calling Symbol.keyFor() on the returned Symbol.

let s = Symbol.for("shared");
let t = Symbol.for("shared");
s === t // => true
s.toString() // => "Symbol(shared)"
Symbol.keyFor(t) // => "shared"

3.7 The Global Object
The preceding sections have explained JavaScript’s primitive types and values. Object
types—objects, arrays, and functions—are covered in chapters of their own later in
this book. But there is one very important object value that we must cover now. The
global object is a regular JavaScript object that serves a very important purpose: the
properties of this object are the globally defined identifiers that are available to a Java‐
Script program. When the JavaScript interpreter starts (or whenever a web browser
loads a new page), it creates a new global object and gives it an initial set of properties
that define:

• Global constants like undefined, Infinity, and NaN
• Global functions like isNaN(), parseInt() (§3.9.2), and eval() (§4.12)

42 | Chapter 3: Types, Values, and Variables

• Constructor functions like Date(), RegExp(), String(), Object(), and Array()
(§3.9.2)

• Global objects like Math and JSON (§6.8)

The initial properties of the global object are not reserved words, but they deserve to
be treated as if they are. This chapter has already described some of these global prop‐
erties. Most of the others will be covered elsewhere in this book.

In Node, the global object has a property named global whose value is the global
object itself, so you can always refer to the global object by the name global in Node
programs.

In web browsers, the Window object serves as the global object for all JavaScript code
contained in the browser window it represents. This global Window object has a self-
referential window property that can be used to refer to the global object. The Win‐
dow object defines the core global properties, but it also defines quite a few other
globals that are specific to web browsers and client-side JavaScript. Web worker
threads (§15.13) have a different global object than the Window with which they are
associated. Code in a worker can refer to its global object as self.

ES2020 finally defines globalThis as the standard way to refer to the global object in
any context. As of early 2020, this feature has been implemented by all modern
browsers and by Node.

3.8 Immutable Primitive Values and Mutable Object
References
There is a fundamental difference in JavaScript between primitive values (undefined,
null, booleans, numbers, and strings) and objects (including arrays and functions).
Primitives are immutable: there is no way to change (or “mutate”) a primitive value.
This is obvious for numbers and booleans—it doesn’t even make sense to change the
value of a number. It is not so obvious for strings, however. Since strings are like
arrays of characters, you might expect to be able to alter the character at any specified
index. In fact, JavaScript does not allow this, and all string methods that appear to
return a modified string are, in fact, returning a new string value. For example:

let s = "hello"; // Start with some lowercase text
s.toUpperCase(); // Returns "HELLO", but doesn't alter s
s // => "hello": the original string has not changed

Primitives are also compared by value: two values are the same only if they have the
same value. This sounds circular for numbers, booleans, null, and undefined: there
is no other way that they could be compared. Again, however, it is not so obvious for
strings. If two distinct string values are compared, JavaScript treats them as equal if,
and only if, they have the same length and if the character at each index is the same.

3.8 Immutable Primitive Values and Mutable Object References | 43

Objects are different than primitives. First, they are mutable—their values can
change:

let o = { x: 1 }; // Start with an object
o.x = 2; // Mutate it by changing the value of a property
o.y = 3; // Mutate it again by adding a new property

let a = [1,2,3]; // Arrays are also mutable
a[0] = 0; // Change the value of an array element
a[3] = 4; // Add a new array element

Objects are not compared by value: two distinct objects are not equal even if they
have the same properties and values. And two distinct arrays are not equal even if
they have the same elements in the same order:

let o = {x: 1}, p = {x: 1}; // Two objects with the same properties
o === p // => false: distinct objects are never equal
let a = [], b = []; // Two distinct, empty arrays
a === b // => false: distinct arrays are never equal

Objects are sometimes called reference types to distinguish them from JavaScript’s
primitive types. Using this terminology, object values are references, and we say that
objects are compared by reference: two object values are the same if and only if they
refer to the same underlying object.

let a = []; // The variable a refers to an empty array.
let b = a; // Now b refers to the same array.
b[0] = 1; // Mutate the array referred to by variable b.
a[0] // => 1: the change is also visible through variable a.
a === b // => true: a and b refer to the same object, so they are equal.

As you can see from this code, assigning an object (or array) to a variable simply
assigns the reference: it does not create a new copy of the object. If you want to make
a new copy of an object or array, you must explicitly copy the properties of the object
or the elements of the array. This example demonstrates using a for loop (§5.4.3):

let a = ["a","b","c"]; // An array we want to copy
let b = []; // A distinct array we'll copy into
for(let i = 0; i < a.length; i++) { // For each index of a[]
 b[i] = a[i]; // Copy an element of a into b
}
let c = Array.from(b); // In ES6, copy arrays with Array.from()

Similarly, if we want to compare two distinct objects or arrays, we must compare their
properties or elements. This code defines a function to compare two arrays:

function equalArrays(a, b) {
 if (a === b) return true; // Identical arrays are equal
 if (a.length !== b.length) return false; // Different-size arrays not equal
 for(let i = 0; i < a.length; i++) { // Loop through all elements
 if (a[i] !== b[i]) return false; // If any differ, arrays not equal
 }

44 | Chapter 3: Types, Values, and Variables

 return true; // Otherwise they are equal
}

3.9 Type Conversions
JavaScript is very flexible about the types of values it requires. We’ve seen this for
booleans: when JavaScript expects a boolean value, you may supply a value of any
type, and JavaScript will convert it as needed. Some values (“truthy” values) convert
to true and others (“falsy” values) convert to false. The same is true for other types:
if JavaScript wants a string, it will convert whatever value you give it to a string. If
JavaScript wants a number, it will try to convert the value you give it to a number (or
to NaN if it cannot perform a meaningful conversion).

Some examples:

10 + " objects" // => "10 objects": Number 10 converts to a string
"7" * "4" // => 28: both strings convert to numbers
let n = 1 - "x"; // n == NaN; string "x" can't convert to a number
n + " objects" // => "NaN objects": NaN converts to string "NaN"

Table 3-2 summarizes how values convert from one type to another in JavaScript.
Bold entries in the table highlight conversions that you may find surprising. Empty
cells indicate that no conversion is necessary and none is performed.

Table 3-2. JavaScript type conversions

Value to String to Number to Boolean

undefined "undefined" NaN false

null "null" 0 false

true "true" 1

false "false" 0

"" (empty string) 0 false

"1.2" (nonempty, numeric) 1.2 true

"one" (nonempty, non-numeric) NaN true

0 "0" false

-0 "0" false

1 (finite, non-zero) "1" true

Infinity "Infinity" true

-Infinity "-Infinity" true

NaN "NaN" false

{} (any object) see §3.9.3 see §3.9.3 true

[] (empty array) "" 0 true

[9] (one numeric element) "9" 9 true

3.9 Type Conversions | 45

Value to String to Number to Boolean

['a'] (any other array) use join() method NaN true

function(){} (any function) see §3.9.3 NaN true

The primitive-to-primitive conversions shown in the table are relatively straightfor‐
ward. Conversion to boolean was already discussed in §3.4. Conversion to strings is
well defined for all primitive values. Conversion to numbers is just a little trickier.
Strings that can be parsed as numbers convert to those numbers. Leading and trailing
spaces are allowed, but any leading or trailing nonspace characters that are not part of
a numeric literal cause the string-to-number conversion to produce NaN. Some
numeric conversions may seem surprising: true converts to 1, and false and the
empty string convert to 0.

Object-to-primitive conversion is somewhat more complicated, and it is the subject
of §3.9.3.

3.9.1 Conversions and Equality
JavaScript has two operators that test whether two values are equal. The “strict equal‐
ity operator,” ===, does not consider its operands to be equal if they are not of the
same type, and this is almost always the right operator to use when coding. But
because JavaScript is so flexible with type conversions, it also defines the == operator
with a flexible definition of equality. All of the following comparisons are true, for
example:

null == undefined // => true: These two values are treated as equal.
"0" == 0 // => true: String converts to a number before comparing.
0 == false // => true: Boolean converts to number before comparing.
"0" == false // => true: Both operands convert to 0 before comparing!

§4.9.1 explains exactly what conversions are performed by the == operator in order to
determine whether two values should be considered equal.

Keep in mind that convertibility of one value to another does not imply equality of
those two values. If undefined is used where a boolean value is expected, for example,
it will convert to false. But this does not mean that undefined == false. JavaScript
operators and statements expect values of various types and perform conversions to
those types. The if statement converts undefined to false, but the == operator never
attempts to convert its operands to booleans.

3.9.2 Explicit Conversions
Although JavaScript performs many type conversions automatically, you may some‐
times need to perform an explicit conversion, or you may prefer to make the conver‐
sions explicit to keep your code clearer.

46 | Chapter 3: Types, Values, and Variables

The simplest way to perform an explicit type conversion is to use the Boolean(), Num
ber(), and String() functions:

Number("3") // => 3
String(false) // => "false": Or use false.toString()
Boolean([]) // => true

Any value other than null or undefined has a toString() method, and the result of
this method is usually the same as that returned by the String() function.

As an aside, note that the Boolean(), Number(), and String() functions can also be
invoked—with new—as constructor. If you use them this way, you’ll get a “wrapper”
object that behaves just like a primitive boolean, number, or string value. These wrap‐
per objects are a historical leftover from the earliest days of JavaScript, and there is
never really any good reason to use them.

Certain JavaScript operators perform implicit type conversions and are sometimes
used explicitly for the purpose of type conversion. If one operand of the + operator is
a string, it converts the other one to a string. The unary + operator converts its
operand to a number. And the unary ! operator converts its operand to a boolean
and negates it. These facts lead to the following type conversion idioms that you may
see in some code:

x + "" // => String(x)
+x // => Number(x)
x-0 // => Number(x)
!!x // => Boolean(x): Note double !

Formatting and parsing numbers are common tasks in computer programs, and Java‐
Script has specialized functions and methods that provide more precise control over
number-to-string and string-to-number conversions.

The toString() method defined by the Number class accepts an optional argument
that specifies a radix, or base, for the conversion. If you do not specify the argument,
the conversion is done in base 10. However, you can also convert numbers in other
bases (between 2 and 36). For example:

let n = 17;
let binary = "0b" + n.toString(2); // binary == "0b10001"
let octal = "0o" + n.toString(8); // octal == "0o21"
let hex = "0x" + n.toString(16); // hex == "0x11"

When working with financial or scientific data, you may want to convert numbers to
strings in ways that give you control over the number of decimal places or the num‐
ber of significant digits in the output, or you may want to control whether exponen‐
tial notation is used. The Number class defines three methods for these kinds of
number-to-string conversions. toFixed() converts a number to a string with a speci‐
fied number of digits after the decimal point. It never uses exponential notation.
toExponential() converts a number to a string using exponential notation, with one

3.9 Type Conversions | 47

digit before the decimal point and a specified number of digits after the decimal point
(which means that the number of significant digits is one larger than the value you
specify). toPrecision() converts a number to a string with the number of significant
digits you specify. It uses exponential notation if the number of significant digits is
not large enough to display the entire integer portion of the number. Note that all
three methods round the trailing digits or pad with zeros as appropriate. Consider the
following examples:

let n = 123456.789;
n.toFixed(0) // => "123457"
n.toFixed(2) // => "123456.79"
n.toFixed(5) // => "123456.78900"
n.toExponential(1) // => "1.2e+5"
n.toExponential(3) // => "1.235e+5"
n.toPrecision(4) // => "1.235e+5"
n.toPrecision(7) // => "123456.8"
n.toPrecision(10) // => "123456.7890"

In addition to the number-formatting methods shown here, the Intl.NumberFormat
class defines a more general, internationalized number-formatting method. See
§11.7.1 for details.

If you pass a string to the Number() conversion function, it attempts to parse that
string as an integer or floating-point literal. That function only works for base-10
integers and does not allow trailing characters that are not part of the literal. The
parseInt() and parseFloat() functions (these are global functions, not methods of
any class) are more flexible. parseInt() parses only integers, while parseFloat()
parses both integers and floating-point numbers. If a string begins with “0x” or “0X”,
parseInt() interprets it as a hexadecimal number. Both parseInt() and parse
Float() skip leading whitespace, parse as many numeric characters as they can, and
ignore anything that follows. If the first nonspace character is not part of a valid
numeric literal, they return NaN:

parseInt("3 blind mice") // => 3
parseFloat(" 3.14 meters") // => 3.14
parseInt("-12.34") // => -12
parseInt("0xFF") // => 255
parseInt("0xff") // => 255
parseInt("-0XFF") // => -255
parseFloat(".1") // => 0.1
parseInt("0.1") // => 0
parseInt(".1") // => NaN: integers can't start with "."
parseFloat("$72.47") // => NaN: numbers can't start with "$"

parseInt() accepts an optional second argument specifying the radix (base) of the
number to be parsed. Legal values are between 2 and 36. For example:

48 | Chapter 3: Types, Values, and Variables

parseInt("11", 2) // => 3: (1*2 + 1)
parseInt("ff", 16) // => 255: (15*16 + 15)
parseInt("zz", 36) // => 1295: (35*36 + 35)
parseInt("077", 8) // => 63: (7*8 + 7)
parseInt("077", 10) // => 77: (7*10 + 7)

3.9.3 Object to Primitive Conversions
The previous sections have explained how you can explicitly convert values of one
type to another type and have explained JavaScript’s implicit conversions of values
from one primitive type to another primitive type. This section covers the compli‐
cated rules that JavaScript uses to convert objects to primitive values. It is long and
obscure, and if this is your first reading of this chapter, you should feel free to skip
ahead to §3.10.

One reason for the complexity of JavaScript’s object-to-primitive conversions is that
some types of objects have more than one primitive representation. Date objects, for
example, can be represented as strings or as numeric timestamps. The JavaScript
specification defines three fundamental algorithms for converting objects to primitive
values:

prefer-string
This algorithm returns a primitive value, preferring a string value, if a conversion
to string is possible.

prefer-number
This algorithm returns a primitive value, preferring a number, if such a conver‐
sion is possible.

no-preference
This algorithm expresses no preference about what type of primitive value is
desired, and classes can define their own conversions. Of the built-in JavaScript
types, all except Date implement this algorithm as prefer-number. The Date class
implements this algorithm as prefer-string.

The implementation of these object-to-primitive conversion algorithms is explained
at the end of this section. First, however, we explain how the algorithms are used in
JavaScript.

Object-to-boolean conversions

Object-to-boolean conversions are trivial: all objects convert to true. Notice that this
conversion does not require the use of the object-to-primitive algorithms described,
and that it literally applies to all objects, including empty arrays and even the wrapper
object new Boolean(false).

3.9 Type Conversions | 49

Object-to-string conversions
When an object needs to be converted to a string, JavaScript first converts it to a
primitive using the prefer-string algorithm, then converts the resulting primitive value
to a string, if necessary, following the rules in Table 3-2.

This kind of conversion happens, for example, if you pass an object to a built-in func‐
tion that expects a string argument, if you call String() as a conversion function, and
when you interpolate objects into template literals (§3.3.4).

Object-to-number conversions
When an object needs to be converted to a number, JavaScript first converts it to a
primitive value using the prefer-number algorithm, then converts the resulting primi‐
tive value to a number, if necessary, following the rules in Table 3-2.

Built-in JavaScript functions and methods that expect numeric arguments convert
object arguments to numbers in this way, and most (see the exceptions that follow)
JavaScript operators that expect numeric operands convert objects to numbers in this
way as well.

Special case operator conversions
Operators are covered in detail in Chapter 4. Here, we explain the special case opera‐
tors that do not use the basic object-to-string and object-to-number conversions
described earlier.

The + operator in JavaScript performs numeric addition and string concatenation. If
either of its operands is an object, JavaScript converts them to primitive values using
the no-preference algorithm. Once it has two primitive values, it checks their types. If
either argument is a string, it converts the other to a string and concatenates the
strings. Otherwise, it converts both arguments to numbers and adds them.

The == and != operators perform equality and inequality testing in a loose way that
allows type conversions. If one operand is an object and the other is a primitive value,
these operators convert the object to primitive using the no-preference algorithm and
then compare the two primitive values.

Finally, the relational operators <, <=, >, and >= compare the order of their operands
and can be used to compare both numbers and strings. If either operand is an object,
it is converted to a primitive value using the prefer-number algorithm. Note, however,
that unlike the object-to-number conversion, the primitive values returned by the
prefer-number conversion are not then converted to numbers.

Note that the numeric representation of Date objects is meaningfully comparable
with < and >, but the string representation is not. For Date objects, the no-preference
algorithm converts to a string, so the fact that JavaScript uses the prefer-number

50 | Chapter 3: Types, Values, and Variables

algorithm for these operators means that we can use them to compare the order of
two Date objects.

The toString() and valueOf() methods
All objects inherit two conversion methods that are used by object-to-primitive con‐
versions, and before we can explain the prefer-string, prefer-number, and no-preference
conversion algorithms, we have to explain these two methods.

The first method is toString(), and its job is to return a string representation of the
object. The default toString() method does not return a very interesting value
(though we’ll find it useful in §14.4.3):

({x: 1, y: 2}).toString() // => "[object Object]"

Many classes define more specific versions of the toString() method. The
toString() method of the Array class, for example, converts each array element to a
string and joins the resulting strings together with commas in between. The
toString() method of the Function class converts user-defined functions to strings
of JavaScript source code. The Date class defines a toString() method that returns a
human-readable (and JavaScript-parsable) date and time string. The RegExp class
defines a toString() method that converts RegExp objects to a string that looks like
a RegExp literal:

[1,2,3].toString() // => "1,2,3"
(function(x) { f(x); }).toString() // => "function(x) { f(x); }"
/\d+/g.toString() // => "/\\d+/g"
let d = new Date(2020,0,1);
d.toString() // => "Wed Jan 01 2020 00:00:00 GMT-0800 (Pacific Standard Time)"

The other object conversion function is called valueOf(). The job of this method is
less well defined: it is supposed to convert an object to a primitive value that repre‐
sents the object, if any such primitive value exists. Objects are compound values, and
most objects cannot really be represented by a single primitive value, so the default
valueOf() method simply returns the object itself rather than returning a primitive.
Wrapper classes such as String, Number, and Boolean define valueOf() methods that
simply return the wrapped primitive value. Arrays, functions, and regular expressions
simply inherit the default method. Calling valueOf() for instances of these types sim‐
ply returns the object itself. The Date class defines a valueOf() method that returns
the date in its internal representation: the number of milliseconds since January 1,
1970:

let d = new Date(2010, 0, 1); // January 1, 2010, (Pacific time)
d.valueOf() // => 1262332800000

3.9 Type Conversions | 51

Object-to-primitive conversion algorithms

With the toString() and valueOf() methods explained, we can now explain
approximately how the three object-to-primitive algorithms work (the complete
details are deferred until §14.4.7):

• The prefer-string algorithm first tries the toString() method. If the method is
defined and returns a primitive value, then JavaScript uses that primitive value
(even if it is not a string!). If toString() does not exist or if it returns an object,
then JavaScript tries the valueOf() method. If that method exists and returns a
primitive value, then JavaScript uses that value. Otherwise, the conversion fails
with a TypeError.

• The prefer-number algorithm works like the prefer-string algorithm, except that it
tries valueOf() first and toString() second.

• The no-preference algorithm depends on the class of the object being converted.
If the object is a Date object, then JavaScript uses the prefer-string algorithm. For
any other object, JavaScript uses the prefer-number algorithm.

The rules described here are true for all built-in JavaScript types and are the default
rules for any classes you define yourself. §14.4.7 explains how you can define your
own object-to-primitive conversion algorithms for the classes you define.

Before we leave this topic, it is worth noting that the details of the prefer-number con‐
version explain why empty arrays convert to the number 0 and single-element arrays
can also convert to numbers:

Number([]) // => 0: this is unexpected!
Number([99]) // => 99: really?

The object-to-number conversion first converts the object to a primitive using the
prefer-number algorithm, then converts the resulting primitive value to a number.
The prefer-number algorithm tries valueOf() first and then falls back on toString().
But the Array class inherits the default valueOf() method, which does not return a
primitive value. So when we try to convert an array to a number, we end up invoking
the toString() method of the array. Empty arrays convert to the empty string. And
the empty string converts to the number 0. An array with a single element converts to
the same string that that one element does. If an array contains a single number, that
number is converted to a string, and then back to a number.

52 | Chapter 3: Types, Values, and Variables

3.10 Variable Declaration and Assignment
One of the most fundamental techniques of computer programming is the use of
names—or identifiers—to represent values. Binding a name to a value gives us a way
to refer to that value and use it in the programs we write. When we do this, we typi‐
cally say that we are assigning a value to a variable. The term “variable” implies that
new values can be assigned: that the value associated with the variable may vary as
our program runs. If we permanently assign a value to a name, then we call that name
a constant instead of a variable.

Before you can use a variable or constant in a JavaScript program, you must declare it.
In ES6 and later, this is done with the let and const keywords, which we explain
next. Prior to ES6, variables were declared with var, which is more idiosyncratic and
is explained later on in this section.

3.10.1 Declarations with let and const
In modern JavaScript (ES6 and later), variables are declared with the let keyword,
like this:

let i;
let sum;

You can also declare multiple variables in a single let statement:

let i, sum;

It is a good programming practice to assign an initial value to your variables when
you declare them, when this is possible:

let message = "hello";
let i = 0, j = 0, k = 0;
let x = 2, y = x*x; // Initializers can use previously declared variables

If you don’t specify an initial value for a variable with the let statement, the variable
is declared, but its value is undefined until your code assigns a value to it.

To declare a constant instead of a variable, use const instead of let. const works just
like let except that you must initialize the constant when you declare it:

const H0 = 74; // Hubble constant (km/s/Mpc)
const C = 299792.458; // Speed of light in a vacuum (km/s)
const AU = 1.496E8; // Astronomical Unit: distance to the sun (km)

As the name implies, constants cannot have their values changed, and any attempt to
do so causes a TypeError to be thrown.

It is a common (but not universal) convention to declare constants using names with
all capital letters such as H0 or HTTP_NOT_FOUND as a way to distinguish them from
variables.

3.10 Variable Declaration and Assignment | 53

When to Use const

There are two schools of thought about the use of the const key‐
word. One approach is to use const only for values that are funda‐
mentally unchanging, like the physical constants shown, or
program version numbers, or byte sequences used to identify file
types, for example. Another approach recognizes that many of the
so-called variables in our program don’t actually ever change as our
program runs. In this approach, we declare everything with const,
and then if we find that we do actually want to allow the value to
vary, we switch the declaration to let. This may help prevent bugs
by ruling out accidental changes to variables that we did not
intend.
In one approach, we use const only for values that must not
change. In the other, we use const for any value that does not hap‐
pen to change. I prefer the former approach in my own code.

In Chapter 5, we’ll learn about the for, for/in, and for/of loop statements in Java‐
Script. Each of these loops includes a loop variable that gets a new value assigned to it
on each iteration of the loop. JavaScript allows us to declare the loop variable as part
of the loop syntax itself, and this is another common way to use let:

for(let i = 0, len = data.length; i < len; i++) console.log(data[i]);
for(let datum of data) console.log(datum);
for(let property in object) console.log(property);

It may seem surprising, but you can also use const to declare the loop “variables” for
for/in and for/of loops, as long as the body of the loop does not reassign a new
value. In this case, the const declaration is just saying that the value is constant for
the duration of one loop iteration:

for(const datum of data) console.log(datum);
for(const property in object) console.log(property);

Variable and constant scope
The scope of a variable is the region of your program source code in which it is
defined. Variables and constants declared with let and const are block scoped. This
means that they are only defined within the block of code in which the let or const
statement appears. JavaScript class and function definitions are blocks, and so are the
bodies of if/else statements, while loops, for loops, and so on. Roughly speaking, if
a variable or constant is declared within a set of curly braces, then those curly braces
delimit the region of code in which the variable or constant is defined (though of
course it is not legal to reference a variable or constant from lines of code that execute
before the let or const statement that declares the variable). Variables and constants

54 | Chapter 3: Types, Values, and Variables

2 There are JavaScript extensions, such as TypeScript and Flow (§17.8), that allow types to be specified as part of
variable declarations with syntax like let x: number = 0;.

declared as part of a for, for/in, or for/of loop have the loop body as their scope,
even though they technically appear outside of the curly braces.

When a declaration appears at the top level, outside of any code blocks, we say it is a
global variable or constant and has global scope. In Node and in client-side JavaScript
modules (see Chapter 10), the scope of a global variable is the file that it is defined in.
In traditional client-side JavaScript, however, the scope of a global variable is the
HTML document in which it is defined. That is: if one <script> declares a global
variable or constant, that variable or constant is defined in all of the <script> ele‐
ments in that document (or at least all of the scripts that execute after the let or
const statement executes).

Repeated declarations

It is a syntax error to use the same name with more than one let or const declaration
in the same scope. It is legal (though a practice best avoided) to declare a new variable
with the same name in a nested scope:

const x = 1; // Declare x as a global constant
if (x === 1) {
 let x = 2; // Inside a block x can refer to a different value
 console.log(x); // Prints 2
}
console.log(x); // Prints 1: we're back in the global scope now
let x = 3; // ERROR! Syntax error trying to re-declare x

Declarations and types
If you’re used to statically typed languages such as C or Java, you may think that the
primary purpose of variable declarations is to specify the type of values that may be
assigned to a variable. But, as you have seen, there is no type associated with
JavaScript’s variable declarations.2 A JavaScript variable can hold a value of any type.
For example, it is perfectly legal (but generally poor programming style) in JavaScript
to assign a number to a variable and then later assign a string to that variable:

let i = 10;
i = "ten";

3.10.2 Variable Declarations with var
In versions of JavaScript before ES6, the only way to declare a variable is with the var
keyword, and there is no way to declare constants. The syntax of var is just like the
syntax of let:

3.10 Variable Declaration and Assignment | 55

var x;
var data = [], count = data.length;
for(var i = 0; i < count; i++) console.log(data[i]);

Although var and let have the same syntax, there are important differences in the
way they work:

• Variables declared with var do not have block scope. Instead, they are scoped to
the body of the containing function no matter how deeply nested they are inside
that function.

• If you use var outside of a function body, it declares a global variable. But global
variables declared with var differ from globals declared with let in an important
way. Globals declared with var are implemented as properties of the global object
(§3.7). The global object can be referenced as globalThis. So if you write var x
= 2; outside of a function, it is like you wrote globalThis.x = 2;. Note how‐
ever, that the analogy is not perfect: the properties created with global var decla‐
rations cannot be deleted with the delete operator (§4.13.4). Global variables
and constants declared with let and const are not properties of the global
object.

• Unlike variables declared with let, it is legal to declare the same variable multiple
times with var. And because var variables have function scope instead of block
scope, it is actually common to do this kind of redeclaration. The variable i is
frequently used for integer values, and especially as the index variable of for
loops. In a function with multiple for loops, it is typical for each one to begin
for(var i = 0; Because var does not scope these variables to the loop
body, each of these loops is (harmlessly) re-declaring and re-initializing the same
variable.

• One of the most unusual features of var declarations is known as hoisting. When
a variable is declared with var, the declaration is lifted up (or “hoisted”) to the
top of the enclosing function. The initialization of the variable remains where
you wrote it, but the definition of the variable moves to the top of the function.
So variables declared with var can be used, without error, anywhere in the
enclosing function. If the initialization code has not run yet, then the value of the
variable may be undefined, but you won’t get an error if you use the variable
before it is initialized. (This can be a source of bugs and is one of the important
misfeatures that let corrects: if you declare a variable with let but attempt to use
it before the let statement runs, you will get an actual error instead of just seeing
an undefined value.)

56 | Chapter 3: Types, Values, and Variables

Using Undeclared Variables

In strict mode (§5.6.3), if you attempt to use an undeclared vari‐
able, you’ll get a reference error when you run your code. Outside
of strict mode, however, if you assign a value to a name that has not
been declared with let, const, or var, you’ll end up creating a new
global variable. It will be a global no matter now deeply nested
within functions and blocks your code is, which is almost certainly
not what you want, is bug-prone, and is one of the best reasons for
using strict mode!
Global variables created in this accidental way are like global vari‐
ables declared with var: they define properties of the global object.
But unlike the properties defined by proper var declarations, these
properties can be deleted with the delete operator (§4.13.4).

3.10.3 Destructuring Assignment
ES6 implements a kind of compound declaration and assignment syntax known as
destructuring assignment. In a destructuring assignment, the value on the righthand
side of the equals sign is an array or object (a “structured” value), and the lefthand
side specifies one or more variable names using a syntax that mimics array and object
literal syntax. When a destructuring assignment occurs, one or more values are
extracted (“destructured”) from the value on the right and stored into the variables
named on the left. Destructuring assignment is perhaps most commonly used to ini‐
tialize variables as part of a const, let, or var declaration statement, but it can also be
done in regular assignment expressions (with variables that have already been
declared). And, as we’ll see in §8.3.5, destructuring can also be used when defining
the parameters to a function.

Here are simple destructuring assignments using arrays of values:

let [x,y] = [1,2]; // Same as let x=1, y=2
[x,y] = [x+1,y+1]; // Same as x = x + 1, y = y + 1
[x,y] = [y,x]; // Swap the value of the two variables
[x,y] // => [3,2]: the incremented and swapped values

Notice how destructuring assignment makes it easy to work with functions that
return arrays of values:

// Convert [x,y] coordinates to [r,theta] polar coordinates
function toPolar(x, y) {
 return [Math.sqrt(x*x+y*y), Math.atan2(y,x)];
}

// Convert polar to Cartesian coordinates
function toCartesian(r, theta) {
 return [r*Math.cos(theta), r*Math.sin(theta)];
}

3.10 Variable Declaration and Assignment | 57

let [r,theta] = toPolar(1.0, 1.0); // r == Math.sqrt(2); theta == Math.PI/4
let [x,y] = toCartesian(r,theta); // [x, y] == [1.0, 1,0]

We saw that variables and constants can be declared as part of JavaScript’s various for
loops. It is possible to use variable destructuring in this context as well. Here is a code
that loops over the name/value pairs of all properties of an object and uses destruc‐
turing assignment to convert those pairs from two-element arrays into individual
variables:

let o = { x: 1, y: 2 }; // The object we'll loop over
for(const [name, value] of Object.entries(o)) {
 console.log(name, value); // Prints "x 1" and "y 2"
}

The number of variables on the left of a destructuring assignment does not have to
match the number of array elements on the right. Extra variables on the left are set to
undefined, and extra values on the right are ignored. The list of variables on the left
can include extra commas to skip certain values on the right:

let [x,y] = [1]; // x == 1; y == undefined
[x,y] = [1,2,3]; // x == 1; y == 2
[,x,,y] = [1,2,3,4]; // x == 2; y == 4

If you want to collect all unused or remaining values into a single variable when
destructuring an array, use three dots (...) before the last variable name on the left-
hand side:

let [x, ...y] = [1,2,3,4]; // y == [2,3,4]

We’ll see three dots used this way again in §8.3.2, where they are used to indicate that
all remaining function arguments should be collected into a single array.

Destructuring assignment can be used with nested arrays. In this case, the lefthand
side of the assignment should look like a nested array literal:

let [a, [b, c]] = [1, [2,2.5], 3]; // a == 1; b == 2; c == 2.5

A powerful feature of array destructuring is that it does not actually require an array!
You can use any iterable object (Chapter 12) on the righthand side of the assignment;
any object that can be used with a for/of loop (§5.4.4) can also be destructured:

let [first, ...rest] = "Hello"; // first == "H"; rest == ["e","l","l","o"]

Destructuring assignment can also be performed when the righthand side is an object
value. In this case, the lefthand side of the assignment looks something like an object
literal: a comma-separated list of variable names within curly braces:

let transparent = {r: 0.0, g: 0.0, b: 0.0, a: 1.0}; // A RGBA color
let {r, g, b} = transparent; // r == 0.0; g == 0.0; b == 0.0

58 | Chapter 3: Types, Values, and Variables

The next example copies global functions of the Math object into variables, which
might simplify code that does a lot of trigonometry:

// Same as const sin=Math.sin, cos=Math.cos, tan=Math.tan
const {sin, cos, tan} = Math;

Notice in the code here that the Math object has many properties other than the three
that are destructured into individual variables. Those that are not named are simply
ignored. If the lefthand side of this assignment had included a variable whose name
was not a property of Math, that variable would simply be assigned undefined.

In each of these object destructuring examples, we have chosen variable names that
match the property names of the object we’re destructuring. This keeps the syntax
simple and easy to understand, but it is not required. Each of the identifiers on the
lefthand side of an object destructuring assignment can also be a colon-separated pair
of identifiers, where the first is the name of the property whose value is to be assigned
and the second is the name of the variable to assign it to:

// Same as const cosine = Math.cos, tangent = Math.tan;
const { cos: cosine, tan: tangent } = Math;

I find that object destructuring syntax becomes too complicated to be useful when the
variable names and property names are not the same, and I tend to avoid the short‐
hand in this case. If you choose to use it, remember that property names are always
on the left of the colon, in both object literals and on the left of an object destructur‐
ing assignment.

Destructuring assignment becomes even more complicated when it is used with nes‐
ted objects, or arrays of objects, or objects of arrays, but it is legal:

let points = [{x: 1, y: 2}, {x: 3, y: 4}]; // An array of two point objects
let [{x: x1, y: y1}, {x: x2, y: y2}] = points; // destructured into 4 variables.
(x1 === 1 && y1 === 2 && x2 === 3 && y2 === 4) // => true

Or, instead of destructuring an array of objects, we could destructure an object of
arrays:

let points = { p1: [1,2], p2: [3,4] }; // An object with 2 array props
let { p1: [x1, y1], p2: [x2, y2] } = points; // destructured into 4 vars
(x1 === 1 && y1 === 2 && x2 === 3 && y2 === 4) // => true

Complex destructuring syntax like this can be hard to write and hard to read, and you
may be better off just writing out your assignments explicitly with traditional code
like let x1 = points.p1[0];.

3.10 Variable Declaration and Assignment | 59

Understanding Complex Destructuring
If you find yourself working with code that uses complex destructuring assignments,
there is a useful regularity that can help you make sense of the complex cases. Think
first about a regular (single-value) assignment. After the assignment is done, you can
take the variable name from the lefthand side of the assignment and use it as an
expression in your code, where it will evaluate to whatever value you assigned it. The
same thing is true for destructuring assignment. The lefthand side of a destructuring
assignment looks like an array literal or an object literal (§6.2.1 and §6.10). After the
assignment has been done, the lefthand side will actually work as a valid array literal
or object literal elsewhere in your code. You can check that you’ve written a destruc‐
turing assignment correctly by trying to use the lefthand side on the righthand side of
another assignment expression:

// Start with a data structure and a complex destructuring
let points = [{x: 1, y: 2}, {x: 3, y: 4}];
let [{x: x1, y: y1}, {x: x2, y: y2}] = points;

// Check your destructuring syntax by flipping the assignment around
let points2 = [{x: x1, y: y1}, {x: x2, y: y2}]; // points2 == points

3.11 Summary
Some key points to remember about this chapter:

• How to write and manipulate numbers and strings of text in JavaScript.
• How to work with JavaScript’s other primitive types: booleans, Symbols, null,

and undefined.
• The differences between immutable primitive types and mutable reference types.
• How JavaScript converts values implicitly from one type to another and how you

can do so explicitly in your programs.
• How to declare and initialize constants and variables (including with destructur‐

ing assignment) and the lexical scope of the variables and constants you declare.

60 | Chapter 3: Types, Values, and Variables

CHAPTER 4

Expressions and Operators

This chapter documents JavaScript expressions and the operators with which many of
those expressions are built. An expression is a phrase of JavaScript that can be evalu‐
ated to produce a value. A constant embedded literally in your program is a very sim‐
ple kind of expression. A variable name is also a simple expression that evaluates to
whatever value has been assigned to that variable. Complex expressions are built from
simpler expressions. An array access expression, for example, consists of one expres‐
sion that evaluates to an array followed by an open square bracket, an expression that
evaluates to an integer, and a close square bracket. This new, more complex expres‐
sion evaluates to the value stored at the specified index of the specified array. Simi‐
larly, a function invocation expression consists of one expression that evaluates to a
function object and zero or more additional expressions that are used as the argu‐
ments to the function.

The most common way to build a complex expression out of simpler expressions is
with an operator. An operator combines the values of its operands (usually two of
them) in some way and evaluates to a new value. The multiplication operator * is a
simple example. The expression x * y evaluates to the product of the values of the
expressions x and y. For simplicity, we sometimes say that an operator returns a value
rather than “evaluates to” a value.

This chapter documents all of JavaScript’s operators, and it also explains expressions
(such as array indexing and function invocation) that do not use operators. If you
already know another programming language that uses C-style syntax, you’ll find that
the syntax of most of JavaScript’s expressions and operators is already familiar to you.

61

4.1 Primary Expressions
The simplest expressions, known as primary expressions, are those that stand alone—
they do not include any simpler expressions. Primary expressions in JavaScript are
constant or literal values, certain language keywords, and variable references.

Literals are constant values that are embedded directly in your program. They look
like these:

1.23 // A number literal
"hello" // A string literal
/pattern/ // A regular expression literal

JavaScript syntax for number literals was covered in §3.2. String literals were docu‐
mented in §3.3. The regular expression literal syntax was introduced in §3.3.5 and
will be documented in detail in §11.3.

Some of JavaScript’s reserved words are primary expressions:

true // Evalutes to the boolean true value
false // Evaluates to the boolean false value
null // Evaluates to the null value
this // Evaluates to the "current" object

We learned about true, false, and null in §3.4 and §3.5. Unlike the other keywords,
this is not a constant—it evaluates to different values in different places in the pro‐
gram. The this keyword is used in object-oriented programming. Within the body of
a method, this evaluates to the object on which the method was invoked. See §4.5,
Chapter 8 (especially §8.2.2), and Chapter 9 for more on this.

Finally, the third type of primary expression is a reference to a variable, constant, or
property of the global object:

i // Evaluates to the value of the variable i.
sum // Evaluates to the value of the variable sum.
undefined // The value of the "undefined" property of the global object

When any identifier appears by itself in a program, JavaScript assumes it is a variable
or constant or property of the global object and looks up its value. If no variable with
that name exists, an attempt to evaluate a nonexistent variable throws a ReferenceEr‐
ror instead.

4.2 Object and Array Initializers
Object and array initializers are expressions whose value is a newly created object or
array. These initializer expressions are sometimes called object literals and array liter‐
als. Unlike true literals, however, they are not primary expressions, because they
include a number of subexpressions that specify property and element values. Array
initializers have a slightly simpler syntax, and we’ll begin with those.

62 | Chapter 4: Expressions and Operators

An array initializer is a comma-separated list of expressions contained within square
brackets. The value of an array initializer is a newly created array. The elements of
this new array are initialized to the values of the comma-separated expressions:

[] // An empty array: no expressions inside brackets means no elements
[1+2,3+4] // A 2-element array. First element is 3, second is 7

The element expressions in an array initializer can themselves be array initializers,
which means that these expressions can create nested arrays:

let matrix = [[1,2,3], [4,5,6], [7,8,9]];

The element expressions in an array initializer are evaluated each time the array ini‐
tializer is evaluated. This means that the value of an array initializer expression may
be different each time it is evaluated.

Undefined elements can be included in an array literal by simply omitting a value
between commas. For example, the following array contains five elements, including
three undefined elements:

let sparseArray = [1,,,,5];

A single trailing comma is allowed after the last expression in an array initializer and
does not create an undefined element. However, any array access expression for an
index after that of the last expression will necessarily evaluate to undefined.

Object initializer expressions are like array initializer expressions, but the square
brackets are replaced by curly brackets, and each subexpression is prefixed with a
property name and a colon:

let p = { x: 2.3, y: -1.2 }; // An object with 2 properties
let q = {}; // An empty object with no properties
q.x = 2.3; q.y = -1.2; // Now q has the same properties as p

In ES6, object literals have a much more feature-rich syntax (you can find details in
§6.10). Object literals can be nested. For example:

let rectangle = {
 upperLeft: { x: 2, y: 2 },
 lowerRight: { x: 4, y: 5 }
};

We’ll see object and array initializers again in Chapters 6 and 7.

4.3 Function Definition Expressions
A function definition expression defines a JavaScript function, and the value of such an
expression is the newly defined function. In a sense, a function definition expression
is a “function literal” in the same way that an object initializer is an “object literal.” A
function definition expression typically consists of the keyword function followed by
a comma-separated list of zero or more identifiers (the parameter names) in

4.3 Function Definition Expressions | 63

parentheses and a block of JavaScript code (the function body) in curly braces. For
example:

// This function returns the square of the value passed to it.
let square = function(x) { return x * x; };

A function definition expression can also include a name for the function. Functions
can also be defined using a function statement rather than a function expression. And
in ES6 and later, function expressions can use a compact new “arrow function” syn‐
tax. Complete details on function definition are in Chapter 8.

4.4 Property Access Expressions
A property access expression evaluates to the value of an object property or an array
element. JavaScript defines two syntaxes for property access:

expression . identifier
expression [expression]

The first style of property access is an expression followed by a period and an identi‐
fier. The expression specifies the object, and the identifier specifies the name of the
desired property. The second style of property access follows the first expression (the
object or array) with another expression in square brackets. This second expression
specifies the name of the desired property or the index of the desired array element.
Here are some concrete examples:

let o = {x: 1, y: {z: 3}}; // An example object
let a = [o, 4, [5, 6]]; // An example array that contains the object
o.x // => 1: property x of expression o
o.y.z // => 3: property z of expression o.y
o["x"] // => 1: property x of object o
a[1] // => 4: element at index 1 of expression a
a[2]["1"] // => 6: element at index 1 of expression a[2]
a[0].x // => 1: property x of expression a[0]

With either type of property access expression, the expression before the . or [is first
evaluated. If the value is null or undefined, the expression throws a TypeError, since
these are the two JavaScript values that cannot have properties. If the object expres‐
sion is followed by a dot and an identifier, the value of the property named by that
identifier is looked up and becomes the overall value of the expression. If the object
expression is followed by another expression in square brackets, that second expres‐
sion is evaluated and converted to a string. The overall value of the expression is then
the value of the property named by that string. In either case, if the named property
does not exist, then the value of the property access expression is undefined.

The .identifier syntax is the simpler of the two property access options, but notice that
it can only be used when the property you want to access has a name that is a legal
identifier, and when you know the name when you write the program. If the property

64 | Chapter 4: Expressions and Operators

name includes spaces or punctuation characters, or when it is a number (for arrays),
you must use the square bracket notation. Square brackets are also used when the
property name is not static but is itself the result of a computation (see §6.3.1 for an
example).

Objects and their properties are covered in detail in Chapter 6, and arrays and their
elements are covered in Chapter 7.

4.4.1 Conditional Property Access
ES2020 adds two new kinds of property access expressions:

expression ?. identifier
expression ?.[expression]

In JavaScript, the values null and undefined are the only two values that do not have
properties. In a regular property access expression using . or [], you get a TypeError
if the expression on the left evaluates to null or undefined. You can use ?. and ?.[]
syntax to guard against errors of this type.

Consider the expression a?.b. If a is null or undefined, then the expression evalu‐
ates to undefined without any attempt to access the property b. If a is some other
value, then a?.b evaluates to whatever a.b would evaluate to (and if a does not have a
property named b, then the value will again be undefined).

This form of property access expression is sometimes called “optional chaining”
because it also works for longer “chained” property access expressions like this one:

let a = { b: null };
a.b?.c.d // => undefined

a is an object, so a.b is a valid property access expression. But the value of a.b is
null, so a.b.c would throw a TypeError. By using ?. instead of . we avoid the Type‐
Error, and a.b?.c evaluates to undefined. This means that (a.b?.c).d will throw a
TypeError, because that expression attempts to access a property of the value unde
fined. But—and this is a very important part of “optional chaining”—a.b?.c.d

(without the parentheses) simply evaluates to undefined and does not throw an error.
This is because property access with ?. is “short-circuiting”: if the subexpression to
the left of ?. evaluates to null or undefined, then the entire expression immediately
evaluates to undefined without any further property access attempts.

Of course, if a.b is an object, and if that object has no property named c, then
a.b?.c.d will again throw a TypeError, and we will want to use another conditional
property access:

let a = { b: {} };
a.b?.c?.d // => undefined

4.4 Property Access Expressions | 65

Conditional property access is also possible using ?.[] instead of []. In the expres‐
sion a?.[b][c], if the value of a is null or undefined, then the entire expression
immediately evaluates to undefined, and subexpressions b and c are never even eval‐
uated. If either of those expressions has side effects, the side effect will not occur if a
is not defined:

let a; // Oops, we forgot to initialize this variable!
let index = 0;
try {
 a[index++]; // Throws TypeError
} catch(e) {
 index // => 1: increment occurs before TypeError is thrown
}
a?.[index++] // => undefined: because a is undefined
index // => 1: not incremented because ?.[] short-circuits
a[index++] // !TypeError: can't index undefined.

Conditional property access with ?. and ?.[] is one of the newest features of Java‐
Script. As of early 2020, this new syntax is supported in the current or beta versions
of most major browsers.

4.5 Invocation Expressions
An invocation expression is JavaScript’s syntax for calling (or executing) a function or
method. It starts with a function expression that identifies the function to be called.
The function expression is followed by an open parenthesis, a comma-separated list
of zero or more argument expressions, and a close parenthesis. Some examples:

f(0) // f is the function expression; 0 is the argument expression.
Math.max(x,y,z) // Math.max is the function; x, y, and z are the arguments.
a.sort() // a.sort is the function; there are no arguments.

When an invocation expression is evaluated, the function expression is evaluated
first, and then the argument expressions are evaluated to produce a list of argument
values. If the value of the function expression is not a function, a TypeError is
thrown. Next, the argument values are assigned, in order, to the parameter names
specified when the function was defined, and then the body of the function is exe‐
cuted. If the function uses a return statement to return a value, then that value
becomes the value of the invocation expression. Otherwise, the value of the invoca‐
tion expression is undefined. Complete details on function invocation, including an
explanation of what happens when the number of argument expressions does not
match the number of parameters in the function definition, are in Chapter 8.

Every invocation expression includes a pair of parentheses and an expression before
the open parenthesis. If that expression is a property access expression, then the invo‐
cation is known as a method invocation. In method invocations, the object or array
that is the subject of the property access becomes the value of the this keyword while

66 | Chapter 4: Expressions and Operators

the body of the function is being executed. This enables an object-oriented program‐
ming paradigm in which functions (which we call “methods” when used this way)
operate on the object of which they are part. See Chapter 9 for details.

4.5.1 Conditional Invocation
In ES2020, you can also invoke a function using ?.() instead of (). Normally when
you invoke a function, if the expression to the left of the parentheses is null or unde
fined or any other non-function, a TypeError is thrown. With the new ?.() invoca‐
tion syntax, if the expression to the left of the ?. evaluates to null or undefined, then
the entire invocation expression evaluates to undefined and no exception is thrown.

Array objects have a sort() method that can optionally be passed a function argu‐
ment that defines the desired sorting order for the array elements. Before ES2020, if
you wanted to write a method like sort() that takes an optional function argument,
you would typically use an if statement to check that the function argument was
defined before invoking it in the body of the if:

function square(x, log) { // The second argument is an optional function
 if (log) { // If the optional function is passed
 log(x); // Invoke it
 }
 return x * x; // Return the square of the argument
}

With this conditional invocation syntax of ES2020, however, you can simply write the
function invocation using ?.(), knowing that invocation will only happen if there is
actually a value to be invoked:

function square(x, log) { // The second argument is an optional function
 log?.(x); // Call the function if there is one
 return x * x; // Return the square of the argument
}

Note, however, that ?.() only checks whether the lefthand side is null or undefined.
It does not verify that the value is actually a function. So the square() function in this
example would still throw an exception if you passed two numbers to it, for example.

Like conditional property access expressions (§4.4.1), function invocation with ?.()
is short-circuiting: if the value to the left of ?. is null or undefined, then none of the
argument expressions within the parentheses are evaluated:

let f = null, x = 0;
try {
 f(x++); // Throws TypeError because f is null
} catch(e) {
 x // => 1: x gets incremented before the exception is thrown
}

4.5 Invocation Expressions | 67

f?.(x++) // => undefined: f is null, but no exception thrown
x // => 1: increment is skipped because of short-circuiting

Conditional invocation expressions with ?.() work just as well for methods as they
do for functions. But because method invocation also involves property access, it is
worth taking a moment to be sure you understand the differences between the fol‐
lowing expressions:

o.m() // Regular property access, regular invocation
o?.m() // Conditional property access, regular invocation
o.m?.() // Regular property access, conditional invocation

In the first expression, o must be an object with a property m and the value of that
property must be a function. In the second expression, if o is null or undefined, then
the expression evaluates to undefined. But if o has any other value, then it must have
a property m whose value is a function. And in the third expression, o must not be
null or undefined. If it does not have a property m, or if the value of that property is
null, then the entire expression evaluates to undefined.

Conditional invocation with ?.() is one of the newest features of JavaScript. As of the
first months of 2020, this new syntax is supported in the current or beta versions of
most major browsers.

4.6 Object Creation Expressions
An object creation expression creates a new object and invokes a function (called a
constructor) to initialize the properties of that object. Object creation expressions are
like invocation expressions except that they are prefixed with the keyword new:

new Object()
new Point(2,3)

If no arguments are passed to the constructor function in an object creation expres‐
sion, the empty pair of parentheses can be omitted:

new Object
new Date

The value of an object creation expression is the newly created object. Constructors
are explained in more detail in Chapter 9.

4.7 Operator Overview
Operators are used for JavaScript’s arithmetic expressions, comparison expressions,
logical expressions, assignment expressions, and more. Table 4-1 summarizes the
operators and serves as a convenient reference.

68 | Chapter 4: Expressions and Operators

Note that most operators are represented by punctuation characters such as + and =.
Some, however, are represented by keywords such as delete and instanceof. Key‐
word operators are regular operators, just like those expressed with punctuation; they
simply have a less succinct syntax.

Table 4-1 is organized by operator precedence. The operators listed first have higher
precedence than those listed last. Operators separated by a horizontal line have differ‐
ent precedence levels. The column labeled A gives the operator associativity, which
can be L (left-to-right) or R (right-to-left), and the column N specifies the number of
operands. The column labeled Types lists the expected types of the operands and
(after the → symbol) the result type for the operator. The subsections that follow the
table explain the concepts of precedence, associativity, and operand type. The opera‐
tors themselves are individually documented following that discussion.

Table 4-1. JavaScript operators

Operator Operation A N Types

++ Pre- or post-increment R 1 lval→num

-- Pre- or post-decrement R 1 lval→num

- Negate number R 1 num→num

+ Convert to number R 1 any→num

~ Invert bits R 1 int→int

! Invert boolean value R 1 bool→bool

delete Remove a property R 1 lval→bool

typeof Determine type of operand R 1 any→str

void Return undefined value R 1 any→undef

** Exponentiate R 2 num,num→num

*, /, % Multiply, divide, remainder L 2 num,num→num

+, - Add, subtract L 2 num,num→num

+ Concatenate strings L 2 str,str→str

<< Shift left L 2 int,int→int

>> Shift right with sign extension L 2 int,int→int

>>> Shift right with zero extension L 2 int,int→int

<, <=,>, >= Compare in numeric order L 2 num,num→bool

<, <=,>, >= Compare in alphabetical order L 2 str,str→bool

instanceof Test object class L 2 obj,func→bool

in Test whether property exists L 2 any,obj→bool

== Test for non-strict equality L 2 any,any→bool

!= Test for non-strict inequality L 2 any,any→bool

=== Test for strict equality L 2 any,any→bool

4.7 Operator Overview | 69

Operator Operation A N Types

!== Test for strict inequality L 2 any,any→bool

& Compute bitwise AND L 2 int,int→int

^ Compute bitwise XOR L 2 int,int→int

| Compute bitwise OR L 2 int,int→int

&& Compute logical AND L 2 any,any→any

|| Compute logical OR L 2 any,any→any

?? Choose 1st defined operand L 2 any,any→any

?: Choose 2nd or 3rd operand R 3 bool,any,any→any

= Assign to a variable or property R 2 lval,any→any

**=, *=, /=, %=, Operate and assign R 2 lval,any→any

+=, -=, &=, ^=, |=,

<<=, >>=, >>>=

, Discard 1st operand, return 2nd L 2 any,any→any

4.7.1 Number of Operands
Operators can be categorized based on the number of operands they expect (their
arity). Most JavaScript operators, like the * multiplication operator, are binary opera‐
tors that combine two expressions into a single, more complex expression. That is,
they expect two operands. JavaScript also supports a number of unary operators,
which convert a single expression into a single, more complex expression. The −
operator in the expression −x is a unary operator that performs the operation of nega‐
tion on the operand x. Finally, JavaScript supports one ternary operator, the condi‐
tional operator ?:, which combines three expressions into a single expression.

4.7.2 Operand and Result Type
Some operators work on values of any type, but most expect their operands to be of a
specific type, and most operators return (or evaluate to) a value of a specific type. The
Types column in Table 4-1 specifies operand types (before the arrow) and result type
(after the arrow) for the operators.

JavaScript operators usually convert the type (see §3.9) of their operands as needed.
The multiplication operator * expects numeric operands, but the expression "3" *
"5" is legal because JavaScript can convert the operands to numbers. The value of this
expression is the number 15, not the string “15”, of course. Remember also that every
JavaScript value is either “truthy” or “falsy,” so operators that expect boolean operands
will work with an operand of any type.

70 | Chapter 4: Expressions and Operators

Some operators behave differently depending on the type of the operands used with
them. Most notably, the + operator adds numeric operands but concatenates string
operands. Similarly, the comparison operators such as < perform comparison in
numerical or alphabetical order depending on the type of the operands. The descrip‐
tions of individual operators explain their type-dependencies and specify what type
conversions they perform.

Notice that the assignment operators and a few of the other operators listed in
Table 4-1 expect an operand of type lval. lvalue is a historical term that means “an
expression that can legally appear on the left side of an assignment expression.” In
JavaScript, variables, properties of objects, and elements of arrays are lvalues.

4.7.3 Operator Side Effects
Evaluating a simple expression like 2 * 3 never affects the state of your program, and
any future computation your program performs will be unaffected by that evaluation.
Some expressions, however, have side effects, and their evaluation may affect the
result of future evaluations. The assignment operators are the most obvious example:
if you assign a value to a variable or property, that changes the value of any expres‐
sion that uses that variable or property. The ++ and -- increment and decrement
operators are similar, since they perform an implicit assignment. The delete operator
also has side effects: deleting a property is like (but not the same as) assigning
undefined to the property.

No other JavaScript operators have side effects, but function invocation and object
creation expressions will have side effects if any of the operators used in the function
or constructor body have side effects.

4.7.4 Operator Precedence
The operators listed in Table 4-1 are arranged in order from high precedence to low
precedence, with horizontal lines separating groups of operators at the same prece‐
dence level. Operator precedence controls the order in which operations are per‐
formed. Operators with higher precedence (nearer the top of the table) are performed
before those with lower precedence (nearer to the bottom).

Consider the following expression:

w = x + y*z;

The multiplication operator * has a higher precedence than the addition operator +,
so the multiplication is performed before the addition. Furthermore, the assignment
operator = has the lowest precedence, so the assignment is performed after all the
operations on the right side are completed.

4.7 Operator Overview | 71

Operator precedence can be overridden with the explicit use of parentheses. To force
the addition in the previous example to be performed first, write:

w = (x + y)*z;

Note that property access and invocation expressions have higher precedence than
any of the operators listed in Table 4-1. Consider this expression:

// my is an object with a property named functions whose value is an
// array of functions. We invoke function number x, passing it argument
// y, and then we ask for the type of the value returned.
typeof my.functions[x](y)

Although typeof is one of the highest-priority operators, the typeof operation is per‐
formed on the result of the property access, array index, and function invocation, all
of which have higher priority than operators.

In practice, if you are at all unsure about the precedence of your operators, the sim‐
plest thing to do is to use parentheses to make the evaluation order explicit. The rules
that are important to know are these: multiplication and division are performed
before addition and subtraction, and assignment has very low precedence and is
almost always performed last.

When new operators are added to JavaScript, they do not always fit naturally into this
precedence scheme. The ?? operator (§4.13.2) is shown in the table as lower-
precedence than || and &&, but, in fact, its precedence relative to those operators is
not defined, and ES2020 requires you to explicitly use parentheses if you mix ?? with
either || or &&. Similarly, the new ** exponentiation operator does not have a well-
defined precedence relative to the unary negation operator, and you must use paren‐
theses when combining negation with exponentiation.

4.7.5 Operator Associativity
In Table 4-1, the column labeled A specifies the associativity of the operator. A value
of L specifies left-to-right associativity, and a value of R specifies right-to-left associa‐
tivity. The associativity of an operator specifies the order in which operations of the
same precedence are performed. Left-to-right associativity means that operations are
performed from left to right. For example, the subtraction operator has left-to-right
associativity, so:

w = x - y - z;

is the same as:

w = ((x - y) - z);

On the other hand, the following expressions:

y = a ** b ** c;
x = ~-y;

72 | Chapter 4: Expressions and Operators

w = x = y = z;
q = a?b:c?d:e?f:g;

are equivalent to:

y = (a ** (b ** c));
x = ~(-y);
w = (x = (y = z));
q = a?b:(c?d:(e?f:g));

because the exponentiation, unary, assignment, and ternary conditional operators
have right-to-left associativity.

4.7.6 Order of Evaluation
Operator precedence and associativity specify the order in which operations are per‐
formed in a complex expression, but they do not specify the order in which the sub‐
expressions are evaluated. JavaScript always evaluates expressions in strictly left-to-
right order. In the expression w = x + y * z, for example, the subexpression w is
evaluated first, followed by x, y, and z. Then the values of y and z are multiplied,
added to the value of x, and assigned to the variable or property specified by expres‐
sion w. Adding parentheses to the expressions can change the relative order of the
multiplication, addition, and assignment, but not the left-to-right order of evaluation.

Order of evaluation only makes a difference if any of the expressions being evaluated
has side effects that affect the value of another expression. If expression x increments
a variable that is used by expression z, then the fact that x is evaluated before z is
important.

4.8 Arithmetic Expressions
This section covers the operators that perform arithmetic or other numerical manip‐
ulations on their operands. The exponentiation, multiplication, division, and subtrac‐
tion operators are straightforward and are covered first. The addition operator gets a
subsection of its own because it can also perform string concatenation and has some
unusual type conversion rules. The unary operators and the bitwise operators are also
covered in subsections of their own.

Most of these arithmetic operators (except as noted as follows) can be used with
BigInt (see §3.2.5) operands or with regular numbers, as long as you don’t mix the
two types.

The basic arithmetic operators are ** (exponentiation), * (multiplication), / (divi‐
sion), % (modulo: remainder after division), + (addition), and - (subtraction). As
noted, we’ll discuss the + operator in a section of its own. The other five basic opera‐
tors simply evaluate their operands, convert the values to numbers if necessary, and
then compute the power, product, quotient, remainder, or difference. Non-numeric

4.8 Arithmetic Expressions | 73

operands that cannot convert to numbers convert to the NaN value. If either operand
is (or converts to) NaN, the result of the operation is (almost always) NaN.

The ** operator has higher precedence than *, /, and % (which in turn have higher
precedence than + and -). Unlike the other operators, ** works right-to-left, so
2**2**3 is the same as 2**8, not 4**3. There is a natural ambiguity to expressions
like -3**2. Depending on the relative precedence of unary minus and exponentiation,
that expression could mean (-3)**2 or -(3**2). Different languages handle this dif‐
ferently, and rather than pick sides, JavaScript simply makes it a syntax error to omit
parentheses in this case, forcing you to write an unambiguous expression. ** is
JavaScript’s newest arithmetic operator: it was added to the language with ES2016.
The Math.pow() function has been available since the earliest versions of JavaScript,
however, and it performs exactly the same operation as the ** operator.

The / operator divides its first operand by its second. If you are used to programming
languages that distinguish between integer and floating-point numbers, you might
expect to get an integer result when you divide one integer by another. In JavaScript,
however, all numbers are floating-point, so all division operations have floating-point
results: 5/2 evaluates to 2.5, not 2. Division by zero yields positive or negative infin‐
ity, while 0/0 evaluates to NaN: neither of these cases raises an error.

The % operator computes the first operand modulo the second operand. In other
words, it returns the remainder after whole-number division of the first operand by
the second operand. The sign of the result is the same as the sign of the first operand.
For example, 5 % 2 evaluates to 1, and -5 % 2 evaluates to -1.

While the modulo operator is typically used with integer operands, it also works for
floating-point values. For example, 6.5 % 2.1 evaluates to 0.2.

4.8.1 The + Operator
The binary + operator adds numeric operands or concatenates string operands:

1 + 2 // => 3
"hello" + " " + "there" // => "hello there"
"1" + "2" // => "12"

When the values of both operands are numbers, or are both strings, then it is obvious
what the + operator does. In any other case, however, type conversion is necessary,
and the operation to be performed depends on the conversion performed. The con‐
version rules for + give priority to string concatenation: if either of the operands is a
string or an object that converts to a string, the other operand is converted to a string
and concatenation is performed. Addition is performed only if neither operand is
string-like.

Technically, the + operator behaves like this:

74 | Chapter 4: Expressions and Operators

• If either of its operand values is an object, it converts it to a primitive using the
object-to-primitive algorithm described in §3.9.3. Date objects are converted by
their toString() method, and all other objects are converted via valueOf(), if
that method returns a primitive value. However, most objects do not have a use‐
ful valueOf() method, so they are converted via toString() as well.

• After object-to-primitive conversion, if either operand is a string, the other is
converted to a string and concatenation is performed.

• Otherwise, both operands are converted to numbers (or to NaN) and addition is
performed.

Here are some examples:

1 + 2 // => 3: addition
"1" + "2" // => "12": concatenation
"1" + 2 // => "12": concatenation after number-to-string
1 + {} // => "1[object Object]": concatenation after object-to-string
true + true // => 2: addition after boolean-to-number
2 + null // => 2: addition after null converts to 0
2 + undefined // => NaN: addition after undefined converts to NaN

Finally, it is important to note that when the + operator is used with strings and num‐
bers, it may not be associative. That is, the result may depend on the order in which
operations are performed.

For example:

1 + 2 + " blind mice" // => "3 blind mice"
1 + (2 + " blind mice") // => "12 blind mice"

The first line has no parentheses, and the + operator has left-to-right associativity, so
the two numbers are added first, and their sum is concatenated with the string. In the
second line, parentheses alter this order of operations: the number 2 is concatenated
with the string to produce a new string. Then the number 1 is concatenated with the
new string to produce the final result.

4.8.2 Unary Arithmetic Operators
Unary operators modify the value of a single operand to produce a new value. In
JavaScript, the unary operators all have high precedence and are all right-associative.
The arithmetic unary operators described in this section (+, -, ++, and --) all convert
their single operand to a number, if necessary. Note that the punctuation characters +
and - are used as both unary and binary operators.

The unary arithmetic operators are the following:

4.8 Arithmetic Expressions | 75

Unary plus (+)
The unary plus operator converts its operand to a number (or to NaN) and
returns that converted value. When used with an operand that is already a num‐
ber, it doesn’t do anything. This operator may not be used with BigInt values,
since they cannot be converted to regular numbers.

Unary minus (-)
When - is used as a unary operator, it converts its operand to a number, if neces‐
sary, and then changes the sign of the result.

Increment (++)
The ++ operator increments (i.e., adds 1 to) its single operand, which must be an
lvalue (a variable, an element of an array, or a property of an object). The opera‐
tor converts its operand to a number, adds 1 to that number, and assigns the
incremented value back into the variable, element, or property.

The return value of the ++ operator depends on its position relative to the
operand. When used before the operand, where it is known as the pre-increment
operator, it increments the operand and evaluates to the incremented value of
that operand. When used after the operand, where it is known as the post-
increment operator, it increments its operand but evaluates to the unincremented
value of that operand. Consider the difference between these two lines of code:

let i = 1, j = ++i; // i and j are both 2
let n = 1, m = n++; // n is 2, m is 1

Note that the expression x++ is not always the same as x=x+1. The ++ operator
never performs string concatenation: it always converts its operand to a number
and increments it. If x is the string “1”, ++x is the number 2, but x+1 is the string
“11”.

Also note that, because of JavaScript’s automatic semicolon insertion, you cannot
insert a line break between the post-increment operator and the operand that
precedes it. If you do so, JavaScript will treat the operand as a complete statement
by itself and insert a semicolon before it.

This operator, in both its pre- and post-increment forms, is most commonly used
to increment a counter that controls a for loop (§5.4.3).

Decrement (--)
The -- operator expects an lvalue operand. It converts the value of the operand
to a number, subtracts 1, and assigns the decremented value back to the operand.
Like the ++ operator, the return value of -- depends on its position relative to the
operand. When used before the operand, it decrements and returns the decre‐
mented value. When used after the operand, it decrements the operand but

76 | Chapter 4: Expressions and Operators

returns the undecremented value. When used after its operand, no line break is
allowed between the operand and the operator.

4.8.3 Bitwise Operators
The bitwise operators perform low-level manipulation of the bits in the binary repre‐
sentation of numbers. Although they do not perform traditional arithmetic opera‐
tions, they are categorized as arithmetic operators here because they operate on
numeric operands and return a numeric value. Four of these operators perform
Boolean algebra on the individual bits of the operands, behaving as if each bit in each
operand were a boolean value (1=true, 0=false). The other three bitwise operators are
used to shift bits left and right. These operators are not commonly used in JavaScript
programming, and if you are not familiar with the binary representation of integers,
including the two’s complement representation of negative integers, you can probably
skip this section.

The bitwise operators expect integer operands and behave as if those values were rep‐
resented as 32-bit integers rather than 64-bit floating-point values. These operators
convert their operands to numbers, if necessary, and then coerce the numeric values
to 32-bit integers by dropping any fractional part and any bits beyond the 32nd. The
shift operators require a right-side operand between 0 and 31. After converting this
operand to an unsigned 32-bit integer, they drop any bits beyond the 5th, which
yields a number in the appropriate range. Surprisingly, NaN, Infinity, and -Infinity
all convert to 0 when used as operands of these bitwise operators.

All of these bitwise operators except >>> can be used with regular number operands
or with BigInt (see §3.2.5) operands.

Bitwise AND (&)
The & operator performs a Boolean AND operation on each bit of its integer
arguments. A bit is set in the result only if the corresponding bit is set in both
operands. For example, 0x1234 & 0x00FF evaluates to 0x0034.

Bitwise OR (|)
The | operator performs a Boolean OR operation on each bit of its integer argu‐
ments. A bit is set in the result if the corresponding bit is set in one or both of the
operands. For example, 0x1234 | 0x00FF evaluates to 0x12FF.

Bitwise XOR (^)
The ^ operator performs a Boolean exclusive OR operation on each bit of its inte‐
ger arguments. Exclusive OR means that either operand one is true or operand
two is true, but not both. A bit is set in this operation’s result if a corresponding
bit is set in one (but not both) of the two operands. For example, 0xFF00 ^
0xF0F0 evaluates to 0x0FF0.

4.8 Arithmetic Expressions | 77

Bitwise NOT (~)
The ~ operator is a unary operator that appears before its single integer operand.
It operates by reversing all bits in the operand. Because of the way signed integers
are represented in JavaScript, applying the ~ operator to a value is equivalent to
changing its sign and subtracting 1. For example, ~0x0F evaluates to 0xFFFFFFF0,
or −16.

Shift left (<<)
The << operator moves all bits in its first operand to the left by the number of
places specified in the second operand, which should be an integer between 0 and
31. For example, in the operation a << 1, the first bit (the ones bit) of a becomes
the second bit (the twos bit), the second bit of a becomes the third, etc. A zero is
used for the new first bit, and the value of the 32nd bit is lost. Shifting a value left
by one position is equivalent to multiplying by 2, shifting two positions is equiva‐
lent to multiplying by 4, and so on. For example, 7 << 2 evaluates to 28.

Shift right with sign (>>)
The >> operator moves all bits in its first operand to the right by the number of
places specified in the second operand (an integer between 0 and 31). Bits that
are shifted off the right are lost. The bits filled in on the left depend on the sign
bit of the original operand, in order to preserve the sign of the result. If the first
operand is positive, the result has zeros placed in the high bits; if the first
operand is negative, the result has ones placed in the high bits. Shifting a positive
value right one place is equivalent to dividing by 2 (discarding the remainder),
shifting right two places is equivalent to integer division by 4, and so on. 7 >> 1
evaluates to 3, for example, but note that and −7 >> 1 evaluates to −4.

Shift right with zero fill (>>>)
The >>> operator is just like the >> operator, except that the bits shifted in on the
left are always zero, regardless of the sign of the first operand. This is useful when
you want to treat signed 32-bit values as if they are unsigned integers. −1 >> 4
evaluates to −1, but −1 >>> 4 evaluates to 0x0FFFFFFF, for example. This is the
only one of the JavaScript bitwise operators that cannot be used with BigInt val‐
ues. BigInt does not represent negative numbers by setting the high bit the way
that 32-bit integers do, and this operator only makes sense for that particular
two’s complement representation.

4.9 Relational Expressions
This section describes JavaScript’s relational operators. These operators test for a rela‐
tionship (such as “equals,” “less than,” or “property of ”) between two values and
return true or false depending on whether that relationship exists. Relational
expressions always evaluate to a boolean value, and that value is often used to control

78 | Chapter 4: Expressions and Operators

the flow of program execution in if, while, and for statements (see Chapter 5). The
subsections that follow document the equality and inequality operators, the compari‐
son operators, and JavaScript’s other two relational operators, in and instanceof.

4.9.1 Equality and Inequality Operators
The == and === operators check whether two values are the same, using two different
definitions of sameness. Both operators accept operands of any type, and both return
true if their operands are the same and false if they are different. The === operator
is known as the strict equality operator (or sometimes the identity operator), and it
checks whether its two operands are “identical” using a strict definition of sameness.
The == operator is known as the equality operator; it checks whether its two operands
are “equal” using a more relaxed definition of sameness that allows type conversions.

The != and !== operators test for the exact opposite of the == and === operators.
The != inequality operator returns false if two values are equal to each other accord‐
ing to == and returns true otherwise. The !== operator returns false if two values
are strictly equal to each other and returns true otherwise. As you’ll see in §4.10,
the ! operator computes the Boolean NOT operation. This makes it easy to remem‐
ber that != and !== stand for “not equal to” and “not strictly equal to.”

The =, ==, and === operators
JavaScript supports =, ==, and === operators. Be sure you understand the differences
between these assignment, equality, and strict equality operators, and be careful to use
the correct one when coding! Although it is tempting to read all three operators as
“equals,” it may help to reduce confusion if you read “gets” or “is assigned” for =, “is
equal to” for ==, and “is strictly equal to” for ===.

The == operator is a legacy feature of JavaScript and is widely considered to be a
source of bugs. You should almost always use === instead of ==, and !== instead of !=.

As mentioned in §3.8, JavaScript objects are compared by reference, not by value. An
object is equal to itself, but not to any other object. If two distinct objects have the
same number of properties, with the same names and values, they are still not equal.
Similarly, two arrays that have the same elements in the same order are not equal to
each other.

Strict equality

The strict equality operator === evaluates its operands, then compares the two values
as follows, performing no type conversion:

4.9 Relational Expressions | 79

• If the two values have different types, they are not equal.
• If both values are null or both values are undefined, they are equal.
• If both values are the boolean value true or both are the boolean value false,

they are equal.
• If one or both values is NaN, they are not equal. (This is surprising, but the NaN

value is never equal to any other value, including itself! To check whether a value
x is NaN, use x !== x, or the global isNaN() function.)

• If both values are numbers and have the same value, they are equal. If one value
is 0 and the other is -0, they are also equal.

• If both values are strings and contain exactly the same 16-bit values (see the side‐
bar in §3.3) in the same positions, they are equal. If the strings differ in length or
content, they are not equal. Two strings may have the same meaning and the
same visual appearance, but still be encoded using different sequences of 16-bit
values. JavaScript performs no Unicode normalization, and a pair of strings like
this is not considered equal to the === or == operators.

• If both values refer to the same object, array, or function, they are equal. If they
refer to different objects, they are not equal, even if both objects have identical
properties.

Equality with type conversion

The equality operator == is like the strict equality operator, but it is less strict. If the
values of the two operands are not the same type, it attempts some type conversions
and tries the comparison again:

• If the two values have the same type, test them for strict equality as described
previously. If they are strictly equal, they are equal. If they are not strictly equal,
they are not equal.

• If the two values do not have the same type, the == operator may still consider
them equal. It uses the following rules and type conversions to check for equality:
— If one value is null and the other is undefined, they are equal.
— If one value is a number and the other is a string, convert the string to a num‐

ber and try the comparison again, using the converted value.
— If either value is true, convert it to 1 and try the comparison again. If either

value is false, convert it to 0 and try the comparison again.
— If one value is an object and the other is a number or string, convert the object

to a primitive using the algorithm described in §3.9.3 and try the comparison
again. An object is converted to a primitive value by either its toString()

80 | Chapter 4: Expressions and Operators

method or its valueOf() method. The built-in classes of core JavaScript
attempt valueOf() conversion before toString() conversion, except for the
Date class, which performs toString() conversion.

— Any other combinations of values are not equal.

As an example of testing for equality, consider the comparison:

"1" == true // => true

This expression evaluates to true, indicating that these very different-looking values
are in fact equal. The boolean value true is first converted to the number 1, and the
comparison is done again. Next, the string "1" is converted to the number 1. Since
both values are now the same, the comparison returns true.

4.9.2 Comparison Operators
The comparison operators test the relative order (numerical or alphabetical) of their
two operands:

Less than (<)
The < operator evaluates to true if its first operand is less than its second
operand; otherwise, it evaluates to false.

Greater than (>)
The > operator evaluates to true if its first operand is greater than its second
operand; otherwise, it evaluates to false.

Less than or equal (<=)
The <= operator evaluates to true if its first operand is less than or equal to its
second operand; otherwise, it evaluates to false.

Greater than or equal (>=)
The >= operator evaluates to true if its first operand is greater than or equal to its
second operand; otherwise, it evaluates to false.

The operands of these comparison operators may be of any type. Comparison can be
performed only on numbers and strings, however, so operands that are not numbers
or strings are converted.

Comparison and conversion occur as follows:

• If either operand evaluates to an object, that object is converted to a primitive
value, as described at the end of §3.9.3; if its valueOf() method returns a primi‐
tive value, that value is used. Otherwise, the return value of its toString()
method is used.

4.9 Relational Expressions | 81

• If, after any required object-to-primitive conversion, both operands are strings,
the two strings are compared, using alphabetical order, where “alphabetical
order” is defined by the numerical order of the 16-bit Unicode values that make
up the strings.

• If, after object-to-primitive conversion, at least one operand is not a string, both
operands are converted to numbers and compared numerically. 0 and -0 are con‐
sidered equal. Infinity is larger than any number other than itself, and
-Infinity is smaller than any number other than itself. If either operand is (or
converts to) NaN, then the comparison operator always returns false. Although
the arithmetic operators do not allow BigInt values to be mixed with regular
numbers, the comparison operators do allow comparisons between numbers and
BigInts.

Remember that JavaScript strings are sequences of 16-bit integer values, and that
string comparison is just a numerical comparison of the values in the two strings. The
numerical encoding order defined by Unicode may not match the traditional colla‐
tion order used in any particular language or locale. Note in particular that string
comparison is case-sensitive, and all capital ASCII letters are “less than” all lowercase
ASCII letters. This rule can cause confusing results if you do not expect it. For exam‐
ple, according to the < operator, the string “Zoo” comes before the string “aardvark”.

For a more robust string-comparison algorithm, try the String.localeCompare()
method, which also takes locale-specific definitions of alphabetical order into
account. For case-insensitive comparisons, you can convert the strings to all lower‐
case or all uppercase using String.toLowerCase() or String.toUpperCase(). And,
for a more general and better localized string comparison tool, use the Intl.Collator
class described in §11.7.3.

Both the + operator and the comparison operators behave differently for numeric and
string operands. + favors strings: it performs concatenation if either operand is a
string. The comparison operators favor numbers and only perform string comparison
if both operands are strings:

1 + 2 // => 3: addition.
"1" + "2" // => "12": concatenation.
"1" + 2 // => "12": 2 is converted to "2".
11 < 3 // => false: numeric comparison.
"11" < "3" // => true: string comparison.
"11" < 3 // => false: numeric comparison, "11" converted to 11.
"one" < 3 // => false: numeric comparison, "one" converted to NaN.

Finally, note that the <= (less than or equal) and >= (greater than or equal) operators
do not rely on the equality or strict equality operators for determining whether two
values are “equal.” Instead, the less-than-or-equal operator is simply defined as “not
greater than,” and the greater-than-or-equal operator is defined as “not less than.” The

82 | Chapter 4: Expressions and Operators

one exception occurs when either operand is (or converts to) NaN, in which case, all
four comparison operators return false.

4.9.3 The in Operator
The in operator expects a left-side operand that is a string, symbol, or value that can
be converted to a string. It expects a right-side operand that is an object. It evaluates
to true if the left-side value is the name of a property of the right-side object. For
example:

let point = {x: 1, y: 1}; // Define an object
"x" in point // => true: object has property named "x"
"z" in point // => false: object has no "z" property.
"toString" in point // => true: object inherits toString method

let data = [7,8,9]; // An array with elements (indices) 0, 1, and 2
"0" in data // => true: array has an element "0"
1 in data // => true: numbers are converted to strings
3 in data // => false: no element 3

4.9.4 The instanceof Operator
The instanceof operator expects a left-side operand that is an object and a right-side
operand that identifies a class of objects. The operator evaluates to true if the left-
side object is an instance of the right-side class and evaluates to false otherwise.
Chapter 9 explains that, in JavaScript, classes of objects are defined by the constructor
function that initializes them. Thus, the right-side operand of instanceof should be a
function. Here are examples:

let d = new Date(); // Create a new object with the Date() constructor
d instanceof Date // => true: d was created with Date()
d instanceof Object // => true: all objects are instances of Object
d instanceof Number // => false: d is not a Number object
let a = [1, 2, 3]; // Create an array with array literal syntax
a instanceof Array // => true: a is an array
a instanceof Object // => true: all arrays are objects
a instanceof RegExp // => false: arrays are not regular expressions

Note that all objects are instances of Object. instanceof considers the “superclasses”
when deciding whether an object is an instance of a class. If the left-side operand of
instanceof is not an object, instanceof returns false. If the righthand side is not a
class of objects, it throws a TypeError.

In order to understand how the instanceof operator works, you must understand
the “prototype chain.” This is JavaScript’s inheritance mechanism, and it is described
in §6.3.2. To evaluate the expression o instanceof f, JavaScript evaluates f.proto
type, and then looks for that value in the prototype chain of o. If it finds it, then o is
an instance of f (or of a subclass of f) and the operator returns true. If f.prototype

4.9 Relational Expressions | 83

is not one of the values in the prototype chain of o, then o is not an instance of f and
instanceof returns false.

4.10 Logical Expressions
The logical operators &&, ||, and ! perform Boolean algebra and are often used in
conjunction with the relational operators to combine two relational expressions into
one more complex expression. These operators are described in the subsections that
follow. In order to fully understand them, you may want to review the concept of
“truthy” and “falsy” values introduced in §3.4.

4.10.1 Logical AND (&&)
The && operator can be understood at three different levels. At the simplest level,
when used with boolean operands, && performs the Boolean AND operation on the
two values: it returns true if and only if both its first operand and its second operand
are true. If one or both of these operands is false, it returns false.

&& is often used as a conjunction to join two relational expressions:

x === 0 && y === 0 // true if, and only if, x and y are both 0

Relational expressions always evaluate to true or false, so when used like this, the &&
operator itself returns true or false. Relational operators have higher precedence
than && (and ||), so expressions like these can safely be written without parentheses.

But && does not require that its operands be boolean values. Recall that all JavaScript
values are either “truthy” or “falsy.” (See §3.4 for details. The falsy values are false,
null, undefined, 0, -0, NaN, and "". All other values, including all objects, are truthy.)
The second level at which && can be understood is as a Boolean AND operator for
truthy and falsy values. If both operands are truthy, the operator returns a truthy
value. Otherwise, one or both operands must be falsy, and the operator returns a falsy
value. In JavaScript, any expression or statement that expects a boolean value will
work with a truthy or falsy value, so the fact that && does not always return true or
false does not cause practical problems.

Notice that this description says that the operator returns “a truthy value” or “a falsy
value” but does not specify what that value is. For that, we need to describe && at the
third and final level. This operator starts by evaluating its first operand, the expres‐
sion on its left. If the value on the left is falsy, the value of the entire expression must
also be falsy, so && simply returns the value on the left and does not even evaluate the
expression on the right.

On the other hand, if the value on the left is truthy, then the overall value of the
expression depends on the value on the righthand side. If the value on the right is

84 | Chapter 4: Expressions and Operators

truthy, then the overall value must be truthy, and if the value on the right is falsy, then
the overall value must be falsy. So when the value on the left is truthy, the && operator
evaluates and returns the value on the right:

let o = {x: 1};
let p = null;
o && o.x // => 1: o is truthy, so return value of o.x
p && p.x // => null: p is falsy, so return it and don't evaluate p.x

It is important to understand that && may or may not evaluate its right-side operand.
In this code example, the variable p is set to null, and the expression p.x would, if
evaluated, cause a TypeError. But the code uses && in an idiomatic way so that p.x is
evaluated only if p is truthy—not null or undefined.

The behavior of && is sometimes called short circuiting, and you may sometimes see
code that purposely exploits this behavior to conditionally execute code. For example,
the following two lines of JavaScript code have equivalent effects:

if (a === b) stop(); // Invoke stop() only if a === b
(a === b) && stop(); // This does the same thing

In general, you must be careful whenever you write an expression with side effects
(assignments, increments, decrements, or function invocations) on the righthand side
of &&. Whether those side effects occur depends on the value of the lefthand side.

Despite the somewhat complex way that this operator actually works, it is most com‐
monly used as a simple Boolean algebra operator that works on truthy and falsy
values.

4.10.2 Logical OR (||)
The || operator performs the Boolean OR operation on its two operands. If one or
both operands is truthy, it returns a truthy value. If both operands are falsy, it returns
a falsy value.

Although the || operator is most often used simply as a Boolean OR operator, it, like
the && operator, has more complex behavior. It starts by evaluating its first operand,
the expression on its left. If the value of this first operand is truthy, it short-circuits
and returns that truthy value without ever evaluating the expression on the right. If,
on the other hand, the value of the first operand is falsy, then || evaluates its second
operand and returns the value of that expression.

As with the && operator, you should avoid right-side operands that include side
effects, unless you purposely want to use the fact that the right-side expression may
not be evaluated.

An idiomatic usage of this operator is to select the first truthy value in a set of
alternatives:

4.10 Logical Expressions | 85

// If maxWidth is truthy, use that. Otherwise, look for a value in
// the preferences object. If that is not truthy, use a hardcoded constant.
let max = maxWidth || preferences.maxWidth || 500;

Note that if 0 is a legal value for maxWidth, then this code will not work correctly,
since 0 is a falsy value. See the ?? operator (§4.13.2) for an alternative.

Prior to ES6, this idiom is often used in functions to supply default values for
parameters:

// Copy the properties of o to p, and return p
function copy(o, p) {
 p = p || {}; // If no object passed for p, use a newly created object.
 // function body goes here
}

In ES6 and later, however, this trick is no longer needed because the default parame‐
ter value could simply be written in the function definition itself: function copy(o,
p={}) { ... }.

4.10.3 Logical NOT (!)
The ! operator is a unary operator; it is placed before a single operand. Its purpose is
to invert the boolean value of its operand. For example, if x is truthy, !x evaluates to
false. If x is falsy, then !x is true.

Unlike the && and || operators, the ! operator converts its operand to a boolean value
(using the rules described in Chapter 3) before inverting the converted value. This
means that ! always returns true or false and that you can convert any value x to its
equivalent boolean value by applying this operator twice: !!x (see §3.9.2).

As a unary operator, ! has high precedence and binds tightly. If you want to invert the
value of an expression like p && q, you need to use parentheses: !(p && q). It is
worth noting two laws of Boolean algebra here that we can express using JavaScript
syntax:

// DeMorgan's Laws
!(p && q) === (!p || !q) // => true: for all values of p and q
!(p || q) === (!p && !q) // => true: for all values of p and q

4.11 Assignment Expressions
JavaScript uses the = operator to assign a value to a variable or property. For example:

i = 0; // Set the variable i to 0.
o.x = 1; // Set the property x of object o to 1.

The = operator expects its left-side operand to be an lvalue: a variable or object prop‐
erty (or array element). It expects its right-side operand to be an arbitrary value of

86 | Chapter 4: Expressions and Operators

any type. The value of an assignment expression is the value of the right-side
operand. As a side effect, the = operator assigns the value on the right to the variable
or property on the left so that future references to the variable or property evaluate to
the value.

Although assignment expressions are usually quite simple, you may sometimes see
the value of an assignment expression used as part of a larger expression. For exam‐
ple, you can assign and test a value in the same expression with code like this:

(a = b) === 0

If you do this, be sure you are clear on the difference between the = and === opera‐
tors! Note that = has very low precedence, and parentheses are usually necessary
when the value of an assignment is to be used in a larger expression.

The assignment operator has right-to-left associativity, which means that when multi‐
ple assignment operators appear in an expression, they are evaluated from right to
left. Thus, you can write code like this to assign a single value to multiple variables:

i = j = k = 0; // Initialize 3 variables to 0

4.11.1 Assignment with Operation
Besides the normal = assignment operator, JavaScript supports a number of other
assignment operators that provide shortcuts by combining assignment with some
other operation. For example, the += operator performs addition and assignment. The
following expression:

total += salesTax;

is equivalent to this one:

total = total + salesTax;

As you might expect, the += operator works for numbers or strings. For numeric
operands, it performs addition and assignment; for string operands, it performs con‐
catenation and assignment.

Similar operators include -=, *=, &=, and so on. Table 4-2 lists them all.

Table 4-2. Assignment operators

Operator Example Equivalent

+= a += b a = a + b

-= a -= b a = a - b

*= a *= b a = a * b

/= a /= b a = a / b

%= a %= b a = a % b

4.11 Assignment Expressions | 87

Operator Example Equivalent

**= a **= b a = a ** b

<<= a <<= b a = a << b

>>= a >>= b a = a >> b

>>>= a >>>= b a = a >>> b

&= a &= b a = a & b

|= a |= b a = a | b

^= a ^= b a = a ^ b

In most cases, the expression:

a op= b

where op is an operator, is equivalent to the expression:

a = a op b

In the first line, the expression a is evaluated once. In the second, it is evaluated twice.
The two cases will differ only if a includes side effects such as a function call or an
increment operator. The following two assignments, for example, are not the same:

data[i++] *= 2;
data[i++] = data[i++] * 2;

4.12 Evaluation Expressions
Like many interpreted languages, JavaScript has the ability to interpret strings of Java‐
Script source code, evaluating them to produce a value. JavaScript does this with the
global function eval():

eval("3+2") // => 5

Dynamic evaluation of strings of source code is a powerful language feature that is
almost never necessary in practice. If you find yourself using eval(), you should
think carefully about whether you really need to use it. In particular, eval() can be a
security hole, and you should never pass any string derived from user input to
eval(). With a language as complicated as JavaScript, there is no way to sanitize user
input to make it safe to use with eval(). Because of these security issues, some web
servers use the HTTP “Content-Security-Policy” header to disable eval() for an
entire website.

The subsections that follow explain the basic use of eval() and explain two restricted
versions of it that have less impact on the optimizer.

88 | Chapter 4: Expressions and Operators

Is eval() a Function or an Operator?
eval() is a function, but it is included in this chapter on expressions because it really
should have been an operator. The earliest versions of the language defined an eval()
function, and ever since then, language designers and interpreter writers have been
placing restrictions on it that make it more and more operator-like. Modern Java‐
Script interpreters perform a lot of code analysis and optimization. Generally speak‐
ing, if a function calls eval(), the interpreter cannot optimize that function. The
problem with defining eval() as a function is that it can be given other names:

let f = eval;
let g = f;

If this is allowed, then the interpreter can’t know for sure which functions call eval(),
so it cannot optimize aggressively. This issue could have been avoided if eval() was
an operator (and a reserved word). We’ll learn (in §4.12.2 and §4.12.3) about restric‐
tions placed on eval() to make it more operator-like.

4.12.1 eval()
eval() expects one argument. If you pass any value other than a string, it simply
returns that value. If you pass a string, it attempts to parse the string as JavaScript
code, throwing a SyntaxError if it fails. If it successfully parses the string, then it eval‐
uates the code and returns the value of the last expression or statement in the string
or undefined if the last expression or statement had no value. If the evaluated string
throws an exception, that exception propogates from the call to eval().

The key thing about eval() (when invoked like this) is that it uses the variable envi‐
ronment of the code that calls it. That is, it looks up the values of variables and
defines new variables and functions in the same way that local code does. If a func‐
tion defines a local variable x and then calls eval("x"), it will obtain the value of the
local variable. If it calls eval("x=1"), it changes the value of the local variable. And if
the function calls eval("var y = 3;"), it declares a new local variable y. On the
other hand, if the evaluated string uses let or const, the variable or constant declared
will be local to the evaluation and will not be defined in the calling environment.

Similarly, a function can declare a local function with code like this:

eval("function f() { return x+1; }");

If you call eval() from top-level code, it operates on global variables and global func‐
tions, of course.

Note that the string of code you pass to eval() must make syntactic sense on its own:
you cannot use it to paste code fragments into a function. It makes no sense to write

4.12 Evaluation Expressions | 89

eval("return;"), for example, because return is only legal within functions, and the
fact that the evaluated string uses the same variable environment as the calling func‐
tion does not make it part of that function. If your string would make sense as a
standalone script (even a very short one like x=0), it is legal to pass to eval(). Other‐
wise, eval() will throw a SyntaxError.

4.12.2 Global eval()
It is the ability of eval() to change local variables that is so problematic to JavaScript
optimizers. As a workaround, however, interpreters simply do less optimization on
any function that calls eval(). But what should a JavaScript interpreter do, however,
if a script defines an alias for eval() and then calls that function by another name?
The JavaScript specification declares that when eval() is invoked by any name other
than “eval”, it should evaluate the string as if it were top-level global code. The evalu‐
ated code may define new global variables or global functions, and it may set global
variables, but it will not use or modify any variables local to the calling function, and
will not, therefore, interfere with local optimizations.

A “direct eval” is a call to the eval() function with an expression that uses the exact,
unqualified name “eval” (which is beginning to feel like a reserved word). Direct calls
to eval() use the variable environment of the calling context. Any other call—an
indirect call—uses the global object as its variable environment and cannot read,
write, or define local variables or functions. (Both direct and indirect calls can define
new variables only with var. Uses of let and const inside an evaluated string create
variables and constants that are local to the evaluation and do not alter the calling or
global environment.)

The following code demonstrates:

const geval = eval; // Using another name does a global eval
let x = "global", y = "global"; // Two global variables
function f() { // This function does a local eval
 let x = "local"; // Define a local variable
 eval("x += 'changed';"); // Direct eval sets local variable
 return x; // Return changed local variable
}
function g() { // This function does a global eval
 let y = "local"; // A local variable
 geval("y += 'changed';"); // Indirect eval sets global variable
 return y; // Return unchanged local variable
}
console.log(f(), x); // Local variable changed: prints "localchanged global":
console.log(g(), y); // Global variable changed: prints "local globalchanged":

Notice that the ability to do a global eval is not just an accommodation to the needs of
the optimizer; it is actually a tremendously useful feature that allows you to execute
strings of code as if they were independent, top-level scripts. As noted at the

90 | Chapter 4: Expressions and Operators

beginning of this section, it is rare to truly need to evaluate a string of code. But if you
do find it necessary, you are more likely to want to do a global eval than a local eval.

4.12.3 Strict eval()
Strict mode (see §5.6.3) imposes further restrictions on the behavior of the eval()
function and even on the use of the identifier “eval”. When eval() is called from
strict-mode code, or when the string of code to be evaluated itself begins with a “use
strict” directive, then eval() does a local eval with a private variable environment.
This means that in strict mode, evaluated code can query and set local variables, but
it cannot define new variables or functions in the local scope.

Furthermore, strict mode makes eval() even more operator-like by effectively mak‐
ing “eval” into a reserved word. You are not allowed to overwrite the eval() function
with a new value. And you are not allowed to declare a variable, function, function
parameter, or catch block parameter with the name “eval”.

4.13 Miscellaneous Operators
JavaScript supports a number of other miscellaneous operators, described in the fol‐
lowing sections.

4.13.1 The Conditional Operator (?:)
The conditional operator is the only ternary operator (three operands) in JavaScript
and is sometimes actually called the ternary operator. This operator is sometimes
written ?:, although it does not appear quite that way in code. Because this operator
has three operands, the first goes before the ?, the second goes between the ? and
the :, and the third goes after the :. It is used like this:

x > 0 ? x : -x // The absolute value of x

The operands of the conditional operator may be of any type. The first operand is
evaluated and interpreted as a boolean. If the value of the first operand is truthy, then
the second operand is evaluated, and its value is returned. Otherwise, if the first
operand is falsy, then the third operand is evaluated and its value is returned. Only
one of the second and third operands is evaluated; never both.

While you can achieve similar results using the if statement (§5.3.1), the ?: operator
often provides a handy shortcut. Here is a typical usage, which checks to be sure that
a variable is defined (and has a meaningful, truthy value) and uses it if so or provides
a default value if not:

greeting = "hello " + (username ? username : "there");

This is equivalent to, but more compact than, the following if statement:

4.13 Miscellaneous Operators | 91

greeting = "hello ";
if (username) {
 greeting += username;
} else {
 greeting += "there";
}

4.13.2 First-Defined (??)
The first-defined operator ?? evaluates to its first defined operand: if its left operand
is not null and not undefined, it returns that value. Otherwise, it returns the value of
the right operand. Like the && and || operators, ?? is short-circuiting: it only evalu‐
ates its second operand if the first operand evaluates to null or undefined. If the
expression a has no side effects, then the expression a ?? b is equivalent to:

(a !== null && a !== undefined) ? a : b

?? is a useful alternative to || (§4.10.2) when you want to select the first defined
operand rather than the first truthy operand. Although || is nominally a logical OR
operator, it is also used idiomatically to select the first non-falsy operand with code
like this:

// If maxWidth is truthy, use that. Otherwise, look for a value in
// the preferences object. If that is not truthy, use a hardcoded constant.
let max = maxWidth || preferences.maxWidth || 500;

The problem with this idiomatic use is that zero, the empty string, and false are all
falsy values that may be perfectly valid in some circumstances. In this code example,
if maxWidth is zero, that value will be ignored. But if we change the || operator to ??,
we end up with an expression where zero is a valid value:

// If maxWidth is defined, use that. Otherwise, look for a value in
// the preferences object. If that is not defined, use a hardcoded constant.
let max = maxWidth ?? preferences.maxWidth ?? 500;

Here are more examples showing how ?? works when the first operand is falsy. If that
operand is falsy but defined, then ?? returns it. It is only when the first operand is
“nullish” (i.e., null or undefined) that this operator evaluates and returns the second
operand:

let options = { timeout: 0, title: "", verbose: false, n: null };
options.timeout ?? 1000 // => 0: as defined in the object
options.title ?? "Untitled" // => "": as defined in the object
options.verbose ?? true // => false: as defined in the object
options.quiet ?? false // => false: property is not defined
options.n ?? 10 // => 10: property is null

Note that the timeout, title, and verbose expressions here would have different val‐
ues if we used || instead of ??.

92 | Chapter 4: Expressions and Operators

The ?? operator is similar to the && and || operators but does not have higher prece‐
dence or lower precedence than they do. If you use it in an expression with either of
those operators, you must use explicit parentheses to specify which operation you
want to perform first:

(a ?? b) || c // ?? first, then ||
a ?? (b || c) // || first, then ??
a ?? b || c // SyntaxError: parentheses are required

The ?? operator is defined by ES2020, and as of early 2020, is newly supported by
current or beta versions of all major browsers. This operator is formally called the
“nullish coalescing” operator, but I avoid that term because this operator selects one
of its operands but does not “coalesce” them in any way that I can see.

4.13.3 The typeof Operator
typeof is a unary operator that is placed before its single operand, which can be of
any type. Its value is a string that specifies the type of the operand. Table 4-3 specifies
the value of the typeof operator for any JavaScript value.

Table 4-3. Values returned by the typeof operator

x typeof x

undefined "undefined"

null "object"

true or false "boolean"

any number or NaN "number"

any BigInt "bigint"

any string "string"

any symbol "symbol"

any function "function"

any nonfunction object "object"

You might use the typeof operator in an expression like this:

// If the value is a string, wrap it in quotes, otherwise, convert
(typeof value === "string") ? "'" + value + "'" : value.toString()

Note that typeof returns “object” if the operand value is null. If you want to distin‐
guish null from objects, you’ll have to explicitly test for this special-case value.

Although JavaScript functions are a kind of object, the typeof operator considers
functions to be sufficiently different that they have their own return value.

Because typeof evaluates to “object” for all object and array values other than func‐
tions, it is useful only to distinguish objects from other, primitive types. In order to

4.13 Miscellaneous Operators | 93

distinguish one class of object from another, you must use other techniques, such as
the instanceof operator (see §4.9.4), the class attribute (see §14.4.3), or the con
structor property (see §9.2.2 and §14.3).

4.13.4 The delete Operator
delete is a unary operator that attempts to delete the object property or array ele‐
ment specified as its operand. Like the assignment, increment, and decrement opera‐
tors, delete is typically used for its property deletion side effect and not for the value
it returns. Some examples:

let o = { x: 1, y: 2}; // Start with an object
delete o.x; // Delete one of its properties
"x" in o // => false: the property does not exist anymore

let a = [1,2,3]; // Start with an array
delete a[2]; // Delete the last element of the array
2 in a // => false: array element 2 doesn't exist anymore
a.length // => 3: note that array length doesn't change, though

Note that a deleted property or array element is not merely set to the undefined
value. When a property is deleted, the property ceases to exist. Attempting to read a
nonexistent property returns undefined, but you can test for the actual existence of a
property with the in operator (§4.9.3). Deleting an array element leaves a “hole” in
the array and does not change the array’s length. The resulting array is sparse (§7.3).

delete expects its operand to be an lvalue. If it is not an lvalue, the operator takes no
action and returns true. Otherwise, delete attempts to delete the specified lvalue.
delete returns true if it successfully deletes the specified lvalue. Not all properties
can be deleted, however: non-configurable properties (§14.1) are immune from
deletion.

In strict mode, delete raises a SyntaxError if its operand is an unqualified identifier
such as a variable, function, or function parameter: it only works when the operand is
a property access expression (§4.4). Strict mode also specifies that delete raises a
TypeError if asked to delete any non-configurable (i.e., nondeleteable) property. Out‐
side of strict mode, no exception occurs in these cases, and delete simply returns
false to indicate that the operand could not be deleted.

Here are some example uses of the delete operator:

let o = {x: 1, y: 2};
delete o.x; // Delete one of the object properties; returns true.
typeof o.x; // Property does not exist; returns "undefined".
delete o.x; // Delete a nonexistent property; returns true.
delete 1; // This makes no sense, but it just returns true.
// Can't delete a variable; returns false, or SyntaxError in strict mode.
delete o;

94 | Chapter 4: Expressions and Operators

// Undeletable property: returns false, or TypeError in strict mode.
delete Object.prototype;

We’ll see the delete operator again in §6.4.

4.13.5 The await Operator
await was introduced in ES2017 as a way to make asynchronous programming more
natural in JavaScript. You will need to read Chapter 13 to understand this operator.
Briefly, however, await expects a Promise object (representing an asynchronous com‐
putation) as its sole operand, and it makes your program behave as if it were waiting
for the asynchronous computation to complete (but it does this without actually
blocking, and it does not prevent other asynchronous operations from proceeding at
the same time). The value of the await operator is the fulfillment value of the
Promise object. Importantly, await is only legal within functions that have been
declared asynchronous with the async keyword. Again, see Chapter 13 for full details.

4.13.6 The void Operator
void is a unary operator that appears before its single operand, which may be of any
type. This operator is unusual and infrequently used; it evaluates its operand, then
discards the value and returns undefined. Since the operand value is discarded, using
the void operator makes sense only if the operand has side effects.

The void operator is so obscure that it is difficult to come up with a practical example
of its use. One case would be when you want to define a function that returns nothing
but also uses the arrow function shortcut syntax (see §8.1.3) where the body of the
function is a single expression that is evaluated and returned. If you are evaluating the
expression solely for its side effects and do not want to return its value, then the sim‐
plest thing is to use curly braces around the function body. But, as an alternative, you
could also use the void operator in this case:

let counter = 0;
const increment = () => void counter++;
increment() // => undefined
counter // => 1

4.13.7 The comma Operator (,)
The comma operator is a binary operator whose operands may be of any type. It evalu‐
ates its left operand, evaluates its right operand, and then returns the value of the
right operand. Thus, the following line:

i=0, j=1, k=2;

evaluates to 2 and is basically equivalent to:

i = 0; j = 1; k = 2;

4.13 Miscellaneous Operators | 95

The lefthand expression is always evaluated, but its value is discarded, which means
that it only makes sense to use the comma operator when the lefthand expression has
side effects. The only situation in which the comma operator is commonly used is
with a for loop (§5.4.3) that has multiple loop variables:

// The first comma below is part of the syntax of the let statement
// The second comma is the comma operator: it lets us squeeze 2
// expressions (i++ and j--) into a statement (the for loop) that expects 1.
for(let i=0,j=10; i < j; i++,j--) {
 console.log(i+j);
}

4.14 Summary
This chapter covers a wide variety of topics, and there is lots of reference material
here that you may want to reread in the future as you continue to learn JavaScript.
Some key points to remember, however, are these:

• Expressions are the phrases of a JavaScript program.
• Any expression can be evaluated to a JavaScript value.
• Expressions can also have side effects (such as variable assignment) in addition to

producing a value.
• Simple expressions such as literals, variable references, and property accesses can

be combined with operators to produce larger expressions.
• JavaScript defines operators for arithmetic, comparisons, Boolean logic, assign‐

ment, and bit manipulation, along with some miscellaneous operators, including
the ternary conditional operator.

• The JavaScript + operator is used to both add numbers and concatenate strings.
• The logical operators && and || have special “short-circuiting” behavior and

sometimes only evaluate one of their arguments. Common JavaScript idioms
require you to understand the special behavior of these operators.

96 | Chapter 4: Expressions and Operators

CHAPTER 5

Statements

Chapter 4 described expressions as JavaScript phrases. By that analogy, statements are
JavaScript sentences or commands. Just as English sentences are terminated and sepa‐
rated from one another with periods, JavaScript statements are terminated with semi‐
colons (§2.6). Expressions are evaluated to produce a value, but statements are
executed to make something happen.

One way to “make something happen” is to evaluate an expression that has side
effects. Expressions with side effects, such as assignments and function invocations,
can stand alone as statements, and when used this way are known as expression state‐
ments. A similar category of statements are the declaration statements that declare
new variables and define new functions.

JavaScript programs are nothing more than a sequence of statements to execute. By
default, the JavaScript interpreter executes these statements one after another in the
order they are written. Another way to “make something happen” is to alter this
default order of execution, and JavaScript has a number of statements or control struc‐
tures that do just this:

Conditionals
Statements like if and switch that make the JavaScript interpreter execute or
skip other statements depending on the value of an expression

Loops
Statements like while and for that execute other statements repetitively

Jumps
Statements like break, return, and throw that cause the interpreter to jump to
another part of the program

97

The sections that follow describe the various statements in JavaScript and explain
their syntax. Table 5-1, at the end of the chapter, summarizes the syntax. A JavaScript
program is simply a sequence of statements, separated from one another with
semicolons, so once you are familiar with the statements of JavaScript, you can begin
writing JavaScript programs.

5.1 Expression Statements
The simplest kinds of statements in JavaScript are expressions that have side effects.
This sort of statement was shown in Chapter 4. Assignment statements are one major
category of expression statements. For example:

greeting = "Hello " + name;
i *= 3;

The increment and decrement operators, ++ and --, are related to assignment state‐
ments. These have the side effect of changing a variable value, just as if an assignment
had been performed:

counter++;

The delete operator has the important side effect of deleting an object property.
Thus, it is almost always used as a statement, rather than as part of a larger
expression:

delete o.x;

Function calls are another major category of expression statements. For example:

console.log(debugMessage);
displaySpinner(); // A hypothetical function to display a spinner in a web app.

These function calls are expressions, but they have side effects that affect the host
environment or program state, and they are used here as statements. If a function
does not have any side effects, there is no sense in calling it, unless it is part of a larger
expression or an assignment statement. For example, you wouldn’t just compute a
cosine and discard the result:

Math.cos(x);

But you might well compute the value and assign it to a variable for future use:

cx = Math.cos(x);

Note that each line of code in each of these examples is terminated with a semicolon.

98 | Chapter 5: Statements

5.2 Compound and Empty Statements
Just as the comma operator (§4.13.7) combines multiple expressions into a single
expression, a statement block combines multiple statements into a single compound
statement. A statement block is simply a sequence of statements enclosed within curly
braces. Thus, the following lines act as a single statement and can be used anywhere
that JavaScript expects a single statement:

{
 x = Math.PI;
 cx = Math.cos(x);
 console.log("cos(π) = " + cx);
}

There are a few things to note about this statement block. First, it does not end with a
semicolon. The primitive statements within the block end in semicolons, but the
block itself does not. Second, the lines inside the block are indented relative to the
curly braces that enclose them. This is optional, but it makes the code easier to read
and understand.

Just as expressions often contain subexpressions, many JavaScript statements contain
substatements. Formally, JavaScript syntax usually allows a single substatement. For
example, the while loop syntax includes a single statement that serves as the body of
the loop. Using a statement block, you can place any number of statements within this
single allowed substatement.

A compound statement allows you to use multiple statements where JavaScript syntax
expects a single statement. The empty statement is the opposite: it allows you to
include no statements where one is expected. The empty statement looks like this:

;

The JavaScript interpreter takes no action when it executes an empty statement. The
empty statement is occasionally useful when you want to create a loop that has an
empty body. Consider the following for loop (for loops will be covered in §5.4.3):

// Initialize an array a
for(let i = 0; i < a.length; a[i++] = 0) ;

In this loop, all the work is done by the expression a[i++] = 0, and no loop body is
necessary. JavaScript syntax requires a statement as a loop body, however, so an empty
statement—just a bare semicolon—is used.

Note that the accidental inclusion of a semicolon after the right parenthesis of a for
loop, while loop, or if statement can cause frustrating bugs that are difficult to
detect. For example, the following code probably does not do what the author
intended:

5.2 Compound and Empty Statements | 99

if ((a === 0) || (b === 0)); // Oops! This line does nothing...
 o = null; // and this line is always executed.

When you intentionally use the empty statement, it is a good idea to comment your
code in a way that makes it clear that you are doing it on purpose. For example:

for(let i = 0; i < a.length; a[i++] = 0) /* empty */ ;

5.3 Conditionals
Conditional statements execute or skip other statements depending on the value of a
specified expression. These statements are the decision points of your code, and they
are also sometimes known as “branches.” If you imagine a JavaScript interpreter fol‐
lowing a path through your code, the conditional statements are the places where the
code branches into two or more paths and the interpreter must choose which path to
follow.

The following subsections explain JavaScript’s basic conditional, the if/else state‐
ment, and also cover switch, a more complicated, multiway branch statement.

5.3.1 if
The if statement is the fundamental control statement that allows JavaScript to make
decisions, or, more precisely, to execute statements conditionally. This statement has
two forms. The first is:

if (expression)
 statement

In this form, expression is evaluated. If the resulting value is truthy, statement is exe‐
cuted. If expression is falsy, statement is not executed. (See §3.4 for a definition of tru‐
thy and falsy values.) For example:

if (username == null) // If username is null or undefined,
 username = "John Doe"; // define it

Or similarly:

// If username is null, undefined, false, 0, "", or NaN, give it a new value
if (!username) username = "John Doe";

Note that the parentheses around the expression are a required part of the syntax for
the if statement.

JavaScript syntax requires a single statement after the if keyword and parenthesized
expression, but you can use a statement block to combine multiple statements into
one. So the if statement might also look like this:

if (!address) {
 address = "";

100 | Chapter 5: Statements

 message = "Please specify a mailing address.";
}

The second form of the if statement introduces an else clause that is executed when
expression is false. Its syntax is:

if (expression)
 statement1
else
 statement2

This form of the statement executes statement1 if expression is truthy and executes
statement2 if expression is falsy. For example:

if (n === 1)
 console.log("You have 1 new message.");
else
 console.log(`You have ${n} new messages.`);

When you have nested if statements with else clauses, some caution is required to
ensure that the else clause goes with the appropriate if statement. Consider the fol‐
lowing lines:

i = j = 1;
k = 2;
if (i === j)
 if (j === k)
 console.log("i equals k");
else
 console.log("i doesn't equal j"); // WRONG!!

In this example, the inner if statement forms the single statement allowed by the syn‐
tax of the outer if statement. Unfortunately, it is not clear (except from the hint given
by the indentation) which if the else goes with. And in this example, the indenta‐
tion is wrong, because a JavaScript interpreter actually interprets the previous exam‐
ple as:

if (i === j) {
 if (j === k)
 console.log("i equals k");
 else
 console.log("i doesn't equal j"); // OOPS!
}

The rule in JavaScript (as in most programming languages) is that by default an else
clause is part of the nearest if statement. To make this example less ambiguous and
easier to read, understand, maintain, and debug, you should use curly braces:

if (i === j) {
 if (j === k) {
 console.log("i equals k");
 }

5.3 Conditionals | 101

} else { // What a difference the location of a curly brace makes!
 console.log("i doesn't equal j");
}

Many programmers make a habit of enclosing the bodies of if and else statements
(as well as other compound statements, such as while loops) within curly braces,
even when the body consists of only a single statement. Doing so consistently can
prevent the sort of problem just shown, and I advise you to adopt this practice. In this
printed book, I place a premium on keeping example code vertically compact, and I
do not always follow my own advice on this matter.

5.3.2 else if
The if/else statement evaluates an expression and executes one of two pieces of
code, depending on the outcome. But what about when you need to execute one of
many pieces of code? One way to do this is with an else if statement. else if is not
really a JavaScript statement, but simply a frequently used programming idiom that
results when repeated if/else statements are used:

if (n === 1) {
 // Execute code block #1
} else if (n === 2) {
 // Execute code block #2
} else if (n === 3) {
 // Execute code block #3
} else {
 // If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if statements, where each
following if is part of the else clause of the previous statement. Using the else if
idiom is preferable to, and more legible than, writing these statements out in their
syntactically equivalent, fully nested form:

if (n === 1) {
 // Execute code block #1
}
else {
 if (n === 2) {
 // Execute code block #2
 }
 else {
 if (n === 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute block #4
 }
 }
}

102 | Chapter 5: Statements

5.3.3 switch
An if statement causes a branch in the flow of a program’s execution, and you can
use the else if idiom to perform a multiway branch. This is not the best solution,
however, when all of the branches depend on the value of the same expression. In this
case, it is wasteful to repeatedly evaluate that expression in multiple if statements.

The switch statement handles exactly this situation. The switch keyword is followed
by an expression in parentheses and a block of code in curly braces:

switch(expression) {
 statements
}

However, the full syntax of a switch statement is more complex than this. Various
locations in the block of code are labeled with the case keyword followed by an
expression and a colon. When a switch executes, it computes the value of expression
and then looks for a case label whose expression evaluates to the same value (where
sameness is determined by the === operator). If it finds one, it starts executing the
block of code at the statement labeled by the case. If it does not find a case with a
matching value, it looks for a statement labeled default:. If there is no default:
label, the switch statement skips the block of code altogether.

switch is a confusing statement to explain; its operation becomes much clearer with
an example. The following switch statement is equivalent to the repeated if/else
statements shown in the previous section:

switch(n) {
case 1: // Start here if n === 1
 // Execute code block #1.
 break; // Stop here
case 2: // Start here if n === 2
 // Execute code block #2.
 break; // Stop here
case 3: // Start here if n === 3
 // Execute code block #3.
 break; // Stop here
default: // If all else fails...
 // Execute code block #4.
 break; // Stop here
}

Note the break keyword used at the end of each case in this code. The break state‐
ment, described later in this chapter, causes the interpreter to jump to the end (or
“break out”) of the switch statement and continue with the statement that follows it.
The case clauses in a switch statement specify only the starting point of the desired
code; they do not specify any ending point. In the absence of break statements, a
switch statement begins executing its block of code at the case label that matches the

5.3 Conditionals | 103

1 The fact that the case expressions are evaluated at runtime makes the JavaScript switch statement much dif‐
ferent from (and less efficient than) the switch statement of C, C++, and Java. In those languages, the case
expressions must be compile-time constants of the same type, and switch statements can often compile down
to highly efficient jump tables.

value of its expression and continues executing statements until it reaches the end of
the block. On rare occasions, it is useful to write code like this that “falls through”
from one case label to the next, but 99% of the time you should be careful to end
every case with a break statement. (When using switch inside a function, however,
you may use a return statement instead of a break statement. Both serve to terminate
the switch statement and prevent execution from falling through to the next case.)

Here is a more realistic example of the switch statement; it converts a value to a
string in a way that depends on the type of the value:

function convert(x) {
 switch(typeof x) {
 case "number": // Convert the number to a hexadecimal integer
 return x.toString(16);
 case "string": // Return the string enclosed in quotes
 return '"' + x + '"';
 default: // Convert any other type in the usual way
 return String(x);
 }
}

Note that in the two previous examples, the case keywords are followed by number
and string literals, respectively. This is how the switch statement is most often used
in practice, but note that the ECMAScript standard allows each case to be followed
by an arbitrary expression.

The switch statement first evaluates the expression that follows the switch keyword
and then evaluates the case expressions, in the order in which they appear, until it
finds a value that matches.1 The matching case is determined using the === identity
operator, not the == equality operator, so the expressions must match without any
type conversion.

Because not all of the case expressions are evaluated each time the switch statement
is executed, you should avoid using case expressions that contain side effects such as
function calls or assignments. The safest course is simply to limit your case expres‐
sions to constant expressions.

As explained earlier, if none of the case expressions match the switch expression, the
switch statement begins executing its body at the statement labeled default:. If
there is no default: label, the switch statement skips its body altogether. Note that
in the examples shown, the default: label appears at the end of the switch body,

104 | Chapter 5: Statements

following all the case labels. This is a logical and common place for it, but it can
actually appear anywhere within the body of the statement.

5.4 Loops
To understand conditional statements, we imagined the JavaScript interpreter follow‐
ing a branching path through your source code. The looping statements are those that
bend that path back upon itself to repeat portions of your code. JavaScript has five
looping statements: while, do/while, for, for/of (and its for/await variant), and
for/in. The following subsections explain each in turn. One common use for loops is
to iterate over the elements of an array. §7.6 discusses this kind of loop in detail and
covers special looping methods defined by the Array class.

5.4.1 while
Just as the if statement is JavaScript’s basic conditional, the while statement is JavaS‐
cript’s basic loop. It has the following syntax:

while (expression)
 statement

To execute a while statement, the interpreter first evaluates expression. If the value of
the expression is falsy, then the interpreter skips over the statement that serves as the
loop body and moves on to the next statement in the program. If, on the other hand,
the expression is truthy, the interpreter executes the statement and repeats, jumping
back to the top of the loop and evaluating expression again. Another way to say this is
that the interpreter executes statement repeatedly while the expression is truthy. Note
that you can create an infinite loop with the syntax while(true).

Usually, you do not want JavaScript to perform exactly the same operation over and
over again. In almost every loop, one or more variables change with each iteration of
the loop. Since the variables change, the actions performed by executing statement
may differ each time through the loop. Furthermore, if the changing variable or vari‐
ables are involved in expression, the value of the expression may be different each
time through the loop. This is important; otherwise, an expression that starts off tru‐
thy would never change, and the loop would never end! Here is an example of a
while loop that prints the numbers from 0 to 9:

let count = 0;
while(count < 10) {
 console.log(count);
 count++;
}

As you can see, the variable count starts off at 0 and is incremented each time the
body of the loop runs. Once the loop has executed 10 times, the expression becomes

5.4 Loops | 105

false (i.e., the variable count is no longer less than 10), the while statement finishes,
and the interpreter can move on to the next statement in the program. Many loops
have a counter variable like count. The variable names i, j, and k are commonly used
as loop counters, though you should use more descriptive names if it makes your
code easier to understand.

5.4.2 do/while
The do/while loop is like a while loop, except that the loop expression is tested at the
bottom of the loop rather than at the top. This means that the body of the loop is
always executed at least once. The syntax is:

do
 statement
while (expression);

The do/while loop is less commonly used than its while cousin—in practice, it is
somewhat uncommon to be certain that you want a loop to execute at least once.
Here’s an example of a do/while loop:

function printArray(a) {
 let len = a.length, i = 0;
 if (len === 0) {
 console.log("Empty Array");
 } else {
 do {
 console.log(a[i]);
 } while(++i < len);
 }
}

There are a couple of syntactic differences between the do/while loop and the ordi‐
nary while loop. First, the do loop requires both the do keyword (to mark the begin‐
ning of the loop) and the while keyword (to mark the end and introduce the loop
condition). Also, the do loop must always be terminated with a semicolon. The while
loop doesn’t need a semicolon if the loop body is enclosed in curly braces.

5.4.3 for
The for statement provides a looping construct that is often more convenient than
the while statement. The for statement simplifies loops that follow a common pat‐
tern. Most loops have a counter variable of some kind. This variable is initialized
before the loop starts and is tested before each iteration of the loop. Finally, the
counter variable is incremented or otherwise updated at the end of the loop body, just
before the variable is tested again. In this kind of loop, the initialization, the test, and
the update are the three crucial manipulations of a loop variable. The for statement

106 | Chapter 5: Statements

2 When we consider the continue statement in §5.5.3, we’ll see that this while loop is not an exact equivalent of
the for loop.

encodes each of these three manipulations as an expression and makes those expres‐
sions an explicit part of the loop syntax:

for(initialize ; test ; increment)
 statement

initialize, test, and increment are three expressions (separated by semicolons) that are
responsible for initializing, testing, and incrementing the loop variable. Putting them
all in the first line of the loop makes it easy to understand what a for loop is doing
and prevents mistakes such as forgetting to initialize or increment the loop variable.

The simplest way to explain how a for loop works is to show the equivalent while
loop:2

initialize;
while(test) {
 statement
 increment;
}

In other words, the initialize expression is evaluated once, before the loop begins. To
be useful, this expression must have side effects (usually an assignment). JavaScript
also allows initialize to be a variable declaration statement so that you can declare and
initialize a loop counter at the same time. The test expression is evaluated before each
iteration and controls whether the body of the loop is executed. If test evaluates to a
truthy value, the statement that is the body of the loop is executed. Finally, the incre‐
ment expression is evaluated. Again, this must be an expression with side effects in
order to be useful. Generally, it is either an assignment expression, or it uses the ++
or -- operators.

We can print the numbers from 0 to 9 with a for loop like the following. Contrast it
with the equivalent while loop shown in the previous section:

for(let count = 0; count < 10; count++) {
 console.log(count);
}

Loops can become a lot more complex than this simple example, of course, and
sometimes multiple variables change with each iteration of the loop. This situation is
the only place that the comma operator is commonly used in JavaScript; it provides a
way to combine multiple initialization and increment expressions into a single
expression suitable for use in a for loop:

let i, j, sum = 0;
for(i = 0, j = 10 ; i < 10 ; i++, j--) {

5.4 Loops | 107

 sum += i * j;
}

In all our loop examples so far, the loop variable has been numeric. This is quite com‐
mon but is not necessary. The following code uses a for loop to traverse a linked list
data structure and return the last object in the list (i.e., the first object that does not
have a next property):

function tail(o) { // Return the tail of linked list o
 for(; o.next; o = o.next) /* empty */ ; // Traverse while o.next is truthy
 return o;
}

Note that this code has no initialize expression. Any of the three expressions may be
omitted from a for loop, but the two semicolons are required. If you omit the test
expression, the loop repeats forever, and for(;;) is another way of writing an infinite
loop, like while(true).

5.4.4 for/of
ES6 defines a new loop statement: for/of. This new kind of loop uses the for key‐
word but is a completely different kind of loop than the regular for loop. (It is also
completely different than the older for/in loop that we’ll describe in §5.4.5.)

The for/of loop works with iterable objects. We’ll explain exactly what it means for
an object to be iterable in Chapter 12, but for this chapter, it is enough to know that
arrays, strings, sets, and maps are iterable: they represent a sequence or set of ele‐
ments that you can loop or iterate through using a for/of loop.

Here, for example, is how we can use for/of to loop through the elements of an array
of numbers and compute their sum:

let data = [1, 2, 3, 4, 5, 6, 7, 8, 9], sum = 0;
for(let element of data) {
 sum += element;
}
sum // => 45

Superficially, the syntax looks like a regular for loop: the for keyword is followed by
parentheses that contain details about what the loop should do. In this case, the
parentheses contain a variable declaration (or, for variables that have already been
declared, simply the name of the variable) followed by the of keyword and an expres‐
sion that evaluates to an iterable object, like the data array in this case. As with all
loops, the body of a for/of loop follows the parentheses, typically within curly
braces.

108 | Chapter 5: Statements

In the code just shown, the loop body runs once for each element of the data array.
Before each execution of the loop body, the next element of the array is assigned to
the element variable. Array elements are iterated in order from first to last.

Arrays are iterated “live”—changes made during the iteration may affect the outcome
of the iteration. If we modify the preceding code by adding the line data.push(sum);
inside the loop body, then we create an infinite loop because the iteration can never
reach the last element of the array.

for/of with objects

Objects are not (by default) iterable. Attempting to use for/of on a regular object
throws a TypeError at runtime:

let o = { x: 1, y: 2, z: 3 };
for(let element of o) { // Throws TypeError because o is not iterable
 console.log(element);
}

If you want to iterate through the properties of an object, you can use the for/in loop
(introduced in §5.4.5), or use for/of with the Object.keys() method:

let o = { x: 1, y: 2, z: 3 };
let keys = "";
for(let k of Object.keys(o)) {
 keys += k;
}
keys // => "xyz"

This works because Object.keys() returns an array of property names for an object,
and arrays are iterable with for/of. Note also that this iteration of the keys of an
object is not live as the array example above was—changes to the object o made in the
loop body will have no effect on the iteration. If you don’t care about the keys of an
object, you can also iterate through their corresponding values like this:

let sum = 0;
for(let v of Object.values(o)) {
 sum += v;
}
sum // => 6

And if you are interested in both the keys and the values of an object’s properties, you
can use for/of with Object.entries() and destructuring assignment:

let pairs = "";
for(let [k, v] of Object.entries(o)) {
 pairs += k + v;
}
pairs // => "x1y2z3"

5.4 Loops | 109

Object.entries() returns an array of arrays, where each inner array represents a
key/value pair for one property of the object. We use destructuring assignment in this
code example to unpack those inner arrays into two individual variables.

for/of with strings
Strings are iterable character-by-character in ES6:

let frequency = {};
for(let letter of "mississippi") {
 if (frequency[letter]) {
 frequency[letter]++;
 } else {
 frequency[letter] = 1;
 }
}
frequency // => {m: 1, i: 4, s: 4, p: 2}

Note that strings are iterated by Unicode codepoint, not by UTF-16 character. The
string “I ❤ ” has a .length of 5 (because the two emoji characters each require two
UTF-16 characters to represent). But if you iterate that string with for/of, the loop
body will run three times, once for each of the three code points “I”, “❤”, and “ .”

for/of with Set and Map

The built-in ES6 Set and Map classes are iterable. When you iterate a Set with for/of,
the loop body runs once for each element of the set. You could use code like this to
print the unique words in a string of text:

let text = "Na na na na na na na na Batman!";
let wordSet = new Set(text.split(" "));
let unique = [];
for(let word of wordSet) {
 unique.push(word);
}
unique // => ["Na", "na", "Batman!"]

Maps are an interesting case because the iterator for a Map object does not iterate the
Map keys, or the Map values, but key/value pairs. Each time through the iteration, the
iterator returns an array whose first element is a key and whose second element is the
corresponding value. Given a Map m, you could iterate and destructure its key/value
pairs like this:

let m = new Map([[1, "one"]]);
for(let [key, value] of m) {
 key // => 1
 value // => "one"
}

110 | Chapter 5: Statements

Asynchronous iteration with for/await
ES2018 introduces a new kind of iterator, known as an asynchronous iterator, and a
variant on the for/of loop, known as the for/await loop that works with asynchro‐
nous iterators.

You’ll need to read Chapters 12 and 13 in order to understand the for/await loop,
but here is how it looks in code:

// Read chunks from an asynchronously iterable stream and print them out
async function printStream(stream) {
 for await (let chunk of stream) {
 console.log(chunk);
 }
}

5.4.5 for/in
A for/in loop looks a lot like a for/of loop, with the of keyword changed to in.
While a for/of loop requires an iterable object after the of, a for/in loop works with
any object after the in. The for/of loop is new in ES6, but for/in has been part of
JavaScript since the very beginning (which is why it has the more natural sounding
syntax).

The for/in statement loops through the property names of a specified object. The
syntax looks like this:

for (variable in object)
 statement

variable typically names a variable, but it may be a variable declaration or anything
suitable as the left-hand side of an assignment expression. object is an expression that
evaluates to an object. As usual, statement is the statement or statement block that
serves as the body of the loop.

And you might use a for/in loop like this:

for(let p in o) { // Assign property names of o to variable p
 console.log(o[p]); // Print the value of each property
}

To execute a for/in statement, the JavaScript interpreter first evaluates the object
expression. If it evaluates to null or undefined, the interpreter skips the loop and
moves on to the next statement. The interpreter now executes the body of the loop
once for each enumerable property of the object. Before each iteration, however, the
interpreter evaluates the variable expression and assigns the name of the property (a
string value) to it.

Note that the variable in the for/in loop may be an arbitrary expression, as long as it
evaluates to something suitable for the left side of an assignment. This expression is

5.4 Loops | 111

evaluated each time through the loop, which means that it may evaluate differently
each time. For example, you can use code like the following to copy the names of all
object properties into an array:

let o = { x: 1, y: 2, z: 3 };
let a = [], i = 0;
for(a[i++] in o) /* empty */;

JavaScript arrays are simply a specialized kind of object, and array indexes are object
properties that can be enumerated with a for/in loop. For example, following the
previous code with this line enumerates the array indexes 0, 1, and 2:

for(let i in a) console.log(i);

I find that a common source of bugs in my own code is the accidental use of for/in
with arrays when I meant to use for/of. When working with arrays, you almost
always want to use for/of instead of for/in.

The for/in loop does not actually enumerate all properties of an object. It does not
enumerate properties whose names are symbols. And of the properties whose names
are strings, it only loops over the enumerable properties (see §14.1). The various
built-in methods defined by core JavaScript are not enumerable. All objects have a
toString() method, for example, but the for/in loop does not enumerate this
toString property. In addition to built-in methods, many other properties of the
built-in objects are non-enumerable. All properties and methods defined by your
code are enumerable, by default. (You can make them non-enumerable using techni‐
ques explained in §14.1.)

Enumerable inherited properties (see §6.3.2) are also enumerated by the for/in loop.
This means that if you use for/in loops and also use code that defines properties that
are inherited by all objects, then your loop may not behave in the way you expect. For
this reason, many programmers prefer to use a for/of loop with Object.keys()
instead of a for/in loop.

If the body of a for/in loop deletes a property that has not yet been enumerated, that
property will not be enumerated. If the body of the loop defines new properties on
the object, those properties may or may not be enumerated. See §6.6.1 for more infor‐
mation on the order in which for/in enumerates the properties of an object.

5.5 Jumps
Another category of JavaScript statements are jump statements. As the name implies,
these cause the JavaScript interpreter to jump to a new location in the source code.
The break statement makes the interpreter jump to the end of a loop or other state‐
ment. continue makes the interpreter skip the rest of the body of a loop and jump
back to the top of a loop to begin a new iteration. JavaScript allows statements to be

112 | Chapter 5: Statements

named, or labeled, and break and continue can identify the target loop or other state‐
ment label.

The return statement makes the interpreter jump from a function invocation back to
the code that invoked it and also supplies the value for the invocation. The throw
statement is a kind of interim return from a generator function. The throw statement
raises, or throws, an exception and is designed to work with the try/catch/finally
statement, which establishes a block of exception-handling code. This is a compli‐
cated kind of jump statement: when an exception is thrown, the interpreter jumps to
the nearest enclosing exception handler, which may be in the same function or up the
call stack in an invoking function.

Details about each of these jump statements are in the sections that follow.

5.5.1 Labeled Statements
Any statement may be labeled by preceding it with an identifier and a colon:

identifier: statement

By labeling a statement, you give it a name that you can use to refer to it elsewhere in
your program. You can label any statement, although it is only useful to label state‐
ments that have bodies, such as loops and conditionals. By giving a loop a name, you
can use break and continue statements inside the body of the loop to exit the loop or
to jump directly to the top of the loop to begin the next iteration. break and continue
are the only JavaScript statements that use statement labels; they are covered in the
following subsections. Here is an example of a labeled while loop and a continue
statement that uses the label.

mainloop: while(token !== null) {
 // Code omitted...
 continue mainloop; // Jump to the next iteration of the named loop
 // More code omitted...
}

The identifier you use to label a statement can be any legal JavaScript identifier that is
not a reserved word. The namespace for labels is different than the namespace for
variables and functions, so you can use the same identifier as a statement label and as
a variable or function name. Statement labels are defined only within the statement to
which they apply (and within its substatements, of course). A statement may not have
the same label as a statement that contains it, but two statements may have the same
label as long as neither one is nested within the other. Labeled statements may them‐
selves be labeled. Effectively, this means that any statement may have multiple labels.

5.5 Jumps | 113

5.5.2 break
The break statement, used alone, causes the innermost enclosing loop or switch
statement to exit immediately. Its syntax is simple:

break;

Because it causes a loop or switch to exit, this form of the break statement is legal
only if it appears inside one of these statements.

You’ve already seen examples of the break statement within a switch statement. In
loops, it is typically used to exit prematurely when, for whatever reason, there is no
longer any need to complete the loop. When a loop has complex termination condi‐
tions, it is often easier to implement some of these conditions with break statements
rather than trying to express them all in a single loop expression. The following code
searches the elements of an array for a particular value. The loop terminates in the
normal way when it reaches the end of the array; it terminates with a break statement
if it finds what it is looking for in the array:

for(let i = 0; i < a.length; i++) {
 if (a[i] === target) break;
}

JavaScript also allows the break keyword to be followed by a statement label (just the
identifier, with no colon):

break labelname;

When break is used with a label, it jumps to the end of, or terminates, the enclosing
statement that has the specified label. It is a syntax error to use break in this form if
there is no enclosing statement with the specified label. With this form of the break
statement, the named statement need not be a loop or switch: break can “break out
of ” any enclosing statement. This statement can even be a statement block grouped
within curly braces for the sole purpose of naming the block with a label.

A newline is not allowed between the break keyword and the labelname. This is a
result of JavaScript’s automatic insertion of omitted semicolons: if you put a line ter‐
minator between the break keyword and the label that follows, JavaScript assumes
you meant to use the simple, unlabeled form of the statement and treats the line ter‐
minator as a semicolon. (See §2.6.)

You need the labeled form of the break statement when you want to break out of a
statement that is not the nearest enclosing loop or a switch. The following code
demonstrates:

let matrix = getData(); // Get a 2D array of numbers from somewhere
// Now sum all the numbers in the matrix.
let sum = 0, success = false;
// Start with a labeled statement that we can break out of if errors occur

114 | Chapter 5: Statements

computeSum: if (matrix) {
 for(let x = 0; x < matrix.length; x++) {
 let row = matrix[x];
 if (!row) break computeSum;
 for(let y = 0; y < row.length; y++) {
 let cell = row[y];
 if (isNaN(cell)) break computeSum;
 sum += cell;
 }
 }
 success = true;
}
// The break statements jump here. If we arrive here with success == false
// then there was something wrong with the matrix we were given.
// Otherwise, sum contains the sum of all cells of the matrix.

Finally, note that a break statement, with or without a label, can not transfer control
across function boundaries. You cannot label a function definition statement, for
example, and then use that label inside the function.

5.5.3 continue
The continue statement is similar to the break statement. Instead of exiting a loop,
however, continue restarts a loop at the next iteration. The continue statement’s syn‐
tax is just as simple as the break statement’s:

continue;

The continue statement can also be used with a label:

continue labelname;

The continue statement, in both its labeled and unlabeled forms, can be used only
within the body of a loop. Using it anywhere else causes a syntax error.

When the continue statement is executed, the current iteration of the enclosing loop
is terminated, and the next iteration begins. This means different things for different
types of loops:

• In a while loop, the specified expression at the beginning of the loop is tested
again, and if it’s true, the loop body is executed starting from the top.

• In a do/while loop, execution skips to the bottom of the loop, where the loop
condition is tested again before restarting the loop at the top.

• In a for loop, the increment expression is evaluated, and the test expression is tes‐
ted again to determine if another iteration should be done.

• In a for/of or for/in loop, the loop starts over with the next iterated value or
next property name being assigned to the specified variable.

5.5 Jumps | 115

Note the difference in behavior of the continue statement in the while and for loops:
a while loop returns directly to its condition, but a for loop first evaluates its incre‐
ment expression and then returns to its condition. Earlier, we considered the behavior
of the for loop in terms of an “equivalent” while loop. Because the continue state‐
ment behaves differently for these two loops, however, it is not actually possible to
perfectly simulate a for loop with a while loop alone.

The following example shows an unlabeled continue statement being used to skip
the rest of the current iteration of a loop when an error occurs:

for(let i = 0; i < data.length; i++) {
 if (!data[i]) continue; // Can't proceed with undefined data
 total += data[i];
}

Like the break statement, the continue statement can be used in its labeled form
within nested loops when the loop to be restarted is not the immediately enclosing
loop. Also, as with the break statement, line breaks are not allowed between the con
tinue statement and its labelname.

5.5.4 return
Recall that function invocations are expressions and that all expressions have values.
A return statement within a function specifies the value of invocations of that func‐
tion. Here’s the syntax of the return statement:

return expression;

A return statement may appear only within the body of a function. It is a syntax
error for it to appear anywhere else. When the return statement is executed, the
function that contains it returns the value of expression to its caller. For example:

function square(x) { return x*x; } // A function that has a return statement
square(2) // => 4

With no return statement, a function invocation simply executes each of the state‐
ments in the function body in turn until it reaches the end of the function and then
returns to its caller. In this case, the invocation expression evaluates to undefined.
The return statement often appears as the last statement in a function, but it need
not be last: a function returns to its caller when a return statement is executed, even
if there are other statements remaining in the function body.

The return statement can also be used without an expression to make the function
return undefined to its caller. For example:

function displayObject(o) {
 // Return immediately if the argument is null or undefined.
 if (!o) return;

116 | Chapter 5: Statements

 // Rest of function goes here...
}

Because of JavaScript’s automatic semicolon insertion (§2.6), you cannot include a
line break between the return keyword and the expression that follows it.

5.5.5 yield
The yield statement is much like the return statement but is used only in ES6 gener‐
ator functions (see §12.3) to produce the next value in the generated sequence of val‐
ues without actually returning:

// A generator function that yields a range of integers
function* range(from, to) {
 for(let i = from; i <= to; i++) {
 yield i;
 }
}

In order to understand yield, you must understand iterators and generators, which
will not be covered until Chapter 12. yield is included here for completeness, how‐
ever. (Technically, though, yield is an operator rather than a statement, as explained
in §12.4.2.)

5.5.6 throw
An exception is a signal that indicates that some sort of exceptional condition or error
has occurred. To throw an exception is to signal such an error or exceptional condi‐
tion. To catch an exception is to handle it—to take whatever actions are necessary or
appropriate to recover from the exception. In JavaScript, exceptions are thrown
whenever a runtime error occurs and whenever the program explicitly throws one
using the throw statement. Exceptions are caught with the try/catch/finally state‐
ment, which is described in the next section.

The throw statement has the following syntax:

throw expression;

expression may evaluate to a value of any type. You might throw a number that repre‐
sents an error code or a string that contains a human-readable error message. The
Error class and its subclasses are used when the JavaScript interpreter itself throws an
error, and you can use them as well. An Error object has a name property that specifies
the type of error and a message property that holds the string passed to the construc‐
tor function. Here is an example function that throws an Error object when invoked
with an invalid argument:

function factorial(x) {
 // If the input argument is invalid, throw an exception!
 if (x < 0) throw new Error("x must not be negative");

5.5 Jumps | 117

 // Otherwise, compute a value and return normally
 let f;
 for(f = 1; x > 1; f *= x, x--) /* empty */ ;
 return f;
}
factorial(4) // => 24

When an exception is thrown, the JavaScript interpreter immediately stops normal
program execution and jumps to the nearest exception handler. Exception handlers
are written using the catch clause of the try/catch/finally statement, which is
described in the next section. If the block of code in which the exception was thrown
does not have an associated catch clause, the interpreter checks the next-highest
enclosing block of code to see if it has an exception handler associated with it. This
continues until a handler is found. If an exception is thrown in a function that does
not contain a try/catch/finally statement to handle it, the exception propagates up
to the code that invoked the function. In this way, exceptions propagate up through
the lexical structure of JavaScript methods and up the call stack. If no exception han‐
dler is ever found, the exception is treated as an error and is reported to the user.

5.5.7 try/catch/finally
The try/catch/finally statement is JavaScript’s exception handling mechanism.
The try clause of this statement simply defines the block of code whose exceptions
are to be handled. The try block is followed by a catch clause, which is a block of
statements that are invoked when an exception occurs anywhere within the try block.
The catch clause is followed by a finally block containing cleanup code that is guar‐
anteed to be executed, regardless of what happens in the try block. Both the catch
and finally blocks are optional, but a try block must be accompanied by at least one
of these blocks. The try, catch, and finally blocks all begin and end with curly
braces. These braces are a required part of the syntax and cannot be omitted, even if a
clause contains only a single statement.

The following code illustrates the syntax and purpose of the try/catch/finally
statement:

try {
 // Normally, this code runs from the top of the block to the bottom
 // without problems. But it can sometimes throw an exception,
 // either directly, with a throw statement, or indirectly, by calling
 // a method that throws an exception.
}
catch(e) {
 // The statements in this block are executed if, and only if, the try
 // block throws an exception. These statements can use the local variable
 // e to refer to the Error object or other value that was thrown.
 // This block may handle the exception somehow, may ignore the
 // exception by doing nothing, or may rethrow the exception with throw.

118 | Chapter 5: Statements

}
finally {
 // This block contains statements that are always executed, regardless of
 // what happens in the try block. They are executed whether the try
 // block terminates:
 // 1) normally, after reaching the bottom of the block
 // 2) because of a break, continue, or return statement
 // 3) with an exception that is handled by a catch clause above
 // 4) with an uncaught exception that is still propagating
}

Note that the catch keyword is generally followed by an identifier in parentheses.
This identifier is like a function parameter. When an exception is caught, the value
associated with the exception (an Error object, for example) is assigned to this param‐
eter. The identifier associated with a catch clause has block scope—it is only defined
within the catch block.

Here is a realistic example of the try/catch statement. It uses the factorial()
method defined in the previous section and the client-side JavaScript methods
prompt() and alert() for input and output:

try {
 // Ask the user to enter a number
 let n = Number(prompt("Please enter a positive integer", ""));
 // Compute the factorial of the number, assuming the input is valid
 let f = factorial(n);
 // Display the result
 alert(n + "! = " + f);
}
catch(ex) { // If the user's input was not valid, we end up here
 alert(ex); // Tell the user what the error is
}

This example is a try/catch statement with no finally clause. Although finally is
not used as often as catch, it can be useful. However, its behavior requires additional
explanation. The finally clause is guaranteed to be executed if any portion of the
try block is executed, regardless of how the code in the try block completes. It is
generally used to clean up after the code in the try clause.

In the normal case, the JavaScript interpreter reaches the end of the try block and
then proceeds to the finally block, which performs any necessary cleanup. If the
interpreter left the try block because of a return, continue, or break statement, the
finally block is executed before the interpreter jumps to its new destination.

If an exception occurs in the try block and there is an associated catch block to han‐
dle the exception, the interpreter first executes the catch block and then the finally
block. If there is no local catch block to handle the exception, the interpreter first
executes the finally block and then jumps to the nearest containing catch clause.

5.5 Jumps | 119

If a finally block itself causes a jump with a return, continue, break, or throw
statement, or by calling a method that throws an exception, the interpreter abandons
whatever jump was pending and performs the new jump. For example, if a finally
clause throws an exception, that exception replaces any exception that was in the pro‐
cess of being thrown. If a finally clause issues a return statement, the method
returns normally, even if an exception has been thrown and has not yet been handled.

try and finally can be used together without a catch clause. In this case, the
finally block is simply cleanup code that is guaranteed to be executed, regardless of
what happens in the try block. Recall that we can’t completely simulate a for loop
with a while loop because the continue statement behaves differently for the two
loops. If we add a try/finally statement, we can write a while loop that works like a
for loop and that handles continue statements correctly:

// Simulate for(initialize ; test ;increment) body;
initialize ;
while(test) {
 try { body ; }
 finally { increment ; }
}

Note, however, that a body that contains a break statement behaves slightly differently
(causing an extra increment before exiting) in the while loop than it does in the for
loop, so even with the finally clause, it is not possible to completely simulate the for
loop with while.

Bare Catch Clauses
Occasionally you may find yourself using a catch clause solely to detect and stop the
propagation of an exception, even though you do not care about the type or the value
of the exception. In ES2019 and later, you can omit the parentheses and the identifier
and use the catch keyword bare in this case. Here is an example:

// Like JSON.parse(), but return undefined instead of throwing an error
function parseJSON(s) {
 try {
 return JSON.parse(s);
 } catch {
 // Something went wrong but we don't care what it was
 return undefined;
 }
}

120 | Chapter 5: Statements

5.6 Miscellaneous Statements
This section describes the remaining three JavaScript statements—with, debugger,
and "use strict".

5.6.1 with
The with statement runs a block of code as if the properties of a specified object were
variables in scope for that code. It has the following syntax:

with (object)
 statement

This statement creates a temporary scope with the properties of object as variables
and then executes statement within that scope.

The with statement is forbidden in strict mode (see §5.6.3) and should be considered
deprecated in non-strict mode: avoid using it whenever possible. JavaScript code that
uses with is difficult to optimize and is likely to run significantly more slowly than
the equivalent code written without the with statement.

The common use of the with statement is to make it easier to work with deeply nes‐
ted object hierarchies. In client-side JavaScript, for example, you may have to type
expressions like this one to access elements of an HTML form:

document.forms[0].address.value

If you need to write expressions like this a number of times, you can use the with
statement to treat the properties of the form object like variables:

with(document.forms[0]) {
 // Access form elements directly here. For example:
 name.value = "";
 address.value = "";
 email.value = "";
}

This reduces the amount of typing you have to do: you no longer need to prefix each
form property name with document.forms[0]. It is just as simple, of course, to avoid
the with statement and write the preceding code like this:

let f = document.forms[0];
f.name.value = "";
f.address.value = "";
f.email.value = "";

Note that if you use const or let or var to declare a variable or constant within the
body of a with statement, it creates an ordinary variable and does not define a new
property within the specified object.

5.6 Miscellaneous Statements | 121

5.6.2 debugger
The debugger statement normally does nothing. If, however, a debugger program is
available and is running, then an implementation may (but is not required to) per‐
form some kind of debugging action. In practice, this statement acts like a break‐
point: execution of JavaScript code stops, and you can use the debugger to print
variables’ values, examine the call stack, and so on. Suppose, for example, that you are
getting an exception in your function f() because it is being called with an undefined
argument, and you can’t figure out where this call is coming from. To help you in
debugging this problem, you might alter f() so that it begins like this:

function f(o) {
 if (o === undefined) debugger; // Temporary line for debugging purposes
 ... // The rest of the function goes here.
}

Now, when f() is called with no argument, execution will stop, and you can use the
debugger to inspect the call stack and find out where this incorrect call is coming
from.

Note that it is not enough to have a debugger available: the debugger statement won’t
start the debugger for you. If you’re using a web browser and have the developer tools
console open, however, this statement will cause a breakpoint.

5.6.3 “use strict”
"use strict" is a directive introduced in ES5. Directives are not statements (but are
close enough that "use strict" is documented here). There are two important dif‐
ferences between the "use strict" directive and regular statements:

• It does not include any language keywords: the directive is just an expression
statement that consists of a special string literal (in single or double quotes).

• It can appear only at the start of a script or at the start of a function body, before
any real statements have appeared.

The purpose of a "use strict" directive is to indicate that the code that follows (in
the script or function) is strict code. The top-level (nonfunction) code of a script is
strict code if the script has a "use strict" directive. A function body is strict code if
it is defined within strict code or if it has a "use strict" directive. Code passed to
the eval() method is strict code if eval() is called from strict code or if the string of
code includes a "use strict" directive. In addition to code explicitly declared to be
strict, any code in a class body (Chapter 9) or in an ES6 module (§10.3) is automati‐
cally strict code. This means that if all of your JavaScript code is written as modules,
then it is all automatically strict, and you will never need to use an explicit "use
strict" directive.

122 | Chapter 5: Statements

Strict code is executed in strict mode. Strict mode is a restricted subset of the language
that fixes important language deficiencies and provides stronger error checking and
increased security. Because strict mode is not the default, old JavaScript code that still
uses the deficient legacy features of the language will continue to run correctly. The
differences between strict mode and non-strict mode are the following (the first three
are particularly important):

• The with statement is not allowed in strict mode.
• In strict mode, all variables must be declared: a ReferenceError is thrown if you

assign a value to an identifier that is not a declared variable, function, function
parameter, catch clause parameter, or property of the global object. (In non-
strict mode, this implicitly declares a global variable by adding a new property to
the global object.)

• In strict mode, functions invoked as functions (rather than as methods) have a
this value of undefined. (In non-strict mode, functions invoked as functions are
always passed the global object as their this value.) Also, in strict mode, when a
function is invoked with call() or apply() (§8.7.4), the this value is exactly the
value passed as the first argument to call() or apply(). (In non-strict mode,
null and undefined values are replaced with the global object and nonobject val‐
ues are converted to objects.)

• In strict mode, assignments to nonwritable properties and attempts to create new
properties on non-extensible objects throw a TypeError. (In non-strict mode,
these attempts fail silently.)

• In strict mode, code passed to eval() cannot declare variables or define func‐
tions in the caller’s scope as it can in non-strict mode. Instead, variable and func‐
tion definitions live in a new scope created for the eval(). This scope is
discarded when the eval() returns.

• In strict mode, the Arguments object (§8.3.3) in a function holds a static copy of
the values passed to the function. In non-strict mode, the Arguments object has
“magical” behavior in which elements of the array and named function parame‐
ters both refer to the same value.

• In strict mode, a SyntaxError is thrown if the delete operator is followed by an
unqualified identifier such as a variable, function, or function parameter. (In
nonstrict mode, such a delete expression does nothing and evaluates to false.)

• In strict mode, an attempt to delete a nonconfigurable property throws a TypeEr‐
ror. (In non-strict mode, the attempt fails and the delete expression evaluates to
false.)

• In strict mode, it is a syntax error for an object literal to define two or more prop‐
erties by the same name. (In non-strict mode, no error occurs.)

5.6 Miscellaneous Statements | 123

• In strict mode, it is a syntax error for a function declaration to have two or more
parameters with the same name. (In non-strict mode, no error occurs.)

• In strict mode, octal integer literals (beginning with a 0 that is not followed by an
x) are not allowed. (In non-strict mode, some implementations allow octal
literals.)

• In strict mode, the identifiers eval and arguments are treated like keywords, and
you are not allowed to change their value. You cannot assign a value to these
identifiers, declare them as variables, use them as function names, use them as
function parameter names, or use them as the identifier of a catch block.

• In strict mode, the ability to examine the call stack is restricted. argu
ments.caller and arguments.callee both throw a TypeError within a strict
mode function. Strict mode functions also have caller and arguments properties
that throw TypeError when read. (Some implementations define these nonstan‐
dard properties on non-strict functions.)

5.7 Declarations
The keywords const, let, var, function, class, import, and export are not techni‐
cally statements, but they look a lot like statements, and this book refers informally to
them as statements, so they deserve a mention in this chapter.

These keywords are more accurately described as declarations rather than statements.
We said at the start of this chapter that statements “make something happen.” Decla‐
rations serve to define new values and give them names that we can use to refer to
those values. They don’t make much happen themselves, but by providing names for
values they, in an important sense, define the meaning of the other statements in your
program.

When a program runs, it is the program’s expressions that are being evaluated and the
program’s statements that are being executed. The declarations in a program don’t
“run” in the same way: instead, they define the structure of the program itself.
Loosely, you can think of declarations as the parts of the program that are processed
before the code starts running.

JavaScript declarations are used to define constants, variables, functions, and classes
and for importing and exporting values between modules. The next subsections give
examples of all of these declarations. They are all covered in much more detail else‐
where in this book.

124 | Chapter 5: Statements

5.7.1 const, let, and var
The const, let, and var declarations are covered in §3.10. In ES6 and later, const
declares constants, and let declares variables. Prior to ES6, the var keyword was the
only way to declare variables and there was no way to declare constants. Variables
declared with var are scoped to the containing function rather than the containing
block. This can be a source of bugs, and in modern JavaScript there is really no reason
to use var instead of let.

const TAU = 2*Math.PI;
let radius = 3;
var circumference = TAU * radius;

5.7.2 function
The function declaration is used to define functions, which are covered in detail in
Chapter 8. (We also saw function in §4.3, where it was used as part of a function
expression rather than a function declaration.) A function declaration looks like this:

function area(radius) {
 return Math.PI * radius * radius;
}

A function declaration creates a function object and assigns it to the specified name—
area in this example. Elsewhere in our program, we can refer to the function—and
run the code inside it—by using this name. The function declarations in any block of
JavaScript code are processed before that code runs, and the function names are
bound to the function objects throughout the block. We say that function declara‐
tions are “hoisted” because it is as if they had all been moved up to the top of what‐
ever scope they are defined within. The upshot is that code that invokes a function
can exist in your program before the code that declares the function.

§12.3 describes a special kind of function known as a generator. Generator declara‐
tions use the function keyword but follow it with an asterisk. §13.3 describes asyn‐
chronous functions, which are also declared using the function keyword but are
prefixed with the async keyword.

5.7.3 class
In ES6 and later, the class declaration creates a new class and gives it a name that we
can use to refer to it. Classes are described in detail in Chapter 9. A simple class decla‐
ration might look like this:

class Circle {
 constructor(radius) { this.r = radius; }
 area() { return Math.PI * this.r * this.r; }
 circumference() { return 2 * Math.PI * this.r; }
}

5.7 Declarations | 125

Unlike functions, class declarations are not hoisted, and you cannot use a class
declared this way in code that appears before the declaration.

5.7.4 import and export
The import and export declarations are used together to make values defined in one
module of JavaScript code available in another module. A module is a file of Java‐
Script code with its own global namespace, completely independent of all other mod‐
ules. The only way that a value (such as function or class) defined in one module can
be used in another module is if the defining module exports it with export and the
using module imports it with import. Modules are the subject of Chapter 10, and
import and export are covered in detail in §10.3.

import directives are used to import one or more values from another file of Java‐
Script code and give them names within the current module. import directives come
in a few different forms. Here are some examples:

import Circle from './geometry/circle.js';
import { PI, TAU } from './geometry/constants.js';
import { magnitude as hypotenuse } from './vectors/utils.js';

Values within a JavaScript module are private and cannot be imported into other
modules unless they have been explicitly exported. The export directive does this: it
declares that one or more values defined in the current module are exported and
therefore available for import by other modules. The export directive has more var‐
iants than the import directive does. Here is one of them:

// geometry/constants.js
const PI = Math.PI;
const TAU = 2 * PI;
export { PI, TAU };

The export keyword is sometimes used as a modifier on other declarations, resulting
in a kind of compound declaration that defines a constant, variable, function, or class
and exports it at the same time. And when a module exports only a single value, this
is typically done with the special form export default:

export const TAU = 2 * Math.PI;
export function magnitude(x,y) { return Math.sqrt(x*x + y*y); }
export default class Circle { /* class definition omitted here */ }

126 | Chapter 5: Statements

5.8 Summary of JavaScript Statements
This chapter introduced each of the JavaScript language’s statements, which are sum‐
marized in Table 5-1.

Table 5-1. JavaScript statement syntax

Statement Purpose
break Exit from the innermost loop or switch or from named enclosing statement

case Label a statement within a switch

class Declare a class

const Declare and initialize one or more constants

continue Begin next iteration of the innermost loop or the named loop

debugger Debugger breakpoint

default Label the default statement within a switch

do/while An alternative to the while loop

export Declare values that can be imported into other modules

for An easy-to-use loop

for/await Asynchronously iterate the values of an async iterator

for/in Enumerate the property names of an object

for/of Enumerate the values of an iterable object such as an array

function Declare a function

if/else Execute one statement or another depending on a condition

import Declare names for values defined in other modules

label Give statement a name for use with break and continue

let Declare and initialize one or more block-scoped variables (new syntax)

return Return a value from a function

switch Multiway branch to case or default: labels

throw Throw an exception

try/catch/finally Handle exceptions and code cleanup

“use strict” Apply strict mode restrictions to script or function

var Declare and initialize one or more variables (old syntax)

while A basic loop construct

with Extend the scope chain (deprecated and forbidden in strict mode)

yield Provide a value to be iterated; only used in generator functions

5.8 Summary of JavaScript Statements | 127

CHAPTER 6

Objects

Objects are JavaScript’s most fundamental datatype, and you have already seen them
many times in the chapters that precede this one. Because objects are so important to
the JavaScript language, it is important that you understand how they work in detail,
and this chapter provides that detail. It begins with a formal overview of objects, then
dives into practical sections about creating objects and querying, setting, deleting,
testing, and enumerating the properties of objects. These property-focused sections
are followed by sections that explain how to extend, serialize, and define important
methods on objects. Finally, the chapter concludes with a long section about new
object literal syntax in ES6 and more recent versions of the language.

6.1 Introduction to Objects
An object is a composite value: it aggregates multiple values (primitive values or
other objects) and allows you to store and retrieve those values by name. An object is
an unordered collection of properties, each of which has a name and a value. Property
names are usually strings (although, as we’ll see in §6.10.3, property names can also
be Symbols), so we can say that objects map strings to values. This string-to-value
mapping goes by various names—you are probably already familiar with the funda‐
mental data structure under the name “hash,” “hashtable,” “dictionary,” or “associative
array.” An object is more than a simple string-to-value map, however. In addition to
maintaining its own set of properties, a JavaScript object also inherits the properties
of another object, known as its “prototype.” The methods of an object are typically
inherited properties, and this “prototypal inheritance” is a key feature of JavaScript.

JavaScript objects are dynamic—properties can usually be added and deleted—but
they can be used to simulate the static objects and “structs” of statically typed lan‐
guages. They can also be used (by ignoring the value part of the string-to-value map‐
ping) to represent sets of strings.

129

Any value in JavaScript that is not a string, a number, a Symbol, or true, false, null,
or undefined is an object. And even though strings, numbers, and booleans are not
objects, they can behave like immutable objects.

Recall from §3.8 that objects are mutable and manipulated by reference rather than by
value. If the variable x refers to an object and the code let y = x; is executed, the
variable y holds a reference to the same object, not a copy of that object. Any
modifications made to the object through the variable y are also visible through the
variable x.

The most common things to do with objects are to create them and set, query, delete,
test, and enumerate their properties. These fundamental operations are described in
the opening sections of this chapter. The sections after that cover more advanced
topics.

A property has a name and a value. A property name may be any string, including the
empty string (or any Symbol), but no object may have two properties with the same
name. The value may be any JavaScript value, or it may be a getter or setter function
(or both). We’ll learn about getter and setter functions in §6.10.6.

It is sometimes important to be able to distinguish between properties defined
directly on an object and those that are inherited from a prototype object. JavaScript
uses the term own property to refer to non-inherited properties.

In addition to its name and value, each property has three property attributes:

• The writable attribute specifies whether the value of the property can be set.
• The enumerable attribute specifies whether the property name is returned by a
for/in loop.

• The configurable attribute specifies whether the property can be deleted and
whether its attributes can be altered.

Many of JavaScript’s built-in objects have properties that are read-only, non-
enumerable, or non-configurable. By default, however, all properties of the objects
you create are writable, enumerable, and configurable. §14.1 explains techniques for
specifying non-default property attribute values for your objects.

6.2 Creating Objects
Objects can be created with object literals, with the new keyword, and with the
Object.create() function. The subsections below describe each technique.

130 | Chapter 6: Objects

6.2.1 Object Literals
The easiest way to create an object is to include an object literal in your JavaScript
code. In its simplest form, an object literal is a comma-separated list of colon-
separated name:value pairs, enclosed within curly braces. A property name is a Java‐
Script identifier or a string literal (the empty string is allowed). A property value is
any JavaScript expression; the value of the expression (it may be a primitive value or
an object value) becomes the value of the property. Here are some examples:

let empty = {}; // An object with no properties
let point = { x: 0, y: 0 }; // Two numeric properties
let p2 = { x: point.x, y: point.y+1 }; // More complex values
let book = {
 "main title": "JavaScript", // These property names include spaces,
 "sub-title": "The Definitive Guide", // and hyphens, so use string literals.
 for: "all audiences", // for is reserved, but no quotes.
 author: { // The value of this property is
 firstname: "David", // itself an object.
 surname: "Flanagan"
 }
};

A trailing comma following the last property in an object literal is legal, and some
programming styles encourage the use of these trailing commas so you’re less likely
to cause a syntax error if you add a new property at the end of the object literal at
some later time.

An object literal is an expression that creates and initializes a new and distinct object
each time it is evaluated. The value of each property is evaluated each time the literal
is evaluated. This means that a single object literal can create many new objects if it
appears within the body of a loop or in a function that is called repeatedly, and that
the property values of these objects may differ from each other.

The object literals shown here use simple syntax that has been legal since the earliest
versions of JavaScript. Recent versions of the language have introduced a number of
new object literal features, which are covered in §6.10.

6.2.2 Creating Objects with new
The new operator creates and initializes a new object. The new keyword must be fol‐
lowed by a function invocation. A function used in this way is called a constructor and
serves to initialize a newly created object. JavaScript includes constructors for its
built-in types. For example:

let o = new Object(); // Create an empty object: same as {}.
let a = new Array(); // Create an empty array: same as [].
let d = new Date(); // Create a Date object representing the current time
let r = new Map(); // Create a Map object for key/value mapping

6.2 Creating Objects | 131

In addition to these built-in constructors, it is common to define your own construc‐
tor functions to initialize newly created objects. Doing so is covered in Chapter 9.

6.2.3 Prototypes
Before we can cover the third object creation technique, we must pause for a moment
to explain prototypes. Almost every JavaScript object has a second JavaScript object
associated with it. This second object is known as a prototype, and the first object
inherits properties from the prototype.

All objects created by object literals have the same prototype object, and we can refer
to this prototype object in JavaScript code as Object.prototype. Objects created
using the new keyword and a constructor invocation use the value of the prototype
property of the constructor function as their prototype. So the object created by new
Object() inherits from Object.prototype, just as the object created by {} does. Sim‐
ilarly, the object created by new Array() uses Array.prototype as its prototype, and
the object created by new Date() uses Date.prototype as its prototype. This can be
confusing when first learning JavaScript. Remember: almost all objects have a proto‐
type, but only a relatively small number of objects have a prototype property. It is
these objects with prototype properties that define the prototypes for all the other
objects.

Object.prototype is one of the rare objects that has no prototype: it does not inherit
any properties. Other prototype objects are normal objects that do have a prototype.
Most built-in constructors (and most user-defined constructors) have a prototype
that inherits from Object.prototype. For example, Date.prototype inherits proper‐
ties from Object.prototype, so a Date object created by new Date() inherits proper‐
ties from both Date.prototype and Object.prototype. This linked series of
prototype objects is known as a prototype chain.

An explanation of how property inheritance works is in §6.3.2. Chapter 9 explains the
connection between prototypes and constructors in more detail: it shows how to
define new “classes” of objects by writing a constructor function and setting its proto
type property to the prototype object to be used by the “instances” created with that
constructor. And we’ll learn how to query (and even change) the prototype of an
object in §14.3.

6.2.4 Object.create()
Object.create() creates a new object, using its first argument as the prototype of
that object:

let o1 = Object.create({x: 1, y: 2}); // o1 inherits properties x and y.
o1.x + o1.y // => 3

132 | Chapter 6: Objects

You can pass null to create a new object that does not have a prototype, but if you do
this, the newly created object will not inherit anything, not even basic methods like
toString() (which means it won’t work with the + operator either):

let o2 = Object.create(null); // o2 inherits no props or methods.

If you want to create an ordinary empty object (like the object returned by {} or new
Object()), pass Object.prototype:

let o3 = Object.create(Object.prototype); // o3 is like {} or new Object().

The ability to create a new object with an arbitrary prototype is a powerful one, and
we’ll use Object.create() in a number of places throughout this chapter.
(Object.create() also takes an optional second argument that describes the proper‐
ties of the new object. This second argument is an advanced feature covered in §14.1.)

One use for Object.create() is when you want to guard against unintended (but
nonmalicious) modification of an object by a library function that you don’t have
control over. Instead of passing the object directly to the function, you can pass an
object that inherits from it. If the function reads properties of that object, it will see
the inherited values. If it sets properties, however, those writes will not affect the orig‐
inal object.

let o = { x: "don't change this value" };
library.function(Object.create(o)); // Guard against accidental modifications

To understand why this works, you need to know how properties are queried and set
in JavaScript. These are the topics of the next section.

6.3 Querying and Setting Properties
To obtain the value of a property, use the dot (.) or square bracket ([]) operators
described in §4.4. The lefthand side should be an expression whose value is an object.
If using the dot operator, the righthand side must be a simple identifier that names
the property. If using square brackets, the value within the brackets must be an
expression that evaluates to a string that contains the desired property name:

let author = book.author; // Get the "author" property of the book.
let name = author.surname; // Get the "surname" property of the author.
let title = book["main title"]; // Get the "main title" property of the book.

To create or set a property, use a dot or square brackets as you would to query the
property, but put them on the lefthand side of an assignment expression:

book.edition = 7; // Create an "edition" property of book.
book["main title"] = "ECMAScript"; // Change the "main title" property.

When using square bracket notation, we’ve said that the expression inside the square
brackets must evaluate to a string. A more precise statement is that the expression

6.3 Querying and Setting Properties | 133

must evaluate to a string or a value that can be converted to a string or to a Symbol
(§6.10.3). In Chapter 7, for example, we’ll see that it is common to use numbers inside
the square brackets.

6.3.1 Objects As Associative Arrays
As explained in the preceding section, the following two JavaScript expressions have
the same value:

object.property
object["property"]

The first syntax, using the dot and an identifier, is like the syntax used to access a
static field of a struct or object in C or Java. The second syntax, using square brackets
and a string, looks like array access, but to an array indexed by strings rather than by
numbers. This kind of array is known as an associative array (or hash or map or dic‐
tionary). JavaScript objects are associative arrays, and this section explains why that is
important.

In C, C++, Java, and similar strongly typed languages, an object can have only a fixed
number of properties, and the names of these properties must be defined in advance.
Since JavaScript is a loosely typed language, this rule does not apply: a program can
create any number of properties in any object. When you use the . operator to access
a property of an object, however, the name of the property is expressed as an identi‐
fier. Identifiers must be typed literally into your JavaScript program; they are not a
datatype, so they cannot be manipulated by the program.

On the other hand, when you access a property of an object with the [] array nota‐
tion, the name of the property is expressed as a string. Strings are JavaScript data‐
types, so they can be manipulated and created while a program is running. So, for
example, you can write the following code in JavaScript:

let addr = "";
for(let i = 0; i < 4; i++) {
 addr += customer[`address${i}`] + "\n";
}

This code reads and concatenates the address0, address1, address2, and address3
properties of the customer object.

This brief example demonstrates the flexibility of using array notation to access prop‐
erties of an object with string expressions. This code could be rewritten using the dot
notation, but there are cases in which only the array notation will do. Suppose, for
example, that you are writing a program that uses network resources to compute the
current value of the user’s stock market investments. The program allows the user to
type in the name of each stock they own as well as the number of shares of each stock.
You might use an object named portfolio to hold this information. The object has

134 | Chapter 6: Objects

one property for each stock. The name of the property is the name of the stock, and
the property value is the number of shares of that stock. So, for example, if a user
holds 50 shares of stock in IBM, the portfolio.ibm property has the value 50.

Part of this program might be a function for adding a new stock to the portfolio:

function addstock(portfolio, stockname, shares) {
 portfolio[stockname] = shares;
}

Since the user enters stock names at runtime, there is no way that you can know the
property names ahead of time. Since you can’t know the property names when you
write the program, there is no way you can use the . operator to access the properties
of the portfolio object. You can use the [] operator, however, because it uses a string
value (which is dynamic and can change at runtime) rather than an identifier (which
is static and must be hardcoded in the program) to name the property.

In Chapter 5, we introduced the for/in loop (and we’ll see it again shortly, in §6.6).
The power of this JavaScript statement becomes clear when you consider its use with
associative arrays. Here is how you would use it when computing the total value of a
portfolio:

function computeValue(portfolio) {
 let total = 0.0;
 for(let stock in portfolio) { // For each stock in the portfolio:
 let shares = portfolio[stock]; // get the number of shares
 let price = getQuote(stock); // look up share price
 total += shares * price; // add stock value to total value
 }
 return total; // Return total value.
}

JavaScript objects are commonly used as associative arrays as shown here, and it is
important to understand how this works. In ES6 and later, however, the Map class
described in §11.1.2 is often a better choice than using a plain object.

6.3.2 Inheritance
JavaScript objects have a set of “own properties,” and they also inherit a set of proper‐
ties from their prototype object. To understand this, we must consider property
access in more detail. The examples in this section use the Object.create() function
to create objects with specified prototypes. We’ll see in Chapter 9, however, that every
time you create an instance of a class with new, you are creating an object that inherits
properties from a prototype object.

6.3 Querying and Setting Properties | 135

1 Remember; almost all objects have a prototype but most do not have a property named prototype. JavaScript
inheritance works even if you can’t access the prototype object directly. But see §14.3 if you want to learn how
to do that.

Suppose you query the property x in the object o. If o does not have an own property
with that name, the prototype object of o1 is queried for the property x. If the proto‐
type object does not have an own property by that name, but has a prototype itself,
the query is performed on the prototype of the prototype. This continues until the
property x is found or until an object with a null prototype is searched. As you can
see, the prototype attribute of an object creates a chain or linked list from which
properties are inherited:

let o = {}; // o inherits object methods from Object.prototype
o.x = 1; // and it now has an own property x.
let p = Object.create(o); // p inherits properties from o and Object.prototype
p.y = 2; // and has an own property y.
let q = Object.create(p); // q inherits properties from p, o, and...
q.z = 3; // ...Object.prototype and has an own property z.
let f = q.toString(); // toString is inherited from Object.prototype
q.x + q.y // => 3; x and y are inherited from o and p

Now suppose you assign to the property x of the object o. If o already has an own
(non-inherited) property named x, then the assignment simply changes the value of
this existing property. Otherwise, the assignment creates a new property named x on
the object o. If o previously inherited the property x, that inherited property is now
hidden by the newly created own property with the same name.

Property assignment examines the prototype chain only to determine whether the
assignment is allowed. If o inherits a read-only property named x, for example, then
the assignment is not allowed. (Details about when a property may be set are in
§6.3.3.) If the assignment is allowed, however, it always creates or sets a property in
the original object and never modifies objects in the prototype chain. The fact that
inheritance occurs when querying properties but not when setting them is a key fea‐
ture of JavaScript because it allows us to selectively override inherited properties:

let unitcircle = { r: 1 }; // An object to inherit from
let c = Object.create(unitcircle); // c inherits the property r
c.x = 1; c.y = 1; // c defines two properties of its own
c.r = 2; // c overrides its inherited property
unitcircle.r // => 1: the prototype is not affected

There is one exception to the rule that a property assignment either fails or creates or
sets a property in the original object. If o inherits the property x, and that property is
an accessor property with a setter method (see §6.10.6), then that setter method is
called rather than creating a new property x in o. Note, however, that the setter
method is called on the object o, not on the prototype object that defines the

136 | Chapter 6: Objects

property, so if the setter method defines any properties, it will do so on o, and it will
again leave the prototype chain unmodified.

6.3.3 Property Access Errors
Property access expressions do not always return or set a value. This section explains
the things that can go wrong when you query or set a property.

It is not an error to query a property that does not exist. If the property x is not found
as an own property or an inherited property of o, the property access expression o.x
evaluates to undefined. Recall that our book object has a “sub-title” property, but not
a “subtitle” property:

book.subtitle // => undefined: property doesn't exist

It is an error, however, to attempt to query a property of an object that does not exist.
The null and undefined values have no properties, and it is an error to query prop‐
erties of these values. Continuing the preceding example:

let len = book.subtitle.length; // !TypeError: undefined doesn't have length

Property access expressions will fail if the lefthand side of the . is null or undefined.
So when writing an expression like book.author.surname, you should be careful if
you are not certain that book and book.author are actually defined. Here are two
ways to guard against this kind of problem:

// A verbose and explicit technique
let surname = undefined;
if (book) {
 if (book.author) {
 surname = book.author.surname;
 }
}

// A concise and idiomatic alternative to get surname or null or undefined
surname = book && book.author && book.author.surname;

To understand why this idiomatic expression works to prevent TypeError exceptions,
you might want to review the short-circuiting behavior of the && operator in §4.10.1.

As described in §4.4.1, ES2020 supports conditional property access with ?., which
allows us to rewrite the previous assignment expression as:

let surname = book?.author?.surname;

Attempting to set a property on null or undefined also causes a TypeError. Attempts
to set properties on other values do not always succeed, either: some properties are
read-only and cannot be set, and some objects do not allow the addition of new prop‐
erties. In strict mode (§5.6.3), a TypeError is thrown whenever an attempt to set a
property fails. Outside of strict mode, these failures are usually silent.

6.3 Querying and Setting Properties | 137

The rules that specify when a property assignment succeeds and when it fails are
intuitive but difficult to express concisely. An attempt to set a property p of an object
o fails in these circumstances:

• o has an own property p that is read-only: it is not possible to set read-only
properties.

• o has an inherited property p that is read-only: it is not possible to hide an inher‐
ited read-only property with an own property of the same name.

• o does not have an own property p; o does not inherit a property p with a setter
method, and o’s extensible attribute (see §14.2) is false. Since p does not already
exist in o, and if there is no setter method to call, then p must be added to o. But
if o is not extensible, then no new properties can be defined on it.

6.4 Deleting Properties
The delete operator (§4.13.4) removes a property from an object. Its single operand
should be a property access expression. Surprisingly, delete does not operate on the
value of the property but on the property itself:

delete book.author; // The book object now has no author property.
delete book["main title"]; // Now it doesn't have "main title", either.

The delete operator only deletes own properties, not inherited ones. (To delete an
inherited property, you must delete it from the prototype object in which it is defined.
Doing this affects every object that inherits from that prototype.)

A delete expression evaluates to true if the delete succeeded or if the delete had no
effect (such as deleting a nonexistent property). delete also evaluates to true when
used (meaninglessly) with an expression that is not a property access expression:

let o = {x: 1}; // o has own property x and inherits property toString
delete o.x // => true: deletes property x
delete o.x // => true: does nothing (x doesn't exist) but true anyway
delete o.toString // => true: does nothing (toString isn't an own property)
delete 1 // => true: nonsense, but true anyway

delete does not remove properties that have a configurable attribute of false. Cer‐
tain properties of built-in objects are non-configurable, as are properties of the global
object created by variable declaration and function declaration. In strict mode,
attempting to delete a non-configurable property causes a TypeError. In non-strict
mode, delete simply evaluates to false in this case:

// In strict mode, all these deletions throw TypeError instead of returning false
delete Object.prototype // => false: property is non-configurable
var x = 1; // Declare a global variable
delete globalThis.x // => false: can't delete this property

138 | Chapter 6: Objects

function f() {} // Declare a global function
delete globalThis.f // => false: can't delete this property either

When deleting configurable properties of the global object in non-strict mode, you
can omit the reference to the global object and simply follow the delete operator
with the property name:

globalThis.x = 1; // Create a configurable global property (no let or var)
delete x // => true: this property can be deleted

In strict mode, however, delete raises a SyntaxError if its operand is an unqualified
identifier like x, and you have to be explicit about the property access:

delete x; // SyntaxError in strict mode
delete globalThis.x; // This works

6.5 Testing Properties
JavaScript objects can be thought of as sets of properties, and it is often useful to be
able to test for membership in the set—to check whether an object has a property
with a given name. You can do this with the in operator, with the hasOwnProperty()
and propertyIsEnumerable() methods, or simply by querying the property. The
examples shown here all use strings as property names, but they also work with Sym‐
bols (§6.10.3).

The in operator expects a property name on its left side and an object on its right. It
returns true if the object has an own property or an inherited property by that name:

let o = { x: 1 };
"x" in o // => true: o has an own property "x"
"y" in o // => false: o doesn't have a property "y"
"toString" in o // => true: o inherits a toString property

The hasOwnProperty() method of an object tests whether that object has an own
property with the given name. It returns false for inherited properties:

let o = { x: 1 };
o.hasOwnProperty("x") // => true: o has an own property x
o.hasOwnProperty("y") // => false: o doesn't have a property y
o.hasOwnProperty("toString") // => false: toString is an inherited property

The propertyIsEnumerable() refines the hasOwnProperty() test. It returns true
only if the named property is an own property and its enumerable attribute is true.
Certain built-in properties are not enumerable. Properties created by normal Java‐
Script code are enumerable unless you’ve used one of the techniques shown in §14.1
to make them non-enumerable.

let o = { x: 1 };
o.propertyIsEnumerable("x") // => true: o has an own enumerable property x

6.5 Testing Properties | 139

o.propertyIsEnumerable("toString") // => false: not an own property
Object.prototype.propertyIsEnumerable("toString") // => false: not enumerable

Instead of using the in operator, it is often sufficient to simply query the property and
use !== to make sure it is not undefined:

let o = { x: 1 };
o.x !== undefined // => true: o has a property x
o.y !== undefined // => false: o doesn't have a property y
o.toString !== undefined // => true: o inherits a toString property

There is one thing the in operator can do that the simple property access technique
shown here cannot do. in can distinguish between properties that do not exist and
properties that exist but have been set to undefined. Consider this code:

let o = { x: undefined }; // Property is explicitly set to undefined
o.x !== undefined // => false: property exists but is undefined
o.y !== undefined // => false: property doesn't even exist
"x" in o // => true: the property exists
"y" in o // => false: the property doesn't exist
delete o.x; // Delete the property x
"x" in o // => false: it doesn't exist anymore

6.6 Enumerating Properties
Instead of testing for the existence of individual properties, we sometimes want to
iterate through or obtain a list of all the properties of an object. There are a few differ‐
ent ways to do this.

The for/in loop was covered in §5.4.5. It runs the body of the loop once for each
enumerable property (own or inherited) of the specified object, assigning the name of
the property to the loop variable. Built-in methods that objects inherit are not enu‐
merable, but the properties that your code adds to objects are enumerable by default.
For example:

let o = {x: 1, y: 2, z: 3}; // Three enumerable own properties
o.propertyIsEnumerable("toString") // => false: not enumerable
for(let p in o) { // Loop through the properties
 console.log(p); // Prints x, y, and z, but not toString
}

To guard against enumerating inherited properties with for/in, you can add an
explicit check inside the loop body:

for(let p in o) {
 if (!o.hasOwnProperty(p)) continue; // Skip inherited properties
}

for(let p in o) {
 if (typeof o[p] === "function") continue; // Skip all methods
}

140 | Chapter 6: Objects

As an alternative to using a for/in loop, it is often easier to get an array of property
names for an object and then loop through that array with a for/of loop. There are
four functions you can use to get an array of property names:

• Object.keys() returns an array of the names of the enumerable own properties
of an object. It does not include non-enumerable properties, inherited properties,
or properties whose name is a Symbol (see §6.10.3).

• Object.getOwnPropertyNames() works like Object.keys() but returns an array
of the names of non-enumerable own properties as well, as long as their names
are strings.

• Object.getOwnPropertySymbols() returns own properties whose names are
Symbols, whether or not they are enumerable.

• Reflect.ownKeys() returns all own property names, both enumerable and non-
enumerable, and both string and Symbol. (See §14.6.)

There are examples of the use of Object.keys() with a for/of loop in §6.7.

6.6.1 Property Enumeration Order
ES6 formally defines the order in which the own properties of an object are enumer‐
ated. Object.keys(), Object.getOwnPropertyNames(), Object.getOwnPropertySym
bols(), Reflect.ownKeys(), and related methods such as JSON.stringify() all list
properties in the following order, subject to their own additional constraints about
whether they list non-enumerable properties or properties whose names are strings
or Symbols:

• String properties whose names are non-negative integers are listed first, in
numeric order from smallest to largest. This rule means that arrays and array-like
objects will have their properties enumerated in order.

• After all properties that look like array indexes are listed, all remaining properties
with string names are listed (including properties that look like negative numbers
or floating-point numbers). These properties are listed in the order in which they
were added to the object. For properties defined in an object literal, this order is
the same order they appear in the literal.

• Finally, the properties whose names are Symbol objects are listed in the order in
which they were added to the object.

The enumeration order for the for/in loop is not as tightly specified as it is for these
enumeration functions, but implementations typically enumerate own properties in
the order just described, then travel up the prototype chain enumerating properties in
the same order for each prototype object. Note, however, that a property will not be

6.6 Enumerating Properties | 141

enumerated if a property by that same name has already been enumerated, or even if
a non-enumerable property by the same name has already been considered.

6.7 Extending Objects
A common operation in JavaScript programs is needing to copy the properties of one
object to another object. It is easy to do that with code like this:

let target = {x: 1}, source = {y: 2, z: 3};
for(let key of Object.keys(source)) {
 target[key] = source[key];
}
target // => {x: 1, y: 2, z: 3}

But because this is a common operation, various JavaScript frameworks have defined
utility functions, often named extend(), to perform this copying operation. Finally,
in ES6, this ability comes to the core JavaScript language in the form of
Object.assign().

Object.assign() expects two or more objects as its arguments. It modifies and
returns the first argument, which is the target object, but does not alter the second or
any subsequent arguments, which are the source objects. For each source object, it
copies the enumerable own properties of that object (including those whose names
are Symbols) into the target object. It processes the source objects in argument list
order so that properties in the first source object override properties by the same
name in the target object and properties in the second source object (if there is one)
override properties with the same name in the first source object.

Object.assign() copies properties with ordinary property get and set operations, so
if a source object has a getter method or the target object has a setter method, they
will be invoked during the copy, but they will not themselves be copied.

One reason to assign properties from one object into another is when you have an
object that defines default values for many properties and you want to copy those
default properties into another object if a property by that name does not already
exist in that object. Using Object.assign() naively will not do what you want:

Object.assign(o, defaults); // overwrites everything in o with defaults

Instead, what you can do is to create a new object, copy the defaults into it, and then
override those defaults with the properties in o:

o = Object.assign({}, defaults, o);

We’ll see in §6.10.4 that you can also express this object copy-and-override operation
using the ... spread operator like this:

o = {...defaults, ...o};

142 | Chapter 6: Objects

We could also avoid the overhead of the extra object creation and copying by writing
a version of Object.assign() that copies properties only if they are missing:

// Like Object.assign() but doesn't override existing properties
// (and also doesn't handle Symbol properties)
function merge(target, ...sources) {
 for(let source of sources) {
 for(let key of Object.keys(source)) {
 if (!(key in target)) { // This is different than Object.assign()
 target[key] = source[key];
 }
 }
 }
 return target;
}
Object.assign({x: 1}, {x: 2, y: 2}, {y: 3, z: 4}) // => {x: 2, y: 3, z: 4}
merge({x: 1}, {x: 2, y: 2}, {y: 3, z: 4}) // => {x: 1, y: 2, z: 4}

It is straightforward to write other property manipulation utilities like this merge()
function. A restrict() function could delete properties of an object if they do not
appear in another template object, for example. Or a subtract() function could
remove all of the properties of one object from another object.

6.8 Serializing Objects
Object serialization is the process of converting an object’s state to a string from
which it can later be restored. The functions JSON.stringify() and JSON.parse()
serialize and restore JavaScript objects. These functions use the JSON data inter‐
change format. JSON stands for “JavaScript Object Notation,” and its syntax is very
similar to that of JavaScript object and array literals:

let o = {x: 1, y: {z: [false, null, ""]}}; // Define a test object
let s = JSON.stringify(o); // s == '{"x":1,"y":{"z":[false,null,""]}}'
let p = JSON.parse(s); // p == {x: 1, y: {z: [false, null, ""]}}

JSON syntax is a subset of JavaScript syntax, and it cannot represent all JavaScript val‐
ues. Objects, arrays, strings, finite numbers, true, false, and null are supported and
can be serialized and restored. NaN, Infinity, and -Infinity are serialized to null.
Date objects are serialized to ISO-formatted date strings (see the Date.toJSON()
function), but JSON.parse() leaves these in string form and does not restore the orig‐
inal Date object. Function, RegExp, and Error objects and the undefined value can‐
not be serialized or restored. JSON.stringify() serializes only the enumerable own
properties of an object. If a property value cannot be serialized, that property is sim‐
ply omitted from the stringified output. Both JSON.stringify() and JSON.parse()
accept optional second arguments that can be used to customize the serialization
and/or restoration process by specifying a list of properties to be serialized, for

6.8 Serializing Objects | 143

example, or by converting certain values during the serialization or stringification
process. Complete documentation for these functions is in §11.6.

6.9 Object Methods
As discussed earlier, all JavaScript objects (except those explicitly created without a
prototype) inherit properties from Object.prototype. These inherited properties are
primarily methods, and because they are universally available, they are of particular
interest to JavaScript programmers. We’ve already seen the hasOwnProperty() and
propertyIsEnumerable() methods, for example. (And we’ve also already covered
quite a few static functions defined on the Object constructor, such as Object.cre
ate() and Object.keys().) This section explains a handful of universal object meth‐
ods that are defined on Object.prototype, but which are intended to be replaced by
other, more specialized implementations. In the sections that follow, we show exam‐
ples of defining these methods on a single object. In Chapter 9, you’ll learn how to
define these methods more generally for an entire class of objects.

6.9.1 The toString() Method
The toString() method takes no arguments; it returns a string that somehow repre‐
sents the value of the object on which it is invoked. JavaScript invokes this method of
an object whenever it needs to convert the object to a string. This occurs, for example,
when you use the + operator to concatenate a string with an object or when you pass
an object to a method that expects a string.

The default toString() method is not very informative (though it is useful for deter‐
mining the class of an object, as we will see in §14.4.3). For example, the following
line of code simply evaluates to the string “[object Object]”:

let s = { x: 1, y: 1 }.toString(); // s == "[object Object]"

Because this default method does not display much useful information, many classes
define their own versions of toString(). For example, when an array is converted to
a string, you obtain a list of the array elements, themselves each converted to a string,
and when a function is converted to a string, you obtain the source code for the func‐
tion. You might define your own toString() method like this:

let point = {
 x: 1,
 y: 2,
 toString: function() { return `(${this.x}, ${this.y})`; }
};
String(point) // => "(1, 2)": toString() is used for string conversions

144 | Chapter 6: Objects

6.9.2 The toLocaleString() Method
In addition to the basic toString() method, objects all have a toLocaleString().
The purpose of this method is to return a localized string representation of the object.
The default toLocaleString() method defined by Object doesn’t do any localization
itself: it simply calls toString() and returns that value. The Date and Number classes
define customized versions of toLocaleString() that attempt to format numbers,
dates, and times according to local conventions. Array defines a toLocaleString()
method that works like toString() except that it formats array elements by calling
their toLocaleString() methods instead of their toString() methods. You might do
the same thing with a point object like this:

let point = {
 x: 1000,
 y: 2000,
 toString: function() { return `(${this.x}, ${this.y})`; },
 toLocaleString: function() {
 return `(${this.x.toLocaleString()}, ${this.y.toLocaleString()})`;
 }
};
point.toString() // => "(1000, 2000)"
point.toLocaleString() // => "(1,000, 2,000)": note thousands separators

The internationalization classes documented in §11.7 can be useful when implement‐
ing a toLocaleString() method.

6.9.3 The valueOf() Method
The valueOf() method is much like the toString() method, but it is called when
JavaScript needs to convert an object to some primitive type other than a string—
typically, a number. JavaScript calls this method automatically if an object is used in a
context where a primitive value is required. The default valueOf() method does
nothing interesting, but some of the built-in classes define their own valueOf()
method. The Date class defines valueOf() to convert dates to numbers, and this
allows Date objects to be chronologically compared with < and >. You could do some‐
thing similar with a point object, defining a valueOf() method that returns the dis‐
tance from the origin to the point:

let point = {
 x: 3,
 y: 4,
 valueOf: function() { return Math.hypot(this.x, this.y); }
};
Number(point) // => 5: valueOf() is used for conversions to numbers
point > 4 // => true
point > 5 // => false
point < 6 // => true

6.9 Object Methods | 145

6.9.4 The toJSON() Method
Object.prototype does not actually define a toJSON() method, but the JSON.string
ify() method (see §6.8) looks for a toJSON() method on any object it is asked to
serialize. If this method exists on the object to be serialized, it is invoked, and the
return value is serialized, instead of the original object. The Date class (§11.4) defines
a toJSON() method that returns a serializable string representation of the date. We
could do the same for our Point object like this:

let point = {
 x: 1,
 y: 2,
 toString: function() { return `(${this.x}, ${this.y})`; },
 toJSON: function() { return this.toString(); }
};
JSON.stringify([point]) // => '["(1, 2)"]'

6.10 Extended Object Literal Syntax
Recent versions of JavaScript have extended the syntax for object literals in a number
of useful ways. The following subsections explain these extensions.

6.10.1 Shorthand Properties
Suppose you have values stored in variables x and y and want to create an object with
properties named x and y that hold those values. With basic object literal syntax,
you’d end up repeating each identifier twice:

let x = 1, y = 2;
let o = {
 x: x,
 y: y
};

In ES6 and later, you can drop the colon and one copy of the identifier and end up
with much simpler code:

let x = 1, y = 2;
let o = { x, y };
o.x + o.y // => 3

146 | Chapter 6: Objects

6.10.2 Computed Property Names
Sometimes you need to create an object with a specific property, but the name of that
property is not a compile-time constant that you can type literally in your source
code. Instead, the property name you need is stored in a variable or is the return
value of a function that you invoke. You can’t use a basic object literal for this kind of
property. Instead, you have to create an object and then add the desired properties as
an extra step:

const PROPERTY_NAME = "p1";
function computePropertyName() { return "p" + 2; }

let o = {};
o[PROPERTY_NAME] = 1;
o[computePropertyName()] = 2;

It is much simpler to set up an object like this with an ES6 feature known as computed
properties that lets you take the square brackets from the preceding code and move
them directly into the object literal:

const PROPERTY_NAME = "p1";
function computePropertyName() { return "p" + 2; }

let p = {
 [PROPERTY_NAME]: 1,
 [computePropertyName()]: 2
};

p.p1 + p.p2 // => 3

With this new syntax, the square brackets delimit an arbitrary JavaScript expression.
That expression is evaluated, and the resulting value (converted to a string, if neces‐
sary) is used as the property name.

One situation where you might want to use computed properties is when you have a
library of JavaScript code that expects to be passed objects with a particular set of
properties, and the names of those properties are defined as constants in that library.
If you are writing code to create the objects that will be passed to that library, you
could hardcode the property names, but you’d risk bugs if you type the property
name wrong anywhere, and you’d risk version mismatch issues if a new version of the
library changes the required property names. Instead, you might find that it makes
your code more robust to use computed property syntax with the property name con‐
stants defined by the library.

6.10 Extended Object Literal Syntax | 147

6.10.3 Symbols as Property Names
The computed property syntax enables one other very important object literal fea‐
ture. In ES6 and later, property names can be strings or symbols. If you assign a sym‐
bol to a variable or constant, then you can use that symbol as a property name using
the computed property syntax:

const extension = Symbol("my extension symbol");
let o = {
 [extension]: { /* extension data stored in this object */ }
};
o[extension].x = 0; // This won't conflict with other properties of o

As explained in §3.6, Symbols are opaque values. You can’t do anything with them
other than use them as property names. Every Symbol is different from every other
Symbol, however, which means that Symbols are good for creating unique property
names. Create a new Symbol by calling the Symbol() factory function. (Symbols are
primitive values, not objects, so Symbol() is not a constructor function that you
invoke with new.) The value returned by Symbol() is not equal to any other Symbol or
other value. You can pass a string to Symbol(), and this string is used when your
Symbol is converted to a string. But this is a debugging aid only: two Symbols created
with the same string argument are still different from one another.

The point of Symbols is not security, but to define a safe extension mechanism for
JavaScript objects. If you get an object from third-party code that you do not control
and need to add some of your own properties to that object but want to be sure that
your properties will not conflict with any properties that may already exist on the
object, you can safely use Symbols as your property names. If you do this, you can
also be confident that the third-party code will not accidentally alter your symboli‐
cally named properties. (That third-party code could, of course, use Object.getOwn
PropertySymbols() to discover the Symbols you’re using and could then alter or
delete your properties. This is why Symbols are not a security mechanism.)

6.10.4 Spread Operator
In ES2018 and later, you can copy the properties of an existing object into a new
object using the “spread operator” ... inside an object literal:

let position = { x: 0, y: 0 };
let dimensions = { width: 100, height: 75 };
let rect = { ...position, ...dimensions };
rect.x + rect.y + rect.width + rect.height // => 175

In this code, the properties of the position and dimensions objects are “spread out”
into the rect object literal as if they had been written literally inside those curly
braces. Note that this ... syntax is often called a spread operator but is not a true
JavaScript operator in any sense. Instead, it is a special-case syntax available only

148 | Chapter 6: Objects

within object literals. (Three dots are used for other purposes in other JavaScript con‐
texts, but object literals are the only context where the three dots cause this kind of
interpolation of one object into another one.)

If the object that is spread and the object it is being spread into both have a property
with the same name, then the value of that property will be the one that comes last:

let o = { x: 1 };
let p = { x: 0, ...o };
p.x // => 1: the value from object o overrides the initial value
let q = { ...o, x: 2 };
q.x // => 2: the value 2 overrides the previous value from o.

Also note that the spread operator only spreads the own properties of an object, not
any inherited ones:

let o = Object.create({x: 1}); // o inherits the property x
let p = { ...o };
p.x // => undefined

Finally, it is worth noting that, although the spread operator is just three little dots in
your code, it can represent a substantial amount of work to the JavaScript interpreter.
If an object has n properties, the process of spreading those properties into another
object is likely to be an O(n) operation. This means that if you find yourself using ...
within a loop or recursive function as a way to accumulate data into one large object,
you may be writing an inefficient O(n2) algorithm that will not scale well as n gets
larger.

6.10.5 Shorthand Methods
When a function is defined as a property of an object, we call that function a method
(we’ll have a lot more to say about methods in Chapters 8 and 9). Prior to ES6, you
would define a method in an object literal using a function definition expression just
as you would define any other property of an object:

let square = {
 area: function() { return this.side * this.side; },
 side: 10
};
square.area() // => 100

In ES6, however, the object literal syntax (and also the class definition syntax we’ll see
in Chapter 9) has been extended to allow a shortcut where the function keyword and
the colon are omitted, resulting in code like this:

let square = {
 area() { return this.side * this.side; },
 side: 10
};
square.area() // => 100

6.10 Extended Object Literal Syntax | 149

Both forms of the code are equivalent: both add a property named area to the object
literal, and both set the value of that property to the specified function. The short‐
hand syntax makes it clearer that area() is a method and not a data property like
side.

When you write a method using this shorthand syntax, the property name can take
any of the forms that are legal in an object literal: in addition to a regular JavaScript
identifier like the name area above, you can also use string literals and computed
property names, which can include Symbol property names:

const METHOD_NAME = "m";
const symbol = Symbol();
let weirdMethods = {
 "method With Spaces"(x) { return x + 1; },
 [METHOD_NAME](x) { return x + 2; },
 [symbol](x) { return x + 3; }
};
weirdMethods["method With Spaces"](1) // => 2
weirdMethods[METHOD_NAME](1) // => 3
weirdMethods[symbol](1) // => 4

Using a Symbol as a method name is not as strange as it seems. In order to make an
object iterable (so it can be used with a for/of loop), you must define a method with
the symbolic name Symbol.iterator, and there are examples of doing exactly that in
Chapter 12.

6.10.6 Property Getters and Setters
All of the object properties we’ve discussed so far in this chapter have been data prop‐
erties with a name and an ordinary value. JavaScript also supports accessor properties,
which do not have a single value but instead have one or two accessor methods: a
getter and/or a setter.

When a program queries the value of an accessor property, JavaScript invokes the get‐
ter method (passing no arguments). The return value of this method becomes the
value of the property access expression. When a program sets the value of an accessor
property, JavaScript invokes the setter method, passing the value of the righthand side
of the assignment. This method is responsible for “setting,” in some sense, the prop‐
erty value. The return value of the setter method is ignored.

If a property has both a getter and a setter method, it is a read/write property. If it has
only a getter method, it is a read-only property. And if it has only a setter method, it
is a write-only property (something that is not possible with data properties), and
attempts to read it always evaluate to undefined.

150 | Chapter 6: Objects

Accessor properties can be defined with an extension to the object literal syntax
(unlike the other ES6 extensions we’ve seen here, getters and setters were introduced
in ES5):

let o = {
 // An ordinary data property
 dataProp: value,

 // An accessor property defined as a pair of functions.
 get accessorProp() { return this.dataProp; },
 set accessorProp(value) { this.dataProp = value; }
};

Accessor properties are defined as one or two methods whose name is the same as the
property name. These look like ordinary methods defined using the ES6 shorthand
except that getter and setter definitions are prefixed with get or set. (In ES6, you can
also use computed property names when defining getters and setters. Simply replace
the property name after get or set with an expression in square brackets.)

The accessor methods defined above simply get and set the value of a data property,
and there is no reason to prefer the accessor property over the data property. But as a
more interesting example, consider the following object that represents a 2D Carte‐
sian point. It has ordinary data properties to represent the x and y coordinates of the
point, and it has accessor properties that give the equivalent polar coordinates of the
point:

let p = {
 // x and y are regular read-write data properties.
 x: 1.0,
 y: 1.0,

 // r is a read-write accessor property with getter and setter.
 // Don't forget to put a comma after accessor methods.
 get r() { return Math.hypot(this.x, this.y); },
 set r(newvalue) {
 let oldvalue = Math.hypot(this.x, this.y);
 let ratio = newvalue/oldvalue;
 this.x *= ratio;
 this.y *= ratio;
 },

 // theta is a read-only accessor property with getter only.
 get theta() { return Math.atan2(this.y, this.x); }
};
p.r // => Math.SQRT2
p.theta // => Math.PI / 4

Note the use of the keyword this in the getters and setter in this example. JavaScript
invokes these functions as methods of the object on which they are defined, which
means that within the body of the function, this refers to the point object p. So the

6.10 Extended Object Literal Syntax | 151

getter method for the r property can refer to the x and y properties as this.x and
this.y. Methods and the this keyword are covered in more detail in §8.2.2.

Accessor properties are inherited, just as data properties are, so you can use the object
p defined above as a prototype for other points. You can give the new objects their
own x and y properties, and they’ll inherit the r and theta properties:

let q = Object.create(p); // A new object that inherits getters and setters
q.x = 3; q.y = 4; // Create q's own data properties
q.r // => 5: the inherited accessor properties work
q.theta // => Math.atan2(4, 3)

The code above uses accessor properties to define an API that provides two represen‐
tations (Cartesian coordinates and polar coordinates) of a single set of data. Other
reasons to use accessor properties include sanity checking of property writes and
returning different values on each property read:

// This object generates strictly increasing serial numbers
const serialnum = {
 // This data property holds the next serial number.
 // The _ in the property name hints that it is for internal use only.
 _n: 0,

 // Return the current value and increment it
 get next() { return this._n++; },

 // Set a new value of n, but only if it is larger than current
 set next(n) {
 if (n > this._n) this._n = n;
 else throw new Error("serial number can only be set to a larger value");
 }
};
serialnum.next = 10; // Set the starting serial number
serialnum.next // => 10
serialnum.next // => 11: different value each time we get next

Finally, here is one more example that uses a getter method to implement a property
with “magical” behavior:

// This object has accessor properties that return random numbers.
// The expression "random.octet", for example, yields a random number
// between 0 and 255 each time it is evaluated.
const random = {
 get octet() { return Math.floor(Math.random()*256); },
 get uint16() { return Math.floor(Math.random()*65536); },
 get int16() { return Math.floor(Math.random()*65536)-32768; }
};

152 | Chapter 6: Objects

6.11 Summary
This chapter has documented JavaScript objects in great detail, covering topics that
include:

• Basic object terminology, including the meaning of terms like enumerable and
own property.

• Object literal syntax, including the many new features in ES6 and later.
• How to read, write, delete, enumerate, and check for the presence of the proper‐

ties of an object.
• How prototype-based inheritance works in JavaScript and how to create an

object that inherits from another object with Object.create().
• How to copy properties from one object into another with Object.assign().

All JavaScript values that are not primitive values are objects. This includes both
arrays and functions, which are the topics of the next two chapters.

6.11 Summary | 153

CHAPTER 7

Arrays

This chapter documents arrays, a fundamental datatype in JavaScript and in most
other programming languages. An array is an ordered collection of values. Each value
is called an element, and each element has a numeric position in the array, known as
its index. JavaScript arrays are untyped: an array element may be of any type, and dif‐
ferent elements of the same array may be of different types. Array elements may even
be objects or other arrays, which allows you to create complex data structures, such as
arrays of objects and arrays of arrays. JavaScript arrays are zero-based and use 32-bit
indexes: the index of the first element is 0, and the highest possible index is
4294967294 (232−2), for a maximum array size of 4,294,967,295 elements. JavaScript
arrays are dynamic: they grow or shrink as needed, and there is no need to declare a
fixed size for the array when you create it or to reallocate it when the size changes.
JavaScript arrays may be sparse: the elements need not have contiguous indexes, and
there may be gaps. Every JavaScript array has a length property. For nonsparse
arrays, this property specifies the number of elements in the array. For sparse arrays,
length is larger than the highest index of any element.

JavaScript arrays are a specialized form of JavaScript object, and array indexes are
really little more than property names that happen to be integers. We’ll talk more
about the specializations of arrays elsewhere in this chapter. Implementations typi‐
cally optimize arrays so that access to numerically indexed array elements is generally
significantly faster than access to regular object properties.

Arrays inherit properties from Array.prototype, which defines a rich set of array
manipulation methods, covered in §7.8. Most of these methods are generic, which
means that they work correctly not only for true arrays, but for any “array-like
object.” We’ll discuss array-like objects in §7.9. Finally, JavaScript strings behave like
arrays of characters, and we’ll discuss this in §7.10.

155

ES6 introduces a set of new array classes known collectively as “typed arrays.” Unlike
regular JavaScript arrays, typed arrays have a fixed length and a fixed numeric ele‐
ment type. They offer high performance and byte-level access to binary data and are
covered in §11.2.

7.1 Creating Arrays
There are several ways to create arrays. The subsections that follow explain how to
create arrays with:

• Array literals
• The ... spread operator on an iterable object
• The Array() constructor
• The Array.of() and Array.from() factory methods

7.1.1 Array Literals
By far the simplest way to create an array is with an array literal, which is simply a
comma-separated list of array elements within square brackets. For example:

let empty = []; // An array with no elements
let primes = [2, 3, 5, 7, 11]; // An array with 5 numeric elements
let misc = [1.1, true, "a",]; // 3 elements of various types + trailing comma

The values in an array literal need not be constants; they may be arbitrary
expressions:

let base = 1024;
let table = [base, base+1, base+2, base+3];

Array literals can contain object literals or other array literals:

let b = [[1, {x: 1, y: 2}], [2, {x: 3, y: 4}]];

If an array literal contains multiple commas in a row, with no value between, the
array is sparse (see §7.3). Array elements for which values are omitted do not exist
but appear to be undefined if you query them:

let count = [1,,3]; // Elements at indexes 0 and 2. No element at index 1
let undefs = [,,]; // An array with no elements but a length of 2

Array literal syntax allows an optional trailing comma, so [,,] has a length of 2,
not 3.

156 | Chapter 7: Arrays

7.1.2 The Spread Operator
In ES6 and later, you can use the “spread operator,” ..., to include the elements of
one array within an array literal:

let a = [1, 2, 3];
let b = [0, ...a, 4]; // b == [0, 1, 2, 3, 4]

The three dots “spread” the array a so that its elements become elements within the
array literal that is being created. It is as if the ...a was replaced by the elements of
the array a, listed literally as part of the enclosing array literal. (Note that, although
we call these three dots a spread operator, this is not a true operator because it can
only be used in array literals and, as we’ll see later in the book, function invocations.)

The spread operator is a convenient way to create a (shallow) copy of an array:

let original = [1,2,3];
let copy = [...original];
copy[0] = 0; // Modifying the copy does not change the original
original[0] // => 1

The spread operator works on any iterable object. (Iterable objects are what the
for/of loop iterates over; we first saw them in §5.4.4, and we’ll see much more about
them in Chapter 12.) Strings are iterable, so you can use a spread operator to turn any
string into an array of single-character strings:

let digits = [..."0123456789ABCDEF"];
digits // => ["0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"]

Set objects (§11.1.1) are iterable, so an easy way to remove duplicate elements from
an array is to convert the array to a set and then immediately convert the set back to
an array using the spread operator:

let letters = [..."hello world"];
[...new Set(letters)] // => ["h","e","l","o"," ","w","r","d"]

7.1.3 The Array() Constructor
Another way to create an array is with the Array() constructor. You can invoke this
constructor in three distinct ways:

• Call it with no arguments:
let a = new Array();

This method creates an empty array with no elements and is equivalent to the
array literal [].

• Call it with a single numeric argument, which specifies a length:
let a = new Array(10);

7.1 Creating Arrays | 157

This technique creates an array with the specified length. This form of the
Array() constructor can be used to preallocate an array when you know in
advance how many elements will be required. Note that no values are stored in
the array, and the array index properties “0”, “1”, and so on are not even defined
for the array.

• Explicitly specify two or more array elements or a single non-numeric element
for the array:

let a = new Array(5, 4, 3, 2, 1, "testing, testing");

In this form, the constructor arguments become the elements of the new array.
Using an array literal is almost always simpler than this usage of the Array()
constructor.

7.1.4 Array.of()
When the Array() constructor function is invoked with one numeric argument, it
uses that argument as an array length. But when invoked with more than one
numeric argument, it treats those arguments as elements for the array to be created.
This means that the Array() constructor cannot be used to create an array with a sin‐
gle numeric element.

In ES6, the Array.of() function addresses this problem: it is a factory method that
creates and returns a new array, using its argument values (regardless of how many of
them there are) as the array elements:

Array.of() // => []; returns empty array with no arguments
Array.of(10) // => [10]; can create arrays with a single numeric argument
Array.of(1,2,3) // => [1, 2, 3]

7.1.5 Array.from()
Array.from is another array factory method introduced in ES6. It expects an iterable
or array-like object as its first argument and returns a new array that contains the ele‐
ments of that object. With an iterable argument, Array.from(iterable) works like
the spread operator [...iterable] does. It is also a simple way to make a copy of an
array:

let copy = Array.from(original);

Array.from() is also important because it defines a way to make a true-array copy of
an array-like object. Array-like objects are non-array objects that have a numeric
length property and have values stored with properties whose names happen to be
integers. When working with client-side JavaScript, the return values of some web
browser methods are array-like, and it can be easier to work with them if you first
convert them to true arrays:

158 | Chapter 7: Arrays

let truearray = Array.from(arraylike);

Array.from() also accepts an optional second argument. If you pass a function as the
second argument, then as the new array is being built, each element from the source
object will be passed to the function you specify, and the return value of the function
will be stored in the array instead of the original value. (This is very much like the
array map() method that will be introduced later in the chapter, but it is more efficient
to perform the mapping while the array is being built than it is to build the array and
then map it to another new array.)

7.2 Reading and Writing Array Elements
You access an element of an array using the [] operator. A reference to the array
should appear to the left of the brackets. An arbitrary expression that has a non-
negative integer value should be inside the brackets. You can use this syntax to both
read and write the value of an element of an array. Thus, the following are all legal
JavaScript statements:

let a = ["world"]; // Start with a one-element array
let value = a[0]; // Read element 0
a[1] = 3.14; // Write element 1
let i = 2;
a[i] = 3; // Write element 2
a[i + 1] = "hello"; // Write element 3
a[a[i]] = a[0]; // Read elements 0 and 2, write element 3

What is special about arrays is that when you use property names that are non-
negative integers less than 232–1, the array automatically maintains the value of the
length property for you. In the preceding, for example, we created an array a with a
single element. We then assigned values at indexes 1, 2, and 3. The length property of
the array changed as we did, so:

a.length // => 4

Remember that arrays are a specialized kind of object. The square brackets used to
access array elements work just like the square brackets used to access object proper‐
ties. JavaScript converts the numeric array index you specify to a string—the index 1
becomes the string "1"—then uses that string as a property name. There is nothing
special about the conversion of the index from a number to a string: you can do that
with regular objects, too:

let o = {}; // Create a plain object
o[1] = "one"; // Index it with an integer
o["1"] // => "one"; numeric and string property names are the same

It is helpful to clearly distinguish an array index from an object property name. All
indexes are property names, but only property names that are integers between 0 and
232–2 are indexes. All arrays are objects, and you can create properties of any name on

7.2 Reading and Writing Array Elements | 159

them. If you use properties that are array indexes, however, arrays have the special
behavior of updating their length property as needed.

Note that you can index an array using numbers that are negative or that are not inte‐
gers. When you do this, the number is converted to a string, and that string is used as
the property name. Since the name is not a non-negative integer, it is treated as a reg‐
ular object property, not an array index. Also, if you index an array with a string that
happens to be a non-negative integer, it behaves as an array index, not an object prop‐
erty. The same is true if you use a floating-point number that is the same as an
integer:

a[-1.23] = true; // This creates a property named "-1.23"
a["1000"] = 0; // This the 1001st element of the array
a[1.000] = 1; // Array index 1. Same as a[1] = 1;

The fact that array indexes are simply a special type of object property name means
that JavaScript arrays have no notion of an “out of bounds” error. When you try to
query a nonexistent property of any object, you don’t get an error; you simply get
undefined. This is just as true for arrays as it is for objects:

let a = [true, false]; // This array has elements at indexes 0 and 1
a[2] // => undefined; no element at this index.
a[-1] // => undefined; no property with this name.

7.3 Sparse Arrays
A sparse array is one in which the elements do not have contiguous indexes starting at
0. Normally, the length property of an array specifies the number of elements in the
array. If the array is sparse, the value of the length property is greater than the num‐
ber of elements. Sparse arrays can be created with the Array() constructor or simply
by assigning to an array index larger than the current array length.

let a = new Array(5); // No elements, but a.length is 5.
a = []; // Create an array with no elements and length = 0.
a[1000] = 0; // Assignment adds one element but sets length to 1001.

We’ll see later that you can also make an array sparse with the delete operator.

Arrays that are sufficiently sparse are typically implemented in a slower, more
memory-efficient way than dense arrays are, and looking up elements in such an
array will take about as much time as regular object property lookup.

Note that when you omit a value in an array literal (using repeated commas as in
[1,,3]), the resulting array is sparse, and the omitted elements simply do not exist:

let a1 = [,]; // This array has no elements and length 1
let a2 = [undefined]; // This array has one undefined element
0 in a1 // => false: a1 has no element with index 0
0 in a2 // => true: a2 has the undefined value at index 0

160 | Chapter 7: Arrays

Understanding sparse arrays is an important part of understanding the true nature of
JavaScript arrays. In practice, however, most JavaScript arrays you will work with will
not be sparse. And, if you do have to work with a sparse array, your code will proba‐
bly treat it just as it would treat a nonsparse array with undefined elements.

7.4 Array Length
Every array has a length property, and it is this property that makes arrays different
from regular JavaScript objects. For arrays that are dense (i.e., not sparse), the length
property specifies the number of elements in the array. Its value is one more than the
highest index in the array:

[].length // => 0: the array has no elements
["a","b","c"].length // => 3: highest index is 2, length is 3

When an array is sparse, the length property is greater than the number of elements,
and all we can say about it is that length is guaranteed to be larger than the index of
every element in the array. Or, put another way, an array (sparse or not) will never
have an element whose index is greater than or equal to its length. In order to main‐
tain this invariant, arrays have two special behaviors. The first we described above: if
you assign a value to an array element whose index i is greater than or equal to the
array’s current length, the value of the length property is set to i+1.

The second special behavior that arrays implement in order to maintain the length
invariant is that, if you set the length property to a non-negative integer n smaller
than its current value, any array elements whose index is greater than or equal to n
are deleted from the array:

a = [1,2,3,4,5]; // Start with a 5-element array.
a.length = 3; // a is now [1,2,3].
a.length = 0; // Delete all elements. a is [].
a.length = 5; // Length is 5, but no elements, like new Array(5)

You can also set the length property of an array to a value larger than its current
value. Doing this does not actually add any new elements to the array; it simply cre‐
ates a sparse area at the end of the array.

7.5 Adding and Deleting Array Elements
We’ve already seen the simplest way to add elements to an array: just assign values to
new indexes:

let a = []; // Start with an empty array.
a[0] = "zero"; // And add elements to it.
a[1] = "one";

You can also use the push() method to add one or more values to the end of an array:

7.4 Array Length | 161

let a = []; // Start with an empty array
a.push("zero"); // Add a value at the end. a = ["zero"]
a.push("one", "two"); // Add two more values. a = ["zero", "one", "two"]

Pushing a value onto an array a is the same as assigning the value to a[a.length].
You can use the unshift() method (described in §7.8) to insert a value at the begin‐
ning of an array, shifting the existing array elements to higher indexes. The pop()
method is the opposite of push(): it removes the last element of the array and returns
it, reducing the length of an array by 1. Similarly, the shift() method removes and
returns the first element of the array, reducing the length by 1 and shifting all ele‐
ments down to an index one lower than their current index. See §7.8 for more on
these methods.

You can delete array elements with the delete operator, just as you can delete object
properties:

let a = [1,2,3];
delete a[2]; // a now has no element at index 2
2 in a // => false: no array index 2 is defined
a.length // => 3: delete does not affect array length

Deleting an array element is similar to (but subtly different than) assigning unde
fined to that element. Note that using delete on an array element does not alter the
length property and does not shift elements with higher indexes down to fill in
the gap that is left by the deleted property. If you delete an element from an array, the
array becomes sparse.

As we saw above, you can also remove elements from the end of an array simply by
setting the length property to the new desired length.

Finally, splice() is the general-purpose method for inserting, deleting, or replacing
array elements. It alters the length property and shifts array elements to higher or
lower indexes as needed. See §7.8 for details.

7.6 Iterating Arrays
As of ES6, the easiest way to loop through each of the elements of an array (or any
iterable object) is with the for/of loop, which was covered in detail in §5.4.4:

let letters = [..."Hello world"]; // An array of letters
let string = "";
for(let letter of letters) {
 string += letter;
}
string // => "Hello world"; we reassembled the original text

162 | Chapter 7: Arrays

The built-in array iterator that the for/of loop uses returns the elements of an array
in ascending order. It has no special behavior for sparse arrays and simply returns
undefined for any array elements that do not exist.

If you want to use a for/of loop for an array and need to know the index of each
array element, use the entries() method of the array, along with destructuring
assignment, like this:

let everyother = "";
for(let [index, letter] of letters.entries()) {
 if (index % 2 === 0) everyother += letter; // letters at even indexes
}
everyother // => "Hlowrd"

Another good way to iterate arrays is with forEach(). This is not a new form of the
for loop, but an array method that offers a functional approach to array iteration.
You pass a function to the forEach() method of an array, and forEach() invokes
your function once on each element of the array:

let uppercase = "";
letters.forEach(letter => { // Note arrow function syntax here
 uppercase += letter.toUpperCase();
});
uppercase // => "HELLO WORLD"

As you would expect, forEach() iterates the array in order, and it actually passes the
array index to your function as a second argument, which is occasionally useful.
Unlike the for/of loop, the forEach() is aware of sparse arrays and does not invoke
your function for elements that are not there.

§7.8.1 documents the forEach() method in more detail. That section also covers
related methods such as map() and filter() that perform specialized kinds of array
iteration.

You can also loop through the elements of an array with a good old-fashioned for
loop (§5.4.3):

let vowels = "";
for(let i = 0; i < letters.length; i++) { // For each index in the array
 let letter = letters[i]; // Get the element at that index
 if (/[aeiou]/.test(letter)) { // Use a regular expression test
 vowels += letter; // If it is a vowel, remember it
 }
}
vowels // => "eoo"

In nested loops, or other contexts where performance is critical, you may sometimes
see this basic array iteration loop written so that the array length is only looked up
once rather than on each iteration. Both of the following for loop forms are

7.6 Iterating Arrays | 163

idiomatic, though not particularly common, and with modern JavaScript interpreters,
it is not at all clear that they have any performance impact:

// Save the array length into a local variable
for(let i = 0, len = letters.length; i < len; i++) {
 // loop body remains the same
}

// Iterate backwards from the end of the array to the start
for(let i = letters.length-1; i >= 0; i--) {
 // loop body remains the same
}

These examples assume that the array is dense and that all elements contain valid
data. If this is not the case, you should test the array elements before using them. If
you want to skip undefined and nonexistent elements, you might write:

for(let i = 0; i < a.length; i++) {
 if (a[i] === undefined) continue; // Skip undefined + nonexistent elements
 // loop body here
}

7.7 Multidimensional Arrays
JavaScript does not support true multidimensional arrays, but you can approximate
them with arrays of arrays. To access a value in an array of arrays, simply use the []
operator twice. For example, suppose the variable matrix is an array of arrays of
numbers. Every element in matrix[x] is an array of numbers. To access a particular
number within this array, you would write matrix[x][y]. Here is a concrete example
that uses a two-dimensional array as a multiplication table:

// Create a multidimensional array
let table = new Array(10); // 10 rows of the table
for(let i = 0; i < table.length; i++) {
 table[i] = new Array(10); // Each row has 10 columns
}

// Initialize the array
for(let row = 0; row < table.length; row++) {
 for(let col = 0; col < table[row].length; col++) {
 table[row][col] = row*col;
 }
}

// Use the multidimensional array to compute 5*7
table[5][7] // => 35

164 | Chapter 7: Arrays

7.8 Array Methods
The preceding sections have focused on basic JavaScript syntax for working with
arrays. In general, though, it is the methods defined by the Array class that are the
most powerful. The next sections document these methods. While reading about
these methods, keep in mind that some of them modify the array they are called on
and some of them leave the array unchanged. A number of the methods return an
array: sometimes, this is a new array, and the original is unchanged. Other times, a
method will modify the array in place and will also return a reference to the modified
array.

Each of the subsections that follows covers a group of related array methods:

• Iterator methods loop over the elements of an array, typically invoking a function
that you specify on each of those elements.

• Stack and queue methods add and remove array elements to and from the begin‐
ning and the end of an array.

• Subarray methods are for extracting, deleting, inserting, filling, and copying con‐
tiguous regions of a larger array.

• Searching and sorting methods are for locating elements within an array and for
sorting the elements of an array.

The following subsections also cover the static methods of the Array class and a few
miscellaneous methods for concatenating arrays and converting arrays to strings.

7.8.1 Array Iterator Methods
The methods described in this section iterate over arrays by passing array elements,
in order, to a function you supply, and they provide convenient ways to iterate, map,
filter, test, and reduce arrays.

Before we explain the methods in detail, however, it is worth making some generali‐
zations about them. First, all of these methods accept a function as their first argu‐
ment and invoke that function once for each element (or some elements) of the array.
If the array is sparse, the function you pass is not invoked for nonexistent elements.
In most cases, the function you supply is invoked with three arguments: the value of
the array element, the index of the array element, and the array itself. Often, you only
need the first of these argument values and can ignore the second and third values.

Most of the iterator methods described in the following subsections accept an
optional second argument. If specified, the function is invoked as if it is a method of
this second argument. That is, the second argument you pass becomes the value of
the this keyword inside of the function you pass as the first argument. The return
value of the function you pass is usually important, but different methods handle the

7.8 Array Methods | 165

return value in different ways. None of the methods described here modify the array
on which they are invoked (though the function you pass can modify the array, of
course).

Each of these functions is invoked with a function as its first argument, and it is very
common to define that function inline as part of the method invocation expression
instead of using an existing function that is defined elsewhere. Arrow function syntax
(see §8.1.3) works particularly well with these methods, and we will use it in the
examples that follow.

forEach()

The forEach() method iterates through an array, invoking a function you specify for
each element. As we’ve described, you pass the function as the first argument to
forEach(). forEach() then invokes your function with three arguments: the value of
the array element, the index of the array element, and the array itself. If you only care
about the value of the array element, you can write a function with only one parame‐
ter—the additional arguments will be ignored:

let data = [1,2,3,4,5], sum = 0;
// Compute the sum of the elements of the array
data.forEach(value => { sum += value; }); // sum == 15

// Now increment each array element
data.forEach(function(v, i, a) { a[i] = v + 1; }); // data == [2,3,4,5,6]

Note that forEach() does not provide a way to terminate iteration before all elements
have been passed to the function. That is, there is no equivalent of the break state‐
ment you can use with a regular for loop.

map()

The map() method passes each element of the array on which it is invoked to the
function you specify and returns an array containing the values returned by your
function. For example:

let a = [1, 2, 3];
a.map(x => x*x) // => [1, 4, 9]: the function takes input x and returns x*x

The function you pass to map() is invoked in the same way as a function passed to
forEach(). For the map() method, however, the function you pass should return a
value. Note that map() returns a new array: it does not modify the array it is invoked
on. If that array is sparse, your function will not be called for the missing elements,
but the returned array will be sparse in the same way as the original array: it will have
the same length and the same missing elements.

166 | Chapter 7: Arrays

filter()

The filter() method returns an array containing a subset of the elements of the
array on which it is invoked. The function you pass to it should be predicate: a func‐
tion that returns true or false. The predicate is invoked just as for forEach() and
map(). If the return value is true, or a value that converts to true, then the element
passed to the predicate is a member of the subset and is added to the array that will
become the return value. Examples:

let a = [5, 4, 3, 2, 1];
a.filter(x => x < 3) // => [2, 1]; values less than 3
a.filter((x,i) => i%2 === 0) // => [5, 3, 1]; every other value

Note that filter() skips missing elements in sparse arrays and that its return value is
always dense. To close the gaps in a sparse array, you can do this:

let dense = sparse.filter(() => true);

And to close gaps and remove undefined and null elements, you can use filter, like
this:

a = a.filter(x => x !== undefined && x !== null);

find() and findIndex()

The find() and findIndex() methods are like filter() in that they iterate through
your array looking for elements for which your predicate function returns a truthy
value. Unlike filter(), however, these two methods stop iterating the first time the
predicate finds an element. When that happens, find() returns the matching ele‐
ment, and findIndex() returns the index of the matching element. If no matching
element is found, find() returns undefined and findIndex() returns -1:

let a = [1,2,3,4,5];
a.findIndex(x => x === 3) // => 2; the value 3 appears at index 2
a.findIndex(x => x < 0) // => -1; no negative numbers in the array
a.find(x => x % 5 === 0) // => 5: this is a multiple of 5
a.find(x => x % 7 === 0) // => undefined: no multiples of 7 in the array

every() and some()

The every() and some() methods are array predicates: they apply a predicate func‐
tion you specify to the elements of the array, then return true or false.

The every() method is like the mathematical “for all” quantifier ∀: it returns true if
and only if your predicate function returns true for all elements in the array:

let a = [1,2,3,4,5];
a.every(x => x < 10) // => true: all values are < 10.
a.every(x => x % 2 === 0) // => false: not all values are even.

7.8 Array Methods | 167

The some() method is like the mathematical “there exists” quantifier ∃: it returns
true if there exists at least one element in the array for which the predicate returns
true and returns false if and only if the predicate returns false for all elements of
the array:

let a = [1,2,3,4,5];
a.some(x => x%2===0) // => true; a has some even numbers.
a.some(isNaN) // => false; a has no non-numbers.

Note that both every() and some() stop iterating array elements as soon as they
know what value to return. some() returns true the first time your predicate returns
<code>true</code> and only iterates through the entire array if your predicate always
returns false. every() is the opposite: it returns false the first time your predicate
returns false and only iterates all elements if your predicate always returns true.
Note also that, by mathematical convention, every() returns true and some returns
false when invoked on an empty array.

reduce() and reduceRight()

The reduce() and reduceRight() methods combine the elements of an array, using
the function you specify, to produce a single value. This is a common operation in
functional programming and also goes by the names “inject” and “fold.” Examples
help illustrate how it works:

let a = [1,2,3,4,5];
a.reduce((x,y) => x+y, 0) // => 15; the sum of the values
a.reduce((x,y) => x*y, 1) // => 120; the product of the values
a.reduce((x,y) => (x > y) ? x : y) // => 5; the largest of the values

reduce() takes two arguments. The first is the function that performs the reduction
operation. The task of this reduction function is to somehow combine or reduce two
values into a single value and to return that reduced value. In the examples we’ve
shown here, the functions combine two values by adding them, multiplying them,
and choosing the largest. The second (optional) argument is an initial value to pass to
the function.

Functions used with reduce() are different than the functions used with forEach()
and map(). The familiar value, index, and array values are passed as the second, third,
and fourth arguments. The first argument is the accumulated result of the reduction
so far. On the first call to the function, this first argument is the initial value you
passed as the second argument to reduce(). On subsequent calls, it is the value
returned by the previous invocation of the function. In the first example, the reduc‐
tion function is first called with arguments 0 and 1. It adds these and returns 1. It is
then called again with arguments 1 and 2 and returns 3. Next, it computes 3+3=6,
then 6+4=10, and finally 10+5=15. This final value, 15, becomes the return value of
reduce().

168 | Chapter 7: Arrays

You may have noticed that the third call to reduce() in this example has only a single
argument: there is no initial value specified. When you invoke reduce() like this with
no initial value, it uses the first element of the array as the initial value. This means
that the first call to the reduction function will have the first and second array ele‐
ments as its first and second arguments. In the sum and product examples, we could
have omitted the initial value argument.

Calling reduce() on an empty array with no initial value argument causes a
TypeError. If you call it with only one value—either an array with one element and
no initial value or an empty array and an initial value—it simply returns that one
value without ever calling the reduction function.

reduceRight() works just like reduce(), except that it processes the array from high‐
est index to lowest (right-to-left), rather than from lowest to highest. You might want
to do this if the reduction operation has right-to-left associativity, for example:

// Compute 2^(3^4). Exponentiation has right-to-left precedence
let a = [2, 3, 4];
a.reduceRight((acc,val) => Math.pow(val,acc)) // => 2.4178516392292583e+24

Note that neither reduce() nor reduceRight() accepts an optional argument that
specifies the this value on which the reduction function is to be invoked. The
optional initial value argument takes its place. See the Function.bind() method
(§8.7.5) if you need your reduction function invoked as a method of a particular
object.

The examples shown so far have been numeric for simplicity, but reduce() and
reduceRight() are not intended solely for mathematical computations. Any function
that can combine two values (such as two objects) into one value of the same type can
be used as a reduction function. On the other hand, algorithms expressed using array
reductions can quickly become complex and hard to understand, and you may find
that it is easier to read, write, and reason about your code if you use regular looping
constructs to process your arrays.

7.8.2 Flattening arrays with flat() and flatMap()
In ES2019, the flat() method creates and returns a new array that contains the same
elements as the array it is called on, except that any elements that are themselves
arrays are “flattened” into the returned array. For example:

[1, [2, 3]].flat() // => [1, 2, 3]
[1, [2, [3]]].flat() // => [1, 2, [3]]

When called with no arguments, flat() flattens one level of nesting. Elements of the
original array that are themselves arrays are flattened, but array elements of those
arrays are not flattened. If you want to flatten more levels, pass a number to flat():

7.8 Array Methods | 169

let a = [1, [2, [3, [4]]]];
a.flat(1) // => [1, 2, [3, [4]]]
a.flat(2) // => [1, 2, 3, [4]]
a.flat(3) // => [1, 2, 3, 4]
a.flat(4) // => [1, 2, 3, 4]

The flatMap() method works just like the map() method (see “map()” on page 166)
except that the returned array is automatically flattened as if passed to flat(). That
is, calling a.flatMap(f) is the same as (but more efficient than) a.map(f).flat():

let phrases = ["hello world", "the definitive guide"];
let words = phrases.flatMap(phrase => phrase.split(" "));
words // => ["hello", "world", "the", "definitive", "guide"];

You can think of flatMap() as a generalization of map() that allows each element of
the input array to map to any number of elements of the output array. In particular,
flatMap() allows you to map input elements to an empty array, which flattens to
nothing in the output array:

// Map non-negative numbers to their square roots
[-2, -1, 1, 2].flatMap(x => x < 0 ? [] : Math.sqrt(x)) // => [1, 2**0.5]

7.8.3 Adding arrays with concat()
The concat() method creates and returns a new array that contains the elements of
the original array on which concat() was invoked, followed by each of the arguments
to concat(). If any of these arguments is itself an array, then it is the array elements
that are concatenated, not the array itself. Note, however, that concat() does not
recursively flatten arrays of arrays. concat() does not modify the array on which it is
invoked:

let a = [1,2,3];
a.concat(4, 5) // => [1,2,3,4,5]
a.concat([4,5],[6,7]) // => [1,2,3,4,5,6,7]; arrays are flattened
a.concat(4, [5,[6,7]]) // => [1,2,3,4,5,[6,7]]; but not nested arrays
a // => [1,2,3]; the original array is unmodified

Note that concat() makes a new copy of the array it is called on. In many cases, this
is the right thing to do, but it is an expensive operation. If you find yourself writing
code like a = a.concat(x), then you should think about modifying your array in
place with push() or splice() instead of creating a new one.

7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()
The push() and pop() methods allow you to work with arrays as if they were stacks.
The push() method appends one or more new elements to the end of an array and
returns the new length of the array. Unlike concat(), push() does not flatten array
arguments. The pop() method does the reverse: it deletes the last element of an array,

170 | Chapter 7: Arrays

decrements the array length, and returns the value that it removed. Note that both
methods modify the array in place. The combination of push() and pop() allows you
to use a JavaScript array to implement a first-in, last-out stack. For example:

let stack = []; // stack == []
stack.push(1,2); // stack == [1,2];
stack.pop(); // stack == [1]; returns 2
stack.push(3); // stack == [1,3]
stack.pop(); // stack == [1]; returns 3
stack.push([4,5]); // stack == [1,[4,5]]
stack.pop() // stack == [1]; returns [4,5]
stack.pop(); // stack == []; returns 1

The push() method does not flatten an array you pass to it, but if you want to push
all of the elements from one array onto another array, you can use the spread opera‐
tor (§8.3.4) to flatten it explicitly:

a.push(...values);

The unshift() and shift() methods behave much like push() and pop(), except
that they insert and remove elements from the beginning of an array rather than from
the end. unshift() adds an element or elements to the beginning of the array, shifts
the existing array elements up to higher indexes to make room, and returns the new
length of the array. shift() removes and returns the first element of the array, shift‐
ing all subsequent elements down one place to occupy the newly vacant space at the
start of the array. You could use unshift() and shift() to implement a stack, but it
would be less efficient than using push() and pop() because the array elements need
to be shifted up or down every time an element is added or removed at the start of the
array. Instead, though, you can implement a queue data structure by using push() to
add elements at the end of an array and shift() to remove them from the start of the
array:

let q = []; // q == []
q.push(1,2); // q == [1,2]
q.shift(); // q == [2]; returns 1
q.push(3) // q == [2, 3]
q.shift() // q == [3]; returns 2
q.shift() // q == []; returns 3

There is one feature of unshift() that is worth calling out because you may find it
surprising. When passing multiple arguments to unshift(), they are inserted all at
once, which means that they end up in the array in a different order than they would
be if you inserted them one at a time:

let a = []; // a == []
a.unshift(1) // a == [1]
a.unshift(2) // a == [2, 1]
a = []; // a == []
a.unshift(1,2) // a == [1, 2]

7.8 Array Methods | 171

7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()
Arrays define a number of methods that work on contiguous regions, or subarrays or
“slices” of an array. The following sections describe methods for extracting, replacing,
filling, and copying slices.

slice()

The slice() method returns a slice, or subarray, of the specified array. Its two argu‐
ments specify the start and end of the slice to be returned. The returned array con‐
tains the element specified by the first argument and all subsequent elements up to,
but not including, the element specified by the second argument. If only one argu‐
ment is specified, the returned array contains all elements from the start position to
the end of the array. If either argument is negative, it specifies an array element rela‐
tive to the length of the array. An argument of –1, for example, specifies the last ele‐
ment in the array, and an argument of –2 specifies the element before that one. Note
that slice() does not modify the array on which it is invoked. Here are some
examples:

let a = [1,2,3,4,5];
a.slice(0,3); // Returns [1,2,3]
a.slice(3); // Returns [4,5]
a.slice(1,-1); // Returns [2,3,4]
a.slice(-3,-2); // Returns [3]

splice()

splice() is a general-purpose method for inserting or removing elements from an
array. Unlike slice() and concat(), splice() modifies the array on which it is
invoked. Note that splice() and slice() have very similar names but perform sub‐
stantially different operations.

splice() can delete elements from an array, insert new elements into an array, or
perform both operations at the same time. Elements of the array that come after the
insertion or deletion point have their indexes increased or decreased as necessary so
that they remain contiguous with the rest of the array. The first argument to splice()
specifies the array position at which the insertion and/or deletion is to begin. The sec‐
ond argument specifies the number of elements that should be deleted from (spliced
out of) the array. (Note that this is another difference between these two methods.
The second argument to slice() is an end position. The second argument to
splice() is a length.) If this second argument is omitted, all array elements from the
start element to the end of the array are removed. splice() returns an array of the
deleted elements, or an empty array if no elements were deleted. For example:

let a = [1,2,3,4,5,6,7,8];
a.splice(4) // => [5,6,7,8]; a is now [1,2,3,4]

172 | Chapter 7: Arrays

a.splice(1,2) // => [2,3]; a is now [1,4]
a.splice(1,1) // => [4]; a is now [1]

The first two arguments to splice() specify which array elements are to be deleted.
These arguments may be followed by any number of additional arguments that spec‐
ify elements to be inserted into the array, starting at the position specified by the first
argument. For example:

let a = [1,2,3,4,5];
a.splice(2,0,"a","b") // => []; a is now [1,2,"a","b",3,4,5]
a.splice(2,2,[1,2],3) // => ["a","b"]; a is now [1,2,[1,2],3,3,4,5]

Note that, unlike concat(), splice() inserts arrays themselves, not the elements of
those arrays.

fill()

The fill() method sets the elements of an array, or a slice of an array, to a specified
value. It mutates the array it is called on, and also returns the modified array:

let a = new Array(5); // Start with no elements and length 5
a.fill(0) // => [0,0,0,0,0]; fill the array with zeros
a.fill(9, 1) // => [0,9,9,9,9]; fill with 9 starting at index 1
a.fill(8, 2, -1) // => [0,9,8,8,9]; fill with 8 at indexes 2, 3

The first argument to fill() is the value to set array elements to. The optional sec‐
ond argument specifies the starting index. If omitted, filling starts at index 0. The
optional third argument specifies the ending index—array elements up to, but not
including, this index will be filled. If this argument is omitted, then the array is filled
from the start index to the end. You can specify indexes relative to the end of the
array by passing negative numbers, just as you can for slice().

copyWithin()

copyWithin() copies a slice of an array to a new position within the array. It modifies
the array in place and returns the modified array, but it will not change the length of
the array. The first argument specifies the destination index to which the first element
will be copied. The second argument specifies the index of the first element to be
copied. If this second argument is omitted, 0 is used. The third argument specifies the
end of the slice of elements to be copied. If omitted, the length of the array is used.
Elements from the start index up to, but not including, the end index will be copied.
You can specify indexes relative to the end of the array by passing negative numbers,
just as you can for slice():

let a = [1,2,3,4,5];
a.copyWithin(1) // => [1,1,2,3,4]: copy array elements up one
a.copyWithin(2, 3, 5) // => [1,1,3,4,4]: copy last 2 elements to index 2
a.copyWithin(0, -2) // => [4,4,3,4,4]: negative offsets work, too

7.8 Array Methods | 173

copyWithin() is intended as a high-performance method that is particularly useful
with typed arrays (see §11.2). It is modeled after the memmove() function from the C
standard library. Note that the copy will work correctly even if there is overlap
between the source and destination regions.

7.8.6 Array Searching and Sorting Methods
Arrays implement indexOf(), lastIndexOf(), and includes() methods that are
similar to the same-named methods of strings. There are also sort() and reverse()
methods for reordering the elements of an array. These methods are described in the
subsections that follow.

indexOf() and lastIndexOf()

indexOf() and lastIndexOf() search an array for an element with a specified value
and return the index of the first such element found, or -1 if none is found.
indexOf() searches the array from beginning to end, and lastIndexOf() searches
from end to beginning:

let a = [0,1,2,1,0];
a.indexOf(1) // => 1: a[1] is 1
a.lastIndexOf(1) // => 3: a[3] is 1
a.indexOf(3) // => -1: no element has value 3

indexOf() and lastIndexOf() compare their argument to the array elements using
the equivalent of the === operator. If your array contains objects instead of primitive
values, these methods check to see if two references both refer to exactly the same
object. If you want to actually look at the content of an object, try using the find()
method with your own custom predicate function instead.

indexOf() and lastIndexOf() take an optional second argument that specifies the
array index at which to begin the search. If this argument is omitted, indexOf() starts
at the beginning and lastIndexOf() starts at the end. Negative values are allowed for
the second argument and are treated as an offset from the end of the array, as they are
for the slice() method: a value of –1, for example, specifies the last element of the
array.

The following function searches an array for a specified value and returns an array of
all matching indexes. This demonstrates how the second argument to indexOf() can
be used to find matches beyond the first.

// Find all occurrences of a value x in an array a and return an array
// of matching indexes
function findall(a, x) {
 let results = [], // The array of indexes we'll return
 len = a.length, // The length of the array to be searched
 pos = 0; // The position to search from

174 | Chapter 7: Arrays

 while(pos < len) { // While more elements to search...
 pos = a.indexOf(x, pos); // Search
 if (pos === -1) break; // If nothing found, we're done.
 results.push(pos); // Otherwise, store index in array
 pos = pos + 1; // And start next search at next element
 }
 return results; // Return array of indexes
}

Note that strings have indexOf() and lastIndexOf() methods that work like these
array methods, except that a negative second argument is treated as zero.

includes()

The ES2016 includes() method takes a single argument and returns true if the array
contains that value or false otherwise. It does not tell you the index of the value,
only whether it exists. The includes() method is effectively a set membership test
for arrays. Note, however, that arrays are not an efficient representation for sets, and
if you are working with more than a few elements, you should use a real Set object
(§11.1.1).

The includes() method is slightly different than the indexOf() method in one
important way. indexOf() tests equality using the same algorithm that the === opera‐
tor does, and that equality algorithm considers the not-a-number value to be different
from every other value, including itself. includes() uses a slightly different version
of equality that does consider NaN to be equal to itself. This means that indexOf() will
not detect the NaN value in an array, but includes() will:

let a = [1,true,3,NaN];
a.includes(true) // => true
a.includes(2) // => false
a.includes(NaN) // => true
a.indexOf(NaN) // => -1; indexOf can't find NaN

sort()

sort() sorts the elements of an array in place and returns the sorted array. When
sort() is called with no arguments, it sorts the array elements in alphabetical order
(temporarily converting them to strings to perform the comparison, if necessary):

let a = ["banana", "cherry", "apple"];
a.sort(); // a == ["apple", "banana", "cherry"]

If an array contains undefined elements, they are sorted to the end of the array.

To sort an array into some order other than alphabetical, you must pass a comparison
function as an argument to sort(). This function decides which of its two arguments
should appear first in the sorted array. If the first argument should appear before the
second, the comparison function should return a number less than zero. If the first

7.8 Array Methods | 175

argument should appear after the second in the sorted array, the function should
return a number greater than zero. And if the two values are equivalent (i.e., if their
order is irrelevant), the comparison function should return 0. So, for example, to sort
array elements into numerical rather than alphabetical order, you might do this:

let a = [33, 4, 1111, 222];
a.sort(); // a == [1111, 222, 33, 4]; alphabetical order
a.sort(function(a,b) { // Pass a comparator function
 return a-b; // Returns < 0, 0, or > 0, depending on order
}); // a == [4, 33, 222, 1111]; numerical order
a.sort((a,b) => b-a); // a == [1111, 222, 33, 4]; reverse numerical order

As another example of sorting array items, you might perform a case-insensitive
alphabetical sort on an array of strings by passing a comparison function that con‐
verts both of its arguments to lowercase (with the toLowerCase() method) before
comparing them:

let a = ["ant", "Bug", "cat", "Dog"];
a.sort(); // a == ["Bug","Dog","ant","cat"]; case-sensitive sort
a.sort(function(s,t) {
 let a = s.toLowerCase();
 let b = t.toLowerCase();
 if (a < b) return -1;
 if (a > b) return 1;
 return 0;
}); // a == ["ant","Bug","cat","Dog"]; case-insensitive sort

reverse()

The reverse() method reverses the order of the elements of an array and returns the
reversed array. It does this in place; in other words, it doesn’t create a new array with
the elements rearranged but instead rearranges them in the already existing array:

let a = [1,2,3];
a.reverse(); // a == [3,2,1]

7.8.7 Array to String Conversions
The Array class defines three methods that can convert arrays to strings, which is
generally something you might do when creating log and error messages. (If you
want to save the contents of an array in textual form for later reuse, serialize the array
with JSON.stringify() [§6.8] instead of using the methods described here.)

The join() method converts all the elements of an array to strings and concatenates
them, returning the resulting string. You can specify an optional string that separates
the elements in the resulting string. If no separator string is specified, a comma is
used:

let a = [1, 2, 3];
a.join() // => "1,2,3"

176 | Chapter 7: Arrays

a.join(" ") // => "1 2 3"
a.join("") // => "123"
let b = new Array(10); // An array of length 10 with no elements
b.join("-") // => "---------": a string of 9 hyphens

The join() method is the inverse of the String.split() method, which creates an
array by breaking a string into pieces.

Arrays, like all JavaScript objects, have a toString() method. For an array, this
method works just like the join() method with no arguments:

[1,2,3].toString() // => "1,2,3"
["a", "b", "c"].toString() // => "a,b,c"
[1, [2,"c"]].toString() // => "1,2,c"

Note that the output does not include square brackets or any other sort of delimiter
around the array value.

toLocaleString() is the localized version of toString(). It converts each array ele‐
ment to a string by calling the toLocaleString() method of the element, and then it
concatenates the resulting strings using a locale-specific (and implementation-
defined) separator string.

7.8.8 Static Array Functions
In addition to the array methods we’ve already documented, the Array class also
defines three static functions that you can invoke through the Array constructor
rather than on arrays. Array.of() and Array.from() are factory methods for creat‐
ing new arrays. They were documented in §7.1.4 and §7.1.5.

The one other static array function is Array.isArray(), which is useful for determin‐
ing whether an unknown value is an array or not:

Array.isArray([]) // => true
Array.isArray({}) // => false

7.9 Array-Like Objects
As we’ve seen, JavaScript arrays have some special features that other objects do not
have:

• The length property is automatically updated as new elements are added to the
list.

• Setting length to a smaller value truncates the array.
• Arrays inherit useful methods from Array.prototype.
• Array.isArray() returns true for arrays.

7.9 Array-Like Objects | 177

These are the features that make JavaScript arrays distinct from regular objects. But
they are not the essential features that define an array. It is often perfectly reasonable
to treat any object with a numeric length property and corresponding non-negative
integer properties as a kind of array.

These “array-like” objects actually do occasionally appear in practice, and although
you cannot directly invoke array methods on them or expect special behavior from
the length property, you can still iterate through them with the same code you’d use
for a true array. It turns out that many array algorithms work just as well with array-
like objects as they do with real arrays. This is especially true if your algorithms treat
the array as read-only or if they at least leave the array length unchanged.

The following code takes a regular object, adds properties to make it an array-like
object, and then iterates through the “elements” of the resulting pseudo-array:

let a = {}; // Start with a regular empty object

// Add properties to make it "array-like"
let i = 0;
while(i < 10) {
 a[i] = i * i;
 i++;
}
a.length = i;

// Now iterate through it as if it were a real array
let total = 0;
for(let j = 0; j < a.length; j++) {
 total += a[j];
}

In client-side JavaScript, a number of methods for working with HTML documents
(such as document.querySelectorAll(), for example) return array-like objects.
Here’s a function you might use to test for objects that work like arrays:

// Determine if o is an array-like object.
// Strings and functions have numeric length properties, but are
// excluded by the typeof test. In client-side JavaScript, DOM text
// nodes have a numeric length property, and may need to be excluded
// with an additional o.nodeType !== 3 test.
function isArrayLike(o) {
 if (o && // o is not null, undefined, etc.
 typeof o === "object" && // o is an object
 Number.isFinite(o.length) && // o.length is a finite number
 o.length >= 0 && // o.length is non-negative
 Number.isInteger(o.length) && // o.length is an integer
 o.length < 4294967295) { // o.length < 2^32 - 1
 return true; // Then o is array-like.
 } else {
 return false; // Otherwise it is not.

178 | Chapter 7: Arrays

 }
}

We’ll see in a later section that strings behave like arrays. Nevertheless, tests like this
one for array-like objects typically return false for strings—they are usually best
handled as strings, not as arrays.

Most JavaScript array methods are purposely defined to be generic so that they work
correctly when applied to array-like objects in addition to true arrays. Since array-like
objects do not inherit from Array.prototype, you cannot invoke array methods on
them directly. You can invoke them indirectly using the Function.call method,
however (see §8.7.4 for details):

let a = {"0": "a", "1": "b", "2": "c", length: 3}; // An array-like object
Array.prototype.join.call(a, "+") // => "a+b+c"
Array.prototype.map.call(a, x => x.toUpperCase()) // => ["A","B","C"]
Array.prototype.slice.call(a, 0) // => ["a","b","c"]: true array copy
Array.from(a) // => ["a","b","c"]: easier array copy

The second-to-last line of this code invokes the Array slice() method on an array-
like object in order to copy the elements of that object into a true array object. This is
an idiomatic trick that exists in much legacy code, but is now much easier to do with
Array.from().

7.10 Strings as Arrays
JavaScript strings behave like read-only arrays of UTF-16 Unicode characters. Instead
of accessing individual characters with the charAt() method, you can use square
brackets:

let s = "test";
s.charAt(0) // => "t"
s[1] // => "e"

The typeof operator still returns “string” for strings, of course, and the Array.isAr
ray() method returns false if you pass it a string.

The primary benefit of indexable strings is simply that we can replace calls to
charAt() with square brackets, which are more concise and readable, and potentially
more efficient. The fact that strings behave like arrays also means, however, that we
can apply generic array methods to them. For example:

Array.prototype.join.call("JavaScript", " ") // => "J a v a S c r i p t"

Keep in mind that strings are immutable values, so when they are treated as arrays,
they are read-only arrays. Array methods like push(), sort(), reverse(), and
splice() modify an array in place and do not work on strings. Attempting to modify
a string using an array method does not, however, cause an error: it simply fails
silently.

7.10 Strings as Arrays | 179

7.11 Summary
This chapter has covered JavaScript arrays in depth, including esoteric details about
sparse arrays and array-like objects. The main points to take from this chapter are:

• Array literals are written as comma-separated lists of values within square
brackets.

• Individual array elements are accessed by specifying the desired array index
within square brackets.

• The for/of loop and ... spread operator introduced in ES6 are particularly use‐
ful ways to iterate arrays.

• The Array class defines a rich set of methods for manipulating arrays, and you
should be sure to familiarize yourself with the Array API.

180 | Chapter 7: Arrays

CHAPTER 8

Functions

This chapter covers JavaScript functions. Functions are a fundamental building block
for JavaScript programs and a common feature in almost all programming languages.
You may already be familiar with the concept of a function under a name such as
subroutine or procedure.

A function is a block of JavaScript code that is defined once but may be executed, or
invoked, any number of times. JavaScript functions are parameterized: a function defi‐
nition may include a list of identifiers, known as parameters, that work as local vari‐
ables for the body of the function. Function invocations provide values, or arguments,
for the function’s parameters. Functions often use their argument values to compute a
return value that becomes the value of the function-invocation expression. In addi‐
tion to the arguments, each invocation has another value—the invocation context—
that is the value of the this keyword.

If a function is assigned to a property of an object, it is known as a method of that
object. When a function is invoked on or through an object, that object is the invoca‐
tion context or this value for the function. Functions designed to initialize a newly
created object are called constructors. Constructors were described in §6.2 and will be
covered again in Chapter 9.

In JavaScript, functions are objects, and they can be manipulated by programs. Java‐
Script can assign functions to variables and pass them to other functions, for exam‐
ple. Since functions are objects, you can set properties on them and even invoke
methods on them.

JavaScript function definitions can be nested within other functions, and they have
access to any variables that are in scope where they are defined. This means that Java‐
Script functions are closures, and it enables important and powerful programming
techniques.

181

8.1 Defining Functions
The most straightforward way to define a JavaScript function is with the function
keyword, which can be used as a declaration or as an expression. ES6 defines an
important new way to define functions without the function keyword: “arrow func‐
tions” have a particularly compact syntax and are useful when passing one function as
an argument to another function. The subsections that follow cover these three ways
of defining functions. Note that some details of function definition syntax involving
function parameters are deferred to §8.3.

In object literals and class definitions, there is a convenient shorthand syntax for
defining methods. This shorthand syntax was covered in §6.10.5 and is equivalent to
using a function definition expression and assigning it to an object property using the
basic name:value object literal syntax. In another special case, you can use keywords
get and set in object literals to define special property getter and setter methods.
This function definition syntax was covered in §6.10.6.

Note that functions can also be defined with the Function() constructor, which is the
subject of §8.7.7. Also, JavaScript defines some specialized kinds of functions.
function* defines generator functions (see Chapter 12) and async function defines
asynchronous functions (see Chapter 13).

8.1.1 Function Declarations
Function declarations consist of the function keyword, followed by these
components:

• An identifier that names the function. The name is a required part of function
declarations: it is used as the name of a variable, and the newly defined function
object is assigned to the variable.

• A pair of parentheses around a comma-separated list of zero or more identifiers.
These identifiers are the parameter names for the function, and they behave like
local variables within the body of the function.

• A pair of curly braces with zero or more JavaScript statements inside. These
statements are the body of the function: they are executed whenever the function
is invoked.

Here are some example function declarations:

// Print the name and value of each property of o. Return undefined.
function printprops(o) {
 for(let p in o) {
 console.log(`${p}: ${o[p]}\n`);
 }
}

182 | Chapter 8: Functions

// Compute the distance between Cartesian points (x1,y1) and (x2,y2).
function distance(x1, y1, x2, y2) {
 let dx = x2 - x1;
 let dy = y2 - y1;
 return Math.sqrt(dx*dx + dy*dy);
}

// A recursive function (one that calls itself) that computes factorials
// Recall that x! is the product of x and all positive integers less than it.
function factorial(x) {
 if (x <= 1) return 1;
 return x * factorial(x-1);
}

One of the important things to understand about function declarations is that the
name of the function becomes a variable whose value is the function itself. Function
declaration statements are “hoisted” to the top of the enclosing script, function, or
block so that functions defined in this way may be invoked from code that appears
before the definition. Another way to say this is that all of the functions declared in a
block of JavaScript code will be defined throughout that block, and they will be
defined before the JavaScript interpreter begins to execute any of the code in that
block.

The distance() and factorial() functions we’ve described are designed to compute
a value, and they use return to return that value to their caller. The return statement
causes the function to stop executing and to return the value of its expression (if any)
to the caller. If the return statement does not have an associated expression, the
return value of the function is undefined.

The printprops() function is different: its job is to output the names and values of
an object’s properties. No return value is necessary, and the function does not include
a return statement. The value of an invocation of the printprops() function is
always undefined. If a function does not contain a return statement, it simply exe‐
cutes each statement in the function body until it reaches the end, and returns the
undefined value to the caller.

Prior to ES6, function declarations were only allowed at the top level within a Java‐
Script file or within another function. While some implementations bent the rule, it
was not technically legal to define functions inside the body of loops, conditionals, or
other blocks. In the strict mode of ES6, however, function declarations are allowed
within blocks. A function defined within a block only exists within that block, how‐
ever, and is not visible outside the block.

8.1 Defining Functions | 183

8.1.2 Function Expressions
Function expressions look a lot like function declarations, but they appear within the
context of a larger expression or statement, and the name is optional. Here are some
example function expressions:

// This function expression defines a function that squares its argument.
// Note that we assign it to a variable
const square = function(x) { return x*x; };

// Function expressions can include names, which is useful for recursion.
const f = function fact(x) { if (x <= 1) return 1; else return x*fact(x-1); };

// Function expressions can also be used as arguments to other functions:
[3,2,1].sort(function(a,b) { return a-b; });

// Function expressions are sometimes defined and immediately invoked:
let tensquared = (function(x) {return x*x;}(10));

Note that the function name is optional for functions defined as expressions, and
most of the preceding function expressions we’ve shown omit it. A function declara‐
tion actually declares a variable and assigns a function object to it. A function expres‐
sion, on the other hand, does not declare a variable: it is up to you to assign the newly
defined function object to a constant or variable if you are going to need to refer to it
multiple times. It is a good practice to use const with function expressions so you
don’t accidentally overwrite your functions by assigning new values.

A name is allowed for functions, like the factorial function, that need to refer to
themselves. If a function expression includes a name, the local function scope for that
function will include a binding of that name to the function object. In effect, the
function name becomes a local variable within the function. Most functions defined
as expressions do not need names, which makes their definition more compact
(though not nearly as compact as arrow functions, described below).

There is an important difference between defining a function f() with a function
declaration and assigning a function to the variable f after creating it as an expres‐
sion. When you use the declaration form, the function objects are created before the
code that contains them starts to run, and the definitions are hoisted so that you can
call these functions from code that appears above the definition statement. This is not
true for functions defined as expressions, however: these functions do not exist until
the expression that defines them are actually evaluated. Furthermore, in order to
invoke a function, you must be able to refer to it, and you can’t refer to a function
defined as an expression until it is assigned to a variable, so functions defined with
expressions cannot be invoked before they are defined.

184 | Chapter 8: Functions

8.1.3 Arrow Functions
In ES6, you can define functions using a particularly compact syntax known as
“arrow functions.” This syntax is reminiscent of mathematical notation and uses an =>
“arrow” to separate the function parameters from the function body. The function
keyword is not used, and, since arrow functions are expressions instead of statements,
there is no need for a function name, either. The general form of an arrow function is
a comma-separated list of parameters in parentheses, followed by the => arrow, fol‐
lowed by the function body in curly braces:

const sum = (x, y) => { return x + y; };

But arrow functions support an even more compact syntax. If the body of the func‐
tion is a single return statement, you can omit the return keyword, the semicolon
that goes with it, and the curly braces, and write the body of the function as the
expression whose value is to be returned:

const sum = (x, y) => x + y;

Furthermore, if an arrow function has exactly one parameter, you can omit the
parentheses around the parameter list:

const polynomial = x => x*x + 2*x + 3;

Note, however, that an arrow function with no arguments at all must be written with
an empty pair of parentheses:

const constantFunc = () => 42;

Note that, when writing an arrow function, you must not put a new line between the
function parameters and the => arrow. Otherwise, you could end up with a line like
const polynomial = x, which is a syntactically valid assignment statement on its
own.

Also, if the body of your arrow function is a single return statement but the expres‐
sion to be returned is an object literal, then you have to put the object literal inside
parentheses to avoid syntactic ambiguity between the curly braces of a function body
and the curly braces of an object literal:

const f = x => { return { value: x }; }; // Good: f() returns an object
const g = x => ({ value: x }); // Good: g() returns an object
const h = x => { value: x }; // Bad: h() returns nothing
const i = x => { v: x, w: x }; // Bad: Syntax Error

In the third line of this code, the function h() is truly ambiguous: the code you
intended as an object literal can be parsed as a labeled statement, so a function that
returns undefined is created. On the fourth line, however, the more complicated
object literal is not a valid statement, and this illegal code causes a syntax error.

8.1 Defining Functions | 185

The concise syntax of arrow functions makes them ideal when you need to pass one
function to another function, which is a common thing to do with array methods like
map(), filter(), and reduce() (see §7.8.1), for example:

// Make a copy of an array with null elements removed.
let filtered = [1,null,2,3].filter(x => x !== null); // filtered == [1,2,3]
// Square some numbers:
let squares = [1,2,3,4].map(x => x*x); // squares == [1,4,9,16]

Arrow functions differ from functions defined in other ways in one critical way: they
inherit the value of the this keyword from the environment in which they are
defined rather than defining their own invocation context as functions defined in
other ways do. This is an important and very useful feature of arrow functions, and
we’ll return to it again later in this chapter. Arrow functions also differ from other
functions in that they do not have a prototype property, which means that they can‐
not be used as constructor functions for new classes (see §9.2).

8.1.4 Nested Functions
In JavaScript, functions may be nested within other functions. For example:

function hypotenuse(a, b) {
 function square(x) { return x*x; }
 return Math.sqrt(square(a) + square(b));
}

The interesting thing about nested functions is their variable scoping rules: they can
access the parameters and variables of the function (or functions) they are nested
within. In the code shown here, for example, the inner function square() can read
and write the parameters a and b defined by the outer function hypotenuse(). These
scope rules for nested functions are very important, and we will consider them again
in §8.6.

8.2 Invoking Functions
The JavaScript code that makes up the body of a function is not executed when the
function is defined, but rather when it is invoked. JavaScript functions can be invoked
in five ways:

• As functions
• As methods
• As constructors
• Indirectly through their call() and apply() methods

186 | Chapter 8: Functions

• Implicitly, via JavaScript language features that do not appear like normal func‐
tion invocations

8.2.1 Function Invocation
Functions are invoked as functions or as methods with an invocation expression
(§4.5). An invocation expression consists of a function expression that evaluates to a
function object followed by an open parenthesis, a comma-separated list of zero or
more argument expressions, and a close parenthesis. If the function expression is a
property-access expression—if the function is the property of an object or an element
of an array—then it is a method invocation expression. That case will be explained in
the following example. The following code includes a number of regular function
invocation expressions:

printprops({x: 1});
let total = distance(0,0,2,1) + distance(2,1,3,5);
let probability = factorial(5)/factorial(13);

In an invocation, each argument expression (the ones between the parentheses) is
evaluated, and the resulting values become the arguments to the function. These val‐
ues are assigned to the parameters named in the function definition. In the body of
the function, a reference to a parameter evaluates to the corresponding argument
value.

For regular function invocation, the return value of the function becomes the value of
the invocation expression. If the function returns because the interpreter reaches the
end, the return value is undefined. If the function returns because the interpreter
executes a return statement, then the return value is the value of the expression that
follows the return or is undefined if the return statement has no value.

Conditional Invocation
In ES2020 you can insert ?. after the function expression and before the open paren‐
thesis in a function invocation in order to invoke the function only if it is not null or
undefined. That is, the expression f?.(x) is equivalent (assuming no side effects) to:

(f !== null && f !== undefined) ? f(x) : undefined

Full details on this conditional invocation syntax are in §4.5.1.

For function invocation in non-strict mode, the invocation context (the this value) is
the global object. In strict mode, however, the invocation context is undefined. Note
that functions defined using the arrow syntax behave differently: they always inherit
the this value that is in effect where they are defined.

8.2 Invoking Functions | 187

Functions written to be invoked as functions (and not as methods) do not typically
use the this keyword at all. The keyword can be used, however, to determine
whether strict mode is in effect:

// Define and invoke a function to determine if we're in strict mode.
const strict = (function() { return !this; }());

Recursive Functions and the Stack
A recursive function is one, like the factorial() function at the start of this chapter,
that calls itself. Some algorithms, such as those involving tree-based data structures,
can be implemented particularly elegantly with recursive functions. When writing a
recursive function, however, it is important to think about memory constraints.
When a function A calls function B, and then function B calls function C, the Java‐
Script interpreter needs to keep track of the execution contexts for all three functions.
When function C completes, the interpreter needs to know where to resume execut‐
ing function B, and when function B completes, it needs to know where to resume
executing function A. You can imagine these execution contexts as a stack. When a
function calls another function, a new execution context is pushed onto the stack.
When that function returns, its execution context object is popped off the stack. If a
function calls itself recursively 100 times, the stack will have 100 objects pushed onto
it, and then have those 100 objects popped off. This call stack takes memory. On
modern hardware, it is typically fine to write recursive functions that call themselves
hundreds of times. But if a function calls itself ten thousand times, it is likely to fail
with an error such as “Maximum call-stack size exceeded.”

8.2.2 Method Invocation
A method is nothing more than a JavaScript function that is stored in a property of an
object. If you have a function f and an object o, you can define a method named m of
o with the following line:

o.m = f;

Having defined the method m() of the object o, invoke it like this:

o.m();

Or, if m() expects two arguments, you might invoke it like this:

o.m(x, y);

The code in this example is an invocation expression: it includes a function expres‐
sion o.m and two argument expressions, x and y. The function expression is itself a
property access expression, and this means that the function is invoked as a method
rather than as a regular function.

188 | Chapter 8: Functions

The arguments and return value of a method invocation are handled exactly as
described for regular function invocation. Method invocations differ from function
invocations in one important way, however: the invocation context. Property access
expressions consist of two parts: an object (in this case o) and a property name (m). In
a method-invocation expression like this, the object o becomes the invocation con‐
text, and the function body can refer to that object by using the keyword this. Here
is a concrete example:

let calculator = { // An object literal
 operand1: 1,
 operand2: 1,
 add() { // We're using method shorthand syntax for this function
 // Note the use of the this keyword to refer to the containing object.
 this.result = this.operand1 + this.operand2;
 }
};
calculator.add(); // A method invocation to compute 1+1.
calculator.result // => 2

Most method invocations use the dot notation for property access, but property
access expressions that use square brackets also cause method invocation. The follow‐
ing are both method invocations, for example:

o["m"](x,y); // Another way to write o.m(x,y).
a[0](z) // Also a method invocation (assuming a[0] is a function).

Method invocations may also involve more complex property access expressions:

customer.surname.toUpperCase(); // Invoke method on customer.surname
f().m(); // Invoke method m() on return value of f()

Methods and the this keyword are central to the object-oriented programming para‐
digm. Any function that is used as a method is effectively passed an implicit argu‐
ment—the object through which it is invoked. Typically, a method performs some
sort of operation on that object, and the method-invocation syntax is an elegant way
to express the fact that a function is operating on an object. Compare the following
two lines:

rect.setSize(width, height);
setRectSize(rect, width, height);

The hypothetical functions invoked in these two lines of code may perform exactly
the same operation on the (hypothetical) object rect, but the method-invocation syn‐
tax in the first line more clearly indicates the idea that it is the object rect that is the
primary focus of the operation.

8.2 Invoking Functions | 189

1 The term was coined by Martin Fowler. See http://martinfowler.com/dslCatalog/methodChaining.html.

Method Chaining
When methods return objects, you can use the return value of one method invocation
as part of a subsequent invocation. This results in a series (or “chain”) of method
invocations as a single expression. When working with Promise-based asynchronous
operations (see Chapter 13), for example, it is common to write code structured like
this:

// Run three asynchronous operations in sequence, handling errors.
doStepOne().then(doStepTwo).then(doStepThree).catch(handleErrors);

When you write a method that does not have a return value of its own, consider hav‐
ing the method return this. If you do this consistently throughout your API, you will
enable a style of programming known as method chaining1 in which an object can be
named once and then multiple methods can be invoked on it:

new Square().x(100).y(100).size(50).outline("red").fill("blue").draw();

Note that this is a keyword, not a variable or property name. JavaScript syntax does
not allow you to assign a value to this.

The this keyword is not scoped the way variables are, and, except for arrow func‐
tions, nested functions do not inherit the this value of the containing function. If a
nested function is invoked as a method, its this value is the object it was invoked on.
If a nested function (that is not an arrow function) is invoked as a function, then its
this value will be either the global object (non-strict mode) or undefined (strict
mode). It is a common mistake to assume that a nested function defined within a
method and invoked as a function can use this to obtain the invocation context of
the method. The following code demonstrates the problem:

let o = { // An object o.
 m: function() { // Method m of the object.
 let self = this; // Save the "this" value in a variable.
 this === o // => true: "this" is the object o.
 f(); // Now call the helper function f().

 function f() { // A nested function f
 this === o // => false: "this" is global or undefined
 self === o // => true: self is the outer "this" value.
 }
 }
};
o.m(); // Invoke the method m on the object o.

190 | Chapter 8: Functions

http://martinfowler.com/dslCatalog/methodChaining.html

Inside the nested function f(), the this keyword is not equal to the object o. This is
widely considered to be a flaw in the JavaScript language, and it is important to be
aware of it. The code above demonstrates one common workaround. Within the
method m, we assign the this value to a variable self, and within the nested function
f, we can use self instead of this to refer to the containing object.

In ES6 and later, another workaround to this issue is to convert the nested function f
into an arrow function, which will properly inherit the this value:

const f = () => {
 this === o // true, since arrow functions inherit this
};

Functions defined as expressions instead of statements are not hoisted, so in order to
make this code work, the function definition for f will need to be moved within the
method m so that it appears before it is invoked.

Another workaround is to invoke the bind() method of the nested function to define
a new function that is implicitly invoked on a specified object:

const f = (function() {
 this === o // true, since we bound this function to the outer this
}).bind(this);

We’ll talk more about bind() in §8.7.5.

8.2.3 Constructor Invocation
If a function or method invocation is preceded by the keyword new, then it is a con‐
structor invocation. (Constructor invocations were introduced in §4.6 and §6.2.2, and
constructors will be covered in more detail in Chapter 9.) Constructor invocations
differ from regular function and method invocations in their handling of arguments,
invocation context, and return value.

If a constructor invocation includes an argument list in parentheses, those argument
expressions are evaluated and passed to the function in the same way they would be
for function and method invocations. It is not common practice, but you can omit a
pair of empty parentheses in a constructor invocation. The following two lines, for
example, are equivalent:

o = new Object();
o = new Object;

A constructor invocation creates a new, empty object that inherits from the object
specified by the prototype property of the constructor. Constructor functions are
intended to initialize objects, and this newly created object is used as the invocation
context, so the constructor function can refer to it with the this keyword. Note that
the new object is used as the invocation context even if the constructor invocation

8.2 Invoking Functions | 191

looks like a method invocation. That is, in the expression new o.m(), o is not used as
the invocation context.

Constructor functions do not normally use the return keyword. They typically initi‐
alize the new object and then return implicitly when they reach the end of their body.
In this case, the new object is the value of the constructor invocation expression. If,
however, a constructor explicitly uses the return statement to return an object, then
that object becomes the value of the invocation expression. If the constructor uses
return with no value, or if it returns a primitive value, that return value is ignored
and the new object is used as the value of the invocation.

8.2.4 Indirect Invocation
JavaScript functions are objects, and like all JavaScript objects, they have methods.
Two of these methods, call() and apply(), invoke the function indirectly. Both
methods allow you to explicitly specify the this value for the invocation, which
means you can invoke any function as a method of any object, even if it is not actually
a method of that object. Both methods also allow you to specify the arguments for the
invocation. The call() method uses its own argument list as arguments to the func‐
tion, and the apply() method expects an array of values to be used as arguments. The
call() and apply() methods are described in detail in §8.7.4.

8.2.5 Implicit Function Invocation
There are various JavaScript language features that do not look like function invoca‐
tions but that cause functions to be invoked. Be extra careful when writing functions
that may be implicitly invoked, because bugs, side effects, and performance issues in
these functions are harder to diagnose and fix than in regular functions for the simple
reason that it may not be obvious from a simple inspection of your code when they
are being called.

The language features that can cause implicit function invocation include:

• If an object has getters or setters defined, then querying or setting the value of its
properties may invoke those methods. See §6.10.6 for more information.

• When an object is used in a string context (such as when it is concatenated with a
string), its toString() method is called. Similarly, when an object is used in a
numeric context, its valueOf() method is invoked. See §3.9.3 for details.

• When you loop over the elements of an iterable object, there are a number of
method calls that occur. Chapter 12 explains how iterators work at the function
call level and demonstrates how to write these methods so that you can define
your own iterable types.

192 | Chapter 8: Functions

• A tagged template literal is a function invocation in disguise. §14.5 demonstrates
how to write functions that can be used in conjunction with template literal
strings.

• Proxy objects (described in §14.7) have their behavior completely controlled by
functions. Just about any operation on one of these objects will cause a function
to be invoked.

8.3 Function Arguments and Parameters
JavaScript function definitions do not specify an expected type for the function
parameters, and function invocations do not do any type checking on the argument
values you pass. In fact, JavaScript function invocations do not even check the num‐
ber of arguments being passed. The subsections that follow describe what happens
when a function is invoked with fewer arguments than declared parameters or with
more arguments than declared parameters. They also demonstrate how you can
explicitly test the type of function arguments if you need to ensure that a function is
not invoked with inappropriate arguments.

8.3.1 Optional Parameters and Defaults
When a function is invoked with fewer arguments than declared parameters, the
additional parameters are set to their default value, which is normally undefined. It is
often useful to write functions so that some arguments are optional. Following is an
example:

// Append the names of the enumerable properties of object o to the
// array a, and return a. If a is omitted, create and return a new array.
function getPropertyNames(o, a) {
 if (a === undefined) a = []; // If undefined, use a new array
 for(let property in o) a.push(property);
 return a;
}

// getPropertyNames() can be invoked with one or two arguments:
let o = {x: 1}, p = {y: 2, z: 3}; // Two objects for testing
let a = getPropertyNames(o); // a == ["x"]; get o's properties in a new array
getPropertyNames(p, a); // a == ["x","y","z"]; add p's properties to it

Instead of using an if statement in the first line of this function, you can use the ||
operator in this idiomatic way:

a = a || [];

Recall from §4.10.2 that the || operator returns its first argument if that argument is
truthy and otherwise returns its second argument. In this case, if any object is passed
as the second argument, the function will use that object. But if the second argument

8.3 Function Arguments and Parameters | 193

2 If you are familiar with Python, note that this is different than Python, in which every invocation shares the
same default value.

is omitted (or null or another falsy value is passed), a newly created empty array will
be used instead.

Note that when designing functions with optional arguments, you should be sure to
put the optional ones at the end of the argument list so that they can be omitted. The
programmer who calls your function cannot omit the first argument and pass the
second: they would have to explicitly pass undefined as the first argument.

In ES6 and later, you can define a default value for each of your function parameters
directly in the parameter list of your function. Simply follow the parameter name
with an equals sign and the default value to use when no argument is supplied for
that parameter:

// Append the names of the enumerable properties of object o to the
// array a, and return a. If a is omitted, create and return a new array.
function getPropertyNames(o, a = []) {
 for(let property in o) a.push(property);
 return a;
}

Parameter default expressions are evaluated when your function is called, not when it
is defined, so each time this getPropertyNames() function is invoked with one argu‐
ment, a new empty array is created and passed.2 It is probably easiest to reason about
functions if the parameter defaults are constants (or literal expressions like [] and
{}). But this is not required: you can use variables, or function invocations, for exam‐
ple, to compute the default value of a parameter. One interesting case is that, for func‐
tions with multiple parameters, you can use the value of a previous parameter to
define the default value of the parameters that follow it:

// This function returns an object representing a rectangle's dimensions.
// If only width is supplied, make it twice as high as it is wide.
const rectangle = (width, height=width*2) => ({width, height});
rectangle(1) // => { width: 1, height: 2 }

This code demonstrates that parameter defaults work with arrow functions. The same
is true for method shorthand functions and all other forms of function definitions.

8.3.2 Rest Parameters and Variable-Length Argument Lists
Parameter defaults enable us to write functions that can be invoked with fewer argu‐
ments than parameters. Rest parameters enable the opposite case: they allow us to
write functions that can be invoked with arbitrarily more arguments than parameters.
Here is an example function that expects one or more numeric arguments and
returns the largest one:

194 | Chapter 8: Functions

function max(first=-Infinity, ...rest) {
 let maxValue = first; // Start by assuming the first arg is biggest
 // Then loop through the rest of the arguments, looking for bigger
 for(let n of rest) {
 if (n > maxValue) {
 maxValue = n;
 }
 }
 // Return the biggest
 return maxValue;
}

max(1, 10, 100, 2, 3, 1000, 4, 5, 6) // => 1000

A rest parameter is preceded by three periods, and it must be the last parameter in a
function declaration. When you invoke a function with a rest parameter, the argu‐
ments you pass are first assigned to the non-rest parameters, and then any remaining
arguments (i.e., the “rest” of the arguments) are stored in an array that becomes the
value of the rest parameter. This last point is important: within the body of a func‐
tion, the value of a rest parameter will always be an array. The array may be empty,
but a rest parameter will never be undefined. (It follows from this that it is never use‐
ful—and not legal—to define a parameter default for a rest parameter.)

Functions like the previous example that can accept any number of arguments are
called variadic functions, variable arity functions, or vararg functions. This book uses
the most colloquial term, varargs, which dates to the early days of the C programming
language.

Don’t confuse the ... that defines a rest parameter in a function definition with
the ... spread operator, described in §8.3.4, which can be used in function
invocations.

8.3.3 The Arguments Object
Rest parameters were introduced into JavaScript in ES6. Before that version of the
language, varargs functions were written using the Arguments object: within the
body of any function, the identifier arguments refers to the Arguments object for that
invocation. The Arguments object is an array-like object (see §7.9) that allows the
argument values passed to the function to be retrieved by number, rather than by
name. Here is the max() function from earlier, rewritten to use the Arguments object
instead of a rest parameter:

function max(x) {
 let maxValue = -Infinity;
 // Loop through the arguments, looking for, and remembering, the biggest.
 for(let i = 0; i < arguments.length; i++) {
 if (arguments[i] > maxValue) maxValue = arguments[i];
 }

8.3 Function Arguments and Parameters | 195

 // Return the biggest
 return maxValue;
}

max(1, 10, 100, 2, 3, 1000, 4, 5, 6) // => 1000

The Arguments object dates back to the earliest days of JavaScript and carries with it
some strange historical baggage that makes it inefficient and hard to optimize, espe‐
cially outside of strict mode. You may still encounter code that uses the Arguments
object, but you should avoid using it in any new code you write. When refactoring
old code, if you encounter a function that uses arguments, you can often replace it
with a ...args rest parameter. Part of the unfortunate legacy of the Arguments object
is that, in strict mode, arguments is treated as a reserved word, and you cannot
declare a function parameter or a local variable with that name.

8.3.4 The Spread Operator for Function Calls
The spread operator ... is used to unpack, or “spread out,” the elements of an array
(or any other iterable object, such as strings) in a context where individual values are
expected. We’ve seen the spread operator used with array literals in §7.1.2. The opera‐
tor can be used, in the same way, in function invocations:

let numbers = [5, 2, 10, -1, 9, 100, 1];
Math.min(...numbers) // => -1

Note that ... is not a true operator in the sense that it cannot be evaluated to produce
a value. Instead, it is a special JavaScript syntax that can be used in array literals and
function invocations.

When we use the same ... syntax in a function definition rather than a function
invocation, it has the opposite effect to the spread operator. As we saw in §8.3.2,
using ... in a function definition gathers multiple function arguments into an array.
Rest parameters and the spread operator are often useful together, as in the following
function, which takes a function argument and returns an instrumented version of
the function for testing:

// This function takes a function and returns a wrapped version
function timed(f) {
 return function(...args) { // Collect args into a rest parameter array
 console.log(`Entering function ${f.name}`);
 let startTime = Date.now();
 try {
 // Pass all of our arguments to the wrapped function
 return f(...args); // Spread the args back out again
 }
 finally {
 // Before we return the wrapped return value, print elapsed time.
 console.log(`Exiting ${f.name} after ${Date.now()-startTime}ms`);
 }

196 | Chapter 8: Functions

 };
}

// Compute the sum of the numbers between 1 and n by brute force
function benchmark(n) {
 let sum = 0;
 for(let i = 1; i <= n; i++) sum += i;
 return sum;
}

// Now invoke the timed version of that test function
timed(benchmark)(1000000) // => 500000500000; this is the sum of the numbers

8.3.5 Destructuring Function Arguments into Parameters
When you invoke a function with a list of argument values, those values end up being
assigned to the parameters declared in the function definition. This initial phase of
function invocation is a lot like variable assignment. So it should not be surprising
that we can use the techniques of destructuring assignment (see §3.10.3) with
functions.

If you define a function that has parameter names within square brackets, you are
telling the function to expect an array value to be passed for each pair of square
brackets. As part of the invocation process, the array arguments will be unpacked into
the individually named parameters. As an example, suppose we are representing 2D
vectors as arrays of two numbers, where the first element is the X coordinate and the
second element is the Y coordinate. With this simple data structure, we could write
the following function to add two vectors:

function vectorAdd(v1, v2) {
 return [v1[0] + v2[0], v1[1] + v2[1]];
}
vectorAdd([1,2], [3,4]) // => [4,6]

The code would be easier to understand if we destructured the two vector arguments
into more clearly named parameters:

function vectorAdd([x1,y1], [x2,y2]) { // Unpack 2 arguments into 4 parameters
 return [x1 + x2, y1 + y2];
}
vectorAdd([1,2], [3,4]) // => [4,6]

Similarly, if you are defining a function that expects an object argument, you can
destructure parameters of that object. Let’s use a vector example again, except this
time, let’s suppose that we represent vectors as objects with x and y parameters:

// Multiply the vector {x,y} by a scalar value
function vectorMultiply({x, y}, scalar) {
 return { x: x*scalar, y: y*scalar };
}
vectorMultiply({x: 1, y: 2}, 2) // => {x: 2, y: 4}

8.3 Function Arguments and Parameters | 197

This example of destructuring a single object argument into two parameters is a fairly
clear one because the parameter names we use match the property names of the
incoming object. The syntax is more verbose and more confusing when you need to
destructure properties with one name into parameters with different names. Here’s
the vector addition example, implemented for object-based vectors:

function vectorAdd(
 {x: x1, y: y1}, // Unpack 1st object into x1 and y1 params
 {x: x2, y: y2} // Unpack 2nd object into x2 and y2 params
)
{
 return { x: x1 + x2, y: y1 + y2 };
}
vectorAdd({x: 1, y: 2}, {x: 3, y: 4}) // => {x: 4, y: 6}

The tricky thing about destructuring syntax like {x:x1, y:y1} is remembering which
are the property names and which are the parameter names. The rule to keep in mind
for destructuring assignment and destructuring function calls is that the variables or
parameters being declared go in the spots where you’d expect values to go in an object
literal. So property names are always on the lefthand side of the colon, and the
parameter (or variable) names are on the right.

You can define parameter defaults with destructured parameters. Here’s vector multi‐
plication that works with 2D or 3D vectors:

// Multiply the vector {x,y} or {x,y,z} by a scalar value
function vectorMultiply({x, y, z=0}, scalar) {
 return { x: x*scalar, y: y*scalar, z: z*scalar };
}
vectorMultiply({x: 1, y: 2}, 2) // => {x: 2, y: 4, z: 0}

Some languages (like Python) allow the caller of a function to invoke a function with
arguments specified in name=value form, which is convenient when there are many
optional arguments or when the parameter list is long enough that it is hard to
remember the correct order. JavaScript does not allow this directly, but you can
approximate it by destructuring an object argument into your function parameters.
Consider a function that copies a specified number of elements from one array into
another array with optionally specified starting offsets for each array. Since there are
five possible parameters, some of which have defaults, and it would be hard for a
caller to remember which order to pass the arguments in, we can define and invoke
the arraycopy() function like this:

function arraycopy({from, to=from, n=from.length, fromIndex=0, toIndex=0}) {
 let valuesToCopy = from.slice(fromIndex, fromIndex + n);
 to.splice(toIndex, 0, ...valuesToCopy);
 return to;
}
let a = [1,2,3,4,5], b = [9,8,7,6,5];
arraycopy({from: a, n: 3, to: b, toIndex: 4}) // => [9,8,7,6,1,2,3,5]

198 | Chapter 8: Functions

When you destructure an array, you can define a rest parameter for extra values
within the array that is being unpacked. That rest parameter within the square brack‐
ets is completely different than the true rest parameter for the function:

// This function expects an array argument. The first two elements of that
// array are unpacked into the x and y parameters. Any remaining elements
// are stored in the coords array. And any arguments after the first array
// are packed into the rest array.
function f([x, y, ...coords], ...rest) {
 return [x+y, ...rest, ...coords]; // Note: spread operator here
}
f([1, 2, 3, 4], 5, 6) // => [3, 5, 6, 3, 4]

In ES2018, you can also use a rest parameter when you destructure an object. The
value of that rest parameter will be an object that has any properties that did not get
destructured. Object rest parameters are often useful with the object spread operator,
which is also a new feature of ES2018:

// Multiply the vector {x,y} or {x,y,z} by a scalar value, retain other props
function vectorMultiply({x, y, z=0, ...props}, scalar) {
 return { x: x*scalar, y: y*scalar, z: z*scalar, ...props };
}
vectorMultiply({x: 1, y: 2, w: -1}, 2) // => {x: 2, y: 4, z: 0, w: -1}

Finally, keep in mind that, in addition to destructuring argument objects and arrays,
you can also destructure arrays of objects, objects that have array properties, and
objects that have object properties, to essentially any depth. Consider graphics code
that represents circles as objects with x, y, radius, and color properties, where the
color property is an array of red, green, and blue color components. You might
define a function that expects a single circle object to be passed to it but destructures
that circle object into six separate parameters:

function drawCircle({x, y, radius, color: [r, g, b]}) {
 // Not yet implemented
}

If function argument destructuring is any more complicated than this, I find that the
code becomes harder to read, rather than simpler. Sometimes, it is clearer to be
explicit about your object property access and array indexing.

8.3.6 Argument Types
JavaScript method parameters have no declared types, and no type checking is per‐
formed on the values you pass to a function. You can help make your code self-
documenting by choosing descriptive names for function arguments and by
documenting them carefully in the comments for each function. (Alternatively, see
§17.8 for a language extension that allows you to layer type checking on top of regular
JavaScript.)

8.3 Function Arguments and Parameters | 199

3 This may not seem like a particularly interesting point unless you are familiar with more static languages, in
which functions are part of a program but cannot be manipulated by the program.

As described in §3.9, JavaScript performs liberal type conversion as needed. So if you
write a function that expects a string argument and then call that function with a
value of some other type, the value you passed will simply be converted to a string
when the function tries to use it as a string. All primitive types can be converted to
strings, and all objects have toString() methods (if not necessarily useful ones), so
an error never occurs in this case.

This is not always true, however. Consider again the arraycopy() method shown ear‐
lier. It expects one or two array arguments and will fail if these arguments are of the
wrong type. Unless you are writing a private function that will only be called from
nearby parts of your code, it may be worth adding code to check the types of argu‐
ments like this. It is better for a function to fail immediately and predictably when
passed bad values than to begin executing and fail later with an error message that is
likely to be unclear. Here is an example function that performs type-checking:

// Return the sum of the elements an iterable object a.
// The elements of a must all be numbers.
function sum(a) {
 let total = 0;
 for(let element of a) { // Throws TypeError if a is not iterable
 if (typeof element !== "number") {
 throw new TypeError("sum(): elements must be numbers");
 }
 total += element;
 }
 return total;
}
sum([1,2,3]) // => 6
sum(1, 2, 3); // !TypeError: 1 is not iterable
sum([1,2,"3"]); // !TypeError: element 2 is not a number

8.4 Functions as Values
The most important features of functions are that they can be defined and invoked.
Function definition and invocation are syntactic features of JavaScript and of most
other programming languages. In JavaScript, however, functions are not only syntax
but also values, which means they can be assigned to variables, stored in the proper‐
ties of objects or the elements of arrays, passed as arguments to functions, and so on.3

To understand how functions can be JavaScript data as well as JavaScript syntax, con‐
sider this function definition:

function square(x) { return x*x; }

200 | Chapter 8: Functions

This definition creates a new function object and assigns it to the variable square.
The name of a function is really immaterial; it is simply the name of a variable that
refers to the function object. The function can be assigned to another variable and
still work the same way:

let s = square; // Now s refers to the same function that square does
square(4) // => 16
s(4) // => 16

Functions can also be assigned to object properties rather than variables. As we’ve
already discussed, we call the functions “methods” when we do this:

let o = {square: function(x) { return x*x; }}; // An object literal
let y = o.square(16); // y == 256

Functions don’t even require names at all, as when they’re assigned to array elements:

let a = [x => x*x, 20]; // An array literal
a[0](a[1]) // => 400

The syntax of this last example looks strange, but it is still a legal function invocation
expression!

As an example of how useful it is to treat functions as values, consider the
Array.sort() method. This method sorts the elements of an array. Because there are
many possible orders to sort by (numerical order, alphabetical order, date order,
ascending, descending, and so on), the sort() method optionally takes a function as
an argument to tell it how to perform the sort. This function has a simple job: for any
two values it is passed, it returns a value that specifies which element would come
first in a sorted array. This function argument makes Array.sort() perfectly general
and infinitely flexible; it can sort any type of data into any conceivable order. Exam‐
ples are shown in §7.8.6.

Example 8-1 demonstrates the kinds of things that can be done when functions are
used as values. This example may be a little tricky, but the comments explain what is
going on.

Example 8-1. Using functions as data

// We define some simple functions here
function add(x,y) { return x + y; }
function subtract(x,y) { return x - y; }
function multiply(x,y) { return x * y; }
function divide(x,y) { return x / y; }

// Here's a function that takes one of the preceding functions
// as an argument and invokes it on two operands
function operate(operator, operand1, operand2) {
 return operator(operand1, operand2);
}

8.4 Functions as Values | 201

// We could invoke this function like this to compute the value (2+3) + (4*5):
let i = operate(add, operate(add, 2, 3), operate(multiply, 4, 5));

// For the sake of the example, we implement the simple functions again,
// this time within an object literal;
const operators = {
 add: (x,y) => x+y,
 subtract: (x,y) => x-y,
 multiply: (x,y) => x*y,
 divide: (x,y) => x/y,
 pow: Math.pow // This works for predefined functions too
};

// This function takes the name of an operator, looks up that operator
// in the object, and then invokes it on the supplied operands. Note
// the syntax used to invoke the operator function.
function operate2(operation, operand1, operand2) {
 if (typeof operators[operation] === "function") {
 return operators[operation](operand1, operand2);
 }
 else throw "unknown operator";
}

operate2("add", "hello", operate2("add", " ", "world")) // => "hello world"
operate2("pow", 10, 2) // => 100

8.4.1 Defining Your Own Function Properties
Functions are not primitive values in JavaScript, but a specialized kind of object,
which means that functions can have properties. When a function needs a “static”
variable whose value persists across invocations, it is often convenient to use a prop‐
erty of the function itself. For example, suppose you want to write a function that
returns a unique integer whenever it is invoked. The function must never return the
same value twice. In order to manage this, the function needs to keep track of the
values it has already returned, and this information must persist across function invo‐
cations. You could store this information in a global variable, but that is unnecessary,
because the information is used only by the function itself. It is better to store the
information in a property of the Function object. Here is an example that returns a
unique integer whenever it is called:

// Initialize the counter property of the function object.
// Function declarations are hoisted so we really can
// do this assignment before the function declaration.
uniqueInteger.counter = 0;

// This function returns a different integer each time it is called.
// It uses a property of itself to remember the next value to be returned.
function uniqueInteger() {
 return uniqueInteger.counter++; // Return and increment counter property

202 | Chapter 8: Functions

}
uniqueInteger() // => 0
uniqueInteger() // => 1

As another example, consider the following factorial() function that uses proper‐
ties of itself (treating itself as an array) to cache previously computed results:

// Compute factorials and cache results as properties of the function itself.
function factorial(n) {
 if (Number.isInteger(n) && n > 0) { // Positive integers only
 if (!(n in factorial)) { // If no cached result
 factorial[n] = n * factorial(n-1); // Compute and cache it
 }
 return factorial[n]; // Return the cached result
 } else {
 return NaN; // If input was bad
 }
}
factorial[1] = 1; // Initialize the cache to hold this base case.
factorial(6) // => 720
factorial[5] // => 120; the call above caches this value

8.5 Functions as Namespaces
Variables declared within a function are not visible outside of the function. For this
reason, it is sometimes useful to define a function simply to act as a temporary name‐
space in which you can define variables without cluttering the global namespace.

Suppose, for example, you have a chunk of JavaScript code that you want to use in a
number of different JavaScript programs (or, for client-side JavaScript, on a number
of different web pages). Assume that this code, like most code, defines variables to
store the intermediate results of its computation. The problem is that since this chunk
of code will be used in many different programs, you don’t know whether the vari‐
ables it creates will conflict with variables created by the programs that use it. The
solution is to put the chunk of code into a function and then invoke the function.
This way, variables that would have been global become local to the function:

function chunkNamespace() {
 // Chunk of code goes here
 // Any variables defined in the chunk are local to this function
 // instead of cluttering up the global namespace.
}
chunkNamespace(); // But don't forget to invoke the function!

This code defines only a single global variable: the function name chunkNamespace. If
defining even a single property is too much, you can define and invoke an anony‐
mous function in a single expression:

8.5 Functions as Namespaces | 203

(function() { // chunkNamespace() function rewritten as an unnamed expression.
 // Chunk of code goes here
}()); // End the function literal and invoke it now.

This technique of defining and invoking a function in a single expression is used fre‐
quently enough that it has become idiomatic and has been given the name “immedi‐
ately invoked function expression.” Note the use of parentheses in the previous code
example. The open parenthesis before function is required because without it, the
JavaScript interpreter tries to parse the function keyword as a function declaration
statement. With the parenthesis, the interpreter correctly recognizes this as a function
definition expression. The leading parenthesis also helps human readers recognize
when a function is being defined to be immediately invoked instead of defined for
later use.

This use of functions as namespaces becomes really useful when we define one or
more functions inside the namespace function using variables within that namesapce,
but then pass them back out as the return value of the namespace function. Functions
like this are known as closures, and they’re the topic of the next section.

8.6 Closures
Like most modern programming languages, JavaScript uses lexical scoping. This
means that functions are executed using the variable scope that was in effect when
they were defined, not the variable scope that is in effect when they are invoked. In
order to implement lexical scoping, the internal state of a JavaScript function object
must include not only the code of the function but also a reference to the scope in
which the function definition appears. This combination of a function object and a
scope (a set of variable bindings) in which the function’s variables are resolved is
called a closure in the computer science literature.

Technically, all JavaScript functions are closures, but because most functions are
invoked from the same scope that they were defined in, it normally doesn’t really
matter that there is a closure involved. Closures become interesting when they are
invoked from a different scope than the one they were defined in. This happens most
commonly when a nested function object is returned from the function within which
it was defined. There are a number of powerful programming techniques that involve
this kind of nested function closures, and their use has become relatively common in
JavaScript programming. Closures may seem confusing when you first encounter
them, but it is important that you understand them well enough to use them
comfortably.

The first step to understanding closures is to review the lexical scoping rules for nes‐
ted functions. Consider the following code:

let scope = "global scope"; // A global variable
function checkscope() {

204 | Chapter 8: Functions

 let scope = "local scope"; // A local variable
 function f() { return scope; } // Return the value in scope here
 return f();
}
checkscope() // => "local scope"

The checkscope() function declares a local variable and then defines and invokes a
function that returns the value of that variable. It should be clear to you why the call
to checkscope() returns “local scope”. Now, let’s change the code just slightly. Can
you tell what this code will return?

let scope = "global scope"; // A global variable
function checkscope() {
 let scope = "local scope"; // A local variable
 function f() { return scope; } // Return the value in scope here
 return f;
}
let s = checkscope()(); // What does this return?

In this code, a pair of parentheses has moved from inside checkscope() to outside of
it. Instead of invoking the nested function and returning its result, checkscope()
now just returns the nested function object itself. What happens when we invoke that
nested function (with the second pair of parentheses in the last line of code) outside
of the function in which it was defined?

Remember the fundamental rule of lexical scoping: JavaScript functions are executed
using the scope they were defined in. The nested function f() was defined in a scope
where the variable scope was bound to the value “local scope”. That binding is still in
effect when f is executed, no matter where it is executed from. So the last line of the
preceding code example returns “local scope”, not “global scope”. This, in a nutshell, is
the surprising and powerful nature of closures: they capture the local variable (and
parameter) bindings of the outer function within which they are defined.

In §8.4.1, we defined a uniqueInteger() function that used a property of the func‐
tion itself to keep track of the next value to be returned. A shortcoming of that
approach is that buggy or malicious code could reset the counter or set it to a nonin‐
teger, causing the uniqueInteger() function to violate the “unique” or the “integer”
part of its contract. Closures capture the local variables of a single function invocation
and can use those variables as private state. Here is how we could rewrite the unique
Integer() using an immediately invoked function expression to define a namespace
and a closure that uses that namespace to keep its state private:

let uniqueInteger = (function() { // Define and invoke
 let counter = 0; // Private state of function below
 return function() { return counter++; };
}());
uniqueInteger() // => 0
uniqueInteger() // => 1

8.6 Closures | 205

In order to understand this code, you have to read it carefully. At first glance, the first
line of code looks like it is assigning a function to the variable uniqueInteger. In fact,
the code is defining and invoking (as hinted by the open parenthesis on the first line)
a function, so it is the return value of the function that is being assigned to uniqueIn
teger. Now, if we study the body of the function, we see that its return value is
another function. It is this nested function object that gets assigned to uniqueIn
teger. The nested function has access to the variables in its scope and can use the
counter variable defined in the outer function. Once that outer function returns, no
other code can see the counter variable: the inner function has exclusive access to it.

Private variables like counter need not be exclusive to a single closure: it is perfectly
possible for two or more nested functions to be defined within the same outer func‐
tion and share the same scope. Consider the following code:

function counter() {
 let n = 0;
 return {
 count: function() { return n++; },
 reset: function() { n = 0; }
 };
}

let c = counter(), d = counter(); // Create two counters
c.count() // => 0
d.count() // => 0: they count independently
c.reset(); // reset() and count() methods share state
c.count() // => 0: because we reset c
d.count() // => 1: d was not reset

The counter() function returns a “counter” object. This object has two methods:
count() returns the next integer, and reset() resets the internal state. The first thing
to understand is that the two methods share access to the private variable n. The sec‐
ond thing to understand is that each invocation of counter() creates a new scope—
independent of the scopes used by previous invocations—and a new private variable
within that scope. So if you call counter() twice, you get two counter objects with
different private variables. Calling count() or reset() on one counter object has no
effect on the other.

It is worth noting here that you can combine this closure technique with property
getters and setters. The following version of the counter() function is a variation on
code that appeared in §6.10.6, but it uses closures for private state rather than relying
on a regular object property:

function counter(n) { // Function argument n is the private variable
 return {
 // Property getter method returns and increments private counter var.
 get count() { return n++; },
 // Property setter doesn't allow the value of n to decrease

206 | Chapter 8: Functions

 set count(m) {
 if (m > n) n = m;
 else throw Error("count can only be set to a larger value");
 }
 };
}

let c = counter(1000);
c.count // => 1000
c.count // => 1001
c.count = 2000;
c.count // => 2000
c.count = 2000; // !Error: count can only be set to a larger value

Note that this version of the counter() function does not declare a local variable but
just uses its parameter n to hold the private state shared by the property accessor
methods. This allows the caller of counter() to specify the initial value of the private
variable.

Example 8-2 is a generalization of the shared private state through the closures tech‐
nique we’ve been demonstrating here. This example defines an addPrivateProp
erty() function that defines a private variable and two nested functions to get and set
the value of that variable. It adds these nested functions as methods of the object you
specify.

Example 8-2. Private property accessor methods using closures

// This function adds property accessor methods for a property with
// the specified name to the object o. The methods are named get<name>
// and set<name>. If a predicate function is supplied, the setter
// method uses it to test its argument for validity before storing it.
// If the predicate returns false, the setter method throws an exception.
//
// The unusual thing about this function is that the property value
// that is manipulated by the getter and setter methods is not stored in
// the object o. Instead, the value is stored only in a local variable
// in this function. The getter and setter methods are also defined
// locally to this function and therefore have access to this local variable.
// This means that the value is private to the two accessor methods, and it
// cannot be set or modified except through the setter method.
function addPrivateProperty(o, name, predicate) {
 let value; // This is the property value

 // The getter method simply returns the value.
 o[`get${name}`] = function() { return value; };

 // The setter method stores the value or throws an exception if
 // the predicate rejects the value.
 o[`set${name}`] = function(v) {
 if (predicate && !predicate(v)) {

8.6 Closures | 207

 throw new TypeError(`set${name}: invalid value ${v}`);
 } else {
 value = v;
 }
 };
}

// The following code demonstrates the addPrivateProperty() method.
let o = {}; // Here is an empty object

// Add property accessor methods getName and setName()
// Ensure that only string values are allowed
addPrivateProperty(o, "Name", x => typeof x === "string");

o.setName("Frank"); // Set the property value
o.getName() // => "Frank"
o.setName(0); // !TypeError: try to set a value of the wrong type

We’ve now seen a number of examples in which two closures are defined in the same
scope and share access to the same private variable or variables. This is an important
technique, but it is just as important to recognize when closures inadvertently share
access to a variable that they should not share. Consider the following code:

// This function returns a function that always returns v
function constfunc(v) { return () => v; }

// Create an array of constant functions:
let funcs = [];
for(var i = 0; i < 10; i++) funcs[i] = constfunc(i);

// The function at array element 5 returns the value 5.
funcs[5]() // => 5

When working with code like this that creates multiple closures using a loop, it is a
common error to try to move the loop within the function that defines the closures.
Think about the following code, for example:

// Return an array of functions that return the values 0-9
function constfuncs() {
 let funcs = [];
 for(var i = 0; i < 10; i++) {
 funcs[i] = () => i;
 }
 return funcs;
}

let funcs = constfuncs();
funcs[5]() // => 10; Why doesn't this return 5?

This code creates 10 closures and stores them in an array. The closures are all defined
within the same invocation of the function, so they share access to the variable i.
When constfuncs() returns, the value of the variable i is 10, and all 10 closures

208 | Chapter 8: Functions

share this value. Therefore, all the functions in the returned array of functions return
the same value, which is not what we wanted at all. It is important to remember that
the scope associated with a closure is “live.” Nested functions do not make private
copies of the scope or make static snapshots of the variable bindings. Fundamentally,
the problem here is that variables declared with var are defined throughout the func‐
tion. Our for loop declares the loop variable with var i, so the variable i is defined
throughout the function rather than being more narrowly scoped to the body of the
loop. The code demonstrates a common category of bugs in ES5 and before, but the
introduction of block-scoped variables in ES6 addresses the issue. If we just replace
the var with a let or a const, then the problem goes away. Because let and const are
block scoped, each iteration of the loop defines a scope that is independent of the
scopes for all other iterations, and each of these scopes has its own independent bind‐
ing of i.

Another thing to remember when writing closures is that this is a JavaScript key‐
word, not a variable. As discussed earlier, arrow functions inherit the this value of
the function that contains them, but functions defined with the function keyword do
not. So if you’re writing a closure that needs to use the this value of its containing
function, you should use an arrow function, or call bind(), on the closure before
returning it, or assign the outer this value to a variable that your closure will inherit:

const self = this; // Make the this value available to nested functions

8.7 Function Properties, Methods, and Constructor
We’ve seen that functions are values in JavaScript programs. The typeof operator
returns the string “function” when applied to a function, but functions are really a
specialized kind of JavaScript object. Since functions are objects, they can have prop‐
erties and methods, just like any other object. There is even a Function() constructor
to create new function objects. The subsections that follow document the length,
name, and prototype properties; the call(), apply(), bind(), and toString() meth‐
ods; and the Function() constructor.

8.7.1 The length Property
The read-only length property of a function specifies the arity of the function—the
number of parameters it declares in its parameter list, which is usually the number of
arguments that the function expects. If a function has a rest parameter, that parame‐
ter is not counted for the purposes of this length property.

8.7 Function Properties, Methods, and Constructor | 209

8.7.2 The name Property
The read-only name property of a function specifies the name that was used when the
function was defined, if it was defined with a name, or the name of the variable or
property that an unnamed function expression was assigned to when it was first cre‐
ated. This property is primarily useful when writing debugging or error messages.

8.7.3 The prototype Property
All functions, except arrow functions, have a prototype property that refers to an
object known as the prototype object. Every function has a different prototype object.
When a function is used as a constructor, the newly created object inherits properties
from the prototype object. Prototypes and the prototype property were discussed in
§6.2.3 and will be covered again in Chapter 9.

8.7.4 The call() and apply() Methods
call() and apply() allow you to indirectly invoke (§8.2.4) a function as if it were a
method of some other object. The first argument to both call() and apply() is the
object on which the function is to be invoked; this argument is the invocation context
and becomes the value of the this keyword within the body of the function. To
invoke the function f() as a method of the object o (passing no arguments), you
could use either call() or apply():

f.call(o);
f.apply(o);

Either of these lines of code are similar to the following (which assume that o does
not already have a property named m):

o.m = f; // Make f a temporary method of o.
o.m(); // Invoke it, passing no arguments.
delete o.m; // Remove the temporary method.

Remember that arrow functions inherit the this value of the context where they are
defined. This cannot be overridden with the call() and apply() methods. If you call
either of those methods on an arrow function, the first argument is effectively
ignored.

Any arguments to call() after the first invocation context argument are the values
that are passed to the function that is invoked (and these arguments are not ignored
for arrow functions). For example, to pass two numbers to the function f() and
invoke it as if it were a method of the object o, you could use code like this:

f.call(o, 1, 2);

210 | Chapter 8: Functions

The apply() method is like the call() method, except that the arguments to be
passed to the function are specified as an array:

f.apply(o, [1,2]);

If a function is defined to accept an arbitrary number of arguments, the apply()
method allows you to invoke that function on the contents of an array of arbitrary
length. In ES6 and later, we can just use the spread operator, but you may see ES5
code that uses apply() instead. For example, to find the largest number in an array of
numbers without using the spread operator, you could use the apply() method to
pass the elements of the array to the Math.max() function:

let biggest = Math.max.apply(Math, arrayOfNumbers);

The trace() function defined in the following is similar to the timed() function
defined in §8.3.4, but it works for methods instead of functions. It uses the apply()
method instead of a spread operator, and by doing that, it is able to invoke the wrap‐
ped method with the same arguments and the same this value as the wrapper
method:

// Replace the method named m of the object o with a version that logs
// messages before and after invoking the original method.
function trace(o, m) {
 let original = o[m]; // Remember original method in the closure.
 o[m] = function(...args) { // Now define the new method.
 console.log(new Date(), "Entering:", m); // Log message.
 let result = original.apply(this, args); // Invoke original.
 console.log(new Date(), "Exiting:", m); // Log message.
 return result; // Return result.
 };
}

8.7.5 The bind() Method
The primary purpose of bind() is to bind a function to an object. When you invoke
the bind() method on a function f and pass an object o, the method returns a new
function. Invoking the new function (as a function) invokes the original function f as
a method of o. Any arguments you pass to the new function are passed to the original
function. For example:

function f(y) { return this.x + y; } // This function needs to be bound
let o = { x: 1 }; // An object we'll bind to
let g = f.bind(o); // Calling g(x) invokes f() on o
g(2) // => 3
let p = { x: 10, g }; // Invoke g() as a method of this object
p.g(2) // => 3: g is still bound to o, not p.

Arrow functions inherit their this value from the environment in which they are
defined, and that value cannot be overridden with bind(), so if the function f() in

8.7 Function Properties, Methods, and Constructor | 211

the preceding code was defined as an arrow function, the binding would not work.
The most common use case for calling bind() is to make non-arrow functions
behave like arrow functions, however, so this limitation on binding arrow functions is
not a problem in practice.

The bind() method does more than just bind a function to an object, however. It can
also perform partial application: any arguments you pass to bind() after the first are
bound along with the this value. This partial application feature of bind() does work
with arrow functions. Partial application is a common technique in functional pro‐
gramming and is sometimes called currying. Here are some examples of the bind()
method used for partial application:

let sum = (x,y) => x + y; // Return the sum of 2 args
let succ = sum.bind(null, 1); // Bind the first argument to 1
succ(2) // => 3: x is bound to 1, and we pass 2 for the y argument

function f(y,z) { return this.x + y + z; }
let g = f.bind({x: 1}, 2); // Bind this and y
g(3) // => 6: this.x is bound to 1, y is bound to 2 and z is 3

The name property of the function returned by bind() is the name property of the
function that bind() was called on, prefixed with the word “bound”.

8.7.6 The toString() Method
Like all JavaScript objects, functions have a toString() method. The ECMAScript
spec requires this method to return a string that follows the syntax of the function
declaration statement. In practice, most (but not all) implementations of this
toString() method return the complete source code for the function. Built-in func‐
tions typically return a string that includes something like “[native code]” as the func‐
tion body.

8.7.7 The Function() Constructor
Because functions are objects, there is a Function() constructor that can be used to
create new functions:

const f = new Function("x", "y", "return x*y;");

This line of code creates a new function that is more or less equivalent to a function
defined with the familiar syntax:

const f = function(x, y) { return x*y; };

The Function() constructor expects any number of string arguments. The last argu‐
ment is the text of the function body; it can contain arbitrary JavaScript statements,
separated from each other by semicolons. All other arguments to the constructor are
strings that specify the parameter names for the function. If you are defining a

212 | Chapter 8: Functions

function that takes no arguments, you would simply pass a single string—the func‐
tion body—to the constructor.

Notice that the Function() constructor is not passed any argument that specifies a
name for the function it creates. Like function literals, the Function() constructor
creates anonymous functions.

There are a few points that are important to understand about the Function()
constructor:

• The Function() constructor allows JavaScript functions to be dynamically cre‐
ated and compiled at runtime.

• The Function() constructor parses the function body and creates a new function
object each time it is called. If the call to the constructor appears within a loop or
within a frequently called function, this process can be inefficient. By contrast,
nested functions and function expressions that appear within loops are not
recompiled each time they are encountered.

• A last, very important point about the Function() constructor is that the func‐
tions it creates do not use lexical scoping; instead, they are always compiled as if
they were top-level functions, as the following code demonstrates:

let scope = "global";
function constructFunction() {
 let scope = "local";
 return new Function("return scope"); // Doesn't capture local scope!
}
// This line returns "global" because the function returned by the
// Function() constructor does not use the local scope.
constructFunction()() // => "global"

The Function() constructor is best thought of as a globally scoped version of eval()
(see §4.12.2) that defines new variables and functions in its own private scope. You
will probably never need to use this constructor in your code.

8.8 Functional Programming
JavaScript is not a functional programming language like Lisp or Haskell, but the fact
that JavaScript can manipulate functions as objects means that we can use functional
programming techniques in JavaScript. Array methods such as map() and reduce()
lend themselves particularly well to a functional programming style. The sections that
follow demonstrate techniques for functional programming in JavaScript. They are
intended as a mind-expanding exploration of the power of JavaScript’s functions, not
as a prescription for good programming style.

8.8 Functional Programming | 213

8.8.1 Processing Arrays with Functions
Suppose we have an array of numbers and we want to compute the mean and stan‐
dard deviation of those values. We might do that in nonfunctional style like this:

let data = [1,1,3,5,5]; // This is our array of numbers

// The mean is the sum of the elements divided by the number of elements
let total = 0;
for(let i = 0; i < data.length; i++) total += data[i];
let mean = total/data.length; // mean == 3; The mean of our data is 3

// To compute the standard deviation, we first sum the squares of
// the deviation of each element from the mean.
total = 0;
for(let i = 0; i < data.length; i++) {
 let deviation = data[i] - mean;
 total += deviation * deviation;
}
let stddev = Math.sqrt(total/(data.length-1)); // stddev == 2

We can perform these same computations in concise functional style using the array
methods map() and reduce() like this (see §7.8.1 to review these methods):

// First, define two simple functions
const sum = (x,y) => x+y;
const square = x => x*x;

// Then use those functions with Array methods to compute mean and stddev
let data = [1,1,3,5,5];
let mean = data.reduce(sum)/data.length; // mean == 3
let deviations = data.map(x => x-mean);
let stddev = Math.sqrt(deviations.map(square).reduce(sum)/(data.length-1));
stddev // => 2

This new version of the code looks quite different than the first one, but it is still
invoking methods on objects, so it has some object-oriented conventions remaining.
Let’s write functional versions of the map() and reduce() methods:

const map = function(a, ...args) { return a.map(...args); };
const reduce = function(a, ...args) { return a.reduce(...args); };

With these map() and reduce() functions defined, our code to compute the mean
and standard deviation now looks like this:

const sum = (x,y) => x+y;
const square = x => x*x;

let data = [1,1,3,5,5];
let mean = reduce(data, sum)/data.length;
let deviations = map(data, x => x-mean);
let stddev = Math.sqrt(reduce(map(deviations, square), sum)/(data.length-1));
stddev // => 2

214 | Chapter 8: Functions

8.8.2 Higher-Order Functions
A higher-order function is a function that operates on functions, taking one or more
functions as arguments and returning a new function. Here is an example:

// This higher-order function returns a new function that passes its
// arguments to f and returns the logical negation of f's return value;
function not(f) {
 return function(...args) { // Return a new function
 let result = f.apply(this, args); // that calls f
 return !result; // and negates its result.
 };
}

const even = x => x % 2 === 0; // A function to determine if a number is even
const odd = not(even); // A new function that does the opposite
[1,1,3,5,5].every(odd) // => true: every element of the array is odd

This not() function is a higher-order function because it takes a function argument
and returns a new function. As another example, consider the mapper() function that
follows. It takes a function argument and returns a new function that maps one array
to another using that function. This function uses the map() function defined earlier,
and it is important that you understand how the two functions are different:

// Return a function that expects an array argument and applies f to
// each element, returning the array of return values.
// Contrast this with the map() function from earlier.
function mapper(f) {
 return a => map(a, f);
}

const increment = x => x+1;
const incrementAll = mapper(increment);
incrementAll([1,2,3]) // => [2,3,4]

Here is another, more general, example that takes two functions, f and g, and returns
a new function that computes f(g()):

// Return a new function that computes f(g(...)).
// The returned function h passes all of its arguments to g, then passes
// the return value of g to f, then returns the return value of f.
// Both f and g are invoked with the same this value as h was invoked with.
function compose(f, g) {
 return function(...args) {
 // We use call for f because we're passing a single value and
 // apply for g because we're passing an array of values.
 return f.call(this, g.apply(this, args));
 };
}

const sum = (x,y) => x+y;

8.8 Functional Programming | 215

const square = x => x*x;
compose(square, sum)(2,3) // => 25; the square of the sum

The partial() and memoize() functions defined in the sections that follow are two
more important higher-order functions.

8.8.3 Partial Application of Functions
The bind() method of a function f (see §8.7.5) returns a new function that invokes f
in a specified context and with a specified set of arguments. We say that it binds the
function to an object and partially applies the arguments. The bind() method parti‐
ally applies arguments on the left—that is, the arguments you pass to bind() are
placed at the start of the argument list that is passed to the original function. But it is
also possible to partially apply arguments on the right:

// The arguments to this function are passed on the left
function partialLeft(f, ...outerArgs) {
 return function(...innerArgs) { // Return this function
 let args = [...outerArgs, ...innerArgs]; // Build the argument list
 return f.apply(this, args); // Then invoke f with it
 };
}

// The arguments to this function are passed on the right
function partialRight(f, ...outerArgs) {
 return function(...innerArgs) { // Return this function
 let args = [...innerArgs, ...outerArgs]; // Build the argument list
 return f.apply(this, args); // Then invoke f with it
 };
}

// The arguments to this function serve as a template. Undefined values
// in the argument list are filled in with values from the inner set.
function partial(f, ...outerArgs) {
 return function(...innerArgs) {
 let args = [...outerArgs]; // local copy of outer args template
 let innerIndex=0; // which inner arg is next
 // Loop through the args, filling in undefined values from inner args
 for(let i = 0; i < args.length; i++) {
 if (args[i] === undefined) args[i] = innerArgs[innerIndex++];
 }
 // Now append any remaining inner arguments
 args.push(...innerArgs.slice(innerIndex));
 return f.apply(this, args);
 };
}

// Here is a function with three arguments
const f = function(x,y,z) { return x * (y - z); };
// Notice how these three partial applications differ
partialLeft(f, 2)(3,4) // => -2: Bind first argument: 2 * (3 - 4)

216 | Chapter 8: Functions

partialRight(f, 2)(3,4) // => 6: Bind last argument: 3 * (4 - 2)
partial(f, undefined, 2)(3,4) // => -6: Bind middle argument: 3 * (2 - 4)

These partial application functions allow us to easily define interesting functions out
of functions we already have defined. Here are some examples:

const increment = partialLeft(sum, 1);
const cuberoot = partialRight(Math.pow, 1/3);
cuberoot(increment(26)) // => 3

Partial application becomes even more interesting when we combine it with other
higher-order functions. Here, for example, is a way to define the preceding not()
function just shown using composition and partial application:

const not = partialLeft(compose, x => !x);
const even = x => x % 2 === 0;
const odd = not(even);
const isNumber = not(isNaN);
odd(3) && isNumber(2) // => true

We can also use composition and partial application to redo our mean and standard
deviation calculations in extreme functional style:

// sum() and square() functions are defined above. Here are some more:
const product = (x,y) => x*y;
const neg = partial(product, -1);
const sqrt = partial(Math.pow, undefined, .5);
const reciprocal = partial(Math.pow, undefined, neg(1));

// Now compute the mean and standard deviation.
let data = [1,1,3,5,5]; // Our data
let mean = product(reduce(data, sum), reciprocal(data.length));
let stddev = sqrt(product(reduce(map(data,
 compose(square,
 partial(sum, neg(mean)))),
 sum),
 reciprocal(sum(data.length,neg(1)))));
[mean, stddev] // => [3, 2]

Notice that this code to compute mean and standard deviation is entirely function
invocations; there are no operators involved, and the number of parentheses has
grown so large that this JavaScript is beginning to look like Lisp code. Again, this is
not a style that I advocate for JavaScript programming, but it is an interesting exercise
to see how deeply functional JavaScript code can be.

8.8.4 Memoization
In §8.4.1, we defined a factorial function that cached its previously computed results.
In functional programming, this kind of caching is called memoization. The code that
follows shows a higher-order function, memoize(), that accepts a function as its argu‐
ment and returns a memoized version of the function:

8.8 Functional Programming | 217

// Return a memoized version of f.
// It only works if arguments to f all have distinct string representations.
function memoize(f) {
 const cache = new Map(); // Value cache stored in the closure.

 return function(...args) {
 // Create a string version of the arguments to use as a cache key.
 let key = args.length + args.join("+");
 if (cache.has(key)) {
 return cache.get(key);
 } else {
 let result = f.apply(this, args);
 cache.set(key, result);
 return result;
 }
 };
}

The memoize() function creates a new object to use as the cache and assigns this
object to a local variable so that it is private to (in the closure of) the returned func‐
tion. The returned function converts its arguments array to a string and uses that
string as a property name for the cache object. If a value exists in the cache, it returns
it directly. Otherwise, it calls the specified function to compute the value for these
arguments, caches that value, and returns it. Here is how we might use memoize():

// Return the Greatest Common Divisor of two integers using the Euclidian
// algorithm: http://en.wikipedia.org/wiki/Euclidean_algorithm
function gcd(a,b) { // Type checking for a and b has been omitted
 if (a < b) { // Ensure that a >= b when we start
 [a, b] = [b, a]; // Destructuring assignment to swap variables
 }
 while(b !== 0) { // This is Euclid's algorithm for GCD
 [a, b] = [b, a%b];
 }
 return a;
}

const gcdmemo = memoize(gcd);
gcdmemo(85, 187) // => 17

// Note that when we write a recursive function that we will be memoizing,
// we typically want to recurse to the memoized version, not the original.
const factorial = memoize(function(n) {
 return (n <= 1) ? 1 : n * factorial(n-1);
});
factorial(5) // => 120: also caches values for 4, 3, 2 and 1.

218 | Chapter 8: Functions

8.9 Summary
Some key points to remember about this chapter are as follows:

• You can define functions with the function keyword and with the ES6 => arrow
syntax.

• You can invoke functions, which can be used as methods and constructors.
• Some ES6 features allow you to define default values for optional function

parameters, to gather multiple arguments into an array using a rest parameter,
and to destructure object and array arguments into function parameters.

• You can use the ... spread operator to pass the elements of an array or other
iterable object as arguments in a function invocation.

• A function defined inside of and returned by an enclosing function retains access
to its lexical scope and can therefore read and write the variables defined inside
the outer function. Functions used in this way are called closures, and this is a
technique that is worth understanding.

• Functions are objects that can be manipulated by JavaScript, and this enables a
functional style of programming.

8.9 Summary | 219

CHAPTER 9

Classes

JavaScript objects were covered in Chapter 6. That chapter treated each object as a
unique set of properties, different from every other object. It is often useful, however,
to define a class of objects that share certain properties. Members, or instances, of the
class have their own properties to hold or define their state, but they also have meth‐
ods that define their behavior. These methods are defined by the class and shared by
all instances. Imagine a class named Complex that represents and performs arith‐
metic on complex numbers, for example. A Complex instance would have properties
to hold the real and imaginary parts (the state) of the complex number. And the
Complex class would define methods to perform addition and multiplication (the
behavior) of those numbers.

In JavaScript, classes use prototype-based inheritance: if two objects inherit proper‐
ties (generally function-valued properties, or methods) from the same prototype,
then we say that those objects are instances of the same class. That, in a nutshell, is
how JavaScript classes work. JavaScript prototypes and inheritance were covered in
§6.2.3 and §6.3.2, and you will need to be familiar with the material in those sections
to understand this chapter. This chapter covers prototypes in §9.1.

If two objects inherit from the same prototype, this typically (but not necessarily)
means that they were created and initialized by the same constructor function or fac‐
tory function. Constructors have been covered in §4.6, §6.2.2, and §8.2.3, and this
chapter has more in §9.2.

JavaScript has always allowed the definition of classes. ES6 introduced a brand-new
syntax (including a class keyword) that makes it even easier to create classes. These
new JavaScript classes work in the same way that old-style classes do, and this chapter
starts by explaining the old way of creating classes because that demonstrates more
clearly what is going on behind the scenes to make classes work. Once we’ve

221

explained those fundamentals, we’ll shift and start using the new, simplified class def‐
inition syntax.

If you’re familiar with strongly typed object-oriented programming languages like
Java or C++, you’ll notice that JavaScript classes are quite different from classes in
those languages. There are some syntactic similarities, and you can emulate many fea‐
tures of “classical” classes in JavaScript, but it is best to understand up front that
JavaScript’s classes and prototype-based inheritance mechanism are substantially dif‐
ferent from the classes and class-based inheritance mechanism of Java and similar
languages.

9.1 Classes and Prototypes
In JavaScript, a class is a set of objects that inherit properties from the same prototype
object. The prototype object, therefore, is the central feature of a class. Chapter 6 cov‐
ered the Object.create() function that returns a newly created object that inherits
from a specified prototype object. If we define a prototype object and then use
Object.create() to create objects that inherit from it, we have defined a JavaScript
class. Usually, the instances of a class require further initialization, and it is common
to define a function that creates and initializes the new object. Example 9-1 demon‐
strates this: it defines a prototype object for a class that represents a range of values
and also defines a factory function that creates and initializes a new instance of the
class.

Example 9-1. A simple JavaScript class

// This is a factory function that returns a new range object.
function range(from, to) {
 // Use Object.create() to create an object that inherits from the
 // prototype object defined below. The prototype object is stored as
 // a property of this function, and defines the shared methods (behavior)
 // for all range objects.
 let r = Object.create(range.methods);

 // Store the start and end points (state) of this new range object.
 // These are noninherited properties that are unique to this object.
 r.from = from;
 r.to = to;

 // Finally return the new object
 return r;
}

// This prototype object defines methods inherited by all range objects.
range.methods = {
 // Return true if x is in the range, false otherwise
 // This method works for textual and Date ranges as well as numeric.

222 | Chapter 9: Classes

 includes(x) { return this.from <= x && x <= this.to; },

 // A generator function that makes instances of the class iterable.
 // Note that it only works for numeric ranges.
 *[Symbol.iterator]() {
 for(let x = Math.ceil(this.from); x <= this.to; x++) yield x;
 },

 // Return a string representation of the range
 toString() { return "(" + this.from + "..." + this.to + ")"; }
};

// Here are example uses of a range object.
let r = range(1,3); // Create a range object
r.includes(2) // => true: 2 is in the range
r.toString() // => "(1...3)"
[...r] // => [1, 2, 3]; convert to an array via iterator

There are a few things worth noting in the code of Example 9-1:

• This code defines a factory function range() for creating new Range objects.
• It uses the methods property of this range() function as a convenient place to

store the prototype object that defines the class. There is nothing special or
idiomatic about putting the prototype object here.

• The range() function defines from and to properties on each Range object.
These are the unshared, noninherited properties that define the unique state of
each individual Range object.

• The range.methods object uses the ES6 shorthand syntax for defining methods,
which is why you don’t see the function keyword anywhere. (See §6.10.5 to
review object literal shorthand method syntax.)

• One of the methods in the prototype has the computed name (§6.10.2) Sym
bol.iterator, which means that it is defining an iterator for Range objects. The
name of this method is prefixed with *, which indicates that it is a generator
function instead of a regular function. Iterators and generators are covered in
detail in Chapter 12. For now, the upshot is that instances of this Range class can
be used with the for/of loop and with the ... spread operator.

• The shared, inherited methods defined in range.methods all use the from and to
properties that were initialized in the range() factory function. In order to refer
to them, they use the this keyword to refer to the object through which they
were invoked. This use of this is a fundamental characteristic of the methods of
any class.

9.1 Classes and Prototypes | 223

9.2 Classes and Constructors
Example 9-1 demonstrates a simple way to define a JavaScript class. It is not the
idiomatic way to do so, however, because it did not define a constructor. A construc‐
tor is a function designed for the initialization of newly created objects. Constructors
are invoked using the new keyword as described in §8.2.3. Constructor invocations
using new automatically create the new object, so the constructor itself only needs to
initialize the state of that new object. The critical feature of constructor invocations is
that the prototype property of the constructor is used as the prototype of the new
object. §6.2.3 introduced prototypes and emphasized that while almost all objects
have a prototype, only a few objects have a prototype property. Finally, we can clarify
this: it is function objects that have a prototype property. This means that all objects
created with the same constructor function inherit from the same object and are
therefore members of the same class. Example 9-2 shows how we could alter the
Range class of Example 9-1 to use a constructor function instead of a factory func‐
tion. Example 9-2 demonstrates the idiomatic way to create a class in versions of Java‐
Script that do not support the ES6 class keyword. Even though class is well
supported now, there is still lots of older JavaScript code around that defines classes
like this, and you should be familiar with the idiom so that you can read old code and
so that you understand what is going on “under the hood” when you use the class
keyword.

Example 9-2. A Range class using a constructor

// This is a constructor function that initializes new Range objects.
// Note that it does not create or return the object. It just initializes this.
function Range(from, to) {
 // Store the start and end points (state) of this new range object.
 // These are noninherited properties that are unique to this object.
 this.from = from;
 this.to = to;
}

// All Range objects inherit from this object.
// Note that the property name must be "prototype" for this to work.
Range.prototype = {
 // Return true if x is in the range, false otherwise
 // This method works for textual and Date ranges as well as numeric.
 includes: function(x) { return this.from <= x && x <= this.to; },

 // A generator function that makes instances of the class iterable.
 // Note that it only works for numeric ranges.
 [Symbol.iterator]: function*() {
 for(let x = Math.ceil(this.from); x <= this.to; x++) yield x;
 },

224 | Chapter 9: Classes

 // Return a string representation of the range
 toString: function() { return "(" + this.from + "..." + this.to + ")"; }
};

// Here are example uses of this new Range class
let r = new Range(1,3); // Create a Range object; note the use of new
r.includes(2) // => true: 2 is in the range
r.toString() // => "(1...3)"
[...r] // => [1, 2, 3]; convert to an array via iterator

It is worth comparing Examples 9-1 and 9-2 fairly carefully and noting the differences
between these two techniques for defining classes. First, notice that we renamed the
range() factory function to Range() when we converted it to a constructor. This is a
very common coding convention: constructor functions define, in a sense, classes,
and classes have names that (by convention) begin with capital letters. Regular func‐
tions and methods have names that begin with lowercase letters.

Next, notice that the Range() constructor is invoked (at the end of the example) with
the new keyword while the range() factory function was invoked without it.
Example 9-1 uses regular function invocation (§8.2.1) to create the new object, and
Example 9-2 uses constructor invocation (§8.2.3). Because the Range() constructor is
invoked with new, it does not have to call Object.create() or take any action to cre‐
ate a new object. The new object is automatically created before the constructor is
called, and it is accessible as the this value. The Range() constructor merely has to
initialize this. Constructors do not even have to return the newly created object.
Constructor invocation automatically creates a new object, invokes the constructor as
a method of that object, and returns the new object. The fact that constructor invoca‐
tion is so different from regular function invocation is another reason that we give
constructors names that start with capital letters. Constructors are written to be
invoked as constructors, with the new keyword, and they usually won’t work properly
if they are invoked as regular functions. A naming convention that keeps constructor
functions distinct from regular functions helps programmers know when to use new.

Constructors and new.target
Within a function body, you can tell whether the function has been invoked as a con‐
structor with the special expression new.target. If the value of that expression is
defined, then you know that the function was invoked as a constructor, with the new
keyword. When we discuss subclasses in §9.5, we’ll see that new.target is not always
a reference to the constructor it is used in: it might also refer to the constructor func‐
tion of a subclass.

If new.target is undefined, then the containing function was invoked as a function,
without the new keyword. JavaScript’s various error constructors can be invoked

9.2 Classes and Constructors | 225

without new, and if you want to emulate this feature in your own constructors, you
can write them like this:

function C() {
 if (!new.target) return new C();
 // initialization code goes here
}

This technique only works for constructors defined in this old-fashioned way. Classes
created with the class keyword do not allow their constructors to be invoked without
new.

Another critical difference between Examples 9-1 and 9-2 is the way the prototype
object is named. In the first example, the prototype was range.methods. This was a
convenient and descriptive name, but arbitrary. In the second example, the prototype
is Range.prototype, and this name is mandatory. An invocation of the Range() con‐
structor automatically uses Range.prototype as the prototype of the new Range
object.

Finally, also note the things that do not change between Examples 9-1 and 9-2 : the
range methods are defined and invoked in the same way for both classes. Because
Example 9-2 demonstrates the idiomatic way to create classes in versions of Java‐
Script before ES6, it does not use the ES6 shorthand method syntax in the prototype
object and explicitly spells out the methods with the function keyword. But you can
see that the implementation of the methods is the same in both examples.

Importantly, note that neither of the two range examples uses arrow functions when
defining constructors or methods. Recall from §8.1.3 that functions defined in this
way do not have a prototype property and so cannot be used as constructors. Also,
arrow functions inherit the this keyword from the context in which they are defined
rather than setting it based on the object through which they are invoked, and this
makes them useless for methods because the defining characteristic of methods is
that they use this to refer to the instance on which they were invoked.

Fortunately, the new ES6 class syntax doesn’t allow the option of defining methods
with arrow functions, so this is not a mistake that you can accidentally make when
using that syntax. We will cover the ES6 class keyword soon, but first, there are
more details to cover about constructors.

9.2.1 Constructors, Class Identity, and instanceof
As we’ve seen, the prototype object is fundamental to the identity of a class: two
objects are instances of the same class if and only if they inherit from the same proto‐
type object. The constructor function that initializes the state of a new object is not
fundamental: two constructor functions may have prototype properties that point to

226 | Chapter 9: Classes

the same prototype object. Then, both constructors can be used to create instances of
the same class.

Even though constructors are not as fundamental as prototypes, the constructor
serves as the public face of a class. Most obviously, the name of the constructor func‐
tion is usually adopted as the name of the class. We say, for example, that the Range()
constructor creates Range objects. More fundamentally, however, constructors are
used as the righthand operand of the instanceof operator when testing objects for
membership in a class. If we have an object r and want to know if it is a Range object,
we can write:

r instanceof Range // => true: r inherits from Range.prototype

The instanceof operator was described in §4.9.4. The lefthand operand should be
the object that is being tested, and the righthand operand should be a constructor
function that names a class. The expression o instanceof C evaluates to true if o
inherits from C.prototype. The inheritance need not be direct: if o inherits from an
object that inherits from an object that inherits from C.prototype, the expression
will still evaluate to true.

Technically speaking, in the previous code example, the instanceof operator is not
checking whether r was actually initialized by the Range constructor. Instead, it is
checking whether r inherits from Range.prototype. If we define a function
Strange() and set its prototype to be the same as Range.prototype, then objects cre‐
ated with new Strange() will count as Range objects as far as instanceof is con‐
cerned (they won’t actually work as Range objects, however, because their from and
to properties have not been initialized):

function Strange() {}
Strange.prototype = Range.prototype;
new Strange() instanceof Range // => true

Even though instanceof cannot actually verify the use of a constructor, it still uses a
constructor function as its righthand side because constructors are the public identity
of a class.

If you want to test the prototype chain of an object for a specific prototype and do not
want to use the constructor function as an intermediary, you can use the
isPrototypeOf() method. In Example 9-1, for example, we defined a class without a
constructor function, so there is no way to use instanceof with that class. Instead,
however, we could test whether an object r was a member of that constructor-less
class with this code:

range.methods.isPrototypeOf(r); // range.methods is the prototype object.

9.2 Classes and Constructors | 227

1 Except functions returned by the ES5 Function.bind() method. Bound functions have no prototype prop‐
erty of their own, but they use the prototype of the underlying function if they are invoked as constructors.

9.2.2 The constructor Property
In Example 9-2, we set Range.prototype to a new object that contained the methods
for our class. Although it was convenient to express those methods as properties of a
single object literal, it was not actually necessary to create a new object. Any regular
JavaScript function (excluding arrow functions, generator functions, and async func‐
tions) can be used as a constructor, and constructor invocations need a prototype
property. Therefore, every regular JavaScript function1 automatically has a prototype
property. The value of this property is an object that has a single, non-enumerable
constructor property. The value of the constructor property is the function object:

let F = function() {}; // This is a function object.
let p = F.prototype; // This is the prototype object associated with F.
let c = p.constructor; // This is the function associated with the prototype.
c === F // => true: F.prototype.constructor === F for any F

The existence of this predefined prototype object with its constructor property
means that objects typically inherit a constructor property that refers to their con‐
structor. Since constructors serve as the public identity of a class, this constructor
property gives the class of an object:

let o = new F(); // Create an object o of class F
o.constructor === F // => true: the constructor property specifies the class

Figure 9-1 illustrates this relationship between the constructor function, its prototype
object, the back reference from the prototype to the constructor, and the instances
created with the constructor.

Figure 9-1. A constructor function, its prototype, and instances

Notice that Figure 9-1 uses our Range() constructor as an example. In fact, however,
the Range class defined in Example 9-2 overwrites the predefined Range.prototype
object with an object of its own. And the new prototype object it defines does not
have a constructor property. So instances of the Range class, as defined, do not have
a constructor property. We can remedy this problem by explicitly adding a con‐
structor to the prototype:

228 | Chapter 9: Classes

Range.prototype = {
 constructor: Range, // Explicitly set the constructor back-reference

 /* method definitions go here */
};

Another common technique that you are likely to see in older JavaScript code is to
use the predefined prototype object with its constructor property and add methods
to it one at a time with code like this:

// Extend the predefined Range.prototype object so we don't overwrite
// the automatically created Range.prototype.constructor property.
Range.prototype.includes = function(x) {
 return this.from <= x && x <= this.to;
};
Range.prototype.toString = function() {
 return "(" + this.from + "..." + this.to + ")";
};

9.3 Classes with the class Keyword
Classes have been part of JavaScript since the very first version of the language, but in
ES6, they finally got their own syntax with the introduction of the class keyword.
Example 9-3 shows what our Range class looks like when written with this new
syntax.

Example 9-3. The Range class rewritten using class

class Range {
 constructor(from, to) {
 // Store the start and end points (state) of this new range object.
 // These are noninherited properties that are unique to this object.
 this.from = from;
 this.to = to;
 }

 // Return true if x is in the range, false otherwise
 // This method works for textual and Date ranges as well as numeric.
 includes(x) { return this.from <= x && x <= this.to; }

 // A generator function that makes instances of the class iterable.
 // Note that it only works for numeric ranges.
 *[Symbol.iterator]() {
 for(let x = Math.ceil(this.from); x <= this.to; x++) yield x;
 }

 // Return a string representation of the range
 toString() { return `(${this.from}...${this.to})`; }
}

9.3 Classes with the class Keyword | 229

// Here are example uses of this new Range class
let r = new Range(1,3); // Create a Range object
r.includes(2) // => true: 2 is in the range
r.toString() // => "(1...3)"
[...r] // => [1, 2, 3]; convert to an array via iterator

It is important to understand that the classes defined in Examples 9-2 and 9-3 work in
exactly the same way. The introduction of the class keyword to the language does
not alter the fundamental nature of JavaScript’s prototype-based classes. And
although Example 9-3 uses the class keyword, the resulting Range object is a con‐
structor function, just like the version defined in Example 9-2. The new class syntax
is clean and convenient but is best thought of as “syntactic sugar” for the more funda‐
mental class definition mechanism shown in Example 9-2.

Note the following things about the class syntax in Example 9-3:

• The class is declared with the class keyword, which is followed by the name of
class and a class body in curly braces.

• The class body includes method definitions that use object literal method short‐
hand (which we also used in Example 9-1), where the function keyword is omit‐
ted. Unlike object literals, however, no commas are used to separate the methods
from each other. (Although class bodies are superficially similar to object literals,
they are not the same thing. In particular, they do not support the definition of
properties with name/value pairs.)

• The keyword constructor is used to define the constructor function for the
class. The function defined is not actually named “constructor”, however. The
class declaration statement defines a new variable Range and assigns the value of
this special constructor function to that variable.

• If your class does not need to do any initialization, you can omit the constructor
keyword and its body, and an empty constructor function will be implicitly cre‐
ated for you.

If you want to define a class that subclasses—or inherits from—another class, you can
use the extends keyword with the class keyword:

// A Span is like a Range, but instead of initializing it with
// a start and an end, we initialize it with a start and a length
class Span extends Range {
 constructor(start, length) {
 if (length >= 0) {
 super(start, start + length);
 } else {
 super(start + length, start);
 }
 }
}

230 | Chapter 9: Classes

Creating subclasses is a whole topic of its own. We’ll return to it, and explain the
extends and super keywords shown here, in §9.5.

Like function declarations, class declarations have both statement and expression
forms. Just as we can write:

let square = function(x) { return x * x; };
square(3) // => 9

we can also write:

let Square = class { constructor(x) { this.area = x * x; } };
new Square(3).area // => 9

As with function definition expressions, class definition expressions can include an
optional class name. If you provide such a name, that name is only defined within the
class body itself.

Although function expressions are quite common (particularly with the arrow func‐
tion shorthand), in JavaScript programming, class definition expressions are not
something that you are likely to use much unless you find yourself writing a function
that takes a class as its argument and returns a subclass.

We’ll conclude this introduction to the class keyword by mentioning a couple of
important things you should know that are not apparent from class syntax:

• All code within the body of a class declaration is implicitly in strict mode
(§5.6.3), even if no "use strict" directive appears. This means, for example,
that you can’t use octal integer literals or the with statement within class bodies
and that you are more likely to get syntax errors if you forget to declare a variable
before using it.

• Unlike function declarations, class declarations are not “hoisted.” Recall from
§8.1.1 that function definitions behave as if they had been moved to the top of
the enclosing file or enclosing function, meaning that you can invoke a function
in code that comes before the actual definition of the function. Although class
declarations are like function declarations in some ways, they do not share this
hoisting behavior: you cannot instantiate a class before you declare it.

9.3.1 Static Methods
You can define a static method within a class body by prefixing the method declara‐
tion with the static keyword. Static methods are defined as properties of the con‐
structor function rather than properties of the prototype object.

For example, suppose we added the following code to Example 9-3:

9.3 Classes with the class Keyword | 231

static parse(s) {
 let matches = s.match(/^\((\d+)\.\.\.(\d+)\)$/);
 if (!matches) {
 throw new TypeError(`Cannot parse Range from "${s}".`)
 }
 return new Range(parseInt(matches[1]), parseInt(matches[2]));
}

The method defined by this code is Range.parse(), not Range.prototype.parse(),
and you must invoke it through the constructor, not through an instance:

let r = Range.parse('(1...10)'); // Returns a new Range object
r.parse('(1...10)'); // TypeError: r.parse is not a function

You’ll sometimes see static methods called class methods because they are invoked
using the name of the class/constructor. When this term is used, it is to contrast class
methods with the regular instance methods that are invoked on instances of the class.
Because static methods are invoked on the constructor rather than on any particular
instance, it almost never makes sense to use the this keyword in a static method.

We’ll see examples of static methods in Example 9-4.

9.3.2 Getters, Setters, and other Method Forms
Within a class body, you can define getter and setter methods (§6.10.6) just as you
can in object literals. The only difference is that in class bodies, you don’t put a
comma after the getter or setter. Example 9-4 includes a practical example of a getter
method in a class.

In general, all of the shorthand method definition syntaxes allowed in object literals
are also allowed in class bodies. This includes generator methods (marked with *)
and methods whose names are the value of an expression in square brackets. In fact,
you’ve already seen (in Example 9-3) a generator method with a computed name that
makes the Range class iterable:

*[Symbol.iterator]() {
 for(let x = Math.ceil(this.from); x <= this.to; x++) yield x;
}

9.3.3 Public, Private, and Static Fields
In the discussion here of classes defined with the class keyword, we have only
described the definition of methods within the class body. The ES6 standard only
allows the creation of methods (including getters, setters, and generators) and static
methods; it does not include syntax for defining fields. If you want to define a field
(which is just an object-oriented synonym for “property”) on a class instance, you
must do that in the constructor function or in one of the methods. And if you want to

232 | Chapter 9: Classes

define a static field for a class, you must do that outside the class body, after the class
has been defined. Example 9-4 includes examples of both kinds of fields.

Standardization is underway, however, for extended class syntax that allows the defi‐
nition of instance and static fields, in both public and private forms. The code shown
in the rest of this section is not yet standard JavaScript as of early 2020 but is already
supported in Chrome and partially supported (public instance fields only) in Firefox.
The syntax for public instance fields is in common use by JavaScript programmers
using the React framework and the Babel transpiler.

Suppose you’re writing a class like this one, with a constructor that initializes three
fields:

class Buffer {
 constructor() {
 this.size = 0;
 this.capacity = 4096;
 this.buffer = new Uint8Array(this.capacity);
 }
}

With the new instance field syntax that is likely to be standardized, you could instead
write:

class Buffer {
 size = 0;
 capacity = 4096;
 buffer = new Uint8Array(this.capacity);
}

The field initialization code has moved out of the constructor and now appears
directly in the class body. (That code is still run as part of the constructor, of course. If
you do not define a constructor, the fields are initialized as part of the implicitly cre‐
ated constructor.) The this. prefixes that appeared on the lefthand side of the assign‐
ments are gone, but note that you still must use this. to refer to these fields, even on
the righthand side of the initializer assignments. The advantage of initializing your
instance fields in this way is that this syntax allows (but does not require) you to put
the initializers up at the top of the class definition, making it clear to readers exactly
what fields will hold the state of each instance. You can declare fields without an ini‐
tializer by just writing the name of the field followed by a semicolon. If you do that,
the initial value of the field will be undefined. It is better style to always make the
initial value explicit for all of your class fields.

Before the addition of this field syntax, class bodies looked a lot like object literals
using shortcut method syntax, except that the commas had been removed. This field
syntax—with equals signs and semicolons instead of colons and commas—makes it
clear that class bodies are not at all the same as object literals.

9.3 Classes with the class Keyword | 233

The same proposal that seeks to standardize these instance fields also defines private
instance fields. If you use the instance field initialization syntax shown in the previ‐
ous example to define a field whose name begins with # (which is not normally a legal
character in JavaScript identifiers), that field will be usable (with the # prefix) within
the class body but will be invisible and inaccessible (and therefore immutable) to any
code outside of the class body. If, for the preceding hypothetical Buffer class, you
wanted to ensure that users of the class could not inadvertently modify the size field
of an instance, you could use a private #size field instead, then define a getter func‐
tion to provide read-only access to the value:

class Buffer {
 #size = 0;
 get size() { return this.#size; }
}

Note that private fields must be declared using this new field syntax before they can
be used. You can’t just write this.#size = 0; in the constructor of a class unless you
include a “declaration” of the field directly in the class body.

Finally, a related proposal seeks to standardize the use of the static keyword for
fields. If you add static before a public or private field declaration, those fields will
be created as properties of the constructor function instead of properties of instances.
Consider the static Range.parse() method we’ve defined. It included a fairly complex
regular expression that might be good to factor out into its own static field. With the
proposed new static field syntax, we could do that like this:

static integerRangePattern = /^\((\d+)\.\.\.(\d+)\)$/;
static parse(s) {
 let matches = s.match(Range.integerRangePattern);
 if (!matches) {
 throw new TypeError(`Cannot parse Range from "${s}".`)
 }
 return new Range(parseInt(matches[1]), matches[2]);
}

If we wanted this static field to be accessible only within the class, we could make it
private using a name like #pattern.

9.3.4 Example: A Complex Number Class
Example 9-4 defines a class to represent complex numbers. The class is a relatively
simple one, but it includes instance methods (including getters), static methods,
instance fields, and static fields. It includes some commented-out code demonstrating
how we might use the not-yet-standard syntax for defining instance fields and static
fields within the class body.

234 | Chapter 9: Classes

Example 9-4. Complex.js: a complex number class

/**
 * Instances of this Complex class represent complex numbers.
 * Recall that a complex number is the sum of a real number and an
 * imaginary number and that the imaginary number i is the square root of -1.
 */
class Complex {
 // Once class field declarations are standardized, we could declare
 // private fields to hold the real and imaginary parts of a complex number
 // here, with code like this:
 //
 // #r = 0;
 // #i = 0;

 // This constructor function defines the instance fields r and i on every
 // instance it creates. These fields hold the real and imaginary parts of
 // the complex number: they are the state of the object.
 constructor(real, imaginary) {
 this.r = real; // This field holds the real part of the number.
 this.i = imaginary; // This field holds the imaginary part.
 }

 // Here are two instance methods for addition and multiplication
 // of complex numbers. If c and d are instances of this class, we
 // might write c.plus(d) or d.times(c)
 plus(that) {
 return new Complex(this.r + that.r, this.i + that.i);
 }
 times(that) {
 return new Complex(this.r * that.r - this.i * that.i,
 this.r * that.i + this.i * that.r);
 }

 // And here are static variants of the complex arithmetic methods.
 // We could write Complex.sum(c,d) and Complex.product(c,d)
 static sum(c, d) { return c.plus(d); }
 static product(c, d) { return c.times(d); }

 // These are some instance methods that are defined as getters
 // so they're used like fields. The real and imaginary getters would
 // be useful if we were using private fields this.#r and this.#i
 get real() { return this.r; }
 get imaginary() { return this.i; }
 get magnitude() { return Math.hypot(this.r, this.i); }

 // Classes should almost always have a toString() method
 toString() { return `{${this.r},${this.i}}`; }

 // It is often useful to define a method for testing whether
 // two instances of your class represent the same value
 equals(that) {

9.3 Classes with the class Keyword | 235

 return that instanceof Complex &&
 this.r === that.r &&
 this.i === that.i;
 }

 // Once static fields are supported inside class bodies, we could
 // define a useful Complex.ZERO constant like this:
 // static ZERO = new Complex(0,0);
}

// Here are some class fields that hold useful predefined complex numbers.
Complex.ZERO = new Complex(0,0);
Complex.ONE = new Complex(1,0);
Complex.I = new Complex(0,1);

With the Complex class of Example 9-4 defined, we can use the constructor, instance
fields, instance methods, class fields, and class methods with code like this:

let c = new Complex(2, 3); // Create a new object with the constructor
let d = new Complex(c.i, c.r); // Use instance fields of c
c.plus(d).toString() // => "{5,5}"; use instance methods
c.magnitude // => Math.hypot(2,3); use a getter function
Complex.product(c, d) // => new Complex(0, 13); a static method
Complex.ZERO.toString() // => "{0,0}"; a static property

9.4 Adding Methods to Existing Classes
JavaScript’s prototype-based inheritance mechanism is dynamic: an object inherits
properties from its prototype, even if the properties of the prototype change after the
object is created. This means that we can augment JavaScript classes simply by adding
new methods to their prototype objects.

Here, for example, is code that adds a method for computing the complex conjugate
to the Complex class of Example 9-4:

// Return a complex number that is the complex conjugate of this one.
Complex.prototype.conj = function() { return new Complex(this.r, -this.i); };

The prototype object of built-in JavaScript classes is also open like this, which means
that we can add methods to numbers, strings, arrays, functions, and so on. This is
useful for implementing new language features in older versions of the language:

// If the new String method startsWith() is not already defined...
if (!String.prototype.startsWith) {
 // ...then define it like this using the older indexOf() method.
 String.prototype.startsWith = function(s) {
 return this.indexOf(s) === 0;
 };
}

Here is another example:

236 | Chapter 9: Classes

// Invoke the function f this many times, passing the iteration number
// For example, to print "hello" 3 times:
// let n = 3;
// n.times(i => { console.log(`hello ${i}`); });
Number.prototype.times = function(f, context) {
 let n = this.valueOf();
 for(let i = 0; i < n; i++) f.call(context, i);
};

Adding methods to the prototypes of built-in types like this is generally considered to
be a bad idea because it will cause confusion and compatibility problems in the future
if a new version of JavaScript defines a method with the same name. It is even possi‐
ble to add methods to Object.prototype, making them available for all objects. But
this is never a good thing to do because properties added to Object.prototype are
visible to for/in loops (though you can avoid this by using Object.defineProp
erty() [§14.1] to make the new property non-enumerable).

9.5 Subclasses
In object-oriented programming, a class B can extend or subclass another class A. We
say that A is the superclass and B is the subclass. Instances of B inherit the methods of
A. The class B can define its own methods, some of which may override methods of
the same name defined by class A. If a method of B overrides a method of A, the
overriding method in B often needs to invoke the overridden method in A. Similarly,
the subclass constructor B() must typically invoke the superclass constructor A() in
order to ensure that instances are completely initialized.

This section starts by showing how to define subclasses the old, pre-ES6 way, and
then quickly moves on to demonstrate subclassing using the class and extends key‐
words and superclass constructor method invocation with the super keyword. Next is
a subsection about avoiding subclasses and relying on object composition instead of
inheritance. The section ends with an extended example that defines a hierarchy of
Set classes and demonstrates how abstract classes can be used to separate interface
from implementation.

9.5.1 Subclasses and Prototypes
Suppose we wanted to define a Span subclass of the Range class from Example 9-2.
This subclass will work just like a Range, but instead of initializing it with a start and
an end, we’ll instead specify a start and a distance, or span. An instance of this Span
class is also an instance of the Range superclass. A span instance inherits a custom‐
ized toString() method from Span.prototype, but in order to be a subclass of
Range, it must also inherit methods (such as includes()) from Range.prototype.

9.5 Subclasses | 237

Example 9-5. Span.js: a simple subclass of Range

// This is the constructor function for our subclass
function Span(start, span) {
 if (span >= 0) {
 this.from = start;
 this.to = start + span;
 } else {
 this.to = start;
 this.from = start + span;
 }
}

// Ensure that the Span prototype inherits from the Range prototype
Span.prototype = Object.create(Range.prototype);

// We don't want to inherit Range.prototype.constructor, so we
// define our own constructor property.
Span.prototype.constructor = Span;

// By defining its own toString() method, Span overrides the
// toString() method that it would otherwise inherit from Range.
Span.prototype.toString = function() {
 return `(${this.from}... +${this.to - this.from})`;
};

In order to make Span a subclass of Range, we need to arrange for Span.prototype to
inherit from Range.prototype. The key line of code in the preceding example is this
one, and if it makes sense to you, you understand how subclasses work in JavaScript:

Span.prototype = Object.create(Range.prototype);

Objects created with the Span() constructor will inherit from the Span.prototype
object. But we created that object to inherit from Range.prototype, so Span objects
will inherit from both Span.prototype and Range.prototype.

You may notice that our Span() constructor sets the same from and to properties that
the Range() constructor does and so does not need to invoke the Range() construc‐
tor to initialize the new object. Similarly, Span’s toString() method completely re-
implements the string conversion without needing to call Range’s version of
toString(). This makes Span a special case, and we can only really get away with this
kind of subclassing because we know the implementation details of the superclass. A
robust subclassing mechanism needs to allow classes to invoke the methods and con‐
structor of their superclass, but prior to ES6, JavaScript did not have a simple way to
do these things.

Fortunately, ES6 solves these problems with the super keyword as part of the class
syntax. The next section demonstrates how it works.

238 | Chapter 9: Classes

9.5.2 Subclasses with extends and super
In ES6 and later, you can create a superclass simply by adding an extends clause to a
class declaration, and you can do this even for built-in classes:

// A trivial Array subclass that adds getters for the first and last elements.
class EZArray extends Array {
 get first() { return this[0]; }
 get last() { return this[this.length-1]; }
}

let a = new EZArray();
a instanceof EZArray // => true: a is subclass instance
a instanceof Array // => true: a is also a superclass instance.
a.push(1,2,3,4); // a.length == 4; we can use inherited methods
a.pop() // => 4: another inherited method
a.first // => 1: first getter defined by subclass
a.last // => 3: last getter defined by subclass
a[1] // => 2: regular array access syntax still works.
Array.isArray(a) // => true: subclass instance really is an array
EZArray.isArray(a) // => true: subclass inherits static methods, too!

This EZArray subclass defines two simple getter methods. Instances of EZArray
behave like ordinary arrays, and we can use inherited methods and properties like
push(), pop(), and length. But we can also use the first and last getters defined in
the subclass. Not only are instance methods like pop() inherited, but static methods
like Array.isArray are also inherited. This is a new feature enabled by ES6 class syn‐
tax: EZArray() is a function, but it inherits from Array():

// EZArray inherits instance methods because EZArray.prototype
// inherits from Array.prototype
Array.prototype.isPrototypeOf(EZArray.prototype) // => true

// And EZArray inherits static methods and properties because
// EZArray inherits from Array. This is a special feature of the
// extends keyword and is not possible before ES6.
Array.isPrototypeOf(EZArray) // => true

Our EZArray subclass is too simple to be very instructive. Example 9-6 is a more fully
fleshed-out example. It defines a TypedMap subclass of the built-in Map class that
adds type checking to ensure that the keys and values of the map are of the specified
types (according to typeof). Importantly, this example demonstrates the use of the
super keyword to invoke the constructor and methods of the superclass.

Example 9-6. TypedMap.js: a subclass of Map that checks key and value types

class TypedMap extends Map {
 constructor(keyType, valueType, entries) {
 // If entries are specified, check their types
 if (entries) {

9.5 Subclasses | 239

 for(let [k, v] of entries) {
 if (typeof k !== keyType || typeof v !== valueType) {
 throw new TypeError(`Wrong type for entry [${k}, ${v}]`);
 }
 }
 }

 // Initialize the superclass with the (type-checked) initial entries
 super(entries);

 // And then initialize this subclass by storing the types
 this.keyType = keyType;
 this.valueType = valueType;
 }

 // Now redefine the set() method to add type checking for any
 // new entries added to the map.
 set(key, value) {
 // Throw an error if the key or value are of the wrong type
 if (this.keyType && typeof key !== this.keyType) {
 throw new TypeError(`${key} is not of type ${this.keyType}`);
 }
 if (this.valueType && typeof value !== this.valueType) {
 throw new TypeError(`${value} is not of type ${this.valueType}`);
 }

 // If the types are correct, we invoke the superclass's version of
 // the set() method, to actually add the entry to the map. And we
 // return whatever the superclass method returns.
 return super.set(key, value);
 }
}

The first two arguments to the TypedMap() constructor are the desired key and value
types. These should be strings, such as “number” and “boolean”, that the typeof oper‐
ator returns. You can also specify a third argument: an array (or any iterable object)
of [key,value] arrays that specify the initial entries in the map. If you specify any
initial entries, then the first thing the constructor does is verify that their types are
correct. Next, the constructor invokes the superclass constructor, using the super
keyword as if it was a function name. The Map() constructor takes one optional argu‐
ment: an iterable object of [key,value] arrays. So the optional third argument of the
TypedMap() constructor is the optional first argument to the Map() constructor, and
we pass it to that superclass constructor with super(entries).

After invoking the superclass constructor to initialize superclass state, the
TypedMap() constructor next initializes its own subclass state by setting this.key
Type and this.valueType to the specified types. It needs to set these properties so
that it can use them again in the set() method.

240 | Chapter 9: Classes

There are a few important rules that you will need to know about using super() in
constructors:

• If you define a class with the extends keyword, then the constructor for your
class must use super() to invoke the superclass constructor.

• If you don’t define a constructor in your subclass, one will be defined automati‐
cally for you. This implicitly defined constructor simply takes whatever values are
passed to it and passes those values to super().

• You may not use the this keyword in your constructor until after you have
invoked the superclass constructor with super(). This enforces a rule that super‐
classes get to initialize themselves before subclasses do.

• The special expression new.target is undefined in functions that are invoked
without the new keyword. In constructor functions, however, new.target is a ref‐
erence to the constructor that was invoked. When a subclass constructor is
invoked and uses super() to invoke the superclass constructor, that superclass
constructor will see the subclass constructor as the value of new.target. A well-
designed superclass should not need to know whether it has been subclassed, but
it might be useful to be able to use new.target.name in logging messages, for
example.

After the constructor, the next part of Example 9-6 is a method named set(). The
Map superclass defines a method named set() to add a new entry to the map. We say
that this set() method in TypedMap overrides the set() method of its superclass.
This simple TypedMap subclass doesn’t know anything about adding new entries to
map, but it does know how to check types, so that is what it does first, verifying that
the key and value to be added to the map have the correct types and throwing an
error if they do not. This set() method doesn’t have any way to add the key and
value to the map itself, but that is what the superclass set() method is for. So we use
the super keyword again to invoke the superclass’s version of the method. In this
context, super works much like the this keyword does: it refers to the current object
but allows access to overridden methods defined in the superclass.

In constructors, you are required to invoke the superclass constructor before you can
access this and initialize the new object yourself. There are no such rules when you
override a method. A method that overrides a superclass method is not required to
invoke the superclass method. If it does use super to invoke the overridden method
(or any method) in the superclass, it can do that at the beginning or the middle or the
end of the overriding method.

Finally, before we leave the TypedMap example behind, it is worth noting that this
class is an ideal candidate for the use of private fields. As the class is written now, a
user could change the keyType or valueType properties to subvert the type checking.

9.5 Subclasses | 241

2 See Design Patterns (Addison-Wesley Professional) by Erich Gamma et al. or Effective Java (Addison-Wesley
Professional) by Joshua Bloch, for example.

Once private fields are supported, we could change these properties to #keyType and
#valueType so that they could not be altered from the outside.

9.5.3 Delegation Instead of Inheritance
The extends keyword makes it easy to create subclasses. But that does not mean that
you should create lots of subclasses. If you want to write a class that shares the behav‐
ior of some other class, you can try to inherit that behavior by creating a subclass. But
it is often easier and more flexible to get that desired behavior into your class by hav‐
ing your class create an instance of the other class and simply delegating to that
instance as needed. You create a new class not by subclassing, but instead by wrap‐
ping or “composing” other classes. This delegation approach is often called “composi‐
tion,” and it is an oft-quoted maxim of object-oriented programming that one should
“favor composition over inheritance.”2

Suppose, for example, we wanted a Histogram class that behaves something like
JavaScript’s Set class, except that instead of just keeping track of whether a value has
been added to set or not, it instead maintains a count of the number of times the
value has been added. Because the API for this Histogram class is similar to Set, we
might consider subclassing Set and adding a count() method. On the other hand,
once we start thinking about how we might implement this count() method, we
might realize that the Histogram class is more like a Map than a Set because it needs
to maintain a mapping between values and the number of times they have been
added. So instead of subclassing Set, we can create a class that defines a Set-like API
but implements those methods by delegating to an internal Map object. Example 9-7
shows how we could do this.

Example 9-7. Histogram.js: a Set-like class implemented with delegation

/**
 * A Set-like class that keeps track of how many times a value has
 * been added. Call add() and remove() like you would for a Set, and
 * call count() to find out how many times a given value has been added.
 * The default iterator yields the values that have been added at least
 * once. Use entries() if you want to iterate [value, count] pairs.
 */
class Histogram {
 // To initialize, we just create a Map object to delegate to
 constructor() { this.map = new Map(); }

 // For any given key, the count is the value in the Map, or zero
 // if the key does not appear in the Map.

242 | Chapter 9: Classes

 count(key) { return this.map.get(key) || 0; }

 // The Set-like method has() returns true if the count is non-zero
 has(key) { return this.count(key) > 0; }

 // The size of the histogram is just the number of entries in the Map.
 get size() { return this.map.size; }

 // To add a key, just increment its count in the Map.
 add(key) { this.map.set(key, this.count(key) + 1); }

 // Deleting a key is a little trickier because we have to delete
 // the key from the Map if the count goes back down to zero.
 delete(key) {
 let count = this.count(key);
 if (count === 1) {
 this.map.delete(key);
 } else if (count > 1) {
 this.map.set(key, count - 1);
 }
 }

 // Iterating a Histogram just returns the keys stored in it
 [Symbol.iterator]() { return this.map.keys(); }

 // These other iterator methods just delegate to the Map object
 keys() { return this.map.keys(); }
 values() { return this.map.values(); }
 entries() { return this.map.entries(); }
}

All the Histogram() constructor does in Example 9-7 is create a Map object. And
most of the methods are one-liners that just delegate to a method of the map, making
the implementation quite simple. Because we used delegation rather than inheritance,
a Histogram object is not an instance of Set or Map. But Histogram implements a
number of commonly used Set methods, and in an untyped language like JavaScript,
that is often good enough: a formal inheritance relationship is sometimes nice, but
often optional.

9.5.4 Class Hierarchies and Abstract Classes
Example 9-6 demonstrated how we can subclass Map. Example 9-7 demonstrated
how we can instead delegate to a Map object without actually subclassing anything.
Using JavaScript classes to encapsulate data and modularize your code is often a great
technique, and you may find yourself using the class keyword frequently. But you
may find that you prefer composition to inheritance and that you rarely need to use
extends (except when you’re using a library or framework that requires you to
extend its base classes).

9.5 Subclasses | 243

There are some circumstances when multiple levels of subclassing are appropriate,
however, and we’ll end this chapter with an extended example that demonstrates a
hierarchy of classes representing different kinds of sets. (The set classes defined in
Example 9-8 are similar to, but not completely compatible with, JavaScript’s built-in
Set class.)

Example 9-8 defines lots of subclasses, but it also demonstrates how you can define
abstract classes—classes that do not include a complete implementation—to serve as a
common superclass for a group of related subclasses. An abstract superclass can
define a partial implementation that all subclasses inherit and share. The subclasses,
then, only need to define their own unique behavior by implementing the abstract
methods defined—but not implemented—by the superclass. Note that JavaScript does
not have any formal definition of abstract methods or abstract classes; I’m simply
using that name here for unimplemented methods and incompletely implemented
classes.

Example 9-8 is well commented and stands on its own. I encourage you to read it as a
capstone example for this chapter on classes. The final class in Example 9-8 does a lot
of bit manipulation with the &, |, and ~ operators, which you can review in §4.8.3.

Example 9-8. Sets.js: a hierarchy of abstract and concrete set classes

/**
 * The AbstractSet class defines a single abstract method, has().
 */
class AbstractSet {
 // Throw an error here so that subclasses are forced
 // to define their own working version of this method.
 has(x) { throw new Error("Abstract method"); }
}

/**
 * NotSet is a concrete subclass of AbstractSet.
 * The members of this set are all values that are not members of some
 * other set. Because it is defined in terms of another set it is not
 * writable, and because it has infinite members, it is not enumerable.
 * All we can do with it is test for membership and convert it to a
 * string using mathematical notation.
 */
class NotSet extends AbstractSet {
 constructor(set) {
 super();
 this.set = set;
 }

 // Our implementation of the abstract method we inherited
 has(x) { return !this.set.has(x); }
 // And we also override this Object method

244 | Chapter 9: Classes

 toString() { return `{ x| x ∉ ${this.set.toString()} }`; }
}

/**
 * Range set is a concrete subclass of AbstractSet. Its members are
 * all values that are between the from and to bounds, inclusive.
 * Since its members can be floating point numbers, it is not
 * enumerable and does not have a meaningful size.
 */
class RangeSet extends AbstractSet {
 constructor(from, to) {
 super();
 this.from = from;
 this.to = to;
 }

 has(x) { return x >= this.from && x <= this.to; }
 toString() { return `{ x| ${this.from} ≤ x ≤ ${this.to} }`; }
}

/*
 * AbstractEnumerableSet is an abstract subclass of AbstractSet. It defines
 * an abstract getter that returns the size of the set and also defines an
 * abstract iterator. And it then implements concrete isEmpty(), toString(),
 * and equals() methods on top of those. Subclasses that implement the
 * iterator, the size getter, and the has() method get these concrete
 * methods for free.
 */
class AbstractEnumerableSet extends AbstractSet {
 get size() { throw new Error("Abstract method"); }
 [Symbol.iterator]() { throw new Error("Abstract method"); }

 isEmpty() { return this.size === 0; }
 toString() { return `{${Array.from(this).join(", ")}}`; }
 equals(set) {
 // If the other set is not also Enumerable, it isn't equal to this one
 if (!(set instanceof AbstractEnumerableSet)) return false;

 // If they don't have the same size, they're not equal
 if (this.size !== set.size) return false;

 // Loop through the elements of this set
 for(let element of this) {
 // If an element isn't in the other set, they aren't equal
 if (!set.has(element)) return false;
 }

 // The elements matched, so the sets are equal
 return true;
 }
}

9.5 Subclasses | 245

/*
 * SingletonSet is a concrete subclass of AbstractEnumerableSet.
 * A singleton set is a read-only set with a single member.
 */
class SingletonSet extends AbstractEnumerableSet {
 constructor(member) {
 super();
 this.member = member;
 }

 // We implement these three methods, and inherit isEmpty, equals()
 // and toString() implementations based on these methods.
 has(x) { return x === this.member; }
 get size() { return 1; }
 *[Symbol.iterator]() { yield this.member; }
}

/*
 * AbstractWritableSet is an abstract subclass of AbstractEnumerableSet.
 * It defines the abstract methods insert() and remove() that insert and
 * remove individual elements from the set, and then implements concrete
 * add(), subtract(), and intersect() methods on top of those. Note that
 * our API diverges here from the standard JavaScript Set class.
 */
class AbstractWritableSet extends AbstractEnumerableSet {
 insert(x) { throw new Error("Abstract method"); }
 remove(x) { throw new Error("Abstract method"); }

 add(set) {
 for(let element of set) {
 this.insert(element);
 }
 }

 subtract(set) {
 for(let element of set) {
 this.remove(element);
 }
 }

 intersect(set) {
 for(let element of this) {
 if (!set.has(element)) {
 this.remove(element);
 }
 }
 }
}

/**
 * A BitSet is a concrete subclass of AbstractWritableSet with a
 * very efficient fixed-size set implementation for sets whose

246 | Chapter 9: Classes

 * elements are non-negative integers less than some maximum size.
 */
class BitSet extends AbstractWritableSet {
 constructor(max) {
 super();
 this.max = max; // The maximum integer we can store.
 this.n = 0; // How many integers are in the set
 this.numBytes = Math.floor(max / 8) + 1; // How many bytes we need
 this.data = new Uint8Array(this.numBytes); // The bytes
 }

 // Internal method to check if a value is a legal member of this set
 _valid(x) { return Number.isInteger(x) && x >= 0 && x <= this.max; }

 // Tests whether the specified bit of the specified byte of our
 // data array is set or not. Returns true or false.
 _has(byte, bit) { return (this.data[byte] & BitSet.bits[bit]) !== 0; }

 // Is the value x in this BitSet?
 has(x) {
 if (this._valid(x)) {
 let byte = Math.floor(x / 8);
 let bit = x % 8;
 return this._has(byte, bit);
 } else {
 return false;
 }
 }

 // Insert the value x into the BitSet
 insert(x) {
 if (this._valid(x)) { // If the value is valid
 let byte = Math.floor(x / 8); // convert to byte and bit
 let bit = x % 8;
 if (!this._has(byte, bit)) { // If that bit is not set yet
 this.data[byte] |= BitSet.bits[bit]; // then set it
 this.n++; // and increment set size
 }
 } else {
 throw new TypeError("Invalid set element: " + x);
 }
 }

 remove(x) {
 if (this._valid(x)) { // If the value is valid
 let byte = Math.floor(x / 8); // compute the byte and bit
 let bit = x % 8;
 if (this._has(byte, bit)) { // If that bit is already set
 this.data[byte] &= BitSet.masks[bit]; // then unset it
 this.n--; // and decrement size
 }
 } else {

9.5 Subclasses | 247

 throw new TypeError("Invalid set element: " + x);
 }
 }

 // A getter to return the size of the set
 get size() { return this.n; }

 // Iterate the set by just checking each bit in turn.
 // (We could be a lot more clever and optimize this substantially)
 *[Symbol.iterator]() {
 for(let i = 0; i <= this.max; i++) {
 if (this.has(i)) {
 yield i;
 }
 }
 }
}

// Some pre-computed values used by the has(), insert() and remove() methods
BitSet.bits = new Uint8Array([1, 2, 4, 8, 16, 32, 64, 128]);
BitSet.masks = new Uint8Array([~1, ~2, ~4, ~8, ~16, ~32, ~64, ~128]);

9.6 Summary
This chapter has explained the key features of JavaScript classes:

• Objects that are members of the same class inherit properties from the same pro‐
totype object. The prototype object is the key feature of JavaScript classes, and it
is possible to define classes with nothing more than the Object.create()
method.

• Prior to ES6, classes were more typically defined by first defining a constructor
function. Functions created with the function keyword have a prototype prop‐
erty, and the value of this property is an object that is used as the prototype of all
objects created when the function is invoked with new as a constructor. By initial‐
izing this prototype object, you can define the shared methods of your class.
Although the prototype object is the key feature of the class, the constructor
function is the public identity of the class.

• ES6 introduces a class keyword that makes it easier to define classes, but under
the hood, constructor and prototype mechanism remains the same.

• Subclasses are defined using the extends keyword in a class declaration.
• Subclasses can invoke the constructor of their superclass or overridden methods

of their superclass with the super keyword.

248 | Chapter 9: Classes

CHAPTER 10

Modules

The goal of modular programming is to allow large programs to be assembled using
modules of code from disparate authors and sources and for all of that code to run
correctly even in the presence of code that the various module authors did not antici‐
pate. As a practical matter, modularity is mostly about encapsulating or hiding private
implementation details and keeping the global namespace tidy so that modules can‐
not accidentally modify the variables, functions, and classes defined by other
modules.

Until recently, JavaScript had no built-in support for modules, and programmers
working on large code bases did their best to use the weak modularity available
through classes, objects, and closures. Closure-based modularity, with support from
code-bundling tools, led to a practical form of modularity based on a require()
function, which was adopted by Node. require()-based modules are a fundamental
part of the Node programming environment but were never adopted as an official
part of the JavaScript language. Instead, ES6 defines modules using import and
export keywords. Although import and export have been part of the language for
years, they were only implemented by web browsers and Node relatively recently.
And, as a practical matter, JavaScript modularity still depends on code-bundling
tools.

The sections that follow cover:

• Do-it-yourself modules with classes, objects, and closures
• Node modules using require()
• ES6 modules using export, import, and import()

249

10.1 Modules with Classes, Objects, and Closures
Though it may be obvious, it is worth pointing out that one of the important features
of classes is that they act as modules for their methods. Think back to Example 9-8.
That example defined a number of different classes, all of which had a method named
has(). But you would have no problem writing a program that used multiple set
classes from that example: there is no danger that the implementation of has() from
SingletonSet will overwrite the has() method of BitSet, for example.

The reason that the methods of one class are independent of the methods of other,
unrelated classes is that the methods of each class are defined as properties of inde‐
pendent prototype objects. The reason that classes are modular is that objects are
modular: defining a property in a JavaScript object is a lot like declaring a variable,
but adding properties to objects does not affect the global namespace of a program,
nor does it affect the properties of other objects. JavaScript defines quite a few mathe‐
matical functions and constants, but instead of defining them all globally, they are
grouped as properties of a single global Math object. This same technique could have
been used in Example 9-8. Instead of defining global classes with names like Single‐
tonSet and BitSet, that example could have been written to define only a single global
Sets object, with properties referencing the various classes. Users of this Sets library
could then refer to the classes with names like Sets.Singleton and Sets.Bit.

Using classes and objects for modularity is a common and useful technique in Java‐
Script programming, but it doesn’t go far enough. In particular, it doesn’t offer us any
way to hide internal implementation details inside the module. Consider Example 9-8
again. If we were writing that example as a module, maybe we would have wanted to
keep the various abstract classes internal to the module, only making the concrete
subclasses available to users of the module. Similarly, in the BitSet class, the _valid()
and _has() methods are internal utilities that should not really be exposed to users of
the class. And BitSet.bits and BitSet.masks are implementation details that would
be better off hidden.

As we saw in §8.6, local variables and nested functions declared within a function are
private to that function. This means that we can use immediately invoked function
expressions to achieve a kind of modularity by leaving the implementation details
and utility functions hidden within the enclosing function but making the public API
of the module the return value of the function. In the case of the BitSet class, we
might structure the module like this:

const BitSet = (function() { // Set BitSet to the return value of this function
 // Private implementation details here
 function isValid(set, n) { ... }
 function has(set, byte, bit) { ... }
 const BITS = new Uint8Array([1, 2, 4, 8, 16, 32, 64, 128]);
 const MASKS = new Uint8Array([~1, ~2, ~4, ~8, ~16, ~32, ~64, ~128]);

250 | Chapter 10: Modules

 // The public API of the module is just the BitSet class, which we define
 // and return here. The class can use the private functions and constants
 // defined above, but they will be hidden from users of the class
 return class BitSet extends AbstractWritableSet {
 // ... implementation omitted ...
 };
}());

This approach to modularity becomes a little more interesting when the module has
more than one item in it. The following code, for example, defines a mini statistics
module that exports mean() and stddev() functions while leaving the implementa‐
tion details hidden:

// This is how we could define a stats module
const stats = (function() {
 // Utility functions private to the module
 const sum = (x, y) => x + y;
 const square = x => x * x;

 // A public function that will be exported
 function mean(data) {
 return data.reduce(sum)/data.length;
 }

 // A public function that we will export
 function stddev(data) {
 let m = mean(data);
 return Math.sqrt(
 data.map(x => x - m).map(square).reduce(sum)/(data.length-1)
);
 }

 // We export the public function as properties of an object
 return { mean, stddev };
}());

// And here is how we might use the module
stats.mean([1, 3, 5, 7, 9]) // => 5
stats.stddev([1, 3, 5, 7, 9]) // => Math.sqrt(10)

10.1.1 Automating Closure-Based Modularity
Note that it is a fairly mechanical process to transform a file of JavaScript code into
this kind of module by inserting some text at the beginning and end of the file. All
that is needed is some convention for the file of JavaScript code to indicate which val‐
ues are to be exported and which are not.

Imagine a tool that takes a set of files, wraps the content of each of those files within
an immediately invoked function expression, keeps track of the return value of each

10.1 Modules with Classes, Objects, and Closures | 251

function, and concatenates everything into one big file. The result might look some‐
thing like this:

const modules = {};
function require(moduleName) { return modules[moduleName]; }

modules["sets.js"] = (function() {
 const exports = {};

 // The contents of the sets.js file go here:
 exports.BitSet = class BitSet { ... };

 return exports;
}());

modules["stats.js"] = (function() {
 const exports = {};

 // The contents of the stats.js file go here:
 const sum = (x, y) => x + y;
 const square = x = > x * x;
 exports.mean = function(data) { ... };
 exports.stddev = function(data) { ... };

 return exports;
}());

With modules bundled up into a single file like the one shown in the preceding exam‐
ple, you can imagine writing code like the following to make use of those modules:

// Get references to the modules (or the module content) that we need
const stats = require("stats.js");
const BitSet = require("sets.js").BitSet;

// Now write code using those modules
let s = new BitSet(100);
s.insert(10);
s.insert(20);
s.insert(30);
let average = stats.mean([...s]); // average is 20

This code is a rough sketch of how code-bundling tools (such as webpack and Parcel)
for web browsers work, and it’s also a simple introduction to the require() function
like the one used in Node programs.

252 | Chapter 10: Modules

10.2 Modules in Node
In Node programming, it is normal to split programs into as many files as seems nat‐
ural. These files of JavaScript code are assumed to all live on a fast filesystem. Unlike
web browsers, which have to read files of JavaScript over a relatively slow network
connection, there is no need or benefit to bundling a Node program into a single
JavaScript file.

In Node, each file is an independent module with a private namespace. Constants,
variables, functions, and classes defined in one file are private to that file unless the
file exports them. And values exported by one module are only visible in another
module if that module explicitly imports them.

Node modules import other modules with the require() function and export their
public API by setting properties of the Exports object or by replacing the
module.exportsobject entirely.

10.2.1 Node Exports
Node defines a global exports object that is always defined. If you are writing a Node
module that exports multiple values, you can simply assign them to the properties of
this object:

const sum = (x, y) => x + y;
const square = x => x * x;

exports.mean = data => data.reduce(sum)/data.length;
exports.stddev = function(d) {
 let m = exports.mean(d);
 return Math.sqrt(d.map(x => x - m).map(square).reduce(sum)/(d.length-1));
};

Often, however, you want to define a module that exports only a single function or
class rather than an object full of functions or classes. To do this, you simply assign
the single value you want to export to module.exports:

module.exports = class BitSet extends AbstractWritableSet {
 // implementation omitted
};

The default value of module.exports is the same object that exports refers to. In the
previous stats module, we could have assigned the mean function to
module.exports.mean instead of exports.mean. Another approach with modules like
the stats module is to export a single object at the end of the module rather than
exporting functions one by one as you go:

// Define all the functions, public and private
const sum = (x, y) => x + y;
const square = x => x * x;

10.2 Modules in Node | 253

const mean = data => data.reduce(sum)/data.length;
const stddev = d => {
 let m = mean(d);
 return Math.sqrt(d.map(x => x - m).map(square).reduce(sum)/(d.length-1));
};

// Now export only the public ones
module.exports = { mean, stddev };

10.2.2 Node Imports
A Node module imports another module by calling the require() function. The
argument to this function is the name of the module to be imported, and the return
value is whatever value (typically a function, class, or object) that module exports.

If you want to import a system module built in to Node or a module that you have
installed on your system via a package manager, then you simply use the unqualified
name of the module, without any “/” characters that would turn it into a filesystem
path:

// These modules are built in to Node
const fs = require("fs"); // The built-in filesystem module
const http = require("http"); // The built-in HTTP module

// The Express HTTP server framework is a third-party module.
// It is not part of Node but has been installed locally
const express = require("express");

When you want to import a module of your own code, the module name should be
the path to the file that contains that code, relative to the current module’s file. It is
legal to use absolute paths that begin with a / character, but typically, when importing
modules that are part of your own program, the module names will begin with ./ or
sometimes ../ to indicate that they are relative to the current directory or the parent
directory. For example:

const stats = require('./stats.js');
const BitSet = require('./utils/bitset.js');

(You can also omit the .js suffix on the files you’re importing and Node will still find
the files, but it is common to see these file extensions explicitly included.)

When a module exports just a single function or class, all you have to do is require it.
When a module exports an object with multiple properties, you have a choice: you
can import the entire object, or just import the specific properties (using destructur‐
ing assignment) of the object that you plan to use. Compare these two approaches:

// Import the entire stats object, with all of its functions
const stats = require('./stats.js');

// We've got more functions than we need, but they're neatly

254 | Chapter 10: Modules

// organized into a convenient "stats" namespace.
let average = stats.mean(data);

// Alternatively, we can use idiomatic destructuring assignment to import
// exactly the functions we want directly into the local namespace:
const { stddev } = require('./stats.js');

// This is nice and succinct, though we lose a bit of context
// without the 'stats' prefix as a namspace for the stddev() function.
let sd = stddev(data);

10.2.3 Node-Style Modules on the Web
Modules with an Exports object and a require() function are built in to Node. But if
you’re willing to process your code with a bundling tool like webpack, then it is also
possible to use this style of modules for code that is intended to run in web browsers.
Until recently, this was a very common thing to do, and you may see lots of web-
based code that still does it.

Now that JavaScript has its own standard module syntax, however, developers who
use bundlers are more likely to use the official JavaScript modules with import and
export statements.

10.3 Modules in ES6
ES6 adds import and export keywords to JavaScript and finally supports real modu‐
larity as a core language feature. ES6 modularity is conceptually the same as Node
modularity: each file is its own module, and constants, variables, functions, and
classes defined within a file are private to that module unless they are explicitly
exported. Values that are exported from one module are available for use in modules
that explicitly import them. ES6 modules differ from Node modules in the syntax
used for exporting and importing and also in the way that modules are defined in
web browsers. The sections that follow explain these things in detail.

First, though, note that ES6 modules are also different from regular JavaScript
“scripts” in some important ways. The most obvious difference is the modularity
itself: in regular scripts, top-level declarations of variables, functions, and classes go
into a single global context shared by all scripts. With modules, each file has its own
private context and can use the import and export statements, which is the whole
point, after all. But there are other differences between modules and scripts as well.
Code inside an ES6 module (like code inside any ES6 class definition) is automati‐
cally in strict mode (see §5.6.3). This means that, when you start using ES6 modules,
you’ll never have to write "use strict" again. And it means that code in modules
cannot use the with statement or the arguments object or undeclared variables. ES6
modules are even slightly stricter than strict mode: in strict mode, in functions

10.3 Modules in ES6 | 255

invoked as functions, this is undefined. In modules, this is undefined even in top-
level code. (By contrast, scripts in web browsers and Node set this to the global
object.)

ES6 Modules on the Web and in Node

ES6 modules have been in use on the web for years with the help of
code bundlers like webpack, which combine independent modules
of JavaScript code into large, non-modular bundles suitable for
inclusion into web pages. At the time of this writing, however, ES6
modules are finally supported natively by all web browsers other
than Internet Explorer. When used natively, ES6 modules are
added into HTML pages with a special <script type="module">
tag, described later in this chapter.
And meanwhile, having pioneered JavaScript modularity, Node
finds itself in the awkward position of having to support two not
entirely compatible module systems. Node 13 supports ES6 mod‐
ules, but for now, the vast majority of Node programs still use Node
modules.

10.3.1 ES6 Exports
To export a constant, variable, function, or class from an ES6 module, simply add the
keyword export before the declaration:

export const PI = Math.PI;

export function degreesToRadians(d) { return d * PI / 180; }

export class Circle {
 constructor(r) { this.r = r; }
 area() { return PI * this.r * this.r; }
}

As an alternative to scattering export keywords throughout your module, you can
define your constants, variables, functions, and classes as you normally would, with
no export statement, and then (typically at the end of your module) write a single
export statement that declares exactly what is exported in a single place. So instead of
writing three individual exports in the preceding code, we could have equivalently
written a single line at the end:

export { Circle, degreesToRadians, PI };

This syntax looks like the export keyword followed by an object literal (using short‐
hand notation). But in this case, the curly braces do not actually define an object lit‐
eral. This export syntax simply requires a comma-separated list of identifiers within
curly braces.

256 | Chapter 10: Modules

It is common to write modules that export only one value (typically a function or
class), and in this case, we usually use export default instead of export:

export default class BitSet {
 // implementation omitted
}

Default exports are slightly easier to import than non-default exports, so when there
is only one exported value, using export default makes things easier for the mod‐
ules that use your exported value.

Regular exports with export can only be done on declarations that have a name.
Default exports with export default can export any expression including anony‐
mous function expressions and anonymous class expressions. This means that if you
use export default, you can export object literals. So unlike the export syntax, if
you see curly braces after export default, it really is an object literal that is being
exported.

It is legal, but somewhat uncommon, for modules to have a set of regular exports and
also a default export. If a module has a default export, it can only have one.

Finally, note that the export keyword can only appear at the top level of your Java‐
Script code. You may not export a value from within a class, function, loop, or condi‐
tional. (This is an important feature of the ES6 module system and enables static
analysis: a modules export will be the same on every run, and the symbols exported
can be determined before the module is actually run.)

10.3.2 ES6 Imports
You import values that have been exported by other modules with the import key‐
word. The simplest form of import is used for modules that define a default export:

import BitSet from './bitset.js';

This is the import keyword, followed by an identifier, followed by the from keyword,
followed by a string literal that names the module whose default export we are
importing. The default export value of the specified module becomes the value of the
specified identifier in the current module.

The identifier to which the imported value is assigned is a constant, as if it had been
declared with the const keyword. Like exports, imports can only appear at the top
level of a module and are not allowed within classes, functions, loops, or conditionals.
By near-universal convention, the imports needed by a module are placed at the start
of the module. Interestingly, however, this is not required: like function declarations,
imports are “hoisted” to the top, and all imported values are available for any of the
module’s code runs.

10.3 Modules in ES6 | 257

The module from which a value is imported is specified as a constant string literal in
single quotes or double quotes. (You may not use a variable or other expression
whose value is a string, and you may not use a string within backticks because tem‐
plate literals can interpolate variables and do not always have constant values.) In web
browsers, this string is interpreted as a URL relative to the location of the module that
is doing the importing. (In Node, or when using a bundling tool, the string is inter‐
preted as a filename relative to the current module, but this makes little difference in
practice.) A module specifier string must be an absolute path starting with “/”, or a rel‐
ative path starting with “./” or “../”, or a complete URL a with protocol and hostname.
The ES6 specification does not allow unqualified module specifier strings like “util.js”
because it is ambiguous whether this is intended to name a module in the same direc‐
tory as the current one or some kind of system module that is installed in some spe‐
cial location. (This restriction against “bare module specifiers” is not honored by
code-bundling tools like webpack, which can easily be configured to find bare mod‐
ules in a library directory that you specify.) A future version of the language may
allow “bare module specifiers,” but for now, they are not allowed. If you want to
import a module from the same directory as the current one, simply place “./” before
the module name and import from “./util.js” instead of “util.js”.

So far, we’ve only considered the case of importing a single value from a module that
uses export default. To import values from a module that exports multiple values,
we use a slightly different syntax:

import { mean, stddev } from "./stats.js";

Recall that default exports do not need to have a name in the module that defines
them. Instead, we provide a local name when we import those values. But non-default
exports of a module do have names in the exporting module, and when we import
those values, we refer to them by those names. The exporting module can export any
number of named value. An import statement that references that module can import
any subset of those values simply by listing their names within curly braces. The curly
braces make this kind of import statement look something like a destructuring
assignment, and destructuring assignment is actually a good analogy for what this
style of import is doing. The identifiers within curly braces are all hoisted to the top
of the importing module and behave like constants.

Style guides sometimes recommend that you explicitly import every symbol that your
module will use. When importing from a module that defines many exports, however,
you can easily import everything with an import statement like this:

import * as stats from "./stats.js";

An import statement like this creates an object and assigns it to a constant named
stats. Each of the non-default exports of the module being imported becomes a
property of this stats object. Non-default exports always have names, and those are

258 | Chapter 10: Modules

used as property names within the object. Those properties are effectively constants:
they cannot be overwritten or deleted. With the wildcard import shown in the previ‐
ous example, the importing module would use the imported mean() and stddev()
functions through the stats object, invoking them as stats.mean() and
stats.stddev().

Modules typically define either one default export or multiple named exports. It is
legal, but somewhat uncommon, for a module to use both export and export
default. But when a module does that, you can import both the default value and the
named values with an import statement like this:

import Histogram, { mean, stddev } from "./histogram-stats.js";

So far, we’ve seen how to import from modules with a default export and from mod‐
ules with non-default or named exports. But there is one other form of the import
statement that is used with modules that have no exports at all. To include a no-
exports module into your program, simply use the import keyword with the module
specifier:

import "./analytics.js";

A module like this runs the first time it is imported. (And subsequent imports do
nothing.) A module that just defines functions is only useful if it exports at least one
of those functions. But if a module runs some code, then it can be useful to import
even without symbols. An analytics module for a web application might run code to
register various event handlers and then use those event handlers to send telemetry
data back to the server at appropriate times. The module is self-contained and does
not need to export anything, but we still need to import it so that it does actually run
as part of our program.

Note that you can use this import-nothing import syntax even with modules that do
have exports. If a module defines useful behavior independent of the values it exports,
and if your program does not need any of those exported values, you can still import
the module . just for that default behavior.

10.3.3 Imports and Exports with Renaming
If two modules export two different values using the same name and you want to
import both of those values, you will have to rename one or both of the values when
you import it. Similarly, if you want to import a value whose name is already in use in
your module, you will need to rename the imported value. You can use the as key‐
word with named imports to rename them as you import them:

import { render as renderImage } from "./imageutils.js";
import { render as renderUI } from "./ui.js";

10.3 Modules in ES6 | 259

These lines import two functions into the current module. The functions are both
named render() in the modules that define them but are imported with the more
descriptive and disambiguating names renderImage() and renderUI().

Recall that default exports do not have a name. The importing module always chooses
the name when importing a default export. So there is no need for a special syntax for
renaming in that case.

Having said that, however, the possibility of renaming on import provides another
way of importing from modules that define both a default export and named exports.
Recall the “./histogram-stats.js” module from the previous section. Here is another
way to import both the default and named exports of that module:

import { default as Histogram, mean, stddev } from "./histogram-stats.js";

In this case, the JavaScript keyword default serves as a placeholder and allows us to
indicate that we want to import and provide a name for the default export of the
module.

It is also possible to rename values as you export them, but only when using the curly
brace variant of the export statement. It is not common to need to do this, but if you
chose short, succinct names for use inside your module, you might prefer to export
your values with more descriptive names that are less likely to conflict with other
modules. As with imports, you use the as keyword to do this:

export {
 layout as calculateLayout,
 render as renderLayout
};

Keep in mind that, although the curly braces look something like object literals, they
are not, and the export keyword expects a single identifier before the as, not an
expression. This means, unfortunately, that you cannot use export renaming like this:

export { Math.sin as sin, Math.cos as cos }; // SyntaxError

10.3.4 Re-Exports
Throughout this chapter, we’ve discussed a hypothetical “./stats.js” module that
exports mean() and stddev() functions. If we were writing such a module and we
thought that many users of the module would want only one function or the other,
then we might want to define mean() in a “./stats/mean.js” module and define
stddev() in “./stats/stddev.js”. That way, programs only need to import exactly the
functions they need and are not bloated by importing code they do not need.

Even if we had defined these statistical functions in individual modules, however, we
might expect that there would be plenty of programs that want both functions and

260 | Chapter 10: Modules

would appreciate a convenient “./stats.js” module from which they could import both
on one line.

Given that the implementations are now in separate files, defining this “./stat.js” mod‐
ule is simple:

import { mean } from "./stats/mean.js";
import { stddev } from "./stats/stddev.js";
export { mean, stdev };

ES6 modules anticipate this use case and provide a special syntax for it. Instead of
importing a symbol simply to export it again, you can combine the import and the
export steps into a single “re-export” statement that uses the export keyword and the
from keyword:

export { mean } from "./stats/mean.js";
export { stddev } from "./stats/stddev.js";

Note that the names mean and stddev are not actually used in this code. If we are not
being selective with a re-export and simply want to export all of the named values
from another module, we can use a wildcard:

export * from "./stats/mean.js";
export * from "./stats/stddev.js";

Re-export syntax allows renaming with as just as regular import and export state‐
ments do. Suppose we wanted to re-export the mean() function but also define
average() as another name for the function. We could do that like this:

export { mean, mean as average } from "./stats/mean.js";
export { stddev } from "./stats/stddev.js";

All of the re-exports in this example assume that the “./stats/mean.js” and “./stats/
stddev.js” modules export their functions using export instead of export default. In
fact, however, since these are modules with only a single export, it would have made
sense to define them with export default. If we had done so, then the re-export syn‐
tax is a little more complicated because it needs to define a name for the unnamed
default exports. We can do that like this:

export { default as mean } from "./stats/mean.js";
export { default as stddev } from "./stats/stddev.js";

If you want to re-export a named symbol from another module as the default export
of your module, you could do an import followed by an export default, or you
could combine the two statements like this:

// Import the mean() function from ./stats.js and make it the
// default export of this module
export { mean as default } from "./stats.js"

10.3 Modules in ES6 | 261

1 For example: web apps that have frequent incremental updates and users who make frequent return visits may
find that using small modules instead of large bundles can result in better average load times because of better
utilization of the user’s browser cache.

And finally, to re-export the default export of another module as the default export of
your module (though it is unclear why you would want to do this, since users could
simply import the other module directly), you can write:

// The average.js module simply re-exports the stats/mean.js default export
export { default } from "./stats/mean.js"

10.3.5 JavaScript Modules on the Web
The preceding sections have described ES6 modules and their import and export
declarations in a somewhat abstract manner. In this section and the next, we’ll be dis‐
cussing how they actually work in web browsers, and if you are not already an experi‐
enced web developer, you may find the rest of this chapter easier to understand after
you have read Chapter 15.

As of early 2020, production code using ES6 modules is still generally bundled with a
tool like webpack. There are trade-offs to doing this,1 but on the whole, code
bundling tends to give better performance. That may well change in the future as net‐
work speeds grow and browser vendors continue to optimize their ES6 module
implementations.

Even though bundling tools may still be desirable in production, they are no longer
required in development since all current browsers provide native support for Java‐
Script modules. Recall that modules use strict mode by default, this does not refer to
a global object, and top-level declarations are not shared globally by default. Since
modules must be executed differently than legacy non-module code, their introduc‐
tion requires changes to HTML as well as JavaScript. If you want to natively use
import directives in a web browser, you must tell the web browser that your code is a
module by using a <script type="module"> tag.

One of the nice features of ES6 modules is that each module has a static set of
imports. So given a single starting module, a web browser can load all of its imported
modules and then load all of the modules imported by that first batch of modules,
and so on, until a complete program has been loaded. We’ve seen that the module
specifier in an import statement can be treated as a relative URL. A <script
type="module"> tag marks the starting point of a modular program. None of the
modules it imports are expected to be in <script> tags, however: instead, they are
loaded on demand as regular JavaScript files and are executed in strict mode as regu‐
lar ES6 modules. Using a <script type="module"> tag to define the main entry
point for a modular JavaScript program can be as simple as this:

262 | Chapter 10: Modules

<script type="module">import "./main.js";</script>

Code inside an inline <script type="module"> tag is an ES6 module, and as such
can use the export statement. There is not any point in doing so, however, because
the HTML <script> tag syntax does not provide any way to define a name for inline
modules, so even if such a module does export a value, there is no way for another
module to import it.

Scripts with the type="module" attribute are loaded and executed like scripts with the
defer attribute. Loading of the code begins as soon as the HTML parser encounters
the <script> tag (in the case of modules, this code-loading step may be a recursive
process that loads multiple JavaScript files). But code execution does not begin until
HTML parsing is complete. And once HTML parsing is complete, scripts (both mod‐
ular and non) are executed in the order in which they appear in the HTML
document.

You can modify the execution time of modules with the async attribute, which works
the same way for modules that it does for regular scripts. An async module will exe‐
cute as soon as the code is loaded, even if HTML parsing is not complete and even if
this changes the relative ordering of the scripts.

Web browsers that support <script type="module"> must also support <script
nomodule>. Browsers that are module-aware ignore any script with the nomodule
attribute and will not execute it. Browsers that do not support modules will not rec‐
ognize the nomodule attribute, so they will ignore it and run the script. This provides
a powerful technique for dealing with browser compatibility issues. Browsers that
support ES6 modules also support other modern JavaScript features like classes,
arrow functions, and the for/of loop. If you write modern JavaScript and load it with
<script type="module">, you know that it will only be loaded by browsers that can
support it. And as a fallback for IE11 (which, in 2020, is effectively the only remain‐
ing browser that does not support ES6), you can use tools like Babel and webpack to
transform your code into non-modular ES5 code, then load that less-efficient trans‐
formed code via <script nomodule>.

Another important difference between regular scripts and module scripts has to do
with cross-origin loading. A regular <script> tag will load a file of JavaScript code
from any server on the internet, and the internet’s infrastructure of advertising, ana‐
lytics, and tracking code depends on that fact. But <script type="module"> provides
an opportunity to tighten this up, and modules can only be loaded from the same ori‐
gin as the containing HTML document or when proper CORS headers are in place to
securely allow cross-origin loads. An unfortunate side effect of this new security
restriction is that it makes it difficult to test ES6 modules in development mode using
file: URLs. When using ES6 modules, you will likely need to set up a static web
server for testing.

10.3 Modules in ES6 | 263

Some programmers like to use the filename extension .mjs to distinguish their mod‐
ular JavaScript files from their regular, non-modular JavaScript files with the tradi‐
tional .js extension. For the purposes of web browsers and <script> tags, the file
extension is actually irrelevant. (The MIME type is relevant, however, so if you
use .mjs files, you may need to configure your web server to serve them with the
same MIME type as .js files.) Node’s support for ES6 does use the filename extension
as a hint to distinguish which module system is used by each file it loads. So if you are
writing ES6 modules and want them to be usable with Node, then it may be helpful to
adopt the .mjs naming convention.

10.3.6 Dynamic Imports with import()
We’ve seen that the ES6 import and export directives are completely static and enable
JavaScript interpreters and other JavaScript tools to determine the relationships
between modules with simple text analysis while the modules are being loaded
without having to actually execute any of the code in the modules. With statically
imported modules, you are guaranteed that the values you import into a module will
be ready for use before any of the code in your module begins to run.

On the web, code has to be transferred over a network instead of being read from the
filesystem. And once transfered, that code is often executed on mobile devices with
relatively slow CPUs. This is not the kind of environment where static module
imports—which require an entire program to be loaded before any of it runs—make
a lot of sense.

It is common for web applications to initially load only enough of their code to ren‐
der the first page displayed to the user. Then, once the user has some preliminary
content to interact with, they can begin to load the often much larger amount of code
needed for the rest of the web app. Web browsers make it easy to dynamically load
code by using the DOM API to inject a new <script> tag into the current HTML
document, and web apps have been doing this for many years.

Although dynamic loading has been possible for a long time, it has not been part of
the language itself. That changes with the introduction of import() in ES2020 (as of
early 2020, dynamic import is supported by all browsers that support ES6 modules).
You pass a module specifier to import() and it returns a Promise object that repre‐
sents the asynchronous process of loading and running the specified module. When
the dynamic import is complete, the Promise is “fulfilled” (see Chapter 13 for com‐
plete details on asynchronous programming and Promises) and produces an object
like the one you would get with the import * as form of the static import statement.

So instead of importing the “./stats.js” module statically, like this:

import * as stats from "./stats.js";

we might import it and use it dynamically, like this:

264 | Chapter 10: Modules

import("./stats.js").then(stats => {
 let average = stats.mean(data);
})

Or, in an async function (again, you may need to read Chapter 13 before you’ll
understand this code), we can simplify the code with await:

async analyzeData(data) {
 let stats = await import("./stats.js");
 return {
 average: stats.mean(data),
 stddev: stats.stddev(data)
 };
}

The argument to import() should be a module specifier, exactly like one you’d use
with a static import directive. But with import(), you are not constrained to use a
constant string literal: any expression that evaluates to a string in the proper form will
do.

Dynamic import() looks like a function invocation, but it actually is not. Instead,
import() is an operator and the parentheses are a required part of the operator syn‐
tax. The reason for this unusual bit of syntax is that import() needs to be able to
resolve module specifiers as URLs relative to the currently running module, and this
requires a bit of implementation magic that would not be legal to put in a JavaScript
function. The function versus operator distinction rarely makes a difference in prac‐
tice, but you’ll notice it if you try writing code like console.log(import); or let
require = import;.

Finally, note that dynamic import() is not just for web browsers. Code-packaging
tools like webpack can also make good use of it. The most straightforward way to use
a code bundler is to tell it the main entry point for your program and let it find all the
static import directives and assemble everything into one large file. By strategically
using dynamic import() calls, however, you can break that one monolithic bundle up
into a set of smaller bundles that can be loaded on demand.

10.3.7 import.meta.url
There is one final feature of the ES6 module system to discuss. Within an ES6 module
(but not within a regular <script> or a Node module loaded with require()), the
special syntax import.meta refers to an object that contains metadata about the cur‐
rently executing module. The url property of this object is the URL from which the
module was loaded. (In Node, this will be a file:// URL.)

The primary use case of import.meta.url is to be able to refer to images, data files,
or other resources that are stored in the same directory as (or relative to) the module.
The URL() constructor makes it easy to resolve a relative URL against an absolute

10.3 Modules in ES6 | 265

URL like import.meta.url. Suppose, for example, that you have written a module
that includes strings that need to be localized and that the localization files are stored
in an l10n/ directory, which is in the same directory as the module itself. Your mod‐
ule could load its strings using a URL created with a function, like this:

function localStringsURL(locale) {
 return new URL(`l10n/${locale}.json`, import.meta.url);
}

10.4 Summary
The goal of modularity is to allow programmers to hide the implementation details of
their code so that chunks of code from various sources can be assembled into large
programs without worrying that one chunk will overwrite functions or variables of
another. This chapter has explained three different JavaScript module systems:

• In the early days of JavaScript, modularity could only be achieved through the
clever use of immediately invoked function expressions.

• Node added its own module system on top of the JavaScript language. Node
modules are imported with require() and define their exports by setting prop‐
erties of the Exports object, or by setting the module.exports property.

• In ES6, JavaScript finally got its own module system with import and export
keywords, and ES2020 is adding support for dynamic imports with import().

266 | Chapter 10: Modules

1 Not everything documented here is defined by the JavaScript language specification: some of the classes and
functions documented here were first implemented in web browsers and then adopted by Node, making them
de facto members of the JavaScript standard library.

CHAPTER 11

The JavaScript Standard Library

Some datatypes, such as numbers and strings (Chapter 3), objects (Chapter 6), and
arrays (Chapter 7) are so fundamental to JavaScript that we can consider them to be
part of the language itself. This chapter covers other important but less fundamental
APIs that can be thought of as defining the “standard library” for JavaScript: these are
useful classes and functions that are built in to JavaScript and available to all Java‐
Script programs in both web browsers and in Node.1

The sections of this chapter are independent of one another, and you can read them
in any order. They cover:

• The Set and Map classes for representing sets of values and mappings from one
set of values to another set of values.

• Array-like objects known as TypedArrays that represent arrays of binary data,
along with a related class for extracting values from non-array binary data.

• Regular expressions and the RegExp class, which define textual patterns and are
useful for text processing. This section also covers regular expression syntax in
detail.

• The Date class for representing and manipulating dates and times.
• The Error class and its various subclasses, instances of which are thrown when

errors occur in JavaScript programs.

267

• The JSON object, whose methods support serialization and deserialization of
JavaScript data structures composed of objects, arrays, strings, numbers, and
booleans.

• The Intl object and the classes it defines that can help you localize your JavaScript
programs.

• The Console object, whose methods output strings in ways that are particularly
useful for debugging programs and logging the behavior of those programs.

• The URL class, which simplifies the task of parsing and manipulating URLs. This
section also covers global functions for encoding and decoding URLs and their
component parts.

• setTimeout() and related functions for specifying code to be executed after a
specified interval of time has elapsed.

Some of the sections in this chapter—notably, the sections on typed arrays and regu‐
lar expressions—are quite long because there is significant background information
you need to understand before you can use those types effectively. Many of the other
sections, however, are short: they simply introduce a new API and show some exam‐
ples of its use.

11.1 Sets and Maps
JavaScript’s Object type is a versatile data structure that can be used to map strings
(the object’s property names) to arbitrary values. And when the value being mapped
to is something fixed like true, then the object is effectively a set of strings.

Objects are actually used as maps and sets fairly routinely in JavaScript programming,
but this is limited by the restriction to strings and complicated by the fact that objects
normally inherit properties with names like “toString”, which are not typically
intended to be part of the map or set.

For this reason, ES6 introduces true Set and Map classes, which we’ll cover in the sub-
sections that follow.

11.1.1 The Set Class
A set is a collection of values, like an array is. Unlike arrays, however, sets are not
ordered or indexed, and they do not allow duplicates: a value is either a member of a
set or it is not a member; it is not possible to ask how many times a value appears in a
set.

Create a Set object with the Set() constructor:

let s = new Set(); // A new, empty set
let t = new Set([1, s]); // A new set with two members

268 | Chapter 11: The JavaScript Standard Library

The argument to the Set() constructor need not be an array: any iterable object
(including other Set objects) is allowed:

let t = new Set(s); // A new set that copies the elements of s.
let unique = new Set("Mississippi"); // 4 elements: "M", "i", "s", and "p"

The size property of a set is like the length property of an array: it tells you how
many values the set contains:

unique.size // => 4

Sets don’t need to be initialized when you create them. You can add and remove ele‐
ments at any time with add(), delete(), and clear(). Remember that sets cannot
contain duplicates, so adding a value to a set when it already contains that value has
no effect:

let s = new Set(); // Start empty
s.size // => 0
s.add(1); // Add a number
s.size // => 1; now the set has one member
s.add(1); // Add the same number again
s.size // => 1; the size does not change
s.add(true); // Add another value; note that it is fine to mix types
s.size // => 2
s.add([1,2,3]); // Add an array value
s.size // => 3; the array was added, not its elements
s.delete(1) // => true: successfully deleted element 1
s.size // => 2: the size is back down to 2
s.delete("test") // => false: "test" was not a member, deletion failed
s.delete(true) // => true: delete succeeded
s.delete([1,2,3]) // => false: the array in the set is different
s.size // => 1: there is still that one array in the set
s.clear(); // Remove everything from the set
s.size // => 0

There are a few important points to note about this code:

• The add() method takes a single argument; if you pass an array, it adds the array
itself to the set, not the individual array elements. add() always returns the set it
is invoked on, however, so if you want to add multiple values to a set, you can
used chained method calls like s.add('a').add('b').add('c');.

• The delete() method also only deletes a single set element at a time. Unlike
add(), however, delete() returns a boolean value. If the value you specify was
actually a member of the set, then delete() removes it and returns true. Other‐
wise, it does nothing and returns false.

• Finally, it is very important to understand that set membership is based on strict
equality checks, like the === operator performs. A set can contain both the num‐
ber 1 and the string "1", because it considers them to be distinct values. When

11.1 Sets and Maps | 269

the values are objects (or arrays or functions), they are also compared as if with
===. This is why we were unable to delete the array element from the set in this
code. We added an array to the set and then tried to remove that array by passing
a different array (albeit with the same elements) to the delete() method. In
order for this to work, we would have had to pass a reference to exactly the same
array.

Python programmers take note: this is a significant difference
between JavaScript and Python sets. Python sets compare members
for equality, not identity, but the trade-off is that Python sets only
allow immutable members, like tuples, and do not allow lists and
dicts to be added to sets.

In practice, the most important thing we do with sets is not to add and remove ele‐
ments from them, but to check to see whether a specified value is a member of the
set. We do this with the has() method:

let oneDigitPrimes = new Set([2,3,5,7]);
oneDigitPrimes.has(2) // => true: 2 is a one-digit prime number
oneDigitPrimes.has(3) // => true: so is 3
oneDigitPrimes.has(4) // => false: 4 is not a prime
oneDigitPrimes.has("5") // => false: "5" is not even a number

The most important thing to understand about sets is that they are optimized for
membership testing, and no matter how many members the set has, the has()
method will be very fast. The includes() method of an array also performs member‐
ship testing, but the time it takes is proportional to the size of the array, and using an
array as a set can be much, much slower than using a real Set object.

The Set class is iterable, which means that you can use a for/of loop to enumerate all
of the elements of a set:

let sum = 0;
for(let p of oneDigitPrimes) { // Loop through the one-digit primes
 sum += p; // and add them up
}
sum // => 17: 2 + 3 + 5 + 7

Because Set objects are iterable, you can convert them to arrays and argument lists
with the ... spread operator:

[...oneDigitPrimes] // => [2,3,5,7]: the set converted to an Array
Math.max(...oneDigitPrimes) // => 7: set elements passed as function arguments

Sets are often described as “unordered collections.” This isn’t exactly true for the Java‐
Script Set class, however. A JavaScript set is unindexed: you can’t ask for the first or
third element of a set the way you can with an array. But the JavaScript Set class

270 | Chapter 11: The JavaScript Standard Library

2 This predictable iteration order is another thing about JavaScript sets that Python programmers may find
surprising.

always remembers the order that elements were inserted in, and it always uses this
order when you iterate a set: the first element inserted will be the first one iterated
(assuming you haven’t deleted it first), and the most recently inserted element will be
the last one iterated.2

In addition to being iterable, the Set class also implements a forEach() method that
is similar to the array method of the same name:

let product = 1;
oneDigitPrimes.forEach(n => { product *= n; });
product // => 210: 2 * 3 * 5 * 7

The forEach() of an array passes array indexes as the second argument to the func‐
tion you specify. Sets don’t have indexes, so the Set class’s version of this method sim‐
ply passes the element value as both the first and second argument.

11.1.2 The Map Class
A Map object represents a set of values known as keys, where each key has another
value associated with (or “mapped to”) it. In a sense, a map is like an array, but
instead of using a set of sequential integers as the keys, maps allow us to use arbitrary
values as “indexes.” Like arrays, maps are fast: looking up the value associated with a
key will be fast (though not as fast as indexing an array) no matter how large the
map is.

Create a new map with the Map() constructor:

let m = new Map(); // Create a new, empty map
let n = new Map([// A new map initialized with string keys mapped to numbers
 ["one", 1],
 ["two", 2]
]);

The optional argument to the Map() constructor should be an iterable object that
yields two element [key, value] arrays. In practice, this means that if you want to
initialize a map when you create it, you’ll typically write out the desired keys and
associated values as an array of arrays. But you can also use the Map() constructor to
copy other maps or to copy the property names and values from an existing object:

let copy = new Map(n); // A new map with the same keys and values as map n
let o = { x: 1, y: 2}; // An object with two properties
let p = new Map(Object.entries(o)); // Same as new map([["x", 1], ["y", 2]])

Once you have created a Map object, you can query the value associated with a given
key with get() and can add a new key/value pair with set(). Remember, though,

11.1 Sets and Maps | 271

that a map is a set of keys, each of which has an associated value. This is not quite the
same as a set of key/value pairs. If you call set() with a key that already exists in the
map, you will change the value associated with that key, not add a new key/value
mapping. In addition to get() and set(), the Map class also defines methods that are
like Set methods: use has() to check whether a map includes the specified key; use
delete() to remove a key (and its associated value) from the map; use clear() to
remove all key/value pairs from the map; and use the size property to find out how
many keys a map contains.

let m = new Map(); // Start with an empty map
m.size // => 0: empty maps have no keys
m.set("one", 1); // Map the key "one" to the value 1
m.set("two", 2); // And the key "two" to the value 2.
m.size // => 2: the map now has two keys
m.get("two") // => 2: return the value associated with key "two"
m.get("three") // => undefined: this key is not in the set
m.set("one", true); // Change the value associated with an existing key
m.size // => 2: the size doesn't change
m.has("one") // => true: the map has a key "one"
m.has(true) // => false: the map does not have a key true
m.delete("one") // => true: the key existed and deletion succeeded
m.size // => 1
m.delete("three") // => false: failed to delete a nonexistent key
m.clear(); // Remove all keys and values from the map

Like the add() method of Set, the set() method of Map can be chained, which allows
maps to be initialized without using arrays of arrays:

let m = new Map().set("one", 1).set("two", 2).set("three", 3);
m.size // => 3
m.get("two") // => 2

As with Set, any JavaScript value can be used as a key or a value in a Map. This
includes null, undefined, and NaN, as well as reference types like objects and arrays.
And as with the Set class, Map compares keys by identity, not by equality, so if you
use an object or array as a key, it will be considered different from every other object
and array, even those with exactly the same properties or elements:

let m = new Map(); // Start with an empty map.
m.set({}, 1); // Map one empty object to the number 1.
m.set({}, 2); // Map a different empty object to the number 2.
m.size // => 2: there are two keys in this map
m.get({}) // => undefined: but this empty object is not a key
m.set(m, undefined); // Map the map itself to the value undefined.
m.has(m) // => true: m is a key in itself
m.get(m) // => undefined: same value we'd get if m wasn't a key

Map objects are iterable, and each iterated value is a two-element array where the first
element is a key and the second element is the value associated with that key. If you
use the spread operator with a Map object, you’ll get an array of arrays like the ones

272 | Chapter 11: The JavaScript Standard Library

that we passed to the Map() constructor. And when iterating a map with a for/of
loop, it is idiomatic to use destructuring assignment to assign the key and value to
separate variables:

let m = new Map([["x", 1], ["y", 2]]);
[...m] // => [["x", 1], ["y", 2]]

for(let [key, value] of m) {
 // On the first iteration, key will be "x" and value will be 1
 // On the second iteration, key will be "y" and value will be 2
}

Like the Set class, the Map class iterates in insertion order. The first key/value pair
iterated will be the one least recently added to the map, and the last pair iterated will
be the one most recently added.

If you want to iterate just the keys or just the associated values of a map, use the
keys() and values() methods: these return iterable objects that iterate keys and val‐
ues, in insertion order. (The entries() method returns an iterable object that iterates
key/value pairs, but this is exactly the same as iterating the map directly.)

[...m.keys()] // => ["x", "y"]: just the keys
[...m.values()] // => [1, 2]: just the values
[...m.entries()] // => [["x", 1], ["y", 2]]: same as [...m]

Map objects can also be iterated using the forEach() method that was first imple‐
mented by the Array class.

m.forEach((value, key) => { // note value, key NOT key, value
 // On the first invocation, value will be 1 and key will be "x"
 // On the second invocation, value will be 2 and key will be "y"
});

It may seem strange that the value parameter comes before the key parameter in the
code above, since with for/of iteration, the key comes first. As noted at the start of
this section, you can think of a map as a generalized array in which integer array
indexes are replaced with arbitrary key values. The forEach() method of arrays
passes the array element first and the array index second, so, by analogy, the
forEach() method of a map passes the map value first and the map key second.

11.1.3 WeakMap and WeakSet
The WeakMap class is a variant (but not an actual subclass) of the Map class that does
not prevent its key values from being garbage collected. Garbage collection is the pro‐
cess by which the JavaScript interpreter reclaims the memory of objects that are no
longer “reachable” and cannot be used by the program. A regular map holds “strong”
references to its key values, and they remain reachable through the map, even if all
other references to them are gone. The WeakMap, by contrast, keeps “weak”

11.1 Sets and Maps | 273

references to its key values so that they are not reachable through the WeakMap, and
their presence in the map does not prevent their memory from being reclaimed.

The WeakMap() constructor is just like the Map() constructor, but there are some sig‐
nificant differences between WeakMap and Map:

• WeakMap keys must be objects or arrays; primitive values are not subject to
garbage collection and cannot be used as keys.

• WeakMap implements only the get(), set(), has(), and delete() methods. In
particular, WeakMap is not iterable and does not define keys(), values(), or
forEach(). If WeakMap was iterable, then its keys would be reachable and it
wouldn’t be weak.

• Similarly, WeakMap does not implement the size property because the size of a
WeakMap could change at any time as objects are garbage collected.

The intended use of WeakMap is to allow you to associate values with objects without
causing memory leaks. Suppose, for example, that you are writing a function that
takes an object argument and needs to perform some time-consuming computation
on that object. For efficiency, you’d like to cache the computed value for later reuse. If
you use a Map object to implement the cache, you will prevent any of the objects
from ever being reclaimed, but by using a WeakMap, you avoid this problem. (You
can often achieve a similar result using a private Symbol property to cache the com‐
puted value directly on the object. See §6.10.3.)

WeakSet implements a set of objects that does not prevent those objects from being
garbage collected. The WeakSet() constructor works like the Set() constructor, but
WeakSet objects differ from Set objects in the same ways that WeakMap objects differ
from Map objects:

• WeakSet does not allow primitive values as members.
• WeakSet implements only the add(), has(), and delete() methods and is not

iterable.
• WeakSet does not have a size property.

WeakSet is not frequently used: its use cases are like those for WeakMap. If you want
to mark (or “brand”) an object as having some special property or type, for example,
you could add it to a WeakSet. Then, elsewhere, when you want to check for that
property or type, you can test for membership in that WeakSet. Doing this with a reg‐
ular set would prevent all marked objects from being garbage collected, but this is not
a concern when using WeakSet.

274 | Chapter 11: The JavaScript Standard Library

3 Typed arrays were first introduced to client-side JavaScript when web browsers added support for WebGL
graphics. What is new in ES6 is that they have been elevated to a core language feature.

11.2 Typed Arrays and Binary Data
Regular JavaScript arrays can have elements of any type and can grow or shrink
dynamically. JavaScript implementations perform lots of optimizations so that typical
uses of JavaScript arrays are very fast. Nevertheless, they are still quite different from
the array types of lower-level languages like C and Java. Typed arrays, which are new
in ES6,3 are much closer to the low-level arrays of those languages. Typed arrays are
not technically arrays (Array.isArray() returns false for them), but they imple‐
ment all of the array methods described in §7.8 plus a few more of their own. They
differ from regular arrays in some very important ways, however:

• The elements of a typed array are all numbers. Unlike regular JavaScript num‐
bers, however, typed arrays allow you to specify the type (signed and unsigned
integers and IEEE-754 floating point) and size (8 bits to 64 bits) of the numbers
to be stored in the array.

• You must specify the length of a typed array when you create it, and that length
can never change.

• The elements of a typed array are always initialized to 0 when the array is created.

11.2.1 Typed Array Types
JavaScript does not define a TypedArray class. Instead, there are 11 kinds of typed
arrays, each with a different element type and constructor:

Constructor Numeric type

Int8Array() signed bytes

Uint8Array() unsigned bytes

Uint8ClampedArray() unsigned bytes without rollover

Int16Array() signed 16-bit short integers

Uint16Array() unsigned 16-bit short integers

Int32Array() signed 32-bit integers

Uint32Array() unsigned 32-bit integers

BigInt64Array() signed 64-bit BigInt values (ES2020)

BigUint64Array() unsigned 64-bit BigInt values (ES2020)

Float32Array() 32-bit floating-point value

Float64Array() 64-bit floating-point value: a regular JavaScript number

11.2 Typed Arrays and Binary Data | 275

The types whose names begin with Int hold signed integers, of 1, 2, or 4 bytes (8, 16,
or 32 bits). The types whose names begin with Uint hold unsigned integers of those
same lengths. The “BigInt” and “BigUint” types hold 64-bit integers, represented in
JavaScript as BigInt values (see §3.2.5). The types that begin with Float hold floating-
point numbers. The elements of a Float64Array are of the same type as regular Java‐
Script numbers. The elements of a Float32Array have lower precision and a smaller
range but require only half the memory. (This type is called float in C and Java.)

Uint8ClampedArray is a special-case variant on Uint8Array. Both of these types hold
unsigned bytes and can represent numbers between 0 and 255. With Uint8Array, if
you store a value larger than 255 or less than zero into an array element, it “wraps
around,” and you get some other value. This is how computer memory works at a low
level, so this is very fast. Uint8ClampedArray does some extra type checking so that, if
you store a value greater than 255 or less than 0, it “clamps” to 255 or 0 and does not
wrap around. (This clamping behavior is required by the HTML <canvas> element’s
low-level API for manipulating pixel colors.)

Each of the typed array constructors has a BYTES_PER_ELEMENT property with the
value 1, 2, 4, or 8, depending on the type.

11.2.2 Creating Typed Arrays
The simplest way to create a typed array is to call the appropriate constructor with
one numeric argument that specifies the number of elements you want in the array:

let bytes = new Uint8Array(1024); // 1024 bytes
let matrix = new Float64Array(9); // A 3x3 matrix
let point = new Int16Array(3); // A point in 3D space
let rgba = new Uint8ClampedArray(4); // A 4-byte RGBA pixel value
let sudoku = new Int8Array(81); // A 9x9 sudoku board

When you create typed arrays in this way, the array elements are all guaranteed to be
initialized to 0, 0n, or 0.0. But if you know the values you want in your typed array,
you can also specify those values when you create the array. Each of the typed array
constructors has static from() and of() factory methods that work like
Array.from() and Array.of():

let white = Uint8ClampedArray.of(255, 255, 255, 0); // RGBA opaque white

Recall that the Array.from() factory method expects an array-like or iterable object
as its first argument. The same is true for the typed array variants, except that the
iterable or array-like object must also have numeric elements. Strings are iterable, for
example, but it would make no sense to pass them to the from() factory method of a
typed array.

If you are just using the one-argument version of from(), you can drop the .from and
pass your iterable or array-like object directly to the constructor function, which

276 | Chapter 11: The JavaScript Standard Library

behaves exactly the same. Note that both the constructor and the from() factory
method allow you to copy existing typed arrays, while possibly changing the type:

let ints = Uint32Array.from(white); // The same 4 numbers, but as ints

When you create a new typed array from an existing array, iterable, or array-like
object, the values may be truncated in order to fit the type constraints of your array.
There are no warnings or errors when this happens:

// Floats truncated to ints, longer ints truncated to 8 bits
Uint8Array.of(1.23, 2.99, 45000) // => new Uint8Array([1, 2, 200])

Finally, there is one more way to create typed arrays that involves the ArrayBuffer
type. An ArrayBuffer is an opaque reference to a chunk of memory. You can create
one with the constructor; just pass in the number of bytes of memory you’d like to
allocate:

let buffer = new ArrayBuffer(1024*1024);
buffer.byteLength // => 1024*1024; one megabyte of memory

The ArrayBuffer class does not allow you to read or write any of the bytes that you
have allocated. But you can create typed arrays that use the buffer’s memory and that
do allow you to read and write that memory. To do this, call the typed array construc‐
tor with an ArrayBuffer as the first argument, a byte offset within the array buffer as
the second argument, and the array length (in elements, not in bytes) as the third
argument. The second and third arguments are optional. If you omit both, then the
array will use all of the memory in the array buffer. If you omit only the length argu‐
ment, then your array will use all of the available memory between the start position
and the end of the array. One more thing to bear in mind about this form of the typed
array constructor: arrays must be memory aligned, so if you specify a byte offset, the
value should be a multiple of the size of your type. The Int32Array() constructor
requires a multiple of four, for example, and the Float64Array() requires a multiple
of eight.

Given the ArrayBuffer created earlier, you could create typed arrays like these:

let asbytes = new Uint8Array(buffer); // Viewed as bytes
let asints = new Int32Array(buffer); // Viewed as 32-bit signed ints
let lastK = new Uint8Array(buffer, 1023*1024); // Last kilobyte as bytes
let ints2 = new Int32Array(buffer, 1024, 256); // 2nd kilobyte as 256 integers

These four typed arrays offer four different views into the memory represented by the
ArrayBuffer. It is important to understand that all typed arrays have an underlying
ArrayBuffer, even if you do not explicitly specify one. If you call a typed array con‐
structor without passing a buffer object, a buffer of the appropriate size will be auto‐
matically created. As described later, the buffer property of any typed array refers to
its underlying ArrayBuffer object. The reason to work directly with ArrayBuffer
objects is that sometimes you may want to have multiple typed array views of a single
buffer.

11.2 Typed Arrays and Binary Data | 277

11.2.3 Using Typed Arrays
Once you have created a typed array, you can read and write its elements with regular
square-bracket notation, just as you would with any other array-like object:

// Return the largest prime smaller than n, using the sieve of Eratosthenes
function sieve(n) {
 let a = new Uint8Array(n+1); // a[x] will be 1 if x is composite
 let max = Math.floor(Math.sqrt(n)); // Don't do factors higher than this
 let p = 2; // 2 is the first prime
 while(p <= max) { // For primes less than max
 for(let i = 2*p; i <= n; i += p) // Mark multiples of p as composite
 a[i] = 1;
 while(a[++p]) /* empty */; // The next unmarked index is prime
 }
 while(a[n]) n--; // Loop backward to find the last prime
 return n; // And return it
}

The function here computes the largest prime number smaller than the number you
specify. The code is exactly the same as it would be with a regular JavaScript array, but
using Uint8Array() instead of Array() makes the code run more than four times
faster and use eight times less memory in my testing.

Typed arrays are not true arrays, but they re-implement most array methods, so you
can use them pretty much just like you’d use regular arrays:

let ints = new Int16Array(10); // 10 short integers
ints.fill(3).map(x=>x*x).join("") // => "9999999999"

Remember that typed arrays have fixed lengths, so the length property is read-only,
and methods that change the length of the array (such as push(), pop(), unshift(),
shift(), and splice()) are not implemented for typed arrays. Methods that alter the
contents of an array without changing the length (such as sort(), reverse(), and
fill()) are implemented. Methods like map() and slice() that return new arrays
return a typed array of the same type as the one they are called on.

11.2.4 Typed Array Methods and Properties
In addition to standard array methods, typed arrays also implement a few methods of
their own. The set() method sets multiple elements of a typed array at once by copy‐
ing the elements of a regular or typed array into a typed array:

let bytes = new Uint8Array(1024); // A 1K buffer
let pattern = new Uint8Array([0,1,2,3]); // An array of 4 bytes
bytes.set(pattern); // Copy them to the start of another byte array
bytes.set(pattern, 4); // Copy them again at a different offset
bytes.set([0,1,2,3], 8); // Or just copy values direct from a regular array
bytes.slice(0, 12) // => new Uint8Array([0,1,2,3,0,1,2,3,0,1,2,3])

278 | Chapter 11: The JavaScript Standard Library

The set() method takes an array or typed array as its first argument and an element
offset as its optional second argument, which defaults to 0 if left unspecified. If you
are copying values from one typed array to another, the operation will likely be
extremely fast.

Typed arrays also have a subarray method that returns a portion of the array on
which it is called:

let ints = new Int16Array([0,1,2,3,4,5,6,7,8,9]); // 10 short integers
let last3 = ints.subarray(ints.length-3, ints.length); // Last 3 of them
last3[0] // => 7: this is the same as ints[7]

subarray() takes the same arguments as the slice() method and seems to work the
same way. But there is an important difference. slice() returns the specified ele‐
ments in a new, independent typed array that does not share memory with the origi‐
nal array. subarray() does not copy any memory; it just returns a new view of the
same underlying values:

ints[9] = -1; // Change a value in the original array and...
last3[2] // => -1: it also changes in the subarray

The fact that the subarray() method returns a new view of an existing array brings
us back to the topic of ArrayBuffers. Every typed array has three properties that relate
to the underlying buffer:

last3.buffer // The ArrayBuffer object for a typed array
last3.buffer === ints.buffer // => true: both are views of the same buffer
last3.byteOffset // => 14: this view starts at byte 14 of the buffer
last3.byteLength // => 6: this view is 6 bytes (3 16-bit ints) long
last3.buffer.byteLength // => 20: but the underlying buffer has 20 bytes

The buffer property is the ArrayBuffer of the array. byteOffset is the starting posi‐
tion of the array’s data within the underlying buffer. And byteLength is the length of
the array’s data in bytes. For any typed array, a, this invariant should always be true:

a.length * a.BYTES_PER_ELEMENT === a.byteLength // => true

ArrayBuffers are just opaque chunks of bytes. You can access those bytes with typed
arrays, but an ArrayBuffer is not itself a typed array. Be careful, however: you can use
numeric array indexing with ArrayBuffers just as you can with any JavaScript object.
Doing so does not give you access to the bytes in the buffer, but it can cause confus‐
ing bugs:

let bytes = new Uint8Array(8);
bytes[0] = 1; // Set the first byte to 1
bytes.buffer[0] // => undefined: buffer doesn't have index 0
bytes.buffer[1] = 255; // Try incorrectly to set a byte in the buffer
bytes.buffer[1] // => 255: this just sets a regular JS property
bytes[1] // => 0: the line above did not set the byte

11.2 Typed Arrays and Binary Data | 279

We saw previously that you can create an ArrayBuffer with the ArrayBuffer() con‐
structor and then create typed arrays that use that buffer. Another approach is to cre‐
ate an initial typed array, then use the buffer of that array to create other views:

let bytes = new Uint8Array(1024); // 1024 bytes
let ints = new Uint32Array(bytes.buffer); // or 256 integers
let floats = new Float64Array(bytes.buffer); // or 128 doubles

11.2.5 DataView and Endianness
Typed arrays allow you to view the same sequence of bytes in chunks of 8, 16, 32, or
64 bits. This exposes the “endianness”: the order in which bytes are arranged into
longer words. For efficiency, typed arrays use the native endianness of the underlying
hardware. On little-endian systems, the bytes of a number are arranged in an Array‐
Buffer from least significant to most significant. On big-endian platforms, the bytes
are arranged from most significant to least significant. You can determine the endian‐
ness of the underlying platform with code like this:

// If the integer 0x00000001 is arranged in memory as 01 00 00 00, then
// we're on a little-endian platform. On a big-endian platform, we'd get
// bytes 00 00 00 01 instead.
let littleEndian = new Int8Array(new Int32Array([1]).buffer)[0] === 1;

Today, the most common CPU architectures are little-endian. Many network proto‐
cols, and some binary file formats, require big-endian byte ordering, however. If
you’re using typed arrays with data that came from the network or from a file, you
can’t just assume that the platform endianness matches the byte order of the data. In
general, when working with external data, you can use Int8Array and Uint8Array to
view the data as an array of individual bytes, but you should not use the other typed
arrays with multibyte word sizes. Instead, you can use the DataView class, which
defines methods for reading and writing values from an ArrayBuffer with explicitly
specified byte ordering:

// Assume we have a typed array of bytes of binary data to process. First,
// we create a DataView object so we can flexibly read and write
// values from those bytes
let view = new DataView(bytes.buffer,
 bytes.byteOffset,
 bytes.byteLength);

let int = view.getInt32(0); // Read big-endian signed int from byte 0
int = view.getInt32(4, false); // Next int is also big-endian
int = view.getUint32(8, true); // Next int is little-endian and unsigned
view.setUint32(8, int, false); // Write it back in big-endian format

DataView defines 10 get methods for each of the 10 typed array classes (excluding
Uint8ClampedArray). They have names like getInt16(), getUint32(),
getBigInt64(), and getFloat64(). The first argument is the byte offset within the
ArrayBuffer at which the value begins. All of these getter methods, other than

280 | Chapter 11: The JavaScript Standard Library

getInt8() and getUint8(), accept an optional boolean value as their second argu‐
ment. If the second argument is omitted or is false, big-endian byte ordering is used.
If the second argument is true, little-endian ordering is used.

DataView also defines 10 corresponding Set methods that write values into the
underlying ArrayBuffer. The first argument is the offset at which the value begins.
The second argument is the value to write. Each of the methods, except setInt8()
and setUint8(), accepts an optional third argument. If the argument is omitted or is
false, the value is written in big-endian format with the most significant byte first. If
the argument is true, the value is written in little-endian format with the least signifi‐
cant byte first.

Typed arrays and the DataView class give you all the tools you need to process binary
data and enable you to write JavaScript programs that do things like decompressing
ZIP files or extracting metadata from JPEG files.

11.3 Pattern Matching with Regular Expressions
A regular expression is an object that describes a textual pattern. The JavaScript
RegExp class represents regular expressions, and both String and RegExp define
methods that use regular expressions to perform powerful pattern-matching and
search-and-replace functions on text. In order to use the RegExp API effectively,
however, you must also learn how to describe patterns of text using the regular
expression grammar, which is essentially a mini programming language of its own.
Fortunately, the JavaScript regular expression grammar is quite similar to the gram‐
mar used by many other programming languages, so you may already be familiar
with it. (And if you are not, the effort you invest in learning JavaScript regular expres‐
sions will probably be useful to you in other programming contexts as well.)

The subsections that follow describe the regular expression grammar first, and then,
after explaining how to write regular expressions, they explain how you can use them
with methods of the String and RegExp classes.

11.3.1 Defining Regular Expressions
In JavaScript, regular expressions are represented by RegExp objects. RegExp objects
may be created with the RegExp() constructor, of course, but they are more often cre‐
ated using a special literal syntax. Just as string literals are specified as characters
within quotation marks, regular expression literals are specified as characters within a
pair of slash (/) characters. Thus, your JavaScript code may contain lines like this:

let pattern = /s$/;

This line creates a new RegExp object and assigns it to the variable pattern. This par‐
ticular RegExp object matches any string that ends with the letter “s.” This regular

11.3 Pattern Matching with Regular Expressions | 281

expression could have equivalently been defined with the RegExp() constructor, like
this:

let pattern = new RegExp("s$");

Regular-expression pattern specifications consist of a series of characters. Most char‐
acters, including all alphanumeric characters, simply describe characters to be
matched literally. Thus, the regular expression /java/ matches any string that con‐
tains the substring “java”. Other characters in regular expressions are not matched lit‐
erally but have special significance. For example, the regular expression /s$/ contains
two characters. The first, “s”, matches itself literally. The second, “$”, is a special meta-
character that matches the end of a string. Thus, this regular expression matches any
string that contains the letter “s” as its last character.

As we’ll see, regular expressions can also have one or more flag characters that affect
how they work. Flags are specified following the second slash character in RegExp lit‐
erals, or as a second string argument to the RegExp() constructor. If we wanted to
match strings that end with “s” or “S”, for example, we could use the i flag with our
regular expression to indicate that we want case-insensitive matching:

let pattern = /s$/i;

The following sections describe the various characters and meta-characters used in
JavaScript regular expressions.

Literal characters
All alphabetic characters and digits match themselves literally in regular expressions.
JavaScript regular expression syntax also supports certain nonalphabetic characters
through escape sequences that begin with a backslash (\). For example, the sequence
\n matches a literal newline character in a string. Table 11-1 lists these characters.

Table 11-1. Regular-expression literal characters

Character Matches
Alphanumeric
character

Itself

\0 The NUL character (\u0000)

\t Tab (\u0009)

\n Newline (\u000A)

\v Vertical tab (\u000B)

\f Form feed (\u000C)

\r Carriage return (\u000D)

\xnn The Latin character specified by the hexadecimal number nn; for example, \x0A is the same as \n.

282 | Chapter 11: The JavaScript Standard Library

Character Matches

\uxxxx The Unicode character specified by the hexadecimal number xxxx; for example, \u0009 is the same as
\t.

\u{n} The Unicode character specified by the codepoint n, where n is one to six hexadecimal digits between
0 and 10FFFF. Note that this syntax is only supported in regular expressions that use the u flag.

\cX The control character ^X; for example, \cJ is equivalent to the newline character \n.

A number of punctuation characters have special meanings in regular expressions.
They are:

^ $. * + ? = ! : | \ / () [] { }

The meanings of these characters are discussed in the sections that follow. Some of
these characters have special meaning only within certain contexts of a regular
expression and are treated literally in other contexts. As a general rule, however, if
you want to include any of these punctuation characters literally in a regular expres‐
sion, you must precede them with a \. Other punctuation characters, such as quota‐
tion marks and @, do not have special meaning and simply match themselves literally
in a regular expression.

If you can’t remember exactly which punctuation characters need to be escaped with
a backslash, you may safely place a backslash before any punctuation character. On
the other hand, note that many letters and numbers have special meaning when pre‐
ceded by a backslash, so any letters or numbers that you want to match literally
should not be escaped with a backslash. To include a backslash character literally in a
regular expression, you must escape it with a backslash, of course. For example, the
following regular expression matches any string that includes a backslash: /\\/. (And
if you use the RegExp() constructor, keep in mind that any backslashes in your regu‐
lar expression need to be doubled, since strings also use backslashes as an escape
character.)

Character classes
Individual literal characters can be combined into character classes by placing them
within square brackets. A character class matches any one character that is contained
within it. Thus, the regular expression /[abc]/ matches any one of the letters a, b, or
c. Negated character classes can also be defined; these match any character except
those contained within the brackets. A negated character class is specified by placing
a caret (^) as the first character inside the left bracket. The RegExp /[^abc]/ matches
any one character other than a, b, or c. Character classes can use a hyphen to indicate
a range of characters. To match any one lowercase character from the Latin alphabet,
use /[a-z]/, and to match any letter or digit from the Latin alphabet, use /[a-zA-
Z0-9]/. (And if you want to include an actual hyphen in your character class, simply
make it the last character before the right bracket.)

11.3 Pattern Matching with Regular Expressions | 283

Because certain character classes are commonly used, the JavaScript regular-
expression syntax includes special characters and escape sequences to represent these
common classes. For example, \s matches the space character, the tab character, and
any other Unicode whitespace character; \S matches any character that is not Uni‐
code whitespace. Table 11-2 lists these characters and summarizes character-class
syntax. (Note that several of these character-class escape sequences match only ASCII
characters and have not been extended to work with Unicode characters. You can,
however, explicitly define your own Unicode character classes; for exam‐
ple, /[\u0400-\u04FF]/ matches any one Cyrillic character.)

Table 11-2. Regular expression character classes

Character Matches

[...] Any one character between the brackets.

[^...] Any one character not between the brackets.

. Any character except newline or another Unicode line terminator. Or, if the RegExp uses the s flag, then a period
matches any character, including line terminators.

\w Any ASCII word character. Equivalent to [a-zA-Z0-9_].

\W Any character that is not an ASCII word character. Equivalent to [^a-zA-Z0-9_].

\s Any Unicode whitespace character.

\S Any character that is not Unicode whitespace.

\d Any ASCII digit. Equivalent to [0-9].

\D Any character other than an ASCII digit. Equivalent to [^0-9].

[\b] A literal backspace (special case).

Note that the special character-class escapes can be used within square brackets. \s
matches any whitespace character, and \d matches any digit, so /[\s\d]/ matches
any one whitespace character or digit. Note that there is one special case. As you’ll see
later, the \b escape has a special meaning. When used within a character class, how‐
ever, it represents the backspace character. Thus, to represent a backspace character
literally in a regular expression, use the character class with one element: /[\b]/.

Unicode Character Classes
In ES2018, if a regular expression uses the u flag, then character classes \p{...} and
its negation \P{...} are supported. (As of early 2020, this is implemented by Node,
Chrome, Edge, and Safari, but not Firefox.) These character classes are based on
properties defined by the Unicode standard, and the set of characters they represent
may change as Unicode evolves.

The \d character class matches only ASCII digits. If you want to match one decimal
digit from any of the world’s writing systems, you can use /\p{Decimal_Number}/u.

284 | Chapter 11: The JavaScript Standard Library

And if you want to match any one character that is not a decimal digit in any lan‐
guage, you can capitalize the p and write \P{Decimal_Number}. If you want to match
any number-like character, including fractions and roman numerals, you can use
\p{Number}. Note that “Decimal_Number” and “Number” are not specific to Java‐
Script or to regular expression grammar: it is the name of a category of characters
defined by the Unicode standard.

The \w character class only works for ASCII text, but with \p, we can approximate an
internationalized version like this:

/[\p{Alphabetic}\p{Decimal_Number}\p{Mark}]/u

(Though to be fully compatible with the complexity of the world’s languages, we really
need to add in the categories “Connector_Punctuation” and “Join_Control” as well.)

As a final example, the \p syntax also allows us to define regular expressions that
match characters from a particular alphabet or script:

let greekLetter = /\p{Script=Greek}/u;
let cyrillicLetter = /\p{Script=Cyrillic}/u;

Repetition
With the regular expression syntax you’ve learned so far, you can describe a two-digit
number as /\d\d/ and a four-digit number as /\d\d\d\d/. But you don’t have any
way to describe, for example, a number that can have any number of digits or a string
of three letters followed by an optional digit. These more complex patterns use regu‐
lar expression syntax that specifies how many times an element of a regular expres‐
sion may be repeated.

The characters that specify repetition always follow the pattern to which they are
being applied. Because certain types of repetition are quite commonly used, there are
special characters to represent these cases. For example, + matches one or more
occurrences of the previous pattern.

Table 11-3 summarizes the repetition syntax.

Table 11-3. Regular expression repetition characters

Character Meaning

{n,m} Match the previous item at least n times but no more than m times.

{n,} Match the previous item n or more times.

{n} Match exactly n occurrences of the previous item.

? Match zero or one occurrences of the previous item. That is, the previous item is optional. Equivalent to {0,1}.

+ Match one or more occurrences of the previous item. Equivalent to {1,}.

* Match zero or more occurrences of the previous item. Equivalent to {0,}.

11.3 Pattern Matching with Regular Expressions | 285

The following lines show some examples:

let r = /\d{2,4}/; // Match between two and four digits
r = /\w{3}\d?/; // Match exactly three word characters and an optional digit
r = /\s+java\s+/; // Match "java" with one or more spaces before and after
r = /[^(]*/; // Match zero or more characters that are not open parens

Note that in all of these examples, the repetition specifiers apply to the single charac‐
ter or character class that precedes them. If you want to match repetitions of more
complicated expressions, you’ll need to define a group with parentheses, which are
explained in the following sections.

Be careful when using the * and ? repetition characters. Since these characters may
match zero instances of whatever precedes them, they are allowed to match nothing.
For example, the regular expression /a*/ actually matches the string “bbbb” because
the string contains zero occurrences of the letter a!

Non-greedy repetition
The repetition characters listed in Table 11-3 match as many times as possible while
still allowing any following parts of the regular expression to match. We say that this
repetition is “greedy.” It is also possible to specify that repetition should be done in a
non-greedy way. Simply follow the repetition character or characters with a question
mark: ??, +?, *?, or even {1,5}?. For example, the regular expression /a+/ matches
one or more occurrences of the letter a. When applied to the string “aaa”, it matches
all three letters. But /a+?/ matches one or more occurrences of the letter a, matching
as few characters as necessary. When applied to the same string, this pattern matches
only the first letter a.

Using non-greedy repetition may not always produce the results you expect. Consider
the pattern /a+b/, which matches one or more a’s, followed by the letter b. When
applied to the string “aaab”, it matches the entire string. Now let’s use the non-greedy
version: /a+?b/. This should match the letter b preceded by the fewest number of a’s
possible. When applied to the same string “aaab”, you might expect it to match only
one a and the last letter b. In fact, however, this pattern matches the entire string, just
like the greedy version of the pattern. This is because regular expression pattern
matching is done by finding the first position in the string at which a match is possi‐
ble. Since a match is possible starting at the first character of the string, shorter
matches starting at subsequent characters are never even considered.

Alternation, grouping, and references
The regular expression grammar includes special characters for specifying alterna‐
tives, grouping subexpressions, and referring to previous subexpressions. The | char‐
acter separates alternatives. For example, /ab|cd|ef/ matches the string “ab” or the

286 | Chapter 11: The JavaScript Standard Library

string “cd” or the string “ef ”. And /\d{3}|[a-z]{4}/ matches either three digits or
four lowercase letters.

Note that alternatives are considered left to right until a match is found. If the left
alternative matches, the right alternative is ignored, even if it would have produced a
“better” match. Thus, when the pattern /a|ab/ is applied to the string “ab”, it matches
only the first letter.

Parentheses have several purposes in regular expressions. One purpose is to group
separate items into a single subexpression so that the items can be treated as a single
unit by |, *, +, ?, and so on. For example, /java(script)?/ matches “java” followed
by the optional “script”. And /(ab|cd)+|ef/ matches either the string “ef ” or one or
more repetitions of either of the strings “ab” or “cd”.

Another purpose of parentheses in regular expressions is to define subpatterns within
the complete pattern. When a regular expression is successfully matched against a
target string, it is possible to extract the portions of the target string that matched any
particular parenthesized subpattern. (You’ll see how these matching substrings are
obtained later in this section.) For example, suppose you are looking for one or more
lowercase letters followed by one or more digits. You might use the pattern /[a-z]+
\d+/. But suppose you only really care about the digits at the end of each match. If
you put that part of the pattern in parentheses (/[a-z]+(\d+)/), you can extract the
digits from any matches you find, as explained later.

A related use of parenthesized subexpressions is to allow you to refer back to a subex‐
pression later in the same regular expression. This is done by following a \ character
by a digit or digits. The digits refer to the position of the parenthesized subexpression
within the regular expression. For example, \1 refers back to the first subexpression,
and \3 refers to the third. Note that, because subexpressions can be nested within
others, it is the position of the left parenthesis that is counted. In the following regu‐
lar expression, for example, the nested subexpression ([Ss]cript) is referred to as
\2:

/([Jj]ava([Ss]cript)?)\sis\s(fun\w*)/

A reference to a previous subexpression of a regular expression does not refer to the
pattern for that subexpression but rather to the text that matched the pattern. Thus,
references can be used to enforce a constraint that separate portions of a string con‐
tain exactly the same characters. For example, the following regular expression
matches zero or more characters within single or double quotes. However, it does not
require the opening and closing quotes to match (i.e., both single quotes or both dou‐
ble quotes):

/['"][^'"]*['"]/

To require the quotes to match, use a reference:

11.3 Pattern Matching with Regular Expressions | 287

/(['"])[^'"]*\1/

The \1 matches whatever the first parenthesized subexpression matched. In this
example, it enforces the constraint that the closing quote match the opening quote.
This regular expression does not allow single quotes within double-quoted strings or
vice versa. (It is not legal to use a reference within a character class, so you cannot
write: /(['"])[^\1]*\1/.)

When we cover the RegExp API later, you’ll see that this kind of reference to a paren‐
thesized subexpression is a powerful feature of regular-expression search-and-replace
operations.

It is also possible to group items in a regular expression without creating a numbered
reference to those items. Instead of simply grouping the items within (and), begin
the group with (?: and end it with). Consider the following pattern:

/([Jj]ava(?:[Ss]cript)?)\sis\s(fun\w*)/

In this example, the subexpression (?:[Ss]cript) is used simply for grouping, so
the ? repetition character can be applied to the group. These modified parentheses do
not produce a reference, so in this regular expression, \2 refers to the text matched by
(fun\w*).

Table 11-4 summarizes the regular expression alternation, grouping, and referencing
operators.

Table 11-4. Regular expression alternation, grouping, and reference characters

Character Meaning

| Alternation: match either the subexpression to the left or the subexpression to the right.

(...) Grouping: group items into a single unit that can be used with *, +, ?, |, and so on. Also remember the
characters that match this group for use with later references.

(?:...) Grouping only: group items into a single unit, but do not remember the characters that match this group.

\n Match the same characters that were matched when group number n was first matched. Groups are
subexpressions within (possibly nested) parentheses. Group numbers are assigned by counting left parentheses
from left to right. Groups formed with (?: are not numbered.

Named Capture Groups
ES2018 standardizes a new feature that can make regular expressions more self-
documenting and easier to understand. This new feature is known as “named capture
groups” and it allows us to associate a name with each left parenthesis in a regular
expression so that we can refer to the matching text by name rather than by number.
Equally important: using names allows someone reading the code to more easily
understand the purpose of that portion of the regular expression. As of early 2020,
this feature is implemented in Node, Chrome, Edge, and Safari, but not yet by Firefox.

288 | Chapter 11: The JavaScript Standard Library

4 Except within a character class (square brackets), where \b matches the backspace character.

To name a group, use (?<...> instead of (and put the name between the angle
brackets. For example, here is a regular expression that might be used to check the
formatting of the final line of a US mailing address:

/(?<city>\w+) (?<state>[A-Z]{2}) (?<zipcode>\d{5})(?<zip9>-\d{4})?/

Notice how much context the group names provide to make the regular expression
easier to understand. In §11.3.2, when we discuss the String replace() and match()
methods and the RegExp exec() method, you’ll see how the RegExp API allows you
to refer to the text that matches each of these groups by name rather than by position.

If you want to refer back to a named capture group within a regular expression, you
can do that by name as well. In the preceding example, we were able to use a regular
expression “backreference” to write a RegExp that would match a single- or double-
quoted string where the open and close quotes had to match. We could rewrite this
RegExp using a named capturing group and a named backreference like this:

/(?<quote>['"])[^'"]*\k<quote>/

The \k<quote> is a named backreference to the named group that captures the open
quotation mark.

Specifying match position
As described earlier, many elements of a regular expression match a single character
in a string. For example, \s matches a single character of whitespace. Other regular
expression elements match the positions between characters instead of actual charac‐
ters. \b, for example, matches an ASCII word boundary—the boundary between a \w
(ASCII word character) and a \W (nonword character), or the boundary between an
ASCII word character and the beginning or end of a string.4 Elements such as \b do
not specify any characters to be used in a matched string; what they do specify, how‐
ever, are legal positions at which a match can occur. Sometimes these elements are
called regular expression anchors because they anchor the pattern to a specific position
in the search string. The most commonly used anchor elements are ^, which ties the
pattern to the beginning of the string, and $, which anchors the pattern to the end of
the string.

For example, to match the word “JavaScript” on a line by itself, you can use the regu‐
lar expression /^JavaScript$/. If you want to search for “Java” as a word by itself
(not as a prefix, as it is in “JavaScript”), you can try the pattern /\sJava\s/, which
requires a space before and after the word. But there are two problems with this solu‐
tion. First, it does not match “Java” at the beginning or the end of a string, but only if
it appears with space on either side. Second, when this pattern does find a match, the

11.3 Pattern Matching with Regular Expressions | 289

matched string it returns has leading and trailing spaces, which is not quite what’s
needed. So instead of matching actual space characters with \s, match (or anchor to)
word boundaries with \b. The resulting expression is /\bJava\b/. The element \B
anchors the match to a location that is not a word boundary. Thus, the pat‐
tern /\B[Ss]cript/ matches “JavaScript” and “postscript”, but not “script” or
“Scripting”.

You can also use arbitrary regular expressions as anchor conditions. If you include an
expression within (?= and) characters, it is a lookahead assertion, and it specifies
that the enclosed characters must match, without actually matching them. For exam‐
ple, to match the name of a common programming language, but only if it is followed
by a colon, you could use /[Jj]ava([Ss]cript)?(?=\:)/. This pattern matches the
word “JavaScript” in “JavaScript: The Definitive Guide”, but it does not match “Java”
in “Java in a Nutshell” because it is not followed by a colon.

If you instead introduce an assertion with (?!, it is a negative lookahead assertion,
which specifies that the following characters must not match. For example, /Java(?!
Script)([A-Z]\w*)/ matches “Java” followed by a capital letter and any number of
additional ASCII word characters, as long as “Java” is not followed by “Script”. It
matches “JavaBeans” but not “Javanese”, and it matches “JavaScrip” but not “Java‐
Script” or “JavaScripter”. Table 11-5 summarizes regular expression anchors.

Table 11-5. Regular expression anchor characters

Character Meaning

^ Match the beginning of the string or, with the m flag, the beginning of a line.

$ Match the end of the string and, with the m flag, the end of a line.

\b Match a word boundary. That is, match the position between a \w character and a \W character or between a \w
character and the beginning or end of a string. (Note, however, that [\b] matches backspace.)

\B Match a position that is not a word boundary.

(?=p) A positive lookahead assertion. Require that the following characters match the pattern p, but do not include
those characters in the match.

(?!p) A negative lookahead assertion. Require that the following characters do not match the pattern p.

Lookbehind Assertions
ES2018 extends regular expression syntax to allow “lookbehind” assertions. These are
like lookahead assertions but refer to text before the current match position. As of
early 2020, these are implemented in Node, Chrome, and Edge, but not Firefox or
Safari.

Specify a positive lookbehind assertion with (?<=...) and a negative lookbehind
assertion with (?<!...). For example, if you were working with US mailing

290 | Chapter 11: The JavaScript Standard Library

addresses, you could match a 5-digit zip code, but only when it follows a two-letter
state abbreviation, like this:

/(?<= [A-Z]{2})\d{5}/

And you could match a string of digits that is not preceded by a Unicode currency
symbol with a negative lookbehind assertion like this:

/(?<![\p{Currency_Symbol}\d.])\d+(\.\d+)?/u

Flags
Every regular expression can have one or more flags associated with it to alter its
matching behavior. JavaScript defines six possible flags, each of which is represented
by a single letter. Flags are specified after the second / character of a regular expres‐
sion literal or as a string passed as the second argument to the RegExp() constructor.
The supported flags and their meanings are:

g

The g flag indicates that the regular expression is “global”—that is, that we intend
to use it to find all matches within a string rather than just finding the first
match. This flag does not alter the way that pattern matching is done, but, as we’ll
see later, it does alter the behavior of the String match() method and the RegExp
exec() method in important ways.

i

The i flag specifies that pattern matching should be case-insensitive.

m

The m flag specifies that matching should be done in “multiline” mode. It says that
the RegExp will be used with multiline strings and that the ^ and $ anchors
should match both the beginning and end of the string and also the beginning
and end of individual lines within the string.

s

Like the m flag, the s flag is also useful when working with text that includes new‐
lines. Normally, a “.” in a regular expression matches any character except a line
terminator. When the s flag is used, however, “.” will match any character, includ‐
ing line terminators. The s flag was added to JavaScript in ES2018 and, as of early
2020, is supported in Node, Chrome, Edge, and Safari, but not Firefox.

u

The u flag stands for Unicode, and it makes the regular expression match full
Unicode codepoints rather than matching 16-bit values. This flag was introduced
in ES6, and you should make a habit of using it on all regular expressions unless
you have some reason not to. If you do not use this flag, then your RegExps will

11.3 Pattern Matching with Regular Expressions | 291

not work well with text that includes emoji and other characters (including many
Chinese characters) that require more than 16 bits. Without the u flag, the “.”
character matches any 1 UTF-16 16-bit value. With the flag, however, “.” matches
one Unicode codepoint, including those that have more than 16 bits. Setting the
u flag on a RegExp also allows you to use the new \u{...} escape sequence for
Unicode character and also enables the \p{...} notation for Unicode character
classes.

y

The y flag indicates that the regular expression is “sticky” and should match at
the beginning of a string or at the first character following the previous match.
When used with a regular expression that is designed to find a single match, it
effectively treats that regular expression as if it begins with ^ to anchor it to the
beginning of the string. This flag is more useful with regular expressions that are
used repeatedly to find all matches within a string. In this case, it causes special
behavior of the String match() method and the RegExp exec() method to
enforce that each subsequent match is anchored to the string position at which
the last one ended.

These flags may be specified in any combination and in any order. For example, if you
want your regular expression to be Unicode-aware to do case-insensitive matching
and you intend to use it to find multiple matches within a string, you would specify
the flags uig, gui, or any other permutation of these three letters.

11.3.2 String Methods for Pattern Matching
Until now, we have been describing the grammar used to define regular expressions,
but not explaining how those regular expressions can actually be used in JavaScript
code. We are now switching to cover the API for using RegExp objects. This section
begins by explaining the string methods that use regular expressions to perform pat‐
tern matching and search-and-replace operations. The sections that follow this one
continue the discussion of pattern matching with JavaScript regular expressions by
discussing the RegExp object and its methods and properties.

search()

Strings support four methods that use regular expressions. The simplest is search().
This method takes a regular expression argument and returns either the character
position of the start of the first matching substring or −1 if there is no match:

"JavaScript".search(/script/ui) // => 4
"Python".search(/script/ui) // => -1

292 | Chapter 11: The JavaScript Standard Library

If the argument to search() is not a regular expression, it is first converted to one by
passing it to the RegExp constructor. search() does not support global searches; it
ignores the g flag of its regular expression argument.

replace()

The replace() method performs a search-and-replace operation. It takes a regular
expression as its first argument and a replacement string as its second argument. It
searches the string on which it is called for matches with the specified pattern. If the
regular expression has the g flag set, the replace() method replaces all matches in
the string with the replacement string; otherwise, it replaces only the first match it
finds. If the first argument to replace() is a string rather than a regular expression,
the method searches for that string literally rather than converting it to a regular
expression with the RegExp() constructor, as search() does. As an example, you can
use replace() as follows to provide uniform capitalization of the word “JavaScript”
throughout a string of text:

// No matter how it is capitalized, replace it with the correct capitalization
text.replace(/javascript/gi, "JavaScript");

replace() is more powerful than this, however. Recall that parenthesized subexpres‐
sions of a regular expression are numbered from left to right and that the regular
expression remembers the text that each subexpression matches. If a $ followed by a
digit appears in the replacement string, replace() replaces those two characters with
the text that matches the specified subexpression. This is a very useful feature. You
can use it, for example, to replace quotation marks in a string with other characters:

// A quote is a quotation mark, followed by any number of
// nonquotation mark characters (which we capture), followed
// by another quotation mark.
let quote = /"([^"]*)"/g;
// Replace the straight quotation marks with guillemets
// leaving the quoted text (stored in $1) unchanged.
'He said "stop"'.replace(quote, '«$1»') // => 'He said «stop»'

If your RegExp uses named capture groups, then you can refer to the matching text
by name rather than by number:

let quote = /"(?<quotedText>[^"]*)"/g;
'He said "stop"'.replace(quote, '«$<quotedText>»') // => 'He said «stop»'

Instead of passing a replacement string as the second argument to replace(), you
can also pass a function that will be invoked to compute the replacement value. The
replacement function is invoked with a number of arguments. First is the entire
matched text. Next, if the RegExp has capturing groups, then the substrings that were
captured by those groups are passed as arguments. The next argument is the position
within the string at which the match was found. After that, the entire string that
replace() was called on is passed. And finally, if the RegExp contained any named

11.3 Pattern Matching with Regular Expressions | 293

5 Parsing URLs with regular expressions is not a good idea. See §11.9 for a more robust URL parser.

capture groups, the last argument to the replacement function is an object whose
property names match the capture group names and whose values are the matching
text. As an example, here is code that uses a replacement function to convert decimal
integers in a string to hexadecimal:

let s = "15 times 15 is 225";
s.replace(/\d+/gu, n => parseInt(n).toString(16)) // => "f times f is e1"

match()

The match() method is the most general of the String regular expression methods. It
takes a regular expression as its only argument (or converts its argument to a regular
expression by passing it to the RegExp() constructor) and returns an array that con‐
tains the results of the match, or null if no match is found. If the regular expression
has the g flag set, the method returns an array of all matches that appear in the string.
For example:

"7 plus 8 equals 15".match(/\d+/g) // => ["7", "8", "15"]

If the regular expression does not have the g flag set, match() does not do a global
search; it simply searches for the first match. In this nonglobal case, match() still
returns an array, but the array elements are completely different. Without the g flag,
the first element of the returned array is the matching string, and any remaining ele‐
ments are the substrings matching the parenthesized capturing groups of the regular
expression. Thus, if match() returns an array a, a[0] contains the complete match,
a[1] contains the substring that matched the first parenthesized expression, and so
on. To draw a parallel with the replace() method, a[1] is the same string as $1, a[2]
is the same as $2, and so on.

For example, consider parsing a URL5 with the following code:

// A very simple URL parsing RegExp
let url = /(\w+):\/\/([\w.]+)\/(\S*)/;
let text = "Visit my blog at http://www.example.com/~david";
let match = text.match(url);
let fullurl, protocol, host, path;
if (match !== null) {
 fullurl = match[0]; // fullurl == "http://www.example.com/~david"
 protocol = match[1]; // protocol == "http"
 host = match[2]; // host == "www.example.com"
 path = match[3]; // path == "~david"
}

In this non-global case, the array returned by match() also has some object properties
in addition to the numbered array elements. The input property refers to the string

294 | Chapter 11: The JavaScript Standard Library

on which match() was called. The index property is the position within that string at
which the match starts. And if the regular expression contains named capture groups,
then the returned array also has a groups property whose value is an object. The
properties of this object match the names of the named groups, and the values are the
matching text. We could rewrite the previous URL parsing example, for example, like
this:

let url = /(?<protocol>\w+):\/\/(?<host>[\w.]+)\/(?<path>\S*)/;
let text = "Visit my blog at http://www.example.com/~david";
let match = text.match(url);
match[0] // => "http://www.example.com/~david"
match.input // => text
match.index // => 17
match.groups.protocol // => "http"
match.groups.host // => "www.example.com"
match.groups.path // => "~david"

We’ve seen that match() behaves quite differently depending on whether the RegExp
has the g flag set or not. There are also important but less dramatic differences in
behavior when the y flag is set. Recall that the y flag makes a regular expression
“sticky” by constraining where in the string matches can begin. If a RegExp has both
the g and y flags set, then match() returns an array of matched strings, just as it does
when g is set without y. But the first match must begin at the start of the string, and
each subsequent match must begin at the character immediately following the previ‐
ous match.

If the y flag is set without g, then match() tries to find a single match, and, by default,
this match is constrained to the start of the string. You can change this default match
start position, however, by setting the lastIndex property of the RegExp object at the
index at which you want to match at. If a match is found, then this lastIndex will be
automatically updated to the first character after the match, so if you call match()
again, in this case, it will look for a subsequent match. (lastIndex may seem like a
strange name for a property that specifies the position at which to begin the next
match. We will see it again when we cover the RegExp exec() method, and its name
may make more sense in that context.)

let vowel = /[aeiou]/y; // Sticky vowel match
"test".match(vowel) // => null: "test" does not begin with a vowel
vowel.lastIndex = 1; // Specify a different match position
"test".match(vowel)[0] // => "e": we found a vowel at position 1
vowel.lastIndex // => 2: lastIndex was automatically updated
"test".match(vowel) // => null: no vowel at position 2
vowel.lastIndex // => 0: lastIndex gets reset after failed match

It is worth noting that passing a non-global regular expression to the match() method
of a string is the same as passing the string to the exec() method of the regular
expression: the returned array and its properties are the same in both cases.

11.3 Pattern Matching with Regular Expressions | 295

matchAll()

The matchAll() method is defined in ES2020, and as of early 2020 is implemented by
modern web browsers and Node. matchAll() expects a RegExp with the g flag set.
Instead of returning an array of matching substrings like match() does, however, it
returns an iterator that yields the kind of match objects that match() returns when
used with a non-global RegExp. This makes matchAll() the easiest and most general
way to loop through all matches within a string.

You might use matchAll() to loop through the words in a string of text like this:

// One or more Unicode alphabetic characters between word boundaries
const words = /\b\p{Alphabetic}+\b/gu; // \p is not supported in Firefox yet
const text = "This is a naïve test of the matchAll() method.";
for(let word of text.matchAll(words)) {
 console.log(`Found '${word[0]}' at index ${word.index}.`);
}

You can set the lastIndex property of a RegExp object to tell matchAll() what index
in the string to begin matching at. Unlike the other pattern-matching methods, how‐
ever, matchAll() never modifies the lastIndex property of the RegExp you call it on,
and this makes it much less likely to cause bugs in your code.

split()

The last of the regular expression methods of the String object is split(). This
method breaks the string on which it is called into an array of substrings, using the
argument as a separator. It can be used with a string argument like this:

"123,456,789".split(",") // => ["123", "456", "789"]

The split() method can also take a regular expression as its argument, and this
allows you to specify more general separators. Here we call it with a separator that
includes an arbitrary amount of whitespace on either side:

"1, 2, 3,\n4, 5".split(/\s*,\s*/) // => ["1", "2", "3", "4", "5"]

Surprisingly, if you call split() with a RegExp delimiter and the regular expression
includes capturing groups, then the text that matches the capturing groups will be
included in the returned array. For example:

const htmlTag = /<([^>]+)>/; // < followed by one or more non->, followed by >
"Testing
1,2,3".split(htmlTag) // => ["Testing", "br/", "1,2,3"]

11.3.3 The RegExp Class
This section documents the RegExp() constructor, the properties of RegExp instan‐
ces, and two important pattern-matching methods defined by the RegExp class.

296 | Chapter 11: The JavaScript Standard Library

The RegExp() constructor takes one or two string arguments and creates a new
RegExp object. The first argument to this constructor is a string that contains the
body of the regular expression—the text that would appear within slashes in a
regular-expression literal. Note that both string literals and regular expressions use
the \ character for escape sequences, so when you pass a regular expression to
RegExp() as a string literal, you must replace each \ character with \\. The second
argument to RegExp() is optional. If supplied, it indicates the regular expression
flags. It should be g, i, m, s, u, y, or any combination of those letters.

For example:

// Find all five-digit numbers in a string. Note the double \\ in this case.
let zipcode = new RegExp("\\d{5}", "g");

The RegExp() constructor is useful when a regular expression is being dynamically
created and thus cannot be represented with the regular expression literal syntax. For
example, to search for a string entered by the user, a regular expression must be cre‐
ated at runtime with RegExp().

Instead of passing a string as the first argument to RegExp(), you can also pass a
RegExp object. This allows you to copy a regular expression and change its flags:

let exactMatch = /JavaScript/;
let caseInsensitive = new RegExp(exactMatch, "i");

RegExp properties
RegExp objects have the following properties:

source

This read-only property is the source text of the regular expression: the charac‐
ters that appear between the slashes in a RegExp literal.

flags

This read-only property is a string that specifies the set of letters that represent
the flags for the RegExp.

global

A read-only boolean property that is true if the g flag is set.

ignoreCase

A read-only boolean property that is true if the i flag is set.

multiline

A read-only boolean property that is true if the m flag is set.

dotAll

A read-only boolean property that is true if the s flag is set.

11.3 Pattern Matching with Regular Expressions | 297

unicode

A read-only boolean property that is true if the u flag is set.

sticky

A read-only boolean property that is true if the y flag is set.

lastIndex

This property is a read/write integer. For patterns with the g or y flags, it specifies
the character position at which the next search is to begin. It is used by the
exec() and test() methods, described in the next two subsections.

test()

The test() method of the RegExp class is the simplest way to use a regular expres‐
sion. It takes a single string argument and returns true if the string matches the pat‐
tern or false if it does not match.

test() works by simply calling the (much more complicated) exec() method
described in the next section and returning true if exec() returns a non-null value.
Because of this, if you use test() with a RegExp that uses the g or y flags, then its
behavior depends on the value of the lastIndex property of the RegExp object,
which can change unexpectedly. See “The lastIndex Property and RegExp Reuse” on
page 299 for more details.

exec()

The RegExp exec() method is the most general and powerful way to use regular
expressions. It takes a single string argument and looks for a match in that string. If
no match is found, it returns null. If a match is found, however, it returns an array
just like the array returned by the match() method for non-global searches. Element
0 of the array contains the string that matched the regular expression, and any subse‐
quent array elements contain the substrings that matched any capturing groups. The
returned array also has named properties: the index property contains the character
position at which the match occurred, and the input property specifies the string that
was searched, and the groups property, if defined, refers to an object that holds the
substrings matching the any named capturing groups.

Unlike the String match() method, exec() returns the same kind of array whether or
not the regular expression has the global g flag. Recall that match() returns an array
of matches when passed a global regular expression. exec(), by contrast, always
returns a single match and provides complete information about that match. When
exec() is called on a regular expression that has either the global g flag or the sticky y
flag set, it consults the lastIndex property of the RegExp object to determine where
to start looking for a match. (And if the y flag is set, it also constrains the match to

298 | Chapter 11: The JavaScript Standard Library

begin at that position.) For a newly created RegExp object, lastIndex is 0, and the
search begins at the start of the string. But each time exec() successfully finds a
match, it updates the lastIndex property to the index of the character immediately
after the matched text. If exec() fails to find a match, it resets lastIndex to 0. This
special behavior allows you to call exec() repeatedly in order to loop through all the
regular expression matches in a string. (Although, as we’ve described, in ES2020 and
later, the matchAll() method of String is an easier way to loop through all matches.)
For example, the loop in the following code will run twice:

let pattern = /Java/g;
let text = "JavaScript > Java";
let match;
while((match = pattern.exec(text)) !== null) {
 console.log(`Matched ${match[0]} at ${match.index}`);
 console.log(`Next search begins at ${pattern.lastIndex}`);
}

The lastIndex Property and RegExp Reuse
As you have seen already, JavaScript’s regular expression API is complicated. The use
of the lastIndex property with the g and y flags is a particularly awkward part of this
API. When you use these flags, you need to be particularly careful when calling the
match(), exec(), or test() methods because the behavior of these methods depends
on lastIndex, and the value of lastIndex depends on what you have previously done
with the RegExp object. This makes it easy to write buggy code.

Suppose, for example, that we wanted to find the index of all <p> tags within a string
of HTML text. We might write code like this:

let match, positions = [];
while((match = /<p>/g.exec(html)) !== null) { // POSSIBLE INFINITE LOOP
 positions.push(match.index);
}

This code does not do what we want it to. If the html string contains at least one <p>
tag, then it will loop forever. The problem is that we use a RegExp literal in the while
loop condition. For each iteration of the loop, we’re creating a new RegExp object
with lastIndex set to 0, so exec() always begins at the start of the string, and if there
is a match, it will keep matching over and over. The solution, of course, is to define
the RegExp once, and save it to a variable so that we’re using the same RegExp object
for each iteration of the loop.

On the other hand, sometimes reusing a RegExp object is the wrong thing to do. Sup‐
pose, for example, that we want to loop through all of the words in a dictionary to
find words that contain pairs of double letters:

let dictionary = ["apple", "book", "coffee"];
let doubleLetterWords = [];

11.3 Pattern Matching with Regular Expressions | 299

let doubleLetter = /(\w)\1/g;

for(let word of dictionary) {
 if (doubleLetter.test(word)) {
 doubleLetterWords.push(word);
 }
}
doubleLetterWords // => ["apple", "coffee"]: "book" is missing!

Because we set the g flag on the RegExp, the lastIndex property is changed after suc‐
cessful matches, and the test() method (which is based on exec()) starts searching
for a match at the position specified by lastIndex. After matching the “pp” in “apple”,
lastIndex is 3, and so we start searching the word “book” at position 3 and do not
see the “oo” that it contains.

We could fix this problem by removing the g flag (which is not actually necessary in
this particular example), or by moving the RegExp literal into the body of the loop so
that it is re-created on each iteration, or by explicitly resetting lastIndex to zero
before each call to test().

The moral here is that lastIndex makes the RegExp API error prone. So be extra
careful when using the g or y flags and looping. And in ES2020 and later, use the
String matchAll() method instead of exec() to sidestep this problem since match
All() does not modify lastIndex.

11.4 Dates and Times
The Date class is JavaScript’s API for working with dates and times. Create a Date
object with the Date() constructor. With no arguments, it returns a Date object that
represents the current date and time:

let now = new Date(); // The current time

If you pass one numeric argument, the Date() constructor interprets that argument
as the number of milliseconds since the 1970 epoch:

let epoch = new Date(0); // Midnight, January 1st, 1970, GMT

If you specify two or more integer arguments, they are interpreted as the year, month,
day-of-month, hour, minute, second, and millisecond in your local time zone, as in
the following:

let century = new Date(2100, // Year 2100
 0, // January
 1, // 1st
 2, 3, 4, 5); // 02:03:04.005, local time

300 | Chapter 11: The JavaScript Standard Library

One quirk of the Date API is that the first month of a year is number 0, but the first
day of a month is number 1. If you omit the time fields, the Date() constructor
defaults them all to 0, setting the time to midnight.

Note that when invoked with multiple numbers, the Date() constructor interprets
them using whatever time zone the local computer is set to. If you want to specify a
date and time in UTC (Universal Coordinated Time, aka GMT), then you can use the
Date.UTC(). This static method takes the same arguments as the Date() constructor,
interprets them in UTC, and returns a millisecond timestamp that you can pass to the
Date() constructor:

// Midnight in England, January 1, 2100
let century = new Date(Date.UTC(2100, 0, 1));

If you print a date (with console.log(century), for example), it will, by default, be
printed in your local time zone. If you want to display a date in UTC, you should
explicitly convert it to a string with toUTCString() or toISOString().

Finally, if you pass a string to the Date() constructor, it will attempt to parse that
string as a date and time specification. The constructor can parse dates specified in
the formats produced by the toString(), toUTCString(), and toISOString()
methods:

let century = new Date("2100-01-01T00:00:00Z"); // An ISO format date

Once you have a Date object, various get and set methods allow you to query and
modify the year, month, day-of-month, hour, minute, second, and millisecond fields
of the Date. Each of these methods has two forms: one that gets or sets using local
time and one that gets or sets using UTC time. To get or set the year of a Date object,
for example, you would use getFullYear(), getUTCFullYear(), setFullYear(), or
setUTCFullYear():

let d = new Date(); // Start with the current date
d.setFullYear(d.getFullYear() + 1); // Increment the year

To get or set the other fields of a Date, replace “FullYear” in the method name with
“Month”, “Date”, “Hours”, “Minutes”, “Seconds”, or “Milliseconds”. Some of the date set
methods allow you to set more than one field at a time. setFullYear() and setUTC
FullYear() also optionally allow you to set the month and day-of-month as well.
And setHours() and setUTCHours() allow you to specify the minutes, seconds, and
milliseconds fields in addition to the hours field.

Note that the methods for querying the day-of-month are getDate() and getUTC
Date(). The more natural-sounding functions getDay() and getUTCDay() return the
day-of-week (0 for Sunday through 6 for Saturday). The day-of-week is read-only, so
there is not a corresponding setDay() method.

11.4 Dates and Times | 301

11.4.1 Timestamps
JavaScript represents dates internally as integers that specify the number of milli‐
seconds since (or before) midnight on January 1, 1970, UTC time. Integers as large as
8,640,000,000,000,000 are supported, so JavaScript won’t be running out of milli‐
seconds for more than 270,000 years.

For any Date object, the getTime() method returns this internal value, and the set
Time() method sets it. So you can add 30 seconds to a Date with code like this, for
example:

d.setTime(d.getTime() + 30000);

These millisecond values are sometimes called timestamps, and it is sometimes useful
to work with them directly rather than with Date objects. The static Date.now()
method returns the current time as a timestamp and is helpful when you want to
measure how long your code takes to run:

let startTime = Date.now();
reticulateSplines(); // Do some time-consuming operation
let endTime = Date.now();
console.log(`Spline reticulation took ${endTime - startTime}ms.`);

High-Resolution Timestamps
The timestamps returned by Date.now() are measured in milliseconds. A millisecond
is actually a relatively long time for a computer, and sometimes you may want to
measure elapsed time with higher precision. The performance.now() function allows
this: it also returns a millisecond-based timestamp, but the return value is not an inte‐
ger, so it includes fractions of a millisecond. The value returned by perfor
mance.now() is not an absolute timestamp like the Date.now() value is. Instead, it
simply indicates how much time has elapsed since a web page was loaded or since the
Node process started.

The performance object is part of a larger Performance API that is not defined by the
ECMAScript standard but is implemented by web browsers and by Node. In order to
use the performance object in Node, you must import it with:

const { performance } = require("perf_hooks");

Allowing high-precision timing on the web may allow unscrupulous websites to fin‐
gerprint visitors, so browsers (notably Firefox) may reduce the precision of perfor
mance.now() by default. As a web developer, you should be able to re-enable high-
precision timing somehow (such as by setting privacy.reduceTimerPrecision to
false in Firefox).

302 | Chapter 11: The JavaScript Standard Library

11.4.2 Date Arithmetic
Date objects can be compared with JavaScript’s standard <, <=, >, and >= comparison
operators. And you can subtract one Date object from another to determine the num‐
ber of milliseconds between the two dates. (This works because the Date class defines
a valueOf() method that returns a timestamp.)

If you want to add or subtract a specified number of seconds, minutes, or hours from
a Date, it is often easiest to simply modify the timestamp as demonstrated in the pre‐
vious example, when we added 30 seconds to a date. This technique becomes more
cumbersome if you want to add days, and it does not work at all for months and years
since they have varying numbers of days. To do date arithmetic involving days,
months, and years, you can use setDate(), setMonth(), and setYear(). Here, for
example, is code that adds three months and two weeks to the current date:

let d = new Date();
d.setMonth(d.getMonth() + 3, d.getDate() + 14);

Date setting methods work correctly even when they overflow. When we add three
months to the current month, we can end up with a value greater than 11 (which rep‐
resents December). The setMonth() handles this by incrementing the year as needed.
Similarly, when we set the day of the month to a value larger than the number of days
in the month, the month gets incremented appropriately.

11.4.3 Formatting and Parsing Date Strings
If you are using the Date class to actually keep track of dates and times (as opposed to
just measuring time intervals), then you are likely to need to display dates and times
to the users of your code. The Date class defines a number of different methods for
converting Date objects to strings. Here are some examples:

let d = new Date(2020, 0, 1, 17, 10, 30); // 5:10:30pm on New Year's Day 2020
d.toString() // => "Wed Jan 01 2020 17:10:30 GMT-0800 (Pacific Standard Time)"
d.toUTCString() // => "Thu, 02 Jan 2020 01:10:30 GMT"
d.toLocaleDateString() // => "1/1/2020": 'en-US' locale
d.toLocaleTimeString() // => "5:10:30 PM": 'en-US' locale
d.toISOString() // => "2020-01-02T01:10:30.000Z"

This is a full list of the string formatting methods of the Date class:

toString()

This method uses the local time zone but does not format the date and time in a
locale-aware way.

toUTCString()

This method uses the UTC time zone but does not format the date in a locale-
aware way.

11.4 Dates and Times | 303

toISOString()

This method prints the date and time in the standard year-month-day
hours:minutes:seconds.ms format of the ISO-8601 standard. The letter “T” sepa‐
rates the date portion of the output from the time portion of the output. The time
is expressed in UTC, and this is indicated with the letter “Z” as the last letter of
the output.

toLocaleString()

This method uses the local time zone and a format that is appropriate for the
user’s locale.

toDateString()

This method formats only the date portion of the Date and omits the time. It uses
the local time zone and does not do locale-appropriate formatting.

toLocaleDateString()

This method formats only the date. It uses the local time zone and a locale-
appropriate date format.

toTimeString()

This method formats only the time and omits the date. It uses the local time zone
but does not format the time in a locale-aware way.

toLocaleTimeString()

This method formats the time in a locale-aware way and uses the local time zone.

None of these date-to-string methods is ideal when formatting dates and times to be
displayed to end users. See §11.7.2 for a more general-purpose and locale-aware date-
and time-formatting technique.

Finally, in addition to these methods that convert a Date object to a string, there is
also a static Date.parse() method that takes a string as its argument, attempts to
parse it as a date and time, and returns a timestamp representing that date.
Date.parse() is able to parse the same strings that the Date() constructor can and is
guaranteed to be able to parse the output of toISOString(), toUTCString(), and
toString().

11.5 Error Classes
The JavaScript throw and catch statements can throw and catch any JavaScript value,
including primitive values. There is no exception type that must be used to signal
errors. JavaScript does define an Error class, however, and it is traditional to use
instances of Error or a subclass when signaling an error with throw. One good reason
to use an Error object is that, when you create an Error, it captures the state of the
JavaScript stack, and if the exception is uncaught, the stack trace will be displayed

304 | Chapter 11: The JavaScript Standard Library

with the error message, which will help you debug the issue. (Note that the stack trace
shows where the Error object was created, not where the throw statement throws it. If
you always create the object right before throwing it with throw new Error(), this
will not cause any confusion.)

Error objects have two properties: message and name, and a toString() method. The
value of the message property is the value you passed to the Error() constructor,
converted to a string if necessary. For error objects created with Error(), the name
property is always “Error”. The toString() method simply returns the value of the
name property followed by a colon and space and the value of the message property.

Although it is not part of the ECMAScript standard, Node and all modern browsers
also define a stack property on Error objects. The value of this property is a multi-
line string that contains a stack trace of the JavaScript call stack at the moment that
the Error object was created. This can be useful information to log when an unexpec‐
ted error is caught.

In addition to the Error class, JavaScript defines a number of subclasses that it uses to
signal particular types of errors defined by ECMAScript. These subclasses are
EvalError, RangeError, ReferenceError, SyntaxError, TypeError, and URIError. You
can use these error classes in your own code if they seem appropriate. Like the base
Error class, each of these subclasses has a constructor that takes a single message
argument. And instances of each of these subclasses have a name property whose
value is the same as the constructor name.

You should feel free to define your own Error subclasses that best encapsulate the
error conditions of your own program. Note that you are not limited to the name and
message properties. If you create a subclass, you can define new properties to provide
error details. If you are writing a parser, for example, you might find it useful to
define a ParseError class with line and column properties that specify the exact loca‐
tion of the parsing failure. Or if you are working with HTTP requests, you might
want to define an HTTPError class that has a status property that holds the HTTP
status code (such as 404 or 500) of the failed request.

For example:

class HTTPError extends Error {
 constructor(status, statusText, url) {
 super(`${status} ${statusText}: ${url}`);
 this.status = status;
 this.statusText = statusText;
 this.url = url;
 }

 get name() { return "HTTPError"; }
}

11.5 Error Classes | 305

let error = new HTTPError(404, "Not Found", "http://example.com/");
error.status // => 404
error.message // => "404 Not Found: http://example.com/"
error.name // => "HTTPError"

11.6 JSON Serialization and Parsing
When a program needs to save data or needs to transmit data across a network con‐
nection to another program, it must to convert its in-memory data structures into a
string of bytes or characters than can be saved or transmitted and then later be parsed
to restore the original in-memory data structures. This process of converting data
structures into streams of bytes or characters is known as serialization (or marshaling
or even pickling).

The easiest way to serialize data in JavaScript uses a serialization format known as
JSON. This acronym stands for “JavaScript Object Notation” and, as the name
implies, the format uses JavaScript object and array literal syntax to convert data
structures consisting of objects and arrays into strings. JSON supports primitive
numbers and strings and also the values true, false, and null, as well as arrays and
objects built up from those primitive values. JSON does not support other JavaScript
types like Map, Set, RegExp, Date, or typed arrays. Nevertheless, it has proved to be a
remarkably versatile data format and is in common use even with non-JavaScript-
based programs.

JavaScript supports JSON serialization and deserialization with the two functions
JSON.stringify() and JSON.parse(), which were covered briefly in §6.8. Given an
object or array (nested arbitrarily deeply) that does not contain any nonserializable
values like RegExp objects or typed arrays, you can serialize the object simply by pass‐
ing it to JSON.stringify(). As the name implies, the return value of this function is
a string. And given a string returned by JSON.stringify(), you can re-create the
original data structure by passing the string to JSON.parse():

let o = {s: "", n: 0, a: [true, false, null]};
let s = JSON.stringify(o); // s == '{"s":"","n":0,"a":[true,false,null]}'
let copy = JSON.parse(s); // copy == {s: "", n: 0, a: [true, false, null]}

If we leave out the part where serialized data is saved to a file or sent over the net‐
work, we can use this pair of functions as a somewhat inefficient way of creating a
deep copy of an object:

// Make a deep copy of any serializable object or array
function deepcopy(o) {
 return JSON.parse(JSON.stringify(o));
}

306 | Chapter 11: The JavaScript Standard Library

JSON Is a Subset of JavaScript

When data is serialized to JSON format, the result is valid Java‐
Script source code for an expression that evaluates to a copy of the
original data structure. If you prefix a JSON string with var data
= and pass the result to eval(), you’ll get a copy of the original data
structure assigned to the variable data. You should never do this,
however, because it is a huge security hole—if an attacker could
inject arbitrary JavaScript code into a JSON file, they could make
your program run their code. It is faster and safer to just use
JSON.parse() to decode JSON-formatted data.
JSON is sometimes used as a human-readable configuration file
format. If you find yourself hand-editing a JSON file, note that the
JSON format is a very strict subset of JavaScript. Comments are not
allowed and property names must be enclosed in double quotes
even when JavaScript would not require this.

Typically, you pass only a single argument to JSON.stringify() and JSON.parse().
Both functions accept an optional second argument that allows us to extend the
JSON format, and these are described next. JSON.stringify() also takes an optional
third argument that we’ll discuss first. If you would like your JSON-formatted string
to be human-readable (if it is being used as a configuration file, for example), then
you should pass null as the second argument and pass a number or string as the
third argument. This third argument tells JSON.stringify() that it should format
the data on multiple indented lines. If the third argument is a number, then it will use
that number of spaces for each indentation level. If the third argument is a string of
whitespace (such as '\t'), it will use that string for each level of indent.

let o = {s: "test", n: 0};
JSON.stringify(o, null, 2) // => '{\n "s": "test",\n "n": 0\n}'

JSON.parse() ignores whitespace, so passing a third argument to JSON.stringify()
has no impact on our ability to convert the string back into a data structure.

11.6.1 JSON Customizations
If JSON.stringify() is asked to serialize a value that is not natively supported by the
JSON format, it looks to see if that value has a toJSON() method, and if so, it calls that
method and then stringifies the return value in place of the original value. Date
objects implement toJSON(): it returns the same string that toISOString() method
does. This means that if you serialize an object that includes a Date, the date will
automatically be converted to a string for you. When you parse the serialized string,
the re-created data structure will not be exactly the same as the one you started with
because it will have a string where the original object had a Date.

11.6 JSON Serialization and Parsing | 307

If you need to re-create Date objects (or modify the parsed object in any other way),
you can pass a “reviver” function as the second argument to JSON.parse(). If speci‐
fied, this “reviver” function is invoked once for each primitive value (but not the
objects or arrays that contain those primitive values) parsed from the input string.
The function is invoked with two arguments. The first is a property name—either an
object property name or an array index converted to a string. The second argument is
the primitive value of that object property or array element. Furthermore, the func‐
tion is invoked as a method of the object or array that contains the primitive value, so
you can refer to that containing object with the this keyword.

The return value of the reviver function becomes the new value of the named prop‐
erty. If it returns its second argument, the property will remain unchanged. If it
returns undefined, then the named property will be deleted from the object or array
before JSON.parse() returns to the user.

As an example, here is a call to JSON.parse() that uses a reviver function to filter
some properties and to re-create Date objects:

let data = JSON.parse(text, function(key, value) {
 // Remove any values whose property name begins with an underscore
 if (key[0] === "_") return undefined;

 // If the value is a string in ISO 8601 date format convert it to a Date.
 if (typeof value === "string" &&
 /^\d\d\d\d-\d\d-\d\dT\d\d:\d\d:\d\d.\d\d\dZ$/.test(value)) {
 return new Date(value);
 }

 // Otherwise, return the value unchanged
 return value;
});

In addition to its use of toJSON() described earlier, JSON.stringify() also allows its
output to be customized by passing an array or a function as the optional second
argument.

If an array of strings (or numbers—they are converted to strings) is passed instead as
the second argument, these are used as the names of object properties (or array ele‐
ments). Any property whose name is not in the array will be omitted from stringifica‐
tion. Furthermore, the returned string will include properties in the same order that
they appear in the array (which can be very useful when writing tests).

If you pass a function, it is a replacer function—effectively the inverse of the optional
reviver function you can pass to JSON.parse(). If specified, the replacer function is
invoked for each value to be stringified. The first argument to the replacer function is
the object property name or array index of the value within that object, and the sec‐
ond argument is the value itself. The replacer function is invoked as a method of the
object or array that contains the value to be stringified. The return value of the

308 | Chapter 11: The JavaScript Standard Library

replacer function is stringified in place of the original value. If the replacer returns
undefined or returns nothing at all, then that value (and its array element or object
property) is omitted from the stringification.

// Specify what fields to serialize, and what order to serialize them in
let text = JSON.stringify(address, ["city","state","country"]);

// Specify a replacer function that omits RegExp-value properties
let json = JSON.stringify(o, (k, v) => v instanceof RegExp ? undefined : v);

The two JSON.stringify() calls here use the second argument in a benign way, pro‐
ducing serialized output that can be deserialized without requiring a special reviver
function. In general, though, if you define a toJSON() method for a type, or if you use
a replacer function that actually replaces nonserializable values with serializable ones,
then you will typically need to use a custom reviver function with JSON.parse() to
get your original data structure back. If you do this, you should understand that you
are defining a custom data format and sacrificing portability and compatibility with a
large ecosystem of JSON-compatible tools and languages.

11.7 The Internationalization API
The JavaScript internationalization API consists of the three classes Intl.NumberFor‐
mat, Intl.DateTimeFormat, and Intl.Collator that allow us to format numbers (includ‐
ing monetary amounts and percentages), dates, and times in locale-appropriate ways
and to compare strings in locale-appropriate ways. These classes are not part of the
ECMAScript standard but are defined as part of the ECMA402 standard and are well-
supported by web browsers. The Intl API is also supported in Node, but at the time of
this writing, prebuilt Node binaries do not ship with the localization data required to
make them work with locales other than US English. So in order to use these classes
with Node, you may need to download a separate data package or use a custom build
of Node.

One of the most important parts of internationalization is displaying text that has
been translated into the user’s language. There are various ways to achieve this, but
none of them are within the scope of the Intl API described here.

11.7.1 Formatting Numbers
Users around the world expect numbers to be formatted in different ways. Decimal
points can be periods or commas. Thousands separators can be commas or periods,
and they aren’t used every three digits in all places. Some currencies are divided into
hundredths, some into thousandths, and some have no subdivisions. Finally,
although the so-called “Arabic numerals” 0 through 9 are used in many languages,
this is not universal, and users in some countries will expect to see numbers written
using the digits from their own scripts.

11.7 The Internationalization API | 309

https://tc39.es/ecma402/

The Intl.NumberFormat class defines a format() method that takes all of these for‐
matting possibilities into account. The constructor takes two arguments. The first
argument specifies the locale that the number should be formatted for and the second
is an object that specifies more details about how the number should be formatted. If
the first argument is omitted or undefined, then the system locale (which we assume
to be the user’s preferred locale) will be used. If the first argument is a string, it speci‐
fies a desired locale, such as "en-US" (English as used in the United States), "fr"
(French), or "zh-Hans-CN" (Chinese, using the simplified Han writing system, in
China). The first argument can also be an array of locale strings, and in this case,
Intl.NumberFormat will choose the most specific one that is well supported.

The second argument to the Intl.NumberFormat() constructor, if specified, should
be an object that defines one or more of the following properties:

style

Specifies the kind of number formatting that is required. The default is
"decimal". Specify "percent" to format a number as a percentage or specify
"currency" to specify a number as an amount of money.

currency

If style is "currency", then this property is required to specify the three-letter
ISO currency code (such as "USD" for US dollars or "GBP" for British pounds) of
the desired currency.

currencyDisplay

If style is "currency", then this property specifies how the currency is displayed.
The default value "symbol" uses a currency symbol if the currency has one. The
value "code" uses the three-letter ISO code, and the value "name" spells out the
name of the currency in long form.

useGrouping

Set this property to false if you do not want numbers to have thousands separa‐
tors (or their locale-appropriate equivalents).

minimumIntegerDigits

The minimum number of digits to use to display the integer part of the number.
If the number has fewer digits than this, it will be padded on the left with zeros.
The default value is 1, but you can use values as high as 21.

minimumFractionDigits, maximumFractionDigits
These two properties control the formatting of the fractional part of the number.
If a number has fewer fractional digits than the minimum, it will be padded with
zeros on the right. If it has more than the maximum, then the fractional part will
be rounded. Legal values for both properties are between 0 and 20. The default
minimum is 0 and the default maximum is 3, except when formatting monetary

310 | Chapter 11: The JavaScript Standard Library

amounts, when the length of the fractional part varies depending on the specified
currency.

minimumSignificantDigits, maximumSignificantDigits
These properties control the number of significant digits used when formatting a
number, making them suitable when formatting scientific data, for example. If
specified, these properties override the integer and fractional digit properties lis‐
ted previously. Legal values are between 1 and 21.

Once you have created an Intl.NumberFormat object with the desired locale and
options, you use it by passing a number to its format() method, which returns an
appropriately formatted string. For example:

let euros = Intl.NumberFormat("es", {style: "currency", currency: "EUR"});
euros.format(10) // => "10,00 €": ten euros, Spanish formatting

let pounds = Intl.NumberFormat("en", {style: "currency", currency: "GBP"});
pounds.format(1000) // => "£1,000.00": One thousand pounds, English formatting

A useful feature of Intl.NumberFormat (and the other Intl classes as well) is that its
format() method is bound to the NumberFormat object to which it belongs. So
instead of defining a variable that refers to the formatting object and then invoking
the format() method on that, you can just assign the format() method to a variable
and use it as if it were a standalone function, as in this example:

let data = [0.05, .75, 1];
let formatData = Intl.NumberFormat(undefined, {
 style: "percent",
 minimumFractionDigits: 1,
 maximumFractionDigits: 1
}).format;

data.map(formatData) // => ["5.0%", "75.0%", "100.0%"]: in en-US locale

Some languages, such as Arabic, use their own script for decimal digits:

let arabic = Intl.NumberFormat("ar", {useGrouping: false}).format;
arabic(1234567890) // => "١٢٣٤٥٦٧٨٩٠"

Other languages, such as Hindi, use a script that has its own set of digits, but tend to
use the ASCII digits 0–9 by default. If you want to override the default script used for
digits, add -u-nu- to the locale and follow it with an abbreviated script name. You can
format numbers with Indian-style grouping and Devanagari digits like this, for
example:

let hindi = Intl.NumberFormat("hi-IN-u-nu-deva").format;
hindi(1234567890) // => "१,२३,४५,६७,८९०"

-u- in a locale specifies that what comes next is a Unicode extension. nu is the exten‐
sion name for the numbering system, and deva is short for Devanagari. The Intl API

11.7 The Internationalization API | 311

standard defines names for a number of other numbering systems, mostly for the
Indic languages of South and Southeast Asia.

11.7.2 Formatting Dates and Times
The Intl.DateTimeFormat class is a lot like the Intl.NumberFormat class. The
Intl.DateTimeFormat() constructor takes the same two arguments that Intl.Num
berFormat() does: a locale or array of locales and an object of formatting options.
And the way you use an Intl.DateTimeFormat instance is by calling its format()
method to convert a Date object to a string.

As mentioned in §11.4, the Date class defines simple toLocaleDateString() and
toLocaleTimeString() methods that produce locale-appropriate output for the
user’s locale. But these methods don’t give you any control over what fields of the date
and time are displayed. Maybe you want to omit the year but add a weekday to the
date format. Do you want the month to be represented numerically or spelled out by
name? The Intl.DateTimeFormat class provides fine-grained control over what is out‐
put based on the properties in the options object that is passed as the second argu‐
ment to the constructor. Note, however, that Intl.DateTimeFormat cannot always
display exactly what you ask for. If you specify options to format hours and seconds
but omit minutes, you’ll find that the formatter displays the minutes anyway. The idea
is that you use the options object to specify what date and time fields you’d like to
present to the user and how you’d like those formatted (by name or by number, for
example), then the formatter will look for a locale-appropriate format that most
closely matches what you have asked for.

The available options are the following. Only specify properties for date and time
fields that you would like to appear in the formatted output.

year

Use "numeric" for a full, four-digit year or "2-digit" for a two-digit
abbreviation.

month

Use "numeric" for a possibly short number like “1”, or "2-digit" for a numeric
representation that always has two digits, like “01”. Use "long" for a full name
like “January”, "short" for an abbreviated name like “Jan”, and "narrow" for a
highly abbreviated name like “J” that is not guaranteed to be unique.

day

Use "numeric" for a one- or two-digit number or "2-digit" for a two-digit
number for the day-of-month.

312 | Chapter 11: The JavaScript Standard Library

weekday

Use "long" for a full name like “Monday”, "short" for an abbreviated name like
“Mon”, and "narrow" for a highly abbreviated name like “M” that is not guaran‐
teed to be unique.

era

This property specifies whether a date should be formatted with an era, such as
CE or BCE. This may be useful if you are formatting dates from very long ago or
if you are using a Japanese calendar. Legal values are "long", "short", and
"narrow".

hour, minute, second
These properties specify how you would like time displayed. Use "numeric" for a
one- or two-digit field or "2-digit" to force single-digit numbers to be padded
on the left with a 0.

timeZone

This property specifies the desired time zone for which the date should be for‐
matted. If omitted, the local time zone is used. Implementations always recognize
“UTC” and may also recognize Internet Assigned Numbers Authority (IANA)
time zone names, such as “America/Los_Angeles”.

timeZoneName

This property specifies how the time zone should be displayed in a formatted
date or time. Use "long" for a fully spelled-out time zone name and "short" for
an abbreviated or numeric time zone.

hour12

This boolean property specifies whether or not to use 12-hour time. The default
is locale dependent, but you can override it with this property.

hourCycle

This property allows you to specify whether midnight is written as 0 hours, 12
hours, or 24 hours. The default is locale dependent, but you can override the
default with this property. Note that hour12 takes precedence over this property.
Use the value "h11" to specify that midnight is 0 and the hour before midnight is
11pm. Use "h12" to specify that midnight is 12. Use "h23" to specify that mid‐
night is 0 and the hour before midnight is 23. And use "h24" to specify that mid‐
night is 24.

Here are some examples:

let d = new Date("2020-01-02T13:14:15Z"); // January 2nd, 2020, 13:14:15 UTC

// With no options, we get a basic numeric date format
Intl.DateTimeFormat("en-US").format(d) // => "1/2/2020"

11.7 The Internationalization API | 313

Intl.DateTimeFormat("fr-FR").format(d) // => "02/01/2020"

// Spelled out weekday and month
let opts = { weekday: "long", month: "long", year: "numeric", day: "numeric" };
Intl.DateTimeFormat("en-US", opts).format(d) // => "Thursday, January 2, 2020"
Intl.DateTimeFormat("es-ES", opts).format(d) // => "jueves, 2 de enero de 2020"

// The time in New York, for a French-speaking Canadian
opts = { hour: "numeric", minute: "2-digit", timeZone: "America/New_York" };
Intl.DateTimeFormat("fr-CA", opts).format(d) // => "8 h 14"

Intl.DateTimeFormat can display dates using calendars other than the default Julian
calendar based on the Christian era. Although some locales may use a non-Christian
calendar by default, you can always explicitly specify the calendar to use by adding
-u-ca- to the locale and following that with the name of the calendar. Possible calen‐
dar names include “buddhist”, “chinese”, “coptic”, “ethiopic”, “gregory”, “hebrew”,
“indian”, “islamic”, “iso8601”, “japanese”, and “persian”. Continuing the preceding
example, we can determine the year in various non-Christian calendars:

let opts = { year: "numeric", era: "short" };
Intl.DateTimeFormat("en", opts).format(d) // => "2020 AD"
Intl.DateTimeFormat("en-u-ca-iso8601", opts).format(d) // => "2020 AD"
Intl.DateTimeFormat("en-u-ca-hebrew", opts).format(d) // => "5780 AM"
Intl.DateTimeFormat("en-u-ca-buddhist", opts).format(d) // => "2563 BE"
Intl.DateTimeFormat("en-u-ca-islamic", opts).format(d) // => "1441 AH"
Intl.DateTimeFormat("en-u-ca-persian", opts).format(d) // => "1398 AP"
Intl.DateTimeFormat("en-u-ca-indian", opts).format(d) // => "1941 Saka"
Intl.DateTimeFormat("en-u-ca-chinese", opts).format(d) // => "36 78"
Intl.DateTimeFormat("en-u-ca-japanese", opts).format(d) // => "2 Reiwa"

11.7.3 Comparing Strings
The problem of sorting strings into alphabetical order (or some more general “colla‐
tion order” for nonalphabetical scripts) is more challenging than English speakers
often realize. English uses a relatively small alphabet with no accented letters, and we
have the benefit of a character encoding (ASCII, since incorporated into Unicode)
whose numerical values perfectly match our standard string sort order. Things are
not so simple in other languages. Spanish, for example treats ñ as a distinct letter that
comes after n and before o. Lithuanian alphabetizes Y before J, and Welsh treats
digraphs like CH and DD as single letters with CH coming after C and DD sorting
after D.

If you want to display strings to a user in an order that they will find natural, it is not
enough use the sort() method on an array of strings. But if you create an Intl.Colla‐
tor object, you can pass the compare() method of that object to the sort() method to
perform locale-appropriate sorting of the strings. Intl.Collator objects can be config‐
ured so that the compare() method performs case-insensitive comparisons or even
comparisons that only consider the base letter and ignore accents and other diacritics.

314 | Chapter 11: The JavaScript Standard Library

Like Intl.NumberFormat() and Intl.DateTimeFormat(), the Intl.Collator() con‐
structor takes two arguments. The first specifies a locale or an array of locales, and
the second is an optional object whose properties specify exactly what kind of string
comparison is to be done. The supported properties are these:

usage

This property specifies how the collator object is to be used. The default value is
"sort", but you can also specify "search". The idea is that, when sorting strings,
you typically want a collator that differentiates as many strings as possible to pro‐
duce a reliable ordering. But when comparing two strings, some locales may want
a less strict comparison that ignores accents, for example.

sensitivity

This property specifies whether the collator is sensitive to letter case and accents
when comparing strings. The value "base" causes comparisons that ignore case
and accents, considering only the base letter for each character. (Note, however,
that some languages consider certain accented characters to be distinct base let‐
ters.) "accent" considers accents in comparisons but ignores case. "case" con‐
siders case and ignores accents. And "variant" performs strict comparisons that
consider both case and accents. The default value for this property is "variant"
when usage is "sort". If usage is "search", then the default sensitivity depends
on the locale.

ignorePunctuation

Set this property to true to ignore spaces and punctuation when comparing
strings. With this property set to true, the strings “any one” and “anyone”, for
example, will be considered equal.

numeric

Set this property to true if the strings you are comparing are integers or contain
integers and you want them to be sorted into numerical order instead of alpha‐
betical order. With this option set, the string “Version 9” will be sorted before
“Version 10”, for example.

caseFirst

This property specifies which letter case should come first. If you specify
"upper", then “A” will sort before “a”. And if you specify "lower", then “a” will
sort before “A”. In either case, note that the upper- and lowercase variants of the
same letter will be next to one another in sort order, which is different than Uni‐
code lexicographic ordering (the default behavior of the Array sort() method)
in which all ASCII uppercase letters come before all ASCII lowercase letters. The
default for this property is locale dependent, and implementations may ignore
this property and not allow you to override the case sort order.

11.7 The Internationalization API | 315

Once you have created an Intl.Collator object for the desired locale and options, you
can use its compare() method to compare two strings. This method returns a num‐
ber. If the returned value is less than zero, then the first string comes before the sec‐
ond string. If it is greater than zero, then the first string comes after the second string.
And if compare() returns zero, then the two strings are equal as far as this collator is
concerned.

This compare() method that takes two strings and returns a number less than, equal
to, or greater than zero is exactly what the Array sort() method expects for its
optional argument. Also, Intl.Collator automatically binds the compare() method to
its instance, so you can pass it directly to sort() without having to write a wrapper
function and invoke it through the collator object. Here are some examples:

// A basic comparator for sorting in the user's locale.
// Never sort human-readable strings without passing something like this:
const collator = new Intl.Collator().compare;
["a", "z", "A", "Z"].sort(collator) // => ["a", "A", "z", "Z"]

// Filenames often include numbers, so we should sort those specially
const filenameOrder = new Intl.Collator(undefined, { numeric: true }).compare;
["page10", "page9"].sort(filenameOrder) // => ["page9", "page10"]

// Find all strings that loosely match a target string
const fuzzyMatcher = new Intl.Collator(undefined, {
 sensitivity: "base",
 ignorePunctuation: true
}).compare;
let strings = ["food", "fool", "Føø Bar"];
strings.findIndex(s => fuzzyMatcher(s, "foobar") === 0) // => 2

Some locales have more than one possible collation order. In Germany, for example,
phone books use a slightly more phonetic sort order than dictionaries do. In Spain,
before 1994, “ch” and “ll” were treated as separate letters, so that country now has a
modern sort order and a traditional sort order. And in China, collation order can be
based on character encodings, the base radical and strokes of each character, or on
the Pinyin romanization of characters. These collation variants cannot be selected
through the Intl.Collator options argument, but they can be selected by adding -u-
co- to the locale string and adding the name of the desired variant. Use "de-DE-u-
co-phonebk" for phone book ordering in Germany, for example, and "zh-TW-u-co-
pinyin" for Pinyin ordering in Taiwan.

// Before 1994, CH and LL were treated as separate letters in Spain
const modernSpanish = Intl.Collator("es-ES").compare;
const traditionalSpanish = Intl.Collator("es-ES-u-co-trad").compare;
let palabras = ["luz", "llama", "como", "chico"];
palabras.sort(modernSpanish) // => ["chico", "como", "llama", "luz"]
palabras.sort(traditionalSpanish) // => ["como", "chico", "luz", "llama"]

316 | Chapter 11: The JavaScript Standard Library

11.8 The Console API
You’ve seen the console.log() function used throughout this book: in web browsers,
it prints a string in the “Console” tab of the browser’s developer tools pane, which can
be very helpful when debugging. In Node, console.log() is a general-purpose out‐
put function and prints its arguments to the process’s stdout stream, where it typically
appears to the user in a terminal window as program output.

The Console API defines a number of useful functions in addition to console.log().
The API is not part of any ECMAScript standard, but it is supported by browsers and
by Node and has been formally written up and standardized at https://
console.spec.whatwg.org.

The Console API defines the following functions:

console.log()

This is the most well-known of the console functions. It converts its arguments to
strings and outputs them to the console. It includes spaces between the argu‐
ments and starts a new line after outputting all arguments.

console.debug(), console.info(), console.warn(), console.error()
These functions are almost identical to console.log(). In Node, con

sole.error() sends its output to the stderr stream rather than the stdout stream,
but the other functions are aliases of console.log(). In browsers, output mes‐
sages generated by each of these functions may be prefixed by an icon that indi‐
cates its level or severity, and the developer console may also allow developers to
filter console messages by level.

console.assert()

If the first argument is truthy (i.e., if the assertion passes), then this function does
nothing. But if the first argument is false or another falsy value, then the
remaining arguments are printed as if they had been passed to console.error()
with an “Assertion failed” prefix. Note that, unlike typical assert() functions,
console.assert() does not throw an exception when an assertion fails.

console.clear()

This function clears the console when that is possible. This works in browsers
and in Node when Node is displaying its output to a terminal. If Node’s output
has been redirected to a file or a pipe, however, then calling this function has no
effect.

console.table()

This function is a remarkably powerful but little-known feature for producing
tabular output, and it is particularly useful in Node programs that need to pro‐
duce output that summarizes data. console.table() attempts to display its

11.8 The Console API | 317

https://console.spec.whatwg.org
https://console.spec.whatwg.org

argument in tabular form (although, if it can’t do that, it displays it using regular
console.log() formatting). This works best when the argument is a relatively
short array of objects, and all of the objects in the array have the same (relatively
small) set of properties. In this case, each object in the array is formatted as a row
of the table, and each property is a column of the table. You can also pass an array
of property names as an optional second argument to specify the desired set of
columns. If you pass an object instead of an array of objects, then the output will
be a table with one column for property names and one column for property val‐
ues. Or, if those property values are themselves objects, their property names will
become columns in the table.

console.trace()

This function logs its arguments like console.log() does, and, in addition, fol‐
lows its output with a stack trace. In Node, the output goes to stderr instead of
stdout.

console.count()

This function takes a string argument and logs that string, followed by the num‐
ber of times it has been called with that string. This can be useful when debug‐
ging an event handler, for example, if you need to keep track of how many times
the event handler has been triggered.

console.countReset()

This function takes a string argument and resets the counter for that string.

console.group()

This function prints its arguments to the console as if they had been passed to
console.log(), then sets the internal state of the console so that all subsequent
console messages (until the next console.groupEnd() call) will be indented rela‐
tive to the message that it just printed. This allows a group of related messages to
be visually grouped with indentation. In web browsers, the developer console
typically allows grouped messages to be collapsed and expanded as a group. The
arguments to console.group() are typically used to provide an explanatory
name for the group.

console.groupCollapsed()

This function works like console.group() except that in web browsers, the
group will be “collapsed” by default and the messages it contains will be hidden
unless the user clicks to expand the group. In Node, this function is a synonym
for console.group().

318 | Chapter 11: The JavaScript Standard Library

6 C programmers will recognize many of these character sequences from the printf() function.

console.groupEnd()

This function takes no arguments. It produces no output of its own but ends the
indentation and grouping caused by the most recent call to console.group() or
console.groupCollapsed().

console.time()

This function takes a single string argument, makes a note of the time it was
called with that string, and produces no output.

console.timeLog()

This function takes a string as its first argument. If that string had previously
been passed to console.time(), then it prints that string followed by the elapsed
time since the console.time() call. If there are any additional arguments to
console.timeLog(), they are printed as if they had been passed to
console.log().

console.timeEnd()

This function takes a single string argument. If that argument had previously
been passed to console.time(), then it prints that argument and the elapsed
time. After calling console.timeEnd(), it is no longer legal to call console.time
Log() without first calling console.time() again.

11.8.1 Formatted Output with Console
Console functions that print their arguments like console.log() have a little-known
feature: if the first argument is a string that includes %s, %i, %d, %f, %o, %O, or %c, then
this first argument is treated as format string,6 and the values of subsequent argu‐
ments are substituted into the string in place of the two-character % sequences.

The meanings of the sequences are as follows:

%s

The argument is converted to a string.

%i and %d
The argument is converted to a number and then truncated to an integer.

%f

The argument is converted to a number

11.8 The Console API | 319

%o and %O
The argument is treated as an object, and property names and values are dis‐
played. (In web browsers, this display is typically interactive, and users can
expand and collapse properties to explore a nested data structure.) %o and %O
both display object details. The uppercase variant uses an implementation-
dependent output format that is judged to be most useful for software developers.

%c

In web browsers, the argument is interpreted as a string of CSS styles and used to
style any text that follows (until the next %c sequence or the end of the string). In
Node, the %c sequence and its corresponding argument are simply ignored.

Note that it is not often necessary to use a format string with the console functions: it
is usually easy to obtain suitable output by simply passing one or more values
(including objects) to the function and allowing the implementation to display them
in a useful way. As an example, note that, if you pass an Error object to
console.log(), it is automatically printed along with its stack trace.

11.9 URL APIs
Since JavaScript is so commonly used in web browsers and web servers, it is common
for JavaScript code to need to manipulate URLs. The URL class parses URLs and also
allows modification (adding search parameters or altering paths, for example) of
existing URLs. It also properly handles the complicated topic of escaping and unes‐
caping the various components of a URL.

The URL class is not part of any ECMAScript standard, but it works in Node and all
internet browsers other than Internet Explorer. It is standardized at https://
url.spec.whatwg.org.

Create a URL object with the URL() constructor, passing an absolute URL string as
the argument. Or pass a relative URL as the first argument and the absolute URL that
it is relative to as the second argument. Once you have created the URL object, its
various properties allow you to query unescaped versions of the various parts of the
URL:

let url = new URL("https://example.com:8000/path/name?q=term#fragment");
url.href // => "https://example.com:8000/path/name?q=term#fragment"
url.origin // => "https://example.com:8000"
url.protocol // => "https:"
url.host // => "example.com:8000"
url.hostname // => "example.com"
url.port // => "8000"
url.pathname // => "/path/name"
url.search // => "?q=term"
url.hash // => "#fragment"

320 | Chapter 11: The JavaScript Standard Library

https://url.spec.whatwg.org
https://url.spec.whatwg.org

Although it is not commonly used, URLs can include a username or a username and
password, and the URL class can parse these URL components, too:

let url = new URL("ftp://admin:1337!@ftp.example.com/");
url.href // => "ftp://admin:1337!@ftp.example.com/"
url.origin // => "ftp://ftp.example.com"
url.username // => "admin"
url.password // => "1337!"

The origin property here is a simple combination of the URL protocol and host
(including the port if one is specified). As such, it is a read-only property. But each of
the other properties demonstrated in the previous example is read/write: you can set
any of these properties to set the corresponding part of the URL:

let url = new URL("https://example.com"); // Start with our server
url.pathname = "api/search"; // Add a path to an API endpoint
url.search = "q=test"; // Add a query parameter
url.toString() // => "https://example.com/api/search?q=test"

One of the important features of the URL class is that it correctly adds punctuation
and escapes special characters in URLs when that is needed:

let url = new URL("https://example.com");
url.pathname = "path with spaces";
url.search = "q=foo#bar";
url.pathname // => "/path%20with%20spaces"
url.search // => "?q=foo%23bar"
url.href // => "https://example.com/path%20with%20spaces?q=foo%23bar"

The href property in these examples is a special one: reading href is equivalent to
calling toString(): it reassembles all parts of the URL into the canonical string form
of the URL. And setting href to a new string reruns the URL parser on the new string
as if you had called the URL() constructor again.

In the previous examples, we’ve been using the search property to refer to the entire
query portion of a URL, which consists of the characters from a question mark to the
end of the URL or to the first hash character. Sometimes, it is sufficient to just treat
this as a single URL property. Often, however, HTTP requests encode the values of
multiple form fields or multiple API parameters into the query portion of a URL
using the application/x-www-form-urlencoded format. In this format, the query
portion of the URL is a question mark followed by one or more name/value pairs,
which are separated from one another by ampersands. The same name can appear
more than once, resulting in a named search parameter with more than one value.

If you want to encode these kinds of name/value pairs into the query portion of a
URL, then the searchParams property will be more useful than the search property.
The search property is a read/write string that lets you get and set the entire query
portion of the URL. The searchParams property is a read-only reference to a

11.9 URL APIs | 321

URLSearchParams object, which has an API for getting, setting, adding, deleting, and
sorting the parameters encoded into the query portion of the URL:

let url = new URL("https://example.com/search");
url.search // => "": no query yet
url.searchParams.append("q", "term"); // Add a search parameter
url.search // => "?q=term"
url.searchParams.set("q", "x"); // Change the value of this parameter
url.search // => "?q=x"
url.searchParams.get("q") // => "x": query the parameter value
url.searchParams.has("q") // => true: there is a q parameter
url.searchParams.has("p") // => false: there is no p parameter
url.searchParams.append("opts", "1"); // Add another search parameter
url.search // => "?q=x&opts=1"
url.searchParams.append("opts", "&"); // Add another value for same name
url.search // => "?q=x&opts=1&opts=%26": note escape
url.searchParams.get("opts") // => "1": the first value
url.searchParams.getAll("opts") // => ["1", "&"]: all values
url.searchParams.sort(); // Put params in alphabetical order
url.search // => "?opts=1&opts=%26&q=x"
url.searchParams.set("opts", "y"); // Change the opts param
url.search // => "?opts=y&q=x"
// searchParams is iterable
[...url.searchParams] // => [["opts", "y"], ["q", "x"]]
url.searchParams.delete("opts"); // Delete the opts param
url.search // => "?q=x"
url.href // => "https://example.com/search?q=x"

The value of the searchParams property is a URLSearchParams object. If you want to
encode URL parameters into a query string, you can create a URLSearchParams
object, append parameters, then convert it to a string and set it on the search prop‐
erty of a URL:

let url = new URL("http://example.com");
let params = new URLSearchParams();
params.append("q", "term");
params.append("opts", "exact");
params.toString() // => "q=term&opts=exact"
url.search = params;
url.href // => "http://example.com/?q=term&opts=exact"

11.9.1 Legacy URL Functions
Prior to the definition of the URL API described previously, there have been multiple
attempts to support URL escaping and unescaping in the core JavaScript language.
The first attempt was the globally defined escape() and unescape() functions, which
are now deprecated but still widely implemented. They should not be used.

When escape() and unescape() were deprecated, ECMAScript introduced two pairs
of alternative global functions:

322 | Chapter 11: The JavaScript Standard Library

encodeURI() and decodeURI()
encodeURI() takes a string as its argument and returns a new string in which
non-ASCII characters plus certain ASCII characters (such as space) are escaped.
decodeURI() reverses the process. Characters that need to be escaped are first
converted to their UTF-8 encoding, then each byte of that encoding is replaced
with a %xx escape sequence, where xx is two hexadecimal digits. Because enco
deURI() is intended for encoding entire URLs, it does not escape URL separator
characters such as /, ?, and #. But this means that encodeURI() cannot work cor‐
rectly for URLs that have those characters within their various components.

encodeURIComponent() and decodeURIComponent()
This pair of functions works just like encodeURI() and decodeURI() except that
they are intended to escape individual components of a URI, so they also escape
characters like /, ?, and # that are used to separate those components. These are
the most useful of the legacy URL functions, but be aware that encodeURICompo
nent() will escape / characters in a path name that you probably do not want
escaped. And it will convert spaces in a query parameter to %20, even though
spaces are supposed to be escaped with a + in that portion of a URL.

The fundamental problem with all of these legacy functions is that they seek to apply
a single encoding scheme to all parts of a URL when the fact is that different portions
of a URL use different encodings. If you want a properly formatted and encoded
URL, the solution is simply to use the URL class for all URL manipulation you do.

11.10 Timers
Since the earliest days of JavaScript, web browsers have defined two functions—
setTimeout() and setInterval()—that allow programs to ask the browser to invoke
a function after a specified amount of time has elapsed or to invoke the function
repeatedly at a specified interval. These functions have never been standardized as
part of the core language, but they work in all browsers and in Node and are a de
facto part of the JavaScript standard library.

The first argument to setTimeout() is a function, and the second argument is a num‐
ber that specifies how many milliseconds should elapse before the function is
invoked. After the specified amount of time (and maybe a little longer if the system is
busy), the function will be invoked with no arguments. Here, for example, are three
setTimeout() calls that print console messages after one second, two seconds, and
three seconds:

setTimeout(() => { console.log("Ready..."); }, 1000);
setTimeout(() => { console.log("set..."); }, 2000);
setTimeout(() => { console.log("go!"); }, 3000);

11.10 Timers | 323

Note that setTimeout() does not wait for the time to elapse before returning. All
three lines of code in this example run almost instantly, but then nothing happens
until 1,000 milliseconds elapse.

If you omit the second argument to setTimeout(), it defaults to 0. That does not
mean, however, that the function you specify is invoked immediately. Instead, the
function is registered to be called “as soon as possible.” If a browser is particularly
busy handling user input or other events, it may take 10 milliseconds or more before
the function is invoked.

setTimeout() registers a function to be invoked once. Sometimes, that function will
itself call setTimeout() to schedule another invocation at a future time. If you want
to invoke a function repeatedly, however, it is often simpler to use setInterval().
setInterval() takes the same two arguments as setTimeout() but invokes the func‐
tion repeatedly every time the specified number of milliseconds (approximately) have
elapsed.

Both setTimeout() and setInterval() return a value. If you save this value in a
variable, you can then use it later to cancel the execution of the function by passing it
to clearTimeout() or clearInterval(). The returned value is typically a number in
web browsers and is an object in Node. The actual type doesn’t matter, and you
should treat it as an opaque value. The only thing you can do with this value is pass it
to clearTimeout() to cancel the execution of a function registered with setTime
out() (assuming it hasn’t been invoked yet) or to stop the repeating execution of a
function registered with setInterval().

Here is an example that demonstrates the use of setTimeout(), setInterval(), and
clearInterval() to display a simple digital clock with the Console API:

// Once a second: clear the console and print the current time
let clock = setInterval(() => {
 console.clear();
 console.log(new Date().toLocaleTimeString());
}, 1000);

// After 10 seconds: stop the repeating code above.
setTimeout(() => { clearInterval(clock); }, 10000);

We’ll see setTimeout() and setInterval() again when we cover asynchronous pro‐
gramming in Chapter 13.

324 | Chapter 11: The JavaScript Standard Library

11.11 Summary
Learning a programming language is not just about mastering the grammar. It is
equally important to study the standard library so that you are familiar with all the
tools that are shipped with the language. This chapter has documented JavaScript’s
standard library, which includes:

• Important data structures, such as Set, Map, and typed arrays.
• The Date and URL classes for working with dates and URLs.
• JavaScript’s regular expression grammar and its RegExp class for textual pattern

matching.
• JavaScript’s internationalization library for formatting dates, time, and numbers

and for sorting strings.
• The JSON object for serializing and deserializing simple data structures and the
console object for logging messages.

11.11 Summary | 325

CHAPTER 12

Iterators and Generators

Iterable objects and their associated iterators are a feature of ES6 that we’ve seen sev‐
eral times throughout this book. Arrays (including TypedArrays) are iterable, as are
strings and Set and Map objects. This means that the contents of these data structures
can be iterated—looped over—with the for/of loop, as we saw in §5.4.4:

let sum = 0;
for(let i of [1,2,3]) { // Loop once for each of these values
 sum += i;
}
sum // => 6

Iterators can also be used with the ... operator to expand or “spread” an iterable
object into an array initializer or function invocation, as we saw in §7.1.2:

let chars = [..."abcd"]; // chars == ["a", "b", "c", "d"]
let data = [1, 2, 3, 4, 5];
Math.max(...data) // => 5

Iterators can be used with destructuring assignment:

let purpleHaze = Uint8Array.of(255, 0, 255, 128);
let [r, g, b, a] = purpleHaze; // a == 128

When you iterate a Map object, the returned values are [key, value] pairs, which
work well with destructuring assignment in a for/of loop:

let m = new Map([["one", 1], ["two", 2]]);
for(let [k,v] of m) console.log(k, v); // Logs 'one 1' and 'two 2'

If you want to iterate just the keys or just the values rather than the pairs, you can use
the keys() and values() methods:

[...m] // => [["one", 1], ["two", 2]]: default iteration
[...m.entries()] // => [["one", 1], ["two", 2]]: entries() method is the same

327

[...m.keys()] // => ["one", "two"]: keys() method iterates just map keys
[...m.values()] // => [1, 2]: values() method iterates just map values

Finally, a number of built-in functions and constructors that are commonly used with
Array objects are actually written (in ES6 and later) to accept arbitrary iterators
instead. The Set() constructor is one such API:

// Strings are iterable, so the two sets are the same:
new Set("abc") // => new Set(["a", "b", "c"])

This chapter explains how iterators work and demonstrates how to create your own
data structures that are iterable. After explaining basic iterators, this chapter covers
generators, a powerful new feature of ES6 that is primarily used as a particularly easy
way to create iterators.

12.1 How Iterators Work
The for/of loop and spread operator work seamlessly with iterable objects, but it is
worth understanding what is actually happening to make the iteration work. There
are three separate types that you need to understand to understand iteration in Java‐
Script. First, there are the iterable objects: these are types like Array, Set, and Map that
can be iterated. Second, there is the iterator object itself, which performs the iteration.
And third, there is the iteration result object that holds the result of each step of the
iteration.

An iterable object is any object with a special iterator method that returns an iterator
object. An iterator is any object with a next() method that returns an iteration result
object. And an iteration result object is an object with properties named value and
done. To iterate an iterable object, you first call its iterator method to get an iterator
object. Then, you call the next() method of the iterator object repeatedly until the
returned value has its done property set to true. The tricky thing about this is that the
iterator method of an iterable object does not have a conventional name but uses the
Symbol Symbol.iterator as its name. So a simple for/of loop over an iterable object
iterable could also be written the hard way, like this:

let iterable = [99];
let iterator = iterable[Symbol.iterator]();
for(let result = iterator.next(); !result.done; result = iterator.next()) {
 console.log(result.value) // result.value == 99
}

The iterator object of the built-in iterable datatypes is itself iterable. (That is, it has a
method named Symbol.iterator that just returns itself.) This is occasionally useful
in code like the following when you want to iterate though a “partially used” iterator:

let list = [1,2,3,4,5];
let iter = list[Symbol.iterator]();

328 | Chapter 12: Iterators and Generators

let head = iter.next().value; // head == 1
let tail = [...iter]; // tail == [2,3,4,5]

12.2 Implementing Iterable Objects
Iterable objects are so useful in ES6 that you should consider making your own data‐
types iterable whenever they represent something that can be iterated. The Range
classes shown in Examples 9-2 and 9-3 in Chapter 9 were iterable. Those classes used
generator functions to make themselves iterable. We’ll document generators later in
this chapter, but first, we will implement the Range class one more time, making it
iterable without relying on a generator.

In order to make a class iterable, you must implement a method whose name is the
Symbol Symbol.iterator. That method must return an iterator object that has a
next() method. And the next() method must return an iteration result object that
has a value property and/or a boolean done property. Example 12-1 implements an
iterable Range class and demonstrates how to create iterable, iterator, and iteration
result objects.

Example 12-1. An iterable numeric Range class

/*
 * A Range object represents a range of numbers {x: from <= x <= to}
 * Range defines a has() method for testing whether a given number is a member
 * of the range. Range is iterable and iterates all integers within the range.
 */
class Range {
 constructor (from, to) {
 this.from = from;
 this.to = to;
 }

 // Make a Range act like a Set of numbers
 has(x) { return typeof x === "number" && this.from <= x && x <= this.to; }

 // Return string representation of the range using set notation
 toString() { return `{ x | ${this.from} ≤ x ≤ ${this.to} }`; }

 // Make a Range iterable by returning an iterator object.
 // Note that the name of this method is a special symbol, not a string.
 [Symbol.iterator]() {
 // Each iterator instance must iterate the range independently of
 // others. So we need a state variable to track our location in the
 // iteration. We start at the first integer >= from.
 let next = Math.ceil(this.from); // This is the next value we return
 let last = this.to; // We won't return anything > this
 return { // This is the iterator object
 // This next() method is what makes this an iterator object.

12.2 Implementing Iterable Objects | 329

 // It must return an iterator result object.
 next() {
 return (next <= last) // If we haven't returned last value yet
 ? { value: next++ } // return next value and increment it
 : { done: true }; // otherwise indicate that we're done.
 },

 // As a convenience, we make the iterator itself iterable.
 [Symbol.iterator]() { return this; }
 };
 }
}

for(let x of new Range(1,10)) console.log(x); // Logs numbers 1 to 10
[...new Range(-2,2)] // => [-2, -1, 0, 1, 2]

In addition to making your classes iterable, it can be quite useful to define functions
that return iterable values. Consider these iterable-based alternatives to the map() and
filter() methods of JavaScript arrays:

// Return an iterable object that iterates the result of applying f()
// to each value from the source iterable
function map(iterable, f) {
 let iterator = iterable[Symbol.iterator]();
 return { // This object is both iterator and iterable
 [Symbol.iterator]() { return this; },
 next() {
 let v = iterator.next();
 if (v.done) {
 return v;
 } else {
 return { value: f(v.value) };
 }
 }
 };
}

// Map a range of integers to their squares and convert to an array
[...map(new Range(1,4), x => x*x)] // => [1, 4, 9, 16]

// Return an iterable object that filters the specified iterable,
// iterating only those elements for which the predicate returns true
function filter(iterable, predicate) {
 let iterator = iterable[Symbol.iterator]();
 return { // This object is both iterator and iterable
 [Symbol.iterator]() { return this; },
 next() {
 for(;;) {
 let v = iterator.next();
 if (v.done || predicate(v.value)) {
 return v;
 }

330 | Chapter 12: Iterators and Generators

 }
 }
 };
}

// Filter a range so we're left with only even numbers
[...filter(new Range(1,10), x => x % 2 === 0)] // => [2,4,6,8,10]

One key feature of iterable objects and iterators is that they are inherently lazy: when
computation is required to compute the next value, that computation can be deferred
until the value is actually needed. Suppose, for example, that you have a very long
string of text that you want to tokenize into space-separated words. You could simply
use the split() method of your string, but if you do this, then the entire string has to
be processed before you can use even the first word. And you end up allocating lots of
memory for the returned array and all of the strings within it. Here is a function that
allows you to lazily iterate the words of a string without keeping them all in memory
at once (in ES2020, this function would be much easier to implement using the
iterator-returning matchAll() method described in §11.3.2):

function words(s) {
 var r = /\s+|$/g; // Match one or more spaces or end
 r.lastIndex = s.match(/[^]/).index; // Start matching at first nonspace
 return { // Return an iterable iterator object
 [Symbol.iterator]() { // This makes us iterable
 return this;
 },
 next() { // This makes us an iterator
 let start = r.lastIndex; // Resume where the last match ended
 if (start < s.length) { // If we're not done
 let match = r.exec(s); // Match the next word boundary
 if (match) { // If we found one, return the word
 return { value: s.substring(start, match.index) };
 }
 }
 return { done: true }; // Otherwise, say that we're done
 }
 };
}

[...words(" abc def ghi! ")] // => ["abc", "def", "ghi!"]

12.2.1 “Closing” an Iterator: The Return Method
Imagine a (server-side) JavaScript variant of the words() iterator that, instead of tak‐
ing a source string as its argument, takes the name of a file, opens the file, reads lines
from it, and iterates the words from those lines. In most operating systems, programs
that open files to read from them need to remember to close those files when they are
done reading, so this hypothetical iterator would be sure to close the file after the
next() method returns the last word in it.

12.2 Implementing Iterable Objects | 331

But iterators don’t always run all the way to the end: a for/of loop might be termi‐
nated with a break or return or by an exception. Similarly, when an iterator is used
with destructuring assignment, the next() method is only called enough times to
obtain values for each of the specified variables. The iterator may have many more
values it could return, but they will never be requested.

If our hypothetical words-in-a-file iterator never runs all the way to the end, it still
needs to close the file it opened. For this reason, iterator objects may implement a
return() method to go along with the next() method. If iteration stops before
next() has returned an iteration result with the done property set to true (most com‐
monly because you left a for/of loop early via a break statement), then the inter‐
preter will check to see if the iterator object has a return() method. If this method
exists, the interpreter will invoke it with no arguments, giving the iterator the chance
to close files, release memory, and otherwise clean up after itself. The return()
method must return an iterator result object. The properties of the object are ignored,
but it is an error to return a non-object value.

The for/of loop and the spread operator are really useful features of JavaScript, so
when you are creating APIs, it is a good idea to use them when possible. But having
to work with an iterable object, its iterator object, and the iterator’s result objects
makes the process somewhat complicated. Fortunately, generators can dramatically
simplify the creation of custom iterators, as we’ll see in the rest of this chapter.

12.3 Generators
A generator is a kind of iterator defined with powerful new ES6 syntax; it’s particu‐
larly useful when the values to be iterated are not the elements of a data structure, but
the result of a computation.

To create a generator, you must first define a generator function. A generator function
is syntactically like a regular JavaScript function but is defined with the keyword
function* rather than function. (Technically, this is not a new keyword, just a * after
the keyword function and before the function name.) When you invoke a generator
function, it does not actually execute the function body, but instead returns a genera‐
tor object. This generator object is an iterator. Calling its next() method causes the
body of the generator function to run from the start (or whatever its current position
is) until it reaches a yield statement. yield is new in ES6 and is something like a
return statement. The value of the yield statement becomes the value returned by
the next() call on the iterator. An example makes this clearer:

// A generator function that yields the set of one digit (base-10) primes.
function* oneDigitPrimes() { // Invoking this function does not run the code
 yield 2; // but just returns a generator object. Calling
 yield 3; // the next() method of that generator runs
 yield 5; // the code until a yield statement provides

332 | Chapter 12: Iterators and Generators

 yield 7; // the return value for the next() method.
}

// When we invoke the generator function, we get a generator
let primes = oneDigitPrimes();

// A generator is an iterator object that iterates the yielded values
primes.next().value // => 2
primes.next().value // => 3
primes.next().value // => 5
primes.next().value // => 7
primes.next().done // => true

// Generators have a Symbol.iterator method to make them iterable
primes[Symbol.iterator]() // => primes

// We can use generators like other iterable types
[...oneDigitPrimes()] // => [2,3,5,7]
let sum = 0;
for(let prime of oneDigitPrimes()) sum += prime;
sum // => 17

In this example, we used a function* statement to define a generator. Like regular
functions, however, we can also define generators in expression form. Once again, we
just put an asterisk after the function keyword:

const seq = function*(from,to) {
 for(let i = from; i <= to; i++) yield i;
};
[...seq(3,5)] // => [3, 4, 5]

In classes and object literals, we can use shorthand notation to omit the function
keyword entirely when we define methods. To define a generator in this context, we
simply use an asterisk before the method name where the function keyword would
have been, had we used it:

let o = {
 x: 1, y: 2, z: 3,
 // A generator that yields each of the keys of this object
 *g() {
 for(let key of Object.keys(this)) {
 yield key;
 }
 }
};
[...o.g()] // => ["x", "y", "z", "g"]

Note that there is no way to write a generator function using arrow function syntax.

Generators often make it particularly easy to define iterable classes. We can replace
the [Symbol.iterator]() method show in Example 12-1 with a much shorter *[Sym
bol.iterator]() generator function that looks like this:

12.3 Generators | 333

*[Symbol.iterator]() {
 for(let x = Math.ceil(this.from); x <= this.to; x++) yield x;
}

See Example 9-3 in Chapter 9 to see this generator-based iterator function in context.

12.3.1 Generator Examples
Generators are more interesting if they actually generate the values they yield by
doing some kind of computation. Here, for example, is a generator function that
yields Fibonacci numbers:

function* fibonacciSequence() {
 let x = 0, y = 1;
 for(;;) {
 yield y;
 [x, y] = [y, x+y]; // Note: destructuring assignment
 }
}

Note that the fibonacciSequence() generator function here has an infinite loop and
yields values forever without returning. If this generator is used with the ... spread
operator, it will loop until memory is exhausted and the program crashes. With care,
it is possible to use it in a for/of loop, however:

// Return the nth Fibonacci number
function fibonacci(n) {
 for(let f of fibonacciSequence()) {
 if (n-- <= 0) return f;
 }
}
fibonacci(20) // => 10946

This kind of infinite generator becomes more useful with a take() generator like this:

// Yield the first n elements of the specified iterable object
function* take(n, iterable) {
 let it = iterable[Symbol.iterator](); // Get iterator for iterable object
 while(n-- > 0) { // Loop n times:
 let next = it.next(); // Get the next item from the iterator.
 if (next.done) return; // If there are no more values, return early
 else yield next.value; // otherwise, yield the value
 }
}

// An array of the first 5 Fibonacci numbers
[...take(5, fibonacciSequence())] // => [1, 1, 2, 3, 5]

Here is another useful generator function that interleaves the elements of multiple
iterable objects:

// Given an array of iterables, yield their elements in interleaved order.
function* zip(...iterables) {

334 | Chapter 12: Iterators and Generators

 // Get an iterator for each iterable
 let iterators = iterables.map(i => i[Symbol.iterator]());
 let index = 0;
 while(iterators.length > 0) { // While there are still some iterators
 if (index >= iterators.length) { // If we reached the last iterator
 index = 0; // go back to the first one.
 }
 let item = iterators[index].next(); // Get next item from next iterator.
 if (item.done) { // If that iterator is done
 iterators.splice(index, 1); // then remove it from the array.
 }
 else { // Otherwise,
 yield item.value; // yield the iterated value
 index++; // and move on to the next iterator.
 }
 }
}

// Interleave three iterable objects
[...zip(oneDigitPrimes(),"ab",[0])] // => [2,"a",0,3,"b",5,7]

12.3.2 yield* and Recursive Generators
In addition to the zip() generator defined in the preceding example, it might be use‐
ful to have a similar generator function that yields the elements of multiple iterable
objects sequentially rather than interleaving them. We could write that generator like
this:

function* sequence(...iterables) {
 for(let iterable of iterables) {
 for(let item of iterable) {
 yield item;
 }
 }
}

[...sequence("abc",oneDigitPrimes())] // => ["a","b","c",2,3,5,7]

This process of yielding the elements of some other iterable object is common
enough in generator functions that ES6 has special syntax for it. The yield* keyword
is like yield except that, rather than yielding a single value, it iterates an iterable
object and yields each of the resulting values. The sequence() generator function that
we’ve used can be simplified with yield* like this:

function* sequence(...iterables) {
 for(let iterable of iterables) {
 yield* iterable;
 }
}

[...sequence("abc",oneDigitPrimes())] // => ["a","b","c",2,3,5,7]

12.3 Generators | 335

The array forEach() method is often an elegant way to loop over the elements of an
array, so you might be tempted to write the sequence() function like this:

function* sequence(...iterables) {
 iterables.forEach(iterable => yield* iterable); // Error
}

This does not work, however. yield and yield* can only be used within generator
functions, but the nested arrow function in this code is a regular function, not a
function* generator function, so yield is not allowed.

yield* can be used with any kind of iterable object, including iterables implemented
with generators. This means that yield* allows us to define recursive generators, and
you might use this feature to allow simple non-recursive iteration over a recursively
defined tree structure, for example.

12.4 Advanced Generator Features
The most common use of generator functions is to create iterators, but the funda‐
mental feature of generators is that they allow us to pause a computation, yield inter‐
mediate results, and then resume the computation later. This means that generators
have features beyond those of iterators, and we explore those features in the following
sections.

12.4.1 The Return Value of a Generator Function
The generator functions we’ve seen so far have not had return statements, or if they
have, they have been used to cause an early return, not to return a value. Like any
function, though, a generator function can return a value. In order to understand
what happens in this case, recall how iteration works. The return value of the next()
function is an object that has a value property and/or a done property. With typical
iterators and generators, if the value property is defined, then the done property is
undefined or is false. And if done is true, then value is undefined. But in the case of
a generator that returns a value, the final call to next returns an object that has both
value and done defined. The value property holds the return value of the generator
function, and the done property is true, indicating that there are no more values to
iterate. This final value is ignored by the for/of loop and by the spread operator, but
it is available to code that manually iterates with explicit calls to next():

function *oneAndDone() {
 yield 1;
 return "done";
}

// The return value does not appear in normal iteration.
[...oneAndDone()] // => [1]

336 | Chapter 12: Iterators and Generators

// But it is available if you explicitly call next()
let generator = oneAndDone();
generator.next() // => { value: 1, done: false}
generator.next() // => { value: "done", done: true }
// If the generator is already done, the return value is not returned again
generator.next() // => { value: undefined, done: true }

12.4.2 The Value of a yield Expression
In the preceding discussion, we’ve treated yield as a statement that takes a value but
has no value of its own. In fact, however, yield is an expression, and it can have a
value.

When the next() method of a generator is invoked, the generator function runs until
it reaches a yield expression. The expression that follows the yield keyword is eval‐
uated, and that value becomes the return value of the next() invocation. At this
point, the generator function stops executing right in the middle of evaluating the
yield expression. The next time the next() method of the generator is called, the
argument passed to next() becomes the value of the yield expression that was
paused. So the generator returns values to its caller with yield, and the caller passes
values in to the generator with next(). The generator and caller are two separate
streams of execution passing values (and control) back and forth. The following code
illustrates:

function* smallNumbers() {
 console.log("next() invoked the first time; argument discarded");
 let y1 = yield 1; // y1 == "b"
 console.log("next() invoked a second time with argument", y1);
 let y2 = yield 2; // y2 == "c"
 console.log("next() invoked a third time with argument", y2);
 let y3 = yield 3; // y3 == "d"
 console.log("next() invoked a fourth time with argument", y3);
 return 4;
}

let g = smallNumbers();
console.log("generator created; no code runs yet");
let n1 = g.next("a"); // n1.value == 1
console.log("generator yielded", n1.value);
let n2 = g.next("b"); // n2.value == 2
console.log("generator yielded", n2.value);
let n3 = g.next("c"); // n3.value == 3
console.log("generator yielded", n3.value);
let n4 = g.next("d"); // n4 == { value: 4, done: true }
console.log("generator returned", n4.value);

When this code runs, it produces the following output that demonstrates the back-
and-forth between the two blocks of code:

12.4 Advanced Generator Features | 337

generator created; no code runs yet
next() invoked the first time; argument discarded
generator yielded 1
next() invoked a second time with argument b
generator yielded 2
next() invoked a third time with argument c
generator yielded 3
next() invoked a fourth time with argument d
generator returned 4

Note the asymmetry in this code. The first invocation of next() starts the generator,
but the value passed to that invocation is not accessible to the generator.

12.4.3 The return() and throw() Methods of a Generator
We’ve seen that you can receive values yielded by or returned by a generator function.
And you can pass values to a running generator by passing those values when you call
the next() method of the generator.

In addition to providing input to a generator with next(), you can also alter the flow
of control inside the generator by calling its return() and throw() methods. As the
names suggest, calling these methods on a generator causes it to return a value or
throw an exception as if the next statement in the generator was a return or throw.

Recall from earlier in the chapter that, if an iterator defines a return() method and
iteration stops early, then the interpreter automatically calls the return() method to
give the iterator a chance to close files or do other cleanup. In the case of generators,
you can’t define a custom return() method to handle cleanup, but you can structure
the generator code to use a try/finally statement that ensures the necessary cleanup
is done (in the finally block) when the generator returns. By forcing the generator
to return, the generator’s built-in return() method ensures that the cleanup code is
run when the generator will no longer be used.

Just as the next() method of a generator allows us to pass arbitrary values into a run‐
ning generator, the throw() method of a generator gives us a way to send arbitrary
signals (in the form of exceptions) into a generator. Calling the throw() method
always causes an exception inside the generator. But if the generator function is writ‐
ten with appropriate exception-handling code, the exception need not be fatal but can
instead be a means of altering the behavior of the generator. Imagine, for example, a
counter generator that yields an ever-increasing sequence of integers. This could be
written so that an exception sent with throw() would reset the counter to zero.

When a generator uses yield* to yield values from some other iterable object, then a
call to the next() method of the generator causes a call to the next() method of the
iterable object. The same is true of the return() and throw() methods. If a generator
uses yield* on an iterable object that has these methods defined, then calling

338 | Chapter 12: Iterators and Generators

return() or throw() on the generator causes the iterator’s return() or throw()
method to be called in turn. All iterators must have a next() method. Iterators that
need to clean up after incomplete iteration should define a return() method. And
any iterator may define a throw() method, though I don’t know of any practical rea‐
son to do so.

12.4.4 A Final Note About Generators
Generators are a very powerful generalized control structure. They give us the ability
to pause a computation with yield and restart it again at some arbitrary later time
with an arbitrary input value. It is possible to use generators to create a kind of coop‐
erative threading system within single-threaded JavaScript code. And it is possible to
use generators to mask asynchronous parts of your program so that your code
appears sequential and synchronous, even though some of your function calls are
actually asynchronous and depend on events from the network.

Trying to do these things with generators leads to code that is mind-bendingly hard
to understand or to explain. It has been done, however, and the only really practical
use case has been for managing asynchronous code. JavaScript now has async and
await keywords (see Chapter 13) for this very purpose, however, and there is no
longer any reason to abuse generators in this way.

12.5 Summary
In this chapter, you have learned:

• The for/of loop and the ... spread operator work with iterable objects.
• An object is iterable if it has a method with the symbolic name [Symbol.itera
tor] that returns an iterator object.

• An iterator object has a next() method that returns an iteration result object.
• An iteration result object has a value property that holds the next iterated value,

if there is one. If the iteration has completed, then the result object must have a
done property set to true.

• You can implement your own iterable objects by defining a [Symbol.iterator]
() method that returns an object with a next() method that returns iteration
result objects. You can also implement functions that accept iterator arguments
and return iterator values.

• Generator functions (functions defined with function* instead of function) are
another way to define iterators.

• When you invoke a generator function, the body of the function does not run
right away; instead, the return value is an iterable iterator object. Each time the

12.5 Summary | 339

next() method of the iterator is called, another chunk of the generator function
runs.

• Generator functions can use the yield operator to specify the values that are
returned by the iterator. Each call to next() causes the generator function to run
up to the next yield expression. The value of that yield expression then
becomes the value returned by the iterator. When there are no more yield
expressions, then the generator function returns, and the iteration is complete.

340 | Chapter 12: Iterators and Generators

CHAPTER 13

Asynchronous JavaScript

Some computer programs, such as scientific simulations and machine learning mod‐
els, are compute-bound: they run continuously, without pause, until they have com‐
puted their result. Most real-world computer programs, however, are significantly
asynchronous. This means that they often have to stop computing while waiting for
data to arrive or for some event to occur. JavaScript programs in a web browser are
typically event-driven, meaning that they wait for the user to click or tap before they
actually do anything. And JavaScript-based servers typically wait for client requests to
arrive over the network before they do anything.

This kind of asynchronous programming is commonplace in JavaScript, and this
chapter documents three important language features that help make it easier to work
with asynchronous code. Promises, new in ES6, are objects that represent the not-yet-
available result of an asynchronous operation. The keywords async and await were
introduced in ES2017 and provide new syntax that simplifies asynchronous program‐
ming by allowing you to structure your Promise-based code as if it was synchronous.
Finally, asynchronous iterators and the for/await loop were introduced in ES2018
and allow you to work with streams of asynchronous events using simple loops that
appear synchronous.

Ironically, even though JavaScript provides these powerful features for working with
asynchronous code, there are no features of the core language that are themselves
asynchronous. In order to demonstrate Promises, async, await, and for/await,
therefore, we will first take a detour into client-side and server-side JavaScript to
explain some of the asynchronous features of web browsers and Node. (You can learn
more about client-side and server-side JavaScript in Chapters 15 and 16.)

341

13.1 Asynchronous Programming with Callbacks
At its most fundamental level, asynchronous programming in JavaScript is done with
callbacks. A callback is a function that you write and then pass to some other func‐
tion. That other function then invokes (“calls back”) your function when some condi‐
tion is met or some (asynchronous) event occurs. The invocation of the callback
function you provide notifies you of the condition or event, and sometimes, the invo‐
cation will include function arguments that provide additional details. This is easier
to understand with some concrete examples, and the subsections that follow demon‐
strate various forms of callback-based asynchronous programming using both client-
side JavaScript and Node.

13.1.1 Timers
One of the simplest kinds of asynchrony is when you want to run some code after a
certain amount of time has elapsed. As we saw in §11.10, you can do this with the
setTimeout() function:

setTimeout(checkForUpdates, 60000);

The first argument to setTimeout() is a function and the second is a time interval
measured in milliseconds. In the preceding code, a hypothetical checkForUpdates()
function will be called 60,000 milliseconds (1 minute) after the setTimeout() call.
checkForUpdates() is a callback function that your program might define, and setTi
meout() is the function that you invoke to register your callback function and specify
under what asynchronous conditions it should be invoked.

setTimeout() calls the specified callback function one time, passing no arguments,
and then forgets about it. If you are writing a function that really does check for
updates, you probably want it to run repeatedly. You can do this by using
setInterval() instead of setTimeout():

// Call checkForUpdates in one minute and then again every minute after that
let updateIntervalId = setInterval(checkForUpdates, 60000);

// setInterval() returns a value that we can use to stop the repeated
// invocations by calling clearInterval(). (Similarly, setTimeout()
// returns a value that you can pass to clearTimeout())
function stopCheckingForUpdates() {
 clearInterval(updateIntervalId);
}

342 | Chapter 13: Asynchronous JavaScript

13.1.2 Events
Client-side JavaScript programs are almost universally event driven: rather than run‐
ning some kind of predetermined computation, they typically wait for the user to do
something and then respond to the user’s actions. The web browser generates an
event when the user presses a key on the keyboard, moves the mouse, clicks a mouse
button, or touches a touchscreen device. Event-driven JavaScript programs register
callback functions for specified types of events in specified contexts, and the web
browser invokes those functions whenever the specified events occur. These callback
functions are called event handlers or event listeners, and they are registered with
addEventListener():

// Ask the web browser to return an object representing the HTML
// <button> element that matches this CSS selector
let okay = document.querySelector('#confirmUpdateDialog button.okay');

// Now register a callback function to be invoked when the user
// clicks on that button.
okay.addEventListener('click', applyUpdate);

In this example, applyUpdate() is a hypothetical callback function that we assume is
implemented somewhere else. The call to document.querySelector() returns an
object that represents a single specified element in the web page. We call addEventLis
tener() on that element to register our callback. Then the first argument to addEven
tListener() is a string that specifies the kind of event we’re interested in—a mouse
click or touchscreen tap, in this case. If the user clicks or taps on that specific element
of the web page, then the browser will invoke our applyUpdate() callback function,
passing an object that includes details (such as the time and the mouse pointer coor‐
dinates) about the event.

13.1.3 Network Events
Another common source of asynchrony in JavaScript programming is network
requests. JavaScript running in the browser can fetch data from a web server with
code like this:

function getCurrentVersionNumber(versionCallback) { // Note callback argument
 // Make a scripted HTTP request to a backend version API
 let request = new XMLHttpRequest();
 request.open("GET", "http://www.example.com/api/version");
 request.send();

 // Register a callback that will be invoked when the response arrives
 request.onload = function() {
 if (request.status === 200) {
 // If HTTP status is good, get version number and call callback.
 let currentVersion = parseFloat(request.responseText);
 versionCallback(null, currentVersion);

13.1 Asynchronous Programming with Callbacks | 343

1 The XMLHttpRequest class has nothing in particular to do with XML. In modern client-side JavaScript, it has
largely been replaced by the fetch() API, which is covered in §15.11.1. The code example shown here is the
last XMLHttpRequest-based example remaining in this book.

 } else {
 // Otherwise report an error to the callback
 versionCallback(response.statusText, null);
 }
 };
 // Register another callback that will be invoked for network errors
 request.onerror = request.ontimeout = function(e) {
 versionCallback(e.type, null);
 };
}

Client-side JavaScript code can use the XMLHttpRequest class plus callback functions
to make HTTP requests and asynchronously handle the server’s response when it
arrives.1 The getCurrentVersionNumber() function defined here (we can imagine
that it is used by the hypothetical checkForUpdates() function we discussed in
§13.1.1) makes an HTTP request and defines event handlers that will be invoked
when the server’s response is received or when a timeout or other error causes the
request to fail.

Notice that the code example above does not call addEventListener() as our previ‐
ous example did. For most web APIs (including this one), event handlers can be
defined by invoking addEventListener() on the object generating the event and
passing the name of the event of interest along with the callback function. Typically,
though, you can also register a single event listener by assigning it directly to a prop‐
erty of the object. That is what we do in this example code, assigning functions to the
onload, onerror, and ontimeout properties. By convention, event listener properties
like these always have names that begin with on. addEventListener() is the more
flexible technique because it allows for multiple event handlers. But in cases where
you are sure that no other code will need to register a listener for the same object and
event type, it can be simpler to simply set the appropriate property to your callback.

Another thing to note about the getCurrentVersionNumber() function in this exam‐
ple code is that, because it makes an asynchronous request, it cannot synchronously
return the value (the current version number) that the caller is interested in. Instead,
the caller passes a callback function, which is invoked when the result is ready or
when an error occurs. In this case, the caller supplies a callback function that expects
two arguments. If the XMLHttpRequest works correctly, then getCurrentVersionNum
ber() invokes the callback with a null first argument and the version number as the
second argument. Or, if an error occurs, then getCurrentVersionNumber() invokes
the callback with error details in the first argument and null as the second argument.

344 | Chapter 13: Asynchronous JavaScript

13.1.4 Callbacks and Events in Node
The Node.js server-side JavaScript environment is deeply asynchronous and defines
many APIs that use callbacks and events. The default API for reading the contents of
a file, for example, is asynchronous and invokes a callback function when the con‐
tents of the file have been read:

const fs = require("fs"); // The "fs" module has filesystem-related APIs
let options = { // An object to hold options for our program
 // default options would go here
};

// Read a configuration file, then call the callback function
fs.readFile("config.json", "utf-8", (err, text) => {
 if (err) {
 // If there was an error, display a warning, but continue
 console.warn("Could not read config file:", err);
 } else {
 // Otherwise, parse the file contents and assign to the options object
 Object.assign(options, JSON.parse(text));
 }

 // In either case, we can now start running the program
 startProgram(options);
});

Node’s fs.readFile() function takes a two-parameter callback as its last argument. It
reads the specified file asynchronously and then invokes the callback. If the file was
read successfully, it passes the file contents as the second callback argument. If there
was an error, it passes the error as the first callback argument. In this example, we
express the callback as an arrow function, which is a succinct and natural syntax for
this kind of simple operation.

Node also defines a number of event-based APIs. The following function shows how
to make an HTTP request for the contents of a URL in Node. It has two layers of
asynchronous code handled with event listeners. Notice that Node uses an on()
method to register event listeners instead of addEventListener():

const https = require("https");

// Read the text content of the URL and asynchronously pass it to the callback.
function getText(url, callback) {
 // Start an HTTP GET request for the URL
 request = https.get(url);

 // Register a function to handle the "response" event.
 request.on("response", response => {
 // The response event means that response headers have been received
 let httpStatus = response.statusCode;

13.1 Asynchronous Programming with Callbacks | 345

 // The body of the HTTP response has not been received yet.
 // So we register more event handlers to to be called when it arrives.
 response.setEncoding("utf-8"); // We're expecting Unicode text
 let body = ""; // which we will accumulate here.

 // This event handler is called when a chunk of the body is ready
 response.on("data", chunk => { body += chunk; });

 // This event handler is called when the response is complete
 response.on("end", () => {
 if (httpStatus === 200) { // If the HTTP response was good
 callback(null, body); // Pass response body to the callback
 } else { // Otherwise pass an error
 callback(httpStatus, null);
 }
 });
 });

 // We also register an event handler for lower-level network errors
 request.on("error", (err) => {
 callback(err, null);
 });
}

13.2 Promises
Now that we’ve seen examples of callback and event-based asynchronous program‐
ming in client-side and server-side JavaScript environments, we can introduce Prom‐
ises, a core language feature designed to simplify asynchronous programming.

A Promise is an object that represents the result of an asynchronous computation.
That result may or may not be ready yet, and the Promise API is intentionally vague
about this: there is no way to synchronously get the value of a Promise; you can only
ask the Promise to call a callback function when the value is ready. If you are defining
an asynchronous API like the getText() function in the previous section, but want to
make it Promise-based, omit the callback argument, and instead return a Promise
object. The caller can then register one or more callbacks on this Promise object, and
they will be invoked when the asynchronous computation is done.

So, at the simplest level, Promises are just a different way of working with callbacks.
However, there are practical benefits to using them. One real problem with callback-
based asynchronous programming is that it is common to end up with callbacks
inside callbacks inside callbacks, with lines of code so highly indented that it is diffi‐
cult to read. Promises allow this kind of nested callback to be re-expressed as a more
linear Promise chain that tends to be easier to read and easier to reason about.

Another problem with callbacks is that they can make handling errors difficult. If an
asynchronous function (or an asynchronously invoked callback) throws an exception,

346 | Chapter 13: Asynchronous JavaScript

there is no way for that exception to propagate back to the initiator of the asynchro‐
nous operation. This is a fundamental fact about asynchronous programming: it
breaks exception handling. The alternative is to meticulously track and propagate
errors with callback arguments and return values, but this is tedious and difficult to
get right. Promises help here by standardizing a way to handle errors and providing a
way for errors to propagate correctly through a chain of promises.

Note that Promises represent the future results of single asynchronous computations.
They cannot be used to represent repeated asynchronous computations, however.
Later in this chapter, we’ll write a Promise-based alternative to the setTimeout()
function, for example. But we can’t use Promises to replace setInterval() because
that function invokes a callback function repeatedly, which is something that Prom‐
ises are just not designed to do. Similarly, we could use a Promise instead of the
“load” event handler of an XMLHttpRequest object, since that callback is only ever
called once. But we typically would not use a Promise in place of a “click” event han‐
dler of an HTML button object, since we normally want to allow the user to click a
button multiple times.

The subsections that follow will:

• Explain Promise terminology and show basic Promise usage
• Show how promises can be chained
• Demonstrate how to create your own Promise-based APIs

Promises seem simple at first, and the basic use case for Promises
is, in fact, straightforward and simple. But they can become sur‐
prisingly confusing for anything beyond the simplest use cases.
Promises are a powerful idiom for asynchronous programming,
but you need to understand them deeply to use them correctly and
confidently. It is worth taking the time to develop that deep under‐
standing, however, and I urge you to study this long chapter
carefully.

13.2.1 Using Promises
With the advent of Promises in the core JavaScript language, web browsers have
begun to implement Promise-based APIs. In the previous section, we implemented a
getText() function that made an asynchronous HTTP request and passed the body
of the HTTP response to a specified callback function as a string. Imagine a variant of
this function, getJSON(), which parses the body of the HTTP response as JSON and
returns a Promise instead of accepting a callback argument. We will implement a

13.2 Promises | 347

getJSON() function later in this chapter, but for now, let’s look at how we would use
this Promise-returning utility function:

getJSON(url).then(jsonData => {
 // This is a callback function that will be asynchronously
 // invoked with the parsed JSON value when it becomes available.
});

getJSON() starts an asynchronous HTTP request for the URL you specify and then,
while that request is pending, it returns a Promise object. The Promise object defines
a then() instance method. Instead of passing our callback function directly to
getJSON(), we instead pass it to the then() method. When the HTTP response
arrives, the body of that response is parsed as JSON, and the resulting parsed value is
passed to the function that we passed to then().

You can think of the then() method as a callback registration method like the
addEventListener() method used for registering event handlers in client-side Java‐
Script. If you call the then() method of a Promise object multiple times, each of the
functions you specify will be called when the promised computation is complete.

Unlike many event listeners, though, a Promise represents a single computation, and
each function registered with then() will be invoked only once. It is worth noting
that the function you pass to then() is invoked asynchronously, even if the asynchro‐
nous computation is already complete when you call then().

At a simple syntactical level, the then() method is the distinctive feature of Promises,
and it is idiomatic to append .then() directly to the function invocation that returns
the Promise, without the intermediate step of assigning the Promise object to a
variable.

It is also idiomatic to name functions that return Promises and functions that use the
results of Promises with verbs, and these idioms lead to code that is particularly easy
to read:

// Suppose you have a function like this to display a user profile
function displayUserProfile(profile) { /* implementation omitted */ }

// Here's how you might use that function with a Promise.
// Notice how this line of code reads almost like an English sentence:
getJSON("/api/user/profile").then(displayUserProfile);

Handling errors with Promises
Asynchronous operations, particularly those that involve networking, can typically
fail in a number of ways, and robust code has to be written to handle the errors that
will inevitably occur.

For Promises, we can do this by passing a second function to the then() method:

348 | Chapter 13: Asynchronous JavaScript

getJSON("/api/user/profile").then(displayUserProfile, handleProfileError);

A Promise represents the future result of an asynchronous computation that occurs
after the Promise object is created. Because the computation is performed after the
Promise object is returned to us, there is no way that the computation can tradition‐
ally return a value or throw an exception that we can catch. The functions that we
pass to then() provide alternatives. When a synchronous computation completes
normally, it simply returns its result to its caller. When a Promise-based asynchro‐
nous computation completes normally, it passes its result to the function that is the
first argument to then().

When something goes wrong in a synchronous computation, it throws an exception
that propagates up the call stack until there is a catch clause to handle it. When an
asynchronous computation runs, its caller is no longer on the stack, so if something
goes wrong, it is simply not possible to throw an exception back to the caller.

Instead, Promise-based asynchronous computations pass the exception (typically as
an Error object of some kind, though this is not required) to the second function
passed to then(). So, in the code above, if getJSON() runs normally, it passes its
result to displayUserProfile(). If there is an error (the user is not logged in, the
server is down, the user’s internet connection dropped, the request timed out, etc.),
then getJSON() passes an Error object to handleProfileError().

In practice, it is rare to see two functions passed to then(). There is a better and more
idiomatic way of handling errors when working with Promises. To understand it, first
consider what happens if getJSON() completes normally but an error occurs in
displayUserProfile(). That callback function is invoked asynchronously when
getJSON() returns, so it is also asynchronous and cannot meaningfully throw an
exception (because there is no code on the call stack to handle it).

The more idiomatic way to handle errors in this code looks like this:

getJSON("/api/user/profile").then(displayUserProfile).catch(handleProfileError);

With this code, a normal result from getJSON() is still passed to displayUserPro
file(), but any error in getJSON() or in displayUserProfile() (including any
exceptions thrown by displayUserProfile) get passed to handleProfileError().
The catch() method is just a shorthand for calling then() with a null first argument
and the specified error handler function as the second argument.

We’ll have more to say about catch() and this error-handling idiom when we discuss
Promise chains in the next section.

13.2 Promises | 349

Promise Terminology
Before we discuss Promises further, it is worth pausing to define some terms. When
we are not programming and we talk about human promises, we say that a promise is
“kept” or “broken.” When discussing JavaScript Promises, the equivalent terms are
“fulfilled” and “rejected.” Imagine that you have called the then() method of a
Promise and have passed two callback functions to it. We say that the promise has
been fulfilled if and when the first callback is called. And we say that the Promise has
been rejected if and when the second callback is called. If a Promise is neither fulfilled
nor rejected, then it is pending. And once a promise is fulfilled or rejected, we say that
it is settled. Note that a Promise can never be both fulfilled and rejected. Once a
Promise settles, it will never change from fulfilled to rejected or vice versa.

Remember how we defined Promises at the start of this section: “a Promise is an
object that represents the result of an asynchronous operation.” It is important to
remember that Promises are not just abstract ways registering callbacks to run when
some async code finishes—they represent the results of that async code. If the async
code runs normally (and the Promise is fulfilled), then that result is essentially the
return value of the code. And if the async code does not complete normally (and the
Promise is rejected), then the result is an Error object or some other value that the
code might have thrown if it was not asynchronous. Any Promise that has settled has
a value associated with it, and that value will not change. If the Promise is fulfilled,
then the value is a return value that gets passed to any callback functions registered as
the first argument of then(). If the Promise is rejected, then the value is an error of
some sort that is passed to any callback functions registered with catch() or as the
second argument of then().

The reason that I want to be precise about Promise terminology is that Promises can
also be resolved. It is easy to confuse this resolved state with the fulfilled state or with
settled state, but it is not precisely the same as either. Understanding the resolved state
is one of the keys to a deep understanding of Promises, and I’ll come back to it after
we’ve discussed Promise chains below.

13.2.2 Chaining Promises
One of the most important benefits of Promises is that they provide a natural way to
express a sequence of asynchronous operations as a linear chain of then() method
invocations, without having to nest each operation within the callback of the previous
one. Here, for example, is a hypothetical Promise chain:

fetch(documentURL) // Make an HTTP request
 .then(response => response.json()) // Ask for the JSON body of the response
 .then(document => { // When we get the parsed JSON
 return render(document); // display the document to the user
 })

350 | Chapter 13: Asynchronous JavaScript

 .then(rendered => { // When we get the rendered document
 cacheInDatabase(rendered); // cache it in the local database.
 })
 .catch(error => handle(error)); // Handle any errors that occur

This code illustrates how a chain of Promises can make it easy to express a sequence
of asynchronous operations. We’re not going to discuss this particular Promise chain
at all, however. We will continue to explore the idea of using Promise chains to make
HTTP requests, however.

Earlier in this chapter, we saw the XMLHttpRequest object used to make an HTTP
request in JavaScript. That strangely named object has an old and awkward API, and
it has largely been replaced by the newer, Promise-based Fetch API (§15.11.1). In its
simplest form, this new HTTP API is just the function fetch(). You pass it a URL,
and it returns a Promise. That promise is fulfilled when the HTTP response begins to
arrive and the HTTP status and headers are available:

fetch("/api/user/profile").then(response => {
 // When the promise resolves, we have status and headers
 if (response.ok &&
 response.headers.get("Content-Type") === "application/json") {
 // What can we do here? We don't actually have the response body yet.
 }
});

When the Promise returned by fetch() is fulfilled, it passes a Response object to the
function you passed to its then() method. This response object gives you access to
request status and headers, and it also defines methods like text() and json(),
which give you access to the body of the response in text and JSON-parsed forms,
respectively. But although the initial Promise is fulfilled, the body of the response
may not yet have arrived. So these text() and json() methods for accessing the body
of the response themselves return Promises. Here’s a naive way of using fetch() and
the response.json() method to get the body of an HTTP response:

fetch("/api/user/profile").then(response => {
 response.json().then(profile => { // Ask for the JSON-parsed body
 // When the body of the response arrives, it will be automatically
 // parsed as JSON and passed to this function.
 displayUserProfile(profile);
 });
});

This is a naive way to use Promises because we nested them, like callbacks, which
defeats the purpose. The preferred idiom is to use Promises in a sequential chain with
code like this:

fetch("/api/user/profile")
 .then(response => {
 return response.json();
 })

13.2 Promises | 351

 .then(profile => {
 displayUserProfile(profile);
 });

Let’s look at the method invocations in this code, ignoring the arguments that are
passed to the methods:

fetch().then().then()

When more than one method is invoked in a single expression like this, we call it a
method chain. We know that the fetch() function returns a Promise object, and we
can see that the first .then() in this chain invokes a method on that returned
Promise object. But there is a second .then() in the chain, which means that the first
invocation of the then() method must itself return a Promise.

Sometimes, when an API is designed to use this kind of method chaining, there is just
a single object, and each method of that object returns the object itself in order to
facilitate chaining. That is not how Promises work, however. When we write a chain
of .then() invocations, we are not registering multiple callbacks on a single Promise
object. Instead, each invocation of the then() method returns a new Promise object.
That new Promise object is not fulfilled until the function passed to then() is
complete.

Let’s return to a simplified form of the original fetch() chain above. If we define the
functions passed to the then() invocations elsewhere, we might refactor the code to
look like this:

fetch(theURL) // task 1; returns promise 1
 .then(callback1) // task 2; returns promise 2
 .then(callback2); // task 3; returns promise 3

Let’s walk through this code in detail:

1. On the first line, fetch() is invoked with a URL. It initiates an HTTP GET
request for that URL and returns a Promise. We’ll call this HTTP request “task 1”
and we’ll call the Promise “promise 1”.

2. On the second line, we invoke the then() method of promise 1, passing the call
back1 function that we want to be invoked when promise 1 is fulfilled. The
then() method stores our callback somewhere, then returns a new Promise.
We’ll call the new Promise returned at this step “promise 2”, and we’ll say that
“task 2” begins when callback1 is invoked.

3. On the third line, we invoke the then() method of promise 2, passing the call
back2 function we want invoked when promise 2 is fulfilled. This then() method
remembers our callback and returns yet another Promise. We’ll say that “task 3”
begins when callback2 is invoked. We can call this latest Promise “promise 3”,
but we don’t really need a name for it because we won’t be using it at all.

352 | Chapter 13: Asynchronous JavaScript

4. The previous three steps all happen synchronously when the expression is first
executed. Now we have an asynchronous pause while the HTTP request initiated
in step 1 is sent out across the internet.

5. Eventually, the HTTP response starts to arrive. The asynchronous part of the
fetch() call wraps the HTTP status and headers in a Response object and fulfills
promise 1 with that Response object as the value.

6. When promise 1 is fulfilled, its value (the Response object) is passed to our call
back1() function, and task 2 begins. The job of this task, given a Response object
as input, is to obtain the response body as a JSON object.

7. Let’s assume that task 2 completes normally and is able to parse the body of the
HTTP response to produce a JSON object. This JSON object is used to fulfill
promise 2.

8. The value that fulfills promise 2 becomes the input to task 3 when it is passed to
the callback2() function. This third task now displays the data to the user in
some unspecified way. When task 3 is complete (assuming it completes nor‐
mally), then promise 3 will be fulfilled. But because we never did anything with
promise 3, nothing happens when that Promise settles, and the chain of asyn‐
chronous computation ends at this point.

13.2.3 Resolving Promises
While explaining the URL-fetching Promise chain with the list in the last section, we
talked about promises 1, 2, and 3. But there is actually a fourth Promise object
involved as well, and this brings us to our important discussion of what it means for a
Promise to be “resolved.”

Remember that fetch() returns a Promise object which, when fulfilled, passes a
Response object to the callback function we register. This Response object
has .text(), .json(), and other methods to request the body of the HTTP response
in various forms. But since the body may not yet have arrived, these methods must
return Promise objects. In the example we’ve been studying, “task 2” calls the .json()
method and returns its value. This is the fourth Promise object, and it is the return
value of the callback1() function.

Let’s rewrite the URL-fetching code one more time in a verbose and nonidiomatic
way that makes the callbacks and promises explicit:

function c1(response) { // callback 1
 let p4 = response.json();
 return p4; // returns promise 4
}

function c2(profile) { // callback 2

13.2 Promises | 353

 displayUserProfile(profile);
}

let p1 = fetch("/api/user/profile"); // promise 1, task 1
let p2 = p1.then(c1); // promise 2, task 2
let p3 = p2.then(c2); // promise 3, task 3

In order for Promise chains to work usefully, the output of task 2 must become the
input to task 3. And in the example we’re considering here, the input to task 3 is the
body of the URL that was fetched, parsed as a JSON object. But, as we’ve just dis‐
cussed, the return value of callback c1 is not a JSON object, but Promise p4 for that
JSON object. This seems like a contradiction, but it is not: when p1 is fulfilled, c1 is
invoked, and task 2 begins. And when p2 is fulfilled, c2 is invoked, and task 3 begins.
But just because task 2 begins when c1 is invoked, it does not mean that task 2 must
end when c1 returns. Promises are about managing asynchronous tasks, after all, and
if task 2 is asynchronous (which it is, in this case), then that task will not be complete
by the time the callback returns.

We are now ready to discuss the final detail that you need to understand to really
master Promises. When you pass a callback c to the then() method, then() returns a
Promise p and arranges to asynchronously invoke c at some later time. The callback
performs some computation and returns a value v. When the callback returns, p is
resolved with the value v. When a Promise is resolved with a value that is not itself a
Promise, it is immediately fulfilled with that value. So if c returns a non-Promise, that
return value becomes the value of p, p is fulfilled and we are done. But if the return
value v is itself a Promise, then p is resolved but not yet fulfilled. At this stage, p cannot
settle until the Promise v settles. If v is fulfilled, then p will be fulfilled to the same
value. If v is rejected, then p will be rejected for the same reason. This is what the
“resolved” state of a Promise means: the Promise has become associated with, or
“locked onto,” another Promise. We don’t know yet whether p will be fulfilled or
rejected, but our callback c no longer has any control over that. p is “resolved” in the
sense that its fate now depends entirely on what happens to Promise v.

Let’s bring this back to our URL-fetching example. When c1 returns p4, p2 is
resolved. But being resolved is not the same as being fulfilled, so task 3 does not begin
yet. When the full body of the HTTP response becomes available, then the .json()
method can parse it and use that parsed value to fulfill p4. When p4 is fulfilled, p2 is
automatically fulfilled as well, with the same parsed JSON value. At this point, the
parsed JSON object is passed to c2, and task 3 begins.

This can be one of the trickiest parts of JavaScript to understand, and you may need
to read this section more than once. Figure 13-1 presents the process in visual form
and may help clarify it for you.

354 | Chapter 13: Asynchronous JavaScript

Figure 13-1. Fetching a URL with Promises

13.2.4 More on Promises and Errors
Earlier in the chapter, we saw that you can pass a second callback function to
the .then() method and that this second function will be invoked if the Promise is
rejected. When that happens, the argument to this second callback function is a value
—typically an Error object—that represents the reason for the rejection. We also
learned that it is uncommon (and even unidiomatic) to pass two callbacks to
a .then() method. Instead, Promise-related errors are typically handled by adding
a .catch() method invocation to a Promise chain. Now that we have examined
Promise chains, we can return to error handling and discuss it in more detail. To
preface the discussion, I’d like to stress that careful error handling is really important
when doing asynchronous programming. With synchronous code, if you leave out
error-handling code, you’ll at least get an exception and a stack trace that you can use
to figure out what is going wrong. With asynchronous code, unhandled exceptions
will often go unreported, and errors can occur silently, making them much harder to

13.2 Promises | 355

debug. The good news is that the .catch() method makes it easy to handle errors
when working with Promises.

The catch and finally methods

The .catch() method of a Promise is simply a shorthand way to call .then() with
null as the first argument and an error-handling callback as the second argument.
Given any Promise p and a callback c, the following two lines are equivalent:

p.then(null, c);
p.catch(c);

The .catch() shorthand is preferred because it is simpler and because the name
matches the catch clause in a try/catch exception-handling statement. As we’ve dis‐
cussed, normal exceptions don’t work with asynchronous code. The .catch()
method of Promises is an alternative that does work for asynchronous code. When
something goes wrong in synchronous code, we can speak of an exception “bubbling
up the call stack” until it finds a catch block. With an asynchronous chain of Prom‐
ises, the comparable metaphor might be of an error “trickling down the chain” until it
finds a .catch() invocation.

In ES2018, Promise objects also define a .finally() method whose purpose is simi‐
lar to the finally clause in a try/catch/finally statement. If you add a .finally()
invocation to your Promise chain, then the callback you pass to .finally() will be
invoked when the Promise you called it on settles. Your callback will be invoked if the
Promise fulfills or rejects, and it will not be passed any arguments, so you can’t find
out whether it fulfilled or rejected. But if you need to run some kind of cleanup code
(such as closing open files or network connections) in either case, a .finally() call‐
back is the ideal way to do that. Like .then() and .catch(), .finally() returns a
new Promise object. The return value of a .finally() callback is generally ignored,
and the Promise returned by .finally() will typically resolve or reject with the same
value that the Promise that .finally() was invoked on resolves or rejects with. If
a .finally() callback throws an exception, however, then the Promise returned
by .finally() will reject with that value.

The URL-fetching code that we studied in the previous sections did not do any error
handling. Let’s correct that now with a more realistic version of the code:

fetch("/api/user/profile") // Start the HTTP request
 .then(response => { // Call this when status and headers are ready
 if (!response.ok) { // If we got a 404 Not Found or similar error
 return null; // Maybe user is logged out; return null profile
 }

 // Now check the headers to ensure that the server sent us JSON.
 // If not, our server is broken, and this is a serious error!
 let type = response.headers.get("content-type");

356 | Chapter 13: Asynchronous JavaScript

 if (type !== "application/json") {
 throw new TypeError(`Expected JSON, got ${type}`);
 }

 // If we get here, then we got a 2xx status and a JSON content-type
 // so we can confidently return a Promise for the response
 // body as a JSON object.
 return response.json();
 })
 .then(profile => { // Called with the parsed response body or null
 if (profile) {
 displayUserProfile(profile);
 }
 else { // If we got a 404 error above and returned null we end up here
 displayLoggedOutProfilePage();
 }
 })
 .catch(e => {
 if (e instanceof NetworkError) {
 // fetch() can fail this way if the internet connection is down
 displayErrorMessage("Check your internet connection.");
 }
 else if (e instanceof TypeError) {
 // This happens if we throw TypeError above
 displayErrorMessage("Something is wrong with our server!");
 }
 else {
 // This must be some kind of unanticipated error
 console.error(e);
 }
 });

Let’s analyze this code by looking at what happens when things go wrong. We’ll use
the naming scheme we used before: p1 is the Promise returned by the fetch() call. p2
is the Promise returned by the first .then() call, and c1 is the callback that we pass to
that .then() call. p3 is the Promise returned by the second .then() call, and c2 is the
callback we pass to that call. Finally, c3 is the callback that we pass to the .catch()
call. (That call returns a Promise, but we don’t need to refer to it by name.)

The first thing that could fail is the fetch() request itself. If the network connection
is down (or for some other reason an HTTP request cannot be made), then Promise
p1 will be rejected with a NetworkError object. We didn’t pass an error-handling call‐
back function as the second argument to the .then() call, so p2 rejects as well with
the same NetworkError object. (If we had passed an error handler to that
first .then() call, the error handler would be invoked, and if it returned normally, p2
would be resolved and/or fulfilled with the return value from that handler.) Without a
handler, though, p2 is rejected, and then p3 is rejected for the same reason. At this
point, the c3 error-handling callback is called, and the NetworkError-specific code
within it runs.

13.2 Promises | 357

Another way our code could fail is if our HTTP request returns a 404 Not Found or
another HTTP error. These are valid HTTP responses, so the fetch() call does not
consider them errors. fetch() encapsulates a 404 Not Found in a Response object
and fulfills p1 with that object, causing c1 to be invoked. Our code in c1 checks the ok
property of the Response object to detect that it has not received a normal HTTP
response and handles that case by simply returning null. Because this return value is
not a Promise, it fulfills p2 right away, and c2 is invoked with this value. Our code in
c2 explicitly checks for and handles falsy values by displaying a different result to the
user. This is a case where we treat an abnormal condition as a nonerror and handle it
without actually using an error handler.

A more serious error occurs in c1 if the we get a normal HTTP response code but the
Content-Type header is not set appropriately. Our code expects a JSON-formatted
response, so if the server is sending us HTML, XML, or plain text instead, we’re going
to have a problem. c1 includes code to check the Content-Type header. If the header
is wrong, it treats this as a nonrecoverable problem and throws a TypeError. When a
callback passed to .then() (or .catch()) throws a value, the Promise that was the
return value of the .then() call is rejected with that thrown value. In this case, the
code in c1 that raises a TypeError causes p2 to be rejected with that TypeError object.
Since we did not specify an error handler for p2, p3 will be rejected as well. c2 will not
be called, and the TypeError will be passed to c3, which has code to explicitly check
for and handle this type of error.

There are a couple of things worth noting about this code. First, notice that the error
object thrown with a regular, synchronous throw statement ends up being handled
asynchronously with a .catch() method invocation in a Promise chain. This should
make it clear why this shorthand method is preferred over passing a second argument
to .then(), and also why it is so idiomatic to end Promise chains with a .catch()
call.

Before we leave the topic of error handling, I want to point out that, although it is
idiomatic to end every Promise chain with a .catch() to clean up (or at least log) any
errors that occurred in the chain, it is also perfectly valid to use .catch() elsewhere
in a Promise chain. If one of the stages in your Promise chain can fail with an error,
and if the error is some kind of recoverable error that should not stop the rest of the
chain from running, then you can insert a .catch() call in the chain, resulting in
code that might look like this:

startAsyncOperation()
 .then(doStageTwo)
 .catch(recoverFromStageTwoError)
 .then(doStageThree)
 .then(doStageFour)
 .catch(logStageThreeAndFourErrors);

358 | Chapter 13: Asynchronous JavaScript

Remember that the callback you pass to .catch() will only be invoked if the callback
at a previous stage throws an error. If the callback returns normally, then
the .catch() callback will be skipped, and the return value of the previous callback
will become the input to the next .then() callback. Also remember that .catch()
callbacks are not just for reporting errors, but for handling and recovering from
errors. Once an error has been passed to a .catch() callback, it stops propagating
down the Promise chain. A .catch() callback can throw a new error, but if it returns
normally, than that return value is used to resolve and/or fulfill the associated
Promise, and the error stops propagating.

Let’s be concrete about this: in the preceding code example, if either startAsyncOper
ation() or doStageTwo() throws an error, then the recoverFromStageTwoError()
function will be invoked. If recoverFromStageTwoError() returns normally, then its
return value will be passed to doStageThree() and the asynchronous operation con‐
tinues normally. On the other hand, if recoverFromStageTwoError() was unable to
recover, it will itself throw an error (or it will rethrow the error that it was passed). In
this case, neither doStageThree() nor doStageFour() will be invoked, and the error
thrown by recoverFromStageTwoError() would be passed to logStageThreeAndFour
Errors().

Sometimes, in complex network environments, errors can occur more or less at ran‐
dom, and it can be appropriate to handle those errors by simply retrying the asyn‐
chronous request. Imagine you’ve written a Promise-based operation to query a
database:

queryDatabase()
 .then(displayTable)
 .catch(displayDatabaseError);

Now suppose that transient network load issues are causing this to fail about 1% of
the time. A simple solution might be to retry the query with a .catch() call:

queryDatabase()
 .catch(e => wait(500).then(queryDatabase)) // On failure, wait and retry
 .then(displayTable)
 .catch(displayDatabaseError);

If the hypothetical failures are truly random, then adding this one line of code should
reduce your error rate from 1% to .01%.

Returning from a Promise Callback
Let’s return one last time to the earlier URL-fetching example, and consider the c1
callback that we passed to the first .then() invocation. Notice that there are three
ways that c1 can terminate. It can return normally with the Promise returned by
the .json() call. This causes p2 to be resolved, but whether that Promise is fulfilled or

13.2 Promises | 359

rejected depends on what happens with the newly returned Promise. c1 can also
return normally with the value null, which causes p2 to be fulfilled immediately.
Finally, c1 can terminate by throwing an error, which causes p2 to be rejected. These
are the three possible outcomes for a Promise, and the code in c1 demonstrates how
the callback can cause each outcome.

In a Promise chain, the value returned (or thrown) at one stage of the chain becomes
the input to the next stage of the chain, so it is critical to get this right. In practice,
forgetting to return a value from a callback function is actually a common source of
Promise-related bugs, and this is exacerbated by JavaScript’s arrow function shortcut
syntax. Consider this line of code that we saw earlier:

.catch(e => wait(500).then(queryDatabase))

Recall from Chapter 8 that arrow functions allow a lot of shortcuts. Since there is
exactly one argument (the error value), we can omit the parentheses. Since the body
of the function is a single expression, we can omit the curly braces around the func‐
tion body, and the value of the expression becomes the return value of the function.
Because of these shortcuts, the preceding code is correct. But consider this
innocuous-seeming change:

.catch(e => { wait(500).then(queryDatabase) })

By adding the curly braces, we no longer get the automatic return. This function now
returns undefined instead of returning a Promise, which means that the next stage in
this Promise chain will be invoked with undefined as its input rather than the result
of the retried query. It is a subtle error that may not be easy to debug.

13.2.5 Promises in Parallel
We’ve spent a lot of time talking about Promise chains for sequentially running the
asynchronous steps of a larger asynchronous operation. Sometimes, though, we want
to execute a number of asynchronous operations in parallel. The function
Promise.all() can do this. Promise.all() takes an array of Promise objects as its
input and returns a Promise. The returned Promise will be rejected if any of the input
Promises are rejected. Otherwise, it will be fulfilled with an array of the fulfillment
values of each of the input Promises. So, for example, if you want to fetch the text
content of multiple URLs, you could use code like this:

// We start with an array of URLs
const urls = [/* zero or more URLs here */];
// And convert it to an array of Promise objects
promises = urls.map(url => fetch(url).then(r => r.text()));
// Now get a Promise to run all those Promises in parallel
Promise.all(promises)
 .then(bodies => { /* do something with the array of strings */ })
 .catch(e => console.error(e));

360 | Chapter 13: Asynchronous JavaScript

Promise.all() is slightly more flexible than described before. The input array can
contain both Promise objects and non-Promise values. If an element of the array is
not a Promise, it is treated as if it is the value of an already fulfilled Promise and is
simply copied unchanged into the output array.

The Promise returned by Promise.all() rejects when any of the input Promises is
rejected. This happens immediately upon the first rejection and can happen while
other input Promises are still pending. In ES2020, Promise.allSettled() takes an
array of input Promises and returns a Promise, just like Promise.all() does. But
Promise.allSettled() never rejects the returned Promise, and it does not fulfill that
Promise until all of the input Promises have settled. The Promise resolves to an array
of objects, with one object for each input Promise. Each of these returned objects has
a status property set to “fulfilled” or “rejected.” If the status is “fulfilled”, then the
object will also have a value property that gives the fulfillment value. And if the status
is “rejected”, then the object will also have a reason property that gives the error or
rejection value of the corresponding Promise:

Promise.allSettled([Promise.resolve(1), Promise.reject(2), 3]).then(results => {
 results[0] // => { status: "fulfilled", value: 1 }
 results[1] // => { status: "rejected", reason: 2 }
 results[2] // => { status: "fulfilled", value: 3 }
});

Occasionally, you may want to run a number of Promises at once but may only care
about the value of the first one to fulfill. In that case, you can use Promise.race()
instead of Promise.all(). It returns a Promise that is fulfilled or rejected when the
first of the Promises in the input array is fulfilled or rejected. (Or, if there are any
non-Promise values in the input array, it simply returns the first of those.)

13.2.6 Making Promises
We’ve used the Promise-returning function fetch() in many of the previous exam‐
ples because it is one of the simplest functions built in to web browsers that returns a
Promise. Our discussion of Promises has also relied on hypothetical Promise-
returning functions getJSON() and wait(). Functions written to return Promises
really are quite useful, and this section shows how you can create your own Promise-
based APIs. In particular, we’ll show implementations of getJSON() and wait().

Promises based on other Promises
It is easy to write a function that returns a Promise if you have some other Promise-
returning function to start with. Given a Promise, you can always create (and return)
a new one by calling .then(). So if we use the existing fetch() function as a starting
point, we can write getJSON() like this:

13.2 Promises | 361

function getJSON(url) {
 return fetch(url).then(response => response.json());
}

The code is trivial because the Response object of the fetch() API has a predefined
json() method. The json() method returns a Promise, which we return from our
callback (the callback is an arrow function with a single-expression body, so the
return is implicit), so the Promise returned by getJSON() resolves to the Promise
returned by response.json(). When that Promise fulfills, the Promise returned by
getJSON() fulfills to the same value. Note that there is no error handling in this getJ
SON() implementation. Instead of checking response.ok and the Content-Type
header, we instead just allow the json() method to reject the Promise it returned
with a SyntaxError if the response body cannot be parsed as JSON.

Let’s write another Promise-returning function, this time using getJSON() as the
source of the initial Promise:

function getHighScore() {
 return getJSON("/api/user/profile").then(profile => profile.highScore);
}

We’re assuming that this function is part of some sort of web-based game and that the
URL “/api/user/profile” returns a JSON-formatted data structure that includes a high
Score property.

Promises based on synchronous values
Sometimes, you may need to implement an existing Promise-based API and return a
Promise from a function, even though the computation to be performed does not
actually require any asynchronous operations. In that case, the static methods
Promise.resolve() and Promise.reject() will do what you want.
Promise.resolve() takes a value as its single argument and returns a Promise that
will immediately (but asynchronously) be fulfilled to that value. Similarly,
Promise.reject() takes a single argument and returns a Promise that will be rejec‐
ted with that value as the reason. (To be clear: the Promises returned by these static
methods are not already fulfilled or rejected when they are returned, but they will ful‐
fill or reject immediately after the current synchronous chunk of code has finished
running. Typically, this happens within a few milliseconds unless there are many
pending asynchronous tasks waiting to run.)

Recall from §13.2.3 that a resolved Promise is not the same thing as a fulfilled
Promise. When we call Promise.resolve(), we typically pass the fulfillment value to
create a Promise object that will very soon fulfill to that value. The method is not
named Promise.fulfill(), however. If you pass a Promise p1 to
Promise.resolve(), it will return a new Promise p2, which is immediately resolved,
but which will not be fulfilled or rejected until p1 is fulfilled or rejected.

362 | Chapter 13: Asynchronous JavaScript

It is possible, but unusual, to write a Promise-based function where the value is com‐
puted synchronously and returned asynchronously with Promise.resolve(). It is
fairly common, however, to have synchronous special cases within an asynchronous
function, and you can handle these special cases with Promise.resolve() and
Promise.reject(). In particular, if you detect error conditions (such as bad argu‐
ment values) before beginning an asynchronous operation, you can report that error
by returning a Promise created with Promise.reject(). (You could also just throw
an error synchronously in that case, but that is considered poor form because then
the caller of your function needs to write both a synchronous catch clause and use an
asynchronous .catch() method to handle errors.) Finally, Promise.resolve() is
sometimes useful to create the initial Promise in a chain of Promises. We’ll see a cou‐
ple of examples that use it this way.

Promises from scratch

For both getJSON() and getHighScore(), we started off by calling an existing func‐
tion to get an initial Promise, and created and returned a new Promise by calling
the .then() method of that initial Promise. But what about writing a Promise-
returning function when you can’t use another Promise-returning function as the
starting point? In that case, you use the Promise() constructor to create a new
Promise object that you have complete control over. Here’s how it works: you invoke
the Promise() constructor and pass a function as its only argument. The function
you pass should be written to expect two parameters, which, by convention, should
be named resolve and reject. The constructor synchronously calls your function
with function arguments for the resolve and reject parameters. After calling your
function, the Promise() constructor returns the newly created Promise. That
returned Promise is under the control of the function you passed to the constructor.
That function should perform some asynchronous operation and then call the
resolve function to resolve or fulfill the returned Promise or call the reject function
to reject the returned Promise. Your function does not have to be asynchronous: it
can call resolve or reject synchronously, but the Promise will still be resolved, ful‐
filled, or rejected asynchronously if you do this.

It can be hard to understand the functions passed to a function passed to a construc‐
tor by just reading about it, but hopefully some examples will make this clear. Here’s
how to write the Promise-based wait() function that we used in various examples
earlier in the chapter:

function wait(duration) {
 // Create and return a new Promise
 return new Promise((resolve, reject) => { // These control the Promise
 // If the argument is invalid, reject the Promise
 if (duration < 0) {
 reject(new Error("Time travel not yet implemented"));
 }

13.2 Promises | 363

 // Otherwise, wait asynchronously and then resolve the Promise.
 // setTimeout will invoke resolve() with no arguments, which means
 // that the Promise will fulfill with the undefined value.
 setTimeout(resolve, duration);
 });
}

Note that the pair of functions that you use to control the fate of a Promise created
with the Promise() constructor are named resolve() and reject(), not fulfill()
and reject(). If you pass a Promise to resolve(), the returned Promise will resolve
to that new Promise. Often, however, you will pass a non-Promise value, which ful‐
fills the returned Promise with that value.

Example 13-1 is another example of using the Promise() constructor. This one
implements our getJSON() function for use in Node, where the fetch() API is not
built in. Remember that we started this chapter with a discussion of asynchronous
callbacks and events. This example uses both callbacks and event handlers and is a
good demonstration, therefore, of how we can implement Promise-based APIs on top
of other styles of asynchronous programming.

Example 13-1. An asynchronous getJSON() function

const http = require("http");

function getJSON(url) {
 // Create and return a new Promise
 return new Promise((resolve, reject) => {
 // Start an HTTP GET request for the specified URL
 request = http.get(url, response => { // called when response starts
 // Reject the Promise if the HTTP status is wrong
 if (response.statusCode !== 200) {
 reject(new Error(`HTTP status ${response.statusCode}`));
 response.resume(); // so we don't leak memory
 }
 // And reject if the response headers are wrong
 else if (response.headers["content-type"] !== "application/json") {
 reject(new Error("Invalid content-type"));
 response.resume(); // don't leak memory
 }
 else {
 // Otherwise, register events to read the body of the response
 let body = "";
 response.setEncoding("utf-8");
 response.on("data", chunk => { body += chunk; });
 response.on("end", () => {
 // When the response body is complete, try to parse it
 try {
 let parsed = JSON.parse(body);
 // If it parsed successfully, fulfill the Promise
 resolve(parsed);

364 | Chapter 13: Asynchronous JavaScript

 } catch(e) {
 // If parsing failed, reject the Promise
 reject(e);
 }
 });
 }
 });
 // We also reject the Promise if the request fails before we
 // even get a response (such as when the network is down)
 request.on("error", error => {
 reject(error);
 });
 });
}

13.2.7 Promises in Sequence
Promise.all() makes it easy to run an arbitrary number of Promises in parallel. And
Promise chains make it easy to express a sequence of a fixed number of Promises.
Running an arbitrary number of Promises in sequence is trickier, however. Suppose,
for example, that you have an array of URLs to fetch, but that to avoid overloading
your network, you want to fetch them one at a time. If the array is of arbitrary length
and unknown content, you can’t write out a Promise chain in advance, so you need to
build one dynamically, with code like this:

function fetchSequentially(urls) {
 // We'll store the URL bodies here as we fetch them
 const bodies = [];

 // Here's a Promise-returning function that fetches one body
 function fetchOne(url) {
 return fetch(url)
 .then(response => response.text())
 .then(body => {
 // We save the body to the array, and we're purposely
 // omitting a return value here (returning undefined)
 bodies.push(body);
 });
 }

 // Start with a Promise that will fulfill right away (with value undefined)
 let p = Promise.resolve(undefined);

 // Now loop through the desired URLs, building a Promise chain
 // of arbitrary length, fetching one URL at each stage of the chain
 for(url of urls) {
 p = p.then(() => fetchOne(url));
 }

 // When the last Promise in that chain is fulfilled, then the
 // bodies array is ready. So let's return a Promise for that

13.2 Promises | 365

 // bodies array. Note that we don't include any error handlers:
 // we want to allow errors to propagate to the caller.
 return p.then(() => bodies);
}

With this fetchSequentially() function defined, we could fetch the URLs one at a
time with code much like the fetch-in-parallel code we used earlier to demonstrate
Promise.all():

fetchSequentially(urls)
 .then(bodies => { /* do something with the array of strings */ })
 .catch(e => console.error(e));

The fetchSequentially() function starts by creating a Promise that will fulfill
immediately after it returns. It then builds a long, linear Promise chain off of that ini‐
tial Promise and returns the last Promise in the chain. It is like setting up a row of
dominoes and then knocking the first one over.

There is another (possibly more elegant) approach that we can take. Rather than cre‐
ating the Promises in advance, we can have the callback for each Promise create and
return the next Promise. That is, instead of creating and chaining a bunch of Prom‐
ises, we instead create Promises that resolve to other Promises. Rather than creating a
domino-like chain of Promises, we are instead creating a sequence of Promises nested
one inside the other like a set of matryoshka dolls. With this approach, our code can
return the first (outermost) Promise, knowing that it will eventually fulfill (or reject!)
to the same value that the last (innermost) Promise in the sequence does. The promis
eSequence() function that follows is written to be generic and is not specific to URL
fetching. It is here at the end of our discussion of Promises because it is complicated.
If you’ve read this chapter carefully, however, I hope you’ll be able to understand how
it works. In particular, note that the nested function inside promiseSequence()
appears to call itself recursively, but because the “recursive” call is through a then()
method, there is not actually any traditional recursion happening:

// This function takes an array of input values and a "promiseMaker" function.
// For any input value x in the array, promiseMaker(x) should return a Promise
// that will fulfill to an output value. This function returns a Promise
// that fulfills to an array of the computed output values.
//
// Rather than creating the Promises all at once and letting them run in
// parallel, however, promiseSequence() only runs one Promise at a time
// and does not call promiseMaker() for a value until the previous Promise
// has fulfilled.
function promiseSequence(inputs, promiseMaker) {
 // Make a private copy of the array that we can modify
 inputs = [...inputs];

 // Here's the function that we'll use as a Promise callback
 // This is the pseudorecursive magic that makes this all work.
 function handleNextInput(outputs) {

366 | Chapter 13: Asynchronous JavaScript

 if (inputs.length === 0) {
 // If there are no more inputs left, then return the array
 // of outputs, finally fulfilling this Promise and all the
 // previous resolved-but-not-fulfilled Promises.
 return outputs;
 } else {
 // If there are still input values to process, then we'll
 // return a Promise object, resolving the current Promise
 // with the future value from a new Promise.
 let nextInput = inputs.shift(); // Get the next input value,
 return promiseMaker(nextInput) // compute the next output value,
 // Then create a new outputs array with the new output value
 .then(output => outputs.concat(output))
 // Then "recurse", passing the new, longer, outputs array
 .then(handleNextInput);
 }
 }

 // Start with a Promise that fulfills to an empty array and use
 // the function above as its callback.
 return Promise.resolve([]).then(handleNextInput);
}

This promiseSequence() function is intentionally generic. We can use it to fetch
URLs with code like this:

// Given a URL, return a Promise that fulfills to the URL body text
function fetchBody(url) { return fetch(url).then(r => r.text()); }
// Use it to sequentially fetch a bunch of URL bodies
promiseSequence(urls, fetchBody)
 .then(bodies => { /* do something with the array of strings */ })
 .catch(console.error);

13.3 async and await
ES2017 introduces two new keywords—async and await—that represent a paradigm
shift in asynchronous JavaScript programming. These new keywords dramatically
simplify the use of Promises and allow us to write Promise-based, asynchronous code
that looks like synchronous code that blocks while waiting for network responses or
other asynchronous events. Although it is still important to understand how
Promises work, much of their complexity (and sometimes even their very presence!)
vanishes when you use them with async and await.

As we discussed earlier in the chapter, asynchronous code can’t return a value or
throw an exception the way that regular synchronous code can. And this is why
Promises are designed the way the are. The value of a fulfilled Promise is like the
return value of a synchronous function. And the value of a rejected Promise is like a
value thrown by a synchronous function. This latter similarity is made explicit by the
naming of the .catch() method. async and await take efficient, Promise-based code

13.3 async and await | 367

and hide the Promises so that your asynchronous code can be as easy to read and as
easy to reason about as inefficient, blocking, synchronous code.

13.3.1 await Expressions
The await keyword takes a Promise and turns it back into a return value or a thrown
exception. Given a Promise object p, the expression await p waits until p settles. If p
fulfills, then the value of await p is the fulfillment value of p. On the other hand, if p
is rejected, then the await p expression throws the rejection value of p. We don’t usu‐
ally use await with a variable that holds a Promise; instead, we use it before the invo‐
cation of a function that returns a Promise:

let response = await fetch("/api/user/profile");
let profile = await response.json();

It is critical to understand right away that the await keyword does not cause your
program to block and literally do nothing until the specified Promise settles. The
code remains asynchronous, and the await simply disguises this fact. This means that
any code that uses await is itself asynchronous.

13.3.2 async Functions
Because any code that uses await is asynchronous, there is one critical rule: you can
only use the await keyword within functions that have been declared with the async
keyword. Here’s a version of the getHighScore() function from earlier in the chapter,
rewritten to use async and await:

async function getHighScore() {
 let response = await fetch("/api/user/profile");
 let profile = await response.json();
 return profile.highScore;
}

Declaring a function async means that the return value of the function will be a
Promise even if no Promise-related code appears in the body of the function. If an
async function appears to return normally, then the Promise object that is the real
return value of the function will resolve to that apparent return value. And if an
async function appears to throw an exception, then the Promise object that it returns
will be rejected with that exception.

The getHighScore() function is declared async, so it returns a Promise. And because
it returns a Promise, we can use the await keyword with it:

displayHighScore(await getHighScore());

But remember, that line of code will only work if it is inside another async function!
You can nest await expressions within async functions as deeply as you want. But if

368 | Chapter 13: Asynchronous JavaScript

2 You can typically use await at the top level in a browser’s developer console. And there is a pending proposal
to allow top-level await in a future version of JavaScript.

you’re at the top level2 or are inside a function that is not async for some reason, then
you can’t use await and have to deal with a returned Promise in the regular way:

getHighScore().then(displayHighScore).catch(console.error);

You can use the async keyword with any kind of function. It works with the function
keyword as a statement or as an expression. It works with arrow functions and with
the method shortcut form in classes and object literals. (See Chapter 8 for more about
the various ways to write functions.)

13.3.3 Awaiting Multiple Promises
Suppose that we’ve written our getJSON() function using async:

async function getJSON(url) {
 let response = await fetch(url);
 let body = await response.json();
 return body;
}

And now suppose that we want to fetch two JSON values with this function:

let value1 = await getJSON(url1);
let value2 = await getJSON(url2);

The problem with this code is that it is unnecessarily sequential: the fetch of the sec‐
ond URL will not begin until the first fetch is complete. If the second URL does not
depend on the value obtained from the first URL, then we should probably try to
fetch the two values at the same time. This is a case where the Promise-based nature
of async functions shows. In order to await a set of concurrently executing async
functions, we use Promise.all() just as we would if working with Promises directly:

let [value1, value2] = await Promise.all([getJSON(url1), getJSON(url2)]);

13.3.4 Implementation Details
Finally, in order to understand how async functions work, it may help to think about
what is going on under the hood.

Suppose you write an async function like this:

async function f(x) { /* body */ }

You can think about this as a Promise-returning function wrapped around the body
of your original function:

13.3 async and await | 369

function f(x) {
 return new Promise(function(resolve, reject) {
 try {
 resolve((function(x) { /* body */ })(x));
 }
 catch(e) {
 reject(e);
 }
 });
}

It is harder to express the await keyword in terms of a syntax transformation like this
one. But think of the await keyword as a marker that breaks a function body up into
separate, synchronous chunks. An ES2017 interpreter can break the function body up
into a sequence of separate subfunctions, each of which gets passed to the then()
method of the await-marked Promise that precedes it.

13.4 Asynchronous Iteration
We began this chapter with a discussion of callback- and event-based asynchrony, and
when we introduced Promises, we noted that they were useful for single-shot asyn‐
chronous computations but were not suitable for use with sources of repetitive asyn‐
chronous events, such as setInterval(), the “click” event in a web browser, or the
“data” event on a Node stream. Because single Promises do not work for sequences of
asynchronous events, we also cannot use regular async functions and the await state‐
ments for these things.

ES2018 provides a solution, however. Asynchronous iterators are like the iterators
described in Chapter 12, but they are Promise-based and are meant to be used with a
new form of the for/of loop: for/await.

13.4.1 The for/await Loop
Node 12 makes its readable streams asynchronously iterable. This means you can
read successive chunks of data from a stream with a for/await loop like this one:

const fs = require("fs");

async function parseFile(filename) {
 let stream = fs.createReadStream(filename, { encoding: "utf-8"});
 for await (let chunk of stream) {
 parseChunk(chunk); // Assume parseChunk() is defined elsewhere
 }
}

Like a regular await expression, the for/await loop is Promise-based. Roughly
speaking, the asynchronous iterator produces a Promise and the for/await loop
waits for that Promise to fulfill, assigns the fulfillment value to the loop variable, and

370 | Chapter 13: Asynchronous JavaScript

runs the body of the loop. And then it starts over, getting another Promise from the
iterator and waiting for that new Promise to fulfill.

Suppose you have an array of URLs:

const urls = [url1, url2, url3];

You can call fetch() on each URL to get an array of Promises:

const promises = urls.map(url => fetch(url));

We saw earlier in the chapter that we could now use Promise.all() to wait for all the
Promises in the array to be fulfilled. But suppose we want the results of the first fetch
as soon as they become available and don’t want to wait for all the URLs to be fetched.
(Of course, the first fetch might take longer than any of the others, so this is not nec‐
essarily faster than using Promise.all().) Arrays are iterable, so we can iterate
through the array of promises with a regular for/of loop:

for(const promise of promises) {
 response = await promise;
 handle(response);
}

This example code uses a regular for/of loop with a regular iterator. But because this
iterator returns Promises, we can also use the new for/await for slightly simpler
code:

for await (const response of promises) {
 handle(response);
}

In this case, the for/await loop just builds the await call into the loop and makes our
code slightly more compact, but the two examples do exactly the same thing. Impor‐
tantly, both examples will only work if they are within functions declared async; a
for/await loop is no different than a regular await expression in that way.

It is important to realize, however, that we’re using for/await with a regular iterator
in this example. Things are more interesting with fully asynchronous iterators.

13.4.2 Asynchronous Iterators
Let’s review some terminology from Chapter 12. An iterable object is one that can be
used with a for/of loop. It defines a method with the symbolic name Symbol.itera
tor. This method returns an iterator object. The iterator object has a next() method,
which can be called repeatedly to obtain the values of the iterable object. The next()
method of the iterator object returns iteration result objects. The iteration result
object has a value property and/or a done property.

13.4 Asynchronous Iteration | 371

Asynchronous iterators are quite similar to regular iterators, but there are two impor‐
tant differences. First, an asynchronously iterable object implements a method with
the symbolic name Symbol.asyncIterator instead of Symbol.iterator. (As we saw
earlier, for/await is compatible with regular iterable objects but it prefers asynchro‐
nously iterable objects, and tries the Symbol.asyncIterator method before it tries
the Symbol.iterator method.) Second, the next() method of an asynchronous itera‐
tor returns a Promise that resolves to an iterator result object instead of returning an
iterator result object directly.

In the previous section, when we used for/await on a regular, syn‐
chronously iterable array of Promises, we were working with syn‐
chronous iterator result objects in which the value property was a
Promise object but the done property was synchronous. True asyn‐
chronous iterators return Promises for iteration result objects, and
both the value and the done properties are asynchronous. The dif‐
ference is a subtle one: with asynchronous iterators, the choice
about when iteration ends can be made asynchronously.

13.4.3 Asynchronous Generators
As we saw in Chapter 12, the easiest way to implement an iterator is often to use a
generator. The same is true for asynchronous iterators, which we can implement with
generator functions that we declare async. An async generator has the features of
async functions and the features of generators: you can use await as you would in a
regular async function, and you can use yield as you would in a regular generator.
But values that you yield are automatically wrapped in Promises. Even the syntax for
async generators is a combination: async function and function * combine into
async function *. Here is an example that shows how you might use an async gen‐
erator and a for/await loop to repetitively run code at fixed intervals using loop syn‐
tax instead of a setInterval() callback function:

// A Promise-based wrapper around setTimeout() that we can use await with.
// Returns a Promise that fulfills in the specified number of milliseconds
function elapsedTime(ms) {
 return new Promise(resolve => setTimeout(resolve, ms));
}

// An async generator function that increments a counter and yields it
// a specified (or infinite) number of times at a specified interval.
async function* clock(interval, max=Infinity) {
 for(let count = 1; count <= max; count++) { // regular for loop
 await elapsedTime(interval); // wait for time to pass
 yield count; // yield the counter
 }
}

372 | Chapter 13: Asynchronous JavaScript

// A test function that uses the async generator with for/await
async function test() { // Async so we can use for/await
 for await (let tick of clock(300, 100)) { // Loop 100 times every 300ms
 console.log(tick);
 }
}

13.4.4 Implementing Asynchronous Iterators
Instead of using async generators to implement asynchronous iterators, it is also pos‐
sible to implement them directly by defining an object with a Symbol.asyncItera
tor() method that returns an object with a next() method that returns a Promise
that resolves to an iterator result object. In the following code, we re-implement the
clock() function from the preceding example so that it is not a generator and instead
just returns an asynchronously iterable object. Notice that the next() method in this
example does not explicitly return a Promise; instead, we just declare next() to be
async:

function clock(interval, max=Infinity) {
 // A Promise-ified version of setTimeout that we can use await with.
 // Note that this takes an absolute time instead of an interval.
 function until(time) {
 return new Promise(resolve => setTimeout(resolve, time - Date.now()));
 }

 // Return an asynchronously iterable object
 return {
 startTime: Date.now(), // Remember when we started
 count: 1, // Remember which iteration we're on
 async next() { // The next() method makes this an iterator
 if (this.count > max) { // Are we done?
 return { done: true }; // Iteration result indicating done
 }
 // Figure out when the next iteration should begin,
 let targetTime = this.startTime + this.count * interval;
 // wait until that time,
 await until(targetTime);
 // and return the count value in an iteration result object.
 return { value: this.count++ };
 },
 // This method means that this iterator object is also an iterable.
 [Symbol.asyncIterator]() { return this; }
 };
}

This iterator-based version of the clock() function fixes a flaw in the generator-
based version. Note that, in this newer code, we target the absolute time at which
each iteration should begin and subtract the current time from that in order to com‐
pute the interval that we pass to setTimeout(). If we use clock() with a for/await

13.4 Asynchronous Iteration | 373

3 I learned about this approach to asynchronous iteration from the blog of Dr. Axel Rauschmayer, https://
2ality.com.

loop, this version will run loop iterations more precisely at the specified interval
because it accounts for the time required to actually run the body of the loop. But this
fix isn’t just about timing accuracy. The for/await loop always waits for the Promise
returned by one iteration to be fulfilled before it begins the next iteration. But if you
use an asynchronous iterator without a for/await loop, there is nothing to prevent
you from calling the next() method whenever you want. With the generator-based
version of clock(), if you call the next() method three times sequentially, you’ll get
three Promises that will all fulfill at almost exactly the same time, which is probably
not what you want. The iterator-based version we’ve implemented here does not have
that problem.

The benefit of asynchronous iterators is that they allow us to represent streams of
asynchronous events or data. The clock() function discussed previously was fairly
simple to write because the source of the asynchrony was the setTimeout() calls we
were making ourselves. But when we are trying to work with other asynchronous
sources, such as the triggering of event handlers, it becomes substantially harder to
implement asynchronous iterators—we typically have a single event handler function
that responds to events, but each call to the iterator’s next() method must return a
distinct Promise object, and multiple calls to next() may occur before the first
Promise resolves. This means that any asynchronous iterator method must be able to
maintain an internal queue of Promises that it resolves in order as asynchronous
events are occurring. If we encapsulate this Promise-queueing behavior into an Asyn‐
cQueue class, then it becomes much easier to write asynchronous iterators based on
AsyncQueue.3

The AsyncQueue class that follows has enqueue() and dequeue() methods as you’d
expect for a queue class. The dequeue() method returns a Promise rather than an
actual value, however, which means that it is OK to call dequeue() before enqueue()
has ever been called. The AsyncQueue class is also an asynchronous iterator, and is
intended to be used with a for/await loop whose body runs once each time a new
value is asynchronously enqueued. (AsyncQueue has a close() method. Once called,
no more values can be enqueued. When a closed queue is empty, the for/await loop
will stop looping.)

Note that the implementation of AsyncQueue does not use async or await and
instead works directly with Promises. The code is somewhat complicated, and you
can use it to test your understanding of the material we’ve covered in this long chap‐
ter. Even if you don’t fully understand the AsyncQueue implementation, do take a

374 | Chapter 13: Asynchronous JavaScript

https://2ality.com
https://2ality.com

look at the shorter example that follows it: it implements a simple but very interesting
asynchronous iterator on top of AsyncQueue.

/**
 * An asynchronously iterable queue class. Add values with enqueue()
 * and remove them with dequeue(). dequeue() returns a Promise, which
 * means that values can be dequeued before they are enqueued. The
 * class implements [Symbol.asyncIterator] and next() so that it can
 * be used with the for/await loop (which will not terminate until
 * the close() method is called.)
 */
class AsyncQueue {
 constructor() {
 // Values that have been queued but not dequeued yet are stored here
 this.values = [];
 // When Promises are dequeued before their corresponding values are
 // queued, the resolve methods for those Promises are stored here.
 this.resolvers = [];
 // Once closed, no more values can be enqueued, and no more unfulfilled
 // Promises returned.
 this.closed = false;
 }

 enqueue(value) {
 if (this.closed) {
 throw new Error("AsyncQueue closed");
 }
 if (this.resolvers.length > 0) {
 // If this value has already been promised, resolve that Promise
 const resolve = this.resolvers.shift();
 resolve(value);
 }
 else {
 // Otherwise, queue it up
 this.values.push(value);
 }
 }

 dequeue() {
 if (this.values.length > 0) {
 // If there is a queued value, return a resolved Promise for it
 const value = this.values.shift();
 return Promise.resolve(value);
 }
 else if (this.closed) {
 // If no queued values and we're closed, return a resolved
 // Promise for the "end-of-stream" marker
 return Promise.resolve(AsyncQueue.EOS);
 }
 else {
 // Otherwise, return an unresolved Promise,
 // queuing the resolver function for later use

13.4 Asynchronous Iteration | 375

 return new Promise((resolve) => { this.resolvers.push(resolve); });
 }
 }

 close() {
 // Once the queue is closed, no more values will be enqueued.
 // So resolve any pending Promises with the end-of-stream marker
 while(this.resolvers.length > 0) {
 this.resolvers.shift()(AsyncQueue.EOS);
 }
 this.closed = true;
 }

 // Define the method that makes this class asynchronously iterable
 [Symbol.asyncIterator]() { return this; }

 // Define the method that makes this an asynchronous iterator. The
 // dequeue() Promise resolves to a value or the EOS sentinel if we're
 // closed. Here, we need to return a Promise that resolves to an
 // iterator result object.
 next() {
 return this.dequeue().then(value => (value === AsyncQueue.EOS)
 ? { value: undefined, done: true }
 : { value: value, done: false });
 }
}

// A sentinel value returned by dequeue() to mark "end of stream" when closed
AsyncQueue.EOS = Symbol("end-of-stream");

Because this AsyncQueue class defines the asynchronous iteration basics, we can cre‐
ate our own, more interesting asynchronous iterators simply by asynchronously
queueing values. Here’s an example that uses AsyncQueue to produce a stream of web
browser events that can be handled with a for/await loop:

// Push events of the specified type on the specified document element
// onto an AsyncQueue object, and return the queue for use as an event stream
function eventStream(elt, type) {
 const q = new AsyncQueue(); // Create a queue
 elt.addEventListener(type, e=>q.enqueue(e)); // Enqueue events
 return q;
}

async function handleKeys() {
 // Get a stream of keypress events and loop once for each one
 for await (const event of eventStream(document, "keypress")) {
 console.log(event.key);
 }
}

376 | Chapter 13: Asynchronous JavaScript

13.5 Summary
In this chapter, you have learned:

• Most real-world JavaScript programming is asynchronous.
• Traditionally, asynchrony has been handled with events and callback functions.

This can get complicated, however, because you can end up with multiple levels
of callbacks nested inside other callbacks, and because it is difficult to do robust
error handling.

• Promises provide a new way of structuring callback functions. If used correctly
(and unfortunately, Promises are easy to use incorrectly), they can convert asyn‐
chronous code that would have been nested into linear chains of then() calls
where one asynchronous step of a computation follows another. Also, Promises
allow you to centralize your error-handling code into a single catch() call at the
end of a chain of then() calls.

• The async and await keywords allow us to write asynchronous code that is
Promise-based under the hood but that looks like synchronous code. This makes
the code easier to understand and reason about. If a function is declared async, it
will implicitly return a Promise. Inside an async function, you can await a
Promise (or a function that returns a Promise) as if the Promise value was syn‐
chronously computed.

• Objects that are asynchronously iterable can be used with a for/await loop. You
can create asynchronously iterable objects by implementing a [Symbol.asyncIt
erator]() method or by invoking an async function * generator function.
Asynchronous iterators provide an alternative to “data” events on streams in
Node and can be used to represent a stream of user input events in client-side
JavaScript.

13.5 Summary | 377

CHAPTER 14

Metaprogramming

This chapter covers a number of advanced JavaScript features that are not commonly
used in day-to-day programming but that may be valuable to programmers writing
reusable libraries and of interest to anyone who wants to tinker with the details about
how JavaScript objects behave.

Many of the features described here can loosely be described as “metaprogramming”:
if regular programming is writing code to manipulate data, then metaprogramming is
writing code to manipulate other code. In a dynamic language like JavaScript, the
lines between programming and metaprogramming are blurry—even the simple abil‐
ity to iterate over the properties of an object with a for/in loop might be considered
“meta” by programmers accustomed to more static languages.

The metaprogramming topics covered in this chapter include:

• §14.1 Controlling the enumerability, deleteability, and configurability of object
properties

• §14.2 Controlling the extensibility of objects, and creating “sealed” and “frozen”
objects

• §14.3 Querying and setting the prototypes of objects
• §14.4 Fine-tuning the behavior of your types with well-known Symbols
• §14.5 Creating DSLs (domain-specific languages) with template tag functions
• §14.6 Probing objects with reflect methods
• §14.7 Controlling object behavior with Proxy

379

14.1 Property Attributes
The properties of a JavaScript object have names and values, of course, but each prop‐
erty also has three associated attributes that specify how that property behaves and
what you can do with it:

• The writable attribute specifies whether or not the value of a property can
change.

• The enumerable attribute specifies whether the property is enumerated by the
for/in loop and the Object.keys() method.

• The configurable attribute specifies whether a property can be deleted and also
whether the property’s attributes can be changed.

Properties defined in object literals or by ordinary assignment to an object are writa‐
ble, enumerable, and configurable. But many of the properties defined by the Java‐
Script standard library are not.

This section explains the API for querying and setting property attributes. This API is
particularly important to library authors because:

• It allows them to add methods to prototype objects and make them non-
enumerable, like built-in methods.

• It allows them to “lock down” their objects, defining properties that cannot be
changed or deleted.

Recall from §6.10.6 that, while “data properties” have a value, “accessor properties”
have a getter and/or a setter method instead. For the purposes of this section, we are
going to consider the getter and setter methods of an accessor property to be prop‐
erty attributes. Following this logic, we’ll even say that the value of a data property is
an attribute as well. Thus, we can say that a property has a name and four attributes.
The four attributes of a data property are value, writable, enumerable, and configura‐
ble. Accessor properties don’t have a value attribute or a writable attribute: their writa‐
bility is determined by the presence or absence of a setter. So the four attributes of an
accessor property are get, set, enumerable, and configurable.

The JavaScript methods for querying and setting the attributes of a property use an
object called a property descriptor to represent the set of four attributes. A property
descriptor object has properties with the same names as the attributes of the property
it describes. Thus, the property descriptor object of a data property has properties
named value, writable, enumerable, and configurable. And the descriptor for an
accessor property has get and set properties instead of value and writable. The
writable, enumerable, and configurable properties are boolean values, and the get
and set properties are function values.

380 | Chapter 14: Metaprogramming

To obtain the property descriptor for a named property of a specified object, call
Object.getOwnPropertyDescriptor():

// Returns {value: 1, writable:true, enumerable:true, configurable:true}
Object.getOwnPropertyDescriptor({x: 1}, "x");

// Here is an object with a read-only accessor property
const random = {
 get octet() { return Math.floor(Math.random()*256); },
};

// Returns { get: /*func*/, set:undefined, enumerable:true, configurable:true}
Object.getOwnPropertyDescriptor(random, "octet");

// Returns undefined for inherited properties and properties that don't exist.
Object.getOwnPropertyDescriptor({}, "x") // => undefined; no such prop
Object.getOwnPropertyDescriptor({}, "toString") // => undefined; inherited

As its name implies, Object.getOwnPropertyDescriptor() works only for own
properties. To query the attributes of inherited properties, you must explicitly tra‐
verse the prototype chain. (See Object.getPrototypeOf() in §14.3); see also the sim‐
ilar Reflect.getOwnPropertyDescriptor() function in §14.6.)

To set the attributes of a property or to create a new property with the specified
attributes, call Object.defineProperty(), passing the object to be modified, the
name of the property to be created or altered, and the property descriptor object:

let o = {}; // Start with no properties at all
// Add a non-enumerable data property x with value 1.
Object.defineProperty(o, "x", {
 value: 1,
 writable: true,
 enumerable: false,
 configurable: true
});

// Check that the property is there but is non-enumerable
o.x // => 1
Object.keys(o) // => []

// Now modify the property x so that it is read-only
Object.defineProperty(o, "x", { writable: false });

// Try to change the value of the property
o.x = 2; // Fails silently or throws TypeError in strict mode
o.x // => 1

// The property is still configurable, so we can change its value like this:
Object.defineProperty(o, "x", { value: 2 });
o.x // => 2

// Now change x from a data property to an accessor property

14.1 Property Attributes | 381

Object.defineProperty(o, "x", { get: function() { return 0; } });
o.x // => 0

The property descriptor you pass to Object.defineProperty() does not have to
include all four attributes. If you’re creating a new property, then omitted attributes
are taken to be false or undefined. If you’re modifying an existing property, then the
attributes you omit are simply left unchanged. Note that this method alters an exist‐
ing own property or creates a new own property, but it will not alter an inherited
property. See also the very similar function Reflect.defineProperty() in §14.6.

If you want to create or modify more than one property at a time, use Object.define
Properties(). The first argument is the object that is to be modified. The second
argument is an object that maps the names of the properties to be created or modified
to the property descriptors for those properties. For example:

let p = Object.defineProperties({}, {
 x: { value: 1, writable: true, enumerable: true, configurable: true },
 y: { value: 1, writable: true, enumerable: true, configurable: true },
 r: {
 get() { return Math.sqrt(this.x*this.x + this.y*this.y); },
 enumerable: true,
 configurable: true
 }
});
p.r // => Math.SQRT2

This code starts with an empty object, then adds two data properties and one read-
only accessor property to it. It relies on the fact that Object.defineProperties()
returns the modified object (as does Object.defineProperty()).

The Object.create() method was introduced in §6.2. We learned there that the first
argument to that method is the prototype object for the newly created object. This
method also accepts a second optional argument, which is the same as the second
argument to Object.defineProperties(). If you pass a set of property descriptors to
Object.create(), then they are used to add properties to the newly created object.

Object.defineProperty() and Object.defineProperties() throw TypeError if the
attempt to create or modify a property is not allowed. This happens if you attempt to
add a new property to a non-extensible (see §14.2) object. The other reasons that
these methods might throw TypeError have to do with the attributes themselves. The
writable attribute governs attempts to change the value attribute. And the configura‐
ble attribute governs attempts to change the other attributes (and also specifies
whether a property can be deleted). The rules are not completely straightforward,
however. It is possible to change the value of a nonwritable property if that property
is configurable, for example. Also, it is possible to change a property from writable to
nonwritable even if that property is nonconfigurable. Here are the complete rules.

382 | Chapter 14: Metaprogramming

Calls to Object.defineProperty() or Object.defineProperties() that attempt to
violate them throw a TypeError:

• If an object is not extensible, you can edit its existing own properties, but you
cannot add new properties to it.

• If a property is not configurable, you cannot change its configurable or enumera‐
ble attributes.

• If an accessor property is not configurable, you cannot change its getter or setter
method, and you cannot change it to a data property.

• If a data property is not configurable, you cannot change it to an accessor
property.

• If a data property is not configurable, you cannot change its writable attribute
from false to true, but you can change it from true to false.

• If a data property is not configurable and not writable, you cannot change its
value. You can change the value of a property that is configurable but nonwrita‐
ble, however (because that would be the same as making it writable, then chang‐
ing the value, then converting it back to nonwritable).

§6.7 described the Object.assign() function that copies property values from one or
more source objects into a target object. Object.assign() only copies enumerable
properties, and property values, not property attributes. This is normally what we
want, but it does mean, for example, that if one of the source objects has an accessor
property, it is the value returned by the getter function that is copied to the target
object, not the getter function itself. Example 14-1 demonstrates how we can use
Object.getOwnPropertyDescriptor() and Object.defineProperty() to create a
variant of Object.assign() that copies entire property descriptors rather than just
copying property values.

Example 14-1. Copying properties and their attributes from one object to another

/*
 * Define a new Object.assignDescriptors() function that works like
 * Object.assign() except that it copies property descriptors from
 * source objects into the target object instead of just copying
 * property values. This function copies all own properties, both
 * enumerable and non-enumerable. And because it copies descriptors,
 * it copies getter functions from source objects and overwrites setter
 * functions in the target object rather than invoking those getters and
 * setters.
 *
 * Object.assignDescriptors() propagates any TypeErrors thrown by
 * Object.defineProperty(). This can occur if the target object is sealed
 * or frozen or if any of the source properties try to change an existing
 * non-configurable property on the target object.

14.1 Property Attributes | 383

 *
 * Note that the assignDescriptors property is added to Object with
 * Object.defineProperty() so that the new function can be created as
 * a non-enumerable property like Object.assign().
 */
Object.defineProperty(Object, "assignDescriptors", {
 // Match the attributes of Object.assign()
 writable: true,
 enumerable: false,
 configurable: true,
 // The function that is the value of the assignDescriptors property.
 value: function(target, ...sources) {
 for(let source of sources) {
 for(let name of Object.getOwnPropertyNames(source)) {
 let desc = Object.getOwnPropertyDescriptor(source, name);
 Object.defineProperty(target, name, desc);
 }

 for(let symbol of Object.getOwnPropertySymbols(source)) {
 let desc = Object.getOwnPropertyDescriptor(source, symbol);
 Object.defineProperty(target, symbol, desc);
 }
 }
 return target;
 }
});

let o = {c: 1, get count() {return this.c++;}}; // Define object with getter
let p = Object.assign({}, o); // Copy the property values
let q = Object.assignDescriptors({}, o); // Copy the property descriptors
p.count // => 1: This is now just a data property so
p.count // => 1: ...the counter does not increment.
q.count // => 2: Incremented once when we copied it the first time,
q.count // => 3: ...but we copied the getter method so it increments.

14.2 Object Extensibility
The extensible attribute of an object specifies whether new properties can be added to
the object or not. Ordinary JavaScript objects are extensible by default, but you can
change that with the functions described in this section.

To determine whether an object is extensible, pass it to Object.isExtensible(). To
make an object non-extensible, pass it to Object.preventExtensions(). Once you
have done this, any attempt to add a new property to the object will throw a TypeEr‐
ror in strict mode and simply fail silently without an error in non-strict mode. In
addition, attempting to change the prototype (see §14.3) of a non-extensible object
will always throw a TypeError.

Note that there is no way to make an object extensible again once you have made it
non-extensible. Also note that calling Object.preventExtensions() only affects the

384 | Chapter 14: Metaprogramming

extensibility of the object itself. If new properties are added to the prototype of a non-
extensible object, the non-extensible object will inherit those new properties.

Two similar functions, Reflect.isExtensible() and Reflect.preventExten

sions(), are described in §14.6.

The purpose of the extensible attribute is to be able to “lock down” objects into a
known state and prevent outside tampering. The extensible attribute of objects is
often used in conjunction with the configurable and writable attributes of properties,
and JavaScript defines functions that make it easy to set these attributes together:

• Object.seal() works like Object.preventExtensions(), but in addition to
making the object non-extensible, it also makes all of the own properties of that
object nonconfigurable. This means that new properties cannot be added to the
object, and existing properties cannot be deleted or configured. Existing proper‐
ties that are writable can still be set, however. There is no way to unseal a sealed
object. You can use Object.isSealed() to determine whether an object is sealed.

• Object.freeze() locks objects down even more tightly. In addition to making
the object non-extensible and its properties nonconfigurable, it also makes all of
the object’s own data properties read-only. (If the object has accessor properties
with setter methods, these are not affected and can still be invoked by assignment
to the property.) Use Object.isFrozen() to determine if an object is frozen.

It is important to understand that Object.seal() and Object.freeze() affect only
the object they are passed: they have no effect on the prototype of that object. If you
want to thoroughly lock down an object, you probably need to seal or freeze the
objects in the prototype chain as well.

Object.preventExtensions(), Object.seal(), and Object.freeze() all return the
object that they are passed, which means that you can use them in nested function
invocations:

// Create a sealed object with a frozen prototype and a non-enumerable property
let o = Object.seal(Object.create(Object.freeze({x: 1}),
 {y: {value: 2, writable: true}}));

If you are writing a JavaScript library that passes objects to callback functions written
by the users of your library, you might use Object.freeze() on those objects to pre‐
vent the user’s code from modifying them. This is easy and convenient to do, but
there are trade-offs: frozen objects can interfere with common JavaScript testing
strategies, for example.

14.2 Object Extensibility | 385

14.3 The prototype Attribute
An object’s prototype attribute specifies the object from which it inherits properties.
(Review §6.2.3 and §6.3.2 for more on prototypes and property inheritance.) This is
such an important attribute that we usually simply say “the prototype of o" rather
than “the prototype attribute of o.” Remember also that when prototype appears in
code font, it refers to an ordinary object property, not to the prototype attribute:
Chapter 9 explained that the prototype property of a constructor function specifies
the prototype attribute of the objects created with that constructor.

The prototype attribute is set when an object is created. Objects created from object
literals use Object.prototype as their prototype. Objects created with new use the
value of the prototype property of their constructor function as their prototype. And
objects created with Object.create() use the first argument to that function (which
may be null) as their prototype.

You can query the prototype of any object by passing that object to Object.getProto
typeOf():

Object.getPrototypeOf({}) // => Object.prototype
Object.getPrototypeOf([]) // => Array.prototype
Object.getPrototypeOf(()=>{}) // => Function.prototype

A very similar function, Reflect.getPrototypeOf(), is described in §14.6.

To determine whether one object is the prototype of (or is part of the prototype chain
of) another object, use the isPrototypeOf() method:

let p = {x: 1}; // Define a prototype object.
let o = Object.create(p); // Create an object with that prototype.
p.isPrototypeOf(o) // => true: o inherits from p
Object.prototype.isPrototypeOf(p) // => true: p inherits from Object.prototype
Object.prototype.isPrototypeOf(o) // => true: o does too

Note that isPrototypeOf() performs a function similar to the instanceof operator
(see §4.9.4).

The prototype attribute of an object is set when the object is created and normally
remains fixed. You can, however, change the prototype of an object with Object.set
PrototypeOf():

let o = {x: 1};
let p = {y: 2};
Object.setPrototypeOf(o, p); // Set the prototype of o to p
o.y // => 2: o now inherits the property y
let a = [1, 2, 3];
Object.setPrototypeOf(a, p); // Set the prototype of array a to p
a.join // => undefined: a no longer has a join() method

386 | Chapter 14: Metaprogramming

There is generally no need to ever use Object.setPrototypeOf(). JavaScript imple‐
mentations may make aggressive optimizations based on the assumption that the
prototype of an object is fixed and unchanging. This means that if you ever call
Object.setPrototypeOf(), any code that uses the altered objects may run much
slower than it would normally.

A similar function, Reflect.setPrototypeOf(), is described in §14.6.

Some early browser implementations of JavaScript exposed the prototype attribute of
an object through the __proto__ property (written with two underscores at the start
and end). This has long since been deprecated, but enough existing code on the web
depends on __proto__ that the ECMAScript standard mandates it for all JavaScript
implementations that run in web browsers. (Node supports it, too, though the stan‐
dard does not require it for Node.) In modern JavaScript, __proto__ is readable and
writeable, and you can (though you shouldn’t) use it as an alternative to Object.get
PrototypeOf() and Object.setPrototypeOf(). One interesting use of __proto__,
however, is to define the prototype of an object literal:

let p = {z: 3};
let o = {
 x: 1,
 y: 2,
 __proto__: p
};
o.z // => 3: o inherits from p

14.4 Well-Known Symbols
The Symbol type was added to JavaScript in ES6, and one of the primary reasons for
doing so was to safely add extensions to the language without breaking compatibility
with code already deployed on the web. We saw an example of this in Chapter 12,
where we learned that you can make a class iterable by implementing a method
whose “name” is the Symbol Symbol.iterator.

Symbol.iterator is the best-known example of the “well-known Symbols.” These are
a set of Symbol values stored as properties of the Symbol() factory function that are
used to allow JavaScript code to control certain low-level behaviors of objects and
classes. The subsections that follow describe each of these well-known Symbols and
explain how they can be used.

14.4.1 Symbol.iterator and Symbol.asyncIterator
The Symbol.iterator and Symbol.asyncIterator Symbols allow objects or classes
to make themselves iterable or asynchronously iterable. They were covered in detail
in Chapter 12 and §13.4.2, respectively, and are mentioned again here only for
completeness.

14.4 Well-Known Symbols | 387

14.4.2 Symbol.hasInstance
When the instanceof operator was described in §4.9.4, we said that the righthand
side must be a constructor function and that the expression o instanceof f was
evaluated by looking for the value f.prototype within the prototype chain of o. That
is still true, but in ES6 and beyond, Symbol.hasInstance provides an alternative. In
ES6, if the righthand side of instanceof is any object with a [Symbol.hasInstance]
method, then that method is invoked with the lefthand side value as its argument,
and the return value of the method, converted to a boolean, becomes the value of the
instanceof operator. And, of course, if the value on the righthand side does not have
a [Symbol.hasInstance] method but is a function, then the instanceof operator
behaves in its ordinary way.

Symbol.hasInstance means that we can use the instanceof operator to do generic
type checking with suitably defined pseudotype objects. For example:

// Define an object as a "type" we can use with instanceof
let uint8 = {
 [Symbol.hasInstance](x) {
 return Number.isInteger(x) && x >= 0 && x <= 255;
 }
};
128 instanceof uint8 // => true
256 instanceof uint8 // => false: too big
Math.PI instanceof uint8 // => false: not an integer

Note that this example is clever but confusing because it uses a nonclass object where
a class would normally be expected. It would be just as easy—and clearer to readers of
your code—to write a isUint8() function instead of relying on this Symbol.hasIn
stance behavior.

14.4.3 Symbol.toStringTag
If you invoke the toString() method of a basic JavaScript object, you get the string
“[object Object]”:

{}.toString() // => "[object Object]"

If you invoke this same Object.prototype.toString() function as a method of
instances of built-in types, you get some interesting results:

Object.prototype.toString.call([]) // => "[object Array]"
Object.prototype.toString.call(/./) // => "[object RegExp]"
Object.prototype.toString.call(()=>{}) // => "[object Function]"
Object.prototype.toString.call("") // => "[object String]"
Object.prototype.toString.call(0) // => "[object Number]"
Object.prototype.toString.call(false) // => "[object Boolean]"

388 | Chapter 14: Metaprogramming

It turns out that you can use this Object.prototype.toString().call() technique
with any JavaScript value to obtain the “class attribute” of an object that contains type
information that is not otherwise available. The following classof() function is
arguably more useful than the typeof operator, which makes no distinction between
types of objects:

function classof(o) {
 return Object.prototype.toString.call(o).slice(8,-1);
}

classof(null) // => "Null"
classof(undefined) // => "Undefined"
classof(1) // => "Number"
classof(10n**100n) // => "BigInt"
classof("") // => "String"
classof(false) // => "Boolean"
classof(Symbol()) // => "Symbol"
classof({}) // => "Object"
classof([]) // => "Array"
classof(/./) // => "RegExp"
classof(()=>{}) // => "Function"
classof(new Map()) // => "Map"
classof(new Set()) // => "Set"
classof(new Date()) // => "Date"

Prior to ES6, this special behavior of the Object.prototype.toString() method was
available only to instances of built-in types, and if you called this classof() function
on an instance of a class you had defined yourself, it would simply return “Object”. In
ES6, however, Object.prototype.toString() looks for a property with the symbolic
name Symbol.toStringTag on its argument, and if such a property exists, it uses the
property value in its output. This means that if you define a class of your own, you
can easily make it work with functions like classof():

class Range {
 get [Symbol.toStringTag]() { return "Range"; }
 // the rest of this class is omitted here
}
let r = new Range(1, 10);
Object.prototype.toString.call(r) // => "[object Range]"
classof(r) // => "Range"

14.4.4 Symbol.species
Prior to ES6, JavaScript did not provide any real way to create robust subclasses of
built-in classes like Array. In ES6, however, you can extend any built-in class simply
by using the class and extends keywords. §9.5.2 demonstrated that with this simple
subclass of Array:

14.4 Well-Known Symbols | 389

// A trivial Array subclass that adds getters for the first and last elements.
class EZArray extends Array {
 get first() { return this[0]; }
 get last() { return this[this.length-1]; }
}

let e = new EZArray(1,2,3);
let f = e.map(x => x * x);
e.last // => 3: the last element of EZArray e
f.last // => 9: f is also an EZArray with a last property

Array defines methods concat(), filter(), map(), slice(), and splice(), which
return arrays. When we create an array subclass like EZArray that inherits these
methods, should the inherited method return instances of Array or instances of
EZArray? Good arguments can be made for either choice, but the ES6 specification
says that (by default) the five array-returning methods will return instances of the
subclass.

Here’s how it works:

• In ES6 and later, the Array() constructor has a property with the symbolic name
Symbol.species. (Note that this Symbol is used as the name of a property of the
constructor function. Most of the other well-known Symbols described here are
used as the name of methods of a prototype object.)

• When we create a subclass with extends, the resulting subclass constructor
inherits properties from the superclass constructor. (This is in addition to the
normal kind of inheritance, where instances of the subclass inherit methods of
the superclass.) This means that the constructor for every subclass of Array also
has an inherited property with name Symbol.species. (Or a subclass can define
its own property with this name, if it wants.)

• Methods like map() and slice() that create and return new arrays are tweaked
slightly in ES6 and later. Instead of just creating a regular Array, they (in effect)
invoke new this.constructor[Symbol.species]() to create the new array.

Now here’s the interesting part. Suppose that Array[Symbol.species] was just a reg‐
ular data property, defined like this:

Array[Symbol.species] = Array;

In that case, then subclass constructors would inherit the Array() constructor as
their “species,” and invoking map() on an array subclass would return an instance of
the superclass rather than an instance of the subclass. That is not how ES6 actually
behaves, however. The reason is that Array[Symbol.species] is a read-only accessor
property whose getter function simply returns this. Subclass constructors inherit
this getter function, which means that by default, every subclass constructor is its
own “species.”

390 | Chapter 14: Metaprogramming

Sometimes this default behavior is not what you want, however. If you wanted the
array-returning methods of EZArray to return regular Array objects, you just need to
set EZArray[Symbol.species] to Array. But since the inherited property is a read-
only accessor, you can’t just set it with an assignment operator. You can use define
Property(), however:

EZArray[Symbol.species] = Array; // Attempt to set a read-only property fails

// Instead we can use defineProperty():
Object.defineProperty(EZArray, Symbol.species, {value: Array});

The simplest option is probably to explicitly define your own Symbol.species getter
when creating the subclass in the first place:

class EZArray extends Array {
 static get [Symbol.species]() { return Array; }
 get first() { return this[0]; }
 get last() { return this[this.length-1]; }
}

let e = new EZArray(1,2,3);
let f = e.map(x => x - 1);
e.last // => 3
f.last // => undefined: f is a regular array with no last getter

Creating useful subclasses of Array was the primary use case that motivated the intro‐
duction of Symbol.species, but it is not the only place that this well-known Symbol
is used. Typed array classes use the Symbol in the same way that the Array class does.
Similarly, the slice() method of ArrayBuffer looks at the Symbol.species property
of this.constructor instead of simply creating a new ArrayBuffer. And Promise
methods like then() that return new Promise objects create those objects via this spe‐
cies protocol as well. Finally, if you find yourself subclassing Map (for example) and
defining methods that return new Map objects, you might want to use Symbol.spe
cies yourself for the benefit of subclasses of your subclass.

14.4.5 Symbol.isConcatSpreadable
The Array method concat() is one of the methods described in the previous section
that uses Symbol.species to determine what constructor to use for the returned
array. But concat() also uses Symbol.isConcatSpreadable. Recall from §7.8.3 that
the concat() method of an array treats its this value and its array arguments differ‐
ently than its nonarray arguments: nonarray arguments are simply appended to the
new array, but the this array and any array arguments are flattened or “spread” so
that the elements of the array are concatenated rather than the array argument itself.

Before ES6, concat() just used Array.isArray() to determine whether to treat a
value as an array or not. In ES6, the algorithm is changed slightly: if the argument (or

14.4 Well-Known Symbols | 391

1 A bug in the V8 JavaScript engine means that this code does not work correctly in Node 13.

the this value) to concat() is an object and has a property with the symbolic name
Symbol.isConcatSpreadable, then the boolean value of that property is used to
determine whether the argument should be “spread.” If no such property exists, then
Array.isArray() is used as in previous versions of the language.

There are two cases when you might want to use this Symbol:

• If you create an Array-like (see §7.9) object and want it to behave like a real array
when passed to concat(), you can simply add the symbolic property to your
object:

let arraylike = {
 length: 1,
 0: 1,
 [Symbol.isConcatSpreadable]: true
};
[].concat(arraylike) // => [1]: (would be [[1]] if not spread)

• Array subclasses are spreadable by default, so if you are defining an array sub‐
class that you do not want to act like an array when used with concat(), then you
can1 add a getter like this to your subclass:

class NonSpreadableArray extends Array {
 get [Symbol.isConcatSpreadable]() { return false; }
}
let a = new NonSpreadableArray(1,2,3);
[].concat(a).length // => 1; (would be 3 elements long if a was spread)

14.4.6 Pattern-Matching Symbols
§11.3.2 documented the String methods that perform pattern-matching operations
using a RegExp argument. In ES6 and later, these methods have been generalized to
work with RegExp objects or any object that defines pattern-matching behavior via
properties with symbolic names. For each of the string methods match(), match
All(), search(), replace(), and split(), there is a corresponding well-known
Symbol: Symbol.match, Symbol.search, and so on.

RegExps are a general and very powerful way to describe textual patterns, but they
can be complicated and not well suited to fuzzy matching. With the generalized string
methods, you can define your own pattern classes using the well-known Symbol
methods to provide custom matching. For example, you could perform string com‐
parisons using Intl.Collator (see §11.7.3) to ignore accents when matching. Or you
could define a pattern class based on the Soundex algorithm to match words based on

392 | Chapter 14: Metaprogramming

their approximate sounds or to loosely match strings up to a given Levenshtein
distance.

In general, when you invoke one of these five String methods on a pattern object like
this:

string.method(pattern, arg)

that invocation turns into an invocation of a symbolically named method on your
pattern object:

pattern[symbol](string, arg)

As an example, consider the pattern-matching class in the next example, which
implements pattern matching using the simple * and ? wildcards that you are proba‐
bly familar with from filesystems. This style of pattern matching dates back to the
very early days of the Unix operating system, and the patterns are often called globs:

class Glob {
 constructor(glob) {
 this.glob = glob;

 // We implement glob matching using RegExp internally.
 // ? matches any one character except /, and * matches zero or more
 // of those characters. We use capturing groups around each.
 let regexpText = glob.replace("?", "([^/])").replace("*", "([^/]*)");

 // We use the u flag to get Unicode-aware matching.
 // Globs are intended to match entire strings, so we use the ^ and $
 // anchors and do not implement search() or matchAll() since they
 // are not useful with patterns like this.
 this.regexp = new RegExp(`^${regexpText}$`, "u");
 }

 toString() { return this.glob; }

 [Symbol.search](s) { return s.search(this.regexp); }
 [Symbol.match](s) { return s.match(this.regexp); }
 [Symbol.replace](s, replacement) {
 return s.replace(this.regexp, replacement);
 }
}

let pattern = new Glob("docs/*.txt");
"docs/js.txt".search(pattern) // => 0: matches at character 0
"docs/js.htm".search(pattern) // => -1: does not match
let match = "docs/js.txt".match(pattern);
match[0] // => "docs/js.txt"
match[1] // => "js"
match.index // => 0
"docs/js.txt".replace(pattern, "web/$1.htm") // => "web/js.htm"

14.4 Well-Known Symbols | 393

14.4.7 Symbol.toPrimitive
§3.9.3 explained that JavaScript has three slightly different algorithms for converting
objects to primitive values. Loosely speaking, for conversions where a string value is
expected or preferred, JavaScript invokes an object’s toString() method first and
falls back on the valueOf() method if toString() is not defined or does not return a
primitive value. For conversions where a numeric value is preferred, JavaScript tries
the valueOf() method first and falls back on toString() if valueOf() is not defined
or if it does not return a primitive value. And finally, in cases where there is no pref‐
erence, it lets the class decide how to do the conversion. Date objects convert using
toString() first, and all other types try valueOf() first.

In ES6, the well-known Symbol Symbol.toPrimitive allows you to override this
default object-to-primitive behavior and gives you complete control over how instan‐
ces of your own classes will be converted to primitive values. To do this, define a
method with this symbolic name. The method must return a primitive value that
somehow represents the object. The method you define will be invoked with a single
string argument that tells you what kind of conversion JavaScript is trying to do on
your object:

• If the argument is "string", it means that JavaScript is doing the conversion in a
context where it would expect or prefer (but not require) a string. This happens
when you interpolate the object into a template literal, for example.

• If the argument is "number", it means that JavaScript is doing the conversion in a
context where it would expect or prefer (but not require) a numeric value. This
happens when you use the object with a < or > operator or with arithmetic opera‐
tors like - and *.

• If the argument is "default", it means that JavaScript is converting your object
in a context where either a numeric or string value could work. This happens
with the +, ==, and != operators.

Many classes can ignore the argument and simply return the same primitive value in
all cases. If you want instances of your class to be comparable and sortable with < and
>, then that is a good reason to define a [Symbol.toPrimitive] method.

14.4.8 Symbol.unscopables
The final well-known Symbol that we’ll cover here is an obscure one that was intro‐
duced as a workaround for compatibility issues caused by the deprecated with state‐
ment. Recall that the with statement takes an object and executes its statement body
as if it were in a scope where the properties of that object were variables. This caused
compatibility problems when new methods were added to the Array class, and it
broke some existing code. Symbol.unscopables is the result. In ES6 and later, the

394 | Chapter 14: Metaprogramming

with statement has been slightly modified. When used with an object o, a with state‐
ment computes Object.keys(o[Symbol.unscopables]||{}) and ignores properties
whose names are in the resulting array when creating the simulated scope in which to
execute its body. ES6 uses this to add new methods to Array.prototype without
breaking existing code on the web. This means that you can find a list of the newest
Array methods by evaluating:

let newArrayMethods = Object.keys(Array.prototype[Symbol.unscopables]);

14.5 Template Tags
Strings within backticks are known as “template literals” and were covered in §3.3.4.
When an expression whose value is a function is followed by a template literal, it
turns into a function invocation, and we call it a “tagged template literal.” Defining a
new tag function for use with tagged template literals can be thought of as metaprog‐
ramming, because tagged templates are often used to define DSLs—domain-specific
languages—and defining a new tag function is like adding new syntax to JavaScript.
Tagged template literals have been adopted by a number of frontend JavaScript pack‐
ages. The GraphQL query language uses a gql`` tag function to allow queries to be
embedded within JavaScript code. And the Emotion library uses a css`` tag function
to enable CSS styles to be embedded in JavaScript. This section demonstrates how to
write your own tag functions like these.

There is nothing special about tag functions: they are ordinary JavaScript functions,
and no special syntax is required to define them. When a function expression is fol‐
lowed by a template literal, the function is invoked. The first argument is an array of
strings, and this is followed by zero or more additional arguments, which can have
values of any type.

The number of arguments depends on the number of values that are interpolated into
the template literal. If the template literal is simply a constant string with no interpo‐
lations, then the tag function will be called with an array of that one string and no
additional arguments. If the template literal includes one interpolated value, then the
tag function is called with two arguments. The first is an array of two strings, and the
second is the interpolated value. The strings in that initial array are the string to the
left of the interpolated value and the string to its right, and either one of them may be
the empty string. If the template literal includes two interpolated values, then the tag
function is invoked with three arguments: an array of three strings and the two inter‐
polated values. The three strings (any or all of which may be empty) are the text to the
left of the first value, the text between the two values, and the text to the right of the
second value. In the general case, if the template literal has n interpolated values, then
the tag function will be invoked with n+1 arguments. The first argument will be an
array of n+1 strings, and the remaining arguments are the n interpolated values, in the
order that they appear in the template literal.

14.5 Template Tags | 395

The value of a template literal is always a string. But the value of a tagged template
literal is whatever value the tag function returns. This may be a string, but when the
tag function is used to implement a DSL, the return value is typically a non-string
data structure that is a parsed representation of the string.

As an example of a template tag function that returns a string, consider the following
html`` template, which is useful when you want to safely interpolate values into a
string of HTML. The tag performs HTML escaping on each of the values before using
it to build the final string:

function html(strings, ...values) {
 // Convert each value to a string and escape special HTML characters
 let escaped = values.map(v => String(v)
 .replace("&", "&")
 .replace("<", "<")
 .replace(">", ">")
 .replace('"', """)
 .replace("'", "'"));

 // Return the concatenated strings and escaped values
 let result = strings[0];
 for(let i = 0; i < escaped.length; i++) {
 result += escaped[i] + strings[i+1];
 }
 return result;
}

let operator = "<";
html`x ${operator} y` // => "x < y"

let kind = "game", name = "D&D";
html`<div class="${kind}">${name}</div>` // =>'<div class="game">D&D</div>'

For an example of a tag function that does not return a string but instead a parsed
representation of a string, think back to the Glob pattern class defined in §14.4.6.
Since the Glob() constructor takes a single string argument, we can define a tag func‐
tion for creating new Glob objects:

function glob(strings, ...values) {
 // Assemble the strings and values into a single string
 let s = strings[0];
 for(let i = 0; i < values.length; i++) {
 s += values[i] + strings[i+1];
 }
 // Return a parsed representation of that string
 return new Glob(s);
}

let root = "/tmp";
let filePattern = glob`${root}/*.html`; // A RegExp alternative
"/tmp/test.html".match(filePattern)[1] // => "test"

396 | Chapter 14: Metaprogramming

One of the features mentioned in passing in §3.3.4 is the String.raw`` tag function
that returns a string in its “raw” form without interpreting any of the backslash escape
sequences. This is implemented using a feature of tag function invocation that we
have not discussed yet. When a tag function is invoked, we’ve seen that its first argu‐
ment is an array of strings. But this array also has a property named raw, and the
value of that property is another array of strings, with the same number of elements.
The argument array includes strings that have had escape sequences interpreted as
usual. And the raw array includes strings in which escape sequences are not inter‐
preted. This obscure feature is important if you want to define a DSL with a grammar
that uses backslashes. For example, if we wanted our glob`` tag function to support
pattern matching on Windows-style paths (which use backslashes instead of forward
slashes) and we did not want users of the tag to have to double every backslash, we
could rewrite that function to use strings.raw[] instead of strings[]. The down‐
side, of course, would be that we could no longer use escapes like \u in our glob
literals.

14.6 The Reflect API
The Reflect object is not a class; like the Math object, its properties simply define a
collection of related functions. These functions, added in ES6, define an API for
“reflecting upon” objects and their properties. There is little new functionality here:
the Reflect object defines a convenient set of functions, all in a single namespace, that
mimic the behavior of core language syntax and duplicate the features of various pre-
existing Object functions.

Although the Reflect functions do not provide any new features, they do group the
features together in one convenient API. And, importantly, the set of Reflect func‐
tions maps one-to-one with the set of Proxy handler methods that we’ll learn about in
§14.7.

The Reflect API consists of the following functions:

Reflect.apply(f, o, args)

This function invokes the function f as a method of o (or invokes it as a function
with no this value if o is null) and passes the values in the args array as argu‐
ments. It is equivalent to f.apply(o, args).

Reflect.construct(c, args, newTarget)

This function invokes the constructor c as if the new keyword had been used and
passes the elements of the array args as arguments. If the optional newTarget
argument is specified, it is used as the value of new.target within the constructor
invocation. If not specified, then the new.target value will be c.

14.6 The Reflect API | 397

Reflect.defineProperty(o, name, descriptor)

This function defines a property on the object o, using name (a string or symbol)
as the name of the property. The Descriptor object should define the value (or
getter and/or setter) and attributes of the property. Reflect.defineProperty()
is very similar to Object.defineProperty() but returns true on success and
false on failures. (Object.defineProperty() returns o on success and throws
TypeError on failure.)

Reflect.deleteProperty(o, name)

This function deletes the property with the specified string or symbolic name
from the object o, returning true if successful (or if no such property existed)
and false if the property could not be deleted. Calling this function is similar to
writing delete o[name].

Reflect.get(o, name, receiver)

This function returns the value of the property of o with the specified name (a
string or symbol). If the property is an accessor method with a getter, and if the
optional receiver argument is specified, then the getter function is called as a
method of receiver instead of as a method of o. Calling this function is similar
to evaluating o[name].

Reflect.getOwnPropertyDescriptor(o, name)

This function returns a property descriptor object that describes the attributes of
the property named name of the object o, or returns undefined if no such prop‐
erty exists. This function is nearly identical to Object.getOwnPropertyDescrip
tor(), except that the Reflect API version of the function requires that the first
argument be an object and throws TypeError if it is not.

Reflect.getPrototypeOf(o)

This function returns the prototype of object o or null if the object has no proto‐
type. It throws a TypeError if o is a primitive value instead of an object. This
function is almost identical to Object.getPrototypeOf() except that
Object.getPrototypeOf() only throws a TypeError for null and undefined
arguments and coerces other primitive values to their wrapper objects.

Reflect.has(o, name)

This function returns true if the object o has a property with the specified name
(which must be a string or a symbol). Calling this function is similar to evaluat‐
ing name in o.

Reflect.isExtensible(o)

This function returns true if the object o is extensible (§14.2) and false if it is
not. It throws a TypeError if o is not an object. Object.isExtensible() is simi‐
lar but simply returns false when passed an argument that is not an object.

398 | Chapter 14: Metaprogramming

Reflect.ownKeys(o)

This function returns an array of the names of the properties of the object o or
throws a TypeError if o is not an object. The names in the returned array will be
strings and/or symbols. Calling this function is similar to calling Object.getOwn
PropertyNames() and Object.getOwnPropertySymbols() and combining their
results.

Reflect.preventExtensions(o)

This function sets the extensible attribute (§14.2) of the object o to false and
returns true to indicate success. It throws a TypeError if o is not an object.
Object.preventExtensions() has the same effect but returns o instead of true
and does not throw TypeError for nonobject arguments.

Reflect.set(o, name, value, receiver)

This function sets the property with the specified name of the object o to the
specified value. It returns true on success and false on failure (which can hap‐
pen if the property is read-only). It throws TypeError if o is not an object. If the
specified property is an accessor property with a setter function, and if the
optional receiver argument is passed, then the setter will be invoked as a
method of receiver instead of being invoked as a method of o. Calling this func‐
tion is usually the same as evaluating o[name] = value.

Reflect.setPrototypeOf(o, p)

This function sets the prototype of the object o to p, returning true on success
and false on failure (which can occur if o is not extensible or if the operation
would cause a circular prototype chain). It throws a TypeError if o is not an
object or if p is neither an object nor null. Object.setPrototypeOf() is similar,
but returns o on success and throws TypeError on failure. Remember that calling
either of these functions is likely to make your code slower by disrupting Java‐
Script interpreter optimizations.

14.7 Proxy Objects
The Proxy class, available in ES6 and later, is JavaScript’s most powerful metaprog‐
ramming feature. It allows us to write code that alters the fundamental behavior of
JavaScript objects. The Reflect API described in §14.6 is a set of functions that gives
us direct access to a set of fundamental operations on JavaScript objects. What the
Proxy class does is allows us a way to implement those fundamental operations our‐
selves and create objects that behave in ways that are not possible for ordinary
objects.

When we create a Proxy object, we specify two other objects, the target object and the
handlers object:

14.7 Proxy Objects | 399

let proxy = new Proxy(target, handlers);

The resulting Proxy object has no state or behavior of its own. Whenever you per‐
form an operation on it (read a property, write a property, define a new property, look
up the prototype, invoke it as a function), it dispatches those operations to the han‐
dlers object or to the target object.

The operations supported by Proxy objects are the same as those defined by the
Reflect API. Suppose that p is a Proxy object and you write delete p.x. The
Reflect.deleteProperty() function has the same behavior as the delete operator.
And when you use the delete operator to delete a property of a Proxy object, it looks
for a deleteProperty() method on the handlers object. If such a method exists, it
invokes it. And if no such method exists, then the Proxy object performs the property
deletion on the target object instead.

Proxies work this way for all of the fundamental operations: if an appropriate method
exists on the handlers object, it invokes that method to perform the operation. (The
method names and signatures are the same as those of the Reflect functions covered
in §14.6.) And if that method does not exist on the handlers object, then the Proxy
performs the fundamental operation on the target object. This means that a Proxy
can obtain its behavior from the target object or from the handlers object. If the han‐
dlers object is empty, then the proxy is essentially a transparent wrapper around the
target object:

let t = { x: 1, y: 2 };
let p = new Proxy(t, {});
p.x // => 1
delete p.y // => true: delete property y of the proxy
t.y // => undefined: this deletes it in the target, too
p.z = 3; // Defining a new property on the proxy
t.z // => 3: defines the property on the target

This kind of transparent wrapper proxy is essentially equivalent to the underlying tar‐
get object, which means that there really isn’t a reason to use it instead of the wrapped
object. Transparent wrappers can be useful, however, when created as “revocable
proxies.” Instead of creating a Proxy with the Proxy() constructor, you can use the
Proxy.revocable() factory function. This function returns an object that includes
a Proxy object and also a revoke() function. Once you call the revoke() function,
the proxy immediately stops working:

function accessTheDatabase() { /* implementation omitted */ return 42; }
let {proxy, revoke} = Proxy.revocable(accessTheDatabase, {});

proxy() // => 42: The proxy gives access to the underlying target function
revoke(); // But that access can be turned off whenever we want
proxy(); // !TypeError: we can no longer call this function

400 | Chapter 14: Metaprogramming

Note that in addition to demonstrating revocable proxies, the preceding code also
demonstrates that proxies can work with target functions as well as target objects. But
the main point here is that revocable proxies are a building block for a kind of code
isolation, and you might use them when dealing with untrusted third-party libraries,
for example. If you have to pass a function to a library that you don’t control, you can
pass a revocable proxy instead and then revoke the proxy when you are finished with
the library. This prevents the library from keeping a reference to your function and
calling it at unexpected times. This kind of defensive programming is not typical in
JavaScript programs, but the Proxy class at least makes it possible.

If we pass a non-empty handlers object to the Proxy() constructor, then we are no
longer defining a transparent wrapper object and are instead implementing custom
behavior for our proxy. With the right set of handlers, the underlying target object
essentially becomes irrelevant.

In the following code, for example, is how we could implement an object that appears
to have an infinite number of read-only properties, where the value of each property
is the same as the name of the property:

// We use a Proxy to create an object that appears to have every
// possible property, with the value of each property equal to its name
let identity = new Proxy({}, {
 // Every property has its own name as its value
 get(o, name, target) { return name; },
 // Every property name is defined
 has(o, name) { return true; },
 // There are too many properties to enumerate, so we just throw
 ownKeys(o) { throw new RangeError("Infinite number of properties"); },
 // All properties exist and are not writable, configurable or enumerable.
 getOwnPropertyDescriptor(o, name) {
 return {
 value: name,
 enumerable: false,
 writable: false,
 configurable: false
 };
 },
 // All properties are read-only so they can't be set
 set(o, name, value, target) { return false; },
 // All properties are non-configurable, so they can't be deleted
 deleteProperty(o, name) { return false; },
 // All properties exist and are non-configurable so we can't define more
 defineProperty(o, name, desc) { return false; },
 // In effect, this means that the object is not extensible
 isExtensible(o) { return false; },
 // All properties are already defined on this object, so it couldn't
 // inherit anything even if it did have a prototype object.
 getPrototypeOf(o) { return null; },
 // The object is not extensible, so we can't change the prototype
 setPrototypeOf(o, proto) { return false; },

14.7 Proxy Objects | 401

});

identity.x // => "x"
identity.toString // => "toString"
identity[0] // => "0"
identity.x = 1; // Setting properties has no effect
identity.x // => "x"
delete identity.x // => false: can't delete properties either
identity.x // => "x"
Object.keys(identity); // !RangeError: can't list all the keys
for(let p of identity) ; // !RangeError

Proxy objects can derive their behavior from the target object and from the handlers
object, and the examples we have seen so far have used one object or the other. But it
is typically more useful to define proxies that use both objects.

The following code, for example, uses Proxy to create a read-only wrapper for a target
object. When code tries to read values from the object, those reads are forwarded to
the target object normally. But if any code tries to modify the object or its properties,
methods of the handler object throw a TypeError. A proxy like this might be helpful
for writing tests: suppose you’ve written a function that takes an object argument and
want to ensure that your function does not make any attempt to modify the input
argument. If your test passes in a read-only wrapper object, then any writes will
throw exceptions that cause the test to fail:

function readOnlyProxy(o) {
 function readonly() { throw new TypeError("Readonly"); }
 return new Proxy(o, {
 set: readonly,
 defineProperty: readonly,
 deleteProperty: readonly,
 setPrototypeOf: readonly,
 });
}

let o = { x: 1, y: 2 }; // Normal writable object
let p = readOnlyProxy(o); // Readonly version of it
p.x // => 1: reading properties works
p.x = 2; // !TypeError: can't change properties
delete p.y; // !TypeError: can't delete properties
p.z = 3; // !TypeError: can't add properties
p.__proto__ = {}; // !TypeError: can't change the prototype

Another technique when writing proxies is to define handler methods that intercept
operations on an object but still delegate the operations to the target object. The func‐
tions of the Reflect API (§14.6) have exactly the same signatures as the handler meth‐
ods, so they make it easy to do that kind of delegation.

Here, for example, is a proxy that delegates all operations to the target object but uses
handler methods to log the operations:

402 | Chapter 14: Metaprogramming

/*
 * Return a Proxy object that wraps o, delegating all operations to
 * that object after logging each operation. objname is a string that
 * will appear in the log messages to identify the object. If o has own
 * properties whose values are objects or functions, then if you query
 * the value of those properties, you'll get a loggingProxy back, so that
 * logging behavior of this proxy is "contagious".
 */
function loggingProxy(o, objname) {
 // Define handlers for our logging Proxy object.
 // Each handler logs a message and then delegates to the target object.
 const handlers = {
 // This handler is a special case because for own properties
 // whose value is an object or function, it returns a proxy rather
 // than returning the value itself.
 get(target, property, receiver) {
 // Log the get operation
 console.log(`Handler get(${objname},${property.toString()})`);

 // Use the Reflect API to get the property value
 let value = Reflect.get(target, property, receiver);

 // If the property is an own property of the target and
 // the value is an object or function then return a Proxy for it.
 if (Reflect.ownKeys(target).includes(property) &&
 (typeof value === "object" || typeof value === "function")) {
 return loggingProxy(value, `${objname}.${property.toString()}`);
 }

 // Otherwise return the value unmodified.
 return value;
 },

 // There is nothing special about the following three methods:
 // they log the operation and delegate to the target object.
 // They are a special case simply so we can avoid logging the
 // receiver object which can cause infinite recursion.
 set(target, prop, value, receiver) {
 console.log(`Handler set(${objname},${prop.toString()},${value})`);
 return Reflect.set(target, prop, value, receiver);
 },
 apply(target, receiver, args) {
 console.log(`Handler ${objname}(${args})`);
 return Reflect.apply(target, receiver, args);
 },
 construct(target, args, receiver) {
 console.log(`Handler ${objname}(${args})`);
 return Reflect.construct(target, args, receiver);
 }
 };

 // We can automatically generate the rest of the handlers.

14.7 Proxy Objects | 403

 // Metaprogramming FTW!
 Reflect.ownKeys(Reflect).forEach(handlerName => {
 if (!(handlerName in handlers)) {
 handlers[handlerName] = function(target, ...args) {
 // Log the operation
 console.log(`Handler ${handlerName}(${objname},${args})`);
 // Delegate the operation
 return Reflect[handlerName](target, ...args);
 };
 }
 });

 // Return a proxy for the object using these logging handlers
 return new Proxy(o, handlers);
}

The loggingProxy() function defined earlier creates proxies that log all of the ways
they are used. If you are trying to understand how an undocumented function uses
the objects you pass it, using a logging proxy can help.

Consider the following examples, which result in some genuine insights about array
iteration:

// Define an array of data and an object with a function property
let data = [10,20];
let methods = { square: x => x*x };

// Create logging proxies for the array and the object
let proxyData = loggingProxy(data, "data");
let proxyMethods = loggingProxy(methods, "methods");

// Suppose we want to understand how the Array.map() method works
data.map(methods.square) // => [100, 400]

// First, let's try it with a logging Proxy array
proxyData.map(methods.square) // => [100, 400]
// It produces this output:
// Handler get(data,map)
// Handler get(data,length)
// Handler get(data,constructor)
// Handler has(data,0)
// Handler get(data,0)
// Handler has(data,1)
// Handler get(data,1)

// Now lets try with a proxy methods object
data.map(proxyMethods.square) // => [100, 400]
// Log output:
// Handler get(methods,square)
// Handler methods.square(10,0,10,20)
// Handler methods.square(20,1,10,20)

404 | Chapter 14: Metaprogramming

// Finally, let's use a logging proxy to learn about the iteration protocol
for(let x of proxyData) console.log("Datum", x);
// Log output:
// Handler get(data,Symbol(Symbol.iterator))
// Handler get(data,length)
// Handler get(data,0)
// Datum 10
// Handler get(data,length)
// Handler get(data,1)
// Datum 20
// Handler get(data,length)

From the first chunk of logging output, we learn that the Array.map() method
explicitly checks for the existence of each array element (causing the has() handler to
be invoked) before actually reading the element value (which triggers the get() han‐
dler). This is presumably so that it can distinguish nonexistent array elements from
elements that exist but are undefined.

The second chunk of logging output might remind us that the function we pass to
Array.map() is invoked with three arguments: the element’s value, the element’s
index, and the array itself. (There is a problem in our logging output: the
Array.toString() method does not include square brackets in its output, and the
log messages would be clearer if they were included in the argument list (10,0,
[10,20]).)

The third chunk of logging output shows us that the for/of loop works by looking
for a method with symbolic name [Symbol.iterator]. It also demonstrates that the
Array class’s implementation of this iterator method is careful to check the array
length at every iteration and does not assume that the array length remains constant
during the iteration.

14.7.1 Proxy Invariants
The readOnlyProxy() function defined earlier creates Proxy objects that are effec‐
tively frozen: any attempt to alter a property value or property attribute or to add or
remove properties will throw an exception. But as long as the target object is not fro‐
zen, we’ll find that if we can query the proxy with Reflect.isExtensible() and
Reflect.getOwnPropertyDescriptor(), and it will tell us that we should be able to
set, add, and delete properties. So readOnlyProxy() creates objects in an inconsistent
state. We could fix this by adding isExtensible() and getOwnPropertyDescrip
tor() handlers, or we can just live with this kind of minor inconsistency.

The Proxy handler API allows us to define objects with major inconsistencies, how‐
ever, and in this case, the Proxy class itself will prevent us from creating Proxy objects
that are inconsistent in a bad way. At the start of this section, we described proxies as
objects with no behavior of their own because they simply forward all operations to

14.7 Proxy Objects | 405

the handlers object and the target object. But this is not entirely true: after forwarding
an operation, the Proxy class performs some sanity checks on the result to ensure
important JavaScript invariants are not being violated. If it detects a violation, the
proxy will throw a TypeError instead of letting the operation proceed.

As an example, if you create a proxy for a non-extensible object, the proxy will throw
a TypeError if the isExtensible() handler ever returns true:

let target = Object.preventExtensions({});
let proxy = new Proxy(target, { isExtensible() { return true; }});
Reflect.isExtensible(proxy); // !TypeError: invariant violation

Relatedly, proxy objects for non-extensible targets may not have a getPrototypeOf()
handler that returns anything other than the real prototype object of the target. Also,
if the target object has nonwritable, nonconfigurable properties, then the Proxy class
will throw a TypeError if the get() handler returns anything other than the actual
value:

let target = Object.freeze({x: 1});
let proxy = new Proxy(target, { get() { return 99; }});
proxy.x; // !TypeError: value returned by get() doesn't match target

Proxy enforces a number of additional invariants, almost all of them having
to do with non-extensible target objects and nonconfigurable properties on the target
object.

14.8 Summary
In this chapter, you have learned:

• JavaScript objects have an extensible attribute and object properties have writable,
enumerable, and configurable attributes, as well as a value and a getter and/or set‐
ter attribute. You can use these attributes to “lock down” your objects in various
ways, including creating “sealed” and “frozen” objects.

• JavaScript defines functions that allow you to traverse the prototype chain of an
object and even to change the prototype of an object (though doing this can
make your code slower).

• The properties of the Symbol object have values that are “well-known Symbols,”
which you can use as property or method names for the objects and classes that
you define. Doing so allows you to control how your object interacts with Java‐
Script language features and with the core library. For example, well-known Sym‐
bols allow you to make your classes iterable and control the string that is
displayed when an instance is passed to Object.prototype.toString(). Prior to
ES6, this kind of customization was available only to the native classes that were
built in to an implementation.

406 | Chapter 14: Metaprogramming

• Tagged template literals are a function invocation syntax, and defining a new tag
function is kind of like adding a new literal syntax to the language. Defining a tag
function that parses its template string argument allows you to embed DSLs
within JavaScript code. Tag functions also provide access to a raw, unescaped
form of string literals where backslashes have no special meaning.

• The Proxy class and the related Reflect API allow low-level control over the fun‐
damental behaviors of JavaScript objects. Proxy objects can be used as optionally
revocable wrappers to improve code encapsulation, and they can also be used to
implement nonstandard object behaviors (like some of the special case APIs
defined by early web browsers).

14.8 Summary | 407

CHAPTER 15

JavaScript in Web Browsers

The JavaScript language was created in 1994 with the express purpose of enabling
dynamic behavior in the documents displayed by web browsers. The language has
evolved significantly since then, and at the same time, the scope and capabilities of
the web platform have grown explosively. Today, JavaScript programmers can think
of the web as a full-featured platform for application development. Web browsers
specialize in the display of formatted text and images, but, like native operating sys‐
tems, browsers also provide other services, including graphics, video, audio, network‐
ing, storage, and threading. JavaScript is the language that enables web applications to
use the services provided by the web platform, and this chapter demonstrates how
you can use the most important of these services.

The chapter begins with the web platform’s programming model, explaining how
scripts are embedded within HTML pages (§15.1) and how JavaScript code is trig‐
gered asynchronously by events (§15.2). The sections that follow this introductory
material document the core JavaScript APIs that enable your web applications to:

• Control document content (§15.3) and style (§15.4)
• Determine the on-screen position of document elements (§15.5)
• Create reusable user interface components (§15.6)
• Draw graphics (§15.7 and §15.8)
• Play and generate sounds (§15.9)
• Manage browser navigation and history (§15.10)
• Exchange data over the network (§15.11)
• Store data on the user’s computer (§15.12)
• Perform concurrent computation with threads (§15.13)

409

1 Previous editions of this book had an extensive reference section covering the JavaScript standard library and
web APIs. It was removed in the seventh edition because MDN has made it obsolete: today, it is quicker to
look something up on MDN than it is to flip through a book, and my former colleagues at MDN do a better
job at keeping their online documentation up to date than this book ever could.

Client-Side JavaScript
In this book, and on the web, you’ll see the term “client-side JavaScript.” The term is
simply a synonym for JavaScript written to run in a web browser, and it stands in con‐
trast to “server-side” code, which runs in web servers.

The two “sides” refer to the two ends of the network connection that separate the web
server and the web browser, and software development for the web typically requires
code to be written on both “sides.” Client-side and server-side are also often called
“frontend” and “backend.”

Previous editions of this book attempted to comprehensively cover all JavaScript APIs
defined by web browsers, and as a result, this book was too long a decade ago. The
number and complexity of web APIs has continued to grow, and I no longer think it
makes sense to attempt to cover them all in one book. As of the seventh edition, my
goal is to cover the JavaScript language definitively and to provide an in-depth intro‐
duction to using the language with Node and with web browsers. This chapter cannot
cover all the web APIs, but it introduces the most important ones in enough detail
that you can start using them right away. And, having learned about the core APIs
covered here, you should be able to pick up new APIs (like those summarized in
§15.15) when and if you need them.

Node has a single implementation and a single authoritative source for documenta‐
tion. Web APIs, by contrast, are defined by consensus among the major web browser
vendors, and the authoritative documentation takes the form of a specification
intended for the C++ programmers who implement the API, not for the JavaScript
programmers who will use it. Fortunately, Mozilla’s “MDN web docs” project is a reli‐
able and comprehensive source1 for web API documentation.

Legacy APIs
In the 25 years since JavaScript was first released, browser vendors have been adding
features and APIs for programmers to use. Many of those APIs are now obsolete.
They include:

• Proprietary APIs that were never standardized and/or never implemented by
other browser vendors. Microsoft’s Internet Explorer defined a lot of these APIs.

410 | Chapter 15: JavaScript in Web Browsers

https://developer.mozilla.org

Some (like the innerHTML property) proved useful and were eventually standard‐
ized. Others (like the attachEvent() method) have been obsolete for years.

• Inefficient APIs (like the document.write() method) that have such a severe per‐
formance impact that their use is no longer considered acceptable.

• Outdated APIs that have long since been replaced by new APIs for achieving the
same thing. An example is document.bgColor, which was defined to allow Java‐
Script to set the background color of a document. With the advent of CSS,
document.bgColor became a quaint special case with no real purpose.

• Poorly designed APIs that have been replaced by better ones. In the early days of
the web, standards committees defined the key Document Object Model API in a
language-agnostic way so that the same API could be used in Java programs to
work with XML documents on and in JavaScript programs to work with HTML
documents. This resulted in an API that was not well suited to the JavaScript lan‐
guage and that had features that web programmers didn’t particularly care about.
It took decades to recover from those early design mistakes, but today’s web
browsers support a much-improved Document Object Model.

Browser vendors may need to support these legacy APIs for the foreseeable future in
order to ensure backward compatibility, but there is no longer any need for this book
to document them or for you to learn about them. The web platform has matured and
stabilized, and if you are a seasoned web developer who remembers the fourth or fifth
edition of this book, then you may have as much outdated knowledge to forget as you
have new material to learn.

15.1 Web Programming Basics
This section explains how JavaScript programs for the web are structured, how they
are loaded into a web browser, how they obtain input, how they produce output, and
how they run asynchronously by responding to events.

15.1.1 JavaScript in HTML <script> Tags
Web browsers display HTML documents. If you want a web browser to execute Java‐
Script code, you must include (or reference) that code from an HTML document, and
this is what the HTML <script> tag does.

JavaScript code can appear inline within an HTML file between <script> and
</script> tags. Here, for example, is an HTML file that includes a script tag with
JavaScript code that dynamically updates one element of the document to make it
behave like a digital clock:

15.1 Web Programming Basics | 411

<!DOCTYPE html> <!-- This is an HTML5 file -->
<html> <!-- The root element -->
<head> <!-- Title, scripts & styles can go here -->
<title>Digital Clock</title>
<style> /* A CSS stylesheet for the clock */
#clock { /* Styles apply to element with id="clock" */
 font: bold 24px sans-serif; /* Use a big bold font */
 background: #ddf; /* on a light bluish-gray background. */
 padding: 15px; /* Surround it with some space */
 border: solid black 2px; /* and a solid black border */
 border-radius: 10px; /* with rounded corners. */
}
</style>
</head>
<body> <!-- The body holds the content of the document. -->
<h1>Digital Clock</h1> <!-- Display a title. -->
 <!-- We will insert the time into this element. -->
<script>
// Define a function to display the current time
function displayTime() {
 let clock = document.querySelector("#clock"); // Get element with id="clock"
 let now = new Date(); // Get current time
 clock.textContent = now.toLocaleTimeString(); // Display time in the clock
}
displayTime() // Display the time right away
setInterval(displayTime, 1000); // And then update it every second.
</script>
</body>
</html>

Although JavaScript code can be embedded directly within a <script> tag, it is more
common to instead use the src attribute of the <script> tag to specify the URL (an
absolute URL or a URL relative to the URL of the HTML file being displayed) of a file
containing JavaScript code. If we took the JavaScript code out of this HTML file and
stored it in its own scripts/digital_clock.js file, then the <script> tag might reference
that file of code like this:

<script src="scripts/digital_clock.js"></script>

A JavaScript file contains pure JavaScript, without <script> tags or any other HTML.
By convention, files of JavaScript code have names that end with .js.

A <script> tag with the a src attribute behaves exactly as if the contents of the speci‐
fied JavaScript file appeared directly between the <script> and </script> tags. Note
that the closing </script> tag is required in HTML documents even when the src
attribute is specified: HTML does not support a <script/> tag.

There are a number of advantages to using the src attribute:

412 | Chapter 15: JavaScript in Web Browsers

• It simplifies your HTML files by allowing you to remove large blocks of Java‐
Script code from them—that is, it helps keep content and behavior separate.

• When multiple web pages share the same JavaScript code, using the src attribute
allows you to maintain only a single copy of that code, rather than having to edit
each HTML file when the code changes.

• If a file of JavaScript code is shared by more than one page, it only needs to be
downloaded once, by the first page that uses it—subsequent pages can retrieve it
from the browser cache.

• Because the src attribute takes an arbitrary URL as its value, a JavaScript pro‐
gram or web page from one web server can employ code exported by other web
servers. Much internet advertising relies on this fact.

Modules

§10.3 documents JavaScript modules and covers their import and export directives.
If you have written your JavaScript program using modules (and have not used a
code-bundling tool to combine all your modules into a single nonmodular file of
JavaScript), then you must load the top-level module of your program with a
<script> tag that has a type="module" attribute. If you do this, then the module you
specify will be loaded, and all of the modules it imports will be loaded, and (recur‐
sively) all of the modules they import will be loaded. See §10.3.5 for complete details.

Specifying script type
In the early days of the web, it was thought that browsers might some day implement
languages other than JavaScript, and programmers added attributes like
language="javascript" and type="application/javascript" to their <script>
tags. This is completely unnecessary. JavaScript is the default (and only) language of
the web. The language attribute is deprecated, and there are only two reasons to use a
type attribute on a <script> tag:

• To specify that the script is a module
• To embed data into a web page without displaying it (see §15.3.4)

When scripts run: async and deferred
When JavaScript was first added to web browsers, there was no API for traversing
and manipulating the structure and content of an already rendered document. The
only way that JavaScript code could affect the content of a document was to generate
that content on the fly while the document was in the process of loading. It did this by

15.1 Web Programming Basics | 413

using the document.write() method to inject HTML text into the document at the
location of the script.

The use of document.write() is no longer considered good style, but the fact that it is
possible means that when the HTML parser encounters a <script> element, it must,
by default, run the script just to be sure that it doesn’t output any HTML before it can
resume parsing and rendering the document. This can dramatically slow down pars‐
ing and rendering of the web page.

Fortunately, this default synchronous or blocking script execution mode is not the only
option. The <script> tag can have defer and async attributes, which cause scripts to
be executed differently. These are boolean attributes—they don’t have a value; they
just need to be present on the <script> tag. Note that these attributes are only mean‐
ingful when used in conjunction with the src attribute:

<script defer src="deferred.js"></script>
<script async src="async.js"></script>

Both the defer and async attributes are ways of telling the browser that the linked
script does not use document.write() to generate HTML output, and that the
browser, therefore, can continue to parse and render the document while download‐
ing the script. The defer attribute causes the browser to defer execution of the script
until after the document has been fully loaded and parsed and is ready to be manipu‐
lated. The async attribute causes the browser to run the script as soon as possible but
does not block document parsing while the script is being downloaded. If a <script>
tag has both attributes, the async attribute takes precedence.

Note that deferred scripts run in the order in which they appear in the document.
Async scripts run as they load, which means that they may execute out of order.

Scripts with the type="module" attribute are, by default, executed after the document
has loaded, as if they had a defer attribute. You can override this default with the
async attribute, which will cause the code to be executed as soon as the module and
all of its dependencies have loaded.

A simple alternative to the async and defer attributes—especially for code that is
included directly in the HTML—is to simply put your scripts at the end of the HTML
file. That way, the script can run knowing that the document content before it has
been parsed and is ready to be manipulated.

Loading scripts on demand
Sometimes, you may have JavaScript code that is not used when a document first
loads and is only needed if the user takes some action like clicking on a button or
opening a menu. If you are developing your code using modules, you can load a
module on demand with import(), as described in §10.3.6.

414 | Chapter 15: JavaScript in Web Browsers

If you are not using modules, you can load a file of JavaScript on demand simply by
adding a <script> tag to your document when you want the script to load:

// Asynchronously load and execute a script from a specified URL
// Returns a Promise that resolves when the script has loaded.
function importScript(url) {
 return new Promise((resolve, reject) => {
 let s = document.createElement("script"); // Create a <script> element
 s.onload = () => { resolve(); }; // Resolve promise when loaded
 s.onerror = (e) => { reject(e); }; // Reject on failure
 s.src = url; // Set the script URL
 document.head.append(s); // Add <script> to document
 });
}

This importScript() function uses DOM APIs (§15.3) to create a new <script> tag
and add it to the document <head>. And it uses event handlers (§15.2) to determine
when the script has loaded successfully or when loading has failed.

15.1.2 The Document Object Model
One of the most important objects in client-side JavaScript programming is the
Document object—which represents the HTML document that is displayed in a
browser window or tab. The API for working with HTML documents is known as the
Document Object Model, or DOM, and it is covered in detail in §15.3. But the DOM
is so central to client-side JavaScript programming that it deserves to be introduced
here.

HTML documents contain HTML elements nested within one another, forming a
tree. Consider the following simple HTML document:

<html>
 <head>
 <title>Sample Document</title>
 </head>
 <body>
 <h1>An HTML Document</h1>
 <p>This is a <i>simple</i> document.
 </body>
</html>

The top-level <html> tag contains <head> and <body> tags. The <head> tag contains a
<title> tag. And the <body> tag contains <h1> and <p> tags. The <title> and <h1>
tags contain strings of text, and the <p> tag contains two strings of text with an <i>
tag between them.

The DOM API mirrors the tree structure of an HTML document. For each HTML
tag in the document, there is a corresponding JavaScript Element object, and for each
run of text in the document, there is a corresponding Text object. The Element and

15.1 Web Programming Basics | 415

Text classes, as well as the Document class itself, are all subclasses of the more general
Node class, and Node objects are organized into a tree structure that JavaScript can
query and traverse using the DOM API. The DOM representation of this document
is the tree pictured in Figure 15-1.

Figure 15-1. The tree representation of an HTML document

If you are not already familiar with tree structures in computer programming, it is
helpful to know that they borrow terminology from family trees. The node directly
above a node is the parent of that node. The nodes one level directly below another
node are the children of that node. Nodes at the same level, and with the same parent,
are siblings. The set of nodes any number of levels below another node are the
descendants of that node. And the parent, grandparent, and all other nodes above a
node are the ancestors of that node.

The DOM API includes methods for creating new Element and Text nodes, and for
inserting them into the document as children of other Element objects. There are also
methods for moving elements within the document and for removing them entirely.
While a server-side application might produce plain-text output by writing strings
with console.log(), a client-side JavaScript application can produce formatted
HTML output by building or manipulating the document tree document using the
DOM API.

There is a JavaScript class corresponding to each HTML tag type, and each occur‐
rence of the tag in a document is represented by an instance of the class. The <body>
tag, for example, is represented by an instance of HTMLBodyElement, and a <table>
tag is represented by an instance of HTMLTableElement. The JavaScript element
objects have properties that correspond to the HTML attributes of the tags. For

416 | Chapter 15: JavaScript in Web Browsers

example, instances of HTMLImageElement, which represent tags, have a src
property that corresponds to the src attribute of the tag. The initial value of the src
property is the attribute value that appears in the HTML tag, and setting this property
with JavaScript changes the value of the HTML attribute (and causes the browser to
load and display a new image). Most of the JavaScript element classes just mirror the
attributes of an HTML tag, but some define additional methods. The HTMLAu‐
dioElement and HTMLVideoElement classes, for example, define methods like
play() and pause() for controlling playback of audio and video files.

15.1.3 The Global Object in Web Browsers
There is one global object per browser window or tab (§3.7). All of the JavaScript
code (except code running in worker threads; see §15.13) running in that window
shares this single global object. This is true regardless of how many scripts or mod‐
ules are in the document: all the scripts and modules of a document share a single
global object; if one script defines a property on that object, that property is visible to
all the other scripts as well.

The global object is where JavaScript’s standard library is defined—the parseInt()
function, the Math object, the Set class, and so on. In web browsers, the global object
also contains the main entry points of various web APIs. For example, the document
property represents the currently displayed document, the fetch() method makes
HTTP network requests, and the Audio() constructor allows JavaScript programs to
play sounds.

In web browsers, the global object does double duty: in addition to defining built-in
types and functions, it also represents the current web browser window and defines
properties like history (§15.10.2), which represent the window’s browsing history,
and innerWidth, which holds the window’s width in pixels. One of the properties of
this global object is named window, and its value is the global object itself. This means
that you can simply type window to refer to the global object in your client-side code.
When using window-specific features, it is often a good idea to include a window.
prefix: window.innerWidth is clearer than innerWidth, for example.

15.1.4 Scripts Share a Namespace
With modules, the constants, variables, functions, and classes defined at the top level
(i.e., outside of any function or class definition) of the module are private to the mod‐
ule unless they are explicitly exported, in which case, they can be selectively imported
by other modules. (Note that this property of modules is honored by code-bundling
tools as well.)

With non-module scripts, however, the situation is completely different. If the top-
level code in a script defines a constant, variable, function, or class, that declaration

15.1 Web Programming Basics | 417

will be visible to all other scripts in the same document. If one script defines a func‐
tion f() and another script defines a class c, then a third script can invoke the func‐
tion and instantiate the class without having to take any action to import them. So if
you are not using modules, the independent scripts in your document share a single
namespace and behave as if they are all part of a single larger script. This can be con‐
venient for small programs, but the need to avoid naming conflicts can become prob‐
lematic for larger programs, especially when some of the scripts are third-party
libraries.

There are some historical quirks with how this shared namespace works. var and
function declarations at the top level create properties in the shared global object. If
one script defines a top-level function f(), then another script in the same document
can invoke that function as f() or as window.f(). On the other hand, the ES6 decla‐
rations const, let, and class, when used at the top level, do not create properties in
the global object. They are still defined in a shared namespace, however: if one script
defines a class C, other scripts will be able to create instances of that class with new
C(), but not with new window.C().

To summarize: in modules, top-level declarations are scoped to the module and can
be explicitly exported. In nonmodule scripts, however, top-level declarations are
scoped to the containing document, and the declarations are shared by all scripts in
the document. Older var and function declarations are shared via properties of the
global object. Newer const, let, and class declarations are also shared and have the
same document scope, but they do not exist as properties of any object that JavaScript
code has access to.

15.1.5 Execution of JavaScript Programs
There is no formal definition of a program in client-side JavaScript, but we can say
that a JavaScript program consists of all the JavaScript code in, or referenced from, a
document. These separate bits of code share a single global Window object, which
gives them access to the same underlying Document object representing the HTML
document. Scripts that are not modules additionally share a top-level namespace.

If a web page includes an embedded frame (using the <iframe> element), the Java‐
Script code in the embedded document has a different global object and Document
object than the code in the embedding document, and it can be considered a separate
JavaScript program. Remember, though, that there is no formal definition of what the
boundaries of a JavaScript program are. If the container document and the contained
document are both loaded from the same server, the code in one document can inter‐
act with the code in the other, and you can treat them as two interacting parts of a
single program, if you wish. §15.13.6 explains how a JavaScript program can send and
receive messages to and from JavaScript code running in an <iframe>.

418 | Chapter 15: JavaScript in Web Browsers

You can think of JavaScript program execution as occurring in two phases. In the first
phase, the document content is loaded, and the code from <script> elements (both
inline scripts and external scripts) is run. Scripts generally run in the order in which
they appear in the document, though this default order can be modified by the async
and defer attributes we’ve described. The JavaScript code within any single script is
run from top to bottom, subject, of course, to JavaScript’s conditionals, loops, and
other control statements. Some scripts don’t really do anything during this first phase
and instead just define functions and classes for use in the second phase. Other
scripts might do significant work during the first phase and then do nothing in the
second. Imagine a script at the very end of a document that finds all <h1> and <h2>
tags in the document and modifies the document by generating and inserting a table
of contents at the beginning of the document. This could be done entirely in the first
phase. (See §15.3.6 for an example that does exactly this.)

Once the document is loaded and all scripts have run, JavaScript execution enters its
second phase. This phase is asynchronous and event-driven. If a script is going to
participate in this second phase, then one of the things it must have done during the
first phase is to register at least one event handler or other callback function that will
be invoked asynchronously. During this event-driven second phase, the web browser
invokes event handler functions and other callbacks in response to events that occur
asynchronously. Event handlers are most commonly invoked in response to user
input (mouse clicks, keystrokes, etc.) but may also be triggered by network activity,
document and resource loading, elapsed time, or errors in JavaScript code. Events
and event handlers are described in detail in §15.2.

Some of the first events to occur during the event-driven phase are the “DOMCon‐
tentLoaded” and “load” events. “DOMContentLoaded” is triggered when the HTML
document has been completely loaded and parsed. The “load” event is triggered when
all of the document’s external resources—such as images—are also fully loaded. Java‐
Script programs often use one of these events as a trigger or starting signal. It is com‐
mon to see programs whose scripts define functions but take no action other than
registering an event handler function to be triggered by the “load” event at the begin‐
ning of the event-driven phase of execution. It is this “load” event handler that then
manipulates the document and does whatever it is that the program is supposed to
do. Note that it is common in JavaScript programming for an event handler function
such as the “load” event handler described here to register other event handlers.

The loading phase of a JavaScript program is relatively short: ideally less than a sec‐
ond. Once the document is loaded, the event-driven phase lasts for as long as the
document is displayed by the web browser. Because this phase is asynchronous and
event-driven, there may be long periods of inactivity where no JavaScript is executed,
punctuated by bursts of activity triggered by user or network events. We’ll cover these
two phases in more detail next.

15.1 Web Programming Basics | 419

Client-side JavaScript threading model
JavaScript is a single-threaded language, and single-threaded execution makes for
much simpler programming: you can write code with the assurance that two event
handlers will never run at the same time. You can manipulate document content
knowing that no other thread is attempting to modify it at the same time, and you
never need to worry about locks, deadlock, or race conditions when writing Java‐
Script code.

Single-threaded execution means that web browsers stop responding to user input
while scripts and event handlers are executing. This places a burden on JavaScript
programmers: it means that JavaScript scripts and event handlers must not run for
too long. If a script performs a computationally intensive task, it will introduce a
delay into document loading, and the user will not see the document content until the
script completes. If an event handler performs a computationally intensive task, the
browser may become nonresponsive, possibly causing the user to think that it has
crashed.

The web platform defines a controlled form of concurrency called a “web worker.” A
web worker is a background thread for performing computationally intensive tasks
without freezing the user interface. The code that runs in a web worker thread does
not have access to document content, does not share any state with the main thread
or with other workers, and can only communicate with the main thread and other
workers through asynchronous message events, so the concurrency is not detectable
to the main thread, and web workers do not alter the basic single-threaded execution
model of JavaScript programs. See §15.13 for full details on the web’s safe threading
mechanism.

Client-side JavaScript timeline
We’ve already seen that JavaScript programs begin in a script-execution phase and
then transition to an event-handling phase. These two phases can be further broken
down into the following steps:

1. The web browser creates a Document object and begins parsing the web page,
adding Element objects and Text nodes to the document as it parses HTML ele‐
ments and their textual content. The document.readyState property has the
value “loading” at this stage.

2. When the HTML parser encounters a <script> tag that does not have any of the
async, defer, or type="module" attributes, it adds that script tag to the docu‐
ment and then executes the script. The script is executed synchronously, and the
HTML parser pauses while the script downloads (if necessary) and runs. A script
like this can use document.write() to insert text into the input stream, and that
text will become part of the document when the parser resumes. A script like this

420 | Chapter 15: JavaScript in Web Browsers

often simply defines functions and registers event handlers for later use, but it
can traverse and manipulate the document tree as it exists at that time. That is,
non-module scripts that do not have an async or defer attribute can see their
own <script> tag and document content that comes before it.

3. When the parser encounters a <script> element that has the async attribute set,
it begins downloading the script text (and if the script is a module, it also recur‐
sively downloads all of the script’s dependencies) and continues parsing the
document. The script will be executed as soon as possible after it has downloa‐
ded, but the parser does not stop and wait for it to download. Asynchronous
scripts must not use the document.write() method. They can see their own
<script> tag and all document content that comes before it, and may or may not
have access to additional document content.

4. When the document is completely parsed, the document.readyState property
changes to “interactive.”

5. Any scripts that had the defer attribute set (along with any module scripts that
do not have an async attribute) are executed in the order in which they appeared
in the document. Async scripts may also be executed at this time. Deferred
scripts have access to the complete document and they must not use the
document.write() method.

6. The browser fires a “DOMContentLoaded” event on the Document object. This
marks the transition from synchronous script-execution phase to the
asynchronous, event-driven phase of program execution. Note, however, that
there may still be async scripts that have not yet executed at this point.

7. The document is completely parsed at this point, but the browser may still be
waiting for additional content, such as images, to load. When all such content
finishes loading, and when all async scripts have loaded and executed, the
document.readyState property changes to “complete” and the web browser fires
a “load” event on the Window object.

8. From this point on, event handlers are invoked asynchronously in response to
user input events, network events, timer expirations, and so on.

15.1.6 Program Input and Output
Like any program, client-side JavaScript programs process input data to produce out‐
put data. There are a variety of inputs available:

15.1 Web Programming Basics | 421

• The content of the document itself, which JavaScript code can access with the
DOM API (§15.3).

• User input, in the form of events, such as mouse clicks (or touch-screen taps) on
HTML <button> elements, or text entered into HTML <textarea> elements, for
example. §15.2 demonstrates how JavaScript programs can respond to user
events like these.

• The URL of the document being displayed is available to client-side JavaScript as
document.URL. If you pass this string to the URL() constructor (§11.9), you can
easily access the path, query, and fragment sections of the URL.

• The content of the HTTP “Cookie” request header is available to client-side code
as document.cookie. Cookies are usually used by server-side code for maintain‐
ing user sessions, but client-side code can also read (and write) them if necessary.
See §15.12.2 for further details.

• The global navigator property provides access to information about the web
browser, the OS it’s running on top of, and the capabilities of each. For example,
navigator.userAgent is a string that identifies the web browser, navigator.lan
guage is the user’s preferred language, and navigator.hardwareConcurrency
returns the number of logical CPUs available to the web browser. Similarly, the
global screen property provides access to the user’s display size via the
screen.width and screen.height properties. In a sense, these navigator and
screen objects are to web browsers what environment variables are to Node
programs.

Client-side JavaScript typically produces output, when it needs to, by manipulating
the HTML document with the DOM API (§15.3) or by using a higher-level
framework such as React or Angular to manipulate the document. Client-side code
can also use console.log() and related methods (§11.8) to produce output. But this
output is only visible in the web developer console, so it is useful when debugging,
but not for user-visible output.

15.1.7 Program Errors
Unlike applications (such as Node applications) that run directly on top of the OS,
JavaScript programs in a web browser can’t really “crash.” If an exception occurs while
your JavaScript program is running, and if you do not have a catch statement to han‐
dle it, an error message will be displayed in the developer console, but any event han‐
dlers that have been registered keep running and responding to events.

If you would like to define an error handler of last resort to be invoked when this
kind of uncaught exception occurs, set the onerror property of the Window object to
an error handler function. When an uncaught exception propagates all the way up the

422 | Chapter 15: JavaScript in Web Browsers

call stack and an error message is about to be displayed in the developer console, the
window.onerror function will be invoked with three string arguments. The first argu‐
ment to window.onerror is a message describing the error. The second argument is a
string that contains the URL of the JavaScript code that caused the error. The third
argument is the line number within the document where the error occurred. If the
onerror handler returns true, it tells the browser that the handler has handled the
error and that no further action is necessary—in other words, the browser should not
display its own error message.

When a Promise is rejected and there is no .catch() function to handle it, that is a
situation much like an unhandled exception: an unanticipated error or a logic error
in your program. You can detect this by defining a window.onunhandledrejection
function or by using window.addEventListener() to register a handler for “unhand‐
ledrejection” events. The event object passed to this handler will have a promise prop‐
erty whose value is the Promise object that rejected and a reason property whose
value is what would have been passed to a .catch() function. As with the error han‐
dlers described earlier, if you call preventDefault() on the unhandled rejection
event object, it will be considered handled and won’t cause an error message in the
developer console.

It is not often necessary to define onerror or onunhandledrejection handlers, but it
can be quite useful as a telemetry mechanism if you want to report client-side errors
to the server (using the fetch() function to make an HTTP POST request, for exam‐
ple) so that you can get information about unexpected errors that happen in your
users’ browsers.

15.1.8 The Web Security Model
The fact that web pages can execute arbitrary JavaScript code on your personal device
has clear security implications, and browser vendors have worked hard to balance
two competing goals:

• Defining powerful client-side APIs to enable useful web applications
• Preventing malicious code from reading or altering your data, compromising

your privacy, scamming you, or wasting your time

The subsections that follow give a quick overview of the security restrictions and
issues that you, as a JavaScript programmer, should to be aware of.

15.1 Web Programming Basics | 423

What JavaScript can’t do
Web browsers’ first line of defense against malicious code is that they simply do not
support certain capabilities. For example, client-side JavaScript does not provide any
way to write or delete arbitrary files or list arbitrary directories on the client com‐
puter. This means a JavaScript program cannot delete data or plant viruses.

Similarly, client-side JavaScript does not have general-purpose networking capabili‐
ties. A client-side JavaScript program can make HTTP requests (§15.11.1). And
another standard, known as WebSockets (§15.11.3), defines a socket-like API for
communicating with specialized servers. But neither of these APIs allows unmediated
access to the wider network. General-purpose internet clients and servers cannot be
written in client-side JavaScript.

The same-origin policy
The same-origin policy is a sweeping security restriction on what web content Java‐
Script code can interact with. It typically comes into play when a web page includes
<iframe> elements. In this case, the same-origin policy governs the interactions of
JavaScript code in one frame with the content of other frames. Specifically, a script
can read only the properties of windows and documents that have the same origin as
the document that contains the script.

The origin of a document is defined as the protocol, host, and port of the URL from
which the document was loaded. Documents loaded from different web servers have
different origins. Documents loaded through different ports of the same host have
different origins. And a document loaded with the http: protocol has a different ori‐
gin than one loaded with the https: protocol, even if they come from the same web
server. Browsers typically treat every file: URL as a separate origin, which means
that if you’re working on a program that displays more than one document from the
same server, you may not be able to test it locally using file: URLs and will have to
run a static web server during development.

It is important to understand that the origin of the script itself is not relevant to the
same-origin policy: what matters is the origin of the document in which the script is
embedded. Suppose, for example, that a script hosted by host A is included (using the
src property of a <script> element) in a web page served by host B. The origin of
that script is host B, and the script has full access to the content of the document that
contains it. If the document contains an <iframe> that contains a second document
from host B, then the script also has full access to the content of that second docu‐
ment. But if the top-level document contains another <iframe> that displays a docu‐
ment from host C (or even one from host A), then the same-origin policy comes into
effect and prevents the script from accessing this nested document.

424 | Chapter 15: JavaScript in Web Browsers

The same-origin policy also applies to scripted HTTP requests (see §15.11.1). Java‐
Script code can make arbitrary HTTP requests to the web server from which the con‐
taining document was loaded, but it does not allow scripts to communicate with
other web servers (unless those web servers opt in with CORS, as we describe next).

The same-origin policy poses problems for large websites that use multiple subdo‐
mains. For example, scripts with origin orders.example.com might need to read prop‐
erties from documents on example.com. To support multidomain websites of this
sort, scripts can alter their origin by setting document.domain to a domain suffix. So a
script with origin https://orders.example.com can change its origin to https://exam
ple.com by setting document.domain to “example.com.” But that script cannot set docu
ment.domain to “orders.example”, “ample.com”, or “com”.

The second technique for relaxing the same-origin policy is Cross-Origin Resource
Sharing, or CORS, which allows servers to decide which origins they are willing to
serve. CORS extends HTTP with a new Origin: request header and a new Access-
Control-Allow-Origin response header. It allows servers to use a header to explicitly
list origins that may request a file or to use a wildcard and allow a file to be requested
by any site. Browsers honor these CORS headers and do not relax same-origin
restrictions unless they are present.

Cross-site scripting
Cross-site scripting, or XSS, is a term for a category of security issues in which an
attacker injects HTML tags or scripts into a target website. Client-side JavaScript pro‐
grammers must be aware of, and defend against, cross-site scripting.

A web page is vulnerable to cross-site scripting if it dynamically generates document
content and bases that content on user-submitted data without first “sanitizing” that
data by removing any embedded HTML tags from it. As a trivial example, consider
the following web page that uses JavaScript to greet the user by name:

<script>
let name = new URL(document.URL).searchParams.get("name");
document.querySelector('h1').innerHTML = "Hello " + name;
</script>

This two-line script extracts input from the “name” query parameter of the document
URL. It then uses the DOM API to inject an HTML string into the first <h1> tag in
the document. This page is intended to be invoked with a URL like this:

http://www.example.com/greet.html?name=David

When used like this, it displays the text “Hello David.” But consider what happens
when it is invoked with this query parameter:

name=%3Cimg%20src=%22x.png%22%20onload=%22alert(%27hacked%27)%22/%3E

15.1 Web Programming Basics | 425

https://orders.example.com
https://example.com
https://example.com

When the URL-escaped parameters are decoded, this URL causes the following
HTML to be injected into the document:

Hello

After the image loads, the string of JavaScript in the onload attribute is executed. The
global alert() function displays a modal dialogue box. A single dialogue box is rela‐
tively benign but demonstrates that arbitrary code execution is possible on this site
because it displays unsanitized HTML.

Cross-site scripting attacks are so called because more than one site is involved. Site B
includes a specially crafted link (like the one in the previous example) to site A. If site
B can convince users to click the link, they will be taken to site A, but that site will
now be running code from site B. That code might deface the page or cause it to mal‐
function. More dangerously, the malicious code could read cookies stored by site A
(perhaps account numbers or other personally identifying information) and send that
data back to site B. The injected code could even track the user’s keystrokes and send
that data back to site B.

In general, the way to prevent XSS attacks is to remove HTML tags from any untrus‐
ted data before using it to create dynamic document content. You can fix the
greet.html file shown earlier by replacing special HTML characters in the untrusted
input string with their equivalent HTML entities:

name = name
 .replace(/&/g, "&")
 .replace(/</g, "<")
 .replace(/>/g, ">")
 .replace(/"/g, """)
 .replace(/'/g, "'")
 .replace(/\//g, "/")

Another approach to the problem of XSS is to structure your web applications so that
untrusted content is always displayed in an <iframe> with the sandbox attribute set to
disable scripting and other capabilities.

Cross-site scripting is a pernicious vulnerability whose roots go deep into the archi‐
tecture of the web. It is worth understanding this vulnerability in-depth, but further
discussion is beyond the scope of this book. There are many online resources to help
you defend against cross-site scripting.

15.2 Events
Client-side JavaScript programs use an asynchronous event-driven programming
model. In this style of programming, the web browser generates an event whenever
something interesting happens to the document or browser or to some element or
object associated with it. For example, the web browser generates an event when it

426 | Chapter 15: JavaScript in Web Browsers

2 Some sources, including the HTML specification, make a technical distinction between handlers and listen‐
ers, based on the way in which they are registered. In this book, we treat the two terms as synonyms.

finishes loading a document, when the user moves the mouse over a hyperlink, or
when the user strikes a key on the keyboard. If a JavaScript application cares about a
particular type of event, it can register one or more functions to be invoked when
events of that type occur. Note that this is not unique to web programming: all appli‐
cations with graphical user interfaces are designed this way—they sit around waiting
to be interacted with (i.e., they wait for events to occur), and then they respond.

In client-side JavaScript, events can occur on any element within an HTML docu‐
ment, and this fact makes the event model of web browsers significantly more com‐
plex than Node’s event model. We begin this section with some important definitions
that help to explain that event model:

event type
This string specifies what kind of event occurred. The type “mousemove,” for
example, means that the user moved the mouse. The type “keydown” means that
the user pressed a key on the keyboard down. And the type “load” means that a
document (or some other resource) has finished loading from the network.
Because the type of an event is just a string, it’s sometimes called an event name,
and indeed, we use this name to identify the kind of event we’re talking about.

event target
This is the object on which the event occurred or with which the event is associ‐
ated. When we speak of an event, we must specify both the type and the target. A
load event on a Window, for example, or a click event on a <button> Element.
Window, Document, and Element objects are the most common event targets in
client-side JavaScript applications, but some events are triggered on other kinds
of objects. For example, a Worker object (a kind of thread, covered §15.13) is a
target for “message” events that occur when the worker thread sends a message to
the main thread.

event handler, or event listener
This function handles or responds to an event.2 Applications register their event
handler functions with the web browser, specifying an event type and an event
target. When an event of the specified type occurs on the specified target, the
browser invokes the handler function. When event handlers are invoked for an
object, we say that the browser has “fired,” “triggered,” or “dispatched” the event.
There are a number of ways to register event handlers, and the details of handler
registration and invocation are explained in §15.2.2 and §15.2.3.

15.2 Events | 427

event object
This object is associated with a particular event and contains details about that
event. Event objects are passed as an argument to the event handler function. All
event objects have a type property that specifies the event type and a target
property that specifies the event target. Each event type defines a set of properties
for its associated event object. The object associated with a mouse event includes
the coordinates of the mouse pointer, for example, and the object associated with
a keyboard event contains details about the key that was pressed and the modifier
keys that were held down. Many event types define only a few standard proper‐
ties—such as type and target—and do not carry much other useful information.
For those events, it is the simple occurrence of the event, not the event details,
that matter.

event propagation
This is the process by which the browser decides which objects to trigger event
handlers on. For events that are specific to a single object—such as the “load”
event on the Window object or a “message” event on a Worker object—no propa‐
gation is required. But when certain kinds of events occur on elements within the
HTML document, however, they propagate or “bubble” up the document tree. If
the user moves the mouse over a hyperlink, the mousemove event is first fired on
the <a> element that defines that link. Then it is fired on the containing elements:
perhaps a <p> element, a <section> element, and the Document object itself. It is
sometimes more convenient to register a single event handler on a Document or
other container element than to register handlers on each individual element
you’re interested in. An event handler can stop the propagation of an event so
that it will not continue to bubble and will not trigger handlers on containing ele‐
ments. Handlers do this by invoking a method of the event object. In another
form of event propagation, known as event capturing, handlers specially regis‐
tered on container elements have the opportunity to intercept (or “capture”)
events before they are delivered to their actual target. Event bubbling and captur‐
ing are covered in detail in §15.2.4.

Some events have default actions associated with them. When a click event occurs on
a hyperlink, for example, the default action is for the browser to follow the link and
load a new page. Event handlers can prevent this default action by invoking a method
of the event object. This is sometimes called “canceling” the event and is covered in
§15.2.5.

428 | Chapter 15: JavaScript in Web Browsers

15.2.1 Event Categories
Client-side JavaScript supports such a large number of event types that there is no
way this chapter can cover them all. It can be useful, though, to group events into
some general categories, to illustrate the scope and wide variety of supported events:

Device-dependent input events
These events are directly tied to a specific input device, such as the mouse or key‐
board. They include event types such as “mousedown,” “mousemove,” “mouseup,”
“touchstart,” “touchmove,” “touchend,” “keydown,” and “keyup.”

Device-independent input events
These input events are not directly tied to a specific input device. The “click”
event, for example, indicates that a link or button (or other document element)
has been activated. This is often done via a mouse click, but it could also be done
by keyboard or (on touch-sensitive devices) with a tap. The “input” event is a
device-independent alternative to the “keydown” event and supports keyboard
input as well as alternatives such as cut-and-paste and input methods used for
ideographic scripts. The “pointerdown,” “pointermove,” and “pointerup” event
types are device-independent alternatives to mouse and touch events. They work
for mouse-type pointers, for touch screens, and for pen- or stylus-style input as
well.

User interface events
UI events are higher-level events, often on HTML form elements that define a
user interface for a web application. They include the “focus” event (when a text
input field gains keyboard focus), the “change” event (when the user changes the
value displayed by a form element), and the “submit” event (when the user clicks
a Submit button in a form).

State-change events
Some events are not triggered directly by user activity, but by network or browser
activity, and indicate some kind of life-cycle or state-related change. The “load”
and “DOMContentLoaded” events—fired on the Window and Document
objects, respectively, at the end of document loading—are probably the most
commonly used of these events (see “Client-side JavaScript timeline” on page
420). Browsers fire “online” and “offline” events on the Window object when net‐
work connectivity changes. The browser’s history management mechanism
(§15.10.4) fires the “popstate” event in response to the browser’s Back button.

API-specific events
A number of web APIs defined by HTML and related specifications include their
own event types. The HTML <video> and <audio> elements define a long list of
associated event types such as “waiting,” “playing,” “seeking,” “volumechange,”
and so on, and you can use them to customize media playback. Generally

15.2 Events | 429

3 If you have used the React framework to create client-side user interfaces, this may surprise you. React makes
a number of minor changes to the client-side event model, and one of them is that in React, event handler
property names are written in camelCase: onClick, onMouseOver, and so on. When working with the web
platform natively, however, the event handler properties are written entirely in lowercase.

speaking, web platform APIs that are asynchronous and were developed before
Promises were added to JavaScript are event-based and define API-specific
events. The IndexedDB API, for example (§15.12.3), fires “success” and “error”
events when database requests succeed or fail. And although the new fetch()
API (§15.11.1) for making HTTP requests is Promise-based, the XMLHttpRe‐
quest API that it replaces defines a number of API-specific event types.

15.2.2 Registering Event Handlers
There are two basic ways to register event handlers. The first, from the early days of
the web, is to set a property on the object or document element that is the event tar‐
get. The second (newer and more general) technique is to pass the handler to the
addEventListener() method of the object or element.

Setting event handler properties
The simplest way to register an event handler is by setting a property of the event tar‐
get to the desired event handler function. By convention, event handler properties
have names that consist of the word “on” followed by the event name: onclick,
onchange, onload, onmouseover, and so on. Note that these property names are case
sensitive and are written in all lowercase,3 even when the event type (such as “mouse‐
down”) consists of multiple words. The following code includes two event handler
registrations of this kind:

// Set the onload property of the Window object to a function.
// The function is the event handler: it is invoked when the document loads.
window.onload = function() {
 // Look up a <form> element
 let form = document.querySelector("form#shipping");
 // Register an event handler function on the form that will be invoked
 // before the form is submitted. Assume isFormValid() is defined elsewhere.
 form.onsubmit = function(event) { // When the user submits the form
 if (!isFormValid(this)) { // check whether form inputs are valid
 event.preventDefault(); // and if not, prevent form submission.
 }
 };
};

The shortcoming of event handler properties is that they are designed around the
assumption that event targets will have at most one handler for each type of event. It

430 | Chapter 15: JavaScript in Web Browsers

is often better to register event handlers using addEventListener() because that
technique does not overwrite any previously registered handlers.

Setting event handler attributes
The event handler properties of document elements can also be defined directly in
the HTML file as attributes on the corresponding HTML tag. (Handlers that would
be registered on the Window element with JavaScript can be defined with attributes
on the <body> tag in HTML.) This technique is generally frowned upon in modern
web development, but it is possible, and it’s documented here because you may still
see it in existing code.

When defining an event handler as an HTML attribute, the attribute value should be
a string of JavaScript code. That code should be the body of the event handler func‐
tion, not a complete function declaration. That is, your HTML event handler code
should not be surrounded by curly braces and prefixed with the function keyword.
For example:

<button onclick="console.log('Thank you');">Please Click</button>

If an HTML event handler attribute contains multiple JavaScript statements, you
must remember to separate those statements with semicolons or break the attribute
value across multiple lines.

When you specify a string of JavaScript code as the value of an HTML event handler
attribute, the browser converts your string into a function that works something like
this one:

function(event) {
 with(document) {
 with(this.form || {}) {
 with(this) {
 /* your code here */
 }
 }
 }
}

The event argument means that your handler code can refer to the current event
object as event. The with statements mean that the code of your handler can refer to
the properties of the target object, the containing <form> (if any), and the containing
Document object directly, as if they were variables in scope. The with statement is
forbidden in strict mode (§5.6.3), but JavaScript code in HTML attributes is never
strict. Event handlers defined in this way are executed in an environment in which
unexpected variables are defined. This can be a source of confusing bugs and is a
good reason to avoid writing event handlers in HTML.

15.2 Events | 431

addEventListener()
Any object that can be an event target—this includes the Window and Document
objects and all document Elements—defines a method named addEventListener()
that you can use to register an event handler for that target. addEventListener()
takes three arguments. The first is the event type for which the handler is being regis‐
tered. The event type (or name) is a string that does not include the “on” prefix used
when setting event handler properties. The second argument to addEventListener()
is the function that should be invoked when the specified type of event occurs. The
third argument is optional and is explained below.

The following code registers two handlers for the “click” event on a <button> ele‐
ment. Note the differences between the two techniques used:

<button id="mybutton">Click me</button>
<script>
let b = document.querySelector("#mybutton");
b.onclick = function() { console.log("Thanks for clicking me!"); };
b.addEventListener("click", () => { console.log("Thanks again!"); });
</script>

Calling addEventListener() with “click” as its first argument does not affect the
value of the onclick property. In this code, a button click will log two messages to the
developer console. And if we called addEventListener() first and then set onclick,
we would still log two messages, just in the opposite order. More importantly, you can
call addEventListener() multiple times to register more than one handler function
for the same event type on the same object. When an event occurs on an object, all of
the handlers registered for that type of event are invoked in the order in which they
were registered. Invoking addEventListener() more than once on the same object
with the same arguments has no effect—the handler function remains registered only
once, and the repeated invocation does not alter the order in which handlers are
invoked.

addEventListener() is paired with a removeEventListener() method that expects
the same two arguments (plus an optional third) but removes an event handler func‐
tion from an object rather than adding it. It is often useful to temporarily register an
event handler and then remove it soon afterward. For example, when you get a
“mousedown” event, you might register temporary event handlers for “mousemove”
and “mouseup” events so that you can see if the user drags the mouse. You’d then
deregister these handlers when the “mouseup” event arrives. In such a situation, your
event handler removal code might look like this:

document.removeEventListener("mousemove", handleMouseMove);
document.removeEventListener("mouseup", handleMouseUp);

The optional third argument to addEventListener() is a boolean value or object. If
you pass true, then your handler function is registered as a capturing event handler

432 | Chapter 15: JavaScript in Web Browsers

and is invoked at a different phase of event dispatch. We’ll cover event capturing in
§15.2.4. If you pass a third argument of true when you register an event listener, then
you must also pass true as the third argument to removeEventListener() if you
want to remove the handler.

Registering a capturing event handler is only one of the three options that addEven
tListener() supports, and instead of passing a single boolean value, you can also
pass an object that explicitly specifies the options you want:

document.addEventListener("click", handleClick, {
 capture: true,
 once: true,
 passive: true
});

If the Options object has a capture property set to true, then the event handler will
be registered as a capturing handler. If that property is false or is omitted, then the
handler will be non-capturing.

If the Options object has a once property set to true, then the event listener will be
automatically removed after it is triggered once. If this property is false or is omit‐
ted, then the handler is never automatically removed.

If the Options object has a passive property set to true, it indicates that the event
handler will never call preventDefault() to cancel the default action (see §15.2.5).
This is particularly important for touch events on mobile devices—if event handlers
for “touchmove” events can prevent the browser’s default scrolling action, then the
browser cannot implement smooth scrolling. This passive property provides a way
to register a potentially disruptive event handler of this sort but lets the web browser
know that it can safely begin its default behavior—such as scrolling—while the event
handler is running. Smooth scrolling is so important for a good user experience that
Firefox and Chrome make “touchmove” and “mousewheel” events passive by default.
So if you actually want to register a handler that calls preventDefault() for one of
these events, you should explicitly set the passive property to false.

You can also pass an Options object to removeEventListener(), but the capture
property is the only one that is relevant. There is no need to specify once or passive
when removing a listener, and these properties are ignored.

15.2.3 Event Handler Invocation
Once you’ve registered an event handler, the web browser will invoke it automatically
when an event of the specified type occurs on the specified object. This section
describes event handler invocation in detail, explaining event handler arguments, the
invocation context (the this value), and the meaning of the return value of an event
handler.

15.2 Events | 433

Event handler argument
Event handlers are invoked with an Event object as their single argument. The prop‐
erties of the Event object provide details about the event:

type

The type of the event that occurred.

target

The object on which the event occurred.

currentTarget

For events that propagate, this property is the object on which the current event
handler was registered.

timeStamp

A timestamp (in milliseconds) that represents when the event occurred but that
does not represent an absolute time. You can determine the elapsed time between
two events by subtracting the timestamp of the first event from the timestamp of
the second.

isTrusted

This property will be true if the event was dispatched by the web browser itself
and false if the event was dispatched by JavaScript code.

Specific kinds of events have additional properties. Mouse and pointer events, for
example, have clientX and clientY properties that specify the window coordinates
at which the event occurred.

Event handler context
When you register an event handler by setting a property, it looks as if you are defin‐
ing a new method on the target object:

target.onclick = function() { /* handler code */ };

It isn’t surprising, therefore, that event handlers are invoked as methods of the object
on which they are defined. That is, within the body of an event handler, the this
keyword refers to the object on which the event handler was registered.

Handlers are invoked with the target as their this value, even when registered using
addEventListener(). This does not work for handlers defined as arrow functions,
however: arrow functions always have the same this value as the scope in which they
are defined.

434 | Chapter 15: JavaScript in Web Browsers

Handler return value
In modern JavaScript, event handlers should not return anything. You may see event
handlers that return values in older code, and the return value is typically a signal to
the browser that it should not perform the default action associated with the event. If
the onclick handler of a Submit button in a form returns false, for example, then
the web browser will not submit the form (usually because the event handler deter‐
mined that the user’s input fails client-side validation).

The standard and preferred way to prevent the browser from performing a default
action is to call the preventDefault() method (§15.2.5) on the Event object.

Invocation order
An event target may have more than one event handler registered for a particular
type of event. When an event of that type occurs, the browser invokes all of the han‐
dlers in the order in which they were registered. Interestingly, this is true even if you
mix event handlers registered with addEventListener() with an event handler regis‐
tered on an object property like onclick.

15.2.4 Event Propagation
When the target of an event is the Window object or some other standalone object,
the browser responds to an event simply by invoking the appropriate handlers on that
one object. When the event target is a Document or document Element, however, the
situation is more complicated.

After the event handlers registered on the target element are invoked, most events
“bubble” up the DOM tree. The event handlers of the target’s parent are invoked.
Then the handlers registered on the target’s grandparent are invoked. This continues
up to the Document object, and then beyond to the Window object. Event bubbling
provides an alternative to registering handlers on lots of individual document ele‐
ments: instead, you can register a single handler on a common ancestor element and
handle events there. You might register a “change” handler on a <form> element, for
example, instead of registering a “change” handler for every element in the form.

Most events that occur on document elements bubble. Notable exceptions are the
“focus,” “blur,” and “scroll” events. The “load” event on document elements bubbles,
but it stops bubbling at the Document object and does not propagate on to the
Window object. (The “load” event handlers of the Window object are triggered only
when the entire document has loaded.)

Event bubbling is the third “phase” of event propagation. The invocation of the event
handlers of the target object itself is the second phase. The first phase, which occurs
even before the target handlers are invoked, is called the “capturing” phase. Recall
that addEventListener() takes an optional third argument. If that argument is true,

15.2 Events | 435

or {capture:true}, then the event handler is registered as a capturing event handler
for invocation during this first phase of event propagation. The capturing phase of
event propagation is like the bubbling phase in reverse. The capturing handlers of the
Window object are invoked first, then the capturing handlers of the Document
object, then of the body object, and so on down the DOM tree until the capturing
event handlers of the parent of the event target are invoked. Capturing event handlers
registered on the event target itself are not invoked.

Event capturing provides an opportunity to peek at events before they are delivered
to their target. A capturing event handler can be used for debugging, or it can be used
along with the event cancellation technique described in the next section to filter
events so that the target event handlers are never actually invoked. One common use
for event capturing is handling mouse drags, where mouse motion events need to be
handled by the object being dragged, not the document elements over which it is
dragged.

15.2.5 Event Cancellation
Browsers respond to many user events, even if your code does not: when the user
clicks the mouse on a hyperlink, the browser follows the link. If an HTML text input
element has the keyboard focus and the user types a key, the browser will enter the
user’s input. If the user moves their finger across a touch-screen device, the browser
scrolls. If you register an event handler for events like these, you can prevent the
browser from performing its default action by invoking the preventDefault()
method of the event object. (Unless you registered the handler with the passive
option, which makes preventDefault() ineffective.)

Canceling the default action associated with an event is only one kind of event cancel‐
lation. We can also cancel the propagation of events by calling the stopPropaga
tion() method of the event object. If there are other handlers defined on the same
object, the rest of those handlers will still be invoked, but no event handlers on any
other object will be invoked after stopPropagation() is called. stopPropagation()
works during the capturing phase, at the event target itself, and during the bubbling
phase. stopImmediatePropagation() works like stopPropagation(), but it also pre‐
vents the invocation of any subsequent event handlers registered on the same object.

15.2.6 Dispatching Custom Events
Client-side JavaScript’s event API is a relatively powerful one, and you can use it to
define and dispatch your own events. Suppose, for example, that your program peri‐
odically needs to perform a long calculation or make a network request and that,
while this operation is pending, other operations are not possible. You want to let the
user know about this by displaying “spinners” to indicate that the application is busy.
But the module that is busy should not need to know where the spinners should be

436 | Chapter 15: JavaScript in Web Browsers

displayed. Instead, that module might just dispatch an event to announce that it is
busy and then dispatch another event when it is no longer busy. Then, the UI module
can register event handlers for those events and take whatever UI actions are appro‐
priate to notify the user.

If a JavaScript object has an addEventListener() method, then it is an “event target,”
and this means it also has a dispatchEvent() method. You can create your own event
object with the CustomEvent() constructor and pass it to dispatchEvent(). The first
argument to CustomEvent() is a string that specifies the type of your event, and the
second argument is an object that specifies the properties of the event object. Set the
detail property of this object to a string, object, or other value that represents the
content of your event. If you plan to dispatch your event on a document element and
want it to bubble up the document tree, add bubbles:true to the second argument:

// Dispatch a custom event so the UI knows we are busy
document.dispatchEvent(new CustomEvent("busy", { detail: true }));

// Perform a network operation
fetch(url)
 .then(handleNetworkResponse)
 .catch(handleNetworkError)
 .finally(() => {
 // After the network request has succeeded or failed, dispatch
 // another event to let the UI know that we are no longer busy.
 document.dispatchEvent(new CustomEvent("busy", { detail: false }));
 });

// Elsewhere, in your program you can register a handler for "busy" events
// and use it to show or hide the spinner to let the user know.
document.addEventListener("busy", (e) => {
 if (e.detail) {
 showSpinner();
 } else {
 hideSpinner();
 }
});

15.3 Scripting Documents
Client-side JavaScript exists to turn static HTML documents into interactive web
applications. So scripting the content of web pages is really the central purpose of
JavaScript.

Every Window object has a document property that refers to a Document object. The
Document object represents the content of the window, and it is the subject of this
section. The Document object does not stand alone, however. It is the central object
in the DOM for representing and manipulating document content.

15.3 Scripting Documents | 437

The DOM was introduced in §15.1.2. This section explains the API in detail. It
covers:

• How to query or select individual elements from a document.
• How to traverse a document, and how to find the ancestors, siblings, and

descendants of any document element.
• How to query and set the attributes of document elements.
• How to query, set, and modify the content of a document.
• How to modify the structure of a document by creating, inserting, and deleting

nodes.

15.3.1 Selecting Document Elements
Client-side JavaScript programs often need to manipulate one or more elements
within the document. The global document property refers to the Document object,
and the Document object has head and body properties that refer to the Element
objects for the <head> and <body> tags, respectively. But a program that wants to
manipulate an element embedded more deeply in the document must somehow
obtain or select the Element objects that refer to those document elements.

Selecting elements with CSS selectors
CSS stylesheets have a very powerful syntax, known as selectors, for describing ele‐
ments or sets of elements within a document. The DOM methods querySelector()
and querySelectorAll() allow us to find the element or elements within a document
that match a specified CSS selector. Before we cover the methods, we’ll start with a
quick tutorial on CSS selector syntax.

CSS selectors can describe elements by tag name, the value of their id attribute, or the
words in their class attribute:

div // Any <div> element
#nav // The element with id="nav"
.warning // Any element with "warning" in its class attribute

The # character is used to match based on the id attribute, and the . character is used
to match based on the class attribute. Elements can also be selected based on more
general attribute values:

p[lang="fr"] // A paragraph written in French: <p lang="fr">
*[name="x"] // Any element with a name="x" attribute

Note that these examples combine a tag name selector (or the * tag name wildcard)
with an attribute selector. More complex combinations are also possible:

438 | Chapter 15: JavaScript in Web Browsers

span.fatal.error // Any with "fatal" and "error" in its class
span[lang="fr"].warning // Any in French with class "warning"

Selectors can also specify document structure:

#log span // Any descendant of the element with id="log"
#log>span // Any child of the element with id="log"
body>h1:first-child // The first <h1> child of the <body>
img + p.caption // A <p> with class "caption" immediately after an
h2 ~ p // Any <p> that follows an <h2> and is a sibling of it

If two selectors are separated by a comma, it means that we’ve selected elements that
match either one of the selectors:

button, input[type="button"] // All <button> and <input type="button"> elements

As you can see, CSS selectors allow us to refer to elements within a document by type,
ID, class, attributes, and position within the document. The querySelector()
method takes a CSS selector string as its argument and returns the first matching ele‐
ment in the document that it finds, or returns null if none match:

// Find the document element for the HTML tag with attribute id="spinner"
let spinner = document.querySelector("#spinner");

querySelectorAll() is similar, but it returns all matching elements in the document
rather than just returning the first:

// Find all Element objects for <h1>, <h2>, and <h3> tags
let titles = document.querySelectorAll("h1, h2, h3");

The return value of querySelectorAll() is not an array of Element objects. Instead,
it is an array-like object known as a NodeList. NodeList objects have a length prop‐
erty and can be indexed like arrays, so you can loop over them with a traditional for
loop. NodeLists are also iterable, so you can use them with for/of loops as well. If
you want to convert a NodeList into a true array, simply pass it to Array.from().

The NodeList returned by querySelectorAll() will have a length property set to 0 if
there are not any elements in the document that match the specified selector.

querySelector() and querySelectorAll() are implemented by the Element class as
well as by the Document class. When invoked on an element, these methods will only
return elements that are descendants of that element.

Note that CSS defines ::first-line and ::first-letter pseudoelements. In CSS,
these match portions of text nodes rather than actual elements. They will not match if
used with querySelectorAll() or querySelector(). Also, many browsers will refuse
to return matches for the :link and :visited pseudoclasses, as this could expose
information about the user’s browsing history.

Another CSS-based element selection method is closest(). This method is defined
by the Element class and takes a selector as its only argument. If the selector matches

15.3 Scripting Documents | 439

the element it is invoked on, it returns that element. Otherwise, it returns the closest
ancestor element that the selector matches, or returns null if none matched. In a
sense, closest() is the opposite of querySelector(): closest() starts at an element
and looks for a match above it in the tree, while querySelector() starts with an ele‐
ment and looks for a match below it in the tree. closest() can be useful when you
have registered an event handler at a high level in the document tree. If you are han‐
dling a “click” event, for example, you might want to know whether it is a click a
hyperlink. The event object will tell you what the target was, but that target might be
the text inside a link rather than the hyperlink’s <a> tag itself. Your event handler
could look for the nearest containing hyperlink like this:

// Find the closest enclosing <a> tag that has an href attribute.
let hyperlink = event.target.closest("a[href]");

Here is another way you might use closest():

// Return true if the element e is inside of an HTML list element
function insideList(e) {
 return e.closest("ul,ol,dl") !== null;
}

The related method matches() does not return ancestors or descendants: it simply
tests whether an element is matched by a CSS selector and returns true if so and
false otherwise:

// Return true if e is an HTML heading element
function isHeading(e) {
 return e.matches("h1,h2,h3,h4,h5,h6");
}

Other element selection methods

In addition to querySelector() and querySelectorAll(), the DOM also defines a
number of older element selection methods that are more or less obsolete now. You
may still see some of these methods (especially getElementById()) in use, however:

// Look up an element by id. The argument is just the id, without
// the CSS selector prefix #. Similar to document.querySelector("#sect1")
let sect1 = document.getElementById("sect1");

// Look up all elements (such as form checkboxes) that have a name="color"
// attribute. Similar to document.querySelectorAll('*[name="color"]');
let colors = document.getElementsByName("color");

// Look up all <h1> elements in the document.
// Similar to document.querySelectorAll("h1")
let headings = document.getElementsByTagName("h1");

// getElementsByTagName() is also defined on elements.
// Get all <h2> elements within the sect1 element.

440 | Chapter 15: JavaScript in Web Browsers

let subheads = sect1.getElementsByTagName("h2");

// Look up all elements that have class "tooltip."
// Similar to document.querySelectorAll(".tooltip")
let tooltips = document.getElementsByClassName("tooltip");

// Look up all descendants of sect1 that have class "sidebar"
// Similar to sect1.querySelectorAll(".sidebar")
let sidebars = sect1.getElementsByClassName("sidebar");

Like querySelectorAll(), the methods in this code return a NodeList (except for
getElementById(), which returns a single Element object). Unlike querySelector
All(), however, the NodeLists returned by these older selection methods are “live,”
which means that the length and content of the list can change if the document con‐
tent or structure changes.

Preselected elements
For historical reasons, the Document class defines shortcut properties to access cer‐
tain kinds of nodes. The images, forms, and links properties, for example, provide
easy access to the , <form>, and <a> elements (but only <a> tags that have an
href attribute) of a document. These properties refer to HTMLCollection objects,
which are much like NodeList objects, but they can additionally be indexed by ele‐
ment ID or name. With the document.forms property, for example, you can access
the <form id="address"> tag as:

document.forms.address;

An even more outdated API for selecting elements is the document.all property,
which is like an HTMLCollection for all elements in the document. document.all is
deprecated, and you should no longer use it.

15.3.2 Document Structure and Traversal
Once you have selected an Element from a Document, you sometimes need to find
structurally related portions (parent, siblings, children) of the document. When we
are primarily interested in the Elements of a document instead of the text within
them (and the whitespace between them, which is also text), there is a traversal API
that allows us to treat a document as a tree of Element objects, ignoring Text nodes
that are also part of the document. This traversal API does not involve any methods;
it is simply a set of properties on Element objects that allow us to refer to the parent,
children, and siblings of a given element:

15.3 Scripting Documents | 441

parentNode

This property of an element refers to the parent of the element, which will be
another Element or a Document object.

children

This NodeList contains the Element children of an element, but excludes non-
Element children like Text nodes (and Comment nodes).

childElementCount

The number of Element children. Returns the same value as children.length.

firstElementChild, lastElementChild
These properties refer to the first and last Element children of an Element. They
are null if the Element has no Element children.

nextElementSibling, previousElementSibling
These properties refer to the sibling Elements immediately before or immediately
after an Element, or null if there is no such sibling.

Using these Element properties, the second child Element of the first child Element of
the Document can be referred to with either of these expressions:

document.children[0].children[1]
document.firstElementChild.firstElementChild.nextElementSibling

(In a standard HTML document, both of those expressions refer to the <body> tag of
the document.)

Here are two functions that demonstrate how you can use these properties to recur‐
sively do a depth-first traversal of a document invoking a specified function for every
element in the document:

// Recursively traverse the Document or Element e, invoking the function
// f on e and on each of its descendants
function traverse(e, f) {
 f(e); // Invoke f() on e
 for(let child of e.children) { // Iterate over the children
 traverse(child, f); // And recurse on each one
 }
}

function traverse2(e, f) {
 f(e); // Invoke f() on e
 let child = e.firstElementChild; // Iterate the children linked-list style
 while(child !== null) {
 traverse2(child, f); // And recurse
 child = child.nextElementSibling;
 }
}

442 | Chapter 15: JavaScript in Web Browsers

Documents as trees of nodes
If you want to traverse a document or some portion of a document and do not want
to ignore the Text nodes, you can use a different set of properties defined on all Node
objects. This will allow you to see Elements, Text nodes, and even Comment nodes
(which represent HTML comments in the document).

All Node objects define the following properties:

parentNode

The node that is the parent of this one, or null for nodes like the Document
object that have no parent.

childNodes

A read-only NodeList that that contains all children (not just Element children)
of the node.

firstChild, lastChild
The first and last child nodes of a node, or null if the node has no children.

nextSibling, previousSibling
The next and previous sibling nodes of a node. These properties connect nodes
in a doubly linked list.

nodeType

A number that specifies what kind of node this is. Document nodes have value 9.
Element nodes have value 1. Text nodes have value 3. Comment nodes have value
8.

nodeValue

The textual content of a Text or Comment node.

nodeName

The HTML tag name of an Element, converted to uppercase.

Using these Node properties, the second child node of the first child of the Document
can be referred to with expressions like these:

document.childNodes[0].childNodes[1]
document.firstChild.firstChild.nextSibling

Suppose the document in question is the following:

<html><head><title>Test</title></head><body>Hello World!</body></html>

Then the second child of the first child is the <body> element. It has a nodeType of 1
and a nodeName of “BODY”.

Note, however, that this API is extremely sensitive to variations in the document text.
If the document is modified by inserting a single newline between the <html> and the

15.3 Scripting Documents | 443

<head> tag, for example, the Text node that represents that newline becomes the first
child of the first child, and the second child is the <head> element instead of the
<body> element.

To demonstrate this Node-based traversal API, here is a function that returns all of
the text within an element or document:

// Return the plain-text content of element e, recursing into child elements.
// This method works like the textContent property
function textContent(e) {
 let s = ""; // Accumulate the text here
 for(let child = e.firstChild; child !== null; child = child.nextSibling) {
 let type = child.nodeType;
 if (type === 3) { // If it is a Text node
 s += child.nodeValue; // add the text content to our string.
 } else if (type === 1) { // And if it is an Element node
 s += textContent(child); // then recurse.
 }
 }
 return s;
}

This function is a demonstration only—in practice, you would simply write e.text
Content to obtain the textual content of the element e.

15.3.3 Attributes
HTML elements consist of a tag name and a set of name/value pairs known as
attributes. The <a> element that defines a hyperlink, for example, uses the value of its
href attribute as the destination of the link.

The Element class defines general getAttribute(), setAttribute(), hasAttri
bute(), and removeAttribute() methods for querying, setting, testing, and remov‐
ing the attributes of an element. But the attribute values of HTML elements (for all
standard attributes of standard HTML elements) are available as properties of the
HTMLElement objects that represent those elements, and it is usually much easier to
work with them as JavaScript properties than it is to call getAttribute() and related
methods.

HTML attributes as element properties
The Element objects that represent the elements of an HTML document usually
define read/write properties that mirror the HTML attributes of the elements. Ele‐
ment defines properties for the universal HTML attributes such as id, title, lang,
and dir and event handler properties like onclick. Element-specific subtypes define
attributes specific to those elements. To query the URL of an image, for example, you
can use the src property of the HTMLElement that represents the element:

444 | Chapter 15: JavaScript in Web Browsers

let image = document.querySelector("#main_image");
let url = image.src; // The src attribute is the URL of the image
image.id === "main_image" // => true; we looked up the image by id

Similarly, you might set the form-submission attributes of a <form> element with
code like this:

let f = document.querySelector("form"); // First <form> in the document
f.action = "https://www.example.com/submit"; // Set the URL to submit it to.
f.method = "POST"; // Set the HTTP request type.

For some elements, such as the <input> element, some HTML attribute names map
to differently named properties. The HTML value attribute of an <input>, for exam‐
ple, is mirrored by the JavaScript defaultValue property. The JavaScript value prop‐
erty of the <input> element contains the user’s current input, but changes to the
value property do not affect the defaultValue property nor the value attribute.

HTML attributes are not case sensitive, but JavaScript property names are. To convert
an attribute name to the JavaScript property, write it in lowercase. If the attribute is
more than one word long, however, put the first letter of each word after the first in
uppercase: defaultChecked and tabIndex, for example. Event handler properties like
onclick are an exception, however, and are written in lowercase.

Some HTML attribute names are reserved words in JavaScript. For these, the general
rule is to prefix the property name with “html”. The HTML for attribute (of the
<label> element), for example, becomes the JavaScript htmlFor property. “class” is a
reserved word in JavaScript, and the very important HTML class attribute is an
exception to the rule: it becomes className in JavaScript code.

The properties that represent HTML attributes usually have string values. But when
the attribute is a boolean or numeric value (the defaultChecked and maxLength
attributes of an <input> element, for example), the properties are booleans or num‐
bers instead of strings. Event handler attributes always have functions (or null) as
their values.

Note that this property-based API for getting and setting attribute values does not
define any way to remove an attribute from an element. In particular, the delete
operator cannot be used for this purpose. If you need to delete an attribute, use the
removeAttribute() method.

The class attribute

The class attribute of an HTML element is a particularly important one. Its value is a
space-separated list of CSS classes that apply to the element and affect how it is styled
with CSS. Because class is a reserved word in JavaScript, the value of this attribute is
available through the className property on Element objects. The className prop‐
erty can set and return the value of the class attribute as a string. But the class

15.3 Scripting Documents | 445

attribute is poorly named: its value is a list of CSS classes, not a single class, and it is
common in client-side JavaScript programming to want to add and remove individ‐
ual class names from this list rather than work with the list as a single string.

For this reason, Element objects define a classList property that allows you to treat
the class attribute as a list. The value of the classList property is an iterable Array-
like object. Although the name of the property is classList, it behaves more like a
set of classes, and defines add(), remove(), contains(), and toggle() methods:

// When we want to let the user know that we are busy, we display
// a spinner. To do this we have to remove the "hidden" class and add the
// "animated" class (assuming the stylesheets are configured correctly).
let spinner = document.querySelector("#spinner");
spinner.classList.remove("hidden");
spinner.classList.add("animated");

Dataset attributes
It is sometimes useful to attach additional information to HTML elements, typically
when JavaScript code will be selecting those elements and manipulating them in some
way. In HTML, any attribute whose name is lowercase and begins with the prefix
“data-” is considered valid, and you can use them for any purpose. These “dataset
attributes” will not affect the presentation of the elements on which they appear, and
they define a standard way to attach additional data without compromising docu‐
ment validity.

In the DOM, Element objects have a dataset property that refers to an object that
has properties that correspond to the data- attributes with their prefix removed.
Thus, dataset.x would hold the value of the data-x attribute. Hyphenated attributes
map to camelCase property names: the attribute data-section-number becomes the
property dataset.sectionNumber.

Suppose an HTML document contains this text:

<h2 id="title" data-section-number="16.1">Attributes</h2>

Then you could write JavaScript like this to access that section number:

let number = document.querySelector("#title").dataset.sectionNumber;

15.3.4 Element Content
Look again at the document tree pictured in Figure 15-1, and ask yourself what the
“content” of the <p> element is. There are two ways we might answer this question:

• The content is the HTML string “This is a <i>simple</i> document”.
• The content is the plain-text string “This is a simple document”.

446 | Chapter 15: JavaScript in Web Browsers

Both of these are valid answers, and each answer is useful in its own way. The sections
that follow explain how to work with the HTML representation and the plain-text
representation of an element’s content.

Element content as HTML

Reading the innerHTML property of an Element returns the content of that element as
a string of markup. Setting this property on an element invokes the web browser’s
parser and replaces the element’s current content with a parsed representation of the
new string. You can test this out by opening the developer console and typing:

document.body.innerHTML = "<h1>Oops</h1>";

You will see that the entire web page disappears and is replaced with the single head‐
ing, “Oops”. Web browsers are very good at parsing HTML, and setting innerHTML is
usually fairly efficient. Note, however, that appending text to the innerHTML property
with the += operator is not efficient because it requires both a serialization step to
convert element content to a string and then a parsing step to convert the new string
back into element content.

When using these HTML APIs, it is very important that you never
insert user input into the document. If you do this, you allow mali‐
cious users to inject their own scripts into your application. See
“Cross-site scripting” on page 425 for details.

The outerHTML property of an Element is like innerHTML except that its value
includes the element itself. When you query outerHTML, the value includes the open‐
ing and closing tags of the element. And when you set outerHTML on an element, the
new content replaces the element itself.

A related Element method is insertAdjacentHTML(), which allows you to insert a
string of arbitrary HTML markup “adjacent” to the specified element. The markup is
passed as the second argument to this method, and the precise meaning of “adjacent”
depends on the value of the first argument. This first argument should be a string
with one of the values “beforebegin,” “afterbegin,” “beforeend,” or “afterend.” These
values correspond to insertion points that are illustrated in Figure 15-2.

Figure 15-2. Insertion points for insertAdjacentHTML()

15.3 Scripting Documents | 447

Element content as plain text
Sometimes you want to query the content of an element as plain text or to insert plain
text into a document (without having to escape the angle brackets and ampersands
used in HTML markup). The standard way to do this is with the textContent
property:

let para = document.querySelector("p"); // First <p> in the document
let text = para.textContent; // Get the text of the paragraph
para.textContent = "Hello World!"; // Alter the text of the paragraph

The textContent property is defined by the Node class, so it works for Text nodes as
well as Element nodes. For Element nodes, it finds and returns all text in all descend‐
ants of the element.

The Element class defines an innerText property that is similar to textContent.
innerText has some unusual and complex behaviors, such as attempting to preserve
table formatting. It is not well specified nor implemented compatibly between brows‐
ers, however, and should no longer be used.

Text in <script> Elements
Inline <script> elements (i.e., those that do not have a src attribute) have a text
property that you can use to retrieve their text. The content of a <script> element is
never displayed by the browser, and the HTML parser ignores angle brackets and
ampersands within a script. This makes a <script> element an ideal place to embed
arbitrary textual data for use by your application. Simply set the type attribute of the
element to some value (such as “text/x-custom-data”) that makes it clear that the
script is not executable JavaScript code. If you do this, the JavaScript interpreter will
ignore the script, but the element will exist in the document tree, and its text prop‐
erty will return the data to you.

15.3.5 Creating, Inserting, and Deleting Nodes
We’ve seen how to query and alter document content using strings of HTML and of
plain text. And we’ve also seen that we can traverse a Document to examine the indi‐
vidual Element and Text nodes that it is made of. It is also possible to alter a docu‐
ment at the level of individual nodes. The Document class defines methods for
creating Element objects, and Element and Text objects have methods for inserting,
deleting, and replacing nodes in the tree.

Create a new element with the createElement() method of the Document class and
append strings of text or other elements to it with its append() and prepend()
methods:

448 | Chapter 15: JavaScript in Web Browsers

let paragraph = document.createElement("p"); // Create an empty <p> element
let emphasis = document.createElement("em"); // Create an empty element
emphasis.append("World"); // Add text to the element
paragraph.append("Hello ", emphasis, "!"); // Add text and to <p>
paragraph.prepend("¡"); // Add more text at start of <p>
paragraph.innerHTML // => "¡Hello World!"

append() and prepend() take any number of arguments, which can be Node objects
or strings. String arguments are automatically converted to Text nodes. (You can cre‐
ate Text nodes explicitly with document.createTextNode(), but there is rarely any
reason to do so.) append() adds the arguments to the element at the end of the child
list. prepend() adds the arguments at the start of the child list.

If you want to insert an Element or Text node into the middle of the containing ele‐
ment’s child list, then neither append() or prepend() will work for you. In this case,
you should obtain a reference to a sibling node and call before() to insert the new
content before that sibling or after() to insert it after that sibling. For example:

// Find the heading element with class="greetings"
let greetings = document.querySelector("h2.greetings");

// Now insert the new paragraph and a horizontal rule after that heading
greetings.after(paragraph, document.createElement("hr"));

Like append() and prepend(), after() and before() take any number of string and
element arguments and insert them all into the document after converting strings to
Text nodes. append() and prepend() are only defined on Element objects, but
after() and before() work on both Element and Text nodes: you can use them to
insert content relative to a Text node.

Note that elements can only be inserted at one spot in the document. If an element is
already in the document and you insert it somewhere else, it will be moved to the new
location, not copied:

// We inserted the paragraph after this element, but now we
// move it so it appears before the element instead
greetings.before(paragraph);

If you do want to make a copy of an element, use the cloneNode() method, passing
true to copy all of its content:

// Make a copy of the paragraph and insert it after the greetings element
greetings.after(paragraph.cloneNode(true));

You can remove an Element or Text node from the document by calling its remove()
method, or you can replace it by calling replaceWith() instead. remove() takes no
arguments, and replaceWith() takes any number of strings and elements just like
before() and after() do:

15.3 Scripting Documents | 449

// Remove the greetings element from the document and replace it with
// the paragraph element (moving the paragraph from its current location
// if it is already inserted into the document).
greetings.replaceWith(paragraph);

// And now remove the paragraph.
paragraph.remove();

The DOM API also defines an older generation of methods for inserting and remov‐
ing content. appendChild(), insertBefore(), replaceChild(), and removeChild()
are harder to use than the methods shown here and should never be needed.

15.3.6 Example: Generating a Table of Contents
Example 15-1 shows how to dynamically create a table of contents for a document. It
demonstrates many of the document scripting techniques described in the previous
sections. The example is well commented, and you should have no trouble following
the code.

Example 15-1. Generating a table of contents with the DOM API

/**
 * TOC.js: create a table of contents for a document.
 *
 * This script runs when the DOMContentLoaded event is fired and
 * automatically generates a table of contents for the document.
 * It does not define any global symbols so it should not conflict
 * with other scripts.
 *
 * When this script runs, it first looks for a document element with
 * an id of "TOC". If there is no such element it creates one at the
 * start of the document. Next, the function finds all <h2> through
 * <h6> tags, treats them as section titles, and creates a table of
 * contents within the TOC element. The function adds section numbers
 * to each section heading and wraps the headings in named anchors so
 * that the TOC can link to them. The generated anchors have names
 * that begin with "TOC", so you should avoid this prefix in your own
 * HTML.
 *
 * The entries in the generated TOC can be styled with CSS. All
 * entries have a class "TOCEntry". Entries also have a class that
 * corresponds to the level of the section heading. <h1> tags generate
 * entries of class "TOCLevel1", <h2> tags generate entries of class
 * "TOCLevel2", and so on. Section numbers inserted into headings have
 * class "TOCSectNum".
 *
 * You might use this script with a stylesheet like this:
 *
 * #TOC { border: solid black 1px; margin: 10px; padding: 10px; }
 * .TOCEntry { margin: 5px 0px; }

450 | Chapter 15: JavaScript in Web Browsers

 * .TOCEntry a { text-decoration: none; }
 * .TOCLevel1 { font-size: 16pt; font-weight: bold; }
 * .TOCLevel2 { font-size: 14pt; margin-left: .25in; }
 * .TOCLevel3 { font-size: 12pt; margin-left: .5in; }
 * .TOCSectNum:after { content: ": "; }
 *
 * To hide the section numbers, use this:
 *
 * .TOCSectNum { display: none }
 **/
document.addEventListener("DOMContentLoaded", () => {
 // Find the TOC container element.
 // If there isn't one, create one at the start of the document.
 let toc = document.querySelector("#TOC");
 if (!toc) {
 toc = document.createElement("div");
 toc.id = "TOC";
 document.body.prepend(toc);
 }

 // Find all section heading elements. We're assuming here that the
 // document title uses <h1> and that sections within the document are
 // marked with <h2> through <h6>.
 let headings = document.querySelectorAll("h2,h3,h4,h5,h6");

 // Initialize an array that keeps track of section numbers.
 let sectionNumbers = [0,0,0,0,0];

 // Now loop through the section header elements we found.
 for(let heading of headings) {
 // Skip the heading if it is inside the TOC container.
 if (heading.parentNode === toc) {
 continue;
 }

 // Figure out what level heading it is.
 // Subtract 1 because <h2> is a level-1 heading.
 let level = parseInt(heading.tagName.charAt(1)) - 1;

 // Increment the section number for this heading level
 // and reset all lower heading level numbers to zero.
 sectionNumbers[level-1]++;
 for(let i = level; i < sectionNumbers.length; i++) {
 sectionNumbers[i] = 0;
 }

 // Now combine section numbers for all heading levels
 // to produce a section number like 2.3.1.
 let sectionNumber = sectionNumbers.slice(0, level).join(".");

 // Add the section number to the section header title.
 // We place the number in a to make it styleable.

15.3 Scripting Documents | 451

 let span = document.createElement("span");
 span.className = "TOCSectNum";
 span.textContent = sectionNumber;
 heading.prepend(span);

 // Wrap the heading in a named anchor so we can link to it.
 let anchor = document.createElement("a");
 let fragmentName = `TOC${sectionNumber}`;
 anchor.name = fragmentName;
 heading.before(anchor); // Insert anchor before heading
 anchor.append(heading); // and move heading inside anchor

 // Now create a link to this section.
 let link = document.createElement("a");
 link.href = `#${fragmentName}`; // Link destination

 // Copy the heading text into the link. This is a safe use of
 // innerHTML because we are not inserting any untrusted strings.
 link.innerHTML = heading.innerHTML;

 // Place the link in a div that is styleable based on the level.
 let entry = document.createElement("div");
 entry.classList.add("TOCEntry", `TOCLevel${level}`);
 entry.append(link);

 // And add the div to the TOC container.
 toc.append(entry);
 }
});

15.4 Scripting CSS
We’ve seen that JavaScript can control the logical structure and content of HTML
documents. It can also control the visual appearance and layout of those documents
by scripting CSS. The following subsections explain a few different techniques that
JavaScript code can use to work with CSS.

This is a book about JavaScript, not about CSS, and this section assumes that you
already have a working knowledge of how CSS is used to style HTML content. But it’s
worth mentioning some of the CSS styles that are commonly scripted from
JavaScript:

• Setting the display style to “none” hides an element. You can later show the ele‐
ment by setting display to some other value.

• You can dynamically position elements by setting the position style to “abso‐
lute,” “relative,” or “fixed” and then setting the top and left styles to the desired
coordinates. This is important when using JavaScript to display dynamic content
like modal dialogues and tooltips.

452 | Chapter 15: JavaScript in Web Browsers

• You can shift, scale, and rotate elements with the transform style.
• You can animate changes to other CSS styles with the transition style. These

animations are handled automatically by the web browser and do not require
JavaScript, but you can use JavaScript to initiate the animations.

15.4.1 CSS Classes
The simplest way to use JavaScript to affect the styling of document content is to add
and remove CSS class names from the class attribute of HTML tags. This is easy to
do with the classList property of Element objects, as explained in “The class
attribute” on page 445.

Suppose, for example, that your document’s stylesheet includes a definition for a
“hidden” class:

.hidden {
 display:none;
}

With this style defined, you can hide (and then show) an element with code like this:

// Assume that this "tooltip" element has class="hidden" in the HTML file.
// We can make it visible like this:
document.querySelector("#tooltip").classList.remove("hidden");

// And we can hide it again like this:
document.querySelector("#tooltip").classList.add("hidden");

15.4.2 Inline Styles
To continue with the preceding tooltip example, suppose that the document is struc‐
tured with only a single tooltip element, and we want to dynamically position it
before displaying it. In general, we can’t create a different stylesheet class for each
possible position of the tooltip, so the classList property won’t help us with
positioning.

In this case, we need to script the style attribute of the tooltip element to set inline
styles that are specific to that one element. The DOM defines a style property on all
Element objects that correspond to the style attribute. Unlike most such properties,
however, the style property is not a string. Instead, it is a CSSStyleDeclaration
object: a parsed representation of the CSS styles that appear in textual form in the
style attribute. To display and set the position of our hypothetical tooltip with Java‐
Script, we might use code like this:

function displayAt(tooltip, x, y) {
 tooltip.style.display = "block";
 tooltip.style.position = "absolute";

15.4 Scripting CSS | 453

 tooltip.style.left = `${x}px`;
 tooltip.style.top = `${y}px`;
}

Naming Conventions: CSS Properties in JavaScript
Many CSS style properties, such as font-size, contain hyphens in their names. In
JavaScript, a hyphen is interpreted as a minus sign and is not allowed in property
names or other identifiers. Therefore, the names of the properties of the CSSStyleDe‐
claration object are slightly different from the names of actual CSS properties. If a
CSS property name contains one or more hyphens, the CSSStyleDeclaration property
name is formed by removing the hyphens and capitalizing the letter immediately fol‐
lowing each hyphen. The CSS property border-left-width is accessed through the
JavaScript borderLeftWidth property, for example, and the CSS font-family prop‐
erty is written as fontFamily in JavaScript.

When working with the style properties of the CSSStyleDeclaration object, remember
that all values must be specified as strings. In a stylesheet or style attribute, you can
write:

display: block; font-family: sans-serif; background-color: #ffffff;

To accomplish the same thing for an element e with JavaScript, you have to quote all
of the values:

e.style.display = "block";
e.style.fontFamily = "sans-serif";
e.style.backgroundColor = "#ffffff";

Note that the semicolons go outside the strings. These are just normal JavaScript sem‐
icolons; the semicolons you use in CSS stylesheets are not required as part of the
string values you set with JavaScript.

Furthermore, remember that many CSS properties require units such as “px” for pix‐
els or “pt” for points. Thus, it is not correct to set the marginLeft property like this:

e.style.marginLeft = 300; // Incorrect: this is a number, not a string
e.style.marginLeft = "300"; // Incorrect: the units are missing

Units are required when setting style properties in JavaScript, just as they are when
setting style properties in stylesheets. The correct way to set the value of the margin
Left property of an element e to 300 pixels is:

e.style.marginLeft = "300px";

If you want to set a CSS property to a computed value, be sure to append the units at
the end of the computation:

e.style.left = `${x0 + left_border + left_padding}px`;

454 | Chapter 15: JavaScript in Web Browsers

Recall that some CSS properties, such as margin, are shortcuts for other properties,
such as margin-top, margin-right, margin-bottom, and margin-left. The CSSStyle‐
Declaration object has properties that correspond to these shortcut properties. For
example, you might set the margin property like this:

e.style.margin = `${top}px ${right}px ${bottom}px ${left}px`;

Sometimes, you may find it easier to set or query the inline style of an element as a
single string value rather than as a CSSStyleDeclaration object. To do that, you can
use the Element getAttribute() and setAttribute() methods, or you can use the
cssText property of the CSSStyleDeclaration object:

// Copy the inline styles of element e to element f:
f.setAttribute("style", e.getAttribute("style"));

// Or do it like this:
f.style.cssText = e.style.cssText;

When querying the style property of an element, keep in mind that it represents
only the inline styles of an element and that most styles for most elements are speci‐
fied in stylesheets rather than inline. Furthermore, the values you obtain when query‐
ing the style property will use whatever units and whatever shortcut property format
is actually used on the HTML attribute, and your code may have to do some sophisti‐
cated parsing to interpret them. In general, if you want to query the styles of an ele‐
ment, you probably want the computed style, which is discussed next.

15.4.3 Computed Styles
The computed style for an element is the set of property values that the browser
derives (or computes) from the element’s inline style plus all applicable style rules in
all stylesheets: it is the set of properties actually used to display the element. Like
inline styles, computed styles are represented with a CSSStyleDeclaration object.
Unlike inline styles, however, computed styles are read-only. You can’t set these styles,
but the computed CSSStyleDeclaration object for an element lets you determine what
style property values the browser used when rendering that element.

Obtain the computed style for an element with the getComputedStyle() method of
the Window object. The first argument to this method is the element whose compu‐
ted style is desired. The optional second argument is used to specify a CSS pseudoele‐
ment, such as “::before” or “::after”:

let title = document.querySelector("#section1title");
let styles = window.getComputedStyle(title);
let beforeStyles = window.getComputedStyle(title, "::before");

The return value of getComputedStyle() is a CSSStyleDeclaration object that repre‐
sents all the styles that apply to the specified element (or pseudoelement). There are a

15.4 Scripting CSS | 455

number of important differences between a CSSStyleDeclaration object that repre‐
sents inline styles and one that represents computed styles:

• Computed style properties are read-only.
• Computed style properties are absolute: relative units like percentages and points

are converted to absolute values. Any property that specifies a size (such as a
margin size or a font size) will have a value measured in pixels. This value will be
a string with a “px” suffix, so you’ll still need to parse it, but you won’t have to
worry about parsing or converting other units. Properties whose values are col‐
ors will be returned in “rgb()” or “rgba()” format.

• Shortcut properties are not computed—only the fundamental properties that
they are based on are. Don’t query the margin property, for example, but use mar
ginLeft, marginTop, and so on. Similarly, don’t query border or even border
Width. Instead, use borderLeftWidth, borderTopWidth, and so on.

• The cssText property of the computed style is undefined.

A CSSStyleDeclaration object returned by getComputedStyle() generally contains
much more information about an element than the CSSStyleDeclaration obtained
from the inline style property of that element. But computed styles can be tricky,
and querying them does not always provide the information you might expect. Con‐
sider the font-family attribute: it accepts a comma-separated list of desired font
families for cross-platform portability. When you query the fontFamily property of a
computed style, you’re simply getting the value of the most specific font-family style
that applies to the element. This may return a value such as “arial,helvetica,sans-serif,”
which does not tell you which typeface is actually in use. Similarly, if an element is
not absolutely positioned, attempting to query its position and size through the top
and left properties of its computed style often returns the value auto. This is a per‐
fectly legal CSS value, but it is probably not what you were looking for.

Although CSS can be used to precisely specify the position and size of document ele‐
ments, querying the computed style of an element is not the preferred way to deter‐
mine the element’s size and position. See §15.5.2 for a simpler, portable alternative.

15.4.4 Scripting Stylesheets
In addition to scripting class attributes and inline styles, JavaScript can also manipu‐
late stylesheets themselves. Stylesheets are associated with an HTML document with a
<style> tag or with a <link rel="stylesheet"> tag. Both of these are regular
HTML tags, so you can give them both id attributes and then look them up with
document.querySelector().

456 | Chapter 15: JavaScript in Web Browsers

The Element objects for both <style> and <link> tags have a disabled property that
you can use to disable the entire stylesheet. You might use it with code like this:

// This function switches between the "light" and "dark" themes
function toggleTheme() {
 let lightTheme = document.querySelector("#light-theme");
 let darkTheme = document.querySelector("#dark-theme");
 if (darkTheme.disabled) { // Currently light, switch to dark
 lightTheme.disabled = true;
 darkTheme.disabled = false;
 } else { // Currently dark, switch to light
 lightTheme.disabled = false;
 darkTheme.disabled = true;
 }
}

Another simple way to script stylesheets is to insert new ones into the document
using DOM manipulation techniques we’ve already seen. For example:

function setTheme(name) {
 // Create a new <link rel="stylesheet"> element to load the named stylesheet
 let link = document.createElement("link");
 link.id = "theme";
 link.rel = "stylesheet";
 link.href = `themes/${name}.css`;

 // Look for an existing link with id "theme"
 let currentTheme = document.querySelector("#theme");
 if (currentTheme) {
 // If there is an existing theme, replace it with the new one.
 currentTheme.replaceWith(link);
 } else {
 // Otherwise, just insert the link to the theme stylesheet.
 document.head.append(link);
 }
}

Less subtly, you can also just insert a string of HTML containing a <style> tag into
your document. This is a fun trick, for example:

document.head.insertAdjacentHTML(
 "beforeend",
 "<style>body{transform:rotate(180deg)}</style>"
);

Browsers define an API that allows JavaScript to look inside stylesheets to query,
modify, insert, and delete style rules in that stylesheet. This API is so specialized that
it is not documented here. You can read about it on MDN by searching for “CSSStyle‐
Sheet” and “CSS Object Model.”

15.4 Scripting CSS | 457

15.4.5 CSS Animations and Events
Suppose you have the following two CSS classes defined in a stylesheet:

.transparent { opacity: 0; }

.fadeable { transition: opacity .5s ease-in }

If you apply the first style to an element, it will be fully transparent and therefore
invisible. But if you apply the second style that tells the browser that when the opacity
of the element changes, that change should be animated over a period of 0.5 seconds,
“ease-in” specifies that the opacity change animation should start off slow and then
accelerate.

Now suppose that your HTML document contains an element with the “fadeable”
class:

<div id="subscribe" class="fadeable notification">...</div>

In JavaScript, you can add the “transparent” class:

document.querySelector("#subscribe").classList.add("transparent");

This element is configured to animate opacity changes. Adding the “transparent”
class changes the opacity and triggers an animate: the browser “fades out” the element
so that it becomes fully transparent over the period of half a second.

This works in reverse as well: if you remove the “transparent” class of a “fadeable” ele‐
ment, that is also an opacity change, and the element fades back in and becomes visi‐
ble again.

JavaScript does not have to do any work to make these animations happen: they are a
pure CSS effect. But JavaScript can be used to trigger them.

JavaScript can also be used to monitor the progress of a CSS transition because the
web browser fires events at the start and end of a transition. The “transitionrun” event
is dispatched when the transition is first triggered. This may happen before any visual
changes begin, when the transition-delay style has been specified. Once the visual
changes begin a “transitionstart” event is dispatched, and when the animation is com‐
plete, a “transitionend” event is dispatched. The target of all these events is the ele‐
ment being animated, of course. The event object passed to handlers for these events
is a TransitionEvent object. It has a propertyName property that specifies the CSS
property being animated and an elapsedTime property that for “transitionend”
events specifies how many seconds have passed since the “transitionstart” event.

In addition to transitions, CSS also supports a more complex form of animation
known simply as “CSS Animations.” These use CSS properties such as animation-
name and animation-duration and a special @keyframes rule to define animation
details. Details of how CSS animations work are beyond the scope of this book, but
once again, if you define all of the animation properties on a CSS class, then you can

458 | Chapter 15: JavaScript in Web Browsers

use JavaScript to trigger the animation simply by adding the class to the element that
is to be animated.

And like CSS transitions, CSS animations also trigger events that your JavaScript code
can listen form. “animationstart” is dispatched when the animation starts, and “ani‐
mationend” is dispatched when it is complete. If the animation repeats more than
once, then an “animationiteration” event is dispatched after each repetition except the
last. The event target is the animated element, and the event object passed to handler
functions is an AnimationEvent object. These events include an animationName
property that specifies the animation-name property that defines the animation and
an elapsedTime property that specifies how many seconds have passed since the ani‐
mation started.

15.5 Document Geometry and Scrolling
In this chapter so far, we have thought about documents as abstract trees of elements
and text nodes. But when a browser renders a document within a window, it creates a
visual representation of the document in which each element has a position and a
size. Often, web applications can treat documents as trees of elements and never have
to think about how those elements are rendered on screen. Sometimes, however, it is
necessary to determine the precise geometry of an element. If, for example, you want
to use CSS to dynamically position an element (such as a tooltip) next to some ordi‐
nary browser-positioned element, you need to be able to determine the location of
that element.

The following subsections explain how you can go back and forth between the
abstract, tree-based model of a document and the geometrical, coordinate-based view
of the document as it is laid out in a browser window.

15.5.1 Document Coordinates and Viewport Coordinates
The position of a document element is measured in CSS pixels, with the x coordinate
increasing to the right and the y coordinate increasing as we go down. There are two
different points we can use as the coordinate system origin, however: the x and y
coordinates of an element can be relative to the top-left corner of the document or
relative to the top-left corner of the viewport in which the document is displayed. In
top-level windows and tabs, the “viewport” is the portion of the browser that actually
displays document content: it excludes browser “chrome” such as menus, toolbars,
and tabs. For documents displayed in <iframe> tags, it is the iframe element in the
DOM that defines the viewport for the nested document. In either case, when we talk
about the position of an element, we must be clear whether we are using document
coordinates or viewport coordinates. (Note that viewport coordinates are sometimes
called “window coordinates.”)

15.5 Document Geometry and Scrolling | 459

If the document is smaller than the viewport, or if it has not been scrolled, the upper-
left corner of the document is in the upper-left corner of the viewport and the docu‐
ment and viewport coordinate systems are the same. In general, however, to convert
between the two coordinate systems, we must add or subtract the scroll offsets. If an
element has a y coordinate of 200 pixels in document coordinates, for example, and if
the user has scrolled down by 75 pixels, then that element has a y coordinate of 125
pixels in viewport coordinates. Similarly, if an element has an x coordinate of 400 in
viewport coordinates after the user has scrolled the viewport 200 pixels horizontally,
then the element’s x coordinate in document coordinates is 600.

If we use the mental model of printed paper documents, it is logical to assume that
every element in a document must have a unique position in document coordinates,
regardless of how much the user has scrolled the document. That is an appealing
property of paper documents, and it applies for simple web documents, but in gen‐
eral, document coordinates don’t really work on the web. The problem is that the CSS
overflow property allows elements within a document to contain more content than
it can display. Elements can have their own scrollbars and serve as viewports for the
content they contain. The fact that the web allows scrolling elements within a scroll‐
ing document means that it is simply not possible to describe the position of an ele‐
ment within the document using a single (x,y) point.

Because document coordinates don’t really work, client-side JavaScript tends to use
viewport coordinates. The getBoundingClientRect() and elementFromPoint()

methods described next use viewport coordinates, for example, and the clientX and
clientY properties of mouse and pointer event objects also use this coordinate
system.

When you explicitly position an element using CSS position:fixed, the top and
left properties are interpreted in viewport coordinates. If you use position:rela
tive, the element is positioned relative to where it would have been if it didn’t have
the position property set. If you use position:absolute, then top and left are rel‐
ative to the document or to the nearest containing positioned element. This means,
for example, that an absolutely positioned element inside a relatively positioned ele‐
ment is positioned relative to the container element, not relative to the overall docu‐
ment. It is sometimes very useful to create a relatively positioned container with top
and left set to 0 (so the container is laid out normally) in order to establish a new
coordinate system origin for the absolutely positioned elements it contains. We might
refer to this new coordinate system as “container coordinates” to distinguish it from
document coordinates and viewport coordinates.

460 | Chapter 15: JavaScript in Web Browsers

CSS Pixels
If, like me, you are old enough to remember computer monitors with resolutions of
1024 × 768 and touch-screen phones with resolutions of 320 × 480, then you may still
think that the word “pixel” refers to a single “picture element” in hardware. Today’s
4K monitors and “retina” displays have such high resolution that software pixels have
been decoupled from hardware pixels. A CSS pixel—and therefore a client-side Java‐
Script pixel—may in fact consist of multiple device pixels. The devicePixelRatio
property of the Window object specifies how many device pixels are used for each
software pixel. A “dpr” of 2, for example, means that each software pixel is actually a 2
× 2 grid of hardware pixels. The devicePixelRatio value depends on the physical
resolution of your hardware, on settings in your operating system, and on the zoom
level in your browser.

devicePixelRatio does not have to be an integer. If you are using a CSS font size of
“12px” and the device pixel ratio is 2.5, then the actual font size, in device pixels, is 30.
Because the pixel values we use in CSS no longer correspond directly to individual
pixels on the screen, pixel coordinates no longer need to be integers. If the devicePix
elRatio is 3, then a coordinate of 3.33 makes perfect sense. And if the ratio is actually
2, then a coordinate of 3.33 will just be rounded up to 3.5.

15.5.2 Querying the Geometry of an Element
You can determine the size (including CSS border and padding, but not the margin)
and position (in viewport coordinates) of an element by calling its getBoundingClien
tRect() method. It takes no arguments and returns an object with properties left,
right, top, bottom, width, and height. The left and top properties give the x and y
coordinates of the upper-left corner of the element, and the right and bottom prop‐
erties give the coordinates of the lower-right corner. The differences between these
values are the width and height properties.

Block elements, such as images, paragraphs, and <div> elements are always rectangu‐
lar when laid out by the browser. Inline elements, such as , <code>, and
elements, however, may span multiple lines and may therefore consist of multiple rec‐
tangles. Imagine, for example, some text within and tags that happens to
be displayed so that it wraps across two lines. Its rectangles consist of the end of the
first line and beginning of the second line. If you call getBoundingClientRect() on
this element, the bounding rectangle would include the entire width of both lines. If
you want to query the individual rectangles of inline elements, call the getClien
tRects() method to obtain a read-only, array-like object whose elements are rectan‐
gle objects like those returned by getBoundingClientRect().

15.5 Document Geometry and Scrolling | 461

15.5.3 Determining the Element at a Point
The getBoundingClientRect() method allows us to determine the current position
of an element in a viewport. Sometimes we want to go in the other direction and
determine which element is at a given location in the viewport. You can determine
this with the elementFromPoint() method of the Document object. Call this method
with the x and y coordinates of a point (using viewport coordinates, not document
coordinates: the clientX and clientY coordinates of a mouse event work, for exam‐
ple). elementFromPoint() returns an Element object that is at the specified position.
The hit detection algorithm for selecting the element is not precisely specified, but the
intent of this method is that it returns the innermost (most deeply nested) and upper‐
most (highest CSS z-index attribute) element at that point.

15.5.4 Scrolling
The scrollTo() method of the Window object takes the x and y coordinates of a
point (in document coordinates) and sets these as the scrollbar offsets. That is, it
scrolls the window so that the specified point is in the upper-left corner of the view‐
port. If you specify a point that is too close to the bottom or too close to the right
edge of the document, the browser will move it as close as possible to the upper-left
corner but won’t be able to get it all the way there. The following code scrolls the
browser so that the bottom-most page of the document is visible:

// Get the heights of the document and viewport.
let documentHeight = document.documentElement.offsetHeight;
let viewportHeight = window.innerHeight;
// And scroll so the last "page" shows in the viewport
window.scrollTo(0, documentHeight - viewportHeight);

The scrollBy() method of the Window is similar to scrollTo(), but its arguments
are relative and are added to the current scroll position:

// Scroll 50 pixels down every 500 ms. Note there is no way to turn this off!
setInterval(() => { scrollBy(0,50)}, 500);

If you want to scroll smoothly with scrollTo() or scrollBy(), pass a single object
argument instead of two numbers, like this:

window.scrollTo({
 left: 0,
 top: documentHeight - viewportHeight,
 behavior: "smooth"
});

Often, instead of scrolling to a numeric location in a document, we just want to scroll
so that a certain element in the document is visible. You can do this with the scrol
lIntoView() method on the desired HTML element. This method ensures that the
element on which it is invoked is visible in the viewport. By default, it tries to put the

462 | Chapter 15: JavaScript in Web Browsers

top edge of the element at or near the top of the viewport. If false is passed as the
only argument, it tries to put the bottom edge of the element at the bottom of the
viewport. The browser will also scroll the viewport horizontally as needed to make
the element visible.

You can also pass an object to scrollIntoView(), setting the behavior:"smooth"
property for smooth scrolling. You can set the block property to specify where the
element should be positioned vertically and the inline property to specify how it
should be positioned horizontally if horizontal scrolling is needed. Legal values for
both of these properties are start, end, nearest, and center.

15.5.5 Viewport Size, Content Size, and Scroll Position
As we’ve discussed, browser windows and other HTML elements can display scrolling
content. When this is the case, we sometimes need to know the size of the viewport,
the size of the content, and the scroll offsets of the content within the viewport. This
section covers these details.

For browser windows, the viewport size is given by the window.innerWidth and win
dow.innerHeight properties. (Web pages optimized for mobile devices often use a
<meta name="viewport"> tag in their <head> to set the desired viewport width for
the page.) The total size of the document is the same as the size of the <html> ele‐
ment, document.documentElement. You can call getBoundingClientRect() on docu
ment.documentElement to get the width and height of the document, or you can use
the offsetWidth and offsetHeight properties of document.documentElement. The
scroll offsets of the document within its viewport are available as window.scrollX
and window.scrollY. These are read-only properties, so you can’t set them to scroll
the document: use window.scrollTo() instead.

Things are a little more complicated for elements. Every Element object defines the
following three groups of properties:

offsetWidth clientWidth scrollWidth
offsetHeight clientHeight scrollHeight
offsetLeft clientLeft scrollLeft
offsetTop clientTop scrollTop
offsetParent

The offsetWidth and offsetHeight properties of an element return its on-screen
size in CSS pixels. The returned sizes include the element border and padding but not
margins. The offsetLeft and offsetTop properties return the x and y coordinates of
the element. For many elements, these values are document coordinates. But for
descendants of positioned elements and for some other elements, such as table cells,
these properties return coordinates that are relative to an ancestor element rather

15.5 Document Geometry and Scrolling | 463

than the document itself. The offsetParent property specifies which element the
properties are relative to. These offset properties are all read-only.

clientWidth and clientHeight are like offsetWidth and offsetHeight except that
they do not include the border size—only the content area and its padding. The cli
entLeft and clientTop properties are not very useful: they return the horizontal and
vertical distance between the outside of an element’s padding and the outside of its
border. Usually, these values are just the width of the left and top borders. These cli‐
ent properties are all read-only. For inline elements like <i>, <code>, and , they
all return 0.

scrollWidth and scrollHeight return the size of an element’s content area plus its
padding plus any overflowing content. When the content fits within the content area
without overflow, these properties are the same as clientWidth and clientHeight.
But when there is overflow, they include the overflowing content and return values
larger than clientWidth and clientHeight. scrollLeft and scrollTop give the
scroll offset of the element content within the element’s viewport. Unlike all the other
properties described here, scrollLeft and scrollTop are writable properties, and
you can set them to scroll the content within an element. (In most browsers, Element
objects also have scrollTo() and scrollBy() methods like the Window object does,
but these are not yet universally supported.)

15.6 Web Components
HTML is a language for document markup and defines a rich set of tags for that pur‐
pose. Over the last three decades, it has become a language that is used to describe the
user interfaces of web applications, but basic HTML tags such as <input> and <but
ton> are inadequate for modern UI designs. Web developers are able to make it work,
but only by using CSS and JavaScript to augment the appearance and behavior of
basic HTML tags. Consider a typical user interface component, such as the search
box shown in Figure 15-3.

Figure 15-3. A search box user interface component

The HTML <input> element can be used to accept a single line of input from the
user, but it doesn’t have any way to display icons like the magnifying glass on the left
and the cancel X on the right. In order to implement a modern user interface element
like this for the web, we need to use at least four HTML elements: an <input> element

464 | Chapter 15: JavaScript in Web Browsers

to accept and display the user’s input, two elements (or in this case, two
elements displaying Unicode glyphs), and a container <div> element to hold those
three children. Furthermore, we have to use CSS to hide the default border of the
<input> element and define a border for the container. And we need to use JavaScript
to make all the HTML elements work together. When the user clicks on the X icon,
we need an event handler to clear the input from the <input> element, for example.

That is a lot of work to do every time you want to display a search box in a web appli‐
cation, and most web applications today are not written using “raw” HTML. Instead,
many web developers use frameworks like React and Angular that support the cre‐
ation of reusable user interface components like the search box shown here. Web
components is a browser-native alternative to those frameworks based on three rela‐
tively recent additions to web standards that allow JavaScript to extend HTML with
new tags that work as self-contained, reusable UI components.

The subsections that follow explain how to use web components defined by other
developers in your own web pages, then explain each of the three technologies that
web components are based on, and finally tie all three together in an example that
implements the search box element pictured in Figure 15-3.

15.6.1 Using Web Components
Web components are defined in JavaScript, so in order to use a web component in
your HTML file, you need to include the JavaScript file that defines the component.
Because web components are a relatively new technology, they are often written as
JavaScript modules, so you might include one in your HTML like this:

<script type="module" src="components/search-box.js">

Web components define their own HTML tag names, with the important restriction
that those tag names must include a hyphen. (This means that future versions of
HTML can introduce new tags without hyphens, and there is no chance that the tags
will conflict with anyone’s web component.) To use a web component, just use its tag
in your HTML file:

<search-box placeholder="Search..."></search-box>

Web components can have attributes just like regular HTML tags can; the documen‐
tation for the component you are using should tell you which attributes are sup‐
ported. Web components cannot be defined with self-closing tags. You cannot write
<search-box/>, for example. Your HTML file must include both the opening tag and
the closing tag.

Like regular HTML elements, some web components are written to expect children
and others are written in such a way that they do not expect (and will not display)
children. Some web components are written so that they can optionally accept

15.6 Web Components | 465

specially labeled children that will appear in named “slots.” The <search-box> com‐
ponent pictured in Figure 15-3 and implemented in Example 15-3 uses “slots” for the
two icons it displays. If you want to to use a <search-box> with different icons, you
can use HTML like this:

<search-box>

</search-box>

The slot attribute is an extension to HTML that it is used to specify which children
should go where. The slot names—“left” and “right” in this example—are defined by
the web component. If the component you are using supports slots, that fact should
be included in its documentation.

I previously noted that web components are often implemented as JavaScript mod‐
ules and can be loaded into HTML files with a <script type="module"> tag. You
may remember from the beginning of this chapter that modules are loaded after
document content is parsed, as if they had a deferred tag. So this means that a web
browser will typically parse and render tags like <search-box> before it has run the
code that will tell it what a <search-box> is. This is normal when using web compo‐
nents. HTML parsers in web browsers are flexible and very forgiving about input that
they do not understand. When they encounter a web component tag before that com‐
ponent has been defined, they add a generic HTMLElement to the DOM tree even
though they do not know what to do with it. Later, when the custom element is
defined, the generic element is “upgraded” so that it looks and behaves as desired.

If a web component has children, then those children will probably be displayed
incorrectly before the component is defined. You can use this CSS to keep web com‐
ponents hidden until they are defined:

/*
 * Make the <search-box> component invisible before it is defined.
 * And try to duplicate its eventual layout and size so that nearby
 * content does not move when it becomes defined.
 */
search-box:not(:defined) {
 opacity:0;
 display: inline-block;
 width: 300px;
 height: 50px;
}

Like regular HTML elements, web components can be used in JavaScript. If you
include a <search-box> tag in your web page, then you can obtain a reference to it
with querySelector() and an appropriate CSS selector, just as you would for any
other HTML tag. Generally, it only makes sense to do this after the module that
defines the component has run, so be careful when querying web components that

466 | Chapter 15: JavaScript in Web Browsers

you do not do so too early. Web component implementations typically (but this is not
a requirement) define a JavaScript property for each HTML attribute they support.
And, like HTML elements, they may also define useful methods. Once again, the doc‐
umentation for the web component you are using should specify what properties and
methods are available to your JavaScript code.

Now that you know how to use web components, the next three sections cover the
three web browser features that allow us to implement them.

DocumentFragment Nodes
Before we can cover web component APIs, we need to return briefly to the DOM API
to explain what a DocumentFragment is. The DOM API organizes a document into a
tree of Node objects, where a Node can be a Document, an Element, a Text node, or
even a Comment. None of these node types allows you to represent a fragment of a
document that consists of a set of sibling nodes without their parent. This is where
DocumentFragment comes in: it is another type of Node that serves as a temporary
parent when you want to manipulate a group of sibling nodes as a single unit. You can
create a DocumentFragment node with document.createDocumentFragment(). Once
you have a DocumentFragment, you can use it like an Element and append() content
to it. A DocumentFragment is different from an Element because it does not have a
parent. But more importantly, when you insert a DocumentFragment node into the
document, the DocumentFragment itself is not inserted. Instead, all of its children are
inserted.

15.6.2 HTML Templates
The HTML <template> tag is only loosely related to web components, but it does
enable a useful optimization for components that appear frequently in web pages.
<template> tags and their children are never rendered by a web browser and are only
useful on web pages that use JavaScript. The idea behind this tag is that when a web
page contains multiple repetitions of the same basic HTML structure (such as rows in
a table or the internal implementation of a web component), then we can use a <tem
plate> to define that element structure once, then use JavaScript to duplicate the
structure as many times as needed.

In JavaScript, a <template> tag is represented by an HTMLTemplateElement object.
This object defines a single content property, and the value of this property is a Doc‐
umentFragment of all the child nodes of the <template>. You can clone this Docu‐
mentFragment and then insert the cloned copy into your document as needed. The
fragment itself will not be inserted, but its children will be. Suppose you’re working
with a document that includes a <table> and <template id="row"> tag and that the

15.6 Web Components | 467

4 The custom element specification allows subclassing of <button> and other specific element classes, but this is
not supported in Safari and a different syntax is required to use a custom element that extends anything other
than HTMLElement.

template defines the structure of rows for that table. You might use the template like
this:

let tableBody = document.querySelector("tbody");
let template = document.querySelector("#row");
let clone = template.content.cloneNode(true); // deep clone
// ...Use the DOM to insert content into the <td> elements of the clone...
// Now add the cloned and initialized row into the table
tableBody.append(clone);

Template elements do not have to appear literally in an HTML document in order to
be useful. You can create a template in your JavaScript code, create its children with
innerHTML, and then make as many clones as needed without the parsing overhead of
innerHTML. This is how HTML templates are typically used in web components, and
Example 15-3 demonstrates this technique.

15.6.3 Custom Elements
The second web browser feature that enables web components is “custom elements”:
the ability to associate a JavaScript class with an HTML tag name so that any such
tags in the document are automatically turned into instances of the class in the DOM
tree. The customElements.define() method takes a web component tag name as its
first argument (remember that the tag name must include a hyphen) and a subclass of
HTMLElement as its second argument. Any existing elements in the document with
that tag name are “upgraded” to newly created instances of the class. And if the
browser parses any HTML in the future, it will automatically create an instance of the
class for each of the tags it encounters.

The class passed to customElements.define() should extend HTMLElement and
not a more specific type like HTMLButtonElement.4 Recall from Chapter 9 that when
a JavaScript class extends another class, the constructor function must call super()
before it uses the this keyword, so if the custom element class has a constructor, it
should call super() (with no arguments) before doing anything else.

The browser will automatically invoke certain “lifecycle methods” of a custom ele‐
ment class. The connectedCallback() method is invoked when an instance of the
custom element is inserted into the document, and many elements use this method to
perform initialization. There is also a disconnectedCallback() method invoked
when (and if) the element is removed from the document, though this is less often
used.

468 | Chapter 15: JavaScript in Web Browsers

If a custom element class defines a static observedAttributes property whose value
is an array of attribute names, and if any of the named attributes are set (or changed)
on an instance of the custom element, the browser will invoke the attributeChanged
Callback() method, passing the attribute name, its old value, and its new value. This
callback can take whatever steps are necessary to update the component based on its
attribute values.

Custom element classes can also define whatever other properties and methods they
want to. Commonly, they will define getter and setter methods that make the ele‐
ment’s attributes available as JavaScript properties.

As an example of a custom element, suppose we want to be able to display circles
within paragraphs of regular text. We’d like to be able to write HTML like this in
order to render mathematical story problems like the one shown in Figure 15-4:

<p>
 The document has one marble: <inline-circle></inline-circle>.
 The HTML parser instantiates two more marbles:
 <inline-circle diameter="1.2em" color="blue"></inline-circle>
 <inline-circle diameter=".6em" color="gold"></inline-circle>.
 How many marbles does the document contain now?
</p>

Figure 15-4. An inline circle custom element

We can implement this <inline-circle> custom element with the code shown in
Example 15-2:

Example 15-2. The <inline-circle> custom element

customElements.define("inline-circle", class InlineCircle extends HTMLElement {
 // The browser calls this method when an <inline-circle> element
 // is inserted into the document. There is also a disconnectedCallback()
 // that we don't need in this example.
 connectedCallback() {
 // Set the styles needed to create circles
 this.style.display = "inline-block";
 this.style.borderRadius = "50%";
 this.style.border = "solid black 1px";
 this.style.transform = "translateY(10%)";

15.6 Web Components | 469

 // If there is not already a size defined, set a default size
 // that is based on the current font size.
 if (!this.style.width) {
 this.style.width = "0.8em";
 this.style.height = "0.8em";
 }
 }

 // The static observedAttributes property specifies which attributes
 // we want to be notified about changes to. (We use a getter here since
 // we can only use "static" with methods.)
 static get observedAttributes() { return ["diameter", "color"]; }

 // This callback is invoked when one of the attributes listed above
 // changes, either when the custom element is first parsed, or later.
 attributeChangedCallback(name, oldValue, newValue) {
 switch(name) {
 case "diameter":
 // If the diameter attribute changes, update the size styles
 this.style.width = newValue;
 this.style.height = newValue;
 break;
 case "color":
 // If the color attribute changes, update the color styles
 this.style.backgroundColor = newValue;
 break;
 }
 }

 // Define JavaScript properties that correspond to the element's
 // attributes. These getters and setters just get and set the underlying
 // attributes. If a JavaScript property is set, that sets the attribute
 // which triggers a call to attributeChangedCallback() which updates
 // the element styles.
 get diameter() { return this.getAttribute("diameter"); }
 set diameter(diameter) { this.setAttribute("diameter", diameter); }
 get color() { return this.getAttribute("color"); }
 set color(color) { this.setAttribute("color", color); }
});

15.6.4 Shadow DOM
The custom element demonstrated in Example 15-2 is not well encapsulated. When
you set its diameter or color attributes, it responds by altering its own style
attribute, which is not behavior we would ever expect from a real HTML element. To
turn a custom element into a true web component, it should use the powerful encap‐
sulation mechanism known as shadow DOM.

Shadow DOM allows a “shadow root” to be attached to a custom element (and also to
a <div>, , <body>, <article>, <main>, <nav>, <header>, <footer>, <section>,

470 | Chapter 15: JavaScript in Web Browsers

<p>, <blockquote>, <aside>, or <h1> through <h6> element) known as a “shadow
host.” Shadow host elements, like all HTML elements, are already the root of a nor‐
mal DOM tree of descendant elements and text nodes. A shadow root is the root of
another, more private, tree of descendant elements that sprouts from the shadow host
and can be thought of as a distinct minidocument.

The word “shadow” in “shadow DOM” refers to the fact that elements that descend
from a shadow root are “hiding in the shadows”: they are not part of the normal
DOM tree, do not appear in the children array of their host element, and are not
visited by normal DOM traversal methods such as querySelector(). For contrast,
the normal, regular DOM children of a shadow host are sometimes referred to as the
“light DOM.”

To understand the purpose of the shadow DOM, picture the HTML <audio> and
<video> elements: they display a nontrivial user interface for controlling media play‐
back, but the play and pause buttons and other UI elements are not part of the DOM
tree and cannot be manipulated by JavaScript. Given that web browsers are designed
to display HTML, it is only natural that browser vendors would want to display inter‐
nal UIs like these using HTML. In fact, most browsers have been doing something
like that for a long time, and the shadow DOM makes it a standard part of the web
platform.

Shadow DOM encapsulation
The key feature of shadow DOM is the encapsulation it provides. The descendants of
a shadow root are hidden from—and independent from—the regular DOM tree,
almost as if they were in an independent document. There are three very important
kinds of encapsulation provided by the shadow DOM:

• As already mentioned, elements in the shadow DOM are hidden from regular
DOM methods like querySelectorAll(). When a shadow root is created and
attached to its shadow host, it can be created in “open” or “closed” mode. A
closed shadow root is completely sealed away and inaccessible. More commonly,
though, shadow roots are created in “open” mode, which means that the shadow
host has a shadowRoot property that JavaScript can use to gain access to the ele‐
ments of the shadow root, if it has some reason to do so.

• Styles defined beneath a shadow root are private to that tree and will never affect
the light DOM elements on the outside. (A shadow root can define default styles
for its host element, but these will be overridden by light DOM styles.) Similarly,
the light DOM styles that apply to the shadow host element have no effect on the
descendants of the shadow root. Elements in the shadow DOM will inherit things
like font size and background color from the light DOM, and styles in the
shadow DOM can choose to use CSS variables defined in the light DOM. For the
most part, however, the styles of the light DOM and the styles of the shadow

15.6 Web Components | 471

DOM are completely independent: the author of a web component and the user
of a web component do not have to worry about collisions or conflicts between
their stylesheets. Being able to “scope” CSS in this way is perhaps the most
important feature of the shadow DOM.

• Some events (like “load”) that occur within the shadow DOM are confined to the
shadow DOM. Others, including focus, mouse, and keyboard events bubble up
and out. When an event that originates in the shadow DOM crosses the bound‐
ary and begins to propagate in the light DOM, its target property is changed to
the shadow host element, so it appears to have originated directly on that
element.

Shadow DOM slots and light DOM children
An HTML element that is a shadow host has two trees of descendants. One is the
children[] array—the regular light DOM descendants of the host element—and the
other is the shadow root and all of its descendants, and you may be wondering how
two distinct content trees can be displayed within the same host element. Here’s how
it works:

• The descendants of the shadow root are always displayed within the shadow host.
• If those descendants include a <slot> element, then the regular light DOM chil‐

dren of the host element are displayed as if they were children of that <slot>,
replacing any shadow DOM content in the slot. If the shadow DOM does not
include a <slot>, then any light DOM content of the host is never displayed. If
the shadow DOM has a <slot>, but the shadow host has no light DOM children,
then the shadow DOM content of the slot is displayed as a default.

• When light DOM content is displayed within a shadow DOM slot, we say that
those elements have been “distributed,” but it is important to understand that the
elements do not actually become part of the shadow DOM. They can still be
queried with querySelector(), and they still appear in the light DOM as chil‐
dren or descendants of the host element.

• If the shadow DOM defines more than one <slot> and names those slots with a
name attribute, then children of the shadow host can specify which slot they
would like to appear in by specifying a slot="slotname" attribute. We saw an
example of this usage in §15.6.1 when we demonstrated how to customize the
icons displayed by the <search-box> component.

472 | Chapter 15: JavaScript in Web Browsers

Shadow DOM API
For all of its power, the Shadow DOM doesn’t have much of a JavaScript API. To turn
a light DOM element into a shadow host, just call its attachShadow() method, pass‐
ing {mode:"open"} as the only argument. This method returns a shadow root object
and also sets that object as the value of the host’s shadowRoot property. The shadow
root object is a DocumentFragment, and you can use DOM methods to add content
to it or just set its innerHTML property to a string of HTML.

If your web component needs to know when the light DOM content of a shadow
DOM <slot> has changed, it can register a listener for “slotchanged” events directly
on the <slot> element.

15.6.5 Example: a <search-box> Web Component
Figure 15-3 illustrated a <search-box> web component. Example 15-3 demonstrates
the three enabling technologies that define web components: it implements the
<search-box> component as a custom element that uses a <template> tag for effi‐
ciency and a shadow root for encapsulation.

This example shows how to use the low-level web component APIs directly. In prac‐
tice, many web components developed today create them using higher-level libraries
such as “lit-element.” One of the reasons to use a library is that creating reusable and
customizable components is actually quite hard to do well, and there are many details
to get right. Example 15-3 demonstrates web components and does some basic key‐
board focus handling, but otherwise ignores accessibility and makes no attempt to
use proper ARIA attributes to make the component work with screen readers and
other assistive technology.

Example 15-3. Implementing a web component

/**
 * This class defines a custom HTML <search-box> element that displays an
 * <input> text input field plus two icons or emoji. By default, it displays a
 * magnifying glass emoji (indicating search) to the left of the text field
 * and an X emoji (indicating cancel) to the right of the text field. It
 * hides the border on the input field and displays a border around itself,
 * creating the appearance that the two emoji are inside the input
 * field. Similarly, when the internal input field is focused, the focus ring
 * is displayed around the <search-box>.
 *
 * You can override the default icons by including or children
 * of <search-box> with slot="left" and slot="right" attributes.
 *
 * <search-box> supports the normal HTML disabled and hidden attributes and
 * also size and placeholder attributes, which have the same meaning for this
 * element as they do for the <input> element.

15.6 Web Components | 473

 *
 * Input events from the internal <input> element bubble up and appear with
 * their target field set to the <search-box> element.
 *
 * The element fires a "search" event with the detail property set to the
 * current input string when the user clicks on the left emoji (the magnifying
 * glass). The "search" event is also dispatched when the internal text field
 * generates a "change" event (when the text has changed and the user types
 * Return or Tab).
 *
 * The element fires a "clear" event when the user clicks on the right emoji
 * (the X). If no handler calls preventDefault() on the event then the element
 * clears the user's input once event dispatch is complete.
 *
 * Note that there are no onsearch and onclear properties or attributes:
 * handlers for the "search" and "clear" events can only be registered with
 * addEventListener().
 */
class SearchBox extends HTMLElement {
 constructor() {
 super(); // Invoke the superclass constructor; must be first.

 // Create a shadow DOM tree and attach it to this element, setting
 // the value of this.shadowRoot.
 this.attachShadow({mode: "open"});

 // Clone the template that defines the descendants and stylesheet for
 // this custom component, and append that content to the shadow root.
 this.shadowRoot.append(SearchBox.template.content.cloneNode(true));

 // Get references to the important elements in the shadow DOM
 this.input = this.shadowRoot.querySelector("#input");
 let leftSlot = this.shadowRoot.querySelector('slot[name="left"]');
 let rightSlot = this.shadowRoot.querySelector('slot[name="right"]');

 // When the internal input field gets or loses focus, set or remove
 // the "focused" attribute which will cause our internal stylesheet
 // to display or hide a fake focus ring on the entire component. Note
 // that the "blur" and "focus" events bubble and appear to originate
 // from the <search-box>.
 this.input.onfocus = () => { this.setAttribute("focused", ""); };
 this.input.onblur = () => { this.removeAttribute("focused");};

 // If the user clicks on the magnifying glass, trigger a "search"
 // event. Also trigger it if the input field fires a "change"
 // event. (The "change" event does not bubble out of the Shadow DOM.)
 leftSlot.onclick = this.input.onchange = (event) => {
 event.stopPropagation(); // Prevent click events from bubbling
 if (this.disabled) return; // Do nothing when disabled
 this.dispatchEvent(new CustomEvent("search", {
 detail: this.input.value
 }));

474 | Chapter 15: JavaScript in Web Browsers

 };

 // If the user clicks on the X, trigger a "clear" event.
 // If preventDefault() is not called on the event, clear the input.
 rightSlot.onclick = (event) => {
 event.stopPropagation(); // Don't let the click bubble up
 if (this.disabled) return; // Don't do anything if disabled
 let e = new CustomEvent("clear", { cancelable: true });
 this.dispatchEvent(e);
 if (!e.defaultPrevented) { // If the event was not "cancelled"
 this.input.value = ""; // then clear the input field
 }
 };
 }

 // When some of our attributes are set or changed, we need to set the
 // corresponding value on the internal <input> element. This life cycle
 // method, together with the static observedAttributes property below,
 // takes care of that.
 attributeChangedCallback(name, oldValue, newValue) {
 if (name === "disabled") {
 this.input.disabled = newValue !== null;
 } else if (name === "placeholder") {
 this.input.placeholder = newValue;
 } else if (name === "size") {
 this.input.size = newValue;
 } else if (name === "value") {
 this.input.value = newValue;
 }
 }

 // Finally, we define property getters and setters for properties that
 // correspond to the HTML attributes we support. The getters simply return
 // the value (or the presence) of the attribute. And the setters just set
 // the value (or the presence) of the attribute. When a setter method
 // changes an attribute, the browser will automatically invoke the
 // attributeChangedCallback above.

 get placeholder() { return this.getAttribute("placeholder"); }
 get size() { return this.getAttribute("size"); }
 get value() { return this.getAttribute("value"); }
 get disabled() { return this.hasAttribute("disabled"); }
 get hidden() { return this.hasAttribute("hidden"); }

 set placeholder(value) { this.setAttribute("placeholder", value); }
 set size(value) { this.setAttribute("size", value); }
 set value(text) { this.setAttribute("value", text); }
 set disabled(value) {
 if (value) this.setAttribute("disabled", "");
 else this.removeAttribute("disabled");
 }
 set hidden(value) {

15.6 Web Components | 475

 if (value) this.setAttribute("hidden", "");
 else this.removeAttribute("hidden");
 }
}

// This static field is required for the attributeChangedCallback method.
// Only attributes named in this array will trigger calls to that method.
SearchBox.observedAttributes = ["disabled", "placeholder", "size", "value"];

// Create a <template> element to hold the stylesheet and the tree of
// elements that we'll use for each instance of the SearchBox element.
SearchBox.template = document.createElement("template");

// We initialize the template by parsing this string of HTML. Note, however,
// that when we instantiate a SearchBox, we are able to just clone the nodes
// in the template and do have to parse the HTML again.
SearchBox.template.innerHTML = `
<style>
/*
 * The :host selector refers to the <search-box> element in the light
 * DOM. These styles are defaults and can be overridden by the user of the
 * <search-box> with styles in the light DOM.
 */
:host {
 display: inline-block; /* The default is inline display */
 border: solid black 1px; /* A rounded border around the <input> and <slots> */
 border-radius: 5px;
 padding: 4px 6px; /* And some space inside the border */
}
:host([hidden]) { /* Note the parentheses: when host has hidden... */
 display:none; /* ...attribute set don't display it */
}
:host([disabled]) { /* When host has the disabled attribute... */
 opacity: 0.5; /* ...gray it out */
}
:host([focused]) { /* When host has the focused attribute... */
 box-shadow: 0 0 2px 2px #6AE; /* display this fake focus ring. */
}

/* The rest of the stylesheet only applies to elements in the Shadow DOM. */
input {
 border-width: 0; /* Hide the border of the internal input field. */
 outline: none; /* Hide the focus ring, too. */
 font: inherit; /* <input> elements don't inherit font by default */
 background: inherit; /* Same for background color. */
}
slot {
 cursor: default; /* An arrow pointer cursor over the buttons */
 user-select: none; /* Don't let the user select the emoji text */
}
</style>
<div>

476 | Chapter 15: JavaScript in Web Browsers

 <slot name="left">\u{1f50d}</slot> <!-- U+1F50D is a magnifying glass -->
 <input type="text" id="input" /> <!-- The actual input element -->
 <slot name="right">\u{2573}</slot> <!-- U+2573 is an X -->
</div>
`;

// Finally, we call customElement.define() to register the SearchBox element
// as the implementation of the <search-box> tag. Custom elements are required
// to have a tag name that contains a hyphen.
customElements.define("search-box", SearchBox);

15.7 SVG: Scalable Vector Graphics
SVG (scalable vector graphics) is an image format. The word “vector” in its name
indicates that it is fundamentally different from raster image formats, such as GIF,
JPEG, and PNG, that specify a matrix of pixel values. Instead, an SVG “image” is a
precise, resolution-independent (hence “scalable”) description of the steps necessary
to draw the desired graphic. SVG images are described by text files using the XML
markup language, which is quite similar to HTML.

There are three ways you can use SVG in web browsers:

1. You can use .svg image files with regular HTML tags, just as you would use
a .png or .jpeg image.

2. Because the XML-based SVG format is so similar to HTML, you can actually
embed SVG tags directly into your HTML documents. If you do this, the brows‐
er’s HTML parser allows you to omit XML namespaces and treat SVG tags as if
they were HTML tags.

3. You can use the DOM API to dynamically create SVG elements to generate
images on demand.

The subsections that follow demonstrate the second and third uses of SVG. Note,
however, that SVG has a large and moderately complex grammar. In addition to sim‐
ple shape-drawing primitives, it includes support for arbitrary curves, text, and ani‐
mation. SVG graphics can even incorporate JavaScript scripts and CSS stylesheets to
add behavior and presentation information. A full description of SVG is well beyond
the scope of this book. The goal of this section is just to show you how you can use
SVG in your HTML documents and script it with JavaScript.

15.7.1 SVG in HTML
SVG images can, of course, be displayed using HTML tags. But you can also
embed SVG directly in HTML. And if you do this, you can even use CSS stylesheets
to specify things like fonts, colors, and line widths. Here, for example, is an HTML
file that uses SVG to display an analog clock face:

15.7 SVG: Scalable Vector Graphics | 477

<html>
<head>
<title>Analog Clock</title>
<style>
/* These CSS styles all apply to the SVG elements defined below */
#clock { /* Styles for everything in the clock:*/
 stroke: black; /* black lines */
 stroke-linecap: round; /* with rounded ends */
 fill: #ffe; /* on an off-white background */
}
#clock .face { stroke-width: 3; } /* Clock face outline */
#clock .ticks { stroke-width: 2; } /* Lines that mark each hour */
#clock .hands { stroke-width: 3; } /* How to draw the clock hands */
#clock .numbers { /* How to draw the numbers */
 font-family: sans-serif; font-size: 10; font-weight: bold;
 text-anchor: middle; stroke: none; fill: black;
}
</style>
</head>
<body>
 <svg id="clock" viewBox="0 0 100 100" width="250" height="250">
 <!-- The width and height attributes are the screen size of the graphic -->
 <!-- The viewBox attribute gives the internal coordinate system -->
 <circle class="face" cx="50" cy="50" r="45"/> <!-- the clock face -->
 <g class="ticks"> <!-- tick marks for each of the 12 hours -->
 <line x1='50' y1='5.000' x2='50.00' y2='10.00'/>
 <line x1='72.50' y1='11.03' x2='70.00' y2='15.36'/>
 <line x1='88.97' y1='27.50' x2='84.64' y2='30.00'/>
 <line x1='95.00' y1='50.00' x2='90.00' y2='50.00'/>
 <line x1='88.97' y1='72.50' x2='84.64' y2='70.00'/>
 <line x1='72.50' y1='88.97' x2='70.00' y2='84.64'/>
 <line x1='50.00' y1='95.00' x2='50.00' y2='90.00'/>
 <line x1='27.50' y1='88.97' x2='30.00' y2='84.64'/>
 <line x1='11.03' y1='72.50' x2='15.36' y2='70.00'/>
 <line x1='5.000' y1='50.00' x2='10.00' y2='50.00'/>
 <line x1='11.03' y1='27.50' x2='15.36' y2='30.00'/>
 <line x1='27.50' y1='11.03' x2='30.00' y2='15.36'/>
 </g>
 <g class="numbers"> <!-- Number the cardinal directions-->
 <text x="50" y="18">12</text><text x="85" y="53">3</text>
 <text x="50" y="88">6</text><text x="15" y="53">9</text>
 </g>
 <g class="hands"> <!-- Draw hands pointing straight up. -->
 <line class="hourhand" x1="50" y1="50" x2="50" y2="25"/>
 <line class="minutehand" x1="50" y1="50" x2="50" y2="20"/>
 </g>
 </svg>
 <script src="clock.js"></script>
</body>
</html>

478 | Chapter 15: JavaScript in Web Browsers

You’ll notice that the descendants of the <svg> tag are not normal HTML tags. <cir
cle>, <line>, and <text> tags have obvious purposes, though, and it should be clear
how this SVG graphic works. There are many other SVG tags, however, and you’ll
need to consult an SVG reference to learn more. You may also notice that the style‐
sheet is odd. Styles like fill, stroke-width, and text-anchor are not normal CSS
style properties. In this case, CSS is essentially being used to set attributes of SVG tags
that appear in the document. Note also that the CSS font shorthand property does
not work for SVG tags, and you must explicitly set font-family, font-size, and
font-weight as separate style properties.

15.7.2 Scripting SVG
One reason to embed SVG directly into your HTML files (instead of just using static
 tags) is that if you do this, then you can use the DOM API to manipulate the
SVG image. Suppose you use SVG to display icons in your web application. You could
embed SVG within a <template> tag (§15.6.2) and then clone the template content
whenever you need to insert a copy of that icon into your UI. And if you want the
icon to respond to user activity—by changing color when the user hovers the pointer
over it, for example—you can often achieve this with CSS.

It is also possible to dynamically manipulate SVG graphics that are directly embedded
in HTML. The clock face example in the previous section displays a static clock with
hour and minute hands facing straight up displaying the time noon or midnight. But
you may have noticed that the HTML file includes a <script> tag. That script runs a
function periodically to check the time and transform the hour and minute hands by
rotating them the appropriate number of degrees so that the clock actually displays
the current time, as shown in Figure 15-5.

Figure 15-5. A scripted SVG analog clock

15.7 SVG: Scalable Vector Graphics | 479

The code to manipulate the clock is straightforward. It determines the proper angle of
the hour and minute hands based on the current time, then uses querySelector() to
look up the SVG elements that display those hands, then sets a transform attribute
on them to rotate them around the center of the clock face. The function uses setTi
meout() to ensure that it runs once a minute:

(function updateClock() { // Update the SVG clock graphic to show current time
 let now = new Date(); // Current time
 let sec = now.getSeconds(); // Seconds
 let min = now.getMinutes() + sec/60; // Fractional minutes
 let hour = (now.getHours() % 12) + min/60; // Fractional hours
 let minangle = min * 6; // 6 degrees per minute
 let hourangle = hour * 30; // 30 degrees per hour

 // Get SVG elements for the hands of the clock
 let minhand = document.querySelector("#clock .minutehand");
 let hourhand = document.querySelector("#clock .hourhand");

 // Set an SVG attribute on them to move them around the clock face
 minhand.setAttribute("transform", `rotate(${minangle},50,50)`);
 hourhand.setAttribute("transform", `rotate(${hourangle},50,50)`);

 // Run this function again in 10 seconds
 setTimeout(updateClock, 10000);
}()); // Note immediate invocation of the function here.

15.7.3 Creating SVG Images with JavaScript
In addition to simply scripting SVG images embedded in your HTML documents,
you can also build SVG images from scratch, which can be useful to create visualiza‐
tions of dynamically loaded data, for example. Example 15-4 demonstrates how you
can use JavaScript to create SVG pie charts, like the one shown in Figure 15-6.

Even though SVG tags can be included within HTML documents, they are technically
XML tags, not HTML tags, and if you want to create SVG elements with the Java‐
Script DOM API, you can’t use the normal createElement() function that was intro‐
duced in §15.3.5. Instead you must use createElementNS(), which takes an XML
namespace string as its first argument. For SVG, that namespace is the literal string
“http://www.w3.org/2000/svg.”

480 | Chapter 15: JavaScript in Web Browsers

Figure 15-6. An SVG pie chart built with JavaScript (data from Stack Overflow’s 2018
Developer Survey of Most Popular Technologies)

Other than the use of createElementNS(), the pie chart–drawing code in
Example 15-4 is relatively straightforward. There is a little math to convert the data
being charted into pie-slice angles. The bulk of the example, however, is DOM code
that creates SVG elements and sets attributes on those elements.

The most opaque part of this example is the code that draws the actual pie slices. The
element used to display each slice is <path>. This SVG element describes arbitrary
shapes comprised of lines and curves. The shape description is specified by the d
attribute of the <path> element. The value of this attribute uses a compact grammar
of letter codes and numbers that specify coordinates, angles, and other values. The
letter M, for example, means “move to” and is followed by x and y coordinates. The
letter L means “line to” and draws a line from the current point to the coordinates
that follow it. This example also uses the letter A to draw an arc. This letter is fol‐
lowed by seven numbers describing the arc, and you can look up the syntax online if
you want to know more.

15.7 SVG: Scalable Vector Graphics | 481

Example 15-4. Drawing a pie chart with JavaScript and SVG

/**
 * Create an <svg> element and draw a pie chart into it.
 *
 * This function expects an object argument with the following properties:
 *
 * width, height: the size of the SVG graphic, in pixels
 * cx, cy, r: the center and radius of the pie
 * lx, ly: the upper-left corner of the chart legend
 * data: an object whose property names are data labels and whose
 * property values are the values associated with each label
 *
 * The function returns an <svg> element. The caller must insert it into
 * the document in order to make it visible.
 */
function pieChart(options) {
 let {width, height, cx, cy, r, lx, ly, data} = options;

 // This is the XML namespace for svg elements
 let svg = "http://www.w3.org/2000/svg";

 // Create the <svg> element, and specify pixel size and user coordinates
 let chart = document.createElementNS(svg, "svg");
 chart.setAttribute("width", width);
 chart.setAttribute("height", height);
 chart.setAttribute("viewBox", `0 0 ${width} ${height}`);

 // Define the text styles we'll use for the chart. If we leave these
 // values unset here, they can be set with CSS instead.
 chart.setAttribute("font-family", "sans-serif");
 chart.setAttribute("font-size", "18");

 // Get labels and values as arrays and add up the values so we know how
 // big the pie is.
 let labels = Object.keys(data);
 let values = Object.values(data);
 let total = values.reduce((x,y) => x+y);

 // Figure out the angles for all the slices. Slice i starts at angles[i]
 // and ends at angles[i+1]. The angles are measured in radians.
 let angles = [0];
 values.forEach((x, i) => angles.push(angles[i] + x/total * 2 * Math.PI));

 // Now loop through the slices of the pie
 values.forEach((value, i) => {
 // Compute the two points where our slice intersects the circle
 // These formulas are chosen so that an angle of 0 is at 12 o'clock
 // and positive angles increase clockwise.
 let x1 = cx + r * Math.sin(angles[i]);
 let y1 = cy - r * Math.cos(angles[i]);
 let x2 = cx + r * Math.sin(angles[i+1]);

482 | Chapter 15: JavaScript in Web Browsers

 let y2 = cy - r * Math.cos(angles[i+1]);

 // This is a flag for angles larger than a half circle
 // It is required by the SVG arc drawing component
 let big = (angles[i+1] - angles[i] > Math.PI) ? 1 : 0;

 // This string describes how to draw a slice of the pie chart:
 let path = `M${cx},${cy}` + // Move to circle center.
 `L${x1},${y1}` + // Draw line to (x1,y1).
 `A${r},${r} 0 ${big} 1` + // Draw an arc of radius r...
 `${x2},${y2}` + // ...ending at to (x2,y2).
 "Z"; // Close path back to (cx,cy).

 // Compute the CSS color for this slice. This formula works for only
 // about 15 colors. So don't include more than 15 slices in a chart.
 let color = `hsl(${(i*40)%360},${90-3*i}%,${50+2*i}%)`;

 // We describe a slice with a <path> element. Note createElementNS().
 let slice = document.createElementNS(svg, "path");

 // Now set attributes on the <path> element
 slice.setAttribute("d", path); // Set the path for this slice
 slice.setAttribute("fill", color); // Set slice color
 slice.setAttribute("stroke", "black"); // Outline slice in black
 slice.setAttribute("stroke-width", "1"); // 1 CSS pixel thick
 chart.append(slice); // Add slice to chart

 // Now draw a little matching square for the key
 let icon = document.createElementNS(svg, "rect");
 icon.setAttribute("x", lx); // Position the square
 icon.setAttribute("y", ly + 30*i);
 icon.setAttribute("width", 20); // Size the square
 icon.setAttribute("height", 20);
 icon.setAttribute("fill", color); // Same fill color as slice
 icon.setAttribute("stroke", "black"); // Same outline, too.
 icon.setAttribute("stroke-width", "1");
 chart.append(icon); // Add to the chart

 // And add a label to the right of the rectangle
 let label = document.createElementNS(svg, "text");
 label.setAttribute("x", lx + 30); // Position the text
 label.setAttribute("y", ly + 30*i + 16);
 label.append(`${labels[i]} ${value}`); // Add text to label
 chart.append(label); // Add label to the chart
 });

 return chart;
}

The pie chart in Figure 15-6 was created using the pieChart() function from
Example 15-4, like this:

15.7 SVG: Scalable Vector Graphics | 483

document.querySelector("#chart").append(pieChart({
 width: 640, height:400, // Total size of the chart
 cx: 200, cy: 200, r: 180, // Center and radius of the pie
 lx: 400, ly: 10, // Position of the legend
 data: { // The data to chart
 "JavaScript": 71.5,
 "Java": 45.4,
 "Bash/Shell": 40.4,
 "Python": 37.9,
 "C#": 35.3,
 "PHP": 31.4,
 "C++": 24.6,
 "C": 22.1,
 "TypeScript": 18.3,
 "Ruby": 10.3,
 "Swift": 8.3,
 "Objective-C": 7.3,
 "Go": 7.2,
 }
}));

15.8 Graphics in a <canvas>
The <canvas> element has no appearance of its own but creates a drawing surface
within the document and exposes a powerful drawing API to client-side JavaScript.
The main difference between the <canvas> API and SVG is that with the canvas you
create drawings by calling methods, and with SVG you create drawings by building a
tree of XML elements. These two approaches are equivalently powerful: either one
can be simulated with the other. On the surface, they are quite different, however, and
each has its strengths and weaknesses. An SVG drawing, for example, is easily edited
by removing elements from its description. To remove an element from the same
graphic in a <canvas>, it is often necessary to erase the drawing and redraw it from
scratch. Since the Canvas drawing API is JavaScript-based and relatively compact
(unlike the SVG grammar), it is documented in more detail in this book.

3D Graphics in a Canvas
You can also call getContext() with the string “webgl” to obtain a context object that
allows you to draw 3D graphics using the WebGL API. WebGL is a large, complicated,
and low-level API that allows JavaScript programmers to access the GPU, write cus‐
tom shaders, and perform other very powerful graphics operations. WebGL is not
documented in this book, however: web developers are more likely to use utility libra‐
ries built on top of WebGL than to use the WebGL API directly.

484 | Chapter 15: JavaScript in Web Browsers

Most of the Canvas drawing API is defined not on the <canvas> element itself, but
instead on a “drawing context” object obtained with the getContext() method of the
canvas. Call getContext() with the argument “2d” to obtain a CanvasRenderingCon‐
text2D object that you can use to draw two-dimensional graphics into the canvas.

As a simple example of the Canvas API, the following HTML document uses
<canvas> elements and some JavaScript to display two simple shapes:

<p>This is a red square: <canvas id="square" width=10 height=10></canvas>.
<p>This is a blue circle: <canvas id="circle" width=10 height=10></canvas>.
<script>
let canvas = document.querySelector("#square"); // Get first canvas element
let context = canvas.getContext("2d"); // Get 2D drawing context
context.fillStyle = "#f00"; // Set fill color to red
context.fillRect(0,0,10,10); // Fill a square

canvas = document.querySelector("#circle"); // Second canvas element
context = canvas.getContext("2d"); // Get its context
context.beginPath(); // Begin a new "path"
context.arc(5, 5, 5, 0, 2*Math.PI, true); // Add a circle to the path
context.fillStyle = "#00f"; // Set blue fill color
context.fill(); // Fill the path
</script>

We’ve seen that SVG describes complex shapes as a “path” of lines and curves that can
be drawn or filled. The Canvas API also uses the notion of a path. Instead of describ‐
ing a path as a string of letters and numbers, a path is defined by a series of method
calls, such as the beginPath() and arc() invocations in the preceding code. Once a
path is defined, other methods, such as fill(), operate on that path. Various proper‐
ties of the context object, such as fillStyle, specify how these operations are
performed.

The subsections that follow demonstrate the methods and properties of the 2D Can‐
vas API. Much of the example code that follows operates on a variable c. This variable
holds the CanvasRenderingContext2D object of the canvas, but the code to initialize
that variable is sometimes not shown. In order to make these examples run, you
would need to add HTML markup to define a canvas with appropriate width and
height attributes, and then add code like this to initialize the variable c:

let canvas = document.querySelector("#my_canvas_id");
let c = canvas.getContext('2d');

15.8.1 Paths and Polygons
To draw lines on a canvas and to fill the areas enclosed by those lines, you begin by
defining a path. A path is a sequence of one or more subpaths. A subpath is a
sequence of two or more points connected by line segments (or, as we’ll see later, by
curve segments). Begin a new path with the beginPath() method. Begin a new

15.8 Graphics in a <canvas> | 485

subpath with the moveTo() method. Once you have established the starting point of a
subpath with moveTo(), you can connect that point to a new point with a straight line
by calling lineTo(). The following code defines a path that includes two line
segments:

c.beginPath(); // Start a new path
c.moveTo(100, 100); // Begin a subpath at (100,100)
c.lineTo(200, 200); // Add a line from (100,100) to (200,200)
c.lineTo(100, 200); // Add a line from (200,200) to (100,200)

This code simply defines a path; it does not draw anything on the canvas. To draw (or
“stroke”) the two line segments in the path, call the stroke() method, and to fill the
area defined by those line segments, call fill():

c.fill(); // Fill a triangular area
c.stroke(); // Stroke two sides of the triangle

This code (along with some additional code to set line widths and fill colors) pro‐
duced the drawing shown in Figure 15-7.

Figure 15-7. A simple path, filled and stroked

Notice that the subpath defined in Figure 15-7 is “open.” It consists of just two line
segments, and the end point is not connected back to the starting point. This means
that it does not enclose a region. The fill() method fills open subpaths by acting as
if a straight line connected the last point in the subpath to the first point in the sub‐
path. That is why this code fills a triangle, but strokes only two sides of the triangle.

If you wanted to stroke all three sides of the triangle just shown, you would call the
closePath() method to connect the end point of the subpath to the start point. (You
could also call lineTo(100,100), but then you end up with three line segments that
share a start and end point but are not truly closed. When drawing with wide lines,
the visual results are better if you use closePath().)

There are two other important points to notice about stroke() and fill(). First,
both methods operate on all subpaths in the current path. Suppose we had added
another subpath in the preceding code:

486 | Chapter 15: JavaScript in Web Browsers

c.moveTo(300,100); // Begin a new subpath at (300,100);
c.lineTo(300,200); // Draw a vertical line down to (300,200);

If we then called stroke(), we would draw two connected edges of a triangle and a
disconnected vertical line.

The second point to note about stroke() and fill() is that neither one alters the
current path: you can call fill() and the path will still be there when you call
stroke(). When you are done with a path and want to begin another, you must
remember to call beginPath(). If you don’t, you’ll end up adding new subpaths to the
existing path, and you may end up drawing those old subpaths over and over again.

Example 15-5 defines a function for drawing regular polygons and demonstrates the
use of moveTo(), lineTo(), and closePath() for defining subpaths and of fill()
and stroke() for drawing those paths. It produces the drawing shown in Figure 15-8.

Figure 15-8. Regular polygons

Example 15-5. Regular polygons with moveTo(), lineTo(), and closePath()

// Define a regular polygon with n sides, centered at (x,y) with radius r.
// The vertices are equally spaced along the circumference of a circle.
// Put the first vertex straight up or at the specified angle.
// Rotate clockwise, unless the last argument is true.
function polygon(c, n, x, y, r, angle=0, counterclockwise=false) {
 c.moveTo(x + r*Math.sin(angle), // Begin a new subpath at the first vertex
 y - r*Math.cos(angle)); // Use trigonometry to compute position
 let delta = 2*Math.PI/n; // Angular distance between vertices
 for(let i = 1; i < n; i++) { // For each of the remaining vertices
 angle += counterclockwise?-delta:delta; // Adjust angle
 c.lineTo(x + r*Math.sin(angle), // Add line to next vertex
 y - r*Math.cos(angle));
 }
 c.closePath(); // Connect last vertex back to the first
}

// Assume there is just one canvas, and get its context object to draw with.
let c = document.querySelector("canvas").getContext("2d");

// Start a new path and add polygon subpaths
c.beginPath();

15.8 Graphics in a <canvas> | 487

polygon(c, 3, 50, 70, 50); // Triangle
polygon(c, 4, 150, 60, 50, Math.PI/4); // Square
polygon(c, 5, 255, 55, 50); // Pentagon
polygon(c, 6, 365, 53, 50, Math.PI/6); // Hexagon
polygon(c, 4, 365, 53, 20, Math.PI/4, true); // Small square inside the hexagon

// Set some properties that control how the graphics will look
c.fillStyle = "#ccc"; // Light gray interiors
c.strokeStyle = "#008"; // outlined with dark blue lines
c.lineWidth = 5; // five pixels wide.

// Now draw all the polygons (each in its own subpath) with these calls
c.fill(); // Fill the shapes
c.stroke(); // And stroke their outlines

Notice that this example draws a hexagon with a square inside it. The square and the
hexagon are separate subpaths, but they overlap. When this happens (or when a sin‐
gle subpath intersects itself), the canvas needs to be able to determine which regions
are inside the path and which are outside. The canvas uses a test known as the “non‐
zero winding rule” to achieve this. In this case, the interior of the square is not filled
because the square and the hexagon were drawn in the opposite directions: the verti‐
ces of the hexagon were connected with line segments moving clockwise around the
circle. The vertices of the square were connected counterclockwise. Had the square
been drawn clockwise as well, the call to fill() would have filled the interior of the
square as well.

15.8.2 Canvas Dimensions and Coordinates
The width and height attributes of the <canvas> element and the corresponding
width and height properties of the Canvas object specify the dimensions of the can‐
vas. The default canvas coordinate system places the origin (0,0) at the upper-left cor‐
ner of the canvas. The x coordinates increase to the right and the y coordinates
increase as you go down the screen. Points on the canvas can be specified using
floating-point values.

The dimensions of a canvas cannot be altered without completely resetting the can‐
vas. Setting either the width or height properties of a Canvas (even setting them to
their current value) clears the canvas, erases the current path, and resets all graphics
attributes (including current transformation and clipping region) to their original
state.

The width and height attributes of a canvas specify the actual number of pixels that
the canvas can draw into. Four bytes of memory are allocated for each pixel, so if
width and height are both set to 100, the canvas allocates 40,000 bytes to represent
10,000 pixels.

488 | Chapter 15: JavaScript in Web Browsers

The width and height attributes also specify the default size (in CSS pixels) at which
the canvas will be displayed on the screen. If window.devicePixelRatio is 2, then
100 × 100 CSS pixels is actually 40,000 hardware pixels. When the contents of the
canvas are drawn onto the screen, the 10,000 pixels in memory will need to be
enlarged to cover 40,000 physical pixels on the screen, and this means that your
graphics will not be as crisp as they could be.

For optimum image quality, you should not use the width and height attributes to
set the on-screen size of the canvas. Instead, set the desired on-screen size CSS pixel
size of the canvas with CSS width and height style attributes. Then, before you begin
drawing in your JavaScript code, set the width and height properties of the canvas
object to the number of CSS pixels times window.devicePixelRatio. Continuing
with the preceding example, this technique would result in the canvas being displayed
at 100 × 100 CSS pixels but allocating memory for 200 × 200 pixels. (Even with this
technique, the user can zoom in on the canvas and may see fuzzy or pixelated graph‐
ics if they do. This is in contrast to SVG graphics, which remain crisp no matter the
on-screen size or zoom level.)

15.8.3 Graphics Attributes
Example 15-5 set the properties fillStyle, strokeStyle, and lineWidth on the con‐
text object of the canvas. These properties are graphics attributes that specify the
color to be used by fill() and by stroke(), and the width of the lines to be drawn
by stroke(). Notice that these parameters are not passed to the fill() and stroke()
methods, but are instead part of the general graphics state of the canvas. If you define
a method that draws a shape and do not set these properties yourself, the caller of
your method can define the color of the shape by setting the strokeStyle and fill
Style properties before calling your method. This separation of graphics state from
drawing commands is fundamental to the Canvas API and is akin to the separation of
presentation from content achieved by applying CSS stylesheets to HTML
documents.

There are a number of properties (and also some methods) on the context object that
affect the graphics state of the canvas. They are detailed below.

Line styles

The lineWidth property specifies how wide (in CSS pixels) the lines drawn by
stroke() will be. The default value is 1. It is important to understand that line width
is determined by the lineWidth property at the time stroke() is called, not at the
time that lineTo() and other path-building methods are called. To fully understand
the lineWidth property, it is important to visualize paths as infinitely thin one-
dimensional lines. The lines and curves drawn by the stroke() method are centered
over the path, with half of the lineWidth on either side. If you’re stroking a closed

15.8 Graphics in a <canvas> | 489

path and only want the line to appear outside the path, stroke the path first, then fill
with an opaque color to hide the portion of the stroke that appears inside the path. Or
if you only want the line to appear inside a closed path, call the save() and clip()
methods first, then call stroke() and restore(). (The save(), restore(), and
clip() methods are described later.)

When drawing lines that are more than about two pixels wide, the lineCap and line
Join properties can have a significant impact on the visual appearance of the ends of
a path and the vertices at which two path segments meet. Figure 15-9 illustrates the
values and resulting graphical appearance of lineCap and lineJoin.

Figure 15-9. The lineCap and lineJoin attributes

The default value for lineCap is “butt.” The default value for lineJoin is “miter.”
Note, however, that if two lines meet at a very narrow angle, then the resulting miter
can become quite long and visually distracting. If the miter at a given vertex would be
longer than half of the line width times the miterLimit property, that vertex will be
drawn with a beveled join instead of a mitered join. The default value for miterLimit
is 10.

The stroke() method can draw dashed and dotted lines as well as solid lines, and a
canvas’s graphics state includes an array of numbers that serves as a “dash pattern” by
specifying how many pixels to draw, then how many to omit. Unlike other line-
drawing properties, the dash pattern is set and queried with the methods setLine
Dash() and getLineDash() instead of with a property. To specify a dotted dash
pattern, you might use setLineDash() like this:

c.setLineDash([18, 3, 3, 3]); // 18px dash, 3px space, 3px dot, 3px space

Finally, the lineDashOffset property specifies how far into the dash pattern drawing
should begin. The default is 0. Paths stroked with the dash pattern shown here begin
with an 18-pixel dash, but if lineDashOffset is set to 21, then that same path would
begin with a dot followed by a space and a dash.

490 | Chapter 15: JavaScript in Web Browsers

Colors, patterns, and gradients

The fillStyle and strokeStyle properties specify how paths are filled and stroked.
The word “style” often means color, but these properties can also be used to specify a
color gradient or an image to be used for filling and stroking. (Note that drawing a
line is basically the same as filling a narrow region on both sides of the line, and fill‐
ing and stroking are fundamentally the same operation.)

If you want to fill or stroke with a solid color (or a translucent color), simply set these
properties to a valid CSS color string. Nothing else is required.

To fill (or stroke) with a color gradient, set fillStyle (or strokeStyle) to a Canvas‐
Gradient object returned by the createLinearGradient() or createRadialGradi
ent() methods of the context. The arguments to createLinearGradient() are the
coordinates of two points that define a line (it does not need to be horizontal or verti‐
cal) along which the colors will vary. The arguments to createRadialGradient()
specify the centers and radii of two circles. (They need not be concentric, but the first
circle typically lies entirely inside the second.) Areas inside the smaller circle or out‐
side the larger will be filled with solid colors; areas between the two will be filled with
a color gradient.

After creating the CanvasGradient object that defines the regions of the canvas that
will be filled, you must define the gradient colors by calling the addColorStop()
method of the CanvasGradient. The first argument to this method is a number
between 0.0 and 1.0. The second argument is a CSS color specification. You must call
this method at least twice to define a simple color gradient, but you may call it more
than that. The color at 0.0 will appear at the start of the gradient, and the color at 1.0
will appear at the end. If you specify additional colors, they will appear at the speci‐
fied fractional position within the gradient. Between the points you specify, colors
will be smoothly interpolated. Here are some examples:

// A linear gradient, diagonally across the canvas (assuming no transforms)
let bgfade = c.createLinearGradient(0,0,canvas.width,canvas.height);
bgfade.addColorStop(0.0, "#88f"); // Start with light blue in upper left
bgfade.addColorStop(1.0, "#fff"); // Fade to white in lower right

// A gradient between two concentric circles. Transparent in the middle
// fading to translucent gray and then back to transparent.
let donut = c.createRadialGradient(300,300,100, 300,300,300);
donut.addColorStop(0.0, "transparent"); // Transparent
donut.addColorStop(0.7, "rgba(100,100,100,.9)"); // Translucent gray
donut.addColorStop(1.0, "rgba(0,0,0,0)"); // Transparent again

An important point to understand about gradients is that they are not position-
independent. When you create a gradient, you specify bounds for the gradient. If you
then attempt to fill an area outside of those bounds, you’ll get the solid color defined
at one end or the other of the gradient.

15.8 Graphics in a <canvas> | 491

In addition to colors and color gradients, you can also fill and stroke using images. To
do this, set fillStyle or strokeStyle to a CanvasPattern returned by the createPat
tern() method of the context object. The first argument to this method should be an
 or <canvas> element that contains the image you want to fill or stroke with.
(Note that the source image or canvas does not need to be inserted into the document
in order to be used in this way.) The second argument to createPattern() is the
string “repeat,” “repeat-x,” “repeat-y,” or “no-repeat,” which specifies whether (and in
which dimensions) the background images repeat.

Text styles

The font property specifies the font to be used by the text-drawing methods fill
Text() and strokeText() (see “Text” on page 498). The value of the font property
should be a string in the same syntax as the CSS font attribute.

The textAlign property specifies how the text should be horizontally aligned with
respect to the X coordinate passed to fillText() or strokeText(). Legal values are
“start,” “left,” “center,” “right,” and “end.” The default is “start,” which, for left-to-right
text, has the same meaning as “left.”

The textBaseline property specifies how the text should be vertically aligned with
respect to the y coordinate. The default value is “alphabetic,” and it is appropriate for
Latin and similar scripts. The value “ideographic” is intended for use with scripts
such as Chinese and Japanese. The value “hanging” is intended for use with Devana‐
gari and similar scripts (which are used for many of the languages of India). The
“top,” “middle,” and “bottom” baselines are purely geometric baselines, based on the
“em square” of the font.

Shadows
Four properties of the context object control the drawing of drop shadows. If you set
these properties appropriately, any line, area, text, or image you draw will be given a
shadow, which will make it appear as if it is floating above the canvas surface.

The shadowColor property specifies the color of the shadow. The default is fully
transparent black, and shadows will never appear unless you set this property to a
translucent or opaque color. This property can only be set to a color string: patterns
and gradients are not allowed for shadows. Using a translucent shadow color pro‐
duces the most realistic shadow effects because it allows the background to show
through.

The shadowOffsetX and shadowOffsetY properties specify the X and Y offsets of the
shadow. The default for both properties is 0, which places the shadow directly
beneath your drawing, where it is not visible. If you set both properties to a positive
value, shadows will appear below and to the right of what you draw, as if there were a

492 | Chapter 15: JavaScript in Web Browsers

light source above and to the left, shining onto the canvas from outside the computer
screen. Larger offsets produce larger shadows and make drawn objects appear as if
they are floating “higher” above the canvas. These values are not affected by
coordinate transformations (§15.8.5): shadow direction and “height” remain consis‐
tent even when shapes are rotated and scaled.

The shadowBlur property specifies how blurred the edges of the shadow are. The
default value is 0, which produces crisp, unblurred shadows. Larger values produce
more blur, up to an implementation-defined upper bound.

Translucency and compositing

If you want to stroke or fill a path using a translucent color, you can set strokeStyle
or fillStyle using a CSS color syntax like “rgba(…)” that supports alpha transpar‐
ency. The “a” in “RGBA” stands for “alpha” and is a value between 0 (fully transpar‐
ent) and 1 (fully opaque). But the Canvas API provides another way to work with
translucent colors. If you do not want to explicitly specify an alpha channel for each
color, or if you want to add translucency to opaque images or patterns, you can set
the globalAlpha property. Every pixel you draw will have its alpha value multiplied
by globalAlpha. The default is 1, which adds no transparency. If you set globalAlpha
to 0, everything you draw will be fully transparent, and nothing will appear in the
canvas. But if you set this property to 0.5, then pixels that would otherwise have been
opaque will be 50% opaque, and pixels that would have been 50% opaque will be 25%
opaque instead.

When you stroke lines, fill regions, draw text, or copy images, you generally expect
the new pixels to be drawn on top of the pixels that are already in the canvas. If you
are drawing opaque pixels, they simply replace the pixels that are already there. If you
are drawing with translucent pixels, the new (“source”) pixel is combined with the old
(“destination”) pixel so that the old pixel shows through the new pixel based on how
transparent that pixel is.

This process of combining new (possibly translucent) source pixels with existing
(possibly translucent) destination pixels is called compositing, and the compositing
process described previously is the default way that the Canvas API combines pixels.
But you can set the globalCompositeOperation property to specify other ways of
combining pixels. The default value is “source-over,” which means that source pixels
are drawn “over” the destination pixels and are combined with them if the source is
translucent. But if you set globalCompositeOperation to “destination-over”, then the
canvas will combine pixels as if the new source pixels were drawn beneath the exist‐
ing destination pixels. If the destination is translucent or transparent, some or all of
the source pixel color is visible in the resulting color. As another example, the compo‐
siting mode “source-atop” combines the source pixels with the transparency of the
destination pixels so that nothing is drawn on portions of the canvas that are already

15.8 Graphics in a <canvas> | 493

fully transparent. There are a number of legal values for globalCompositeOperation,
but most have only specialized uses and are not covered here.

Saving and restoring graphics state
Since the Canvas API defines graphics attributes on the context object, you might be
tempted to call getContext() multiple times to obtain multiple context objects. If
you could do this, you could define different attributes on each context: each context
would then be like a different brush and would paint with a different color or draw
lines of different widths. Unfortunately, you cannot use the canvas in this way. Each
<canvas> element has only a single context object, and every call to getContext()
returns the same CanvasRenderingContext2D object.

Although the Canvas API only allows you to define a single set of graphics attributes
at a time, it does allow you to save the current graphics state so that you can alter it
and then easily restore it later. The save() method pushes the current graphics state
onto a stack of saved states. The restore() method pops the stack and restores the
most recently saved state. All of the properties that have been described in this section
are part of the saved state, as are the current transformation and clipping region
(both of which are explained later). Importantly, the currently defined path and the
current point are not part of the graphics state and cannot be saved and restored.

15.8.4 Canvas Drawing Operations
We’ve already seen some basic canvas methods—beginPath(), moveTo(), lineTo(),
closePath(), fill(), and stroke()—for defining, filling, and drawing lines and pol‐
ygons. But the Canvas API includes other drawing methods as well.

Rectangles
CanvasRenderingContext2D defines four methods for drawing rectangles. All four of
these rectangle methods expect two arguments that specify one corner of the rectan‐
gle followed by the rectangle width and height. Normally, you specify the upper-left
corner and then pass a positive width and positive height, but you may also specify
other corners and pass negative dimensions.

fillRect() fills the specified rectangle with the current fillStyle. strokeRect()
strokes the outline of the specified rectangle using the current strokeStyle and other
line attributes. clearRect() is like fillRect(), but it ignores the current fill style and
fills the rectangle with transparent black pixels (the default color of all blank canva‐
ses). The important thing about these three methods is that they do not affect the cur‐
rent path or the current point within that path.

494 | Chapter 15: JavaScript in Web Browsers

The final rectangle method is named rect(), and it does affect the current path: it
adds the specified rectangle, in a subpath of its own, to the path. Like other path-
definition methods, it does not fill or stroke anything itself.

Curves
A path is a sequence of subpaths, and a subpath is a sequence of connected points. In
the paths we defined in §15.8.1, those points were connected with straight line seg‐
ments, but that need not always be the case. The CanvasRenderingContext2D object
defines a number of methods that add a new point to the subpath and connect the
current point to that new point with a curve:

arc()

This method adds a circle, or a portion of a circle (an arc), to the path. The arc to
be drawn is specified with six parameters: the x and y coordinates of the center of
a circle, the radius of the circle, the start and end angles of the arc, and the direc‐
tion (clockwise or counterclockwise) of the arc between those two angles. If there
is a current point in the path, then this method connects the current point to the
beginning of the arc with a straight line (which is useful when drawing wedges or
pie slices), then connects the beginning of the arc to the end of the arc with a
portion of a circle, leaving the end of the arc as the new current point. If there is
no current point when this method is called, then it only adds the circular arc to
the path.

ellipse()

This method is much like arc() except that it adds an ellipse or a portion of an
ellipse to the path. Instead of one radius, it has two: an x-axis radius and a y-axis
radius. Also, because ellipses are not radially symmetrical, this method takes
another argument that specifies the number of radians by which the ellipse is
rotated clockwise about its center.

arcTo()

This method draws a straight line and a circular arc just like the arc() method
does, but it specifies the arc to be drawn using different parameters. The argu‐
ments to arcTo() specify points P1 and P2 and a radius. The arc that is added to
the path has the specified radius. It begins at the tangent point with the (imagi‐
nary) line from the current point to P1 and ends at the tangent point with the
(imaginary) line between P1 and P2. This unusual-seeming method of specifying
arcs is actually quite useful for drawing shapes with rounded corners. If you spec‐
ify a radius of 0, this method just draws a straight line from the current point to
P1. With a nonzero radius, however, it draws a straight line from the current
point in the direction of P1, then curves that line around in a circle until it is
heading in the direction of P2.

15.8 Graphics in a <canvas> | 495

bezierCurveTo()

This method adds a new point P to the subpath and connects it to the current
point with a cubic Bezier curve. The shape of the curve is specified by two “con‐
trol points,” C1 and C2. At the start of the curve (at the current point), the curve
heads in the direction of C1. At the end of the curve (at point P), the curve
arrives from the direction of C2. In between these points, the direction of the
curve varies smoothly. The point P becomes the new current point for the
subpath.

quadraticCurveTo()

This method is like bezierCurveTo(), but it uses a quadratic Bezier curve instead
of a cubic Bezier curve and has only a single control point.

You can use these methods to draw paths like those in Figure 15-10.

Figure 15-10. Curved paths in a canvas

Example 15-6 shows the code used to create Figure 15-10. The methods demon‐
strated in this code are some of the most complicated in the Canvas API; consult an
online reference for complete details on the methods and their arguments.

Example 15-6. Adding curves to a path

// A utility function to convert angles from degrees to radians
function rads(x) { return Math.PI*x/180; }

// Get the context object of the document's canvas element
let c = document.querySelector("canvas").getContext("2d");

// Define some graphics attributes and draw the curves
c.fillStyle = "#aaa"; // Gray fills
c.lineWidth = 2; // 2-pixel black (by default) lines

// Draw a circle.
// There is no current point, so draw just the circle with no straight
// line from the current point to the start of the circle.
c.beginPath();
c.arc(75,100,50, // Center at (75,100), radius 50

496 | Chapter 15: JavaScript in Web Browsers

 0,rads(360),false); // Go clockwise from 0 to 360 degrees
c.fill(); // Fill the circle
c.stroke(); // Stroke its outline.

// Now draw an ellipse in the same way
c.beginPath(); // Start new path not connected to the circle
c.ellipse(200, 100, 50, 35, rads(15), // Center, radii, and rotation
 0, rads(360), false); // Start angle, end angle, direction

// Draw a wedge. Angles are measured clockwise from the positive x axis.
// Note that arc() adds a line from the current point to the arc start.
c.moveTo(325, 100); // Start at the center of the circle.
c.arc(325, 100, 50, // Circle center and radius
 rads(-60), rads(0), // Start at angle -60 and go to angle 0
 true); // counterclockwise
c.closePath(); // Add radius back to the center of the circle

// Similar wedge, offset a bit, and in the opposite direction
c.moveTo(340, 92);
c.arc(340, 92, 42, rads(-60), rads(0), false);
c.closePath();

// Use arcTo() for rounded corners. Here we draw a square with
// upper left corner at (400,50) and corners of varying radii.
c.moveTo(450, 50); // Begin in the middle of the top edge.
c.arcTo(500,50,500,150,30); // Add part of top edge and upper right corner.
c.arcTo(500,150,400,150,20); // Add right edge and lower right corner.
c.arcTo(400,150,400,50,10); // Add bottom edge and lower left corner.
c.arcTo(400,50,500,50,0); // Add left edge and upper left corner.
c.closePath(); // Close path to add the rest of the top edge.

// Quadratic Bezier curve: one control point
c.moveTo(525, 125); // Begin here
c.quadraticCurveTo(550, 75, 625, 125); // Draw a curve to (625, 125)
c.fillRect(550-3, 75-3, 6, 6); // Mark the control point (550,75)

// Cubic Bezier curve
c.moveTo(625, 100); // Start at (625, 100)
c.bezierCurveTo(645,70,705,130,725,100); // Curve to (725, 100)
c.fillRect(645-3, 70-3, 6, 6); // Mark control points
c.fillRect(705-3, 130-3, 6, 6);

// Finally, fill the curves and stroke their outlines.
c.fill();
c.stroke();

15.8 Graphics in a <canvas> | 497

Text

To draw text in a canvas, you normally use the fillText() method, which draws text
using the color (or gradient or pattern) specified by the fillStyle property. For spe‐
cial effects at large text sizes, you can use strokeText() to draw the outline of the
individual font glyphs. Both methods take the text to be drawn as their first argument
and take the x and y coordinates of the text as the second and third arguments. Nei‐
ther method affects the current path or the current point.

fillText() and strokeText() take an optional fourth argument. If given, this argu‐
ment specifies the maximum width of the text to be displayed. If the text would be
wider than the specified value when drawn using the font property, the canvas will
make it fit by scaling it or by using a narrower or smaller font.

If you need to measure text yourself before drawing it, pass it to the measureText()
method. This method returns a TextMetrics object that specifies the measurements of
the text when drawn with the current font. At the time of this writing, the only “met‐
ric” contained in the TextMetrics object is the width. Query the on-screen width of a
string like this:

let width = c.measureText(text).width;

This is useful if you want to center a string of text within a canvas, for example.

Images
In addition to vector graphics (paths, lines, etc.), the Canvas API also supports bit‐
map images. The drawImage() method copies the pixels of a source image (or of a
rectangle within the source image) onto the canvas, scaling and rotating the pixels of
the image as necessary.

drawImage() can be invoked with three, five, or nine arguments. In all cases, the first
argument is the source image from which pixels are to be copied. This image argu‐
ment is often an element, but it can also be another <canvas> element or even
a <video> element (from which a single frame will be copied). If you specify an
or <video> element that is still loading its data, the drawImage() call will do nothing.

In the three-argument version of drawImage(), the second and third arguments spec‐
ify the x and y coordinates at which the upper-left corner of the image is to be drawn.
In this version of the method, the entire source image is copied to the canvas. The x
and y coordinates are interpreted in the current coordinate system, and the image is
scaled and rotated if necessary, depending on the canvas transform currently in effect.

The five-argument version of drawImage() adds width and height arguments to the
x and y arguments described earlier. These four arguments define a destination rec‐
tangle within the canvas. The upper-left corner of the source image goes at (x,y),
and the lower-right corner goes at (x+width, y+height). Again, the entire source

498 | Chapter 15: JavaScript in Web Browsers

image is copied. With this version of the method, the source image will be scaled to
fit the destination rectangle.

The nine-argument version of drawImage() specifies both a source rectangle and a
destination rectangle and copies only the pixels within the source rectangle. Argu‐
ments two through five specify the source rectangle. They are measured in CSS pix‐
els. If the source image is another canvas, the source rectangle uses the default
coordinate system for that canvas and ignores any transformations that have been
specified. Arguments six through nine specify the destination rectangle into which
the image is drawn and are in the current coordinate system of the canvas, not in the
default coordinate system.

In addition to drawing images into a canvas, we can also extract the content of a can‐
vas as an image using the toDataURL() method. Unlike all the other methods
described here, toDataURL() is a method of the Canvas element itself, not of the con‐
text object. You normally invoke toDataURL() with no arguments, and it returns the
content of the canvas as a PNG image, encoded as a string using a data: URL. The
returned URL is suitable for use with an element, and you can make a static
snapshot of a canvas with code like this:

let img = document.createElement("img"); // Create an element
img.src = canvas.toDataURL(); // Set its src attribute
document.body.appendChild(img); // Append it to the document

15.8.5 Coordinate System Transforms
As we’ve noted, the default coordinate system of a canvas places the origin in the
upper-left corner, has x coordinates increasing to the right, and has y coordinates
increasing downward. In this default system, the coordinates of a point map directly
to a CSS pixel (which then maps directly to one or more device pixels). Certain can‐
vas operations and attributes (such as extracting raw pixel values and setting shadow
offsets) always use this default coordinate system. In addition to the default coordi‐
nate system, however, every canvas has a “current transformation matrix” as part of
its graphics state. This matrix defines the current coordinate system of the canvas. In
most canvas operations, when you specify the coordinates of a point, it is taken to be
a point in the current coordinate system, not in the default coordinate system. The
current transformation matrix is used to convert the coordinates you specified to the
equivalent coordinates in the default coordinate system.

The setTransform() method allows you to set a canvas’s transformation matrix
directly, but coordinate system transformations are usually easier to specify as a
sequence of translations, rotations, and scaling operations. Figure 15-11 illustrates
these operations and their effect on the canvas coordinate system. The program that
produced the figure drew the same set of axes seven times in a row. The only thing

15.8 Graphics in a <canvas> | 499

that changed each time was the current transform. Notice that the transforms affect
the text as well as the lines that are drawn.

Figure 15-11. Coordinate system transformations

The translate() method simply moves the origin of the coordinate system left,
right, up, or down. The rotate() method rotates the axes clockwise by the specified
angle. (The Canvas API always specifies angles in radians. To convert degrees to radi‐
ans, divide by 180 and multiply by Math.PI.) The scale() method stretches or con‐
tracts distances along the x or y axes.

Passing a negative scale factor to the scale() method flips that axis across the origin,
as if it were reflected in a mirror. This is what was done in the lower left of
Figure 15-11: translate() was used to move the origin to the bottom-left corner of
the canvas, then scale() was used to flip the y axis around so that y coordinates
increase as we go up the page. A flipped coordinate system like this is familiar from
algebra class and may be useful for plotting data points on charts. Note, however, that
it makes text difficult to read!

500 | Chapter 15: JavaScript in Web Browsers

Understanding transformations mathematically

I find it easiest to understand transforms geometrically, thinking about translate(),
rotate(), and scale() as transforming the axes of the coordinate system as illustra‐
ted in Figure 15-11. It is also possible to understand transforms algebraically as equa‐
tions that map the coordinates of a point (x,y) in the transformed coordinate system
back to the coordinates (x',y') of the same point in the previous coordinate system.

The method call c.translate(dx,dy) can be described with these equations:

x' = x + dx; // An X coordinate of 0 in the new system is dx in the old
y' = y + dy;

Scaling operations have similarly simple equations. A call c.scale(sx,sy) can be
described like this:

x' = sx * x;
y' = sy * y;

Rotations are more complicated. The call c.rotate(a) is described by these trigono‐
metric equations:

x' = x * cos(a) - y * sin(a);
y' = y * cos(a) + x * sin(a);

Notice that the order of transformations matters. Suppose we start with the default
coordinate system of a canvas, then translate it, and then scale it. In order to map the
point (x,y) in the current coordinate system back to the point (x'',y'') in the
default coordinate system, we must first apply the scaling equations to map the point
to an intermediate point (x',y') in the translated but unscaled coordinate system,
then use the translation equations to map from this intermediate point to (x'',y'').
The result is this:

x'' = sx*x + dx;
y'' = sy*y + dy;

If, on the other hand, we’d called scale() before calling translate(), the resulting
equations would be different:

x'' = sx*(x + dx);
y'' = sy*(y + dy);

The key thing to remember when thinking algebraically about sequences of transfor‐
mations is that you must work backward from the last (most recent) transformation
to the first. When thinking geometrically about transformed axes, however, you work
forward from first transformation to last.

The transformations supported by the canvas are known as affine transforms. Affine
transforms may modify the distances between points and the angles between lines,
but parallel lines always remain parallel after an affine transformation—it is not pos‐
sible, for example, to specify a fish-eye lens distortion with an affine transform. An

15.8 Graphics in a <canvas> | 501

arbitrary affine transform can be described by the six parameters a through f in these
equations:

x' = ax + cy + e
y' = bx + dy + f

You can apply an arbitrary transformation to the current coordinate system by pass‐
ing those six parameters to the transform() method. Figure 15-11 illustrates two
types of transformations—shears and rotations about a specified point—that you can
implement with the transform() method like this:

// Shear transform:
// x' = x + kx*y;
// y' = ky*x + y;
function shear(c, kx, ky) { c.transform(1, ky, kx, 1, 0, 0); }

// Rotate theta radians counterclockwise around the point (x,y)
// This can also be accomplished with a translate, rotate, translate sequence
function rotateAbout(c, theta, x, y) {
 let ct = Math.cos(theta);
 let st = Math.sin(theta);
 c.transform(ct, -st, st, ct, -x*ct-y*st+x, x*st-y*ct+y);
}

The setTransform() method takes the same arguments as transform(), but instead
of transforming the current coordinate system, it ignores the current system, trans‐
forms the default coordinate system, and makes the result the new current coordinate
system. setTransform() is useful to temporarily reset the canvas to its default coordi‐
nate system:

c.save(); // Save current coordinate system
c.setTransform(1,0,0,1,0,0); // Revert to the default coordinate system
// Perform operations using default CSS pixel coordinates
c.restore(); // Restore the saved coordinate system

Transformation example
Example 15-7 demonstrates the power of coordinate system transformations by using
the translate(), rotate(), and scale() methods recursively to draw a Koch snow‐
flake fractal. The output of this example appears in Figure 15-12, which shows Koch
snowflakes with 0, 1, 2, 3, and 4 levels of recursion.

502 | Chapter 15: JavaScript in Web Browsers

Figure 15-12. Koch snowflakes

The code that produces these figures is elegant, but its use of recursive coordinate sys‐
tem transformations makes it somewhat difficult to understand. Even if you don’t fol‐
low all the nuances, note that the code includes only a single invocation of the
lineTo() method. Every single line segment in Figure 15-12 is drawn like this:

c.lineTo(len, 0);

The value of the variable len does not change during the execution of the program,
so the position, orientation, and length of each of the line segments is determined by
translations, rotations, and scaling operations.

Example 15-7. A Koch snowflake with transformations

let deg = Math.PI/180; // For converting degrees to radians

// Draw a level-n Koch snowflake fractal on the canvas context c,
// with lower-left corner at (x,y) and side length len.
function snowflake(c, n, x, y, len) {
 c.save(); // Save current transformation
 c.translate(x,y); // Translate origin to starting point
 c.moveTo(0,0); // Begin a new subpath at the new origin
 leg(n); // Draw the first leg of the snowflake
 c.rotate(-120*deg); // Now rotate 120 degrees counterclockwise
 leg(n); // Draw the second leg
 c.rotate(-120*deg); // Rotate again
 leg(n); // Draw the final leg
 c.closePath(); // Close the subpath
 c.restore(); // And restore original transformation

 // Draw a single leg of a level-n Koch snowflake.
 // This function leaves the current point at the end of the leg it has
 // drawn and translates the coordinate system so the current point is (0,0).
 // This means you can easily call rotate() after drawing a leg.
 function leg(n) {
 c.save(); // Save the current transformation
 if (n === 0) { // Nonrecursive case:
 c.lineTo(len, 0); // Just draw a horizontal line
 } // _ _
 else { // Recursive case: draw 4 sub-legs like: \/

15.8 Graphics in a <canvas> | 503

 c.scale(1/3,1/3); // Sub-legs are 1/3 the size of this leg
 leg(n-1); // Recurse for the first sub-leg
 c.rotate(60*deg); // Turn 60 degrees clockwise
 leg(n-1); // Second sub-leg
 c.rotate(-120*deg); // Rotate 120 degrees back
 leg(n-1); // Third sub-leg
 c.rotate(60*deg); // Rotate back to our original heading
 leg(n-1); // Final sub-leg
 }
 c.restore(); // Restore the transformation
 c.translate(len, 0); // But translate to make end of leg (0,0)
 }
}

let c = document.querySelector("canvas").getContext("2d");
snowflake(c, 0, 25, 125, 125); // A level-0 snowflake is a triangle
snowflake(c, 1, 175, 125, 125); // A level-1 snowflake is a 6-sided star
snowflake(c, 2, 325, 125, 125); // etc.
snowflake(c, 3, 475, 125, 125);
snowflake(c, 4, 625, 125, 125); // A level-4 snowflake looks like a snowflake!
c.stroke(); // Stroke this very complicated path

15.8.6 Clipping
After defining a path, you usually call stroke() or fill() (or both). You can also call
the clip() method to define a clipping region. Once a clipping region is defined,
nothing will be drawn outside of it. Figure 15-13 shows a complex drawing produced
using clipping regions. The vertical stripe running down the middle and the text
along the bottom of the figure were stroked with no clipping region and then filled
after the triangular clipping region was defined.

Figure 15-13. Unclipped strokes and clipped fills

504 | Chapter 15: JavaScript in Web Browsers

Figure 15-13 was generated using the polygon() method of Example 15-5 and the
following code:

// Define some drawing attributes
c.font = "bold 60pt sans-serif"; // Big font
c.lineWidth = 2; // Narrow lines
c.strokeStyle = "#000"; // Black lines

// Outline a rectangle and some text
c.strokeRect(175, 25, 50, 325); // A vertical stripe down the middle
c.strokeText("<canvas>", 15, 330); // Note strokeText() instead of fillText()

// Define a complex path with an interior that is outside.
polygon(c,3,200,225,200); // Large triangle
polygon(c,3,200,225,100,0,true); // Smaller reverse triangle inside

// Make that path the clipping region.
c.clip();

// Stroke the path with a 5 pixel line, entirely inside the clipping region.
c.lineWidth = 10; // Half of this 10 pixel line will be clipped away
c.stroke();

// Fill the parts of the rectangle and text that are inside the clipping region
c.fillStyle = "#aaa"; // Light gray
c.fillRect(175, 25, 50, 325); // Fill the vertical stripe
c.fillStyle = "#888"; // Darker gray
c.fillText("<canvas>", 15, 330); // Fill the text

It is important to note that when you call clip(), the current path is itself clipped to
the current clipping region, then that clipped path becomes the new clipping region.
This means that the clip() method can shrink the clipping region but can never
enlarge it. There is no method to reset the clipping region, so before calling clip(),
you should typically call save() so that you can later restore() the unclipped region.

15.8.7 Pixel Manipulation
The getImageData() method returns an ImageData object that represents the raw
pixels (as R, G, B, and A components) from a rectangular region of your canvas. You
can create empty ImageData objects with createImageData(). The pixels in an
ImageData object are writable, so you can set them any way you want, then copy
those pixels back onto the canvas with putImageData().

These pixel manipulation methods provide very low-level access to the canvas. The
rectangle you pass to getImageData() is in the default coordinate system: its dimen‐
sions are measured in CSS pixels, and it is not affected by the current transformation.
When you call putImageData(), the position you specify is also measured in the
default coordinate system. Furthermore, putImageData() ignores all graphics

15.8 Graphics in a <canvas> | 505

attributes. It does not perform any compositing, it does not multiply pixels by global
Alpha, and it does not draw shadows.

Pixel manipulation methods are useful for implementing image processing.
Example 15-8 shows how to create a simple motion blur or “smear” effect like that
shown in Figure 15-14.

Figure 15-14. A motion blur effect created by image processing

The following code demonstrates getImageData() and putImageData() and shows
how to iterate through and modify the pixel values in an ImageData object.

Example 15-8. Motion blur with ImageData

// Smear the pixels of the rectangle to the right, producing a
// sort of motion blur as if objects are moving from right to left.
// n must be 2 or larger. Larger values produce bigger smears.
// The rectangle is specified in the default coordinate system.
function smear(c, n, x, y, w, h) {
 // Get the ImageData object that represents the rectangle of pixels to smear
 let pixels = c.getImageData(x, y, w, h);

 // This smear is done in-place and requires only the source ImageData.
 // Some image processing algorithms require an additional ImageData to
 // store transformed pixel values. If we needed an output buffer, we could
 // create a new ImageData with the same dimensions like this:
 // let output_pixels = c.createImageData(pixels);

 // Get the dimensions of the grid of pixels in the ImageData object
 let width = pixels.width, height = pixels.height;

 // This is the byte array that holds the raw pixel data, left-to-right and
 // top-to-bottom. Each pixel occupies 4 consecutive bytes in R,G,B,A order.
 let data = pixels.data;

 // Each pixel after the first in each row is smeared by replacing it with
 // 1/nth of its own value plus m/nths of the previous pixel's value
 let m = n-1;

 for(let row = 0; row < height; row++) { // For each row

506 | Chapter 15: JavaScript in Web Browsers

 let i = row*width*4 + 4; // The offset of the second pixel of the row
 for(let col = 1; col < width; col++, i += 4) { // For each column
 data[i] = (data[i] + data[i-4]*m)/n; // Red pixel component
 data[i+1] = (data[i+1] + data[i-3]*m)/n; // Green
 data[i+2] = (data[i+2] + data[i-2]*m)/n; // Blue
 data[i+3] = (data[i+3] + data[i-1]*m)/n; // Alpha component
 }
 }

 // Now copy the smeared image data back to the same position on the canvas
 c.putImageData(pixels, x, y);
}

15.9 Audio APIs
The HTML <audio> and <video> tags allow you to easily include sound and videos
in your web pages. These are complex elements with significant APIs and nontrivial
user interfaces. You can control media playback with the play() and pause() meth‐
ods. You can set the volume and playbackRate properties to control the audio vol‐
ume and speed of playback. And you can skip to a particular time within the media
by setting the currentTime property.

We will not cover <audio> and <video> tags in any further detail here, however. The
following subsections demonstrate two ways to add scripted sound effects to your
web pages.

15.9.1 The Audio() Constructor
You don’t have to include an <audio> tag in your HTML document in order to
include sound effects in your web pages. You can dynamically create <audio> ele‐
ments with the normal DOM document.createElement() method, or, as a shortcut,
you can simply use the Audio() constructor. You do not have to add the created ele‐
ment to your document in order to play it. You can simply call its play() method:

// Load the sound effect in advance so it is ready for use
let soundeffect = new Audio("soundeffect.mp3");

// Play the sound effect whenever the user clicks the mouse button
document.addEventListener("click", () => {
 soundeffect.cloneNode().play(); // Load and play the sound
});

Note the use of cloneNode() here. If the user clicks the mouse rapidly, we want to be
able to have multiple overlapping copies of the sound effect playing at the same time.
To do that, we need multiple Audio elements. Because the Audio elements are not
added to the document, they will be garbage collected when they are done playing.

15.9 Audio APIs | 507

15.9.2 The WebAudio API
In addition to playback of recorded sounds with Audio elements, web browsers also
allow the generation and playback of synthesized sounds with the WebAudio API.
Using the WebAudio API is like hooking up an old-style electronic synthesizer with
patch cords. With WebAudio, you create a set of AudioNode objects, which repre‐
sents sources, transformations, or destinations of waveforms, and then connect these
nodes together into a network to produce sounds. The API is not particularly com‐
plex, but a full explanation requires an understanding of electronic music and signal
processing concepts that are beyond the scope of this book.

The following code below uses the WebAudio API to synthesize a short chord that
fades out over about a second. This example demonstrates the basics of the WebAu‐
dio API. If this is interesting to you, you can find much more about this API online:

// Begin by creating an audioContext object. Safari still requires
// us to use webkitAudioContext instead of AudioContext.
let audioContext = new (this.AudioContext||this.webkitAudioContext)();

// Define the base sound as a combination of three pure sine waves
let notes = [293.7, 370.0, 440.0]; // D major chord: D, F# and A

// Create oscillator nodes for each of the notes we want to play
let oscillators = notes.map(note => {
 let o = audioContext.createOscillator();
 o.frequency.value = note;
 return o;
});

// Shape the sound by controlling its volume over time.
// Starting at time 0 quickly ramp up to full volume.
// Then starting at time 0.1 slowly ramp down to 0.
let volumeControl = audioContext.createGain();
volumeControl.gain.setTargetAtTime(1, 0.0, 0.02);
volumeControl.gain.setTargetAtTime(0, 0.1, 0.2);

// We're going to send the sound to the default destination:
// the user's speakers
let speakers = audioContext.destination;

// Connect each of the source notes to the volume control
oscillators.forEach(o => o.connect(volumeControl));

// And connect the output of the volume control to the speakers.
volumeControl.connect(speakers);

// Now start playing the sounds and let them run for 1.25 seconds.
let startTime = audioContext.currentTime;
let stopTime = startTime + 1.25;
oscillators.forEach(o => {
 o.start(startTime);

508 | Chapter 15: JavaScript in Web Browsers

 o.stop(stopTime);
});

// If we want to create a sequence of sounds we can use event handlers
oscillators[0].addEventListener("ended", () => {
 // This event handler is invoked when the note stops playing
});

15.10 Location, Navigation, and History
The location property of both the Window and Document objects refers to the
Location object, which represents the current URL of the document displayed in the
window, and which also provides an API for loading new documents into the
window.

The Location object is very much like a URL object (§11.9), and you can use proper‐
ties like protocol, hostname, port, and path to access the various parts of the URL of
the current document. The href property returns the entire URL as a string, as does
the toString() method.

The hash and search properties of the Location object are interesting ones. The hash
property returns the “fragment identifier” portion of the URL, if there is one: a hash
mark (#) followed by an element ID. The search property is similar. It returns the
portion of the URL that starts with a question mark: often some sort of query string.
In general, this portion of a URL is used to parameterize the URL and provides a way
to embed arguments in it. While these arguments are usually intended for scripts run
on a server, there is no reason why they cannot also be used in JavaScript-enabled
pages.

URL objects have a searchParams property that is a parsed representation of the
search property. The Location object does not have a searchParams property, but if
you want to parse window.location.search, you can simply create a URL object
from the Location object and then use the URL’s searchParams:

let url = new URL(window.location);
let query = url.searchParams.get("q");
let numResults = parseInt(url.searchParams.get("n") || "10");

In addition to the Location object that you can refer to as window.location or docu
ment.location, and the URL() constructor that we used earlier, browsers also define
a document.URL property. Surprisingly, the value of this property is not a URL object,
but just a string. The string holds the URL of the current document.

15.10 Location, Navigation, and History | 509

15.10.1 Loading New Documents
If you assign a string to window.location or to document.location, that string is
interpreted as a URL and the browser loads it, replacing the current document with a
new one:

window.location = "http://www.oreilly.com"; // Go buy some books!

You can also assign relative URLs to location. They are resolved relative to the cur‐
rent URL:

document.location = "page2.html"; // Load the next page

A bare fragment identifier is a special kind of relative URL that does not cause the
browser to load a new document but simply to scroll so that the document element
with id or name that matches the fragment is visible at the top of the browser window.
As a special case, the fragment identifier #top makes the browser jump to the start of
the document (assuming no element has an id="top" attribute):

location = "#top"; // Jump to the top of the document

The individual properties of the Location object are writable, and setting them
changes the location URL and also causes the browser to load a new document (or, in
the case of the hash property, to navigate within the current document):

document.location.path = "pages/3.html"; // Load a new page
document.location.hash = "TOC"; // Scroll to the table of contents
location.search = "?page=" + (page+1); // Reload with new query string

You can also load a new page by passing a new string to the assign() method of the
Location object. This is the same as assigning the string to the location property,
however, so it’s not particularly interesting.

The replace() method of the Location object, on the other hand, is quite useful.
When you pass a string to replace(), it is interpreted as a URL and causes the
browser to load a new page, just as assign() does. The difference is that replace()
replaces the current document in the browser’s history. If a script in document A sets
the location property or calls assign() to load document B and then the user clicks
the Back button, the browser will go back to document A. If you use replace()
instead, then document A is erased from the browser’s history, and when the user
clicks the Back button, the browser returns to whatever document was displayed
before document A.

When a script unconditionally loads a new document, the replace() method is a
better choice than assign(). Otherwise, the Back button would take the browser
back to the original document, and the same script would again load the new docu‐
ment. Suppose you have a JavaScript-enhanced version of your page and a static ver‐
sion that does not use JavaScript. If you determine that the user’s browser does not

510 | Chapter 15: JavaScript in Web Browsers

support the web platform APIs that you want to use, you could use loca
tion.replace() to load the static version:

// If the browser does not support the JavaScript APIs we need,
// redirect to a static page that does not use JavaScript.
if (!isBrowserSupported()) location.replace("staticpage.html");

Notice that the URL passed to replace() is a relative one. Relative URLs are inter‐
preted relative to the page in which they appear, just as they would be if they were
used in a hyperlink.

In addition to the assign() and replace() methods, the Location object also defines
reload(), which simply makes the browser reload the document.

15.10.2 Browsing History
The history property of the Window object refers to the History object for the win‐
dow. The History object models the browsing history of a window as a list of docu‐
ments and document states. The length property of the History object specifies the
number of elements in the browsing history list, but for security reasons, scripts are
not allowed to access the stored URLs. (If they could, any scripts could snoop
through your browsing history.)

The History object has back() and forward() methods that behave like the browser’s
Back and Forward buttons do: they make the browser go backward or forward one
step in its browsing history. A third method, go(), takes an integer argument and can
skip any number of pages forward (for positive arguments) or backward (for negative
arguments) in the history list:

history.go(-2); // Go back 2, like clicking the Back button twice
history.go(0); // Another way to reload the current page

If a window contains child windows (such as <iframe> elements), the browsing his‐
tories of the child windows are chronologically interleaved with the history of the
main window. This means that calling history.back() (for example) on the main
window may cause one of the child windows to navigate back to a previously dis‐
played document but leaves the main window in its current state.

The History object described here dates back to the early days of the web when docu‐
ments were passive and all computation was performed on the server. Today, web
applications often generate or load content dynamically and display new application
states without actually loading new documents. Applications like these must perform
their own history management if they want the user to be able to use the Back and
Forward buttons (or the equivalent gestures) to navigate from one application state to
another in an intuitive way. There are two ways to accomplish this, described in the
next two sections.

15.10 Location, Navigation, and History | 511

15.10.3 History Management with hashchange Events
One history management technique involves location.hash and the “hashchange”
event. Here are the key facts you need to know to understand this technique:

• The location.hash property sets the fragment identifier of the URL and is tradi‐
tionally used to specify the ID of a document section to scroll to. But loca
tion.hash does not have to be an element ID: you can set it to any string. As
long as no element happens to have that string as its ID, the browser won’t scroll
when you set the hash property like this.

• Setting the location.hash property updates the URL displayed in the location
bar and, very importantly, adds an entry to the browser’s history.

• Whenever the fragment identifier of the document changes, the browser fires a
“hashchange” event on the Window object. If you set location.hash explictly, a
“hashchange” event is fired. And, as we’ve mentioned, this change to the Location
object creates a new entry in the browser’s browsing history. So if the user now
clicks the Back button, the browser will return to its previous URL before you set
location.hash. But this means that the fragment identifier has changed again, so
another “hashchange” event is fired in this case. This means that as long as you
can create a unique fragment identifier for each possible state of your application,
“hashchange” events will notify you if the user moves backward and forward
though their browsing history.

To use this history management mechanism, you’ll need to be able to encode the state
information necessary to render a “page” of your application into a relatively short
string of text that is suitable for use as a fragment identifier. And you’ll need to write a
function to convert page state into a string and another function to parse the string
and re-create the page state it represents.

Once you have written those functions, the rest is easy. Define a window.onhash
change function (or register a “hashchange” listener with addEventListener()) that
reads location.hash, converts that string into a representation of your application
state, and then takes whatever actions are necessary to display that new application
state.

When the user interacts with your application (such as by clicking a link) in a way
that would cause the application to enter a new state, don’t render the new state
directly. Instead, encode the desired new state as a string and set location.hash to
that string. This will trigger a “hashchange” event, and your handler for that event
will display the new state. Using this roundabout technique ensures that the new state
is inserted into the browsing history so that the Back and Forward buttons continue
to work.

512 | Chapter 15: JavaScript in Web Browsers

15.10.4 History Management with pushState()
The second technique for managing history is somewhat more complex but is less of
a hack than the “hashchange” event. This more robust history-management techni‐
que is based on the history.pushState() method and the “popstate” event. When a
web app enters a new state, it calls history.pushState() to add an object represent‐
ing the state to the browser’s history. If the user then clicks the Back button, the
browser fires a “popstate” event with a copy of that saved state object, and the app
uses that object to re-create its previous state. In addition to the saved state object,
applications can also save a URL with each state, which is important if you want users
to be able to bookmark and share links to the internal states of the app.

The first argument to pushState() is an object that contains all the state information
necessary to restore the current state of the document. This object is saved using
HTML’s structured clone algorithm, which is more versatile than JSON.stringify()
and can support Map, Set, and Date objects as well as typed arrays and ArrayBuffers.

The second argument was intended to be a title string for the state, but most browsers
do not support it, and you should just pass an empty string. The third argument is an
optional URL that will be displayed in the location bar immediately and also if the
user returns to this state via Back and Forward buttons. Relative URLs are resolved
against the current location of the document. Associating a URL with each state
allows the user to bookmark internal states of your application. Remember, though,
that if the user saves a bookmark and then visits it a day later, you won’t get a “pop‐
state” event about that visit: you’ll have to restore your application state by parsing the
URL.

The Structured Clone Algorithm
The history.pushState() method does not use JSON.stringify() (§11.6) to serial‐
ize state data. Instead, it (and other browser APIs we’ll learn about later) uses a more
robust serialization technique known as the structured clone algorithm, defined by
the HTML standard.

The structured clone algorithm can serialize anything that JSON.stringify() can,
but in addition, it enables serialization of most other JavaScript types, including Map,
Set, Date, RegExp, and typed arrays, and it can handle data structures that include cir‐
cular references. The structured clone algorithm cannot serialize functions or classes,
however. When cloning objects it does not copy the prototype object, getters and set‐
ters, or non-enumerable properties. While the structured clone algorithm can clone
most built-in JavaScript types, it cannot copy types defined by the host environment,
such as document Element objects.

This means that the state object you pass to history.pushState() need not be limi‐
ted to the objects, arrays, and primitive values that JSON.stringify() supports. Note,

15.10 Location, Navigation, and History | 513

however, that if you pass an instance of a class that you have defined, that instance
will be serialized as an ordinary JavaScript object and will lose its prototype.

In addition to the pushState() method, the History object also defines replaceS
tate(), which takes the same arguments but replaces the current history state instead
of adding a new state to the browsing history. When an application that uses push
State() is first loaded, it is often a good idea to call replaceState() to define a state
object for this initial state of the application.

When the user navigates to saved history states using the Back or Forward buttons,
the browser fires a “popstate” event on the Window object. The event object associ‐
ated with the event has a property named state, which contains a copy (another
structured clone) of the state object you passed to pushState().

Example 15-9 is a simple web application—the number-guessing game pictured in
Figure 15-15—that uses pushState() to save its history, allowing the user to “go
back” to review or redo their guesses.

Figure 15-15. A number-guessing game

Example 15-9. History management with pushState()

<html><head><title>I'm thinking of a number...</title>
<style>
body { height: 250px; display: flex; flex-direction: column;
 align-items: center; justify-content: space-evenly; }
#heading { font: bold 36px sans-serif; margin: 0; }
#container { border: solid black 1px; height: 1em; width: 80%; }
#range { background-color: green; margin-left: 0%; height: 1em; width: 100%; }
#input { display: block; font-size: 24px; width: 60%; padding: 5px; }
#playagain { font-size: 24px; padding: 10px; border-radius: 5px; }
</style>
</head>
<body>
<h1 id="heading">I'm thinking of a number...</h1>
<!-- A visual representation of the numbers that have not been ruled out -->
<div id="container"><div id="range"></div></div>

514 | Chapter 15: JavaScript in Web Browsers

<!-- Where the user enters their guess -->
<input id="input" type="text">
<!-- A button that reloads with no search string. Hidden until game ends. -->
<button id="playagain" hidden onclick="location.search='';">Play Again</button>
<script>
/**
 * An instance of this GameState class represents the internal state of
 * our number guessing game. The class defines static factory methods for
 * initializing the game state from different sources, a method for
 * updating the state based on a new guess, and a method for modifying the
 * document based on the current state.
 */
class GameState {
 // This is a factory function to create a new game
 static newGame() {
 let s = new GameState();
 s.secret = s.randomInt(0, 100); // An integer: 0 < n < 100
 s.low = 0; // Guesses must be greater than this
 s.high = 100; // Guesses must be less than this
 s.numGuesses = 0; // How many guesses have been made
 s.guess = null; // What the last guess was
 return s;
 }

 // When we save the state of the game with history.pushState(), it is just
 // a plain JavaScript object that gets saved, not an instance of GameState.
 // So this factory function re-creates a GameState object based on the
 // plain object that we get from a popstate event.
 static fromStateObject(stateObject) {
 let s = new GameState();
 for(let key of Object.keys(stateObject)) {
 s[key] = stateObject[key];
 }
 return s;
 }

 // In order to enable bookmarking, we need to be able to encode the
 // state of any game as a URL. This is easy to do with URLSearchParams.
 toURL() {
 let url = new URL(window.location);
 url.searchParams.set("l", this.low);
 url.searchParams.set("h", this.high);
 url.searchParams.set("n", this.numGuesses);
 url.searchParams.set("g", this.guess);
 // Note that we can't encode the secret number in the url or it
 // will give away the secret. If the user bookmarks the page with
 // these parameters and then returns to it, we will simply pick a
 // new random number between low and high.
 return url.href;
 }

 // This is a factory function that creates a new GameState object and

15.10 Location, Navigation, and History | 515

 // initializes it from the specified URL. If the URL does not contain the
 // expected parameters or if they are malformed it just returns null.
 static fromURL(url) {
 let s = new GameState();
 let params = new URL(url).searchParams;
 s.low = parseInt(params.get("l"));
 s.high = parseInt(params.get("h"));
 s.numGuesses = parseInt(params.get("n"));
 s.guess = parseInt(params.get("g"));

 // If the URL is missing any of the parameters we need or if
 // they did not parse as integers, then return null;
 if (isNaN(s.low) || isNaN(s.high) ||
 isNaN(s.numGuesses) || isNaN(s.guess)) {
 return null;
 }

 // Pick a new secret number in the right range each time we
 // restore a game from a URL.
 s.secret = s.randomInt(s.low, s.high);
 return s;
 }

 // Return an integer n, min < n < max
 randomInt(min, max) {
 return min + Math.ceil(Math.random() * (max - min - 1));
 }

 // Modify the document to display the current state of the game.
 render() {
 let heading = document.querySelector("#heading"); // The <h1> at the top
 let range = document.querySelector("#range"); // Display guess range
 let input = document.querySelector("#input"); // Guess input field
 let playagain = document.querySelector("#playagain");

 // Update the document heading and title
 heading.textContent = document.title =
 `I'm thinking of a number between ${this.low} and ${this.high}.`;

 // Update the visual range of numbers
 range.style.marginLeft = `${this.low}%`;
 range.style.width = `${(this.high-this.low)}%`;

 // Make sure the input field is empty and focused.
 input.value = "";
 input.focus();

 // Display feedback based on the user's last guess. The input
 // placeholder will show because we made the input field empty.
 if (this.guess === null) {
 input.placeholder = "Type your guess and hit Enter";
 } else if (this.guess < this.secret) {

516 | Chapter 15: JavaScript in Web Browsers

 input.placeholder = `${this.guess} is too low. Guess again`;
 } else if (this.guess > this.secret) {
 input.placeholder = `${this.guess} is too high. Guess again`;
 } else {
 input.placeholder = document.title = `${this.guess} is correct!`;
 heading.textContent = `You win in ${this.numGuesses} guesses!`;
 playagain.hidden = false;
 }
 }

 // Update the state of the game based on what the user guessed.
 // Returns true if the state was updated, and false otherwise.
 updateForGuess(guess) {
 // If it is a number and is in the right range
 if ((guess > this.low) && (guess < this.high)) {
 // Update state object based on this guess
 if (guess < this.secret) this.low = guess;
 else if (guess > this.secret) this.high = guess;
 this.guess = guess;
 this.numGuesses++;
 return true;
 }
 else { // An invalid guess: notify user but don't update state
 alert(`Please enter a number greater than ${
 this.low} and less than ${this.high}`);
 return false;
 }
 }
}

// With the GameState class defined, making the game work is just a matter
// of initializing, updating, saving and rendering the state object at
// the appropriate times.

// When we are first loaded, we try get the state of the game from the URL
// and if that fails we instead begin a new game. So if the user bookmarks a
// game that game can be restored from the URL. But if we load a page with
// no query parameters we'll just get a new game.
let gamestate = GameState.fromURL(window.location) || GameState.newGame();

// Save this initial state of the game into the browser history, but use
// replaceState instead of pushState() for this initial page
history.replaceState(gamestate, "", gamestate.toURL());

// Display this initial state
gamestate.render();

// When the user guesses, update the state of the game based on their guess
// then save the new state to browser history and render the new state
document.querySelector("#input").onchange = (event) => {
 if (gamestate.updateForGuess(parseInt(event.target.value))) {
 history.pushState(gamestate, "", gamestate.toURL());

15.10 Location, Navigation, and History | 517

 }
 gamestate.render();
};

// If the user goes back or forward in history, we'll get a popstate event
// on the window object with a copy of the state object we saved with
// pushState. When that happens, render the new state.
window.onpopstate = (event) => {
 gamestate = GameState.fromStateObject(event.state); // Restore the state
 gamestate.render(); // and display it
};
</script>
</body></html>

15.11 Networking
Every time you load a web page, the browser makes network requests—using the
HTTP and HTTPS protocols—for an HTML file as well as the images, fonts, scripts,
and stylesheets that the file depends on. But in addition to being able to make net‐
work requests in response to user actions, web browsers also expose JavaScript APIs
for networking as well.

This section covers three network APIs:

• The fetch() method defines a Promise-based API for making HTTP and
HTTPS requests. The fetch() API makes basic GET requests simple but has a
comprehensive feature set that also supports just about any possible HTTP use
case.

• The Server-Sent Events (or SSE) API is a convenient, event-based interface to
HTTP “long polling” techniques where the web server holds the network con‐
nection open so that it can send data to the client whenever it wants.

• WebSockets is a networking protocol that is not HTTP but is designed to intero‐
perate with HTTP. It defines an asynchronous message-passing API where clients
and servers can send and receive messages from each other in a way that is simi‐
lar to TCP network sockets.

15.11.1 fetch()
For basic HTTP requests, using fetch() is a three-step process:

1. Call fetch(), passing the URL whose content you want to retrieve.
2. Get the response object that is asynchronously returned by step 1 when the

HTTP response begins to arrive and call a method of this response object to ask
for the body of the response.

518 | Chapter 15: JavaScript in Web Browsers

3. Get the body object that is asynchronously returned by step 2 and process it how‐
ever you want.

The fetch() API is completely Promise-based, and there are two asynchronous steps
here, so you typically expect two then() calls or two await expressions when using
fetch(). (And if you’ve forgotten what those are, you may want to reread Chapter 13
before continuing with this section.)

Here’s what a fetch() request looks like if you are using then() and expect the serv‐
er’s response to your request to be JSON-formatted:

fetch("/api/users/current") // Make an HTTP (or HTTPS) GET request
 .then(response => response.json()) // Parse its body as a JSON object
 .then(currentUser => { // Then process that parsed object
 displayUserInfo(currentUser);
 });

Here’s a similar request made using the async and await keywords to an API that
returns a plain string rather than a JSON object:

async function isServiceReady() {
 let response = await fetch("/api/service/status");
 let body = await response.text();
 return body === "ready";
}

If you understand these two code examples, then you know 80% of what you need to
know to use the fetch() API. The subsections that follow will demonstrate how to
make requests and receive responses that are somewhat more complicated than those
shown here.

Goodbye XMLHttpRequest
The fetch() API replaces the baroque and misleadingly named XMLHttpRequest
API (which has nothing to do with XML). You may still see XHR (as it is often abbre‐
viated) in existing code, but there is no reason today to use it in new code, and it is
not documented in this chapter. There is one example of XMLHttpRequest in this
book, however, and you can refer to §13.1.3 if you’d like to see an example of old-style
JavaScript networking.

HTTP status codes, response headers, and network errors

The three-step fetch() process shown in §15.11.1 elides all error-handling code.
Here’s a more realistic version:

fetch("/api/users/current") // Make an HTTP (or HTTPS) GET request.
 .then(response => { // When we get a response, first check it
 if (response.ok && // for a success code and the expected type.

15.11 Networking | 519

 response.headers.get("Content-Type") === "application/json") {
 return response.json(); // Return a Promise for the body.
 } else {
 throw new Error(// Or throw an error.
 `Unexpected response status ${response.status} or content type`
);
 }
 })
 .then(currentUser => { // When the response.json() Promise resolves
 displayUserInfo(currentUser); // do something with the parsed body.
 })
 .catch(error => { // Or if anything went wrong, just log the error.
 // If the user's browser is offline, fetch() itself will reject.
 // If the server returns a bad response then we throw an error above.
 console.log("Error while fetching current user:", error);
 });

The Promise returned by fetch() resolves to a Response object. The status property
of this object is the HTTP status code, such as 200 for successful requests or 404 for
“Not Found” responses. (statusText gives the standard English text that goes along
with the numeric status code.) Conveniently, the ok property of a Response is true if
status is 200 or any code between 200 and 299 and is false for any other code.

fetch() resolves its Promise when the server’s response starts to arrive, as soon as the
HTTP status and response headers are available, but typically before the full response
body has arrived. Even though the body is not available yet, you can examine the
headers in this second step of the fetch process. The headers property of a Response
object is a Headers object. Use its has() method to test for the presence of a header,
or use its get() method to get the value of a header. HTTP header names are case-
insensitive, so you can pass lowercase or mixed-case header names to these functions.

The Headers object is also iterable if you ever need to do that:

fetch(url).then(response => {
 for(let [name,value] of response.headers) {
 console.log(`${name}: ${value}`);
 }
});

If a web server responds to your fetch() request, then the Promise that was returned
will be fulfilled with a Response object, even if the server’s response was a 404 Not
Found error or a 500 Internal Server Error. fetch() only rejects the Promise it
returns if it cannot contact the web server at all. This can happen if the user’s com‐
puter is offline, the server is unresponsive, or the URL specifies a hostname that does
not exist. Because these things can happen on any network request, it is always a good
idea to include a .catch() clause any time you make a fetch() call.

520 | Chapter 15: JavaScript in Web Browsers

Setting request parameters
Sometimes you want to pass extra parameters along with the URL when you make a
request. This can be done by adding name/value pairs at the end of a URL after a ?.
The URL and URLSearchParams classes (which were covered in §11.9) make it easy
to construct URLs in this form, and the fetch() function accepts URL objects as its
first argument, so you can include request parameters in a fetch() request like this:

async function search(term) {
 let url = new URL("/api/search");
 url.searchParams.set("q", term);
 let response = await fetch(url);
 if (!response.ok) throw new Error(response.statusText);
 let resultsArray = await response.json();
 return resultsArray;
}

Setting request headers

Sometimes you need to set headers in your fetch() requests. If you’re making web
API requests that require credentials, for example, then you may need to include an
Authorization header that contains those credentials. In order to do this, you can use
the two-argument version of fetch(). As before, the first argument is a string or URL
object that specifies the URL to fetch. The second argument is an object that can pro‐
vide additional options, including request headers:

let authHeaders = new Headers();
// Don't use Basic auth unless it is over an HTTPS connection.
authHeaders.set("Authorization",
 `Basic ${btoa(`${username}:${password}`)}`);
fetch("/api/users/", { headers: authHeaders })
 .then(response => response.json()) // Error handling omitted...
 .then(usersList => displayAllUsers(usersList));

There are a number of other options that can be specified in the second argument to
fetch(), and we’ll see it again later. An alternative to passing two arguments to
fetch() is to instead pass the same two arguments to the Request() constructor and
then pass the resulting Request object to fetch():

let request = new Request(url, { headers });
fetch(request).then(response => ...);

Parsing response bodies

In the three-step fetch() process that we’ve demonstrated, the second step ends by
calling the json() or text() methods of the Response object and returning the
Promise object that those methods return. Then, the third step begins when that
Promise resolves with the body of the response parsed as a JSON object or simply as a
string of text.

15.11 Networking | 521

These are probably the two most common scenarios, but they are not the only ways
to obtain the body of a web server’s response. In addition to json() and text(), the
Response object also has these methods:

arrayBuffer()

This method returns a Promise that resolves to an ArrayBuffer. This is useful
when the response contains binary data. You can use the ArrayBuffer to create a
typed array (§11.2) or a DataView object (§11.2.5) from which you can read the
binary data.

blob()

This method returns a Promise that resolves to a Blob object. Blobs are not cov‐
ered in any detail in this book, but the name stands for “Binary Large Object,”
and they are useful when you expect large amounts of binary data. If you ask for
the body of the response as a Blob, the browser implementation may stream the
response data to a temporary file and then return a Blob object that represents
that temporary file. Blob objects, therefore, do not allow random access to the
response body the way that an ArrayBuffer does. Once you have a Blob, you can
create a URL that refers to it with URL.createObjectURL(), or you can use the
event-based FileReader API to asynchronously obtain the content of the Blob as a
string or an ArrayBuffer. At the time of this writing, some browsers also define
Promise-based text() and arrayBuffer() methods that give a more direct route
for obtaining the content of a Blob.

formData()

This method returns a Promise that resolves to a FormData object. You should
use this method if you expect the body of the Response to be encoded in “multi‐
part/form-data” format. This format is common in POST requests made to a
server, but uncommon in server responses, so this method is not frequently used.

Streaming response bodies
In addition to the five response methods that asynchronously return some form of
the complete response body to you, there is also an option to stream the response
body, which is useful if there is some kind of processing you can do on the chunks of
the response body as they arrive over the network. But streaming the response is also
useful if you want to display a progress bar so that the user can see the progress of the
download.

The body property of a Response object is a ReadableStream object. If you have
already called a response method like text() or json() that reads, parses, and
returns the body, then bodyUsed will be true to indicate that the body stream has
already been read. If bodyUsed is false, however, then the stream has not yet been
read. In this case, you can call getReader() on response.body to obtain a stream

522 | Chapter 15: JavaScript in Web Browsers

reader object, then use the read() method of this reader object to asynchronously
read chunks of text from the stream. The read() method returns a Promise that
resolves to an object with done and value properties. done will be true if the entire
body has been read or if the stream was closed. And value will either be the next
chunk, as a Uint8Array, or undefined if there are no more chunks.

This streaming API is relatively straightforward if you use async and await but is
surprisingly complex if you attempt to use it with raw Promises. Example 15-10 dem‐
onstrates the API by defining a streamBody() function. Suppose you wanted to
download a large JSON file and report download progress to the user. You can’t do
that with the json() method of the Response object, but you could do it with the
streamBody() function, like this (assuming that an updateProgress() function is
defined to set the value attribute on an HTML <progress> element):

fetch('big.json')
 .then(response => streamBody(response, updateProgress))
 .then(bodyText => JSON.parse(bodyText))
 .then(handleBigJSONObject);

The streamBody() function can be implemented as shown in Example 15-10.

Example 15-10. Streaming the response body from a fetch() request

/**
 * An asynchronous function for streaming the body of a Response object
 * obtained from a fetch() request. Pass the Response object as the first
 * argument followed by two optional callbacks.
 *
 * If you specify a function as the second argument, that reportProgress
 * callback will be called once for each chunk that is received. The first
 * argument passed is the total number of bytes received so far. The second
 * argument is a number between 0 and 1 specifying how complete the download
 * is. If the Response object has no "Content-Length" header, however, then
 * this second argument will always be NaN.
 *
 * If you want to process the data in chunks as they arrive, specify a
 * function as the third argument. The chunks will be passed, as Uint8Array
 * objects, to this processChunk callback.
 *
 * streamBody() returns a Promise that resolves to a string. If a processChunk
 * callback was supplied then this string is the concatenation of the values
 * returned by that callback. Otherwise the string is the concatenation of
 * the chunk values converted to UTF-8 strings.
 */
async function streamBody(response, reportProgress, processChunk) {
 // How many bytes are we expecting, or NaN if no header
 let expectedBytes = parseInt(response.headers.get("Content-Length"));
 let bytesRead = 0; // How many bytes received so far
 let reader = response.body.getReader(); // Read bytes with this function

15.11 Networking | 523

 let decoder = new TextDecoder("utf-8"); // For converting bytes to text
 let body = ""; // Text read so far

 while(true) { // Loop until we exit below
 let {done, value} = await reader.read(); // Read a chunk

 if (value) { // If we got a byte array:
 if (processChunk) { // Process the bytes if
 let processed = processChunk(value); // a callback was passed.
 if (processed) {
 body += processed;
 }
 } else { // Otherwise, convert bytes
 body += decoder.decode(value, {stream: true}); // to text.
 }

 if (reportProgress) { // If a progress callback was
 bytesRead += value.length; // passed, then call it
 reportProgress(bytesRead, bytesRead / expectedBytes);
 }
 }
 if (done) { // If this is the last chunk,
 break; // exit the loop
 }
 }

 return body; // Return the body text we accumulated
}

This streaming API is new at the time of this writing and is expected to evolve. In
particular, there are plans to make ReadableStream objects asynchronously iterable so
that they can be used with for/await loops (§13.4.1).

Specifying the request method and request body

In each of the fetch() examples shown so far, we have made an HTTP (or HTTPS)
GET request. If you want to use a different request method (such as POST, PUT, or
DELETE), simply use the two-argument version of fetch(), passing an Options
object with a method parameter:

fetch(url, { method: "POST" }).then(r => r.json()).then(handleResponse);

POST and PUT requests typically have a request body containing data to be sent to
the server. As long as the method property is not set to "GET" or "HEAD" (which do not
support request bodies), you can specify a request body by setting the body property
of the Options object:

fetch(url, {
 method: "POST",
 body: "hello world"
})

524 | Chapter 15: JavaScript in Web Browsers

When you specify a request body, the browser automatically adds an appropriate
“Content-Length” header to the request. When the body is a string, as in the preced‐
ing example, the browser defaults the “Content-Type” header to “text/
plain;charset=UTF-8.” You may need to override this default if you specify a string
body of some more specific type such as “text/html” or “application/json”:

fetch(url, {
 method: "POST",
 headers: new Headers({"Content-Type": "application/json"}),
 body: JSON.stringify(requestBody)
})

The body property of the fetch() options object does not have to be a string. If you
have binary data in a typed array or a DataView object or an ArrayBuffer, you can set
the body property to that value and specify an appropriate “Content-Type” header. If
you have binary data in Blob form, you can simply set body to the Blob. Blobs have a
type property that specifies their content type, and the value of this property is used
as the default value of the “Content-Type” header.

With POST requests, is it somewhat common to pass a set of name/value parameters
in the request body (instead of encoding them into the query portion of the URL).
There are two ways to do this:

• You can specify your parameter names and values with URLSearchParams
(which we saw earlier in this section, and which is documented in §11.9) and
then pass the URLSearchParams object as the value of the body property. If you
do this, the body will be set to a string that looks like the query portion of a URL,
and the “Content-Type” header will be automatically set to “application/x-www-
form-urlencoded;charset=UTF-8.”

• If instead you specify your parameter names and values with a FormData object,
the body will use a more verbose multipart encoding and “Content-Type” will be
set to “multipart/form-data; boundary=…” with a unique boundary string that
matches the body. Using a FormData object is particularly useful when the values
you want to upload are long, or are File or Blob objects that may each have its
own “Content-Type.” FormData objects can be created and initialized with values
by passing a <form> element to the FormData() constructor. But you can also cre‐
ate “multipart/form-data” request bodies by invoking the FormData() constructor
with no arguments and initializing the name/value pairs it represents with the
set() and append() methods.

15.11 Networking | 525

File upload with fetch()
Uploading files from a user’s computer to a web server is a common task and can be
accomplished using a FormData object as the request body. A common way to obtain
a File object is to display an <input type="file"> element on your web page and
listen for “change” events on that element. When a “change” event occurs, the files
array of the input element should contain at least one File object. File objects are also
available through the HTML drag-and-drop API. That API is not covered in this
book, but you can get files from the dataTransfer.files array of the event object
passed to an event listener for “drop” events.

Remember also that File objects are a kind of Blob, and sometimes it can be useful to
upload Blobs. Suppose you’ve written a web application that allows the user to create
drawings in a <canvas> element. You can upload the user’s drawings as PNG files
with code like the following:

// The canvas.toBlob() function is callback-based.
// This is a Promise-based wrapper for it.
async function getCanvasBlob(canvas) {
 return new Promise((resolve, reject) => {
 canvas.toBlob(resolve);
 });
}

// Here is how we upload a PNG file from a canvas
async function uploadCanvasImage(canvas) {
 let pngblob = await getCanvasBlob(canvas);
 let formdata = new FormData();
 formdata.set("canvasimage", pngblob);
 let response = await fetch("/upload", { method: "POST", body: formdata });
 let body = await response.json();
}

Cross-origin requests

Most often, fetch() is used by web applications to request data from their own web
server. Requests like these are known as same-origin requests because the URL passed
to fetch() has the same origin (protocol plus hostname plus port) as the document
that contains the script that is making the request.

For security reasons, web browsers generally disallow (though there are exceptions
for images and scripts) cross-origin network requests. However, Cross-Origin
Resource Sharing, or CORS, enables safe cross-origin requests. When fetch() is used
with a cross-origin URL, the browser adds an “Origin” header to the request (and
does not allow it to be overridden via the headers property) to notify the web server
that the request is coming from a document with a different origin. If the server
responds to the request with an appropriate “Access-Control-Allow-Origin” header,

526 | Chapter 15: JavaScript in Web Browsers

then the request proceeds. Otherwise, if the server does not explicitly allow the
request, then the Promise returned by fetch() is rejected.

Aborting a request

Sometimes you may want to abort a fetch() request that you have already issued,
perhaps because the user clicked a Cancel button or the request is taking too long.
The fetch API allows requests to be aborted using the AbortController and AbortSig‐
nal classes. (These classes define a generic abort mechanism suitable for use by other
APIs as well.)

If you want to have the option of aborting a fetch() request, then create an Abort‐
Controller object before starting the request. The signal property of the controller
object is an AbortSignal object. Pass this signal object as the value of the signal prop‐
erty of the options object that you pass to fetch(). Having done that, you can call the
abort() method of the controller object to abort the request, which will cause any
Promise objects related to the fetch request to reject with an exception.

Here is an example of using the AbortController mechanism to enforce a timeout for
fetch requests:

// This function is like fetch(), but it adds support for a timeout
// property in the options object and aborts the fetch if it is not complete
// within the number of milliseconds specified by that property.
function fetchWithTimeout(url, options={}) {
 if (options.timeout) { // If the timeout property exists and is nonzero
 let controller = new AbortController(); // Create a controller
 options.signal = controller.signal; // Set the signal property
 // Start a timer that will send the abort signal after the specified
 // number of milliseconds have passed. Note that we never cancel
 // this timer. Calling abort() after the fetch is complete has
 // no effect.
 setTimeout(() => { controller.abort(); }, options.timeout);
 }
 // Now just perform a normal fetch
 return fetch(url, options);
}

Miscellaneous request options

We’ve seen that an Options object can be passed as the second argument to fetch()
(or as the second argument to the Request() constructor) to specify the request
method, request headers, and request body. It supports a number of other options as
well, including these:

15.11 Networking | 527

cache

Use this property to override the browser’s default caching behavior. HTTP cach‐
ing is a complex topic that is beyond the scope of this book, but if you know
something about how it works, you can use the following legal values of cache:

"default"

This value specifies the default caching behavior. Fresh responses in the cache are
served directly from the cache, and stale responses are revalidated before being
served.

"no-store"

This value makes the browser ignore its cache. The cache is not checked for
matches when the request is made and is not updated when the response
arrives.

"reload"

This value tells the browser to always make a normal network request, ignor‐
ing the cache. When the response arrives, however, it is stored in the cache.

"no-cache"

This (misleadingly named) value tells the browser to not serve fresh values
from the cache. Fresh or stale cached values are revalidated before being
returned.

"force-cache"

This value tells the browser to serve responses from the cache even if they
are stale.

redirect

This property controls how the browser handles redirect responses from the
server. The three legal values are:

"follow"

This is the default value, and it makes the browser follow redirects automati‐
cally. If you use this default, the Response objects you get with fetch()
should never have a status in the 300 to 399 range.

"error"

This value makes fetch() reject its returned Promise if the server returns a
redirect response.

"manual"

This value means that you want to manually handle redirect responses, and
the Promise returned by fetch() may resolve to a Response object with a
status in the 300 to 399 range. In this case, you will have to use the “Loca‐
tion” header of the Response to manually follow the redirection.

528 | Chapter 15: JavaScript in Web Browsers

referrer

You can set this property to a string that contains a relative URL to specify the
value of the HTTP “Referer” header (which is historically misspelled with three
Rs instead of four). If you set this property to the empty string, then the “Referer”
header will be omitted from the request.

15.11.2 Server-Sent Events
A fundamental feature of the HTTP protocol upon which the web is built is that cli‐
ents initiate requests and servers respond to those requests. Some web apps find it
useful, however, to have their server send them notifications when events occur. This
does not come naturally to HTTP, but the technique that has been devised is for the
client to make a request to the server, and then neither the client nor the server close
the connection. When the server has something to tell the client about, it writes data
to the connection but keeps it open. The effect is as if the client makes a network
request and the server responds in a slow and bursty way with significant pauses
between bursts of activity. Network connections like this don’t usually stay open for‐
ever, but if the client detects that the connection has closed, it can simply make
another request to reopen the connection.

This technique for allowing servers to send messages to clients is surprisingly effec‐
tive (though it can be expensive on the server side because the server must maintain
an active connection to all of its clients). Because it is a useful programming pattern,
client-side JavaScript supports it with the EventSource API. To create this kind of
long-lived request connection to a web server, simply pass a URL to the Even
tSource() constructor. When the server writes (properly formatted) data to the con‐
nection, the EventSource object translates those into events that you can listen for:

let ticker = new EventSource("stockprices.php");
ticker.addEventListener("bid", (event) => {
 displayNewBid(event.data);
}

The event object associated with a message event has a data property that holds
whatever string the server sent as the payload for this event. The event object also has
a type property, like all event objects do, that specifies the name of the event. The
server determines the type of the events that are generated. If the server omits an
event name in the data it writes, then the event type defaults to “message.”

The Server-Sent Event protocol is straightforward. The client initiates a connection to
the server (when it creates the EventSource object), and the server keeps this connec‐
tion open. When an event occurs, the server writes lines of text to the connection. An
event going over the wire might look like this, if the comments were omitted:

event: bid // sets the type of the event object
data: GOOG // sets the data property

15.11 Networking | 529

data: 999 // appends a newline and more data
 // a blank line marks the end of the event

There are some additional details to the protocol that allow events to be given IDs
and allow a reconnecting client to tell the server what the ID of the last event it
received was, so that a server can resend any events it missed. Those details are invisi‐
ble on the client side, however, and are not discussed here.

One obvious application for Server-Sent Events is for multiuser collaborations like
online chat. A chat client might use fetch() to post messages to the chat room and
subscribe to the stream of chatter with an EventSource object. Example 15-11 demon‐
strates how easy it is to write a chat client like this with EventSource.

Example 15-11. A simple chat client using EventSource

<html>
<head><title>SSE Chat</title></head>
<body>
<!-- The chat UI is just a single text input field -->
<!-- New chat messages will be inserted before this input field -->
<input id="input" style="width:100%; padding:10px; border:solid black 2px"/>
<script>
// Take care of some UI details
let nick = prompt("Enter your nickname"); // Get user's nickname
let input = document.getElementById("input"); // Find the input field
input.focus(); // Set keyboard focus

// Register for notification of new messages using EventSource
let chat = new EventSource("/chat");
chat.addEventListener("chat", event => { // When a chat message arrives
 let div = document.createElement("div"); // Create a <div>
 div.append(event.data); // Add text from the message
 input.before(div); // And add div before input
 input.scrollIntoView(); // Ensure input elt is visible
});

// Post the user's messages to the server using fetch
input.addEventListener("change", ()=>{ // When the user strikes return
 fetch("/chat", { // Start an HTTP request to this url.
 method: "POST", // Make it a POST request with body
 body: nick + ": " + input.value // set to the user's nick and input.
 })
 .catch(e => console.error); // Ignore response, but log any errors.
 input.value = ""; // Clear the input
});
</script>
</body>
</html>

530 | Chapter 15: JavaScript in Web Browsers

The server-side code for this chat program is not much more complicated than the
client-side code. Example 15-12 is a simple Node HTTP server. When a client
requests the root URL “/”, it sends the chat client code shown in Example 15-11.
When a client makes a GET request for the URL “/chat”, it saves the response object
and keeps that connection open. And when a client makes a POST request to “/chat”,
it uses the body of the request as a chat message and writes it, using the “text/event-
stream” format to each of the saved response objects. The server code listens on port
8080, so after running it with Node, point your browser to http://localhost:8080
to connect and begin chatting with yourself.

Example 15-12. A Server-Sent Events chat server

// This is server-side JavaScript, intended to be run with NodeJS.
// It implements a very simple, completely anonymous chat room.
// POST new messages to /chat, or GET a text/event-stream of messages
// from the same URL. Making a GET request to / returns a simple HTML file
// that contains the client-side chat UI.
const http = require("http");
const fs = require("fs");
const url = require("url");

// The HTML file for the chat client. Used below.
const clientHTML = fs.readFileSync("chatClient.html");

// An array of ServerResponse objects that we're going to send events to
let clients = [];

// Create a new server, and listen on port 8080.
// Connect to http://localhost:8080/ to use it.
let server = new http.Server();
server.listen(8080);

// When the server gets a new request, run this function
server.on("request", (request, response) => {
 // Parse the requested URL
 let pathname = url.parse(request.url).pathname;

 // If the request was for "/", send the client-side chat UI.
 if (pathname === "/") { // A request for the chat UI
 response.writeHead(200, {"Content-Type": "text/html"}).end(clientHTML);
 }
 // Otherwise send a 404 error for any path other than "/chat" or for
 // any method other than "GET" and "POST"
 else if (pathname !== "/chat" ||
 (request.method !== "GET" && request.method !== "POST")) {
 response.writeHead(404).end();
 }
 // If the /chat request was a GET, then a client is connecting.
 else if (request.method === "GET") {

15.11 Networking | 531

 acceptNewClient(request, response);
 }
 // Otherwise the /chat request is a POST of a new message
 else {
 broadcastNewMessage(request, response);
 }
});

// This handles GET requests for the /chat endpoint which are generated when
// the client creates a new EventSource object (or when the EventSource
// reconnects automatically).
function acceptNewClient(request, response) {
 // Remember the response object so we can send future messages to it
 clients.push(response);

 // If the client closes the connection, remove the corresponding
 // response object from the array of active clients
 request.connection.on("end", () => {
 clients.splice(clients.indexOf(response), 1);
 response.end();
 });

 // Set headers and send an initial chat event to just this one client
 response.writeHead(200, {
 "Content-Type": "text/event-stream",
 "Connection": "keep-alive",
 "Cache-Control": "no-cache"
 });
 response.write("event: chat\ndata: Connected\n\n");

 // Note that we intentionally do not call response.end() here.
 // Keeping the connection open is what makes Server-Sent Events work.
}

// This function is called in response to POST requests to the /chat endpoint
// which clients send when users type a new message.
async function broadcastNewMessage(request, response) {
 // First, read the body of the request to get the user's message
 request.setEncoding("utf8");
 let body = "";
 for await (let chunk of request) {
 body += chunk;
 }

 // Once we've read the body send an empty response and close the connection
 response.writeHead(200).end();

 // Format the message in text/event-stream format, prefixing each
 // line with "data: "
 let message = "data: " + body.replace("\n", "\ndata: ");

 // Give the message data a prefix that defines it as a "chat" event

532 | Chapter 15: JavaScript in Web Browsers

 // and give it a double newline suffix that marks the end of the event.
 let event = `event: chat\n${message}\n\n`;

 // Now send this event to all listening clients
 clients.forEach(client => client.write(event));
}

15.11.3 WebSockets
The WebSocket API is a simple interface to a complex and powerful network proto‐
col. WebSockets allow JavaScript code in the browser to easily exchange text and
binary messages with a server. As with Server-Sent Events, the client must establish
the connection, but once the connection is established, the server can asynchronously
send messages to the client. Unlike SSE, binary messages are supported, and messages
can be sent in both directions, not just from server to client.

The network protocol that enables WebSockets is a kind of extension to HTTP.
Although the WebSocket API is reminiscent of low-level network sockets, connection
endpoints are not identified by IP address and port. Instead, when you want to con‐
nect to a service using the WebSocket protocol, you specify the service with a URL,
just as you would for a web service. WebSocket URLs begin with wss:// instead of
https://, however. (Browsers typically restrict WebSockets to only work in pages
loaded over secure https:// connections).

To establish a WebSocket connection, the browser first establishes an HTTP connec‐
tion and sends the server an Upgrade: websocket header requesting that the connec‐
tion be switched from the HTTP protocol to the WebSocket protocol. What this
means is that in order to use WebSockets in your client-side JavaScript, you will need
to be working with a web server that also speaks the WebSocket protocol, and you
will need to have server-side code written to send and receive data using that proto‐
col. If your server is set up that way, then this section will explain everything you
need to know to handle the client-side end of the connection. If your server does not
support the WebSocket protocol, consider using Server-Sent Events (§15.11.2)
instead.

Creating, connecting, and disconnecting WebSockets
If you want to communicate with a WebSocket-enabled server, create a WebSocket
object, specifying the wss:// URL that identifies the server and service you want to
use:

let socket = new WebSocket("wss://example.com/stockticker");

When you create a WebSocket, the connection process begins automatically. But a
newly created WebSocket will not be connected when it is first returned.

15.11 Networking | 533

The readyState property of the socket specifies what state the connection is in. This
property can have the following values:

WebSocket.CONNECTING

This WebSocket is connecting.

WebSocket.OPEN

This WebSocket is connected and ready for communication.

WebSocket.CLOSING

This WebSocket connection is being closed.

WebSocket.CLOSED

This WebSocket has been closed; no further communication is possible. This
state can also occur when the initial connection attempt fails.

When a WebSocket transitions from the CONNECTING to the OPEN state, it fires
an “open” event, and you can listen for this event by setting the onopen property of
the WebSocket or by calling addEventListener() on that object.

If a protocol or other error occurs for a WebSocket connection, the WebSocket object
fires an “error” event. You can set onerror to define a handler, or, alternatively, use
addEventListener().

When you are done with a WebSocket, you can close the connection by calling the
close() method of the WebSocket object. When a WebSocket changes to the
CLOSED state, it fires a “close” event, and you can set the onclose property to listen
for this event.

Sending messages over a WebSocket
To send a message to the server on the other end of a WebSocket connection, simply
invoke the send() method of the WebSocket object. send() expects a single message
argument, which can be a string, Blob, ArrayBuffer, typed array, or DataView object.

The send() method buffers the specified message to be transmitted and returns
before the message is actually sent. The bufferedAmount property of the WebSocket
object specifies the number of bytes that are buffered but not yet sent. (Surprisingly,
WebSockets do not fire any event when this value reaches 0.)

Receiving messages from a WebSocket
To receive messages from a server over a WebSocket, register an event handler for
“message” events, either by setting the onmessage property of the WebSocket object,
or by calling addEventListener(). The object associated with a “message” event is a
MessageEvent instance with a data property that contains the server’s message. If the
server sent UTF-8 encoded text, then event.data will be a string containing that text.

534 | Chapter 15: JavaScript in Web Browsers

If the server sends a message that consists of binary data instead of text, then the data
property will (by default) be a Blob object representing that data. If you prefer to
receive binary messages as ArrayBuffers instead of Blobs, set the binaryType prop‐
erty of the WebSocket object to the string “arraybuffer.”

There are a number of Web APIs that use MessageEvent objects for exchanging mes‐
sages. Some of these APIs use the structured clone algorithm (see “The Structured
Clone Algorithm” on page 513) to allow complex data structures as the message pay‐
load. WebSockets is not one of those APIs: messages exchanged over a WebSocket are
either a single string of Unicode characters or a single string of bytes (represented as a
Blob or an ArrayBuffer).

Protocol negotiation
The WebSocket protocol enables the exchange of text and binary messages, but says
nothing at all about the structure or meaning of those messages. Applications that use
WebSockets must build their own communication protocol on top of this simple
message-exchange mechanism. The use of wss:// URLs helps with this: each URL
will typically have its own rules for how messages are to be exchanged. If you write
code to connect to wss://example.com/stockticker, then you probably know that
you will be receiving messages about stock prices.

Protocols tend to evolve, however. If a hypothetical stock quotation protocol is upda‐
ted, you can define a new URL and connect to the updated service as wss://exam
ple.com/stockticker/v2. URL-based versioning is not always sufficient, however.
With complex protocols that have evolved over time, you may end up with deployed
servers that support multiple versions of the protocol and deployed clients that sup‐
port a different set of protocol versions.

Anticipating this situation, the WebSocket protocol and API include an application-
level protocol negotiation feature. When you call the WebSocket() constructor, the
wss:// URL is the first argument, but you can also pass an array of strings as the sec‐
ond argument. If you do this, you are specifying a list of application protocols that
you know how to handle and asking the server to pick one. During the connection
process, the server will choose one of the protocols (or will fail with an error if it does
not support any of the client’s options). Once the connection has been established, the
protocol property of the WebSocket object specifies which protocol version the
server chose.

15.11 Networking | 535

15.12 Storage
Web applications can use browser APIs to store data locally on the user’s computer.
This client-side storage serves to give the web browser a memory. Web apps can store
user preferences, for example, or even store their complete state, so that they can
resume exactly where you left off at the end of your last visit. Client-side storage is
segregated by origin, so pages from one site can’t read the data stored by pages from
another site. But two pages from the same site can share storage and use it as a com‐
munication mechanism. Data input in a form on one page can be displayed in a table
on another page, for example. Web applications can choose the lifetime of the data
they store: data can be stored temporarily so that it is retained only until the window
closes or the browser exits, or it can be saved on the user’s computer and stored per‐
manently so that it is available months or years later.

There are a number of forms of client-side storage:

Web Storage
The Web Storage API consists of the localStorage and sessionStorage objects,
which are essentially persistent objects that map string keys to string values. Web
Storage is very easy to use and is suitable for storing large (but not huge)
amounts of data.

Cookies
Cookies are an old client-side storage mechanism that was designed for use by
server-side scripts. An awkward JavaScript API makes cookies scriptable on the
client side, but they’re hard to use and suitable only for storing small amounts of
textual data. Also, any data stored as cookies is always transmitted to the server
with every HTTP request, even if the data is only of interest to the client.

IndexedDB
IndexedDB is an asynchronous API to an object database that supports indexing.

Storage, Security, and Privacy
Web browsers often offer to remember web passwords for you, and they store them
safely in encrypted form on the device. But none of the forms of client-side data stor‐
age described in this chapter involve encryption: you should assume that anything
your web applications save resides on the user’s device in unencrypted form. Stored
data is therefore accessible to curious users who share access to the device and to
malicious software (such as spyware) that exists on the device. For this reason, no
form of client-side storage should ever be used for passwords, financial account num‐
bers, or other similarly sensitive information.

536 | Chapter 15: JavaScript in Web Browsers

15.12.1 localStorage and sessionStorage
The localStorage and sessionStorage properties of the Window object refer to
Storage objects. A Storage object behaves much like a regular JavaScript object, except
that:

• The property values of Storage objects must be strings.
• The properties stored in a Storage object persist. If you set a property of the local‐

Storage object and then the user reloads the page, the value you saved in that
property is still available to your program.

You can use the localStorage object like this, for example:

let name = localStorage.username; // Query a stored value.
if (!name) {
 name = prompt("What is your name?"); // Ask the user a question.
 localStorage.username = name; // Store the user's response.
}

You can use the delete operator to remove properties from localStorage and ses
sionStorage, and you can use a for/in loop or Object.keys() to enumerate the
properties of a Storage object. If you want to remove all properties of a storage object,
call the clear() method:

localStorage.clear();

Storage objects also define getItem(), setItem(), and deleteItem() methods, which
you can use instead of direct property access and the delete operator if you want to.

Keep in mind that the properties of Storage objects can only store strings. If you want
to store and retrieve other kinds of data, you’ll have to encode and decode it yourself.

For example:

// If you store a number, it is automatically converted to a string.
// Don't forget to parse it when retrieving it from storage.
localStorage.x = 10;
let x = parseInt(localStorage.x);

// Convert a Date to a string when setting, and parse it when getting
localStorage.lastRead = (new Date()).toUTCString();
let lastRead = new Date(Date.parse(localStorage.lastRead));

// JSON makes a convenient encoding for any primitive or data structure
localStorage.data = JSON.stringify(data); // Encode and store
let data = JSON.parse(localStorage.data); // Retrieve and decode.

15.12 Storage | 537

Storage lifetime and scope

The difference between localStorage and sessionStorage involves the lifetime and
scope of the storage. Data stored through localStorage is permanent: it does not
expire and remains stored on the user’s device until a web app deletes it or the user
asks the browser (through some browser-specific UI) to delete it.

localStorage is scoped to the document origin. As explained in “The same-origin
policy” on page 424, the origin of a document is defined by its protocol, hostname,
and port. All documents with the same origin share the same localStorage data
(regardless of the origin of the scripts that actually access localStorage). They can
read each other’s data, and they can overwrite each other’s data. But documents with
different origins can never read or overwrite each other’s data (even if they’re both
running a script from the same third-party server).

Note that localStorage is also scoped by browser implementation. If you visit a site
using Firefox and then visit again using Chrome (for example), any data stored dur‐
ing the first visit will not be accessible during the second visit.

Data stored through sessionStorage has a different lifetime than data stored
through localStorage: it has the same lifetime as the top-level window or browser
tab in which the script that stored it is running. When the window or tab is perma‐
nently closed, any data stored through sessionStorage is deleted. (Note, however,
that modern browsers have the ability to reopen recently closed tabs and restore the
last browsing session, so the lifetime of these tabs and their associated sessionStor
age may be longer than it seems.)

Like localStorage, sessionStorage is scoped to the document origin so that docu‐
ments with different origins will never share sessionStorage. But sessionStorage is
also scoped on a per-window basis. If a user has two browser tabs displaying docu‐
ments from the same origin, those two tabs have separate sessionStorage data: the
scripts running in one tab cannot read or overwrite the data written by scripts in the
other tab, even if both tabs are visiting exactly the same page and are running exactly
the same scripts.

Storage events

Whenever the data stored in localStorage changes, the browser triggers a “storage”
event on any other Window objects to which that data is visible (but not on the win‐
dow that made the change). If a browser has two tabs open to pages with the same
origin, and one of those pages stores a value in localStorage, the other tab will
receive a “storage” event.

Register a handler for “storage” events either by setting window.onstorage or by call‐
ing window.addEventListener() with event type “storage”.

538 | Chapter 15: JavaScript in Web Browsers

The event object associated with a “storage” event has some important properties:

key

The name or key of the item that was set or removed. If the clear() method was
called, this property will be null.

newValue

Holds the new value of the item, if there is one. If removeItem() was called, this
property will not be present.

oldValue

Holds the old value of an existing item that changed or was deleted. If a new
property (with no old value) is added, then this property will not be present in
the event object.

storageArea

The Storage object that changed. This is usually the localStorage object.

url

The URL (as a string) of the document whose script made this storage change.

Note that localStorage and the “storage” event can serve as a broadcast mechanism
by which a browser sends a message to all windows that are currently visiting the
same website. If a user requests that a website stop performing animations, for exam‐
ple, the site might store that preference in localStorage so that it can honor it in
future visits. And by storing the preference, it generates an event that allows other
windows displaying the same site to honor the request as well.

As another example, imagine a web-based image-editing application that allows the
user to display tool palettes in separate windows. When the user selects a tool, the
application uses localStorage to save the current state and to generate a notification
to other windows that a new tool has been selected.

15.12.2 Cookies
A cookie is a small amount of named data stored by the web browser and associated
with a particular web page or website. Cookies were designed for server-side pro‐
gramming, and at the lowest level, they are implemented as an extension to the HTTP
protocol. Cookie data is automatically transmitted between the web browser and web
server, so server-side scripts can read and write cookie values that are stored on the
client. This section demonstrates how client-side scripts can also manipulate cookies
using the cookie property of the Document object.

15.12 Storage | 539

Why “Cookie”?
The name “cookie” does not have a lot of significance, but it is not used without prec‐
edent. In the annals of computing history, the term “cookie” or “magic cookie” has
been used to refer to a small chunk of data, particularly a chunk of privileged or secret
data, akin to a password, that proves identity or permits access. In JavaScript, cookies
are used to save state and can establish a kind of identity for a web browser. Cookies
in JavaScript do not use any kind of cryptography, however, and are not secure in any
way (although transmitting them across an https: connection helps).

The API for manipulating cookies is an old and cryptic one. There are no methods
involved: cookies are queried, set, and deleted by reading and writing the cookie
property of the Document object using specially formatted strings. The lifetime and
scope of each cookie can be individually specified with cookie attributes. These
attributes are also specified with specially formatted strings set on the same cookie
property.

The subsections that follow explain how to query and set cookie values and attributes.

Reading cookies

When you read the document.cookie property, it returns a string that contains all the
cookies that apply to the current document. The string is a list of name/value pairs
separated from each other by a semicolon and a space. The cookie value is just the
value itself and does not include any of the attributes that may be associated with that
cookie. (We’ll talk about attributes next.) In order to make use of the docu
ment.cookie property, you must typically call the split() method to break it into
individual name/value pairs.

Once you have extracted the value of a cookie from the cookie property, you must
interpret that value based on whatever format or encoding was used by the cookie’s
creator. You might, for example, pass the cookie value to decodeURIComponent() and
then to JSON.parse().

The code that follows defines a getCookie() function that parses the docu
ment.cookie property and returns an object whose properties specify the names and
values of the document’s cookies:

// Return the document's cookies as a Map object.
// Assume that cookie values are encoded with encodeURIComponent().
function getCookies() {
 let cookies = new Map(); // The object we will return
 let all = document.cookie; // Get all cookies in one big string
 let list = all.split("; "); // Split into individual name/value pairs
 for(let cookie of list) { // For each cookie in that list

540 | Chapter 15: JavaScript in Web Browsers

 if (!cookie.includes("=")) continue; // Skip if there is no = sign
 let p = cookie.indexOf("="); // Find the first = sign
 let name = cookie.substring(0, p); // Get cookie name
 let value = cookie.substring(p+1); // Get cookie value
 value = decodeURIComponent(value); // Decode the value
 cookies.set(name, value); // Remember cookie name and value
 }
 return cookies;
}

Cookie attributes: lifetime and scope
In addition to a name and a value, each cookie has optional attributes that control its
lifetime and scope. Before we can describe how to set cookies with JavaScript, we
need to explain cookie attributes.

Cookies are transient by default; the values they store last for the duration of the web
browser session but are lost when the user exits the browser. If you want a cookie to
last beyond a single browsing session, you must tell the browser how long (in sec‐
onds) you would like it to retain the cookie by specifying a max-age attribute. If you
specify a lifetime, the browser will store cookies in a file and delete them only once
they expire.

Cookie visibility is scoped by document origin as localStorage and sessionStorage
are, but also by document path. This scope is configurable through cookie attributes
path and domain. By default, a cookie is associated with, and accessible to, the web
page that created it and any other web pages in the same directory or any subdirecto‐
ries of that directory. If the web page example.com/catalog/index.html creates a cookie,
for example, that cookie is also visible to example.com/catalog/order.html and exam‐
ple.com/catalog/widgets/index.html, but it is not visible to example.com/about.html.

This default visibility behavior is often exactly what you want. Sometimes, though,
you’ll want to use cookie values throughout a website, regardless of which page cre‐
ates the cookie. For instance, if the user enters their mailing address in a form on one
page, you may want to save that address to use as the default the next time they return
to the page and also as the default in an entirely unrelated form on another page
where they are asked to enter a billing address. To allow this usage, you specify a path
for the cookie. Then, any web page from the same web server whose URL begins with
the path prefix you specified can share the cookie. For example, if a cookie set by
example.com/catalog/widgets/index.html has its path set to “/catalog”, that cookie is
also visible to example.com/catalog/order.html. Or, if the path is set to “/”, the cookie is
visible to any page in the example.com domain, giving the cookie a scope like that of
localStorage.

By default, cookies are scoped by document origin. Large websites may want cookies
to be shared across subdomains, however. For example, the server at

15.12 Storage | 541

order.example.com may need to read cookie values set from catalog.example.com. This
is where the domain attribute comes in. If a cookie created by a page on catalog.exam‐
ple.com sets its path attribute to “/” and its domain attribute to “.example.com,” that
cookie is available to all web pages on catalog.example.com, orders.example.com, and
any other server in the example.com domain. Note that you cannot set the domain of
a cookie to a domain other than a parent domain of your server.

The final cookie attribute is a boolean attribute named secure that specifies how
cookie values are transmitted over the network. By default, cookies are insecure,
which means that they are transmitted over a normal, insecure HTTP connection. If
a cookie is marked secure, however, it is transmitted only when the browser and
server are connected via HTTPS or another secure protocol.

Cookie Limitations
Cookies are intended for storage of small amounts of data by server-side scripts, and
that data is transferred to the server each time a relevant URL is requested. The stan‐
dard that defines cookies encourages browser manufacturers to allow unlimited num‐
bers of cookies of unrestricted size but does not require browsers to retain more than
300 cookies total, 20 cookies per web server, or 4 KB of data per cookie (both name
and value count toward this 4 KB limit). In practice, browsers allow many more than
300 cookies total, but the 4 KB size limit may still be enforced by some.

Storing cookies
To associate a transient cookie value with the current document, simply set the
cookie property to a name=value string. For example:

document.cookie = `version=${encodeURIComponent(document.lastModified)}`;

The next time you read the cookie property, the name/value pair you stored is
included in the list of cookies for the document. Cookie values cannot include semi‐
colons, commas, or whitespace. For this reason, you may want to use the core Java‐
Script global function encodeURIComponent() to encode the value before storing it in
the cookie. If you do this, you’ll have to use the corresponding decodeURICompo
nent() function when you read the cookie value.

A cookie written with a simple name/value pair lasts for the current web-browsing
session but is lost when the user exits the browser. To create a cookie that can last
across browser sessions, specify its lifetime (in seconds) with a max-age attribute. You
can do this by setting the cookie property to a string of the form: name=value; max-
age=seconds. The following function sets a cookie with an optional max-age
attribute:

542 | Chapter 15: JavaScript in Web Browsers

// Store the name/value pair as a cookie, encoding the value with
// encodeURIComponent() in order to escape semicolons, commas, and spaces.
// If daysToLive is a number, set the max-age attribute so that the cookie
// expires after the specified number of days. Pass 0 to delete a cookie.
function setCookie(name, value, daysToLive=null) {
 let cookie = `${name}=${encodeURIComponent(value)}`;
 if (daysToLive !== null) {
 cookie += `; max-age=${daysToLive*60*60*24}`;
 }
 document.cookie = cookie;
}

Similarly, you can set the path and domain attributes of a cookie by appending strings
of the form ;path=value or ;domain=value to the string that you set on the docu
ment.cookie property. To set the secure property, simply append ;secure.

To change the value of a cookie, set its value again using the same name, path, and
domain along with the new value. You can change the lifetime of a cookie when you
change its value by specifying a new max-age attribute.

To delete a cookie, set it again using the same name, path, and domain, specifying an
arbitrary (or empty) value, and a max-age attribute of 0.

15.12.3 IndexedDB
Web application architecture has traditionally featured HTML, CSS, and JavaScript
on the client and a database on the server. You may find it surprising, therefore, to
learn that the web platform includes a simple object database with a JavaScript API
for persistently storing JavaScript objects on the user’s computer and retrieving them
as needed.

IndexedDB is an object database, not a relational database, and it is much simpler
than databases that support SQL queries. It is more powerful, efficient, and robust
than the key/value storage provided by the localStorage, however. Like the local
Storage, IndexedDB databases are scoped to the origin of the containing document:
two web pages with the same origin can access each other’s data, but web pages from
different origins cannot.

Each origin can have any number of IndexedDB databases. Each one has a name that
must be unique within the origin. In the IndexedDB API, a database is simply a col‐
lection of named object stores. As the name implies, an object store stores objects.
Objects are serialized into the object store using the structured clone algorithm (see
“The Structured Clone Algorithm” on page 513), which means that the objects you
store can have properties whose values are Maps, Sets, or typed arrays. Each object
must have a key by which it can be sorted and retrieved from the store. Keys must be
unique—two objects in the same store may not have the same key—and they must
have a natural ordering so that they can be sorted. JavaScript strings, numbers, and

15.12 Storage | 543

Date objects are valid keys. An IndexedDB database can automatically generate a
unique key for each object you insert into the database. Often, though, the objects
you insert into an object store will already have a property that is suitable for use as a
key. In this case, you specify a “key path” for that property when you create the object
store. Conceptually, a key path is a value that tells the database how to extract an
object’s key from the object.

In addition to retrieving objects from an object store by their primary key value, you
may want to be able to search based on the value of other properties in the object. In
order to be able to do this, you can define any number of indexes on the object store.
(The ability to index an object store explains the name “IndexedDB.”) Each index
defines a secondary key for the stored objects. These indexes are not generally
unique, and multiple objects may match a single key value.

IndexedDB provides atomicity guarantees: queries and updates to the database are
grouped within a transaction so that they all succeed together or all fail together and
never leave the database in an undefined, partially updated state. Transactions in
IndexedDB are simpler than in many database APIs; we’ll mention them again later.

Conceptually, the IndexedDB API is quite simple. To query or update a database, you
first open the database you want (specifying it by name). Next, you create a transac‐
tion object and use that object to look up the desired object store within the database,
also by name. Finally, you look up an object by calling the get() method of the object
store or store a new object by calling put() (or by calling add(), if you want to avoid
overwriting existing objects).

If you want to look up the objects for a range of keys, you create an IDBRange object
that specifies the upper and lower bounds of the range and pass it to the getAll() or
openCursor() methods of the object store.

If you want to make a query using a secondary key, you look up the named index of
the object store, then call the get(), getAll(), or openCursor() methods of the
index object, passing either a single key or an IDBRange object.

This conceptual simplicity of the IndexedDB API is complicated, however, by the fact
that the API is asynchronous (so that web apps can use it without blocking the brows‐
er’s main UI thread). IndexedDB was defined before Promises were widely supported,
so the API is event-based rather than Promise-based, which means that it does not
work with async and await.

Creating transactions and looking up object stores and indexes are synchronous
operations. But opening a database, updating an object store, and querying a store or
index are all asynchronous operations. These asynchronous methods all immediately
return a request object. The browser triggers a success or error event on the request
object when the request succeeds or fails, and you can define handlers with the onsuc
cess and onerror properties. Inside an onsuccess handler, the result of the operation

544 | Chapter 15: JavaScript in Web Browsers

is available as the result property of the request object. Another useful event is the
“complete” event dispatched on transaction objects when a transaction has completed
successfully.

One convenient feature of this asynchronous API is that it simplifies transaction
management. The IndexedDB API forces you to create a transaction object in order
to get the object store on which you can perform queries and updates. In a synchro‐
nous API, you would expect to explicitly mark the end of the transaction by calling a
commit() method. But with IndexedDB, transactions are automatically committed (if
you do not explicitly abort them) when all the onsuccess event handlers have run
and there are no more pending asynchronous requests that refer to that transaction.

There is one more event that is important to the IndexedDB API. When you open a
database for the first time, or when you increment the version number of an existing
database, IndexedDB fires an “upgradeneeded” event on the request object returned
by the indexedDB.open() call. The job of the event handler for “upgradeneeded”
events is to define or update the schema for the new database (or the new version of
the existing database). For IndexedDB databases, this means creating object stores
and defining indexes on those object stores. And in fact, the only time the IndexedDB
API allows you to create an object store or an index is in response to an “upgradenee‐
ded” event.

With this high-level overview of IndexedDB in mind, you should now be able to
understand Example 15-13. That example uses IndexedDB to create and query a
database that maps US postal codes (zip codes) to US cities. It demonstrates many,
but not all, of the basic features of IndexedDB. Example 15-13 is long, but well
commented.

Example 15-13. A IndexedDB database of US postal codes

// This utility function asynchronously obtains the database object (creating
// and initializing the DB if necessary) and passes it to the callback.
function withDB(callback) {
 let request = indexedDB.open("zipcodes", 1); // Request v1 of the database
 request.onerror = console.error; // Log any errors
 request.onsuccess = () => { // Or call this when done
 let db = request.result; // The result of the request is the database
 callback(db); // Invoke the callback with the database
 };

 // If version 1 of the database does not yet exist, then this event
 // handler will be triggered. This is used to create and initialize
 // object stores and indexes when the DB is first created or to modify
 // them when we switch from one version of the DB schema to another.
 request.onupgradeneeded = () => { initdb(request.result, callback); };
}

15.12 Storage | 545

// withDB() calls this function if the database has not been initialized yet.
// We set up the database and populate it with data, then pass the database to
// the callback function.
//
// Our zip code database includes one object store that holds objects like this:
//
// {
// zipcode: "02134",
// city: "Allston",
// state: "MA",
// }
//
// We use the "zipcode" property as the database key and create an index for
// the city name.
function initdb(db, callback) {
 // Create the object store, specifying a name for the store and
 // an options object that includes the "key path" specifying the
 // property name of the key field for this store.
 let store = db.createObjectStore("zipcodes", // store name
 { keyPath: "zipcode" });

 // Now index the object store by city name as well as by zip code.
 // With this method the key path string is passed directly as a
 // required argument rather than as part of an options object.
 store.createIndex("cities", "city");

 // Now get the data we are going to initialize the database with.
 // The zipcodes.json data file was generated from CC-licensed data from
 // www.geonames.org: https://download.geonames.org/export/zip/US.zip
 fetch("zipcodes.json") // Make an HTTP GET request
 .then(response => response.json()) // Parse the body as JSON
 .then(zipcodes => { // Get 40K zip code records
 // In order to insert zip code data into the database we need a
 // transaction object. To create our transaction object, we need
 // to specify which object stores we'll be using (we only have
 // one) and we need to tell it that we'll be doing writes to the
 // database, not just reads:
 let transaction = db.transaction(["zipcodes"], "readwrite");
 transaction.onerror = console.error;

 // Get our object store from the transaction
 let store = transaction.objectStore("zipcodes");

 // The best part about the IndexedDB API is that object stores
 // are *really* simple. Here's how we add (or update) our records:
 for(let record of zipcodes) { store.put(record); }

 // When the transaction completes successfully, the database
 // is initialized and ready for use, so we can call the
 // callback function that was originally passed to withDB()
 transaction.oncomplete = () => { callback(db); };
 });

546 | Chapter 15: JavaScript in Web Browsers

}

// Given a zip code, use the IndexedDB API to asynchronously look up the city
// with that zip code, and pass it to the specified callback, or pass null if
// no city is found.
function lookupCity(zip, callback) {
 withDB(db => {
 // Create a read-only transaction object for this query. The
 // argument is an array of object stores we will need to use.
 let transaction = db.transaction(["zipcodes"]);

 // Get the object store from the transaction
 let zipcodes = transaction.objectStore("zipcodes");

 // Now request the object that matches the specified zipcode key.
 // The lines above were synchronous, but this one is async.
 let request = zipcodes.get(zip);
 request.onerror = console.error; // Log errors
 request.onsuccess = () => { // Or call this function on success
 let record = request.result; // This is the query result
 if (record) { // If we found a match, pass it to the callback
 callback(`${record.city}, ${record.state}`);
 } else { // Otherwise, tell the callback that we failed
 callback(null);
 }
 };
 });
}

// Given the name of a city, use the IndexedDB API to asynchronously
// look up all zip code records for all cities (in any state) that have
// that (case-sensitive) name.
function lookupZipcodes(city, callback) {
 withDB(db => {
 // As above, we create a transaction and get the object store
 let transaction = db.transaction(["zipcodes"]);
 let store = transaction.objectStore("zipcodes");

 // This time we also get the city index of the object store
 let index = store.index("cities");

 // Ask for all matching records in the index with the specified
 // city name, and when we get them we pass them to the callback.
 // If we expected more results, we might use openCursor() instead.
 let request = index.getAll(city);
 request.onerror = console.error;
 request.onsuccess = () => { callback(request.result); };
 });
}

15.12 Storage | 547

15.13 Worker Threads and Messaging
One of the fundamental features of JavaScript is that it is single-threaded: a browser
will never run two event handlers at the same time, and it will never trigger a timer
while an event handler is running, for example. Concurrent updates to application
state or to the document are simply not possible, and client-side programmers do not
need to think about, or even understand, concurrent programming. A corollary is
that client-side JavaScript functions must not run too long; otherwise, they will tie up
the event loop and the web browser will become unresponsive to user input. This is
the reason that fetch() is an asynchronous function, for example.

Web browsers very carefully relax the single-thread requirement with the Worker
class: instances of this class represent threads that run concurrently with the main
thread and the event loop. Workers live in a self-contained execution environment
with a completely independent global object and no access to the Window or Docu‐
ment objects. Workers can communicate with the main thread only through asyn‐
chronous message passing. This means that concurrent modifications of the DOM
remain impossible, but it also means that you can write long-running functions that
do not stall the event loop and hang the browser. Creating a new worker is not a
heavyweight operation like opening a new browser window, but workers are not fly‐
weight “fibers” either, and it does not make sense to create new workers to perform
trivial operations. Complex web applications may find it useful to create tens of work‐
ers, but it is unlikely that an application with hundreds or thousands of workers
would be practical.

Workers are useful when your application needs to perform computationally inten‐
sive tasks, such as image processing. Using a worker moves tasks like this off the main
thread so that the browser does not become unresponsive. And workers also offer the
possibility of dividing the work among multiple threads. But workers are also useful
when you have to perform frequent moderately intensive computations. Suppose, for
example, that you’re implementing a simple in-browser code editor, and want to
include syntax highlighting. To get the highlighting right, you need to parse the code
on every keystroke. But if you do that on the main thread, it is likely that the parsing
code will prevent the event handlers that respond to the user’s key strokes from run‐
ning promptly and the user’s typing experience will be sluggish.

As with any threading API, there are two parts to the Worker API. The first is the
Worker object: this is what a worker looks like from the outside, to the thread that
creates it. The second is the WorkerGlobalScope: this is the global object for a new
worker, and it is what a worker thread looks like, on the inside, to itself.

The following sections cover Worker and WorkerGlobalScope and also explain the
message-passing API that allows workers to communicate with the main thread and
each other. The same communication API is used to exchange messages between a

548 | Chapter 15: JavaScript in Web Browsers

document and <iframe> elements contained in the document, and this is covered in
the following sections as well.

15.13.1 Worker Objects
To create a new worker, call the Worker() constructor, passing a URL that specifies
the JavaScript code that the worker is to run:

let dataCruncher = new Worker("utils/cruncher.js");

If you specify a relative URL, it is resolved relative to the URL of the document that
contains the script that called the Worker() constructor. If you specify an absolute
URL, it must have the same origin (same protocol, host, and port) as that containing
document.

Once you have a Worker object, you can send data to it with postMessage(). The
value you pass to postMessage() will be copied using the structured clone algorithm
(see “The Structured Clone Algorithm” on page 513), and the resulting copy will be
delivered to the worker via a message event:

dataCruncher.postMessage("/api/data/to/crunch");

Here we’re just passing a single string message, but you can also use objects, arrays,
typed arrays, Maps, Sets, and so on. You can receive messages from a worker by lis‐
tening for “message” events on the Worker object:

dataCruncher.onmessage = function(e) {
 let stats = e.data; // The message is the data property of the event
 console.log(`Average: ${stats.mean}`);
}

Like all event targets, Worker objects define the standard addEventListener() and
removeEventListener() methods, and you can use these in place of the onmessage.

In addition to postMessage(), Worker objects have just one other method, termi
nate(), which forces a worker thread to stop running.

15.13.2 The Global Object in Workers
When you create a new worker with the Worker() constructor, you specify the URL
of a file of JavaScript code. That code is executed in a new, pristine JavaScript execu‐
tion environment, isolated from the script that created the worker. The global object
for that new execution environment is a WorkerGlobalScope object. A WorkerGlo‐
balScope is something more than the core JavaScript global object, but less than a
full-blown client-side Window object.

The WorkerGlobalScope object has a postMessage() method and an onmessage
event handler property that are just like those of the Worker object but work in the

15.13 Worker Threads and Messaging | 549

opposite direction: calling postMessage() inside a worker generates a message event
outside the worker, and messages sent from outside the worker are turned into events
and delivered to the onmessage handler. Because the WorkerGlobalScope is the global
object for a worker, postMessage() and onmessage look like a global function and
global variable to worker code.

If you pass an object as the second argument to the Worker() constructor, and if that
object has a name property, then the value of that property becomes the value of the
name property in the worker’s global object. A worker might include this name in any
messages it prints with console.warn() or console.error().

The close() function allows a worker to terminate itself, and it is similar in effect to
the terminate() method of a Worker object.

Since WorkerGlobalScope is the global object for workers, it has all of the properties
of the core JavaScript global object, such as the JSON object, the isNaN() function,
and the Date() constructor. In addition, however, WorkerGlobalScope also has the
following properties of the client-side Window object:

• self is a reference to the global object itself. WorkerGlobalScope is not a Win‐
dow object and does not define a window property.

• The timer methods setTimeout(), clearTimeout(), setInterval(), and clear
Interval().

• A location property that describes the URL that was passed to the Worker()
constructor. This property refers to a Location object, just as the location prop‐
erty of a Window does. The Location object has properties href, protocol, host,
hostname, port, pathname, search, and hash. In a worker, these properties are
read-only, however.

• A navigator property that refers to an object with properties like those of the
Navigator object of a window. A worker’s Navigator object has the properties app
Name, appVersion, platform, userAgent, and onLine.

• The usual event target methods addEventListener() and removeEventLis
tener().

Finally, the WorkerGlobalScope object includes important client-side JavaScript APIs
including the Console object, the fetch() function, and the IndexedDB API. Work‐
erGlobalScope also includes the Worker() constructor, which means that worker
threads can create their own workers.

550 | Chapter 15: JavaScript in Web Browsers

15.13.3 Importing Code into a Worker
Workers were defined in web browsers before JavaScript had a module system, so
workers have a unique system for including additional code. WorkerGlobalScope
defines importScripts() as a global function that all workers have access to:

// Before we start working, load the classes and utilities we'll need
importScripts("utils/Histogram.js", "utils/BitSet.js");

importScripts() takes one or more URL arguments, each of which should refer to a
file of JavaScript code. Relative URLs are resolved relative to the URL that was passed
to the Worker() constructor (not relative to the containing document). import
Scripts() synchronously loads and executes these files one after the other, in the
order in which they were specified. If loading a script causes a network error, or if
executing throws an error of any sort, none of the subsequent scripts are loaded or
executed. A script loaded with importScripts() can itself call importScripts() to
load the files it depends on. Note, however, that importScripts() does not try to
keep track of what scripts have already loaded and does nothing to prevent depend‐
ency cycles.

importScripts() is a synchronous function: it does not return until all of the scripts
have loaded and executed. You can start using the scripts you loaded as soon as
importScripts() returns: there is no need for a callback, event handler, then()
method or await. Once you have internalized the asynchronous nature of client-side
JavaScript, it feels strange to go back to simple, synchronous programming again. But
that is the beauty of threads: you can use a blocking function call in a worker without
blocking the event loop in the main thread, and without blocking the computations
being concurrently performed in other workers.

Modules in Workers
In order to use modules in workers, you must pass a second argument to the
Worker() constructor. This second argument must be an object with a type property
set to the string “module.” Passing a type:"module" option to the Worker() construc‐
tor is much like using the type="module" attribute on an HTML <script> tag: it
means that the code should be interpreted as a module and that import declarations
are allowed.

When a worker loads a module instead of a traditional script, the WorkerGlobalScope
does not define the importScripts() function.

Note that as of early 2020, Chrome is the only browser that supports true modules
and import declarations in workers.

15.13 Worker Threads and Messaging | 551

15.13.4 Worker Execution Model
Worker threads run their code (and all imported scripts or modules) synchronously
from top to bottom, and then enter an asynchronous phase in which they respond to
events and timers. If a worker registers a “message” event handler, it will never exit as
long as there is a possibility that message events will still arrive. But if a worker
doesn’t listen for messages, it will run until there are no further pending tasks (such as
fetch() promises and timers) and all task-related callbacks have been called. Once all
registered callbacks have been called, there is no way a worker can begin a new task,
so it is safe for the thread to exit, which it will do automatically. A worker can also
explicitly shut itself down by calling the global close() function. Note that there are
no properties or methods on the Worker object that specify whether a worker thread
is still running or not, so workers should not close themselves without somehow
coordinating this with their parent thread.

Errors in Workers

If an exception occurs in a worker and is not caught by any catch clause, then an
“error” event is triggered on the global object of the worker. If this event is handled
and the handler calls the preventDefault() method of the event object, the error
propagation ends. Otherwise, the “error” event is fired on the Worker object. If pre
ventDefault() is called there, then propagation ends. Otherwise, an error message is
printed in the developer console and the onerror handler (§15.1.7) of the Window
object is invoked.

// Handle uncaught worker errors with a handler inside the worker.
self.onerror = function(e) {
 console.log(`Error in worker at ${e.filename}:${e.lineno}: ${e.message}`);
 e.preventDefault();
};

// Or, handle uncaught worker errors with a handler outside the worker.
worker.onerror = function(e) {
 console.log(`Error in worker at ${e.filename}:${e.lineno}: ${e.message}`);
 e.preventDefault();
};

Like windows, workers can register a handler to be invoked when a Promise is rejec‐
ted and there is no .catch() function to handle it. Within a worker you can detect
this by defining a self.onunhandledrejection function or by using addEventLis
tener() to register a global handler for “unhandledrejection” events. The event object
passed to this handler will have a promise property whose value is the Promise object
that rejected and a reason property whose value is what would have been passed to
a .catch() function.

552 | Chapter 15: JavaScript in Web Browsers

15.13.5 postMessage(), MessagePorts, and MessageChannels
The postMessage() method of the Worker object and the global postMesage() func‐
tion defined inside a worker both work by invoking the postMessage() methods of a
pair of MessagePort objects that are automatically created along with the worker.
Client-side JavaScript can’t directly access these automatically created MessagePort
objects, but it can create new pairs of connected ports with the MessageChannel()
constructor:

let channel = new MessageChannel; // Create a new channel.
let myPort = channel.port1; // It has two ports
let yourPort = channel.port2; // connected to each other.

myPort.postMessage("Can you hear me?"); // A message posted to one will
yourPort.onmessage = (e) => console.log(e.data); // be received on the other.

A MessageChannel is an object with port1 and port2 properties that refer to a pair of
connected MessagePort objects. A MessagePort is an object with a postMessage()
method and an onmessage event handler property. When postMessage() is called on
one port of a connected pair, a “message” event is fired on the other port in the pair.
You can receive these “message” events by setting the onmessage property or by using
addEventListener() to register a listener for “message” events.

Messages sent to a port are queued until the onmessage property is defined or until
the start() method is called on the port. This prevents messages sent by one end of
the channel from being missed by the other end. If you use addEventListener() with
a MessagePort, don’t forget to call start() or you may never see a message delivered.

All the postMessage() calls we’ve seen so far have taken a single message argument.
But the method also accepts an optional second argument. This second argument is
an array of items that are to be transferred to the other end of the channel instead of
having a copy sent across the channel. Values that can be transferred instead of
copied are MessagePorts and ArrayBuffers. (Some browsers also implement other
transferable types, such as ImageBitmap and OffscreenCanvas. These are not univer‐
sally supported, however, and are not covered in this book.) If the first argument to
postMessage() includes a MessagePort (nested anywhere within the message object),
then that MessagePort must also appear in the second argument. If you do this, then
the MessagePort will become available to the other end of the channel and will imme‐
diately become nonfunctional on your end. Suppose you have created a worker and
want to have two channels for communicating with it: one channel for ordinary data
exchange and one channel for high-priority messages. In the main thread, you might
create a MessageChannel, then call postMessage() on the worker to pass one of the
MessagePorts to it:

let worker = new Worker("worker.js");
let urgentChannel = new MessageChannel();

15.13 Worker Threads and Messaging | 553

let urgentPort = urgentChannel.port1;
worker.postMessage({ command: "setUrgentPort", value: urgentChannel.port2 },
 [urgentChannel.port2]);
// Now we can receive urgent messages from the worker like this
urgentPort.addEventListener("message", handleUrgentMessage);
urgentPort.start(); // Start receiving messages
// And send urgent messages like this
urgentPort.postMessage("test");

MessageChannels are also useful if you create two workers and want to allow them to
communicate directly with each other rather than requiring code on the main thread
to relay messages between them.

The other use of the second argument to postMessage() is to transfer ArrayBuffers
between workers without having to copy them. This is an important performance
enhancement for large ArrayBuffers like those used to hold image data. When an
ArrayBuffer is transferred over a MessagePort, the ArrayBuffer becomes unusable in
the original thread so that there is no possibility of concurrent access to its contents.
If the first argument to postMessage() includes an ArrayBuffer, or any value (such as
a typed array) that has an ArrayBuffer, then that buffer may appear as an array ele‐
ment in the second postMessage() argument. If it does appear, then it will be trans‐
ferred without copying. If not, then the ArrayBuffer will be copied rather than
transferred. Example 15-14 will demonstrate the use of this transfer technique with
ArrayBuffers.

15.13.6 Cross-Origin Messaging with postMessage()
There is another use case for the postMessage() method in client-side JavaScript. It
involves windows instead of workers, but there are enough similarities between the
two cases that we will describe the postMessage() method of the Window object
here.

When a document contains an <iframe> element, that element acts as an embedded
but independent window. The Element object that represents the <iframe> has a con
tentWindow property that is the Window object for the embedded document. And for
scripts running within that nested iframe, the window.parent property refers to the
containing Window object. When two windows display documents with the same
origin, then scripts in each of those windows have access to the contents of the other
window. But when the documents have different origins, the browser’s same-origin
policy prevents JavaScript in one window from accessing the content of another
window.

For workers, postMessage() provides a safe way for two independent threads to
communicate without sharing memory. For windows, postMessage() provides a
controlled way for two independent origins to safely exchange messages. Even if the
same-origin policy prevents your script from seeing the content of another window,

554 | Chapter 15: JavaScript in Web Browsers

you can still call postMessage() on that window, and doing so will cause a “message”
event to be triggered on that window, where it can be seen by the event handlers in
that window’s scripts.

The postMessage() method of a Window is a little different than the postMessage()
method of a Worker, however. The first argument is still an arbitrary message that
will be copied by the structured clone algorithm. But the optional second argument
listing objects to be transferred instead of copied becomes an optional third argu‐
ment. The postMessage() method of a window takes a string as its required second
argument. This second argument should be an origin (a protocol, hostname, and
optional port) that specifies who you expect to be receiving the message. If you pass
the string “https://good.example.com” as the second argument, but the window you
are posting the message to actually contains content from “https://malware.exam‐
ple.com,” then the message you posted will not be delivered. If you are willing to send
your message to content from any origin, then you can pass the wildcard “*” as the
second argument.

JavaScript code running inside a window or <iframe> can receive messages posted to
that window or frame by defining the onmessage property of that window or by call‐
ing addEventListener() for “message” events. As with workers, when you receive a
“message” event for a window, the data property of the event object is the message
that was sent. In addition, however, “message” events delivered to windows also
define source and origin properties. The source property specifies the Window
object that sent the event, and you can use event.source.postMessage() to send a
reply. The origin property specifies the origin of the content in the source window.
This is not something the sender of the message can forge, and when you receive a
“message” event, you will typically want to verify that it is from an origin you expect.

15.14 Example: The Mandelbrot Set
This chapter on client-side JavaScript culminates with a long example that demon‐
strates using workers and messaging to parallelize computationally intensive tasks.
But it is written to be an engaging, real-world web application and also demonstrates
a number of the other APIs demonstrated in this chapter, including history manage‐
ment; use of the ImageData class with a <canvas>; and the use of keyboard, pointer,
and resize events. It also demonstrates important core JavaScript features, including
generators and a sophisticated use of Promises.

The example is a program for displaying and exploring the Mandelbrot set, a complex
fractal that includes beautiful images like the one shown in Figure 15-16.

15.14 Example: The Mandelbrot Set | 555

Figure 15-16. A portion of the Mandelbrot set

The Mandelbrot set is defined as the set of points on the complex plane, which, when
put through a repeated process of complex multiplication and addition, produce a
value whose magnitude remains bounded. The contours of the set are surprisingly
complex, and computing which points are members of the set and which are not is
computationally intensive: to produce a 500×500 image of the Mandelbrot set, you
must individually compute the membership of each of the 250,000 pixels in your
image. And to verify that the value associated with each pixel remains bounded, you
may have to repeat the process of complex multiplication 1,000 times or more. (More
iterations give more sharply defined boundaries for the set; fewer iterations produce
fuzzier boundaries.) With up to 250 million steps of complex arithmetic required to
produce a high-quality image of the Mandelbrot set, you can understand why using
workers is a valuable technique. Example 15-14 shows the worker code we will use.
This file is relatively compact: it is just the raw computational muscle for the larger
program. Two things are worth noting about it, however:

• The worker creates an ImageData object to represent the rectangular grid of pix‐
els for which it is computing Mandelbrot set membership. But instead of storing
actual pixel values in the ImageData, it uses a custom-typed array to treat each
pixel as a 32-bit integer. It stores the number of iterations required for each pixel
in this array. If the magnitude of the complex number computed for each pixel
becomes greater than four, then it is mathematically guaranteed to grow without
bounds from then on, and we say it has “escaped.” So the value this worker
returns for each pixel is the number of iterations before the value escaped. We tell
the worker the maximum number of iterations it should try for each value, and
pixels that reach this maximum number are considered to be in the set.

• The worker transfers the ArrayBuffer associated with the ImageData back to the
main thread so the memory associated with it does not need to be copied.

556 | Chapter 15: JavaScript in Web Browsers

Example 15-14. Worker code for computing regions of the Mandelbrot set

// This is a simple worker that receives a message from its parent thread,
// performs the computation described by that message and then posts the
// result of that computation back to the parent thread.
onmessage = function(message) {
 // First, we unpack the message we received:
 // - tile is an object with width and height properties. It specifies the
 // size of the rectangle of pixels for which we will be computing
 // Mandelbrot set membership.
 // - (x0, y0) is the point in the complex plane that corresponds to the
 // upper-left pixel in the tile.
 // - perPixel is the pixel size in both the real and imaginary dimensions.
 // - maxIterations specifies the maximum number of iterations we will
 // perform before deciding that a pixel is in the set.
 const {tile, x0, y0, perPixel, maxIterations} = message.data;
 const {width, height} = tile;

 // Next, we create an ImageData object to represent the rectangular array
 // of pixels, get its internal ArrayBuffer, and create a typed array view
 // of that buffer so we can treat each pixel as a single integer instead of
 // four individual bytes. We'll store the number of iterations for each
 // pixel in this iterations array. (The iterations will be transformed into
 // actual pixel colors in the parent thread.)
 const imageData = new ImageData(width, height);
 const iterations = new Uint32Array(imageData.data.buffer);

 // Now we begin the computation. There are three nested for loops here.
 // The outer two loop over the rows and columns of pixels, and the inner
 // loop iterates each pixel to see if it "escapes" or not. The various
 // loop variables are the following:
 // - row and column are integers representing the pixel coordinate.
 // - x and y represent the complex point for each pixel: x + yi.
 // - index is the index in the iterations array for the current pixel.
 // - n tracks the number of iterations for each pixel.
 // - max and min track the largest and smallest number of iterations
 // we've seen so far for any pixel in the rectangle.
 let index = 0, max = 0, min=maxIterations;
 for(let row = 0, y = y0; row < height; row++, y += perPixel) {
 for(let column = 0, x = x0; column < width; column++, x += perPixel) {
 // For each pixel we start with the complex number c = x+yi.
 // Then we repeatedly compute the complex number z(n+1) based on
 // this recursive formula:
 // z(0) = c
 // z(n+1) = z(n)^2 + c
 // If |z(n)| (the magnitude of z(n)) is > 2, then the
 // pixel is not part of the set and we stop after n iterations.
 let n; // The number of iterations so far
 let r = x, i = y; // Start with z(0) set to c
 for(n = 0; n < maxIterations; n++) {
 let rr = r*r, ii = i*i; // Square the two parts of z(n).
 if (rr + ii > 4) { // If |z(n)|^2 is > 4 then

15.14 Example: The Mandelbrot Set | 557

 break; // we've escaped and can stop iterating.
 }
 i = 2*r*i + y; // Compute imaginary part of z(n+1).
 r = rr - ii + x; // And the real part of z(n+1).
 }
 iterations[index++] = n; // Remember # iterations for each pixel.
 if (n > max) max = n; // Track the maximum number we've seen.
 if (n < min) min = n; // And the minimum as well.
 }
 }

 // When the computation is complete, send the results back to the parent
 // thread. The imageData object will be copied, but the giant ArrayBuffer
 // it contains will be transferred for a nice performance boost.
 postMessage({tile, imageData, min, max}, [imageData.data.buffer]);
};

The Mandelbrot set viewer application that uses that worker code is shown in
Example 15-15. Now that you have nearly reached the end of this chapter, this long
example is something of a capstone experience that brings together a number of
important core and client-side JavaScript features and APIs. The code is thoroughly
commented, and I encourage you to read it carefully.

Example 15-15. A web application for displaying and exploring the Mandelbrot set

/*
 * This class represents a subrectangle of a canvas or image. We use Tiles to
 * divide a canvas into regions that can be processed independently by Workers.
 */
class Tile {
 constructor(x, y, width, height) {
 this.x = x; // The properties of a Tile object
 this.y = y; // represent the position and size
 this.width = width; // of the tile within a larger
 this.height = height; // rectangle.
 }

 // This static method is a generator that divides a rectangle of the
 // specified width and height into the specified number of rows and
 // columns and yields numRows*numCols Tile objects to cover the rectangle.
 static *tiles(width, height, numRows, numCols) {
 let columnWidth = Math.ceil(width / numCols);
 let rowHeight = Math.ceil(height / numRows);

 for(let row = 0; row < numRows; row++) {
 let tileHeight = (row < numRows-1)
 ? rowHeight // height of most rows
 : height - rowHeight * (numRows-1); // height of last row
 for(let col = 0; col < numCols; col++) {
 let tileWidth = (col < numCols-1)
 ? columnWidth // width of most columns

558 | Chapter 15: JavaScript in Web Browsers

 : width - columnWidth * (numCols-1); // and last column

 yield new Tile(col * columnWidth, row * rowHeight,
 tileWidth, tileHeight);
 }
 }
 }
}

/*
 * This class represents a pool of workers, all running the same code. The
 * worker code you specify must respond to each message it receives by
 * performing some kind of computation and then posting a single message with
 * the result of that computation.
 *
 * Given a WorkerPool and message that represents work to be performed, simply
 * call addWork(), with the message as an argument. If there is a Worker
 * object that is currently idle, the message will be posted to that worker
 * immediately. If there are no idle Worker objects, the message will be
 * queued and will be posted to a Worker when one becomes available.
 *
 * addWork() returns a Promise, which will resolve with the message recieved
 * from the work, or will reject if the worker throws an unhandled error.
 */
class WorkerPool {
 constructor(numWorkers, workerSource) {
 this.idleWorkers = []; // Workers that are not currently working
 this.workQueue = []; // Work not currently being processed
 this.workerMap = new Map(); // Map workers to resolve and reject funcs

 // Create the specified number of workers, add message and error
 // handlers and save them in the idleWorkers array.
 for(let i = 0; i < numWorkers; i++) {
 let worker = new Worker(workerSource);
 worker.onmessage = message => {
 this._workerDone(worker, null, message.data);
 };
 worker.onerror = error => {
 this._workerDone(worker, error, null);
 };
 this.idleWorkers[i] = worker;
 }
 }

 // This internal method is called when a worker finishes working, either
 // by sending a message or by throwing an error.
 _workerDone(worker, error, response) {
 // Look up the resolve() and reject() functions for this worker
 // and then remove the worker's entry from the map.
 let [resolver, rejector] = this.workerMap.get(worker);
 this.workerMap.delete(worker);

15.14 Example: The Mandelbrot Set | 559

 // If there is no queued work, put this worker back in
 // the list of idle workers. Otherwise, take work from the queue
 // and send it to this worker.
 if (this.workQueue.length === 0) {
 this.idleWorkers.push(worker);
 } else {
 let [work, resolver, rejector] = this.workQueue.shift();
 this.workerMap.set(worker, [resolver, rejector]);
 worker.postMessage(work);
 }

 // Finally, resolve or reject the promise associated with the worker.
 error === null ? resolver(response) : rejector(error);
 }

 // This method adds work to the worker pool and returns a Promise that
 // will resolve with a worker's response when the work is done. The work
 // is a value to be passed to a worker with postMessage(). If there is an
 // idle worker, the work message will be sent immediately. Otherwise it
 // will be queued until a worker is available.
 addWork(work) {
 return new Promise((resolve, reject) => {
 if (this.idleWorkers.length > 0) {
 let worker = this.idleWorkers.pop();
 this.workerMap.set(worker, [resolve, reject]);
 worker.postMessage(work);
 } else {
 this.workQueue.push([work, resolve, reject]);
 }
 });
 }
}

/*
 * This class holds the state information necessary to render a Mandelbrot set.
 * The cx and cy properties give the point in the complex plane that is the
 * center of the image. The perPixel property specifies how much the real and
 * imaginary parts of that complex number changes for each pixel of the image.
 * The maxIterations property specifies how hard we work to compute the set.
 * Larger numbers require more computation but produce crisper images.
 * Note that the size of the canvas is not part of the state. Given cx, cy, and
 * perPixel we simply render whatever portion of the Mandelbrot set fits in
 * the canvas at its current size.
 *
 * Objects of this type are used with history.pushState() and are used to read
 * the desired state from a bookmarked or shared URL.
 */
class PageState {
 // This factory method returns an initial state to display the entire set.
 static initialState() {
 let s = new PageState();
 s.cx = -0.5;

560 | Chapter 15: JavaScript in Web Browsers

 s.cy = 0;
 s.perPixel = 3/window.innerHeight;
 s.maxIterations = 500;
 return s;
 }

 // This factory method obtains state from a URL, or returns null if
 // a valid state could not be read from the URL.
 static fromURL(url) {
 let s = new PageState();
 let u = new URL(url); // Initialize state from the url's search params.
 s.cx = parseFloat(u.searchParams.get("cx"));
 s.cy = parseFloat(u.searchParams.get("cy"));
 s.perPixel = parseFloat(u.searchParams.get("pp"));
 s.maxIterations = parseInt(u.searchParams.get("it"));
 // If we got valid values, return the PageState object, otherwise null.
 return (isNaN(s.cx) || isNaN(s.cy) || isNaN(s.perPixel)
 || isNaN(s.maxIterations))
 ? null
 : s;
 }

 // This instance method encodes the current state into the search
 // parameters of the browser's current location.
 toURL() {
 let u = new URL(window.location);
 u.searchParams.set("cx", this.cx);
 u.searchParams.set("cy", this.cy);
 u.searchParams.set("pp", this.perPixel);
 u.searchParams.set("it", this.maxIterations);
 return u.href;
 }
}

// These constants control the parallelism of the Mandelbrot set computation.
// You may need to adjust them to get optimum performance on your computer.
const ROWS = 3, COLS = 4, NUMWORKERS = navigator.hardwareConcurrency || 2;

// This is the main class of our Mandelbrot set program. Simply invoke the
// constructor function with the <canvas> element to render into. The program
// assumes that this <canvas> element is styled so that it is always as big
// as the browser window.
class MandelbrotCanvas {
 constructor(canvas) {
 // Store the canvas, get its context object, and initialize a WorkerPool
 this.canvas = canvas;
 this.context = canvas.getContext("2d");
 this.workerPool = new WorkerPool(NUMWORKERS, "mandelbrotWorker.js");

 // Define some properties that we'll use later
 this.tiles = null; // Subregions of the canvas
 this.pendingRender = null; // We're not currently rendering

15.14 Example: The Mandelbrot Set | 561

 this.wantsRerender = false; // No render is currently requested
 this.resizeTimer = null; // Prevents us from resizing too frequently
 this.colorTable = null; // For converting raw data to pixel values.

 // Set up our event handlers
 this.canvas.addEventListener("pointerdown", e => this.handlePointer(e));
 window.addEventListener("keydown", e => this.handleKey(e));
 window.addEventListener("resize", e => this.handleResize(e));
 window.addEventListener("popstate", e => this.setState(e.state, false));

 // Initialize our state from the URL or start with the initial state.
 this.state =
 PageState.fromURL(window.location) || PageState.initialState();

 // Save this state with the history mechanism.
 history.replaceState(this.state, "", this.state.toURL());

 // Set the canvas size and get an array of tiles that cover it.
 this.setSize();

 // And render the Mandelbrot set into the canvas.
 this.render();
 }

 // Set the canvas size and initialize an array of Tile objects. This
 // method is called from the constructor and also by the handleResize()
 // method when the browser window is resized.
 setSize() {
 this.width = this.canvas.width = window.innerWidth;
 this.height = this.canvas.height = window.innerHeight;
 this.tiles = [...Tile.tiles(this.width, this.height, ROWS, COLS)];
 }

 // This function makes a change to the PageState, then re-renders the
 // Mandelbrot set using that new state, and also saves the new state with
 // history.pushState(). If the first argument is a function that function
 // will be called with the state object as its argument and should make
 // changes to the state. If the first argument is an object, then we simply
 // copy the properties of that object into the state object. If the optional
 // second argument is false, then the new state will not be saved. (We
 // do this when calling setState in response to a popstate event.)
 setState(f, save=true) {
 // If the argument is a function, call it to update the state.
 // Otherwise, copy its properties into the current state.
 if (typeof f === "function") {
 f(this.state);
 } else {
 for(let property in f) {
 this.state[property] = f[property];
 }
 }

562 | Chapter 15: JavaScript in Web Browsers

 // In either case, start rendering the new state ASAP.
 this.render();

 // Normally we save the new state. Except when we're called with
 // a second argument of false which we do when we get a popstate event.
 if (save) {
 history.pushState(this.state, "", this.state.toURL());
 }
 }

 // This method asynchronously draws the portion of the Mandelbrot set
 // specified by the PageState object into the canvas. It is called by
 // the constructor, by setState() when the state changes, and by the
 // resize event handler when the size of the canvas changes.
 render() {
 // Sometimes the user may use the keyboard or mouse to request renders
 // more quickly than we can perform them. We don't want to submit all
 // the renders to the worker pool. Instead if we're rendering, we'll
 // just make a note that a new render is needed, and when the current
 // render completes, we'll render the current state, possibly skipping
 // multiple intermediate states.
 if (this.pendingRender) { // If we're already rendering,
 this.wantsRerender = true; // make a note to rerender later
 return; // and don't do anything more now.
 }

 // Get our state variables and compute the complex number for the
 // upper left corner of the canvas.
 let {cx, cy, perPixel, maxIterations} = this.state;
 let x0 = cx - perPixel * this.width/2;
 let y0 = cy - perPixel * this.height/2;

 // For each of our ROWS*COLS tiles, call addWork() with a message
 // for the code in mandelbrotWorker.js. Collect the resulting Promise
 // objects into an array.
 let promises = this.tiles.map(tile => this.workerPool.addWork({
 tile: tile,
 x0: x0 + tile.x * perPixel,
 y0: y0 + tile.y * perPixel,
 perPixel: perPixel,
 maxIterations: maxIterations
 }));

 // Use Promise.all() to get an array of responses from the array of
 // promises. Each response is the computation for one of our tiles.
 // Recall from mandelbrotWorker.js that each response includes the
 // Tile object, an ImageData object that includes iteration counts
 // instead of pixel values, and the minimum and maximum iterations
 // for that tile.
 this.pendingRender = Promise.all(promises).then(responses => {

 // First, find the overall max and min iterations over all tiles.

15.14 Example: The Mandelbrot Set | 563

 // We need these numbers so we can assign colors to the pixels.
 let min = maxIterations, max = 0;
 for(let r of responses) {
 if (r.min < min) min = r.min;
 if (r.max > max) max = r.max;
 }

 // Now we need a way to convert the raw iteration counts from the
 // workers into pixel colors that will be displayed in the canvas.
 // We know that all the pixels have between min and max iterations
 // so we precompute the colors for each iteration count and store
 // them in the colorTable array.

 // If we haven't allocated a color table yet, or if it is no longer
 // the right size, then allocate a new one.
 if (!this.colorTable || this.colorTable.length !== maxIterations+1){
 this.colorTable = new Uint32Array(maxIterations+1);
 }

 // Given the max and the min, compute appropriate values in the
 // color table. Pixels in the set will be colored fully opaque
 // black. Pixels outside the set will be translucent black with higher
 // iteration counts resulting in higher opacity. Pixels with
 // minimum iteration counts will be transparent and the white
 // background will show through, resulting in a grayscale image.
 if (min === max) { // If all the pixels are the same,
 if (min === maxIterations) { // Then make them all black
 this.colorTable[min] = 0xFF000000;
 } else { // Or all transparent.
 this.colorTable[min] = 0;
 }
 } else {
 // In the normal case where min and max are different, use a
 // logarithic scale to assign each possible iteration count an
 // opacity between 0 and 255, and then use the shift left
 // operator to turn that into a pixel value.
 let maxlog = Math.log(1+max-min);
 for(let i = min; i <= max; i++) {
 this.colorTable[i] =
 (Math.ceil(Math.log(1+i-min)/maxlog * 255) << 24);
 }
 }

 // Now translate the iteration numbers in each response's
 // ImageData to colors from the colorTable.
 for(let r of responses) {
 let iterations = new Uint32Array(r.imageData.data.buffer);
 for(let i = 0; i < iterations.length; i++) {
 iterations[i] = this.colorTable[iterations[i]];
 }
 }

564 | Chapter 15: JavaScript in Web Browsers

 // Finally, render all the imageData objects into their
 // corresponding tiles of the canvas using putImageData().
 // (First, though, remove any CSS transforms on the canvas that may
 // have been set by the pointerdown event handler.)
 this.canvas.style.transform = "";
 for(let r of responses) {
 this.context.putImageData(r.imageData, r.tile.x, r.tile.y);
 }
 })
 .catch((reason) => {
 // If anything went wrong in any of our Promises, we'll log
 // an error here. This shouldn't happen, but this will help with
 // debugging if it does.
 console.error("Promise rejected in render():", reason);
 })
 .finally(() => {
 // When we are done rendering, clear the pendingRender flags
 this.pendingRender = null;
 // And if render requests came in while we were busy, rerender now.
 if (this.wantsRerender) {
 this.wantsRerender = false;
 this.render();
 }
 });
 }

 // If the user resizes the window, this function will be called repeatedly.
 // Resizing a canvas and rerendering the Mandlebrot set is an expensive
 // operation that we can't do multiple times a second, so we use a timer
 // to defer handling the resize until 200ms have elapsed since the last
 // resize event was received.
 handleResize(event) {
 // If we were already deferring a resize, clear it.
 if (this.resizeTimer) clearTimeout(this.resizeTimer);
 // And defer this resize instead.
 this.resizeTimer = setTimeout(() => {
 this.resizeTimer = null; // Note that resize has been handled
 this.setSize(); // Resize canvas and tiles
 this.render(); // Rerender at the new size
 }, 200);
 }

 // If the user presses a key, this event handler will be called.
 // We call setState() in response to various keys, and setState() renders
 // the new state, updates the URL, and saves the state in browser history.
 handleKey(event) {
 switch(event.key) {
 case "Escape": // Type Escape to go back to the initial state
 this.setState(PageState.initialState());
 break;
 case "+": // Type + to increase the number of iterations
 this.setState(s => {

15.14 Example: The Mandelbrot Set | 565

 s.maxIterations = Math.round(s.maxIterations*1.5);
 });
 break;
 case "-": // Type - to decrease the number of iterations
 this.setState(s => {
 s.maxIterations = Math.round(s.maxIterations/1.5);
 if (s.maxIterations < 1) s.maxIterations = 1;
 });
 break;
 case "o": // Type o to zoom out
 this.setState(s => s.perPixel *= 2);
 break;
 case "ArrowUp": // Up arrow to scroll up
 this.setState(s => s.cy -= this.height/10 * s.perPixel);
 break;
 case "ArrowDown": // Down arrow to scroll down
 this.setState(s => s.cy += this.height/10 * s.perPixel);
 break;
 case "ArrowLeft": // Left arrow to scroll left
 this.setState(s => s.cx -= this.width/10 * s.perPixel);
 break;
 case "ArrowRight": // Right arrow to scroll right
 this.setState(s => s.cx += this.width/10 * s.perPixel);
 break;
 }
 }

 // This method is called when we get a pointerdown event on the canvas.
 // The pointerdown event might be the start of a zoom gesture (a click or
 // tap) or a pan gesture (a drag). This handler registers handlers for
 // the pointermove and pointerup events in order to respond to the rest
 // of the gesture. (These two extra handlers are removed when the gesture
 // ends with a pointerup.)
 handlePointer(event) {
 // The pixel coordinates and time of the initial pointer down.
 // Because the canvas is as big as the window, these event coordinates
 // are also canvas coordinates.
 const x0 = event.clientX, y0 = event.clientY, t0 = Date.now();

 // This is the handler for move events.
 const pointerMoveHandler = event => {
 // How much have we moved, and how much time has passed?
 let dx=event.clientX-x0, dy=event.clientY-y0, dt=Date.now()-t0;

 // If the pointer has moved enough or enough time has passed that
 // this is not a regular click, then use CSS to pan the display.
 // (We will rerender it for real when we get the pointerup event.)
 if (dx > 10 || dy > 10 || dt > 500) {
 this.canvas.style.transform = `translate(${dx}px, ${dy}px)`;
 }
 };

566 | Chapter 15: JavaScript in Web Browsers

 // This is the handler for pointerup events
 const pointerUpHandler = event => {
 // When the pointer goes up, the gesture is over, so remove
 // the move and up handlers until the next gesture.
 this.canvas.removeEventListener("pointermove", pointerMoveHandler);
 this.canvas.removeEventListener("pointerup", pointerUpHandler);

 // How much did the pointer move, and how much time passed?
 const dx = event.clientX-x0, dy=event.clientY-y0, dt=Date.now()-t0;
 // Unpack the state object into individual constants.
 const {cx, cy, perPixel} = this.state;

 // If the pointer moved far enough or if enough time passed, then
 // this was a pan gesture, and we need to change state to change
 // the center point. Otherwise, the user clicked or tapped on a
 // point and we need to center and zoom in on that point.
 if (dx > 10 || dy > 10 || dt > 500) {
 // The user panned the image by (dx, dy) pixels.
 // Convert those values to offsets in the complex plane.
 this.setState({cx: cx - dx*perPixel, cy: cy - dy*perPixel});
 } else {
 // The user clicked. Compute how many pixels the center moves.
 let cdx = x0 - this.width/2;
 let cdy = y0 - this.height/2;

 // Use CSS to quickly and temporarily zoom in
 this.canvas.style.transform =
 `translate(${-cdx*2}px, ${-cdy*2}px) scale(2)`;

 // Set the complex coordinates of the new center point and
 // zoom in by a factor of 2.
 this.setState(s => {
 s.cx += cdx * s.perPixel;
 s.cy += cdy * s.perPixel;
 s.perPixel /= 2;
 });
 }
 };

 // When the user begins a gesture we register handlers for the
 // pointermove and pointerup events that follow.
 this.canvas.addEventListener("pointermove", pointerMoveHandler);
 this.canvas.addEventListener("pointerup", pointerUpHandler);
 }
}

// Finally, here's how we set up the canvas. Note that this JavaScript file
// is self-sufficient. The HTML file only needs to include this one <script>.
let canvas = document.createElement("canvas"); // Create a canvas element
document.body.append(canvas); // Insert it into the body
document.body.style = "margin:0"; // No margin for the <body>
canvas.style.width = "100%"; // Make canvas as wide as body

15.14 Example: The Mandelbrot Set | 567

canvas.style.height = "100%"; // and as high as the body.
new MandelbrotCanvas(canvas); // And start rendering into it!

15.15 Summary and Suggestions for Further Reading
This long chapter has covered the fundamentals of client-side JavaScript
programming:

• How scripts and JavaScript modules are included in web pages and how and
when they are executed.

• Client-side JavaScript’s asynchronous, event-driven programming model.
• The Document Object Model (DOM) that allows JavaScript code to inspect and

modify the HTML content of the document it is embedded within. This DOM
API is the heart of all client-side JavaScript programming.

• How JavaScript code can manipulate the CSS styles that are applied to content
within the document.

• How JavaScript code can obtain the coordinates of document elements in the
browser window and within the document itself.

• How to create reusable UI “Web Components” with JavaScript, HTML, and CSS
using the Custom Elements and Shadow DOM APIs.

• How to display and dynamically generate graphics with SVG and the HTML
<canvas> element.

• How to add scripted sound effects (both recorded and synthesized) to your web
pages.

• How JavaScript can make the browser load new pages, go backward and forward
in the user’s browsing history, and even add new entries to the browsing history.

• How JavaScript programs can exchange data with web servers using the HTTP
and WebSocket protocols.

• How JavaScript programs can store data in the user’s browser.
• How JavaScript programs can use worker threads to achieve a safe form of

concurrency.

This has been the longest chapter of the book, by far. But it cannot come close to cov‐
ering all the APIs available to web browsers. The web platform is sprawling and ever-
evolving, and my goal for this chapter was to introduce the most important core
APIs. With the knowledge you have from this book, you are well equipped to learn
and use new APIs as you need them. But you can’t learn about a new API if you don’t
know that it exists, so the short sections that follow end the chapter with a quick list
of web platform features that you might want to investigate in the future.

568 | Chapter 15: JavaScript in Web Browsers

15.15.1 HTML and CSS
The web is built upon three key technologies: HTML, CSS, and JavaScript, and
knowledge of JavaScript can take you only so far as a web developer unless you also
develop your expertise with HTML and CSS. It is important to know how to use Java‐
Script to manipulate HTML elements and CSS styles, but that knowledge is is much
more useful if you also know which HTML elements and which CSS styles to use.

So before you start exploring more JavaScript APIs, I would encourage you to invest
some time in mastering the other tools in a web developer’s toolkit. HTML form and
input elements, for example, have sophisticated behavior that is important to under‐
stand, and the flexbox and grid layout modes in CSS are incredibly powerful.

Two topics worth paying particular attention to in this area are accessibility (includ‐
ing ARIA attributes) and internationalization (including support for right-to-left
writing directions).

15.15.2 Performance
Once you have written a web application and released it to the world, the never-
ending quest to make it fast begins. It is hard to optimize things that you can’t meas‐
ure, however, so it is worth familiarizing yourself with the Performance APIs. The
performance property of the window object is the main entry point to this API. It
includes a high-resolution time source performance.now(), and methods perfor
mance.mark() and performance.measure() for marking critical points in your code
and measuring the elapsed time between them. Calling these methods creates Per‐
formanceEntry objects that you can access with performance.getEntries(). Brows‐
ers add their own PerformanceEntry objects any time the browser loads a new page
or fetches a file over the network, and these automatically created PerformanceEntry
objects include granular timing details of your application’s network performance.
The related PerformanceObserver class allows you to specify a function to be invoked
when new PerformanceEntry objects are created.

15.15.3 Security
This chapter introduced the general idea of how to defend against cross-site scripting
(XSS) security vulnerabilities in your websites, but we did not go into much detail.
The topic of web security is an important one, and you may want to spend some time
learning more about it. In addition to XSS, it is worth learning about the Content-
Security-Policy HTTP header and understanding how CSP allows you to ask the
web browser to restrict the capabilities it grants to JavaScript code. Understanding
CORS (Cross-Origin Resource Sharing) is also important.

15.15 Summary and Suggestions for Further Reading | 569

15.15.4 WebAssembly
WebAssembly (or “wasm”) is a low-level virtual machine bytecode format that is
designed to integrate well with JavaScript interpreters in web browsers. There are
compilers that allow you to compile C, C++, and Rust programs to WebAssembly
bytecode and to run those programs in web browsers at close to native speed, without
breaking the browser sandbox or security model. WebAssembly can export functions
that can be called by JavaScript programs. A typical use case for WebAssembly would
be to compile the standard C-language zlib compression library so that JavaScript
code has access to high-speed compression and decompression algorithms. Learn
more at https://webassembly.org.

15.15.5 More Document and Window Features
The Window and Document objects have a number of features that were not covered
in this chapter:

• The Window object defines alert(), confirm(), and prompt() methods that dis‐
play simple modal dialogues to the user. These methods block the main thread.
The confirm() method synchronously returns a boolean value, and prompt()
synchronously returns a string of user input. These are not suitable for produc‐
tion use but can be useful for simple projects and prototypes.

• The navigator and screen properties of the Window object were mentioned in
passing at the start of this chapter, but the Navigator and Screen objects that they
reference have some features that were not described here that you may find
useful.

• The requestFullscreen() method of any Element object requests that that ele‐
ment (a <video> or <canvas> element, for example) be displayed in fullscreen
mode. The exitFullscreen() method of the Document returns to normal dis‐
play mode.

• The requestAnimationFrame() method of the Window object takes a function as
its argument and will execute that function when the browser is preparing to ren‐
der the next frame. When you are making visual changes (especially repeated or
animated ones), wrapping your code within a call to requestAnimationFrame()
can help to ensure that the changes are rendered smoothly and in a way that is
optimized by the browser.

• If the user selects text within your document, you can obtain details of that selec‐
tion with the Window method getSelection() and get the selected text with
getSelection().toString(). In some browsers, navigator.clipboard is an
object with an async API for reading and setting the content of the system

570 | Chapter 15: JavaScript in Web Browsers

https://webassembly.org

clipboard to enable copy-and-paste interactions with applications outside of the
browser.

• A little-known feature of web browsers is that HTML elements with a contente
ditable="true" attribute allow their content to be edited. The document.exe
cCommand() method enables rich-text editing features for editable content.

• A MutationObserver allows JavaScript to monitor changes to, or beneath, a speci‐
fied element in the document. Create a MutationObserver with the MutationOb
server() constructor, passing the callback function that should be called when
changes are made. Then call the observe() method of the MutationObserver to
specify which parts of which element are to be monitored.

• An IntersectionObserver allows JavaScript to determine which document ele‐
ments are on the screen and which are close to being on the screen. It is particu‐
larly useful for applications that want to dynamically load content on demand as
the user scrolls.

15.15.6 Events
The sheer number and diversity of events supported by the web platform can be
daunting. This chapter has discussed a variety of event types, but here are some more
that you may find useful:

• Browsers fire “online” and “offline” events at the Window object when the
browser gains or loses an internet connection.

• Browsers fire a “visiblitychange” event at the Document object when a document
becomes visible or invisible (usually because a user has switched tabs). JavaScript
can check document.visibilityState to determine whether its document is
currently “visible” or “hidden.”

• Browsers support a complicated API to support drag-and-drop UIs and to sup‐
port data exchange with applications outside the browser. This API involves a
number of events, including “dragstart,” “dragover,” “dragend,” and “drop.” This
API is tricky to use correctly but useful when you need it. It is an important API
to know about if you want to enable users to drag files from their desktop into
your web application.

• The Pointer Lock API enables JavaScript to hide the mouse pointer and get raw
mouse events as relative movement amounts rather than absolute positions on
the screen. This is typically useful for games. Call requestPointerLock() on the
element you want all mouse events directed to. After you do this, “mousemove”
events delivered to that element will have movementX and movementY properties.

15.15 Summary and Suggestions for Further Reading | 571

• The Gamepad API adds support for game controllers. Use navigator.getGame
pads() to get connected Gamepad objects, and listen for “gamepadconnected”
events on the Window object to be notified when a new controller is plugged in.
The Gamepad object defines an API for querying the current state of the buttons
on the controller.

15.15.7 Progressive Web Apps and Service Workers
The term Progressive Web Apps, or PWAs, is a buzzword that describes web applica‐
tions that are built using a few key technologies. Careful documentation of these key
technologies would require a book of its own, and I have not covered them in this
chapter, but you should be aware of all of these APIs. It is worth noting that powerful
modern APIs like these are typically designed to work only on secure HTTPS con‐
nections. Websites that are still using http:// URLs will not be able to take advantage
of these:

• A ServiceWorker is a kind of worker thread with the ability to intercept, inspect,
and respond to network requests from the web application that it “services.”
When a web application registers a service worker, that worker’s code becomes
persistent in the browser’s local storage, and when the user visits the associated
website again, the service worker is reactivated. Service workers can cache net‐
work responses (including files of JavaScript code), which means that web appli‐
cations that use service workers can effectively install themselves onto the user’s
computer for rapid startup and offline use. The Service Worker Cookbook at
https://serviceworke.rs is a valuable resource for learning about service workers
and their related technologies.

• The Cache API is designed for use by service workers (but is also available to reg‐
ular JavaScript code outside of workers). It works with the Request and Response
objects defined by the fetch() API and implements a cache of Request/Response
pairs. The Cache API enables a service worker to cache the scripts and other
assets of the web app it serves and can also help to enable offline use of the web
app (which is particularly important for mobile devices).

• A Web Manifest is a JSON-formatted file that describes a web application includ‐
ing a name, a URL, and links to icons in various sizes. If your web app uses a
service worker and includes a <link rel="manifest"> tag that references a .web
manifest file, then browsers (particularly browsers on mobile devices) may give
you the option to add an icon for the web app to your desktop or home screen.

• The Notifications API allows web apps to display notifications using the native
OS notification system on both mobile and desktop devices. Notifications can
include an image and text, and your code can receive an event if the user clicks

572 | Chapter 15: JavaScript in Web Browsers

https://serviceworke.rs

on the notification. Using this API is complicated by the fact that you must first
request the user’s permission to display notifications.

• The Push API allows web applications that have a service worker (and that have
the user’s permission) to subscribe to notifications from a server, and to display
those notifications even when the application itself is not running. Push notifica‐
tions are common on mobile devices, and the Push API brings web apps closer to
feature parity with native apps on mobile.

15.15.8 Mobile Device APIs
There are a number of web APIs that are primarily useful for web apps running on
mobile devices. (Unfortunately, a number of these APIs only work on Android devi‐
ces and not iOS devices.)

• The Geolocation API allows JavaScript (with the user’s permission) to determine
the user’s physical location. It is well supported on desktop and mobile devices,
including iOS devices. Use navigator.geolocation.getCurrentPosition() to
request the user’s current position and use navigator.geolocation.watchPosi
tion() to register a callback to be called when the user’s position changes.

• The navigator.vibrate() method causes a mobile device (but not iOS) to
vibrate. Often this is only allowed in response to a user gesture, but calling this
method will allow your app to provide silent feedback that a gesture has been
recognized.

• The ScreenOrientation API enables a web application to query the current orien‐
tation of a mobile device screen and also to lock themselves to landscape or por‐
trait orientation.

• The “devicemotion” and “deviceorientation” events on the window object report
accelerometer and magnetometer data for the device, enabling you to determine
how the device is accelerating and how the user is orienting it in space. (These
events do work on iOS.)

• The Sensor API is not yet widely supported beyond Chrome on Android devices,
but it enables JavaScript access to the full suite of mobile device sensors, includ‐
ing accelerometer, gyroscope, magnetometer, and ambient light sensor. These
sensors enable JavaScript to determine which direction a user is facing or to
detect when the user shakes their phone, for example.

15.15 Summary and Suggestions for Further Reading | 573

15.15.9 Binary APIs
Typed arrays, ArrayBuffers, and the DataView class (all covered in §11.2) enable Java‐
Script to work with binary data. As described earlier in this chapter, the fetch() API
enables JavaScript programs to load binary data over the network. Another source of
binary data is files from the user’s local filesystem. For security reasons, JavaScript
can’t just read local files. But if the user selects a file for upload (using an <input
type="file> form element) or uses drag-and-drop to drop a file into your web appli‐
cation, then JavaScript can access that file as a File object.

File is a subclass of Blob, and as such, it is an opaque representation of a chunk of
data. You can use a FileReader class to asynchronously get the content of a file as an
ArrayBuffer or string. (In some browsers, you can skip the FileReader and instead use
the Promise-based text() and arrayBuffer() methods defined by the Blob class, or
the stream() method for streaming access to the file contents.)

When working with binary data, especially streaming binary data, you may need to
decode bytes into text or encode text as bytes. The TextEncoder and TextDecoder
classes help with this task.

15.15.10 Media APIs
The navigator.mediaDevices.getUserMedia() function allows JavaScript to request
access to the user’s microphone and/or video camera. A successful request results in a
MediaStream object. Video streams can be displayed in a <video> tag (by setting the
srcObject property to the stream). Still frames of the video can be captured into an
offscreen <canvas> with the canvas drawImage() function resulting in a relatively
low-resolution photograph. Audio and video streams returned by getUserMedia()
can be recorded and encoded to a Blob with a MediaRecorder object.

The more complex WebRTC API enables the transmission and reception of Media‐
Streams over the network, enabling peer-to-peer video conferencing, for example.

15.15.11 Cryptography and Related APIs
The crypto property of the Window object exposes a getRandomValues() method for
cryptographically secure pseudorandom numbers. Other methods for encryption,
decryption, key generation, digital signatures, and so on are available through
crypto.subtle. The name of this property is a warning to everyone who uses these
methods that properly using cryptographic algorithms is difficult and that you should
not use those methods unless you really know what you are doing. Also, the methods
of crypto.subtle are only available to JavaScript code running within documents
that were loaded over a secure HTTPS connection.

574 | Chapter 15: JavaScript in Web Browsers

The Credential Management API and the Web Authentication API allow JavaScript
to generate, store, and retrieve public key (and other types of) credentials and enables
account creation and login without passwords. The JavaScript API consists primarily
of the functions navigator.credentials.create() and navigator.creden

tials.get(), but substantial infrastructure is required on the server side to make
these methods work. These APIs are not universally supported yet, but have the
potential to revolutionize the way we log in to websites.

The Payment Request API adds browser support for making credit card payments on
the web. It allows users to store their payment details securely in the browser so that
they don’t have to type their credit card number each time they make a purchase.
Web applications that want to request a payment create a PaymentRequest object and
call its show() method to display the request to the user.

15.15 Summary and Suggestions for Further Reading | 575

CHAPTER 16

Server-Side JavaScript with Node

Node is JavaScript with bindings to the underlying operating system, making it possi‐
ble to write JavaScript programs that read and write files, execute child processes, and
communicate over the network. This makes Node useful as a:

• Modern alternative to shell scripts that does not suffer from the arcane syntax of
bash and other Unix shells.

• General-purpose programming language for running trusted programs, not sub‐
ject to the security constraints imposed by web browsers on untrusted code.

• Popular environment for writing efficient and highly concurrent web servers.

The defining feature of Node is its single-threaded event-based concurrency enabled
by an asynchronous-by-default API. If you have programmed in other languages but
have not done much JavaScript coding, or if you’re an experienced client-side Java‐
Script programmer used to writing code for web browers, using Node will be a bit of
an adjustment, as is any new programming language or environment. This chapter
begins by explaining the Node programming model, with an emphasis on concur‐
rency, Node’s API for working with streaming data, and Node’s Buffer type for work‐
ing with binary data. These initial sections are followed by sections that highlight and
demonstrate some of the most important Node APIs, including those for working
with files, networks, processes, and threads.

One chapter is not enough to document all of Node’s APIs, but my hope is that this
chapter will explain enough of the fundamentals to make you productive with Node,
and confident that you can master any new APIs you need.

577

Installing Node
Node is open source software. Visit https://nodejs.org to download and install Node
for Windows and MacOS. On Linux, you may be able to install Node with your nor‐
mal package manager, or you can visit https://nodejs.org/en/download to download
the binaries directly. If you work on containerized software, you can find official
Node Docker images at https://hub.docker.com.

In addition to the Node executable, a Node installation also includes npm, a package
manager that enables easy access to a vast ecosystem of JavaScript tools and libraries.
The examples in this chapter will use only Node’s built-in packages and will not
require npm or any external libraries.

Finally, do not overlook the official Node documentation, available at https://
nodejs.org/api and https://nodejs.org/docs/guides. I have found it to be well organized
and well written.

16.1 Node Programming Basics
We’ll begin this chapter with a quick look at how Node programs are structured and
how they interact with the operating system.

16.1.1 Console Output
If you are used to JavaScript programming for web browsers, one of the minor sur‐
prises about Node is that console.log() is not just for debugging, but is Node’s easi‐
est way to display a message to the user, or, more generally, to send output to the
stdout stream. Here’s the classic “Hello World” program in Node:

console.log("Hello World!");

There are lower-level ways to write to stdout, but no fancier or more official way than
simply calling console.log().

In web browsers, console.log(), console.warn(), and console.error() typically
display little icons next to their output in the developer console to indicate the variety
of the log message. Node does not do this, but output displayed with con
sole.error() is distinguished from output displayed with console.log() because
console.error() writes to the stderr stream. If you’re using Node to write a program
that is designed to have stdout redirected to a file or a pipe, you can use con
sole.error() to display text to the console where the user will see it, even though
text printed with console.log() is hidden.

578 | Chapter 16: Server-Side JavaScript with Node

https://nodejs.org
https://nodejs.org/en/download
https://hub.docker.com
https://nodejs.org/api
https://nodejs.org/api
https://nodejs.org/docs/guides

16.1.2 Command-Line Arguments and Environment Variables
If you have previously written Unix-style programs designed to be invoked from a
terminal or other command-line interface, you know that these programs typically
get their input primarily from command-line arguments and secondarily from envi‐
ronment variables.

Node follows these Unix conventions. A Node program can read its command-line
arguments from the array of strings process.argv. The first element of this array is
always the path to the Node executable. The second argument is the path to the file of
JavaScript code that Node is executing. Any remaining elements in this array are the
space-separated arguments that you passed on the command-line when you invoked
Node.

For example, suppose you save this very short Node program to the file argv.js:
console.log(process.argv);

You can then execute the program and see output like this:

$ node --trace-uncaught argv.js --arg1 --arg2 filename
[
 '/usr/local/bin/node',
 '/private/tmp/argv.js',
 '--arg1',
 '--arg2',
 'filename'
]

There are a couple of things to note here:

• The first and second elements of process.argv will be fully qualified filesystem
paths to the Node executable and the file of JavaScript that is being executed,
even if you did not type them that way.

• Command-line arguments that are intended for and interpreted by the Node exe‐
cutable itself are consumed by the Node executable and do not appear in pro
cess.argv. (The --trace-uncaught command-line argument isn’t actually doing
anything useful in the previous example; it is just there to demonstrate that it
does not appear in the output.) Any arguments (such as --arg1 and filename)
that appear after the name of the JavaScript file will appear in process.argv.

Node programs can also take input from Unix-style environment variables. Node
makes these available though the process.env object. The property names of this
object are environment variable names, and the property values (always strings) are
the values of those variables.

Here is a partial list of environment variables on my system:

16.1 Node Programming Basics | 579

$ node -p -e 'process.env'
{
 SHELL: '/bin/bash',
 USER: 'david',
 PATH: '/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin',
 PWD: '/tmp',
 LANG: 'en_US.UTF-8',
 HOME: '/Users/david',
}

You can use node -h or node --help to find out what the -p and -e command-line
arguments do. However, as a hint, note that you could rewrite the line above as node
--eval 'process.env' --print.

16.1.3 Program Life Cycle
The node command expects a command-line argument that specifies the file of Java‐
Script code to be run. This initial file typically imports other modules of JavaScript
code, and may also define its own classes and functions. Fundamentally, however,
Node executes the JavaScript code in the specified file from top to bottom. Some
Node programs exit when they are done executing the last line of code in the file.
Often, however, a Node program will keep running long after the initial file has been
executed. As we’ll discuss in the following sections, Node programs are often asyn‐
chronous and based on callbacks and event handlers. Node programs do not exit
until they are done running the initial file and until all callbacks have been called and
there are no more pending events. A Node-based server program that listens for
incoming network connections will theoretically run forever because it will always be
waiting for more events.

A program can force itself to exit by calling process.exit(). Users can usually termi‐
nate a Node program by typing Ctrl-C in the terminal window where the program is
running. A program can ignore Ctrl-C by registering a signal handler function with
process.on("SIGINT", ()=>{}).

If code in your program throws an exception and no catch clause catches it, the pro‐
gram will print a stack trace and exit. Because of Node’s asynchronous nature, excep‐
tions that occur in callbacks or event handlers must be handled locally or not handled
at all, which means that handling exceptions that occur in the asynchronous parts of
your program can be a difficult problem. If you don’t want these exceptions to cause
your program to completely crash, register a global handler function that will be
invoked instead of crashing:

process.setUncaughtExceptionCaptureCallback(e => {
 console.error("Uncaught exception:", e);
});

580 | Chapter 16: Server-Side JavaScript with Node

A similar situation arises if a Promise created by your program is rejected and there is
no .catch() invocation to handle it. As of Node 13, this is not a fatal error that
causes your program to exit, but it does print a verbose error message to the console.
In some future version of Node, unhandled Promise rejections are expected to
become fatal errors. If you do not want unhandled rejections, to print error messages
or terminate your program, register a global handler function:

process.on("unhandledRejection", (reason, promise) => {
 // reason is whatever value would have been passed to a .catch() function
 // promise is the Promise object that rejected
});

16.1.4 Node Modules
Chapter 10 documented JavaScript module systems, covering both Node modules
and ES6 modules. Because Node was created before JavaScript had a module system,
Node had to create its own. Node’s module system uses the require() function to
import values into a module and the exports object or the module.exports property
to export values from a module. These are a fundamental part of the Node program‐
ming model, and they are covered in detail in §10.2.

Node 13 adds support for standard ES6 modules as well as require-based modules
(which Node calls “CommonJS modules”). The two module systems are not fully
compatible, so this is somewhat tricky to do. Node needs to know—before it loads a
module—whether that module will be using require() and module.exports or if it
will be using import and export. When Node loads a file of JavaScript code as a
CommonJS module, it automatically defines the require() function along with iden‐
tifiers exports and module, and it does not enable the import and export keywords.
On the other hand, when Node loads a file of code as an ES6 module, it must enable
the import and export declarations, and it must not define extra identifiers like
require, module, and exports.

The simplest way to tell Node what kind of module it is loading is to encode this
information in the file extension. If you save your JavaScript code in a file that ends
with .mjs, then Node will always load it as an ES6 module, will expect it to use import
and export, and will not provide a require() function. And if you save your code in
a file that ends with .cjs, then Node will always treat it as a CommonJS module, will
provide a require() function, and will throw a SyntaxError if you use import or
export declarations.

For files that do not have an explicit .mjs or .cjs extension, Node looks for a file
named package.json in the same directory as the file and then in each of the contain‐
ing directories. Once the nearest package.json file is found, Node checks for a top-
level type property in the JSON object. If the value of the type property is “module”,
then Node loads the file as an ES6 module. If the value of that property is

16.1 Node Programming Basics | 581

“commonjs”, then Node loads the file as a CommonJS module. Note that you do not
need to have a package.json file to run Node programs: when no such file is found (or
when the file is found but it does not have a type property), Node defaults to using
CommonJS modules. This package.json trick only becomes necessary if you want to
use ES6 modules with Node and do not want to use the .mjs file extension.

Because there is an enormous amount of existing Node code written using Com‐
monJS module format, Node allows ES6 modules to load CommonJS modules using
the import keyword. The reverse is not true, however: a CommonJS module cannot
use require() to load an ES6 module.

16.1.5 The Node Package Manager
When you install Node, you typically get a program named npm as well. This is the
Node Package Manager, and it helps you download and manage libraries that your
program depends on. npm keeps track of those dependencies (as well as other infor‐
mation about your program) in a file named package.json in the root directory of
your project. This package.json file created by npm is where you would add
"type":"module" if you wanted to use ES6 modules for your project.

This chapter does not cover npm in any detail (but see §17.4 for a little more depth).
I’m mentioning it here because unless you write programs that do not use any exter‐
nal libraries, you will almost certainly be using npm or a tool like it. Suppose, for
example, that you are going to be developing a web server and plan to use the Express
framework (https://expressjs.com) to simplify the task. To get started, you might create
a directory for your project, and then, in that directory type npm init. npm will ask
you for your project name, version number, etc., and will then create an initial pack‐
age.json file based on your responses.

Now to start using Express, you’d type npm install express. This tells npm to
download the Express library along with all of its dependencies and install all the
packages in a local node_modules/ directory:

$ npm install express
npm notice created a lockfile as package-lock.json. You should commit this file.
npm WARN my-server@1.0.0 No description
npm WARN my-server@1.0.0 No repository field.

+ express@4.17.1
added 50 packages from 37 contributors and audited 126 packages in 3.058s
found 0 vulnerabilities

When you install a package with npm, npm records this dependency—that your
project depends on Express—in the package.json file. With this dependency recorded
in package.json, you could give another programmer a copy of your code and your

582 | Chapter 16: Server-Side JavaScript with Node

https://expressjs.com

package.json, and they could simply type npm install to automatically download and
install all of the libraries that your program needs in order to run.

16.2 Node Is Asynchronous by Default
JavaScript is a general-purpose programming language, so it is perfectly possible to
write CPU-intensive programs that multiply large matrices or perform complicated
statistical analyses. But Node was designed and optimized for programs—like net‐
work servers—that are I/O intensive. And in particular, Node was designed to make it
possible to easily implement highly concurrent servers that can handle many requests
at the same time.

Unlike many programming languages, however, Node does not achieve concurrency
with threads. Multithreaded programming is notoriously hard to do correctly, and
difficult to debug. Also, threads are a relatively heavyweight abstraction and if you
want to write a server that can handle hundreds of concurrent requests, using hun‐
dreds of threads may require a prohibitive amount of memory. So Node adopts the
single-threaded JavaScript programming model that the web uses, and this turns out
to be a vast simplification that makes the creation of network servers a routine skill
rather than an arcane one.

True Parallelism with Node
Node programs can run multiple operating system processes, and Node 10 and later
support Worker objects (§16.11), which are a kind of thread borrowed from web
browsers. If you use multiple processes or create one or more Worker threads and run
your program on a system with more than one CPU, then your program will no
longer be single-threaded and your program will truly be executing multiple streams
of code in parallel. These techniques can be valuable for CPU-intensive operations
but are not commonly used for I/O-intensive programs like servers.

It is worth noting, however, that Node’s processes and Workers avoid the typical com‐
plexity of multithreaded programming because interprocess and inter-Worker com‐
munication is via message passing and they cannot easily share memory with each
other.

Node achieves high levels of concurrency while maintaining a single-threaded pro‐
gramming model by making its API asynchronous and nonblocking by default. Node
takes its nonblocking approach very seriously and to an extreme that may surprise
you. You probably expect functions that read from and write to the network to be
asynchronous, but Node goes further and defines nonblocking asynchronous func‐
tions for reading and writing files from the local filesystem. This makes sense, when
you think about it: the Node API was designed in the days when spinning hard drives

16.2 Node Is Asynchronous by Default | 583

were still the norm and there really were milliseconds of blocking “seek time” while
waiting for the disc to spin around before a file operation could begin. And in
modern datacenters, the “local” filesystem may actually be across the network some‐
where with network latencies on top of drive latencies. But even if reading a file asyn‐
chronously seems normal to you, Node takes it still further: the default functions for
initiating a network connection or looking up a file modification time, for example,
are also nonblocking.

Some functions in Node’s API are synchronous but nonblocking: they run to comple‐
tion and return without ever needing to block. But most of the interesting functions
perform some kind of input or output, and these are asynchronous functions so they
can avoid even the tiniest amount of blocking. Node was created before JavaScript
had a Promise class, so asynchronous Node APIs are callback-based. (If you have not
yet read or have already forgotten Chapter 13, this would be a good time to skip back
to that chapter.) Generally, the last argument you pass to an asynchronous Node
function is a callback. Node uses error-first callbacks, which are typically invoked with
two arguments. The first argument to an error-first callback is normally null in the
case where no error occurred, and the second argument is whatever data or response
was produced by the original asynchronous function you called. The reason for
putting the error argument first is to make it impossible for you to omit it, and you
should always check for a non-null value in this argument. If it is an Error object, or
even an integer error code or string error message, then something went wrong. In
this case, the second argument to your callback function is likely to be null.

The following code demonstrates how to use the nonblocking readFile() function
to read a configuration file, parse it as JSON, and then pass the parsed configuration
object to another callback:

const fs = require("fs"); // Require the filesystem module

// Read a config file, parse its contents as JSON, and pass the
// resulting value to the callback. If anything goes wrong,
// print an error message to stderr and invoke the callback with null
function readConfigFile(path, callback) {
 fs.readFile(path, "utf8", (err, text) => {
 if (err) { // Something went wrong reading the file
 console.error(err);
 callback(null);
 return;
 }
 let data = null;
 try {
 data = JSON.parse(text);
 } catch(e) { // Something went wrong parsing the file contents
 console.error(e);
 }
 callback(data);

584 | Chapter 16: Server-Side JavaScript with Node

 });
}

Node predates standardized promises, but because it is fairly consistent about its
error-first callbacks, it is easy to create Promise-based variants of its callback-based
APIs using the util.promisify() wrapper. Here’s how we could rewrite the readCon
figFile() function to return a Promise:

const util = require("util");
const fs = require("fs"); // Require the filesystem module
const pfs = { // Promise-based variants of some fs functions
 readFile: util.promisify(fs.readFile)
};

function readConfigFile(path) {
 return pfs.readFile(path, "utf-8").then(text => {
 return JSON.parse(text);
 });
}

We can also simpify the preceding Promise-based function using async and await
(again, if you have not yet read through Chapter 13, this would be a good time to do
so):

async function readConfigFile(path) {
 let text = await pfs.readFile(path, "utf-8");
 return JSON.parse(text);
}

The util.promisify() wrapper can produce a Promise-based version of many Node
functions. In Node 10 and later, the fs.promises object has a number of predefined
Promise-based functions for working with the filesystem. We’ll discuss them later in
this chapter, but note that in the preceding code, we could replace pfs.readFile()
with fs.promises.readFile().

We had said that Node’s programming model is async-by-default. But for program‐
mer convenience, Node does define blocking, synchronous variants of many of its
functions, especially in the filesystem module. These functions typically have names
that are clearly labeled with Sync at the end.

When a server is first starting up and is reading its configuration files, it is not han‐
dling network requests yet, and little or no concurrency is actually possible. So in this
situation, there is really no need to avoid blocking, and we can safely use blocking
functions like fs.readFileSync(). We can drop the async and await from this code
and write a purely synchronous version of our readConfigFile() function. Instead
of invoking a callback or returning a Promise, this function simply returns the parsed
JSON value or throws an exception:

const fs = require("fs");
function readConfigFileSync(path) {

16.2 Node Is Asynchronous by Default | 585

 let text = fs.readFileSync(path, "utf-8");
 return JSON.parse(text);
}

In addition to its error-first two-argument callbacks, Node also has a number of APIs
that use event-based asynchrony, typically for handling streaming data. We’ll cover
Node events in more detail later.

Now that we’ve discussed Node’s aggressively nonblocking API, let’s turn back to the
topic of concurrency. Node’s built-in nonblocking functions work using the operating
system’s version of callbacks and event handlers. When you call one of these func‐
tions, Node takes action to get the operation started, then registers some kind of
event handler with the operating system so that it will be notified when the operation
is complete. The callback you passed to the Node function gets stored internally so
that Node can invoke your callback when the operating system sends the appropriate
event to Node.

This kind of concurrency is often called event-based concurrency. At its core, Node
has a single thread that runs an “event loop.” When a Node program starts, it runs
whatever code you’ve told it to run. This code presumably calls at least one nonblock‐
ing function causing a callback or event handler to be registered with the operating
system. (If not, then you’ve written a synchronous Node program, and Node simply
exits when it reaches the end.) When Node reaches the end of your program, it blocks
until an event happens, at which time the OS starts it running again. Node maps the
OS event to the JavaScript callback you registered and then invokes that function.
Your callback function may invoke more nonblocking Node functions, causing more
OS event handlers to be registered. Once your callback function is done running,
Node goes back to sleep again and the cycle repeats.

For web servers and other I/O-intensive applications that spend most of their time
waiting for input and output, this style of event-based concurrency is efficient and
effective. A web server can concurrently handle requests from 50 different clients
without needing 50 different threads as long as it uses nonblocking APIs and there is
some kind of internal mapping from network sockets to JavaScript functions to
invoke when activity occurs on those sockets.

16.3 Buffers
One of the datatypes you’re likely to use frequently in Node—especially when reading
data from files or from the network—is the Buffer class. A Buffer is a lot like a string,
except that it is a sequence of bytes instead of a sequence of characters. Node was cre‐
ated before core JavaScript supported typed arrays (see §11.2) and there was no
Uint8Array to represent an array of unsigned bytes. Node defined the Buffer class to
fill that need. Now that Uint8Array is part of the JavaScript language, Node’s Buffer
class is a subclass of Uint8Array.

586 | Chapter 16: Server-Side JavaScript with Node

What distinguishes Buffer from its Uint8Array superclass is that it is designed to
interoperate with JavaScript strings: the bytes in a buffer can be initialized from char‐
acter strings or converted to character strings. A character encoding maps each char‐
acter in some set of characters to an integer. Given a string of text and a character
encoding, we can encode the characters in the string into a sequence of bytes. And
given a (properly encoded) sequence of bytes and a character encoding, we can
decode those bytes into a sequence of characters. Node’s Buffer class has methods that
perform both encoding and decoding, and you can recognize these methods because
they expect an encoding argument that specifies the encoding to be used.

Encodings in Node are specified by name, as strings. The supported encodings are:

"utf8"

This is the default when no encoding is specified, and is the Unicode encoding
you are most likely to use.

"utf16le"

Two-byte Unicode characters, with little-endian ordering. Codepoints above
\uffff are encoded as a pair of two-byte sequences. Encoding "ucs2" is an alias.

"latin1"

The one-byte-per-character ISO-8859-1 encoding that defines a character set
suitable for many Western European languages. Because there is a one-to-one
mapping between bytes and latin-1 characters, this encoding is also known as
"binary".

"ascii"

The 7-bit English-only ASCII encoding, a strict subset of the "utf8" encoding.

"hex"

This encoding converts each byte to a pair of ASCII hexadecimal digits.

"base64"

This encoding converts each sequence of three bytes into a sequence of four ascii
characters.

Here is some example code that demonstrates how to work with Buffers and how to
convert to and from strings:

let b = Buffer.from([0x41, 0x42, 0x43]); // <Buffer 41 42 43>
b.toString() // => "ABC"; default "utf8"
b.toString("hex") // => "414243"

let computer = Buffer.from("IBM3111", "ascii"); // Convert string to Buffer
for(let i = 0; i < computer.length; i++) { // Use Buffer as byte array
 computer[i]--; // Buffers are mutable
}
computer.toString("ascii") // => "HAL2000"

16.3 Buffers | 587

computer.subarray(0,3).map(x=>x+1).toString() // => "IBM"

// Create new "empty" buffers with Buffer.alloc()
let zeros = Buffer.alloc(1024); // 1024 zeros
let ones = Buffer.alloc(128, 1); // 128 ones
let dead = Buffer.alloc(1024, "DEADBEEF", "hex"); // Repeating pattern of bytes

// Buffers have methods for reading and writing multi-byte values
// from and to a buffer at any specified offset.
dead.readUInt32BE(0) // => 0xDEADBEEF
dead.readUInt32BE(1) // => 0xADBEEFDE
dead.readBigUInt64BE(6) // => 0xBEEFDEADBEEFDEADn
dead.readUInt32LE(1020) // => 0xEFBEADDE

If you write a Node program that actually manipulates binary data, you may find
yourself using the Buffer class extensively. On the other hand, if you are just working
with text that is read from or written to a file or the network, then you may only
encounter Buffer as an intermediate representation of your data. A number of Node
APIs can take input or return output as either strings or Buffer objects. Typically, if
you pass a string, or expect a string to be returned, from one of these APIs, you’ll
need to specify the name of the text encoding you want to use. And if you do this,
then you may not need to use a Buffer object at all.

16.4 Events and EventEmitter
As described, all of Node’s APIs are asynchronous by default. For many of them, this
asynchrony takes the form of two-argument error-first callbacks that are invoked
when the requested operation is complete. But some of the more complicated APIs
are event-based instead. This is typically the case when the API is designed around an
object rather than a function, or when a callback function needs to be invoked multi‐
ple times, or when there are multiple types of callback functions that may be
required. Consider the net.Server class, for example: an object of this type is a server
socket that is used to accept incoming connections from clients. It emits a “listening”
event when it first starts listening for connections, a “connection” event every time a
client connects, and a “close” event when it has been closed and is no longer listening.

In Node, objects that emit events are instances of EventEmitter or a subclass of
EventEmitter:

const EventEmitter = require("events"); // Module name does not match class name
const net = require("net");
let server = new net.Server(); // create a Server object
server instanceof EventEmitter // => true: Servers are EventEmitters

The main feature of EventEmitters is that they allow you to register event handler
functions with the on() method. EventEmitters can emit multiple types of events, and
event types are identified by name. To register an event handler, call the on() method,

588 | Chapter 16: Server-Side JavaScript with Node

passing the name of the event type and the function that should be invoked when an
event of that type occurs. EventEmitters can invoke handler functions with any num‐
ber of arguments, and you need to read the documentation for a specific kind of
event from a specific EventEmitter to know what arguments you should expect to be
passed:

const net = require("net");
let server = new net.Server(); // create a Server object
server.on("connection", socket => { // Listen for "connection" events
 // Server "connection" events are passed a socket object
 // for the client that just connected. Here we send some data
 // to the client and disconnect.
 socket.end("Hello World", "utf8");
});

If you prefer more explicit method names for registering event listeners, you can also
use addListener(). And you can remove a previously registered event listener with
off() or removeListener(). As a special case, you can register an event listener that
will be automatically removed after it is triggered for the first time by calling once()
instead of on().

When an event of a particular type occurs for a particular EventEmitter object, Node
invokes all of the handler functions that are currently registered on that EventEmitter
for events of that type. They are invoked in order from the first registered to the last
registered. If there is more than one handler function, they are invoked sequentially
on a single thread: there is no parallelism in Node, remember. And, importantly,
event handling functions are invoked synchronously, not asynchronously. What this
means is that the emit() method does not queue up event handlers to be invoked at
some later time. emit() invokes all the registered handlers, one after the other, and
does not return until the last event handler has returned.

What this means, in effect, is that when one of the built-in Node APIs emits an event,
that API is basically blocking on your event handlers. If you write an event handler
that calls a blocking function like fs.readFileSync(), no further event handling will
happen until your synchronous file read is complete. If your program is one—like a
network server—that needs to be responsive, then it is important that you keep your
event handler functions nonblocking and fast. If you need to do a lot of computation
when an event occurs, it is often best to use the handler to schedule that computation
asynchronously using setTimeout() (see §11.10). Node also defines setImmediate(),
which schedules a function to be invoked immediately after all pending callbacks and
events have been handled.

The EventEmitter class also defines an emit() method that causes the registered
event handler functions to be invoked. This is useful if you are defining your own
event-based API, but is not commonly used when you’re just programming with
existing APIs. emit() must be invoked with the name of the event type as its first

16.4 Events and EventEmitter | 589

1 Node defines a fs.copyFile() function that you would actually use in practice.

argument. Any additional arguments that are passed to emit() become arguments to
the registered event handler functions. The handler functions are also invoked with
the this value set to the EventEmitter object itself, which is often convenient.
(Remember, though, that arrow functions always use the this value of the context in
which they are defined, and they cannot be invoked with any other this value. Nev‐
ertheless, arrow functions are often the most convenient way to write event handlers.)

Any value returned by an event handler function is ignored. If an event handler func‐
tion throws an exception, however, it propagates out from the emit() call and pre‐
vents the execution of any handler functions that were registered after the one that
threw the exception.

Recall that Node’s callback-based APIs use error-first callbacks, and it is important
that you always check the first callback argument to see if an error occurred. With
event-based APIs, the equivalent is “error” events. Since event-based APIs are often
used for networking and other forms of streaming I/O, they are vulnerable to unpre‐
dictable asynchronous errors, and most EventEmitters define an “error” event that
they emit when an error occurs. Whenever you use an event-based API, you should
make it a habit to register a handler for “error” events. “Error” events get special treat‐
ment by the EventEmitter class. If emit() is called to emit an “error” event, and if
there are no handlers registered for that event type, then an exception will be thrown.
Since this occurs asynchronously, there is no way for you to handle the exception in a
catch block, so this kind of error typically causes your program to exit.

16.5 Streams
When implementing an algorithm to process data, it is almost always easiest to read
all the data into memory, do the processing, and then write the data out. For example,
you could write a Node function to copy a file like this.1

const fs = require("fs");

// An asynchronous but nonstreaming (and therefore inefficient) function.
function copyFile(sourceFilename, destinationFilename, callback) {
 fs.readFile(sourceFilename, (err, buffer) => {
 if (err) {
 callback(err);
 } else {
 fs.writeFile(destinationFilename, buffer, callback);
 }
 });
}

590 | Chapter 16: Server-Side JavaScript with Node

This copyFile() function uses asynchronous functions and callbacks, so it does not
block and is suitable for use in concurrent programs like servers. But notice that it
must allocate enough memory to hold the entire contents of the file in memory at
once. This may be fine in some use cases, but it starts to fail if the files to be copied
are very large, or if your program is highly concurrent and there may be many files
being copied at the same time. Another shortcoming of this copyFile() implementa‐
tion is that it cannot start writing the new file until it has finished reading the old file.

The solution to these problems is to use streaming algorithms where data “flows” into
your program, is processed, and then flows out of your program. The idea is that
your algorithm processes the data in small chunks and the full dataset is never held in
memory at once. When streaming solutions are possible, they are more memory effi‐
cient and can also be faster. Node’s networking APIs are stream-based and Node’s file‐
system module defines streaming APIs for reading and writing files, so you are likely
to use a streaming API in many of the Node programs that you write. We’ll see a
streaming version of the copyFile() function in “Flowing mode” on page 598.

Node supports four basic stream types:

Readable
Readable streams are sources of data. The stream returned by fs.createRead
Stream(), for example, is a stream from which the content of a specified file can
be read. process.stdin is another Readable stream that returns data from stan‐
dard input.

Writable
Writable streams are sinks or destinations for data. The return value of fs.crea
teWriteStream(), for example, is a Writable stream: it allows data to be written
to it in chunks, and outputs all of that data to a specified file.

Duplex
Duplex streams combine a Readable stream and a Writable stream into one
object. The Socket objects returned by net.connect() and other Node network‐
ing APIs, for example, are Duplex streams. If you write to a socket, your data is
sent across the network to whatever computer the socket is connected to. And if
you read from a socket, you access the data written by that other computer.

Transform
Transform streams are also readable and writable, but they differ from Duplex
streams in an important way: data written to a Transform stream becomes reada‐
ble—usually in some transformed form—from the same stream. The zlib.crea
teGzip() function, for example, returns a Transform stream that compresses
(with the gzip algorithm) the data written to it. In a similar way, the
crypto.createCipheriv() function returns a Transform stream that encrypts or
decrypts data that is written to it.

16.5 Streams | 591

By default, streams read and write buffers. If you call the setEncoding() method of a
Readable stream, it will return decoded strings to you instead of Buffer objects. And if
you write a string to a Writable buffer, it will be automatically encoded using the buf‐
fer’s default encoding or whatever encoding you specify. Node’s stream API also sup‐
ports an “object mode” where streams read and write objects more complex than
buffers and strings. None of Node’s core APIs use this object mode, but you may
encounter it in other libraries.

Readable streams have to read their data from somewhere, and Writable streams have
to write their data to somewhere, so every stream has two ends: an input and an out‐
put or a source and a destination. The tricky thing about stream-based APIs is that
the two ends of the stream will almost always flow at different speeds. Perhaps the
code that reads from a stream wants to read and process data more quickly than the
data is actually being written into the stream. Or the reverse: perhaps data is written
to a stream more quickly than it can be read and pulled out of the stream on the other
end. Stream implementations almost always include an internal buffer to hold data
that has been written but not yet read. Buffering helps to ensure that there is data
available to read when it’s requested, and that there is space to hold data when it is
written. But neither of these things can ever be guaranteed, and it is the nature of
stream-based programming that readers will sometimes have to wait for data to be
written (because the stream buffer is empty), and writers will sometimes have to wait
for data to be read (because the stream buffer is full).

In programming environments that use thread-based concurrency, stream APIs typi‐
cally have blocking calls: a call to read data does not return until data arrives in the
stream and a call to write data blocks until there is enough room in the stream’s inter‐
nal buffer to accommodate the new data. With an event-based concurrency model,
however, blocking calls do not make sense, and Node’s stream APIs are event- and
callback-based. Unlike other Node APIs, there are not “Sync” versions of the methods
that will be described later in this chapter.

The need to coordinate stream readability (buffer not empty) and writability (buffer
not full) via events makes Node’s stream APIs somewhat complicated. This is com‐
pounded by the fact that these APIs have evolved and changed over the years: for
Readable streams, there are two completely distinct APIs that you can use. Despite
the complexity, it is worth understanding and mastering Node’s streaming APIs
because they enable high-throughput I/O in your programs.

The subsections that follow demonstrate how to read and write from Node’s stream
classes.

16.5.1 Pipes
Sometimes, you need to read data from a stream simply to turn around and write that
same data to another stream. Imagine, for example, that you are writing a simple

592 | Chapter 16: Server-Side JavaScript with Node

HTTP server that serves a directory of static files. In this case, you will need to read
data from a file input stream and write it out to a network socket. But instead of writ‐
ing your own code to handle the reading and writing, you can instead simply connect
the two sockets together as a “pipe” and let Node handle the complexities for you.
Simply pass the Writable stream to the pipe() method of the Readable stream:

const fs = require("fs");

function pipeFileToSocket(filename, socket) {
 fs.createReadStream(filename).pipe(socket);
}

The following utility function pipes one stream to another and invokes a callback
when done or when an error occurs:

function pipe(readable, writable, callback) {
 // First, set up error handling
 function handleError(err) {
 readable.close();
 writable.close();
 callback(err);
 }

 // Next define the pipe and handle the normal termination case
 readable
 .on("error", handleError)
 .pipe(writable)
 .on("error", handleError)
 .on("finish", callback);
}

Transform streams are particularly useful with pipes, and create pipelines that involve
more than two streams. Here’s an example function that compresses a file:

const fs = require("fs");
const zlib = require("zlib");

function gzip(filename, callback) {
 // Create the streams
 let source = fs.createReadStream(filename);
 let destination = fs.createWriteStream(filename + ".gz");
 let gzipper = zlib.createGzip();

 // Set up the pipeline
 source
 .on("error", callback) // call callback on read error
 .pipe(gzipper)
 .pipe(destination)
 .on("error", callback) // call callback on write error
 .on("finish", callback); // call callback when writing is complete
}

16.5 Streams | 593

Using the pipe() method to copy data from a Readable stream to a Writable stream is
easy, but in practice, you often need to process the data somehow as it streams
through your program. One way to do this is to implement your own Transform
stream to do that processing, and this approach allows you to avoid manually reading
and writing the streams. Here, for example, is a function that works like the Unix
grep utility: it reads lines of text from an input stream, but writes only the lines that
match a specified regular expression:

const stream = require("stream");

class GrepStream extends stream.Transform {
 constructor(pattern) {
 super({decodeStrings: false});// Don't convert strings back to buffers
 this.pattern = pattern; // The regular expression we want to match
 this.incompleteLine = ""; // Any remnant of the last chunk of data
 }

 // This method is invoked when there is a string ready to be
 // transformed. It should pass transformed data to the specified
 // callback function. We expect string input so this stream should
 // only be connected to readable streams that have had
 // setEncoding() called on them.
 _transform(chunk, encoding, callback) {
 if (typeof chunk !== "string") {
 callback(new Error("Expected a string but got a buffer"));
 return;
 }
 // Add the chunk to any previously incomplete line and break
 // everything into lines
 let lines = (this.incompleteLine + chunk).split("\n");

 // The last element of the array is the new incomplete line
 this.incompleteLine = lines.pop();

 // Find all matching lines
 let output = lines // Start with all complete lines,
 .filter(l => this.pattern.test(l)) // filter them for matches,
 .join("\n"); // and join them back up.

 // If anything matched, add a final newline
 if (output) {
 output += "\n";
 }

 // Always call the callback even if there is no output
 callback(null, output);
 }

 // This is called right before the stream is closed.
 // It is our chance to write out any last data.
 _flush(callback) {

594 | Chapter 16: Server-Side JavaScript with Node

 // If we still have an incomplete line, and it matches
 // pass it to the callback
 if (this.pattern.test(this.incompleteLine)) {
 callback(null, this.incompleteLine + "\n");
 }
 }
}

// Now we can write a program like 'grep' with this class.
let pattern = new RegExp(process.argv[2]); // Get a RegExp from command line.
process.stdin // Start with standard input,
 .setEncoding("utf8") // read it as Unicode strings,
 .pipe(new GrepStream(pattern)) // pipe it to our GrepStream,
 .pipe(process.stdout) // and pipe that to standard out.
 .on("error", () => process.exit()); // Exit gracefully if stdout closes.

16.5.2 Asynchronous Iteration
In Node 12 and later, Readable streams are asynchronous iterators, which means that
within an async function you can use a for/await loop to read string or Buffer
chunks from a stream using code that is structured like synchronous code would be.
(See §13.4 for more on asynchronous iterators and for/await loops.)

Using an asynchronous iterator is almost as easy as using the pipe() method, and is
probably easier when you need to process each chunk you read in some way. Here’s
how we could rewrite the grep program in the previous section using an async func‐
tion and a for/await loop:

// Read lines of text from the source stream, and write any lines
// that match the specified pattern to the destination stream.
async function grep(source, destination, pattern, encoding="utf8") {
 // Set up the source stream for reading strings, not Buffers
 source.setEncoding(encoding);

 // Set an error handler on the destination stream in case standard
 // output closes unexpectedly (when piping output to `head`, e.g.)
 destination.on("error", err => process.exit());

 // The chunks we read are unlikely to end with a newline, so each will
 // probably have a partial line at the end. Track that here
 let incompleteLine = "";

 // Use a for/await loop to asynchronously read chunks from the input stream
 for await (let chunk of source) {
 // Split the end of the last chunk plus this one into lines
 let lines = (incompleteLine + chunk).split("\n");
 // The last line is incomplete
 incompleteLine = lines.pop();
 // Now loop through the lines and write any matches to the destination
 for(let line of lines) {
 if (pattern.test(line)) {

16.5 Streams | 595

 destination.write(line + "\n", encoding);
 }
 }
 }
 // Finally, check for a match on any trailing text.
 if (pattern.test(incompleteLine)) {
 destination.write(incompleteLine + "\n", encoding);
 }
}

let pattern = new RegExp(process.argv[2]); // Get a RegExp from command line.
grep(process.stdin, process.stdout, pattern) // Call the async grep() function.
 .catch(err => { // Handle asynchronous exceptions.
 console.error(err);
 process.exit();
 });

16.5.3 Writing to Streams and Handling Backpressure
The async grep() function in the preceding code example demonstrated how to use a
Readable stream as an asynchronous iterator, but it also demonstrated that you can
write data to a Writable stream simply by passing it to the write() method. The
write() method takes a buffer or string as the first argument. (Object streams expect
other kinds of objects, but are beyond the scope of this chapter.) If you pass a buffer,
the bytes of that buffer will be written directly. If you pass a string, it will be encoded
to a buffer of bytes before being written. Writable streams have a default encoding
that is used when you pass a string as the only argument to write(). The default
encoding is typically “utf8,” but you can set it explicitly by calling setDefaultEncod
ing() on the Writable stream. Alternatively, when you pass a string as the first argu‐
ment to write() you can pass an encoding name as the second argument.

write() optionally takes a callback function as its third argument. This will be
invoked when the data has actually been written and is no longer in the Writable
stream’s internal buffer. (This callback may also be invoked if an error occurs, but this
is not guaranteed. You should register an “error” event handler on the Writable
stream to detect errors.)

The write() method has a very important return value. When you call write() on a
stream, it will always accept and buffer the chunk of data you have passed. It then
returns true if the internal buffer is not yet full. Or, if the buffer is now full or over‐
full, it returns false. This return value is advisory, and you can ignore it—Writable
streams will enlarge their internal buffer as much as needed if you keep calling
write(). But remember that the reason to use a streaming API in the first place is to
avoid the cost of keeping lots of data in memory at once.

A return value of false from the write() method is a form of backpressure: a mes‐
sage from the stream that you have written data more quickly than it can be handled.

596 | Chapter 16: Server-Side JavaScript with Node

The proper response to this kind of backpressure is to stop calling write() until the
stream emits a “drain” event, signaling that there is once again room in the buffer.
Here, for example, is a function that writes to a stream, and then invokes a callback
when it is OK to write more data to the stream:

function write(stream, chunk, callback) {
 // Write the specified chunk to the specified stream
 let hasMoreRoom = stream.write(chunk);

 // Check the return value of the write() method:
 if (hasMoreRoom) { // If it returned true, then
 setImmediate(callback); // invoke callback asynchronously.
 } else { // If it returned false, then
 stream.once("drain", callback); // invoke callback on drain event.
 }
}

The fact that it is sometimes OK to call write() multiple times in a row and some‐
times you have to wait for an event between writes makes for awkward algorithms.
This is one of the reasons that using the pipe() method is so appealing: when you use
pipe(), Node handles backpressure for you automatically.

If you are using await and async in your program, and are treating Readable streams
as asynchronous iterators, it is straightforward to implement a Promise-based version
of the write() utility function above to properly handle backpressure. In the async
grep() function we just looked at, we did not handle backpressure. The async copy()
function in the following example demonstrates how it can be done correctly. Note
that this function just copies chunks from a source stream to a destination stream and
calling copy(source, destination) is much like calling source.pipe(destina
tion):

// This function writes the specified chunk to the specified stream and
// returns a Promise that will be fulfilled when it is OK to write again.
// Because it returns a Promise, it can be used with await.
function write(stream, chunk) {
 // Write the specified chunk to the specified stream
 let hasMoreRoom = stream.write(chunk);

 if (hasMoreRoom) { // If buffer is not full, return
 return Promise.resolve(null); // an already resolved Promise object
 } else {
 return new Promise(resolve => { // Otherwise, return a Promise that
 stream.once("drain", resolve); // resolves on the drain event.
 });
 }
}

// Copy data from the source stream to the destination stream
// respecting backpressure from the destination stream.
// This is much like calling source.pipe(destination).

16.5 Streams | 597

async function copy(source, destination) {
 // Set an error handler on the destination stream in case standard
 // output closes unexpectedly (when piping output to `head`, e.g.)
 destination.on("error", err => process.exit());

 // Use a for/await loop to asynchronously read chunks from the input stream
 for await (let chunk of source) {
 // Write the chunk and wait until there is more room in the buffer.
 await write(destination, chunk);
 }
}

// Copy standard input to standard output
copy(process.stdin, process.stdout);

Before we conclude this discussion of writing to streams, note again that failing to
respond to backpressure can cause your program to use more memory than it should
when the internal buffer of a Writable stream overflows and grows larger and larger.
If you are writing a network server, this can be a remotely exploitable security issue.
Suppose you write an HTTP server that delivers files over the network, but you didn’t
use pipe() and you didn’t take the time to handle backpressure from the write()
method. An attacker could write an HTTP client that initiates requests for large files
(such as images) but never actually reads the body of the request. Since the client is
not reading the data over the network, and the server isn’t responding to backpres‐
sure, buffers on the server are going to overflow. With enough concurrent connec‐
tions from the attacker, this can turn into a denial-of-service attack that slows your
server down or even crashes it.

16.5.4 Reading Streams with Events
Node’s readable streams have two modes, each of which has its own API for reading.
If you can’t use pipes or asynchronous iteration in your program, you will need to
pick one of these two event-based APIs for handling streams. It is important that you
use only one or the other and do not mix the two APIs.

Flowing mode
In flowing mode, when readable data arrives, it is immediately emitted in the form of
a “data” event. To read from a stream in this mode, simply register an event handler
for “data” events, and the stream will push chunks of data (buffers or strings) to you
as soon as they becomes available. Note that there is no need to call the read()
method in flowing mode: you only need to handle “data” events. Note that newly
created streams do not start off in flowing mode. Registering a “data” event handler
switches a stream into flowing mode. Conveniently, this means that a stream does not
emit “data” events until you register the first “data” event handler.

598 | Chapter 16: Server-Side JavaScript with Node

If you are using flowing mode to read data from a Readable stream, process it, then
write it to a Writable stream, then you may need to handle backpressure from the
Writable stream. If the write() method returns false to indicate that the write
buffer is full, you can call pause() on the Readable stream to temporarily stop data
events. Then, when you get a “drain” event from the Writable stream, you can call
resume() on the Readable stream to start the “data” events flowing again.

A stream in flowing mode emits an “end” event when the end of the stream is
reached. This event indicates that no more “data” events will ever be emitted. And, as
with all streams, an “error” event is emitted if an error occurs.

At the beginning of this section on streams, we showed a nonstreaming copyFile()
function and promised a better version to come. The following code shows how to
implement a streaming copyFile() function that uses the flowing mode API and
handles backpressure. This would have been easier to implement with a pipe() call,
but it serves here as a useful demonstration of the multiple event handlers that are
used to coordinate data flow from one stream to the other.

const fs = require("fs");

// A streaming file copy function, using "flowing mode".
// Copies the contents of the named source file to the named destination file.
// On success, invokes the callback with a null argument. On error,
// invokes the callback with an Error object.
function copyFile(sourceFilename, destinationFilename, callback) {
 let input = fs.createReadStream(sourceFilename);
 let output = fs.createWriteStream(destinationFilename);

 input.on("data", (chunk) => { // When we get new data,
 let hasRoom = output.write(chunk); // write it to the output stream.
 if (!hasRoom) { // If the output stream is full
 input.pause(); // then pause the input stream.
 }
 });
 input.on("end", () => { // When we reach the end of input,
 output.end(); // tell the output stream to end.
 });
 input.on("error", err => { // If we get an error on the input,
 callback(err); // call the callback with the error
 process.exit(); // and quit.
 });

 output.on("drain", () => { // When the output is no longer full,
 input.resume(); // resume data events on the input
 });
 output.on("error", err => { // If we get an error on the output,
 callback(err); // call the callback with the error
 process.exit(); // and quit.
 });
 output.on("finish", () => { // When output is fully written

16.5 Streams | 599

 callback(null); // call the callback with no error.
 });
}

// Here's a simple command-line utility to copy files
let from = process.argv[2], to = process.argv[3];
console.log(`Copying file ${from} to ${to}...`);
copyFile(from, to, err => {
 if (err) {
 console.error(err);
 } else {
 console.log("done.");
 }
});

Paused mode
The other mode for Readable streams is “paused mode.” This is the mode that streams
start in. If you never register a “data” event handler and never call the pipe() method,
then a Readable stream remains in paused mode. In paused mode, the stream does
not push data to you in the form of “data” events. Instead, you pull data from the
stream by explicitly calling its read() method. This is not a blocking call, and if there
is no data available to read on the stream, it will return null. Since there is not a syn‐
chronous API to wait for data, the paused mode API is also event-based. A Readable
stream in paused mode emits “readable” events when data becomes available to read
on the stream. In response, your code should call the read() method to read that
data. You must do this in a loop, calling read() repeatedly until it returns null. It is
necessary to completely drain the stream’s buffer like this in order to trigger a new
“readable” event in the future. If you stop calling read() while there is still readable
data, you will not get another “readable” event and your program is likely to hang.

Streams in paused mode emit “end” and “error” events just like flowing mode streams
do. If you are writing a program that reads data from a Readable stream and writes it
to a Writable stream, then paused mode may not be a good choice. In order to prop‐
erly handle backpressure, you only want to read when the input stream is readable
and the output stream is not backed up. In paused mode, that means reading and
writing until read() returns null or write() returns false, and then starting read‐
ing or writing again on a readable or drain event. This is inelegant, and you may
find that flowing mode (or pipes) is easier in this case.

The following code demonstrates how you can compute a SHA256 hash for the con‐
tents of a specified file. It uses a Readable stream in paused mode to read the contents
of a file in chunks, then passes each chunk to the object that computes the hash.
(Note that in Node 12 and later, it would be simpler to write this function using a
for/await loop.)

600 | Chapter 16: Server-Side JavaScript with Node

const fs = require("fs");
const crypto = require("crypto");

// Compute a sha256 hash of the contents of the named file and pass the
// hash (as a string) to the specified error-first callback function.
function sha256(filename, callback) {
 let input = fs.createReadStream(filename); // The data stream.
 let hasher = crypto.createHash("sha256"); // For computing the hash.

 input.on("readable", () => { // When there is data ready to read
 let chunk;
 while(chunk = input.read()) { // Read a chunk, and if non-null,
 hasher.update(chunk); // pass it to the hasher,
 } // and keep looping until not readable
 });
 input.on("end", () => { // At the end of the stream,
 let hash = hasher.digest("hex"); // compute the hash,
 callback(null, hash); // and pass it to the callback.
 });
 input.on("error", callback); // On error, call callback
}

// Here's a simple command-line utility to compute the hash of a file
sha256(process.argv[2], (err, hash) => { // Pass filename from command line.
 if (err) { // If we get an error
 console.error(err.toString()); // print it as an error.
 } else { // Otherwise,
 console.log(hash); // print the hash string.
 }
});

16.6 Process, CPU, and Operating System Details
The global Process object has a number of useful properties and functions that gener‐
ally relate to the state of the currently running Node process. Consult the Node docu‐
mentation for complete details, but here are some properties and functions you
should be aware of:

process.argv // An array of command-line arguments.
process.arch // The CPU architecture: "x64", for example.
process.cwd() // Returns the current working directory.
process.chdir() // Sets the current working directory.
process.cpuUsage() // Reports CPU usage.
process.env // An object of environment variables.
process.execPath // The absolute filesystem path to the node executable.
process.exit() // Terminates the program.
process.exitCode // An integer code to be reported when the program exits.
process.getuid() // Return the Unix user id of the current user.
process.hrtime.bigint() // Return a "high-resolution" nanosecond timestamp.
process.kill() // Send a signal to another process.
process.memoryUsage() // Return an object with memory usage details.

16.6 Process, CPU, and Operating System Details | 601

process.nextTick() // Like setImmediate(), invoke a function soon.
process.pid // The process id of the current process.
process.ppid // The parent process id.
process.platform // The OS: "linux", "darwin", or "win32", for example.
process.resourceUsage() // Return an object with resource usage details.
process.setuid() // Sets the current user, by id or name.
process.title // The process name that appears in `ps` listings.
process.umask() // Set or return the default permissions for new files.
process.uptime() // Return Node's uptime in seconds.
process.version // Node's version string.
process.versions // Version strings for the libraries Node depends on.

The “os” module (which, unlike process, needs to be explicitly loaded with
require()) provides access to similarly low-level details about the computer and
operating system that Node is running on. You may never need to use any of these
features, but it is worth knowing that Node makes them available:

const os = require("os");
os.arch() // Returns CPU architecture. "x64" or "arm", for example.
os.constants // Useful constants such as os.constants.signals.SIGINT.
os.cpus() // Data about system CPU cores, including usage times.
os.endianness() // The CPU's native endianness "BE" or "LE".
os.EOL // The OS native line terminator: "\n" or "\r\n".
os.freemem() // Returns the amount of free RAM in bytes.
os.getPriority() // Returns the OS scheduling priority of a process.
os.homedir() // Returns the current user's home directory.
os.hostname() // Returns the hostname of the computer.
os.loadavg() // Returns the 1, 5, and 15-minute load averages.
os.networkInterfaces() // Returns details about available network. connections.
os.platform() // Returns OS: "linux", "darwin", or "win32", for example.
os.release() // Returns the version number of the OS.
os.setPriority() // Attempts to set the scheduling priority for a process.
os.tmpdir() // Returns the default temporary directory.
os.totalmem() // Returns the total amount of RAM in bytes.
os.type() // Returns OS: "Linux", "Darwin", or "Windows_NT", e.g.
os.uptime() // Returns the system uptime in seconds.
os.userInfo() // Returns uid, username, home, and shell of current user.

16.7 Working with Files
Node’s “fs” module is a comprehensive API for working with files and directories. It is
complemented by the “path” module, which defines utility functions for working with
file and directory names. The “fs” module contains a handful of high-level functions
for easily reading, writing, and copying files. But most of the functions in the module
are low-level JavaScript bindings to Unix system calls (and their equivalents on Win‐
dows). If you have worked with low-level filesystem calls before (in C or other
languages), then the Node API will be familiar to you. If not, you may find parts of
the “fs” API to be terse and unintuitive. The function to delete a file, for example, is
called unlink().

602 | Chapter 16: Server-Side JavaScript with Node

The “fs” module defines a large API, mainly because there are usually multiple var‐
iants of each fundamental operation. As discussed at the beginning of the chapter,
most functions such as fs.readFile() are nonblocking, callback-based, and asyn‐
chronous. Typically, though, each of these functions has a synchronous blocking var‐
iant, such as fs.readFileSync(). In Node 10 and later, many of these functions also
have a Promise-based asynchronous variant such as fs.promises.readFile(). Most
“fs” functions take a string as their first argument, specifying the path (filename plus
optional directory names) to the file that is to be operated on. But a number of these
functions also support a variant that takes an integer “file descriptor” as the first argu‐
ment instead of a path. These variants have names that begin with the letter “f.” For
example, fs.truncate() truncates a file specified by path, and fs.ftruncate() trun‐
cates a file specified by file descriptor. There is a Promise-based fs.promises.trun
cate() that expects a path and another Promise-based version that is implemented as
a method of a FileHandle object. (The FileHandle class is the equivalent of a file
descriptor in the Promise-based API.) Finally, there are a handful of functions in the
“fs” module that have variants whose names are prefixed with the letter “l.” These “l”
variants are like the base function but do not follow symbolic links in the filesystem
and instead operate directly on the symbolic links themselves.

16.7.1 Paths, File Descriptors, and FileHandles
In order to use the “fs” module to work with files, you first need to be able to name
the file you want to work with. Files are most often specified by path, which means
the name of the file itself, plus the hierarchy of directories in which the file appears. If
a path is absolute, it means that directories all the way up to the filesystem root are
specified. Otherwise, the path is relative and is only meaningful in relation to some
other path, usually the current working directory. Working with paths can be a little
tricky because different operating systems use different characters to separate direc‐
tory names, it is easy to accidentally double those separator characters when concate‐
nating paths, and because ../ parent directory path segments need special handling.
Node’s “path” module and a couple of other important Node features help:

// Some important paths
process.cwd() // Absolute path of the current working directory.
__filename // Absolute path of the file that holds the current code.
__dirname // Absolute path of the directory that holds __filename.
os.homedir() // The user's home directory.

const path = require("path");

path.sep // Either "/" or "\" depending on your OS

// The path module has simple parsing functions
let p = "src/pkg/test.js"; // An example path
path.basename(p) // => "test.js"
path.extname(p) // => ".js"

16.7 Working with Files | 603

path.dirname(p) // => "src/pkg"
path.basename(path.dirname(p)) // => "pkg"
path.dirname(path.dirname(p)) // => "src"

// normalize() cleans up paths:
path.normalize("a/b/c/../d/") // => "a/b/d/": handles ../ segments
path.normalize("a/./b") // => "a/b": strips "./" segments
path.normalize("//a//b//") // => "/a/b/": removes duplicate /

// join() combines path segments, adding separators, then normalizes
path.join("src", "pkg", "t.js") // => "src/pkg/t.js"

// resolve() takes one or more path segments and returns an absolute
// path. It starts with the last argument and works backward, stopping
// when it has built an absolute path or resolving against process.cwd().
path.resolve() // => process.cwd()
path.resolve("t.js") // => path.join(process.cwd(), "t.js")
path.resolve("/tmp", "t.js") // => "/tmp/t.js"
path.resolve("/a", "/b", "t.js") // => "/b/t.js"

Note that path.normalize() is simply a string manipulation function that has no
access to the actual filesystem. The fs.realpath() and fs.realpathSync() func‐
tions perform filesystem-aware canonicalization: they resolve symbolic links and
interpret relative pathnames relative to the current working directory.

In the previous examples, we assumed that the code is running on a Unix-based OS
and path.sep is “/.” If you want to work with Unix-style paths even when on a Win‐
dows system, then use path.posix instead of path. And conversely, if you want to
work with Windows paths even when on a Unix system, path.win32. path.posix
and path.win32 define the same properties and functions as path itself.

Some of the “fs” functions we’ll be covering in the next sections expect a file descriptor
instead of a file name. File descriptors are integers used as OS-level references to
“open” files. You obtain a descriptor for a given name by calling the fs.open() (or
fs.openSync()) function. Processes are only allowed to have a limited number of
files open at one time, so it is important that you call fs.close() on your file descrip‐
tors when you are done with them. You need to open files if you want to use the
lowest-level fs.read() and fs.write() functions that allow you to jump around
within a file, reading and writing bits of it at different times. There are other func‐
tions in the “fs” module that use file descriptors, but they all have name-based ver‐
sions, and it only really makes sense to use the descriptor-based functions if you were
going to open the file to read or write anyway.

Finally, in the Promise-based API defined by fs.promises, the equivalent of
fs.open() is fs.promises.open(), which returns a Promise that resolves to a File‐
Handle object. This FileHandle object serves the same purpose as a file descriptor.
Again, however, unless you need to use the lowest-level read() and write() methods

604 | Chapter 16: Server-Side JavaScript with Node

of a FileHandle, there is really no reason to create one. And if you do create a File‐
Handle, you should remember to call its close() method once you are done with it.

16.7.2 Reading Files
Node allows you to read file content all at once, via a stream, or with the low-level
API.

If your files are small, or if memory usage and performance are not the highest prior‐
ity, then it is often easiest to read the entire content of a file with a single call. You can
do this synchronously, with a callback, or with a Promise. By default, you’ll get the
bytes of the file as a buffer, but if you specify an encoding, you’ll get a decoded string
instead.

const fs = require("fs");
let buffer = fs.readFileSync("test.data"); // Synchronous, returns buffer
let text = fs.readFileSync("data.csv", "utf8"); // Synchronous, returns string

// Read the bytes of the file asynchronously
fs.readFile("test.data", (err, buffer) => {
 if (err) {
 // Handle the error here
 } else {
 // The bytes of the file are in buffer
 }
});

// Promise-based asynchronous read
fs.promises
 .readFile("data.csv", "utf8")
 .then(processFileText)
 .catch(handleReadError);

// Or use the Promise API with await inside an async function
async function processText(filename, encoding="utf8") {
 let text = await fs.promises.readFile(filename, encoding);
 // ... process the text here...
}

If you are able to process the contents of a file sequentially and do not need to have
the entire content of the file in memory at the same time, then reading a file via a
stream may be the most efficient approach. We’ve covered streams extensively: here is
how you might use a stream and the pipe() method to write the contents of a file to
standard output:

function printFile(filename, encoding="utf8") {
 fs.createReadStream(filename, encoding).pipe(process.stdout);
}

16.7 Working with Files | 605

Finally, if you need low-level control over exactly what bytes you read from a file and
when you read them, you can open a file to get a file descriptor and then use
fs.read(), fs.readSync(), or fs.promises.read() to read a specified number of
bytes from a specified source location of the file into a specified buffer at the specified
destination position:

const fs = require("fs");

// Reading a specific portion of a data file
fs.open("data", (err, fd) => {
 if (err) {
 // Report error somehow
 return;
 }
 try {
 // Read bytes 20 through 420 into a newly allocated buffer.
 fs.read(fd, Buffer.alloc(400), 0, 400, 20, (err, n, b) => {
 // err is the error, if any.
 // n is the number of bytes actually read
 // b is the buffer that they bytes were read into.
 });
 }
 finally { // Use a finally clause so we always
 fs.close(fd); // close the open file descriptor
 }
});

The callback-based read() API is awkward to use if you need to read more than one
chunk of data from a file. If you can use the synchronous API (or the Promise-based
API with await), it becomes easy to read multiple chunks from a file:

const fs = require("fs");

function readData(filename) {
 let fd = fs.openSync(filename);
 try {
 // Read the file header
 let header = Buffer.alloc(12); // A 12 byte buffer
 fs.readSync(fd, header, 0, 12, 0);

 // Verify the file's magic number
 let magic = header.readInt32LE(0);
 if (magic !== 0xDADAFEED) {
 throw new Error("File is of wrong type");
 }

 // Now get the offset and length of the data from the header
 let offset = header.readInt32LE(4);
 let length = header.readInt32LE(8);

 // And read those bytes from the file
 let data = Buffer.alloc(length);

606 | Chapter 16: Server-Side JavaScript with Node

 fs.readSync(fd, data, 0, length, offset);
 return data;
 } finally {
 // Always close the file, even if an exception is thrown above
 fs.closeSync(fd);
 }
}

16.7.3 Writing Files
Writing files in Node is a lot like reading them, with a few extra details that you need
to know about. One of these details is that the way you create a new file is simply by
writing to a filename that does not already exist.

As with reading, there are three basic ways to write files in Node. If you have the
entire content of the file in a string or a buffer, you can write the entire thing in one
call with fs.writeFile() (callback-based), fs.writeFileSync() (synchronous), or
fs.promises.writeFile() (Promise-based):

fs.writeFileSync(path.resolve(__dirname, "settings.json"),
 JSON.stringify(settings));

If the data you are writing to the file is a string, and you want to use an encoding
other than “utf8,” pass the encoding as an optional third argument.

The related functions fs.appendFile(), fs.appendFileSync(), and fs.prom

ises.appendFile() are similar, but when the specified file already exists, they
append their data to the end rather than overwriting the existing file content.

If the data you want to write to a file is not all in one chunk, or if it is not all in mem‐
ory at the same time, then using a Writable stream is a good approach, assuming that
you plan to write the data from beginning to end without skipping around in the file:

const fs = require("fs");
let output = fs.createWriteStream("numbers.txt");
for(let i = 0; i < 100; i++) {
 output.write(`${i}\n`);
}
output.end();

Finally, if you want to write data to a file in multiple chunks, and you want to be able
to control the exact position within the file at which each chunk is written, then you
can open the file with fs.open(), fs.openSync(), or fs.promises.open() and then
use the resulting file descriptor with the fs.write() or fs.writeSync() functions.
These functions come in different forms for strings and buffers. The string variant
takes a file descriptor, a string, and the file position at which to write that string (with
an encoding as an optional fourth argument). The buffer variant takes a file descrip‐
tor, a buffer, an offset, and a length that specify a chunk of data within the buffer, and
a file position at which to write the bytes of that chunk. And if you have an array of

16.7 Working with Files | 607

Buffer objects that you want to write, you can do this with a single fs.writev() or
fs.writevSync(). Similar low-level functions exist for writing buffers and strings
using fs.promises.open() and the FileHandle object it produces.

File Mode Strings
We saw the fs.open() and fs.openSync() methods before when using the low-level
API to read files. In that use case, it was sufficient to just pass the filename to the open
function. When you want to write a file, however, you must also specify a second
string argument that specifies how you intend to use the file descriptor. Some of the
available flag strings are as follows:

"w"

Open the file for writing

"w+"

Open for writing and reading

"wx"

Open for creating a new file; fails if the named file already exists

"wx+"

Open for creation, and also allow reading; fails if the named file already exists

"a"

Open the file for appending; existing content won’t be overwritten

"a+"

Open for appending, but also allow reading

If you do not pass one of these flag strings to fs.open() or fs.openSync(), they use
the default “r” flag, making the file descriptor read-only. Note that it can also be useful
to pass these flags to other file-writing methods:

// Write to a file in one call, but append to anything that is already there.
// This works like fs.appendFileSync()
fs.writeFileSync("messages.log", "hello", { flag: "a" });

// Open a write stream, but throw an error if the file already exists.
// We don't want to accidentally overwrite something!
// Note that the option above is "flag" and is "flags" here
fs.createWriteStream("messages.log", { flags: "wx" });

You can chop off the end of a file with fs.truncate(), fs.truncateSync(), or
fs.promises.truncate(). These functions take a path as their first argument and a
length as their second, and modify the file so that it has the specified length. If you
omit the length, zero is used and the file becomes empty. Despite the name of these

608 | Chapter 16: Server-Side JavaScript with Node

functions, they can also be used to extend a file: if you specify a length that is longer
than the current file size, the file is extended with zero bytes to the new size. If you
have already opened the file you wish to modify, you can use ftruncate() or
ftruncateSync() with the file descriptor or FileHandle.

The various file-writing functions described here return or invoke their callback or
resolve their Promise when the data has been “written” in the sense that Node has
handed it off to the operating system. But this does not necessarily mean that the data
has actually been written to persistent storage yet: at least some of your data may still
be buffered somewhere in the operating system or in a device driver waiting to be
written to disk. If you call fs.writeSync() to synchronously write some data to a file,
and if there is a power outage immediately after the function returns, you may still
lose data. If you want to force your data out to disk so you know for sure that it has
been safely saved, use fs.fsync() or fs.fsyncSync(). These functions only work
with file descriptors: there is no path-based version.

16.7.4 File Operations
The preceding discussion of Node’s stream classes included two examples of copy
File() functions. These are not practical utilities that you would actually use because
the “fs” module defines its own fs.copyFile() method (and also fs.copyFile
Sync() and fs.promises.copyFile(), of course).

These functions take the name of the original file and the name of the copy as their
first two arguments. These can be specified as strings or as URL or Buffer objects. An
optional third argument is an integer whose bits specify flags that control details of
the copy operation. And for the callback-based fs.copyFile(), the final argument is
a callback function that will be called with no arguments when the copy is complete,
or that will be called with an error argument if something fails. Following are some
examples:

// Basic synchronous file copy.
fs.copyFileSync("ch15.txt", "ch15.bak");

// The COPYFILE_EXCL argument copies only if the new file does not already
// exist. It prevents copies from overwriting existing files.
fs.copyFile("ch15.txt", "ch16.txt", fs.constants.COPYFILE_EXCL, err => {
 // This callback will be called when done. On error, err will be non-null.
});

// This code demonstrates the Promise-based version of the copyFile function.
// Two flags are combined with the bitwise OR opeartor |. The flags mean that
// existing files won't be overwritten, and that if the filesystem supports
// it, the copy will be a copy-on-write clone of the original file, meaning
// that no additional storage space will be required until either the original
// or the copy is modified.
fs.promises.copyFile("Important data",

16.7 Working with Files | 609

 `Important data ${new Date().toISOString()}"
 fs.constants.COPYFILE_EXCL | fs.constants.COPYFILE_FICLONE)
 .then(() => {
 console.log("Backup complete");
 });
 .catch(err => {
 console.error("Backup failed", err);
 });

The fs.rename() function (along with the usual synchronous and Promise-based
variants) moves and/or renames a file. Call it with the current path to the file and the
desired new path to the file. There is no flags argument, but the callback-based ver‐
sion takes a callback as the third argument:

fs.renameSync("ch15.bak", "backups/ch15.bak");

Note that there is no flag to prevent renaming from overwriting an existing file. Also
keep in mind that files can only be renamed within a filesystem.

The functions fs.link() and fs.symlink() and their variants have the same signa‐
tures as fs.rename() and behave something like fs.copyFile() except that they cre‐
ate hard links and symbolic links, respectively, rather than creating a copy.

Finally, fs.unlink(), fs.unlinkSync(), and fs.promises.unlink() are Node’s
functions for deleting a file. (The unintuitive naming is inherited from Unix where
deleting a file is basically the opposite of creating a hard link to it.) Call this function
with the string, buffer, or URL path to the file to be deleted, and pass a callback if you
are using the callback-based version:

fs.unlinkSync("backups/ch15.bak");

16.7.5 File Metadata
The fs.stat(), fs.statSync(), and fs.promises.stat() functions allow you to
obtain metadata for a specified file or directory. For example:

const fs = require("fs");
let stats = fs.statSync("book/ch15.md");
stats.isFile() // => true: this is an ordinary file
stats.isDirectory() // => false: it is not a directory
stats.size // file size in bytes
stats.atime // access time: Date when it was last read
stats.mtime // modification time: Date when it was last written
stats.uid // the user id of the file's owner
stats.gid // the group id of the file's owner
stats.mode.toString(8) // the file's permissions, as an octal string

The returned Stats object contains other, more obscure properties and methods, but
this code demonstrates those that you are most likely to use.

610 | Chapter 16: Server-Side JavaScript with Node

fs.lstat() and its variants work just like fs.stat(), except that if the specified file
is a symbolic link, Node will return metadata for the link itself rather than following
the link.

If you have opened a file to produce a file descriptor or a FileHandle object, then you
can use fs.fstat() or its variants to get metadata information for the opened file
without having to specify the filename again.

In addition to querying metadata with fs.stat() and all of its variants, there are also
functions for changing metadata.

fs.chmod(), fs.lchmod(), and fs.fchmod() (along with synchronous and Promise-
based versions) set the “mode” or permissions of a file or directory. Mode values are
integers in which each bit has a specific meaning and are easiest to think about in
octal notation. For example, to make a file read-only to its owner and inaccessible to
everyone else, use 0o400:

fs.chmodSync("ch15.md", 0o400); // Don't delete it accidentally!

fs.chown(), fs.lchown(), and fs.fchown() (along with synchronous and Promise-
based versions) set the owner and group (as IDs) for a file or directory. (These matter
because they interact with the file permissions set by fs.chmod().)

Finally, you can set the access time and modification time of a file or directory with
fs.utimes() and fs.futimes() and their variants.

16.7.6 Working with Directories
To create a new directory in Node, use fs.mkdir(), fs.mkdirSync(), or fs.prom
ises.mkdir(). The first argument is the path of the directory to be created. The
optional second argument can be an integer that specifies the mode (permissions
bits) for the new directory. Or you can pass an object with optional mode and recur
sive properties. If recursive is true, then this function will create any directories in
the path that do not already exist:

// Ensure that dist/ and dist/lib/ both exist.
fs.mkdirSync("dist/lib", { recursive: true });

fs.mkdtemp() and its variants take a path prefix you provide, append some random
characters to it (this is important for security), create a directory with that name, and
return (or pass to a callback) the directory path to you.

To delete a directory, use fs.rmdir() or one of its variants. Note that directories must
be empty before they can be deleted:

// Create a random temporary directory and get its path, then
// delete it when we are done
let tempDirPath;
try {

16.7 Working with Files | 611

 tempDirPath = fs.mkdtempSync(path.join(os.tmpdir(), "d"));
 // Do something with the directory here
} finally {
 // Delete the temporary directory when we're done with it
 fs.rmdirSync(tempDirPath);
}

The “fs” module provides two distinct APIs for listing the contents of a directory.
First, fs.readdir(), fs.readdirSync(), and fs.promises.readdir() read the entire
directory all at once and give you an array of strings or an array of Dirent objects that
specify the names and types (file or directory) of each item. Filenames returned by
these functions are just the local name of the file, not the entire path. Here are
examples:

let tempFiles = fs.readdirSync("/tmp"); // returns an array of strings

// Use the Promise-based API to get a Dirent array, and then
// print the paths of subdirectories
fs.promises.readdir("/tmp", {withFileTypes: true})
 .then(entries => {
 entries.filter(entry => entry.isDirectory())
 .map(entry => entry.name)
 .forEach(name => console.log(path.join("/tmp/", name)));
 })
 .catch(console.error);

If you anticipate needing to list directories that might have thousands of entries, you
might prefer the streaming approach of fs.opendir() and its variants. These func‐
tions return a Dir object representing the specified directory. You can use the read()
or readSync() methods of the Dir object to read one Dirent at a time. If you pass a
callback function to read(), it will call the callback. And if you omit the callback
argument, it will return a Promise. When there are no more directory entries, you’ll
get null instead of a Dirent object.

The easiest way to use Dir objects is as async iterators with a for/await loop. Here,
for example, is a function that uses the streaming API to list directory entries, calls
stat() on each entry, and prints file and directory names and sizes:

const fs = require("fs");
const path = require("path");

async function listDirectory(dirpath) {
 let dir = await fs.promises.opendir(dirpath);
 for await (let entry of dir) {
 let name = entry.name;
 if (entry.isDirectory()) {
 name += "/"; // Add a trailing slash to subdirectories
 }
 let stats = await fs.promises.stat(path.join(dirpath, name));
 let size = stats.size;

612 | Chapter 16: Server-Side JavaScript with Node

 console.log(String(size).padStart(10), name);
 }
}

16.8 HTTP Clients and Servers
Node’s “http,” “https,” and “http2” modules are full-featured but relatively low-level
implementations of the HTTP protocols. They define comprehensive APIs for imple‐
menting HTTP clients and servers. Because the APIs are relatively low-level, there is
not room in this chapter to cover all the features. But the examples that follow
demonstrate how to write basic clients and servers.

The simplest way to make a basic HTTP GET request is with http.get() or
https.get(). The first argument to these functions is the URL to fetch. (If it is an
http:// URL, you must use the “http” module, and if it is an https:// URL you
must use the “https” module.) The second argument is a callback that will be invoked
with an IncomingMessage object when the server’s response has started to arrive.
When the callback is called, the HTTP status and headers are available, but the body
may not be ready yet. The IncomingMessage object is a Readable stream, and you can
use the techniques demonstrated earlier in this chapter to read the response body
from it.

The getJSON() function at the end of §13.2.6 used the http.get() function as part of
a demonstration of the Promise() constructor. Now that you know about Node
streams and the Node programming model more generally, it is worth revisiting that
example to see how http.get() is used.

http.get() and https.get() are slightly simplified variants of the more general
http.request() and https.request() functions. The following postJSON() func‐
tion demonstrates how to use https.request() to make an HTTPS POST request
that includes a JSON request body. Like the getJSON() function of Chapter 13, it
expects a JSON response and returns a Promise that fulfills to the parsed version of
that response:

const https = require("https");

/*
 * Convert the body object to a JSON string then HTTPS POST it to the
 * specified API endpoint on the specified host. When the response arrives,
 * parse the response body as JSON and resolve the returned Promise with
 * that parsed value.
 */
function postJSON(host, endpoint, body, port, username, password) {
 // Return a Promise object immediately, then call resolve or reject
 // when the HTTPS request succeeds or fails.
 return new Promise((resolve, reject) => {
 // Convert the body object to a string

16.8 HTTP Clients and Servers | 613

 let bodyText = JSON.stringify(body);

 // Configure the HTTPS request
 let requestOptions = {
 method: "POST", // Or "GET", "PUT", "DELETE", etc.
 host: host, // The host to connect to
 path: endpoint, // The URL path
 headers: { // HTTP headers for the request
 "Content-Type": "application/json",
 "Content-Length": Buffer.byteLength(bodyText)
 }
 };

 if (port) { // If a port is specified,
 requestOptions.port = port; // use it for the request.
 }
 // If credentials are specified, add an Authorization header.
 if (username && password) {
 requestOptions.auth = `${username}:${password}`;
 }

 // Now create the request based on the configuration object
 let request = https.request(requestOptions);

 // Write the body of the POST request and end the request.
 request.write(bodyText);
 request.end();

 // Fail on request errors (such as no network connection)
 request.on("error", e => reject(e));

 // Handle the response when it starts to arrive.
 request.on("response", response => {
 if (response.statusCode !== 200) {
 reject(new Error(`HTTP status ${response.statusCode}`));
 // We don't care about the response body in this case, but
 // we don't want it to stick around in a buffer somewhere, so
 // we put the stream into flowing mode without registering
 // a "data" handler so that the body is discarded.
 response.resume();
 return;
 }

 // We want text, not bytes. We're assuming the text will be
 // JSON-formatted but aren't bothering to check the
 // Content-Type header.
 response.setEncoding("utf8");

 // Node doesn't have a streaming JSON parser, so we read the
 // entire response body into a string.
 let body = "";
 response.on("data", chunk => { body += chunk; });

614 | Chapter 16: Server-Side JavaScript with Node

 // And now handle the response when it is complete.
 response.on("end", () => { // When the response is done,
 try { // try to parse it as JSON
 resolve(JSON.parse(body)); // and resolve the result.
 } catch(e) { // Or, if anything goes wrong,
 reject(e); // reject with the error
 }
 });
 });
 });
}

In addition to making HTTP and HTTPS requests, the “http” and “https” modules
also allow you to write servers that respond to those requests. The basic approach is
as follows:

• Create a new Server object.
• Call its listen() method to begin listening for requests on a specified port.
• Register an event handler for “request” events, use that handler to read the client’s

request (particularly the request.url property), and write your response.

The code that follows creates a simple HTTP server that serves static files from the
local filesystem and also implements a debugging endpoint that responds to a client’s
request by echoing that request.

// This is a simple static HTTP server that serves files from a specified
// directory. It also implements a special /test/mirror endpoint that
// echoes the incoming request, which can be useful when debugging clients.
const http = require("http"); // Use "https" if you have a certificate
const url = require("url"); // For parsing URLs
const path = require("path"); // For manipulating filesystem paths
const fs = require("fs"); // For reading files

// Serve files from the specified root directory via an HTTP server that
// listens on the specified port.
function serve(rootDirectory, port) {
 let server = new http.Server(); // Create a new HTTP server
 server.listen(port); // Listen on the specified port
 console.log("Listening on port", port);

 // When requests come in, handle them with this function
 server.on("request", (request, response) => {
 // Get the path portion of the request URL, ignoring
 // any query parameters that are appended to it.
 let endpoint = url.parse(request.url).pathname;

 // If the request was for "/test/mirror", send back the request
 // verbatim. Useful when you need to see the request headers and body.
 if (endpoint === "/test/mirror") {

16.8 HTTP Clients and Servers | 615

 // Set response header
 response.setHeader("Content-Type", "text/plain; charset=UTF-8");

 // Specify response status code
 response.writeHead(200); // 200 OK

 // Begin the response body with the request
 response.write(`${request.method} ${request.url} HTTP/${
 request.httpVersion
 }\r\n`);

 // Output the request headers
 let headers = request.rawHeaders;
 for(let i = 0; i < headers.length; i += 2) {
 response.write(`${headers[i]}: ${headers[i+1]}\r\n`);
 }

 // End headers with an extra blank line
 response.write("\r\n");

 // Now we need to copy any request body to the response body
 // Since they are both streams, we can use a pipe
 request.pipe(response);
 }
 // Otherwise, serve a file from the local directory.
 else {
 // Map the endpoint to a file in the local filesystem
 let filename = endpoint.substring(1); // strip leading /
 // Don't allow "../" in the path because it would be a security
 // hole to serve anything outside the root directory.
 filename = filename.replace(/\.\.\//g, "");
 // Now convert from relative to absolute filename
 filename = path.resolve(rootDirectory, filename);

 // Now guess the type file's content type based on extension
 let type;
 switch(path.extname(filename)) {
 case ".html":
 case ".htm": type = "text/html"; break;
 case ".js": type = "text/javascript"; break;
 case ".css": type = "text/css"; break;
 case ".png": type = "image/png"; break;
 case ".txt": type = "text/plain"; break;
 default: type = "application/octet-stream"; break;
 }

 let stream = fs.createReadStream(filename);
 stream.once("readable", () => {
 // If the stream becomes readable, then set the
 // Content-Type header and a 200 OK status. Then pipe the
 // file reader stream to the response. The pipe will
 // automatically call response.end() when the stream ends.

616 | Chapter 16: Server-Side JavaScript with Node

 response.setHeader("Content-Type", type);
 response.writeHead(200);
 stream.pipe(response);
 });

 stream.on("error", (err) => {
 // Instead, if we get an error trying to open the stream
 // then the file probably does not exist or is not readable.
 // Send a 404 Not Found plain-text response with the
 // error message.
 response.setHeader("Content-Type", "text/plain; charset=UTF-8");
 response.writeHead(404);
 response.end(err.message);
 });
 }
 });
}

// When we're invoked from the command line, call the serve() function
serve(process.argv[2] || "/tmp", parseInt(process.argv[3]) || 8000);

Node’s built-in modules are all you need to write simple HTTP and HTTPS servers.
Note, however, that production servers are not typically built directly on top of these
modules. Instead, most nontrivial servers are implemented using external libraries—
such as the Express framework—that provide “middleware” and other higher-level
utilities that backend web developers have come to expect.

16.9 Non-HTTP Network Servers and Clients
Web servers and clients have become so ubiquitous that it is easy to forget that it is
possible to write clients and servers that do not use HTTP. Even though Node has a
reputation as a good environment for writing web servers, Node also has full support
for writing other types of network servers and clients.

If you are comfortable working with streams, then networking is relatively simple,
because network sockets are simply a kind of Duplex stream. The “net” module
defines Server and Socket classes. To create a server, call net.createServer(), then
call the listen() method of the resulting object to tell the server what port to listen
on for connections. The Server object will generate “connection” events when a client
connects on that port, and the value passed to the event listener will be a Socket
object. The Socket object is a Duplex stream, and you can use it to read data from the
client and write data to the client. Call end() on the Socket to disconnect.

Writing a client is even easier: pass a port number and hostname to net.createCon
nection() to create a socket to communicate with whatever server is running on that
host and listening on that port. Then use that socket to read and write data from and
to the server.

16.9 Non-HTTP Network Servers and Clients | 617

The following code demonstrates how to write a server with the “net” module. When
the client connects, the server tells a knock-knock joke:

// A TCP server that delivers interactive knock-knock jokes on port 6789.
// (Why is six afraid of seven? Because seven ate nine!)
const net = require("net");
const readline = require("readline");

// Create a Server object and start listening for connections
let server = net.createServer();
server.listen(6789, () => console.log("Delivering laughs on port 6789"));

// When a client connects, tell them a knock-knock joke.
server.on("connection", socket => {
 tellJoke(socket)
 .then(() => socket.end()) // When the joke is done, close the socket.
 .catch((err) => {
 console.error(err); // Log any errors that occur,
 socket.end(); // but still close the socket!
 });
});

// These are all the jokes we know.
const jokes = {
 "Boo": "Don't cry...it's only a joke!",
 "Lettuce": "Let us in! It's freezing out here!",
 "A little old lady": "Wow, I didn't know you could yodel!"
};

// Interactively perform a knock-knock joke over this socket, without blocking.
async function tellJoke(socket) {
 // Pick one of the jokes at random
 let randomElement = a => a[Math.floor(Math.random() * a.length)];
 let who = randomElement(Object.keys(jokes));
 let punchline = jokes[who];

 // Use the readline module to read the user's input one line at a time.
 let lineReader = readline.createInterface({
 input: socket,
 output: socket,
 prompt: ">> "
 });

 // A utility function to output a line of text to the client
 // and then (by default) display a prompt.
 function output(text, prompt=true) {
 socket.write(`${text}\r\n`);
 if (prompt) lineReader.prompt();
 }

 // Knock-knock jokes have a call-and-response structure.
 // We expect different input from the user at different stages and

618 | Chapter 16: Server-Side JavaScript with Node

 // take different action when we get that input at different stages.
 let stage = 0;

 // Start the knock-knock joke off in the traditional way.
 output("Knock knock!");

 // Now read lines asynchronously from the client until the joke is done.
 for await (let inputLine of lineReader) {
 if (stage === 0) {
 if (inputLine.toLowerCase() === "who's there?") {
 // If the user gives the right response at stage 0
 // then tell the first part of the joke and go to stage 1.
 output(who);
 stage = 1;
 } else {
 // Otherwise teach the user how to do knock-knock jokes.
 output('Please type "Who\'s there?".');
 }
 } else if (stage === 1) {
 if (inputLine.toLowerCase() === `${who.toLowerCase()} who?`) {
 // If the user's response is correct at stage 1, then
 // deliver the punchline and return since the joke is done.
 output(`${punchline}`, false);
 return;
 } else {
 // Make the user play along.
 output(`Please type "${who} who?".`);
 }
 }
 }
}

Simple text-based servers like this do not typically need a custom client. If the nc
(“netcat”) utility is installed on your system, you can use it to communicate with this
server as follows:

$ nc localhost 6789
Knock knock!
>> Who's there?
A little old lady
>> A little old lady who?
Wow, I didn't know you could yodel!

On the other hand, writing a custom client for the joke server is easy in Node. We just
connect to the server, then pipe the server’s output to stdout and pipe stdin to the
server’s input:

// Connect to the joke port (6789) on the server named on the command line
let socket = require("net").createConnection(6789, process.argv[2]);
socket.pipe(process.stdout); // Pipe data from the socket to stdout
process.stdin.pipe(socket); // Pipe data from stdin to the socket
socket.on("close", () => process.exit()); // Quit when the socket closes.

16.9 Non-HTTP Network Servers and Clients | 619

In addition to supporting TCP-based servers, Node’s “net” module also supports
interprocess communication over “Unix domain sockets” that are identified by a file‐
system path rather than by a port number. We are not going to cover that kind of
socket in this chapter, but the Node documentation has details. Other Node features
that we don’t have space to cover here include the “dgram” module for UDP-based
clients and servers and the “tls” module that is to “net” as “https” is to “http.” The
tls.Server and tls.TLSSocket classes allow the creation of TCP servers (like the
knock-knock joke server) that use SSL-encrypted connections like HTTPS servers do.

16.10 Working with Child Processes
In addition to writing highly concurrent servers, Node also works well for writing
scripts that execute other programs. In Node the “child_process” module defines a
number of functions for running other programs as child processes. This section
demonstrates some of those functions, starting with the simplest and moving to the
more complicated.

16.10.1 execSync() and execFileSync()
The easiest way to run another program is with child_process.execSync(). This
function takes the command to run as its first argument. It creates a child process,
runs a shell in that process, and uses the shell to execute the command you passed.
Then it blocks until the command (and the shell) exit. If the command exits with an
error, then execSync() throws an exception. Otherwise, execSync() returns what‐
ever output the command writes to its stdout stream. By default this return value is a
buffer, but you can specify an encoding in an optional second argument to get a
string instead. If the command writes any output to stderr, that output just gets
passed through to the parent process’s stderr stream.

So, for example, if you are writing a script and performance is not a concern, you
might use child_process.execSync() to list a directory with a familiar Unix shell
command rather than using the fs.readdirSync() function:

const child_process = require("child_process");
let listing = child_process.execSync("ls -l web/*.html", {encoding: "utf8"});

The fact that execSync() invokes a full Unix shell means that the string you pass to it
can include multiple semicolon-separated commands, and can take advantage of shell
features such as filename wildcards, pipes, and output redirection. This also means
that you must be careful to never pass a command to execSync() if any portion of
that command is user input or comes from a similar untrusted source. The complex
syntax of shell commands can be easily subverted to allow an attacker to run arbitrary
code.

620 | Chapter 16: Server-Side JavaScript with Node

If you don’t need the features of a shell, you can avoid the overhead of starting a shell
by using child_process.execFileSync(). This function executes a program directly,
without invoking a shell. But since no shell is involved, it can’t parse a command line,
and you must pass the executable as the first argument and an array of command-line
arguments as the second argument:

let listing = child_process.execFileSync("ls", ["-l", "web/"],
 {encoding: "utf8"});

Child Process Options
execSync() and many of the other child_process functions have a second or third
optional argument that specifies additional details about how the child process is to
run. The encoding property of this object was used earlier to specify that we’d like the
command output to be delivered as a string rather than as a buffer. Other important
properties that you can specify include the following (note that not all options are
available to all child process functions):

• cwd specifies the working directory for the child process. If you omit this, then
the child process inherits the value of process.cwd().

• env specifies the environment variables that the child process will have access to.
By default, child processes simply inherit process.env, but you can specify a dif‐
ferent object if you want.

• input specifies a string or buffer of input data that should be used as the standard
input to the child process. This option is only available to the synchronous func‐
tions that do not return a ChildProcess object.

• maxBuffer specifies the maximum number of bytes of output that will be collec‐
ted by the exec functions. (It does not apply to spawn() and fork(), which use
streams.) If a child process produces more output than this, it will be killed and
will exit with an error.

• shell specifies the path to a shell executable or true. For child process functions
that normally execute a shell command, this option allows you to specify which
shell to use. For functions that do not normally use a shell, this option allows you
to specify that a shell should be used (by setting the property to true) or to spec‐
ify exactly which shell to use.

• timeout specifies the maximum number of milliseconds that the child process
should be allowed to run. If it has not exited before this time elapses, it will be
killed and will exit with an error. (This option applies to the exec functions but
not to spawn() or fork().)

16.10 Working with Child Processes | 621

• uid specifies the user ID (a number) under which the program should be run. If
the parent process is running in a privileged account, it can use this option to run
the child with reduced privileges.

16.10.2 exec() and execFile()
The execSync() and execFileSync() functions are, as their names indicate, syn‐
chronous: they block and do not return until the child process exits. Using these
functions is a lot like typing Unix commands in a terminal window: they allow you to
run a sequence of commands one at a time. But if you’re writing a program that needs
to accomplish a number of tasks, and those tasks don’t depend on each other in any
way, then you may want to parallelize them and run multiple commands at the same
time. You can do this with the asynchronous functions child_process.exec() and
child_process.execFile().

exec() and execFile() are like their synchronous variants except that they return
immediately with a ChildProcess object that represents the running child process,
and they take an error-first callback as their final argument. The callback is invoked
when the child process exits, and it is actually called with three arguments. The first is
the error, if any; it will be null if the process terminated normally. The second argu‐
ment is the collected output that was sent to the child’s standard output stream. And
the third argument is any output that was sent to the child’s standard error stream.

The ChildProcess object returned by exec() and execFile() allows you to terminate
the child process, and to write data to it (which it can then read from its standard
input). We’ll cover ChildProcess in more detail when we discuss the child_pro
cess.spawn() function.

If you plan to execute multiple child processes at the same time, then it may be easiest
to use the “promisified” version of exec() which returns a Promise object which, if
the child process exits without error, resolves to an object with stdout and stderr
properties. Here, for example, is a function that takes an array of shell commands as
its input and returns a Promise that resolves to the result of all of those commands:

const child_process = require("child_process");
const util = require("util");
const execP = util.promisify(child_process.exec);

function parallelExec(commands) {
 // Use the array of commands to create an array of Promises
 let promises = commands.map(command => execP(command, {encoding: "utf8"}));
 // Return a Promise that will fulfill to an array of the fulfillment
 // values of each of the individual promises. (Instead of returning objects
 // with stdout and stderr properties we just return the stdout value.)
 return Promise.all(promises)

622 | Chapter 16: Server-Side JavaScript with Node

 .then(outputs => outputs.map(out => out.stdout));
}

module.exports = parallelExec;

16.10.3 spawn()
The various exec functions described so far—both synchronous and asynchronous—
are designed to be used with child processes that run quickly and do not produce a
lot of output. Even the asynchronous exec() and execFile() are nonstreaming: they
return the process output in a single batch, only after the process has exited.

The child_process.spawn() function allows you streaming access to the output of
the child process, while the process is still running. It also allows you to write data to
the child process (which will see that data as input on its standard input stream): this
means it is possible to dynamically interact with a child process, sending it input
based on the output it generates.

spawn() does not use a shell by default, so you must invoke it like execFile() with
the executable to be run and a separate array of command-line arguments to pass to
it. spawn() returns a ChildProcess object like execFile() does, but it does not take a
callback argument. Instead of using a callback function, you listen to events on the
ChildProcess object and on its streams.

The ChildProcess object returned by spawn() is an event emitter. You can listen for
the “exit” event to be notified when the child process exits. A ChildProcess object also
has three stream properties. stdout and stderr are Readable streams: when the child
process writes to its stdout and its stderr streams, that output becomes readable
through the ChildProcess streams. Note the inversion of the names here. In the child
process, “stdout” is a Writable output stream, but in the parent process, the stdout
property of a ChildProcess object is a Readable input stream.

Similarly, the stdin property of the ChildProcess object is a Writeable stream: any‐
thing you write to this stream becomes available to the child process on its standard
input.

The ChildProcess object also defines a pid property that specifies the process id of the
child. And it defines a kill() method that you can use to terminate a child process.

16.10.4 fork()
child_process.fork() is a specialized function for running a module of JavaScript
code in a child Node process. fork() expects the same arguments as spawn(), but the
first argument should specify the path to a file of JavaScript code instead of an exe‐
cutable binary file.

16.10 Working with Child Processes | 623

A child process created with fork() can communicate with the parent process via its
standard input and standard output streams, as described in the previous section for
spawn(). But in addition, fork() enables another, much easier, communication chan‐
nel between the parent and child processes.

When you create a child process with fork(), you can use the send() method of the
returned ChildProcess object to send a copy of an object to the child process. And
you can listen for the “message” event on the ChildProcess to receive messages from
the child. The code running in the child process can use process.send() to send a
message to the parent and can listen for “message” events on process to receive mes‐
sages from the parent.

Here, for example, is some code that uses fork() to create a child process, then sends
that child a message and waits for a response:

const child_process = require("child_process");

// Start a new node process running the code in child.js in our directory
let child = child_process.fork(`${__dirname}/child.js`);

// Send a message to the child
child.send({x: 4, y: 3});

// Print the child's response when it arrives.
child.on("message", message => {
 console.log(message.hypotenuse); // This should print "5"
 // Since we only send one message we only expect one response.
 // After we receive it we call disconnect() to terminate the connection
 // between parent and child. This allows both processes to exit cleanly.
 child.disconnect();
});

And here is the code that runs in the child process:

// Wait for messages from our parent process
process.on("message", message => {
 // When we receive one, do a calculation and send the result
 // back to the parent.
 process.send({hypotenuse: Math.hypot(message.x, message.y)});
});

Starting child processes is an expensive operation, and the child process would have
to be doing orders of magnitude more computation before it would make sense to
use fork() and interprocess communication in this way. If you are writing a program
that needs to be very responsive to incoming events and also needs to perform time-
consuming computations, then you might consider using a separate child process to
perform the computations so that they don’t block the event loop and reduce the
responsiveness of the parent process. (Though a thread—see §16.11—may be a better
choice than a child process in this scenario.)

624 | Chapter 16: Server-Side JavaScript with Node

The first argument to send() will be serialized with JSON.stringify() and deserial‐
ized in the child process with JSON.parse(), so you should only include values that
are supported by the JSON format. send() has a special second argument, however,
that allows you to transfer Socket and Server objects (from the “net” module) to a
child process. Network servers tend to be IO-bound rather than compute-bound, but
if you have written a server that needs to do more computation than a single CPU can
handle, and if you’re running that server on a machine with multiple CPUs, then you
could use fork() to create multiple child processes for handling requests. In the par‐
ent process, you might listen for “connection” events on your Server object, then get
the Socket object from that “connection” event and send() it—using the special sec‐
ond argument—to one of the child processes to be handled. (Note that this is an
unlikely solution to an uncommon scenario. Rather than writing a server that forks
child processes, it is probably simpler to keep your server single-threaded and deploy
multiple instances of it in production to handle the load.)

16.11 Worker Threads
As explained at the beginning of this chapter, Node’s concurrency model is single-
threaded and event-based. But in version 10 and later, Node does allow true multi‐
threaded programming, with an API that closely mirrors the Web Workers API
defined by web browsers (§15.13). Multithreaded programming has a well-deserved
reputation for being difficult. This is almost entirely because of the need to carefully
synchronize access by threads to shared memory. But JavaScript threads (in both
Node and browsers) do not share memory by default, so the dangers and difficulties
of using threads do not apply to these “workers” in JavaScript.

Instead of using shared memory, JavaScript’s worker threads communicate by mes‐
sage passing. The main thread can send a message to a worker thread by calling the
postMessage() method of the Worker object that represents that thread. The worker
thread can receive messages from its parent by listening for “message” events. And
workers can send messages to the main thread with their own version of postMes
sage(), which the parent can receive with its own “message” event handler. The
example code will make it clear how this works.

There are three reasons why you might want to use worker threads in a Node
application:

• If your application actually needs to do more computation than one CPU core
can handle, then threads allow you to distribute work across the multiple cores,
which have become commonplace on computers today. If you’re doing scientific
computing or machine learning or graphics processing in Node, then you may
want to use threads simply to throw more computing power at your problem.

16.11 Worker Threads | 625

2 It is often cleaner and simpler to define the worker code in a separate file. But this trick of having two threads
run different sections of the same file blew my mind when I first encountered it for the Unix fork() system
call. And I think it is worth demonstrating this technique simply for its strange elegance.

• Even if your application is not using the full power of one CPU, you may still
want to use threads to maintain the responsiveness of the main thread. Consider
a server that handles large but relatively infrequent requests. Suppose it gets only
one request a second, but needs to spend about half a second of (blocking CPU-
bound) computation to process each request. On average, it will be idle 50% of
the time. But when two requests arrive within a few milliseconds of each other,
the server will not even be able to begin a response to the second request until the
computation of the first response is complete. Instead, if the server uses a worker
thread to perform the computation, the server can begin the response to both
requests immediately and provide a better experience for the server’s clients.
Assuming the server has more than one CPU core, it can also compute the body
of both responses in parallel, but even if there is only a single core, using workers
still improves the responsiveness.

• In general, workers allow us to turn blocking synchronous operations into non‐
blocking asynchronous operations. If you are writing a program that depends on
legacy code that is unavoidably synchronous, you may be able to use workers to
avoid blocking when you need to call that legacy code.

Worker threads are not nearly as heavyweight as child processes, but they are not
lightweight. It does not generally make sense to create a worker unless you have sig‐
nificant work for it to do. And, generally speaking, if your program is not CPU-
bound and is not having responsiveness problems, then you probably do not need
worker threads.

16.11.1 Creating Workers and Passing Messages
The Node module that defines workers is known as “worker_threads.” In this section
we’ll refer to it with the identifier threads:

const threads = require("worker_threads");

This module defines a Worker class to represent a worker thread, and you can create
a new thread with the threads.Worker() constructor. The following code demon‐
strates using this constructor to create a worker, and shows how to pass messages
from main thread to worker and from worker to main thread. It also demonstrates a
trick that allows you to put the main thread code and the worker thread code in the
same file.2

const threads = require("worker_threads");

626 | Chapter 16: Server-Side JavaScript with Node

// The worker_threads module exports the boolean isMainThread property.
// This property is true when Node is running the main thread and it is
// false when Node is running a worker. We can use this fact to implement
// the main and worker threads in the same file.
if (threads.isMainThread) {
 // If we're running in the main thread, then all we do is export
 // a function. Instead of performing a computationally intensive
 // task on the main thread, this function passes the task to a worker
 // and returns a Promise that will resolve when the worker is done.
 module.exports = function reticulateSplines(splines) {
 return new Promise((resolve,reject) => {
 // Create a worker that loads and runs this same file of code.
 // Note the use of the special __filename variable.
 let reticulator = new threads.Worker(__filename);

 // Pass a copy of the splines array to the worker
 reticulator.postMessage(splines);

 // And then resolve or reject the Promise when we get
 // a message or error from the worker.
 reticulator.on("message", resolve);
 reticulator.on("error", reject);
 });
 };
} else {
 // If we get here, it means we're in the worker, so we register a
 // handler to get messages from the main thread. This worker is designed
 // to only receive a single message, so we register the event handler
 // with once() instead of on(). This allows the worker to exit naturally
 // when its work is complete.
 threads.parentPort.once("message", splines => {
 // When we get the splines from the parent thread, loop
 // through them and reticulate all of them.
 for(let spline of splines) {
 // For the sake of example, assume that spline objects usually
 // have a reticulate() method that does a lot of computation.
 spline.reticulate ? spline.reticulate() : spline.reticulated = true;
 }

 // When all the splines have (finally!) been reticulated
 // pass a copy back to the main thread.
 threads.parentPort.postMessage(splines);
 });
}

The first argument to the Worker() constructor is the path to a file of JavaScript code
that is to run in the thread. In the preceding code, we used the predefined __file
name identifier to create a worker that loads and runs the same file as the main thread.
In general, though, you will be passing a file path. Note that if you specify a relative
path, it is relative to process.cwd(), not relative to the currently running module. If

16.11 Worker Threads | 627

you want a path relative to the current module, use something like
path.resolve(__dirname, 'workers/reticulator.js').

The Worker() constructor can also accept an object as its second argument, and the
properties of this object provide optional configuration for the worker. We’ll cover a
number of these options later, but for now note that if you pass {eval: true} as the
second argument, then the first argument to Worker() is interpreted as a string of
JavaScript code to be evaluated instead of a filename:

new threads.Worker(`
 const threads = require("worker_threads");
 threads.parentPort.postMessage(threads.isMainThread);
`, {eval: true}).on("message", console.log); // This will print "false"

Node makes a copy of the object passed to postMessage() rather than sharing it
directly with the worker thread. This prevents the worker thread and the main thread
from sharing memory. You might expect that this copying would be done with
JSON.stringify() and JSON.parse() (§11.6). But in fact, Node borrows a more
robust technique known as the structured clone algorithm from web browsers.

The structured clone algorithm enables serialization of most JavaScript types, includ‐
ing Map, Set, Date, and RegExp objects and typed arrays, but it cannot, in general,
copy types defined by the Node host environment, such as sockets and streams. Note,
however, that Buffer objects are partially supported: if you pass a Buffer to postMes
sage() it will be received as a Uint8Array, and can be converted back into a Buffer
with Buffer.from(). Read more about the structured clone algorithm in “The Struc‐
tured Clone Algorithm” on page 513.

16.11.2 The Worker Execution Environment
For the most part, JavaScript code in a Node worker thread runs just like it would in
Node’s main thread. There are a few differences that you should be aware of, and
some of these differences involve properties of the optional second argument to the
Worker() constructor:

• As we’ve seen, threads.isMainThread is true in the main thread but is always
false in any worker thread.

• In a worker thread, you can use threads.parentPort.postMessage() to send a
message to the parent thread and threads.parentPort.on to register event han‐
dlers for messages from the parent thread. In the main thread, threads.parent
Port is always null.

• In a worker thread, threads.workerData is set to a copy of the workerData prop‐
erty of the second argument to the Worker() constructor. In the main thread, this
property is always null. You can use this workerData property to pass an initial

628 | Chapter 16: Server-Side JavaScript with Node

message to the worker that will be available as soon as it starts so that the worker
does not have to wait for a “message” event before it can start doing work.

• By default, process.env in a worker thread is a copy of process.env in the par‐
ent thread. But the parent thread can specify a custom set of environment vari‐
ables by setting the env property of the second argument to the Worker()
constructor. As a special (and potentially dangerous) case, the parent thread can
set the env property to threads.SHARE_ENV, which will cause the two threads to
share a single set of environment variables so that a change in one thread is visi‐
ble in the other.

• By default, the process.stdin stream in a worker never has any readable data on
it. You can change this default by passing stdin: true in the second argument to
the Worker() constructor. If you do that, then the stdin property of the Worker
object is a Writable stream. Any data that the parent writes to worker.stdin
becomes readable on process.stdin in the worker.

• By default, the process.stdout and process.stderr streams in the worker are
simply piped to the corresponding streams in the parent thread. This means, for
example, that console.log() and console.error() produce output in exactly
the same way in a worker thread as they do in the main thread. You can override
this default by passing stdout:true or stderr:true in the second argument to
the Worker() constructor. If you do this, then any output the worker writes to
those streams becomes readable by the parent thread on the worker.stdout and
worker.stderr threads. (There is a potentially confusing inversion of stream
directions here, and we saw the same thing with with child processes earlier in
the chapter: the output streams of a worker thread are input streams for the par‐
ent thread, and the input stream of a worker is an output stream for the parent.)

• If a worker thread calls process.exit(), only the thread exits, not the entire
process.

• Worker threads are not allowed to change shared state of the process they are
part of. Functions like process.chdir() and process.setuid() will throw
exceptions when invoked from a worker.

• Operating system signals (like SIGINT and SIGTERM) are only delivered to the
main thread; they cannot be received or handled in worker threads.

16.11.3 Communication Channels and MessagePorts
When a new worker thread is created, a communication channel is created along with
it that allows messages to be passed back and forth between the worker and the par‐
ent thread. As we’ve seen, the worker thread uses threads.parentPort to send and

16.11 Worker Threads | 629

receive messages to and from the parent thread, and the parent thread uses the
Worker object to send and receive messages to and from the worker thread.

The worker thread API also allows the creation of custom communication channels
using the MessageChannel API defined by web browsers and covered in §15.13.5. If
you have read that section, much of what follows will sound familiar to you.

Suppose a worker needs to handle two different kinds of messages sent by two differ‐
ent modules in the main thread. These two different modules could both share the
default channel and send messages with worker.postMessage(), but it would be
cleaner if each module has its own private channel for sending messages to the
worker. Or consider the case where the main thread creates two independent work‐
ers. A custom communication channel can allow the two workers to communicate
directly with each other instead of having to send all their messages via the parent.

Create a new message channel with the MessageChannel() constructor. A Message‐
Channel object has two properties, named port1 and port2. These properties refer to
a pair of MessagePort objects. Calling postMessage() on one of the ports will cause a
“message” event to be generated on the other with a structured clone of the Message
object:

const threads = require("worker_threads");
let channel = new threads.MessageChannel();
channel.port2.on("message", console.log); // Log any messages we receive
channel.port1.postMessage("hello"); // Will cause "hello" to be printed

You can also call close() on either port to break the connection between the two
ports and to signal that no more messages will be exchanged. When close() is called
on either port, a “close” event is delivered to both ports.

Note that the code example above creates a pair of MessagePort objects and then uses
those objects to transmit a message within the main thread. In order to use custom
communication channels with workers, we must transfer one of the two ports from
the thread in which it is created to the thread in which it will be used. The next sec‐
tion explains how to do this.

16.11.4 Transferring MessagePorts and Typed Arrays
The postMessage() function uses the structured clone algorithm, and as we’ve noted,
it cannot copy objects like SSockets and Streams. It can handle MessagePort objects,
but only as a special case using a special technique. The postMessage() method (of a
Worker object, of threads.parentPort, or of any MessagePort object) takes an
optional second argument. This argument (called transferList) is an array of
objects that are to be transferred between threads rather than being copied.

A MessagePort object cannot be copied by the structured clone algorithm, but it can
be transferred. If the first argument to postMessage() has included one or more

630 | Chapter 16: Server-Side JavaScript with Node

MessagePorts (nested arbitrarily deeply within the Message object), then those Mes‐
sagePort objects must also appear as members of the array passed as the second argu‐
ment. Doing this tells Node that it does not need to make a copy of the MessagePort,
and can instead just give the existing object to the other thread. The key thing to
understand, however, about transferring values between threads is that once a value is
transferred, it can no longer be used in the thread that called postMessage().

Here is how you might create a new MessageChannel and transfer one of its Message‐
Ports to a worker:

// Create a custom communication channel
const threads = require("worker_threads");
let channel = new threads.MessageChannel();

// Use the worker's default channel to transfer one end of the new
// channel to the worker. Assume that when the worker receives this
// message it immediately begins to listen for messages on the new channel.
worker.postMessage({ command: "changeChannel", data: channel.port1 },
 [channel.port1]);

// Now send a message to the worker using our end of the custom channel
channel.port2.postMessage("Can you hear me now?");

// And listen for responses from the worker as well
channel.port2.on("message", handleMessagesFromWorker);

MessagePort objects are not the only ones that can be transferred. If you call postMes
sage() with a typed array as the message (or with a message that contains one or
more typed arrays nested arbitrarily deep within the message), that typed array (or
those typed arrays) will simply be copied by the structured clone algorithm. But typed
arrays can be large; for example, if you are using a worker thread to do image pro‐
cessing on millions of pixels. So for efficiency, postMessage() also gives us the option
to transfer typed arrays rather than copying them. (Threads share memory by default.
Worker threads in JavaScript generally avoid shared memory, but when we allow this
kind of controlled transfer, it can be done very efficiently.) What makes this safe is
that when a typed array is transferred to another thread, it becomes unusable in the
thread that transferred it. In the image-processing scenario, the main thread could
transfer the pixels of an image to the worker thread, and then the worker thread
could transfer the processed pixels back to the main thread when it was done. The
memory would not need to be copied, but it would never be accessible by two threads
at once.

To transfer a typed array instead of copying it, include the ArrayBuffer that backs the
array in the second argument to postMessage():

let pixels = new Uint32Array(1024*1024); // 4 megabytes of memory

// Assume we read some data into this typed array, and then transfer the

16.11 Worker Threads | 631

// pixels to a worker without copying. Note that we don't put the array
// itself in the transfer list, but the array's Buffer object instead.
worker.postMessage(pixels, [pixels.buffer]);

As with transferred MessagePorts, a transferred typed array becomes unusable once
transferred. No exceptions are thrown if you attempt to use a MessagePort or typed
array that has been transferred; these objects simply stop doing anything when you
interact with them.

16.11.5 Sharing Typed Arrays Between Threads
In addition to transferring typed arrays between threads, it is actually possible to
share a typed array between threads. Simply create a SharedArrayBuffer of the desired
size and then use that buffer to create a typed array. When a typed array that is
backed by a SharedArrayBuffer is passed via postMessage(), the underlying memory
will be shared between the threads. You should not include the shared buffer in the
second argument to postMessage() in this case.

You really should not do this, however, because JavaScript was never designed with
thread safety in mind and multithreaded programming is very difficult to get right.
(And this is why SharedArrayBuffer was not covered in §11.2: it is a niche feature that
is difficult to get right.) Even the simple ++ operator is not thread-safe because it
needs to read a value, increment it, and write it back. If two threads are incrementing
a value at the same time, it will often only be incremented once, as the following code
demonstrates:

const threads = require("worker_threads");

if (threads.isMainThread) {
 // In the main thread, we create a shared typed array with
 // one element. Both threads will be able to read and write
 // sharedArray[0] at the same time.
 let sharedBuffer = new SharedArrayBuffer(4);
 let sharedArray = new Int32Array(sharedBuffer);

 // Now create a worker thread, passing the shared array to it with
 // as its initial workerData value so we don't have to bother with
 // sending and receiving a message
 let worker = new threads.Worker(__filename, { workerData: sharedArray });

 // Wait for the worker to start running and then increment the
 // shared integer 10 million times.
 worker.on("online", () => {
 for(let i = 0; i < 10_000_000; i++) sharedArray[0]++;

 // Once we're done with our increments, we start listening for
 // message events so we know when the worker is done.
 worker.on("message", () => {
 // Although the shared integer has been incremented

632 | Chapter 16: Server-Side JavaScript with Node

 // 20 million times, its value will generally be much less.
 // On my computer the final value is typically under 12 million.
 console.log(sharedArray[0]);
 });
 });
} else {
 // In the worker thread, we get the shared array from workerData
 // and then increment it 10 million times.
 let sharedArray = threads.workerData;
 for(let i = 0; i < 10_000_000; i++) sharedArray[0]++;
 // When we're done incrementing, let the main thread know
 threads.parentPort.postMessage("done");
}

One scenario in which it might be reasonable to use a SharedArrayBuffer is when the
two threads operate on entirely separate sections of the shared memory. You might
enforce this by creating two typed arrays that serve as views of nonoverlapping
regions of the shared buffer, and then have your two threads use those two separate
typed arrays. A parallel merge sort could be done like this: one thread sorts the bot‐
tom half of an array and the other thread sorts the top half, for example. Or some
kinds of image-processing algorithms are also suitable for this approach: multiple
threads working on disjoint regions of the image.

If you really must allow multiple threads to access the same region of a shared array,
you can take one step toward thread safety with the functions defined by the Atomics
object. Atomics was added to JavaScript when SharedArrayBuffer was to define
atomic operations on the elements of a shared array. For example, the Atomics.add()
function reads the specified element of a shared array, adds a specified value to it, and
writes the sum back into the array. It does this atomically as if it was a single opera‐
tion, and ensures that no other thread can read or write the value while the operation
is taking place. Atomics.add() allows us to rewrite the parallel increment code we
just looked at and get the correct result of 20 million increments of a shared array
element:

const threads = require("worker_threads");

if (threads.isMainThread) {
 let sharedBuffer = new SharedArrayBuffer(4);
 let sharedArray = new Int32Array(sharedBuffer);
 let worker = new threads.Worker(__filename, { workerData: sharedArray });

 worker.on("online", () => {
 for(let i = 0; i < 10_000_000; i++) {
 Atomics.add(sharedArray, 0, 1); // Threadsafe atomic increment
 }

 worker.on("message", (message) => {
 // When both threads are done, use a threadsafe function
 // to read the shared array and confirm that it has the

16.11 Worker Threads | 633

 // expected value of 20,000,000.
 console.log(Atomics.load(sharedArray, 0));
 });
 });
} else {
 let sharedArray = threads.workerData;
 for(let i = 0; i < 10_000_000; i++) {
 Atomics.add(sharedArray, 0, 1); // Threadsafe atomic increment
 }
 threads.parentPort.postMessage("done");
}

This new version of the code correctly prints the number 20,000,000. But it is about
nine times slower than the incorrect code it replaces. It would be much simpler and
much faster to just do all 20 million increments in one thread. Also note that atomic
operations may be able to ensure thread safety for image-processing algorithms for
which each array element is a value entirely independent of all other values. But in
most real-world programs, multiple array elements are often related to one another
and some kind of higher-level thread synchronization is required. The low-level
Atomics.wait() and Atomics.notify() function can help with this, but a discussion
of their use is out of scope for this book.

16.12 Summary
Although JavaScript was created to run in web browsers, Node has made JavaScript
into a general-purpose programming language. It is particularly popular for imple‐
menting web servers, but its deep bindings to the operating system mean that it is
also a good alternative to shell scripts.

The most important topics covered in this long chapter include:

• Node’s asynchronous-by-default APIs and its single-threaded, callback, and
event-based style of concurrency.

• Node’s fundamental datatypes, buffers, and streams.
• Node’s “fs” and “path” modules for working with the filesystem.
• Node’s “http” and “https” modules for writing HTTP clients and servers.
• Node’s “net” module for writing non-HTTP clients and servers.
• Node’s “child_process” module for creating and communicating with child

processes.
• Node’s “worker_threads” module for true multithreaded programming using

message-passing instead of shared memory.

634 | Chapter 16: Server-Side JavaScript with Node

CHAPTER 17

JavaScript Tools and Extensions

Congratulations on reaching the final chapter of this book. If you have read every‐
thing that comes before, you now have a detailed understanding of the JavaScript lan‐
guage and know how to use it in Node and in web browsers. This chapter is a kind of
graduation present: it introduces a handful of important programming tools that
many JavaScript programmers find useful, and also describes two widely used exten‐
sions to the core JavaScript language. Whether or not you choose to use these tools
and extensions for your own projects, you are almost certain to see them used in
other projects, so it is important to at least know what they are.

The tools and language extensions covered in this chapter are:

• ESLint for finding potential bugs and style problems in your code.
• Prettier for formatting your JavaScript code in a standardized way.
• Jest as an all-in-one solution for writing JavaScript unit tests.
• npm for managing and installing the software libraries that your program

depends on.
• Code-bundling tools—like webpack, Rollup, and Parcel—that convert your mod‐

ules of JavaScript code into a single bundle for use on the web.
• Babel for translating JavaScript code that uses brand-new language features (or

that uses language extensions) into JavaScript code that can run in current web
browsers.

• The JSX language extension (used by the React framework) that allows you to
describe user interfaces using JavaScript expressions that look like HTML
markup.

635

• The Flow language extension (or the similar TypeScript extension) that allows
you to annotate your JavaScript code with types and check your code for type
safety.

This chapter does not document these tools and extensions in any comprehensive
way. The goal is simply to explain them in enough depth that you can understand
why they are useful and when you might want to use them. Everything covered in this
chapter is widely used in the JavaScript programming world, and if you do decide to
adopt a tool or extension, you’ll find lots of documentation and tutorials online.

17.1 Linting with ESLint
In programming, the term lint refers to code that, while technically correct, is
unsightly, or a possible bug, or suboptimal in some way. A linter is a tool for detecting
lint in your code, and linting is the process of running a linter on your code (and then
fixing your code to remove the lint so that the linter no longer complains).

The most commonly used linter for JavaScript today is ESLint. If you run it and then
take the time to actually fix the issues it points out, it will make your code cleaner and
less likely to have bugs. Consider the following code:

var x = 'unused';

export function factorial(x) {
 if (x == 1) {
 return 1;
 } else {
 return x * factorial(x-1)
 }
}

If you run ESLint on this code, you might get output like this:

$ eslint code/ch17/linty.js

code/ch17/linty.js
 1:1 error Unexpected var, use let or const instead no-var
 1:5 error 'x' is assigned a value but never used no-unused-vars
 1:9 warning Strings must use doublequote quotes
 4:11 error Expected '===' and instead saw '==' eqeqeq
 5:1 error Expected indentation of 8 spaces but found 6 indent
 7:28 error Missing semicolon semi

✖ 6 problems (5 errors, 1 warning)
 3 errors and 1 warning potentially fixable with the `--fix` option.

Linters can seem nitpicky sometimes. Does it really matter whether we used double
quotes or single quotes for our strings? On the other hand, getting indentation right
is important for readability, and using === and let instead of == and var protects you

636 | Chapter 17: JavaScript Tools and Extensions

https://eslint.org

from subtle bugs. And unused variables are dead weight in your code—there is no
reason to keep those around.

ESLint defines many linting rules and has an ecosystem of plug-ins that add many
more. But ESLint is fully configurable, and you can define a configuration file that
tunes ESLint to enforce exactly the rules you want and only those rules.

17.2 JavaScript Formatting with Prettier
One of the reasons that some projects use linters is to enforce a consistent coding
style so that when a team of programmers is working on a shared codebase, they use
compatible code conventions. This includes code indentation rules, but can also
include things like what kind of quotation marks are preferred and whether there
should be a space between the for keyword and the open parenthesis that follows it.

A modern alternative to enforcing code formatting rules via a linter is to adopt a tool
like Prettier to automatically parse and reformat all of your code.

Suppose you have written the following function, which works, but is formatted
unconventionally:

function factorial(x)
{
 if(x===1){return 1}
 else{return x*factorial(x-1)}
}

Running Prettier on this code fixes the indentation, adds missing semicolons, adds
spaces around binary operators and inserts line breaks after { and before }, resulting
in much more conventional-looking code:

$ prettier factorial.js
function factorial(x) {
 if (x === 1) {
 return 1;
 } else {
 return x * factorial(x - 1);
 }
}

If you invoke Prettier with the --write option, it will simply reformat the specified
file in place rather than printing a reformatted version. If you use git to manage your
source code, you can invoke Prettier with the --write option in a commit hook so
that code is automatically formatted before being checked in.

Prettier is particularly powerful if you configure your code editor to run it automati‐
cally every time you save a file. I find it liberating to write sloppy code and see it fixed
automatically for me.

17.2 JavaScript Formatting with Prettier | 637

https://prettier.io

Prettier is configurable, but it only has a few options. You can select the maximum
line length, the indentation amount, whether semicolons should be used, whether
strings should be single- or double-quoted, and a few other things. In general, Pretti‐
er’s default options are quite reasonable. The idea is that you just adopt Prettier for
your project and then never have to think about code formatting again.

Personally, I really like using Prettier on JavaScript projects. I have not used it for the
code in this book, however, because in much of my code I rely on careful hand for‐
matting to align my comments vertically, and Prettier messes them up.

17.3 Unit Testing with Jest
Writing tests is an important part of any nontrivial programming project. Dynamic
languages like JavaScript support testing frameworks that dramatically reduce the
effort required to write tests, and almost make test writing fun! There are a lot of test
tools and libraries for JavaScript, and many are written in a modular way so that it is
possible to pick one library as your test runner, another library for assertions, and a
third for mocking. In this section, however, we’ll describe Jest, which is a popular
framework that includes everything you need in a single package.

Suppose you’ve written the following function:

const getJSON = require("./getJSON.js");

/**
 * getTemperature() takes the name of a city as its input, and returns
 * a Promise that will resolve to the current temperature of that city,
 * in degrees Fahrenheit. It relies on a (fake) web service that returns
 * world temperatures in degrees Celsius.
 */
module.exports = async function getTemperature(city) {
 // Get the temperature in Celsius from the web service
 let c = await getJSON(
 `https://globaltemps.example.com/api/city/${city.toLowerCase()}`
);
 // Convert to Fahrenheit and return that value.
 return (c * 5 / 9) + 32; // TODO: double-check this formula
};

A good set of tests for this function might verify that getTemperature() is fetching
the right URL, and that it is converting temperature scales correctly. We can do this
with a Jest-based test like the following. This code defines a mock implementation of
getJSON() so that the test does not actually make a network request. And because
getTemperature() is an async function, the tests are async as well—it can be tricky to
test asynchronous functions, but Jest makes it relatively easy:

// Import the function we are going to test
const getTemperature = require("./getTemperature.js");

638 | Chapter 17: JavaScript Tools and Extensions

https://jestjs.io

// And mock the getJSON() module that getTemperature() depends on
jest.mock("./getJSON");
const getJSON = require("./getJSON.js");

// Tell the mock getJSON() function to return an already resolved Promise
// with fulfillment value 0.
getJSON.mockResolvedValue(0);

// Our set of tests for getTemperature() begins here
describe("getTemperature()", () => {
 // This is the first test. We're ensuring that getTemperature() calls
 // getJSON() with the URL that we expect
 test("Invokes the correct API", async () => {
 let expectedURL = "https://globaltemps.example.com/api/city/vancouver";
 let t = await(getTemperature("Vancouver"));
 // Jest mocks remember how they were called, and we can check that.
 expect(getJSON).toHaveBeenCalledWith(expectedURL);
 });

 // This second test verifies that getTemperature() converts
 // Celsius to Fahrenheit correctly
 test("Converts C to F correctly", async () => {
 getJSON.mockResolvedValue(0); // If getJSON returns 0C
 expect(await getTemperature("x")).toBe(32); // We expect 32F

 // 100C should convert to 212F
 getJSON.mockResolvedValue(100); // If getJSON returns 100C
 expect(await getTemperature("x")).toBe(212); // We expect 212F
 });
});

With the test written, we can use the jest command to run it, and we discover that
one of our tests fails:

$ jest getTemperature
 FAIL ch17/getTemperature.test.js
 getTemperature()
 ✓ Invokes the correct API (4ms)
 ✕ Converts C to F correctly (3ms)

 ● getTemperature() › Converts C to F correctly

 expect(received).toBe(expected) // Object.is equality

 Expected: 212
 Received: 87.55555555555556

 29 | // 100C should convert to 212F
 30 | getJSON.mockResolvedValue(100); // If getJSON returns 100C
 > 31 | expect(await getTemperature("x")).toBe(212); // Expect 212F
 | ^
 32 | });

17.3 Unit Testing with Jest | 639

 33 | });
 34 |

 at Object.<anonymous> (ch17/getTemperature.test.js:31:43)

Test Suites: 1 failed, 1 total
Tests: 1 failed, 1 passed, 2 total
Snapshots: 0 total
Time: 1.403s
Ran all test suites matching /getTemperature/i.

Our getTemperature() implementation is using the wrong formula for converting C
to F. It multiplies by 5 and divides by 9 rather than multiplying by 9 and dividing by
5. If we fix the code and run Jest again, we can see the tests pass. And, as a bonus, if
we add the --coverage argument when we invoke jest, it will compute and display
the code coverage for our tests:

$ jest --coverage getTemperature
 PASS ch17/getTemperature.test.js
 getTemperature()
 ✓ Invokes the correct API (3ms)
 ✓ Converts C to F correctly (1ms)

------------------|--------|---------|---------|---------|------------------|
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Line #s
All files | 71.43| 100| 33.33| 83.33| |
 getJSON.js | 33.33| 100| 0| 50| 2|
 getTemperature.js| 100| 100| 100| 100| |
------------------|--------|---------|---------|---------|------------------|
Test Suites: 1 passed, 1 total
Tests: 2 passed, 2 total
Snapshots: 0 total
Time: 1.508s
Ran all test suites matching /getTemperature/i.

Running our test gave us 100% code coverage for the module we were testing, which
is exactly what we wanted. It only gave us partial coverage of getJSON(), but we
mocked that module and were not trying to test it, so that is expected.

17.4 Package Management with npm
In modern software development, it is common for any nontrivial program that you
write to depend on third-party software libraries. If you’re writing a web server in
Node, for example, you might be using the Express framework. And if you’re creating
a user interface to be displayed in a web browser, you might use a frontend frame‐
work like React or LitElement or Angular. A package manager makes it easy to find
and install third-party packages like these. Just as importantly, a package manager
keeps track of what packages your code depends on and saves this information into a

640 | Chapter 17: JavaScript Tools and Extensions

file so that when someone else wants to try your program, they can download your
code and your list of dependencies, then use their own package manager to install all
the third-party packages that your code needs.

npm is the package manager that is bundled with Node, and was introduced in
§16.1.5. It is just as useful for client-side JavaScript programming as it is for server-
side programming with Node, however.

If you are trying out someone else’s JavaScript project, then one of the first things you
will often do after downloading their code is to type npm install. This reads the
dependencies listed in the package.json file and downloads the third-party packages
that the project needs and saves them in a node_modules/ directory.

You can also type npm install <package-name> to install a particular package to
your project’s node_modules/ directory:

$ npm install express

In addition to installing the named package, npm also makes a record of the depend‐
ency in the package.json file for the project. Recording dependencies in this way is
what allows others to install those dependencies simply by typing npm install.

The other kind of dependency is on developer tools that are needed by developers
who want to work on your project, but aren’t actually needed to run the code. If a
project uses Prettier, for example, to ensure that all of its code is consistently format‐
ted, then Prettier is a “dev dependency,” and you can install and record one of these
with --save-dev:

$ npm install --save-dev prettier

Sometimes you might want to install developer tools globally so that they are accessi‐
ble anywhere even for code that is not part of a formal project with a package.json file
and a node_modules/ directory. For that you can use the -g (for global) option:

$ npm install -g eslint jest
/usr/local/bin/eslint -> /usr/local/lib/node_modules/eslint/bin/eslint.js
/usr/local/bin/jest -> /usr/local/lib/node_modules/jest/bin/jest.js
+ jest@24.9.0
+ eslint@6.7.2
added 653 packages from 414 contributors in 25.596s

$ which eslint
/usr/local/bin/eslint
$ which jest
/usr/local/bin/jest

In addition to the “install” command, npm supports “uninstall” and “update” com‐
mands, which do what their names say. npm also has an interesting “audit” command
that you can use to find and fix security vulnerabilities in your dependencies:

17.4 Package Management with npm | 641

$ npm audit --fix

 === npm audit security report ===

found 0 vulnerabilities
 in 876354 scanned packages

When you install a tool like ESLint locally for a project, the eslint script winds up in ./
node_modules/.bin/eslint, which makes the command awkward to run. Fortunately,
npm is bundled with a command known as “npx,” which you can use to run locally
installed tools with commands like npx eslint or npx jest. (And if you use npx to
invoke a tool that has not been installed yet, it will install it for you.)

The company behind npm also maintains the https://npmjs.com package repository,
which holds hundreds of thousands of open source packages. But you don’t have to
use the npm package manager to access this repository of packages. Alternatives
include yarn and pnpm.

17.5 Code Bundling
If you are writing a large JavaScript program to run in web browsers, you will proba‐
bly want to use a code-bundling tool, especially if you use external libraries that are
delivered as modules. Web developers have been using ES6 modules (§10.3) for years,
since well before the import and export keywords were supported on the web. In
order to do this, programmers use a code-bundler tool that starts at the main entry
point (or entry points) of the program and follows the tree of import directives to
find all modules that the program depends on. It then combines all of those individ‐
ual module files into a single bundle of JavaScript code and rewrites the import and
export directives to make the code work in this new form. The result is a single file of
code that can be loaded into a web browser that does not support modules.

ES6 modules are nearly universally supported by web browsers today, but web devel‐
opers still tend to use code bundlers, at least when releasing production code. Devel‐
opers find that user experience is best when a single medium-sized bundle of code is
loaded when a user first visits a website than when many small modules are loaded.

Web performance is a notoriously tricky topic and there are lots of
variables to consider, including ongoing improvements by browser
vendors, so the only way to be sure of the fastest way to load your
code is by testing thoroughly and measuring carefully. Keep in
mind that there is one variable that is completely under your con‐
trol: code size. Less JavaScript code will always load and run faster
than more JavaScript code!

642 | Chapter 17: JavaScript Tools and Extensions

https://npmjs.com
https://yarnpkg.com
https://pnpm.js.org

There are a number of good JavaScript bundler tools available. Commonly used bun‐
dlers include webpack, Rollup and Parcel. The basic features of bundlers are more or
less the same, and they are differentiated based on how configurable they are or how
easy they are to use. Webpack has been around for a long time, has a large ecosystem
of plug-ins, is highly configurable, and can support older nonmodule libraries. But it
can also be complex and hard to configure. At the other end of the spectrum is Parcel
which is intended as a zero-configuration alternative that simply does the right thing.

In addition to performing basic bundling, bundler tools can also provide some addi‐
tional features:

• Some programs have more than one entry point. A web application with multiple
pages, for example, could be written with a different entry point for each page.
Bundlers generally allow you to create one bundle per entry point or to create a
single bundle that supports multiple entry points.

• Programs can use import() in its functional form (§10.3.6) instead of its static
form to dynamically load modules when they are actually needed rather than
statically loading them at program startup time. Doing this is often a good way to
improve the startup time for your program. Bundler tools that support import()
may be able to produce multiple output bundles: one to load at startup time, and
one or more that are loaded dynamically when needed. This can work well if
there are only a few calls to import() in your program and they load modules
with relatively disjoint sets of dependencies. If the dynamically loaded modules
share dependencies then it becomes tricky to figure out how many bundles to
produce, and you are likely to have to manually configure your bundler to sort
this out.

• Bundlers can generally output a source map file that defines a mapping between
the lines of code in the bundle and the corresponding lines in the original source
files. This allows browser developer tools to automatically display JavaScript
errors at their original unbundled locations.

• Sometimes when you import a module into your program, you only use a few of
its features. A good bundler tool can analyze the code to determine which parts
are unused and can be omitted from the bundles. This feature goes by the whim‐
sical name of “tree-shaking.”

• Bundlers typically have a plug-in–based architecture and support plug-ins that
allow importing and bundling “modules” that are not actually files of JavaScript
code. Suppose that your program includes a large JSON-compatible data struc‐
ture. Code bundlers can be configured to allow you to move that data structure
into a separate JSON file and then import it into your program with a declaration
like import widgets from "./big-widget-list.json". Similarly, web develop‐
ers who embed CSS into their JavaScript programs can use bundler plug-ins that

17.5 Code Bundling | 643

https://webpack.js.org
https://rollupjs.org/guide/en
https://parceljs.org

allow them to import CSS files with an import directive. Note, however, that if
you import anything other than a JavaScript file, you are using a nonstandard
JavaScript extension and making your code dependent on the bundler tool.

• In a language like JavaScript that does not require compilation, running a bun‐
dler tool feels like a compilation step, and it is frustrating to have to run a bun‐
dler after every code edit before you can run the code in your browser. Bundlers
typically support filesystem watchers that detect edits to any files in a project
directory and automatically regenerate the necessary bundles. With this feature
in place you can typically save your code and then immediately reload your web
browser window to try it out.

• Some bundlers also support a “hot module replacement” mode for developers
where each time a bundle is regenerated, it is automatically loaded into the
browser. When this works, it is a magical experience for developers, but there are
some tricks going on under the hood to make it work, and it is not suitable for all
projects.

17.6 Transpilation with Babel
Babel is a tool that compiles JavaScript written using modern language features into
JavaScript that does not use those modern language features. Because it compiles
JavaScript to JavaScript, Babel is sometimes called a “transpiler.” Babel was created so
that web developers could use the new language features of ES6 and later while still
targeting web browsers that only supported ES5.

Language features such as the ** exponentiation operator and arrow functions can be
transformed relatively easily into Math.pow() and function expressions. Other lan‐
guage features, such as the class keyword, require much more complex transforma‐
tions, and, in general, the code output by Babel is not meant to be human readable.
Like bundler tools, however, Babel can produce source maps that map transformed
code locations back to their original source locations, and this helps dramatically
when working with transformed code.

Browser vendors are doing a better job of keeping up with the evolution of the Java‐
Script language, and there is much less need today to compile away arrow functions
and class declarations. Babel can still help when you want to use the very latest fea‐
tures like underscore separators in numeric literals.

Like most of the other tools described in this chapter, you can install Babel with npm
and run it with npx. Babel reads a .babelrc configuration file that tells it how you
would like your JavaScript code transformed. Babel defines “presets” that you can
choose from depending on which language extensions you want to use and how
aggressively you want to transform standard language features. One of Babel’s

644 | Chapter 17: JavaScript Tools and Extensions

https://babeljs.io

interesting presets is for code compression by minification (stripping comments and
whitespace, renaming variables, and so on).

If you use Babel and a code-bundling tool, you may be able to set up the code bundler
to automatically run Babel on your JavaScript files as it builds the bundle for you. If
so, this can be a convenient option because it simplifies the process of producing
runnable code. Webpack, for example, supports a “babel-loader” module that you can
install and configure to run Babel on each JavaScript module as it is bundled up.

Even though there is less need to transform the core JavaScript language today, Babel
is still commonly used to support nonstandard extensions to the language, and we’ll
describe two of these language extensions in the sections that follow.

17.7 JSX: Markup Expressions in JavaScript
JSX is an extension to core JavaScript that uses HTML-style syntax to define a tree of
elements. JSX is most closely associated with the React framework for user interfaces
on the web. In React, the trees of elements defined with JSX are ultimately rendered
into a web browser as HTML. Even if you have no plans to use React yourself, its
popularity means that you are likely to see code that uses JSX. This section explains
what you need to know to make sense of of it. (This section is about the JSX language
extension, not about React, and it explains only enough of React to provide context
for the JSX syntax.)

You can think of a JSX element as a new type of JavaScript expression syntax. Java‐
Script string literals are delimited with quotation marks, and regular expression liter‐
als are delimited with slashes. In the same way, JSX expression literals are delimited
with angle brackets. Here is a very simple one:

let line = <hr/>;

If you use JSX, you will need to use Babel (or a similar tool) to compile JSX expres‐
sions into regular JavaScript. The transformation is simple enough that some devel‐
opers choose to use React without using JSX. Babel transforms the JSX expression in
this assignment statement into a simple function call:

let line = React.createElement("hr", null);

JSX syntax is HTML-like, and like HTML elements, React elements can have
attributes like these:

let image = ;

When an element has one or more attributes, they become properties of an object
passed as the second argument to createElement():

let image = React.createElement("img", {
 src: "logo.png",
 alt: "The JSX logo",

17.7 JSX: Markup Expressions in JavaScript | 645

 hidden: true
 });

Like HTML elements, JSX elements can have strings and other elements as children.
Just as JavaScript’s arithmetic operators can be used to write arithmetic expressions of
arbitrary complexity, JSX elements can also be nested arbitrarily deeply to create trees
of elements:

let sidebar = (
 <div className="sidebar">
 <h1>Title</h1>
 <hr/>
 <p>This is the sidebar content</p>
 </div>
);

Regular JavaScript function call expressions can also be nested arbitrarily deeply, and
these nested JSX expressions translate into a set of nested createElement() calls.
When an JSX element has children, those children (which are typically strings and
other JSX elements) are passed as the third and subsequent arguments:

let sidebar = React.createElement(
 "div", { className: "sidebar"}, // This outer call creates a <div>
 React.createElement("h1", null, // This is the first child of the <div/>
 "Title"), // and its own first child.
 React.createElement("hr", null), // The second child of the <div/>.
 React.createElement("p", null, // And the third child.
 "This is the sidebar content"));

The value returned by React.createElement() is an ordinary JavaScript object that
is used by React to render output in a browser window. Since this section is about the
JSX syntax and not about React, we’re not going to go into any detail about the
returned Element objects or the rendering process. It is worth noting that you can
configure Babel to compile JSX elements to invocations of a different function, so if
you think that JSX syntax would be a useful way to express other kinds of nested data
structures, you can adopt it for your own non-React uses.

An important feature of JSX syntax is that you can embed regular JavaScript expres‐
sions within JSX expressions. Within a JSX expression, text within curly braces is
interpreted as plain JavaScript. These nested expressions are allowed as attribute val‐
ues and as child elements. For example:

function sidebar(className, title, content, drawLine=true) {
 return (
 <div className={className}>
 <h1>{title}</h1>
 { drawLine && <hr/> }
 <p>{content}</p>
 </div>
);
}

646 | Chapter 17: JavaScript Tools and Extensions

The sidebar() function returns a JSX element. It takes four arguments that it uses
within the JSX element. The curly brace syntax may remind you of template literals
that use ${} to include JavaScript expressions within strings. Since we know that JSX
expressions compile into function invocations, it should not be surprising that arbi‐
trary JavaScript expressions can be included because function invocations can be
written with arbitrary expressions as well. This example code is translated by Babel
into the following:

function sidebar(className, title, content, drawLine=true) {
 return React.createElement("div", { className: className },
 React.createElement("h1", null, title),
 drawLine && React.createElement("hr", null),
 React.createElement("p", null, content));
}

This code is easy to read and understand: the curly braces are gone and the resulting
code passes the incoming function parameters to React.createElement() in a natu‐
ral way. Note the neat trick that we’ve done here with the drawLine parameter and the
short-circuiting && operator. If you call sidebar() with only three arguments, then
drawLine defaults to true, and the fourth argument to the outer createElement()
call is the <hr/> element. But if you pass false as the fourth argument to sidebar(),
then the fourth argument to the outer createElement() call evaluates to false, and
no <hr/> element is ever created. This use of the && operator is a common idiom in
JSX to conditionally include or exclude a child element depending on the value of
some other expression. (This idiom works with React because React simply ignores
children that are false or null and does not produce any output for them.)

When you use JavaScript expressions within JSX expressions, you are not limited to
simple values like the string and boolean values in the preceding example. Any Java‐
Script value is allowed. In fact, it is quite common in React programming to use
objects, arrays, and functions. Consider the following function, for example:

// Given an array of strings and a callback function return a JSX element
// representing an HTML list with an array of elements as its child.
function list(items, callback) {
 return (
 <ul style={ {padding:10, border:"solid red 4px"} }>
 {items.map((item,index) => {
 <li onClick={() => callback(index)} key={index}>{item}
 })}

);
}

This function uses an object literal as the value of the style attribute on the
element. (Note that double curly braces are required here.) The element has a
single child, but the value of that child is an array. The child array is the array created
by using the map() function on the input array to create an array of elements.

17.7 JSX: Markup Expressions in JavaScript | 647

(This works with React because the React library flattens the children of an element
when it renders them. An element with one array child is the same as that element
with each of those array elements as children.) Finally, note that each of the nested
 elements has an onClick event handler attribute whose value is an arrow func‐
tion. The JSX code compiles to the following pure JavaScript code (which I have for‐
matted with Prettier):

function list(items, callback) {
 return React.createElement(
 "ul",
 { style: { padding: 10, border: "solid red 4px" } },
 items.map((item, index) =>
 React.createElement(
 "li",
 { onClick: () => callback(index), key: index },
 item
)
)
);
}

One other use of object expressions in JSX is with the object spread operator (§6.10.4)
to specify multiple attributes at once. Suppose that you find yourself writing a lot of
JSX expressions that repeat a common set of attributes. You can simplify your expres‐
sions by defining the attributes as properties of an object and “spreading them into”
your JSX elements:

let hebrew = { lang: "he", dir: "rtl" }; // Specify language and direction
let shalom = שלום;

Babel compiles this to use an _extends() function (omitted here) that combines that
className attribute with the attributes contained in the hebrew object:

let shalom = React.createElement("span",
 _extends({className: "emphasis"}, hebrew),
 "\u05E9\u05DC\u05D5\u05DD");

Finally, there is one more important feature of JSX that we have not covered yet. As
you’ve seen, all JSX elements begin with an identifier immediately after the opening
angle bracket. If the first letter of this identifier is lowercase (as it has been in all of
the examples here), then the identifier is passed to createElement() as a string. But if
the first letter of the identifier is uppercase, then it is treated as an actual identifer,
and it is the JavaScript value of that identifier that is passed as the first argument to
createElement(). This means that the JSX expression <Math/> compiles to JavaScript
code that passes the global Math object to React.createElement().

For React, this ability to pass non-string values as the first argument to createEle
ment() enables the creation of components. A component is a way of writing a simple

648 | Chapter 17: JavaScript Tools and Extensions

JSX expression (with an uppercase component name) that represents a more complex
expression (using lowercase HTML tag names).

The simplest way to define a new component in React is to write a function that takes
a “props object” as its argument and returns a JSX expression. A props object is simply
a JavaScript object that represents attribute values, like the objects that are passed as
the second argument to createElement(). Here, for example, is another take on our
sidebar() function:

function Sidebar(props) {
 return (
 <div>
 <h1>{props.title}</h1>
 { props.drawLine && <hr/> }
 <p>{props.content}</p>
 </div>
);
}

This new Sidebar() function is a lot like the earlier sidebar() function. But this one
has a name that begins with a capital letter and takes a single object argument instead
of separate arguments. This makes it a React component and means that it can be
used in place of an HTML tag name in JSX expressions:

let sidebar = <Sidebar title="Something snappy" content="Something wise"/>;

This <Sidebar/> element compiles like this:

let sidebar = React.createElement(Sidebar, {
 title: "Something snappy",
 content: "Something wise"
});

It is a simple JSX expression, but when React renders it, it will pass the second argu‐
ment (the Props object) to the first argument (the Sidebar() function) and will use
the JSX expression returned by that function in place of the <Sidebar> expression.

17.8 Type Checking with Flow
Flow is a language extension that allows you to annotate your JavaScript code with
type information, and a tool for checking your JavaScript code (both annotated and
unannotated) for type errors. To use Flow, you start writing code using the Flow lan‐
guage extension to add type annotations. Then you run the Flow tool to analyze your
code and report type errors. Once you have fixed the errors and are ready to run the
code, you use Babel (perhaps automatically as part of the code-bundling process) to
strip the Flow type annotations out of your code. (One of the nice things about the
Flow language extension is that there isn’t any new syntax that Flow has to compile or
transform. You use the Flow language extension to add annotations to the code, and

17.8 Type Checking with Flow | 649

https://flow.org

all Babel has to do is to strip those annotations out to return your code to standard
JavaScript.)

TypeScript Versus Flow
TypeScript is a very popular alternative to Flow. TypeScript is an extension of Java‐
Script that adds types as well as other language features. The TypeScript compiler
“tsc” compiles TypeScript programs into JavaScript programs and in the process ana‐
lyzes them and reports type errors in much the same the way that Flow does. tsc is not
a Babel plugin: it is its own standalone compiler.

Simple type annotations in TypeScript are usually written identically to the same
annotations in Flow. For more advanced typing, the syntax of the two extensions
diverges, but the intent and value of the two extensions is the same. My goal in this
section is to explain the benefits of type annotations and static code analysis. I’ll be
doing that with examples based on Flow, but everything demonstrated here can also
be achieved with TypeScript with relatively simple syntax changes.

TypeScript was released in 2012, before ES6, when JavaScript did not have a class
keyword or a for/of loop or modules or Promises. Flow is a narrow language exten‐
sion that adds type annotations to JavaScript and nothing else. TypeScript, by con‐
trast, was very much designed as a new language. As its name implies, adding types to
JavaScript is the primary purpose of TypeScript, and it is the reason that people use it
today. But types are not the only feature that TypeScript adds to JavaScript: the Type‐
Script language has enum and namespace keywords that simply do not exist in Java‐
Script. In 2020, TypeScript has better integration with IDEs and code editors
(particularly VSCode, which, like TypeScript, is from Microsoft) than Flow does.

Ultimately, this is a book about JavaScript, and I’m covering Flow here instead of
TypeScript because I don’t want to take the focus off of JavaScript. But everything you
learn here about adding types to JavaScript will be helpful to you if you decide to
adopt TypeScript for your projects.

Using Flow requires commitment, but I have found that for medium and large
projects, the extra effort is worth it. It takes extra time to add type annotations to
your code, to run Flow every time you edit the code, and to fix the type errors it
reports. But in return Flow will enforce good coding discipline and will not allow you
to cut corners that can lead to bugs. When I have worked on projects that use Flow, I
have been impressed by the number of errors it found in my own code. Being able to
fix those issues before they became bugs is a great feeling and gives me extra confi‐
dence that my code is correct.

When I first started using Flow, I found that it was sometimes difficult to understand
why it was complaining about my code. With some practice, though, I came to
understand its error messages and found that it was usually easy to make minor

650 | Chapter 17: JavaScript Tools and Extensions

1 If you have programmed with Java, you may have experienced something like this the first time you wrote a
generic API that used a type parameter. I found the learning process for Flow to be remarkably similar to
what I went through in 2004 when generics were added to Java.

changes to my code to make it safer and to satisfy Flow.1 I do not recommend using
Flow if you still feel like you are learning JavaScript itself. But once you are confident
with the language, adding Flow to your JavaScript projects will push you to take your
programming skills to the next level. And this, really, is why I’m dedicating the last
section of this book to a Flow tutorial: because learning about JavaScript type systems
offers a glimpse of another level, or another style, of programming.

This section is a tutorial, and it does not attempt to cover Flow comprehensively. If
you decide to try Flow, you will almost certainly end up spending time reading the
documentation at https://flow.org. On the other hand, you do not need to master the
Flow type system before you can start making practical use of it in your projects: the
simple uses of Flow described here will take you a long way.

17.8.1 Installing and Running Flow
Like the other tools described in this chapter, you can install the Flow type-checking
tool using a package manager, with a command like npm install -g flow-bin or
npm install --save-dev flow-bin. If you install the tool globally with -g, then you
can run it with flow. And if you install it locally in your project with --save-dev,
then you can run it with npx flow. Before using Flow to do type checking, the first
time run it as flow --init in the root directory of your project to create a .flowcon
fig configuration file. You may never need to add anything to this file, but Flow
needs it to know where your project root is.

When you run Flow, it will find all the JavaScript source code in your project, but it
will only report type errors for the files that have “opted in” to type checking by
adding a // @flow comment at the top of the file. This opt-in behavior is important
because it means that you can adopt Flow for existing projects and then begin to con‐
vert your code one file at a time, without being bothered by errors and warnings on
files that have not yet been converted.

Flow may be able to find errors in your code even if all you do is opt in with a //
@flow comment. Even if you do not use the Flow language extension and add no type
annotations to your code, the Flow type checker tool can still make inferences about
the values in your program and alert you when you use them inconsistently.

Consider the following Flow error message:

Error ┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈ variableReassignment.js:6:3

Cannot assign 1 to i.r because:

17.8 Type Checking with Flow | 651

https://flow.org

 • property r is missing in number [1].

 2│ let i = { r: 0, i: 1 }; // The complex number 0+1i
 [1] 3│ for(i = 0; i < 10; i++) { // Oops! The loop variable overwrites i
 4│ console.log(i);
 5│ }
 6│ i.r = 1; // Flow detects the error here

In this case, we declare the variable i and assign an object to it. Then we use i again
as a loop variable, overwriting the object. Flow notices this and flags an error when
we try to use i as if it still held an object. (A simple fix would be to write for(let i =
0; making the loop variable local to the loop.)

Here is another error that Flow detects even without type annotations:

Error ┈┈ size.js:3:14

Cannot get x.length because property length is missing in Number [1].

 1│ // @flow
 2│ function size(x) {
 3│ return x.length;
 4│ }
 [1] 5│ let s = size(1000);

Flow sees that the size() function takes a single argument. It doesn’t know the type
of that argument, but it can see that the argument is expected to have a length prop‐
erty. When it sees this size() function being called with a numeric argument, it cor‐
rectly flags this as an error because numbers do not have length properties.

17.8.2 Using Type Annotations
When you declare a JavaScript variable, you can add a Flow type annotation to it by
following the variable name with a colon and the type:

let message: string = "Hello world";
let flag: boolean = false;
let n: number = 42;

Flow would know the types of these variables even if you did not annotate them: it
can see what values you assign to each variable, and it keeps track of that. If you add
type annotations, however, Flow knows both the type of the variable and that you
have expressed the intent that the variable should always be of that type. So if you use
the type annotation, Flow will flag an error if you ever assign a value of a different
type to that variable. Type annotations for variables are also particularly useful if you
tend to declare all your variables up at the top of a function before they are used.

Type annotations for function arguments are like annotations for variables: follow the
name of the function argument with a colon and the type name. When annotating a
function, you typically also add an annotation for the return type of the function.

652 | Chapter 17: JavaScript Tools and Extensions

This goes between the close parenthesis and the open curly brace of the function
body. Functions that return nothing use the Flow type void.

In the preceding example we defined a size() function that expected an argument
with a length property. Here’s how we could change that function to explicitly specify
that it expects a string argument and returns a number. Note, Flow now flags an error
if we pass an array to the function, even though the function would work in that case:

Error ┈┈┈ size2.js:5:18

Cannot call size with array literal bound to s because array literal [1]
is incompatible with string [2].

 [2] 2│ function size(s: string): number {
 3│ return s.length;
 4│ }
 [1] 5│ console.log(size([1,2,3]));

Using type annotations with arrow functions is also possible, though it can turn this
normally succinct syntax into something more verbose:

const size = (s: string): number => s.length;

An important thing to understand about Flow is that the JavaScript value null has
the Flow type null and the JavaScript value undefined has the Flow type void. But
neither of these values is a member of any other type (unless you explicitly add it). If
you declare a function parameter to be a string, then it must be a string, and it is an
error to pass null or to pass undefined or to omit the argument (which is basically
the same thing as passing undefined):

Error ┈┈┈ size3.js:3:18

Cannot call size with null bound to s because null [1] is incompatible
with string [2].

 1│ // @flow
 [2] 2│ const size = (s: string): number => s.length;
 [1] 3│ console.log(size(null));

If you want to allow null and undefined as legal values for a variable or function
argument, simply prefix the type with a question mark. For example, use ?string
or ?number instead of string or number. If we change our size() function to expect
an argument of type ?string, then Flow doesn’t complain when we pass null to the
function. But it now has something else to complain about:

Error ┈┈┈ size4.js:3:14

Cannot get s.length because property length is missing in null or
undefined [1].

 1│ // @flow

17.8 Type Checking with Flow | 653

 [1] 2│ function size(s: ?string): number {
 3│ return s.length;
 4│ }
 5│ console.log(size(null));

What Flow is telling us here is that it is not safe to write s.length because, at this
place in our code, s might be null or undefined, and those values do not have
length properties. This is where Flow makes sure we do not cut any corners. If a
value might be null, Flow will insist that we check for that case before we do any‐
thing that depends on the value not being null.

In this case, we can fix the issue by changing the body of the function as follows:

function size(s: ?string): number {
 // At this point in the code, s could be a string or null or undefined.
 if (s === null || s === undefined) {
 // In this block, Flow knows that s is null or undefined.
 return -1;
 } else {
 // And in this block, Flow knows that s is a string.
 return s.length;
 }
}

When the function is first called, the parameter can have more than one type. But by
adding type-checking code, we create a block within the code where Flow knows for
sure that the parameter is a string. When we use s.length within that block, Flow
does not complain. Note that Flow does not require you to write verbose code like
this. Flow would also be satisfied if we just replaced the body of the size() function
with return s ? s.length : -1;.

Flow syntax allows a question mark before any type specification to indicate that, in
addition to the specified type, null and undefined are allowed as well. Question
marks can also appear after a parameter name to indicate that the parameter itself is
optional. So if we changed the declaration of the parameter s from s: ?string to
s? : string, that would mean it is OK to call size() with no arguments (or with the
value undefined, which is the same as omitting it), but that if we do call it with a
parameter other than undefined, then that parameter must be a string. In this case,
null is not a legal value.

So far, we’ve discussed primitive types string, number, boolean, null, and void and
have demonstrated how you can use use them with variable declarations, function
parameters, and function return values. The subsections that follow describe some
more complex types supported by Flow.

654 | Chapter 17: JavaScript Tools and Extensions

17.8.3 Class Types
In addition to the primitive types that Flow knows about, it also knows about all of
JavaScript’s built-in classes and allows you to use class name as types. The following
function, for example, uses type annotations to indicate that it should be invoked
with one Date object and one RegExp object:

// @flow
// Return true if the ISO representation of the specified date
// matches the specified pattern, or false otherwise.
// E.g: const isTodayChristmas = dateMatches(new Date(), /^\d{4}-12-25T/);
export function dateMatches(d: Date, p: RegExp): boolean {
 return p.test(d.toISOString());
}

If you define your own classes with the class keyword, those classes automatically
become valid Flow types. In order to make this work, however, Flow does require you
to use type annotations in the class. In particular, each property of the class must have
its type declared. Here is a simple complex number class that demonstrates this:

// @flow
export default class Complex {
 // Flow requires an extended class syntax that includes type annotations
 // for each of the properties used by the class.
 i: number;
 r: number;
 static i: Complex;

 constructor(r: number, i:number) {
 // Any properties initialized by the constructor must have Flow type
 // annotations above.
 this.r = r;
 this.i = i;
 }

 add(that: Complex) {
 return new Complex(this.r + that.r, this.i + that.i);
 }
}

// This assignment would not be allowed by Flow if there was not a
// type annotation for i inside the class.
Complex.i = new Complex(0,1);

17.8.4 Object Types
The Flow type to describe an object looks a lot like an object literal, except that prop‐
erty values are replaced by property types. Here, for example, is a function that
expects an object with numeric x and y properties:

17.8 Type Checking with Flow | 655

// @flow
// Given an object with numeric x and y properties, return the
// distance from the origin to the point (x,y) as a number.
export default function distance(point: {x:number, y:number}): number {
 return Math.hypot(point.x, point.y);
}

In this code, the text {x:number, y:number} is a Flow type, just like string or Date
is. As with any type, you can add a question mark at the front to indicate that null
and undefined should also be allowed.

Within an object type, you can follow any of the property names with a question
mark to indicate that that property is optional and may be omitted. For example, you
might write the type for an object that represents a 2D or 3D point like this:

{x: number, y: number, z?: number}

If a property is not marked as optional in an object type, then it is required, and Flow
will report an error if an appropriate property is not present in the actual value. Nor‐
mally, however, Flow tolerates extra properties. If you were to pass an object that had
a w property to the distance() function above, Flow would not complain.

If you want Flow to strictly enforce that an object does not have properties other than
those explicitly declared in its type, you can declare an exact object type by adding
vertical bars to the curly braces:

{| x: number, y: number |}

JavaScript’s objects are sometimes used as dictionaries or string-to-value maps. When
used like this, the property names are not known in advance and cannot be declared
in a Flow type. If you use objects this way, you can still use Flow to describe the data
structure. Suppose that you have an object where the properties are the names of the
world’s major cities and the values of those properties are objects that specify the geo‐
graphical location of those cities. You might declare this data structure like this:

// @flow
const cityLocations : {[string]: {longitude:number, latitude:number}} = {
 "Seattle": { longitude: 47.6062, latitude: -122.3321 },
 // TODO: if there are any other important cities, add them here.
};
export default cityLocations;

17.8.5 Type Aliases
Objects can have many properties, and the Flow type that describes such an object
will be long and difficult to type. And even relatively short object types can be confus‐
ing because they look so much like object literals. Once we get beyond simple types
like number and ?string, it is often useful to be able to define names for our Flow
types. And in fact, Flow uses the type keyword to do exactly that. Follow the type

656 | Chapter 17: JavaScript Tools and Extensions

keyword with an identifier, an equals sign, and a Flow type. Once you’ve done that,
the identifier will be an alias for the type. Here, for example, is how we could rewrite
the distance() function from the previous section with an explicitly defined Point
type:

// @flow
export type Point = {
 x: number,
 y: number
};

// Given a Point object return its distance from the origin
export default function distance(point: Point): number {
 return Math.hypot(point.x, point.y);
}

Note that this code exports the distance() function and also exports the Point type.
Other modules can use import type Point from './distance.js' if they want to
use that type definition. Keep in mind, though, that import type is a Flow language
extension and not a real JavaScript import directive. Type imports and exports are
used by the Flow type checker, but like all other Flow language extensions, they are
stripped out of the code before it ever runs.

Finally, it is worth noting that instead of defining a name for a Flow object type that
represents a point, it would probably be simpler and cleaner to just define a Point
class and use that class as the type.

17.8.6 Array Types
The Flow type to describe an array is a compound type that also includes the type of
the array elements. Here, for example, is a function that expects an array of numbers,
and the error that Flow reports if you try to call the function with an array that has
non-numeric elements:

Error ┈┈┈ average.js:8:16

Cannot call average with array literal bound to data because string [1]
is incompatible with number [2] in array element.

 [2] 2│ function average(data: Array<number>) {
 3│ let sum = 0;
 4│ for(let x of data) sum += x;
 5│ return sum/data.length;
 6│ }
 7│
 [1] 8│ average([1, 2, "three"]);

The Flow type for an array is Array followed by the element type in angle brackets.
You can also express an array type by following the element type with open and close

17.8 Type Checking with Flow | 657

square brackets. So in this example we could have written number[] instead of
Array<number>. I prefer the angle bracket notation because, as we’ll see, there are
other Flow types that use this angle-bracket syntax.

The Array type syntax shown works for arrays with an arbitrary number of elements,
all of which have the same type. Flow has a different syntax for describing the type of
a tuple: an array with a fixed number of elements, each of which may have a different
type. To express the type of a tuple, simply write the type of each of its elements, sepa‐
rate them with commas, and enclose them all in square brackets.

A function that returns an HTTP status code and message might look like this, for
example:

function getStatus():[number, string] {
 return [getStatusCode(), getStatusMessage()];
}

Functions that return tuples are awkward to work with unless you use destructuring
assignment:

let [code, message] = getStatus();

Destructuring assignment, plus Flow’s type-aliasing capabilities, make tuples easy
enough to work with that you might consider them as an alternative to classes for
simple datatypes:

// @flow
export type Color = [number, number, number, number]; // [r, g, b, opacity]

function gray(level: number): Color {
 return [level, level, level, 1];
}

function fade([r,g,b,a]: Color, factor: number): Color {
 return [r, g, b, a/factor];
}

let [r, g, b, a] = fade(gray(75), 3);

Now that we have a way to express the type of an array, let’s return to the size()
function from earlier and modify it to expect an array argument instead of a string
argument. We want the function to be able to accept an array of any length, so a tuple
type is not appropriate. But we don’t want to restrict our function to working only for
arrays where all the elements have the same type. The solution is the type
Array<mixed>:

// @flow
function size(s: Array<mixed>): number {
 return s.length;
}
console.log(size([1,true,"three"]));

658 | Chapter 17: JavaScript Tools and Extensions

The element type mixed indicates that the elements of the array can be of any type. If
our function actually indexed the array and attempted to use any of those elements,
Flow would insist that we use typeof checks or other tests to determine the type of
the element before performing any unsafe operation on it. (If you are willing to give
up on type checking, you can also use any instead of mixed: it allows you to do what‐
ever you want with the values of the array without ensuring that the values are of the
type you expect.)

17.8.7 Other Parameterized Types
We’ve seen that when you annotate a value as an Array, Flow requires you to also
specify the type of the array elements inside angle brackets. This additional type is
known as a type parameter, and Array is not the only JavaScript class that is
parameterized.

JavaScript’s Set class is a collection of elements, like an array is, and you can’t use Set
as a type by itself, but you have to include a type parameter within angle brackets to
specify the type of the values contained in the set. (Though you can use mixed or any
if the set may contain values of multiple types.) Here’s an example:

// @flow
// Return a set of numbers with members that are exactly twice those
// of the input set of numbers.
function double(s: Set<number>): Set<number> {
 let doubled: Set<number> = new Set();
 for(let n of s) doubled.add(n * 2);
 return doubled;
}
console.log(double(new Set([1,2,3]))); // Prints "Set {2, 4, 6}"

Map is another parameterized type. In this case, there are two type parameters that
must be specified; the type of the keys and the types of the values:

// @flow
import type { Color } from "./Color.js";

let colorNames: Map<string, Color> = new Map([
 ["red", [1, 0, 0, 1]],
 ["green", [0, 1, 0, 1]],
 ["blue", [0, 0, 1, 1]]
]);

Flow lets you define type parameters for your own classes as well. The following code
defines a Result class but parameterizes that class with an Error type and a Value type.
We use placeholders E and V in the code to represent these type parameters. When
the user of this class declares a variable of type Result, they will specify the actual
types to substitute for E and V. The variable declaration might look like this:

let result: Result<TypeError, Set<string>>;

17.8 Type Checking with Flow | 659

And here is how the parameterized class is defined:

// @flow
// This class represents the result of an operation that can either
// throw an error of type E or a value of type V.
export class Result<E, V> {
 error: ?E;
 value: ?V;

 constructor(error: ?E, value: ?V) {
 this.error = error;
 this.value = value;
 }

 threw(): ?E { return this.error; }
 returned(): ?V { return this.value; }

 get():V {
 if (this.error) {
 throw this.error;
 } else if (this.value === null || this.value === undefined) {
 throw new TypeError("Error and value must not both be null");
 } else {
 return this.value;
 }
 }

}

And you can even define type parameters for functions:

// @flow
// Combine the elements of two arrays into an array of pairs
function zip<A,B>(a:Array<A>, b:Array): Array<[?A,?B]> {
 let result:Array<[?A,?B]> = [];
 let len = Math.max(a.length, b.length);
 for(let i = 0; i < len; i++) {
 result.push([a[i], b[i]]);
 }
 return result;
}

// Create the array [[1,'a'], [2,'b'], [3,'c'], [4,undefined]]
let pairs: Array<[?number,?string]> = zip([1,2,3,4], ['a','b','c'])

17.8.8 Read-Only Types
Flow defines some special parameterized “utility types” that have names beginning
with $. Most of these types have advanced use cases that we are not going to cover
here. But two of them are quite useful in practice. If you have an object type T and
want to make a read-only version of that type, just write $ReadOnly<T>. Similarly, you
can write $ReadOnlyArray<T> to describe a read-only array with elements of type T.

660 | Chapter 17: JavaScript Tools and Extensions

The reason to use these types is not because they can offer any guarantee that an
object or array can’t be modified (see Object.freeze() in §14.2 if you want true
read-only objects) but because it allows you to catch bugs caused by unintentional
modifications. If you write a function that takes an object or array argument and does
not change any of the object’s properties or the array’s elements, then you can anno‐
tate the function parameter with one of Flow’s read-only types. If you do this, then
Flow will report an error if you forget and accidentally modify the input value. Here
are two examples:

// @flow
type Point = {x:number, y:number};

// This function takes a Point object but promises not to modify it
function distance(p: $ReadOnly<Point>): number {
 return Math.hypot(p.x, p.y);
}

let p: Point = {x:3, y:4};
distance(p) // => 5

// This function takes an array of numbers that it will not modify
function average(data: $ReadOnlyArray<number>): number {
 let sum = 0;
 for(let i = 0; i < data.length; i++) sum += data[i];
 return sum/data.length;
}

let data: Array<number> = [1,2,3,4,5];
average(data) // => 3

17.8.9 Function Types
We have seen how to add type annotations to specify the types of a function’s parame‐
ters and its return type. But when one of the parameters of a function is itself a func‐
tion, we need to be able to specify the type of that function parameter.

To express the type of a function with Flow, write the types of each parameter, sepa‐
rate them with commas, enclose them in parentheses, and then follow that with an
arrow and type return type of the function.

Here is an example function that expects to be passed a callback function. Notice how
we defined a type alias for the type of the callback function:

// @flow
// The type of the callback function used in fetchText() below
export type FetchTextCallback = (?Error, ?number, ?string) => void;

export default function fetchText(url: string, callback: FetchTextCallback) {
 let status = null;
 fetch(url)

17.8 Type Checking with Flow | 661

 .then(response => {
 status = response.status;
 return response.text()
 })
 .then(body => {
 callback(null, status, body);
 })
 .catch(error => {
 callback(error, status, null);
 });
}

17.8.10 Union Types
Let’s return one more time to the size() function. It doesn’t really make sense to have
a function that does nothing other than return the length of an array. Arrays have a
perfectly good length property for that. But size() might be useful if it could take
any kind of collection object (an array or a Set or a Map) and return the number of
elements in the collection. In regular untyped JavaScript it would be easy to write a
size() function like that. With Flow, we need a way to express a type that allows
arrays, Sets, and Maps, but doesn’t allow values of any other type.

Flow calls types like this Union types and allows you to express them by simply listing
the desired types and separating them with vertical bar characters:

// @flow
function size(collection: Array<mixed>|Set<mixed>|Map<mixed,mixed>): number {
 if (Array.isArray(collection)) {
 return collection.length;
 } else {
 return collection.size;
 }
}
size([1,true,"three"]) + size(new Set([true,false])) // => 5

Union types can be read using the word “or”—“an array or a Set or a Map”—so the
fact that this Flow syntax uses the same vertical bar character as JavaScript’s OR oper‐
ators is intentional.

We saw earlier that putting a question mark before a type allows null and undefined
values. And now you can see that a ? prefix is simply a shortcut for adding a |null|
void suffix to a type.

In general, when you annotate a value with a Union type, Flow will not allow you to
use that value until you’ve done enough tests to figure out what the type of the actual
value is. In the size() example we just looked at, we need to explicitly check whether
the argument is an array before we try to access the length property of the argument.
Note that we do not have to distinguish a Set argument from a Map argument,

662 | Chapter 17: JavaScript Tools and Extensions

however: both of those classes define a size property, so the code in the else clause is
safe as long as the argument is not an array.

17.8.11 Enumerated Types and Discriminated Unions
Flow allows you to use primitive literals as types that consist of that one single value.
If you write let x:3;, then Flow will not allow you to assign any value to that vari‐
able other than 3. It is not often useful to define types that have only a single member,
but a union of literal types can be useful. You can probably imagine a use for types
like these, for example:

type Answer = "yes" | "no";
type Digit = 0|1|2|3|4|5|6|7|8|9;

If you use types made up of literals, you need to understand that only literal values
are allowed:

let a: Answer = "Yes".toLowerCase(); // Error: can't assign string to Answer
let d: Digit = 3+4; // Error: can't assign number to Digit

When Flow checks your types, it does not actually do the calculations: it just checks
the types of the calculations. Flow knows that toLowerCase() returns a string and
that the + operator on numbers returns a number. Even though we know that both of
these calculations return values that are within the type, Flow cannot know that and
flags errors on both of these lines.

A union type of literal types like Answer and Digit is an example of an enumerated
type, or enum. A canonical use case for enum types is to represent the suits of playing
cards:

type Suit = "Clubs" | "Diamonds" | "Hearts" | "Spades";

A more relevant example might be HTTP status codes:

type HTTPStatus =
 | 200 // OK
 | 304 // Not Modified
 | 403 // Forbidden
 | 404; // Not Found

One of the pieces of advice that new programmers often hear is to avoid using literals
in their code and to instead define symbolic constants to represent those values. One
practical reason for this is to avoid the problem of typos: if you misspell a string lit‐
eral like “Diamonds” JavaScript may never complain but your code may not work
right. If you mistype an identifier, on the other hand, JavaScript is likely to throw an
error that you’ll notice. With Flow, this advice does not always apply. If you annotate
a variable with the type Suit, and then try to assign a misspelled suit to it, Flow will
alert you to the error.

17.8 Type Checking with Flow | 663

Another important use for literal types is the creation of discriminated unions. When
you work with union types (made up of actually different types, not of literals), you
typically have to write code to discriminate among the possible types. In the previous
section, we wrote a function that could take an array or a Set or a Map as its argument
and had to write code to discriminate array input from Set or Map input. If you want
to create a union of Object types, you can make these types easy to discriminate by
using a literal type within each of the individual Object types.

An example will make this clear. Suppose you’re using a worker thread in Node
(§16.11) and are using postMessage() and “message” events for sending object-based
messages between the main thread and the worker thread. There are multiple types of
messages that the worker might want to send to the main thread, but we’d like to
write a Flow Union type that describes all possible messages. Consider this code:

// @flow
// The worker sends a message of this type when it is done
// reticulating the splines we sent it.
export type ResultMessage = {
 messageType: "result",
 result: Array<ReticulatedSpline>, // Assume this type is defined elsewhere.
};

// The worker sends a message of this type if its code failed with an exception.
export type ErrorMessage = {
 messageType: "error",
 error: Error,
};

// The worker sends a message of this type to report usage statistics.
export type StatisticsMessage = {
 messageType: "stats",
 splinesReticulated: number,
 splinesPerSecond: number
};

// When we receive a message from the worker it will be a WorkerMessage.
export type WorkerMessage = ResultMessage | ErrorMessage | StatisticsMessage;

// The main thread will have an event handler function that is passed
// a WorkerMessage. But because we've carefully defined each of the
// message types to have a messageType property with a literal type,
// the event handler can easily discriminate among the possible messages:
function handleMessageFromReticulator(message: WorkerMessage) {
 if (message.messageType === "result") {
 // Only ResultMessage has a messageType property with this value
 // so Flow knows that it is safe to use message.result here.
 // And Flow will complain if you try to use any other property.
 console.log(message.result);
 } else if (message.messageType === "error") {
 // Only ErrorMessage has a messageType property with value "error"

664 | Chapter 17: JavaScript Tools and Extensions

 // so knows that it is safe to use message.error here.
 throw message.error;
 } else if (message.messageType === "stats") {
 // Only StatisticsMessage has a messageType property with value "stats"
 // so knows that it is safe to use message.splinesPerSecond here.
 console.info(message.splinesPerSecond);
 }
}

17.9 Summary
JavaScript is the most-used programming language in the world today. It is a living
language—one that continues to evolve and improve—surrounded by a flourishing
ecosystem of libraries, tools, and extensions. This chapter introduced some of those
tools and extensions, but there are many more to learn about. The JavaScript ecosys‐
tem flourishes because the JavaScript developer community is active and vibrant, full
of peers who share their knowledge through blog posts, videos, and conference pre‐
sentations. As you close this book and go forth to join this community, you will find
no shortage of information sources to keep you engaged with and learning about
JavaScript.

Best wishes, David Flanagan, March 2020

17.9 Summary | 665

Index

Symbols
! (Boolean NOT operator), 86
!= (non-strict inequality operator)

relational expressions, 79
type conversions, 50

!== (inequality operator)
boolean values, 39
overview of, 79
string comparison, 35

" (double quotes), 33
$ (dollar sign), 16
% (modulo operator), 27, 73
& (bitwise AND operator), 77
&& (Boolean AND operator), 40, 84
' (single quotes), 33
* (multiplication operator), 27, 61, 73
** (exponentiation operator), 27, 73
+ (plus sign)

addition and assignment operator (+=), 87
addition operator, 27, 74
string concatenation, 33, 35, 74
type conversions, 50
unary arithmetic operator, 76

++ (increment operator), 76
, (comma operator), 95
- (minus sign)

subtraction operator, 27, 73
unary arithmetic operator, 76

-- (decrement operator), 76
. (dot operator), 6, 133
/ (division operator), 27, 73
/* */ characters, 16
// (double slashes), 5, 7, 16
3D graphics, 484

; (semicolon), 19-21
< (less than operator)

overview of, 81
string comparison, 35
type conversions, 50

<< (shift left operator), 78
<= (less than or equal to operator)

overview of, 81
string comparison, 35
type conversions, 50

= (assignment operator), 5, 79, 86
== (equality operator)

overview of, 79
type conversions, 25, 46, 50

=== (strict equality operator)
boolean values, 38
overview of, 79
string comparison, 35
type conversions, 25, 46

=> (arrows), 8, 21, 185
> (greater than operator)

overview of, 81
string comparison, 35
type conversions, 50

>= (greater than or equal to operator)
overview of, 81
string comparison, 35
type conversions, 50

>> (shift right with sign operator), 78
>>> (shift right with zero fill operator), 78
?. (conditional access operator), 6, 187
?: (conditional operator), 91
?? (first-defined operator), 92
[] (square brackets), 6, 36, 63, 133, 159, 179

667

\ (backslash), 33-35
\n (newline), 33, 34
\u (Unicode character escape), 18, 34
\xA9 (copyright symbol), 34
\` (backtick or apostrophe) escape, 34
^ (bitwise XOR operator), 77
_ (underscore), 16
_ (underscores, as numeric separators), 27
` (backtick), 33, 37
{} (curly braces), 6, 63
|| (Boolean OR operator), 40, 85
~ (bitwise NOT operator), 78
ǀ (bitwise OR operator), 77
… (spread operator), 148, 157, 196, 327

A
abstract classes, 243-248
accelerometers, 573
accessor properties, 150
addEventListener() method, 432
addition operator (+), 27, 74
advanced features

object extensibility, 384
overview of, 379
property attributes, 380-383
prototype attribute, 386
Proxy objects, 399-406
Reflect API, 397-399
template tags, 395-397
well-known Symbols

pattern-matching symbols, 392
Symbol.asyncIterator, 387
Symbol.hasInstance, 388
Symbol.isConcatSpreadable, 391
Symbol.iterator, 387
Symbol.species, 389-391
Symbol.toPrimitive, 394
Symbol.toStringTag, 388
Symbol.unscopables, 394

alphabetization, 314
anchor characters, 289
apostrophes, 33
apply() method, 192, 210
arc() method, 495
arcTo() method, 495
arguments

argument types, 199
Arguments object, 195
definition of term, 181

destructuring function arguments into
parameters, 197-199

variable-length argument lists, 194
arithmetic operators, 7, 27-29, 73-78
array index, 159
array iterator methods

every() and some(), 167
filter(), 167
find() and findIndex(), 167
forEach(), 166
map(), 166
overview of, 165
reduce() and reduceRight(), 168

array literals, 62, 156
Array() constructor, 157
Array.from() function, 158, 177
Array.isArray() function, 177
Array.of() function, 158, 177
Array.prototype, 155, 177
Array.sort() method, 201
arrayBuffer() method, 522
arrays

adding and deleting, 161
array length, 161
array methods

adding arrays, 170
array to string conversions, 176
flattening arrays, 169
generic application of, 155
iterator methods, 165-169
overview of, 165
searching and sorting, 174-176
stacks and queues, 170
static array functions, 177
subarrays, 172

array-like objects, 177-179
associative arrays, 129, 134
creating, 156-159
definition of term, 24
initializer expressions, 7, 62
iterating arrays, 162
multidimensional arrays, 164
nested, 63
overview of, 6, 155
processing with functions, 214
reading and writing array elements, 159
sparse arrays, 160
strings as arrays, 179
typed arrays

668 | Index

creating, 276
DataView and endianness, 280
methods and properties, 278
overview of, 275
typed array types, 275
using, 278

arrow functions, 8, 182, 185
arrows (=>), 8, 21, 185
ASCII control characters, 16
assertions, 7
assignment operator (=), 5, 79, 86
associative arrays, 129, 134
associativity, 72
async keyword, 367-370
asynchronous programming (see also Node)

async and await keywords, 367-370
asynchronous iteration

asynchronous generators, 372
asynchronous iterators, 371
for/await loops, 111, 370
implementation, 373-376

callbacks
callbacks and events in Node, 345
definition of term, 342
events, 343
network events, 343
timers, 342

definition of term, 341
JavaScript support for, 341
Promises

chaining Promises, 350-353
error handling with, 348, 355-359
making Promises, 361-365
overview of, 346
parallel operations, 360
Promises in sequence, 365-367
resolving Promises, 353-355
returning from Promise callbacks, 359
terminology, 350
using, 347-349

audio APIs
Audio() constructor, 507
overview of, 507
WebAudio API, 508

await keyword, 367-370
await operator, 95

B
Babel, 644

backend JavaScript, 410
backpressure, 596-598
backslash (\), 33-35
backtick (`), 33, 37
bare catch clauses, 120
bezierCurveTo() method, 496
big-endian byte ordering, 280
BigInt type, 30
binary data, processing, 275-281, 574 (see also

typed arrays)
binary integer literals, 26
binary operators, 70
bind() method, 211, 216
bitwise operators, 77
blob() method, 522
block scoping, 54
blocking script execution, 413
Boolean AND operator (&&), 40, 84
Boolean NOT operator (!), 86
Boolean OR operator (||), 40, 85
boolean values, 38-40
Boolean() function, 47
break statements, 114
browser development tools, 3
browsing history

managing with hashchange events, 512
managing with pushState(), 513
overview of, 511
structured clone algorithm, 513

Buffer class (Node), 586

C
Cache API, 572
calendars, 314
call() method, 192, 210
callbacks

callbacks and events in Node, 345
definition of term, 342
events, 343
network events, 343
timers, 342

Canvas API, 484-506
canvas dimensions and coordinates, 488
coordinate system transforms, 499-503
drawImage() function, 574
drawing operations

curves, 495
images, 498
rectangles, 494

Index | 669

text, 498
graphics attributes

colors, patterns, and gradients, 491
line styles, 489
overview of, 489
saving and restoring graphics state, 494
shadows, 492
text styles, 492
translucency and compositing, 493

overview of, 484
paths and polygons, 485
pixel manipulation, 505

case sensitivity, 15
catch clauses, 118-121
catch statements, 304
.catch() method, 356-359
character classes (regular expressions), 283
character frequency histograms, 11-14
charAt() method, 179
checkscope() function, 205
child processes (Node), 620-625

benefits of, 620
exec() and execFile(), 622
execSync() and execFileSync(), 620
fork(), 623
options, 621
spawn(), 623

class declaration, 125
class keyword, 229-236
class methods, 232
classes

adding methods to existing classes, 236
classes and constructors, 224-229

constructor property, 228
constructors, class identity, and instan‐

ceof, 226
new.target expression, 225

classes and prototypes, 222
classes with class keyword, 229-236

complex number class example, 234-236
getters, setters, and other method forms,

232
public private, and static fields, 232-234
static methods, 231

modular programming with, 250
naming, 17
overview of, 24, 221
subclasses

class hierarchies and abstract classes,
243-248

delegation versus inheritance, 242
overview of, 237
subclasses and prototypes, 237
with extends clause, 239-242

client-side JavaScript, 410
client-side storage, 536
clipping, 504
closest() method, 439
closures

combining with property getters and setters,
206

common errors, 208
definition of term, 204
lexical scoping rules and, 204
modular programming with, 251
nested function closures, 204
shared private state, 207

code bundling, 642
code examples

comment syntax in, 7
obtaining and using, 14
trying out JavaScript code, 3

collation order, 314
colors, 491
comma operator (,), 95
comments

syntax for, 5, 16
syntax in code examples, 7

compare() method, 314
comparison operators, 81
compositing, 493
compound statements, 99
computed properties, 147
concat() method, 170
conditional access operator (?.), 6, 187
conditional invocation, 67, 187
conditional operator (?:), 91
conditional statements, 97, 100-105
configurable attribute, 130, 380
Console API

console.log() function, 317
formatted output with, 319
functions defined by, 317-319
support for, 317

console.log() function, 5, 578
const keyword, 53
constants

670 | Index

declaring, 25, 53, 125
definition of term, 53
naming, 17

constructors
Array() constructor, 157
Audio() constructor, 507
classes and, 224-229

constructor property, 228-229
constructors, class identity, and instan‐

ceof, 226
new.target expression, 225

constructor invocation, 191
definition of term, 181
examples of, 131
Function() constructor, 212
Set() constructor, 268

Content-Security-Policy HTTP header, 569
continue statements, 115
control structures, 8-10, 97
cookies

API for manipulating, 540
definition of term, 539
lifetime and scope attributes, 541
limitations of, 542
origin of name, 540
reading, 540
storing, 542

coordinate system transforms, 499-503
copyright symbol (\xA9), 34
copyWithin() method, 173
Credential Management API, 575
Cross-Origin Resource Sharing (CORS), 425,

526
cross-site scripting (XSS), 425
cryptography, 31, 574
CSS pixels, 461
CSS stylesheets

common CSS styles, 452
computed styles, 455
CSS animations and events, 458
CSS classes, 453
CSS selector syntax, 438
inline styles, 453
naming conventions, 454
scripting stylesheets, 456

CSSStyleDeclaration object, 453
curly braces ({}), 6, 63
currency, 310
curves, 495

D
data properties, 150
DataView class, 280
Date type, 24, 300
dates and times

date arithmetic, 303
formatting and parsing date strings, 303
formatting for internationalization, 312-314
high-resolution timestamps, 302
overview of, 32, 300
timestamps, 302

debugger statements, 122
declarations

class, 125
const, let, and var, 125
function, 125
import and export, 126
overview of, 124

decodeURI() function, 323
decodeURIComponent() function, 323
decrement operator (--), 76
delegation, 242
delete operator, 94, 138
denial-of-service attacks, 598
destructuring assignment, 57-60, 197-199
development tools, 3
devicemotion event, 573
deviceorientation event, 573
devicePixelRatio property, 461
dictionaries, 129, 134
directories (Node), 611
distance() function, 183
division operator (/), 27, 73
do/while loops, 106
document geometry and scrolling, 459-464

CSS pixels, 461
determining element at a point, 462
document coordinates and viewport coordi‐

nates, 459
querying geometry of elements, 461
scrolling, 462
viewport size, content size, and scroll posi‐

tion, 463
Document Object Model (DOM), 415-450

document structure and traversal, 441
DocumentFragment nodes, 467
dynamically generating tables of contents,

450
iframe elements, 459

Index | 671

modifying content, 447
modifying structure, 448
overview of, 437
querying and setting attributes, 444
selecting document elements, 438
shadow DOM, 470-473

DocumentFragment nodes, 467
documents, loading new, 510
dollar sign ($), 16
DOMContentLoaded event, 419, 421
dot operator (.), 6, 133
double quotes ("), 33
double slashes (//), 5, 7, 16
drawImage() function, 574
drawing operations

curves, 495
images, 498
rectangles, 494
text, 498

dynamic arrays, 155

E
ECMA402 standard, 309
ECMAScript (ES), 2
elementFromPoint() method, 460
elements

array elements
definition of term, 155
reading and writing, 159

document elements
custom elements, 468
determining element at a point, 462
iframe, 459
querying geometry of elements, 461
selecting, 438

ellipse() method, 495
else if statements, 102
emojis, 17, 34
empty statements, 99
empty strings, 32
encodeURI() function, 323
encodeURIComponent() function, 323
English contractions, 33
enumerable attribute, 130, 380
equality operator (==)

overview of, 79
type conversions, 25, 46, 50

equality operators, 7
Error classes, 304

error handling
using Promises, 348, 355
web browser host environment, 422

ES2016
exponentiation operator (**), 27, 74
includes() method, 175

ES2017, async and await keywords, 95, 341,
367-370

ES2018
asynchronous iterator, 111, 370
destructuring with rest parameters, 199
.finally() method, 356
regular expressions

lookbehind assertions, 290
named capture groups, 288
s flag, 291
Unicode character classes, 284

spread operator (…), 148, 199, 327
ES2019

bare catch clauses, 120
flattening arrays, 169

ES2020
?? operator, 93
BigInt type, 30
BigInt64Array(), 275
BigUint64Array(), 275
conditional access operator (?.), 6, 137, 187
conditional invocation, 67
globalThis, 43
import() function, 264
lastIndex and RegExp API, 300
matchAll() method, 296, 299, 331
operator precedence, 72
Promise.allSettled(), 361
property access expressions, 65

ES5
apply() method, 211
breaking strings across multiple lines, 33, 35
bugs addressed by block-scoped variables,

209
compatibility baseline, 2
Function.bind() method, 228
getters and setters, 151
IE11 workaround, 263
transpilation with Babel, 644

ES6
Array.of() function, 158
arrow functions, 182, 185
binary and octal integers, 26

672 | Index

built-in tag function, 37
class declaration, 125
class keyword, 229-236
computed properties, 147
extended object literal syntax, 146
for/of loops, 108-111
IE11 workaround, 263
iterable strings in, 32
iterating arrays, 162
Math object, 28
modules in

dynamic imports with import(), 264
exports, 256
import.meta.url, 265
imports, 257-259
imports and exports with renaming, 259
JavaScript modules on the web, 262-264
overview of, 255
re-exports, 260

Promises
chaining Promises, 350-353
error handling with, 355-359
making Promises, 361-365
overview of, 346
parallel operations, 360
Promises in sequence, 365-367
resolving Promises, 353-355
returning from Promise callbacks, 359
using, 347-349

property enumeration order, 141
release of, 2
Set and Map classes, 110
shorthand methods, 149
spread operator (…), 157
strings delimited with backticks, 33, 37
subclasses with extends clause, 239-242
Symbol type, 23
symbols as property names, 148
typed arrays, 156
variable declaration in, 53
yield* keyword, 335

escape sequences
apostrophes, 33
in string literals, 34
Unicode, 18

escape() function, 322
ESLint, 636
eval() function, 88-91

global eval(), 90

strict eval(), 91
evaluation expressions, 88-91
event listeners, 343, 427
event-driven programming model, 341,

426-437, 529
definition of term, 341
dispatching custom events, 436
event cancellation, 436
event categories, 429
event handler invocation, 433
event propagation, 435
overview of, 426
registering event handlers, 430
server-sent events, 529
web platform features to investigate, 571

EventEmitter class, 588
every() method, 167
exceptions, throwing and catching, 117
exec() method, 298
exponential notation, 26
exponentiation operator (**), 27, 73
export declaration, 126
export keyword, 255
expression statements, 98
expressions

arithmetic expressions, 73-78
assignment expressions, 86-88
definition of term, 61
embedding within string literals, 33
evaluation expressions, 88-91
forming with operators, 7, 61
function definition expressions, 63
function expressions, 184, 204
initializer expression, 7, 62
invocation expressions, 66-68, 187-192
logical expressions, 84-86
new.target expression, 225
object and array initializers, 62
object creation expressions, 68
primary expressions, 62
property access expressions, 64-66
relational expressions, 78-84
versus statements, 8, 97

extensibility, 384

F
factorial() function, 183, 188
factory functions, 222
falsy values, 39

Index | 673

fetch() function, 344
fetch() method

aborting requests, 527
cross-origin requests, 526
examples of, 519
file upload, 526
HTTP status codes, response headers, and

network errors, 519
miscellaneous request options, 527
parsing response bodies, 521
setting request headers, 521
setting request parameters, 521
specifying request method and request

body, 524
steps of, 518
streaming response bodies, 522

fields, public, private, and static, 232
file handling (Node), 602-612

directories, 611
file metadata, 610
file mode strings, 608
file operations, 609
overview of, 602
paths, file descriptors, and FileHandles, 603
reading files, 605
writing files, 607

fill() method, 173
filter() method, 167
.finally() method, 356-359
financial account numbers, 536
find() method, 167
findIndex() method, 167
Firefox Developer Tools, 4
first-defined operator (??), 92
flat() method, 169
flatMap() method, 169
floating-point literals, 26, 30
Flow language extension, 649-664

array types, 657
class types, 655
enumerated types and discriminated

unions, 663
function types, 661
installing and running, 651
object types, 655
other parameterized types, 659
overview of, 649
read-only types, 660
type aliases, 656

TypeScript versus Flow, 650
union types, 662
using type annotations, 652

for loops, 106, 163
for/await loops, 111, 370
for/in loops, 111, 140
for/of loops, 32, 108-111, 162, 327
forEach() method, 163, 166
format() method, 310
fractions, 310
fromData() method, 522
front-end JavaScript, 410
fs module (Node), 602-612
function declaration, 125
function expressions, 184, 204
function keyword, 182
Function() constructor, 212
function* keyword, 332
functions

arrow functions, 8, 182, 185
case sensitivity, 15
closures, 204-209
defining, 182-186
defining your own function properties, 202
factory functions, 222
function arguments and parameters

argument types, 199
arguments object, 195
destructuring function arguments into

parameters, 197-199
optional parameters and defaults, 193
overview of, 193
rest parameters, 194
spread operator for function calls, 196
variable-length argument lists, 194

function definition expressions, 63
function invocation, 131
function properties, methods, and construc‐

tor, 209-213
bind() method, 211
call() and apply() methods, 210
Function() constructor, 212
length property, 209
name property, 210
prototype property, 210
toString() method, 212

functional programming
exploring, 213
higher-order functions, 215

674 | Index

memoization, 217
partial application of functions, 216
processing arrays with function, 214

functions as namespaces, 203
functions as values, 200-203
invoking

approaches to, 186
constructor invocation, 191
examples, 8
implicit function invocation, 192
indirect invocation, 192
invocation expressions, 187
method invocation, 188-191

naming, 17
overview of, 24, 181
recursive functions, 188
shorthand syntax for, 8
static array functions, 177

G
garbage collection, 24
generator functions, 332, 336 (see also iterators

and generators)
Geolocation API, 573
getBoundingClientRect() method, 460
getRandomValues() method, 574
getter methods, 150, 232
global eval(), 90
global object, 42, 417
global variables, 55
gradients, 491
graphics

3D, 484
Canvas API, 484-506

canvas dimensions and coordinates, 488
clipping, 504
coordinate system transforms, 499-503
drawing operations, 494
graphics attributes, 489
overview of, 484
paths and polygons, 485
pixel manipulation, 505
saving and restoring graphics state, 494

scalable vector graphics (SVG), 477-483
greater than operator (>)

overview of, 81
string comparison, 35
type conversions, 50

greater than or equal to operator (>=)

overview of, 81
string comparison, 35
type conversions, 50

H
hashchange events, 512
hashtables, 129, 134
hasOwnProperty operator, 139
Hello World, 5, 578
hexadecimal literals, 26, 34
higher-order functions, 215
histograms, character frequency, 11-14
history.pushState() method, 513
history.replaceState() method, 514
hoisting, 56
HTML <script> tags, 411-415

import and export directives, 413
loading scripts on demand, 414
specifying script type, 413
synchronous script execution, 413
text property, 448

HTML <template> tag, 467
HTML code, single and double quotes in, 34
HTTP clients and servers, 613-617

I
identifiers

case sensitivity, 15
purpose of, 16, 53
reserved words, 17, 62
syntax for, 16

ideographs, 17
if statements, 100-102
if/else statement, 39
images

drawing in Canvas, 498
pixel manipulation, 505

immediately invoked function expression, 204
immutability, 36, 43
implicit function invocation, 192
import declaration, 126
import keyword, 255
import() function, 264
import.meta.url, 265
in operator, 83, 139
includes() method, 175
increment operator (++), 76
index position, 155, 159
IndexedDB, 543-548

Index | 675

indexOf() method, 174
indirect invocation, 192
inequality operator (!==)

boolean values, 39
overview of, 79
string comparison, 35

infinity value, 28
inheritance, 129, 135, 242
initializer expression, 7, 62
instance methods, 232
instanceof operator, 83, 226
integer literals, 26
internationalization API

classes included in, 309
comparing strings, 314-316
formatting dates and times, 312-314
formatting numbers, 309-312
support for in Node, 309
translated text, 309

interpolation, 33
Intl.DateTimeFormat class, 312-314
Intl.NumberFormat class, 309-312
invocation expressions

conditional invocation, 67, 187
method invocation, 66, 188
overview of, 187

isFinite() function, 29
isNaN() function, 29
iterators and generators (see also array iterator

methods)
advanced generator features

return value of generator functions, 336
return() and throw() methods, 338
value of yield expressions, 337

asynchronous, 371-376
closing iterators, 331
generators

benefits of, 339
creating, 332
definition of term, 332
examples of, 334
yield* and recursive generators, 335

how iterators work, 328
implementing iterable objects, 329-331
overview of, 327

J
JavaScript

benefits of, 1, 665

introduction to
chapter overviews, 5, 10
character frequency histograms, 11-14
Hello World, 5
history of, 409
JavaScript interpreters, 3
lexical structure, 15-21
names, versions, and modes, 2
syntax and capabilities, 5-10

reference documentation, xiii
JavaScript standard library

Console API, 317-320
dates and times, 300-304
error classes, 304-305
internationalization API, 309-316
JSON serialization and parsing, 306-309
overview of, 267
pattern matching, 281-300
sets and maps, 268-274
timers, 323-324
typed arrays and binary data, 275-281
URL APIs, 320-323

Jest, 638
join() method, 176
JSON serialization and parsing, 306-309
JSON.parse() function, 143, 306
JSON.stringify() function, 143, 146, 306
JSX language extension, 645-649
jump statements, 97, 112-120

break statements, 114
continue statements, 115
definition of term, 97
labeled statements, 113
overview of, 112
return statements, 116

K
keywords

async keyword, 367-370
await keyword, 367-370
case sensitivity, 15
class keyword, 229-236
const keyword, 53
export keyword, 255
function keyword, 182
function* keyword, 332
import keyword, 255
let keyword, 5, 53, 125
new keyword, 131, 191

676 | Index

reserved words, 17, 62
this keyword, 9, 62, 188
var keyword, 55, 125
yield* keyword, 335

Koch snowflakes, 502

L
labeled statements, 113
lastIndex property, 299
lastIndexOf() method, 174
less than operator (<)

overview of, 81
string comparison, 35
type conversions, 50

less than or equal to operator (<=)
overview of, 81
string comparison, 35
type conversions, 50

let keyword, 5, 53, 125
lexical scoping, 204
lexical structure, 15-21

case sensitivity, 15
comments, 16
identifiers, 15-17
line breaks, 15
literals, 16
reserved words, 17, 62
semicolons, 19-21
spaces, 15
Unicode character set

escape sequences, 18
normalization, 18
overview of, 17

line breaks, 15, 19-21
line styles, 489
line terminators, 16
linting tools, 636
literals

numeric
floating-point literals, 26, 30
integer literals, 26
negative numbers, 26
separators in, 27

regular expressions, 38, 281
string, 33
template literals, 37, 395

little-endian architecture, 280
load event, 419
localStorage property, 537

location property, 509
logical operators, 8, 84-86
lookbehind assertions, 290
looping statements

do/while loops, 106
for loops, 106, 163
for/await loops, 111, 370
for/in loops, 111, 140
for/of loops, 108-111, 162, 327
purpose of, 97
while loops, 105

lvalue, 71

M
magnetometers, 573
Mandelbrot set, 555-568
Map class, 110, 271-273
Map objects, 24, 272
map() method, 166
marshaling, 306
match() method, 294
matchAll() method, 296
matches() method, 440
Math.pow function, 74
mathematical operations, 27-29
MDN website, xiii
media APIs, 574
memoization, 217
memory management, 24
message events, 420, 427, 529, 549-550,

552-553, 554, 624-625, 630, 664
MessageChannels, 553
MessagePort objects, 553, 629
messaging

WebSocket API
receiving messages, 534
sending messages, 534

worker threads and messaging, 548-555
cross-origin messaging, 554, 554
execution model, 552
importing code, 551
Mandelbrot set example, 555-568
modules, 551
overview of, 548
postMessage(), MessagePorts and Messa‐

geChannels, 553
Worker objects, 549
WorkerGlobalScope object, 549

metaprogramming, 379

Index | 677

methods
adding methods to existing classes, 236
array methods

generic application of, 155
overview of, 165

class versus instance methods, 232
creating, 9
definition of term, 181, 188
method chaining, 190
method invocation, 66, 188-191
shorthand methods, 232
shorthand syntax, 149
static methods, 231
typed array methods, 278

minus sign (-)
subtraction operator, 27, 73
unary arithmetic operator, 76

mobile device APIs, 573
modules

automating closure-based modularity, 251
in ES6

dynamic imports with import(), 264
exports, 256
import.meta.url, 265
imports, 257-259
imports and exports with renaming, 259
JavaScript modules on the web, 262-264
overview of, 255
re-exports, 260

fs module (Node), 602-612
import and export directives, 413
in Node, 253-255, 581

Node exports, 253
Node imports, 254
Node-style modules on the web, 255

overview of, 249
purpose of, 249
using in workers, 551
with classes, objects, and closures, 250-252

modulo operator (%), 27, 73
multiplication operator (*), 27, 61, 73
multithreaded programming, 583, 625
mutability, 25, 130

N
named capture groups, 288
NaN (not-a-number value), 28
navigator.mediaDevices.getUserMedia() func‐

tion, 574

navigator.vibrate() method, 573
negative infinity value, 28
negative zero, 28
nested functions, 186
network events, 343
networking, 518-535

fetch() method
aborting requests, 527
cross-origin requests, 526
examples of, 519
file upload, 526
HTTP status codes, response headers,

and network errors, 519
miscellaneous request options, 527
parsing response bodies, 521
setting request headers, 521
setting request parameters, 521
specifying request method and request

body, 524
steps of, 518
streaming response bodies, 522

overview of, 518
server-sent events, 529
WebSocket API, 533
XMLHttpRequest API (XHR), 519

new keyword, 131, 191
new.target expression, 225
newline (\n), 33, 34
newlines, 20-21

using for code formatting, 15
Node

asynchronous iteration in, 370, 583-586
benefits of, 3, 577
BigInt type, 30
buffers, 586
callbacks and events in, 345
child processes, 620-625
defining feature of, 577
events and EventEmitter, 588
file handling, 602-612

directories, 611
file metadata, 610
file mode strings, 608
file operations, 609
overview of, 602
paths, file descriptors, and FileHandles,

603
reading files, 605
writing files, 607

678 | Index

HTTP clients and servers, 613-617
installing, 4, 578
Intl API, 309
modules in, 253-255
non-HTTP network servers and clients, 617
parallelism with, 583
process details, 601
programming basics, 578-583

command-line arguments, 579
console output, 578
environment variables, 579
modules, 581
package manager, 582
program life cycle, 580

reference documentation, xiii
streams, 590-600

asynchronous iteration in, 595
overview of, 590
pipes, 592
reading with events, 598
types of, 591
writing to and handling backpressure,

596
worker threads, 625-634

communication channels and Message‐
Ports, 629

creating workers and passing messages,
626

overview of, 625
sharing typed arrays between threads,

632
transferring MessagePorts and typed

arrays, 630
worker execution environment, 628

NodeLists, 439
non-inherited properties, 130
non-strict inequality operator (!=)

relational expressions, 79
type conversions, 50

normalization, 18
not-a-number value (NaN), 28
Notifications API, 572
npm package manager, 640
null values, 40
nullish coalescing operator (??), 93
Number type

64-bit floating-point format, 25
arbitrary precision integers with BigInt, 30
arithmetic and complex math, 27-29

binary floating-point and rounding errors,
30

dates and times, 32
floating-point literals, 26
integer literals, 26
separators in numeric literals, 27

Number() function, 47, 48
Number.isFinite() function, 29
numbers, formatting for internationalization,

309-312
numeric literals, 26

O
object literals

extended syntax for, 146-152
overview of, 62
simplest form of, 131

object property names, 159
object-oriented programming

definition of term, 24
example of, 10

Object.assign() function, 142
Object.create() function, 132, 382
Object.defineProperties() method, 382
Object.defineProperty() method, 382
Object.entries() method, 109
Object.getOwnPropertyNames() function, 141
Object.getOwnPropertySymbols() function,

141
Object.keys method, 109
Object.keys() function, 141
Object.prototype, 132, 144
objects

Arguments object, 195
array-like objects, 177-179
creating, 130-133
deleting properties, 138
enumerating properties, 140
extended object literal syntax, 146-152
extending objects, 142
implementing iterable objects, 329-331
introduction to, 129
modular programming with, 250
mutable object references, 43, 130
naming properties within, 17
object creation expressions, 68
object extensibility, 384
object methods, 144-146
overview of, 6, 23-25

Index | 679

querying and setting properties, 133-138
serializing objects, 143
testing properties, 139

onmessage event, 534, 549-550, 553, 555
operators

arithmetic operators, 7, 27-29, 73-78
assignment operators, 86-88
binary operators, 70
comparison operators, 81
equality and inequality operators, 79
equality operators, 7
forming expressions with, 7, 61
logical operators, 8, 84-86
miscellaneous operators

await operator, 95
comma operator (,), 95
conditional operator (?:), 91
delete operator, 94
first-defined operator (??), 92
typeof operator, 93
void operator, 95

number of operands, 70
operand and result type, 70
operator associativity, 72
operator precedence, 71
operator side effects, 71
order of evaluation, 73
overview of, 68
postfix operators, 21
relational operators, 7, 78-84
table of, 69
ternary operators, 70

optional semicolons, 19-21
overflow, 28
own properties, 130, 135

P
package manager (Node), 582, 640
parallelization, 583
parameterization, 181
parseFloat() function, 48
parseInt() function, 48
passwords, 536
paths, 485-488
pattern matching

defining regular expressions
alternation, grouping, and references,

286
character classes, 283

flags, 291
literal characters, 282
lookbehind assertions, 290
named group captures, 288
non-greedy repetition, 286
pattern specifications, 281
repetition characters, 285
specifying match position, 289
Unicode character classes, 284

overview of, 281
pattern-matching symbols, 392
RegExp class

exec() method, 298
lastIndex property and RegExp reuse,

299
overview of, 296
RegExp properties, 297
test() method, 298

string methods for
match(), 294
matchAll(), 296
replace(), 293
search(), 292
split(), 296

syntax for, 38
patterns, 491
Payment Request API, 575
Performance APIs, 569
pickling, 306
pixels, 461, 505
plus sign (+)

addition and assignment operator (+=), 87
addition operator, 27, 74
string concatenation, 33, 35, 74
type conversions, 50
unary arithmetic operator, 76

polygons, 485-488
pop() method, 170
popstate event, 429, 513-518
positive zero, 29
possessives, 33
postfix operators, 21
postMessage() method, 553
Prettier, 637
primary expressions, 62
primitive types

Boolean truth values, 38-40
immutable primitive values, 43
Number type, 25-32

680 | Index

overview and definitions, 23
String type, 32-38

printprops() function, 183
private fields, 232
procedures, 181
programs

error handling, 422
execution of JavaScript, 418-421

client-side threading model, 420
client-side timeline, 420

input and output, 421
Progressive Web Apps (PWAs), 572
Promise chains, 346, 350-353
Promise.all() function, 360
Promises

chaining Promises, 350-353
error handling with, 348, 355-359
making Promises, 361-365

based on other Promises, 361
based on synchronous values, 362
from scratch, 363

overview of, 346
parallel operations, 360
Promises in sequence, 365-367
resolving Promises, 353-355
returning from Promise callbacks, 359
terminology, 350
using, 347-349

properties
computed property names, 147
conditional property access, 65
copying from one object to another, 142
defining your own function properties, 202
definition of term, 23
deleting, 138
enumerating properties, 140
inheriting, 135
naming, 41, 129, 148
non-inherited properties, 130
property access errors, 137
property access expressions, 64
property attributes, 130, 380-383
property descriptors, 380
property getters and setters, 150
querying and setting, 133-138
testing, 139
typed array properties, 278

propertyIsEnumerable() method, 139
prototypal inheritance, 129, 135

prototype chains, 132
prototypes, 132, 136, 210, 222, 386
proxy invariants, 405
Proxy objects, 399-406
pseudorandom numbers, 574
public fields, 232
Push API, 573
push() method, 9, 170

Q
quadraticCurveTo() method, 496
querySelector() method, 438
querySelectorAll() method, 438
quote marks

double quotes ("), 33
single quotes ('), 33

R
React, 645
rectangles, 494
recursive functions, 188
recursive generators, 335
reduce() method, 168
reduceRight() method, 168
reference types, 44
Reflect API, 397-399
Reflect.ownKeys() function, 141
RegExp class

exec() method, 298
lastIndex property and RegExp reuse, 299
overview of, 296
RegExp properties, 297
test() method, 298

RegExp type, 24, 38, 281 (see also pattern
matching)

regular expressions, 281
(see also pattern matching)

relational expressions, 78-84
relational operators, 7
replace() method, 36
require() function, 254
reserved words, 17, 62
rest parameters, 194
return statements, 116
return values, 181
return() method, 331, 338
reverse() method, 9, 176
rounding errors, 30

Index | 681

S
same-origin policy, 424
scalable vector graphics (SVG), 477-483

creating SVG images with JavaScript, 480
overview of, 477
scripting SVG, 479
SVG in HTML, 477

ScreenOrientation API, 573
scroll offsets, 460
scrolling, 462
scrollTo() method, 462
search() method, 292
security

client-side storage, 536
competing goals of web programming, 423
Cross-Origin Resource Sharing (CORS),

425, 526
cross-site scripting (XSS), 425
cryptography APIs, 574
defense against malicious code, 424
denial-of-service attacks, 598
same-origin policy, 424
web platform features to investigate, 569

semicolon (;), 19-21
sensitive information, 536
Sensor API, 573
serialization, 143, 306, 513
server-sent events, 529-531
server-side JavaScript, 410, 577
ServiceWorkers, 572
sessionStorage property, 537
Set class, 110, 268-271
Set objects, 24
Set() constructor, 268
setInterval() function, 323
sets and maps

definition of sets, 268
Map class, 271-273
overview of, 268
Set class, 268-271
WeakMap and WeakSet classes, 273

setter methods, 150, 232
setTimeout() function, 323, 342
setTransform() method, 499
shadow DOM, 470-473
shadows, 492
shift left operator (<<), 78
shift right with sign operator (>>), 78
shift right with zero fill operator (>>>), 78

shift() method, 171
shorthand methods, 149, 232
side effects, 71
single quotes ('), 33
slice() method, 172
some() method, 167
sort order, 314
sort() method, 67, 175
sparse arrays, 155, 160
splice() method, 172
split() method, 296
spread operator (…), 148, 157, 196, 327
square brackets ([]), 6, 36, 63, 133, 159, 179
standard library (see JavaScript standard

library)
statement blocks, 99
statements (see also declarations)

compound and empty statements, 99
conditional statements, 97, 100-105
control structures, 8-10, 97
expression statements, 98
versus expressions, 8
if/else statement, 39
jump statements, 97, 112-120
line breaks and, 19-21
list of, 127
loops, 97, 105-112
miscellaneous statements

debugger statements, 122
use strict directive, 122
with statements, 121

overview of, 97
separating with semicolons, 19-21
throw statements, 117
try/catch/finally statements, 118-120
yield statements, 117, 337

static fields, 232
static methods, 231
storage, 536-545

cookies, 539
IndexedDB, 543
localStorage and sessionStorage, 537
overview of, 536
security and privacy, 536

streams (Node), 590-600
asynchronous iteration in, 595
overview of, 590
pipes, 592
reading with events, 598

682 | Index

types of, 591
writing to and handling backpressure, 596

strict equality operator (===)
boolean values, 38
overview of, 79
string comparison, 35
type conversions, 25, 46

strict mode
default application of, 231, 255, 262
delete operator and, 94
deleting properties, 138
eval() function, 91
function declarations, 183
function invocation, 187
versus non-strict mode, 122-124
opting into, 2
TypeError, 137, 384
undeclared variables and, 57
with statement and, 121, 431

string literals
escape sequences in, 34
overview of, 33

String() function, 47
String.raw() function, 37
strings

array to string conversions, 176
characters and codepoints, 32
methods for pattern matching

match(), 294
matchAll(), 296
replace(), 293
search(), 292
split(), 296

overview of, 32
string literals, 33
strings as arrays, 179
working with

accessing individual characters, 36
API for, 35
comparing, 35, 314
concatenation, 35
determining length, 35
immutability, 36

structured clone algorithm, 513
subarrays, 172
subclasses

class hierarchies and abstract classes,
243-248

delegation versus inheritance, 242

overview of, 237
prototypes and, 237
with extends clause, 239-242

subroutines, 181
subtraction operator (-), 27
surrogate pairs, 32
SVG (see scalable vector graphics (SVG))
switch statements, 103-105
Symbol.asyncIterator, 387
Symbol.hasInstance, 388
Symbol.isConcatSpreadable, 391
Symbol.iterator, 387
Symbol.species, 389-391
Symbol.toPrimitive, 394
Symbol.toStringTag, 388
Symbol.unscopables, 394
Symbols

definition of language extensions, 23
property names, 41, 148
well-known Symbols, 387

synchronous script execution, 413
syntax

control structures, 8-10
declaring variables, 5
English-language comments, 5, 7
equality and relational operators, 7
expressions

forming with operators, 7
initializer expression, 7

extended for object literals, 146-152
functions, 8
lexical structure, 15-21

case sensitivity, 15
comments, 16
identifiers, 15-17
line breaks, 15
literals, 16
reserved words, 17, 62
semicolons, 19-21
spaces, 15
Unicode character set, 18-19

logical operators, 8
methods, 9
objects

conditionally accessing properties, 6
declaring, 6

shorthand methods, 149
statements, 8
variables, assigning values to, 5

Index | 683

T
tabs, 16
tagged template literals, 37, 395
template literals, 37, 395
ternary operators, 70
test() method, 298
text

drawing in Canvas, 498
escape sequences in string literals, 34
pattern matching, 38
string literals, 33
string type representing, 32
template literals, 37
working with strings, 35

text editors
normalization, 19
using with Node, 5

text styles, 492
.then() method, 348, 352, 355
this keyword, 9, 62, 188
threading, 548, 572 (see also Worker API)
3D graphics, 484
throw statements, 117, 304
throw() method, 338
time zones, 313
timers, 323, 342
timestamps, 32, 302
toDateString() method, 304
toExponential() method, 47
toFixed() method, 47
toISOString() method, 304, 307
toJSON() method, 146, 307
toLocaleDateString() method, 304, 312
toLocaleString() method, 145, 177, 304
toLocaleTimeString() method, 304, 312
tools and extensions, 635-664

code bundling, 642
JavaScript formatting with Prettier, 637
JSX language extension, 645-649
linting with ESLint, 636
overview of, 635
package management with npm, 640
transpilation with Babel, 644
type checking with Flow, 649-664

array types, 657
class types, 655
enumerated types and discriminated

unions, 663
function types, 661

installing and running, 651
object types, 655
other parameterized types, 659
overview of, 649
read-only types, 660
type aliases, 656
TypeScript versus Flow, 650
union types, 662
using type annotations, 652

unit testing with Jest, 638
toPrecision() method, 48
toString() method, 40, 47, 51, 75, 80, 144, 212,

303
toTimeString() method, 304
toUpperCase() method, 36
toUTCString() method, 303
transformations, 499-503
translate() method, 500
translucency, 493
transpilation, 644
truthy values, 39
try/catch/finally statements, 118-120
type checking, 649-664

array types, 657
class types, 655
enumerated types and discriminated

unions, 663
function types, 661
installing and running Flow, 651
object types, 655
other parameterized types, 659
overview of, 649
read-only types, 660
type aliases, 656
TypeScript versus Flow, 650
union types, 662
using type annotations, 652

type conversions
equality and, 46, 80
explicit conversions, 46
financial and scientific data, 47
implicit conversions, 47
object to primitive conversions

algorithms for, 49, 52
object-to-boolean, 49
object-to-number, 50
object-to-string, 50
special case operator conversions, 50
toString() and valueOf() methods, 51

684 | Index

overview of, 45
typed arrays

creating, 276
DataView and endianness, 280
methods and properties, 278
overview of, 275
versus regular arrays, 156
sharing between threads, 632
typed array types, 275
using, 278

typeof operator, 93
types

global object, 42-43
Number type, 25-32
objects (see objects)
overview of, 23-25
primitive, 23
RegExp, 38-38
strings, 32-38
Symbols, 41-42
type conversions, 45-52

TypeScript, 650

U
Uint8Array, 275, 523, 586
unary operators

arithmetic operators, 75
Boolean NOT operator (!), 40
JavaScript support for, 70

undeclared variables, 57
undefined values, 40
underflow, 28
underscore (_), 16
underscores, as numeric separators (_), 27
unescape() function, 322
unhandledrejection event, 423
Unicode character set

escape sequences, 18, 34
JavaScript strings, 32
normalization, 18
overview of, 17
pattern matching, 284
space characters, 16

unit testing, 638
unshift() method, 171
URL APIs, 320-323
use strict directive

default application of strict mode, 231, 255,
262

delete operator and, 94
eval() function, 91
function declarations, 183
function invocation, 187
opting into strict mode, 2
strict versus non-strict mode, 122-124
TypeError, 137, 384
undeclared variables and, 57
with statement and, 121, 431

use strict mode, 2
and global variables, 57
deleting properties, 138

UTF-16 encoding, 32

V
valueOf() method, 51, 145
values

assigning, 5
boolean values, 38-40
falsy and truthy, 39
functions as values, 200-203
immutable primitive values, 43
null and undefined, 40
overview of, 23-25
types of, 6

var keyword, 55, 125
varargs, 195
variable arity functions, 195
variables

case sensitivity, 15
declaration and assignment

declarations with let and const, 53-55
declarations with var, 55
destructuring assignment, 57-60
overview of, 5
undeclared variables, 57

definition of term, 53
hoisted, 56
naming, 17
overview of, 23-25
scope of, 54, 186

variadic functions, 195
video streams, 574
viewport, 459, 463
void operator, 95

W
WeakMap class, 273
WeakSet class, 273

Index | 685

Web Authentication API, 575
web browser host environment

asynchronous APIs, 343
audio APIs, 507-508
benefits of JavaScript, 409
Canvas API, 484-506

canvas dimensions and coordinates, 488
clipping, 504
coordinate system transforms, 499-503
drawing operations, 494
graphics attributes, 489, 494
overview of, 484
paths and polygons, 485
pixel manipulation, 505

document geometry and scrolling, 459-464
CSS pixels, 461
determining element at a point, 462
document coordinates and viewport

coordinates, 459
querying geometry of elements, 461
scrolling, 462
viewport size, content size, and scroll

position, 463
events, 426-437

dispatching custom events, 436
event cancellation, 436
event categories, 429
event handler invocation, 433
event propagation, 435
overview of, 426
registering event handlers, 430

legacy APIs, 410
location, navigation, and history, 509-514

browsing history, 511
loading new documents, 510
overview of, 509

Mandelbrot set example, 555-568
module-aware browsers, 263
networking, 518-535

fetch() method, 518
overview of, 518
server-sent events, 529
WebSocket API, 533

overview of, 409
scalable vector graphics (SVG), 477-483

creating SVG images with JavaScript,
480

overview of, 477
scripting SVG, 479

SVG in HTML, 477
scripting CSS, 452-459

common CSS styles, 452
computed styles, 455
CSS animations and events, 458
CSS classes, 453
inline styles, 453
naming conventions, 454
scripting stylesheets, 456

scripting documents, 437-450
document structure and traversal, 441
dynamically generating tables of con‐

tents, 450
modifying content, 447
modifying structure, 448
overview of, 437
querying and setting attributes, 444
selecting document elements, 438

storage, 536-545
cookies, 539
IndexedDB, 543
localStorage and sessionStorage, 537
overview of, 536
security and privacy, 536

web components, 464-473
custom elements, 468
DocumentFragment nodes, 467
HTML templates, 467
overview of, 464
search box example, 473
shadow DOM, 470
using, 465

web platform features to investigate
binary APIs, 574
cryptography and security APIs, 574
events, 571
HTML and CSS, 569
media APIs, 574
mobile device APIs, 573
Performance APIs, 569
Progressive Web Apps and ServiceWork‐

ers, 572
security, 569
WebAssembly, 570
Window and Document object features,

570
web programming basics

Document Object Model (DOM),
415-417

686 | Index

execution of JavaScript programs,
418-421

global object in web browsers, 417
JavaScript in HTML <script> tags,

411-415
program errors, 422
program input and output, 421
scripts sharing namespaces, 417
web security model, 423-426

worker threads and messaging, 548-555
web developer tools, 3
Web Manifest, 572
Web Workers API, 420, 625
WebAssembly, 570
WebAudio API, 508
WebRTC API, 574
WebSocket API

creating, connecting and disconnecting
WebSockets, 533

overview of, 533
protocol negotiation, 535
receiving messages, 534
sending messages, 534

while loops, 105
with statements, 121
Worker API

cross-origin messaging, 554

errors, 552
execution model, 552
importing code, 551
Mandelbrot set example, 555-568
modules, 551
overview of, 548
postMessage(), MessagePorts and Message‐

Channels, 553
Worker objects, 549
WorkerGlobalScope object, 549

writable attribute, 130, 380

X
XMLHttpRequest API (XHR), 519
XSS (cross-site scripting), 425

Y
yield statements, 117, 337
yield* keyword, 335

Z
zero

negative zero, 28
positive zero, 29

zero-based arrays, 155

Index | 687

About the Author
David Flanagan has been programming with and writing about JavaScript since
1995. He lives with his wife and children in the Pacific Northwest between the cities
of Seattle, Washington, and Vancouver, British Columbia. David has a degree in com‐
puter science and engineering from the Massachusetts Institute of Technology and
works as a software engineer at VMware.

Colophon
The animal on the cover of JavaScript: The Definitive Guide, Seventh Edition, is a
Javan rhinoceros (Rhinoceros sondaicus). All five species of rhinoceros are distin‐
guished by their large size, thick armor-like skin, three-toed feet, and single or double
snout horn. The Javan rhinoceros resembles the related Indian rhinoceros, and as
with that species, the males have a single horn. However, Javan rhinos are smaller and
have unique skin textures. Though found today only in Indonesia, Javan rhinos once
ranged throughout Southeastern Asia. They live in rainforest habitats, where they
graze on abundant leaves and grasses and hide from insect pests such as blood-
sucking flies by standing up to their snouts in water or mud.

The Javan rhino averages about 6 feet in height and can be up to 10 feet in length,
with adults weighing up to 3,000 pounds. Like the Indian rhinoceros its gray skin
seems to be separated into “plates,” some of them textured. The natural lifespan of a
Javan rhino is estimated at 45–50 years. Females give birth every 3–5 years, after a
gestation period of 16 months. Calves weigh about 100 pounds when born, and stay
with their protective mothers for up to 2 years.

Rhinoceros are generally a somewhat plentiful animal, being adaptable to a range of
habitats and at adulthood having no natural predators. However, humans have hun‐
ted them nearly to extinction. Folklore holds that the horn of the rhinoceros pos‐
sesses magical and aphrodisiac powers, and because of this, rhinos are a prime target
for poachers. The Javan rhino population is the most precarious: as of 2020, the 70 or
so remaining animals of this species live, under guard, in Ujung Kulon National Park,
in Java, Indonesia. This strategy seems to be helping ensure the survival of these rhi‐
nos for the time being, as a 1967 census counted only 25.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The color illustration on the cover is by Karen Montgomery, based on a black-and-
white engraving from Dover Animals. The cover fonts are Gilroy and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://www.oreilly.com/online-learning/

	Copyright
	Table of Contents
	Preface
	Section 1. Conventions Used in This Book
	Section 2. Example Code
	Section 3. O’Reilly Online Learning
	Section 4. How to Contact Us
	Section 5. Acknowledgments

	Chapter 1. Introduction to JavaScript
	1.1 Exploring JavaScript
	1.2 Hello World
	1.3 A Tour of JavaScript
	1.4 Example: Character Frequency Histograms
	1.5 Summary

	Chapter 2. Lexical Structure
	2.1 The Text of a JavaScript Program
	2.2 Comments
	2.3 Literals
	2.4 Identifiers and Reserved Words
	2.4.1 Reserved Words

	2.5 Unicode
	2.5.1 Unicode Escape Sequences
	2.5.2 Unicode Normalization

	2.6 Optional Semicolons
	2.7 Summary

	Chapter 3. Types, Values, and Variables
	3.1 Overview and Definitions
	3.2 Numbers
	3.2.1 Integer Literals
	3.2.2 Floating-Point Literals
	3.2.3 Arithmetic in JavaScript
	3.2.4 Binary Floating-Point and Rounding Errors
	3.2.5 Arbitrary Precision Integers with BigInt
	3.2.6 Dates and Times

	3.3 Text
	3.3.1 String Literals
	3.3.2 Escape Sequences in String Literals
	3.3.3 Working with Strings
	3.3.4 Template Literals
	3.3.5 Pattern Matching

	3.4 Boolean Values
	3.5 null and undefined
	3.6 Symbols
	3.7 The Global Object
	3.8 Immutable Primitive Values and Mutable Object References
	3.9 Type Conversions
	3.9.1 Conversions and Equality
	3.9.2 Explicit Conversions
	3.9.3 Object to Primitive Conversions

	3.10 Variable Declaration and Assignment
	3.10.1 Declarations with let and const
	3.10.2 Variable Declarations with var
	3.10.3 Destructuring Assignment

	3.11 Summary

	Chapter 4. Expressions and Operators
	4.1 Primary Expressions
	4.2 Object and Array Initializers
	4.3 Function Definition Expressions
	4.4 Property Access Expressions
	4.4.1 Conditional Property Access

	4.5 Invocation Expressions
	4.5.1 Conditional Invocation

	4.6 Object Creation Expressions
	4.7 Operator Overview
	4.7.1 Number of Operands
	4.7.2 Operand and Result Type
	4.7.3 Operator Side Effects
	4.7.4 Operator Precedence
	4.7.5 Operator Associativity
	4.7.6 Order of Evaluation

	4.8 Arithmetic Expressions
	4.8.1 The + Operator
	4.8.2 Unary Arithmetic Operators
	4.8.3 Bitwise Operators

	4.9 Relational Expressions
	4.9.1 Equality and Inequality Operators
	4.9.2 Comparison Operators
	4.9.3 The in Operator
	4.9.4 The instanceof Operator

	4.10 Logical Expressions
	4.10.1 Logical AND (&&)
	4.10.2 Logical OR (||)
	4.10.3 Logical NOT (!)

	4.11 Assignment Expressions
	4.11.1 Assignment with Operation

	4.12 Evaluation Expressions
	4.12.1 eval()
	4.12.2 Global eval()
	4.12.3 Strict eval()

	4.13 Miscellaneous Operators
	4.13.1 The Conditional Operator (?:)
	4.13.2 First-Defined (??)
	4.13.3 The typeof Operator
	4.13.4 The delete Operator
	4.13.5 The await Operator
	4.13.6 The void Operator
	4.13.7 The comma Operator (,)

	4.14 Summary

	Chapter 5. Statements
	5.1 Expression Statements
	5.2 Compound and Empty Statements
	5.3 Conditionals
	5.3.1 if
	5.3.2 else if
	5.3.3 switch

	5.4 Loops
	5.4.1 while
	5.4.2 do/while
	5.4.3 for
	5.4.4 for/of
	5.4.5 for/in

	5.5 Jumps
	5.5.1 Labeled Statements
	5.5.2 break
	5.5.3 continue
	5.5.4 return
	5.5.5 yield
	5.5.6 throw
	5.5.7 try/catch/finally

	5.6 Miscellaneous Statements
	5.6.1 with
	5.6.2 debugger
	5.6.3 “use strict”

	5.7 Declarations
	5.7.1 const, let, and var
	5.7.2 function
	5.7.3 class
	5.7.4 import and export

	5.8 Summary of JavaScript Statements

	Chapter 6. Objects
	6.1 Introduction to Objects
	6.2 Creating Objects
	6.2.1 Object Literals
	6.2.2 Creating Objects with new
	6.2.3 Prototypes
	6.2.4 Object.create()

	6.3 Querying and Setting Properties
	6.3.1 Objects As Associative Arrays
	6.3.2 Inheritance
	6.3.3 Property Access Errors

	6.4 Deleting Properties
	6.5 Testing Properties
	6.6 Enumerating Properties
	6.6.1 Property Enumeration Order

	6.7 Extending Objects
	6.8 Serializing Objects
	6.9 Object Methods
	6.9.1 The toString() Method
	6.9.2 The toLocaleString() Method
	6.9.3 The valueOf() Method
	6.9.4 The toJSON() Method

	6.10 Extended Object Literal Syntax
	6.10.1 Shorthand Properties
	6.10.2 Computed Property Names
	6.10.3 Symbols as Property Names
	6.10.4 Spread Operator
	6.10.5 Shorthand Methods
	6.10.6 Property Getters and Setters

	6.11 Summary

	Chapter 7. Arrays
	7.1 Creating Arrays
	7.1.1 Array Literals
	7.1.2 The Spread Operator
	7.1.3 The Array() Constructor
	7.1.4 Array.of()
	7.1.5 Array.from()

	7.2 Reading and Writing Array Elements
	7.3 Sparse Arrays
	7.4 Array Length
	7.5 Adding and Deleting Array Elements
	7.6 Iterating Arrays
	7.7 Multidimensional Arrays
	7.8 Array Methods
	7.8.1 Array Iterator Methods
	7.8.2 Flattening arrays with flat() and flatMap()
	7.8.3 Adding arrays with concat()
	7.8.4 Stacks and Queues with push(), pop(), shift(), and unshift()
	7.8.5 Subarrays with slice(), splice(), fill(), and copyWithin()
	7.8.6 Array Searching and Sorting Methods
	7.8.7 Array to String Conversions
	7.8.8 Static Array Functions

	7.9 Array-Like Objects
	7.10 Strings as Arrays
	7.11 Summary

	Chapter 8. Functions
	8.1 Defining Functions
	8.1.1 Function Declarations
	8.1.2 Function Expressions
	8.1.3 Arrow Functions
	8.1.4 Nested Functions

	8.2 Invoking Functions
	8.2.1 Function Invocation
	8.2.2 Method Invocation
	8.2.3 Constructor Invocation
	8.2.4 Indirect Invocation
	8.2.5 Implicit Function Invocation

	8.3 Function Arguments and Parameters
	8.3.1 Optional Parameters and Defaults
	8.3.2 Rest Parameters and Variable-Length Argument Lists
	8.3.3 The Arguments Object
	8.3.4 The Spread Operator for Function Calls
	8.3.5 Destructuring Function Arguments into Parameters
	8.3.6 Argument Types

	8.4 Functions as Values
	8.4.1 Defining Your Own Function Properties

	8.5 Functions as Namespaces
	8.6 Closures
	8.7 Function Properties, Methods, and Constructor
	8.7.1 The length Property
	8.7.2 The name Property
	8.7.3 The prototype Property
	8.7.4 The call() and apply() Methods
	8.7.5 The bind() Method
	8.7.6 The toString() Method
	8.7.7 The Function() Constructor

	8.8 Functional Programming
	8.8.1 Processing Arrays with Functions
	8.8.2 Higher-Order Functions
	8.8.3 Partial Application of Functions
	8.8.4 Memoization

	8.9 Summary

	Chapter 9. Classes
	9.1 Classes and Prototypes
	9.2 Classes and Constructors
	9.2.1 Constructors, Class Identity, and instanceof
	9.2.2 The constructor Property

	9.3 Classes with the class Keyword
	9.3.1 Static Methods
	9.3.2 Getters, Setters, and other Method Forms
	9.3.3 Public, Private, and Static Fields
	9.3.4 Example: A Complex Number Class

	9.4 Adding Methods to Existing Classes
	9.5 Subclasses
	9.5.1 Subclasses and Prototypes
	9.5.2 Subclasses with extends and super
	9.5.3 Delegation Instead of Inheritance
	9.5.4 Class Hierarchies and Abstract Classes

	9.6 Summary

	Chapter 10. Modules
	10.1 Modules with Classes, Objects, and Closures
	10.1.1 Automating Closure-Based Modularity

	10.2 Modules in Node
	10.2.1 Node Exports
	10.2.2 Node Imports
	10.2.3 Node-Style Modules on the Web

	10.3 Modules in ES6
	10.3.1 ES6 Exports
	10.3.2 ES6 Imports
	10.3.3 Imports and Exports with Renaming
	10.3.4 Re-Exports
	10.3.5 JavaScript Modules on the Web
	10.3.6 Dynamic Imports with import()
	10.3.7 import.meta.url

	10.4 Summary

	Chapter 11. The JavaScript Standard Library
	11.1 Sets and Maps
	11.1.1 The Set Class
	11.1.2 The Map Class
	11.1.3 WeakMap and WeakSet

	11.2 Typed Arrays and Binary Data
	11.2.1 Typed Array Types
	11.2.2 Creating Typed Arrays
	11.2.3 Using Typed Arrays
	11.2.4 Typed Array Methods and Properties
	11.2.5 DataView and Endianness

	11.3 Pattern Matching with Regular Expressions
	11.3.1 Defining Regular Expressions
	11.3.2 String Methods for Pattern Matching
	11.3.3 The RegExp Class

	11.4 Dates and Times
	11.4.1 Timestamps
	11.4.2 Date Arithmetic
	11.4.3 Formatting and Parsing Date Strings

	11.5 Error Classes
	11.6 JSON Serialization and Parsing
	11.6.1 JSON Customizations

	11.7 The Internationalization API
	11.7.1 Formatting Numbers
	11.7.2 Formatting Dates and Times
	11.7.3 Comparing Strings

	11.8 The Console API
	11.8.1 Formatted Output with Console

	11.9 URL APIs
	11.9.1 Legacy URL Functions

	11.10 Timers
	11.11 Summary

	Chapter 12. Iterators and Generators
	12.1 How Iterators Work
	12.2 Implementing Iterable Objects
	12.2.1 “Closing” an Iterator: The Return Method

	12.3 Generators
	12.3.1 Generator Examples
	12.3.2 yield* and Recursive Generators

	12.4 Advanced Generator Features
	12.4.1 The Return Value of a Generator Function
	12.4.2 The Value of a yield Expression
	12.4.3 The return() and throw() Methods of a Generator
	12.4.4 A Final Note About Generators

	12.5 Summary

	Chapter 13. Asynchronous JavaScript
	13.1 Asynchronous Programming with Callbacks
	13.1.1 Timers
	13.1.2 Events
	13.1.3 Network Events
	13.1.4 Callbacks and Events in Node

	13.2 Promises
	13.2.1 Using Promises
	13.2.2 Chaining Promises
	13.2.3 Resolving Promises
	13.2.4 More on Promises and Errors
	13.2.5 Promises in Parallel
	13.2.6 Making Promises
	13.2.7 Promises in Sequence

	13.3 async and await
	13.3.1 await Expressions
	13.3.2 async Functions
	13.3.3 Awaiting Multiple Promises
	13.3.4 Implementation Details

	13.4 Asynchronous Iteration
	13.4.1 The for/await Loop
	13.4.2 Asynchronous Iterators
	13.4.3 Asynchronous Generators
	13.4.4 Implementing Asynchronous Iterators

	13.5 Summary

	Chapter 14. Metaprogramming
	14.1 Property Attributes
	14.2 Object Extensibility
	14.3 The prototype Attribute
	14.4 Well-Known Symbols
	14.4.1 Symbol.iterator and Symbol.asyncIterator
	14.4.2 Symbol.hasInstance
	14.4.3 Symbol.toStringTag
	14.4.4 Symbol.species
	14.4.5 Symbol.isConcatSpreadable
	14.4.6 Pattern-Matching Symbols
	14.4.7 Symbol.toPrimitive
	14.4.8 Symbol.unscopables

	14.5 Template Tags
	14.6 The Reflect API
	14.7 Proxy Objects
	14.7.1 Proxy Invariants

	14.8 Summary

	Chapter 15. JavaScript in Web Browsers
	15.1 Web Programming Basics
	15.1.1 JavaScript in HTML <script> Tags
	15.1.2 The Document Object Model
	15.1.3 The Global Object in Web Browsers
	15.1.4 Scripts Share a Namespace
	15.1.5 Execution of JavaScript Programs
	15.1.6 Program Input and Output
	15.1.7 Program Errors
	15.1.8 The Web Security Model

	15.2 Events
	15.2.1 Event Categories
	15.2.2 Registering Event Handlers
	15.2.3 Event Handler Invocation
	15.2.4 Event Propagation
	15.2.5 Event Cancellation
	15.2.6 Dispatching Custom Events

	15.3 Scripting Documents
	15.3.1 Selecting Document Elements
	15.3.2 Document Structure and Traversal
	15.3.3 Attributes
	15.3.4 Element Content
	15.3.5 Creating, Inserting, and Deleting Nodes
	15.3.6 Example: Generating a Table of Contents

	15.4 Scripting CSS
	15.4.1 CSS Classes
	15.4.2 Inline Styles
	15.4.3 Computed Styles
	15.4.4 Scripting Stylesheets
	15.4.5 CSS Animations and Events

	15.5 Document Geometry and Scrolling
	15.5.1 Document Coordinates and Viewport Coordinates
	15.5.2 Querying the Geometry of an Element
	15.5.3 Determining the Element at a Point
	15.5.4 Scrolling
	15.5.5 Viewport Size, Content Size, and Scroll Position

	15.6 Web Components
	15.6.1 Using Web Components
	15.6.2 HTML Templates
	15.6.3 Custom Elements
	15.6.4 Shadow DOM
	15.6.5 Example: a <search-box> Web Component

	15.7 SVG: Scalable Vector Graphics
	15.7.1 SVG in HTML
	15.7.2 Scripting SVG
	15.7.3 Creating SVG Images with JavaScript

	15.8 Graphics in a <canvas>
	15.8.1 Paths and Polygons
	15.8.2 Canvas Dimensions and Coordinates
	15.8.3 Graphics Attributes
	15.8.4 Canvas Drawing Operations
	15.8.5 Coordinate System Transforms
	15.8.6 Clipping
	15.8.7 Pixel Manipulation

	15.9 Audio APIs
	15.9.1 The Audio() Constructor
	15.9.2 The WebAudio API

	15.10 Location, Navigation, and History
	15.10.1 Loading New Documents
	15.10.2 Browsing History
	15.10.3 History Management with hashchange Events
	15.10.4 History Management with pushState()

	15.11 Networking
	15.11.1 fetch()
	15.11.2 Server-Sent Events
	15.11.3 WebSockets

	15.12 Storage
	15.12.1 localStorage and sessionStorage
	15.12.2 Cookies
	15.12.3 IndexedDB

	15.13 Worker Threads and Messaging
	15.13.1 Worker Objects
	15.13.2 The Global Object in Workers
	15.13.3 Importing Code into a Worker
	15.13.4 Worker Execution Model
	15.13.5 postMessage(), MessagePorts, and MessageChannels
	15.13.6 Cross-Origin Messaging with postMessage()

	15.14 Example: The Mandelbrot Set
	15.15 Summary and Suggestions for Further Reading
	15.15.1 HTML and CSS
	15.15.2 Performance
	15.15.3 Security
	15.15.4 WebAssembly
	15.15.5 More Document and Window Features
	15.15.6 Events
	15.15.7 Progressive Web Apps and Service Workers
	15.15.8 Mobile Device APIs
	15.15.9 Binary APIs
	15.15.10 Media APIs
	15.15.11 Cryptography and Related APIs

	Chapter 16. Server-Side JavaScript with Node
	16.1 Node Programming Basics
	16.1.1 Console Output
	16.1.2 Command-Line Arguments and Environment Variables
	16.1.3 Program Life Cycle
	16.1.4 Node Modules
	16.1.5 The Node Package Manager

	16.2 Node Is Asynchronous by Default
	16.3 Buffers
	16.4 Events and EventEmitter
	16.5 Streams
	16.5.1 Pipes
	16.5.2 Asynchronous Iteration
	16.5.3 Writing to Streams and Handling Backpressure
	16.5.4 Reading Streams with Events

	16.6 Process, CPU, and Operating System Details
	16.7 Working with Files
	16.7.1 Paths, File Descriptors, and FileHandles
	16.7.2 Reading Files
	16.7.3 Writing Files
	16.7.4 File Operations
	16.7.5 File Metadata
	16.7.6 Working with Directories

	16.8 HTTP Clients and Servers
	16.9 Non-HTTP Network Servers and Clients
	16.10 Working with Child Processes
	16.10.1 execSync() and execFileSync()
	16.10.2 exec() and execFile()
	16.10.3 spawn()
	16.10.4 fork()

	16.11 Worker Threads
	16.11.1 Creating Workers and Passing Messages
	16.11.2 The Worker Execution Environment
	16.11.3 Communication Channels and MessagePorts
	16.11.4 Transferring MessagePorts and Typed Arrays
	16.11.5 Sharing Typed Arrays Between Threads

	16.12 Summary

	Chapter 17. JavaScript Tools and Extensions
	17.1 Linting with ESLint
	17.2 JavaScript Formatting with Prettier
	17.3 Unit Testing with Jest
	17.4 Package Management with npm
	17.5 Code Bundling
	17.6 Transpilation with Babel
	17.7 JSX: Markup Expressions in JavaScript
	17.8 Type Checking with Flow
	17.8.1 Installing and Running Flow
	17.8.2 Using Type Annotations
	17.8.3 Class Types
	17.8.4 Object Types
	17.8.5 Type Aliases
	17.8.6 Array Types
	17.8.7 Other Parameterized Types
	17.8.8 Read-Only Types
	17.8.9 Function Types
	17.8.10 Union Types
	17.8.11 Enumerated Types and Discriminated Unions

	17.9 Summary

	Index
	About the Author
	Colophon

